Science.gov

Sample records for heterozygous truncating mutation

  1. Compound heterozygous or homozygous truncating MYBPC3 mutations cause lethal cardiomyopathy with features of noncompaction and septal defects

    PubMed Central

    Wessels, Marja W; Herkert, Johanna C; Frohn-Mulder, Ingrid M; Dalinghaus, Michiel; van den Wijngaard, Arthur; de Krijger, Ronald R; Michels, Michelle; de Coo, Irenaeus FM; Hoedemaekers, Yvonne M; Dooijes, Dennis

    2015-01-01

    Familial hypertrophic cardiomyopathy (HCM) is usually caused by autosomal dominant pathogenic mutations in genes encoding sarcomeric or sarcomere-associated cardiac muscle proteins. The disease mainly affects adults, although young children with severe HCM have also been reported. We describe four unrelated neonates with lethal cardiomyopathy, and performed molecular studies to identify the genetic defect. We also present a literature overview of reported patients with compound heterozygous or homozygous pathogenic MYBPC3 mutations and describe their clinical characteristics. All four children presented with feeding difficulties, failure to thrive, and dyspnea. They died from cardiac failure before age 13 weeks. Features of left ventricular noncompaction were diagnosed in three patients. In the fourth, hypertrabeculation was not a clear feature, but could not be excluded. All of them had septal defects. Two patients were compound heterozygotes for the pathogenic c.2373dup p.(Trp792fs) and c.2827C>T p.(Arg943*) mutations, and two were homozygous for the c.2373dup and c.2827C>T mutations. All patients with biallelic truncating pathogenic mutations in MYBPC3 reported so far (n=21) were diagnosed with severe cardiomyopathy and/or died within the first few months of life. In 62% (13/21), septal defects or a patent ductus arteriosus accompanied cardiomyopathy. In contrast to heterozygous pathogenic mutations, homozygous or compound heterozygous truncating pathogenic MYBPC3 mutations cause severe neonatal cardiomyopathy with features of left ventricular noncompaction and septal defects in approximately 60% of patients. PMID:25335496

  2. Identification of a novel heterozygous truncation mutation in exon 1 of ARHGAP29 in an Indian subject with nonsyndromic cleft lip with cleft palate

    PubMed Central

    Chandrasekharan, Deepak; Ramanathan, Arvind

    2014-01-01

    Objective: Mutations in exon 1 of ARHGAP29, a RhoA specific GTPase have been identified in North American and Filipino subjects with nonsyndromic cleft palate and cleft lip with or without cleft palate. Since the genetic status of ARHGAP29 in Indian subjects with nonsyndromic oral clefts is not known, we designed the present study to investigate the occurrence of the above mutations in them. Materials and Methods: Total genomic DNA extracted from peripheral blood of 60 subjects with nonsyndromic cleft palate and cleft lip with or without cleft palate, and equal number of control healthy subjects were amplified with primers flanking exon 1 of ARHGAP29 gene and subjected to direct sequencing. Results: Sequencing analysis identified a nonsense mutation in exon 1 of ARHGAP29 that caused substitution of lysine to stop codon at codon position 32 in a subject with nonsyndromic cleft lip with cleft palate. The mutation, however, occurred in heterozygous condition. None of the other subjects carried mutation in this region. Conclusion: The study has thus identified a rare but novel truncation mutation in ARHGAP29 gene for the first time in nonsyndromic oral clefts. PMID:25512736

  3. The Characteristics of Heterozygous Protein Truncating Variants in the Human Genome.

    PubMed

    Bartha, István; Rausell, Antonio; McLaren, Paul J; Mohammadi, Pejman; Tardaguila, Manuel; Chaturvedi, Nimisha; Fellay, Jacques; Telenti, Amalio

    2015-12-01

    Sequencing projects have identified large numbers of rare stop-gain and frameshift variants in the human genome. As most of these are observed in the heterozygous state, they test a gene's tolerance to haploinsufficiency and dominant loss of function. We analyzed the distribution of truncating variants across 16,260 autosomal protein coding genes in 11,546 individuals. We observed 39,893 truncating variants affecting 12,062 genes, which significantly differed from an expectation of 12,916 genes under a model of neutral de novo mutation (p<10-4). Extrapolating this to increasing numbers of sequenced individuals, we estimate that 10.8% of human genes do not tolerate heterozygous truncating variants. An additional 10 to 15% of truncated genes may be rescued by incomplete penetrance or compensatory mutations, or because the truncating variants are of limited functional impact. The study of protein truncating variants delineates the essential genome and, more generally, identifies rare heterozygous variants as an unexplored source of diversity of phenotypic traits and diseases. PMID:26642228

  4. The Characteristics of Heterozygous Protein Truncating Variants in the Human Genome

    PubMed Central

    McLaren, Paul J.; Mohammadi, Pejman; Tardaguila, Manuel; Chaturvedi, Nimisha; Fellay, Jacques; Telenti, Amalio

    2015-01-01

    Sequencing projects have identified large numbers of rare stop-gain and frameshift variants in the human genome. As most of these are observed in the heterozygous state, they test a gene’s tolerance to haploinsufficiency and dominant loss of function. We analyzed the distribution of truncating variants across 16,260 autosomal protein coding genes in 11,546 individuals. We observed 39,893 truncating variants affecting 12,062 genes, which significantly differed from an expectation of 12,916 genes under a model of neutral de novo mutation (p<10−4). Extrapolating this to increasing numbers of sequenced individuals, we estimate that 10.8% of human genes do not tolerate heterozygous truncating variants. An additional 10 to 15% of truncated genes may be rescued by incomplete penetrance or compensatory mutations, or because the truncating variants are of limited functional impact. The study of protein truncating variants delineates the essential genome and, more generally, identifies rare heterozygous variants as an unexplored source of diversity of phenotypic traits and diseases. PMID:26642228

  5. Heterozygous RTEL1 mutations are associated with familial pulmonary fibrosis.

    PubMed

    Kannengiesser, Caroline; Borie, Raphael; Ménard, Christelle; Réocreux, Marion; Nitschké, Patrick; Gazal, Steven; Mal, Hervé; Taillé, Camille; Cadranel, Jacques; Nunes, Hilario; Valeyre, Dominique; Cordier, Jean François; Callebaut, Isabelle; Boileau, Catherine; Cottin, Vincent; Grandchamp, Bernard; Revy, Patrick; Crestani, Bruno

    2015-08-01

    Pulmonary fibrosis is a fatal disease with progressive loss of respiratory function. Defective telomere maintenance leading to telomere shortening is a cause of pulmonary fibrosis, as mutations in the telomerase component genes TERT (reverse transcriptase) and TERC (RNA component) are found in 15% of familial pulmonary fibrosis (FPF) cases. However, so far, about 85% of FPF remain genetically uncharacterised.Here, in order to identify new genetic causes of FPF, we performed whole-exome sequencing, with a candidate-gene approach, of 47 affected subjects from 35 families with FPF without TERT and TERC mutations.We identified heterozygous mutations in regulator of telomere elongation helicase 1 (RTEL1) in four families. RTEL1 is a DNA helicase with roles in DNA replication, genome stability, DNA repair and telomere maintenance. The heterozygous RTEL1 mutations segregated as an autosomal dominant trait in FPF, and were predicted by structural analyses to severely affect the function and/or stability of RTEL1. In agreement with this, RTEL1-mutated patients exhibited short telomeres in comparison with age-matched controls.Our results provide evidence that heterozygous RTEL1 mutations are responsible for FPF and, thereby, extend the clinical spectrum of RTEL1 deficiency. Thus, RTEL1 enlarges the number of telomere-associated genes implicated in FPF. PMID:26022962

  6. Recessive TTN truncating mutations define novel forms of core myopathy with heart disease

    PubMed Central

    Chauveau, Claire; Bonnemann, Carsten G.; Julien, Cedric; Kho, Ay Lin; Marks, Harold; Talim, Beril; Maury, Philippe; Arne-Bes, Marie Christine; Uro-Coste, Emmanuelle; Alexandrovich, Alexander; Vihola, Anna; Schafer, Sebastian; Kaufmann, Beth; Medne, Livija; Hübner, Norbert; Foley, A. Reghan; Santi, Mariarita; Udd, Bjarne; Topaloglu, Haluk; Moore, Steven A.; Gotthardt, Michael; Samuels, Mark E.; Gautel, Mathias; Ferreiro, Ana

    2014-01-01

    Core myopathies (CM), the main non-dystrophic myopathies in childhood, remain genetically unexplained in many cases. Heart disease is not considered part of the typical CM spectrum. No congenital heart defect has been reported, and childhood-onset cardiomyopathy has been documented in only two CM families with homozygous mutations of the TTN gene. TTN encodes titin, a giant protein of striated muscles. Recently, heterozygous TTN truncating mutations have also been reported as a major cause of dominant dilated cardiomyopathy. However, relatively few TTN mutations and phenotypes are known, and titin pathophysiological role in cardiac and skeletal muscle conditions is incompletely understood. We analyzed a series of 23 families with congenital CM and primary heart disease using TTN M-line-targeted sequencing followed in selected patients by whole-exome sequencing and functional studies. We identified seven novel homozygous or compound heterozygous TTN mutations (five in the M-line, five truncating) in 17% patients. Heterozygous parents were healthy. Phenotype analysis identified four novel titinopathies, including cardiac septal defects, left ventricular non-compaction, Emery–Dreifuss muscular dystrophy or arthrogryposis. Additionally, in vitro studies documented the first-reported absence of a functional titin kinase domain in humans, leading to a severe antenatal phenotype. We establish that CM are associated with a large range of heart conditions of which TTN mutations are a major cause, thereby expanding the TTN mutational and phenotypic spectrum. Additionally, our results suggest titin kinase implication in cardiac morphogenesis and demonstrate that heterozygous TTN truncating mutations may not manifest unless associated with a second mutation, reassessing the paradigm of their dominant expression. PMID:24105469

  7. Recessive TTN truncating mutations define novel forms of core myopathy with heart disease.

    PubMed

    Chauveau, Claire; Bonnemann, Carsten G; Julien, Cedric; Kho, Ay Lin; Marks, Harold; Talim, Beril; Maury, Philippe; Arne-Bes, Marie Christine; Uro-Coste, Emmanuelle; Alexandrovich, Alexander; Vihola, Anna; Schafer, Sebastian; Kaufmann, Beth; Medne, Livija; Hübner, Norbert; Foley, A Reghan; Santi, Mariarita; Udd, Bjarne; Topaloglu, Haluk; Moore, Steven A; Gotthardt, Michael; Samuels, Mark E; Gautel, Mathias; Ferreiro, Ana

    2014-02-15

    Core myopathies (CM), the main non-dystrophic myopathies in childhood, remain genetically unexplained in many cases. Heart disease is not considered part of the typical CM spectrum. No congenital heart defect has been reported, and childhood-onset cardiomyopathy has been documented in only two CM families with homozygous mutations of the TTN gene. TTN encodes titin, a giant protein of striated muscles. Recently, heterozygous TTN truncating mutations have also been reported as a major cause of dominant dilated cardiomyopathy. However, relatively few TTN mutations and phenotypes are known, and titin pathophysiological role in cardiac and skeletal muscle conditions is incompletely understood. We analyzed a series of 23 families with congenital CM and primary heart disease using TTN M-line-targeted sequencing followed in selected patients by whole-exome sequencing and functional studies. We identified seven novel homozygous or compound heterozygous TTN mutations (five in the M-line, five truncating) in 17% patients. Heterozygous parents were healthy. Phenotype analysis identified four novel titinopathies, including cardiac septal defects, left ventricular non-compaction, Emery-Dreifuss muscular dystrophy or arthrogryposis. Additionally, in vitro studies documented the first-reported absence of a functional titin kinase domain in humans, leading to a severe antenatal phenotype. We establish that CM are associated with a large range of heart conditions of which TTN mutations are a major cause, thereby expanding the TTN mutational and phenotypic spectrum. Additionally, our results suggest titin kinase implication in cardiac morphogenesis and demonstrate that heterozygous TTN truncating mutations may not manifest unless associated with a second mutation, reassessing the paradigm of their dominant expression. PMID:24105469

  8. Enhanced Tumor Formation in Mice Heterozygous for Blm Mutation

    NASA Astrophysics Data System (ADS)

    Heppner Goss, Kathleen; Risinger, Mary A.; Kordich, Jennifer J.; Sanz, Maureen M.; Straughen, Joel E.; Slovek, Lisa E.; Capobianco, Anthony J.; German, James; Boivin, Gregory P.; Groden, Joanna

    2002-09-01

    Persons with the autosomal recessive disorder Bloom syndrome are predisposed to cancers of many types due to loss-of-function mutations in the BLM gene, which encodes a recQ-like helicase. Here we show that mice heterozygous for a targeted null mutation of Blm, the murine homolog of BLM, develop lymphoma earlier than wild-type littermates in response to challenge with murine leukemia virus and develop twice the number of intestinal tumors when crossed with mice carrying a mutation in the Apctumor suppressor. These observations indicate that Blm is a modifier of tumor formation in the mouse and that Blm haploinsufficiency is associated with tumor predisposition, a finding with important implications for cancer risk in humans.

  9. Heterozygous Reelin Mutations Cause Autosomal-Dominant Lateral Temporal Epilepsy

    PubMed Central

    Dazzo, Emanuela; Fanciulli, Manuela; Serioli, Elena; Minervini, Giovanni; Pulitano, Patrizia; Binelli, Simona; Di Bonaventura, Carlo; Luisi, Concetta; Pasini, Elena; Striano, Salvatore; Striano, Pasquale; Coppola, Giangennaro; Chiavegato, Angela; Radovic, Slobodanka; Spadotto, Alessandro; Uzzau, Sergio; La Neve, Angela; Giallonardo, Anna Teresa; Mecarelli, Oriano; Tosatto, Silvio C.E.; Ottman, Ruth; Michelucci, Roberto; Nobile, Carlo

    2015-01-01

    Autosomal-dominant lateral temporal epilepsy (ADLTE) is a genetic epilepsy syndrome clinically characterized by focal seizures with prominent auditory symptoms. ADLTE is genetically heterogeneous, and mutations in LGI1 account for fewer than 50% of affected families. Here, we report the identification of causal mutations in reelin (RELN) in seven ADLTE-affected families without LGI1 mutations. We initially investigated 13 ADLTE-affected families by performing SNP-array linkage analysis and whole-exome sequencing and identified three heterozygous missense mutations co-segregating with the syndrome. Subsequent analysis of 15 small ADLTE-affected families revealed four additional missense mutations. 3D modeling predicted that all mutations have structural effects on protein-domain folding. Overall, RELN mutations occurred in 7/40 (17.5%) ADLTE-affected families. RELN encodes a secreted protein, Reelin, which has important functions in both the developing and adult brain and is also found in the blood serum. We show that ADLTE-related mutations significantly decrease serum levels of Reelin, suggesting an inhibitory effect of mutations on protein secretion. We also show that Reelin and LGI1 co-localize in a subset of rat brain neurons, supporting an involvement of both proteins in a common molecular pathway underlying ADLTE. Homozygous RELN mutations are known to cause lissencephaly with cerebellar hypoplasia. Our findings extend the spectrum of neurological disorders associated with RELN mutations and establish a link between RELN and LGI1, which play key regulatory roles in both the developing and adult brain. PMID:26046367

  10. Heterozygous reelin mutations cause autosomal-dominant lateral temporal epilepsy.

    PubMed

    Dazzo, Emanuela; Fanciulli, Manuela; Serioli, Elena; Minervini, Giovanni; Pulitano, Patrizia; Binelli, Simona; Di Bonaventura, Carlo; Luisi, Concetta; Pasini, Elena; Striano, Salvatore; Striano, Pasquale; Coppola, Giangennaro; Chiavegato, Angela; Radovic, Slobodanka; Spadotto, Alessandro; Uzzau, Sergio; La Neve, Angela; Giallonardo, Anna Teresa; Mecarelli, Oriano; Tosatto, Silvio C E; Ottman, Ruth; Michelucci, Roberto; Nobile, Carlo

    2015-06-01

    Autosomal-dominant lateral temporal epilepsy (ADLTE) is a genetic epilepsy syndrome clinically characterized by focal seizures with prominent auditory symptoms. ADLTE is genetically heterogeneous, and mutations in LGI1 account for fewer than 50% of affected families. Here, we report the identification of causal mutations in reelin (RELN) in seven ADLTE-affected families without LGI1 mutations. We initially investigated 13 ADLTE-affected families by performing SNP-array linkage analysis and whole-exome sequencing and identified three heterozygous missense mutations co-segregating with the syndrome. Subsequent analysis of 15 small ADLTE-affected families revealed four additional missense mutations. 3D modeling predicted that all mutations have structural effects on protein-domain folding. Overall, RELN mutations occurred in 7/40 (17.5%) ADLTE-affected families. RELN encodes a secreted protein, Reelin, which has important functions in both the developing and adult brain and is also found in the blood serum. We show that ADLTE-related mutations significantly decrease serum levels of Reelin, suggesting an inhibitory effect of mutations on protein secretion. We also show that Reelin and LGI1 co-localize in a subset of rat brain neurons, supporting an involvement of both proteins in a common molecular pathway underlying ADLTE. Homozygous RELN mutations are known to cause lissencephaly with cerebellar hypoplasia. Our findings extend the spectrum of neurological disorders associated with RELN mutations and establish a link between RELN and LGI1, which play key regulatory roles in both the developing and adult brain. PMID:26046367

  11. Compound heterozygous mutations of the TNXB gene cause primary myopathy.

    PubMed

    Pénisson-Besnier, Isabelle; Allamand, Valérie; Beurrier, Philippe; Martin, Ludovic; Schalkwijk, Joost; van Vlijmen-Willems, Ivonne; Gartioux, Corine; Malfait, Fransiska; Syx, Delfien; Macchi, Laurent; Marcorelles, Pascale; Arbeille, Brigitte; Croué, Anne; De Paepe, Anne; Dubas, Frédéric

    2013-08-01

    Complete deficiency of the extracellular matrix glycoprotein tenascin-X (TNX) leads to recessive forms of Ehlers-Danlos syndrome, clinically characterized by hyperextensible skin, easy bruising and joint hypermobility. Clinical and pathological studies, immunoassay, and molecular analyses were combined to study a patient suffering from progressive muscle weakness. Clinical features included axial and proximal limb muscle weakness, subclinical heart involvement, minimal skin hyperextensibility, no joint abnormalities, and a history of easy bruising. Skeletal muscle biopsy disclosed striking muscle consistency and the abnormal presence of myotendinous junctions in the muscle belly. TNX immunostaining was markedly reduced in muscle and skin, and serum TNX levels were undetectable. Compound heterozygous mutations were identified: a previously reported 30kb deletion and a non-synonymous novel missense mutation in the TNXB gene. This study identifies a TNX-deficient patient presenting with a primary muscle disorder, thus expanding the phenotypic spectrum of TNX-related abnormalities. Biopsy findings provide evidence that TNX deficiency leads to muscle softness and to mislocalization of myotendinous junctions. PMID:23768946

  12. Abnormal corneal epithelial maintenance in mice heterozygous for the micropinna microphthalmia mutation Mp.

    PubMed

    Douvaras, Panagiotis; Dorà, Natalie J; Mort, Richard L; Lodge, Emily J; Hill, Robert E; West, John D

    2016-08-01

    We investigated the corneal morphology of adult Mp/+ mice, which are heterozygous for the micropinna microphthalmia mutation, and identified several abnormalities, which implied that corneal epithelial maintenance was abnormal. The Mp/+ corneal epithelium was thin, loosely packed and contained goblet cells in older mice. Evidence also suggested that the barrier function was compromised. However, there was no major effect on corneal epithelial cell turnover and mosaic patterns of radial stripes indicated that radial cell movement was normal. Limbal blood vessels formed an abnormally wide limbal vasculature ring, K19-positive cells were distributed more widely than normal and K12 was weakly expressed in the peripheral cornea. This raises the possibilities that the limbal-corneal boundary was poorly defined or the limbus was wider than normal. BrdU label-retaining cell numbers and quantitative clonal analysis suggested that limbal epithelial stem cell numbers were not depleted and might be higher than normal. However, as corneal epithelial homeostasis was abnormal, it is possible that Mp/+ stem cell function was impaired. It has been shown recently that the Mp mutation involves a chromosome 18 inversion that disrupts the Fbn2 and Isoc1 genes and produces an abnormal, truncated fibrillin-2(MP) protein. This abnormal protein accumulates in the endoplasmic reticulum (ER) of cells that normally express Fbn2 and causes ER stress. It was also shown that Fbn2 is expressed in the corneal stroma but not the corneal epithelium, suggesting that the presence of truncated fibrillin-2(MP) protein in the corneal stroma disrupts corneal epithelial homeostasis in Mp/+ mice. PMID:27235794

  13. Compound heterozygous mutations of TYMP as underlying causes of mitochondrial neurogastrointestinal encephalomyopathy (MNGIE).

    PubMed

    Suh, Bum Chun; Jeong, Ha-Neul; Yoon, Byung Suk; Park, Ji Hoon; Kim, Hye Jin; Park, Sun Wha; Hwang, Jung Hee; Choi, Byung-Ok; Chung, Ki Wha

    2013-07-01

    Mitochondrial neurogastrointestinal encephalomyopathy (MNGIE), an autosomal recessive multiorgan disease, frequently associated with mutations in the thymidine phosphorylase (TYMP) gene. TYMP encodes thymidine phosphorylase (TP), which has an essential role in the nucleotide salvage pathway for mitochondrial DNA (mtDNA) replication. This study reports an MNGIE patient with novel compound heterozygous missense mutations (Thr151Pro and Leu270Pro) in TYMP. Each mutation was inherited from one parent. Neither mutation was found in the controls and the mutation sites were well conserved between different species. Neither large deletion nor causative point mutations were found in the mtDNA. The patient presented with MNGIE symptoms, including gastrointestinal discomfort, external ophthalmoplegia, pigmentary retinopathy and demyelinating type diffuse sensory motor polyneuropathy. The patient demonstrated an early-onset but mild phenotype, with 9.6% TP activity; therefore, patients with these compound heterozygous mutations may exhibit a mild phenotype with a variable onset age according to TP activity level. PMID:23685548

  14. Homozygous truncating PTPRF mutation causes athelia.

    PubMed

    Borck, Guntram; de Vries, Liat; Wu, Hsin-Jung; Smirin-Yosef, Pola; Nürnberg, Gudrun; Lagovsky, Irina; Ishida, Luis Henrique; Thierry, Patrick; Wieczorek, Dagmar; Nürnberg, Peter; Foley, John; Kubisch, Christian; Basel-Vanagaite, Lina

    2014-08-01

    Athelia is a very rare entity that is defined by the absence of the nipple-areola complex. It can affect either sex and is mostly part of syndromes including other congenital or ectodermal anomalies, such as limb-mammary syndrome, scalp-ear-nipple syndrome, or ectodermal dysplasias. Here, we report on three children from two branches of an extended consanguineous Israeli Arab family, a girl and two boys, who presented with a spectrum of nipple anomalies ranging from unilateral hypothelia to bilateral athelia but no other consistently associated anomalies except a characteristic eyebrow shape. Using homozygosity mapping after single nucleotide polymorphism (SNP) array genotyping and candidate gene sequencing we identified a homozygous frameshift mutation in PTPRF as the likely cause of nipple anomalies in this family. PTPRF encodes a receptor-type protein phosphatase that localizes to adherens junctions and may be involved in the regulation of epithelial cell-cell contacts, peptide growth factor signaling, and the canonical Wnt pathway. Together with previous reports on female mutant Ptprf mice, which have a lactation defect, and disruption of one allele of PTPRF by a balanced translocation in a woman with amastia, our results indicate a key role for PTPRF in the development of the nipple-areola region. PMID:24781087

  15. Transient congenital hypothyroidism caused by compound heterozygous mutations affecting the NADPH-oxidase domain of DUOX2.

    PubMed

    Yoshizawa-Ogasawara, Atsuko; Abe, Kiyomi; Ogikubo, Sayaka; Narumi, Satoshi; Hasegawa, Tomonobu; Satoh, Mari

    2016-03-01

    Here, we describe three cases of loss-of-function mutations in the nicotinamide adenine dinucleotide phosphate (NADPH)-oxidase (NOX) domain of dual oxidase 2 (DUOX2) occurring along with concurrent missense mutations in thyroid peroxidase (TPO), leading to transient congenital hypothyroidism (CH). Three Japanese boys with nonconsanguineous parents were diagnosed with CH during their neonatal screenings. All patients presented with moderate-to-severe neonatal hypothyroidism and were diagnosed with transient CH after re-evaluation of thyroid function. Two siblings were compound heterozygous for p.[R1110Q]+[Y1180X] in DUOX2; one of them was also heterozygous for p.[R361L] in TPO. The third patient was compound heterozygous for p.[L1160del]+[R1334W] in DUOX2 and heterozygous for p.[P883S] in TPO. This is the first report of a de novo L1160del mutation affecting the DUOX2 gene and of the novel mutations Y1180X in DUOX2 and R361L in TPO. R1110Q and L1160del were found to reduce H2O2 production (5%-9%, p<0.01), while Y1180X, which introduces a premature stop codon, did not confer detectable H2O2 production (-0.7%±0.6%, p<0.01). Moreover, R1334W, a missense mutation possibly affecting electron transfer, led to reduced H2O2 production (24%±0.9%, p<0.01) in vitro, and R1110Q and R1334W resulted in reduced protein expression. Y1180X was detected in a 120 kDa truncated form, whereas L1160del expression was maintained. Further, R361L, a novel missense mutation in TPO, caused partial reduction in peroxidase activity (20.6%±0.8%, p=0.01), whereas P883S, a missense variant, increased it (133.7%±2.8%, p=0.02). The protein expression levels in the case of R361L and P883S were maintained. In conclusion, we provide clinical and in vitro demonstrations of different functional defects and phenotypic heterogeneity in the same thyroid hormonogenesis pathway. PMID:26565538

  16. Bone Mineral Density in Postmenopausal Women Heterozygous for the C282Y HFE Mutation

    PubMed Central

    Gates, Frances; Fulcher, Greg R.

    2016-01-01

    Mutations in the HFE gene may be associated with increased tissue iron stores reflected in an elevated serum ferritin. With homozygous mutation C282Y, the increase in serum ferritin may be associated with tissue damage in the liver, pancreas, and pituitary and with a reduced bone mineral density. With heterozygous mutation C282Y, the degree of iron retention is less but information relating to how a heterozygous C282Y mutation might impact bone mineral density is uncertain. The present study was undertaken to study the relationships between bone mineral density measured by dual energy X-ray absorptiometry and the serum ferritin and serum iron in postmenopausal women heterozygous for the C282Y mutation. The spinal bone mineral density, L2–4, was significantly less than age matched community controls (P = 0.016). There was no significant change in the femoral neck bone mineral density compared to age matched community controls. The correlation between the spinal bone mineral density, L2–4, the femoral neck bone mineral density, and the serum ferritin was not significant. The serum iron correlated significantly inversely with the femoral neck bone mineral density (P = 0.048). The heterozygous C282Y mutation may be associated with impairment of bone cell function in postmenopausal women when only small increases in the serum iron or serum ferritin have occurred. PMID:27123357

  17. Truncating and missense mutations in IGHMBP2 cause Charcot-Marie Tooth disease type 2.

    PubMed

    Cottenie, Ellen; Kochanski, Andrzej; Jordanova, Albena; Bansagi, Boglarka; Zimon, Magdalena; Horga, Alejandro; Jaunmuktane, Zane; Saveri, Paola; Rasic, Vedrana Milic; Baets, Jonathan; Bartsakoulia, Marina; Ploski, Rafal; Teterycz, Pawel; Nikolic, Milos; Quinlivan, Ros; Laura, Matilde; Sweeney, Mary G; Taroni, Franco; Lunn, Michael P; Moroni, Isabella; Gonzalez, Michael; Hanna, Michael G; Bettencourt, Conceicao; Chabrol, Elodie; Franke, Andre; von Au, Katja; Schilhabel, Markus; Kabzińska, Dagmara; Hausmanowa-Petrusewicz, Irena; Brandner, Sebastian; Lim, Siew Choo; Song, Haiwei; Choi, Byung-Ok; Horvath, Rita; Chung, Ki-Wha; Zuchner, Stephan; Pareyson, Davide; Harms, Matthew; Reilly, Mary M; Houlden, Henry

    2014-11-01

    Using a combination of exome sequencing and linkage analysis, we investigated an English family with two affected siblings in their 40s with recessive Charcot-Marie Tooth disease type 2 (CMT2). Compound heterozygous mutations in the immunoglobulin-helicase-μ-binding protein 2 (IGHMBP2) gene were identified. Further sequencing revealed a total of 11 CMT2 families with recessively inherited IGHMBP2 gene mutations. IGHMBP2 mutations usually lead to spinal muscular atrophy with respiratory distress type 1 (SMARD1), where most infants die before 1 year of age. The individuals with CMT2 described here, have slowly progressive weakness, wasting and sensory loss, with an axonal neuropathy typical of CMT2, but no significant respiratory compromise. Segregating IGHMBP2 mutations in CMT2 were mainly loss-of-function nonsense in the 5' region of the gene in combination with a truncating frameshift, missense, or homozygous frameshift mutations in the last exon. Mutations in CMT2 were predicted to be less aggressive as compared to those in SMARD1, and fibroblast and lymphoblast studies indicate that the IGHMBP2 protein levels are significantly higher in CMT2 than SMARD1, but lower than controls, suggesting that the clinical phenotype differences are related to the IGHMBP2 protein levels. PMID:25439726

  18. Truncating Mutations of MAGEL2, a Gene within the Prader-Willi Locus, Are Responsible for Severe Arthrogryposis.

    PubMed

    Mejlachowicz, Dan; Nolent, Flora; Maluenda, Jérome; Ranjatoelina-Randrianaivo, Hanitra; Giuliano, Fabienne; Gut, Ivo; Sternberg, Damien; Laquerrière, Annie; Melki, Judith

    2015-10-01

    Arthrogryposis multiplex congenita (AMC) is characterized by the presence of multiple joint contractures resulting from reduced or absent fetal movement. Here, we report two unrelated families affected by lethal AMC. By genetic mapping and whole-exome sequencing in a multiplex family, a heterozygous truncating MAGEL2 mutation leading to frameshift and a premature stop codon (c.1996delC, p.Gln666Serfs∗36) and inherited from the father was identified in the probands. In another family, a distinct heterozygous truncating mutation leading to frameshift (c.2118delT, p.Leu708Trpfs∗7) and occurring de novo on the paternal allele of MAGEL2 was identified in the affected individual. In both families, RNA analysis identified the mutated paternal MAGEL2 transcripts only in affected individuals. MAGEL2 is one of the paternally expressed genes within the Prader-Willi syndrome (PWS) locus. PWS is associated with, to varying extents, reduced fetal mobility, severe infantile hypotonia, childhood-onset obesity, hypogonadism, and intellectual disability. MAGEL2 mutations have been recently reported in affected individuals with features resembling PWS and called Schaaf-Yang syndrome. Here, we show that paternal MAGEL2 mutations are also responsible for lethal AMC, recapitulating the clinical spectrum of PWS and suggesting that MAGEL2 is a PWS-determining gene. PMID:26365340

  19. MOLECULAR DISSECTION OF MUTATIONS AT THE HETEROZYGOUS THYMIDINE KINASE LOCUS IN MOUSE LYMPHOMA CELLS

    EPA Science Inventory

    The mouse lymphoma L5178Y TK+/- 3.7.2C cell line allows quantitation of induced TK+/- -> TK-/- mutations at the heterozygous thymidine kinase (tk) locus. K-/- mutant colonies show a bimodal size distribution, reflecting a difference in the growth rates of the two size classes tha...

  20. A Heterozygous RAB27A Mutation Associated with Delayed Cytolytic Granule Polarization and Hemophagocytic Lymphohistiocytosis.

    PubMed

    Zhang, Mingce; Bracaglia, Claudia; Prencipe, Giusi; Bemrich-Stolz, Christina J; Beukelman, Timothy; Dimmitt, Reed A; Chatham, W Winn; Zhang, Kejian; Li, Hao; Walter, Mark R; De Benedetti, Fabrizio; Grom, Alexei A; Cron, Randy Q

    2016-03-15

    Frequently fatal, primary hemophagocytic lymphohistiocytosis (HLH) occurs in infancy resulting from homozygous mutations in NK and CD8 T cell cytolytic pathway genes. Secondary HLH presents after infancy and may be associated with heterozygous mutations in HLH genes. We report two unrelated teenagers with HLH and an identical heterozygous RAB27A mutation (c.259G→C). We explore the contribution of this Rab27A missense (p.A87P) mutation on NK cell cytolytic function by cloning it into a lentiviral expression vector prior to introduction into the human NK-92 cell line. NK cell degranulation (CD107a expression), target cell conjugation, and K562 target cell lysis was compared between mutant- and wild-type-transduced NK-92 cells. Polarization of granzyme B to the immunologic synapse and interaction of mutant Rab27A (p.A87P) with Munc13-4 were explored by confocal microscopy and proximity ligation assay, respectively. Overexpression of the RAB27A mutation had no effect on cell conjugate formation between the NK and target cells but decreased NK cell cytolytic activity and degranulation. Moreover, the mutant Rab27A protein decreased binding to Munc13-4 and delayed granzyme B polarization toward the immunologic synapse. This heterozygous RAB27A mutation blurs the genetic distinction between primary and secondary HLH by contributing to HLH via a partial dominant-negative effect. PMID:26880764

  1. Heterozygous PTCH1 Mutations Impact the Bone Metabolism in Patients With Nevoid Basal Cell Carcinoma Syndrome Likely by Regulating SPARC Expression.

    PubMed

    Hong, Yingying; Zhang, Jianyun; Zhang, Heyu; Li, Xuefen; Qu, Jiafei; Zhai, Jiemei; Zhang, Lei; Chen, Feng; Li, Tiejun

    2016-07-01

    Nevoid basal cell carcinoma syndrome (NBCCS) is an autosomal dominant disorder characterized by bone and skin abnormalities and a predisposition to various tumors. Keratocystic odontogenic tumors (KCOTs), which are common tumors of the jaw that cause extensive damage to the jawbone, are usually accompanied with NBCCS. Germline PTCH1 mutations in NBCCS tumorigenesis have been frequently studied; however, little is known regarding the pathogenesis of bone abnormalities in this disease. This study sought to investigate the mechanism underlying heterozygous PTCH1 mutation-mediated abnormal bone metabolism in patients with NBCCS. Stromal cells were isolated from the fibrous capsules of patients with NBCCS-associated or non-syndromic keratocystic odontogenic tumors and non-syndromic tumor stromal cells without PTCH1 mutations served as controls. Germline PTCH1 heterozygous mutations were confirmed in all NBCCS samples and differential protein expression was identified using tandem mass tag-labeled proteomics analysis. Our findings revealed that osteonectin/SPARC expression was significantly downregulated in syndromic stromal cells compared with non-syndromic stromal cells. SPARC expression was even lower in stromal cells carrying PTCH1 protein truncation mutations. PTCH1 siRNA transfection demonstrated that SPARC downregulation correlates with decreased PTCH1 expression. Furthermore, exogenous SPARC promoted osteogenic differentiation of syndromic stromal cells with enhanced development of calcium nodules. In addition, bone mineral density tests showed that patients with NBCCS exhibit weak bone mass compared with sex- and age-matched controls. This study indicates that germline PTCH1 heterozygous mutations play a major role in bone metabolism in patients with NBCCS, in particular in those with PTCH1 protein truncation mutations. SPARC may represent an important downstream modulator of PTCH1 mediation of bone metabolism. Thus, bone mineral density monitoring is critical

  2. Heterozygous colon cancer-associated mutations of SAMHD1 have functional significance.

    PubMed

    Rentoft, Matilda; Lindell, Kristoffer; Tran, Phong; Chabes, Anna Lena; Buckland, Robert J; Watt, Danielle L; Marjavaara, Lisette; Nilsson, Anna Karin; Melin, Beatrice; Trygg, Johan; Johansson, Erik; Chabes, Andrei

    2016-04-26

    Even small variations in dNTP concentrations decrease DNA replication fidelity, and this observation prompted us to analyze genomic cancer data for mutations in enzymes involved in dNTP metabolism. We found that sterile alpha motif and histidine-aspartate domain-containing protein 1 (SAMHD1), a deoxyribonucleoside triphosphate triphosphohydrolase that decreases dNTP pools, is frequently mutated in colon cancers, that these mutations negatively affect SAMHD1 activity, and that several SAMHD1 mutations are found in tumors with defective mismatch repair. We show that minor changes in dNTP pools in combination with inactivated mismatch repair dramatically increase mutation rates. Determination of dNTP pools in mouse embryos revealed that inactivation of one SAMHD1 allele is sufficient to elevate dNTP pools. These observations suggest that heterozygous cancer-associated SAMHD1 mutations increase mutation rates in cancer cells. PMID:27071091

  3. Heterozygous colon cancer-associated mutations of SAMHD1 have functional significance

    PubMed Central

    Rentoft, Matilda; Lindell, Kristoffer; Tran, Phong; Chabes, Anna Lena; Watt, Danielle L.; Marjavaara, Lisette; Nilsson, Anna Karin; Melin, Beatrice; Trygg, Johan; Johansson, Erik

    2016-01-01

    Even small variations in dNTP concentrations decrease DNA replication fidelity, and this observation prompted us to analyze genomic cancer data for mutations in enzymes involved in dNTP metabolism. We found that sterile alpha motif and histidine-aspartate domain-containing protein 1 (SAMHD1), a deoxyribonucleoside triphosphate triphosphohydrolase that decreases dNTP pools, is frequently mutated in colon cancers, that these mutations negatively affect SAMHD1 activity, and that several SAMHD1 mutations are found in tumors with defective mismatch repair. We show that minor changes in dNTP pools in combination with inactivated mismatch repair dramatically increase mutation rates. Determination of dNTP pools in mouse embryos revealed that inactivation of one SAMHD1 allele is sufficient to elevate dNTP pools. These observations suggest that heterozygous cancer-associated SAMHD1 mutations increase mutation rates in cancer cells. PMID:27071091

  4. Novel muscle chloride channel mutations and their effects on heterozygous carriers

    SciTech Connect

    Mailaender, V.; Heine, R.; Deymeer, F.

    1996-02-01

    Mutations within CLCN1, the gene encoding the major skeletal muscle chloride channel, cause either dominant Thomsen disease or recessive Becker-type myotonia, which are sometimes difficult to discriminate, because of reduced penetrance or lower clinical expressivity in females. We screened DNA of six unrelated Becker patients and found four novel CLCN1 mutations (Gln-74-Stop, Tyr-150-Cys, Tyr-261-Cys, and Ala-415-Val) and a previously reported 14-bp deletion. Five patients were homozygous for the changes (Gln-74-Stop, Ala-41 5-Val, and 14-bp deletion), four of them due to parental consanguinity. The sixth patient revealed compound heterozygosity for Tyr-150-Cys and Tyr-261-Cys. Heterozygous carriers of the Becker mutations did not display any clinical symptoms of myotonia. However, all heterozygous males, but none of the heterozygous females, exhibited myotonic discharges in the electromyogram suggesting (1) a gene dosage effect of the mutations on the chloride conductance and (2) male predominance of subclinical myotonia. Furthermore, we report a novel Gly-200-Arg mutation resulting in a dominant phenotype in a male and a partially dominant phenotype in his mother. We discuss potential causes of the gender preference and the molecular mechanisms that may determine the mode of inheritance. 31 refs., 4 figs., 1 tab.

  5. Recessive optic atrophy, sensorimotor neuropathy and cataract associated with novel compound heterozygous mutations in OPA1

    PubMed Central

    LEE, JINHO; JUNG, SUNG-CHUL; HONG, YOUNG BIN; YOO, JEONG HYUN; KOO, HEASOO; LEE, JA HYUN; HONG, HYUN DAE; KIM, SANG-BEOM; CHUNG, KI WHA; CHOI, BYUNG-OK

    2016-01-01

    Mutations in the optic atrophy 1 gene (OPA1) are associated with autosomal dominant optic atrophy and 20% of patients demonstrate extra-ocular manifestations. In addition to these autosomal dominant cases, only a few syndromic cases have been reported thus far with compound heterozygous OPA1 mutations, suggestive of either recessive or semi-dominant patterns of inheritance. The majority of these patients were diagnosed with Behr syndrome, characterized by optic atrophy, ataxia and peripheral neuropathy. The present study describes a 10-year-old boy with Behr syndrome presenting with early-onset severe optic atrophy, sensorimotor neuropathy, ataxia and congenital cataracts. He had optic atrophy and was declared legally blind at six years old. Electrophysiological, radiological, and histopathological findings were compatible with axonal sensorimotor polyneuropathy. At birth, he presented with a congenital cataract, which has not been previously described in patients with OPA1 mutations. Whole exome sequencing indicated a pair of novel compound heterozygous mutations: p.L620fs*13 (c.1857–1858delinsT) and p.R905Q (c.G2714A). Neither mutation was observed in controls (n=300), and thus, they were predicted to be pathogenic by multiple in silico analyses. The mutation sites were highly conserved throughout different vertebrate species. The patients parents did not have any ophthalmic or neurologic symptoms and the results of electrophysiological studies were normal, suggestive of an autosomal recessive pattern of inheritance. The present study identified novel compound heterozygous OPA1 mutations in a patient with recessive optic atrophy, sensorimotor neuropathy and congenital cataracts, indicating an expansion of the clinical spectrum of pathologies associated with OPA1 mutations. Thus, OPA1 gene screening is advisable in the workup of patients with recessive optic atrophy, particularly with Behr syndrome and cataracts. PMID:27150940

  6. Recessive optic atrophy, sensorimotor neuropathy and cataract associated with novel compound heterozygous mutations in OPA1.

    PubMed

    Lee, Jinho; Jung, Sung-Chul; Hong, Young Bin; Yoo, Jeong Hyun; Koo, Heasoo; Lee, Ja Hyun; Hong, Hyun Dae; Kim, Sang-Beom; Chung, Ki Wha; Choi, Byung-Ok

    2016-07-01

    Mutations in the optic atrophy 1 gene (OPA1) are associated with autosomal dominant optic atrophy and 20% of patients demonstrate extra-ocular manifestations. In addition to these autosomal dominant cases, only a few syndromic cases have been reported thus far with compound heterozygous OPA1 mutations, suggestive of either recessive or semi‑dominant patterns of inheritance. The majority of these patients were diagnosed with Behr syndrome, characterized by optic atrophy, ataxia and peripheral neuropathy. The present study describes a 10-year-old boy with Behr syndrome presenting with early‑onset severe optic atrophy, sensorimotor neuropathy, ataxia and congenital cataracts. He had optic atrophy and was declared legally blind at six years old. Electrophysiological, radiological, and histopathological findings were compatible with axonal sensorimotor polyneuropathy. At birth, he presented with a congenital cataract, which has not been previously described in patients with OPA1 mutations. Whole exome sequencing indicated a pair of novel compound heterozygous mutations: p.L620fs*13 (c.1857‑1858delinsT) and p.R905Q (c.G2714A). Neither mutation was observed in controls (n=300), and thus, they were predicted to be pathogenic by multiple in silico analyses. The mutation sites were highly conserved throughout different vertebrate species. The patients parents did not have any ophthalmic or neurologic symptoms and the results of electrophysiological studies were normal, suggestive of an autosomal recessive pattern of inheritance. The present study identified novel compound heterozygous OPA1 mutations in a patient with recessive optic atrophy, sensorimotor neuropathy and congenital cataracts, indicating an expansion of the clinical spectrum of pathologies associated with OPA1 mutations. Thus, OPA1 gene screening is advisable in the workup of patients with recessive optic atrophy, particularly with Behr syndrome and cataracts. PMID:27150940

  7. Compound heterozygous mutations in RIPPLY2 associated with vertebral segmentation defects.

    PubMed

    McInerney-Leo, Aideen M; Sparrow, Duncan B; Harris, Jessica E; Gardiner, Brooke B; Marshall, Mhairi S; O'Reilly, Victoria C; Shi, Hongjun; Brown, Matthew A; Leo, Paul J; Zankl, Andreas; Dunwoodie, Sally L; Duncan, Emma L

    2015-03-01

    Segmentation defects of the vertebrae (SDV) are caused by aberrant somite formation during embryogenesis and result in irregular formation of the vertebrae and ribs. The Notch signal transduction pathway plays a critical role in somite formation and patterning in model vertebrates. In humans, mutations in several genes involved in the Notch pathway are associated with SDV, with both autosomal recessive (MESP2, DLL3, LFNG, HES7) and autosomal dominant (TBX6) inheritance. However, many individuals with SDV do not carry mutations in these genes. Using whole-exome capture and massive parallel sequencing, we identified compound heterozygous mutations in RIPPLY2 in two brothers with multiple regional SDV, with appropriate familial segregation. One novel mutation (c.A238T:p.Arg80*) introduces a premature stop codon. In transiently transfected C2C12 mouse myoblasts, the RIPPLY2 mutant protein demonstrated impaired transcriptional repression activity compared with wild-type RIPPLY2 despite similar levels of expression. The other mutation (c.240-4T>G), with minor allele frequency <0.002, lies in the highly conserved splice site consensus sequence 5' to the terminal exon. Ripply2 has a well-established role in somitogenesis and vertebral column formation, interacting at both gene and protein levels with SDV-associated Mesp2 and Tbx6. We conclude that compound heterozygous mutations in RIPPLY2 are associated with SDV, a new gene for this condition. PMID:25343988

  8. SOFT syndrome caused by compound heterozygous mutations of POC1A and its skeletal manifestation.

    PubMed

    Ko, Jung Min; Jung, Soyoon; Seo, Jieun; Shin, Choong Ho; Cheong, Hae Il; Choi, Murim; Kim, Ok-Hwa; Cho, Tae-Joon

    2016-06-01

    SOFT syndrome (MIM614813) is an extremely rare primordial dwarfism characterized by short stature, onychodysplasia, facial dysmorphism and hypotrichosis, which is caused by biallelic mutations in the POC1A gene. Only 19 patients with mutation-confirmed SOFT syndrome have been reported to date, all of whom carried homozygous variants that were strongly associated with consanguineous marriages. We report an 8.5-year-old boy with SOFT syndrome showing primordial dwarfism, no effect of growth-hormone therapy and skeletal dysplasia. This is the first report of compound heterozygous variants in POC1A, one previously reported and the other novel. A characteristic skeletal manifestation is reported. PMID:26791357

  9. Incomplete distal renal tubular acidosis from a heterozygous mutation of the V-ATPase B1 subunit.

    PubMed

    Zhang, Jianning; Fuster, Daniel G; Cameron, Mary Ann; Quiñones, Henry; Griffith, Carolyn; Xie, Xiao-Song; Moe, Orson W

    2014-11-01

    Congenital distal renal tubular acidosis (RTA) from mutations of the B1 subunit of V-ATPase is considered an autosomal recessive disease. We analyzed a distal RTA kindred with a truncation mutation of B1 (p.Phe468fsX487) previously shown to have failure of assembly into the V1 domain of V-ATPase. All heterozygous carriers in this kindred have normal plasma HCO3- concentrations and thus evaded the diagnosis of RTA. However, inappropriately high urine pH, hypocitraturia, and hypercalciuria were present either individually or in combination in the heterozygotes at baseline. Two of the heterozygotes studied also had inappropriate urinary acidification with acute ammonium chloride loading and an impaired urine-blood Pco2 gradient during bicarbonaturia, indicating the presence of a H+ gradient and flux defects. In normal human renal papillae, wild-type B1 is located primarily on the plasma membrane, but papilla from one of the heterozygote who had kidney stones but not nephrocalcinosis showed B1 in both the plasma membrane as well as diffuse intracellular staining. Titration of increasing amounts of the mutant B1 subunit did not exhibit negative dominance over the expression, cellular distribution, or H+ pump activity of wild-type B1 in mammalian human embryonic kidney-293 cells and in V-ATPase-deficient Saccharomyces cerevisiae. This is the first demonstration of renal acidification defects and nephrolithiasis in heterozygous carriers of a mutant B1 subunit that cannot be attributable to negative dominance. We propose that heterozygosity may lead to mild real acidification defects due to haploinsufficiency. B1 heterozygosity should be considered in patients with calcium nephrolithiasis and urinary abnormalities such as alkalinuria or hypocitraturia. PMID:25164082

  10. Incomplete distal renal tubular acidosis from a heterozygous mutation of the V-ATPase B1 subunit

    PubMed Central

    Zhang, Jianning; Fuster, Daniel G.; Cameron, Mary Ann; Quiñones, Henry; Griffith, Carolyn; Xie, Xiao-Song

    2014-01-01

    Congenital distal renal tubular acidosis (RTA) from mutations of the B1 subunit of V-ATPase is considered an autosomal recessive disease. We analyzed a distal RTA kindred with a truncation mutation of B1 (p.Phe468fsX487) previously shown to have failure of assembly into the V1 domain of V-ATPase. All heterozygous carriers in this kindred have normal plasma HCO3− concentrations and thus evaded the diagnosis of RTA. However, inappropriately high urine pH, hypocitraturia, and hypercalciuria were present either individually or in combination in the heterozygotes at baseline. Two of the heterozygotes studied also had inappropriate urinary acidification with acute ammonium chloride loading and an impaired urine-blood Pco2 gradient during bicarbonaturia, indicating the presence of a H+ gradient and flux defects. In normal human renal papillae, wild-type B1 is located primarily on the plasma membrane, but papilla from one of the heterozygote who had kidney stones but not nephrocalcinosis showed B1 in both the plasma membrane as well as diffuse intracellular staining. Titration of increasing amounts of the mutant B1 subunit did not exhibit negative dominance over the expression, cellular distribution, or H+ pump activity of wild-type B1 in mammalian human embryonic kidney-293 cells and in V-ATPase-deficient Saccharomyces cerevisiae. This is the first demonstration of renal acidification defects and nephrolithiasis in heterozygous carriers of a mutant B1 subunit that cannot be attributable to negative dominance. We propose that heterozygosity may lead to mild real acidification defects due to haploinsufficiency. B1 heterozygosity should be considered in patients with calcium nephrolithiasis and urinary abnormalities such as alkalinuria or hypocitraturia. PMID:25164082

  11. Efficient introduction of specific homozygous and heterozygous mutations using CRISPR/Cas9.

    PubMed

    Paquet, Dominik; Kwart, Dylan; Chen, Antonia; Sproul, Andrew; Jacob, Samson; Teo, Shaun; Olsen, Kimberly Moore; Gregg, Andrew; Noggle, Scott; Tessier-Lavigne, Marc

    2016-05-01

    The bacterial CRISPR/Cas9 system allows sequence-specific gene editing in many organisms and holds promise as a tool to generate models of human diseases, for example, in human pluripotent stem cells. CRISPR/Cas9 introduces targeted double-stranded breaks (DSBs) with high efficiency, which are typically repaired by non-homologous end-joining (NHEJ) resulting in nonspecific insertions, deletions or other mutations (indels). DSBs may also be repaired by homology-directed repair (HDR) using a DNA repair template, such as an introduced single-stranded oligo DNA nucleotide (ssODN), allowing knock-in of specific mutations. Although CRISPR/Cas9 is used extensively to engineer gene knockouts through NHEJ, editing by HDR remains inefficient and can be corrupted by additional indels, preventing its widespread use for modelling genetic disorders through introducing disease-associated mutations. Furthermore, targeted mutational knock-in at single alleles to model diseases caused by heterozygous mutations has not been reported. Here we describe a CRISPR/Cas9-based genome-editing framework that allows selective introduction of mono- and bi-allelic sequence changes with high efficiency and accuracy. We show that HDR accuracy is increased dramatically by incorporating silent CRISPR/Cas-blocking mutations along with pathogenic mutations, and establish a method termed 'CORRECT' for scarless genome editing. By characterizing and exploiting a stereotyped inverse relationship between a mutation's incorporation rate and its distance to the DSB, we achieve predictable control of zygosity. Homozygous introduction requires a guide RNA targeting close to the intended mutation, whereas heterozygous introduction can be accomplished by distance-dependent suboptimal mutation incorporation or by use of mixed repair templates. Using this approach, we generated human induced pluripotent stem cells with heterozygous and homozygous dominant early onset Alzheimer's disease-causing mutations in

  12. Excess of rare, inherited truncating mutations in autism

    PubMed Central

    Krumm, Niklas; Turner, Tychele N.; Baker, Carl; Vives, Laura; Mohajeri, Kiana; Witherspoon, Kali; Raja, Archana; Coe, Bradley P.; Stessman, Holly A.; He, Zong-Xiao; Leal, Suzanne M.; Bernier, Raphael; Eichler, Evan E.

