Science.gov

Sample records for hfc refrigerant mixtures

  1. TWO-PHASE FLOW OF TWO HFC REFRIGERANT MIXTURES THROUGH SHORT-TUBE ORIFICES

    EPA Science Inventory

    The report gives results of an experimental investigation to develop an acceptable flow model for short tube orifice expansion devices used in heat pumps. The refrigerants investigated were two hydrofluorocarbon (HFC) mixtures considered hydrochlorofluorocarbon (HCFC)-22 replacem...

  2. Foaming characteristics of HFC refrigerants

    SciTech Connect

    Goswami, D.Y.; Shah, D.O.; Jotshi, C.K.; Bhagwat, S.; Leung, M.; Gregory, A.S.

    1997-06-01

    A detailed study was conducted at the University of Florida to experimentally determine the absorption and desorption rates of HFC and blended refrigerants in polyolester lubricant and to define the characteristics of the foam formed when the refrigerant leaves the refrigerant/lubricant mixture after being exposed to a pressure drop. The alternative refrigerants examined include HFC-32 (R-32), R-125, R-134a, and R-143a. Also examined were blended refrigerants R-404A, R407C, and R410A. These refrigerants were tested with two ISO 68 polyolesters (Witco SL68 and ICI RL 68H). To establish baseline results, refrigerants R-12 and R-22 were tested with mineral oils ISO32 (3GS) and ISO 68 (4GS).

  3. An Assessment of Thermodynamic Models for HFC Refrigerant Mixtures Through the Critical-Point Calculation

    NASA Astrophysics Data System (ADS)

    Akasaka, Ryo

    2008-08-01

    An assessment of thermodynamic models for HFC refrigerant mixtures based on Helmholtz energy equations of state was made through critical-point calculations for ternary and quaternary mixtures. The calculations were performed using critical-point criteria expressed in terms of the Helmholtz free energy. For three ternary mixtures: difluoromethane (R-32) + pentafluoroethane (R-125) + 1,1,1,2-tetrafluoroethane (R-134a), R-125 + R-134a + 1,1,1-trifluoroethane (R-143a), and carbon dioxide (CO2) + R-32 + R-134a, and one quaternary mixture, R-32 + R-125 + R-134a + R-143a, calculated critical points were compared with experimental values, and the capability of the mixture models for representing the critical behavior was discussed.

  4. The Performance Evaluation of Vapor Compression Heat Pump System Using HFC Alternative Refrigerant Mixtures

    NASA Astrophysics Data System (ADS)

    Taira, Shigeharu; Yazima, Ryuzaburo; Tarutani, Isamu; Koyama, Shigeru

    This paper deals with an experimental study on the performance evaluation of heat pump systems using HFC alternative refrigerants. The tested heat pump systems are modified from the R22 use to alternative refrigerants. Refrigerant mixtures of R410A, R407C. R32/125 and R32/134a are tested. where R410A and R407C launched into global market recently. Pure refrigerants of R22, R32, R125 and R134a are also tested. The experimental results of alternative refrigerants are evaluated in comparison with the result of R22, and the following are confirmed : (1) the performance of R32 is the highest. (2) adding R125 to R32 and R32/134a results into the deterioration of the performance, (3) the use of counter flow-like heat exchangers for a zeotropic refrigerant mixtures are effective, and (4) in case of R410A. the modification of the compressor to fit operating pressure heightens the performance. The effects of the performance of components on the COP are also analyzed based on the measured thermodynamic states at both ends of components in the system. Then, it is clarified that the most effective factor is irreversibility of compressors and the following is the pressure drop in low pressure side including the evaporator and the suction pipe.

  5. Formation Conditions of Clathrates Between HFC Alternative Refrigerants and Water

    NASA Astrophysics Data System (ADS)

    Akiya, T.; Shimazaki, T.; Oowa, M.; Matsuo, M.; Yoshida, Y.

    1999-11-01

    There are two promising candidates as alternative refrigerants for air-conditioners and heat pumps. The first is R407C, which is composed of HFC-32 (23 mass%), HFC-125 (25 mass%), and HFC-134a (52 mass%). The second is R410A, which is composed of HFC-32 (50 mass%) and HFC-125 (50 mass%). In this study, formation conditions of clathrate compounds between water and HFC alternative refrigerants such as HFC-32, HFC-125, HFC-134a, and their mixtures, R407C and R410A, were investigated. Phase diagrams of clathrates of these HFC alternative refrigerants and their mixtures were determined. From the phase diagrams, the critical decomposition temperature and the critical decomposition pressure were determined. The relationship between the critical decomposition points for the clathrates of HFC-32, HFC-125, HFC-134a, R410A, and R407C were studied. It is found that R407C and R410A form clathrate compounds with water under the evaporating temperature condition in the refrigeration cycle of air-conditioners and heat pumps.

  6. THERMODYNAMIC PROPERTIES OF SELECTED HFC REFRIGERANTS

    EPA Science Inventory

    Hydrofluorocarbon (HFC) refrigerants are possible alternatives to replace ozone-depleting chlorofluorocarbon and hydrochlorofluorocarbon (HCFC) refrigerants. The flammability of a proposed new refrigerant is a major consideration in assessing its utility for a particular applicat...

  7. Performance of a Small-sized Refrigeration Comperssor Using HFC-134a

    NASA Astrophysics Data System (ADS)

    Kohsokabe, Hirokatsu; Endoh, Kazuhiro; Kunugi, Yoshifumi; Iwata, Hiroshi; Hata, Hiroaki; Fujiwara, Mitsuru

    When CFC-12 is replaced by HFC-134a in small-sized refrigeration compressors for domestic refrigerators, the coefficient of performance (COP) of rotary compressors decreases. On the other hand,the COP of reciprocating compressors is almost the same as that of CFC-12. The main causes of rotary compressor performance decrease are higher viscosity of HFC-134a/oil mixture,and greater re-expansion loss of gas in clearance volume. The performance is improved by optimizing the oil viscosity through directly measuring viscosity of HFC-134a/oil mixture inside the compressor chamber with a viscosity sensor. Difference of oil type has small influence on the COP.

  8. PERFORMANCE OF CHLORINE-FREE BINARY ZEOTROPIC REFRIGERANT MIXTURES IN A HEAT PUMP

    EPA Science Inventory

    The report gives results of a study that uses a simulation model and an experimental heat pump apparatus with counterflow heat exchangers to show that two hydrofluorocarbon (HFC) refrigerant mixtures, HFC-32/-152a and HFC-32/-134a, may be considered to be replacements for hydroch...

  9. HFC-134A and HCFC-22 supermarket refrigeration demonstration and laboratory testing. Phase I. Final report

    SciTech Connect

    1996-04-01

    Aspen Systems and a team of nineteen agencies and industry participants conducted a series of tests to determine the performance of HFC-134a, HCFC-22, and CFC-502 for supermarket application. This effort constitutes the first phase of a larger project aimed at carrying out both laboratory and demonstration tests of the most viable HFC refrigerants and the refrigerants they replace. The results of the Phase I effort are presented in the present report. The second phase of the project has also been completed. It centered on testing all viable HFC replacement refrigerants for CFC-502. These were HFC-507, HFC-404A, and HFC-407A. The latter results are published in the Phase II report for this project. As part of Phase I, a refrigeration rack utilizing a horizontal open drive screw compressor was constructed in our laboratory. This refrigeration rack is a duplicate of one we have installed in a supermarket in Clifton Park, NY.

  10. Solubility of HFC-134a refrigerant in glycol-type compounds: Effects of glycol structure. [1,1,1,2-tetrafluoroethane

    SciTech Connect

    Tseregounis, S.I.; Riley, M.J. . Fuels and Lubricants Dept.)

    1994-04-01

    Environmental concerns have dictated the replacement of CFC-12 refrigerant with HFC-134a in air-conditioning (A/C) systems. Since polyglycols are synthetic compounds compatible with HFC-134a and considered as lubricants for the A/C compressor, interactions of HFC-134a with glycol-type compounds and thermodynamic properties of the solutions are important in designing an A/C system. In this work, the solubility of HFC-134a in four glycol-type compounds was measured at [minus]5 to 80 C and 90 to 960 kPa. HFC-134a had the greatest solubility in tetraethylene glycol dimethyl ether. HFC-134a was less soluble in hexylene glycol and tetraethylene glycol and least soluble in triethylene glycol. Mixtures of HFC-134a with TRIG or TGDE showed phase separation. Solubility data were used to calculate the activity coefficient of HFC-134a in glycol solutions. An equation of the form, ln[gamma][sub r] = (1 [minus] x[sub r])[A + Bx[sub r

  11. Performance investigation of capillary tubes for machine tool coolers retrofitted with HFC-407C refrigerant

    NASA Astrophysics Data System (ADS)

    Wang, Fujen; Chang, Tongbou; Chiang, Weiming; Lee, Haochung

    2012-09-01

    The machine tool coolers are the best managers of coolant temperature in avoiding the deviation of spindle centerline for machine tools. However, the machine coolers are facing the compressed schedule to phase out the HCFC (hydro-chloro-floro-carbon) refrigerant and little attention has been paid to comparative study on sizing capillary tube for retrofitted HFC (hydro-floro-carbon) refrigerant. In this paper, the adiabatic flow in capillary tube is analyzed and modeled for retrofitting of HFC-407C refrigerant in a machine tool cooler system. A computer code including determining the length of sub-cooled flow region and the two phase region of capillary tube is developed. Comparative study of HCFC-22 and HFC-407C in a capillary tube is derived and conducted to simplify the traditional trial-and-error method of predicting the length of capillary tubes. Besides, experimental investigation is carried out by field tests to verify the simulation model and cooling performance of the machine tool cooler system. The results from the experiments reveal that the numerical model provides an effective approach to determine the performance data of capillary tube specific for retrofitting a HFC-407C machine tool cooler. The developed machine tool cooler system is not only directly compatible with new HFC-407C refrigerant, but can also perform a cost-effective temperature control specific for industrial machines.

  12. MODELING AND DESIGN STUDY USING HFC-236EA AS AN ALTERNATIVE REFRIGERANT IN A CENTRIFUGAL COMPRESSOR

    EPA Science Inventory

    The report gives results of an investigation of the operation of a centrifugal compressor--part of a chlorofluorocarbon (CFC)-114 chiller installation--with the new refrigerant hydrofluorocarbon (HFC)-236ea, a proposed alternative to CFC-114. A large set of CFC-236ea operating da...

  13. Global Emissions of Refrigerants HCFC-22 and HFC-134a: Unforeseen Seasonal Contributions

    NASA Astrophysics Data System (ADS)

    Xiang, B.; Patra, P. K.; Montzka, S. A.; Miller, S. M.; Elkins, J. W.; Moore, F.; Atlas, E. L.; Miller, B. R.; Prinn, R. G.; Wofsy, S. C.

    2014-12-01

    HCFC-22 (CHClF2) and HFC-134a (CH2FCF3) are two major gases currently used worldwide in domestic and commercial refrigeration and air conditioning. HCFC-22 contributes to stratospheric ozone depletion and both species are potent greenhouse gases, and their global emissions continue to rise at the present. In this work, we study aircraft based in-situ observations of HCFC-22 and HFC-134a over the Pacific Ocean in a three-year span (HIaper Pole-to-Pole Observation of carbon cycle and greenhouse gases study, HIPPO 2009-2011) and combine these data with long-term observations from global surface sites (NOAA and AGAGE networks). We find a steady increase in global annual emissions of HCFC-22 and HFC-134a for the past two decades (on average 3% and 4% per year, respectively). Emissions of HFC-134a since 2000 are consistently higher, with 60% more in recent years (2009-2011), compared to the United Nations Framework Convention on Climate Change (UNFCCC) inventory. Using both HIPPO and surface data, we quantify and verify enhanced summertime emissions of HFC-134a and HCFC-22 that are about three times those in the wintertime. This unforeseen large seasonal contribution indicates unaccounted mechanisms controlling refrigerant gas emissions, missing in the existing inventory estimates. Possible mechanisms for greater refrigerant leakages in the summer are: 1) higher vapor pressure in the sealed compartment of the system at summer high temperatures (saturated vapor pressure is ~ 3 times at 303 K compared to that at 273 K for both species), and 2) more frequent use of refrigeration and air conditioners in the summer (vapor pressure in the compressor line is higher when in use than not in use). Our results suggest that the engineering of the refrigeration and air conditioning systems can greatly influence the release of these two species to the atmosphere.

  14. Global emissions of refrigerants HCFC-22 and HFC-134a: Unforeseen seasonal contributions

    PubMed Central

    Xiang, Bin; Montzka, Stephen A.; Miller, Scot M.; Elkins, James W.; Moore, Fred L.; Atlas, Elliot L.; Miller, Ben R.; Weiss, Ray F.; Prinn, Ronald G.; Wofsy, Steven C.

    2014-01-01

    HCFC-22 (CHClF2) and HFC-134a (CH2FCF3) are two major gases currently used worldwide in domestic and commercial refrigeration and air conditioning. HCFC-22 contributes to stratospheric ozone depletion, and both species are potent greenhouse gases. In this work, we study in situ observations of HCFC-22 and HFC-134a taken from research aircraft over the Pacific Ocean in a 3-y span [HIaper-Pole-to-Pole Observations (HIPPO) 2009–2011] and combine these data with long-term ground observations from global surface sites [National Oceanic and Atmospheric Administration (NOAA) and Advanced Global Atmospheric Gases Experiment (AGAGE) networks]. We find the global annual emissions of HCFC-22 and HFC-134a have increased substantially over the past two decades. Emissions of HFC-134a are consistently higher compared with the United Nations Framework Convention on Climate Change (UNFCCC) inventory since 2000, by 60% more in recent years (2009–2012). Apart from these decadal emission constraints, we also quantify recent seasonal emission patterns showing that summertime emissions of HCFC-22 and HFC-134a are two to three times higher than wintertime emissions. This unforeseen large seasonal variation indicates that unaccounted mechanisms controlling refrigerant gas emissions are missing in the existing inventory estimates. Possible mechanisms enhancing refrigerant losses in summer are (i) higher vapor pressure in the sealed compartment of the system at summer high temperatures and (ii) more frequent use and service of refrigerators and air conditioners in summer months. Our results suggest that engineering (e.g., better temperature/vibration-resistant system sealing and new system design of more compact/efficient components) and regulatory (e.g., reinforcing system service regulations) steps to improve containment of these gases from working devices could effectively reduce their release to the atmosphere. PMID:25422438

  15. Global emissions of refrigerants HCFC-22 and HFC-134a: unforeseen seasonal contributions.

    PubMed

    Xiang, Bin; Patra, Prabir K; Montzka, Stephen A; Miller, Scot M; Elkins, James W; Moore, Fred L; Atlas, Elliot L; Miller, Ben R; Weiss, Ray F; Prinn, Ronald G; Wofsy, Steven C

    2014-12-01

    HCFC-22 (CHClF2) and HFC-134a (CH2FCF3) are two major gases currently used worldwide in domestic and commercial refrigeration and air conditioning. HCFC-22 contributes to stratospheric ozone depletion, and both species are potent greenhouse gases. In this work, we study in situ observations of HCFC-22 and HFC-134a taken from research aircraft over the Pacific Ocean in a 3-y span [HIaper-Pole-to-Pole Observations (HIPPO) 2009-2011] and combine these data with long-term ground observations from global surface sites [National Oceanic and Atmospheric Administration (NOAA) and Advanced Global Atmospheric Gases Experiment (AGAGE) networks]. We find the global annual emissions of HCFC-22 and HFC-134a have increased substantially over the past two decades. Emissions of HFC-134a are consistently higher compared with the United Nations Framework Convention on Climate Change (UNFCCC) inventory since 2000, by 60% more in recent years (2009-2012). Apart from these decadal emission constraints, we also quantify recent seasonal emission patterns showing that summertime emissions of HCFC-22 and HFC-134a are two to three times higher than wintertime emissions. This unforeseen large seasonal variation indicates that unaccounted mechanisms controlling refrigerant gas emissions are missing in the existing inventory estimates. Possible mechanisms enhancing refrigerant losses in summer are (i) higher vapor pressure in the sealed compartment of the system at summer high temperatures and (ii) more frequent use and service of refrigerators and air conditioners in summer months. Our results suggest that engineering (e.g., better temperature/vibration-resistant system sealing and new system design of more compact/efficient components) and regulatory (e.g., reinforcing system service regulations) steps to improve containment of these gases from working devices could effectively reduce their release to the atmosphere. PMID:25422438

  16. Releases of refrigerant gases (CFC-12, HCFC-22 and HFC-134a) to the atmosphere

    NASA Astrophysics Data System (ADS)

    McCulloch, Archie; Midgley, Pauline M.; Ashford, Paul

    Two of the gases, CFC-12 (dichlorodifluoromethane, CF 2Cl 2) and HCFC-22 (chlorodifluoromethane, CHClF 2) have long histories of emission from refrigeration and other uses. Production and sales records show the expected fall in the amounts of CFC-12 used in refrigeration after the Montreal Protocol came into effect but this does not seem to have been accompanied by significant substitution by HCFC-22, demand for which appears governed by organic growth. HFC-134a (1,1,1,2-tetrafluoroethane, CH 2FCF 3) is a relative newcomer that has partially substituted for CFC-12. After developing a single data set for the global use of each substance in refrigeration, foam blowing and aerosol propulsion, and other promptly emissive uses, annual releases of the compounds were estimated by applying emission functions derived from surveying both the producers of the chemicals and the principal industrial users. For CFC-12 and HFC-134a, atmospheric concentrations calculated from the emissions estimated here are in good agreement with observations, verifying that the emission functions adequately describe the relationship between the quantities in use, the atmospheric lifetimes of 100 and 14.6 years, respectively, and the extent of release into the atmosphere. The agreement between observation and calculation is poorer for HCFC-22, if its atmospheric lifetime is 12 years, but becomes much closer with a lifetime of 10 years. An 80% reduction in CFC requirement has been substituted only to the extent of 25% by HFC-134a. This is consistent with improved technology to curtail leakage and so enable lower system charges that, in turn, translate into less demand. For the same reason, the refrigeration emission function for HFC-134a over the period 1990-2000 was not significantly different from that of CFC-12. The lower absolute rate of leakage and lower absolute charge sizes combining to maintain a similar relative rate of loss.

  17. Miscibility comparison for three refrigerant mixtures and four component refrigerants

    SciTech Connect

    Kang, H.M.; Pate, M.B.

    1999-07-01

    Miscibility data were taken and compared for seven different refrigerants when mixed with the same polyol ester (POE) lubricant. Four of the seven refrigerants were single-component refrigerants while three of the refrigerants were mixtures composed of various combinations of the pure refrigerants. The purpose of this research was to investigate the difference in miscibility characteristics between refrigerant mixtures and their respective component refrigerants. The POE lubricant was a penta erythritol mixed-acid type POE which has a viscosity ISO32. The four pure refrigerants were R-32, R-125, R-134a, and R-143a and the three refrigerant mixtures were R-404A, R407C, and R-410A. The miscibility tests were performed in a test facility consisting of a series of miniature test cells submerged in a constant temperature bath. The test cells were constructed to allow for complete visibility of the refrigerant/lubricant mixtures under all test conditions. The tests were performed over a concentration range of 0 to 100% and a temperature range of {minus}40 to 194 F. The miscibility test results for refrigerant mixtures are compared to component refrigerants. In all cases, the refrigerant mixtures appear to have better miscibility than their most immiscible pure component.

  18. Performance and energy saving analysis of a refrigerator using hydrocarbon mixture (HC-R134a) as working fluid

    NASA Astrophysics Data System (ADS)

    Mohtar, M. N.; Nasution, H.; Aziz, A. A.

    2015-12-01

    The use of hydrocarbon mixture as a working fluid in a refrigerator system is rarely explored. Almost all domestic refrigerators use hydroflourocarbon R134a (HFC-R134a) as refrigerants. In this study, hydrocarbon gas (HC-R134a) is used as the alternative refrigerant to replace HFC-R134a. It has a composition of R290 (56%), R600a (54.39%) and additive (0.1%wt) blended for the trials. The experiments were conducted with 105 g and 52.5 g refrigerant mass charge, subjected to internal heat load of 0, 1, 2, 3 and 4 kg respectively. The study investigates the coefficient of performance of the refrigerator (COPR) and energy consumption. The results show that the use of HC-R134a as the replaceable refrigerant can save energy ranging from 2.04% to 7.09%, as compared to the conventional HFC-R134a refrigerant. Naturally, the COPR improvement and temperature distribution using HC-R134a are much better than HFC-R134a

  19. Performance of a two-cycle refrigerator/freezer using HFC refrigerants

    SciTech Connect

    Baskin, E.; Delafield, F.R.

    1999-07-01

    A two-cycle 18 ft{sup 3} (0.51 m{sup 3}) refrigerator/freezer was tested utilizing American National Standards Institute/Association of Home Appliance Manufacturers (ANSI/AHAM) standards for energy consumption testing. A 34.9% energy consumption reduction was realized for a 1984 model refrigerator/freezer (1020 kWh original energy use). This paper presents a proven method of reducing the current Department of Energy (DOE) minimum energy-efficiency standards for refrigerator/freezers to the proposed year 2001 standards utilizing existing technology. For a top-mount, frost-free refrigerator/freezer having the above volume, the current DOE minimum energy standard is 770 kWh/year, and the proposed DOE year 2001 standard is 530 kWh/year (a 31% reduction). Therefore, some significant reductions may be obtained by implementing the modifications discussed in this paper into newer refrigerator/freezer models. The paper gives an overview of the modifications implemented by a Danish university on a US refrigerator/freezer and presents experimental performance testing results of the refrigerator/freezer. The modifications will cause the refrigerator/freezer to be more expensive, but the performance enhancements should offset cost. No cost analysis is presented in this paper, but a detailed cost analysis of a two-cycle refrigerator/freezer is contained in a 1993 US Environmental Protection Agency (EPA) report (EPA 1993). The refrigerator/freezer was tested using four refrigerants and compressors. Two compressors and refrigerants were tested in the freezer cycle, and four were tested in the fresh food cycle.

  20. Elastohydrodynamic Lubrication with Polyolester Lubricants and HFC Refrigerants, Final Report, Volume 2

    SciTech Connect

    Gunsel, Selda; Pozebanchuk, Michael

    1999-04-01

    Lubrication properties of refrigeration lubricants were investigated in high pressure nonconforming contacts under different conditions of temperature, rolling speed, and refrigerant concentration. The program was based upon the recognition that the lubrication regime in refrigeration compressors is generally elastohydrodynamic or hydrodynamic, as determined by the operating conditions of the compressor and the properties of the lubricant. Depending on the compressor design, elastohydrodynamic lubrication conditions exist in many rolling and sliding elements of refrigeration compressors such as roller element bearings, gears, and rotors. The formation of an elastohydrodynamic film separating rubbing surfaces is important in preventing the wear and failure of compressor elements. It is, therefore, important to predict the elastohydrodynamic (EHD) performance of lubricants under realistic tribocontact renditions. This is, however, difficult as the lubricant properties that control film formation are critically dependent upon pressure and shear, and cannot be evaluated using conventional laboratory instruments. In this study, the elastohydrodynamic behavior of refrigeration lubricants with and without the presence of refrigerants was investigated using the ultrathin film EHD interferometry technique. This technique enables very thin films, down to less than 5 nm, to be measured accurately within an EHD contact under realistic conditions of temperature, shear, and pressure. The technique was adapted to the study of lubricant refrigerant mixtures. Film thickness measurements were obtained on refrigeration lubricants as a function of speed, temperature, and refrigerant concentration. The effects of lubricant viscosity, temperature, rolling speed, and refrigerant concentration on EHD film formation were investigated. From the film thickness measurements, effective pressure-viscosity coefficients were calculated. The lubricants studied in this project included two

  1. EVALUATION OF PERFORMANCE AND COMPOSITION SHIFT OF ZEOTROPIC MIXTURES IN A LORENZ-MEUTZNER REFRIGERATOR/FREEZER

    EPA Science Inventory

    Results from previous testing of this refrigerator/freezer (R/F) using a 750 Btu/hr compressor and several zeotrophic mixtures revealed a performance enhancement up to 16 percent above that of HFC-134a. In the study presented in this paper, the Lorenz-Meutzner (LM) R/F equipped ...

  2. Consideration of Sludge Formation in HFC-134a / Polyol Ester oil Refrigeration System

    NASA Astrophysics Data System (ADS)

    Yamamoto, Tsutomu; Yamamoto, Tethuya; Simizu, Yasuhiko; Nakayama, Yoshinori; Takizawa, Kikuo

    A refrigeration test employing HFC-134a and polyol ester oil was carried out in order to make clear the causes of the sludge formation in the capillary tube. Compressors used were two types: a hermetic reciprocating compressor and a rotary compressor. Installed dryer contained desiccant of the compound zeolite type. The results showed that the amount of capillary sludge increased as the compressor temperature rose. The capillary sludge was determined to consist of desiccant and metal dust for the reciprocating compressor, and of tar-like substance for the rotary compressor. Thermal stability test which was used to check the degree of deterioration of the ester oil, suggested that the presence of desiccant and high compressor temperature might produce tar-like substance by the break down and polymerization of the ester oil. In addition, it was confirmed that factors affecting the sludge formation were the dirtiness of the refrigeration circuit for the reciprocating compressor, and the presence of desiccant, for the rotary compressor.

  3. Analysis of Capillary Tube Sludge in Refrigeration Circuit with HFC 134 a

    NASA Astrophysics Data System (ADS)

    Nakayama, Yoshinori; Yamamoto, Thutomu; Takahashi, Yuuichi; Shimizu, Yasuhiko; Takizawa, Kikuo; Yamasita, Tsugito

    We conducted a continuous test with a refrigeration test circuit using HFC 134 a,and we made a study of the form and components of the sludge inside the capillary tube comparing different kinds of lubricant from this perspective. A rotary compressor was used for the test, and HAB oil, blended oil and ester oil were employed as the lubricants. The results showed that the capillary sludge consists mainly of a copper oxide which is caused by corrosion in the case of the HAB oil, and mainly a metal soap, a decomposition product and polymeric product of the lubricant, and zeolite in the case of the ester oil. In order to decrease the amount of these sludges, it is necessary, in the former case, to remove the remaining chlorine solvents and other impurities in the constituent parts of the refrigeration test circuit and, in the latter case, to develop a stabler lubricant and zeolite. In the case of the blended oil, we discovered that zeolite and ohter substances are deposited in the capillary tube over the course of time.

  4. PERFORMANCE OF A TWO-CYCLE REFRIGERATOR/FREEZER USING HFC REFRIGERANTS

    EPA Science Inventory

    A two-cycle 18 ft3 (0.51 m3) refrigerator/freezer (R/F) was tested utilizing American National Standards Institute (ANSI)/AHAM (1988) standards for energy consumption testing. A 34.9% energy consumption reduction was realized. This work presents a proven method of reducing the ...

  5. Phase equilibria of chlorofluorocarbon alternative refrigerant mixtures

    SciTech Connect

    Lee, B.G.; Park, J.Y.; Lim, J.S.; Cho, S.Y.; Park, K.Y.

    1999-03-01

    Isothermal vapor-liquid equilibrium data were determined for binary systems of difluoromethane/1,1,1,2-tetrafluoroethane (HFC-32/HFC-134a), difluoromethane/pentafluoroethane (HFC-32/HFC-125), difluoromethane/1,1,1-trifluoroethane (HFC-32/HFC-143A), and difluoromethane/1,1-difluoroethane (HFC-32/HFC-152a). The vapor and liquid compositions and pressures were measured in a circulation-type apparatus at 303.15 K and 323.15 K. The experimental data were compared with literature results and correlated with the Canahan-Starling-De Santis equation of state within the uncertainty of {+-}1.0%.

  6. Correlation of refrigerant mass flow rate through adiabatic capillary tubes using mixture refrigerant carbondioxide and ethane for low temperature applications

    NASA Astrophysics Data System (ADS)

    Nasruddin, Syaka, Darwin R. B.; Alhamid, M. Idrus

    2012-06-01

    Various binary mixtures of carbon dioxide and hydrocarbons, especially propane or ethane, as alternative natural refrigerants to Chlorofluorocarbons (CFCs) or Hydro fluorocarbons (HFCs) are presented in this paper. Their environmental performance is friendly, with an ozone depletion potential (ODP) of zero and Global-warming potential (GWP) smaller than 20. The capillary tube performance for the alternative refrigerant HFC HCand mixed refrigerants have been widely studied. However, studies that discuss the performance of the capillary tube to a mixture of natural refrigerants, in particular a mixture of azeotrope carbon dioxide and ethane is still undeveloped. A method of empirical correlation to determine the mass flow rate and pipe length has an important role in the design of the capillary tube for industrial refrigeration. Based on the variables that effect the rate of mass flow of refrigerant in the capillary tube, the Buckingham Pi theorem formulated eight non-dimensional parameters to be developed into an empirical equations correlation. Furthermore, non-linear regression analysis used to determine the co-efficiency and exponent of this empirical correlation based on experimental verification of the results database.

  7. Chemical and thermal stability of refrigerant-lubricant mixtures with metals

    SciTech Connect

    Huttenlocher, D.F.

    1992-07-10

    This report presents completed sealed tube stability test results for the following eight refrigerant/lubricant mixtures: R-22/mineral oil; R-124/alkylbenzene; R-134a/pentaerythritol (PE) ester (mixed acid); R- 134a/PE (branched acid); R-134a/ PE (100 cSt viscosity); R- 142b/alkylbenzene; R-143a/ PE (branched acid); R-152a/alkylbenzene. Partial results are shown for an additional eight refrigerant-lubricant mixtures. Though work is in progress, no data are available at this point in time for the five remaining test mixtures. Reported are: visual observations on aged sealed tubes, gas chromatographic analyses on the vapor phase contents of the tubes, chloride ion contents of HCFC containing mixtures or fluoride ion contents of HFC mixtures, and total acid number values and infrared analysis results for mixtures containing ester lubricants.

  8. Modeling and design study using HFC-236ea as an alternative refrigerant in a centrifugal compressor. Final report, January 1994-September 1995

    SciTech Connect

    Popovic, P.; Shapiro, H.N.

    1997-04-01

    The Environmental Protection Agency (EPA) in cooperation with the Navy has been seeking a CFC-114 drop-in placement. One alternative HFC refrigerant which appears to satisfy all physical and chemical characteristics for the Navy fleet was found to be HFC-236ea refrigerant. The project represents a part of the investigation directed to evaluate this CFC-114 alternative refrigerant as a possible drop-in replacement in Navy chillers. The objective of the study was to conduct a thorough literature review regarding centrifugal compressors and the, on the basis of the information gathered, build an accurate but simple compressor model utilizing the available compressor experimental data. Further, the developed compressor model would be used to suggest eventual design adjustments to enhance compressor performance with the alternative HFC-236ea refrigerant.

  9. Nearly Azeotropic Mixtures To Replace Refrigerant 12

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.

    1992-01-01

    Number of nearly azeotropic fluid mixtures have saturation pressures similar to Refrigerant 12 while being about 2 percent as damaging to ozone layer. Five mixtures of R134a, R152a, R124, and R142b have low boiling-point spreads, low toxicity, and low ozone-damaging capability, are nonflammable, and more compatible with conventional oils than R134a. Pressure of combinations nearly equal to R12, and mixtures may be good "drop-in substitutes". Overall composition not altered by leakage. Usable in commercial, automotive, and household refrigerators and air conditioners.

  10. Condensation of Downward-Flowing Zeotropic Mixture HCFC-123/HFC-134a on a Staggered Bundle of Horizontal Low-Finned Tubes

    NASA Astrophysics Data System (ADS)

    Honda, Hiroshi; Takamatsu, Hiroshi; Takata, Nobuo

    Expenmentswere conducted to obtain row-by-row heat transfer data during condensation of downward-flowing zeotropic refrigerant mixture HCFC-123/HFC-134 a on a staggered bundle of horizontal low-finned tubes. The vapor temperature and the HFC-134a m ass fraction at the tube bundle inlet were maintained at about 50°C and 14% respectively. The refrigerant mass velocity ranged from 9 to 33 kg/m2s, and the condensation temperature difference from 2 to 12K. Four kinds of low-finned tubes with different fin geometry were tested. The highest heat transfer coefficient was obtained with a tube which showed the highest performance for HCFC-123. However, the effect of fin geometry was much smaller for the mixture than for HCFC-123. The heat transfer coefficient and the vapor-phase mass transfer coefficient decreased significantly with decreasing mass velocity. On the other hand, the mass transfer coefficient increased with condensation temperature difference. This was due to the effect of suction associated with condensation. On the basis of the analogy between heat and mass transfer, a dimensionless correlation of the mass transfer coefficient was developed for each tube.

  11. Condensation of Downward-Flowing Zeotropic Mixture HCFC-123/HFC-134a on a Staggered Bundle of Horizontal Low-Finned Tubes

    NASA Astrophysics Data System (ADS)

    Honda, Hiroshi; Takamatsu, Hiroshi; Takata, Nobuo

    Experiments were conducted to obtain row-by-row heat transfer data during condensation of downward-flowing zeotropic refrigerant mixture HCFC-123/HFC-134a on a 3x15 (columns x rows) staggered bundle of horizontal low-finned tubes. The vapor temperature and the HFC-134a mass fraction at the tube bundle inlet were maintained at about 50°C and 9%, respectively. The refrigerant mass velocity ranged from 9 to 34kg/m2s, and the condensation temperature difference from 3 to 12 K. The vapor phase mass transfer coefficient was obtained from the heat transfer data by subtracting the thermal resistance of the condensate film. The heat transfer coefficient and the mass transfer coefficient decreased significantly with decreasing mass velocity. These values first increased with the row number up to the third (or second) row, then decreased monotonically with further increasing row number, and then increased again at the last row. The mass transfer coefficient increased with condensation temperature difference, which was due to the effect of suction associated with condensation. On the basis of the analogy between heat and mass transfer, a dimensionless correlation of the mass transfer coefficient for the 4th to 14th rows was developed.

  12. Estimated 2017 Refrigerant Emissions of 2,3,3,3-Tetrafluoropropene (HFC-1234yf) in the United States Resulting from Automobile Air Conditioning

    EPA Science Inventory

    In response to recent regulations and concern over climate change, the global automotive community is evaluating alternatives to the current refrigerant used in automobile air conditioning units, 1,1,1,2-tetrafluoroethane, HFC-134a. One potential alternative is 2,3,3,3-tetrafluor...

  13. 40 CFR Appendix D to Subpart B of... - SAE J2810 Standard for Recovery Only Equipment for HFC-134a Refrigerant

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ..., DC 20402-9320. CFR 49, Section 173.304Shippers—General Requirements for Shipments and Packagings. 2.1...). This will ensure that the container meets Department of Transportation (DOT) Standard, CFR Title 49... Equipment for HFC-134a Refrigerant D Appendix D to Subpart B of Part 82 Protection of...

  14. 40 CFR Appendix D to Subpart B of... - SAE J2810 Standard for Recovery Only Equipment for HFC-134a Refrigerant

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ..., DC 20402-9320. CFR 49, Section 173.304Shippers—General Requirements for Shipments and Packagings. 2.1...). This will ensure that the container meets Department of Transportation (DOT) Standard, CFR Title 49... Equipment for HFC-134a Refrigerant D Appendix D to Subpart B of Part 82 Protection of...

  15. 40 CFR Appendix D to Subpart B of... - SAE J2810 Standard for Recovery Only Equipment for HFC-134a Refrigerant

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ..., DC 20402-9320. CFR 49, Section 173.304Shippers—General Requirements for Shipments and Packagings. 2.1...). This will ensure that the container meets Department of Transportation (DOT) Standard, CFR Title 49... Equipment for HFC-134a Refrigerant D Appendix D to Subpart B of Part 82 Protection of...

  16. Chemical and thermal stability of refrigerant-lubricant mixtures with metals. Quarterly report, 1 April 1992--30 June 1992

    SciTech Connect

    Huttenlocher, D.F.

    1992-07-10

    This report presents completed sealed tube stability test results for the following eight refrigerant/lubricant mixtures: R-22/mineral oil; R-124/alkylbenzene; R-134a/pentaerythritol (PE) ester (mixed acid); R- 134a/PE (branched acid); R-134a/ PE (100 cSt viscosity); R- 142b/alkylbenzene; R-143a/ PE (branched acid); R-152a/alkylbenzene. Partial results are shown for an additional eight refrigerant-lubricant mixtures. Though work is in progress, no data are available at this point in time for the five remaining test mixtures. Reported are: visual observations on aged sealed tubes, gas chromatographic analyses on the vapor phase contents of the tubes, chloride ion contents of HCFC containing mixtures or fluoride ion contents of HFC mixtures, and total acid number values and infrared analysis results for mixtures containing ester lubricants.

  17. Estimated 2017 refrigerant emissions of 2,3,3,3-tetrafluoropropene (HFC-1234yf) in the United States resulting from automobile air conditioning.

    PubMed

    Papasavva, Stella; Luecken, Deborah J; Waterland, Robert L; Taddonio, Kristen N; Andersen, Stephen O

    2009-12-15

    In response to recent regulations and concern over climate change, the global automotive community is evaluating alternatives to the current refrigerant used in automobile air conditioning units, 1,1,1,2-tetrafluoroethane, HFC-134a. One potential alternative is 2,3,3,3-tetrafluoropropene (HFC-1234yf, also known as HFO-1234yf). We have developed a spatially and temporally resolved inventory of likely future HFC refrigerant emissions from the U.S. vehicle fleet in 2017, considering regular, irregular, servicing, and end-of-life leakages. We estimate the annual leak rate emissions for each leakage category for a projected 2017 U.S. vehicle fleet by state, and spatially apportion these leaks to a 36 km square grid over the continental United States. This projected inventory is a necessary first step in analyzing for potential atmospheric and ecosystem effects, such as ozone and trifluoroacetic acid production, that might result from widespread replacement of HFC-134a with HFC-1234yf. PMID:20000517

  18. Elastohydrodynamic Lubrication with Polyolester Lubricants and HFC Refrigerants, Final Report, Volume 1

    SciTech Connect

    Gunsel, Selda; Pozebanchuk, Michael

    1999-04-01

    The objective of this study was to investigate the film formation properties of refrigeration lubricants using the ultrathin film elastohydrodynamic (EHD) interferometry technique and to study the effects of refrigerants on film formation. Film thickness measurements were conducted as a function of lubricant viscosity, speed, temperature, and refrigerant concentration. Based on the EHD film thickness data, effective pressure-viscosity coefficients were calculated for the test fluids at different temperatures and the effects of refrigerants on pressure-viscosity properties were investigated.

  19. Theoretical Analysis of Heat Pump Cycle Characteristics with Pure Refrigerants and Binary Refrigerant Mixtures

    NASA Astrophysics Data System (ADS)

    Kagawa, Noboru; Uematsu, Masahiko; Watanabe, Koichi

    In recent years there has been an increasing interest of the use of nonazeotropic binary mixtures to improve performance in heat pump systems, and to restrict the consumption of chlorofluorocarbon (CFC) refrigerants as internationally agreed-upon in the Montreal Protocol. However, the available knowledge on the thermophysical properties of mixtures is very much limited particularly with respect to quantitative information. In order to systematize cycle performance with Refrigerant 12 (CCl2F2) + Refrigerant 22 (CHClF2) and Refrigerant 22 + Refrigerant 114 (CClF2-CClF2) systems which are technically important halogenated refrigerant mixtures, the heat pump cycle analysis in case of using these mixtures was theoretically studied. It became clear that the maximum coefficients of performance with various pure refrigerants and binary refrigerant mixtures were obtained at the reduced condensing temperature being 0.9 when the same temperature difference between condensing and evaporating temperature was chosen.

  20. GAS CHROMATOGRAPHIC RETENTION PARAMETERS DATABASE FOR REFRIGERANT MIXTURE COMPOSITION MANAGEMENT

    EPA Science Inventory

    Composition management of mixed refrigerant systems is a challenging problem in the laboratory, manufacturing facilities, and large refrigeration machinery. Ths issue of composition management is especially critical for the maintenance of machinery that utilizes zeotropic mixture...

  1. Emissions of the refrigerants HFC-134a, HCFC-22, and CFC-12 from road traffic: results from a tunnel study (Gubrist Tunnel, Switzerland).

    PubMed

    Stemmler, Konrad; O'Doherty, Simon; Buchmann, Brigitte; Reimann, Stefan

    2004-04-01

    This study presents the quantification of the emissions of the refrigerants CFC-12 (CCl2F2), HCFC-22 (CHClF2), and HFC-134a (CF3CH2F) from road traffic in Switzerland. These gases are used as refrigerants in car air conditioning systems (A/C-systems) and in cool aggregates for refrigeration transport. All three substances act as greenhouse gases, and CFC-12 and HCFC-22 are in addition stratospheric ozone depleting chemicals. The measurements have been performed in a highway tunnel in the area of Zürich and cover a large number of individual vehicles, which are thought to be representative of a typical European car fleet. The average emission rates per vehicle were found to be 1.0 +/- 0.2 mg h(-1) for CFC-12, 0.6 +/- 0.4 mg h(-1) for HCFC-22, and 6.2 +/- 0.8 mg h(-1) for HFC-134a. These emission factors have been measured for driving vehicles and represent an average emission rate for all types of vehicles regardless of whether they are equipped with an A/C-unit or not. For an average vehicle equipped with an A/C-unit, these results translate into losses of about 14 mg h(-1) for HFC-134a and 20-30 mg h(-1) for CFC-12, when the estimated distribution of HFC-134a-A/C-units (45%) and CFC-12-A/C-units (3-5%) in the car fleet were taken into account. The emissions of CFC-12 and HFC-134a were mainly attributed to the losses from A/C-systems of passenger cars, whereas the emissions of HCFC-22 originate from losses of refrigeration systems of transport trucks. The observed emissions are discussed in respect to their environmental impact and compared to the overall greenhouse gas emissions of road traffic. PMID:15112799

  2. REFLEAK: NIST Leak/Recharge Simulation Program for Refrigerant Mixtures

    National Institute of Standards and Technology Data Gateway

    SRD 73 NIST REFLEAK: NIST Leak/Recharge Simulation Program for Refrigerant Mixtures (PC database for purchase)   REFLEAK estimates composition changes of zeotropic mixtures in leak and recharge processes.

  3. Compatibility of lubricant additives with HFC refrigerants and synthetic lubricants. Final report, Part 1

    SciTech Connect

    Cavestri, R.C.

    1997-07-01

    Part one of this research provides manufacturers of components of air-conditioning and refrigeration equipment with a useful list of lubricant additives, sources, functional properties and chemical species. The list in part one is comprised of domestic lubricant additive suppliers and the results of a literature search that was specifically targeted for additives reported to be useful in polyolester chemistry.

  4. Energy and global warming impacts of HFC refrigerants and emerging technologies: TEWI-III

    SciTech Connect

    Sand, J.R.; Fischer, S.K.; Baxter, V.D.

    1997-06-01

    The use of hydrofluorocarbons (BFCs) which were developed as alternative refrigerants and insulating foam blowing agents to replace chlorofluorocarbons (CFCs) is now being affected by scientific investigations of greenhouse warming and questions about the effects of refrigerants and blowing agents on global warming. A Total Equivalent Warming Impact (TEWI) assessment analyzes the environmental affects of these halogenated working fluids in energy consuming applications by combining a direct effect resulting from the inadvertent release of HFCs to the atmosphere with an indirect effect resulting from the combustion of fossil fuels needed to provide the energy to operate equipment using these compounds as working fluids. TEWI is a more balanced measure of environmental impact because it is not based solely on the global warming potential (GWP) of the working fluid. It also shows the environmental benefit of efficient technologies that result in less CO{sub 2} generation and eventual emission to the earth`s atmosphere. The goal of TEWI is to assess total global warming impact of all the gases released to the atmosphere, including CO{sub 2} emissions from energy conversion. Alternative chemicals and technologies have been proposed as substitutes for HFCs in the vapor-compression cycle for refrigeration and air conditioning and for polymer foams in appliance and building insulations which claim substantial environmental benefits. Among these alternatives are: (1) Hydrocarbon (HC) refrigerants and blowing agents which have zero ozone depleting potential and a negligible global warming potential, (2) CO{sub 2} as a refrigerant and blowing agent, (3) Ammonia (NH{sub 3}) vapor compression systems, (4) Absorption chiller and heat pumping cycles using ammonia/water or lithium bromide/water, and (5) Evacuated panel insulations. This paper summarizes major results and conclusions of the detailed final report on the TEWI-111 study.

  5. Theoretical Analysis of Heat Pump Cycle Characteristics with Pure Refrigerants and Binary Refrigerant Mixtures

    NASA Astrophysics Data System (ADS)

    Kagawa, Noboru; Uematsu, Masahiko; Watanabe, Koichi

    In recent years there has been an increasing interest of the use of nonazeotropic binary mixtures to improve performance in heat pump systems, and to restrict the consumption of chlorofluorocarbon (CFC) refrigerants as internationally agreed-upon in the Montreal Protocol. However, the available knowledge on the thermophysical properties of mixtures is very much limited particularly with respect to quantitative information. In order to examine cycle performance for Refrigerant 12 (CCl2F2) + Refrigerant 22 (CHClF2) and Refrigerant 22 + Refrigerant 114 (CClF2-CClF2) systems which are technically important halogenated refrigerant mixtures, the heat pump cycle analysis in case of using pure Refrigerants 12, 22 and 114 was theoretically carried out in the present paper. For the purpose of systematizing the heat pump cycle characteristics with pure refrigerants, the cycle analysis for Refrigerants 502, 13B1, 152a, 717 (NH3) and 290 (C3H8) was also examined. It became clear that the maximum coefficients of performance with various refrigerants were obtained at the reduced condensing temperature being 0.9 when the same temperature difference between condensing and evaporating temperature was chosen.

  6. COP improvement of refrigerator/freezers, air-conditioners, and heat pumps using nonazeotropic refrigerant mixtures

    NASA Astrophysics Data System (ADS)

    Westra, Douglas G.

    1993-02-01

    With the February, 1992 announcement by President Bush to move the deadline for outlawing CFC (chloro-fluoro-carbon) refrigerants from the year 2000 to the year 1996, the refrigeration and air-conditioning industries have been accelerating their efforts to find alternative refrigerants. Many of the alternative refrigerants being evaluated require synthetic lubricants, are less efficient, and have toxicity problems. One option to developing new, alternative refrigerants is to combine existing non-CFC refrigerants to form a nonazeotropic mixture, with the concentration optimized for the given application so that system COP (Coefficient Of Performance) may be maintained or even improved. This paper will discuss the dilemma that industry is facing regarding CFC phase-out and the problems associated with CFC alternatives presently under development. A definition of nonazeotropic mixtures will be provided, and the characteristics and COP benefits of nonazeotropic refrigerant mixtures will be explained using thermodynamic principles. Limitations and disadvantages of nonazeotropic mixtures will be discussed, and example systems using such mixtures will be reviewed.

  7. COP improvement of refrigerator/freezers, air-conditioners, and heat pumps using nonazeotropic refrigerant mixtures

    NASA Technical Reports Server (NTRS)

    Westra, Douglas G.

    1993-01-01

    With the February, 1992 announcement by President Bush to move the deadline for outlawing CFC (chloro-fluoro-carbon) refrigerants from the year 2000 to the year 1996, the refrigeration and air-conditioning industries have been accelerating their efforts to find alternative refrigerants. Many of the alternative refrigerants being evaluated require synthetic lubricants, are less efficient, and have toxicity problems. One option to developing new, alternative refrigerants is to combine existing non-CFC refrigerants to form a nonazeotropic mixture, with the concentration optimized for the given application so that system COP (Coefficient Of Performance) may be maintained or even improved. This paper will discuss the dilemma that industry is facing regarding CFC phase-out and the problems associated with CFC alternatives presently under development. A definition of nonazeotropic mixtures will be provided, and the characteristics and COP benefits of nonazeotropic refrigerant mixtures will be explained using thermodynamic principles. Limitations and disadvantages of nonazeotropic mixtures will be discussed, and example systems using such mixtures will be reviewed.

  8. The Influence of the Lubricant Mixture into a Refrigerant on the Condensation Heat Transfer in Tube

    NASA Astrophysics Data System (ADS)

    Katsuta, Masafumi; Miyai, Ryo; Komatsu, Tomohiro; Kawai, Akinari

    In a refrigerator and an air conditioner, it is a well-known fact that the contamination of lubricant into a pure refrigerant has a great influence on the heat transfer characteristics and two-phase flow behavior at the condenser and evaporator. However, up to now, in the most of heat exchanger design, the refrigerant has been regarded as a pure one. On the other hand, a recent condenser tube diameter tends to be fine to overcome the various demands on the compactness and the high performance, especially required for the alternative refrigerant. Unfortunately, quantitative studies of the tube less than 6 mm in diameter were insufficient, moreover, only few studies have been made including the effect of the oil contamination on the condensation heat transfer. In this study, we employed HFC134a as a refrigerant and PAG-oil as a lubricant and experiments with a flat tube and three kinds of circular tube which has different diameters were made. By using the flow visualization data, a new flow pattern map being applicable both of a pure and oil-lubricant mixture was proposed. Moreover, by examining the local heat transfer coefficient and pressure drop, the most sensitive flow pattern affected by contamination of lubricant was specified and the detailed discussion on the quantitative effect of oil contamination on condensation heat transfer including the effect of tube geometry was carried out. Finally, based on these results, new correlation for heat transfer and pressure drop was suggested, and it predicted our data successfully well up to a mass flux of 150kg/(m2•s.)