    2015-01-01

    To assess the relative impact of inherited and de novo variants on autism risk, we generated a comprehensive set of exonic single nucleotide variants (SNVs) and copy number variants (CNVs) from 2,377 autism families. We find that private, inherited truncating SNVs in conserved genes are enriched in probands (odds ratio=1.14, p=0.0002) compared to unaffected siblings, an effect with significant maternal transmission bias to sons. We also observe a bias for inherited CNVs, specifically for small (<100 kbp), maternally inherited events (p=0.01) that are enriched in CHD8 target genes (p=7.4×10−3). Using a logistic regression model, we show that private truncating SNVs and rare, inherited CNVs are statistically independent autism risk factors, with odds ratios of 1.11 (p=0.0002) and 1.23 (p=0.01), respectively. This analysis identifies a second class of candidate genes (e.g., RIMS1, CUL7, and LZTR1) where transmitted mutations may create a sensitized background but are unlikely to be completely penetrant. PMID:25961944

  13. Novel Compound Heterozygous Mutations Expand the Recognized Phenotypes of FARS2-Linked Disease.

    PubMed

    Walker, Melissa A; Mohler, Kyle P; Hopkins, Kyle W; Oakley, Derek H; Sweetser, David A; Ibba, Michael; Frosch, Matthew P; Thibert, Ronald L

    2016-08-01

    Mutations in mitochondrial aminoacyl-tRNA synthetases are an increasingly recognized cause of human diseases, often arising in individuals with compound heterozygous mutations and presenting with system-specific phenotypes, frequently neurologic. FARS2 encodes mitochondrial phenylalanyl transfer ribonucleic acid (RNA) synthetase (mtPheRS), perturbations of which have been reported in 6 cases of an infantile, lethal disease with refractory epilepsy and progressive myoclonus. Here the authors report the case of juvenile onset refractory epilepsy and progressive myoclonus with compound heterozygous FARS2 mutations. The authors describe the clinical course over 6 years of care at their institution and diagnostic studies including electroencephalogram (EEG), brain magnetic resonance imaging (MRI), serum and cerebrospinal fluid analyses, skeletal muscle biopsy histology, and autopsy gross and histologic findings, which include features shared with Alpers-Huttenlocher syndrome, Leigh syndrome, and a previously published case of FARS2 mutation associated infantile onset disease. The authors also present structure-guided analysis of the relevant mutations based on published mitochondrial phenylalanyl transfer RNA synthetase and related protein crystal structures as well as biochemical analysis of the corresponding recombinant mutant proteins. PMID:27095821

  14. A compound heterozygous mutation in HADHB gene causes an axonal Charcot-Marie-tooth disease

    PubMed Central

    2013-01-01

    Background Charcot-Marie-Tooth disease (CMT) is a heterogeneous disorder of the peripheral nervous system. So far, mutations in hydroxyacyl-CoA dehydrogenase/3-ketoacyl-CoA thiolase/enoyl-CoA hydratase (trifunctional protein), beta subunit (HADHB) gene exhibit three distinctive phenotypes: severe neonatal presentation with cardiomyopathy, hepatic form with recurrent hypoketotic hypoglycemia, and later-onset axonal sensory neuropathy with episodic myoglobinuria. Methods To identify the causative and characterize clinical features of a Korean family with motor and sensory neuropathies, whole exome study (WES), histopathologic study of distal sural nerve, and lower limb MRIs were performed. Results WES revealed that a compound heterozygous mutation in HADHB is the causative of the present patients. The patients exhibited an early-onset axonal sensorimotor neuropathy without episodic myoglobinuria, and showed typical clinical and electrophysiological features of CMT including predominant distal muscle weakness and atrophy. Histopathologic findings of sural nerve were compatible with an axonal CMT neuropathy. Furthermore, they didn’t exhibit any other symptoms of the previously reported HADHB patients. Conclusions These data implicate that mutation in HADHB gene can also cause early-onset axonal CMT instead of typical manifestations in mitochondrial trifunctional protein (MTP) deficiency. Therefore, this study is the first report of a new subtype of autosomal recessive axonal CMT by a compound heterozygous mutation in HADHB, and will expand the clinical and genetic spectrum of HADHB. PMID:24314034

  15. HEK293T Cells Are Heterozygous for CCR5 Delta 32 Mutation

    PubMed Central

    Qi, Chunxia; Jia, Xiaopeng; Lu, Lingling; Ma, Ping; Wei, Min

    2016-01-01

    C-C chemokine receptor 5 (CCR5) is a receptor for chemokines and a co-receptor for HIV-1 entry into the target CD4+ cells. CCR5 delta 32 deletion is a loss-of-function mutation, resistant to HIV-1 infection. We tried to induce the CCR5 delta 32 mutation harnessing the genome editing technique, CRISPR-Cas9 (Clustered Regularly Interspaced Short Palindromic Repeats, CRISPR and CRISPR associated protein 9, Cas9) in the commonly used cell line human embryonic kidney HEK 293T cells. Surprisingly, we found that HEK293T cells are heterozygous for CCR5 delta 32 mutation, in contrast to the wild type CCR5 cells, human acute T cell leukemia cell line Jurkat and human breast adenocarcinoma cell line MDA-MB-231 cells. This finding indicates that at least one human cell line is heterozygous for the CCR5 delta 32 mutation. We also found that in PCR amplification, wild type CCR5 DNA and mutant delta 32 DNA can form mismatched heteroduplex and move slowly in gel electrophoresis. PMID:27042825

  16. A compound heterozygous mutation of the SPINK5 gene in a Taiwanese boy with Netherton syndrome.

    PubMed

    Chao, Sheau-Chiou; Tsai, Ya-Ming; Lee, Julia Yu-Yun

    2003-06-01

    Netherton syndrome (NS) is a severe, autosomal, recessive ichthyosis. It is characterized by congenital ichthyosiform erythroderma (CIE), trichorrhexis invaginata (TI) - a distinctive hair-shaft anomaly, and atopic diathesis. Recently, pathogenic mutations were identified in serine protease inhibitor Kazal-type 5 (SPINK5), the gene that encodes lympho-epithelial Kazal-type-related inhibitor (LEKTI), a recently identified type of serine protease inhibitor involved in the regulation of skin barrier formation and immunity. Here we report the mutation analysis of a 7-year-old Taiwanese boy with NS manifesting CIE with pathognomic ichthyosis linearis circumflexa and TI. Direct DNA sequencing of SPINK5 demonstrated a compound heterozygous mutation in the proband, 2260A>T (K754X) in exon 24 and 2468delA in exon 26. The former is a novel mutation and was detected in the mother. The latter mutation was detected in the father and has been previously reported in several European families. Both mutations are expected to result in premature termination codons. Mutation analysis could provide a reliable prenatal diagnosis of this lethal ichthyosis. PMID:12923596

  17. Compound heterozygous NOTCH1 mutations underlie impaired cardiogenesis in a patient with hypoplastic left heart syndrome.

    PubMed

    Theis, Jeanne L; Hrstka, Sybil C L; Evans, Jared M; O'Byrne, Megan M; de Andrade, Mariza; O'Leary, Patrick W; Nelson, Timothy J; Olson, Timothy M

    2015-09-01

    Hypoplastic left heart syndrome (HLHS) is a severe congenital heart defect (CHD) that necessitates staged, single ventricle surgical palliation. An increased frequency of bicuspid aortic valve (BAV) has been observed among relatives. We postulated number of mutant alleles as a molecular basis for variable CHD expression in an extended family comprised of an HLHS proband and four family members who underwent echocardiography and whole-genome sequencing (WGS). Dermal fibroblast-derived induced pluripotent stem cells (iPSC) were procured from the proband-parent trio and bioengineered into cardiomyocytes. Cardiac phenotyping revealed aortic valve atresia and a slit-like left ventricular cavity in the HLHS proband, isolated bicuspid pulmonary valve in his mother, BAV in a maternal 4° relative, and no CHD in his father or sister. Filtering of WGS for rare, functional variants that segregated with CHD and were compound heterozygous in the HLHS proband identified NOTCH1 as the sole candidate gene. An unreported missense mutation (P1964L) in the cytoplasmic domain, segregating with semilunar valve malformation, was maternally inherited and a rare missense mutation (P1256L) in the extracellular domain, clinically silent in the heterozygous state, was paternally inherited. Patient-specific iPSCs exhibited diminished transcript levels of NOTCH1 signaling pathway components, impaired myocardiogenesis, and a higher prevalence of heterogeneous myofilament organization. Extended, phenotypically characterized families enable WGS-derived variant filtering for plausible Mendelian modes of inheritance, a powerful strategy to discover molecular underpinnings of CHD. Identification of compound heterozygous NOTCH1 mutations and iPSC-based functional modeling implicate mutant allele burden and impaired myogenic potential as mechanisms for HLHS. PMID:26164125

  18. De novo truncating mutations in ASXL3 are associated with a novel clinical phenotype with similarities to Bohring-Opitz syndrome

    PubMed Central

    2013-01-01

    Background Molecular diagnostics can resolve locus heterogeneity underlying clinical phenotypes that may otherwise be co-assigned as a specific syndrome based on shared clinical features, and can associate phenotypically diverse diseases to a single locus through allelic affinity. Here we describe an apparently novel syndrome, likely caused by de novo truncating mutations in ASXL3, which shares characteristics with Bohring-Opitz syndrome, a disease associated with de novo truncating mutations in ASXL1. Methods We used whole-genome and whole-exome sequencing to interrogate the genomes of four subjects with an undiagnosed syndrome. Results Using genome-wide sequencing, we identified heterozygous, de novo truncating mutations in ASXL3, a transcriptional repressor related to ASXL1, in four unrelated probands. We found that these probands shared similar phenotypes, including severe feeding difficulties, failure to thrive, and neurologic abnormalities with significant developmental delay. Further, they showed less phenotypic overlap with patients who had de novo truncating mutations in ASXL1. Conclusion We have identified truncating mutations in ASXL3 as the likely cause of a novel syndrome with phenotypic overlap with Bohring-Opitz syndrome. PMID:23383720

  19. Phenotypic variability of hyperandrogenemia in females heterozygous for CYP21A2 mutations

    PubMed Central

    Neocleous, Vassos; Shammas, Christos; Phedonos, Alexia AP; Phylactou, Leonidas A; Skordis, Nicos

    2014-01-01

    Objectives: The objective was to seek evidence on the prevalence and consequences of heterozygous CYP21A2 mutations in girls, adolescent, and adult females with clinical manifestation of androgen excess. Patients and Methods: The study included 64 girls diagnosed with premature adrenarche (PA) in childhood and 141 females with clinical hyperandrogenemia manifested in adolescence or adulthood. Direct DNA sequencing and multiplex ligation-dependent probe amplification analysis were used to identify mutations in the CYP21A2 gene. Results: (1) Thirty-four patients were diagnosed with nonclassical-congenital adrenal hyperplasia (NC-CAH) based on the 17-hydroxyprogesterone (17-OHP) levels and the presence of two mutations in CYP21A2 and therefore were excluded from the study, 66 were found to be heterozygotes and finally 105 had no identifiable mutations. The most frequent mutations among the carriers were the mild p.Val281 Leu and p.Qln318stop. Higher levels of mean stimulated 17-OHP were found in the carriers of the p.Val281 Leu. (2) A notable increased allelic frequency for the known p.Asn493 Ser polymorphism was observed in the pool of females with hyperandrogenemia in whom no mutation was identified. (3) In girls, who presented early with PA, 26.6% were diagnosed with NC-CAH and carried two mutations, 28.7% were identified as heterozygotes 43.7% had no identifiable genetic defect in the translated region of the CYP21A2 gene. On the contrary, in the group of 141 females with late onset hyperandrogenemia, the presence of 2 mutations was detected in 12%, 1 mutation in 33.4% and no mutation in 54.6%. Conclusions: The carrier status for 21-OHD, may be an important factor in the variable phenotype of hyperandrogenism and may be a contributing factor for the early manifestation of the disease. PMID:25538881

  20. Augmentation of phenotype in a transgenic Parkinson mouse heterozygous for a Gaucher mutation

    PubMed Central

    Kuo, Yien-Ming; Giasson, Benoit I.; Nussbaum, Robert L.

    2014-01-01

    The involvement of the protein α-synuclein (SNCA) in the pathogenesis of Parkinson’s disease is strongly supported by the facts that (i) missense and copy number mutations in the SNCA gene can cause inherited Parkinson’s disease; and (ii) Lewy bodies in sporadic Parkinson’s disease are largely composed of aggregated SNCA. Unaffected heterozygous carriers of Gaucher disease mutations have an increased risk for Parkinson’s disease. As mutations in the GBA gene encoding glucocerebrosidase (GBA) are known to interfere with lysosomal protein degradation, GBA heterozygotes may demonstrate reduced lysosomal SNCA degradation, leading to increased steady-state SNCA levels and promoting its aggregation. We have created mouse models to investigate the interaction between GBA mutations and synucleinopathies. We investigated the rate of SNCA degradation in cultured primary cortical neurons from mice expressing wild-type mouse SNCA, wild-type human SNCA, or mutant A53T SNCA, in a background of either wild-type Gba or heterozygosity for the L444P GBA mutation associated with Gaucher disease. We also tested the effect of this Gaucher mutation on motor and enteric nervous system function in these transgenic animals. We found that human SNCA is stable, with a half-life of 61 h, and that the A53T mutation did not significantly affect its half-life. Heterozygosity for a naturally occurring Gaucher mutation, L444P, reduced GBA activity by 40%, reduced SNCA degradation and triggered accumulation of the protein in culture. This mutation also resulted in the exacerbation of motor and gastrointestinal deficits found in the A53T mouse model of Parkinson’s disease. This study demonstrates that heterozygosity for a Gaucher disease-associated mutation in Gba interferes with SNCA degradation and contributes to its accumulation, and exacerbates the phenotype in a mouse model of Parkinson’s disease. PMID:25351739

  1. A Heterozygous ZMPSTE24 Mutation Associated with Severe Metabolic Syndrome, Ectopic Fat Accumulation, and Dilated Cardiomyopathy.

    PubMed

    Galant, Damien; Gaborit, Bénédicte; Desgrouas, Camille; Abdesselam, Ines; Bernard, Monique; Levy, Nicolas; Merono, Françoise; Coirault, Catherine; Roll, Patrice; Lagarde, Arnaud; Bonello-Palot, Nathalie; Bourgeois, Patrice; Dutour, Anne; Badens, Catherine

    2016-01-01

    ZMPSTE24 encodes the only metalloprotease, which transforms prelamin into mature lamin A. Up to now, mutations in ZMPSTE24 have been linked to Restrictive Dermopathy (RD), Progeria or Mandibulo-Acral Dysplasia (MAD). We report here the phenotype of a patient referred for severe metabolic syndrome and cardiomyopathy, carrying a mutation in ZMPSTE24. The patient presented with a partial lipodystrophic syndrome associating hypertriglyceridemia, early onset type 2 diabetes, and android obesity with truncal and abdominal fat accumulation but without subcutaneous lipoatrophy. Other clinical features included acanthosis nigricans, liver steatosis, dilated cardiomyopathy, and high myocardial and hepatic triglycerides content. Mutated fibroblasts from the patient showed increased nuclear shape abnormalities and premature senescence as demonstrated by a decreased Population Doubling Level, an increased beta-galactosidase activity and a decreased BrdU incorporation rate. Reduced prelamin A expression by siRNA targeted toward LMNA transcripts resulted in decreased nuclear anomalies. We show here that a central obesity without subcutaneous lipoatrophy is associated with a laminopathy due to a heterozygous missense mutation in ZMPSTE24. Given the high prevalence of metabolic syndrome and android obesity in the general population, and in the absence of familial study, the causative link between mutation and phenotype cannot be formally established. Nevertheless, altered lamina architecture observed in mutated fibroblasts are responsible for premature cellular senescence and could contribute to the phenotype observed in this patient. PMID:27120622

  2. A Heterozygous ZMPSTE24 Mutation Associated with Severe Metabolic Syndrome, Ectopic Fat Accumulation, and Dilated Cardiomyopathy

    PubMed Central

    Galant, Damien; Gaborit, Bénédicte; Desgrouas, Camille; Abdesselam, Ines; Bernard, Monique; Levy, Nicolas; Merono, Françoise; Coirault, Catherine; Roll, Patrice; Lagarde, Arnaud; Bonello-Palot, Nathalie; Bourgeois, Patrice; Dutour, Anne; Badens, Catherine

    2016-01-01

    ZMPSTE24 encodes the only metalloprotease, which transforms prelamin into mature lamin A. Up to now, mutations in ZMPSTE24 have been linked to Restrictive Dermopathy (RD), Progeria or Mandibulo-Acral Dysplasia (MAD). We report here the phenotype of a patient referred for severe metabolic syndrome and cardiomyopathy, carrying a mutation in ZMPSTE24. The patient presented with a partial lipodystrophic syndrome associating hypertriglyceridemia, early onset type 2 diabetes, and android obesity with truncal and abdominal fat accumulation but without subcutaneous lipoatrophy. Other clinical features included acanthosis nigricans, liver steatosis, dilated cardiomyopathy, and high myocardial and hepatic triglycerides content. Mutated fibroblasts from the patient showed increased nuclear shape abnormalities and premature senescence as demonstrated by a decreased Population Doubling Level, an increased beta-galactosidase activity and a decreased BrdU incorporation rate. Reduced prelamin A expression by siRNA targeted toward LMNA transcripts resulted in decreased nuclear anomalies. We show here that a central obesity without subcutaneous lipoatrophy is associated with a laminopathy due to a heterozygous missense mutation in ZMPSTE24. Given the high prevalence of metabolic syndrome and android obesity in the general population, and in the absence of familial study, the causative link between mutation and phenotype cannot be formally established. Nevertheless, altered lamina architecture observed in mutated fibroblasts are responsible for premature cellular senescence and could contribute to the phenotype observed in this patient. PMID:27120622

  3. Heterozygous Loss-of-Function Mutations in DLL4 Cause Adams-Oliver Syndrome

    PubMed Central

    Meester, Josephina A.N.; Southgate, Laura; Stittrich, Anna-Barbara; Venselaar, Hanka; Beekmans, Sander J.A.; den Hollander, Nicolette; Bijlsma, Emilia K.; Helderman-van den Enden, Appolonia; Verheij, Joke B.G.M.; Glusman, Gustavo; Roach, Jared C.; Lehman, Anna; Patel, Millan S.; de Vries, Bert B.A.; Ruivenkamp, Claudia; Itin, Peter; Prescott, Katrina; Clarke, Sheila; Trembath, Richard; Zenker, Martin; Sukalo, Maja; Van Laer, Lut; Loeys, Bart; Wuyts, Wim

    2015-01-01

    Adams-Oliver syndrome (AOS) is a rare developmental disorder characterized by the presence of aplasia cutis congenita (ACC) of the scalp vertex and terminal limb-reduction defects. Cardiovascular anomalies are also frequently observed. Mutations in five genes have been identified as a cause for AOS prior to this report. Mutations in EOGT and DOCK6 cause autosomal-recessive AOS, whereas mutations in ARHGAP31, RBPJ, and NOTCH1 lead to autosomal-dominant AOS. Because RBPJ, NOTCH1, and EOGT are involved in NOTCH signaling, we hypothesized that mutations in other genes involved in this pathway might also be implicated in AOS pathogenesis. Using a candidate-gene-based approach, we prioritized DLL4, a critical NOTCH ligand, due to its essential role in vascular development in the context of cardiovascular features in AOS-affected individuals. Targeted resequencing of the DLL4 gene with a custom enrichment panel in 89 independent families resulted in the identification of seven mutations. A defect in DLL4 was also detected in two families via whole-exome or genome sequencing. In total, nine heterozygous mutations in DLL4 were identified, including two nonsense and seven missense variants, the latter encompassing four mutations that replace or create cysteine residues, which are most likely critical for maintaining structural integrity of the protein. Affected individuals with DLL4 mutations present with variable clinical expression with no emerging genotype-phenotype correlations. Our findings demonstrate that DLL4 mutations are an additional cause of autosomal-dominant AOS or isolated ACC and provide further evidence for a key role of NOTCH signaling in the etiology of this disorder. PMID:26299364

  4. Heterozygous PALB2 c.1592delT mutation channels DNA double-strand break repair into error-prone pathways in breast cancer patients.

    PubMed

    Obermeier, K; Sachsenweger, J; Friedl, T W P; Pospiech, H; Winqvist, R; Wiesmüller, L

    2016-07-21

    Hereditary heterozygous mutations in a variety of DNA double-strand break (DSB) repair genes have been associated with increased breast cancer risk. In the Finnish population, PALB2 (partner and localizer of BRCA2) represents a major susceptibility gene for female breast cancer, and so far, only one mutation has been described, c.1592delT, which leads to a sixfold increased disease risk. PALB2 is thought to participate in homologous recombination (HR). However, the effect of the Finnish founder mutation on DSB repair has not been investigated. In the current study, we used a panel of lymphoblastoid cell lines (LCLs) derived from seven heterozygous female PALB2 c.1592delT mutation carriers with variable health status and six wild-type matched controls. The results of our DSB repair analysis showed that the PALB2 mutation causes specific changes in pathway usage, namely increases in error-prone single-strand annealing (SSA) and microhomology-mediated end-joining (MMEJ) compared with wild-type LCLs. These data indicated haploinsufficiency regarding the suppression of error-prone DSB repair in PALB2 mutation carriers. To the contrary, neither reduced HR activities, nor impaired RAD51 filament assembly, nor sensitization to PARP inhibition were consistently observed. Expression of truncated mutant versus wild-type PALB2 verified a causal role of PALB2 c.1592delT in the shift to error-prone repair. Discrimination between healthy and malignancy-presenting PALB2 mutation carriers revealed a pathway shift particularly in the breast cancer patients, suggesting interaction of PALB2 c.1592delT with additional genomic lesions. Interestingly, the studied PALB2 mutation was associated with 53BP1 accumulation in the healthy mutation carriers but not the patients, and 53BP1 was limiting for error-prone MMEJ in patients but not in healthy carriers. Our study identified a rise in error-prone DSB repair as a potential threat to genomic integrity in heterozygous PALB2 mutation carriers

  5. Heterozygous PALB2 c.1592delT mutation channels DNA double-strand break repair into error-prone pathways in breast cancer patients

    PubMed Central

    Obermeier, K; Sachsenweger, J; Friedl, T W P; Pospiech, H; Winqvist, R; Wiesmüller, L

    2016-01-01

    Hereditary heterozygous mutations in a variety of DNA double-strand break (DSB) repair genes have been associated with increased breast cancer risk. In the Finnish population, PALB2 (partner and localizer of BRCA2) represents a major susceptibility gene for female breast cancer, and so far, only one mutation has been described, c.1592delT, which leads to a sixfold increased disease risk. PALB2 is thought to participate in homologous recombination (HR). However, the effect of the Finnish founder mutation on DSB repair has not been investigated. In the current study, we used a panel of lymphoblastoid cell lines (LCLs) derived from seven heterozygous female PALB2 c.1592delT mutation carriers with variable health status and six wild-type matched controls. The results of our DSB repair analysis showed that the PALB2 mutation causes specific changes in pathway usage, namely increases in error-prone single-strand annealing (SSA) and microhomology-mediated end-joining (MMEJ) compared with wild-type LCLs. These data indicated haploinsufficiency regarding the suppression of error-prone DSB repair in PALB2 mutation carriers. To the contrary, neither reduced HR activities, nor impaired RAD51 filament assembly, nor sensitization to PARP inhibition were consistently observed. Expression of truncated mutant versus wild-type PALB2 verified a causal role of PALB2 c.1592delT in the shift to error-prone repair. Discrimination between healthy and malignancy-presenting PALB2 mutation carriers revealed a pathway shift particularly in the breast cancer patients, suggesting interaction of PALB2 c.1592delT with additional genomic lesions. Interestingly, the studied PALB2 mutation was associated with 53BP1 accumulation in the healthy mutation carriers but not the patients, and 53BP1 was limiting for error-prone MMEJ in patients but not in healthy carriers. Our study identified a rise in error-prone DSB repair as a potential threat to genomic integrity in heterozygous PALB2 mutation carriers

  6. Molecular evaluation of a novel missense mutation & an insertional truncating mutation in SUMF1 gene

    PubMed Central

    Kotecha, Udhaya H.; Movva, Sireesha; Sharma, Deepak; Verma, Jyotsna; Puri, Ratna Dua; Verma, Ishwar Chander

    2014-01-01

    Background & objectives: Multiple suphphatase deficiency (MSD) is an autosomal recessive disorder affecting the post translational activation of all enzymes of the sulphatase family. To date, approximately 30 different mutations have been identified in the causative gene, sulfatase modifying factor 1 (SUMF1). We describe here the mutation analysis of a case of MSD. Methods: The proband was a four year old boy with developmental delay followed by neuroregression. He had coarse facies, appendicular hypertonia, truncal ataxia and ichthyosis limited to both lower limbs. Radiographs showed dysostosis multiplex. Clinical suspicion of MSD was confirmed by enzyme analysis of four enzymes of the sulphatase group. Results: The patient was compound heterozygote for a c.451A>G (p.K151E) substitution in exon 3 and a single base insertion mutation (c.690_691 InsT) in exon 5 in the SUMF1 gene. The bioinformatic analysis of the missense mutation revealed no apparent effect on the overall structure. However, the mutated 151-amino acid residue was found to be adjacent to the substrate binding and the active site residues, thereby affecting the substrate binding and/or catalytic activity, resulting in almost complete loss of enzyme function. Conclusions: The two mutations identified in the present case were novel. This is perhaps the first report of an insertion mutation in SUMF1 causing premature truncation of the protein. PMID:25222778

  7. A heterozygous mutation in the desert hedgehog gene in patients with mixed gonadal dysgenesis.

    PubMed

    Canto, P; Vilchis, F; Söderlund, D; Reyes, E; Méndez, J P

    2005-11-01

    Aetiology of mixed gonadal dysgenesis (MGD) has not been completely elucidated. Molecular analyses have failed to demonstrate the presence of mutations in sex-determining region on Y chromosome (SRY); it has been suggested that these individuals may bear mutations in other genes involved in the testis-determining pathway. Desert hedgehog's (DHH) importance regarding male sex differentiation has been demonstrated in various studies we describe here, for the first time, two cases of MGD in which a monoallelic single base deletion in DHH is associated with the disorder. Genomic DNA was isolated from paraffin-embedded gonad tissue from 10 unrelated patients with MGD and three controls; in addition to, DNA from peripheral blood leukocytes in 100 controls. Coding sequence abnormalities in DHH were assessed by exon-specific PCR, single-stranded conformation polymorphism (SSCP) and direct sequencing. In two patients, a heterozygous 1086delG in exon 3 was found. Comparing previously described mutations in DHH to the one observed in this study, we can affirm that the phenotypic spectrum of patients with gonadal dysgenesis due to mutations in DHH is variable. This study continues to demonstrate the importance that DHH has in mammalian male sexual differentiation, providing extended evidence that DHH constitutes a key gene in gonadal differentiation. PMID:16390857

  8. Homozygous and Compound-Heterozygous Mutations in TGDS Cause Catel-Manzke Syndrome

    PubMed Central

    Ehmke, Nadja; Caliebe, Almuth; Koenig, Rainer; Kant, Sarina G.; Stark, Zornitza; Cormier-Daire, Valérie; Wieczorek, Dagmar; Gillessen-Kaesbach, Gabriele; Hoff, Kirstin; Kawalia, Amit; Thiele, Holger; Altmüller, Janine; Fischer-Zirnsak, Björn; Knaus, Alexej; Zhu, Na; Heinrich, Verena; Huber, Celine; Harabula, Izabela; Spielmann, Malte; Horn, Denise; Kornak, Uwe; Hecht, Jochen; Krawitz, Peter M.; Nürnberg, Peter; Siebert, Reiner; Manzke, Hermann; Mundlos, Stefan

    2014-01-01

    Catel-Manzke syndrome is characterized by Pierre Robin sequence and a unique form of bilateral hyperphalangy causing a clinodactyly of the index finger. We describe the identification of homozygous and compound heterozygous mutations in TGDS in seven unrelated individuals with typical Catel-Manzke syndrome by exome sequencing. Six different TGDS mutations were detected: c.892A>G (p.Asn298Asp), c.270_271del (p.Lys91Asnfs∗22), c.298G>T (p.Ala100Ser), c.294T>G (p.Phe98Leu), c.269A>G (p.Glu90Gly), and c.700T>C (p.Tyr234His), all predicted to be disease causing. By using haplotype reconstruction we showed that the mutation c.298G>T is probably a founder mutation. Due to the spectrum of the amino acid changes, we suggest that loss of function in TGDS is the underlying mechanism of Catel-Manzke syndrome. TGDS (dTDP-D-glucose 4,6-dehydrogenase) is a conserved protein belonging to the SDR family and probably plays a role in nucleotide sugar metabolism. PMID:25480037

  9. Primary microcephaly, impaired DNA replication, and genomic instability caused by compound heterozygous ATR mutations.

    PubMed

    Mokrani-Benhelli, Houda; Gaillard, Laetitia; Biasutto, Patricia; Le Guen, Tangui; Touzot, Fabien; Vasquez, Nadia; Komatsu, Jun; Conseiller, Emmanuel; Pïcard, Capucine; Gluckman, Eliane; Francannet, Christine; Fischer, Alain; Durandy, Anne; Soulier, Jean; de Villartay, Jean-Pierre; Cavazzana-Calvo, Marina; Revy, Patrick

    2013-02-01

    Ataxia telangiectasia-mutated (ATM) and ataxia telangiectasia and Rad3-related (ATR) kinases are two key regulators of DNA-damage responses (DDR) that are mainly activated in response to DNA double-strand breaks and single-stranded DNA damages, respectively. Seckel syndrome, a rare genetic disorder characterized by a microcephaly and a markedly reduced body size, has been associated with defective ATR-dependent DNA damage signaling. However, the only human genetic ATR defect reported so far is a hypomorphic splicing mutation identified in five related individuals with Seckel syndrome. Here, we report the first case of primary microcephaly with compound heterozygous mutations in ATR: a 540 kb genomic deletion on one allele and a missense mutation leading to splice dysregulation on the other, which ultimately lead to a sharp decrease in ATR expression. DNA combing technology revealed a profound spontaneous alteration of several DNA replication parameters in patient's cells and FISH analyses highlighted the genomic instability caused by ATR deficiency. Collectively, our results emphasize the crucial role for ATR in the control of DNA replication, and reinforce the complementary and nonredundant contributions of ATM and ATR in human cells to face DNA damages and warrant genome integrity. PMID:23111928

  10. Heterozygous frameshift mutation in keratin 5 in a family with Galli–Galli disease

    PubMed Central

    Reisenauer, AK; Wordingham, SV; York, J; Kokkonen, EWJ; Mclean, WHI; Wilson, NJ; Smith, FJD

    2014-01-01

    Background Reticulate pigmentary disorders include the rare autosomal dominant Galli–Galli disease (GGD) and Dowling–Degos disease (DDD). Clinical diagnosis between some of the subtypes can be difficult due to a degree of overlap between clinical features, therefore analysis at the molecular level may be necessary to confirm the diagnosis. Objectives To identify the underlying genetic defect in a 48-year-old Asian-American woman with a clinical diagnosis of GGD. Methods Histological analysis was performed on a skin biopsy using haematoxylin–eosin staining. KRT5 (the gene encoding keratin 5) was amplified from genomic DNA and directly sequenced. Results The patient had a history of pruritus and hyperpigmented erythematous macules and thin papules along the flexor surfaces of her arms, her upper back and neck, axillae and inframammary areas. Hypopigmented macules were seen among the hyperpigmentation. A heterozygous 1-bp insertion mutation in KRT5 (c.38dupG; p.Ser14GlnfsTer3) was identified in the proband. This mutation occurs within the head domain of the keratin 5 protein leading to a frameshift and premature stop codon. Conclusions From the histological findings and mutation analysis the individual was identified as having GGD due to haploinsufficiency of keratin 5. PMID:24372084

  11. Renal transplantation experience in a patient with factor V Leiden homozygous, MTHFR C677T heterozygous, and PAI heterozygous mutation.

    PubMed

    Gülhan, Bora; Tavil, Betül; Gümrük, Fatma; Aki, Tuncay F; Topaloglu, Rezan

    2015-08-01

    Vascular complications are important causes of allograft loss in renal transplantation. A two and a half-month-old boy was diagnosed with posterior urethral valve and progressed to end-stage renal disease at eight yr of age. During the HD period, a central venous catheter was replaced three times for repeated thrombosis. The boy was found to be homozygous for FVL and heterozygous for both MTHFR (C677T) and PAI. At the age of 12, renal transplantation was performed from a deceased donor. Postoperative anticoagulation therapy was initiated with continuous intravenous administration of heparin at the dose of 10 IU/kg/h. HD was performed for the first three days. By the fourth day of transplantation, his urine output had increased gradually. Heparin infusion was continued for 18 days during hospitalization at the same dosage. Thereafter, he was discharged with LMWH. On the third month after transplantation, his serum creatinine level was 1.1 mg/dL and eGFR was 75.7 mL/min/1.73 m(2). He has still been using LMWH, and his eGFR was 78.7 mL/min/1.73 m(2) eight months after transplantation. Postoperative low-dose heparin treatment is a safe strategy for managing a patient with multiple thrombotic risk factors. PMID:25996881

  12. [Stroke and iridodonesis revealing a homocystinuria caused by a compound heterozygous mutation of cystathionine beta-synthase].

    PubMed

    Lefaucheur, R; Triquenot-Bagan, A; Quillard, M; Genevois, O; Hannequin, D

    2008-01-01

    Iridodonesis or tremulous iris is a clinical sign of ectopia lentis which is frequently associated with homocystinuria. We present a forty-two-year-old woman victim of a left middle cerebral artery ischemic stroke. The clinical examination found bilateral iridodonesis and laboratory tests showed an increased level of serum homocysteine and homocystinuria. Homocystinuria was caused by a compound heterozygous I278T and D444N mutation of cystathionine beta-synthase (CBS) gene and also a C667T heterozygous polymorphism of methylene-tetrahydrofolate-reductase gene. This case was atypical because of the incomplete phenotype, development of complications in adulthood and the association of a rare compound heterozygous mutation of the CBS gene. PMID:18805305

  13. First Japanese case of atypical progeroid syndrome/atypical Werner syndrome with heterozygous LMNA mutation.

    PubMed

    Motegi, Sei-ichiro; Yokoyama, Yoko; Uchiyama, Akihiko; Ogino, Sachiko; Takeuchi, Yuko; Yamada, Kazuya; Hattori, Tomoyasu; Hashizume, Hiroaki; Ishikawa, Yuichi; Goto, Makoto; Ishikawa, Osamu

    2014-12-01

    Atypical progeroid syndrome (APS), including atypical Werner syndrome (AWS), is a progeroid syndrome involving heterozygous mutations in the LMNA gene encoding the nuclear protein lamin A/C. We report the first Japanese case of APS/AWS with a LMNA mutation (p.D300N). A 53-year-old Japanese man had a history of recurrent severe cardiovascular diseases as well as brain infarction and hemorrhages. Although our APS/AWS patient had overlapping features with Werner syndrome (WS), such as high-pitched voice, scleroderma, lipoatrophy and atherosclerosis, several cardinal features of WS, including short stature, premature graying/alopecia, cataract, bird-like face, flat feet, hyperkeratosis on the soles and diabetes mellitus, were absent. In immunofluorescence staining and electron microscopic analyses of the patient's cultured fibroblasts, abnormal nuclear morphology, an increase in small aggregation of heterochromatin and a decrease in interchromatin granules in nuclei of fibroblasts were observed, suggesting that abnormal nuclear morphology and chromatin disorganization may be associated with the pathogenesis of APS/AWS. PMID:25327215

  14. A heterozygous putative null mutation in ROM1 without a mutation in peripherin/RDS in a family with retinitis pigmentosa

    SciTech Connect

    Sakuma, Hitoshi; Inana, G.; Murakami, Akira

    1995-05-20

    ROM1 is a 351-amino-acid, 37-kDa outer segment membrane protein of rod photoreceptors. ROM1 is related to peripherin/RDS, another outer segment membrane protein found in both rods and cones. The precise function of ROM1 or peripherin/RDS is not known, but they have been suggested to play important roles in the function and/or structure of the rod photoreceptor outer segment disks. A recent report implicated ROM1 in disease by suggesting that RP can be caused by a heterozygous null mutation in ROM1 but only in combination with another heterozygous mutation in peripherin/RDS. Screening of the ROM1 gene using polymerase chain reaction amplification, denaturing gradient gel electrophoresis, and direct DNA sequencing identified the same heterozygous putative null mutation in a family with RP.

  15. Three Novel Heterozygous Point Mutations of NR3C1 Causing Glucocorticoid Resistance.

    PubMed

    Vitellius, Géraldine; Fagart, Jérôme; Delemer, Brigitte; Amazit, Larbi; Ramos, Nelly; Bouligand, Jérôme; Le Billan, Florian; Castinetti, Frédéric; Guiochon-Mantel, Anne; Trabado, Séverine; Lombès, Marc

    2016-08-01

    Generalized glucocorticoid resistance is associated with glucocorticoid receptor (GR; NR3C1) mutations. Three novel heterozygous missense NR3C1 mutations (R477S, Y478C, and L672P) were identified in patients presenting with adrenal incidentalomas, glucocorticoid excess without Cushing syndrome. Dexamethasone (DXM) binding studies demonstrated that the affinity of GRR477S and GRY478C mutants, located in the DNA-binding domain (DBD) of GR, was similar to wild-type GR (Kd  = 2-3 nM). In contrast, GRL672P mutant, located in the ligand-binding domain (LBD) of GR, was unable to bind glucocorticoids and was more sensitive to protein degradation. GR subcellular distribution revealed a marked decrease in DXM-induced nuclear translocation of GRR477S and GRY478C mutants, whereas GRL672P remained exclusively cytoplasmic. Chromatin immunoprecipitation demonstrated impaired recruitment of DBD mutants onto the regulatory sequence of FKBP5. Transactivation assays disclosed the lack of transcriptional activity of GRR477S and GRL672P , whereas GRY478C had a reduced transactivation capacity. Three-dimensional modeling indicated that R477S lost two essential hydrogen bonds with DNA, Y478C resulted in altered interaction with surrounding amino-acids, destabilizing DBD, whereas L672P altered the H8 helix folding, leading to unstructured LBD. This study identifies novel NR3C1 mutations with their molecular consequences on altered GR signaling and suggests that genetic screening of NR3C1 should be conducted in patients with subclinical hypercorticism. PMID:27120390

  16. Truncating mutations in APP cause a distinct neurological phenotype.

    PubMed

    Klein, Steven; Goldman, Alexander; Lee, Hane; Ghahremani, Shahnaz; Bhakta, Viraj; Nelson, Stanley F; Martinez-Agosto, Julian A

    2016-09-01

    Dominant missense mutations in the amyloid β (Aβ) precursor protein (APP) gene have been implicated in early onset Alzheimer disease. These mutations alter protein structure to favor the pathologic production of Aβ. We report that homozygous nonsense mutations in APP are associated with decreased somatic growth, microcephaly, hypotonia, developmental delay, thinning of the corpus callosum, and seizures. We compare the phenotype of this case to those reported in mouse models and demonstrate multiple similarities, strengthening the role of amyloid precursor protein in normal brain function and development. Ann Neurol 2016;80:456-460. PMID:27422356

  17. Novel mutations of APOB cause ApoB truncations undetectable in plasma and familial hypobetalipoproteinemia.

    PubMed

    Yue, Pin; Yuan, Bo; Gerhard, Daniela S; Neuman, Rosalind J; Isley, William L; Harris, William S; Schonfeld, Gustav

    2002-08-01

    Familial hypobetalipoproteinemia (FHBL) is a genetic disorder characterized by low levels of apoB-100 and LDL cholesterol. Truncation-producing mutations of apoB (chromosome 2) are among several potential causes of FHBL in patients. Ten new families with FHBL linked to chromosome 2 were identified. In Family 8, a 4432delT in exon 26 produces a frame-shift and a premature stop codon predicted to produce a truncated apoB-30.9. Even though this truncation is just 10 amino acid shorter than the well-documented apoB-31, which is readily detectable in plasma, apoB-30.9 is undetectable. Most truncations shorter than apoB-30 are not detectable in plasma. In Family 34, an acceptor splicing mutation at position -1 of exon 14 changes the acceptor splice site AG to AA. Two families (Family 50 and 52) had mutations (apoB-9 and apoB-29) reported previously. In Family 98, a novel point mutation in exon 26 (11163T>G) causes a premature stop codon, and produces a truncated apoB-80.5 readily detectable in plasma. Sequencing of the ApoB gene in families 1, 5, 18, 58, and 59 did not reveal mutations. PMID:12124991

  18. Impaired water maze learning performance without altered dopaminergic function in mice heterozygous for the GDNF mutation.

    PubMed

    Gerlai, R; McNamara, A; Choi-Lundberg, D L; Armanini, M; Ross, J; Powell-Braxton, L; Phillips, H S

    2001-10-01

    Exogenous glial cell line-derived neurotrophic factor (GDNF) exhibits potent survival-promoting effects on dopaminergic neurons of the nigrostriatal pathway that is implicated in Parkinson's disease and also protects neurons in forebrain ischemia of animal models. However, a role for endogenous GDNF in brain function has not been established. Although mice homozygous for a targeted deletion of the GDNF gene have been generated, these mice die within hours of birth because of deficits in kidney morphogenesis, and, thus, the effect of the absence of GDNF on brain function could not be studied. Herein, we sought to determine whether adult mice, heterozygous for a GDNF mutation on two different genetic backgrounds, demonstrate alterations in the nigrostriatal dopaminergic system or in cognitive function. While both neurochemical and behavioural measures suggested that reduction of GDNF gene expression in the mutant mice does not alter the nigrostriatal dopaminergic system, it led to a significant and selective impairment of performance in the spatial version of the Morris water maze. A standard panel of blood chemistry tests and basic pathological analyses did not reveal alterations in the mutants that could account for the observed performance deficit. These results suggest that endogenous GDNF may not be critical for the development and functioning of the nigrostriatal dopaminergic system but it plays an important role in cognitive abilities. PMID:11683907

  19. Paired box mutations in familial and sporadic aniridia predicts truncated aniridia proteins.

    PubMed Central

    Martha, A.; Ferrell, R. E.; Mintz-Hittner, H.; Lyons, L. A.; Saunders, G. F.

    1994-01-01

    Aniridia, an autosomal dominant ocular disorder characterized by iris hypoplasia, results from mutations in the PAX6 gene, which encodes paired box and homeobox motifs. In this report we describe five new mutations in the paired box region of the human PAX6 gene that are associated with aniridia. The paired box mutations that we detected were in both familial (three) and sporadic (two) cases. All five mutations predict truncated PAX6 proteins. Our study indicates that early premature translational termination mutations in the PAX6 gene result in haploinsufficiency and generate the aniridia phenotype. Images Figure 2 Figure 3 Figure 4 Figure 5 PMID:7909985

  20. Heterozygous STAT1 gain-of-function mutations underlie an unexpectedly broad clinical phenotype.

    PubMed

    Toubiana, Julie; Okada, Satoshi; Hiller, Julia; Oleastro, Matias; Lagos Gomez, Macarena; Aldave Becerra, Juan Carlos; Ouachée-Chardin, Marie; Fouyssac, Fanny; Girisha, Katta Mohan; Etzioni, Amos; Van Montfrans, Joris; Camcioglu, Yildiz; Kerns, Leigh Ann; Belohradsky, Bernd; Blanche, Stéphane; Bousfiha, Aziz; Rodriguez-Gallego, Carlos; Meyts, Isabelle; Kisand, Kai; Reichenbach, Janine; Renner, Ellen D; Rosenzweig, Sergio; Grimbacher, Bodo; van de Veerdonk, Frank L; Traidl-Hoffmann, Claudia; Picard, Capucine; Marodi, Laszlo; Morio, Tomohiro; Kobayashi, Masao; Lilic, Desa; Milner, Joshua D; Holland, Steven; Casanova, Jean-Laurent; Puel, Anne

    2016-06-23

    Since their discovery in patients with autosomal dominant (AD) chronic mucocutaneous candidiasis (CMC) in 2011, heterozygous STAT1 gain-of-function (GOF) mutations have increasingly been identified worldwide. The clinical spectrum associated with them needed to be delineated. We enrolled 274 patients from 167 kindreds originating from 40 countries from 5 continents. Demographic data, clinical features, immunological parameters, treatment, and outcome were recorded. The median age of the 274 patients was 22 years (range, 1-71 years); 98% of them had CMC, with a median age at onset of 1 year (range, 0-24 years). Patients often displayed bacterial (74%) infections, mostly because of Staphylococcus aureus (36%), including the respiratory tract and the skin in 47% and 28% of patients, respectively, and viral (38%) infections, mostly because of Herpesviridae (83%) and affecting the skin in 32% of patients. Invasive fungal infections (10%), mostly caused by Candida spp. (29%), and mycobacterial disease (6%) caused by Mycobacterium tuberculosis, environmental mycobacteria, or Bacille Calmette-Guérin vaccines were less common. Many patients had autoimmune manifestations (37%), including hypothyroidism (22%), type 1 diabetes (4%), blood cytopenia (4%), and systemic lupus erythematosus (2%). Invasive infections (25%), cerebral aneurysms (6%), and cancers (6%) were the strongest predictors of poor outcome. CMC persisted in 39% of the 202 patients receiving prolonged antifungal treatment. Circulating interleukin-17A-producing T-cell count was low for most (82%) but not all of the patients tested. STAT1 GOF mutations underlie AD CMC, as well as an unexpectedly wide range of other clinical features, including not only a variety of infectious and autoimmune diseases, but also cerebral aneurysms and carcinomas that confer a poor prognosis. PMID:27114460

  1. Heterozygous STAT1 gain-of-function mutations underlie an unexpectedly broad clinical phenotype

    PubMed Central

    Toubiana, Julie; Okada, Satoshi; Hiller, Julia; Oleastro, Matias; Lagos Gomez, Macarena; Aldave Becerra, Juan Carlos; Ouachée-Chardin, Marie; Fouyssac, Fanny; Girisha, Katta Mohan; Etzioni, Amos; Van Montfrans, Joris; Camcioglu, Yildiz; Kerns, Leigh Ann; Belohradsky, Bernd; Blanche, Stéphane; Bousfiha, Aziz; Rodriguez-Gallego, Carlos; Meyts, Isabelle; Kisand, Kai; Reichenbach, Janine; Renner, Ellen D.; Rosenzweig, Sergio; Grimbacher, Bodo; van de Veerdonk, Frank L.; Traidl-Hoffmann, Claudia; Picard, Capucine; Marodi, Laszlo; Morio, Tomohiro; Kobayashi, Masao; Lilic, Desa; Milner, Joshua D.; Holland, Steven; Casanova, Jean-Laurent

    2016-01-01

    Since their discovery in patients with autosomal dominant (AD) chronic mucocutaneous candidiasis (CMC) in 2011, heterozygous STAT1 gain-of-function (GOF) mutations have increasingly been identified worldwide. The clinical spectrum associated with them needed to be delineated. We enrolled 274 patients from 167 kindreds originating from 40 countries from 5 continents. Demographic data, clinical features, immunological parameters, treatment, and outcome were recorded. The median age of the 274 patients was 22 years (range, 1-71 years); 98% of them had CMC, with a median age at onset of 1 year (range, 0-24 years). Patients often displayed bacterial (74%) infections, mostly because of Staphylococcus aureus (36%), including the respiratory tract and the skin in 47% and 28% of patients, respectively, and viral (38%) infections, mostly because of Herpesviridae (83%) and affecting the skin in 32% of patients. Invasive fungal infections (10%), mostly caused by Candida spp. (29%), and mycobacterial disease (6%) caused by Mycobacterium tuberculosis, environmental mycobacteria, or Bacille Calmette-Guérin vaccines were less common. Many patients had autoimmune manifestations (37%), including hypothyroidism (22%), type 1 diabetes (4%), blood cytopenia (4%), and systemic lupus erythematosus (2%). Invasive infections (25%), cerebral aneurysms (6%), and cancers (6%) were the strongest predictors of poor outcome. CMC persisted in 39% of the 202 patients receiving prolonged antifungal treatment. Circulating interleukin-17A–producing T-cell count was low for most (82%) but not all of the patients tested. STAT1 GOF mutations underlie AD CMC, as well as an unexpectedly wide range of other clinical features, including not only a variety of infectious and autoimmune diseases, but also cerebral aneurysms and carcinomas that confer a poor prognosis. PMID:27114460

  2. Relevance of truncating titin mutations in dilated cardiomyopathy.

    PubMed

    Akinrinade, O; Alastalo, T-P; Koskenvuo, J W

    2016-07-01

    Dilated cardiomyopathy (DCM), a genetically heterogeneous cardiac disease characterized by left ventricular dilatation and systolic dysfunction, is caused majorly by truncations of titin (TTN), especially in A-band region. Clinical interpretation of TTN-truncating variants (TTNtv) has been challenged by the existing inaccurate variant assessment strategies and uncertainty in the true frequency of TTNtv across the general population. We aggregated TTNtv identified in 1788 DCM patients and compared the variants with those reported in over 60,000 Exome Aggregation Consortium reference population. We implemented our current variant assessment strategy that prioritizes TTNtv affecting all transcripts of the gene, and observed a decline in the prevalence of TTNtv in DCM. Despite this decline, TTNtv are more prevalent in DCM patients compared with reference population (p = 4.1 × 10(-295) ). Moreover, our extended analyses confirmed the enrichment of TTNtv not only in the A-band but also in the I/A-band junction of TTN. We estimated the probability of pathogenicity of TTNtv affecting all transcripts of TTN, identified in unselected DCM patients to be 97.8% (likelihood ratio (LR) = 42.2). We emphasize that identifying a TTNtv, especially in the A-band region, has a higher risk of being disease-causing than previously anticipated, and recommend prioritizing TTNtv affecting at least five transcripts of the gene. PMID:26777568

  3. A novel compound heterozygous mutation in the BEST1 gene causes autosomal recessive Best vitelliform macular dystrophy

    PubMed Central

    Zhao, L; Grob, S; Corey, R; Krupa, M; Luo, J; Du, H; Lee, C; Hughes, G; Lee, J; Quach, J; Zhu, J; Shaw, P X; Kozak, I; Zhang, K

    2012-01-01

    Purpose To determine the genetic basis of early onset autosomal recessive Best vitelliform macular dystrophy (arBVMD) in a family with three affected children. Design Clinical and family-based genetic study. Methods Seven subjects making up a family with three children affected by Best vitelliform macular dystrophy were studied. Standard ophthalmic exam with dilated ophthalmoscopy and imaging were performed in each individual. The eleven exons of BEST1were directly sequenced. Results All three affected children have the clinical characteristic features of Best vitelliform macular dystrophy: large macular vitelliform lesions, scattered vitelliform lesions along the arcades and in the peripheral retina, and an accumulation of serous retinal fluid. A novel compound heterozygous mutation in the BEST1gene was found in the three affected individuals (L41P and I201T). The unaffected parents and children only harbor one heterozygous mutation. Conclusion arBVMD can be caused by the compound heterozygous mutation L41P and I201T in the BEST1gene. PMID:22422030

  4. A somatic truncating mutation in BRCA2 in a sporadic breast tumor

    SciTech Connect

    Weber, B.H.F.; Brohm, M.; Stec, I.

    1996-10-01

    Recently, a second susceptibility gene for hereditary breast and ovarian cancer, BRCA2, was cloned. The subsequent identification of heterozygous germ-line mutations confirmed its role as a predisposing factor in a subset of familial breast and ovarian cancer families. The possible involvement of BRCA2 in the sporadic forms of breast and ovarian tumors was addressed in three recent reports analyzing the gene for somatic mutations in 212 primary breast cancers and SS ovarian cancers. Although several alterations were identified, all except two changes were shown to represent germ-line mutations. Moreover, the two somatic BRCA2 alterations were found to be missense mutations resulting in a Asp309S-Glu change in one case and in a His2415Asn change in the other. Given the questionable effect of missense mutations on protein function, the role of BRCA2 in the carcinogenesis of sporadic breast tumors remains unclear. 10 refs., 1 fig.

  5. De Novo Truncating FUS Gene Mutation as a Cause of Sporadic Amyotrophic Lateral Sclerosis

    PubMed Central

    DeJesus-Hernandez, Mariely; Kocerha, Jannet; Finch, NiCole; Crook, Richard; Baker, Matt; Desaro, Pamela; Johnston, Amelia; Rutherford, Nicola; Wojtas, Aleksandra; Kennelly, Kathleen; Wszolek, Zbigniew K.; Graff-Radford, Neill; Boylan, Kevin; Rademakers, Rosa

    2010-01-01

    Mutations in the gene encoding fused in sarcoma (FUS) were recently identified as a novel cause of amyotrophic lateral sclerosis (ALS), emphasizing the genetic heterogeneity of ALS. We sequenced the genes encoding superoxide dismutase (SOD1), TAR DNA-binding protein 43 (TARDBP) and FUS in 99 sporadic and 17 familial ALS patients ascertained at Mayo Clinic. We identified two novel mutations in FUS in two out of 99 (2.0%) sporadic ALS patients and established the de novo occurrence of one FUS mutation. In familial patients, we identified three (17.6%) SOD1 mutations, while FUS and TARDBP mutations were excluded. The de novo FUS mutation (g.10747A>G; IVS13-2A>G) affects the splice-acceptor site of FUS intron 13 and was shown to induce skipping of FUS exon 14 leading to the C-terminal truncation of FUS (p.G466VfsX14). Subcellular localization studies showed a dramatic increase in the cytoplasmic localization of FUS and a reduction of normal nuclear expression in cells transfected with truncated compared to wild-type FUS. We further identified a novel in-frame insertion/deletion mutation in FUS exon 12 (p.S402 P411delinsGGGG) which is predicted to expand a conserved poly-glycine motif. Our findings extend the mutation spectrum in FUS leading to ALS and describe the first de novo mutation in FUS. PMID:20232451

  6. Double heterozygous mutations of MITF and PAX3 result in Waardenburg syndrome with increased penetrance in pigmentary defects.

    PubMed

    Yang, T; Li, X; Huang, Q; Li, L; Chai, Y; Sun, L; Wang, X; Zhu, Y; Wang, Z; Huang, Z; Li, Y; Wu, H

    2013-01-01

    Waardenburg syndrome (WS) is characterized by sensorineural hearing loss and pigmentary defects of the hair, skin, and iris. Heterozygous mutations of MITF and its transactivator gene PAX3 are associated with Waardenburg syndrome type II (WS2) and type I (WS1), respectively. Most patients with MITF or PAX3 mutations, however, show variable penetrance of WS-associated phenotypes even within families segregating the same mutation, possibly mediated by genetic background or specific modifiers. In this study, we reported a rare Waardenburg syndrome simplex family in which a pair of WS parents gave birth to a child with double heterozygous mutations of MITF and PAX3. Compared to his parents who carried a single mutation in either MITF or PAX3, this child showed increased penetrance of pigmentary defects including white forelock, white eyebrows and eyelashes, and patchy facial depigmentation. This observation suggested that the expression level of MITF is closely correlated to the penetrance of WS, and variants in transcription regulator genes of MITF may modify the relevant clinical phenotypes. PMID:22320238

  7. Targeted Next-Generation Sequencing Reveals Hot Spots and Doubly Heterozygous Mutations in Chinese Patients with Familial Cardiomyopathy

    PubMed Central

    Zhao, Yue; Feng, Yue; Zhang, Yun-Mei; Ding, Xiao-Xue; Song, Yu-Zhu; Zhang, A-Mei; Liu, Li; Zhang, Hong; Ding, Jia-Huan; Xia, Xue-Shan

    2015-01-01

    As a common cardiac disease mainly caused by gene mutations in sarcomeric cytoskeletal, calcium-handling, nuclear envelope, desmosomal, and transcription factor genes, inherited cardiomyopathy is becoming one of the major etiological factors of sudden cardiac death (SCD) and heart failure (HF). This disease is characterized by remarkable genetic heterogeneity, which makes it difficult to screen for pathogenic mutations using Sanger sequencing. In the present study, three probands, one with familial hypertrophic cardiomyopathy (FHCM) and two with familial dilated cardiomyopathy (FDCM), were recruited together with their respective family members. Using next-generation sequencing technology (NGS), 24 genes frequently known to be related to inherited cardiomyopathy were screened. Two hot spots (TNNI3-p.Arg145Gly, and LMNA-p.Arg190Trp) and double (LMNA-p.Arg190Trp plus MYH7-p.Arg1045His) heterozygous mutations were found to be highly correlated with familial cardiomyopathy. FDCM patients with doubly heterozygous mutations show a notably severe phenotype as we could confirm in our study; this indicates that the double mutations had a dose effect. In addition, it is proposed that genetic testing using NGS technology can be used as a cost-effective screening tool and help guide the treatment of patients with familial cardiomyopathy particularly regarding the risk of family members who are clinically asymptomatic. PMID:26199943

  8. Heterozygous Mutation of Drosophila Opa1 Causes the Development of Multiple Organ Abnormalities in an Age-Dependent and Organ-Specific Manner

    PubMed Central

    Le, Phung Khanh; Pak, William L.; Tse, Stephanie; Ocorr, Karen; Huang, Taosheng

    2009-01-01

    Optic Atrophy 1 (OPA1) is a ubiquitously expressed dynamin-like GTPase in the inner mitochondrial membrane. It plays important roles in mitochondrial fusion, apoptosis, reactive oxygen species (ROS) and ATP production. Mutations of OPA1 result in autosomal dominant optic atrophy (DOA). The molecular mechanisms by which link OPA1 mutations and DOA are not fully understood. Recently, we created a Drosophila model to study the pathogenesis of optic atrophy. Heterozygous mutation of Drosophila OPA1 (dOpa1) by P-element insertion results in no obvious morphological abnormalities, whereas homozygous mutation is embryonic lethal. In eye-specific somatic clones, homozygous mutation of dOpa1 causes rough (mispatterning) and glossy (decreased lens deposition) eye phenotypes in adult Drosophila. In humans, heterozygous mutations in OPA1 have been associated with mitochondrial dysfunction, which is predicted to affect multiple organs. In this study, we demonstrated that heterozygous dOpa1 mutation perturbs the visual function and an ERG profile of the Drosophila compound eye. We independently showed that antioxidants delayed the onset of mutant phenotypes in ERG and improved larval vision function in phototaxis assay. Furthermore, heterozygous dOpa1 mutation also caused decreased heart rate, increased heart arrhythmia, and poor tolerance to stress induced by electrical pacing. However, antioxidants had no effects on the dysfunctional heart of heterozygous dOpa1 mutants. Under stress, heterozygous dOpa1 mutations caused reduced escape response, suggesting abnormal function of the skeletal muscles. Our results suggest that heterozygous mutation of dOpa1 shows organ-specific pathogenesis and is associated with multiple organ abnormalities in an age-dependent and organ-specific manner. PMID:19718456

  9. Heterozygous mutations in SIX3 and SHH are associated with schizencephaly and further expand the clinical spectrum of holoprosencephaly

    PubMed Central

    Hehr, Ute; Pineda-Alvarez, Daniel E.; Uyanik, Goekhan; Hu, Ping; Zhou, Nan; Hehr, Andreas; Schell-Apacik, Chayim; Altus, Carola; Daumer-Haas, Cornelia; Meiner, Annechristin; Steuernagel, Peter; Roessler, Erich; Winkler, Juergen; Muenke, Maximilian

    2014-01-01

    Schizencephaly (SCH) is a clinically and etiologically heterogeneous cerebral malformation presenting as unilateral or bilateral hemispheric cleft with direct connection between the inner and outer liquor spaces. The SCH cleft is usually lined by gray matter, which appears polymicrogyric implying an associated impairment of neuronal migration. The majority of SCH patients are sporadic, but familial SCH has been described. An initial report of heterozygous mutations in the homeobox gene EMX2 could not be confirmed in 52 patients investigated in this study in agreement with two independent SCH patient cohorts published previously. SCH frequently occurs with additional cerebral malformations like hypoplasia or aplasia of the septum pellucidum or optic nerve, suggesting the involvement of genes important for the establishment of midline forebrain structures. We therefore considered holoprosencephaly (HPE)-associated genes as potential SCH candidates and report for the first time heterozygous mutations in SIX3 and SHH in a total of three unrelated patients and one fetus with SCH; one of them without obvious associated malformations of midline forebrain structures. Three of these mutations have previously been reported in independent patients with HPE. SIX3 acts directly upstream of SHH, and the SHH pathway is a key regulator of ventral forebrain patterning. Our data indicate that in a subset of patients SCH may develop as one aspect of a more complex malformation of the ventral forebrain, directly result from mutations in the SHH pathway and hence be considered as yet another feature of the broad phenotypic spectrum of holoprosencephaly. PMID:20157829

  10. A Novel Mutation in NFKBIA/IKBA Results in a Degradation-Resistant N-Truncated Protein and Is Associated With Ectodermal Dysplasia With Immunodeficiency

    PubMed Central

    Lopez-Granados, Eduardo; Keenan, Jeffrey E.; Kinney, Matthew C.; Leo, Harvey; Jain, Neal; Ma, Chi A.; Quinones, Ralph; Gelfand, Erwin W.; Jain, Ashish

    2011-01-01

    Alterations in nuclear factor kappa B (NF-κB) essential modulator (NEMO; HUGO-approved symbol IKBKG) underlie most cases of ectodermal dysplasia with immune deficiency (EDI), a human disorder characterized by anhidrosis with diminished immunity. EDI has also been associated with a single heterozygous mutation at position Ser32 of the NF-κB inhibitor IκBα, one of two phosphorylation sites that are essential for targeting IκBα for proteasomal degradation and hence for activation of NF-κB. We report a novel heterozygous nonsense mutation in the IKBA (HUGO-approved symbol, NFKBIA) gene of a 1-year-old male child with EDI that introduces a premature termination codon at position Glu14. An in-frame methionine downstream of the nonsense mutation allows for reinitiation of translation. The resulting N-terminally truncated protein lacks both serine phosphorylation sites and inhibits NF-κB signaling by functioning as a dominant negative on NF-κB activity in lymphocytes and monocytes. These findings support the scanning model for translation initiation in eukaryotes and confirm the critical role of the NF-κB in the human immune response. PMID:18412279

  11. A mutation, tl2, in pea (Pisum sativum L.) affects leaf development only in the heterozygous state.

    PubMed

    Berdnikov, V A; Gorel, F L

    2005-04-01

    After gamma irradiation of pea seeds, a mutation designated as tendril-less2 (tl2) was induced. In the heterozygous state, it transforms tendrils into very narrow leaflets that resemble the heterozygote phenotype of the classic tl mutation. The tendrils of the double heterozygote tl2/+, tl/+ are converted into oval leaflets. Unlike tl, the novel mutation in the homozygous state does not affect tendrils. The leaf phenotype of homozygotes tl2/tl2 and Tl2/Tl2 do not differ in the tl/+ background. However, the anthocyanin pigmentation is strongly suppressed in petals of tl2/tl2 plants. Some hypotheses to explain the unusual phenotypic manifestation of tl2 are suggested. PMID:15714325

  12. A mouse model of human congenital heart disease: high incidence of diverse cardiac anomalies and ventricular noncompaction produced by heterozygous Nkx2-5 homeodomain missense mutation

    PubMed Central

    Chang, Eileen I.; Terada, Ryota; Ryan, Nicole J.; Briggs, Laura E.; Chowdhury, Rajib; Zárate, Miguel A.; Sugi, Yukiko; Nam, Hyun-Joo; Benson, D. Woodrow; Anderson, Robert H.; Kasahara, Hideko

    2014-01-01

    Background Heterozygous human mutations of NKX2-5 are highly penetrant and associated with varied congenital heart defects. The heterozygous knockout of murine Nkx2-5, in contrast, manifests less profound cardiac malformations, with low disease penetrance. We sought to study this apparent discrepancy between human and mouse genetics. Since missense mutations in the NKX2-5 homeodomain (DNA binding domain) are the most frequently reported type of human mutation, we replicated this genetic defect in a murine knock-in model. Methods and Results We generated a murine model in a 129/Sv genetic background by knocking-in an Nkx2-5 homeodomain missense mutation previously identified in humans. The mutation was located at homeodomain position 52Arg→Gly (R52G). All the heterozygous neonatal Nkx2-5+/R52G mice demonstrated a prominent trabecular layer in the ventricular wall, so called noncompaction, along with diverse cardiac anomalies, including atrioventricular septal defects, Ebstein’s malformation of the tricuspid valve, and perimembranous and/or muscular ventricular septal defects. In addition, P10 Nkx2-5+/R52G mice demonstrated atrial septal anomalies, with significant increase in the size of the inter-atrial communication and fossa ovalis, and decrease in the length of the flap valve compared to control Nkx2-5+/+ or Nkx2-5+/− mice. Conclusion The results of our study demonstrate that heterozygous missense mutation in the murine Nkx2-5 homeodomain (R52G) are highly penetrant, and result in pleiotropic cardiac effects. Thus, in contrast to heterozygous Nkx2-5 knockout mice, the effects of the heterozygous knock-in mimic findings in humans with heterozygous missense mutation in NKX2-5 homeodomain. PMID:25028484

  13. Two novel compound heterozygous mutations in the BCKDHB gene that cause the intermittent form of maple syrup urine disease.

    PubMed

    Guo, Yi; Liming, Liu; Jiang, Li

    2015-12-01

    Intermittent maple syrup urine disease (MSUD) is a potentially life-threatening metabolic disorder caused by a deficiency of branched chain α-ketoacid dehydrogenase (BCKD) complex. In contrast to classic MSUD, children with the intermittent form usually have an atypical clinical manifestation. Here, we describe the presenting symptoms and clinical course of a Chinese boy with intermittent MSUD. Mutation analysis identified two previously unreported mutations in exon 7 of the BCKDHB gene: c.767A > G (p.Y256C) and c.768C > G (p.Y256X); the parents were each heterozygous for one of these mutations. In silico analysis predicted Y256C probably affects protein structure; Y256X leads to a premature stop codon. This case demonstrates intermittent MSUD should be suspected in cases with symptoms of recurrent encephalopathy, especially ataxia or marked drowsiness, which usually present after the neonatal period and in conjunction with infection. symmetrical basal ganglia damage but normal myelination in the posterior limb will assist differential diagnosis; alloisoleucine is a useful diagnostic marker and mutation analysis may be of prognostic value. These novel mutations Y256C and Y256X result in the clinical manifestation of a variant form of MSUD, expanding the mutation spectrum of this disease. PMID:26239723

  14. Phenotypic characterization of mice heterozygous for a null mutation of glutamate carboxypeptidase II.

    PubMed

    Han, Liqun; Picker, Jonathan D; Schaevitz, Laura R; Tsai, Guochuan; Feng, Jiamin; Jiang, Zhichun; Chu, Hillary C; Basu, Alo C; Berger-Sweeney, Joanne; Coyle, Joseph T

    2009-08-01

    Glutamate is the major excitatory neurotransmitter in the mammalian central nervous system. Disturbed glutamate signaling resulting in hypofunction of N-methyl-D-aspartate receptors (NMDAR) has been implicated in the pathophysiology of schizophrenia. Glutamate Carboxypeptidase II (GCP II) hydrolyzes N-acetyl-alpha L-aspartyl-L-glutamate (NAAG) into glutamate and N-acetyl-aspartate. NAAG is a neuropeptide that is an NMDAR antagonist as well as an agonist for the metabotropic glutamate receptor-3 (mGluR3), which inhibits glutamate release. The aggregate effect of NAAG is thus to attenuate NMDAR activation. To manipulate the expression of GCP II, LoxP sites were inserted flanking exons 1 and 2, which were excised by crossing with a Cre-expressing mouse. The mice heterozygous for this deletion showed a 50% reduction in the expression level of protein and functional activity of GCP II in brain samples. Heterozygous mutant crosses did not yield any homozygous null animals at birth or as embryos (N > 200 live births and fetuses). These data are consistent with the previous report that GCP II homozygous mutant mice generated by removing exons 9 and 10 of GCP II gene were embryonically lethal and confirm our hypothesis that GCP II plays an essential role early in embryonic development. Heterozygous mice, however, developed normally to adulthood and exhibited increased locomotor activity, reduced social interaction, and a subtle cognitive deficit in working memory. PMID:19347959

  15. Phenotypic Characterization of Mice Heterozygous for a Null Mutation of Glutamate Carboxypeptidase II

    PubMed Central

    Han, Liqun; Picker, Jonathan D.; Schaevitz, Laura R.; Tsai, Guochuan; Feng, Jiamin; Jiang, Zhichun; Chu, Hillary C.; Basu, Alo C.; Berger-Sweeney, Joanne; Coyle, Joseph T.

    2009-01-01

    Glutamate is the major excitatory neurotransmitter in the mammalian central nervous system. Disturbed glutamate signaling resulting in hypofunction of NMDA receptors has been implicated in the pathophysiology of schizophrenia. Glutamate Carboxypeptidase II (GCP II) hydrolyzes N-acetyl-alpha L-aspartyl-L-glutamate (NAAG) into glutamate and N-acetyl-aspartate (NAA). NAAG is a neuropeptide that is an NMDA receptor antagonist as well as an agonist for the metabotropic glutamate receptor-3 (mGluR3), which inhibits glutamate release. The aggregate effect of NAAG is thus to attenuate NMDA receptor activation. To manipulate the expression of GCP II, loxP sites were inserted flanking exon 1 and 2, which were excised by crossing with a Cre-expressing mouse. The mice heterozygous for this deletion showed a 50% reduction in the expression level of protein and functional activity of GCP II in brain samples. Heterozygous mutant crosses did not yield any homozygous null animals at birth or as embryos (N >200 live births and fetuses). These data are consistent with the previous report that GCP II homozygous mutant mice generated by removing exons 9 and 10 of GCP II gene were embryonically lethal and confirm our hypothesis that GCP II plays an essential role early in embryonic development. Heterozygous mice, however, developed normally to adulthood and exhibited increased locomotor activity, reduced social interaction, and a subtle cognitive deficit in working memory. PMID:19347959

  16. Novel Compound Heterozygous Spatacsin Mutations in a Greek Kindred with Hereditary Spastic Paraplegia SPG11 and Dementia.

    PubMed

    Fraidakis, Matthew J; Brunetti, Maura; Blackstone, Craig; Filippi, Massimo; Chiò, Adriano

    2016-01-01

    SPG11 belongs to the autosomal recessive hereditary spastic paraplegias (HSP) and presents during childhood or puberty with a complex clinical phenotype encompassing learning difficulties, ataxia, peripheral neuropathy, amyotrophy, and mental retardation. We hereby present the case of a 30-year-old female patient with complex autosomal recessive HSP with thinning of the corpus callosum (TCC) and dementia that was compound heterozygous with two novel mutations in the SPG11 gene. Sequence analysis of the SPG11 gene revealed two novel mutations in a compound heterozygous state in the index patient (c.2431C>T/p.Gln811Ter and c.6755_6756insT/p.Glu2252Aspfs*88). MRI showed abnormal TCC, white matter (WM) hyperintensities periventricularly, and the 'ears of the lynx' sign. Diffusion tensor imaging showed a mild-to-moderate decrease in fractional anisotropy and an increase in mean diffusivity in WM compared to age-matched controls, while magnetic resonance spectroscopy showed abnormal findings in affected WM with a decrease in N-acetyl-aspartate in WM regions of interest. This is the first SPG11 kindred from the Greek population to be reported in the medical literature. PMID:27318863

  17. Post-Transplant Recurrence of Focal Segmental Glomerulosclerosis in a Child With Heterozygous Mutations in NPHS1 and NPHS2.

    PubMed

    Battelino, Nina; Arnol, Miha; Kandus, Aljoša; Ponikvar, Rafael; Novljan, Gregor

    2016-06-01

    Renal transplantation is the optimal renal replacement therapy (RRT) in children, but some primary diseases can recur after transplantation, and recurrence accounts for a significant proportion of graft losses, being second only to acute rejection. The risk of disease recurrence is highest among patients with idiopathic focal segmental glomerulosclerosis (FSGS), presumably due to a circulating permeability factor. Less is clear about the genetic forms of FSGS, where the data regarding the frequency of recurrence are rather conflicting. We present a 12-year-old girl with rapidly progressive FSGS and end-stage renal disease in her native kidneys associated with heterozygous mutations in NPHS1 and in NPHS2, suffering from early post-transplant recurrence. On the basis of reviewed literature, and until further and more conclusive evidence considering pathogenicity is provided, we propose that FSGS patients with heterozygous mutations in NPHS1 or NPHS2 should be considered as having idiopathic FSGS, and post-transplant recurrence should be anticipated. PMID:27312921

  18. Mutated myocilin and heterozygous Sod2 deficiency act synergistically in a mouse model of open-angle glaucoma

    PubMed Central

    Joe, Myung Kuk; Nakaya, Naoki; Abu-Asab, Mones; Tomarev, Stanislav I.

    2015-01-01

    Glaucoma is a multifactorial optic neuropathy characterized by retinal ganglion cell (RGC) death and axonal degeneration leading to irreversible blindness. Mutations in the MYOCILIN (MYOC) gene are the most common genetic factors of primary open-angle glaucoma. To develop a genetic mouse model induced by the synergistic interaction of mutated myocilin and another significant risk factor, oxidative stress, we produced double-mutant mice (Tg-MYOCY437H/+/Sod2+/−) bearing human MYOC with a Y437H point mutation and a heterozygous deletion of the gene for the primary antioxidant enzyme, superoxide dismutase 2 (SOD2). Sod2 is broadly expressed in most tissues including the trabecular meshwork (TM) and heterozygous Sod2 knockout mice exhibit the reduced SOD2 activity and oxidative stress in all studied tissues. Accumulation of Y437H myocilin in the TM induced endoplasmic reticulum stress and led to a 45% loss of smooth muscle alpha-actin positive cells in the eye drainage structure of 10- to 12-month-old Tg-MYOCY437H/+/Sod2+/− mice as compared with wild-type littermates. Tg-MYOCY437H/+/Sod2+/− mice had higher intraocular pressure, lost about 37% of RGCs in the peripheral retina, and exhibited axonal degeneration in the retina and optic nerve as compared with their wild-type littermates. Single-mutant littermates containing MYOCY437H/+ or Sod2+/− exhibited no significant pathological changes until 12 months of age. Additionally, we observed elevated expression of endothelial leukocyte adhesion molecule-1, a human glaucoma marker, in the TM of Tg-MYOCY437H/+/Sod2+/− mice. This is the first reported animal glaucoma model that combines expression of a glaucoma-causing mutant gene and an additional mutation mimicking a deleterious environment factor that acts synergistically. PMID:25740847

  19. Bap1 Is a Bona Fide Tumor Suppressor: Genetic Evidence from Mouse Models Carrying Heterozygous Germline Bap1 Mutations.

    PubMed

    Kadariya, Yuwaraj; Cheung, Mitchell; Xu, Jinfei; Pei, Jianming; Sementino, Eleonora; Menges, Craig W; Cai, Kathy Q; Rauscher, Frank J; Klein-Szanto, Andres J; Testa, Joseph R

    2016-05-01

    Individuals harboring inherited heterozygous germline mutations in BAP1 are predisposed to a range of benign and malignant tumor types, including malignant mesothelioma, melanoma, and kidney carcinoma. However, evidence to support a tumor-suppressive role for BAP1 in cancer remains contradictory. To test experimentally whether BAP1 behaves as a tumor suppressor, we monitored spontaneous tumor development in three different mouse models with germline heterozygous mutations in Bap1, including two models in which the knock-in mutations are identical to those reported in human BAP1 cancer syndrome families. We observed spontaneous malignant tumors in 54 of 93 Bap1-mutant mice (58%) versus 4 of 43 (9%) wild-type littermates. All three Bap1-mutant models exhibited a high incidence and similar spectrum of neoplasms, including ovarian sex cord stromal tumors, lung and mammary carcinomas, and spindle cell tumors. Notably, we also observed malignant mesotheliomas in two Bap1-mutant mice, but not in any wild-type animals. We further confirmed that the remaining wild-type Bap1 allele was lost in both spontaneous ovarian tumors and mesotheliomas, resulting in the loss of Bap1 expression. Additional studies revealed that asbestos exposure induced a highly significant increase in the incidence of aggressive mesotheliomas in the two mouse models carrying clinically relevant Bap1 mutations compared with asbestos-exposed wild-type littermates. Collectively, these findings provide genetic evidence that Bap1 is a bona fide tumor suppressor gene and offer key insights into the contribution of carcinogen exposure to enhanced cancer susceptibility. Cancer Res; 76(9); 2836-44. ©2016 AACR. PMID:26896281

  20. Mutated myocilin and heterozygous Sod2 deficiency act synergistically in a mouse model of open-angle glaucoma.

    PubMed

    Joe, Myung Kuk; Nakaya, Naoki; Abu-Asab, Mones; Tomarev, Stanislav I

    2015-06-15

    Glaucoma is a multifactorial optic neuropathy characterized by retinal ganglion cell (RGC) death and axonal degeneration leading to irreversible blindness. Mutations in the myocilin (MYOC) gene are the most common genetic factors of primary open-angle glaucoma. To develop a genetic mouse model induced by the synergistic interaction of mutated myocilin and another significant risk factor, oxidative stress, we produced double-mutant mice (Tg-MYOC(Y437H/+)/Sod2(+/-)) bearing human MYOC with a Y437H point mutation and a heterozygous deletion of the gene for the primary antioxidant enzyme, superoxide dismutase 2 (SOD2). Sod2 is broadly expressed in most tissues including the trabecular meshwork (TM) and heterozygous Sod2 knockout mice exhibit the reduced SOD2 activity and oxidative stress in all studied tissues. Accumulation of Y437H myocilin in the TM induced endoplasmic reticulum stress and led to a 45% loss of smooth muscle alpha-actin positive cells in the eye drainage structure of 10- to 12-month-old Tg-MYOC(Y437H/+)/Sod2(+/-) mice as compared with wild-type littermates. Tg-MYOC(Y437H/+)/Sod2(+/-) mice had higher intraocular pressure, lost about 37% of RGCs in the peripheral retina, and exhibited axonal degeneration in the retina and optic nerve as compared with their wild-type littermates. Single-mutant littermates containing MYOC(Y437H/+) or Sod2(+/-) exhibited no significant pathological changes until 12 months of age. Additionally, we observed elevated expression of endothelial leukocyte adhesion molecule-1, a human glaucoma marker, in the TM of Tg-MYOC(Y437H/+)/Sod2(+/-) mice. This is the first reported animal glaucoma model that combines expression of a glaucoma-causing mutant gene and an additional mutation mimicking a deleterious environment factor that acts synergistically. PMID:25740847

  1. Extreme muscle development in sheep heterozygous for both myostatin and callipyge mutations

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two mutations causing increased muscle size and decreased fat content in sheep have been described. The callipyge (CLPG) syndrome is only exhibited after 4 to 6 weeks of age in animals inheriting the mutation solely from their sire. In contrast, a mutation of the myostatin gene (MSTN) in the Texel...

  2. New Codanin-1 Gene Mutations in a Italian Patient with Congenital Dyserythropoietic Anemia Type I and Heterozygous Beta-Thalassemia.

    PubMed

    D'Alcamo, Elena; Agrigento, V; Pitrolo, L; Sclafani, S; Barone, R; Calvaruso, G; Buffa, V; Maggio, A

    2016-06-01

    Congenital dyserythropoietic anemia type I is an autosomal recessive disorder associated with macrocytic anemia, ineffective erythropoiesis, iron overloading and characterized by abnormal chromatin ultrastructure in erythroblasts such as internuclear chromatin bridges, spongy heterochromatin and invagination of the nuclear membrane. A 58-year-old Causasian man with chronic hemolytic anemia, heterozygous for β (+) -globin IVS1, nt110 G>A mutation (causing abnormal alpha:beta globin chain ratio) showed clinical, laboratory and hematological features suggesting diagnosis of CDA1. Sequence analysis of CDA-related genes revealed compound heterozygosity for two novel mutations in the CDAN1 gene: a frameshift mutation 3367 del 4 (TTAG) in exon 25 and a missense mutation c.1811 G>T in exon 11 causing an aminoacid change from glycine to valine at codon 565 (G565V). One of the propositus' brothers showed the same gene mutations. As the CDA1 can mimic thalassemia, a frequent misdiagnosis is possible especially in countries where the prevalence of thalassemia is high. A strong clinical suspicion in patients who do not reveal a clear genetic basis for presumed thalassemia may help clinch the correct diagnosis. PMID:27408412

  3. Aberrant splicing and truncated-protein expression due to a newly identified XPA gene mutation.

    PubMed

    Sato, M; Nishigori, C; Yagi, T; Takebe, H

    1996-02-15

    A group A xeroderma pigmentosum (XPA) patient, XP2NI, is a compound heterozygote with a newly identified G to C transversion at the last nucleotide in exon 5 in one chromosome, and with the known splicing mutation in intron 3 in another chromosome in the XPA gene. XP2NI had mild skin symptoms and the cells were slightly less sensitive to UV radiation than the cells of typical severe XPA patients who have the splicing mutation in intron 3 homozygously. Reverse transcriptase (RT)-PCR and sequencing of the PCR products revealed that the mutation in exon 5 resulted in producing three types of aberrant mRNA, lacking 7 nucleotides at the end of exon 5, lacking entire exon 5, and lacking exons 3, 4 and 5. A significant amount of a truncated type of protein was produced in XP2NI cells, and the size of the protein indicated that it should have been translated from the mRNA, lacking the 7 nucleotides and retained one of the zinc-finger domains required for the DNA repair activity. The clinical mildness of XP2NI may be due to the residual DNA repair activity of the truncated XPA protein, while no XPA protein was detected in the XPA cells with the homozygous intron 3 splicing mutation. PMID:8596539

  4. Effects of mutation, truncation, and temperature on the folding kinetics of a WW domain.

    PubMed

    Maisuradze, Gia G; Zhou, Rui; Liwo, Adam; Xiao, Yi; Scheraga, Harold A

    2012-07-20

    The purpose of this work is to show how mutation, truncation, and change of temperature can influence the folding kinetics of a protein. This is accomplished by principal component analysis of molecular-dynamics-generated folding trajectories of the triple β-strand WW domain from formin binding protein 28 (FBP28) (Protein Data Bank ID: 1E0L) and its full-size, and singly- and doubly-truncated mutants at temperatures below and very close to the melting point. The reasons for biphasic folding kinetics [i.e., coexistence of slow (three-state) and fast (two-state) phases], including the involvement of a solvent-exposed hydrophobic cluster and another delocalized hydrophobic core in the folding kinetics, are discussed. New folding pathways are identified in free-energy landscapes determined in terms of principal components for full-size mutants. Three-state folding is found to be a main mechanism for folding the FBP28 WW domain and most of the full-size and truncated mutants. The results from the theoretical analysis are compared to those from experiment. Agreements and discrepancies between the theoretical and experimental results are discussed. Because of its importance in understanding protein kinetics and function, the diffusive mechanism by which the FBP28 WW domain and its full-size and truncated mutants explore their conformational space is examined in terms of the mean-square displacement and principal component analysis eigenvalue spectrum analyses. Subdiffusive behavior is observed for all studied systems. PMID:22560992

  5. Novel compound heterozygous mutation in the CNGA1 gene underlie autosomal recessive retinitis pigmentosa in a Chinese family

    PubMed Central

    Jin, Xin; Qu, Ling-Hui; Hou, Bao-Ke; Xu, Hai-Wei; Meng, Xiao-Hong; Pang, Chi-Pui; Yin, Zheng-Qin

    2016-01-01

    Retinitis pigmentosa (RP) describes a group of inherited retinopathies that are characterized by the progressive degeneration of photoreceptor neurons, which causes night blindness, a reduction in the peripheral visual field and decreased visual acuity. More than 50 RP-related genes have been identified. In the present study, we analysed a Chinese family with autosomal recessive RP. We identified a compound heterozygous mutation, c.265delC and c.1537G>A, in CNGA1 using targeted next-generation sequencing (NGS) of RP-causing genes. The mutations were validated in the family members by Sanger sequencing. The mutations co-segregated with the RP phenotype and were absent from ethnically-matched control chromosomes. The mutant (mut) CNGA1 p.(G513R) protein caused by the mis-sense novel mutation c.1537G>A was expressed in vitro. The mut CNGA1 p.(G513R) protein was largely retained inside the cell rather than being targeted to the plasma membrane, suggesting the absence of cGMP-gated cation channels in the plasma membrane would be deleterious to rod photoreceptors, leading lead to RP. PMID:26802146

  6. Novel Compound Heterozygous Mutations in the CYP27B1 Gene Lead to Pseudovitamin D-Deficient Rickets.

    PubMed

    Koek, W Nadia H; Zillikens, M Carola; van der Eerden, Bram C J; van Leeuwen, Johannes P T M

    2016-09-01

    Pseudovitamin D deficiency is the consequence of a genetic defect in the CYP27B1 gene resulting in diminished or absent conversion of 25-hydroxyvitamin D3 (25-(OH)D3) into 1,25-dihydroxyvitamin D3 (1,25-(OH)2D3) and leads to growth retardation and rickets, usually in the first 2 years of life. DNA obtained from human leucocytes from a patient suspected of pseudovitamin D deficiency and her healthy parents was sequenced for a genetic defect in the CYP27B1 gene. In silico analyses on the mutations were performed using online available software. The 1α-hydroxylase activity of the patient, her parents, and a sample derived from a mixed buffy coat of healthy blood donors was measured by culturing peripheral blood mononuclear cells with 25-(OH)D3 and measuring 1,25-(OH)2D3 production. DNA sequencing of the patient suspected of pseudovitamin D deficiency revealed compound heterozygosity in the CYP27B1 gene for a (c413G>T) mutation in exon 3 (R138L) and a (c1232G>A) mutation in exon 8 (C411Y). In silico analyses confirmed that mutations at these positions are probably damaging for the protein since the amino acids are situated in a highly conserved region. In vitro analyses showed a nearly absent 1α-hydroxylase activity in the patient compared to the healthy blood donors. Her healthy parents each of whom carried one of the mutations also had compromised conversion of 25-(OH)D3 into 1,25-(OH)2D3 in peripheral blood mononuclear cells, being only marginally higher than in the patient. We discovered novel compound heterozygous mutations in the CYP27B1 gene in a young girl presenting with pseudovitamin D-deficient rickets, leading to severely decreased 1,25-(OH)2D3 production. Furthermore, both heterozygous parents showed a diminished 1α-hydroxylase activity. PMID:27364341

  7. A novel homozygous truncating GNAT1 mutation implicated in retinal degeneration

    PubMed Central

    Carrigan, Matthew; Humphries, Pete; Palfi, Arpad; Kenna, Paul F; Farrar, G Jane

    2016-01-01

    Background The GNAT1 gene encodes the α subunit of the rod transducin protein, a key element in the rod phototransduction cascade. Variants in GNAT1 have been implicated in stationary night-blindness in the past, but unlike other proteins in the same pathway, it has not previously been implicated in retinitis pigmentosa. Methods A panel of 182 retinopathy-associated genes was sequenced to locate disease-causing mutations in patients with inherited retinopathies. Results Sequencing revealed a novel homozygous truncating mutation in the GNAT1 gene in a patient with significant pigmentary disturbance and constriction of visual fields, a presentation consistent with retinitis pigmentosa. This is the first report of a patient homozygous for a complete loss-of-function GNAT1 mutation. The clinical data from this patient provide definitive evidence of retinitis pigmentosa with late onset in addition to the lifelong night-blindness that would be expected from a lack of transducin function. Conclusion These data suggest that some truncating GNAT1 variants can indeed cause a recessive, mild, late-onset retinal degeneration in human beings rather than just stationary night-blindness as reported previously, with notable similarities to the phenotype of the Gnat1 knockout mouse. PMID:26472407

  8. Compound heterozygous mutations in NEK8 in siblings with end-stage renal disease with hepatic and cardiac anomalies.

    PubMed

    Rajagopalan, Ramakrishnan; Grochowski, Christopher M; Gilbert, Melissa A; Falsey, Alexandra M; Coleman, Karlene; Romero, Rene; Loomes, Kathleen M; Piccoli, David A; Devoto, Marcella; Spinner, Nancy B

    2016-03-01

    We studied two brothers who presented in the newborn period with cardiac, renal, and hepatic anomalies that were initially suggestive of ALGS, although no mutations in JAG1 or NOTCH2 were identified. Exome sequencing demonstrated compound heterozygous mutations in the NEK8 gene (Never in mitosis A-related Kinase 8), a ciliary kinase indispensable for cardiac and renal development based on murine studies. The mutations included a c.2069_2070insC variant (p.Ter693LeufsTer86), and a c.1043C>T variant (p.Thr348Met) in the highly conserved RCC1 (Regulation of Chromosome Condensation 1) domain. The RCC1 domain is crucial for localization of the NEK8 protein to the centrosomes and cilia. Mutations in NEK8 have been previously reported in three fetuses (from a single family) with renal-hepatic-pancreatic dysplasia 2 (RHPD2), similar to Ivemark syndrome, and in three individuals with nephronophthisis (NPHP9). This is the third report of disease-causing mutations in the NEK8 gene in humans and only the second describing multi-organ involvement. The clinical features we describe differ from those in the previously published report in that (1) a pancreatic phenotype was not observed in the individuals reported here, (2) there were more prominent cardiac findings, (consistent with observations in murine models), and (3) we observed bile duct hypoplasia rather than ductal plate malformation. The patients reported here expand our understanding of the NEK8-associated phenotype. Our findings highlight the variable phenotypic expressivity and the spectrum of clinical manifestations due to mutations in the NEK8 gene. © 2015 Wiley Periodicals, Inc. PMID:26697755

  9. Two heterozygous Cav3.2 channel mutations in a pediatric chronic pain patient: recording condition-dependent biophysical effects.

    PubMed

    Souza, Ivana A; Gandini, Maria A; Wan, Miranda M; Zamponi, Gerald W

    2016-04-01

    We report expression system-dependent effects of heterozygous mutations (P769L and A1059S) in the Cav3.2 CACNA1H gene identified in a pediatric patient with chronic pain and absence seizures. The mutations were introduced individually into recombinant channels and then analyzed by means of electrophysiology. When both mutants were co-expressed in tsA-201 cells, we observed a loss of channel function, with significantly smaller current densities across a wide range of voltages (-40 to +20 mV). In addition, when both mutant channels were co-expressed, the channels opened at a more depolarizing potential with a ~5-mV right shift in the half-activation potential, with no changes in half-inactivation potential and the rate of recovery from inactivation. Interestingly, when both mutants were co-expressed in the neuronal-derived CAD cells in a different extracellular milieu, the effect was remarkably different. Although not statistically significant (p < 0.07), current densities appeared augmented compared to wild-type channels and the difference in the half-activation potential was lost. This could be attributed to the replacement of extracellular sodium and potassium with tetraethylammonium chloride. Our results show that experimental conditions can be a confounding factor in the biophysical effects of T-type calcium channel mutations found in certain neurological disorders. PMID:26706850

  10. A heterozygous IDH1R132H/WT mutation induces genome-wide alterations in DNA methylation

    PubMed Central

    Duncan, Christopher G.; Barwick, Benjamin G.; Jin, Genglin; Rago, Carlo; Kapoor-Vazirani, Priya; Powell, Doris R.; Chi, Jen-Tsan; Bigner, Darell D.; Vertino, Paula M.; Yan, Hai

    2012-01-01

    Monoallelic point mutations of the NADP+-dependent isocitrate dehydrogenases IDH1 and IDH2 occur frequently in gliomas, acute myeloid leukemias, and chondromas, and display robust association with specific DNA hypermethylation signatures. Here we show that heterozygous expression of the IDH1R132H allele is sufficient to induce the genome-wide alterations in DNA methylation characteristic of these tumors. Using a gene-targeting approach, we knocked-in a single copy of the most frequently observed IDH1 mutation, R132H, into a human cancer cell line and profiled changes in DNA methylation at over 27,000 CpG dinucleotides relative to wild-type parental cells. We find that IDH1R132H/WT mutation induces widespread alterations in DNA methylation, including hypermethylation of 2010 and hypomethylation of 842 CpG loci. We demonstrate that many of these alterations are consistent with those observed in IDH1-mutant and G-CIMP+ primary gliomas and can segregate IDH wild-type and mutated tumors as well as those exhibiting the G-CIMP phenotype in unsupervised analysis of two primary glioma cohorts. Further, we show that the direction of IDH1R132H/WT-mediated DNA methylation change is largely dependent upon preexisting DNA methylation levels, resulting in depletion of moderately methylated loci. Additionally, whereas the levels of multiple histone H3 and H4 methylation modifications were globally increased, consistent with broad inhibition of histone demethylation, hypermethylation at H3K9 in particular accompanied locus-specific DNA hypermethylation at several genes down-regulated in IDH1R132H/WT knock-in cells. These data provide insight on epigenetic alterations induced by IDH1 mutations and support a causal role for IDH1R132H/WT mutants in driving epigenetic instability in human cancer cells. PMID:22899282

  11. Truncating mutation in the autophagy gene UVRAG confers oncogenic properties and chemosensitivity in colorectal cancers

    PubMed Central

    He, Shanshan; Zhao, Zhen; Yang, Yongfei; O'Connell, Douglas; Zhang, Xiaowei; Oh, Soohwan; Ma, Binyun; Lee, Joo-Hyung; Zhang, Tian; Varghese, Bino; Yip, Janae; Dolatshahi Pirooz, Sara; Li, Ming; Zhang, Yong; Li, Guo-Min; Ellen Martin, Sue; Machida, Keigo; Liang, Chengyu

    2015-01-01

    Autophagy-related factors are implicated in metabolic adaptation and cancer metastasis. However, the role of autophagy factors in cancer progression and their effect in treatment response remain largely elusive. Recent studies have shown that UVRAG, a key autophagic tumour suppressor, is mutated in common human cancers. Here we demonstrate that the cancer-related UVRAG frameshift (FS), which does not result in a null mutation, is expressed as a truncated UVRAGFS in colorectal cancer (CRC) with microsatellite instability (MSI), and promotes tumorigenesis. UVRAGFS abrogates the normal functions of UVRAG, including autophagy, in a dominant-negative manner. Furthermore, expression of UVRAGFS can trigger CRC metastatic spread through Rac1 activation and epithelial-to-mesenchymal transition, independently of autophagy. Interestingly, UVRAGFS expression renders cells more sensitive to standard chemotherapy regimen due to a DNA repair defect. These results identify UVRAG as a new MSI target gene and provide a mechanism for UVRAG participation in CRC pathogenesis and treatment response. PMID:26234763

  12. Heterozygous Loss-of-Function Mutations in YAP1 Cause Both Isolated and Syndromic Optic Fissure Closure Defects

    PubMed Central

    Williamson, Kathleen A.; Rainger, Joe; Floyd, James A.B.; Ansari, Morad; Meynert, Alison; Aldridge, Kishan V.; Rainger, Jacqueline K.; Anderson, Carl A.; Moore, Anthony T.; Hurles, Matthew E.; Clarke, Angus; van Heyningen, Veronica; Verloes, Alain; Taylor, Martin S.; Wilkie, Andrew O.M.; FitzPatrick, David R.

    2014-01-01

    Exome sequence analysis of affected individuals from two families with autosomal-dominant inheritance of coloboma identified two different cosegregating heterozygous nonsense mutations (c.370C>T [p.Arg124∗] and c. 1066G>T [p.Glu356∗]) in YAP1. The phenotypes of the affected families differed in that one included no extraocular features and the other manifested with highly variable multisystem involvement, including hearing loss, intellectual disability, hematuria, and orofacial clefting. A combined LOD score of 4.2 was obtained for the association between YAP1 loss-of-function mutations and the phenotype in these families. YAP1 encodes an effector of the HIPPO-pathway-induced growth response, and whole-mount in situ hybridization in mouse embryos has shown that Yap1 is strongly expressed in the eye, brain, and fusing facial processes. RT-PCR showed that an alternative transcription start site (TSS) in intron 1 of YAP1 and Yap1 is widely used in human and mouse development, respectively. Transcripts from the alternative TSS are predicted to initiate at codon Met179 relative to the canonical transcript (RefSeq NM_001130145). In these alternative transcripts, the c.370C>T mutation in family 1305 is within the 5′ UTR and cannot result in nonsense-mediated decay (NMD). The c. 1066G>T mutation in family 132 should result in NMD in transcripts from either TSS. Amelioration of the phenotype by the alternative transcripts provides a plausible explanation for the phenotypic differences between the families. PMID:24462371

  13. A truncating mutation in Alzheimer's disease inactivates neuroligin-1 synaptic function.

    PubMed

    Tristán-Clavijo, Enriqueta; Camacho-Garcia, Rafael J; Robles-Lanuza, Estefanía; Ruiz, Agustín; van der Zee, Julie; Van Broeckhoven, Christine; Hernandez, Isabel; Martinez-Mir, Amalia; Scholl, Francisco G

    2015-12-01

    Neuroligins (NLs) are cell-adhesion proteins that regulate synapse formation and function. Neuroligin 1 (NL1) promotes the formation of glutamatergic synapses and mediates long-term potentiation in mouse models. Thus, altered NL1 function could mediate the synaptic and memory deficits associated with Alzheimer's disease (AD). Here, we describe a frameshift mutation, c.875_876insTT, in the neuroligin 1 gene (NLGN1) in a patient with AD and familial history of AD. The insertion generates a premature stop codon in the extracellular domain of NL1 (p.Thr271fs). Expression of mutant NL1 shows accumulation of truncated NL1 proteins in the endoplasmic reticulum. In hippocampal neurons, the p.Thr271fs mutation abolishes the ability of NL1 to promote the formation of glutamatergic synapses. Our data support a role for inactivating mutations in NLGN1 in AD. Previous studies have reported rare mutations in X-linked NLGNL3 and NLGNL4 genes in patients with autism, which result in the inactivation of the mutant alleles. Therefore, together with a role in neurodevelopmental disorders, altered NL function could underlie the molecular mechanisms associated with brain diseases in the elderly. PMID:26440732

  14. Defective lymphoid organogenesis underlies the immune deficiency caused by a heterozygous S32I mutation in IκBα

    PubMed Central

    Mooster, Jana L.; Le Bras, Severine; Massaad, Michel J.; Jabara, Haifa; Yoon, Juhan; Galand, Claire; Heesters, Balthasar A.; Burton, Oliver T.; Mattoo, Hamid; Manis, John

    2015-01-01

    Patients with ectodermal dysplasia with immunodeficiency (ED-ID) caused by mutations in the inhibitor of NF-κB α (IκBα) are susceptible to severe recurrent infections, despite normal T and B cell numbers and intact in vitro lymphocyte function. Moreover, the outcome of hematopoietic stem cell transplantation (HSCT) in these patients is poor despite good engraftment. Mice heterozygous for the IκBα S32I mutation found in patients exhibited typical features of ED-ID. Strikingly, the mice lacked lymph nodes, Peyer’s patches, splenic marginal zones, and follicular dendritic cells and failed to develop contact hypersensitivity (CHS) or form germinal centers (GCs), all features not previously recognized in patients and typical of defective noncanonical NF-κB signaling. Lymphotoxin β receptor (LTβR)–driven induction of chemokines and adhesion molecules mediated by both canonical and noncanonical NF-κB pathways was impaired, and levels of p100 were markedly diminished in the mutant. IκBα mutant→Rag2−/−, but not WT→IκBα mutant, bone marrow chimeras formed proper lymphoid organs and developed CHS and GCs. Defective architectural cell function explains the immunodeficiency and poor outcome of HSCT in patients with IκBα deficiency and suggests that correction of this niche is critical for reconstituting their immune function. PMID:25601653

  15. Heterozygous Mutations in MAP3K7, Encoding TGF-β-Activated Kinase 1, Cause Cardiospondylocarpofacial Syndrome.

    PubMed

    Le Goff, Carine; Rogers, Curtis; Le Goff, Wilfried; Pinto, Graziella; Bonnet, Damien; Chrabieh, Maya; Alibeu, Olivier; Nistchke, Patrick; Munnich, Arnold; Picard, Capucine; Cormier-Daire, Valérie

    2016-08-01

    Cardiospondylocarpofacial (CSCF) syndrome is characterized by growth retardation, dysmorphic facial features, brachydactyly with carpal-tarsal fusion and extensive posterior cervical vertebral synostosis, cardiac septal defects with valve dysplasia, and deafness with inner ear malformations. Whole-exome sequencing identified heterozygous MAP3K7 mutations in six distinct CSCF-affected individuals from four families and ranging in age from 5 to 37 years. MAP3K7 encodes transforming growth factor β (TGF-β)-activated kinase 1 (TAK1), which is involved in the mitogen-activated protein kinase (MAPK)-p38 signaling pathway. MAPK-p38 signaling was markedly altered when expression of non-canonical TGF-β-driven target genes was impaired. These findings support the loss of transcriptional control of the TGF-β-MAPK-p38 pathway in fibroblasts obtained from affected individuals. Surprisingly, although TAK1 is located at the crossroad of inflammation, immunity, and cancer, this study reports MAP3K7 mutations in a developmental disorder affecting mainly cartilage, bone, and heart. PMID:27426734

  16. A new compound heterozygous frameshift mutation in the type II 3{beta}-hydroxysteroid dehydrogenase 3{beta}-HSD gene causes salt-wasting 3{beta}-HSD deficiency congenital adrenal hyperplasia

    SciTech Connect

    Zhang, L.; Sakkal-Alkaddour, S.; Chang, Ying T.; Yang, Xiaojiang; Songya Pang

    1996-01-01

    We report a new compound heterozygous frameshift mutation in the type II 3{Beta}-hydroxysteroid dehydrogenase (3{beta}-HSD) gene in a Pakistanian female child with the salt-wasting form of 3{Beta}-HSD deficiency congenital adrenal hyperplasia. The etiology for her congenital adrenal hyperplasia was not defined. Although the family history suggested possible 3{beta}-HSd deficiency disorder, suppressed adrenal function caused by excess glucocorticoid therapy in this child at 7 yr of age did not allow hormonal diagnosis. To confirm 3{beta}-HSD deficiency, we sequenced the type II 3{beta}-HSD gene in the patient, her family, and the parents of her deceased paternal cousins. The type II 3{beta}-HSD gene region of a putative promotor, exons I, II, III, and IV, and exon-intron boundaries were amplified by PCR and sequenced in all subjects. The DNA sequence of the child revealed a single nucleotide deletion at codon 318 [ACA(Thr){r_arrow}AA] in exon IV in one allele, and two nucleotide deletions at codon 273 [AAA(Lys){r_arrow}A] in exon IV in the other allele. The remaining gene sequences were normal. The codon 318 mutation was found in one allele from the father, brother, and parents of the deceased paternal cousins. The codon 273 mutation was found in one allele of the mother and a sister. These findings confirmed inherited 3{beta}-HSD deficiency in the child caused by the compound heterozygous type II 3{beta}-HSD gene mutation. Both codons at codons 279 and 367, respectively, are predicted to result in an altered and truncated type II 3{beta}-HSD protein, thereby causing salt-wasting 3{beta}-HSD deficiency in the patient. 21 refs., 2 figs., 1 tab.