  9. Materials Compatibility and Lubricants Research on CFC-refrigerant substitutes. Quarterly MCLR Program technical progress report, July 1--September 30, 1995

    SciTech Connect

    Szymurski, S.R.; Hourahan, G.C.; Godwin, D.S.; Amrane, K.

    1995-10-01

    The Materials Compatibility and Lubricants Research (MCLR) program supports critical research to accelerate the introduction of CFC and HCFC refrigerant substitutes. The MCLR program addresses refrigerant and lubricant properties and materials compatibility. The primary elements of the work include data collection and dissemination, materials compatibility testing, and methods development. This report summarizes the research conducted during the third quarter of calendar year 1995 on the following projects: Thermophysical properties of HCFC alternatives; Compatibility of manufacturing process fluids with HFC refrigerants and ester lubricants; Compatibility of motor materials used in air-conditioning for retrofits with alternative refrigerants and lubricants; Compatibility of lubricant additives with HFC refrigerants and synthetic lubricants; Products of motor burnouts; Accelerated test methods for predicting the life of motor materials exposed to refrigerant-lubricant mixtures; Investigation of flushing and clean-out methods; Investigation into the fractionation of refrigerant blends; Lean flammability limits as a fundamental refrigerant property; Effect of selected contaminants in AC and R equipment; Study of foaming characteristics; Study of lubricant circulation in systems; Evaluation of HFC-245ca for commercial use in low pressure chillers; Infrared analysis of refrigerant mixtures; Refrigerant database; Refrigerant toxicity survey; Thermophysical properties of HFC-32, HFC-123, HCFC-124 and HFC-125; Thermophysical properties of HFC-143a and HFC-152a; Theoretical evaluations of R-22 alternative fluids; Chemical and thermal stability of refrigerant-lubricant mixtures with metals; Miscibility of lubricants with refrigerants; Viscosity, solubility and density measurements of refrigerant-lubricant mixtures; Electrohydrodynamic enhancement of pool and in-tube boiling of alternative refrigerants; Accelerated screening methods; and more.

  10. Solubility, viscosity and density of refrigerant/lubricant mixtures. Quarterly technical progress report, 1 July 1993--30 September 1993

    SciTech Connect

    Henderson, D.R.

    1993-10-01

    This report presents results of measurements on low refrigerant concentration mixtures (0, 10, 20, 30 wt %) of CFC-12, HCFC`s 22, 123 and 124, HFC`s 134a, 32 and 125 with mineral oil, alkylbenzene and polyolester lubricants. Viscosity, solubility (vapor pressure) and density data are reported for 23 working fluids composed of combinations of these refrigerants and companion lubricants. These data, reduced to engineering form, are presented in form of a Daniel Chart and a plot of density vs temperature and composition. Extensive numerical analysis has been performed in order to derive equations which allow two independent variables (temperature and composition) and to provide for corrections in composition due to vapor space volume in the test apparatus; details of these calculations are provided.

  11. Properties of Gas Mixtures and Their Use in Mixed-Refrigerant Joule-Thomson Refrigerators

    NASA Astrophysics Data System (ADS)

    Luo, E.; Gong, M.; Wu, J.; Zhou, Y.

    2004-06-01

    The Joule-Thomson (J-T) effect has been widely used for achieving low temperatures. In the past few years, much progress has been made in better understanding the working mechanism of the refrigeration method and in developing prototypes for different applications. In this talk, there are three aspects of our research work to be discussed. First, some special thermal properties of the mixtures for achieving liquid nitrogen temperature range will be presented. Secondly, some important conclusions from the optimization of various mixed-refrigerant J-T cycles such as a simple J-T cycle and an auto-cascade mixed-refrigerant J-T cycle will be presented. Moreover, an auto-cascade, mixed-refrigerant J-T refrigerator with a special mixture capable of achieving about 50K will be mentioned. Finally, various prototypes based on the mixed-refrigerant refrigeration technology will be described. These applications include miniature J-T cryocoolers for cooling infrared detectors and high-temperature superconducting devices, cryosurgical knife for medical treatment, low-temperature refrigerators for biological storage and so forth. The on-going research work and unanswered questions for this technology will be also discussed.

  12. A numerical procedure for simulation of Fanno flows of refrigerants or refrigerant mixtures in capillary tubes

    SciTech Connect

    Chung, M.

    1998-12-31

    An ordinary differential equation (ODE), particularly suitable for numerical simulations of Fanno flows in capillary tubes, is derived by combining the conservation equations. Taking pressure as the independent variable, better control over design variables is achieved and the singularities involved in the choked flows can be avoided. For refrigerants without temperature glide, such as pure refrigerants or azeotropic refrigerant mixtures, the single ODE can be easily integrated if the saturation thermodynamic properties are given. For nonazeotropic refrigerant mixtures (NARMs), iteration in the temperature glide zone is required. As an alternative procedure for the iteration, a system of two ODEs is derived by taking thermodynamic relations into account. The system of ODE is not only in a numerically efficient form but also reveals important physics regarding choking. Sample numerical results for ternary NARM R-407C are presented to show the performance of the proposed procedures.

  13. Measurement of viscosity, density, and gas solubility of refrigerant blends in selected synthetic lubricants. Final report

    SciTech Connect

    Cavestri, R.C.

    1995-05-15

    The lubricants tested in this project were chosen based on the results of liquid/liquid miscibility tests. EMKARATE RL32S and Emery 2968A were selected. The Vapor Liquid Equilibrium (VLE) viscosity reduction and gas fractionation of each was measured with three different refrigerant blends: (1) R-404A; (2) R-507; and (3) R-407C. In addition, the four single refrigerants that make up the blends, HFC-32, HFC-125, HFC-134a, and HFC-143a, were also measured. Lubricants found to have the lowest liquid/liquid miscibilities had nearly equal viscosity reduction profiles as did the more miscible lubricants. Analytical methodology consisted of maintaining equally both the composition of the head space vapor above the lubricant/refrigerant mixture, and the composition of the liquid blend refrigerant. Blends with large temperature glides were re-evaluated in order to test the concept of head space quality and a vented piston hydraulic cylinder assembly was developed to perform this task. Fluid property data, above critical temperature and pressure conditions, is presented for the two lubricants with HFC-32, HFC-125, HFC-143a refrigerants. This research shows that the lubricant EMKARATE RL32S, which had the lowest (poorest) liquid/liquid miscibilities with the selected refrigerants, also had nearly equal viscosity reduction profiles to the more miscible Emery 2968A lubricant. The analytical methodology consisted of maintaining the composition of the refrigerant gas above the lubricant to be equal in composition to that of the pure liquid refrigerant blend being introduced into the lubricant. Refrigerant blends with large temperature glides were re-evaluated in order to validate the concept of the importance of the composition of the gas over the lubricant. To do perform this task, a special vented piston hydraulic cylinder assembly was developed. Fluid property data is also presented for HFC-32, HFC-125, and HFC-143a above the critical temperature and pressure of each.

  14. Tubeside condensation of nonazeotropic refrigerant mixtures for two enhanced surfaces

    SciTech Connect

    Conklin, J.C.; Vineyard, E.A.

    1990-01-01

    As part of the Building Equipment Research program at Oak Ridge National Laboratory (ORNL), nonazeotropic refrigerant mixtures (NARMs) are being investigated to replace chlorofluorocarbon compounds. The condensation of NARMs is not isothermal, and this can improve the heat exchanger effectiveness of a condenser as well as improve thermodynamic cycle efficiencies. The total condensing heat transfer coefficients for refrigerant R22 and for four nonazeotropic mixtures of refrigerants R143a and R124 were measured and are presented as a function of mass flux for two inside tube surfaces, one having spiral ridged fins and the other having a spirally corrugated or fluted surface. The total condensing coefficient for the finned tube is higher than that for the fluted tube at any given refrigerant mass flux for all the refrigerant mixtures. The measured irrecoverable pressure drop for the finned tube was approximately half that for the fluted tube; thus, the finned tube has the better thermal performance of the two enhanced tubes. The condensing heat transfer coefficient is also presented as a function of the mass fraction of R143a for three values of mass flux. Degradation of the condensing coefficient for intermediate values of R143a mass fraction is apparent, but has different trends with respect to mass flux for the two enhanced surfaces; thus, the geometry of the enhanced surface appears to affect the physical mechanism for condensation of NARMs. 13 refs., 9 figs.

  15. EVALUATION OF OZONE-FRIENDLY HYDROFLUOROPROPANE-BASED ZEOTROPIC REFRIGERANT MIXTURES IN A LORENZ-MEUTZNER REFRIGERATOR/FREEZER

    EPA Science Inventory

    The two-evaporator (located in the freezer and fresh food compartments) design of the Lorenz-Meutzner (L-M) refrigerator/freezer (R/F) makes it a leading candidate for use of zeotropic refrigerant mixtures. Zeotrophic mixtures can have significant temperature glides during evapor...

  16. Compatibility of manufacturing process fluids with HFC refrigerants and ester lubricants. First draft of final report of part one and quarterly report of part two, January 3, 1994--November 30, 1994

    SciTech Connect

    Cavestri, R.C.

    1994-11-01

    Included in this report is a compiled partial list of presently used processing materials in the air-conditioning and refrigeration industry and the manufacturers, intended uses, and applications of each. Also listed are the processing materials that have received final acceptance for this contracted study. An analytical methodology discussion is presented, including the final decision and the limitations of said methodology, as well as how to establish a level of confidence in observed immiscible material components in two 32 ISO VG polyolesters: (1) Mobil EAL Arctic 32; and (2) ICI Emkarate RL32H; both with HFC 134a refrigerant solutions.

  17. Heat transfer evaluation of HFC-236ea and CFC-114 in condensation and evaporation. Final report, October 1992-March 1995

    SciTech Connect

    Huebsch, W.W.; Pate, M.B.

    1996-06-01

    The report gives results of a heat transfer evaluation of the refrigerants hexafluoropropane (HFC-236ea) and 1,1,2,2-dichloro-tetrafluoroethane (CFC-114). This research focuses on comparing the refrigerants not only in condesation and pool boiling, but also with various tube surfaces. The test facility used in this study was initially used for spray evaporation testing; however, it was redesigned and modified for use with condensation, pool boiling, or spray evaporation testing. During condensation, the rig was capable of producing saturated or superheated vapor. During pool boiling or spray evaporation, the test facility was capable of testing pure refrigerants or refrigerant/lubricant mixtures.

  18. Some Correlations for Saturated-Liquid Density of Refrigerant Mixtures

    NASA Astrophysics Data System (ADS)

    Maezawa, Yukishige; Sato, Haruki; Watanabe, Koichi

    Three methods to correlate and estimate the saturated-1iquid density of refrigerant mixtures are compared and evaluated on the basis of the measurements for five bibary and one ternary mixtures performed by the present authors. The first of them is a method using Peng-Robinson equation (PR-method) proposed originally by Peneloux et al. Since this method dose not require any measurements of the saturated-liquid density of mixture, it is useful for the estimation. However, the applicability of this method to various substances may be restricted. The second is the modified Rackett equation proposed by Spencer and Dannar (mR-method). The temperature functional form of this equation is quite simple, so it is useful to use it as a functional form of the fitting. Unfortunately this method can not be used for strongly non-ideal mixtures. The last one is the Hankinson-Brobst-Thomson equation (HBT-method). This method can provide the most accurate density values among the three methods with two kinds of binary parameters where these binary parameters are introduced by the present authors. In the case that many experimental saturated liquid densities of mixtures are available in the wide range of temperatures, the HBT-method is recommended for the practical use.

  19. Laboratory evaluation of an ozone-safe nonazeotropic refrigerant mixture in a Lorenz-Meutzner refrigerator freezer design

    NASA Astrophysics Data System (ADS)

    Sand, J. R.; Vineyard, E. A.; Baxter, V. D.

    The Lorenz-Meutzner refrigerator freezer (RF) circuit has been proposed as a design which would operate with nonazeotropic refrigerant mixtures (NARMS) and significantly increase the thermodynamic efficiency of household refrigerators. Several ozone-safe and more environmentally acceptable refrigerants are known which could be blended into a NARM to replace R-12 for this domestic refrigeration application. Laboratory tests were performed on a Lorenz-Meutzner (L-M) RF using an R-32/R-124 NARM. Comparisons are made between the baseline performance of the refrigerator with R-12 before it was modified to the L-Ni design and that of the L-M circuit operating with R-12 and the NARM. Circuiting and component changes resulting from initial testing of this unit are described. Computer modeling and compressor calorimeter results for R-12 and the NARM used in the test unit are also presented. Small performance gains (approximately 3 percent) are seen for the NARM over R-12 in the same refrigerator freezer circuit. Modeling results and steady-state data suggest larger improvements (approximately 15 percent) are possible. It is felt that the larger improvements predicted from modeling and compressor calorimetry data are not being realized due to poor heat transfer and refrigerant circuiting arrangements.

  20. SIMULATION OF NON-AZEOTROPIC REFRIGERANT MIXTURES FOR USE IN A DUAL-CIRCUIT REFRIGERATOR/FREEZER WITH COUNTERCURRENT HEAT EXCHANGES

    EPA Science Inventory

    The paper discusses a refrigerator/freezer (RF) system that has two complete and independent refrigeration cycles for the two compartments. It uses a non-azeotropic refrigerant mixture (NARM) in each cycle and countercurrent heat exchangers throughout. This RF is housed in a stan...

  1. Thermophysical properties of HFC-143a and HFC-152a. Quarterly report, October 1, 1993--December 31, 1993

    SciTech Connect

    Haynes, W.M.

    1994-01-01

    Numerous fluids have been identified as promising alternative refrigerants, but much of the information needed to predict their behavior as pure fluids and as components in mixtures does not exist. In particular, reliable thermophysical properties data and models are needed to predict the performance of the new refrigerants in heating and cooling equipment and to design and optimize equipment to be reliable and energy efficient. The objective of this project is to provide highly accurate, selected thermophysical properties data for refrigerants HFC-143a (CH{sub 3}CF{sub 3}) and HFC-152a (CH{sub 3}CHF{sub 2}) and to use these data to fit complex equations of state and detailed transport property models. The new data will fill gaps in the existing data sets and resolve problems and uncertainties that exist in and between the data sets. This report describes progress during the third quarter of this twelve-month project, which was initiated on April 1, 1993.

  2. Zero-ODP refrigerants for low tonnage centrifugal chiller systems

    SciTech Connect

    Gui, F.; Back, D.D.; Scaringe, R.P.; Grzyll, L.R.

    1996-12-31

    This paper investigates the use of several zero-ozone depleting potential (zero-ODP) HFC refrigerants, including HFC-134a, HFC-227ca, HFC-227ea, HFC-236cb, HFC-236fa, HFC-245cb, and HFC-254cb for centrifugal chiller applications. The authors took into account the thermodynamic properties of the refrigerant and aerodynamic characteristics of the impeller compression process in this evaluation. For a given operating temperature lift, there are significant differences in the enthalpy rise required by each refrigerant and this variation in enthalpy rise directly affects compressor size, efficiency, and performance. A comparison of the HFC refrigerant candidates with CFC-114 shows that HFC-236ea, HFC-227ca and HFC-227ea are viable alternatives for centrifugal water chillers, HFC-236ea has properties closest to CFC-114, and will result in comparable performance, but will require a slightly larger impeller and a purge system. Using HFC-227ca or HFC-227ea results in a significantly lower enthalpy rise requirement, potentially allowing single-stage compression, however, wet compression could be a problem. Single-stage compression gives an overall performance advantage over CFC-114 (operating with 3--5 C of liquid subcooling), and when considering thermodynamics and aerodynamics, as is necessary in centrifugal applications, the authors find that HFC-227ca and HFC-227ea have additional advantages over HFC-236ea and CFC-114.

  3. The effect of circuiting arrangement on the thermal performance of refrigerant mixtures in tube-and-fin condensing heat exchangers

    SciTech Connect

    Conklin, J.C.; Chen, D.T.

    1999-07-01

    For the pure or azeotropic refrigerants typically used in present air conditioning and refrigeration applications, the refrigerant changes phase at a constant temperature. Thus, the refrigerant circuiting arrangement such as crossflow, counterflow, or cross-counterflow, has no effect on the thermal performance. For zeotropic refrigerant mixtures, however, the phase-change occurs over a temperature range, or glide, and the refrigerant circuiting arrangement, or flow path through the heat exchanger, can affect the thermal performance of both the heat exchangers as well as the overall efficiency of the vapor compression cooling cycle. The effects of two different circuiting arrangements on the thermal performance of a zeotropic refrigerant mixture and an almost azeotropic refrigerant mixture and an almost azeotropic refrigerant mixture in a four-row cross-counterflow heat exchanger arrangement are reported here. The two condensers differ only in the manner of circuiting the refrigerant tubes, where one has refrigerant always flowing downward in the active heat transfer region (identical order) and the other has refrigerant alternating flow direction in the active heat transfer region (inverted order). All other geometric parameters, such as face area, fin louver geometry, refrigerant tube size and enhancement, etc., are the same for both heat exchangers. One refrigerant mixture (R-410A) undergoes a small temperature change (low glide) during phase change, and the other refrigerant mixture (a multi-component proprietary mixture) has a substantial temperature change (high glide) of approximately 10 C during the phase change process. The overall thermal conductance, two-phase conductance, and pressure drop are presented. For the flow conditions of these tests, which are representative of residential cooling conditions, inverted order circuiting is more desirable than identical order. The potential thermal advantages of the identical order arrangement for high

  4. FLAME SUPPRESSION AND LUBRICANT INTERACTION OF HYDROCARBON MIXTURES FOR HOUSEHOLD REFRIGERANT/FREEZERS

    EPA Science Inventory

    The paper discusses the flame suppression and lubricant interaction of hydrocarbon (HC) mixtures for household refrigerator/freezers (R/Fs). he work focuses on blending the minimum amount of a fluoroiodocarbon (FIC) with previously optimized R/F-tested HC mixtures to reduce their...

  5. FLAME SUPPRESSION AND LUBRICANT INTERACTION OF HYDROCARBON MIXTURES FOR HOUSEHOLD REFRIGERATOR/FREEZERS

    EPA Science Inventory

    The paper discusses the flame suppression and lubricant interaction of hydrocarbon (HC) mixtures for household refrigerator/freezers (R/Fs). The work focuses on blending the minimum amount of a fluoroiodocarbon (FIC) with previously optimized R/F-tested HC mixtures to reduce thei...

  6. TRANSPORT PROPERTY MEASUREMENTS OF HFC-236EA

    EPA Science Inventory

    The report gives results of an evaluation of transport properties of 1, 1, 1, 2, 3, 3-hexafluoropropane (HFC-236ea), with liquid viscosity and thermal conductivity being the two main transport properties of interest. In addition, the specific heat and density of refrigerant/lubri...

  7. TRANSPORT PROPERTY MEASUREMENTS OF HFC-236EA

    EPA Science Inventory

    The report gives results of an evaluation of transport properties of 1,1,1,2,3,3,-hexafluoropropane (HFC-236ea), with liquid viscosity and thermal conductivity being the two main transport properties of interest. In addition, the specific heat and density of refrigerant/lubrican...

  8. Prediction of Heat Transfer Characteristics of Binary Refrigerant Mixtures in a Plate-Fin Condenser

    NASA Astrophysics Data System (ADS)

    Yara, Tomoyasu; Koyama, Shigeru

    The heat transfer characteristics of binary refrigerant mixtures in a plate-fin condenser are experimentally investigated using a vapor compression heat transformer, in which binary refrigerant mixtures of R 134a/ R 123 are used as the working fluid and water is used as both heat sink and source. Pure refrigerants of R 22 and R 134a are also tested as the working fluid. The experimental ranges of heat flux and mass velocity are from 2 to 20 kW/m2 and from 50 to 100 kg/m2s, respectively. The heat transfer characteristics of the condensation and vapor single-phase flow of pure and mixed refrigerants are discussed, and empirical correlation equations of the condensate heat transfer and vapor single-phase heat transfer are proposed. The correlation equation of water-side heat transfer is also presented. Combining these correlation equations with a correlation equation of vapor mass transfer based on the Chilton-Colburn analogy, a prediction model for condensation of the binary refrigerant mixtures in a plate-fin heat exchanger is developed based on the assumption that the phase equilibrium is only established at the vapor-liquid interface. The calculation results for the pure and mixed refrigerants agree well with the present experimental data. The mass transfer characteristics are also revealed from the calculation results.

  9. TESTING OF REFRIGERANT MIXTURES IN RESIDENTIAL HEAT PUMPS

    EPA Science Inventory

    The report gives results of an investigation of four possibilities for replacing Hydrochlorofluorocarbon-22 (HCFC-22) with the non-ozone-depleting new refrigerants R-407D and R-407C in residential heat pumps. The first and simplest scenario was a retrofit with no hardware modific...

  10. The Effect of Circuiting Arrangement on the Thermal Performance of Refrigeration Mixtures in Tube-and-Fin Condensing Heat Exchangers

    SciTech Connect

    Chen, D.T.; Conklin, J.C.

    1999-03-15

    For the pure or azeotropic refrigerants typically used in present air conditioning and refrigeration applications, the refrigerant changes phase at a constant temperature. Thus, the refrigerant circuiting arrangement such as crossfiow, counterfiow, or cross-counterflow, has no effect on the thermal performance. For zeotropic refrigerant mixtures, however, the phase-change occurs over a temperature range, or "glide", and the refrigerant circuiting arrangement, or flow path through the heat exchanger, can affect the thermal performance of both the heat exchangers as well as the overall efficiency of the vapor compression cooling cycle. The effects of tsvo diflerent circuiting arrangements on the thermal performance of a zeotropic retligerant mixture and an almost azeotropic refrigerant mixture in a four-row cross-countertlow heat exchanger arrangement are reported here. The two condensers differ only in the manner of circuiting the refrigerant tubes, where one has refrigerant always flowing downward in the active heat transfer region ("identical order") and the other has refrigerant alternating flow direction in the active heat transfer region ("inverted order"). All other geometric parameters, such as bce are% fin louver geometry, refrigerant tube size and enhancement etc., are the same for both heat exchangers. One refrigerant mixture (R-41OA) un&rgoes a small temperature change ("low glide") during phase change, and the other retligerant mixture (a multi- component proprietary mixture) has a substantial temperature change ("high glide") of approximately 10"C during the phase change process. The overall thermal conductance, two-phase conductance, and pressure drop are presented. For the flow conditions of these tests, which are representative of resi&ntial cooling conditions, inverted order circuiting is more desirable than identical order. The potential thermal advantages of the i&ntical order arrangement for high-glide zeotropic refrigerant mixtures are negated

  11. Accelerated screening methods for determining chemical and thermal stability of refrigerant-lubricant mixtures, Part 1: Method assessment. Final report

    SciTech Connect

    Kauffman, R.

    1993-04-01

    This report presents results of a literature search performed to identify analytical techniques suitable for accelerated screening of chemical and thermal stabilities of different refrigerant/lubricant combinations. Search focused on three areas: Chemical stability data of HFC-134a and other non-chlorine containing refrigerant candidates; chemical stability data of CFC-12, HCFC-22, and other chlorine containing refrigerants; and accelerated thermal analytical techniques. Literature was catalogued and an abstract was written for each journal article or technical report. Several thermal analytical techniques were identified as candidates for development into accelerated screening tests. They are easy to operate, are common to most laboratories, and are expected to produce refrigerant/lubricant stability evaluations which agree with the current stability test ANSI/ASHRAE (American National Standards Institute/American Society of Heating, Refrigerating, and Air-Conditioning Engineers) Standard 97-1989, ``Sealed Glass Tube Method to Test the Chemical Stability of Material for Use Within Refrigerant Systems.`` Initial results of one accelerated thermal analytical candidate, DTA, are presented for CFC-12/mineral oil and HCFC-22/mineral oil combinations. Also described is research which will be performed in Part II to optimize the selected candidate.

  12. Are National HFC Inventory Reports Accurate?

    NASA Astrophysics Data System (ADS)

    Lunt, M. F.; Rigby, M. L.; Ganesan, A.; Manning, A.; O'Doherty, S.; Prinn, R. G.; Saito, T.; Harth, C. M.; Muhle, J.; Weiss, R. F.; Salameh, P.; Arnold, T.; Yokouchi, Y.; Krummel, P. B.; Steele, P.; Fraser, P. J.; Li, S.; Park, S.; Kim, J.; Reimann, S.; Vollmer, M. K.; Lunder, C. R.; Hermansen, O.; Schmidbauer, N.; Young, D.; Simmonds, P. G.

    2014-12-01

    Hydrofluorocarbons (HFCs) were introduced as replacements for ozone depleting chlorinated gases due to their negligible ozone depletion potential. As a result, these potent greenhouse gases are now rapidly increasing in atmospheric mole fraction. However, at present, less than 50% of HFC emissions, as inferred from models combined with atmospheric measurements (top-down methods), can be accounted for by the annual national reports to the United Nations Framework Convention on Climate Change (UNFCCC). There are at least two possible reasons for the discrepancy. Firstly, significant emissions could be originating from countries not required to report to the UNFCCC ("non-Annex 1" countries). Secondly, emissions reports themselves may be subject to inaccuracies. For example the HFC emission factors used in the 'bottom-up' calculation of emissions tend to be technology-specific (refrigeration, air conditioning etc.), but not tuned to the properties of individual HFCs. To provide a new top-down perspective, we inferred emissions using high frequency HFC measurements from the Advanced Global Atmospheric Gases Experiment (AGAGE) and the National Institute for Environmental Studies (NIES) networks. Global and regional emissions information was inferred from these measurements using a coupled Eulerian and Lagrangian system, based on NCAR's MOZART model and the UK Met Office NAME model. Uncertainties in this measurement and modelling framework were investigated using a hierarchical Bayesian inverse method. Global and regional emissions estimates for five of the major HFCs (HFC-134a, HFC-125, HFC-143a, HFC-32, HFC-152a) from 2004-2012 are presented. It was found that, when aggregated, the top-down estimates from Annex 1 countries agreed remarkably well with the reported emissions, suggesting the non-Annex 1 emissions make up the difference with the top-down global estimate. However, when these HFC species are viewed individually we find that emissions of HFC-134a are over

  13. First principles predictions of thermophysical properties of refrigerant mixtures.

    PubMed

    Oakley, Mark T; Do, Hainam; Hirst, Jonathan D; Wheatley, Richard J

    2011-03-21

    We present pair potentials for fluorinated methanes and their dimers with CO(2) based on ab initio potential energy surfaces. These potentials reproduce the experimental second virial coefficients of the pure fluorinated methanes and their mixtures with CO(2) without adjustment. Ab initio calculations on trimers are used to model the effects of nonadditive dispersion and induction. Simulations using these potentials reproduce the experimental phase-coexistence properties of CH(3)F within 10% over a wide range of temperatures. The phase coexistence curve of the mixture of CH(2)F(2) and CO(2) is reproduced with an error in the mole fractions of both phases of less than 0.1. The potentials described here are based entirely on ab initio calculations, with no empirical fits to improve the agreement with experiment. PMID:21428643

  14. Thermal Conductivity of Nonazeotropic Gaseous Mixtures of Fluorocarbon Refrigerants

    NASA Astrophysics Data System (ADS)

    Tanaka, Yoshiyuki; Ueno, Hiroshi; Kubota, Hironobu; Makita, Tadashi

    The thermal conductivity of four binary gaseous mixtures of R22 (CHCIF2) with R13(CClF3), R23(CHF3), R12(CCl2F2) and R114(CClF2·CClF2) has been measured at temperatures 298.15 and 323.15K under pressures from atmospheric to saturated pressures by a coaxial cylinder cell. The precision of the thermal conductivity obtained is within 2%. The thermal conductivity of mixtures increases with increasing temperature and pressure at a constant composition. The thermal conductivity in each mixture changes almost linearly with the concentration of R22 at a constant temperature and pressure, although the thermal conductivity at each composition is slightly larger than the calculated values by a simple molefraction average method. The experimental results were correlated with composition and pressure by empirical equations and compared with several kinds of prediction methods. The Brokaw's equation is found to reproduce the experimental data most successfully with a mean deviation of 0.7%.

  15. Chemical and thermal stability of refrigerant-lubricant mixtures with metals. Final report

    SciTech Connect

    Huttenlocher, D.F.

    1992-10-09

    This report presents the results of a sealed tube stability study on twenty-one refrigerant-lubricant mixtures selected from the following groupings: HFCs R-32, R-125, R-134, R-134a, R-143a, and R-152a with one or more lubricants selected from among three pentaerythritol esters and three polyalkylene glycols. All lubricants were carefully predried to 25 ppm or less moisture content. HCFCs R-22, R-123, R-124, and R-142b, as well as CFC R-11, with one or more lubricants selected from among two mineral oils and one alkylbenzene fluid. Bach test mixture was aged at three temperature levels.

  16. Chemical and thermal stability of refrigerant-lubricant mixtures with metals

    SciTech Connect

    Huttenlocher, D.F.

    1992-10-09

    This report presents the results of a sealed tube stability study on twenty-one refrigerant-lubricant mixtures selected from the following groupings: HFCs R-32, R-125, R-134, R-134a, R-143a, and R-152a with one or more lubricants selected from among three pentaerythritol esters and three polyalkylene glycols. All lubricants were carefully predried to 25 ppm or less moisture content. HCFCs R-22, R-123, R-124, and R-142b, as well as CFC R-11, with one or more lubricants selected from among two mineral oils and one alkylbenzene fluid. Bach test mixture was aged at three temperature levels.

  17. NEW CHEMICAL ALTERNATIVE FOR OZONE-DEPLETING SUBSTANCES: HFC-236FA

    EPA Science Inventory

    The report gives results of a preliminary evaluation of a new hydrofluorocarbon (HFC)--HFC-236fa or 1,1,1,3,3,3-hexafluoropropane--as a possible alternative for chlorofluorocarbon (CFC)-114 (1,2-dichloro-1,1,2,2-tetrafluoroethane) refrigerant for chillers and as a possible fire s...

  18. Evaluation of HFC 245ca and HFC 236ea as foam blowing agents

    NASA Technical Reports Server (NTRS)

    Sharpe, Jon; Macarthur, Doug; Kollie, Tom; Graves, Ron; Liu, Matthew; Hendriks, Robert V.

    1995-01-01

    Hydrochlorofluorocarbon (HCFC) 141b has been selected as the interim blowing agent for use in urethane insulations on NASA's Space Shuttle External Tank. Due to the expected limited commercial lifetime of this material, research efforts at the NASA Thermal Protection Systems Materials Research Laboratory at the Marshall Space Flight Center are now being devoted to the identification and development of alternatives with zero ozone depletion potential. Physical blowing agents identified to date have included hydrocarbons, fluorocarbons, hydrofluoroethers, and more predominantly, hydrofluorocarbons (HFCs). The majority of the HFC evaluations in industry have focused on the more readily available, low boiling candidates such as HFC 134a. Higher boiling HFC candidates that could be handled at ambient conditions and use current processing equipment would be more desirable. This paper will describe results from a research program of two such candidate HFC's performed as a cooperative effort between Martin Marietta Manned Space Systems, the U.S. Environmental Protection Agency, and Oak Ridge National Laboratories. The purpose of this effort was to perform a cursory evaluation of the developmental HFC's 245ca and 236ea as blowing agents in urethane based insulations. These two materials were selected from screening tests of 37 C2, C3, and C4 isomers based on physical properties, atmospheric lifetime, flammability, estimated toxicity, difficulty of synthesis, suitability for dual use as a refrigerant, and other factors. Solubility of the two materials in typical foam components was tested, pour foaming trials were performed, and preliminary data were gathered regarding foam insulation performance.

  19. Efficiency of vapor compression heat pumps based on non-azeotropic refrigerant mixtures

    NASA Astrophysics Data System (ADS)

    Mezentseva, N. N.

    2011-06-01

    The work presents the results of cycle computation for vapor compression pumps based on ozone-safe mixed refrigerants. Non-azeotropic binary refrugerants R32/R152a (30/70) and R32/R134a (30/70) were considere as working substances. Properties of non-azeotropic refrigerants were calculated according to the additivity method of thermodynamic functions and method of Lemmon and Jacobsen. Deviations in the values of thermophysical properties obtained with two methods have been determined. It is shown that at the use of nonazeotropic mixture R32/R152a (30/70), energy conversion ratio increases by 2.2-3.6 % compared with the results for R32/R134a (30/70) at temperature difference between the processes of boiling and condensation from 28 to 53 °C.

  20. Evaluation of performance and composition shift of zeotropic mixtures in a Lorenz-Meutzner refrigerator/freezer

    SciTech Connect

    Baskin, E.; Smith, N.D.; Delafield, F.R.; Tufts, M.W.

    1999-07-01

    Results from previous testing of this refrigerator/freezer using a 750 Btu/h compressor and several zeotropic mixtures revealed a performance enhancement up to 16% above that of hydrofluorocarbon R-134a. In the study presented in this paper, the Lorenz-Meutzner (LM) refrigerator/freezer equipped with a 1060 Btu/h compressor, two evaporators, and two intercoolers was experimentally tested in an environmental chamber according to the Association of Home Appliance Manufacturers/Department of Energy (AHAM/DOE) testing standards using several hydrofluoropropane-based zeotropic mixtures. The results are compared to baseline testing with R-134a and results obtained using the 750 Btu/h compressor. Hydrofluorocarbons R-245ca/R-152a performed comparably to R-134a. R-245ca/hydrocarbon R-270 (cyclopropane C{sub 3}H{sub 6}) outperformed all zeotropic mixtures and R-134a by at least 12.2 {+-} 0.7%. All refrigerants performed better using the larger compressor due to its inherently better efficiency. Refrigerant samples taken during refrigerator/freezer operation revealed substantial composition shifts (e.g., a 30% running composition shift of R-134a in the R-245ca/R-134a mixture). Sand et al. (1993) obtained an approximately 20% energy reduction using steady-state on-cycle energy consumption results; a comparison was made between chlorofluorocarbon R-12 and a hydrofluorocarbon R-32/hydrochlorofluorocarbon R-124 mixture. Lorenz and Meutzner (1975), originators of the Lorenz-Meutzner refrigerator/freezer design, state that the following parameters influence the optimum performance of the design: (1) heat exchanger size, (2) capillary tube length, (3) refrigerant charge, and (4) compressor size. This work investigates three of these parameters--capillary tube length, compressor size, and refrigerant charge.

  1. Compatibility of refrigerants and lubricants with motor materials

    SciTech Connect

    Doerr, R.; Kujak, S.

    1992-07-23

    During this last quarter, evaluations were complete on the motor materials after 500-hr exposures to refrigerants CFC-123, HFC-134a and HCFC-22 at 90{degrees}C. Materials were also evaluated after exposure to nitrogen at 127{degrees}C to determine effect of the thermal exposure. Other exposures were started during this quarter with refrigerants HCFC-124, HFC-125, HFC-143a, HFC-32 and HFC-152a. One 500 hr exposure is set up per week and one is analyzed the same week. This will enable Trane to complete the 500 hour exposures by the end of the year.

  2. Accelerated test methods for predicting the life of motor materials exposed to refrigerant/lubricant mixtures. Phase 1, Conceptual design: Final report

    SciTech Connect

    Ellis, P.F. II; Ferguson, A.

    1993-08-18

    The federally mandated phase-out of chlorofluorocarbon refrigerants requires screening tests for motor materials compatibility with alternative refrigerant/lubricant mixtures. In the current phase of the program, ARTI is supporting tests of promising candidate refrigeration/lubricant systems in key refrigeration component systems such as bearings and hermetic motor insulation systems to screen for more subtle detrimental effects and allow estimates of motor-compressor life. This report covers: mechanisms of failure of hermetic motor insulation, current methods for estimation of life of hermetic motors, and conceptual design of improved stator simulator device for testing of alternative refrigerant/lubricant mixtures.

  3. Compatibility of refrigerants and lubricants with motor materials

    SciTech Connect

    Doerr, R.; Kujak, S.

    1992-10-01

    During the compatibility study of 10 pure refrigerants with 24 motor materials, it was observed that the greatest damage to the insulation system was caused by absorption of refrigerant followed by rapid desorption. The observed effects were blisters, cracking, internal bubbles and delamination. Measured results includes decreased bond strength, dielectric strength and overall integrity of the material. Refrigerants HCFC-22, HFC-32, HFC-134 and HFC-152a exhibited this phenomena. The effect of HCFC-22 was most severe of the tested refrigerants. Since HCFC-22 has an excellent reliability history with many of the materials tested, compatibility with the new refrigerants is expected.

  4. Thermal conductivity of alternative refrigerants in the liquid phase

    SciTech Connect

    Yata, J.; Hori, M.; Kobayashi, K.; Minamiyama, T.

    1996-05-01

    Measurements of the thermal conductivity of five alternative refrigerants, namely, difluoromethane (HFC-32), pentafluoroethane (HFC-125), 1,1,1-trifluorethane (HFC-143a), and dichloropentafluoropropanes (HCFC-225ca and HCFC-225cb), are carried out in the liquid phase. The range of temperature is 253-324 K for HFC-32, 257-305 K for HFC-125, 268-314 K for HFC-134a, 267-325 K for HCF-225ca, and 286-345 K for HCFC-225cb. The pressure range is from saturation to 30 MPa. The reproducibility of the data is better than 0.5%, and the accuracy of the data is estimated to be of the order of 1%. The experimental results for the thermal conductivity of each substance are correlated by an equation which is a function of temperature and pressure. A short discussion is given to the comparison of the present results with literature values for HFC-125. The saturated liquid thermal conductivity values of HFC-32, HFC-125, and HFC-143a are compared with those of chlorodifluoromethane (HCFC-22) and tetrafluoroethane (HFC-134a) and it is shown that the value of HFC-32 is highest, while that of HFC-125 is lowest, among these substances. The dependence of thermal conductivity on number of fluorine atoms among the refrigerants with the same number of carbon and hydrogen atoms is discussed.

  5. Occupational exposure to fluorinated hydrocarbons during refrigeration repair work.

    PubMed

    Gjølstad, Merete; Ellingsen, Dag G; Espeland, Oscar; Nordby, Karl-Christian; Evenseth, Harald; Thorud, Syvert; Skaugset, Nils Petter; Thomassen, Yngvar

    2003-04-01

    This study describes refrigeration repair workers' occupational exposures to halogenated refrigerants, focusing on difluorochloromethane (HCFC 22), tetrafluoroethane (HFC 134a) and a mixture of tri-, tetra- and pentafluoroethane (R404A) in 30 work operations. Unlike earlier reported studies, the present study includes working procedures involving welding in order to measure possible occupational exposure to decomposition products. The measurements included hydrogen fluoride (HF), hydrogen chloride (HCl), phosgene (COCl2) and volatile organic compounds (VOC). The exposures were assessed during work operations on small-scale cooling installations like refrigerators and freezers. The repair workers' occupational exposures to refrigerants were moderate, and the major part of the exposures were associated with specific working procedures lasting for relatively short periods of time (<20 min). During these exposure events the concentrations were occasionally high (up to 42434 mg m(-3)). Although welding operations lasted only for short periods of time, HF was detected in 9 out of 15 samples when HCFC 22, HFC 134a or R404A had been used. Hydrogen chloride was detected in 3 out of 5 samples in air polluted with HCFC 22. Phosgene was not detected. A large number of VOCs in various concentrations were found during welding. Except for the applied refrigerants, halogenated compounds were only found in one sample. PMID:12729261

  6. Energy Efficient Commercial Refrigeration with Carbon Dioxide Refrigerant and Scroll Expanders

    SciTech Connect

    Dieckmann, John

    2013-04-04

    Current supermarket refrigeration systems are built around conventional fluorocarbon refrigerantsHFC-134a and the HFC blends R-507 and R404A, which replaced the CFC refrigerants, R-12 and R-502, respectively, used prior to the Montreal Protocol phase out of ozone depleting substances. While the HFC refrigerants are non-ozone depleting, they are strong greenhouse gases, so there has been continued interest in replacing them, particularly in applications with above average refrigerant leakage. Large supermarket refrigeration systems have proven to be particularly difficult to maintain in a leak-tight condition. Refrigerant charge losses of 15% of total charge per year are the norm, making the global warming impact of refrigerant emissions comparable to that associated with the energy consumption of these systems.

  7. Solubility, viscosity and density of refrigerant/lubricant mixtures. Final technical report, [1 October 1992--19 April 1994

    SciTech Connect

    Henderson, D.R.

    1994-04-01

    This report presents the results of experimental measurements on low refrigerant concentration mixtures (0, 10, 20 and 30 weight percent) and high refrigerant concentration mixtures (80, 90 and 100 weight percent) of chlorofluorocarbon (CFC) 12, hydrochlorofluorocarbons (HCFC`s) 22, 123, 124 and 142b, and hydrofluorocarbons (BFC`s) 134a, 32, 125, 152a and 143a with mineral oil, alkylbenzene, polyalkylene glycol and polyolester lubricants. Viscosity, solubility (vapor pressure) and density data are reported for thirty five working fluids which are selected combinations of these refrigerants and companion lubricants. These data, reduced to engineering form, are presented in the form of a Daniel Chart and a plot of density versus temperature and composition. Extensive numerical analysis has been performed in order to derive equations which allow two independent variables (temperature and composition) and to provide for corrections in composition due to vapor space volume in the test apparatus.

  8. Vapor-Liquid Equilibrium Measurements of the Binary R32+R125 Refrigerant Mixture

    NASA Astrophysics Data System (ADS)

    Higashi, Yukihiro; Miyake, Takeshi; Fujii, Ken-Ichi

    Vapor-liquid equilibrium (VLE) data of the binary R32+R125 refrigerant mixture including R410A (50mass% R32 + 50mass% R125) were obtained by the circulation-type experimental apparatus with a liquid-bath thermostat. VLE measurements were carried out in the temperatures between 263.15 K and 318.15 K and in the pressures between 505 kPa and 2724 kPa. The experimental uncertainties of temperature, pressure, and composition measurements were estimated to be within 3 mK, 0.1 %, and 0.4 %, respectively. The present data were compared with reported experimental data against the REFPROP 6.01 as well as REFPROP 7.0 calculation results.

  9. COMPARISON OF CFC-114 AND HFC-236EA PERFORMANCE IN SHIPBOARD VAPOR COMPRESSION SYSTEMS

    EPA Science Inventory

    The report gives results of a comparison of the performance of two refrigerants - 1,1,1,2,3,3-hexafluoropropane (HFC-236ea) and 1,2-dichloro-tetrafluoroethane (CFC-114) - in shipboard vapor compression refrigeration systems. (NOTE: In compliance with the Montreal Protocol and Dep...

  10. New chemical alternative for ozone-depleting substances: HFC-236ea. Final report, November 1996-March 1997

    SciTech Connect

    Brna, T.G.; Smith, N.D.; Hendriks, R.V.; Gage, C.L.

    1997-10-01

    The report gives results of a preliminary evaluation of a new hydrofluoro-carbon (HFC-236ea or 1,1,1,2,3,3-hexafluoropropane) as a possible alternative for chlorofluorocarbon (CFC)-114 (1,2-dichloro-1, 1,2,2-tetrafluoroethane) refrigerant in chillers and high-temperature industrial heat pumps. Evaluation tests included an examination of the flammability, stability, thermophysical properties, lubricant/refrigerant characteristics, materials compatibility, inhalation toxicity, and refrigeration performance. HFC-236ea was found to be an excellent alternative for CFC-114 refrigerant.

  11. Accelerated test methods for life prediction of hermetic motor insulation systems exposed to alternative refrigerant/lubricant mixtures. Phase 3: Reproducibility and discrimination testing. Final report

    SciTech Connect

    Ellis, P.F. II; Ferguson, A.F.; Fuentes, K.T.

    1996-05-06

    In 1992, the Air-Conditioning and Refrigeration Technology Institute, Inc. (ARTI) contracted Radian Corporation to ascertain whether an improved accelerated test method or procedure could be developed that would allow prediction of the life of motor insulation materials used in hermetic motors for air-conditioning and refrigeration equipment operated with alternative refrigerant/lubricant mixtures. This report presents the results of phase three concerning the reproducibility and discrimination testing.

  12. Prediction of Heat Transfer Characteristics of Binary Refrigerant Mixtures in a Falling Film Type Plate-fin Evaporator

    NASA Astrophysics Data System (ADS)

    Yara, Tomoyasu; Koyama, Shigeru

    This paper deals with the characteristics of heat transfer and pressure drop of R 22, R 134a pure refrigerant and R 134a/R123 refrigerant mixtures in a falling film type plate-fin evaporator. The refrigerants have been tested in the ranges of heat flux from 3 to 20 kW/m2 and mass velocity from 50 to 100 kg/m2s. It is clarified that heat transfer characteristics of evaporation in the present experimental range are not affected by shear stress. Taking the fin efficiency into consideration, a correlation equation of heat transfer coefficient is proposed. The characteristic of pressure drop is also proposed by modifying friction factor of Soliman's equation. Furthermore, a prediction model for evaporation of mixtures in a plate fin heat exchanger is developed based on the assumption that the phase equilibrium in a cross-section of the refrigerant path is established. The prediction results are in good agreement with the experimental data.

  13. Theoretical analysis for condensation heat transfer of binary refrigerant mixtures with annular flow in horizontal mini-tubes

    NASA Astrophysics Data System (ADS)

    Zhang, Hui-Yong; Li, Jun-Ming; Sun, Ji-Liang; Wang, Bu-Xuan

    2016-01-01

    A theoretical model is developed for condensation heat transfer of binary refrigerant mixtures in mini-tubes with diameter about 1.0 mm. Condensation heat transfer of R410A and R32/R134a mixtures at different mass fluxes and saturated temperatures are analyzed, assuming that the phase flow pattern is annular flow. The results indicate that there exists a maximum interface temperature at the beginning of condensation process for azeotropic and zeotropic mixtures and the corresponding vapor quality to the maximum value increases with mass flux. The effects of mass flux, heat flux, surface tension and tube diameter are analyzed. As expected, the condensation heat transfer coefficients increase with mass flux and vapor quality, and increase faster in high vapor quality region. It is found that the effects of heat flux and surface tension are not so obvious as that of tube diameter. The characteristics of condensation heat transfer of zeotropic mixtures are consistent to those of azeotropic refrigerant mixtures. The condensation heat transfer coefficients increase with the concentration of the less volatile component in binary mixtures.

  14. Enhanced naphthenic refrigeration oils for household refrigerator systems

    SciTech Connect

    Reyes-Gavilan, J.L.; Flak, G.T.; Tritcak, T.R.; Barbour, C.B.

    1997-12-31

    Due to industry concerns about the successful employment of hydrofluorocarbon-immiscible hydrocarbon oils in refrigeration systems, enhanced naphthenic refrigeration oils have been developed. These products have been designed to be more dispersible with hydrofluorocarbon (HFC) refrigerants, such as R-134a, in order to facilitate lubricant return to the compressor and to ensure proper energy efficiency of the system. Bench tests and system performance evaluations indicate the feasibility of these oils for use in household refrigeration applications. Results of these evaluations are compared with those obtained with polyol esters and typical naphthenic mineral oils employed in chlorofluorocarbon (CFC) and hydrochlorofluorocarbon (HCFC) refrigeration applications.

  15. Human safety and pharmacokinetics of the CFC alternative propellants HFC 134a (1,1,1,2-tetrafluoroethane) and HFC 227 (1,1,1,2,3,3, 3-heptafluoropropane) following whole-body exposure.

    PubMed

    Emmen, H H; Hoogendijk, E M; Klöpping-Ketelaars, W A; Muijser, H; Duistermaat, E; Ravensberg, J C; Alexander, D J; Borkhataria, D; Rusch, G M; Schmit, B

    2000-08-01

    HFC 134a (1,1,1,2-tetrafluoroethane) and HFC 227 (1,1,1,2,3,3, 3-heptafluoropropane) are used to replace chlorofluorocarbons (CFCs) in refrigerant and aerosol applications, including medical use in metered-dose inhalers. Production and consumption of CFCs are being phased out under the Montreal Protocol on Substances that Deplete the Ozone Layer. The safety and pharmacokinetics of HFC 134a and HFC 227 were assessed in two separate double-blind studies. Each HFC (hydrofluorocarbon) was administered via whole-body exposure as a vapor to eight (four male and four female) healthy volunteers. Volunteers were exposed, once weekly for 1 h, first to air and then to ascending concentrations of HFC (1000, 2000, 4000, and 8000 parts per million (ppm)), interspersed with a second air exposure and two CFC 12 (dichlorodifluoromethane) exposures (1000 and 4000 ppm). Comparison of either HFC 134a or HFC 227 to CFC 12 or air gave no clinically significant results for any of the measured laboratory parameters. There were no notable adverse events, there was no evidence of effects on the central nervous system, and there were no symptoms of upper respiratory tract irritation. HFC 134a, HFC 227, and CFC 12 blood concentrations increased rapidly and in an exposure-concentration-dependent manner, although not strictly proportionally, and approached steady state. Maximum blood concentrations (C(max)) tended to be higher in males than females; in the HFC 227 study, these were statistically significantly (P < 0. 05) higher in males for each HFC 227 and CFC 12 exposure level. In the HFC 134a study, the gender difference in C(max) was only statistically significant (P < 0.05) for CFC 12 at 4000 ppm and HFC 134a at 8000 ppm. Following the end of exposure, blood concentrations declined rapidly, predominantly biphasically and independent of exposure concentration. For the HFC 134a study, the t(1/2)alpha (alpha elimination half-life) was short for both CFC 12 and HFC 134a (<11 min). The t(1

  16. Thermophysical Properties of the Refrigerant Mixtures R417A and R417B from Dynamic Light Scattering (DLS)

    NASA Astrophysics Data System (ADS)

    Heller, A.; Rausch, M. H.; Flohr, F.; Leipertz, A.; Fröba, A. P.