  17. A heterozygous mutation disrupting the SPAG16 gene results in biochemical instability of central apparatus components of the human sperm axoneme.

    PubMed

    Zhang, Zhibing; Zariwala, Maimoona A; Mahadevan, Maha M; Caballero-Campo, Pedro; Shen, Xuening; Escudier, Estelle; Duriez, Bénédicte; Bridoux, Anne-Marie; Leigh, Margaret; Gerton, George L; Kennedy, Marcus; Amselem, Serge; Knowles, Michael R; Strauss, Jerome F

    2007-11-01

    The SPAG16 gene encodes two major transcripts, one for the 71-kDa SPAG16L, which is the orthologue of the Chlamydomonas rheinhardtii central apparatus protein PF20, and a smaller transcript, which codes for the 35-kDa SPAG16S nuclear protein that represents the C-terminus (exons 11-16) of SPAG16L. We have previously reported that a targeted mutation in exon 11 of the Spag16 gene impairs spermatogenesis and prevents transmission of the mutant allele in chimeric mice. In the present report, we describe a heterozygous mutation in exon 13 of the SPAG16 gene, which causes a frame shift and premature stop codon, affording the opportunity to compare mutations with similar impacts on SPAG16L and SPAG16S for male reproductive function in mice and men. We studied two male heterozygotes for the SPAG16 mutation, both of which were fertile. Freezing-boiling of isolated sperm from both affected males resulted in the loss of the SPAG16L protein, SPAG6, another central apparatus protein that interacts with SPAG16L, and the 28-kDa fragment of SPAG17, which associates with SPAG6. These proteins were also lost after freezing-boiling cycles of sperm extracts from mice that were heterozygous for an inactivating mutation (exons 2 and 3) in Spag16. Our findings suggest that a heterozygous mutation that affects both SPAG16L and SPAG16S does not cause male infertility in man, but is associated with reduced stability of the interacting proteins of the central apparatus in response to a thermal challenge, a phenotype shared by the sperm of mice heterozygous for a mutation that affects SPAG16L. PMID:17699735

  18. Gene Expression Patterns of Hemizygous and Heterozygous KIT Mutations Suggest Distinct Oncogenic Pathways: A Study in NIH3T3 Cell Lines and GIST Samples

    PubMed Central

    Dessaux, Sophie; Besse, Anthony; Brahimi-Adouane, Sabrina; Emile, Jean-François; Blay, Jean-Yves; Alberti, Laurent

    2013-01-01

    Objective Most gain of function mutations of tyrosine kinase receptors in human tumours are hemizygous. Gastrointestinal stromal tumours (GIST) with homozygous mutations have a worse prognosis. We aimed to identify genes differentially regulated by hemizygous and heterozygous KIT mutations. Materials and Methods Expression of 94 genes and 384 miRNA was analysed with low density arrays in five NIH3T3 cell lines expressing the full-length human KIT cDNA wild-type (WT), hemizygous KIT mutation with del557-558 (D6) or del564-581 (D54) and heterozygous WT/D6 or WT/D54. Expression of 5 of these genes and 384 miRNA was then analysed in GISTs samples. Results Unsupervised and supervised hierarchical clustering of the mRNA and miRNA profiles showed that heterozygous mutants clustered with KIT WT expressing cells while hemizygous mutants were distinct. Among hemizygous cells, D6 and D54 expressing cells clustered separately. Most deregulated genes have been reported as potentially implicated in cancer and severals, as ANXA8 and FBN1, are highlighted by both, mRNA and miRNA analyses. MiRNA and mRNA analyses in GISTs samples confirmed that their expressions varied according to the mutation of the alleles. Interestingly, RGS16, a membrane protein of the regulator of G protein family, correlate with the subcellular localization of KIT mutants and might be responsible for regulation of the PI3K/AKT signalling pathway. Conclusion Patterns of mRNA and miRNA expression in cells and tumours depend on heterozygous/hemizygous status of KIT mutations, and deletion/presence of TYR568 & TYR570 residues. Thus each mutation of KIT may drive specific oncogenic pathways. PMID:23593401

  19. Myocardial infarction in a newborn heterozygous for the MTHFR C677T mutation.

    PubMed

    Clark, Amy B; Stokes, Theophil A; Krous, Henry F; Carbine, Douglas N

    2012-01-01

    Neonatal myocardial infarction secondary to congenital heart disease, anomalous coronary artery anatomy, thromboembolism, coagulopathy, birth asphyxia, and unknown causes has been previously reported. We now report an infant who suffered a massive myocardial infarction during birth, requiring extensive resuscitation and aggressive management. A thrombus, the origin of which was not detected on autopsy, was found occluding the proximal left coronary artery several hours after birth. Genetic studies revealed a single copy variant of the MTHFR C677T mutation that we speculate may have predisposed the infant to coronary thrombosis. PMID:22339112

  20. Chromosomal breakage in human spermatozoa, a heterozygous effect of the bloom syndrome mutation

    SciTech Connect

    Martin, R.H.; Rademaker, A.; German, J.

    1994-12-01

    The chromosome complements of 662 spermatozoa produced by the three fathers of individuals with Bloom syndrome (BS) were analyzed to determine whether the BS mutation could affect chromosome segregation and the frequency of aneuploidy in sperm. The frequency of numerical abnormalities was not significantly different from that in normal controls studied in our laboratory, but the frequencies of structural abnormalities were significantly increased in two of the men, 14.3% and 15.9%, versus 8.6% in controls. More striking was the increase in these two men of cells with multiple structural abnormalities: 8.1% and 6.7% with multiple abnormalities, versus 2.3% in controls.

  1. De novo, heterozygous, loss‐of‐function mutations in SYNGAP1 cause a syndromic form of intellectual disability

    PubMed Central

    Fryer, Alan E.; Shears, Deborah J.; Lachlan, Katherine L.; McKee, Shane A.; Magee, Alex C.; Mohammed, Shehla; Vasudevan, Pradeep C.; Park, Soo‐Mi; Benoit, Valérie; Lederer, Damien; Maystadt, Isabelle; study, DDD; FitzPatrick, David R.

    2015-01-01

    De novo mutations (DNM) in SYNGAP1, encoding Ras/Rap GTPase‐activating protein SynGAP, have been reported in individuals with nonsyndromic intellectual disability (ID). We identified 10 previously unreported individuals with SYNGAP1 DNM; seven via the Deciphering Developmental Disorders (DDD) Study, one through clinical analysis for copy number variation and the remaining two (monozygotic twins) via a research multi‐gene panel analysis. Seven of the nine heterozygous mutations are likely to result in loss‐of‐function (3 nonsense; 3 frameshift; 1 whole gene deletion). The remaining two mutations, one of which affected the monozygotic twins, were missense variants. Each individual carrying a DNM in SYNGAP1 had moderate‐to‐severe ID and 7/10 had epilepsy; typically myoclonic seizures, absences or drop attacks. 8/10 had hypotonia, 5/10 had significant constipation, 7/10 had wide‐based/unsteady gait, 3/10 had strabismus, and 2/10 had significant hip dysplasia. A proportion of the affected individuals had a similar, myopathic facial appearance, with broad nasal bridge, relatively long nose and full lower lip vermilion. A distinctive behavioral phenotype was also observed with aggressive/challenging behavior and significant sleep problems being common. 7/10 individuals had MR imaging of the brain each of which was reported as normal. The clinical features of the individuals reported here show significant overlap with those associated with 6p21.3 microdeletions, confirming that haploinsufficiency for SYNGAP1 is responsible for both disorders. © 2015 The Authors. American Journal of Medical Genetics Part A Published by Wiley Periodicals, Inc. PMID:26079862

  2. Novel compound heterozygous mutations in inositol polyphosphate phosphatase-like 1 in a family with severe opsismodysplasia.

    PubMed

    Feist, Cori; Holden, Paul; Fitzgerald, Jamie

    2016-10-01

    This study aimed to identify the genetic basis of a severe skeletal lethal dysplasia. The main clinical features of two affected fetuses included short limbs with flared metaphyses, bowed radii, femora and tibiae, irregular ossification of hands and feet, and marked platyspondyly. Affected and nonaffected family members were subjected to whole-exome sequencing, followed by immunoblot analysis on amniocytes isolated from one of the affected individuals. Unique compound heterozygous variants in the inositol polyphosphate phosphatase-like 1 (INPPL1) gene encoding the SHIP2 protein were identified in both affected individuals. One variant was inherited from each unaffected parent. Both allelic variants, c.(2327-1G>C);(1150_1151delGA), are predicted to result in premature stop codons leading to nonsense-mediated mRNA decay of the mutant alleles and no production of SHIP2. The absence of SHIP2 was confirmed by immunoblot analysis of proband amniocytes. This skeletal disorder is caused by the complete absence of the SHIP2 protein. INPPL1 mutations have been reported in opsismodysplasia, an autosomal recessive skeletal dysplasias with significant delayed bone formation. Our finding highlights the critical role that INPPL1/SHIP2 plays in skeletal development. PMID:27233067

  3. Apoptotic Activity of MeCP2 Is Enhanced by C-Terminal Truncating Mutations

    PubMed Central

    Mehler, Vera J.; Mueller, Christina; Vonhoff, Fernando; White, Robin; Duch, Carsten

    2016-01-01

    Methyl-CpG binding protein 2 (MeCP2) is a widely abundant, multifunctional protein most highly expressed in post-mitotic neurons. Mutations causing Rett syndrome and related neurodevelopmental disorders have been identified along the entire MECP2 locus, but symptoms vary depending on mutation type and location. C-terminal mutations are prevalent, but little is known about the function of the MeCP2 C-terminus. We employ the genetic efficiency of Drosophila to provide evidence that expression of p.Arg294* (more commonly identified as R294X), a human MECP2 E2 mutant allele causing truncation of the C-terminal domains, promotes apoptosis of identified neurons in vivo. We confirm this novel finding in HEK293T cells and then use Drosophila to map the region critical for neuronal apoptosis to a small sequence at the end of the C-terminal domain. In vitro studies in mammalian systems previously indicated a role of the MeCP2 E2 isoform in apoptosis, which is facilitated by phosphorylation at serine 80 (S80) and decreased by interactions with the forkhead protein FoxG1. We confirm the roles of S80 phosphorylation and forkhead domain transcription factors in affecting MeCP2-induced apoptosis in Drosophila in vivo, thus indicating mechanistic conservation between flies and mammalian cells. Our findings are consistent with a model in which C- and N-terminal interactions are required for healthy function of MeCP2. PMID:27442528

  4. Apoptotic Activity of MeCP2 Is Enhanced by C-Terminal Truncating Mutations.

    PubMed

    Williams, Alison A; Mehler, Vera J; Mueller, Christina; Vonhoff, Fernando; White, Robin; Duch, Carsten

    2016-01-01

    Methyl-CpG binding protein 2 (MeCP2) is a widely abundant, multifunctional protein most highly expressed in post-mitotic neurons. Mutations causing Rett syndrome and related neurodevelopmental disorders have been identified along the entire MECP2 locus, but symptoms vary depending on mutation type and location. C-terminal mutations are prevalent, but little is known about the function of the MeCP2 C-terminus. We employ the genetic efficiency of Drosophila to provide evidence that expression of p.Arg294* (more commonly identified as R294X), a human MECP2 E2 mutant allele causing truncation of the C-terminal domains, promotes apoptosis of identified neurons in vivo. We confirm this novel finding in HEK293T cells and then use Drosophila to map the region critical for neuronal apoptosis to a small sequence at the end of the C-terminal domain. In vitro studies in mammalian systems previously indicated a role of the MeCP2 E2 isoform in apoptosis, which is facilitated by phosphorylation at serine 80 (S80) and decreased by interactions with the forkhead protein FoxG1. We confirm the roles of S80 phosphorylation and forkhead domain transcription factors in affecting MeCP2-induced apoptosis in Drosophila in vivo, thus indicating mechanistic conservation between flies and mammalian cells. Our findings are consistent with a model in which C- and N-terminal interactions are required for healthy function of MeCP2. PMID:27442528

  5. Compound heterozygous β+ β0 mutation of HBB gene leading to β-thalassemia major in a Gujarati family — A case study

    PubMed Central

    Chaudhary, Spandan; Dhawan, Dipali; Bagali, Prashanth G.; S.Chaudhary, Pooja; Chaudhary, Abhinav; Singh, Sanjay; Vudathala, Srinivas

    2016-01-01

    β-Thalassemia is a genetic disease characterized by reduced or non-functionality of β-globin gene expression, which is caused due to a number of variations and indels (insertions and deletions). In this case study, we have reported a rare occurrence of compound heterozygosity of two different variants, namely, HBBc.92G > C and HBBc.92 + 5G > C in maternal amniotic fluid sample. Prenatal β-thalassemia mutation detection in fetal DNA was carried out using nucleotide sequencing method. After analysis, the father was found to be heterozygous for HBBc.92G > C (Codon 30 (G > C)) mutation which is β0 type and the mother was heterozygous for HBBc.92 + 5G > C (IVS I-5 (G > C)) mutation which is β+ type. When amniotic fluid sample was analyzed for β-globin gene (HBB), we found the occurrence of heterozygous allelic pattern for aforesaid mutations. This compound heterozygous state of fetus sample was considered as β+/β0 category of β thalassemia which was clinically and genotypically interpreted as β-thalassemia major. Regular blood transfusions are required for the survival of thalassemia major patients hence prenatal diagnosis is imperative for timely patient management. Prenatal diagnosis helps the parents to know the thalassemic status of the fetus and enables an early decision on the pregnancy. In the present study, we have identified compound heterozygosity for β-thalassemia in the fetus which portrays the importance of prenatal screening. PMID:27134826

  6. Compound heterozygous β(+) β(0) mutation of HBB gene leading to β-thalassemia major in a Gujarati family - A case study.

    PubMed

    Chaudhary, Spandan; Dhawan, Dipali; Bagali, Prashanth G; S Chaudhary, Pooja; Chaudhary, Abhinav; Singh, Sanjay; Vudathala, Srinivas

    2016-06-01

    β-Thalassemia is a genetic disease characterized by reduced or non-functionality of β-globin gene expression, which is caused due to a number of variations and indels (insertions and deletions). In this case study, we have reported a rare occurrence of compound heterozygosity of two different variants, namely, HBBc.92G > C and HBBc.92 + 5G > C in maternal amniotic fluid sample. Prenatal β-thalassemia mutation detection in fetal DNA was carried out using nucleotide sequencing method. After analysis, the father was found to be heterozygous for HBBc.92G > C (Codon 30 (G > C)) mutation which is β(0) type and the mother was heterozygous for HBBc.92 + 5G > C (IVS I-5 (G > C)) mutation which is β(+) type. When amniotic fluid sample was analyzed for β-globin gene (HBB), we found the occurrence of heterozygous allelic pattern for aforesaid mutations. This compound heterozygous state of fetus sample was considered as β(+)/β(0) category of β thalassemia which was clinically and genotypically interpreted as β-thalassemia major. Regular blood transfusions are required for the survival of thalassemia major patients hence prenatal diagnosis is imperative for timely patient management. Prenatal diagnosis helps the parents to know the thalassemic status of the fetus and enables an early decision on the pregnancy. In the present study, we have identified compound heterozygosity for β-thalassemia in the fetus which portrays the importance of prenatal screening. PMID:27134826

  7. Gonadal dysgenesis without adrenal insufficiency in a 46, XY patient heterozygous for the nonsense C16X mutation: a case of SF1 haploinsufficiency.

    PubMed

    Mallet, Delphine; Bretones, Patricia; Michel-Calemard, Laurence; Dijoud, Frederique; David, Michel; Morel, Yves

    2004-10-01

    Targeted disruption of the orphan nuclear receptor SF1 results in the absence of adrenals and gonads, establishing that this transcription factor is implicated in gonadal determination and adrenal development. Four human SF1 gene mutations have been described to date: three (G35E, R92Q, R255L) were responsible for adrenal insufficiency associated with a gonadal dysgenesis in two 46, XY individuals, one (8 bp deletion in exon 6) resulted in gonadal dysgenesis without adrenal insufficiency. We identified a new heterozygous SF1 gene mutation, C16X, in a 46, XY patient showing gonadal dysgenesis with normal adrenal function: low basal levels of AMH and testosterone (T), weak T response to hCG, hypoplastic testes with abundant seminiferous tubules but rare germ cells. This mutation causes premature termination of translation and should abolish all SF1 activity. Therefore haploinsufficiency could explain the deleterious effect of this mutation in our patient suggesting that testis development is more SF1 dose-dependent than adrenal development. Although the same mechanism explains the deleterious effects of SF1 missense mutations, recent studies have demonstrated an additional dominant negative effect. These data suggest that heterozygous mutation impaired adrenal development only if the two mechanisms, gene dosage and dominant negative effects occur. PMID:15472171

  8. Distinct but milder phenotypes with choreiform movements in siblings with compound heterozygous mutations in the transcription preinitiation mediator complex subunit 17 (MED17).

    PubMed

    Hirabayashi, Shinichi; Saitsu, Hirotomo; Matsumoto, Naomichi

    2016-01-01

    Two siblings born to non-consanguineous parents showed nystagmus and sudden opistotonic posturing from the early infancy, and subsequent developmental delay and marked choreiform movements with hypotonia in the childhood. The brother had a mild postnatal microcephaly. Brain MRI of the sister showed mild delay of myelination, dilated anterior horn and mild cerebellar atrophy. Whole exome sequencing (WES) revealed compound heterozygous mutations in MED17 gene in both siblings: c.1013-5A>G and c.1484T>G mutations transmitted from their father and mother, respectively. The c.1013-5A>G mutation caused insertion of 4 bases of intron 6 in the transcript, resulting in frameshift (p. Ser338Asnfs*15), and mutant transcript underwent nonsense-mediated mRNA decay in lymphoblastoid cells derived from two siblings. The c.1484T>G mutation substituted a leucine residue, which is highly conserved among the vertebrates, and was predicted to be damaging by in silico analysis programs. Both mutations were not registered in dbSNP data and in our 575 control exomes. These results suggest that the siblings' mutations are likely to be pathogenic. This is the second case report concerning MED17 mutations. Compared with the first reported cases of Caucasian Jewish origin, the clinical symptoms and courses are much milder and slower, respectively, in our cases. Genotype difference (a homozygous mutation versus compound heterozygous mutations) might explain these clinical differences between two cases, though early-onset nystagmus and later choreiform movements were unique in our cases. Clinical spectrum and phenotype-genotype correlations in this rare mutation should be further elucidated. PMID:26004231

  9. Two novel compound heterozygous mutations in OPA3 in two siblings with OPA3-related 3-methylglutaconic aciduria

    PubMed Central

    Lam, Christina; Gallo, Linda K.; Dineen, Richard; Ciccone, Carla; Dorward, Heidi; Hoganson, George E.; Wolfe, Lynne; Gahl, William A.; Huizing, Marjan

    2014-01-01

    OPA3-related 3-methylglutaconic aciduria, or Costeff Optic Atrophy syndrome, is a neuro-ophthalmologic syndrome of early-onset bilateral optic atrophy and later-onset spasticity, and extrapyramidal dysfunction. Urinary excretion of 3-methylglutaconic acid and of 3-methylglutaric acid is markedly increased. OPA3-related 3-methylglutaconic aciduria is due to mutations in the OPA3 gene located at 19q13.2-13.3. Here we describe two siblings with novel compound heterozygous variants in OPA3: c.1A>G (p.1M>V) in the translation initiation codon in exon 1 and a second variant, c.142+5G>C in intron 1. On cDNA sequencing the c.1A>G appeared homozygous, indicating that the allele without the c.1A>G variant is degraded. This is likely due to an intronic variant; possibly the IVS1+5 splice site variant. The older female sibling initially presented with motor developmental delay and vertical nystagmus during her first year of life and was diagnosed subsequently with optic atrophy. Her brother presented with mildly increased hip muscle tone followed by vertical nystagmus within the first 6 months of life, and was found to have elevated urinary excretion of 3-methylglutaconic acid and 3-methylglutaric acid, and optic atrophy by 1.5 years of age. Currently, ages 16 and 7, both children exhibit ataxic gaits and dysarthric speech. Immunofluorescence studies on patient’s cells showed fragmented mitochondrial morphology. Thus, though the exact function of OPA3 remains unknown, our experimental results and clinical summary provide evidence for the pathogenicity of the identified OPA3 variants and provide further evidence for a mitochondrial pathology in this disease. PMID:24749080

  10. A novel heterozygous point mutation in the p63 gene in a patient with ectodermal dysplasia associated with B-cell leukemia.

    PubMed

    Cabanillas, Miguel; Torrelo, Antonio; Monteagudo, Benigno; Suárez-Amor, Oscar; Ramírez-Santos, Aquilina; González-Vilas, Daniel; de las Heras, Cristina

    2011-01-01

    We report a 7-year-old boy with a past medical history of B-cell leukemia with dysmorphic features, including cleft palate, hypotrichosis with trichorrhexis nodosa, hypohidrosis, oligodontia, and ridging of nails. A heterozygous germline mutation, Ala111Thr, in the p63 gene was detected in the boy and in his mother, who had no clinical expression. This case emphasizes the spectrum of different phenotypical manifestations of mutations in the p63 gene and underlines the possible role of this gene as a tumor suppressor. PMID:21906144

  11. A novel compound heterozygous ROMK mutation presenting as late onset Bartter syndrome associated with nephrocalcinosis and elevated 1,25(OH)(2) vitamin D levels.

    PubMed

    Sharma, Amita; Linshaw, Micheal A

    2011-08-01

    Bartter syndrome (BS) is a rare renal tubular disorder presenting with hypokalemic metabolic alkalosis, which is classified into five types. KCNJ1 mutations usually cause the neonatal form of BS, type II BS (OMIM 241200). However, this report concerns a female patient with a novel, compound heterozygous KCNJ1 mutation that causes late-onset BS. The unique clinical findings of this case include persistently elevated 1,25(OH)(2) vitamin D levels, possibly due to increase prostaglandin E(2) levels, and medullary nephrocalcinosis. Treatment with COX-2 inhibitors resolved her hypercalciuria and improved her height and weight; renal function remains stable and there is no progression of nephrocalcinosis. PMID:21431899

  12. Analysis of p.V37I compound heterozygous mutations in the GJB2 gene in Chinese infants and young children.

    PubMed

    Du, Yating; Huang, Lihui; Cheng, Xiaohua; Zhao, Liping; Ruan, Yu; Ni, Tingting

    2016-07-19

    The p.V37I (c.109G>A) mutation in the GJB2 gene is the common frequent cause of congenital deafness; however, its pathogenicity is debated. The present study investigated the prevalence of p.V37I in Chinese infants and young children and associated clinical characteristics. The subjects of the present study were screened for mutations in GJB2 (235delC, 299delAT, 176dell6, 35delG), SLC26A4 (IVS7-2A>G, 2168A>G), GJB3 (538C>T), and in the mitochondrial 12S rRNA gene (1555A>G, 1494C>T). Subjects with p.V37I underwent an audiological evaluation. GJB2 exon sequencing revealed that 20 subjects had p.V37I compound heterozygous mutations, one of whom had a family history; the mutations included c.235delC/p.V37I (n = 12), c.299AT/p.V37I (n = 7), and c.176del16/p.V37I (n = 1). Of the 20 subjects, 12 were referred for Universal Newborn Hearing Screening (UNHS). Nine of the 20 subjects had mild hearing loss in the better ear and 5 had moderate hearing loss in the better ear while 4 had normal hearing. Among subjects with the c.235delC/p.V37I mutation, 5 had mild hearing loss and 2 had moderate hearing loss while 3 had normal hearing. Among subjects with the c.299AT/p.V37I mutation, 3 had mld hearing loss and 3 had moderate hearing loss while 1 had normal hearing. One subject with the c.176del16/p.V37I mutation had mild hearing loss. Few studies have reported on the clinical characteristics of Chinese infants with p.V37I compound heterozygous mutations identified via screening for deafness genes and GJB2 sequencing. The c.235delC/p.V37I mutation was the most prevalent mutation found in subjects. The degree of hearing loss associated with p.V37I compound heterozygous mutations was mainly mild to moderate. PMID:27350192

  13. Nonsyndromic hearing loss DFNA10 and a novel mutation of EYA4: evidence for correlation of normal cardiac phenotype with truncating mutations of the Eya domain.

    PubMed

    Makishima, Tomoko; Madeo, Anne C; Brewer, Carmen C; Zalewski, Christopher K; Butman, John A; Sachdev, Vandana; Arai, Andrew E; Holbrook, Brenda M; Rosing, Douglas R; Griffith, Andrew J

    2007-07-15

    Dominant, truncating mutations of eyes absent 4 (EYA4) on chromosome 6q23 can cause either nonsyndromic hearing loss DFNA10 or hearing loss with dilated cardiomyopathy (DCM). It has been proposed that truncations of the C-terminal Eya domain cause DFNA10 whereas upstream truncations of the N-terminal variable region cause hearing loss with DCM. Here we report an extended family co-segregating autosomal dominant, postlingual-onset, progressive, sensorineural hearing loss (SNHL) with a novel frameshift mutation, 1,490insAA, of EYA4. The 1,490insAA allele is predicted to encode a truncated protein with an intact N-terminal variable region, but lacking the entire C-terminal Eya domain. Clinical studies including electrocardiography, echocardiography, and magnetic resonance imaging (MRI) of the heart in nine affected family members revealed no DCM or associated abnormalities and confirmed their nonsyndromic phenotype. These are the first definitive cardiac evaluations of DFNA10 hearing loss to support a correlation of EYA4 mutation position with the presence or absence of DCM. These results will facilitate the counseling of patients with these phenotypes and EYA4 mutations. PMID:17567890

  14. X-ray-induced specific-locus mutations in the ad-3 region of two-component heterokaryons of Neurospora crassa. X. Heterozygous effects of multilocus deletion mutations of genotype ad-3A or ad-3B.

    PubMed

    de Serres, F J; Overton, L K; Sadler, B M

    1992-05-01

    Previous studies on X-ray-induced irreparable adenine-3 mutations (designated [ad-3]IR), induced in heterokaryon 12 of Neurospora crassa, demonstrated that they were not recessive and exhibited heterozygous effects in terms of markedly reduced linear growth rates (de Serres, 1965). Complementation tests with a series of tester strains carrying multilocus deletion mutations in the ad-3 and immediately adjacent genetic regions demonstrated that X-ray-induced irreparable mutations map, in the main part, as a series of overlapping multilocus deletion mutations that extend both proximally and distally into the immediately adjacent genetic regions, as well as into the 'X' region (a region of unknown, but essential function) between ad-3A and ad-3B (de Serres, 1968, 1989). Further studies (de Serres and Miller, 1988) have shown that the heterozygous effects of multilocus deletion mutations in the ad-3 region can be modified genetically and biochemically. In the present paper, the heterozygous effects of X-ray-induced multilocus deletion mutations of genotype ad-3A or ad-3B, induced in heterokaryon 12 (Webber and de Serres, 1965; de Serres, 1988, 1989), have been determined. These data show that 57.7% (15/26) of X-ray-induced multilocus deletion mutations covering the ad-3A locus have heterozygous effects, in terms of reduced linear growth rates, in forced dikaryons with a gene/point mutant at the ad-3B locus and 80.0% (20/25) in forced dikaryons with a multilocus deletion mutation covering the ad-3B locus. In addition, 35.1% (20/57) of X-ray-induced multilocus deletion mutations covering the ad-3B locus have heterozygous effects in forced dikaryons with a gene/point mutant at the ad-3A locus, and 100.0% (35/35) in forced dikaryons with a multilocus deletion mutation covering the ad-3A locus. These results demonstrate that the dominant or recessive characteristics of X-ray-induced specific-locus mutations resulting from multilocus deletion mutations are allele specific

  15. Early-onset epileptic encephalopathy in a girl carrying a truncating mutation of the ARX gene: rethinking the ARX phenotype in females.

    PubMed

    Bettella, E; Di Rosa, G; Polli, R; Leonardi, E; Tortorella, G; Sartori, S; Murgia, A

    2013-07-01

    Severe early-onset epilepsy is due to a number of known causes, although a clear etiology is not identifiable in up to a third of all the cases. Pathogenic sequence variations in the ARX gene have been described almost exclusively in males, whereas heterozygous female relatives, such as mothers, sisters and even grandmothers have been largely reported as asymptomatic or mildly affected. To investigate the pathogenic role of ARX in refractory epilepsy of early onset even in females, we have screened the ARX sequence in a population of 50 female subjects affected with unexplained epileptic encephalopathy with onset in the first year of life. We report the identification of a novel truncating mutation of the coding region of the ARX gene in a girl with a structurally normal brain. Our findings confirm the role of ARX in the pathogenesis of early epilepsy and underline the importance of screening of the ARX gene in both male and female subjects with otherwise unexplained early onset epileptic encephalopathy. PMID:23039062

  16. Novel homozygous, heterozygous and hemizygous FRMD7 gene mutations segregated in the same consanguineous family with congenital X-linked nystagmus

    PubMed Central

    Radhakrishna, Uppala; Ratnamala, Uppala; Deutsch, Samuel; Bartoloni, Lucia; Kuracha, Murali R; Singh, Raminder; Banwait, Jasjit; Bastola, Dhundy K; Johar, Kaid; Nath, Swapan K; Antonarakis, Stylianos E

    2012-01-01

    Congenital nystagmus (NYS) is characterized by bilateral, spontaneous, and involuntary movements of the eyeballs that most commonly presents between 2 and 6 months of life. To date, 44 different FRMD7 gene mutations have been found to be etiological factors for the NYS1 locus at Xq26-q27. The aim of this study was to find the FRMD7 gene mutations in a large eleven-generation Indian pedigree with 71 members who are affected by NYS. Mutation analysis of the entire coding region and splice junctions of the FRMD7 gene revealed a novel missense mutation, c.A917G, predicts a substitution of Arg for Gln at codon 305 (Q305R) within exon 10 of FRMD7. The mutation was detected in hemizygous males, and in homozygous and heterozygous states in affected female members of the family. This mutation was not detected in unaffected members of the family or in 100 unrelated control subjects. This mutation was found to be at a highly conserved residue within the FERM-adjacent domain in affected members of the family. Structure prediction and energetic analysis of wild-type FRMD7 compared with mutant (Q305R) revealed that this change in amino acid led to a change in secondary structure predicted to be an energetically unstable protein. The present study represents the first confirmation of FRMD7 gene mutations in a multigenerational Indian family and expands the mutation spectrum for this locus. PMID:22490987

  17. Compound heterozygous DUOX2 gene mutations (c.2335-1G>C/c.3264_3267delCAGC) associated with congenital hypothyroidism. Characterization of complex cryptic splice sites by minigene analysis.

    PubMed

    Belforte, Fiorella S; Citterio, Cintia E; Testa, Graciela; Olcese, María Cecilia; Sobrero, Gabriela; Miras, Mirta B; Targovnik, Héctor M; Rivolta, Carina M

    2016-01-01

    Iodide Organification defects (IOD) represent 10% of cases of congenital hypothyroidism (CH) being the main genes affected that of TPO (thyroid peroxidase) and DUOX2 (dual oxidasa 2). From a patient with clinical and biochemical criteria suggestive with CH associated with IOD, TPO and DUOX2 genes were analyzed by means of PCR-Single Strand Conformation Polymorphism analysis and sequencing. A novel heterozygous compound to the mutations c.2335-1G>C (paternal mutation, intron 17) and c.3264_3267delCAGC (maternal mutation, exon 24) was identified in the DUOX2 gene. Ex-vivo splicing assays and subsequent RT-PCR and sequencing analyses were performed on mRNA isolated from the HeLa cells transfected with wild-type and mutant pSPL3 expression vectors. The wild-type and c.2335-1G>C mutant alleles result in the complete inclusion or exclusion of exon 18, or in the activation of an exonic cryptic 5' ss with the consequent deletion of 169 bp at the end of this exon. However, we observed only a band of the expected size in normal thyroid tissue by RT-PCR. Additionally, the c.2335-1G>C mutation activates an unusual cryptic donor splice site in intron 17, located at position -14 of the authentic intron 17/exon 18 junction site, with an insertion of the last 14 nucleotides of the intron 17 in mutant transcripts with complete and partial inclusion of exon 18. The theoretical consequences of splice site mutation, predicted with the bioinformatics NNSplice, Fsplice, SPL, SPLM and MaxEntScan programs were investigated and evaluated in relation with the experimental evidence. These analyses confirm that c.2335-1G>C mutant allele would result in the abolition of the authentic splice acceptor site. The results suggest the coexistence in our patient of four putative truncated proteins of 786, 805, 806 and 1105 amino acids, with conservation of peroxidase-like domain and loss of gp91(phox)/NOX2-like domain. In conclusion a novel heterozygous compound was identified being responsible of

  18. Identification of compound heterozygous KCNJ1 mutations (encoding ROMK) in a kindred with Bartter's syndrome and a functional analysis of their pathogenicity.

    PubMed

    Srivastava, Shalabh; Li, Dimin; Edwards, Noel; Hynes, Ann-M; Wood, Katrina; Al-Hamed, Mohamed; Wroe, Anna C; Reaich, David; Moochhala, Shabbir H; Welling, Paul A; Sayer, John A

    2013-11-01

    A multiplex family was identified with biochemical and clinical features suggestive of Bartter's syndrome (BS). The eldest sibling presented with developmental delay and rickets at 4 years of age with evidence of hypercalciuria and hypokalemia. The second sibling presented at 1 year of age with urinary tract infections, polyuria, and polydipsia. The third child was born after a premature delivery with a history of polyhydramnios and neonatal hypocalcemia. Following corrective treatment she also developed hypercalciuria and a hypokalemic metabolic alkalosis. There was evidence of secondary hyperreninemia and hyperaldosteronism in all three siblings consistent with BS. Known BS genes were screened and functional assays of ROMK (alias KCNJ1, Kir1.1) were carried out in Xenopus oocytes. We detected compound heterozygous missense changes in KCNJ1, encoding the potassium channel ROMK. The S219R/L220F mutation was segregated from father and mother, respectively. In silico modeling of the missense mutations suggested deleterious changes. Studies in Xenopus oocytes revealed that both S219R and L220F had a deleterious effect on ROMK-mediated potassium currents. Coinjection to mimic the compound heterozygosity produced a synergistic decrease in channel function and revealed a loss of PKA-dependent stabilization of PIP2 binding. In conclusion, in a multiplex family with BS, we identified compound heterozygous mutations in KCNJ1. Functional studies of ROMK confirmed the pathogenicity of these mutations and defined the mechanism of channel dysfunction. PMID:24400161

  19. Heterozygous De Novo and Inherited Mutations in the Smooth Muscle Actin (ACTG2) Gene Underlie Megacystis-Microcolon-Intestinal Hypoperistalsis Syndrome

    PubMed Central

    Wangler, Michael F.; Gonzaga-Jauregui, Claudia; Gambin, Tomasz; Penney, Samantha; Moss, Timothy; Chopra, Atul; Probst, Frank J.; Xia, Fan; Yang, Yaping; Werlin, Steven; Eglite, Ieva; Kornejeva, Liene; Bacino, Carlos A.; Baldridge, Dustin; Neul, Jeff; Lehman, Efrat Lev; Larson, Austin; Beuten, Joke; Muzny, Donna M.; Jhangiani, Shalini; Gibbs, Richard A.; Lupski, James R.; Beaudet, Arthur

    2014-01-01

    Megacystis-microcolon-intestinal hypoperistalsis syndrome (MMIHS) is a rare disorder of enteric smooth muscle function affecting the intestine and bladder. Patients with this severe phenotype are dependent on total parenteral nutrition and urinary catheterization. The cause of this syndrome has remained a mystery since Berdon's initial description in 1976. No genes have been clearly linked to MMIHS. We used whole-exome sequencing for gene discovery followed by targeted Sanger sequencing in a cohort of patients with MMIHS and intestinal pseudo-obstruction. We identified heterozygous ACTG2 missense variants in 15 unrelated subjects, ten being apparent de novo mutations. Ten unique variants were detected, of which six affected CpG dinucleotides and resulted in missense mutations at arginine residues, perhaps related to biased usage of CpG containing codons within actin genes. We also found some of the same heterozygous mutations that we observed as apparent de novo mutations in MMIHS segregating in families with intestinal pseudo-obstruction, suggesting that ACTG2 is responsible for a spectrum of smooth muscle disease. ACTG2 encodes γ2 enteric actin and is the first gene to be clearly associated with MMIHS, suggesting an important role for contractile proteins in enteric smooth muscle disease. PMID:24676022

  20. Heterozygous de novo and inherited mutations in the smooth muscle actin (ACTG2) gene underlie megacystis-microcolon-intestinal hypoperistalsis syndrome.

    PubMed

    Wangler, Michael F; Gonzaga-Jauregui, Claudia; Gambin, Tomasz; Penney, Samantha; Moss, Timothy; Chopra, Atul; Probst, Frank J; Xia, Fan; Yang, Yaping; Werlin, Steven; Eglite, Ieva; Kornejeva, Liene; Bacino, Carlos A; Baldridge, Dustin; Neul, Jeff; Lehman, Efrat Lev; Larson, Austin; Beuten, Joke; Muzny, Donna M; Jhangiani, Shalini; Gibbs, Richard A; Lupski, James R; Beaudet, Arthur

    2014-03-01

    Megacystis-microcolon-intestinal hypoperistalsis syndrome (MMIHS) is a rare disorder of enteric smooth muscle function affecting the intestine and bladder. Patients with this severe phenotype are dependent on total parenteral nutrition and urinary catheterization. The cause of this syndrome has remained a mystery since Berdon's initial description in 1976. No genes have been clearly linked to MMIHS. We used whole-exome sequencing for gene discovery followed by targeted Sanger sequencing in a cohort of patients with MMIHS and intestinal pseudo-obstruction. We identified heterozygous ACTG2 missense variants in 15 unrelated subjects, ten being apparent de novo mutations. Ten unique variants were detected, of which six affected CpG dinucleotides and resulted in missense mutations at arginine residues, perhaps related to biased usage of CpG containing codons within actin genes. We also found some of the same heterozygous mutations that we observed as apparent de novo mutations in MMIHS segregating in families with intestinal pseudo-obstruction, suggesting that ACTG2 is responsible for a spectrum of smooth muscle disease. ACTG2 encodes γ2 enteric actin and is the first gene to be clearly associated with MMIHS, suggesting an important role for contractile proteins in enteric smooth muscle disease. PMID:24676022

  1. Mutations of the functional ARH1 allele in tumors from ARH1 heterozygous mice and cells affect ARH1 catalytic activity, cell proliferation and tumorigenesis

    PubMed Central

    Kato, J; Vekhter, D; Heath, J; Zhu, J; Barbieri, J T; Moss, J

    2015-01-01

    ADP-ribosylation results from transfer of the ADP-ribose moiety of nicotinamide adenine dinucleotide (NAD) to an acceptor with ADP-ribose-acceptor content determined by the activities of ADP-ribosyltransferases, which modify the acceptor, and ADP-ribose-acceptor hydrolase (ARH), which cleave the ADP-ribose-acceptor bond. ARH1 was discovered as an ADP-ribose(arginine)protein hydrolase. Previously, we showed that ARH1-knockout and ARH1 heterozygous mice spontaneously developed tumors. Further, ARH1-knockout and ARH1 heterozygous mouse embryonic fibroblasts (MEFs) produced tumors when injected into nude mice. In tumors arising in ARH1 heterozygous mice and MEFs, we found both loss of heterozygosity (LOH) of the ARH1 gene and ARH1 gene mutations. In the present report, we found that these mutant ARH1 genes encode proteins with reduced ARH1 enzymatic activity. Moreover, MEFs transformed with ARH1 mutant genes exhibiting different levels of ARH1 activity showed altered rates of proliferation, anchorage-independent colony growth in soft agar, and tumorigenesis in nude mice. MEFs transformed with the wild-type (WT) gene, but expressing low levels of hydrolase activity were also tumorigenic. However, transformation with the WT gene was less likely to yield tumors than transformation with a mutant gene exhibiting similar hydrolase activity. Thus, control of protein-ADP-ribosylation by ARH1 is critical for tumorigenesis. In the human cancer database, LOH and mutations of the ARH1 gene were observed. Further, ARH1 gene mutations were located in exons 3 and 4, comparable to exons 2 and 3 of the murine ARH1 gene, which comprise the catalytic site. Thus, human ARH1 gene mutations similar to their murine counterparts may be involved in human cancers. PMID:26029825

  2. Clinical consequences in truncating mutations in exon 34 of NOTCH2: report of six patients with Hajdu-Cheney syndrome and a patient with serpentine fibula polycystic kidney syndrome.

    PubMed

    Narumi, Yoko; Min, Byung-Joo; Shimizu, Kenji; Kazukawa, Itsuro; Sameshima, Kiyoko; Nakamura, Koichi; Kosho, Tomoki; Rhee, Yumie; Chung, Yoon-Sok; Kim, Ok-Hwa; Fukushima, Yoshimitsu; Park, Woong-Yang; Nishimura, Gen

    2013-03-01

    It is debatable whether Hajdu-Cheney syndrome (HCS) and serpentine fibula-polycystic kidney syndrome (SFPKS) represent a single clinical entity with a variable degree of expression or two different entities, because both disorders share common clinical and radiological manifestations, including similar craniofacial characteristics, and defective bone mineralization. Since it was shown that heterozygous truncating mutations in NOTCH2 are responsible for both HCS and SFPKS, 37 patients with HCS and four patients with SFPKS are reported. To elucidate the clinical consequences of NOTCH2 mutations, we present detailed clinical information for seven patients with truncating mutations in exon 34 of NOTCH2, six with HCS and one with SFPKS. In addition, we review all the reported patients whose clinical manifestations are available. We found 13 manifestations including craniofacial features, acroosteolysis, Wormian bones, and osteoporosis in >75% of NOTCH2-positive patients. Acroosteolysis was observed in two patients with SFPKS and bowing fibulae were found in two patients with HCS. These clinical and molecular data would support the notion that HCS and SFPKS are a single disorder. PMID:23401378

  3. Identification of a novel truncation mutation of EYA4 in moderate degree hearing loss by targeted exome sequencing.

    PubMed

    Choi, Hyun Seok; Kim, Ah Reum; Kim, Shin Hye; Choi, Byung Yoon

    2016-05-01

    The EYA4 gene encodes a 640-amino-acid protein that serves as a transcription factor. This protein contains a highly conserved Eya domain (eya-HR) and a variable domain (eya-VR). Mutations of this gene are known to cause postlingual and progressive sensorineural hearing loss, either as non-syndromic (DFNA10) or syndromic hearing loss, depending on the location of truncation of the mutant protein. Since our previous report, we have recruited 14 families segregating autosomal dominant moderate SNHL. A thorough medical history and physical examination including evaluation of heart problems ruled out any syndromic features in these families. Screening of EYA4 was performed by targeted exome sequencing of 134 known deafness genes (TES-134) from the probands. After basic filtering of the variants, we identified one proband who carried a novel truncation mutation, c.1194delT (p.Met401TrpfsX3) of EYA4, making the frequency of DFNA10 to be 7.14 % (1/14) in Koreans. The variant co-segregated perfectly with a slightly down-sloping, moderate degree of SNHL in the family (SH117), and was not detected in any of the 592 normal control chromosomes. This variant is likely to generate protein products that are truncated just downstream of the eya-VR domain. None of the three affected family members showed any syndromic features, including cardiac problems, which was compatible with a previous genotype-phenotype correlation. The identification of a novel EYA4 truncation mutation associated with DFNA10, rather than syndromic hearing loss, supports a previously reported genotype-phenotype correlation in this gene. Considering its detection rate, EYA4 mutations should be suspected in hereditary moderate hearing loss with a corresponding audiologic configuration, and a cardiac examination should be included in the initial evaluation. PMID:26015337

  4. PPM1D Mosaic Truncating Variants in Ovarian Cancer Cases May Be Treatment-Related Somatic Mutations.

    PubMed

    Pharoah, Paul D P; Song, Honglin; Dicks, Ed; Intermaggio, Maria P; Harrington, Patricia; Baynes, Caroline; Alsop, Kathryn; Bogdanova, Natalia; Cicek, Mine S; Cunningham, Julie M; Fridley, Brooke L; Gentry-Maharaj, Aleksandra; Hillemanns, Peter; Lele, Shashi; Lester, Jenny; McGuire, Valerie; Moysich, Kirsten B; Poblete, Samantha; Sieh, Weiva; Sucheston-Campbell, Lara; Widschwendter, Martin; Whittemore, Alice S; Dörk, Thilo; Menon, Usha; Odunsi, Kunle; Goode, Ellen L; Karlan, Beth Y; Bowtell, David D; Gayther, Simon A; Ramus, Susan J

    2016-03-01

    Mosaic truncating mutations in the protein phosphatase, Mg(2+)/Mn(2+)-dependent, 1D (PPM1D) gene have recently been reported with a statistically significantly greater frequency in lymphocyte DNA from ovarian cancer case patients compared with unaffected control patients. Using massively parallel sequencing (MPS) we identified truncating PPM1D mutations in 12 of 3236 epithelial ovarian cancer (EOC) case patients (0.37%) but in only one of 3431 unaffected control patients (0.03%) (P = .001). All statistical tests were two-sided. A combination of Sanger sequencing, pyrosequencing, and MPS data suggested that 12 of the 13 mutations were mosaic. All mutations were identified in post-chemotherapy treatment blood samples from case patients (n = 1827) (average 1234 days post-treatment in carriers) rather than from cases collected pretreatment (less than 14 days after diagnosis, n = 1384) (P = .002). These data suggest that PPM1D variants in EOC cases are primarily somatic mosaic mutations caused by treatment and are not associated with germline predisposition to EOC. PMID:26823519

  5. Postnatal microcephaly and pain insensitivity due to a de novo heterozygous DNM1L mutation causing impaired mitochondrial fission and function.

    PubMed

    Sheffer, Ruth; Douiev, Liza; Edvardson, Simon; Shaag, Avraham; Tamimi, Khaled; Soiferman, Devorah; Meiner, Vardiella; Saada, Ann

    2016-06-01

    An emerging class of mitochondrial disorders is caused by mutations in nuclear genes affecting mitochondrial dynamics and function. One of these is the DNM1L gene encoding the dynamin-related protein 1 (DRP1), which is pivotal in the mitochondrial fission process. Here, we describe a patient with a novel dominant-negative, de novo DNM1L mutation, which expands the clinical spectrum. The patient reported here exhibits a chronic neurological disorder, characterized by postnatal microcephaly, developmental delay, and pain insensitivity. Muscle biopsy disclosed decreased respiratory chain complex IV activity. Exome sequencing showed a de novo heterozygous c.1084G>A (p.G362S) mutation. Subsequent studies of patient skin fibroblasts showed markedly impaired mitochondrial fission and a partial respiratory chain defect while peroxisomal morphology remained intact. Human foreskin fibroblasts over-expressing the mutant DNM1L gene displayed aberrant mitochondrial morphology. © 2016 Wiley Periodicals, Inc. PMID:26992161

  6. Genotypes and phenotypes of a family with a deaf child carrying combined heterozygous mutations in SLC26A4 and GJB3 genes.