    2012-03-01

    Dynamic light scattering (DLS) has been used for the measurement of several thermophysical properties of the refrigerant mixtures R417A (50 % by mass 1,1,1,2-tetrafluoroethane—R134a, 46.6 % pentafluoroethane—R125, 3.4 % n-butane—R600) and R417B (79 % by mass R125, 18.25 % R134a, 2.75 % R600). Both refrigerant mixtures are designed for a replacement of R22 (chlorodifluoromethane) in existing refrigeration systems. Thermal diffusivity and sound speed have been obtained by light scattering from the bulk fluid for the liquid phase under saturation conditions over a temperature range from about 283 K up to the liquid-vapor critical point with estimated uncertainties between 1 % and 3 % and between 0.5 % and 2 %, respectively. By applying the method of DLS to a liquid-vapor interface, also called surface light scattering, the saturated liquid kinematic viscosity and surface tension have been determined simultaneously. These properties have been measured from 253.15 K up to the liquid-vapor critical point with estimated uncertainties between 1 % and 3 % for kinematic viscosity and between 1 % and 2 % for surface tension. The measured thermal diffusivity, sound speed, kinematic viscosity, and surface tension are represented by interpolating expressions with differences between the experimental and calculated values that are comparable with but always smaller than the uncertainties. The results are discussed in detail in comparison with literature data and with various prediction methods.

  17. Compatibility of refrigerants and lubricants with motor materials. Quarterly technical progress report, April 1, 1992--June 30, 1992

    SciTech Connect

    Doerr, R.; Kujak, S.

    1992-07-23

    During this last quarter, evaluations were complete on the motor materials after 500-hr exposures to refrigerants CFC-123, HFC-134a and HCFC-22 at 90{degrees}C. Materials were also evaluated after exposure to nitrogen at 127{degrees}C to determine effect of the thermal exposure. Other exposures were started during this quarter with refrigerants HCFC-124, HFC-125, HFC-143a, HFC-32 and HFC-152a. One 500 hr exposure is set up per week and one is analyzed the same week. This will enable Trane to complete the 500 hour exposures by the end of the year.

  18. Vapor-liquid equilibria for the difluoromethane (HFC-32) + 1,1,1,2-tetrafluoroethane (HFC-134a) system

    SciTech Connect

    Chung, E.Y.; Kim, M.S.

    1997-11-01

    Isothermal vapor-liquid equilibrium data of the binary mixture of difluoromethane (HFC-32) + 1,1,1,2-tetrafluoroethane (HFC-134a) have been measured in the temperature range between 263 K and 323 K. The experiment was carried out with a circulation type apparatus with the measurement of temperature, pressure, and compositions of the liquid and vapor phases. The experimental data were correlated with the Peng-Robinson and Redlich-Kwong-Soave equations of state, and comparison with literature results has been made.

  19. New chemical alternative for ozone-depleting substances: HFC-245ca. Final report, August 1987-June 1996

    SciTech Connect

    Smith, N.D.; Gage, C.L.; Baskin, E.; Hendriks, R.V.

    1996-12-01

    The report gives results of a preliminary evaluation of a new hydrofluoro-carbon (HF)--HFC-245ca or 1,1,2,2,3-pentafluoropropane as a possible alternative for chlorofluorocarbon (CFC)-11 (trichlorofluoromethane) and hydrochloro-fluorocarbon (HCFC)-123 (1,1,1-trifluoro- 2,2-dichloroethane) refrigerant for low-pressure chillers and as a possible alternative for CFC-111 and HCFC-14lb (1-fluoro-1,1-dichloroethane) blowing agents for polyisocyanurate/polyurethane insulation forms. Evaluation tests included an examination of its flammability, stability, thermophysical properties, lubricant miscibility and lubricity, materials compatibility, acute inhalation toxicity, and refrigeration performance.An azeotrope composed of HFC-245ca and HFC-338mccq (1,1,1,2,3,4,4,4-octafluorobutane) was also examined from the standpointof reducing the flammability of HFC-245ca.

  20. Solubility, viscosity and density of refrigerant/lubricant mixtures. Quarterly technical progress report, 1 April 1993--30 June 1993

    SciTech Connect

    Henderson, D.R.

    1993-10-01

    This report presents the results of experimental measurements on low refrigerant concentration mixtures (0, 10, 20,30 wt %) of twelve working fluids. These data have been reduced to engineering form and are presented in the form of a Daniel Chart and a plot of density versus temperature and composition. Extensive numerical analysis has been performed in order to derive equations which allow two independent variables (temperature and composition) and to provide for corrections in composition due to vapor space volume in the test apparatus; details of these calculations are provided in Appendix A. This report supersedes all previous reports.

  1. Compatibility of refrigerants and lubricants with motor materials. Quarterly technical progress report, 1 July 1992--30 September 1992

    SciTech Connect

    Doerr, R.; Kujak, S.

    1992-10-01

    During the compatibility study of 10 pure refrigerants with 24 motor materials, it was observed that the greatest damage to the insulation system was caused by absorption of refrigerant followed by rapid desorption. The observed effects were blisters, cracking, internal bubbles and delamination. Measured results includes decreased bond strength, dielectric strength and overall integrity of the material. Refrigerants HCFC-22, HFC-32, HFC-134 and HFC-152a exhibited this phenomena. The effect of HCFC-22 was most severe of the tested refrigerants. Since HCFC-22 has an excellent reliability history with many of the materials tested, compatibility with the new refrigerants is expected.

  2. Accelerated test methods for life prediction of hermetic motor insulation systems exposed to alternative refrigerant/lubricant mixtures. Final report

    SciTech Connect

    Ellis, P.F. II; Ferguson, A.F.

    1995-04-19

    In 1992, the Air-Conditioning and Refrigeration Technology Institute, Inc. (ARTI) contracted Radian Corporation to ascertain whether an improved accelerated test method or procedure could be developed that would allow prediction of the life of motor insulation materials used in hermetic motors for air-conditioning and refrigeration equipment operated with alternative refrigerant/lubricant mixtures. Phase 1 of the project, Conceptual Design of an accelerated test method and apparatus, was successfully completed in June 1993. The culmination of that effort was the concept of the Simulated Stator Unit (SSU) test. The objective of the Phase 2 limited proof-of-concept demonstration was to: answer specific engineering/design questions; design and construct an analog control sequencer and supporting apparatus; and conduct limited tests to determine the viability of the SSU test concept. This report reviews the SSU test concept, and describes the results through the conclusion of the proof-of-concept prototype tests in March 1995. The technical design issues inherent in transforming any conceptual design to working equipment have been resolved, and two test systems and controllers have been constructed. Pilot tests and three prototype tests have been completed, concluding the current phase of work. One prototype unit was tested without thermal stress loads. Twice daily insulation property measurements (IPMs) on this unit demonstrated that the insulation property measurements themselves did not degrade the SSU.

  3. Accelerated test methods for life prediction of hermetic motor insulation systems exposed to alternative refrigerant/lubricant mixtures

    NASA Astrophysics Data System (ADS)

    Ellis, P. F., II; Ferguson, A. F.

    1995-04-01

    In 1992, the Air-Conditioning and Refrigeration Technology Institute, Inc. (ARTI) contracted Radian Corporation to ascertain whether an improved accelerated test method or procedure could be developed that would allow prediction of the life of motor insulation materials used in hermetic motors for air-conditioning and refrigeration equipment operated with alternative refrigerant/lubricant mixtures. Phase 1 of the project, Conceptual Design of an accelerated test method and apparatus, was successfully completed in June 1993. The culmination of that effort was the concept of the Simulated Stator Unit (SSU) test. The objective of the Phase 2 limited proof-of-concept demonstration was to: answer specific engineering/design questions; design and construct an analog control sequencer and supporting apparatus; and conduct limited tests to determine the viability of the SSU test concept. This report reviews the SSU test concept, and describes the results through the conclusion of the proof-of-concept prototype tests in March 1995. The technical design issues inherent in transforming any conceptual design to working equipment have been resolved, and two test systems and controllers have been constructed. Pilot tests and three prototype tests have been completed, concluding the current phase of work. One prototype unit was tested without thermal stress loads. Twice daily insulation property measurements (IPM's) on this unit demonstrated that the insulation property measurements themselves did not degrade the SSU.

  4. NEW CHEMICAL ALTERNATIVE FOR OZONE-DEPLETING SUBSTANCES: HFC-236EA

    EPA Science Inventory

    The report gives results of a preliminary evaluation of a new hydrofluorocarbon (HFC-236ea or 1, 1, 1, 2, 3, 3-hexafluoropropane) as a possible alternative for chlorofluorocarbon (CFC)-114 (1, 2-dichloro-1, 1, 2, 2-tetrafluoroethane) refrigerant in chillers and high-temperature i...

  5. RETROFITTING AN AUTOMOTIVE AIR CONDITIONER WITH HFC-134A, ADDITIVE, AND MINERAL OIL

    EPA Science Inventory

    The paper gives results of an evaluation of a lubricant additive developed for use in retrofitting motor vehicle air conditioners. he additive was designed to enable HFC-134a to be used as a retrofit refrigerant with the existing mineral oil in CVC-12 systems. he goal of the proj...

  6. HEAT TRANSFER EVALUATION OF HFC-236EA AND CFC-114 IN CONDENSATION AND EVAPORATION

    EPA Science Inventory

    The report gives results of a heat transfer evaluation of the refrigerants hexafluoropropane (HFC-236ea) and 1,1,2,2-dichloro-tetrafluoroethane (CFC-114). (NOTE: With the mandatory phase-out of chlorofluorocarbons (CFCs), as dictated by the Montreal Protocol and Clean Air Act Ame...

  7. Acute neurobehavioral effects in rats from exposure to HFC 134a or CFC 12.

    PubMed

    Ritchie, G D; Kimmel, E C; Bowen, L E; Reboulet, J E; Rossi, J

    2001-04-01

    1,1,1,2-Tetrafluoroethane (HFC 134a), a chlorine-free hydrofluoroalkane, is internationally replacing billions of pounds of dichlorodifluoromethane (CFC 12) for coolant, refrigerant and aerosol propellant applications. The ALC50 for HFC 134a in rats is 567,000 ppm for 4 h; its potential for cardiac epinephrine sensitization in beagle dogs is acceptable (75,000 ppm); and its capacity to induce carcinogenicity or developmental disorders in animals is minimal. HFC 134a, with a serum half life estimated at 4-11 min, has been accepted for use as a propellant in metered-dose inhalant products, implying a low human toxicity risk from periodic brief exposures. There has been little published human or animal research evaluating possible neurobehavioral toxicity from longer HFC 134a exposures, as may be expected to occur in operational scenarios. In this study, male Wistar rats were exposed to various concentrations of HFC 134a or CFC 12 for up to 30 min while performing in either a rotarod/motorized running wheel apparatus or in an operant chamber The relative neurobehavioral toxicity of CFC 12 and its ozone-depleting substance replacement HFC 134a was assessed by comparing both gross motor system incapacitation and more subtle changes in ability to perform an operant discrimination task. It was shown that exposure to HFC 134a or CFC 12 concentrations from 40,000 to 470,000 ppm, for up to 30 min, induced neurobehavioral deficits in every subject, ranging from reduced operant efficiency to apparent anesthesia. For neurobehavioral endpoints examined in these experiments, HFC 134a inhalation was shown to induce deficits more rapidly, and at lower concentrations when compared to CFC 12 exposure. PMID:11405255

  8. New chemical alternative for ozone-depleting substances: HFC-236fa. Final report, December 1996-April 1997

    SciTech Connect

    Smith, N.D.; Brna, T.G.; Gage, C.L.; Hendriks, R.V.

    1997-07-01

    The report gives results of a preliminary evaluation of a new hydrofluoro-carbon (HFC)--HFC-236fa or 1,1,1,3,3,3-hexafluoropropane--asa possible alternative for chlorofluorocarbon (CFC)-114 (1,2-dichloro-1, 1,2,2-tetrafluoroethane) refrigerant for chillers and asa possible fire suppressant replacement for halon-1301 (bromotrifluoromethane). Evaluation tests included an examination of flammability, stability, atmospheric lifetime, thermophysical properties, lubricant miscibility and solubility, materials compatibility, inhalation toxicity, refrigerant performance, heat transfer characteristics, and flame suppression.

  9. Design of oil-free simple turbo type 65 K/6 KW helium and neon mixture gas refrigerator for high temperature superconducting power cable cooling

    NASA Astrophysics Data System (ADS)

    Saji, N.; Asakura, H.; Yoshinaga, S.; Ishizawa, T.; Miyake, A.; Obata, M.; Nagaya, S.

    2002-05-01

    For the requirement of HTS facility cooling, we propose oil-free simple turbo-type refrigerator. The working gas is a helium and neon mixture. Two single-stage turbo compressors and two expansion turbines are applied to the cycle. The rotor consists of the compressor impeller, turbine impeller and driving motor, and is supported by foil type gas bearing. The refrigerator requires two rotating machines with excellent reliability and compactness, and the motor power required is 72.5 kW for a refrigeration load of 6 kW. For the cooling of power cable, sub-cooled pressurized liquid nitrogen and a circulation pump must be provided. If the estimated distance between inter-cooling stations is quite long, for example 5 km, plural refrigerators may be set up on one cooling station.

  10. Neon helium mixtures as a refrigerant for the FCC beam screen cooling: comparison of cycle design options

    NASA Astrophysics Data System (ADS)

    Kloeppel, S.; Quack, H.; Haberstroh, C.; Holdener, F.

    2015-12-01

    In the course of the studies for the next generation particle accelerators, in this case the Future Circular Collider for hadron-hadron interaction (FCC-hh), different aspects are being investigated. One of these is the heat load on the beam screen, which results mainly from the synchrotron radiation. In case of the FCC-hh, a heat load of 6 MW is expected. The heat has to be absorbed at 40 to 60 K due to vacuum restrictions. In this range, refrigeration is possible with both helium and neon. Our investigations are focused on a mixed refrigerant of these two components, which combines the advantages of both. Especially promising is the possible substitution of the oil flooded screw compressors by more efficient turbo compressors. This paper investigates different flow schemes and mixture compositions with respect to complexity and efficiency. Furthermore, thermodynamic aspects, e.g. whether to use cold or warm secondary cycle compressors are discussed. Additionally, parameters of the main compressor are established.

  11. Properties and Cycle Performance of Refrigerant Blends Operating Near and Above the Refrigerant Critical Point, Task 1: Refrigerant Properties

    SciTech Connect

    Mark O. McLinden; Arno Laesecke; Eric W. Lemmon; Joseph W. Magee; Richard A. Perkins

    2002-08-30

    The main goal of this project was to investigate and compare the performance of an R410A air conditioner to that of an R22 air conditioner, with specific interest in performance at high ambient temperatures at which the condenser of the R410A system may be operating above the refrigerant's critical point. Part 1 of this project consisted of measuring thermodynamic properties R125, R410A and R507A, measuring viscosity and thermal conductivity of R410A and R507A and comparing data to mixture models in NIST REFPROP database. For R125, isochoric (constant volume) heat capacity was measured over a temperature range of 305 to 397 K (32 to 124 C) at pressures up to 20 MPa. For R410A, isochoric heat capacity was measured along 8 isochores with a temperature range of 303 to 397 K (30 to 124 C) at pressures up to 18 MPa. Pressure-density-temperature was also measured along 14 isochores over a temperature range of 200 to 400 K (-73 to 127 C) at pressures up to 35 MPa and thermal conductivity along 6 isotherms over a temperature range of 301 to 404 K (28 to 131 C) with pressures to 38 MPa. For R507A, viscosity was measured along 5 isotherms over a temperature range of 301 to 421 K (28 to 148 C) at pressures up to 83 MPa and thermal conductivity along 6 isotherms over a temperature range of 301 to 404 K (28 to 131 C) with pressures to 38 MPa. Mixture models were developed to calculate the thermodynamic properties of HFC refrigerant mixtures containing R32, R125, R134a and/or R125. The form of the model is the same for all the blends considered, but blend-specific mixing functions are required for the blends R32/125 (R410 blends) and R32/134a (a constituent binary of R407 blends). The systems R125/134a, R125/143a, R134a/143a, and R134a/152a share a common, generalized mixing function. The new equation of state for R125 is believed to be the most accurate and comprehensive formulation of the properties for that fluid. Likewise, the mixture model developed in this work is the

  12. Reducing the Carbon Footprint of Commercial Refrigeration Systems Using Life Cycle Climate Performance Analysis: From System Design to Refrigerant Options

    SciTech Connect

    Fricke, Brian A; Abdelaziz, Omar; Vineyard, Edward Allan

    2013-01-01

    In this paper, Life Cycle Climate Performance (LCCP) analysis is used to estimate lifetime direct and indirect carbon dioxide equivalent gas emissions of various refrigerant options and commercial refrigeration system designs, including the multiplex DX system with various hydrofluorocarbon (HFC) refrigerants, the HFC/R744 cascade system incorporating a medium-temperature R744 secondary loop, and the transcritical R744 booster system. The results of the LCCP analysis are presented, including the direct and indirect carbon dioxide equivalent emissions for each refrigeration system and refrigerant option. Based on the results of the LCCP analysis, recommendations are given for the selection of low GWP replacement refrigerants for use in existing commercial refrigeration systems, as well as for the selection of commercial refrigeration system designs with low carbon dioxide equivalent emissions, suitable for new installations.

  13. Halocarbon refrigerant detection methods. Final report

    SciTech Connect

    Tapscott, R.E.; Sohn, C.W.

    1996-01-01

    The Montreal Protocol and the U.S. Clean Air Act limit the production of ozone-depleting substances, including many refrigerants. Three options for cost-effectively phasing out these refrigerants from Army installations are: (1) refrigerant containment, (2) retrofit conversion to accommodate alternative refrigerant, and (3) replacement with cooling systems using alternative refrigerant. This report contributes to the first option by identifying and assessing methods to detect chlorofluorocarbon (CFC), hydrochlorofluorocarbon (HCFC) and hydrofluorocarbon (HFC) refrigerants that leak from air-conditioning and refrigeration systems. As background, the report describes the relevant sections of the Montreal Protocol and the Clean Air Act, and gives an overview of refrigerants. This is followed by a description of the technologies used in refrigerant leak detection, and a survey of detector types available and their price ranges. Appendixes provide an extensive list of detector products and their specifications, plus manufacturer addresses and phone numbers.

  14. Relative permittivity measurements of 1,1,1,2-tetrafluoroethane (HFC 134a), pentafluoroethane (HFC 125), and difluoromethane (HFC 32)

    SciTech Connect

    Abbott, A.P.; Eardley, C.A.; Tooth, R.

    1999-01-01

    The relative permittivity of HFC 134a, HFC 32, and HFC 125 was measured as a function of temperature and pressure, to cover the liquid and gaseous states. The temperature range studied was 303 to 403 K, and the pressure range was 4.0 to 30.0 MPa. The relative permittivity, {epsilon}, could be fitted to the reduced density {rho}{sub r} using the function ({epsilon} {minus} 1)/(2{epsilon} + 1). The dipole moment of HFC 134 a in the liquid phase has been calculated.

  15. New Regional and Global HFC Projections and Effects of National Regulations and Montreal Protocol Amendment Proposals

    NASA Astrophysics Data System (ADS)

    Velders, G. J. M.

    2015-12-01

    Hydrofluorocarbons (HFCs) are used as substitutes for ozone-depleting substances that are being phased out globally under Montreal Protocol regulations. New global scenarios of HFC emissions reach 4.0-5.3 GtCO2-eq yr-1 in 2050, which corresponds to a projected growth from 2015 to 2050 which is 9% to 29% of that for CO2 over the same time period. New baseline scenarios are formulated for 10 HFC compounds, 11 geographic regions, and 13 use categories. These projections are the first to comprehensively assess production and consumption of individual HFCs in multiple use sectors and geographic regions with emission estimates constrained by atmospheric observations. In 2050, in percent of global HFC emissions, China (~30%), India and the rest of Asia (~25%), Middle East and northern Africa (~10%), and USA (~10%) are the principal source regions; and refrigeration and stationary air conditioning are the major use sectors. National regulations to limit HFC use have been adopted recently in the European Union, Japan and USA, and four proposals have been submitted in 2015 to amend the Montreal Protocol to substantially reduce growth in HFC use. Calculated baseline emissions are reduced by 90% in 2050 by implementing the North America Montreal Protocol amendment proposal. Global adoption of technologies required to meet national regulations would be sufficient to reduce 2050 baseline HFC consumption by more than 50% of that achieved with the North America proposal for most developed and developing countries. The new HFC scenarios and effects of national regulations and Montreal Protocol amendment proposals will be presented.

  16. Greenhouse gas emissions for refrigerant choices in room air conditioner units.

    PubMed

    Galka, Michael D; Lownsbury, James M; Blowers, Paul

    2012-12-01

    In this work, potential replacement refrigerants for window-mounted room air conditioners (RACs) in the U.S. have been evaluated using a greenhouse gas (GHG) emissions analysis. CO(2)-equivalent emissions for several hydrofluoroethers (HFEs) and other potential replacements were compared to the most widely used refrigerants today. Included in this comparison are pure refrigerants that make up a number of hydrofluorocarbon (HFC) mixtures, pure hydrocarbons, and historically used refrigerants such as propane and ammonia. GHG emissions from direct and indirect sources were considered in this thermodynamic analysis. Propylene, dimethyl ether, ammonia, R-152a, propane, and HFE-152a all performed effectively in a 1 ton window unit and produced slightly lower emissions than the currently used R-22 and R-134a. The results suggest that regulation of HFCs in this application would have some effect on reducing emissions since end-of-life emissions remain at 55% of total refrigerant charge despite EPA regulations that mandate 80% recovery. Even so, offsite emissions due to energy generation dominate over direct GHG emissions and all the refrigerants perform similarly in totals of indirect GHG emissions. PMID:23136858

  17. The large contribution of projected HFC emissions to future climate forcing

    PubMed Central

    Velders, Guus J. M.; Fahey, David W.; Daniel, John S.; McFarland, Mack; Andersen, Stephen O.

    2009-01-01

    The consumption and emissions of hydrofluorocarbons (HFCs) are projected to increase substantially in the coming decades in response to regulation of ozone depleting gases under the Montreal Protocol. The projected increases result primarily from sustained growth in demand for refrigeration, air-conditioning (AC) and insulating foam products in developing countries assuming no new regulation of HFC consumption or emissions. New HFC scenarios are presented based on current hydrochlorofluorocarbon (HCFC) consumption in leading applications, patterns of replacements of HCFCs by HFCs in developed countries, and gross domestic product (GDP) growth. Global HFC emissions significantly exceed previous estimates after 2025 with developing country emissions as much as 800% greater than in developed countries in 2050. Global HFC emissions in 2050 are equivalent to 9–19% (CO2-eq. basis) of projected global CO2 emissions in business-as-usual scenarios and contribute a radiative forcing equivalent to that from 6–13 years of CO2 emissions near 2050. This percentage increases to 28–45% compared with projected CO2 emissions in a 450-ppm CO2 stabilization scenario. In a hypothetical scenario based on a global cap followed by 4% annual reductions in consumption, HFC radiative forcing is shown to peak and begin to decline before 2050. PMID:19549868

  18. Resolution of the uncertainties in the radiative forcing of HFC-134a

    NASA Astrophysics Data System (ADS)

    Forster, Piers M. De F.; Burkholder, J. B.; Clerbaux, C.; Coheur, P. F.; Dutta, M.; Gohar, L. K.; Hurley, M. D.; Myhre, G.; Portmann, R. W.; Shine, K. P.; Wallington, T. J.; Wuebbles, D.

    2005-07-01

    HFC-134a (CF3CH2F) is the most rapidly growing hydrofluorocarbon in terms of atmospheric abundance. It is currently used in a large number of household refrigerators and air-conditioning systems and its concentration in the atmosphere is forecast to increase substantially over the next 50 100 years. Previous estimates of its radiative forcing per unit concentration have differed significantly ˜25%. This paper uses a two-step approach to resolve this discrepancy. In the first step six independent absorption cross section datasets are analysed. We find that, for the integrated cross section in the spectral bands that contribute most to the radiative forcing, the differences between the various datasets are typically smaller than 5% and that the dependence on pressure and temperature is not significant. A “recommended'' HFC-134a infrared absorption spectrum was obtained based on the average band intensities of the strongest bands. In the second step, the “recommended'' HFC-134a spectrum was used in six different radiative transfer models to calculate the HFC-134a radiative forcing efficiency. The clear-sky instantaneous radiative forcing, using a single global and annual mean profile, differed by 8%, between the 6 models, and the latitudinally-resolved adjusted cloudy sky radiative forcing estimates differed by a similar amount. We calculate that the radiative forcing efficiency of HFC-134a is 0.16±0.02Wmppbv.