    PubMed

    Li, Yunlong; Zhu, Baosheng

    2016-07-01

    Mutations in the SLC26A4 gene have been shown to cause a type of deafness referred to as large vestibular aqueduct syndrome (LVAS), whereas mutations in the GJB3 gene have been associated with nonsyndromic deafness. However, the clinical phenotypes of these mutations vary and remain to be fully elucidated. The present study performed genetic analysis of a Chinese family, in which the child was deaf and the parents were healthy. Sanger sequencing demonstrated that the affected individual harbored three heterogeneous mutations in the SLC26A4 and GJB3 genes, as follows: SLC26A4 IVS-2 A>G, SLC26A4 c.2168 A>G and GJB3 c.538 C>T. The affected individual exhibited hearing loss and was diagnosed with LVAS by computed tomography scan. The mother and father of the affected individual harbored the heterogeneous mutations of SLC26A4 IVS-2 A>G and GJB3 c.538 C>T, and the heterozygous mutation of SLC26A4 c.2168 A>G, respectively. Neither parents exhibited any hearing loss. The results obtained from the deaf patient provided genetic and clinical evidence that carrying combined heterogeneous mutations in the GJB3 and SLC26A4 genes may be involved in the etiology of severe hearing loss, of which the mechanism requires further examination. PMID:27176802

  7. Identification of a Novel Heterozygous Missense Mutation in the CACNA1F Gene in a Chinese Family with Retinitis Pigmentosa by Next Generation Sequencing

    PubMed Central

    Tania, Mousumi; Wang, Hui; Khan, Md. Asaduzzaman; Duan, Chengxia; Zhu, Li; Chen, Rui; Lv, Hongbin

    2015-01-01

    Background. Retinitis pigmentosa (RP) is an inherited retinal degenerative disease, which is clinically and genetically heterogeneous, and the inheritance pattern is complex. In this study, we have intended to study the possible association of certain genes with X-linked RP (XLRP) in a Chinese family. Methods. A Chinese family with RP was recruited, and a total of seven individuals were enrolled in this genetic study. Genomic DNA was isolated from peripheral leukocytes, and used for the next generation sequencing (NGS). Results. The affected individual presented the clinical signs of XLRP. A heterozygous missense mutation (c.1555C>T, p.R519W) was identified by NGS in exon 13 of the CACNA1F gene on X chromosome, and was confirmed by Sanger sequencing. It showed perfect cosegregation with the disease in the family. The mutation at this position in the CACNA1F gene of RP was found novel by database searching. Conclusion. By using NGS, we have found a novel heterozygous missense mutation (c.1555C>T, p.R519W) in CACNA1F gene, which is probably associated with XLRP. The findings might provide new insights into the cause and diagnosis of RP, and have implications for genetic counseling and clinical management in this family. PMID:26075273

  8. USH1G with unique retinal findings caused by a novel truncating mutation identified by genome-wide linkage analysis

    PubMed Central

    Taibah, Khalid; Bin-Khamis, Ghada; Kennedy, Shelley; Hemidan, Amal; Al-Qahtani, Faisal; Tabbara, Khalid; Mubarak, Bashayer Al; Ramzan, Khushnooda; Meyer, Brian F.; Al-Owain, Mohammed

    2012-01-01

    Purpose Usher syndrome (USH) is an autosomal recessive disorder divided into three distinct clinical subtypes based on the severity of the hearing loss, manifestation of vestibular dysfunction, and the age of onset of retinitis pigmentosa and visual symptoms. To date, mutations in seven different genes have been reported to cause USH type 1 (USH1), the most severe form. Patients diagnosed with USH1 are known to be ideal candidates to benefit from cochlear implantation. Methods Genome-wide linkage analysis using Affymetrix GeneChip Human Mapping 10K arrays were performed in three cochlear implanted Saudi siblings born from a consanguineous marriage, clinically diagnosed with USH1 by comprehensive clinical, audiological, and ophthalmological examinations. From the linkage results, the USH1G gene was screened for mutations by direct sequencing of the coding exons. Results We report the identification of a novel p.S243X truncating mutation in USH1G that segregated with the disease phenotype and was not present in 300 ethnically matched normal controls. We also report on the novel retinal findings and the outcome of cochlear implantation in the affected individuals. Conclusions In addition to reporting a novel truncating mutation, this report expands the retinal phenotype in USH1G and presents the first report of successful cochlear implants in this disease. PMID:22876113

  9. Novel compound heterozygous Thyroglobulin mutations c.745+1G>A/c.7036+2T>A associated with congenital goiter and hypothyroidism in a Vietnamese family. Identification of a new cryptic 5' splice site in the exon 6.

    PubMed

    Citterio, Cintia E; Morales, Cecilia M; Bouhours-Nouet, Natacha; Machiavelli, Gloria A; Bueno, Elena; Gatelais, Frédérique; Coutant, Regis; González-Sarmiento, Rogelio; Rivolta, Carina M; Targovnik, Héctor M

    2015-03-15

    Several patients were identified with dyshormonogenesis caused by mutations in the thyroglobulin (TG) gene. These defects are inherited in an autosomal recessive manner and affected individuals are either homozygous or compound heterozygous for the mutations. The aim of the present study was to identify new TG mutations in a patient of Vietnamese origin affected by congenital hypothyroidism, goiter and low levels of serum TG. DNA sequencing identified the presence of compound heterozygous mutations in the TG gene: the maternal mutation consists of a novel c.745+1G>A (g.IVS6 + 1G>A), whereas the hypothetical paternal mutation consists of a novel c.7036+2T>A (g.IVS40 + 2T>A). The father was not available for segregation analysis. Ex-vivo splicing assays and subsequent RT-PCR analyses were performed on mRNA isolated from the eukaryotic-cells transfected with normal and mutant expression vectors. Minigene analysis of the c.745+1G>A mutant showed that the exon 6 is skipped during pre-mRNA splicing or partially included by use of a cryptic 5' splice site located to 55 nucleotides upstream of the authentic exon 6/intron 6 junction site. The functional analysis of c.7036+2T>A mutation showed a complete skipping of exon 40. The theoretical consequences of splice site mutations, predicted with the bioinformatics tool NNSplice, Fsplice, SPL, SPLM and MaxEntScan programs were investigated and evaluated in relation with the experimental evidence. These analyses predicted that both mutant alleles would result in the abolition of the authentic splice donor sites. The c.745+1G>A mutation originates two putative truncated proteins of 200 and 1142 amino acids, whereas c.7036+2T>A mutation results in a putative truncated protein of 2277 amino acids. In conclusion, we show that the c.745+1G>A mutation promotes the activation of a new cryptic donor splice site in the exon 6 of the TG gene. The functional consequences of these mutations could be structural changes in the protein

  10. Exome sequencing reveals two novel compound heterozygous XYLT1 mutations in a Polish patient with Desbuquois dysplasia type 2 and growth hormone deficiency.

    PubMed

    Jamsheer, Aleksander; Olech, Ewelina M; Kozłowski, Kazimierz; Niedziela, Marek; Sowińska-Seidler, Anna; Obara-Moszyńska, Monika; Latos-Bieleńska, Anna; Karczewski, Marek; Zemojtel, Tomasz

    2016-07-01

    Desbuquois dysplasia type 2 (DBQD2) is a rare recessively inherited skeletal genetic disorder characterized by severe prenatal and postnatal growth retardation, generalized joint laxity with dislocation of large joints and facial dysmorphism. The condition was recently described to result from autosomal recessive mutations in XYLT1, encoding the enzyme xylosyltransferase-1. In this paper, we report on a Polish patient with DBQD2 who presented with severe short stature of prenatal onset, joint laxity, psychomotor retardation and multiple radiological abnormalities including short metacarpals, advanced bone age and exaggerated trochanters. Endocrinological examinations revealed that sleep-induced growth hormone (GH) release and GH peak in clonidine- and glucagon-induced provocative tests as well as insulin-like growth factor 1 (IGF-1) and IGF-binding protein-3 levels were all markedly decreased, confirming deficiency of GH secretion. Bone age, unlikely to GH deficiency, was significantly advanced. To establish the diagnosis at a molecular level, we performed whole-exome sequencing and bioinformatic analysis in the index patient, which revealed compound heterozygous XYLT1 mutations: c.595C>T(p.Gln199*) and c.1651C>T(p.Arg551Cys), both of which are novel. Sanger sequencing showed that the former mutation was inherited from the healthy mother, whereas the latter one most probably occurred de novo. Our study describes the first case of DBQD2 resulting from compound heterozygous XYLT1 mutation, expands the mutational spectrum of the disease and provides evidence that the severe growth retardation and microsomia observed in DBQD2 patients may result not only from the skeletal dysplasia itself but also from GH and IGF-1 deficiency. PMID:27030147

  11. Novel heterozygous C243Y A20/TNFAIP3 gene mutation is responsible for chronic inflammation in autosomal-dominant Behçet's disease

    PubMed Central

    Shigemura, Tomonari; Kaneko, Naoe; Kobayashi, Norimoto; Kobayashi, Keiko; Takeuchi, Yusuke; Nakano, Naoko; Masumoto, Junya; Agematsu, Kazunaga

    2016-01-01

    Objective Although Behçet's disease (BD) is a chronic inflammatory disorder of uncertain aetiology, the existence of familial BD with autosomal-dominant traits suggests that a responsibility gene (or genes) exists. We investigated a Japanese family with a history of BD to search for pathogenic mutations underlying the biological mechanisms of BD. Methods 6 patients over 4 generations who had suffered from frequent oral ulcers, genital ulcers and erythaema nodosum-like lesions in the skin were assessed. Whole-exome sequencing was performed on genomic DNA, and cytokine production was determined from stimulated mononuclear cells. Inflammatory cytokine secretion and Nod2-mediated NF-κB activation were analysed using the transfected cells. Results By whole-exome sequencing, we identified a common heterozygous missense mutation in A20/TNFAIP3, a gene known to regulate NF-κB signalling, for which all affected family members carried a heterozygous C243Y mutation in the ovarian tumour domain. Mononuclear cells obtained from the proband and his mother produced large amounts of interleukin 1β, IL-6 and tumour necrosis factor α (TNF-a) on stimulation as compared with those from normal controls. Although inflammatory cytokine secretion was suppressed by wild-type transfected cells, it was suppressed to a much lesser extent by mutated C243Y A20/TNFAIP3-transfected cells. In addition, impaired suppression of Nod2-mediated NF-κB activation by C243Y A20/TNFAIP3 was observed. Conclusions A C243Y mutation in A20/TNFAIP3 was likely responsible for increased production of human inflammatory cytokines by reduced suppression of NF-κB activation, and may have accounted for the autosomal-dominant Mendelian mode of BD transmission in this family. PMID:27175295

  12. Involvement of SOX10 in the pathogenesis of Hirschsprung disease: report of a truncating mutation in an isolated patient

    PubMed Central

    Sánchez-Mejías, Avencia; Watanabe, Yuli; Fernández, Raquel M.; López-Alonso, Manuel; Antiñolo, Guillermo; Bondurand, Nadege; Borrego, Salud

    2010-01-01

    SOX10 protein is a key transcription factor during neural-crest development. Mutations in SOX10 are associated with several neurocristopathies such as Waardenburg syndrome type IV (WS4), a congenital disorder characterized by the association of hearing loss, pigmentary abnormalities and absence of ganglion cells in the myenteric and submucosal plexus of the gastrointestinal tract, also known as aganglionic megacolon or Hirschsprung disease (HSCR). Several mutations at this locus are known to cause a high percentage of WS4 cases, but no SOX10 mutations had been ever reported associated to isolated HSCR patient. Therefore, non-syndromic HSCR disease was initially thought not to be associated to mutations at this particular locus. In the present study, we describe the evaluation of the SOX10 gene in a series of 196 isolated HSCR cases, the largest patient series evaluated so far, and report a truncating c.153-155del mutation. This is the first time that a SOX10 mutation is detected in an isolated HSCR patient, which completely changes the scenario for the implications of SOX10 mutations in human disease, giving us a new tool for genetic counselling. PMID:20130826

  13. Heterozygous Mutation in IκBNS Leads to Reduced Levels of Natural IgM Antibodies and Impaired Responses to T-Independent Type 2 Antigens

    PubMed Central

    Pedersen, Gabriel K.; Ádori, Monika; Stark, Julian M.; Khoenkhoen, Sharesta; Arnold, Carrie; Beutler, Bruce; Karlsson Hedestam, Gunilla B.

    2016-01-01

    Mice deficient in central components of classical NF-κB signaling have low levels of circulating natural IgM antibodies and fail to respond to immunization with T-independent type 2 (TI-2) antigens. A plausible explanation for these defects is the severely reduced numbers of B-1 and marginal zone B (MZB) cells in such mice. By using an ethyl-N-nitrosourea mutagenesis screen, we identified a role for the atypical IκB protein IκBNS in humoral immunity. IκBNS-deficient mice lack B-1 cells and have severely reduced numbers of MZB cells, and thus resemble several other strains with defects in classical NF-κB signaling. We analyzed mice heterozygous for the identified IκBNS mutation and demonstrate that these mice have an intermediary phenotype in terms of levels of circulating IgM antibodies and responses to TI-2 antigens. However, in contrast to mice that are homozygous for the IκBNS mutation, the heterozygous mice had normal frequencies of B-1 and MZB cells. These results suggest that there is a requirement for IκBNS expression from two functional alleles for maintaining normal levels of circulating natural IgM antibodies and responses to TI-2 antigens. PMID:26973645

  14. Pregnancy-associated osteoporosis with a heterozygous deactivating LDL receptor-related protein 5 (LRP5) mutation and a homozygous methylenetetrahydrofolate reductase (MTHFR) polymorphism.

    PubMed

    Cook, Fiona J; Mumm, Steven; Whyte, Michael P; Wenkert, Deborah

    2014-04-01

    Pregnancy-associated osteoporosis (PAO) is a rare, idiopathic disorder that usually presents with vertebral compression fractures (VCFs) within 6 months of a first pregnancy and delivery. Spontaneous improvement is typical. There is no known genetic basis for PAO. A 26-year-old primagravida with a neonatal history of unilateral blindness attributable to hyperplastic primary vitreous sustained postpartum VCFs consistent with PAO. Her low bone mineral density (BMD) seemed to respond to vitamin D and calcium therapy, with no fractures after her next successful pregnancy. Investigation of subsequent fetal losses revealed homozygosity for the methylenetetrahydrofolate reductase (MTHFR) C677T polymorphism associated both with fetal loss and with osteoporosis (OP). Because her neonatal unilateral blindness and OP were suggestive of loss-of-function mutation(s) in the gene that encodes LDL receptor-related protein 5 (LRP5), LRP5 exon and splice site sequencing was also performed. This revealed a unique heterozygous 12-bp deletion in exon 21 (c.4454_4465del, p.1485_1488del SSSS) in the patient, her mother and sons, but not her father or brother. Her mother had a normal BMD, no history of fractures, PAO, ophthalmopathy, or fetal loss. Her two sons had no ophthalmopathy and no skeletal issues. Her osteoporotic father (with a family history of blindness) and brother had low BMDs first documented at ages ∼40 and 32 years, respectively. Serum biochemical and bone turnover studies were unremarkable in all subjects. We postulate that our patient's heterozygous LRP5 mutation together with her homozygous MTHFR polymorphism likely predisposed her to low peak BMD. However, OP did not cosegregate in her family with the LRP5 mutation, the homozygous MTHFR polymorphism, or even the combination of the two, implicating additional genetic or nongenetic factors in her PAO. Nevertheless, exploration for potential genetic contributions to PAO may explain part of the pathogenesis of this

  15. Pathogenic effects of a novel heterozygous R350P desmin mutation on the assembly of desmin intermediate filaments in vivo and in vitro.

    PubMed

    Bär, Harald; Fischer, Dirk; Goudeau, Bertrand; Kley, Rudolf A; Clemen, Christoph S; Vicart, Patrick; Herrmann, Harald; Vorgerd, Matthias; Schröder, Rolf

    2005-05-15

    Mutations of the human desmin gene on chromosome 2q35 cause a familial or sporadic form of skeletal myopathy frequently associated with cardiac abnormalities. Here, we report the pathogenic effects of a novel heterozygous R350P desmin missense mutation, which resides in the evolutionary highly conserved coil 2B domain of the alpha-helical coiled-coil desmin rod domain, on the assembly of desmin intermediate filaments (IF) in cultured cells and in vitro. By transfection experiments, we show that R350P desmin is incapable of de novo formation of a desmin IF network in vimentin-free BMGE+H, MCF7 and SW13 cells and that it disrupts the endogenous vimentin cytoskeleton in 3T3 fibroblast cells. Hence, transfected cells displayed abnormal cytoplasmic protein aggregates reminiscent of desmin-positive protein deposits seen in the immunohistochemical and ultrastructural analysis of skeletal muscle derived from the index patient of the affected family. To study the functional effects of the R350P desmin mutation at the protein level, we performed in vitro assembly studies with wild-type (WT) and mutant desmin protein. Our analysis revealed that the in vitro assembly process of R350P desmin is already disturbed at the unit length filament level and that further association reactions generate huge, tightly packed protein aggregates. On assessing the pathogenic effects of R350P desmin in various mixtures with WT desmin, we show that a ratio of 1 : 3 (R350P desmin/WT desmin) is sufficient to effectively block the normal polymerization process of desmin IFs. Our findings indicate that the heterozygous R350P desmin mutation exerts a dominant negative effect on the ordered lateral arrangement of desmin subunits. This disturbance of the lateral packing taking place in the first phase of assembly is ultimately leading to abnormal protein aggregation. PMID:15800015

  16. An ABCA1 truncation shows no dominant negative effect in a familial hypoalphalipoproteinemia pedigree with three ABCA1 mutations

    SciTech Connect

    Sorrenson, Brie; Suetani, Rachel J.; Bickley, Vivienne M.; George, Peter M.; Williams, Michael J.A.; Scott, Russell S.; McCormick, Sally P.A.

    2011-06-10

    Highlights: {yields} Characterisation of an ABCA1 truncation mutant, C978fsX988, in a pedigree with three ABCA1 mutations. {yields} Functional analysis of C978fsX988 in patient fibroblasts and HEK 293 cells shows no cholesterol efflux function. {yields} Allele-specific quantification shows C978fsX988 not expressed at mRNA level in fibroblasts. {yields} Unlike other ABCA1 truncations, C978fsX988 mutant shows no dominant negative effect at mRNA or protein level. -- Abstract: The ATP binding cassette transporter (ABCA1) A1 is a key determinant of circulating high density lipoprotein cholesterol (HDL-C) levels. Mutations in ABCA1 are a major genetic contributor to low HDL-C levels within the general population. Following the finding of three different ABCA1 mutations, p.C978fsX988, p.T1512M and p.N1800H in a subject with hypoalphalipoproteinemia, we aimed to establish whether the p.C978fsX988 truncation exerted a dominant negative effect on the full-length ABCA1 alleles within family members as has been reported for other ABCA1 truncations. Characterisation of the p.C978fsX988 mutant in transfected HEK 293 cells showed it to be expressed as a GFP fusion protein but lacking in cholesterol efflux function. This was in keeping with results from cholesterol efflux assays in the fibroblasts of p.C978fsX988 carriers which also showed impaired efflux. Allele- specific quantification of p.C978fsX988 mRNA and analysis of ABCA1 protein levels in the fibroblasts of p.C978fsX988 heterozygotes showed negligible levels of mRNA and protein expression. There was no evidence of a dominant negative effect on wildtype or p.N1800H protein levels. We conclude that in the case of the p.C978fsX988 truncated mutant a lack of expression precludes it from having a dominant negative effect.

  17. Venous thrombosis with both heterozygous factor V Leiden (R507Q) and factor II (G20210A) mutations.

    PubMed

    Bhaijee, Feriyl; Jordan, Brenda; Pepper, Dominique J; Leacock, Rodney; Rock, William A

    2012-01-01

    Both hereditary and acquired factors increase the risk of venous thromboembolism, thus the clinical management of affected patients involves evaluation of genetic factors that predispose to hypercoagulability. Factor V Leiden (R507Q) and factor II (prothrombin) mutation (G20210A) are the two most common inherited hypercoagulability disorders among populations of European origin. Both factor V Leiden and factor II mutation (G20210A) represent gain-of-function mutations: factor V Leiden causes resistance to activated protein C, and factor II mutation (G20210A) results in higher levels of plasma prothrombin. Herein, we present an uncommon case of combined factor V Leiden mutation (R507Q) and factor II mutation (G20210A), and discuss the prevalence and features of each entity, as well as their role in the clinical management of affected patients. PMID:23330508

  18. Exome sequencing reveals a heterozygous DLX5 mutation in a Chinese family with autosomal-dominant split-hand/foot malformation.

    PubMed

    Wang, Xue; Xin, Qian; Li, Lin; Li, Jiangxia; Zhang, Changwu; Qiu, Rongfang; Qian, Chenmin; Zhao, Hailing; Liu, Yongchao; Shan, Shan; Dang, Jie; Bian, Xianli; Shao, Changshun; Gong, Yaoqin; Liu, Qiji

    2014-09-01

    Split-hand/foot malformation (SHFM) is a congenital limb deformity due to the absence or dysplasia of central rays of the autopod. Six SHFM loci have already been identified. Here we describe a Chinese family with autosomal-dominant SHFM1 that has previously been mapped to 7q21.2-21.3. The two affected family members, mother and son, showed deep median clefts between toes, ectrodactyly and syndactyly; the mother also showed triphalangeal thumbs. Exome sequencing and variant screening of candidate genes in the six loci known to be responsible for SHFM revealed a novel heterozygous mutation, c.558G>T (p.(Gln186His)), in distal-less homeobox 5 (DLX5). As DLX5 encodes a transcription factor capable of transactivating MYC, we also tested whether the mutation could affect DLX5 transcription acitivity. Results from luciferase reporter assay revealed that a mutation in DLX5 compromised its transcriptional activity. This is the first report of a mutation in DLX5 leading to autosomal-dominant SHFM1. PMID:24496061

  19. Unusual cutaneous features associated with a heterozygous gain-of-function mutation in IFIH1: overlap between Aicardi–Goutières and Singleton–Merten syndromes

    PubMed Central

    Bursztejn, A.-C.; Briggs, T.A.; del Toro Duany, Y.; Anderson, B.H.; O’Sullivan, J.; Williams, S.G.; Bodemer, C.; Fraitag, S.; Gebhard, F.; Leheup, B.; Lemelle, I.; Oojageer, A.; Raffo, E.; Schmitt, E.; Rice, G.I.; Hur, S.; Crow, Y.J.

    2016-01-01

    Summary Cutaneous lesions described as chilblain lupus occur in the context of familial chilblain lupus or Aicardi–Goutières syndrome. To date, seven genes related to Aicardi–Goutières syndrome have been described. The most recently described encodes the cytosolic double-stranded RNA receptor IFIH1 (also known as MDA5), a key component of the antiviral type I interferon-mediated innate immune response. Enhanced type I interferon signalling secondary to gain-of-function mutations in IFIH1 can result in a range of neuroinflammatory phenotypes including classical Aicardi–Goutières syndrome. It is of note that none of the patients with a neurological phenotype so far described with mutations in this gene was reported to demonstrate cutaneous involvement. We present a family segregating a heterozygous pathogenic mutation in IFIH1 showing dermatological involvement as a prominent feature, variably associated with neurological disturbance and premature tooth loss. All three affected individuals exhibited increased expression of interferon-stimulated genes in whole blood, and the mutant protein resulted in enhanced interferon signalling in vitro, both in the basal state and following ligand stimulation. Our results further extend the phenotypic spectrum associated with mutations in IFIH1, indicating that the disease can be confined predominantly to the skin, while also highlighting phenotypic overlap with both Aicardi–Goutières syndrome and Singleton–Merten syndrome. PMID:26284909

  20. Heterozygous mutation of c.3521C>T in COL1A1 may cause mild osteogenesis imperfecta/Ehlers-Danlos syndrome in a Chinese family

    PubMed Central

    Shi, Xianlong; Lu, Yanqin; Wang, Yanzhou; Zhang, Yu-ang; Teng, Yuanwei; Han, Wanshui; Han, Zhenzhong; Li, Tianyou; Chen, Mei; Liu, Junlong; Fang, Fengling; Dou, Conghui; Ren, Xiuzhi; Han, Jinxiang

    2015-01-01

    Summary Osteogenesis imperfecta (OI) is an inheritable connective tissue disorder with a broad clinical heterozygosis, which can be complicated by other connective tissue disorders like Ehlers-Danlos syndrome (EDS). OI/EDS are rarely documented. Most OI/EDS mutations are located in the N-anchor region of type I procollagen and predominated by glycine substitution. We identified a c.3521C>T (p.A1174V) heterozygous mutation in COL1A1 gene in a four-generation pedigree with proposed mild OI/EDS phenotype. The affected individuals had blue sclera and dentinogenesis imperfecta (DI) was uniformly absent. The OI phenotype varied from mild to moderate, with the absence of scoliosis and increased skin extensibility. Easy bruising, joint dislocations and high Beighton score were present in some affected individuals. EDS phenotype is either mild or unremarkable in some individuals. The mutation is poorly conserved and in silico prediction support the relatively mild phenotype. The molecular mechanisms of the mutation that leads to the possible OI/EDS phenotype should be further identified by biochemical analysis of N-propeptide processing and steady state collagen analysis. PMID:25674388

  1. Impact of the A2V Mutation on the Heterozygous and Homozygous Aβ1-40 Dimer Structures from Atomistic Simulations.

    PubMed

    Nguyen, Phuong H; Sterpone, Fabio; Campanera, Josep M; Nasica-Labouze, Jessica; Derreumaux, Philippe

    2016-06-15

    The A2V mutation was reported to protect from Alzheimer's disease in its heterozygous form and cause an early Alzheimer's disease type dementia in its homozygous form. Experiments showed that the aggregation rate follows the order A2V > WT (wild-type) > A2V-WT. To understand the impact of this mutation, we carried out replica exchange molecular dynamics simulations of Aβ1-40 WT-A2V and A2V-A2V dimers and compared to the WT dimer. Our atomistic simulations reveal that the mean secondary structure remains constant, but there are substantial differences in the intramolecular and intermolecular conformations upon single and double A2V mutation. Upon single mutation, the intrinsic disorder is reduced, the intermolecular potential energies are reduced, the population of intramolecular three-stranded β-sheets is increased, and the number of all α dimer topologies is decreased. Taken together, these results offer an explanation for the reduced aggregation rate of the Aβ1-40 A2V-WT peptides and the protective effect of A2V in heterozygotes. PMID:27007027

  2. The two mutations, Q204X and nt821, of the myostatin gene affect carcass and meat quality in young heterozygous bulls of French beef breeds.

    PubMed

    Allais, S; Levéziel, H; Payet-Duprat, N; Hocquette, J F; Lepetit, J; Rousset, S; Denoyelle, C; Bernard-Capel, C; Journaux, L; Bonnot, A; Renand, G

    2010-02-01

    The availability of genetic tests to detect different mutations in the myostatin gene allows the identification of heterozygous animals and would warrant the superiority of these animals for slaughter performance if this superiority is confirmed. Thus, 2 mutations of this gene, Q204X and nt821, were studied in 3 French beef breeds in the program Qualvigène. This work was done with 1,114 Charolais, 1,254 Limousin, and 981 Blonde d'Aquitaine young bulls from, respectively, 48, 36, and 30 sires and slaughtered from 2004 to 2006. In addition to the usual carcass traits recorded at slaughter (e.g., carcass yield, muscle score), carcass composition was estimated by weighing internal fat and dissecting the 6th rib. The muscle characteristic traits analyzed were lipid and collagen contents, muscle fiber section area, and pH. Regarding meat quality, sensory qualities of meat samples were evaluated by a taste panel, and Warner-Bratzler shear force was measured. Deoxyribonucleic acid was extracted from the blood samples of all calves, the blood samples of 78% of the dams, and the blood or semen samples of all the sires. Genotypes were determined for 2 disruptive mutations, Q204X and nt821. Analyses were conducted by breed. The superiority of carcass traits of calves carrying one copy of the mutated allele (Q204X or nt821) over noncarrier animals was approximately +1 SD in the Charolais and Limousin breeds but was not significant in the Blonde d'Aquitaine. In the Charolais breed, for which the frequency was the greatest (7%), young bulls carrying the Q204X mutation presented a carcass with less fat, less intramuscular fat and collagen contents, and a clearer and more tender meat than those of homozygous-normal cattle. The meat of these animals also had slightly less flavor. Also in the Charolais breed, 13 of 48 sires were heterozygous. For each sire, the substitution effect of the wild allele by the mutant allele was approximately +1 SD for carcass conformation and yield

  3. Identification of the second common Jewish Gaucher disease mutation makes possible population-based screening for the heterozygous state

    SciTech Connect

    Beutler, E.; Gelbart, T.; Kuhl, W.; Sorge, J.; West, C. )

    1991-12-01

    Gaucher disease is an autosomal recessive glycolipid storage disease characterized by a deficiency of glucocerebrosidase. The disease is most common in persons of Ashkenazi Jewish ancestry and the most common mutation, accounting for about 75% of the mutant alleles in this population, is known to be an A {yields} G substitution at cDNA nucleotide (nt) 1,226. Screening for this disease has not been possible because nearly 25% of the mutant alleles had not been identified, but linkage analysis led to the suggestion that most of these could be accounted for by a single mutation. The authors now report the discovery of this mutation. The insertion of a single nucleotide, a second guanine at cDNA nt 84 (the 84GG mutation), has been detected in the 5{prime} coding region of the glucocerebrosidase gene. The amount mRNA produced is shown to be normal but since the frameshift produces early termination, no translation product is seen. This finding is consistent with the virtual absence of antigen found in patients carrying this mutation. The 84GG mutation accounts for most of the previously unidentified Gaucher disease mutations in Jewish patients. The common Jewish mutation at nt 1,448 accounted for 95% of all of the Gaucher disease-producing alleles in 71 Jewish patients. This now makes it possible to screen for heterozygotes on a DNA level with a relatively low risk of missing couples at risk for producing infants with Gaucher disease.

  4. Identification of the second common Jewish Gaucher disease mutation makes possible population-based screening for the heterozygous state.

    PubMed

    Beutler, E; Gelbart, T; Kuhl, W; Sorge, J; West, C

    1991-12-01

    Gaucher disease is an autosomal recessive glycolipid storage disease characterized by a deficiency of glucocerebrosidase. The disease is most common in persons of Ashkenazi Jewish ancestry and the most common mutation, accounting for about 75% of the mutant alleles in this population, is known to be an A----G substitution at cDNA nucleotide (nt) 1226. Screening for this disease has not been possible because nearly 25% of the mutant alleles had not been identified, but linkage analysis led to the suggestion that most of these could be accounted for by a single mutation. We now report the discovery of this mutation. The insertion of a single nucleotide, a second guanine at cDNA nt 84 (the 84GG mutation), has been detected in the 5' coding region of the glucocerebrosidase gene. The amount of mRNA produced is shown to be normal but since the frameshift produced early termination, no translation product is seen. This finding is consistent with the virtual absence of antigen found in patients carrying this mutation. The 84GG mutation accounts for most of the previously unidentified Gaucher disease mutations in Jewish patients. The common Jewish mutation at nt 1226, the 84GG mutation, and the less-common mutation at nt 1448 accounted for 95% of all of the Gaucher disease-producing alleles in 71 Jewish patients. This now makes it possible to screen for heterozygotes on a DNA level with a relatively low risk of missing couples at risk for producing infants with Gaucher disease. PMID:1961718

  5. Compound Heterozygous Desmoplakin Mutations Result in a Phenotype with a Combination of Myocardial, Skin, Hair, and Enamel Abnormalities

    PubMed Central

    Mahoney, Mỹ G.; Sadowski, Sara; Brennan, Donna; Pikander, Pekka; Saukko, Pekka; Wahl, James; Aho, Heikki; Heikinheimo, Kristiina; Bruckner-Tuderman, Leena; Fertala, Andrzej; Peltonen, Juha; Uitto, Jouni; Peltonen, Sirkku

    2014-01-01

    Desmoplakin (DP) anchors the intermediate filament cytoskeleton to the desmosomal cadherins and thereby confers structural stability to tissues. In this study, we present a patient with extensive mucocutaneous blisters, epidermolytic palmoplantar keratoderma, nail dystrophy, enamel dysplasia, and sparse woolly hair. The patient died at the age of 14 years from undiagnosed cardiomyopathy. The skin showed hyperplasia and acantholysis in the mid- and lower epidermal layers, whereas the heart showed extensive fibrosis and fibrofatty replacement in both ventricles. Immunofluorescence microscopy showed a reduction in the C-terminal domain of DP in the skin and oral mucosa. Sequencing of the DP gene showed undescribed mutations in the maternal and paternal alleles. Both mutations affected exon 24 encoding the C-terminal domain. The paternal mutation, c.6310delA, leads to a premature stop codon. The maternal mutation, c.7964 C to A, results in a substitution of an aspartic acid for a conserved alanine residue at amino acid 2655 (A2655D). Structural modeling indicated that this mutation changes the electrostatic potential of the mutated region of DP, possibly altering functions that depend on intermolecular interactions. To conclude, we describe a combination of DP mutation phenotypes affecting the skin, heart, hair, and teeth. This patient case emphasizes the importance of heart examination of patients with desmosomal genodermatoses. PMID:19924139

  6. A Japanese infant with localized ichthyosis linearis circumflexa on the palms and soles harbouring a compound heterozygous mutation in the SPINK5 gene.

    PubMed

    Mizuno, Y; Suga, Y; Muramatsu, S; Hasegawa, T; Shimizu, T; Ogawa, H

    2005-09-01

    We report a 6-month-old Japanese boy showing ichthyosis linearis circumflexa localized on the palms and soles. He showed bamboo hairs and aminoaciduria, and was positive for cow's milk and egg IgE antibodies by radioallergosorbent tests. Trypsin-like hydrolytic activity in the patient's lesional stratum corneum showed an activity seven times higher than that in age-matched controls. DNA analysis showed that the patient harboured the compound heterozygous mutations R790X and 1220+1 G-->C in the SPINK5 gene, compatible with the diagnosis of Netherton syndrome (NS). As the genotype/phenotype correlations in NS have not yet been fully clarified, the position of the premature termination codon in the SPINK5 gene may contribute to explain such a mild form of NS in our patient. PMID:16120162

  7. Whole-exome sequencing confirmation of a novel heterozygous mutation in RUNX1 in a pregnant woman with platelet disorder.

    PubMed

    Obata, Miyuki; Tsutsumi, Seiji; Makino, Satoshi; Takahashi, Kanako; Watanabe, Norikazu; Yoshida, Takayuki; Tamiya, Gen; Kurachi, Hirohisa

    2015-01-01

    We describe a successful pregnancy and delivery in a patient with platelet disorder. Prophylactic platelet transfusions ensured that there were no bleeding complications during and after cesarean section. Following delivery, we performed whole exome sequencing, using next generation sequencing, to analyze the DNA samples of the patient and her family, and to identify the disease-causing mutation or variant. To identify de-novo mutations systematically, we also analyzed DNA isolated from the parents of the patient and the neonate. We successfully identified a causative novel mutation c.419 G > A (p.S140N) in RUNX1 in the patient and the neonate. Mutations of RUNX1 have been reported to be associated with familial platelet disorder and with a predisposition for myelodysplasia and/or acute myeloid leukemia. The patient and the neonate require careful long-term hematological follow-up. Identification of mutations by a through whole-exome analysis using next-generation sequencing may be useful in the determination of a long-term follow-up schedule for the patient. PMID:24853048

  8. Compound heterozygous mutations in the noncoding RNU4ATAC cause Roifman Syndrome by disrupting minor intron splicing

    PubMed Central

    Merico, Daniele; Roifman, Maian; Braunschweig, Ulrich; Yuen, Ryan K. C.; Alexandrova, Roumiana; Bates, Andrea; Reid, Brenda; Nalpathamkalam, Thomas; Wang, Zhuozhi; Thiruvahindrapuram, Bhooma; Gray, Paul; Kakakios, Alyson; Peake, Jane; Hogarth, Stephanie; Manson, David; Buncic, Raymond; Pereira, Sergio L.; Herbrick, Jo-Anne; Blencowe, Benjamin J.; Roifman, Chaim M.; Scherer, Stephen W.

    2015-01-01

    Roifman Syndrome is a rare congenital disorder characterized by growth retardation, cognitive delay, spondyloepiphyseal dysplasia and antibody deficiency. Here we utilize whole-genome sequencing of Roifman Syndrome patients to reveal compound heterozygous rare variants that disrupt highly conserved positions of the RNU4ATAC small nuclear RNA gene, a minor spliceosome component that is essential for minor intron splicing. Targeted sequencing confirms allele segregation in six cases from four unrelated families. RNU4ATAC rare variants have been recently reported to cause microcephalic osteodysplastic primordial dwarfism, type I (MOPD1), whose phenotype is distinct from Roifman Syndrome. Strikingly, all six of the Roifman Syndrome cases have one variant that overlaps MOPD1-implicated structural elements, while the other variant overlaps a highly conserved structural element not previously implicated in disease. RNA-seq analysis confirms extensive and specific defects of minor intron splicing. Available allele frequency data suggest that recessive genetic disorders caused by RNU4ATAC rare variants may be more prevalent than previously reported. PMID:26522830

  9. Truncating mutation in the nitric oxide synthase 1 gene is associated with infantile achalasia.

    PubMed

    Shteyer, Eyal; Edvardson, Simon; Wynia-Smith, Sarah L; Pierri, Ciro Leonardo; Zangen, Tzili; Hashavya, Saar; Begin, Michal; Yaacov, Barak; Cinamon, Yuval; Koplewitz, Benjamin Z; Vromen, Amos; Elpeleg, Orly; Smith, Brian C

    2015-03-01

    Nitric oxide is thought to have a role in the pathogenesis of achalasia. We performed a genetic analysis of 2 siblings with infant-onset achalasia. Exome analysis revealed that they were homozygous for a premature stop codon in the gene encoding nitric oxide synthase 1. Kinetic analyses and molecular modeling showed that the truncated protein product has defects in folding, nitric oxide production, and binding of cofactors. Heller myotomy had no effect in these patients, but sildenafil therapy increased their ability to drink. The finding recapitulates the previously reported phenotype of nitric oxide synthase 1-deficient mice, which have achalasia. Nitric oxide signaling appears to be involved in the pathogenesis of achalasia in humans. PMID:25479138

  10. Charcot-Marie-Tooth disease: a novel Tyr145Ser mutation in the myelin protein zero (MPZ, P0) gene causes different phenotypes in homozygous and heterozygous carriers within one family.

    PubMed

    Leal, Alejandro; Berghoff, Corinna; Berghoff, Martin; Del Valle, Gerardo; Contreras, Carlos; Montoya, Olga; Hernández, Erick; Barrantes, Ramiro; Schlötzer-Schrehardt, Ursula; Neundörfer, Bernhard; Reis, André; Rautenstrauss, Bernd; Heuss, Dieter

    2003-08-01

    Charcot-Marie-Tooth disease type 1B (CMT 1B) is caused by mutations in the gene coding for peripheral myelin protein zero (MPZ, P0) that plays a fundamental role in adhesion and compaction of peripheral myelin. Here we report a Costa Rican family with a hereditary peripheral neuropathy due to a novel Tyr145Ser MPZ mutation. Four family members were heterozygously affected; two siblings of two heterozygous carriers were homozygous for this mutation. On neurological examination the heterozygous parents and their homozygous children both showed distal sensory deficits. The mother and the siblings displayed impaired deep tendon reflexes and mild sensory ataxia. The homozygous individuals were more severely affected with an earlier age of onset, distal motor weakness, and pupillary abnormalities. Electrophysiological studies revealed both signs of demyelination and axonal nerve degeneration. The sural nerve biopsy of one sibling showed thinly myelinated nerve fibers, onion bulb formation, and clusters of regenerating fibers. On electron microscopy axonal degeneration and decompaction of inner myelin layers were found. This Costa Rican family shows phenotypic variability depending on the homozygous or heterozygous state of the Tyr145Ser mutation carriers. PMID:12845552

  11. A homozygous truncating mutation in PUS3 expands the role of tRNA modification in normal cognition.

    PubMed

    Shaheen, Ranad; Han, Lu; Faqeih, Eissa; Ewida, Nour; Alobeid, Eman; Phizicky, Eric M; Alkuraya, Fowzan S

    2016-07-01

    Intellectual disability is a common and highly heterogeneous disorder etiologically. In a multiplex consanguineous family, we applied autozygosity mapping and exome sequencing and identified a novel homozygous truncating mutation in PUS3 that fully segregates with the intellectual disability phenotype. Consistent with the known role of Pus3 in isomerizing uracil to pseudouridine at positions 38 and 39 in tRNA, we found a significant reduction in this post-transcriptional modification of tRNA in patient cells. Our finding adds to a growing list of intellectual disability disorders that are caused by perturbation of various tRNA modifications, which highlights the sensitivity of the brain to these highly conserved processes. PMID:27055666

  12. Wiskott-Aldrich syndrome in a girl caused by heterozygous WASP mutation and extremely skewed X-chromosome inactivation: a novel association with maternal uniparental isodisomy 6.

    PubMed

    Takimoto, Tomohito; Takada, Hidetoshi; Ishimura, Masataka; Kirino, Makiko; Hata, Kenichiro; Ohara, Osamu; Morio, Tomohiro; Hara, Toshiro

    2015-01-01

    Wiskott-Aldrich syndrome (WAS) is an X-linked disease characterized by microthrombocytopenia, eczema and immune deficiency, caused primarily by mutations in the WASP (Wiskott-Aldrich syndrome protein) gene. Female carriers are usually asymptomatic because of the preferential activation of the normal, nonmutated X-chromosome in their hematopoietic cells. We report our observations of a female child with WAS, who displayed symptoms of congenital thrombocytopenia. DNA sequencing analysis of the WASP gene revealed a heterozygous nonsense mutation in exon 10. The expressions of WASP and normal WASP mRNA were defective. We found preferential inactivation of the X-chromosome on which wild-type WASP was located. Single-nucleotide polymorphism microarray testing and the analysis of the polymorphic variable number of tandem repeat regions revealed maternal uniparental isodisomy of chromosome 6 (UPD6). Our results underscore the importance of WASP evaluation in females with congenital thrombocytopenia and suggest that UPD6 might be related to the pathophysiology of nonrandom X-chromosome inactivation. PMID:25633059

  13. Identification of a De Novo Heterozygous Missense FLNB Mutation in Lethal Atelosteogenesis Type I by Exome Sequencing

    PubMed Central

    Jeon, Ga Won; Lee, Mi-Na; Jung, Ji Mi; Hong, Seong Yeon; Kim, Young Nam; Sin, Jong Beom

    2014-01-01

    Background Atelosteogenesis type I (AO-I) is a rare lethal skeletal dysplastic disorder characterized by severe short-limbed dwarfism and dislocated hips, knees, and elbows. AO-I is caused by mutations in the filamin B (FLNB) gene; however, several other genes can cause AO-like lethal skeletal dysplasias. Methods In order to screen all possible genes associated with AO-like lethal skeletal dysplasias simultaneously, we performed whole-exome sequencing in a female newborn having clinical features of AO-I. Results Exome sequencing identified a novel missense variant (c.517G>A; p.Ala173Thr) in exon 2 of the FLNB gene in the patient. Sanger sequencing validated this variant, and genetic analysis of the patient's parents suggested a de novo occurrence of the variant. Conclusions This study shows that exome sequencing can be a useful tool for the identification of causative mutations in lethal skeletal dysplasia patients. PMID:24624349

  14. Girl with signs of Pelizaeus-Merzbacher disease heterozygous for a mutation in exon 2 of the proteolipid protein gene

    SciTech Connect

    Hodes, M.E.; DeMyer, W.E.; Pratt, V.M.

    1995-02-13

    We studied a female infant with clinical signs of Pelizaeus-Merzbacher disease (PMD), who has a familial mutation (C{sup 41}{r_arrow}T) in exon 2 of the proteolipid protein gene (PLP), and selected relatives. While the carrier mother and grandmother of the proposita currently are neurologically normal and show normal T2 magnetic resonance imaging (MRI) of the brain, the infant has a neurological picture, MRIs, and brain auditory evoked response (BAER) consistent with that diagnosis. The data here presented show that PMD can occur in females carrying a mutation in the PLP gene. Our experience with the MRIs of this patient, her mother and grandmother, and those of a previously reported family show that molecular genetic analysis and not MRI is the appropriate means for carrier detection. 22 refs., 5 figs.

  15. Novel heterozygous mutation c.4282G>T in the SCN5A gene in a family with Brugada syndrome

    PubMed Central

    ZHU, JIAN-FANG; DU, LI-LI; TIAN, YUAN; DU, YI-MEI; ZHANG, LING; ZHOU, TAO; TIAN, LI

    2015-01-01

    Brugada syndrome (BrS) is a rare, inherited arrhythmia syndrome. The most well-known gene that is responsible for causing BrS is SCN5A, which encodes the human cardiac Na+ channel (Nav1.5) α subunit. To date, it has been reported that >100 mutations in SCN5A can cause BrS. In the present study, a novel BrS-associated Nav1.5 mutation, A1428S, was identified in a proband who was successfully resuscitated from an episode of sudden collapse during walking. This mutation was further confirmed by polymerase chain reaction (PCR)-restriction fragment length polymorphism analysis, which showed that the PCR fragment containing the mutation A1428S could be cut by the restriction enzyme Nsi1, yielding two shorter DNA fragments of 329 and 159 bp, which were not present in family members homozygous for the wild-type (WT) allele. Furthermore, the electrophysiological properties were analyzed by patch clamp technique. Current density was decreased in the A1428S mutant compared that in the WT. However, neither the steady-state activation or inactivation, nor the recovery from inactivation exhibited changes between the A1428S mutant and the WT. In conclusion, the results of this study are consistent with the hypothesis that a reduction in Nav1.5 channel function is involved in the pathogenesis of BrS. The structural-functional study of the Nav1.5 channel enhances the present understanding the pathophysiological function of the channel. PMID:26136871

  16. Two coexisting heterozygous frameshift mutations in PROP1 are responsible for a different phenotype of combined pituitary hormone deficiency.

    PubMed

    Ziemnicka, K; Budny, B; Drobnik, K; Baszko-Błaszyk, D; Stajgis, M; Katulska, K; Waśko, R; Wrotkowska, E; Słomski, R; Ruchała, M

    2016-08-01

    The role of genetic background in childhood-onset combined pituitary hormone deficiency (CPHD) has been extensively studied. The major contributors are the PROP1, POU1F1, LHX3, LHX4 and HESX1 genes coding transcription factors implicated in pituitary organogenesis. The clinical consequences of mutations encompass impaired synthesis of a growth hormone (GH) and one or more concurrent pituitary hormones (i.e. LH, FSH, TSH, PRL). Manifestation of the disorder may vary due to various mutation impacts on the final gene products or an influence of environmental factors during pituitary organogenesis. We describe the clinical and molecular characteristics of two brothers aged 47 and 39 years presenting an uncommon manifestation of congenital hypopituitarism. Sequencing of the PROP1, POU1F1, LHX3, LHX4 and HESX1 genes was performed to confirm the genetic origin of the disorder. A compound heterozygosity in the PROP1 gene has been identified for both probands. The first change represents a mutational hot spot (c.150delA, p.R53fsX164), whereas the second is a novel alteration (p.R112X) that leads to protein disruption. Based on precise genetic diagnosis, an in silico prediction of a p.R112X mutation on protein architecture was performed. The resulting clinical phenotype was surprisingly distinct compared to most patients with genetic alterations in PROP1 reported in the current literature. This may be caused by a residual activity of a newly identified p.R112X protein that preserves over 70 % of the homeodomain structure. This examination may confirm a key role of a DNA-binding homeodomain in maintaining PROP1 functionality and suggests a conceivable explanation of an unusual phenotype. PMID:26608600

  17. Two heterozygous mutations of the AMH gene in a Japanese patient with persistent Müllerian duct syndrome.

    PubMed

    Morikawa, Shuntaro; Moriya, Kimihiko; Ishizu, Katsura; Tajima, Toshihiro

    2014-11-01

    Persistent Müllerian duct syndrome (PMDS) is an autosomal recessive disorder of sex development (DSD) characterized by the presence of Müllerian duct derivatives in 46, XY phenotypic males. To date, more than 50 different mutations of the anti-Müllerian hormone gene (AMH) have been reported. Here, we report two novel mutations of AMH in a Japanese patient with PMDS. A 1-year-old male presented with bilateral cryptorchidism and normal male external genitalia. A laparoscopic surgery revealed a uterus and fallopian tubes. Serum AMH was very low. The patient's elder brother was also diagnosed as having PMDS at another hospital. Genetic analysis of AMH showed two novel mutations of p.N486T and p.V527L. Given that these two amino acids are well conserved among different species of AMH, the substitution of two amino acids might affect the normal function of AMH. In conclusion, PMDS should be included in differential diagnoses of cryptorchidism. PMID:25026127

  18. An internal promoter underlies the difference in disease severity between N- and C-terminal truncation mutations of Titin in zebrafish

    PubMed Central

    Zou, Jun; Tran, Diana; Baalbaki, Mai; Tang, Ling Fung; Poon, Annie; Pelonero, Angelo; Titus, Erron W; Yuan, Christiana; Shi, Chenxu; Patchava, Shruthi; Halper, Elizabeth; Garg, Jasmine; Movsesyan, Irina; Yin, Chaoying; Wu, Roland; Wilsbacher, Lisa D; Liu, Jiandong; Hager, Ronald L; Coughlin, Shaun R; Jinek, Martin; Pullinger, Clive R; Kane, John P; Hart, Daniel O; Kwok, Pui-Yan; Deo, Rahul C

    2015-01-01

    Truncating mutations in the giant sarcomeric protein Titin result in dilated cardiomyopathy and skeletal myopathy. The most severely affected dilated cardiomyopathy patients harbor Titin truncations in the C-terminal two-thirds of the protein, suggesting that mutation position might influence disease mechanism. Using CRISPR/Cas9 technology, we generated six zebrafish lines with Titin truncations in the N-terminal and C-terminal regions. Although all exons were constitutive, C-terminal mutations caused severe myopathy whereas N-terminal mutations demonstrated mild phenotypes. Surprisingly, neither mutation type acted as a dominant negative. Instead, we found a conserved internal promoter at the precise position where divergence in disease severity occurs, with the resulting protein product partially rescuing N-terminal truncations. In addition to its clinical implications, our work may shed light on a long-standing mystery regarding the architecture of the sarcomere. DOI: http://dx.doi.org/10.7554/eLife.09406.001 PMID:26473617

  19. Canine chondrodysplasia caused by a truncating mutation in collagen-binding integrin alpha subunit 10.

    PubMed

    Kyöstilä, Kaisa; Lappalainen, Anu K; Lohi, Hannes

    2013-01-01

    The skeletal dysplasias are disorders of the bone and cartilage tissues. Similarly to humans, several dog breeds have been reported to suffer from different types of genetic skeletal disorders. We have studied the molecular genetic background of an autosomal recessive chondrodysplasia that affects the Norwegian Elkhound and Karelian Bear Dog breeds. The affected dogs suffer from disproportionate short stature dwarfism of varying severity. Through a genome-wide approach, we mapped the chondrodysplasia locus to a 2-Mb region on canine chromosome 17 in nine affected and nine healthy Elkhounds (praw = 7.42×10(-6), pgenome-wide = 0.013). The associated locus contained a promising candidate gene, cartilage specific integrin alpha 10 (ITGA10), and mutation screening of its 30 exons revealed a nonsense mutation in exon 16 (c.2083C>T; p.Arg695*) that segregated fully with the disease in both breeds (p = 2.5×10(-23)). A 24% mutation carrier frequency was indicated in NEs and an 8% frequency in KBDs. The ITGA10 gene product, integrin receptor α10-subunit combines into a collagen-binding α10β1 integrin receptor, which is expressed in cartilage chondrocytes and mediates chondrocyte-matrix interactions during endochondral ossification. As a consequence of the nonsense mutation, the α10-protein was not detected in the affected cartilage tissue. The canine phenotype highlights the importance of the α10β1 integrin in bone growth, and the large animal model could be utilized to further delineate its specific functions. Finally, this study revealed a candidate gene for human chondrodysplasias and enabled the development of a genetic test for breeding purposes to eradicate the disease from the two dog breeds. PMID:24086591

  20. Successful percutaneous coronary intervention in a patient with combined deficiency of FV and FVIII due to novel compound heterozygous mutations in LMAN1.