  19. Evaluation of HFC-245ca for commercial use in low pressure chillers. Final report, Volume I

    SciTech Connect

    Keuper, E.F.

    1996-03-01

    Federal regulations banned the production of CFC-11 on January 1, 1996. HCFC-123, the only commercial alternative, will be limited to service applications after January 1, 2020 and will be eliminated from production on January 1, 2030. HFC-245ca has been identified as a potential replacement for CFC-11 in retrofit applications and for HCFC-123 in new chillers, but the marginal flammability of HFC-245ca is a major obstacle to its commercial use as a refrigerant in the United States. This report assesses the commercial viability of HFC-245ca based on its experimental performance in a direct drive low pressure centrifugal chiller exclusive of its flammability characteristics. Three different impeller diameters were tested in the chiller, with all impellers having identical discharge blade angles. Experimental work included tests in a 200 ton 3 stage direct drive chiller with 3 impeller sets properly sized for each of three refrigerants, CFC-11, HCFC-123, and HFC-245ca. The commercial viability assessment focused on both retrofit and new product performance and cost.

  20. 40 CFR 82.36 - Approved refrigerant handling equipment.

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... Approved refrigerant handling equipment. (a)(1) Refrigerant recycling equipment must be certified by the...) Recovery/Recycling Equipment and Recovery/Recycling/Recharging for Mobile Air-Conditioning Systems. (5... Recycling Equipment Intended for Use with both CFC-12 and HFC-134a, Recommended Service Procedure for...

  1. 40 CFR 82.36 - Approved refrigerant handling equipment.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... Approved refrigerant handling equipment. (a)(1) Refrigerant recycling equipment must be certified by the...) Recovery/Recycling Equipment and Recovery/Recycling/Recharging for Mobile Air-Conditioning Systems. (5... Recycling Equipment Intended for Use with both CFC-12 and HFC-134a, Recommended Service Procedure for...

  2. 40 CFR 82.36 - Approved refrigerant handling equipment.

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... Approved refrigerant handling equipment. (a)(1) Refrigerant recycling equipment must be certified by the...) Recovery/Recycling Equipment and Recovery/Recycling/Recharging for Mobile Air-Conditioning Systems. (5... Recycling Equipment Intended for Use with both CFC-12 and HFC-134a, Recommended Service Procedure for...

  3. 40 CFR 82.36 - Approved refrigerant handling equipment.

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Approved refrigerant handling equipment. (a)(1) Refrigerant recycling equipment must be certified by the...) Recovery/Recycling Equipment and Recovery/Recycling/Recharging for Mobile Air-Conditioning Systems. (5... Recycling Equipment Intended for Use with both CFC-12 and HFC-134a, Recommended Service Procedure for...

  4. 40 CFR 82.36 - Approved refrigerant handling equipment.

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... Approved refrigerant handling equipment. (a)(1) Refrigerant recycling equipment must be certified by the...) Recovery/Recycling Equipment and Recovery/Recycling/Recharging for Mobile Air-Conditioning Systems. (5... Recycling Equipment Intended for Use with both CFC-12 and HFC-134a, Recommended Service Procedure for...

  5. Reproductive and developmental toxicity of hydrofluorocarbons used as refrigerants.

    PubMed

    Ema, Makoto; Naya, Masato; Yoshida, Kikuo; Nagaosa, Ryuichi

    2010-04-01

    The present paper summarizes data on the reproductive and developmental toxicity of hydrofluorocarbons (HFCs), including pentafluoroethane (HFC-125), 1,1,1,2-tetrafluoroethane (HFC-134a), 1,1,1-trifluoroethane (HFC-143a), 1,1-difluoroethane (HFC-152a), difluoromethane (HFC-32) and 1,1,1,3,3-pentafluoropropane (HFC-245fa), used as refrigerants, published in openly available scientific literature. No developmental toxicity of HFC-125 was found even at 50,000 ppm in rats or rabbits. Although HFC-134a exhibited no dominant lethal effect or reproductive toxicity in rats, it caused low body weight in pre- and postnatal offspring and slightly retarded skeletal ossification in fetuses at 50,000 ppm in rats. No maternal or developmental toxicity was noted after exposure to HFC-143a even at 40,000 ppm in rats or rabbits or HFC-152a even at 50,000 ppm in rats. HFC-32 is slightly maternally and developmentally toxic at 50,000 ppm in rats, but not in rabbits. HFC-245fa caused decreases in maternal body weight and food consumption at 10,000 and 50,000 ppm and fetal weight at 50 000ppm. No evidence of teratogenicity for these HFCs was noted in rats or rabbits. There is limited information about the reproductive toxicity of these HFCs. Animal studies remain necessary for risk assessments of chemicals because it is difficult to find alternative methods to determine the toxic effects of chemicals. It is required to reduce emissions of organic vapors containing HFCs to reduce the risk of exposure. PMID:19914373

  6. Proceedings of the 1993 non-fluorocarbon insulation, refrigeration and air conditioning technology workshop

    SciTech Connect

    Not Available

    1994-09-01

    Sessions included: HFC blown polyurethanes, carbon dioxide blown foam and extruded polystyrenes, plastic foam insulations, evacuated panel insulation, refrigeration and air conditioning, absorption and adsorption and stirling cycle refrigeration, innovative cooling technologies, and natural refrigerants. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  7. Positive Displacement Compressor Technology for Refrigeration

    NASA Astrophysics Data System (ADS)

    Nagatomo, Shigemi

    Trends of compressor technologies for refrigerators, freezers and condensing units are presented in this paper. HFC refrigerants such as R134a and R404C are promising candidates as an altemative for R12. Performance of reciprocating and rotary compressors in the operation with R134A is described. In addition, compressor technologies such as efficiency improvement are described in the cases of reciprocating, rotary and scroll compressors.

  8. Study of the Vapor-Liquid Coexistence Curve and the Critical Curve for Nonazeotropic Refrigerant Mixture R152a + R114 System

    NASA Astrophysics Data System (ADS)

    Kabata, Yasuo; Higashi, Yukihiro; Uematsu, Masahiko; Watanabe, Koichi

    Measurements of the vapor-liquid coexistence curve in the critical region for the refrigerant mixture of R152a (CH3CHF2: 1, l-difluoroethane) +R 114 (CCIF2CCIF2 :1, 2-dichloro-1, 1, 2, 2-tetrafluoroethane) system were made by visual observation of the disappearance of the meniscus at the vapor-liquid interface within an optical cell. Forty-eight saturated densities along the vapor-liquid coexistence curve between 204 and 861 kg·m-3 for five different compositions of 10, 20, 50, 80 and 90 wt% R 152a were obtained in the temperature range 370 to 409 K. The experimental errors of temperature, density, and mass fraction were estimated within ±10mK, ±0.5% and +0.05 %, respectively. On the basis of these measurements, the critical parameters of five different compositions for the R 152a +R 114 system were determined in consideration of the meniscus disappearance level as well as intensity of the critical opalescence. In accordance with the previous results of three other refrigerant mixtures, i.e., R 12 +R 22 system, R 22 +R 114 system and R 13B1 + R 114 system, the coexistence curve and critical curve on the temperature-density diagram for binary refrigerant mixtures were discussed. In addition, correlations of its composition dependence for this system were proposed.

  9. HFC-23 (CHF3) emission trend response to HCFC-22 (CHClF2) production and recent HFC-23 emission abatement measures

    NASA Astrophysics Data System (ADS)

    Miller, B. R.; Rigby, M.; Kuijpers, L. J. M.; Krummel, P. B.; Steele, L. P.; Leist, M.; Fraser, P. J.; McCulloch, A.; Harth, C.; Salameh, P.; Mühle, J.; Weiss, R. F.; Prinn, R. G.; Wang, R. H. J.; O'Doherty, S.; Greally, B. R.; Simmonds, P. G.

    2010-05-01

    HFC-23 (also known as CHF3, fluoroform or trifluoromethane) is a potent greenhouse gas (GHG), with a global warming potential (GWP) of 14 800 for a 100-year time horizon. It is an unavoidable by-product of HCFC-22 (CHClF2, chlorodifluoromethane) production. HCFC-22, an ozone depleting substance (ODS), is used extensively in commercial refrigeration and air conditioning, in the extruded polystyrene (XPS) foam industries (dispersive applications) and also as a feedstock in fluoropolymer manufacture (a non-dispersive use). Aside from small markets in specialty uses, HFC-23 has historically been considered a waste gas that was, and often still is, simply vented to the atmosphere. Efforts have been made in the past two decades to reduce HFC-23 emissions, including destruction (incineration) in facilities in developing countries under the United Nations Framework Convention on Climate Change's (UNFCCC) Clean Development Mechanism (CDM), and by process optimization and/or voluntary incineration by most producers in developed countries. We present observations of lower-tropospheric mole fractions of HFC-23 measured by "Medusa" GC/MSD instruments from ambient air sampled in situ at the Advanced Global Atmospheric Gases Experiment (AGAGE) network of five remote sites and in Cape Grim air archive (CGAA) samples (1978-2009) from Tasmania, Australia. These observations are used with the AGAGE 2-D atmospheric 12-box model and an inverse method to produce model mole fractions and a "top-down" HFC-23 emission history. The model 2009 annual mean global lower-tropospheric background abundance is 22.8 (±0.2) pmol mol-1. The derived HFC-23 emissions show a "plateau" during 1997-2003, followed by a rapid ~50% increase to a peak of 15.0 (+1.3/-1.2) Gg/yr in 2006. Following this peak, emissions of HFC-23 declined rapidly to 8.6 (+0.9/-1.0) Gg/yr in 2009, the lowest annual emission of the past 15 years. We derive a 1990-2008 "bottom-up" HFC-23 emission history using data from the United

  10. HFC-23 (CHF3) emission trend response to HCFC-22 (CHClF2) production and recent HFC-23 emission abatement measures

    NASA Astrophysics Data System (ADS)

    Miller, B. R.; Rigby, M.; Kuijpers, L. J. M.; Krummel, P. B.; Steele, L. P.; Leist, M.; Fraser, P. J.; McCulloch, A.; Harth, C.; Salameh, P.; Mühle, J.; Weiss, R. F.; Prinn, R. G.; Wang, R. H. J.; O'Doherty, S.; Greally, B. R.; Simmonds, P. G.

    2010-08-01

    HFC-23 (also known as CHF3, fluoroform or trifluoromethane) is a potent greenhouse gas (GHG), with a global warming potential (GWP) of 14 800 for a 100-year time horizon. It is an unavoidable by-product of HCFC-22 (CHClF2, chlorodifluoromethane) production. HCFC-22, an ozone depleting substance (ODS), is used extensively in commercial refrigeration and air conditioning, in the extruded polystyrene (XPS) foam industries (dispersive applications) and also as a feedstock in fluoropolymer manufacture (a non-dispersive use). Aside from small markets in specialty uses, HFC-23 has historically been considered a waste gas that was, and often still is, simply vented to the atmosphere. Efforts have been made in the past two decades to reduce HFC-23 emissions, including destruction (incineration) in facilities in developing countries under the United Nations Framework Convention on Climate Change's (UNFCCC) Clean Development Mechanism (CDM), and by process optimization and/or voluntary incineration by most producers in developed countries. We present observations of lower-tropospheric mole fractions of HFC-23 measured by "Medusa" GC/MSD instruments from ambient air sampled in situ at the Advanced Global Atmospheric Gases Experiment (AGAGE) network of five remote sites (2007-2009) and in Cape Grim air archive (CGAA) samples (1978-2009) from Tasmania, Australia. These observations are used with the AGAGE 2-D atmospheric 12-box model and an inverse method to produce model mole fractions and a "top-down" HFC-23 emission history. The model 2009 annual mean global lower-tropospheric background abundance is 22.6 (±0.2) pmol mol-1. The derived HFC-23 emissions show a "plateau" during 1997-2003, followed by a rapid ~50% increase to a peak of 15.0 (+1.3/-1.2) Gg/yr in 2006. Following this peak, emissions of HFC-23 declined rapidly to 8.6 (+0.9/-1.0) Gg/yr in 2009, the lowest annual emission of the past 15 years. We derive a 1990-2008 "bottom-up" HFC-23 emission history using data from

  11. Lean flammability limit as a fundamental refrigerant property: Phase 3. Final technical report, February 1997--February 1998

    SciTech Connect

    Grosshandler, W.; Donnelly, M.; Womeldorf, C.

    1998-08-01

    Alternative refrigerants are being developed by industry to prevent the further destruction of stratospheric ozone by chlorofluorocarbons (CFCs), which had been the working fluids of choice for many air-conditioning and refrigeration machines. Hydrofluorocarbons (HFCs) are one class of compounds that are being pursued as replacements because their ozone depletion potential is zero. In general, the exchange of fluorine atoms on an HFC molecule with hydrogen atoms decreases its atmospheric lifetime, and it may also increase the efficiency of the working fluid. Both of these effects are highly desirable from environmental considerations since they act to mitigate global warming. Unfortunately, more hydrogen on a HFC is usually associated with an increase in flammability. An accepted method for determining the flammability limits of gaseous fuels is ASTM Standard E 681. The minimum and maximum concentrations of the fuel in air for flame propagation are based upon the observed ignition and growth of a flame in a vessel filled with a quiescent fuel/air mixture. a Clear distinction is sought between a non-propagating flicker and a flame which has enough horizontal propagation to be hazardous. This report reviews the past work done on premixed, counter-flowing flames, describes the current counter-flow burner facility and operating procedures, presents the experimental results with the analysis that yields the above flammability limits, and recommends further activities that could lead to a science-based methodology for assessing the risk of fire from refrigeration machine working fluids. 30 figs.

  12. Thermodynamic and transport properties of some alternative ozone-safe refrigerants for industrial refrigeration equipment: Study in Belarus and Ukraine

    NASA Astrophysics Data System (ADS)

    Grebenkov, A. J.; Zhelezny, V. P.; Klepatsky, P. M.; Beljajeva, O. V.; Chernjak, Yu. A.; Kotelevsky, Yu. G.; Timofejev, B. D.

    1996-05-01

    The study of several hydrofluorocarbons (HFC) and fluorocarbons (FC) and their binary mixtures that have no ozone-depleting ability is being carried Out in the framework of Belarus National Program. The fluids include HFCs R134a. R152a, R135, and R32, and FC R218. The following properties are being investigated: ( I ) phase equilibrium parameters including the boiling and condensing curve and critical point, thermophysical properties at these parameters, and heat of evaporation: (2) isobaric and isochoric heat capacity, ethalpy, and entropy in the gas and liquid state: (3) speed of sound, thermal conductivity. viscosity, and density in the gas and liquid state: (4) dielectric properties and surface tension: (5) behavior of combined construction materials inside the refrigerant medium: and (6) solubility in compressor oils and other technological characteristics. The series of results obtained by authors during the period 1990 1993 is presented.

  13. Applications of the Simple Multi-Fluid Model to Correlations of the Vapor-Liquid Equilibrium of Refrigerant Mixtures Containing Carbon Dioxide

    NASA Astrophysics Data System (ADS)

    Akasaka, Ryo

    This study presents a simple multi-fluid model for Helmholtz energy equations of state. The model contains only three parameters, whereas rigorous multi-fluid models developed for several industrially important mixtures usually have more than 10 parameters and coefficients. Therefore, the model can be applied to mixtures where experimental data is limited. Vapor-liquid equilibrium (VLE) of the following seven mixtures have been successfully correlated with the model: CO2 + difluoromethane (R-32), CO2 + trifluoromethane (R-23), CO2 + fluoromethane (R-41), CO2 + 1,1,1,2- tetrafluoroethane (R-134a), CO2 + pentafluoroethane (R-125), CO2 + 1,1-difluoroethane (R-152a), and CO2 + dimethyl ether (DME). The best currently available equations of state for the pure refrigerants were used for the correlations. For all mixtures, average deviations in calculated bubble-point pressures from experimental values are within 2%. The simple multi-fluid model will be helpful for design and simulations of heat pumps and refrigeration systems using the mixtures as working fluid.

  14. Evaluation of HFC-245ca for commercial use in low pressure chillers. Task 1 report: Preliminary estimates of chiller performance

    SciTech Connect

    Keuper, E.F.; Hamm, F.B.; Glamm, P.R.

    1995-04-30

    HFC-245ca has been identified as a potential replacement for both CFC-11 and HCFC-123 in centrifugal chillers based on estimates of its thermodynamic properties, even though serious concerns exist about its flammability characteristics. The overall objective of this project is to assess the commercial viability of HFC-245ca in centrifugal chillers. This first report focuses on preliminary estimates of chiller performance only, while the next report will include laboratory performance data. The chiller performance estimates are based on early correlations of thermodynamic properties and predictions of compressor efficiency, with variations in heat transfer ignored until experimental data are obtained. Conclusions from this study include the following: The theoretical efficiency of HFC-245ca in optimized three stage chiller designs is very close to that for CFC-11 and HCFC-123 chillers. HFC-245ca is not attractive as a service retrofit in CFC-11 and HCFC-123 chillers because significant compressor modifications or dramatic lowering of condenser water temperatures would be required. Hurdles which must be overcome to apply HFC-245ca in centrifugal chillers include the flammability behavior, evaluation of toxicity, unknown heat transfer characteristics, uncertain thermodynamic properties, high refrigerant cost and construction of HFC-245ca manufacturing plants. Although the flammability of HFC-245ca can probably be reduced or eliminated by blending HFC-245ca with various inert compounds, addition of these compounds will lower the chiller performance. The chiller performance will be degraded due to less attractive thermodynamic properties and lower heat transfer performance if the blend fractionates. The experimental phase of the project will improve the accuracy of our performance estimates, and the commercial viability assessment will also include the impact of flammability, toxicity, product cost and product availability.

  15. Future atmospheric abundances and climate forcings from scenarios of global and regional hydrofluorocarbon (HFC) emissions

    NASA Astrophysics Data System (ADS)

    Velders, Guus J. M.; Fahey, David W.; Daniel, John S.; Andersen, Stephen O.; McFarland, Mack

    2015-12-01

    Hydrofluorocarbons (HFCs) are manufactured for use as substitutes for ozone-depleting substances that are being phased out globally under Montreal Protocol regulations. While HFCs do not deplete ozone, many are potent greenhouse gases that contribute to climate change. Here, new global scenarios show that baseline emissions of HFCs could reach 4.0-5.3 GtCO2-eq yr-1 in 2050. The new baseline (or business-as-usual) scenarios are formulated for 10 HFC compounds, 11 geographic regions, and 13 use categories. The scenarios rely on detailed data reported by countries to the United Nations; projections of gross domestic product and population; and recent observations of HFC atmospheric abundances. In the baseline scenarios, by 2050 China (31%), India and the rest of Asia (23%), the Middle East and northern Africa (11%), and the USA (10%) are the principal source regions for global HFC emissions; and refrigeration (40-58%) and stationary air conditioning (21-40%) are the major use sectors. The corresponding radiative forcing could reach 0.22-0.25 W m-2 in 2050, which would be 12-24% of the increase from business-as-usual CO2 emissions from 2015 to 2050. National regulations to limit HFC use have already been adopted in the European Union, Japan and USA, and proposals have been submitted to amend the Montreal Protocol to substantially reduce growth in HFC use. Calculated baseline emissions are reduced by 90% in 2050 by implementing the North America Montreal Protocol amendment proposal. Global adoption of technologies required to meet national regulations would be sufficient to reduce 2050 baseline HFC consumption by more than 50% of that achieved with the North America proposal for most developed and developing countries.

  16. Future atmospheric abundances and climate forcings from scenarios of global and regional hydrofluorocarbon (HFC) emissions

    NASA Astrophysics Data System (ADS)

    Velders, Guus J. M.; Fahey, David W.; Daniel, John S.; Andersen, Stephen O.; McFarland, Mack

    2015-12-01

    Hydrofluorocarbons (HFCs) are manufactured for use as substitutes for ozone-depleting substances that are being phased out globally under Montreal Protocol regulations. While HFCs do not deplete ozone, many are potent greenhouse gases that contribute to climate change. Here, new global scenarios show that baseline emissions of HFCs could reach 4.0-5.3 GtCO2-eq yr-1 in 2050. The new baseline (or business-as-usual) scenarios are formulated for 10 HFC compounds, 11 geographic regions, and 13 use categories. The scenarios rely on detailed data reported by countries to the United Nations; projections of gross domestic product and population; and recent observations of HFC atmospheric abundances. In the baseline scenarios, by 2050 China (31%), India and the rest of Asia (23%), the Middle East and northern Africa (11%), and the USA (10%) are the principal source regions for global HFC emissions; and refrigeration (40-58%) and stationary air conditioning (21-40%) are the major use sectors. The corresponding radiative forcing could reach 0.22-0.25 W m-2 in 2050, which would be 12-24% of the increase from business-as-usual CO2 emissions from 2015 to 2050. National regulations to limit HFC use have already been adopted in the European Union, Japan and USA, and proposals have been submitted to amend the Montreal Protocol to substantially reduce growth in HFC use. Calculated baseline emissions are reduced by 90% in 2050 by implementing the North America Montreal Protocol amendment proposal. Global adoption of technologies required to meet national regulations would be sufficient to reduce 2050 baseline HFC consumption by more than 50% of that achieved with the North America proposal for most developed and developing countries.

  17. First observations of the fourth generation synthetic halocarbons HFC-1234yf, HFC-1234ze(E), and HCFC-1233zd(E) in the atmosphere.

    PubMed

    Vollmer, Martin K; Reimann, Stefan; Hill, Matthias; Brunner, Dominik

    2015-03-01

    Halogenated alkenes are a class of anthropogenic substances, which replace ozone-depleting substances and long-lived greenhouse gases in the foam-blowing, refrigeration, and solvent sectors. We report the first multiyear atmospheric measurements of the hydrofluorocarbons HFC-1234yf (2,3,3,3-tetrafluoroprop-1-ene, CF3CF═CH2), and HFC-1234ze(E) (E-1,3,3,3-tetrafluoroprop-1-ene trans-CF3CH═CHF), and the hydrochlorofluorocarbon HCFC-1233zd(E) (E-1-chloro-3,3,3-trifluoroprop-1-ene trans-CF3CH═CHCl) from the high altitude observatory at Jungfraujoch and from urban Dubendorf (Switzerland). When observations started in 2011 HFC-1234yf was undetectable at Jungfraujoch (mole fractions <0.003 ppt, parts-per-trillion, 10(-12)) but since then the percentage of measurements with detectable mole fractions has steadily increased to 4.5% in 2014. By contrast, in 2014 HFC-1234ze(E) was detectable in half of our samples at Jungfraujoch and in all samples at Dubendorf demonstrating the wide use of this compound within the air mass footprints of the stations. Our back trajectory analysis for the Jungfraujoch observations suggests high emission strength of HFC-1234ze(E) in the Belgium/Netherlands region. HCFC-1233zd(E) is present at very low mole fractions (typically <0.03 ppt) at both stations, and features pronounced seasonality and a general absence of pollution events during our 2013-2014 measurements. This is indicative of the presence of significant emissions from source locations outside the footprints of the two stations. Based on a simple one-box model calculation we estimate globally increasing HCFC-1233zd(E) emissions from 0.2 Gg yr(-1) in 2013 to 0.5 Gg yr(-1) for 2014. PMID:25625175

  18. ZnO nanorefrigerant in R152a refrigeration system for energy conservation and green environment

    NASA Astrophysics Data System (ADS)

    Sendil Kumar, D.; Elansezhian, R.

    2014-03-01

    In this paper the reliability and performance of a vapour compression refrigeration system with ZnO nanoparticles in the working fluid was investigated experimentally. Nanorefrigerant was synthesized on the basis of the concept of the nanofluids, which was prepared by mixing ZnO nanoparticles with R152a refrigerant. The conventional refrigerant R134a has a global warming potential (GWP) of 1300 whereas R152a has a significant reduced value of GWP of 140 only. An experimental test rig is designed and fabricated indigenously in the laboratory to carry out the investigations. ZnO nanoparticles with refrigerant mixture were used in HFC R152a refrigeration system. The system performance with nanoparticles was then investigated. The concentration of nano ZnO ranges in the order of 0.1% v, 0.3% v and 0.5%v with particle size of 50 nm and 150 g of R152a was charged and tests were conducted. The compressor suction pressure, discharge pressure and evaporator temperature were measured. The results indicated that ZnO nanorefrigerant works normally and safely in the system. The ZnO nanoparticle concentration is an important factor considered for heat transfer enhancement in the refrigeration system. The performance of the system was significantly improved with 21% less energy consumption when 0.5%v ZnO-R152a refrigerant. Both the suction pressure and discharge pressure were lowered by 10.5% when nanorefrigerant was used. The evaporator temperature was reduced by 6% with the use of nanorefrigerant. Hence ZnO nanoparticles could be used in refrigeration system to considerably reduce energy consumption. The usage of R152a with zero ozone depleting potential (ODP) and very less GWP and thus provides a green and clean environment. The complete experimental results and their analysis are reported in the main paper.

  19. Investigation into the fractionation of refrigerant blends. Final technical report, March 1994--December 1995

    SciTech Connect

    Biancardi, F.R.; Michels, H.; Sienel, T.; Pandy, D.

    1996-01-01

    As a means of complying with current and impending national and international environmental regulations restricting the use and disposal of conventional CFC and HCFC refrigerants which contribute to the global ozone depletion effects, the HVAC industry is vigorously evaluating and testing BFC refrigerant blends. While analyses and system performance tools have shown that BFC refrigerant blends offer certain performance, capacity and operational advantages, there are significant possible service and operational issues that are raised by the use of blends. Many of these issues occur due to the fractionation of the blends. Therefore, the objective of this program is to conduct analyses and experimental tests aimed at understanding these issues, develop approaches or techniques to predict these effects and convey to the industry safe and reliable approaches. As a result, analytical models, verified by laboratory data, have been developed that predict the fractionation effects of HFC refrigerant blends when (1) exposed to selected POE lubricants, (2) during the system charging process from large liquid containers, and (3) during system startup, operation and shutdown within various system components (where two-phase refrigerant exists), and during selected system and component leakage scenarios. Model predictions and experimental results are presented for HFC refrigerant blends containing HFC-32, HFC-134a, and HFC-125 and the data are generalized for various operating conditions and scenarios.

  20. Manufacture of refrigeration oils

    SciTech Connect

    Chesluk, R.P.; Platte, H.J.; Sequeira, A.J.

    1981-12-08

    Lubricating oils suitable for use in refrigeration equipment in admixture with fluorinated hydrocarbon refrigerants are produced by solvent extraction of naphthenic lubricating oil base stocks, cooling the resulting extract mixture, optionally with the addition of a solvent modifier, to form a secondary raffinate and a secondary extract, and recovering a dewaxed oil fraction of lowered pour point from the secondary raffinate as a refrigeration oil product. The process of the invention obviates the need for a separate dewaxing operation, such as dewaxing with urea, as conventionally employed for the production of refrigeration oils.

  1. Study on the compatibility of insulation materials for hermetic motor under alternative refrigerants and new lubricants atmosphere

    NASA Astrophysics Data System (ADS)

    Komatsubara, Takeo; Sunaga, Takeshi; Takahashi, Yasuki

    HFC407C and HFC410A were introduced as the alternative refrigerants for HCFC22 in air conditioner to follow the Motreal protocol. But HFCs were also regulated by the Kyoto protocol and natural refrigerants like hydrocarbon (HC) and CO2 are researched and introduced in the market. Under these circumstances the compatibility of motor insulation materials for hermetic motor under alternative refrigerants and lubricants become important. In this paper we discuss the compatibility of magnet wires and films of hermetic motor for air conditioner under atmosphere of HFC407C and HFC410A with POE and PVE lubricants and also discuss it under atmosphere of R600a with mineral oil and CO2 with PAG lubricant in comparison of conventional atmosphere.

  2. New immiscible refrigeration lubricant for HFCs

    SciTech Connect

    Sunami, Motoshi; Takigawa, Katsuya; Suda, Satoshi; Sasaki, Umekichi

    1995-12-31

    This study examines the capability of a family of very low-viscosity alkylbenzenes (AB) used in high-side rotary compressors for HFCs. In the development of refrigeration lubricants for HFCs, miscibility is one of the most important problems to be solved. Therefore, PAG (polyalkylene glycols) and POE (polyol esters), which have good miscibility, have been applied in new HFC applications. However, it is difficult for these lubricants to maintain long-term durability in high-side rotary compressors. In friction tests under high HFC pressure, ABs with much lower viscosities than mineral oil maintained a much stronger oil film than the combination of mineral oil/R-12 or POE/HFCs. These results were also proven by compressor durability tests. From the study of the solubility of ABs and HFCs, it is suggested that the total amount of refrigerant can be reduced because HFCs are barely soluble with ABs inside the high-side shell.

  3. Self-, N2-, O2-broadening coefficients and line parameters of HFC-32 for ν7 band and ground state transitions from infrared and microwave spectroscopy

    NASA Astrophysics Data System (ADS)

    Tasinato, Nicola; Turchetto, Arianna; Puzzarini, Cristina; Stoppa, Paolo; Pietropolli Charmet, Andrea; Giorgianni, Santi

    2014-09-01

    Hydrofluorocarbons have been used as replacement gases of chlorofluorocarbons, since the latter have been phased out by the Montreal Protocol due to their environmental hazardous ozone-depleting effects. This is also the case of difluoromethane (CH2F2, HFC-32), which nowadays is widely used in refrigerant mixtures together with CF3CH3, CF3CH2F, and CF3CHF2. Due to its commercial use, in the last years, the atmospheric concentration of HFC-32 has increased significantly. However, this molecule presents strong absorptions within the 8-12 μm atmospheric window, and hence it is a greenhouse gas which contributes to global warming. Although over the years several experimental and theoretical investigations dealt with the spectroscopic properties of CH2F2, up to now pressure broadening coefficients have never been determined. In the present work, the line-by-line parameters of CH2F2 are retrieved for either ground state or ν7 band transitions by means of microwave (MW) and infrared (IR) absorption spectroscopy, respectively. In particular, laboratory experiments are carried out on 9 pure rotational transitions of the ground state and 26 ro-vibrational transitions belonging to the ν7 band lying around 8.2 μm within the atmospheric region. Measurements are carried out at room temperature on self-perturbed CH2F2 as well as on CH2F2 perturbed by N2 and O2. The line shape analysis leads to the first determination of self-, N2-, O2-, and air-broadening coefficients, and also of line intensities (IR). Upon comparison, broadening coefficients of ground state transitions are larger than those of the ν7 band, and no clear dependence on the rotational quantum numbers can be reported. The obtained results represent basic information for the atmospheric modelling of this compound as well as for remote sensing applications.

  4. Historical and projected emissions of HCFC-22 and HFC-410A from China's room air conditioning sector

    NASA Astrophysics Data System (ADS)

    Wang, Ziyuan; Fang, Xuekun; Li, Li; Bie, Pengju; Li, Zhifang; Hu, Jianxin; Zhang, Boya; Zhang, Jianbo

    2016-05-01

    Recent decades witnessed the increase in production and uses of HCFC-22 (chlorodifluoromethane, CHClF2) and its alternative, HFC-410A (a blend of difluoromethane and pentafluoroethane), in China in response to the booming of room air conditioners (RACs) for both domestic use and exports. HCFC-22 is an ozone-depleting substance under the Montreal Protocol, while both HCFC-22 and HFC-410A are greenhouse gases (GHGs). This study provides a most comprehensive consumption and emission inventory of refrigerants emissions (HCFC-22 and HFC-410A) from RAC sector during 1995-2014, for the first time. Our estimates show that HCFC-22 emissions increased from 0.7 Gg/yr in 1995 to 48.2 Gg/yr in 2014. The accumulative emissions contributed to global total HCFCs emissions by 4.4% (3.3%-6.1%) CFC-11-equivalent (CFC-11-eq) and 5.4% (4.1%-7.5%) CO2-equivalent (CO2-eq) during 1995-2012. If left uncontrolled, accumulative emissions of HFC-410A will be12.4 (7.1-20.2) CO2-eq Pg during 2015-2050, which can offset the global climate benefits achieved by the Montreal Protocol. The HFC-410A emissions from China's RAC sector are estimated to be of importance to both global HFCs emissions and China's GHG emissions. Further, we probed the emission mitigation performances of the current 2014 North American Proposal scenario and a modified more ambitious scenario. The emissions of two mitigation scenarios are only 28% and 22% of the emissions without mitigation actions, respectively. This study is the first effort to map the transition of eliminated substance HCFC-22 and its alternative HFC-410A in RAC sector. Therefore, alternative chemicals should be scrutinized with cautions before they are promoted and applied.

  5. Historical and projected emissions of HCFC-22 and HFC-410A from China's room air conditioning sector

    NASA Astrophysics Data System (ADS)

    Wang, Ziyuan; Fang, Xuekun; Li, Li; Bie, Pengju; Li, Zhifang; Hu, Jianxin; Zhang, Boya; Zhang, Jianbo

    2016-05-01

    Recent decades witnessed the increase in production and uses of HCFC-22 (chlorodifluoromethane, CHClF2) and its alternative, HFC-410A (a blend of difluoromethane and pentafluoroethane), in China in response to the booming of room air conditioners (RACs) for both domestic use and exports. HCFC-22 is an ozone-depleting substance under the Montreal Protocol, while both HCFC-22 and HFC-410A are greenhouse gases (GHGs). This study provides a most comprehensive consumption and emission inventory of refrigerants emissions (HCFC-22 and HFC-410A) from RAC sector during 1995-2014, for the first time. Our estimates show that HCFC-22 emissions increased from 0.7 Gg/yr in 1995 to 48.2 Gg/yr in 2014. The accumulative emissions contributed to global total HCFCs emissions by 4.4% (3.3%-6.1%) CFC-11-equivalent (CFC-11-eq) and 5.4% (4.1%-7.5%) CO2-equivalent (CO2-eq) during 1995-2012. If left uncontrolled, accumulative emissions of HFC-410A will be12.4 (7.1-20.2) CO2-eq Pg during 2015-2050, which can offset the global climate benefits achieved by the Montreal Protocol. The HFC-410A emissions from China's RAC sector are estimated to be of importance to both global HFCs emissions and China's GHG emissions. Further, we probed the emission mitigation performances of the current 2014 North American Proposal scenario and a modified more ambitious scenario. The emissions of two mitigation scenarios are only 28% and 22% of the emissions without mitigation actions, respectively. This study is the first effort to map the transition of eliminated substance HCFC-22 and its alternative HFC-410A in RAC sector. Therefore, alternative chemicals should be scrutinized with cautions before they are promoted and applied.

  6. Quantification of the refrigerants R22 and R134a in mixtures by means of different polymers and reflectometric interference spectroscopy.

    PubMed

    Dieterle, F; Belge, G; Betsch, C; Gauglitz, G

    2002-11-01

    The aim of this study was the quantification of vapors of the ozone-depleting refrigerant R22 in the presence of its most important substitute R134a, by the use of the reflectometric interference spectroscopy and polymers as sensitive layers. First, the sorption characteristic of different types of polymers exposed to the vapors of the two analytes was investigated. Then, binary mixtures of the two refrigerants were measured with an array set-up on the basis of six polymer sensors. The measurements were evaluated by the use of neural networks, whereby low limits of detection of 0.45 percentage volume (vol. %)for R22 and 1.45 vol. % for R134a could be established. Additionally, one polar polymer and one microporous polymer were selected for the measurements with a low-cost set-up. The quantification of R22 in the presence of R134a with this low-cost set-up was possible with a limit of detection of 0.44 vol. %, which would enable a fast and economical monitoring at recycling stations. PMID:12434242

  7. Potentially acceptable substitutes for the chlorofluorocarbons: properties and performance features of HFC-134a, HCFC-123, and HCFC-141b

    NASA Astrophysics Data System (ADS)

    Sukornick, B.

    1989-05-01

    Potentially acceptable substitutes are known for CFC-11 and CFC-12-the most important Chlorofluorocarbons. HFC-134a could replace CFC-12 in airconditioning and refrigeration and both HCFC-123 and HCFC-141b show promise as CFC-11 substitutes. The replacement molecules all have significantly reduced greenhouse and ozone depletion potentials compared to their fully halogenated counterparts. HCFC-123 is theoretically a less efficient blowing agent than CFC-11, but 141b is more efficient. Results from experimental foaming tests confirm these relationships and show that initial insulating values are slightly lower for 141b and 123 than 11. Both substitutes are nonflammable liquids. Based on its physical properties, HFC-134a is an excellent replacement candidate for CFC-12. In addition, it is more thermally stable than CFC-12. A new family of HFC-134a compatible lubricant oils will be required. The estimated coefficient of performance (COP) of 134a is 96 98% that of CFC-12. Subacute toxicity tests show HFC-134a to have a low order of toxicity. HCFC-123 reveals no serious side effects at a concentration of 0.1% in subchronic tests and the inhalation toxicity of 141b is lower than that of CFC-11 based on a 6-h exposure. Chronic tests on all the new candidates will have to be completed for large-scale commercial use. Allied-Signal is conducting process development at a highly accelerated pace, and we plan to begin commercialization of substitutes within 5 years.

  8. Potentially acceptable substitutes for the chlorofluorocarbons: Properties and performance features of HFC-134a, HCFC-123, and HCFC-141b

    SciTech Connect

    Sukornick, B. )

    1989-05-01

    Potentially acceptable substitutes are known for CFC-11 and CFC-12 - the most important chlorofluorocarbons. HFC-134a could replace CFC-12 in air-conditioning and refrigeration and both HCFC-123 and HCFC-141b show promise as CFC-11 substitutes. The replacement molecules all have significantly reduced greenhouse and ozone depletion potentials compared to their fully halogenated counterparts. HCFC-123 is theoretically a less efficient blowing agent than CFC-11, but 141b is more efficient. Results from experimental foaming tests confirm these relationships and show that initial insulating values are slightly lower for 141 b and 123 than 11. Both substitutes are nonflammable liquids. Based on its physical properties, HFC-134a is an excellent replacement candidate for CFC-12. In addition, it is more thermally stable than CFC-12. A new family of HFC-134a compatible lubricant oils will be required. The estimated coefficient of performance (COP) of 134a is 96-98% that of CFC-12. Subacute toxicity tests show HFC-134a to have a low order of toxicity. HCFC-123 reveals no serious side effects at a concentration of 0.1% in subchronic tests and the inhalation toxicity of 141b is lower than that of CFC-11 based on a 6-h exposure. Chronic tests on all the new candidates will have to be completed for large-scale commercial use. Allied-Signal is conducting process development at a highly accelerated pace, and they plan to begin commercialization of substitutes within 5 years.

  9. Modeling and testing of fractionation effects with refrigerant blends in an actual residential heat pump system

    SciTech Connect

    Biancardi, F.R.; Pandy, D.R.; Sienel, T.H.; Michels, H.H.

    1997-12-31

    The heating, ventilating, and air-conditioning (HVAC) industry is actively evaluating and testing hydrofluorocarbon (HFC) refrigerant blends as a means of complying with current and impending national and international environmental regulations restricting the use and disposal of conventional chlorofluorocarbon (CFC) and hydrochlorofluorocarbon (HCFC) refrigerants that contribute to the global ozone-depletion effects. While analyses and system performance tools have shown that HFC refrigerant blends offer certain performance, capacity, and operational advantages, there are significant possible service and operational issues that are raised by the use of blends. Many of these issues occur due to the fractionation of the blends. Therefore, the objective of this program was to conduct analyses and experimental tests aimed at understanding these issues, develop approaches or techniques to predict these effects, and convey to the industry safe and reliable approaches. As a result, analytical models verified by laboratory data have been developed that predict the fractionation effects of HFC refrigerant blends (1) when exposed to selected POE lubricants, (2) during the system charging process from large liquid containers, and (3) during system start-up, operation, and shutdown within various system components (where two-phase refrigerant exists) and during selected system and component leakage scenarios. Model predictions and experimental results are presented for HFC refrigerant blends containing R-32, R-134a, and R-125 and the data are generalized for various operating conditions and scenarios.

  10. Speed-of-sound measurements in gaseous binary refrigerant mixtures of difluoromethane (R-32) + 1,1,1,2-tetrafluoroethane (R-134a)

    SciTech Connect

    Hozumi, Tsutomu; Sato, Haruki; Watanabe, Koichi

    1997-05-01

    One hundred ninety-three speed-of-sound values in gaseous difluoromethane (R-32, CH{sub 2}F{sub 2}) + 1,1,1,2-tetrafluoroethane (R-134a, CF{sub 3}CH{sub 2}F) have been measured using a spherical resonator. The measurements have been carried out at temperatures from 303 K to 343 K, pressures up to 240 kPa, and mole fractions of R-32 from 0.16 to 0.90. The experimental uncertainties in the temperature, pressure, and speed of sound for the binary mixture are estimated to be not greater than {+-}8 mK, {+-}0.1 kPa, and {+-}0.0072%, respectively. The samples purified and analyzed by the manufacturers were used and were better than 99.99 mass % for R-32 and 99.98 and 99.99 mass % for two different R-134a samples. The authors have accurately determined the compositions of the binary refrigerant mixture, R-32 + R-134a, and the second acoustic virial coefficients from the speed-of-sound measurements.

  11. Overview of CFC replacement issues for household refrigeration

    SciTech Connect

    Vineyard, E.A.; Roke, L.; Hallett, F.

    1991-12-31

    In 1974, the famous ozone depletion theory of Rowland and Molina claimed that chlorofluorocarbons (CFCs) diffuse into the stratosphere where they are broken down by photolysis to release chlorine atoms that catalytically destroy ozone. Although the understanding of the science is still imperfect, there is little doubt that CFCs play a major role in the Antarctic ozone hole phenomenon and the decline in ozone observed in the rest of the world. Another issue that has become increasingly important is the potential of CFCs to change the earth`s temperature and to modify the climate. While the main impact in global warming is made by increased concentrations of carbon dioxide, CFCs and other trace gases also contribute to this effect. In an effort to respond to the global environmental threat, a CFC protocol was adopted during a diplomatic conference in Montreal. This document, known as the Montreal Protocol, was ratified in 1988 and put into effect on January 1, 1989. In accordance with Article 6 of the Montreal Protocol, the countries that signed the agreement shall periodically assess the control measures provided for in the Protocol. As part of that assessment process, household refrigeration was investigated to determine the status of CFC-12 replacements. The conclusion was that much progress has been made towards finding a suitable replacement. Compressors designed for HFC-134a have efficiencies comparable to those for CFC-12 and acceptable reliability tests have been obtained with ester lubricants. In addition, other replacements such as R-152a and refrigerant mixtures exist, but will require more study. Cycle options, such as the Stirling cycle, may be viable, but are further out in the future. The impact of new refrigerants is expected to result in elimination of CFC-12 consumption in developed countries by 1997 and in developing countries by 2005.

  12. Overview of CFC replacement issues for household refrigeration

    SciTech Connect

    Vineyard, E.A. ); Roke, L. ); Hallett, F. )

    1991-01-01

    In 1974, the famous ozone depletion theory of Rowland and Molina claimed that chlorofluorocarbons (CFCs) diffuse into the stratosphere where they are broken down by photolysis to release chlorine atoms that catalytically destroy ozone. Although the understanding of the science is still imperfect, there is little doubt that CFCs play a major role in the Antarctic ozone hole phenomenon and the decline in ozone observed in the rest of the world. Another issue that has become increasingly important is the potential of CFCs to change the earth's temperature and to modify the climate. While the main impact in global warming is made by increased concentrations of carbon dioxide, CFCs and other trace gases also contribute to this effect. In an effort to respond to the global environmental threat, a CFC protocol was adopted during a diplomatic conference in Montreal. This document, known as the Montreal Protocol, was ratified in 1988 and put into effect on January 1, 1989. In accordance with Article 6 of the Montreal Protocol, the countries that signed the agreement shall periodically assess the control measures provided for in the Protocol. As part of that assessment process, household refrigeration was investigated to determine the status of CFC-12 replacements. The conclusion was that much progress has been made towards finding a suitable replacement. Compressors designed for HFC-134a have efficiencies comparable to those for CFC-12 and acceptable reliability tests have been obtained with ester lubricants. In addition, other replacements such as R-152a and refrigerant mixtures exist, but will require more study. Cycle options, such as the Stirling cycle, may be viable, but are further out in the future. The impact of new refrigerants is expected to result in elimination of CFC-12 consumption in developed countries by 1997 and in developing countries by 2005.

  13. Overview of CFC replacement issues for household refrigeration

    NASA Astrophysics Data System (ADS)

    Vineyard, E. A.; Roke, L.; Hallett, F.

    In 1974, the famous ozone depletion theory of Rowland and Molina claimed that chlorofluorocarbons (CFCs) diffuse into the stratosphere where they are broken down by photolysis to release chlorine atoms that catalytically destroy ozone. Although the understanding of the science is still imperfect, there is little doubt that CFCs play a major role in the Antarctic ozone hole phenomenon and the decline in ozone observed in the rest of the world. Another issue that has become increasingly important is the potential of CFCs to change the earth's temperature and to modify the climate. While the main impact in global warming is made by increased concentrations of carbon dioxide, CFCs and other trace gases also contribute to this effect. In an effort to respond to the global environmental threat, a CFC protocol was adopted during a diplomatic conference in Montreal. This document, known as the Montreal Protocol, was ratified in 1988 and put into effect on January 1, 1989. In accordance with Article 6 of the Montreal Protocol, the countries that signed the agreement shall periodically assess the control measures provided for in the Protocol. As part of that assessment process, household refrigeration was investigated to determine the status of CFC-12 replacements. The conclusion was that much progress has been made towards finding a suitable replacement. Compressors designed for HFC-134a have efficiencies comparable to those for CFC-12 and acceptable reliability tests have been obtained with ester lubricants. In addition, other replacements such as R-152a and refrigerant mixtures exist, but will require more study. Cycle options, such as the Stirling cycle, may be viable, but are further out in the future. The impact of new refrigerants is expected to result in elimination of CFC-12 consumption in developed countries by 1997 and in developing countries by 2005.

  14. Alternative Refrigerant Evaluation for High-Ambient-Temperature Environments: R-22 and R-410A Alternatives for Mini-Split Air Conditioners

    SciTech Connect

    Abdelaziz, Omar; Shrestha, Som S.; Munk, Jeffrey D.; Linkous, Randall Lee; Goetzler, William; Guernsey, Matt; Kassuga, Theo

    2015-10-01

    The Oak Ridge National Laboratory (ORNL) High-Ambient-Temperature Evaluation Program for low– global warming potential (Low-GWP) Refrigerants aims to develop an understanding of the performance of low-GWP alternative refrigerants to hydrochlorofluorocarbon (HCFC) and hydrofluorocarbon (HFC) refrigerants in mini-split air conditioners under high-ambient-temperature conditions. This final report describes the parties involved, the alternative refrigerant selection process, the test procedures, and the final results.

  15. HFC-134a conversion of large tonnage, multi-stage centrifugal chillers: Lessons learned

    SciTech Connect

    Orsetti, M.V.; Tangel, T.E.

    1995-12-31

    On December 31, 1995, worldwide production of CFC refrigerants will come to a complete and permanent stop. Trigen-Nassau has effected a comprehensive CFC program, including refrigerant containment and the first refrigerant conversion in a plant of this type. Trigen-Nassau initiated its containment program prior to July 1, 1992, the effective date of the no venting law. The course of action included scheduled leak checking of all machines and prompt repair of leaks. Centrifugal Services, an independent service contractor performed these repairs. In 1994, Trigen contacted Centrifugal to perform a refrigerant conversion on a multi-stage, centrifugal chiller, with a nominal capacity of 2500 tons at the Central Utilities Plant. The machine is a York OM open drive, steam turbine driven machine, designed for R-500. The machine is now running with HFC-134a (Dupont Suva MP-Cold). This successful conversion was performed without modification to the steam turbine or the compressor impeller. The conversion is now complete, and the machine has been reliably producing 2450 tons of chilling.

  16. Alternative refrigerants and refrigeration cycles for domestic refrigerators

    SciTech Connect

    Sand, J.R.; Rice, C.L.; Vineyard, E.A.

    1992-12-01

    This project initially focused on using nonazeotropic refrigerant mixtures (NARMs) in a two-evaporator refrigerator-freezer design using two stages of liquid refrigerant subcooling. This concept was proposed and tested in 1975. The work suggested that the concept was 20% more efficient than the conventional one-evaporator refrigerator-freezer (RF) design. After considerable planning and system modeling based on using a NARM in a Lorenz-Meutzner (L-M) RF, the program scope was broadened to include investigation of a ``dual-loop`` concept where energy savings result from exploiting the less stringent operating conditions needed to satisfy cooling, of the fresh food section. A steady-state computer model (CYCLE-Z) capable of simulating conventional, dual loop, and L-M refrigeration cycles was developed. This model was used to rank the performance of 20 ozone-safe NARMs in the L-M refrigeration cycle while key system parameters were systematically varied. The results indicated that the steady-state efficiency of the L-M design was up to 25% greater than that of a conventional cycle. This model was also used to calculate the performance of other pure refrigerants relative to that of dichlorodifluoromethane, R-12, in conventional and dual-loop RF designs. Projected efficiency gains for these cycles were more modest, ranging from 0 to 10%. Individual compressor calorimeter tests of nine combinations of evaporator and condenser temperatures usually used to map RF compressor performance were carried out with R-12 and two candidate L-M NARMs in several compressors. Several models of a commercially produced two-evaporator RF were obtained as test units. Two dual-loop RF designs were built and tested as part of this project.