    PubMed

    Patel, A J; Liu, H-H; Lager, R A; Malkovska, V; Zhang, B

    2013-07-01

    Percutaneous coronary intervention (PCI) in patients with congenital coagulation factor deficiencies presents a unique challenge. They are not only at increased risk of perioperative bleeding but can also suffer thrombosis of the stent as preventive anticoagulation and antiplatelet therapy is difficult. Several cases of successful PCI have been described in patients with haemophilia A and B, but there are no reports in patients with combined coagulation factor deficiencies. We used PCI to treat the coronary artery disease in a patient with the combined deficiency of factor V and factor VIII (F5F8D) and analysed the molecular basis of the disorder for this patient. A 68-year-old patient was admitted for urgent PCI with bare metal stent placement after the diagnosis of the F5F8D. Peripheral blood DNA was extracted for the sequence analysis of LMAN1 and MCFD2 genes. Mutations in LMAN1 was confirmed by molecular cloning of the PCR product and resequencing of the resulting clones. The patient underwent successful PCI with good long-term outcome. Our patient tolerated anticoagulation therapy well, with unfractionated heparin, and double antiplatelet therapy while he was initially supported with fresh frozen plasma and recombinant FVIII. Molecular analysis revealed that the patient carries unusual compound heterozygous frameshift mutations on the same microsatellite repeat region in exon 8 of LMAN1, one of which is a novel mutation (c.912delA). Our results suggest that patients with F5F8D can safely undergo PCI for coronary artery disease, with the treatment individualized to the specific patient. PMID:23557496

  1. Novel de novo heterozygous FGFR1 mutation in two siblings with Hartsfield syndrome: a case of gonadal mosaicism.

    PubMed

    Dhamija, Radhika; Kirmani, Salman; Wang, Xiangling; Ferber, Matthew J; Wieben, Eric D; Lazaridis, Konstantinos N; Babovic-Vuksanovic, Dusica

    2014-09-01

    Hartsfield syndrome has been recently reported to be associated with mutations in FGFR1 however, to this date; no familial cases have been reported. In this report, we describe two siblings with Hartsfield syndrome and a novel de novo FGFR1 mutation suggesting gonadal mosaicism. The proband presented at our institution at age 6 years with a clinical diagnosis of Hartsfield syndrome and requesting further genetic evaluation. Previous studies included a normal karyotype, oligonucleotide array, and single gene testing for nonsyndromic holoprosencephaly (SHH, SIX3, ZIC2, TGIF). At the age of 6 years, exome sequencing was performed and a de novo novel missense variant was identified in FGFR1 (coding for fibroblast growth factor-1) on chromosome 8p12: c.1880G>C (p.R627T). Subsequently, a younger sibling was born with the same phenotype (holoprosencephaly, ectrodactyly of bilateral hands and feet and bilateral cleft lip and palate). Targeted sequencing of FGFR1 revealed the identical variant that was previously identified in the proband. To our knowledge this observation is the first documentation of familial recurrence of Hartsfield syndrome. As both parents were negative for the sequence variant in FGFR1 gene by testing peripheral blood samples, this suggests gonadal mosaicism. The frequency of gonadal mosaicism in Hartsfield syndrome is not known however given our case, this possibility should be taken in to consideration for recurrence risk estimation in children of clinically unaffected parents. PMID:24888332

  2. De Novo Truncating Mutations in the Kinetochore-Microtubules Attachment Gene CHAMP1 Cause Syndromic Intellectual Disability.

    PubMed

    Isidor, Bertrand; Küry, Sébastien; Rosenfeld, Jill A; Besnard, Thomas; Schmitt, Sébastien; Joss, Shelagh; Davies, Sally J; Lebel, Robert Roger; Henderson, Alex; Schaaf, Christian P; Streff, Haley E; Yang, Yaping; Jain, Vani; Chida, Nodoka; Latypova, Xenia; Le Caignec, Cédric; Cogné, Benjamin; Mercier, Sandra; Vincent, Marie; Colin, Estelle; Bonneau, Dominique; Denommé, Anne-Sophie; Parent, Philippe; Gilbert-Dussardier, Brigitte; Odent, Sylvie; Toutain, Annick; Piton, Amélie; Dina, Christian; Donnart, Audrey; Lindenbaum, Pierre; Charpentier, Eric; Redon, Richard; Iemura, Kenji; Ikeda, Masanori; Tanaka, Kozo; Bézieau, Stéphane

    2016-04-01

    A rare syndromic form of intellectual disability with impaired speech was recently found associated with mutations in CHAMP1 (chromosome alignment-maintaining phosphoprotein 1), the protein product of which is directly involved in microtubule-kinetochore attachment. Through whole-exome sequencing in six unrelated nonconsanguineous families having a sporadic case of intellectual disability, we identified six novel de novo truncating mutations in CHAMP1: c.1880C>G p.(Ser627*), c.1489C>T; p.(Arg497*), c.1876_1877delAG; p.(Ser626Leufs*4), c.1043G>A; p.(Trp348*), c.1002G>A; p.(Trp334*), and c.958_959delCC; p.(Pro320*). Our clinical observations confirm the phenotypic homogeneity of the syndrome, which represents therefore a distinct clinical entity. Besides, our functional studies show that CHAMP1 protein variants are delocalized from chromatin and are unable to bind to two of its direct partners, POGZ and HP1. These data suggest a pathogenic mechanism of the CHAMP1-associated intellectual disability syndrome mediated by direct interacting partners of CHAMP1, several of which are involved in chromo/kinetochore-related disorders. PMID:26751395

  3. De Novo Truncating Mutations in AHDC1 in Individuals with Syndromic Expressive Language Delay, Hypotonia, and Sleep Apnea

    PubMed Central

    Xia, Fan; Bainbridge, Matthew N.; Tan, Tiong Yang; Wangler, Michael F.; Scheuerle, Angela E.; Zackai, Elaine H.; Harr, Margaret H.; Sutton, V. Reid; Nalam, Roopa L.; Zhu, Wenmiao; Nash, Margot; Ryan, Monique M.; Yaplito-Lee, Joy; Hunter, Jill V.; Deardorff, Matthew A.; Penney, Samantha J.; Beaudet, Arthur L.; Plon, Sharon E.; Boerwinkle, Eric A.; Lupski, James R.; Eng, Christine M.; Muzny, Donna M.; Yang, Yaping; Gibbs, Richard A.

    2014-01-01

    Clinical whole-exome sequencing (WES) for identification of mutations leading to Mendelian disease has been offered to the medical community since 2011. Clinically undiagnosed neurological disorders are the most frequent basis for test referral, and currently, approximately 25% of such cases are diagnosed at the molecular level. To date, there are approximately 4,000 “known” disease-associated loci, and many are associated with striking dysmorphic features, making genotype-phenotype correlations relatively straightforward. A significant fraction of cases, however, lack characteristic dysmorphism or clinical pathognomonic traits and are dependent upon molecular tests for definitive diagnoses. Further, many molecular diagnoses are guided by recent gene-disease association discoveries. Hence, there is a critical interplay between clinical testing and research leading to gene-disease association discovery. Here, we describe four probands, all of whom presented with hypotonia, intellectual disability, global developmental delay, and mildly dysmorphic facial features. Three of the four also had sleep apnea. Each was a simplex case without a remarkable family history. Using WES, we identified AHDC1 de novo truncating mutations that most likely cause this genetic syndrome. PMID:24791903

  4. De novo truncating mutations in AHDC1 in individuals with syndromic expressive language delay, hypotonia, and sleep apnea.

    PubMed

    Xia, Fan; Bainbridge, Matthew N; Tan, Tiong Yang; Wangler, Michael F; Scheuerle, Angela E; Zackai, Elaine H; Harr, Margaret H; Sutton, V Reid; Nalam, Roopa L; Zhu, Wenmiao; Nash, Margot; Ryan, Monique M; Yaplito-Lee, Joy; Hunter, Jill V; Deardorff, Matthew A; Penney, Samantha J; Beaudet, Arthur L; Plon, Sharon E; Boerwinkle, Eric A; Lupski, James R; Eng, Christine M; Muzny, Donna M; Yang, Yaping; Gibbs, Richard A

    2014-05-01

    Clinical whole-exome sequencing (WES) for identification of mutations leading to Mendelian disease has been offered to the medical community since 2011. Clinically undiagnosed neurological disorders are the most frequent basis for test referral, and currently, approximately 25% of such cases are diagnosed at the molecular level. To date, there are approximately 4,000 "known" disease-associated loci, and many are associated with striking dysmorphic features, making genotype-phenotype correlations relatively straightforward. A significant fraction of cases, however, lack characteristic dysmorphism or clinical pathognomonic traits and are dependent upon molecular tests for definitive diagnoses. Further, many molecular diagnoses are guided by recent gene-disease association discoveries. Hence, there is a critical interplay between clinical testing and research leading to gene-disease association discovery. Here, we describe four probands, all of whom presented with hypotonia, intellectual disability, global developmental delay, and mildly dysmorphic facial features. Three of the four also had sleep apnea. Each was a simplex case without a remarkable family history. Using WES, we identified AHDC1 de novo truncating mutations that most likely cause this genetic syndrome. PMID:24791903

  5. The identification of point mutations in Duchenne muscular dystrophy patients by using reverse-transcription PCR and the protein truncation test

    SciTech Connect

    Gardner, R.J.; Bobrow, M.; Roberts, R.G.

    1995-08-01

    The protein truncation test (PTT) is a mutation-detection method that monitors the integrity of the open reading frame (ORF). More than 60% of cases of Duchenne muscular dystrophy (DMD) result from gross frameshifting deletions in the dystrophin gene that are detectable by multiplex PCR system. It has become apparent that virtually all of the remaining DMD mutations also disrupt the translational reading frame, making the PTT a logical next step toward a comprehensive strategy for the identification of all DMD mutations. We report here a pilot study involving 22 patients and describe the mutations characterized. These constitute 12 point mutations or small insertions/deletions and 4 gross rearrangements. We also have a remaining five patients in whom there does not appear to be mutation in the ORF. We believe that reverse-transcription-PCR/PTT is an efficient method by which to screen for small mutations in DMD patients with no deletion. 29 refs., 2 figs., 3 tabs.

  6. A novel heterozygous mutation in the ATP6V0A4 gene encoding the V-ATPase a4 subunit in an adult patient with incomplete distal renal tubular acidosis

    PubMed Central

    Imai, Eri; Kaneko, Shuzo; Mori, Takayasu; Okado, Tomokazu; Uchida, Shinichi; Tsukamoto, Yusuke

    2016-01-01

    A 40-year-old Japanese man who had a medical history of hypokalemic periodic paralysis 4 months prior was hospitalized to undergo a cholecystectomy. Hypokalemia, nephrocalcinosis and alkaluria suggesting distal renal tubular acidosis (dRTA) were detected, but metabolic acidosis was not evident. An ammonium chloride/furosemide–fludrocortisone/bicarbonate loading test demonstrated a remarkable disability in urinary H+ excretion. A novel heterozygous mutation in the ATP6V0A4 gene encoding the vacuolar H+-ATPase (V-ATPase) a4 subunit p.S544L was detected. Among cases of V-ATPase a4 mutations, this is the first case in which a heterozygous mutation developed to an incomplete or latent form of dRTA. PMID:27274828

  7. A novel heterozygous mutation in the ATP6V0A4 gene encoding the V-ATPase a4 subunit in an adult patient with incomplete distal renal tubular acidosis.

    PubMed

    Imai, Eri; Kaneko, Shuzo; Mori, Takayasu; Okado, Tomokazu; Uchida, Shinichi; Tsukamoto, Yusuke

    2016-06-01

    A 40-year-old Japanese man who had a medical history of hypokalemic periodic paralysis 4 months prior was hospitalized to undergo a cholecystectomy. Hypokalemia, nephrocalcinosis and alkaluria suggesting distal renal tubular acidosis (dRTA) were detected, but metabolic acidosis was not evident. An ammonium chloride/furosemide-fludrocortisone/bicarbonate loading test demonstrated a remarkable disability in urinary H(+) excretion. A novel heterozygous mutation in the ATP6V0A4 gene encoding the vacuolar H(+)-ATPase (V-ATPase) a4 subunit p.S544L was detected. Among cases of V-ATPase a4 mutations, this is the first case in which a heterozygous mutation developed to an incomplete or latent form of dRTA. PMID:27274828

  8. Specific combination of compound heterozygous mutations in 17β-hydroxysteroid dehydrogenase type 4 (HSD17B4) defines a new subtype of D-bifunctional protein deficiency

    PubMed Central

    2012-01-01

    Background D-bifunctional protein (DBP) deficiency is typically apparent within the first month of life with most infants demonstrating hypotonia, psychomotor delay and seizures. Few children survive beyond two years of age. Among patients with prolonged survival all demonstrate severe gross motor delay, absent language development, and severe hearing and visual impairment. DBP contains three catalytically active domains; an N-terminal dehydrogenase, a central hydratase and a C-terminal sterol carrier protein-2-like domain. Three subtypes of the disease are identified based upon the domain affected; DBP type I results from a combined deficiency of dehydrogenase and hydratase activity; DBP type II from isolated hydratase deficiency and DBP type III from isolated dehydrogenase deficiency. Here we report two brothers (16½ and 14 years old) with DBP deficiency characterized by normal early childhood followed by sensorineural hearing loss, progressive cerebellar and sensory ataxia and subclinical retinitis pigmentosa. Methods and results Biochemical analysis revealed normal levels of plasma VLCFA, phytanic acid and pristanic acid, and normal bile acids in urine; based on these results no diagnosis was made. Exome analysis was performed using the Agilent SureSelect 50Mb All Exon Kit and the Illumina HiSeq 2000 next-generation-sequencing (NGS) platform. Compound heterozygous mutations were identified by exome sequencing and confirmed by Sanger sequencing within the dehydrogenase domain (c.101C>T; p.Ala34Val) and hydratase domain (c.1547T>C; p.Ile516Thr) of the 17β-hydroxysteroid dehydrogenase type 4 gene (HSD17B4). These mutations have been previously reported in patients with severe-forms of DBP deficiency, however each mutation was reported in combination with another mutation affecting the same domain. Subsequent studies in fibroblasts revealed normal VLCFA levels, normal C26:0 but reduced pristanic acid beta-oxidation activity. Both DBP hydratase and dehydrogenase

  9. Sequencing the GRHL3 Coding Region Reveals Rare Truncating Mutations and a Common Susceptibility Variant for Nonsyndromic Cleft Palate.

    PubMed

    Mangold, Elisabeth; Böhmer, Anne C; Ishorst, Nina; Hoebel, Ann-Kathrin; Gültepe, Pinar; Schuenke, Hannah; Klamt, Johanna; Hofmann, Andrea; Gölz, Lina; Raff, Ruth; Tessmann, Peter; Nowak, Stefanie; Reutter, Heiko; Hemprich, Alexander; Kreusch, Thomas; Kramer, Franz-Josef; Braumann, Bert; Reich, Rudolf; Schmidt, Gül; Jäger, Andreas; Reiter, Rudolf; Brosch, Sibylle; Stavusis, Janis; Ishida, Miho; Seselgyte, Rimante; Moore, Gudrun E; Nöthen, Markus M; Borck, Guntram; Aldhorae, Khalid A; Lace, Baiba; Stanier, Philip; Knapp, Michael; Ludwig, Kerstin U

    2016-04-01

    Nonsyndromic cleft lip with/without cleft palate (nsCL/P) and nonsyndromic cleft palate only (nsCPO) are the most frequent subphenotypes of orofacial clefts. A common syndromic form of orofacial clefting is Van der Woude syndrome (VWS) where individuals have CL/P or CPO, often but not always associated with lower lip pits. Recently, ∼5% of VWS-affected individuals were identified with mutations in the grainy head-like 3 gene (GRHL3). To investigate GRHL3 in nonsyndromic clefting, we sequenced its coding region in 576 Europeans with nsCL/P and 96 with nsCPO. Most strikingly, nsCPO-affected individuals had a higher minor allele frequency for rs41268753 (0.099) than control subjects (0.049; p = 1.24 × 10(-2)). This association was replicated in nsCPO/control cohorts from Latvia, Yemen, and the UK (pcombined = 2.63 × 10(-5); ORallelic = 2.46 [95% CI 1.6-3.7]) and reached genome-wide significance in combination with imputed data from a GWAS in nsCPO triads (p = 2.73 × 10(-9)). Notably, rs41268753 is not associated with nsCL/P (p = 0.45). rs41268753 encodes the highly conserved p.Thr454Met (c.1361C>T) (GERP = 5.3), which prediction programs denote as deleterious, has a CADD score of 29.6, and increases protein binding capacity in silico. Sequencing also revealed four novel truncating GRHL3 mutations including two that were de novo in four families, where all nine individuals harboring mutations had nsCPO. This is important for genetic counseling: given that VWS is rare compared to nsCPO, our data suggest that dominant GRHL3 mutations are more likely to cause nonsyndromic than syndromic CPO. Thus, with rare dominant mutations and a common risk variant in the coding region, we have identified an important contribution for GRHL3 in nsCPO. PMID:27018475

  10. Mitotic recombination and compound-heterozygous mutations are predominant NF1-inactivating mechanisms in children with juvenile myelomonocytic leukemia and neurofibromatosis type 1.

    PubMed

    Steinemann, Doris; Arning, Larissa; Praulich, Inka; Stuhrmann, Manfred; Hasle, Henrik; Stary, Jan; Schlegelberger, Brigitte; Niemeyer, Charlotte M; Flotho, Christian

    2010-02-01

    Children with neurofibromatosis type 1 (NF-1), being constitutionally deficient for one allele of the NF1 gene, are at greatly increased risk of juvenile myelomonocytic leukemia (JMML). NF1 is a negative regulator of RAS pathway activity, which has a central role in JMML. To further clarify the role of biallelic NF1 gene inactivation in the pathogenesis of JMML, we investigated the somatic NF1 lesion in 10 samples from children with JMML/NF-1. We report that two-thirds of somatic events involved loss of heterozygosity (LOH) at the NF1 locus, predominantly caused by segmental uniparental disomy of large parts of chromosome arm 17q. One-third of leukemias showed compound-heterozygous NF1-inactivating mutations. A minority of cases exhibited somatic interstitial deletions. The findings reinforce the emerging role of somatic mitotic recombination as a leukemogenic mechanism. In addition, they support the concept that biallelic NF1 inactivation in hematopoietic progenitor cells is required for transformation to JMML in children with NF-1. PMID:20015894

  11. Deep vein thrombosis, ecythyma gangrenosum and heparin-induced thrombocytopenia occurring in a man with a heterozygous Factor V Leiden mutation

    PubMed Central

    Apostolova, Mariya; Weng, Baoying; Pote, Harry H.; Ashcraft, Harold; Goldblatt, Curtis; Woolley, Paul V.

    2012-01-01

    Skin necrosis and limb gangrene are occasional thrombotic manifestations of anticoagulation therapy. We report a man heterozygous for the Factor V Leiden (FVL) mutation, and with a history of recurrent deep venous thrombosis, who initially presented with a necrotic skin lesion of the right flank while on warfarin therapy with a therapeutic international normalized ratio. Warfarin was discontinued and he received intravenous heparin. Thereafter he developed thrombocytopenia and pedal erythema and was diagnosed with heparin-induced thrombocytopenia (HIT). Heparin was replaced with argatroban. He ultimately underwent bilateral below-knee amputations for the thrombotic complications of the HIT. The initial necrotic lesion healed with antibiotics and wound care. Pathologic examination of multiple biopsy specimens revealed two separate lesions. One was necrotic tissue infiltrated with methicillin resistant Staphylococcus aureus having features of ecthyma gangrenosum. The second showed thrombotic changes consistent with HIT. The case illustrates the differential diagnosis of skin necrosis and limb gangrene in patients on warfarin and heparin, and also the clinical complexities that can occur in a FVL heterozygote. PMID:23355938

  12. Heterozygous Loss-of-Function SEC61A1 Mutations Cause Autosomal-Dominant Tubulo-Interstitial and Glomerulocystic Kidney Disease with Anemia.

    PubMed

    Bolar, Nikhita Ajit; Golzio, Christelle; Živná, Martina; Hayot, Gaëlle; Van Hemelrijk, Christine; Schepers, Dorien; Vandeweyer, Geert; Hoischen, Alexander; Huyghe, Jeroen R; Raes, Ann; Matthys, Erve; Sys, Emiel; Azou, Myriam; Gubler, Marie-Claire; Praet, Marleen; Van Camp, Guy; McFadden, Kelsey; Pediaditakis, Igor; Přistoupilová, Anna; Hodaňová, Kateřina; Vyleťal, Petr; Hartmannová, Hana; Stránecký, Viktor; Hůlková, Helena; Barešová, Veronika; Jedličková, Ivana; Sovová, Jana; Hnízda, Aleš; Kidd, Kendrah; Bleyer, Anthony J; Spong, Richard S; Vande Walle, Johan; Mortier, Geert; Brunner, Han; Van Laer, Lut; Kmoch, Stanislav; Katsanis, Nicholas; Loeys, Bart L

    2016-07-01

    Autosomal-dominant tubulo-interstitial kidney disease (ADTKD) encompasses a group of disorders characterized by renal tubular and interstitial abnormalities, leading to slow progressive loss of kidney function requiring dialysis and kidney transplantation. Mutations in UMOD, MUC1, and REN are responsible for many, but not all, cases of ADTKD. We report on two families with ADTKD and congenital anemia accompanied by either intrauterine growth retardation or neutropenia. Ultrasound and kidney biopsy revealed small dysplastic kidneys with cysts and tubular atrophy with secondary glomerular sclerosis, respectively. Exclusion of known ADTKD genes coupled with linkage analysis, whole-exome sequencing, and targeted re-sequencing identified heterozygous missense variants in SEC61A1-c.553A>G (p.Thr185Ala) and c.200T>G (p.Val67Gly)-both affecting functionally important and conserved residues in SEC61. Both transiently expressed SEC6A1A variants are delocalized to the Golgi, a finding confirmed in a renal biopsy from an affected individual. Suppression or CRISPR-mediated deletions of sec61al2 in zebrafish embryos induced convolution defects of the pronephric tubules but not the pronephric ducts, consistent with the tubular atrophy observed in the affected individuals. Human mRNA encoding either of the two pathogenic alleles failed to rescue this phenotype as opposed to a complete rescue by human wild-type mRNA. Taken together, these findings provide a mechanism by which mutations in SEC61A1 lead to an autosomal-dominant syndromic form of progressive chronic kidney disease. We highlight protein translocation defects across the endoplasmic reticulum membrane, the principal role of the SEC61 complex, as a contributory pathogenic mechanism for ADTKD. PMID:27392076

  13. Heterozygous Mutations of FREM1 Are Associated with an Increased Risk of Isolated Metopic Craniosynostosis in Humans and Mice

    PubMed Central

    Short, Kieran M.; Wiradjaja, Fenny; Janssen, Irene M.; Jehee, Fernanda; Bertola, Debora; Liu, Jia; Yagnik, Garima; Sekiguchi, Kiyotoshi; Kiyozumi, Daiji; van Bokhoven, Hans; Marcelis, Carlo; Cunningham, Michael L.; Anderson, Peter J.; Boyadjiev, Simeon A.; Passos-Bueno, Maria Rita; Veltman, Joris A.; Smyth, Ian; Buckley, Michael F.; Roscioli, Tony

    2011-01-01

    The premature fusion of the paired frontal bones results in metopic craniosynostosis (MC) and gives rise to the clinical phenotype of trigonocephaly. Deletions of chromosome 9p22.3 are well described as a cause of MC with variably penetrant midface hypoplasia. In order to identify the gene responsible for the trigonocephaly component of the 9p22.3 syndrome, a cohort of 109 patients were assessed by high-resolution arrays and MLPA for copy number variations (CNVs) involving 9p22. Five CNVs involving FREM1, all of which were de novo variants, were identified by array-based analyses. The remaining 104 patients with MC were then subjected to targeted FREM1 gene re-sequencing, which identified 3 further mutant alleles, one of which was de novo. Consistent with a pathogenic role, mouse Frem1 mRNA and protein expression was demonstrated in the metopic suture as well as in the pericranium and dura mater. Micro-computed tomography based analyses of the mouse posterior frontal (PF) suture, the human metopic suture equivalent, revealed advanced fusion in all mice homozygous for either of two different Frem1 mutant alleles, while heterozygotes exhibited variably penetrant PF suture anomalies. Gene dosage-related penetrance of midfacial hypoplasia was also evident in the Frem1 mutants. These data suggest that CNVs and mutations involving FREM1 can be identified in a significant percentage of people with MC with or without midface hypoplasia. Furthermore, we present Frem1 mutant mice as the first bona fide mouse model of human metopic craniosynostosis and a new model for midfacial hypoplasia. PMID:21931569

  14. Phenotypic spectrum associated with PTCHD1 deletions and truncating mutations includes intellectual disability and autism spectrum disorder.

    PubMed

    Chaudhry, A; Noor, A; Degagne, B; Baker, K; Bok, L A; Brady, A F; Chitayat, D; Chung, B H; Cytrynbaum, C; Dyment, D; Filges, I; Helm, B; Hutchison, H T; Jeng, L J B; Laumonnier, F; Marshall, C R; Menzel, M; Parkash, S; Parker, M J; Raymond, L F; Rideout, A L; Roberts, W; Rupps, R; Schanze, I; Schrander-Stumpel, C T R M; Speevak, M D; Stavropoulos, D J; Stevens, S J C; Thomas, E R A; Toutain, A; Vergano, S; Weksberg, R; Scherer, S W; Vincent, J B; Carter, M T

    2015-09-01

    Studies of genomic copy number variants (CNVs) have identified genes associated with autism spectrum disorder (ASD) and intellectual disability (ID) such as NRXN1, SHANK2, SHANK3 and PTCHD1. Deletions have been reported in PTCHD1 however there has been little information available regarding the clinical presentation of these individuals. Herein we present 23 individuals with PTCHD1 deletions or truncating mutations with detailed phenotypic descriptions. The results suggest that individuals with disruption of the PTCHD1 coding region may have subtle dysmorphic features including a long face, prominent forehead, puffy eyelids and a thin upper lip. They do not have a consistent pattern of associated congenital anomalies or growth abnormalities. They have mild to moderate global developmental delay, variable degrees of ID, and many have prominent behavioral issues. Over 40% of subjects have ASD or ASD-like behaviors. The only consistent neurological findings in our cohort are orofacial hypotonia and mild motor incoordination. Our findings suggest that hemizygous PTCHD1 loss of function causes an X-linked neurodevelopmental disorder with a strong propensity to autistic behaviors. Detailed neuropsychological studies are required to better define the cognitive and behavioral phenotype. PMID:25131214

  15. Three novel and the common Arg677Ter RP1 protein truncating mutations causing autosomal dominant retinitis pigmentosa in a Spanish population

    PubMed Central

    Gamundi, María José; Hernan, Imma; Martínez-Gimeno, María; Maseras, Miquel; García-Sandoval, Blanca; Ayuso, Carmen; Antiñolo, Guillermo; Baiget, Montserrat; Carballo, Miguel

    2006-01-01

    Background Retinitis pigmentosa (RP), a clinically and genetically heterogeneous group of retinal degeneration disorders affecting the photoreceptor cells, is one of the leading causes of genetic blindness. Mutations in the photoreceptor-specific gene RP1 account for 3–10% of cases of autosomal dominant RP (adRP). Most of these mutations are clustered in a 500 bp region of exon 4 of RP1. Methods Denaturing gradient gel electrophoresis (DGGE) analysis and direct genomic sequencing were used to evaluate the 5' coding region of exon 4 of the RP1 gene for mutations in 150 unrelated index adRP patients. Ophthalmic and electrophysiological examination of RP patients and relatives according to pre-existing protocols were carried out. Results Three novel disease-causing mutations in RP1 were detected: Q686X, K705fsX712 and K722fsX737, predicting truncated proteins. One novel missense mutation, Thr752Met, was detected in one family but the mutation does not co-segregate in the family, thereby excluding this amino acid variation in the protein as a cause of the disease. We found the Arg677Ter mutation, previously reported in other populations, in two independent families, confirming that this mutation is also present in a Spanish population. Conclusion Most of the mutations reported in the RP1 gene associated with adRP are expected to encode mutant truncated proteins that are approximately one third or half of the size of wild type protein. Patients with mutations in RP1 showed mild RP with variability in phenotype severity. We also observed several cases of non-penetrant mutations. PMID:16597330

  16. No Evidence for Association of Autism with Rare Heterozygous Point Mutations in Contactin-Associated Protein-Like 2 (CNTNAP2), or in Other Contactin-Associated Proteins or Contactins

    PubMed Central

    Murdoch, John D.; Gupta, Abha R.; Sanders, Stephan J.; Walker, Michael F.; Keaney, John; Fernandez, Thomas V.; Murtha, Michael T.; Anyanwu, Samuel; Ober, Gordon T.; Raubeson, Melanie J.; DiLullo, Nicholas M.; Villa, Natalie; Waqar, Zainabdul; Sullivan, Catherine; Gonzalez, Luis; Willsey, A. Jeremy; Choe, So-Yeon; Neale, Benjamin M.; Daly, Mark J.; State, Matthew W.

    2015-01-01

    Contactins and Contactin-Associated Proteins, and Contactin-Associated Protein-Like 2 (CNTNAP2) in particular, have been widely cited as autism risk genes based on findings from homozygosity mapping, molecular cytogenetics, copy number variation analyses, and both common and rare single nucleotide association studies. However, data specifically with regard to the contribution of heterozygous single nucleotide variants (SNVs) have been inconsistent. In an effort to clarify the role of rare point mutations in CNTNAP2 and related gene families, we have conducted targeted next-generation sequencing and evaluated existing sequence data in cohorts totaling 2704 cases and 2747 controls. We find no evidence for statistically significant association of rare heterozygous mutations in any of the CNTN or CNTNAP genes, including CNTNAP2, placing marked limits on the scale of their plausible contribution to risk. PMID:25621974

  17. Novel and recurrent non-truncating mutations of the MITF basic domain: genotypic and phenotypic variations in Waardenburg and Tietz syndromes.

    PubMed

    Léger, Sandy; Balguerie, Xavier; Goldenberg, Alice; Drouin-Garraud, Valérie; Cabot, Annick; Amstutz-Montadert, Isabelle; Young, Paul; Joly, Pascal; Bodereau, Virginie; Holder-Espinasse, Muriel; Jamieson, Robyn V; Krause, Amanda; Chen, Hongsheng; Baumann, Clarisse; Nunes, Luis; Dollfus, Hélène; Goossens, Michel; Pingault, Véronique

    2012-05-01

    The microphthalmia-associated transcription factor (MITF) is a basic helix-loop-helix leucine zipper transcription factor, which regulates melanocyte development and the biosynthetic melanin pathway. A notable relationship has been described between non-truncating mutations of its basic domain and Tietz syndrome, which is characterized by albinoid-like hypopigmentation of the skin and hair, rather than the patchy depigmentation seen in Waardenburg syndrome, and severe hearing loss. Twelve patients with new or recurrent non-truncating mutations of the MITF basic domain from six families were enrolled in this study. We observed a wide range of phenotypes and some unexpected features. All the patients had blue irides and pigmentation abnormalities that ranged from diffuse hypopigmentation to Waardenburg-like patches. In addition, they showed congenital complete hearing loss, diffuse hypopigmentation of the skin, freckling and ocular abnormalities, more frequently than patients with MITF mutations outside the basic domain. In conclusion, the non-truncating mutations of the basic domain do not always lead to Tietz syndrome but rather to a large range of phenotypes. Sun-exposed freckles are interestingly observed more frequently in Asian populations. This variability argues for the possible interaction with modifier loci. PMID:22258527

  18. Diagnostic analysis of the Rubinstein-Taybi syndrome: five cosmids should be used for microdeletion detection and low number of protein truncating mutations

    PubMed Central

    Petrij, F.; Dauwerse, H.; Blough, R.; Giles, R.; van der Smagt, J. J; Wallerstein, R.; Maaswinkel-Mooy, P.; van Karnebeek, C. D; van Ommen, G.-J. B; van Haeringen, A.; Rubinstein, J.; Saal, H.; Hennekam, R.; Peters, D.; Breuning, M.

    2000-01-01

    Rubinstein-Taybi syndrome (RTS) is a malformation syndrome characterised by facial abnormalities, broad thumbs, broad big toes, and mental retardation. In a subset of RTS patients, microdeletions, translocations, and inversions involving chromosome band 16p13.3 can be detected. We have previously shown that disruption of the human CREB binding protein (CREBBP or CBP) gene, either by these gross chromosomal rearrangements or by point mutations, leads to RTS. CBP is a large nuclear protein involved in transcription regulation, chromatin remodelling, and the integration of several different signal transduction pathways. Here we report diagnostic analysis of CBP in 194 RTS patients, divided into several subsets. In one case the mother is also suspect of having RTS. Analyses of the entire CBP gene by the protein truncation test showed 4/37 truncating mutations. Two point mutations, one 11 bp deletion, and one mutation affecting the splicing of the second exon were detected by subsequent sequencing. Screening the CBP gene for larger deletions, by using different cosmid probes in FISH, showed 14/171 microdeletions. Using five cosmid probes that contain the entire gene, we found 8/89 microdeletions of which 4/8 were 5' or interstitial. This last subset of microdeletions would not have been detected using the commonly used 3' probe RT1, showing the necessity of using all five probes.


Keywords: Rubinstein-Taybi syndrome (RTS); CREB binding protein (CBP/CREBBP); protein truncation test (PTT); microdeletion PMID:10699051

  19. A novel translation re-initiation mechanism for the p63 gene revealed by amino-terminal truncating mutations in Rapp-Hodgkin/Hay-Wells-like syndromes.

    PubMed

    Rinne, Tuula; Clements, Suzanne E; Lamme, Evert; Duijf, Pascal H G; Bolat, Emine; Meijer, Rowdy; Scheffer, Hans; Rosser, Elisabeth; Tan, Tiong Yang; McGrath, John A; Schalkwijk, Joost; Brunner, Han G; Zhou, Huiqing; van Bokhoven, Hans

    2008-07-01

    Missense mutations in the 3' end of the p63 gene are associated with either RHS (Rapp-Hodgkin syndrome) or AEC (Ankyloblepharon Ectodermal defects Cleft lip/palate) syndrome. These mutations give rise to mutant p63alpha protein isoforms with dominant effects towards their wild-type counterparts. Here we report four RHS/AEC-like patients with mutations (p.Gln9fsX23, p.Gln11X, p.Gln16X), that introduce premature termination codons in the N-terminal part of the p63 protein. These mutations appear to be incompatible with the current paradigms of dominant-negative/gain-of-function outcomes for other p63 mutations. Moreover it is difficult to envisage how the remaining small N-terminal polypeptide contributes to a dominant disease mechanism. Primary keratinocytes from a patient containing the p.Gln11X mutation revealed a normal and aberrant p63-related protein that was just slightly smaller than the wild-type p63. We show that the smaller p63 protein is produced by translation re-initiation at the next downstream methionine, causing truncation of a non-canonical transactivation domain in the DeltaN-specific isoforms. Interestingly, this new DeltaDeltaNp63 isoform is also present in the wild-type keratinocytes albeit in small amounts compared with the p.Gln11X patient. These data establish that the p.Gln11X-mutation does not represent a null-allele leading to haploinsufficiency, but instead gives rise to a truncated DeltaNp63 protein with dominant effects. Given the nature of other RHS/AEC-like syndrome mutations, we conclude that these mutations affect only the DeltaNp63alpha isoform and that this disruption is fundamental to explaining the clinical characteristics of these particular ectodermal dysplasia syndromes. PMID:18364388

  20. Recurrent truncating mutations in alanine-glyoxylate aminotransferase gene in two South Indian families with primary hyperoxaluria type 1 causing later onset end-stage kidney disease

    PubMed Central

    Dutta, A. K.; Paulose, B. K.; Danda, S.; Alexander, S.; Tamilarasi, V.; Omprakash, S.

    2016-01-01

    Primary hyperoxaluria type 1 is an autosomal recessive inborn error of metabolism due to liver-specific peroxisomal enzyme alanine-glyoxylate transaminase deficiency. Here, we describe two unrelated patients who were diagnosed to have primary hyperoxaluria. Homozygous c.445_452delGTGCTGCT (p.L151Nfs*14) (Transcript ID: ENST00000307503; human genome assembly GRCh38.p2) (HGMD ID CD073567) mutation was detected in both the patients and the parents were found to be heterozygous carriers. Our patients developed end-stage renal disease at 23 years and 35 years of age. However, in the largest series published from OxalEurope cohort, the median age of end-stage renal disease for null mutations carriers was 9.9 years, which is much earlier than our cases. Our patients had slower progressions as compared to three unrelated patients from North India and Pakistan, who had homozygous c.302T>C (p.L101P) (HGMD ID CM093792) mutation in exon 2. Further, patients need to be studied to find out if c.445_452delGTGCTGCT mutation represents a founder mutation in Southern India. PMID:27512303

  1. A novel OTX2 gene frameshift mutation in a child with microphthalmia, ectopic pituitary and growth hormone deficiency.

    PubMed

    Lonero, Antonella; Delvecchio, Maurizio; Primignani, Paola; Caputo, Roberto; Bargiacchi, Sara; Penco, Silvana; Mauri, Lucia; Andreucci, Elena; Faienza, Maria Felicia; Cavallo, Luciano

    2016-05-01

    OTX2 mutations are reported in patients with eye maldevelopment and in some cases with brain or pituitary abnormalities. We describe a child carrying a novel OTX2 heterozygous mutation. She presented microphthalmia, absence of retinal vascularization, vitreal spots and optic nerve hypoplasia in the right eye and mild macular dystrophy in the left eye. Midline brain structures and cerebral parenchyma were normal, except for the ectopic posterior pituitary gland. OTX2 sequencing showed a heterozygous c.402del mutation. Most of OTX2 mutations are nonsense or frameshift introducing a premature termination codon and resulting in a truncated protein. More rarely missense mutations occur. Our novel OTX2 mutation (c.402del) is a frameshift mutation (p.S135Lfs*43), never reported before, causing a premature codon stop 43 amino-acids downstream, which is predicted to generate a premature truncation. The mutation was associated with microphthalmia and ectopic posterior pituitary. PMID:26974134

  2. Bi-allelic Truncating Mutations in CEP78, Encoding Centrosomal Protein 78, Cause Cone-Rod Degeneration with Sensorineural Hearing Loss.

    PubMed

    Namburi, Prasanthi; Ratnapriya, Rinki; Khateb, Samer; Lazar, Csilla H; Kinarty, Yael; Obolensky, Alexey; Erdinest, Inbar; Marks-Ohana, Devorah; Pras, Eran; Ben-Yosef, Tamar; Newman, Hadas; Gross, Menachem; Swaroop, Anand; Banin, Eyal; Sharon, Dror

    2016-09-01

    Inherited retinal diseases (IRDs) are a diverse group of genetically and clinically heterogeneous retinal abnormalities. The present study was designed to identify genetic defects in individuals with an uncommon combination of autosomal recessive progressive cone-rod degeneration accompanied by sensorineural hearing loss (arCRD-SNHL). Homozygosity mapping followed by whole-exome sequencing (WES) and founder mutation screening revealed two truncating rare variants (c.893-1G>A and c.534delT) in CEP78, which encodes centrosomal protein 78, in six individuals of Jewish ancestry with CRD and SNHL. RT-PCR analysis of CEP78 in blood leukocytes of affected individuals revealed that the c.893-1G>A mutation causes exon 7 skipping leading to deletion of 65bp, predicted to result in a frameshift and therefore a truncated protein (p.Asp298Valfs(∗)17). RT-PCR analysis of 17 human tissues demonstrated ubiquitous expression of different CEP78 transcripts. RNA-seq analysis revealed three transcripts in the human retina and relatively higher expression in S-cone-like photoreceptors of Nrl-knockout retina compared to rods. Immunohistochemistry studies in the human retina showed intense labeling of cone inner segments compared to rods. CEP78 was reported previously to interact with c-nap1, encoded by CEP250 that we reported earlier to cause atypical Usher syndrome. We conclude that truncating mutations in CEP78 result in a phenotype involving both the visual and auditory systems but different from typical Usher syndrome. PMID:27588452

  3. Rippling muscle disease and facioscapulohumeral dystrophy-like phenotype in a patient carrying a heterozygous CAV3 T78M mutation and a D4Z4 partial deletion: Further evidence for “double trouble” overlapping syndromes

    PubMed Central

    Ricci, Giulia; Scionti, Isabella; Alì, Greta; Volpi, Leda; Zampa, Virna; Fanin, Marina; Angelini, Corrado; Politano, Luisa; Tupler, Rossella; Siciliano, Gabriele

    2012-01-01

    We report the first case of a heterozygous T78M mutation in the caveolin-3 gene (CAV3) associated with rippling muscle disease and proximal myopathy. The patient displayed also bilateral winged scapula with limited abduction of upper arms and marked asymmetric atrophy of leg muscles shown by magnetic resonance imaging. Immunohistochemistry on the patient’s muscle biopsy demonstrated a reduction of caveolin-3 staining, compatible with the diagnosis of caveolinopathy. Interestingly, consistent with the possible diagnosis of FSHD, the patient carried a 35 kb D4Z4 allele on chromosome 4q35. We discuss the hypothesis that the two genetic mutations may exert a synergistic effect in determining the phenotype observed in this patient. PMID:22245016

  4. Mutation of critical serine residues in HIV-1 matrix result in an envelope incorporation defect which can be rescued by truncation of the gp41 cytoplasmic tail

    SciTech Connect

    Bhatia, Ajay K.; Kaushik, Rajnish; Campbell, Nancy A.; Pontow, Suzanne E.; Ratner, Lee

    2009-02-05

    The human immunodeficiency virus type 1 (HIV-1) matrix (MA) domain is involved in both early and late events of the viral life cycle. Simultaneous mutation of critical serine residues in MA has been shown previously to dramatically reduce phosphorylation of MA. However, the role of phosphorylation in viral replication remains unclear. Viruses harboring serine to alanine substitutions at positions 9, 67, 72, and 77 are severely impaired in their ability to infect target cells. In addition, the serine mutant viruses are defective in their ability to fuse with target cell membranes. Interestingly, both the fusion defect and the infectivity defect can be rescued by truncation of the long cytoplasmic tail of gp41 envelope protein (gp41CT). Sucrose density gradient analysis also reveals that these mutant viruses have reduced levels of gp120 envelope protein incorporated into the virions as compared to wild type virus. Truncation of the gp41CT rescues the envelope incorporation defect. Here we propose a model in which mutation of specific serine residues prevents MA interaction with lipid rafts during HIV-1 assembly and thereby impairs recruitment of envelope to the sites of viral budding.

  5. Acute intermittent porphyria: A single-base deletion and a nonsense mutation in the human hydroxymethylbilane synthase gene, predicting truncations of the enzyme polypeptide

    SciTech Connect

    Lee, G.L.; Astrin, K.H.; Desnick, R.J.

    1995-08-28

    Acute intermittent porphyria (AIP) is an autosomal-dominant inborn error of metabolism that results from the half-normal activity of the third enzyme in the heme biosynthetic pathway, hydroxymethylbilane synthase (HMB-synthase). AIP is an ecogenetic condition, since the life-threatening acute attacks are precipitated by various factors, including drugs, alcohol, fasting, and certain hormones. Biochemical diagnosis is problematic, and the identification of mutations in the HMB-synthase gene provides accurate detection of presymptomatic heterozygotes, permitting avoidance of the acute precipitating factors. By direct solid-phase sequencing, two mutations causing AIP were identified, an adenine deletion at position 629 in exon 11(629delA), which alters the reading frame and predicts premature truncation of the enzyme protein after amino acid 255, and a nonsense mutation in exon 12 (R225X). These mutations were confirmed by either restriction enzyme analysis or family studies of symptomatic patients, permitting accurate presymptomatic diagnosis of affected relatives. 29 refs., 2 figs.

  6. Novel compound heterozygous mutation in LAMC2 genes (c.79G>A and 382insT) in Herlitz junctional epidermolysis bullosa.

    PubMed

    Jeon, In Kyung; Kim, Song-Ee; Kim, Soo-Chan

    2014-04-01

    Junctional epidermolysis bullosa (JEB) is a heritable blistering skin disease characterized by separation within the lamina lucida. It is caused by mutations in the LAMA3, LAMB3 and LAMC2 genes encoding the α3-, β3- and γ2-chains, respectively, of laminin-332. JEB Herlitz type (JEB-H) is a lethal blistering disease with severe cutaneous and extracutaneous involvements caused by null mutations in the gene encoding laminin-332. Here, we report a proband with JEB-H who is a compound heterozygote for two novel mutations in LAMC2; a missense mutation (c.79G>A) and an insertion mutation (382insT) leading to a premature termination codon. PMID:24533970

  7. Aromatase deficiency in a Chinese adult man caused by novel compound heterozygous CYP19A1 mutations: Effects of estrogen replacement therapy on the bone, lipid, liver and glucose metabolism

    PubMed Central

    Chen, Zhike; Wang, Ou; Nie, Min; Elison, Kathleen; Zhou, Dujin; Li, Mei; Jiang, Yan; Xia, Weibo; Meng, Xunwu; Chen, Shiuan; Xing, Xiaoping

    2015-01-01

    Objectives Aromatase deficiency is a rare disorder resulting in estrogen insufficiency in humans. It has been reported in remarkably few men with loss-of-function mutations in the CYP19A1 gene encoding the aromatase, a cytochrome P450 enzyme that plays a crucial role in the biosynthesis of estrogens from androgens. We investigated a non-consanguineous family including an adult man with clinical features of aromatase deficiency, and studied the effects of estrogen replacement in the man. Methods We investigated the clinical and biochemical phenotype, performed CYP19A1 mutational analysis in the family and 50 unrelated persons, studied the effects of CYP19A1 mutations on aromatase protein structure, functionally characterized the mutations by cell-based aromatase activity assays, and studied the effects of estrogen replacement on the bone, lipid, liver and glucose metabolism. Results The man with clinical features of aromatase deficiency had novel compound heterozygous CYP19A1 mutations (Y81C and L451P) that were not found in 50 unrelated persons. Three-dimensional modeling predicted that Y81C and L451P mutants disrupted protein structure. Functional studies on the basis of in vitro expression showed that Y81C and L45P mutants significantly decreased the aromatase activity and catalytic efficiency. Estrogen replacement in the man increased bone mineral density, accelerated bone maturation, improved lipid profile and liver steatosis, and improved glucose levels but not insulin resistance. Conclusions We have identified two novel CYP19A1 missense mutations in an aromatase-deficient man. Estrogen replacement in the man shows great impact on recovering the impairments in the bone, lipid, liver and glucose metabolism, but fails to improve insulin resistance. PMID:25301327

  8. Analysis of PALB2 in a cohort of Italian breast cancer patients: identification of a novel PALB2 truncating mutation.

    PubMed

    Vietri, Maria Teresa; Caliendo, Gemma; Schiano, Concetta; Casamassimi, Amelia; Molinari, Anna Maria; Napoli, Claudio; Cioffi, Michele

    2015-09-01

    PALB2 gene is mutated in about 1-2% of familial breast cancer as well as in 3-4% of familial pancreatic cancer cases. Few studies have reported mutations in Italian patients with breast or pancreatic cancer. We evaluate the occurrence of PALB2 mutations in Italian patients affected with hereditary breast and ovarian cancers and define the pathological significance of the putative allelic variants. We recruited 98 patients (F = 93, M = 5) affected with breast and/or ovarian cancer, negative for mutations in BRCA1 and BRCA2 (BRCAX). Genomic DNA was isolated from peripheral blood lymphocytes, PALB2 coding regions and adjacent intronic were sequenced; in silico predictions were carried out using prediction programs. Mutational analysis of PALB2 gene revealed the novel mutation c.1919C>A (p.S640X) in a 29 years old woman with breast cancer. The c.1919C>A (p.S640X) mutation causes the lack of C-terminus region inducing alteration of MORF4L1-PALB2 association and the lack of interaction of PALB2 with RAD51 and BRCA2. In addition, we identified two novel PALB2 variants, c.3047T>C (p.F1016S) and c.*146A>G. In silico analysis conducted for c.*146A>G indicates that this variant does not affect the splicing while c.3047T>C (p.F1016S) was predicted as damaging in three classifier algorithms. The proband carrier of c.3047T>C (p.F1016S) showed two breast cancer cases, two ovarian cancer cases and one pancreatic cancer in mother's family. c.3047T>C (p.F1016S) and c.*146A>G should be considered PALB2 UVs even though the genotype-phenotype correlation for these variants remains still unclear. Our findings indicate that the presence of PALB2 mutation should be routinely investigated in hereditary breast and ovarian cancers families since it could be of clinical relevance for clinical management. PMID:25666743

  9. Truncating Homozygous Mutation of Carboxypeptidase E (CPE) in a Morbidly Obese Female with Type 2 Diabetes Mellitus, Intellectual Disability and Hypogonadotrophic Hypogonadism

    PubMed Central

    Buxton, Jessica L.; Zekavati, Anna; Sosinsky, Alona; Yiorkas, Andrianos M.; Holder, Susan; Klaber, Robert E.; Bridges, Nicola; van Haelst, Mieke M.; le Roux, Carel W.; Walley, Andrew J.; Walters, Robin G.; Mueller, Michael; Blakemore, Alexandra I. F.

    2015-01-01

    Carboxypeptidase E is a peptide processing enzyme, involved in cleaving numerous peptide precursors, including neuropeptides and hormones involved in appetite control and glucose metabolism. Exome sequencing of a morbidly obese female from a consanguineous family revealed homozygosity for a truncating mutation of the CPE gene (c.76_98del; p.E26RfsX68). Analysis detected no CPE expression in whole blood-derived RNA from the proband, consistent with nonsense-mediated decay. The morbid obesity, intellectual disability, abnormal glucose homeostasis and hypogonadotrophic hypogonadism seen in this individual recapitulates phenotypes in the previously described fat/fat and Cpe knockout mouse models, evidencing the importance of this peptide/hormone-processing enzyme in regulating body weight, metabolism, and brain and reproductive function in humans. PMID:26120850

  10. Compound heterozygous hemophilia A in a female patient and the identification of a novel missense mutation, p.Met1093Ile.

    PubMed

    Qiao, Shu-Kai; Ren, Han-Yun; Ren, Jin-Hai; Guo, Xiao-Nan

    2014-02-01

    Hemophilia A (HA) in females is rare. Female HA cases are often misdiagnosed as acquired HA (AHA) or as von Willebrand disease type 2N (vWD-2N). Here, we report the case of a 37-year-old female HA patient with a moderate factor VIII (FVIII) deficiency. The patient had no personal or family history of bleeding disorders, but presented with heavy uterine bleeding following surgery to remove an intrauterine device. IgG inhibitory antibodies against FVIII were undetected. A compound heterozygote mutation of the FVIII gene (F8) was found in this patient. The p.Val502Asp mutation, which has been reported previously, affects A2 domain function. A novel missense point mutation, p.Met1093Ile, was identified in the B domain. The compound heterozygote mutations in F8, p.Val502Asp and p.Met1093Ile, caused HA in this female patient, with a moderate phenotype. PMID:24317041

  11. Compound heterozygous hemophilia A in a female patient and the identification of a novel missense mutation, p.Met1093Ile

    PubMed Central

    QIAO, SHU-KAI; REN, HAN-YUN; REN, JIN-HAI; GUO, XIAO-NAN

    2014-01-01

    Hemophilia A (HA) in females is rare. Female HA cases are often misdiagnosed as acquired HA (AHA) or as von Willebrand disease type 2N (vWD-2N). Here, we report the case of a 37-year-old female HA patient with a moderate factor VIII (FVIII) deficiency. The patient had no personal or family history of bleeding disorders, but presented with heavy uterine bleeding following surgery to remove an intrauterine device. IgG inhibitory antibodies against FVIII were undetected. A compound heterozygote mutation of the FVIII gene (F8) was found in this patient. The p.Val502Asp mutation, which has been reported previously, affects A2 domain function. A novel missense point mutation, p.Met1093Ile, was identified in the B domain. The compound heterozygote mutations in F8, p.Val502Asp and p.Met1093Ile, caused HA in this female patient, with a moderate phenotype. PMID:24317041

  12. Infertility due to congenital absence of vas deferens in mainly caused by variable exon 9 skipping of the CFTR gene in heterozygous males for cystic fibrosis mutations

    SciTech Connect

    Chillon, M.; Casals, T.; Nunes, V.

    1994-09-01

    About 65% or the individuals with congenital bilateral absence of the vas deferens (CBAVD) have mutations in at least one of the CFTR alleles. We have studied the phenotypic effects of the CFTR gene intron 8 polyT tract 5T allele in 90 CBAVD subjects and in parents of CF patients. This group was compared with normal individuals, and with fathers and mothers of CF patients. Allele 5T was significantly associated with CBAVD (19.6%) when compared to the general population (5.2%) ({chi}{sup 2} = 33.3%; p<<0.0001). It was represented poorly in fathers of CF patients (1.3%). Mutations were identified in one (60%) or both CFTR alleles (8.9%) of CBAVD patients. Heterozygosity for the 5T allele was strongly associated with heterozygosity for CF mutations ({chi}{sup 2} = 10.9; p<0.0004). The strong correlation between allele 5T and CBAVD, together with the low frequency of this allele in fathers of CF patients, demonstrates that variable {Delta}exon 9 produces infertility in males if associated with a CF mutation on the other chromosome. The 30% of CBAVD cases with only one CFTR mutation and without a 5T-allele may be due to other molecular mechanisms involving CFTR, distinct from {Delta}exon 9. Since there is a relatively high proportion of CBAVD without CF mutations (25%), other gene(s), distinct from CFTR, may have a role in the CBAVD phenotype.

  13. Alzheimer's Aβ Peptides with Disease-Associated N-Terminal Modifications: Influence of Isomerisation, Truncation and Mutation on Cu2+ Coordination

    PubMed Central

    Drew, Simon C.; Masters, Colin L.; Barnham, Kevin J.

    2010-01-01

    Background The amyloid-β (Aβ) peptide is the primary component of the extracellular senile plaques characteristic of Alzheimer's disease (AD). The metals hypothesis implicates redox-active copper ions in the pathogenesis of AD and the Cu2+ coordination of various Aβ peptides has been widely studied. A number of disease-associated modifications involving the first 3 residues are known, including isomerisation, mutation, truncation and cyclisation, but are yet to be characterised in detail. In particular, Aβ in plaques contain a significant amount of truncated pyroglutamate species, which appear to correlate with disease progression. Methodology/Principal Findings We previously characterised three Cu2+/Aβ1–16 coordination modes in the physiological pH range that involve the first two residues. Based upon our finding that the carbonyl of Ala2 is a Cu2+ ligand, here we speculate on a hypothetical Cu2+-mediated intramolecular cleavage mechanism as a source of truncations beginning at residue 3. Using EPR spectroscopy and site-specific isotopic labelling, we have also examined four Aβ peptides with biologically relevant N-terminal modifications, Aβ1[isoAsp]–16, Aβ1–16(A2V), Aβ3–16 and Aβ3[pE]–16. The recessive A2V mutation preserved the first coordination sphere of Cu2+/Aβ, but altered the outer coordination sphere. Isomerisation of Asp1 produced a single dominant species involving a stable 5-membered Cu2+ chelate at the amino terminus. The Aβ3–16 and Aβ3[pE]–16 peptides both exhibited an equilibrium between two Cu2+ coordination modes between pH 6–9 with nominally the same first coordination sphere, but with a dramatically different pH dependence arising from differences in H-bonding interactions at the N-terminus. Conclusions/Significance N-terminal modifications significantly influence the Cu2+ coordination of Aβ, which may be critical for alterations in aggregation propensity, redox-activity, resistance to degradation and the generation

  14. The Arctic AβPP mutation leads to Alzheimer’s disease pathology with highly variable topographic deposition of differentially truncated

    PubMed Central

    2013-01-01

    Background The Arctic mutation (p.E693G/p.E22G)fs within the β-amyloid (Aβ) region of the β-amyloid precursor protein gene causes an autosomal dominant disease with clinical picture of typical Alzheimer’s disease. Here we report the special character of Arctic AD neuropathology in four deceased patients. Results Aβ deposition in the brains was wide-spread (Thal phase 5) and profuse. Virtually all parenchymal deposits were composed of non-fibrillar, Congo red negative Aβ aggregates. Congo red only stained angiopathic vessels. Mass spectrometric analyses showed that Aβ deposits contained variably truncated and modified wild type and mutated Aβ species. In three of four Arctic AD brains, most cerebral cortical plaques appeared targetoid with centres containing C-terminally (beyond aa 40) and variably N-terminally truncated Aβ surrounded by coronas immunopositive for Aβx-42. In the fourth patient plaque centres contained almost no Aβ making the plaques ring-shaped. The architectural pattern of plaques also varied between different anatomic regions. Tau pathology corresponded to Braak stage VI, and appeared mainly as delicate neuropil threads (NT) enriched within Aβ plaques. Dystrophic neurites were scarce, while neurofibrillary tangles were relatively common. Neuronal perikarya within the Aβ plaques appeared relatively intact. Conclusions In Arctic AD brain differentially truncated abundant Aβ is deposited in plaques of variable numbers and shapes in different regions of the brain (including exceptional targetoid plaques in neocortex). The extracellular non-fibrillar Aβ does not seem to cause overt damage to adjacent neurons or to induce formation of neurofibrillary tangles, supporting the view that intracellular Aβ oligomers are more neurotoxic than extracellular Aβ deposits. However, the enrichment of NTs within plaques suggests some degree of intra-plaque axonal damage including accumulation of hp-tau, which may impair axoplasmic transport, and

  15. Congenital hypomyelinating neuropathy due to the association of a truncating mutation in PMP22 with the classical HNPP deletion.

    PubMed

    Jouaud, Maxime; Gonnaud, Pierre-Marie; Richard, Laurence; Latour, Philippe; Ollagnon-Roman, Elisabeth; Sturtz, Franck; Mathis, Stéphane; Magy, Laurent; Vallat, Jean-Michel

    2016-01-01

    Congenital hypomyelinating neuropathy appears early in life, resulting in a delay of motor and sensory development. Mutations involve genes such as myelin protein zero (MPZ), peripheral myelin protein 22 (PMP22), and early growth response 2 (EGR2). We present a patient with two compound mutations in PMP22: a point mutation causing a premature STOP codon in exon 3 was inherited from the mother on the first allele, and the "typical" PMP22 deletion in the 17p11.2-p12 region was inherited from the father on the other allele. A sural biopsy was performed at age four. The patient has been followed from 28 months to 21 years of age; he presented significant sensory disturbances, with a slight motor deficit. PMP22 mRNA quantitation showed a severe decrease of PMP22 protein. No myelin sheaths were observed in the biopsy; mesaxons failed to form. The absence of PMP22 provides new insights into the role of this protein. PMID:27067623

  16. Insights Into the Pathogenicity of Rare Missense GCK Variants From the Identification and Functional Characterization of Compound Heterozygous and Double Mutations Inherited in Cis

    PubMed Central

    Beer, Nicola L.; Osbak, Kara K.; van de Bunt, Martijn; Tribble, Nicholas D.; Steele, Anna M.; Wensley, Kirsty J.; Edghill, Emma L.; Colcough, Kevin; Barrett, Amy; Valentínová, Lucia; Rundle, Jana K.; Raimondo, Anne; Grimsby, Joseph; Ellard, Sian; Gloyn, Anna L.

    2012-01-01

    OBJECTIVE To demonstrate the importance of using a combined genetic and functional approach to correctly interpret a genetic test for monogenic diabetes. RESEARCH DESIGN AND METHODS We identified three probands with a phenotype consistent with maturity-onset diabetes of the young (MODY) subtype GCK-MODY, in whom two potential pathogenic mutations were identified: [R43H/G68D], [E248 K/I225M], or [G261R/D217N]. Allele-specific PCR and cosegregation were used to determine phase. Single and double mutations were kinetically characterized. RESULTS The mutations occurred in cis (double mutants) in two probands and in trans in one proband. Functional studies of all double mutants revealed inactivating kinetics. The previously reported GCK-MODY mutations R43H and G68D were inherited from an affected father and unaffected mother, respectively. Both our functional and genetic studies support R43H as the cause of GCK-MODY and G68D as a neutral rare variant. CONCLUSIONS These data highlight the need for family/functional studies, even for previously reported pathogenic mutations. PMID:22611063

  17. A novel heterozygous missense mutation (His127Arg) in a family with inherited cross-reacting material positive factor XI deficiency.

    PubMed

    Castaman, Giancarlo; Giacomelli, Sofia H; Tagliaferri, Annarita; Rodeghiero, Francesco

    2013-09-01

    Factor XI (FXI) deficiency is an autosomal inherited coagulation disorder, characterized by an inconsistent bleeding tendency, mainly associated with injury or surgery. Although most of the F11 gene mutations cause a true quantitative deficiency of FXI (cross-reacting material-negative, CRM-), very few variants characterized by a qualitative abnormality resulting in a discrepant FXI activity/FXI antigen ratio (CRM positive, CRM+) have been reported. We describe here a novel CRM+ mutation (His127Arg) identified in an asymptomatic woman from Indonesia and in her two sons. PMID:23571684

  18. Biallelic Truncating Mutations in FMN2, Encoding the Actin-Regulatory Protein Formin 2, Cause Nonsyndromic Autosomal-Recessive Intellectual Disability

    PubMed Central

    Law, Rosalind; Dixon-Salazar, Tracy; Jerber, Julie; Cai, Na; Abbasi, Ansar A.; Zaki, Maha S.; Mittal, Kirti; Gabriel, Stacey B.; Rafiq, Muhammad Arshad; Khan, Valeed; Nguyen, Maria; Ali, Ghazanfar; Copeland, Brett; Scott, Eric; Vasli, Nasim; Mikhailov, Anna; Khan, Muhammad Nasim; Andrade, Danielle M.; Ayaz, Muhammad; Ansar, Muhammad; Ayub, Muhammad; Vincent, John B.; Gleeson, Joseph G.

    2014-01-01

    Dendritic spines represent the major site of neuronal activity in the brain; they serve as the receiving point for neurotransmitters and undergo rapid activity-dependent morphological changes that correlate with learning and memory. Using a combination of homozygosity mapping and next-generation sequencing in two consanguineous families affected by nonsyndromic autosomal-recessive intellectual disability, we identified truncating mutations in formin 2 (FMN2), encoding a protein that belongs to the formin family of actin cytoskeleton nucleation factors and is highly expressed in the maturing brain. We found that FMN2 localizes to punctae along dendrites and that germline inactivation of mouse Fmn2 resulted in animals with decreased spine density; such mice were previously demonstrated to have a conditioned fear-learning defect. Furthermore, patient neural cells derived from induced pluripotent stem cells showed correlated decreased synaptic density. Thus, FMN2 mutations link intellectual disability either directly or indirectly to the regulation of actin-mediated synaptic spine density. PMID:25480035

  19. Establishment of Mouse Model of MYH9 Disorders: Heterozygous R702C Mutation Provokes Macrothrombocytopenia with Leukocyte Inclusion Bodies, Renal Glomerulosclerosis and Hearing Disability

    PubMed Central

    Suzuki, Nobuaki; Kunishima, Shinji; Ikejiri, Makoto; Maruyama, Shoichi; Sone, Michihiko; Takagi, Akira; Ikawa, Masahito; Okabe, Masaru; Kojima, Tetsuhito; Saito, Hidehiko; Naoe, Tomoki; Matsushita, Tadashi

    2013-01-01

    Nonmuscle myosin heavy chain IIA (NMMHCIIA) encoded by MYH9 is associated with autosomal dominantly inherited diseases called MYH9 disorders. MYH9 disorders are characterized by macrothrombocytopenia and very characteristic inclusion bodies in granulocytes. MYH9 disorders frequently cause nephritis, sensorineural hearing disability and cataracts. One of the most common and deleterious mutations causing these disorders is the R702C missense mutation. We generated knock-in mice expressing the Myh9 R702C mutation. R702C knock-in hetero mice (R702C+/− mice) showed macrothrombocytopenia. We studied megakaryopoiesis of cultured fetal liver cells of R702C+/− mice and found that proplatelet formation was impaired: the number of proplatelet tips was decreased, proplatelet size was increased, and proplatelet shafts were short and enlarged. Although granulocyte inclusion bodies were not visible by May–Grünwald Giemsa staining, immunofluorescence analysis indicated that NMMHCIIA proteins aggregated and accumulated in the granulocyte cytoplasm. In other organs, R702C+/− mice displayed albuminuria which increased with age. Renal pathology examination revealed glomerulosclerosis. Sensory hearing loss was indicated by lowered auditory brainstem response. These findings indicate that Myh9 R702C knock-in mice mirror features of human MYH9 disorders arising from the R702C mutation. PMID:23976996

  20. A truncating SOD1 mutation, p.Gly141X, is associated with clinical and pathologic heterogeneity, including frontotemporal lobar degeneration.

    PubMed

    Nakamura, Masataka; Bieniek, Kevin F; Lin, Wen-Lang; Graff-Radford, Neill R; Murray, Melissa E; Castanedes-Casey, Monica; Desaro, Pamela; Baker, Matthew C; Rutherford, Nicola J; Robertson, Janice; Rademakers, Rosa; Dickson, Dennis W; Boylan, Kevin B

    2015-07-01

    Amyotrophic lateral sclerosis (ALS) is a degenerative disorder affecting upper and lower motor neurons, but it is increasingly recognized to affect other systems, with cognitive impairment resembling frontotemporal dementia (FTD) in some patients. We report clinical and pathologic findings of a family with ALS due to a truncating mutation, p.Gly141X, in copper/zinc superoxide dismutase (SOD1). The proband presented clinically with FTD and later showed progressive motor neuron disease, while all other family members had early-onset and rapidly progressive ALS without significant cognitive deficits. Pathologic examination of both the proband and her daughter revealed degeneration of corticospinal tracts and motor neurons in brain and spinal cord compatible with ALS. On the other hand, the proband also had neocortical and limbic system degeneration with pleomorphic neuronal cytoplasmic inclusions. Extramotor pathology in her daughter was relatively restricted to the hypothalamus and extrapyramidal system, but not the neocortex. The inclusions in the proband and her daughter were immunoreactive for SOD1, but negative for TAR DNA-binding protein of 43 kDa (TDP-43). In the proband, a number of the neocortical inclusions were immunopositive for α-internexin, initially suggesting a diagnosis of atypical FTLD, but there was no evidence of fused in sarcoma (FUS) immunoreactivity, which is often detected in atypical FTLD. Analogous to atypical FTLD, neuronal inclusions had variable co-localization of SOD1 and α-internexin. The current classification of FTLD is based on the major constituent protein: FTLD-tau, FTLD-TDP-43, and FTLD-FUS. The proband in this family indicates that SOD1, while rare, can also be the substrate of FTLD, in addition to the more common presentation of ALS. The explanation for clinical and pathologic heterogeneity of SOD1 mutations, including the p.Gly141X mutation, remains unresolved. PMID:25917047

  1. Heterozygous mutations in cyclic AMP phosphodiesterase-4D (PDE4D) and protein kinase A (PKA) provide new insights into the molecular pathology of acrodysostosis.

    PubMed

    Kaname, Tadashi; Ki, Chang-Seok; Niikawa, Norio; Baillie, George S; Day, Jonathan P; Yamamura, Ken-Ichi; Ohta, Tohru; Nishimura, Gen; Mastuura, Nobuo; Kim, Ok-Hwa; Sohn, Young Bae; Kim, Hyun Woo; Cho, Sung Yoon; Ko, Ah-Ra; Lee, Jin Young; Kim, Hyun Wook; Ryu, Sung Ho; Rhee, Hwanseok; Yang, Kap-Seok; Joo, Keehyoung; Lee, Jooyoung; Kim, Chi Hwa; Cho, Kwang-Hyun; Kim, Dongsan; Yanagi, Kumiko; Naritomi, Kenji; Yoshiura, Ko-Ichiro; Kondoh, Tatsuro; Nii, Eiji; Tonoki, Hidefumi; Houslay, Miles D; Jin, Dong-Kyu

    2014-11-01

    Acrodysostosis without hormone resistance is a rare skeletal disorder characterized by brachydactyly, nasal hypoplasia, mental retardation and occasionally developmental delay. Recently, loss-of-function mutations in the gene encoding cAMP-hydrolyzing phosphodiesterase-4D (PDE4D) have been reported to cause this rare condition but the pathomechanism has not been fully elucidated. To understand the pathogenetic mechanism of PDE4D mutations, we conducted 3D modeling studies to predict changes in the binding efficacy of cAMP to the catalytic pocket in PDE4D mutants. Our results indicated diminished enzyme activity in the two mutants we analyzed (Gly673Asp and Ile678Thr; based on PDE4D4 residue numbering). Ectopic expression of PDE4D mutants in HEK293 cells demonstrated this reduction in activity, which was identified by increased cAMP levels. However, the cells from an acrodysostosis patient showed low cAMP accumulation, which resulted in a decrease in the phosphorylated cAMP Response Element-Binding Protein (pCREB)/CREB ratio. The reason for this discrepancy was due to a compensatory increase in expression levels of PDE4A and PDE4B isoforms, which accounted for the paradoxical decrease in cAMP levels in the patient cells expressing mutant isoforms with a lowered PDE4D activity. Skeletal radiographs of 10-week-old knockout (KO) rats showed that the distal part of the forelimb was shorter than in wild-type (WT) rats and that all the metacarpals and phalanges were also shorter in KO, as the name acrodysostosis implies. Like the G-protein α-stimulatory subunit and PRKAR1A, PDE4D critically regulates the cAMP signal transduction pathway and influences bone formation in a way that activity-compromising PDE4D mutations can result in skeletal dysplasia. We propose that specific inhibitory PDE4D mutations can lead to the molecular pathology of acrodysostosis without hormone resistance but that the pathological phenotype may well be dependent on an over-compensatory induction

  2. Truncating Mutations in the Adhesion G Protein-Coupled Receptor G2 Gene ADGRG2 Cause an X-Linked Congenital Bilateral Absence of Vas Deferens.

    PubMed

    Patat, Olivier; Pagin, Adrien; Siegfried, Aurore; Mitchell, Valérie; Chassaing, Nicolas; Faguer, Stanislas; Monteil, Laetitia; Gaston, Véronique; Bujan, Louis; Courtade-Saïdi, Monique; Marcelli, François; Lalau, Guy; Rigot, Jean-Marc; Mieusset, Roger; Bieth, Eric

    2016-08-01

    In 80% of infertile men with obstructive azoospermia caused by a congenital bilateral absence of the vas deferens (CBAVD), mutations are identified in the cystic fibrosis transmembrane conductance regulator gene (CFTR). For the remaining 20%, the origin of the CBAVD is unknown. A large cohort of azoospermic men with CBAVD was retrospectively reassessed with more stringent selection criteria based on consistent clinical data, complete description of semen and reproductive excurrent ducts, extensive CFTR testing, and kidney ultrasound examination. To maximize the phenotypic prioritization, men with CBAVD and with unilateral renal agenesis were considered ineligible for the present study. We performed whole-exome sequencing on 12 CFTR-negative men with CBAVD and targeted sequencing on 14 additional individuals. We identified three protein-truncating hemizygous mutations, c.1545dupT (p.Glu516Ter), c.2845delT (p.Cys949AlafsTer81), and c.2002_2006delinsAGA (p.Leu668ArgfsTer21), in ADGRG2, encoding the epididymal- and efferent-ducts-specific adhesion G protein-coupled receptor G2, in four subjects, including two related individuals with X-linked transmission of their infertility. Previous studies have demonstrated that Adgrg2-knockout male mice develop obstructive infertility. Our study confirms the crucial role of ADGRG2 in human male fertility and brings new insight into congenital obstructive azoospermia pathogenesis. In men with CBAVD who are CFTR-negative, ADGRG2 testing could allow for appropriate genetic counseling with regard to the X-linked transmission of the molecular defect. PMID:27476656

  3. Case Report: Compound heterozygous nonsense mutations in TRMT10A are associated with microcephaly, delayed development, and periventricular white matter hyperintensities.

    PubMed

    Narayanan, Mohan; Ramsey, Keri; Grebe, Theresa; Schrauwen, Isabelle; Szelinger, Szabolcs; Huentelman, Matthew; Craig, David; Narayanan, Vinodh

    2015-01-01

    Microcephaly is a fairly common feature observed in children with delayed development, defined as head circumference less than 2 standard deviations below the mean for age and gender. It may be the result of an acquired insult to the brain, such prenatal or perinatal brain injury (congenital infection or hypoxic ischemic encephalopathy), or be a part of a genetic syndrome. There are over 1000 conditions listed in OMIM (Online Mendelian Inheritance in Man) where microcephaly is a key finding; many of these are associated with specific somatic features and non-CNS anomalies. The term primary microcephaly is used when microcephaly and delayed development are the primary features, and they are not part of another recognized syndrome. In this case report, we present the clinical features of siblings (brother and sister) with primary microcephaly and delayed development, and subtle dysmorphic features. Both children had brain MRI studies that showed periventricular and subcortical T2/FLAIR hyperintensities, without signs of white matter volume loss, and no parenchymal calcifications by CT scan. The family was enrolled in a research study for whole exome sequencing of probands and parents. Analysis of variants determined that the children were compound heterozygotes for nonsense mutations, c.277C>T (p.Arg93*) and c.397C>T (p.Arg133*), in the TRMT10A gene. Mutations in this gene have only recently been reported in children with microcephaly and early onset diabetes mellitus. Our report adds to current knowledge of TRMT10A related neurodevelopmental disorders and demonstrates imaging findings suggestive of delayed or abnormal myelination of the white matter in this disorder. Accurate diagnosis through genomic testing, as in the children described here, allows for early detection and management of medical complications, such as diabetes mellitus. PMID:26535115

  4. Case Report: Compound heterozygous nonsense mutations in TRMT10A are associated with microcephaly, delayed development, and periventricular white matter hyperintensities

    PubMed Central

    Narayanan, Mohan; Ramsey, Keri; Grebe, Theresa; Schrauwen, Isabelle; Szelinger, Szabolcs; Huentelman, Matthew; Craig, David; Narayanan, Vinodh

    2015-01-01

    Microcephaly is a fairly common feature observed in children with delayed development, defined as head circumference less than 2 standard deviations below the mean for age and gender. It may be the result of an acquired insult to the brain, such prenatal or perinatal brain injury (congenital infection or hypoxic ischemic encephalopathy), or be a part of a genetic syndrome. There are over 1000 conditions listed in OMIM (Online Mendelian Inheritance in Man) where microcephaly is a key finding; many of these are associated with specific somatic features and non-CNS anomalies. The term primary microcephaly is used when microcephaly and delayed development are the primary features, and they are not part of another recognized syndrome. In this case report, we present the clinical features of siblings (brother and sister) with primary microcephaly and delayed development, and subtle dysmorphic features. Both children had brain MRI studies that showed periventricular and subcortical T2/FLAIR hyperintensities, without signs of white matter volume loss, and no parenchymal calcifications by CT scan. The family was enrolled in a research study for whole exome sequencing of probands and parents. Analysis of variants determined that the children were compound heterozygotes for nonsense mutations, c.277C>T (p.Arg93*) and c.397C>T (p.Arg133*), in the TRMT10A gene. Mutations in this gene have only recently been reported in children with microcephaly and early onset diabetes mellitus. Our report adds to current knowledge of TRMT10A related neurodevelopmental disorders and demonstrates imaging findings suggestive of delayed or abnormal myelination of the white matter in this disorder. Accurate diagnosis through genomic testing, as in the children described here, allows for early detection and management of medical complications, such as diabetes mellitus. PMID:26535115

  5. Contribution of mutations in ATM to breast cancer development in the Czech population.

    PubMed

    Soukupova, Jana; Dundr, Pavel; Kleibl, Zdenek; Pohlreich, Petr

    2008-06-01

    Mutations in the ATM gene are the cause of a rare autosomal recessive syndrome, ataxia-telangiectasia (AT). Of the general population, approximately 0.35-1% has been estimated to be heterozygous for a germline mutation in the ATM gene. The finding that ATM heterozygotes have an increased breast cancer risk was supported by some studies but not confirmed by others. In our study, the entire coding sequence of the ATM gene was prescreened for mutations by the protein truncation test to detect the chain-terminating mutations that are highly predominant in patients with AT. DNA sequencing then characterized 3 (1.9%) pathogenic mutations among 161 high-risk breast cancer patients. The c.5177+1G>A splicing mutation was a novel gene alteration. No mutation was detected in a group of 183 control individuals. Our results suggest that truncating mutations in ATM increase breast cancer risk and contribute to inherited breast cancer. The analysis further uncovered the c.1066-6T>G splicing mutation once among high-risk patients (0.6%) and twice among controls (1.1%) suggesting that this mutation does not confer an increase in breast cancer risk. On the other hand, individuals heterozygous for this truncating variant displayed loss of exon 11 in approximately 50% of ATM transcripts. Immunohistochemistry did not detect the ATM protein in the tumor sample carrying this mutation. Thus, the association of the c.1066-6T>G mutation with familial breast cancer remains uncertain. Loss of the wild-type ATM allele has not been detected in the tumor samples from heterozygous carriers of the ATM mutation. Our experiments did not detect the hypermethylation of the ATM promoter in any of the DNA samples from tumor tissues. PMID:18497957

  6. A unique mutation in the vitamin D receptor gene in three Japanese patients with vitamin D-dependent rickets type II: utility of single-strand conformation polymorphism analysis for heterozygous carrier detection.

    PubMed Central

    Saijo, T; Ito, M; Takeda, E; Huq, A H; Naito, E; Yokota, I; Sone, T; Pike, J W; Kuroda, Y

    1991-01-01

    Vitamin D-dependent rickets type II is a hereditary disease resulting from a defective vitamin D receptor. In three Japanese patients with vitamin D-dependent rickets type II whose fibroblasts displayed normal cytosol binding and impaired nuclear uptake of 1,25-dihydroxyvitamin D3, western, Southern, and northern analyses failed to disclose any abnormalities in vitamin D3 receptor protein and its gene. Exons 2 and 3 of the vitamin D receptor cDNA, which encode the DNA-binding domain consisting of two zinc fingers, were amplified by PCR and sequenced to identify the specific mutations in the vitamin D receptor gene. In the three patients and one normal control a T-to-C transition was found in the putative initiation codon, while this transition was not observed in another normal control. This finding suggested that an original initiation codon was located at positions 10-12 in the human vitamin D receptor cDNA sequence reported previously. In contrast, a unique G-to-A transition at position 140 in exon 3, resulting in substitution of arginine by glutamine at residue 47, was revealed only in these three patients. The arginine at 47 is located between two zinc fingers and is conserved within all steroid hormone receptors. Therefore, it is highly conceivable that this amino acid substitution is responsible for the defect of the vitamin D receptor in the patients. Single-strand conformation polymorphism analysis of amplified DNA confirmed that all patients were homozygous and that parents from one family were heterozygous carriers for this mutation. Images Figure 2 Figure 3 Figure 4 Figure 5 PMID:1652893

  7. Identification of novel splice site mutation IVS9 + 1(G > A) and novel complex allele G355R/R359X in Type 1 Gaucher patients heterozygous for mutation N370S.

    PubMed

    Hoitsema, Kourtnee; Amato, Dominick; Khan, Aneal; Sirrs, Sandra; Choy, Francis Y M

    2016-09-01

    Gaucher disease is an autosomal recessive lysosomal storage disorder resulting from deficient glucocerebrosidase activity. More than 350 mutations that cause Gaucher disease have been described to date. Novel mutations can potentially provide insight into the glucocerebrosidase structure-function relationship and biochemical basis of the disease. Here, we report the identification of two novel mutations in two unrelated patients with type I (non-neuronopathic) Gaucher disease: 1) a splice site mutation IVS9 + 1G > A; and (2) a complex allele (cis) G355R/R359X. Both patients have a common N370S mutation in the other allele. The splice site mutation results from an intronic base substitution (G to A, c.1328 + 1, g.5005) at the donor splice site of exon and intron 9. The complex allele results from two point mutations in exon 8 of glucocerebrosidase (G to C at c.1180, g.4396, and T to C at c. 1192, g.4408) substituting glycine by arginine (G355R) and arginine by a premature termination (R359X), respectively. In order to demonstrate that G355R/R359X are in cis arrangement, PCR-amplified glucocerebrosidase exon 8 genomic DNA from the patient was cloned into the vector pJET1.2 in Escherichia coli TOP10® strain. Out of the 15 clones that were sequence analyzed, 10 contained the normal allele sequence and 5 contained the complex allele G355R/R359X sequence showing both mutations in cis arrangement. Restriction fragment length polymorphism analysis using Hph1 restriction endonuclease digest was established for the IVS9 + 1G > A mutation for confirmation and efficient identification of this mutation in future patients. Past literature suggests that mutations affecting splicing patterns of the glucocerebrosidase transcript as well as mutations in Gaucher complex alleles are detrimental to enzyme activity. However, compound heterozygosity with N370S, a mild mutation, will lead to a mild phenotype. The cases reported here support these past findings. PMID:27222815

  8. Identification of novel splice site mutation IVS9 + 1(G > A) and novel complex allele G355R/R359X in Type 1 Gaucher patients heterozygous for mutation N370S☆

    PubMed Central

    Hoitsema, Kourtnee; Amato, Dominick; Khan, Aneal; Sirrs, Sandra; Choy, Francis Y.M.

    2016-01-01

    Gaucher disease is an autosomal recessive lysosomal storage disorder resulting from deficient glucocerebrosidase activity. More than 350 mutations that cause Gaucher disease have been described to date. Novel mutations can potentially provide insight into the glucocerebrosidase structure–function relationship and biochemical basis of the disease. Here, we report the identification of two novel mutations in two unrelated patients with type I (non-neuronopathic) Gaucher disease: 1) a splice site mutation IVS9 + 1G > A; and (2) a complex allele (cis) G355R/R359X. Both patients have a common N370S mutation in the other allele. The splice site mutation results from an intronic base substitution (G to A, c.1328 + 1, g.5005) at the donor splice site of exon and intron 9. The complex allele results from two point mutations in exon 8 of glucocerebrosidase (G to C at c.1180, g.4396, and T to C at c. 1192, g.4408) substituting glycine by arginine (G355R) and arginine by a premature termination (R359X), respectively. In order to demonstrate that G355R/R359X are in cis arrangement, PCR-amplified glucocerebrosidase exon 8 genomic DNA from the patient was cloned into the vector pJET1.2 in Escherichia coli TOP10® strain. Out of the 15 clones that were sequence analyzed, 10 contained the normal allele sequence and 5 contained the complex allele G355R/R359X sequence showing both mutations in cis arrangement. Restriction fragment length polymorphism analysis using Hph1 restriction endonuclease digest was established for the IVS9 + 1G > A mutation for confirmation and efficient identification of this mutation in future patients. Past literature suggests that mutations affecting splicing patterns of the glucocerebrosidase transcript as well as mutations in Gaucher complex alleles are detrimental to enzyme activity. However, compound heterozygosity with N370S, a mild mutation, will lead to a mild phenotype. The cases reported here support these past findings. PMID:27222815

  9. A novel mutation in the MITF may be digenic with GJB2 mutations in a large Chinese family of Waardenburg syndrome type II.

    PubMed

    Yan, Xukun; Zhang, Tianyu; Wang, Zhengmin; Jiang, Yi; Chen, Yan; Wang, Hongyan; Ma, Duan; Wang, Lei; Li, Huawei

    2011-12-20

    Waardenburg syndrome type II (WS2) is associated with syndromic deafness. A subset of WS2, WS2A, accounting for approximately 15% of patients, is attributed to mutations in the microphthalmia-associated transcription factor (MITF) gene. We examined the genetic basis of WS2 in a large Chinese family. All 9 exons of the MITF gene, the single coding exon (exon 2) of the most common hereditary deafness gene GJB2 and the mitochondrial DNA (mtDNA) 12S rRNA were sequenced. A novel heterozygous mutation c.[742_743delAAinsT;746_747delCA] in exon 8 of the MITF gene co-segregates with WS2 in the family. The MITF mutation results in a premature termination codon and a truncated MITF protein with only 247 of the 419 wild type amino acids. The deaf proband had this MITF gene heterozygous mutation as well as a c.[109G>A]+[235delC] compound heterozygous pathogenic mutation in the GJB2 gene. No pathogenic mutation was found in mtDNA 12S rRNA in this family. Thus, a novel compound heterozygous mutation, c.[742_743delAAinsT;746_747delCA] in MITF exon 8 was the key genetic reason for WS2 in this family, and a digenic effect of MITF and GJB2 genes may contribute to deafness of the proband. PMID:22196401

  10. Pressure Overload by Transverse Aortic Constriction Induces Maladaptive Hypertrophy in a Titin-Truncated Mouse Model.

    PubMed

    Zhou, Qifeng; Kesteven, Scott; Wu, Jianxin; Aidery, Parwez; Gawaz, Meinrad; Gramlich, Michael; Feneley, Michael P; Harvey, Richard P

    2015-01-01

    Mutations in the giant sarcomeric protein titin (TTN) are a major cause for inherited forms of dilated cardiomyopathy (DCM). We have previously developed a mouse model that imitates a TTN truncation mutation we found in a large pedigree with DCM. While heterozygous Ttn knock-in mice do not display signs of heart failure under sedentary conditions, they recapitulate the human phenotype when exposed to the pharmacological stressor angiotensin II or isoproterenol. In this study we investigated the effects of pressure overload by transverse aortic constriction (TAC) in heterozygous (Het) Ttn knock-in mice. Two weeks after TAC, Het mice developed marked impairment of left ventricular ejection fraction (p < 0.05), while wild-type (WT) TAC mice did not. Het mice also trended toward increased ventricular end diastolic pressure and volume compared to WT littermates. We found an increase in histologically diffuse cardiac fibrosis in Het compared to WT in TAC mice. This study shows that a pattern of DCM can be induced by TAC-mediated pressure overload in a TTN-truncated mouse model. This model enlarges our arsenal of cardiac disease models, adding a valuable tool to understand cardiac pathophysiological remodeling processes and to develop therapeutic approaches to combat heart failure. PMID:26504781

  11. Pressure Overload by Transverse Aortic Constriction Induces Maladaptive Hypertrophy in a Titin-Truncated Mouse Model

    PubMed Central

    Zhou, Qifeng; Kesteven, Scott; Wu, Jianxin; Aidery, Parwez; Gawaz, Meinrad; Gramlich, Michael; Feneley, Michael P.; Harvey, Richard P.

    2015-01-01

    Mutations in the giant sarcomeric protein titin (TTN) are a major cause for inherited forms of dilated cardiomyopathy (DCM). We have previously developed a mouse model that imitates a TTN truncation mutation we found in a large pedigree with DCM. While heterozygous Ttn knock-in mice do not display signs of heart failure under sedentary conditions, they recapitulate the human phenotype when exposed to the pharmacological stressor angiotensin II or isoproterenol. In this study we investigated the effects of pressure overload by transverse aortic constriction (TAC) in heterozygous (Het) Ttn knock-in mice. Two weeks after TAC, Het mice developed marked impairment of left ventricular ejection fraction (p < 0.05), while wild-type (WT) TAC mice did not. Het mice also trended toward increased ventricular end diastolic pressure and volume compared to WT littermates. We found an increase in histologically diffuse cardiac fibrosis in Het compared to WT in TAC mice. This study shows that a pattern of DCM can be induced by TAC-mediated pressure overload in a TTN-truncated mouse model. This model enlarges our arsenal of cardiac disease models, adding a valuable tool to understand cardiac pathophysiological remodeling processes and to develop therapeutic approaches to combat heart failure. PMID:26504781

  12. A 5' splice site mutation affecting the pre-mRNA splicing of two upstream exons in the collagen COL1A1 gene. Exon 8 skipping and altered definition of exon 7 generates truncated pro alpha 1(I) chains with a non-collagenous insertion destabilizing the triple helix.

    PubMed Central

    Bateman, J F; Chan, D; Moeller, I; Hannagan, M; Cole, W G

    1994-01-01

    A heterozygous de novo G to A point mutation in intron 8 at the +5 position of the splice donor site of the gene for the pro alpha 1(I) chain of type I procollagen, COL1A1, was defined in a patient with type IV osteogenesis imperfecta. The splice donor site mutation resulted not only in the skipping of the upstream exon 8 but also unexpectedly had the secondary effect of activating a cryptic splice site in the next upstream intron, intron 7, leading to re-definition of the 3' limit of exon 7. These pre-mRNA splicing aberrations cause the deletion of exon 8 sequences from the mature mRNA and the inclusion of 96 bp of intron 7 sequence. Since the mis-splicing of the mutant allele product resulted in the maintenance of the correct codon reading frame, the resultant pro alpha 1(I) chain contained a short non-collagenous 32-amino-acid sequence insertion within the repetitive Gly-Xaa-Yaa collagen sequence motif. At the protein level, the mutant alpha 1(I) chain was revealed by digestion with pepsin, which cleaved the mutant procollagen within the protease-sensitive non-collagenous insertion, producing a truncated alpha 1(I). This protease sensitivity demonstrated the structural distortion to the helical structure caused by the insertion. In long-term culture with ascorbic acid, which stimulates the formation of a mature crosslinked collagen matrix, and in tissues, there was no evidence of the mutant chain, suggesting that during matrix formation the mutant chain was unable to stably incorporated into the matrix and was degraded proteolytically. Images Figure 1 Figure 2 Figure 3 Figure 4 Figure 5 Figure 6 PMID:7945197

  13. Differential, dominant activation and inhibition of Notch signalling and APP cleavage by truncations of PSEN1 in human disease.

    PubMed

    Newman, Morgan; Wilson, Lachlan; Verdile, Giuseppe; Lim, Anne; Khan, Imran; Moussavi Nik, Seyyed Hani; Pursglove, Sharon; Chapman, Gavin; Martins, Ralph N; Lardelli, Michael

    2014-02-01

    PRESENILIN1 (PSEN1) is the major locus for mutations causing familial Alzheimer's disease (FAD) and is also mutated in Pick disease of brain, familial acne inversa and dilated cardiomyopathy. It is a critical facilitator of Notch signalling and many other signalling pathways and protein cleavage events including production of the Amyloidβ (Aβ) peptide from the AMYLOID BETA A4 PRECURSOR PROTEIN (APP). We previously reported that interference with splicing of transcripts of the zebrafish orthologue of PSEN1 creates dominant negative effects on Notch signalling. Here, we extend this work to show that various truncations of human PSEN1 (or zebrafish Psen1) protein have starkly differential effects on Notch signalling and cleavage of zebrafish Appa (a paralogue of human APP). Different truncations can suppress or stimulate Notch signalling but not Appa cleavage and vice versa. The G183V mutation possibly causing Pick disease causes production of aberrant transcripts truncating the open reading frame after exon 5 sequence. We show that the truncated protein potentially translated from these transcripts avidly incorporates into very stable Psen1-dependent higher molecular weight complexes and suppresses cleavage of Appa but not Notch signalling. In contrast, the truncated protein potentially produced by the P242LfsX11 acne inversa mutation has no effect on Appa cleavage but, unexpectedly, enhances Notch signalling. Our results suggest novel hypotheses for the pathological mechanisms underlying these diseases and illustrate the importance of investigating the function of dominant mutations at physiologically relevant expression levels and in the normally heterozygous state in which they cause human disease rather than in isolation from healthy alleles. PMID:24101600

  14. Novel splicing mutation in the ASXL3 gene causing Bainbridge-Ropers syndrome.

    PubMed

    Hori, Ikumi; Miya, Fuyuki; Ohashi, Kei; Negishi, Yutaka; Hattori, Ayako; Ando, Naoki; Okamoto, Nobuhiko; Kato, Mitsuhiro; Tsunoda, Tatsuhiko; Yamasaki, Mami; Kanemura, Yonehiro; Kosaki, Kenjiro; Saitoh, Shinji

    2016-07-01

    Bainbridge-Ropers syndrome (BRPS) is characterized by severe developmental delay, feeding problems, short stature, characteristic facal appearance including arched eyebrows and anteverted nares, and ulnar deviation of the hands. BRPS is caused by a heterozygous mutation in the additional sex combs-like 3 (ASXL3) gene. We describe a patient with severe developmental delay, feeding problems, short stature, autism, and sleep disturbance with a heterozygous de novo splicing mutation in the ASXL3 gene. Reported disease-causing mutations in ASXL3 are located mostly in the first half of exon 11, analogous to ASXL1 mutations of which result in Bohring-Opitz syndrome (BOS). Our findings suggest that the expression of the truncated ASXL3 protein, including ASXN and ASXH domains, give rise to BRPS, which is distinct from but overlaps with BOS. © 2016 Wiley Periodicals, Inc. PMID:27075689

  15. An Upstream Truncation of the furA-katG Operon Confers High-Level Isoniazid Resistance in a Mycobacterium tuberculosis Clinical Isolate with No Known Resistance-Associated Mutations

    PubMed Central

    Yam, Wing Cheong; Zhang, Ying; Kao, Richard Y. T.

    2014-01-01

    Although the major causes of isoniazid (INH) resistance in Mycobacterium tuberculosis are confined to structural mutations in katG and promoter mutations in the mabA-inhA operon, a significant proportion of INH-resistant strains have unknown resistance mechanisms. Recently, we identified a high-level INH-resistant M. tuberculosis clinical isolate, GB005, with no known resistance-associated mutations. A comprehensive study was performed to investigate the molecular basis of drug resistance in this strain. Although no mutations were found throughout the katG and furA-katG intergenic region, the katG expression and the catalase activity were greatly diminished compared to those in H37Rv (P < 0.01). Northern blotting revealed that the katG transcript from the isolate was smaller than that of H37Rv. Sequencing analysis of furA and upstream genes discovered a 7.2-kb truncation extended from the 96th base preceding the initiation codon of katG. Complementation of the M. tuberculosis Δ(furA-katG) strain with katG and different portions of the truncated region identified a 134-bp upstream fragment of furA that was essential for full catalase activity and INH susceptibility in M. tuberculosis. The promoter activity of this fragment was also shown to be stronger than that of the furA-katG intergenic region (P < 0.01). Collectively, these findings demonstrate that deletion of the 134-bp furA upstream fragment is responsible for the reduction in katG expression, resulting in INH resistance in GB005. To our knowledge, this is the first report showing that deletion of the upstream region preceding the furA-katG operon causes high-level INH resistance in a clinical isolate of M. tuberculosis. PMID:25092698

  16. The sodium-phosphate co-transporter SLC34A2, and pulmonary alveolar microlithiasis: Presentation of an inbred family and a novel truncating mutation in exon 3

    PubMed Central

    Vismara, Marco Favio Michele; Colao, Emma; Fabiani, Fernanda; Bombardiere, Francesco; Tamburrini, Oscar; Alessio, Caterina; Manti, Francesco; Pelaia, Gerolamo; Romeo, Pasquale; Iuliano, Rodolfo; Perrotti, Nicola

    2015-01-01

    Pulmonary alveolar microlithiasis is a disorder in which many tiny fragments (microliths) of calcium phosphate gradually accumulate in alveoli. Loss of function mutations in the gene SLC34A2 coding for the sodium phosphate co-transporter (NaPi-IIb) are responsible for genetic forms of alveolar microlithiasis. We now report a consanguineous Italian family from Calabria with two affected members segregating alveolar microlithiasis in a recessive fashion. We describe, for the first time, a novel loss of function mutation in the gene coding for NaPi-IIb. A careful description of the clinical phenotype is provided together with technical details for direct sequencing of the gene. PMID:26744662

  17. Novel autosomal recessive gene mutations in aquaporin-2 in two Chinese congenital nephrogenic diabetes insipidus pedigrees

    PubMed Central

    Cen, Jing; Nie, Min; Duan, Lian; Gu, Feng

    2015-01-01

    Recent evidence has linked novel mutations in the arginine vasopressin receptor 2 gene (AVPR2) and aquaporin-2 gene (AQP2) present in Southeast Asian populations to congenital nephrogenic diabetes insipidus (NDI). To investigate mutations in 2 distinct Chinese pedigrees with NDI patients, clinical data, laboratory findings, and genomic DNA sequences from peripheral blood leukocytes were analyzed in two 5.5- and 8-year-old boys (proband 1 and 2, respectively) and their first-degree relatives. Water intake, urinary volume, body weight and medication use were recorded. Mutations in coding regions and intron-exon borders of both AQP2 and AVPR2 gene were sequenced. Three mutations in AQP2 were detected, including previously reported heterozygous frameshift mutation (c.127_128delCA, p.Gln43Aspfs ×63) inherited from the mother, a novel frameshift mutation (c.501_502insC, p.Val168Argfs ×30, inherited from the father) in proband 1 and a novel missense mutation (c. 643G>A, p. G215S), inherited from both parents in proband 2. In family 2 both parents and one sister were heterozygous carriers of the novel missense mutation. Neither pedigree exhibited mutation in the AVPR2 gene. The patient with truncated AQP2 may present with much more severe NDI manifestations. Identification of these novel AQP2 gene mutations expands the AQP2 genotypic spectrum and may contribute to etiological diagnosis and genetic counseling. PMID:26064258

  18. Rubinstein-Taybi syndrome and CREBBP c.201 202delTA mutation: a case presenting with varicella meningoencephalitis.

    PubMed

    Çaksen, H; Bartsch, O; Okur, M; Temel, H; Açikgoz, M; Yilmaz, C

    2009-01-01

    Rubinstein-Taybi syndrome (RTS) is a rare syndrome with a frequency of approximately 1 in 125,000 affected newborns, which is characterized by mental retardation, growth retardation, a particular dysmorphology and, in a subset of cases, immunodeficiency. RTS is typically caused by CREBBP deficiency, and heterozygous mutation or deletion of the CREBBP gene has been identified in 60-70% of patients. The inheritance is autosomal dominant but reports of vertical transmission are exceedingly rare; near-all cases are caused by de novo mutations. Here we present an 8-month-old boy with varicella meningoencephalitis, RTS, and a de novo deletion of the CREBBP gene of two base pairs at position 201-202 in exon 2, c. 201 202delT. The mutation has not been described previously but it predicts a protein truncation, and truncating CREBBP mutations are typical causes of RTS. PMID:19852432

  19. Atypical phenotype in two patients with LAMA2 mutations.

    PubMed

    Marques, Joana; Duarte, Sofia T; Costa, Sónia; Jacinto, Sandra; Oliveira, Jorge; Oliveira, Márcia E; Santos, Rosário; Bronze-da-Rocha, Elsa; Silvestre, Ana Rita; Calado, Eulália; Evangelista, Teresinha

    2014-05-01

    Congenital muscular dystrophy type 1A is caused by mutations in the LAMA2 gene, which encodes the α2-chain of laminin. We report two patients with partial laminin-α2 deficiency and atypical phenotypes, one with almost exclusive central nervous system involvement (cognitive impairment and refractory epilepsy) and the second with marked cardiac dysfunction, rigid spine syndrome and limb-girdle weakness. Patients underwent clinical, histopathological, imaging and genetic studies. Both cases have two heterozygous LAMA2 variants sharing a potentially pathogenic missense mutation c.2461A>C (p.Thr821Pro) located in exon 18. Brain MRI was instrumental for the diagnosis, since muscular examination and motor achievements were normal in the first patient and there was a severe cardiac involvement in the second. The clinical phenotype of the patients is markedly different which could in part be explained by the different combination of mutations types (two missense versus a missense and a truncating mutation). PMID:24534542

  20. Heterozygous screen in Saccharomyces cerevisiae identifies dosage-sensitive genes that affect chromosome stability.

    PubMed

    Strome, Erin D; Wu, Xiaowei; Kimmel, Marek; Plon, Sharon E

    2008-03-01

    Current techniques for identifying mutations that convey a small increased cancer risk or those that modify cancer risk in carriers of highly penetrant mutations are limited by the statistical power of epidemiologic studies, which require screening of large populations and candidate genes. To identify dosage-sensitive genes that mediate genomic stability, we performed a genomewide screen in Saccharomyces cerevisiae for heterozygous mutations that increase chromosome instability in a checkpoint-deficient diploid strain. We used two genome stability assays sensitive enough to detect the impact of heterozygous mutations and identified 172 heterozygous gene disruptions that affected chromosome fragment (CF) loss, 45% of which also conferred modest but statistically significant instability of endogenous chromosomes. Analysis of heterozygous deletion of 65 of these genes demonstrated that the majority increased genomic instability in both checkpoint-deficient and wild-type backgrounds. Strains heterozygous for COMA kinetochore complex genes were particularly unstable. Over 50% of the genes identified in this screen have putative human homologs, including CHEK2, ERCC4, and TOPBP1, which are already associated with inherited cancer susceptibility. These findings encourage the incorporation of this orthologous gene list into cancer epidemiology studies and suggest further analysis of heterozygous phenotypes in yeast as models of human disease resulting from haplo-insufficiency. PMID:18245329

  1. Role of local structure and dynamics of small ligand migration in proteins: a study of a mutated truncated hemoprotein from Thermobifida fusca by time resolved MIR spectroscopy.

    PubMed

    Patrizi, Barbara; Lapini, Andrea; Di Donato, Mariangela; Marcelli, Agnese; Lima, Manuela; Righini, Roberto; Foggi, Paolo; Baiocco, Paola; Bonamore, Alessandra; Boffi, Alberto

    2014-08-01

    Carbon monoxide recombination dynamics in a mutant of the truncated hemoglobin from Thermobida fusca (3F-Tf-trHb) has been analyzed by means of ultrafast Visible-pump/MidIR-probe spectroscopy and compared with that of the wild-type protein. In 3F-Tf-trHb, three topologically relevant amino acids, responsible for the ligand stabilization through the formation of a H-bond network (TyrB10 TyrCD1 and TrpG8), have been replaced by Phe residues. X-ray diffraction data show that Phe residues in positions B10 and G8 maintain the same rotameric arrangements as Tyr and Trp in the wild-type protein, while Phe in position CD1 displays significant rotameric heterogeneity. Photodissociation of the ligand has been induced by exciting the sample with 550 nm pump pulses and the CO rebinding has been monitored in two mid-IR regions respectively corresponding to the ν(CO) stretching vibration of the iron-bound CO (1880-1980 cm(-1)) and of the dissociated free CO (2050-2200 cm(-1)). In both the mutant and wild-type protein, a significant amount of geminate CO rebinding is observed on a subnanosecond time scale. Despite the absence of the distal pocket hydrogen-bonding network, the kinetics of geminate rebinding in 3F-Tf-trHb is very similar to the wild-type, showing how the reactivity of dissociated CO toward the heme is primarily regulated by the effective volume and flexibility of the distal pocket and by caging effects exerted on the free CO on the analyzed time scale. PMID:25019316

  2. Recessive nephrocerebellar syndrome on the Galloway-Mowat syndrome spectrum is caused by homozygous protein-truncating mutations of WDR73.

    PubMed

    Jinks, Robert N; Puffenberger, Erik G; Baple, Emma; Harding, Brian; Crino, Peter; Fogo, Agnes B; Wenger, Olivia; Xin, Baozhong; Koehler, Alanna E; McGlincy, Madeleine H; Provencher, Margaret M; Smith, Jeffrey D; Tran, Linh; Al Turki, Saeed; Chioza, Barry A; Cross, Harold; Harlalka, Gaurav V; Hurles, Matthew E; Maroofian, Reza; Heaps, Adam D; Morton, Mary C; Stempak, Lisa; Hildebrandt, Friedhelm; Sadowski, Carolin E; Zaritsky, Joshua; Campellone, Kenneth; Morton, D Holmes; Wang, Heng; Crosby, Andrew; Strauss, Kevin A

    2015-08-01

    We describe a novel nephrocerebellar syndrome on the Galloway-Mowat syndrome spectrum among 30 children (ages 1.0 to 28 years) from diverse Amish demes. Children with nephrocerebellar syndrome had progressive microcephaly, visual impairment, stagnant psychomotor development, abnormal extrapyramidal movements and nephrosis. Fourteen died between ages 2.7 and 28 years, typically from renal failure. Post-mortem studies revealed (i) micrencephaly without polymicrogyria or heterotopia; (ii) atrophic cerebellar hemispheres with stunted folia, profound granule cell depletion, Bergmann gliosis, and signs of Purkinje cell deafferentation; (iii) selective striatal cholinergic interneuron loss; and (iv) optic atrophy with delamination of the lateral geniculate nuclei. Renal tissue showed focal and segmental glomerulosclerosis and extensive effacement and microvillus transformation of podocyte foot processes. Nephrocerebellar syndrome mapped to 700 kb on chromosome 15, which contained a single novel homozygous frameshift variant (WDR73 c.888delT; p.Phe296Leufs*26). WDR73 protein is expressed in human cerebral cortex, hippocampus, and cultured embryonic kidney cells. It is concentrated at mitotic microtubules and interacts with α-, β-, and γ-tubulin, heat shock proteins 70 and 90 (HSP-70; HSP-90), and the carbamoyl phosphate synthetase 2/aspartate transcarbamylase/dihydroorotase multi-enzyme complex. Recombinant WDR73 p.Phe296Leufs*26 and p.Arg256Profs*18 proteins are truncated, unstable, and show increased interaction with α- and β-tubulin and HSP-70/HSP-90. Fibroblasts from patients homozygous for WDR73 p.Phe296Leufs*26 proliferate poorly in primary culture and senesce early. Our data suggest that in humans, WDR73 interacts with mitotic microtubules to regulate cell cycle progression, proliferation and survival in brain and kidney. We extend the Galloway-Mowat syndrome spectrum with the first description of diencephalic and striatal neuropathology. PMID:26070982

  3. Recessive nephrocerebellar syndrome on the Galloway-Mowat syndrome spectrum is caused by homozygous protein-truncating mutations of WDR73

    PubMed Central

    Puffenberger, Erik G.; Baple, Emma; Harding, Brian; Crino, Peter; Fogo, Agnes B.; Wenger, Olivia; Xin, Baozhong; Koehler, Alanna E.; McGlincy, Madeleine H.; Provencher, Margaret M.; Smith, Jeffrey D.; Tran, Linh; Al Turki, Saeed; Chioza, Barry A.; Cross, Harold; Harlalka, Gaurav V.; Hurles, Matthew E.; Maroofian, Reza; Heaps, Adam D.; Morton, Mary C.; Stempak, Lisa; Hildebrandt, Friedhelm; Sadowski, Carolin E.; Zaritsky, Joshua; Campellone, Kenneth; Morton, D. Holmes; Wang, Heng; Crosby, Andrew; Strauss, Kevin A.

    2015-01-01

    We describe a novel nephrocerebellar syndrome on the Galloway-Mowat syndrome spectrum among 30 children (ages 1.0 to 28 years) from diverse Amish demes. Children with nephrocerebellar syndrome had progressive microcephaly, visual impairment, stagnant psychomotor development, abnormal extrapyramidal movements and nephrosis. Fourteen died between ages 2.7 and 28 years, typically from renal failure. Post-mortem studies revealed (i) micrencephaly without polymicrogyria or heterotopia; (ii) atrophic cerebellar hemispheres with stunted folia, profound granule cell depletion, Bergmann gliosis, and signs of Purkinje cell deafferentation; (iii) selective striatal cholinergic interneuron loss; and (iv) optic atrophy with delamination of the lateral geniculate nuclei. Renal tissue showed focal and segmental glomerulosclerosis and extensive effacement and microvillus transformation of podocyte foot processes. Nephrocerebellar syndrome mapped to 700 kb on chromosome 15, which contained a single novel homozygous frameshift variant (WDR73 c.888delT; p.Phe296Leufs*26). WDR73 protein is expressed in human cerebral cortex, hippocampus, and cultured embryonic kidney cells. It is concentrated at mitotic microtubules and interacts with α-, β-, and γ-tubulin, heat shock proteins 70 and 90 (HSP-70; HSP-90), and the carbamoyl phosphate synthetase 2/aspartate transcarbamylase/dihydroorotase multi-enzyme complex. Recombinant WDR73 p.Phe296Leufs*26 and p.Arg256Profs*18 proteins are truncated, unstable, and show increased interaction with α- and β-tubulin and HSP-70/HSP-90. Fibroblasts from patients homozygous for WDR73 p.Phe296Leufs*26 proliferate poorly in primary culture and senesce early. Our data suggest that in humans, WDR73 interacts with mitotic microtubules to regulate cell cycle progression, proliferation and survival in brain and kidney. We extend the Galloway-Mowat syndrome spectrum with the first description of diencephalic and striatal neuropathology. PMID:26070982

  4. Exome sequencing identified null mutations in LOXL3 associated with early-onset high myopia

    PubMed Central

    Li, Jiali; Gao, Bei; Xiao, Xueshan; Li, Shiqiang; Jia, Xiaoyun; Sun, Wenmin; Guo, Xiangming

    2016-01-01

    Purpose To identify null mutations in novel genes associated with early-onset high myopia using whole exome sequencing. Methods Null mutations, including homozygous and compound heterozygous truncations, were selected from whole exome sequencing data for 298 probands with early-onset high myopia. These data were compared with those of 507 probands with other forms of eye diseases. Null mutations specific to early-onset high myopia were considered potential candidates. Candidate mutations were confirmed with Sanger sequencing and were subsequently evaluated in available family members and 480 healthy controls. Results A homozygous frameshift mutation (c.39dup; p.L14Afs*21) and a compound heterozygous frameshift mutation (c.39dup; p.L14Afs*21 and c.594delG; p.Q199Kfs*35) in LOXL3 were separately identified in two of the 298 probands with early-onset high myopia. These mutations were confirmed with Sanger sequencing and were not detected in 1,974 alleles of the controls from the same region (507 individuals with other conditions and 480 healthy control individuals). These two probands were singleton cases, and their parents had only heterozygous mutations. A homozygous missense mutation in LOXL3 was recently reported in a consanguineous family with Stickler syndrome. Conclusions Our results suggest that null mutations in LOXL3 are likely associated with autosomal recessive early-onset high myopia. LOXL3 is a potential candidate gene for high myopia, but this possibility should be confirmed in additional studies. LOXL3 null mutations in human beings are not lethal, providing a phenotype contrary to that in mice. PMID:26957899

  5. WT1 mutations in T-ALL.

    PubMed

    Tosello, Valeria; Mansour, Marc R; Barnes, Kelly; Paganin, Maddalena; Sulis, Maria Luisa; Jenkinson, Sarah; Allen, Christopher G; Gale, Rosemary E; Linch, David C; Palomero, Teresa; Real, Pedro; Murty, Vundavalli; Yao, Xiaopan; Richards, Susan M; Goldstone, Anthony; Rowe, Jacob; Basso, Giuseppe; Wiernik, Peter H; Paietta, Elisabeth; Pieters, Rob; Horstmann, Martin; Meijerink, Jules P P; Ferrando, Adolfo A

    2009-07-30

    The molecular mechanisms involved in disease progression and relapse in T-cell acute lymphoblastic leukemia (T-ALL) are poorly understood. We used single nucleotide polymorphism array analysis to analyze paired diagnostic and relapsed T-ALL samples to identify recurrent genetic alterations in T-ALL. This analysis showed that diagnosis and relapsed cases have common genetic alterations, but also that relapsed samples frequently lose chromosomal markers present at diagnosis, suggesting that relapsed T-ALL emerges from an ancestral clone different from the major leukemic population at diagnosis. In addition, we identified deletions and associated mutations in the WT1 tumor suppressor gene in 2 of 9 samples. Subsequent analysis showed WT1 mutations in 28 of 211 (13.2%) of pediatric and 10 of 85 (11.7%) of adult T-ALL cases. WT1 mutations present in T-ALL are predominantly heterozygous frameshift mutations resulting in truncation of the C-terminal zinc finger domains of this transcription factor. WT1 mutations are most prominently found in T-ALL cases with aberrant rearrangements of the oncogenic TLX1, TLX3, and HOXA transcription factor oncogenes. Survival analysis demonstrated that WT1 mutations do not confer adverse prognosis in pediatric and adult T-ALL. Overall, these results identify the presence of WT1 mutations as a recurrent genetic alteration in T-ALL. PMID:19494353

  6. A syndrome of microcephaly, short stature, polysyndactyly, and dental anomalies caused by a homozygous KATNB1 mutation.

    PubMed

    Yigit, Gökhan; Wieczorek, Dagmar; Bögershausen, Nina; Beleggia, Filippo; Möller-Hartmann, Claudia; Altmüller, Janine; Thiele, Holger; Nürnberg, Peter; Wollnik, Bernd

    2016-03-01

    Using whole-exome sequencing, we identified a homozygous acceptor splice-site mutation in intron 6 of the KATNB1 gene in a patient from a consanguineous Turkish family who presented with congenital microcephaly, lissencephaly, short stature, polysyndactyly, and dental abnormalities. cDNA analysis revealed complete loss of the natural acceptor splice-site resulting either in the usage of an alternative, exonic acceptor splice-site inducing a frame-shift and premature protein truncation or, to a minor extent, in complete skipping of exon 7. Both effects most likely lead to complete loss of KATNB1 function. Homozygous and compound heterozygous mutations in KATNB1 have very recently been described as a cause of microcephaly with brain malformations and seizures. We extend the KATNB1 associated phenotype by describing a syndrome characterized by primordial dwarfism, lissencephaly, polysyndactyly, and dental anomalies, which is caused by a homozygous truncating KATNB1 mutation. PMID:26640080

  7. A high frequency of distinct ATM gene mutations in ataxia-telangiectasia

    SciTech Connect

    Wright, J.; Teraoka, S.; Concannon, P.

    1996-10-01

    The clinical features of the autosomal recessive disorder ataxia-telangiectasia (AT) include a progressive cerebellar ataxia, hypersensitivity to ionizing radiation, and an increased susceptibility to malignancies. Epidemiological studies have suggested that AT heterozygotes may also be at increased risk for malignancy, possibly as a consequence of radiation exposure. A gene mutated in AT patients (ATM) has recently been isolated, making mutation screening in both patients and the general population possible. Because of the relatively large size of the ATM gene, the design of screening programs will depend on the types and distribution of mutations in the general population. In this report, we describe 30 mutations identified in a panel of unrelated AT patients and controls. Twenty-five of the 30 were distinct, and most patients were compound heterozygotes. The most frequently detected mutation was found in three different families and had previously been reported in five others. This corresponds to a frequency of 8% of all reported ATM mutations. Twenty-two of the alterations observed would be predicted to lead to protein truncation at sites scattered throughout the molecule. Two fibroblast cell lines, which displayed normal responses to ionizing radiation, also proved to be heterozygous for truncation mutations of ATM. These observations suggest that the carrier frequency of ATM mutations may be sufficiently high to make population screening practical. However, such screening may need to be done prospectively, that is, by searching for new mutations rather than by screening for just those already identified in AT families. 33 refs., 1 fig., 1 tab.

  8. Canine MPV17 truncation without clinical manifestations

    PubMed Central

    Hänninen, Reetta L.; Ahonen, Saija; Màrquez, Merce; Myöhänen, Maarit J.; Hytönen, Marjo K.; Lohi, Hannes

    2015-01-01

    ABSTRACT Mitochondrial DNA depletion syndromes (MDS) are often serious autosomal recessively inherited disorders characterized by tissue-specific mtDNA copy number reduction. Many genes, including MPV17, are associated with the hepatocerebral form of MDS. MPV17 encodes for a mitochondrial inner membrane protein with a poorly characterized function. Several MPV17 mutations have been reported in association with a heterogeneous group of early-onset manifestations, including liver disease and neurological problems. Mpv17-deficient mice present renal and hearing defects. We describe here a MPV17 truncation mutation in dogs. We found a 1-bp insertion in exon 4 of the MPV17 gene, resulting in a frameshift and early truncation of the encoded protein. The mutation halves MPV17 expression in the lymphocytes of the homozygous dogs and the truncated protein is not translated in transfected cells. The insertion mutation is recurrent and exists in many unrelated breeds, although is highly enriched in the Boxer breed. Unexpectedly, despite the truncation of MPV17, we could not find any common phenotypes in the genetically affected dogs. The lack of observable phenotype could be due to a late onset, mild symptoms or potential tissue-specific compensatory mechanisms. This study suggests species-specific differences in the manifestation of the MPV17 defects and establishes a novel large animal model to further study MPV17 function and role in mitochondrial biology. PMID:26353863

  9. Cancer-associated ASXL1 mutations may act as gain-of-function mutations of the ASXL1–BAP1 complex

    PubMed Central

    Balasubramani, Anand; Larjo, Antti; Bassein, Jed A.; Chang, Xing; Hastie, Ryan B.; Togher, Susan M.; Lähdesmäki, Harri; Rao, Anjana

    2015-01-01

    ASXL1 is the obligate regulatory subunit of a deubiquitinase complex whose catalytic subunit is BAP1. Heterozygous mutations of ASXL1 that result in premature truncations are frequent in myeloid leukemias and Bohring–Opitz syndrome. Here we demonstrate that ASXL1 truncations confer enhanced activity on the ASXL1–BAP1 complex. Stable expression of truncated, hyperactive ASXL1–BAP1 complexes in a haematopoietic precursor cell line results in global erasure of H2AK119Ub, striking depletion of H3K27me3, selective upregulation of a subset of genes whose promoters are marked by both H2AK119Ub and H3K4me3, and spontaneous differentiation to the mast cell lineage. These outcomes require the catalytic activity of BAP1, indicating that they are downstream consequences of H2AK119Ub erasure. In bone marrow precursors, expression of truncated ASXL1–BAP1 complex cooperates with TET2 loss-of-function to increase differentiation to the myeloid lineage in vivo. Our data raise the possibility that ASXL1 truncation mutations confer gain-of-function on the ASXL–BAP1 complex. PMID:26095772

  10. An overlapping phenotype of Osteogenesis imperfecta and Ehlers-Danlos syndrome due to a heterozygous mutation in COL1A1 and biallelic missense variants in TNXB identified by whole exome sequencing.

    PubMed

    Mackenroth, Luisa; Fischer-Zirnsak, Björn; Egerer, Johannes; Hecht, Jochen; Kallinich, Tilmann; Stenzel, Werner; Spors, Birgit; von Moers, Arpad; Mundlos, Stefan; Kornak, Uwe; Gerhold, Kerstin; Horn, Denise

    2016-04-01

    Osteogenesis imperfecta (OI) and Ehlers-Danlos syndrome (EDS) are variable genetic disorders that overlap in different ways [Cole 1993; Grahame 1999]. Here, we describe a boy presenting with severe muscular hypotonia, multiple fractures, and joint hyperflexibility, features that are compatible with mild OI and hypermobility type EDS, respectively. By whole exome sequencing, we identified both a COL1A1 mutation (c.4006-1G > A) inherited from the patient's mildly affected mother and biallelic missense variants in TNXB (p.Val1213Ile, p.Gly2592Ser). Analysis of cDNA showed that the COL1A1 splice site mutation led to intron retention causing a frameshift (p.Phe1336Valfs*72). Type 1 collagen secretion by the patient's skin fibroblasts was reduced. Immunostaining of a muscle biopsy obtained from the patient revealed a clear reduction of tenascin-X in the extracellular matrix compared to a healthy control. These findings imply that the combination of the COL1A1 mutation with the TNXB variants might cause the patient's unique phenotype. PMID:26799614

  11. A possible heterozygous advantage in muscular dystrophy.

    PubMed

    Emery, A E H

    2016-01-01

    In certain autosomal recessive disorders there is suggestive evidence that heterozygous carriers may have some selective advantage over normal homozygotes. These include, for example, cystic fibrosis, Tay-Sachs disease and phenylketonuria. The best example so far, however, is that of significant heterozygous advantage in sickle-cell anaemia with increased resistance to falciparum malaria. PMID:27245530

  12. Clinically symptomatic heterozygous carnitine palmitoyltransferase II (CPT II) deficiency.

    PubMed

    Joshi, Pushpa Raj; Deschauer, Marcus; Zierz, Stephan

    2012-12-01

    Two symptomatic patients with heterozygous carnitine palmitoyltransferase II (CPT II) deficiency are reported. Patient 1, a 21-year-old female professional tennis player, suffered from exercise-induced attacks of muscle pain, burning sensations and proximal weakness. Patient 2, a 30-year-old male amateur marathon runner developed muscle cramps and rhabdomyolysis upon extensive exercise and insolation-induced fever. In both patients, the common p.S113L mutation was found in heterozygote state. No second mutation could be found upon sequencing of all the exons of CPT2 gene including exon-intron boundaries. Biochemically, residual CPT activity in muscle homogenate upon inhibition by malonyl-CoA and Triton-X-100 was intermediate between controls and patients with mutations on both alleles. Although CPT II deficiency is an autosomal recessive disorder, the reported patients indicate that heterozygotes might also have typical attacks of myalgia, pareses or rhabdomyolysis. PMID:23184072

  13. A novel nonsense mutation of the KAL1 gene (p.Trp204*) in Kallmann syndrome

    PubMed Central

    El Husny, Antonette Souto; Raiol-Moraes, Milene; Fernandes-Caldato, Milena Coelho; Ribeiro-dos-Santos, Ândrea

    2014-01-01

    Objective To describe a novel KAL1 mutation in patients affected by Kallmann syndrome. Setting Endocrinology Clinic of the João de Barros Barreto University Hospital – Federal University of Pará, Brazil. Methods Clinical examination, hormone assays and sequencing of exons 5, 6 and 9 of the KAL1 gene in four Brazilian brothers with Kallmann syndrome. Results Detected a novel KAL1 mutation, c.612G.A/p.Trp204*, in four hemizygous brothers with Kallmann syndrome, and five heterozygous female family members. Conclusion The novel p.Trp204* mutation of the KAL1 gene results in the production of a truncated anosmin-1 enzyme in patients with Kallmann syndrome. This finding broadens the spectrum of pathogenic mutations for this disease. PMID:25328414

  14. Identification of 99 novel mutations in a worldwide cohort of 1,056 patients with a nephronophthisis-related ciliopathy

    PubMed Central

    Halbritter, Jan; Porath, Jonathan D.; Diaz, Katrina A.; Braun, Daniela A.; Kohl, Stefan; Chaki, Moumita; Allen, Susan J.; Soliman, Neveen A.; Hildebrandt, Friedhelm

    2015-01-01

    Nephronophthisis-related ciliopathies (NPHP-RC) are autosomal-recessive cystic kidney diseases. More than 13 genes are implicated in its pathogenesis to date, accounting for only 40 % of all cases. High-throughput mutation screenings of large patient cohorts represent a powerful tool for diagnostics and identification of novel NPHP genes. We here performed a new high-throughput mutation analysis method to study 13 established NPHP genes (NPHP1–NPHP13) in a worldwide cohort of 1,056 patients diagnosed with NPHP-RC. We first applied multiplexed PCR-based amplification using Fluidigm Access-Array™ technology followed by barcoding and next-generation resequencing on an Illumina platform. As a result, we established the molecular diagnosis in 127/1,056 independent individuals (12.0 %) and identified a single heterozygous truncating mutation in an additional 31 individuals (2.9 %). Altogether, we detected 159 different mutations in 11 out of 13 different NPHP genes, 99 of which were novel. Phenotypically most remarkable were two patients with truncating mutations in INVS/NPHP2 who did not present as infants and did not exhibit extrarenal manifestations. In addition, we present the first case of Caroli disease due to mutations in WDR19/NPHP13 and the second case ever with a recessive mutation in GLIS2/NPHP7. This study represents the most comprehensive mutation analysis in NPHP-RC patients, identifying the largest number of novel mutations in a single study worldwide. PMID:23559409

  15. DVL1 Frameshift Mutations Clustering in the Penultimate Exon Cause Autosomal-Dominant Robinow Syndrome

    PubMed Central

    White, Janson; Mazzeu, Juliana F.; Hoischen, Alexander; Jhangiani, Shalini N.; Gambin, Tomasz; Alcino, Michele Calijorne; Penney, Samantha; Saraiva, Jorge M.; Hove, Hanne; Skovby, Flemming; Kayserili, Hülya; Estrella, Elicia; Vulto-van Silfhout, Anneke T.; Steehouwer, Marloes; Muzny, Donna M.; Sutton, V. Reid; Gibbs, Richard A.; Lupski, James R.; Brunner, Han G.; van Bon, Bregje W.M.; Carvalho, Claudia M.B.

    2015-01-01

    Robinow syndrome is a genetically heterogeneous disorder characterized by mesomelic limb shortening, genital hypoplasia, and distinctive facial features and for which both autosomal-recessive and autosomal-dominant inheritance patterns have been described. Causative variants in the non-canonical signaling gene WNT5A underlie a subset of autosomal-dominant Robinow syndrome (DRS) cases, but most individuals with DRS remain without a molecular diagnosis. We performed whole-exome sequencing in four unrelated DRS-affected individuals without coding mutations in WNT5A and found heterozygous DVL1 exon 14 mutations in three of them. Targeted Sanger sequencing in additional subjects with DRS uncovered DVL1 exon 14 mutations in five individuals, including a pair of monozygotic twins. In total, six distinct frameshift mutations were found in eight subjects, and all were heterozygous truncating variants within the penultimate exon of DVL1. In five families in which samples from unaffected parents were available, the variants were demonstrated to represent de novo mutations. All variant alleles are predicted to result in a premature termination codon within the last exon, escape nonsense-mediated decay (NMD), and most likely generate a C-terminally truncated protein with a distinct −1 reading-frame terminus. Study of the transcripts extracted from affected subjects’ leukocytes confirmed expression of both wild-type and variant alleles, supporting the hypothesis that mutant mRNA escapes NMD. Genomic variants identified in our study suggest that truncation of the C-terminal domain of DVL1, a protein hypothesized to have a downstream role in the Wnt-5a non-canonical pathway, is a common cause of DRS. PMID:25817016

  16. DVL1 frameshift mutations clustering in the penultimate exon cause autosomal-dominant Robinow syndrome.

    PubMed

    White, Janson; Mazzeu, Juliana F; Hoischen, Alexander; Jhangiani, Shalini N; Gambin, Tomasz; Alcino, Michele Calijorne; Penney, Samantha; Saraiva, Jorge M; Hove, Hanne; Skovby, Flemming; Kayserili, Hülya; Estrella, Elicia; Vulto-van Silfhout, Anneke T; Steehouwer, Marloes; Muzny, Donna M; Sutton, V Reid; Gibbs, Richard A; Lupski, James R; Brunner, Han G; van Bon, Bregje W M; Carvalho, Claudia M B

    2015-04-01

    Robinow syndrome is a genetically heterogeneous disorder characterized by mesomelic limb shortening, genital hypoplasia, and distinctive facial features and for which both autosomal-recessive and autosomal-dominant inheritance patterns have been described. Causative variants in the non-canonical signaling gene WNT5A underlie a subset of autosomal-dominant Robinow syndrome (DRS) cases, but most individuals with DRS remain without a molecular diagnosis. We performed whole-exome sequencing in four unrelated DRS-affected individuals without coding mutations in WNT5A and found heterozygous DVL1 exon 14 mutations in three of them. Targeted Sanger sequencing in additional subjects with DRS uncovered DVL1 exon 14 mutations in five individuals, including a pair of monozygotic twins. In total, six distinct frameshift mutations were found in eight subjects, and all were heterozygous truncating variants within the penultimate exon of DVL1. In five families in which samples from unaffected parents were available, the variants were demonstrated to represent de novo mutations. All variant alleles are predicted to result in a premature termination codon within the last exon, escape nonsense-mediated decay (NMD), and most likely generate a C-terminally truncated protein with a distinct -1 reading-frame terminus. Study of the transcripts extracted from affected subjects' leukocytes confirmed expression of both wild-type and variant alleles, supporting the hypothesis that mutant mRNA escapes NMD. Genomic variants identified in our study suggest that truncation of the C-terminal domain of DVL1, a protein hypothesized to have a downstream role in the Wnt-5a non-canonical pathway, is a common cause of DRS. PMID:25817016

  17. Transient Neonatal Zinc Deficiency Caused by a Heterozygous G87R Mutation in the Zinc Transporter ZnT-2 (SLC30A2) Gene in the Mother Highlighting the Importance of Zn2+ for Normal Growth and Development

    PubMed Central

    Miletta, Maria Consolata; Kernland, Kristin; Schöni, Martin H.; Petkovic, Vibor; Flück, Christa E.; Eblé, Andrée; Mullis, Primus E.

    2013-01-01

    Suboptimal dietary zinc (Zn2+) intake is increasingly appreciated as an important public health issue. Zn2+ is an essential mineral, and infants are particularly vulnerable to Zn2+ deficiency, as they require large amounts of Zn2+ for their normal growth and development. Although term infants are born with an important hepatic Zn2+ storage, adequate Zn2+ nutrition of infants mostly depends on breast milk or formula feeding, which contains an adequate amount of Zn2+ to meet the infants' requirements. An exclusively breast-fed 6 months old infant suffering from Zn2+ deficiency caused by an autosomal dominant negative G87R mutation in the Slc30a2 gene (encoding for the zinc transporter 2 (ZnT-2)) in the mother is reported. More than 20 zinc transporters characterized up to date, classified into two families (Slc30a/ZnT and Slc39a/Zip), reflect the complexity and importance of maintaining cellular Zn2+ homeostasis and dynamics. The role of ZnTs is to reduce intracellular Zn2+ by transporting it from the cytoplasm into various intracellular organelles and by moving Zn2+ into extracellular space. Zips increase intracellular Zn2+ by transporting it in the opposite direction. Thus the coordinated action of both is essential for the maintenance of Zn2+ homeostasis in the cytoplasm, and accumulating evidence suggests that this is also true for the secretory pathway of growth hormone. PMID:24194756

  18. Novel Frameshift CHD7 Mutation Related to CHARGE Syndrome

    PubMed Central

    Martínez-Quintana, E.; Rodríguez-González, F.; Garay-Sánchez, P.; Tugores, A.

    2014-01-01

    CHARGE syndrome is a rare congenital condition characterized by 6 cardinal features: coloboma, heart defect, atresia choanae, retarded growth and development, genital anomalies, and ear anomalies/deafness. Mutations of the chromodomain helicase DNA-binding protein gene CHD7 are reported to be a major cause of CHARGE syndrome. Herein, we report the case of a 27-year-old patient presenting with typical symptoms who bears a novel heterozygous insertion in exon 2 of the CHD7 gene (c.327dupC) resulting in an amino acid substitution and a frameshift (p.Val110Argfs*22) that leads to a 131-amino-acid truncated polypeptide, likely representing a null allele. Parental genetic screening confirmed the sporadic origin of the mutation. PMID:24550764

  19. LAMB3 mutations causing autosomal-dominant amelogenesis imperfecta.

    PubMed

    Kim, J W; Seymen, F; Lee, K E; Ko, J; Yildirim, M; Tuna, E B; Gencay, K; Shin, T J; Kyun, H K; Simmer, J P; Hu, J C-C

    2013-10-01

    Amelogenesis imperfecta (AI) can be either isolated or part of a larger syndrome. Junctional epidermolysis bullosa (JEB) is a collection of autosomal-recessive disorders featuring AI associated with skin fragility and other symptoms. JEB is a recessive syndrome usually caused by mutations in both alleles of COL17A1, LAMA3, LAMB3, or LAMC2. In rare cases, heterozygous carriers in JEB kindreds display enamel malformations in the absence of skin fragility (isolated AI). We recruited two kindreds with autosomal-dominant amelogenesis imperfecta (ADAI) characterized by generalized severe enamel hypoplasia with deep linear grooves and pits. Whole-exome sequencing of both probands identified novel heterozygous mutations in the last exon of LAMB3 that likely truncated the protein. The mutations perfectly segregated with the enamel defects in both families. In Family 1, an 8-bp deletion (c.3446_3453del GACTGGAG) shifted the reading frame (p.Gly 1149Glufs*8). In Family 2, a single nucleotide substitution (c.C3431A) generated an in-frame translation termination codon (p.Ser1144*). We conclude that enamel formation is particularly sensitive to defects in hemidesmosome/basement-membrane complexes and that syndromic and non-syndromic forms of AI can be etiologically related. PMID:23958762

  20. Thyroglobulin gene mutations in Chinese patients with congenital hypothyroidism.

    PubMed

    Hu, Xuyun; Chen, Rongyu; Fu, Chunyun; Fan, Xin; Wang, Jin; Qian, Jiale; Yi, Shang; Li, Chuan; Luo, Jingsi; Su, Jiasun; Zhang, Shujie; Xie, Bobo; Zheng, Haiyang; Lai, Yunli; Chen, Yun; Li, Hongdou; Gu, Xuefan; Chen, Shaoke; Shen, Yiping

    2016-03-01

    Mutations in Thyroglobulin (TG) are common genetic causes of congenital hypothyroidism (CH). But the TG mutation spectrum and its frequency in Chinese CH patients have not been investigated. Here we conducted a genetic screening of TG gene in a cohort of 382 Chinese CH patients. We identified 22 rare non-polymorphic variants including six truncating variants and 16 missense variants of unknown significance (VUS). Seven patients carried homozygous pathogenic variants, and three patients carried homozygous or compound heterozygous VUS. 48 out of 382 patients carried one of 18 heterozygous VUS which is significantly more often than their occurrences in control cohort (P < 0.0001). Unique to Asian population, the c.274+2T>G variant is the most common pathogenic variant with an allele frequency of 0.021. The prevalence of CH due to TG gene defect in Chinese population was estimated to be approximately 1/101,000. Our study uncovered ethnicity specific TG mutation spectrum and frequency. PMID:26777470

  1. Investigation of Truncated Waveguides

    NASA Technical Reports Server (NTRS)

    Lourie, Nathan P.; Chuss, David T.; Henry, Ross M.; Wollack, Edward J.

    2013-01-01

    The design, fabrication, and performance of truncated circular and square waveguide cross-sections are presented. An emphasis is placed upon numerical and experimental validation of simple analytical formulae that describe the propagation properties of these structures. A test component, a 90-degree phase shifter, was fabricated and tested at 30 GHz. The concepts explored can be directly applied in the design, synthesis and optimization of components in the microwave to sub-millimeter wavebands.

  2. Integrated allelic, transcriptional, and phenomic dissection of the cardiac effects of titin truncations in health and disease.

    PubMed

    Roberts, Angharad M; Ware, James S; Herman, Daniel S; Schafer, Sebastian; Baksi, John; Bick, Alexander G; Buchan, Rachel J; Walsh, Roddy; John, Shibu; Wilkinson, Samuel; Mazzarotto, Francesco; Felkin, Leanne E; Gong, Sungsam; MacArthur, Jacqueline A L; Cunningham, Fiona; Flannick, Jason; Gabriel, Stacey B; Altshuler, David M; Macdonald, Peter S; Heinig, Matthias; Keogh, Anne M; Hayward, Christopher S; Banner, Nicholas R; Pennell, Dudley J; O'Regan, Declan P; San, Tan Ru; de Marvao, Antonio; Dawes, Timothy J W; Gulati, Ankur; Birks, Emma J; Yacoub, Magdi H; Radke, Michael; Gotthardt, Michael; Wilson, James G; O'Donnell, Christopher J; Prasad, Sanjay K; Barton, Paul J R; Fatkin, Diane; Hubner, Norbert; Seidman, Jonathan G; Seidman, Christine E; Cook, Stuart A

    2015-01-14

    The recent discovery of heterozygous human mutations that truncate full-length titin (TTN, an abundant structural, sensory, and signaling filament in muscle) as a common cause of end-stage dilated cardiomyopathy (DCM) promises new prospects for improving heart failure management. However, realization of this opportunity has been hindered by the burden of TTN-truncating variants (TTNtv) in the general population and uncertainty about their consequences in health or disease. To elucidate the effects of TTNtv, we coupled TTN gene sequencing with cardiac phenotyping in 5267 individuals across the spectrum of cardiac physiology and integrated these data with RNA and protein analyses of human heart tissues. We report diversity of TTN isoform expression in the heart, define the relative inclusion of TTN exons in different isoforms (using the TTN transcript annotations available at http://cardiodb.org/titin), and demonstrate that these data, coupled with the position of the TTNtv, provide a robust strategy to discriminate pathogenic from benign TTNtv. We show that TTNtv is the most common genetic cause of DCM in ambulant patients in the community, identify clinically important manifestations of TTNtv-positive DCM, and define the penetrance and outcomes of TTNtv in the general population. By integrating genetic, transcriptome, and protein analyses, we provide evidence for a length-dependent mechanism of disease. These data inform diagnostic criteria and management strategies for TTNtv-positive DCM patients and for TTNtv that are identified as incidental findings. PMID:25589632

  3. Integrated allelic, transcriptional, and phenomic dissection of the cardiac effects of titin truncations in health and disease

    PubMed Central

    Roberts, Angharad M.; Ware, James S.; Herman, Daniel S.; Schafer, Sebastian; Baksi, John; Bick, Alexander G.; Buchan, Rachel J.; Walsh, Roddy; John, Shibu; Wilkinson, Samuel; Mazzarotto, Francesco; Felkin, Leanne E.; Gong, Sungsam; MacArthur, Jacqueline A.L.; Cunningham, Fiona; Flannick, Jason; Gabriel, Stacey B.; Altshuler, David M.; Macdonald, Peter S.; Heinig, Matthias; Keogh, Anne M.; Hayward, Christopher S.; Banner, Nicholas R.; Pennell, Dudley J.; O’Regan, Declan; San, Tan Ru; de Marvao, Antonio; Dawes, Timothy J. W.; Gulati, Ankur; Birks, Emma J.; Yacoub, Magdi H.; Radke, Michael; Gotthardt, Michael; Wilson, James G.; O’Donnell, Christopher J.; Prasad, Sanjay K.; Barton, Paul J.R.; Fatkin, Diane; Hubner, Norbert; Seidman, J. G.; Seidman, Christine E.; Cook, Stuart A.

    2015-01-01

    The recent discovery of heterozygous human mutations that truncate full-length titin (TTN, an abundant structural, sensory, and signaling filament in muscle) as a common cause of end-stage dilated cardiomyopathy (DCM) provides new prospects for improving heart failure management. However, realization of this opportunity has been hindered by the burden of TTN truncating variants (TTNtv) in the general population and uncertainty about their consequences in health or disease. To elucidate the effects of TTNtv, we coupled TTN gene sequencing with cardiac phenotyping in 5,267 individuals across the spectrum of cardiac physiology, and integrated these data with RNA and protein analyses of human heart tissues. We report diversity of TTN isoform expression in the heart, define the relative inclusion of TTN exons in different isoforms, and demonstrate that these data, coupled with TTNtv position, provide a robust strategy to discriminate pathogenic from benign TTNtv. We show that TTNtv is the most common genetic cause for DCM in ambulant patients in the community, identify clinically important manifestations of TTNtv-positive DCM, and define the penetrance and outcomes of TTNtv in the general population. By integrating genetic, transcriptome, and protein analyses we provide evidence for a length-dependent, dominant negative mechanism of disease. These data inform diagnostic criteria and management strategies for TTNtv-positive DCM patients and for TTNtv that are identified as incidental findings. PMID:25589632

  4. Mutations in Alström protein impair terminal differentiation of cardiomyocytes.

    PubMed

    Shenje, Lincoln T; Andersen, Peter; Halushka, Marc K; Lui, Cecillia; Fernandez, Laviel; Collin, Gayle B; Amat-Alarcon, Nuria; Meschino, Wendy; Cutz, Ernest; Chang, Kenneth; Yonescu, Raluca; Batista, Denise A S; Chen, Yan; Chelko, Stephen; Crosson, Jane E; Scheel, Janet; Vricella, Luca; Craig, Brian D; Marosy, Beth A; Mohr, David W; Hetrick, Kurt N; Romm, Jane M; Scott, Alan F; Valle, David; Naggert, Jürgen K; Kwon, Chulan; Doheny, Kimberly F; Judge, Daniel P

    2014-01-01

    Cardiomyocyte cell division and replication in mammals proceed through embryonic development and abruptly decline soon after birth. The process governing cardiomyocyte cell cycle arrest is poorly understood. Here we carry out whole-exome sequencing in an infant with evidence of persistent postnatal cardiomyocyte replication to determine the genetic risk factors. We identify compound heterozygous ALMS1 mutations in the proband, and confirm their presence in her affected sibling, one copy inherited from each heterozygous parent. Next, we recognize homozygous or compound heterozygous truncating mutations in ALMS1 in four other children with high levels of postnatal cardiomyocyte proliferation. Alms1 mRNA knockdown increases multiple markers of proliferation in cardiomyocytes, the percentage of cardiomyocytes in G2/M phases, and the number of cardiomyocytes by 10% in cultured cells. Homozygous Alms1-mutant mice have increased cardiomyocyte proliferation at 2 weeks postnatal compared with wild-type littermates. We conclude that deficiency of Alström protein impairs postnatal cardiomyocyte cell cycle arrest. PMID:24595103

  5. Mutations in TBX18 Cause Dominant Urinary Tract Malformations via Transcriptional Dysregulation of Ureter Development

    PubMed Central

    Vivante, Asaf; Kleppa, Marc-Jens; Schulz, Julian; Kohl, Stefan; Sharma, Amita; Chen, Jing; Shril, Shirlee; Hwang, Daw-Yang; Weiss, Anna-Carina; Kaminski, Michael M.; Shukrun, Rachel; Kemper, Markus J.; Lehnhardt, Anja; Beetz, Rolf; Sanna-Cherchi, Simone; Verbitsky, Miguel; Gharavi, Ali G.; Stuart, Helen M.; Feather, Sally A.; Goodship, Judith A.; Goodship, Timothy H.J.; Woolf, Adrian S.; Westra, Sjirk J.; Doody, Daniel P.; Bauer, Stuart B.; Lee, Richard S.; Adam, Rosalyn M.; Lu, Weining; Reutter, Heiko M.; Kehinde, Elijah O.; Mancini, Erika J.; Lifton, Richard P.; Tasic, Velibor; Lienkamp, Soeren S.; Jüppner, Harald; Kispert, Andreas; Hildebrandt, Friedhelm

    2015-01-01

    Congenital anomalies of the kidneys and urinary tract (CAKUT) are the most common cause of chronic kidney disease in the first three decades of life. Identification of single-gene mutations that cause CAKUT permits the first insights into related disease mechanisms. However, for most cases the underlying defect remains elusive. We identified a kindred with an autosomal-dominant form of CAKUT with predominant ureteropelvic junction obstruction. By whole exome sequencing, we identified a heterozygous truncating mutation (c.1010delG) of T-Box transcription factor 18 (TBX18) in seven affected members of the large kindred. A screen of additional families with CAKUT identified three families harboring two heterozygous TBX18 mutations (c.1570C>T and c.487A>G). TBX18 is essential for developmental specification of the ureteric mesenchyme and ureteric smooth muscle cells. We found that all three TBX18 altered proteins still dimerized with the wild-type protein but had prolonged protein half life and exhibited reduced transcriptional repression activity compared to wild-type TBX18. The p.Lys163Glu substitution altered an amino acid residue critical for TBX18-DNA interaction, resulting in impaired TBX18-DNA binding. These data indicate that dominant-negative TBX18 mutations cause human CAKUT by interference with TBX18 transcriptional repression, thus implicating ureter smooth muscle cell development in the pathogenesis of human CAKUT. PMID:26235987

  6. Mutational analysis of SYNJ1 gene (PARK20) in Parkinson's disease in a Taiwanese population.

    PubMed

    Chen, Kai-Hsiang; Wu, Ruey-Meei; Lin, Hang-I; Tai, Chun-Hwei; Lin, Chin-Hsien

    2015-10-01

    Whole-exome sequencing recently identified a homozygous truncating mutation in Synaptojanin 1 (SYNJ1, PARK20), p.Arg258Gln, in 2 independent families with autosomal recessive young-onset parkinsonism with seizures and cognitive decline. This mutation's role in typical Parkinson's disease (PD) is unclear. We sequenced all coding exons and exon-intron boundaries of SYNJ1 gene in a total of 700 participants: 250 early-onset PD patients, 100 familial PD patients with family history, and 350 age/sex-matched controls from Taiwan. No patients harbored homozygous or compound heterozygous mutations of SYNJ1 gene in our study population. We observed 1 novel missense substitution, p.Ala551Val, in a single heterozygous state in 1 early-onset PD patient. This variant was not observed in controls with total 700 normal alleles. The clinical phenotype of this genetic variant carrier is similar to that seen in idiopathic PD, with motor fluctuation after 11 years of PD diagnosis and comorbidity with dementia after 13 years of motor symptoms. Our results suggest that mutations in SYNJ1 gene do not play a major role in early-onset or familial PD in our population. PMID:26149920

  7. Mutations in TBX18 Cause Dominant Urinary Tract Malformations via Transcriptional Dysregulation of Ureter Development.

    PubMed

    Vivante, Asaf; Kleppa, Marc-Jens; Schulz, Julian; Kohl, Stefan; Sharma, Amita; Chen, Jing; Shril, Shirlee; Hwang, Daw-Yang; Weiss, Anna-Carina; Kaminski, Michael M; Shukrun, Rachel; Kemper, Markus J; Lehnhardt, Anja; Beetz, Rolf; Sanna-Cherchi, Simone; Verbitsky, Miguel; Gharavi, Ali G; Stuart, Helen M; Feather, Sally A; Goodship, Judith A; Goodship, Timothy H J; Woolf, Adrian S; Westra, Sjirk J; Doody, Daniel P; Bauer, Stuart B; Lee, Richard S; Adam, Rosalyn M; Lu, Weining; Reutter, Heiko M; Kehinde, Elijah O; Mancini, Erika J; Lifton, Richard P; Tasic, Velibor; Lienkamp, Soeren S; Jüppner, Harald; Kispert, Andreas; Hildebrandt, Friedhelm

    2015-08-01

    Congenital anomalies of the kidneys and urinary tract (CAKUT) are the most common cause of chronic kidney disease in the first three decades of life. Identification of single-gene mutations that cause CAKUT permits the first insights into related disease mechanisms. However, for most cases the underlying defect remains elusive. We identified a kindred with an autosomal-dominant form of CAKUT with predominant ureteropelvic junction obstruction. By whole exome sequencing, we identified a heterozygous truncating mutation (c.1010delG) of T-Box transcription factor 18 (TBX18) in seven affected members of the large kindred. A screen of additional families with CAKUT identified three families harboring two heterozygous TBX18 mutations (c.1570C>T and c.487A>G). TBX18 is essential for developmental specification of the ureteric mesenchyme and ureteric smooth muscle cells. We found that all three TBX18 altered proteins still dimerized with the wild-type protein but had prolonged protein half life and exhibited reduced transcriptional repression activity compared to wild-type TBX18. The p.Lys163Glu substitution altered an amino acid residue critical for TBX18-DNA interaction, resulting in impaired TBX18-DNA binding. These data indicate that dominant-negative TBX18 mutations cause human CAKUT by interference with TBX18 transcriptional repression, thus implicating ureter smooth muscle cell development in the pathogenesis of human CAKUT. PMID:26235987

  8. Incomplete dominant osteochondrodysplasia in heterozygous Scottish Fold cats.

    PubMed

    Takanosu, M; Takanosu, T; Suzuki, H; Suzuki, K

    2008-04-01

    This report describes an autosomal incomplete dominant pattern of inheritance for osteochondrodysplasia in the Scottish Fold cats. A three-generation pedigree was analysed. Cats with folded ears were mated with cats with normal ears. All cats with folded ears, which were presumably heterozygous for the mutated allele, developed osteochondrodysplasia in distal fore- and hindlimbs but not in other bones, including the tail in which bone deformity had been demonstrated in previous studies. The severity of the skeletal lesions of osteochondrodysplasia was different in each affected cat. Most of the cats with severe osteochondrodysplasia showed some clinical signs, but cats with mild disease were clinically unaffected. All Scottish Fold-related cats with folded-ear phenotype, even if heterozygotes, suffered from some degree of osteochondrodysplasia of the distal limbs. PMID:18339089

  9. Evidence for mitotic recombination in W sup ei /+ heterozygous mice

    SciTech Connect

    Panthier, J.J.; Condamine, H.; Jacob, F. ); Guenet, J.L. )

    1990-05-01

    A number of alleles at coat color loci of the house mouse give rise to areas of wild-type pigmentation on the coats of otherwise mutant animals. Such unstable alleles include both recessive and dominant mutations. Among the latter are several alleles at the W locus. In this report, phenotypic reversions of the W{sup ei} allele at the W locus were studied. Mice heterozygous in repulsion for both W{sup ei} and buff (bf) (i.e. W{sup ei}+/+bf) were examined for the occurrence of phenotypic reversion events. Buff (bf) is a recessive mutation, which lies 21 cM from W on the telomeric side of chromosome 5 and is responsible for the khaki colored coat of nonagouti buff homozygotes (a/a; bf/bf). Two kinds of fully pigmented reversion spots were recovered on the coats of a/a; W{sup ei}+/+bf mice: either solid black or khaki colored. Furthermore phenotypic reversions of W{sup ei}/+ were enhanced significantly following X-irradiation of 9.25-day-old W{sup ei}/+ embryos (P < 0.04). These observations are consistent with the suggestion of a role for mitotic recombination in the origin of these phenotypic reversions. In addition these results raise the intriguing possibility that some W mutations may enhance mitotic recombination in the house mouse.

  10. Tay-Sachs disease in an Arab family due to c.78G>A HEXA nonsense mutation encoding a p.W26X early truncation enzyme peptide.

    PubMed

    Haghighi, Alireza; Masri, Amira; Kornreich, Ruth; Desnick, Robert J

    2011-12-01

    Tay-Sachs disease (TSD), a pan-ethnic, autosomal recessive, neurodegenerative, lysosomal disease, results from deficient β-hexosaminidase A activity due to β-hexosaminidase α-subunit (HEXA) mutations. Prenatal/premarital carrier screening programs in the Ashkenazi Jewish community have markedly reduced disease occurrence. We report the first Jordanian Arab TSD patient diagnosed by deficient β-hexosaminidase A activity. HEXA mutation analysis revealed homozygosity for a nonsense mutation, c.78G>A (p.W26X). Previously reported in Arab patients, this mutation is a candidate for TSD screening in Arab populations. PMID:21967858