  17. 40 CFR Appendix E to Subpart B of... - The Standard for Automotive Refrigerant Recycling Equipment Intended for Use With Both CFC-12 and...

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ... Refrigerant Recycling Equipment Intended for Use With Both CFC-12 and HFC-134a E Appendix E to Subpart B of...) PROTECTION OF STRATOSPHERIC OZONE Servicing of Motor Vehicle Air Conditioners Pt. 82, Subpt. B, App. E Appendix E to Subpart B of Part 82—The Standard for Automotive Refrigerant Recycling Equipment Intended...

  18. INVESTIGATION OF HFC-236EA AND HFC-236FA AS CFC-114 REPLACEMENTS IN HIGH-TEMPERATURE HEAT PUMPS

    EPA Science Inventory

    The paper discusses a thermodynamic analysis of HFC-236ea and HFC-236f as ozone-safe CFC-114 alternatives in a vapor-compression cycle at high-temperature heat-pump conditions. he cooling capacities and the coefficients of performance (COPs) are evaluated. omprehensive calorimete...

  19. Physical and chemical properties of refrigeration lubricants

    SciTech Connect

    Sunami, Motoshi

    1999-07-01

    The physical and chemical properties of refrigeration lubricants are discussed. Although much attention has been focused on the performance of candidate lubricants for use with hydrofluorocarbons (HFCs) in order to obtain satisfactory lubrication performance in compressors, the properties of the lubricants themselves have not been well discussed. In this paper, the properties of refrigeration lube base stocks and of lube-refrigerant mixtures are described, specifically the viscosity, density, and refrigerant solubility, the change in viscosity and density due to solution with HFCs, and the insulation properties of the base stocks and the refrigerant mixture.

  20. Pool boiling of enhanced heat transfer surfaces in refrigerant-oil mixtures and aqueous calcium sulfate solutions

    SciTech Connect

    Curcio, L.A.; Somerscales, E.F.

    1994-08-01

    Pool boiling data of structured surfaces in R113/3GS oil mixtures show a general decrease in heat transfer with oil concentration, degradation in performance of all surfaces at 10% oil, no change in enhancement of the structured surfaces over plain surface, and restoration of performance of the enhanced surfaces upon cleaning in denatured alcohol. Fouling data of structured surfaces in pool boiling of sat. aq. CaSO{sub 4} solution show that effects of fouling (wall superheat changes, deposit weight) are more pronounced at 80 kW/m{sup 2} than at 10 kW/m{sup 2} heat flux; precipitation fouling show an effect within the first 2 h exposure. High flux surfaces have lower deposition weight than other surfaces; thus the deposition rate may depend strongly on wall superheat. The numerous nucleation sites of the enhanced surfaces provide more turbulent motion near the boiling surface than for the plain surface; thus the removal rate should be greater for an enhanced surface, although no removal of a deposit was ever observed.

  1. Refrigerant poisoning

    MedlinePlus

    A refrigerant is a chemical that makes things cold. This article discusses poisoning from sniffing or swallowing such chemicals. ... occurs when people intentionally sniff a type of refrigerant called Freon. This article is for information only. ...

  2. Malone refrigeration

    SciTech Connect

    Swift, G.W.

    1993-01-01

    Malone refrigeration is the use of a liquid near its critical points without evaporations as working fluid in a regenerative or recuperative refrigeration cycle such as the Stirling and Brayton cycles. It's potential advantages include compactness, efficiency, an environmentally benign working fluid, and reasonable cost. One Malone refrigerator has been built and studied; two more are under construction. Malone refrigeration is such a new, relatively unexplored technology that the potential for inventions leading to improvements in efficiency and simplicity is very high.

  3. Energy and global warming impacts of next generation refrigeration and air conditioning technologies

    SciTech Connect

    Sand, J.R.; Fischer, S.K.; Baxter, V.D.

    1996-10-01

    Significant developments have occurred in hydrofluorocarbon (HFC) and the application of ammonia and hydrocarbons as refrigerant working fluids since the original TEWI (Total Equivalent Warming Impact) report in 1991. System operating and performance data on alternative refrigerants and refrigeration technologies justify and updated evaluation of these new alternative refrigerants and competing technologies in well-characterized applications. Analytical and experimental results are used to show quantitative comparisons between HFCS, HFC blends, hydrocarbons, and ammonia, used as refrigerants. An objective evaluation is presented for commercial and near commercial non-CFC refrigerants/blowing agents and alternative refrigeration technologies. This information is needed for objective and quantitative decisions on policies addressing greenhouse gas emissions from refrigeration and air conditioning equipment. The evaluation assesses the energy use and global warming impacts of refrigeration and air conditioning technologies that could be commercialized during the phase out of HCFCS. Quantitative comparison TEWI for two application areas are presented. Opportunities for significant reductions in TEWI are seen with currently known refrigerants through improved maintenance and servicing practices and improved product designs.

  4. Experimental evaluation of automotive air-conditioning using HFC-134a and HC-134a

    NASA Astrophysics Data System (ADS)

    Nasution, Henry; Zainudin, Muhammad Amir; Aziz, Azhar Abdul; Latiff, Zulkarnain Abdul; Perang, Mohd Rozi Mohd; Rahman, Abd Halim Abdul

    2012-06-01

    An experimental study to evaluate the energy consumption of an automotive air conditioning is presented. In this study, these refrigerants will be tested using the experimental rig which simulated the actual cars as a cabin complete with a cooling system component of the actual car that is as the blower, evaporator, condenser, radiators, electric motor, which acts as a vehicle engine, and then the electric motor will operate the compressor using a belt and pulley system, as well as to the alternator will recharge the battery. The compressor working with the fluids HFC-134a and HC-134a and has been tested varying the speed in the range 1000, 1500, 2000 and 2500 rpm. The measurements taken during the one hour experimental periods at 2-minutes interval times for temperature setpoint of 20°C with internal heat loads 0, 500, 700 and 1000 W. The final results of this study show an overall better energy consumption of the HFC-134a compared with the HC-134a.

  5. Alternative Refrigerant Evaluation for High-Ambient Temperature Environments: R-22 and R-410A Alternatives for Mini-Split Air Conditioners

    SciTech Connect

    Abdelaziz, Omar; Munk, Jeffrey D.; Shrestha, Som S.; Linkous, Randall Lee; Goetzler, William; Guernsey, Matt; Kassuga, Theo

    2015-08-01

    The Oak Ridge National Laboratory (ORNL) High-Ambient Temperature Testing Program for Low-GWP Refrigerants aims to develop an understanding of the performance of low-Global Warming Potential (low-GWP) alternatives to Hydrochlorofluorocarbon (HCFC) and Hydrofluorocarbon (HFC) refrigerants in mini-split air conditioners under high ambient temperature conditions. This interim working paper describes the parties involved, the alternative refrigerants selection process, the test procedures, and the preliminary results.

  6. CFC prices rise above dropping HFC prices, spread should widen

    SciTech Connect

    Kirschner, E.

    1993-12-15

    Chlorofluorocarbon (CFC) replacement hydrofluorocarbon (HFC)-134a has gained an economic edge over CFC-12 in the U.S. says ICI Americas Chemicals & Plastics president Robin Gadsby. Although conversion costs are keeping many customers from making the switch. Gadsby says demand for HFC-134a should exceed global capacity in the mid-1990s. He adds that ICI can recoup its $430-million investment in HFCs.

  7. Thermoacoustic refrigeration

    NASA Technical Reports Server (NTRS)

    Garrett, Steven L.; Hofler, Thomas J.

    1991-01-01

    A new refrigerator which uses resonant high amplitude sound in inert gases to pump heat is described and demonstrated. The phasing of the thermoacoustic cycle is provided by thermal conduction. This 'natural' phasing allows the entire refrigerator to operate with only one moving part (the loudspeaker diaphragm). The thermoacoustic refrigerator has no sliding seals, requires no lubrication, uses only low-tolerance machine parts, and contains no expensive components. Because the compressor moving mass is typically small and the oscillation frequency is high, the small amount of vibration is very easily isolated. This low vibration and lack of sliding seals makes thermoacoustic refrigeration an excellent candidate for food refrigeration and commercial/residential air conditioning applications. The design, fabrication, and performance of the first practical, autonomous thermoacoustic refrigerator, which will be flown on the Space Shuttle (STS-42), are described, and designs for terrestrial applications are presented.

  8. Malone refrigeration

    SciTech Connect

    Swift, G W

    1992-01-01

    Malone refrigeration is the use of a liquid near its critical point, without evaporation, as working fluid in a refrigeration cycle such as the Stirling cycle. We discuss relevant properties of appropriate liquids, and describe two Malone refrigerators. The first completed several years ago, established the basic principles of use of liquids in such cycles. The second, now under construction, is a linear, free-piston machine.

  9. Lean flammability limit as a fundamental refrigerant property. Phase 1, Interim technical report, 1 October 1994--31 March 1995

    SciTech Connect

    Womeldorf, C.; King, M.; Grosshandler, W.

    1995-03-31

    Due to the ozone-depleting effects of commonly used chlorofluorocarbon refrigerants, safe environmentally-friendly replacements must be found. HFC-32 (CH{sub 2}F{sub 2}) and other hydrochlorofluorocarbons are potential candidates; however, in contrast with the CFCs, many of these compounds are flammable. Testing the flammability limits of these hydrochlorofluorocarbons using traditional ASTM E-681 methods has produced a range of limits depending upon the vessel and ignition source used. This project demonstrates the feasibility of defining a fundamental flammability limit of HFC-32, that occurs at the limit of a zero strain rate and is independent of ignition source. Using a counterflow twin-flame burner to define extinction points for different strain rates, an extrapolation to zero strain rate is performed. Using this technique, preliminary results on the lean flammability limit of HFC-32 and the critical flammability ratio of HFC-125 (C{sub 2}HF{sub 5}) in ETC-32 are reported.

  10. Literature survey of heat transfer enhancement techniques in refrigeration applications

    SciTech Connect

    Jensen, M.K.; Shome, B.

    1994-05-01

    A survey has been performed of the technical and patent literature on enhanced heat transfer of refrigerants in pool boiling, forced convection evaporation, and condensation. Extensive bibliographies of the technical literature and patents are given. Many passive and active techniques were examined for pure refrigerants, refrigerant-oil mixtures, and refrigerant mixtures. The citations were categorized according to enhancement technique, heat transfer mode, and tube or shell side focus. The effects of the enhancement techniques relative to smooth and/or pure refrigerants were illustrated through the discussion of selected papers. Patented enhancement techniques also are discussed. Enhanced heat transfer has demonstrated significant improvements in performance in many refrigerant applications. However, refrigerant mixtures and refrigerant-oil mixtures have not been studied extensively; no research has been performed with enhanced refrigerant mixtures with oil. Most studies have been of the parametric type; there has been inadequate examination of the fundamental processes governing enhanced refrigerant heat transfer, but some modeling is being done and correlations developed. It is clear that an enhancement technique must be optimized for the refrigerant and operating condition. Fundamental processes governing the heat transfer must be examined if models for enhancement techniques are to be developed; these models could provide the method to optimize a surface. Refrigerant mixtures, with and without oil present, must be studied with enhancement devices; there is too little known to be able to estimate the effects of mixtures (particularly NARMs) with enhanced heat transfer. Other conclusions and recommendations are offered.

  11. Thermotile Refrigerators

    NASA Technical Reports Server (NTRS)

    Park, Brian V.

    1994-01-01

    Thermoelectric tiles provide cooling exactly where needed. Thermotile is modular thermoelectric cooling unit that incorporates sensor and electronic circuitry in addition to thermoelectric device. Refrigerator/freezer is lined with thermotiles clipped into supporting lattices. Small fans used to circulate air in refrigerator and freezer compartments. Elimination of conventional mechanical refrigeration machinery reduces number of moving parts and completely eliminates noise and vibration. Data capabilities of thermotile refrigeration system used for diagnosis of defects or monitoring local temperatures. Thermotiles produced by automated manufacturing techniques. Custom shapes molded as needed.

  12. Malone refrigeration

    SciTech Connect

    Swift, G.W.

    1993-06-01

    Malone refrigeration is the use of a liquid near its critical points without evaporations as working fluid in a regenerative or recuperative refrigeration cycle such as the Stirling and Brayton cycles. It`s potential advantages include compactness, efficiency, an environmentally benign working fluid, and reasonable cost. One Malone refrigerator has been built and studied; two more are under construction. Malone refrigeration is such a new, relatively unexplored technology that the potential for inventions leading to improvements in efficiency and simplicity is very high.

  13. A recuperative superfluid stirling refrigerator

    SciTech Connect

    Brisson, J.G.; Swift, G.W.

    1993-07-01

    A superfluid Stirling refrigerator has been built with a counterflow heat exchanger serving as a recuperative regenerator. It has achieved temperatures of 296 mK with a 4% {sup 3}He-{sup 4}He mixture. Cooling power versus temperature and speed is presented for a 6.6% mixture.

  14. Alternative Drop-in Refrigerant to R22 for Refrigerating System of Refrigerated Warehouse

    NASA Astrophysics Data System (ADS)

    Bandoh, Yuriko; Furuyama, Kyoko; Saito, Motomu; Sato, Haruki; Morimoto, Masanori; Iwasaki, Minoru; Tonouchi, Takashi; Kotani, Yasuhisa

    We tested to use several compositions of a four-component-mixture R 32/125/134a/600 as a refrigerant for replacing R 22 in refrigeration system of refrigerated warehouses. R 32, R 125, and R 134a are hydrofluorocarbons and R 600 is normal butane. The refrigeration system designed for R 22 can be used without any change or with very minor change. By using appropriate composition of the four-component refrigerant, existing refrigeration system can provide best performance because the adjusted properties of the refrigerant can somewhat compensate for the individual hardware problems. Practical operation test was done by using a refrigeration system of nominal cooling capacity of 30.2 kW with a 22 kW two-stage compressor which equipped for an 858m3 refrigerated warehouse maintaining at -30°C. The pressure condition and the coefficient of performance of R 32/125/134a/600 are similar to R 22 from a theoretical viewpoint. The power consumption of R 32/125/134a/600 was small enough or not to be worse than that of R22, which was confirmed from the actual test results.

  15. Oil-return characteristics of refrigerant oils in split heat pump system

    SciTech Connect

    Sundaresan, S.G.; Radermacher, R.

    1996-08-01

    Currently, HFC substitute refrigerants for R-22 are being evaluated in air-conditioning and heat pump applications. The oil return characteristics and heat transfer effects of the lubricants are being studied again. Based on commercial refrigeration experience POEs are the lubricants of choice for HFC refrigerants. POEs have two major drawbacks: hygroscopicity and high cost. Thus the question is raised to what extent is it possible to replace POEs with a lower cost, but immiscible, oil such as mineral oil. It is the purpose of this study to experimentally investigate the oil return behavior of R-407C with mineral oil in a split three-ton heat pump in comparison to R407C/POE and R-22/Mineral Oil.

  16. Density and viscosity measurements of 1,1,1,2-tetrafluoroethane (HFC-134a) from 199 K to 298 K and up to 100 MPa

    SciTech Connect

    Padua, A.A.H.; Fareleira, J.M.N.A.; Calado, J.C.G.; Wakeham, W.A.

    1996-07-01

    New density results for liquid 1,1,1,2-tetrafluoroethane (HFC-134a) along five isotherms from 199 K to 298 K and at pressures up to 100 MPa are presented. The measurements were performed with a new vibrating-wire instrument operated in the forced mode of oscillation and were carried out on a round-robin sample of refrigerant HFC-134a. The viscosity of the fluid was measured simultaneously with the density, using the same vibrating-wire sensor, at temperatures above 248 K over the entire pressure range. The results are compared with recent literature data. The precision of the present values is {+-}0.03% for the density and {+-}0.6% for the viscosity. The corresponding estimated accuracies are {+-}0.05% and {+-}2.5%, respectively.

  17. Response to comment on "Environmental fate of the next generation refrigerant 2,3,3,3-tetrafluoropropene (HFO-1234yf)

    DOE PAGESBeta

    Im, Jeongdae; Walshe-Langford, Gillian E.; Moon, Ji Won; Loeffler, Frank E.

    2015-06-11

    In this study, refrigerant 2,3,3,3-tetrafluoropropene (HFO-1234yf) has been developed for use in mobile air conditioning systems to replace 1,1,1,2-tetrafluoroethane (HFC-134a), which has a much greater global warming potential.

  18. Reconciling reported and unreported HFC emissions with atmospheric observations

    PubMed Central

    Lunt, Mark F.; Rigby, Matthew; Ganesan, Anita L.; Manning, Alistair J.; Prinn, Ronald G.; O’Doherty, Simon; Mühle, Jens; Harth, Christina M.; Salameh, Peter K.; Arnold, Tim; Weiss, Ray F.; Saito, Takuya; Yokouchi, Yoko; Krummel, Paul B.; Steele, L. Paul; Fraser, Paul J.; Li, Shanlan; Park, Sunyoung; Reimann, Stefan; Vollmer, Martin K.; Lunder, Chris; Hermansen, Ove; Schmidbauer, Norbert; Maione, Michela; Arduini, Jgor; Young, Dickon; Simmonds, Peter G.

    2015-01-01

    We infer global and regional emissions of five of the most abundant hydrofluorocarbons (HFCs) using atmospheric measurements from the Advanced Global Atmospheric Gases Experiment and the National Institute for Environmental Studies, Japan, networks. We find that the total CO2-equivalent emissions of the five HFCs from countries that are required to provide detailed, annual reports to the United Nations Framework Convention on Climate Change (UNFCCC) increased from 198 (175–221) Tg-CO2-eq⋅y–1 in 2007 to 275 (246–304) Tg-CO2-eq⋅y–1 in 2012. These global warming potential-weighted aggregated emissions agree well with those reported to the UNFCCC throughout this period and indicate that the gap between reported emissions and global HFC emissions derived from atmospheric trends is almost entirely due to emissions from nonreporting countries. However, our measurement-based estimates of individual HFC species suggest that emissions, from reporting countries, of the most abundant HFC, HFC-134a, were only 79% (63–95%) of the UNFCCC inventory total, while other HFC emissions were significantly greater than the reported values. These results suggest that there are inaccuracies in the reporting methods for individual HFCs, which appear to cancel when aggregated together. PMID:25918401

  19. Reconciling reported and unreported HFC emissions with atmospheric observations.

    PubMed

    Lunt, Mark F; Rigby, Matthew; Ganesan, Anita L; Manning, Alistair J; Prinn, Ronald G; O'Doherty, Simon; Mühle, Jens; Harth, Christina M; Salameh, Peter K; Arnold, Tim; Weiss, Ray F; Saito, Takuya; Yokouchi, Yoko; Krummel, Paul B; Steele, L Paul; Fraser, Paul J; Li, Shanlan; Park, Sunyoung; Reimann, Stefan; Vollmer, Martin K; Lunder, Chris; Hermansen, Ove; Schmidbauer, Norbert; Maione, Michela; Arduini, Jgor; Young, Dickon; Simmonds, Peter G

    2015-05-12

    We infer global and regional emissions of five of the most abundant hydrofluorocarbons (HFCs) using atmospheric measurements from the Advanced Global Atmospheric Gases Experiment and the National Institute for Environmental Studies, Japan, networks. We find that the total CO2-equivalent emissions of the five HFCs from countries that are required to provide detailed, annual reports to the United Nations Framework Convention on Climate Change (UNFCCC) increased from 198 (175-221) Tg-CO2-eq ⋅ y(-1) in 2007 to 275 (246-304) Tg-CO2-eq ⋅ y(-1) in 2012. These global warming potential-weighted aggregated emissions agree well with those reported to the UNFCCC throughout this period and indicate that the gap between reported emissions and global HFC emissions derived from atmospheric trends is almost entirely due to emissions from nonreporting countries. However, our measurement-based estimates of individual HFC species suggest that emissions, from reporting countries, of the most abundant HFC, HFC-134a, were only 79% (63-95%) of the UNFCCC inventory total, while other HFC emissions were significantly greater than the reported values. These results suggest that there are inaccuracies in the reporting methods for individual HFCs, which appear to cancel when aggregated together. PMID:25918401

  20. Measurement of Concentration of Refrigerant in Refrigeration Oil by Capacitance Sensor

    NASA Astrophysics Data System (ADS)

    Fukuta, Mitsuhiro; Yanagisawa, Yadashi; Ogi, Yasuhiro; Tanaka, Junya

    In general, refrigeration oil of good solubility with refrigerant is used in refrigeration compressors, and development of a concentration sensor of refrigerant dissolved in the oil is needed. In this study, oil and refrigerant concentrations are measured with newly developed capacitance sensor which measure the change of dielectric constant with the concentration. It is found that in most cases of oil-refrigerant combinations the dielectric constant of refrigerant is two to three times as large as that of refrigeration oil and the dielectric constant of mixtures increases linearly with the concentration of refrigerant. When measuring the refrigerant concentration of R410A, t he measurement of the concentration by the dielectric constant is also feasible as long as the composition of each refrigerant component dissolved in the oil does not change from the nominal composition. Prototypes of small sensors, such as a cylindrical type and a needle type, are developed and the performance of the needle sensor with shield is preferable. A correlation for a given oil-refrigerant mixture obtained by a large capacitance sensor is applicable for the small sensors after correcting for stray capacitance. Flow of fluid in the sensors does not affect the capacitance measured by the sensors, while bubbles due to foaming do affect the measurement.

  1. Vaccine refrigeration

    PubMed Central

    McColloster, Patrick J; Martin-de-Nicolas, Andres

    2014-01-01

    This commentary reviews recent changes in Centers for Disease Control (CDC) vaccine storage guidelines that were developed in response to an investigative report by the Office of the Inspector General. The use of temperature data loggers with probes residing in glycol vials is advised along with storing vaccines in pharmaceutical refrigerators. These refrigerators provide good thermal distribution but can warm to 8 °C in less than one hour after the power is discontinued. Consequently, electric grid instability influences appropriate refrigerator selection and the need for power back-up. System Average Interruption Duration Index (SAIDI) values quantify this instability and can be used to formulate region-specific guidelines. A novel aftermarket refrigerator regulator with a battery back-up power supply and microprocessor control system is also described. PMID:24442209

  2. Numerical modeling of the thermal-hydraulic behavior of wire-on-tube condensers operating with HFC-134a using homogeneous equilibrium model: evaluation of some void fraction correlations

    NASA Astrophysics Data System (ADS)

    Guzella, Matheus dos Santos; Cabezas-Gómez, Luben; da Silva, José Antônio; Maia, Cristiana Brasil; Hanriot, Sérgio de Morais

    2016-02-01

    This study presents a numerical evaluation of the influence of some void fraction correlations over the thermal-hydraulic behavior of wire-on-tube condensers operating with HFC-134a. The numerical model is based on finite volume method considering the homogeneous equilibrium model. Empirical correlations are applied to provide closure relations. Results show that the choice of void fraction correlation influences the refrigerant charge and pressure drop calculations, while no influences the heat transfer rate.

  3. Inventory and mitigation opportunities for HFC-134a emissions from nonprofessional automotive service

    NASA Astrophysics Data System (ADS)

    Zhan, Tao; Potts, Winston; Collins, John F.; Austin, Jeff

    2014-12-01

    Many vehicle owners in the United States recharge their vehicles' air conditioning systems with small containers of hydrofluorocarbon-134a (HFC-134a, CH2FCF3), at a frequency estimated to be once every year on average. Such nonprofessional service produces immediate emissions of this potent greenhouse gas during service and from the residual heel in partially used containers. The nonprofessional operations are also associated with increased delayed refrigerant emissions that occur because owners are less likely to repair leaks than professional technicians. In California, an estimated 1.3 million nonprofessional service operations performed each year generate 0.27 ± 0.07 million metric ton CO2 equivalent (MMTCO2e) of immediate emissions and 0.54 ± 0.08 MMTCO2e of delayed emissions, using a Global Warming Potential of 1300 for HFC-134a. The immediate emissions can be largely mitigated by a regulation that requires self-sealing valves and improved labeling instructions on the containers, a deposit-return-recycling program for the containers, and a consumer education program. If 95% of the used containers were to be returned by consumers for recycling of the container heel, the annual immediate emissions would be reduced by 0.26 ± 0.07 MMTCO2e. In the United States, an estimated 24 million nonprofessional service operations are performed each year, generating 5.1 ± 1.4 MMTCO2e of immediate emissions and 10.4 ± 1.5 MMTCO2e of delayed emissions. Mitigation measures equivalent to the California regulation would reduce nationwide immediate emissions by 4.9 ± 1.4 MMTCO2e, if 95% of the used cans were returned for recycling. These business-as-usual emissions and mitigation potentials are projected to stay approximately constant until around 2022, and remain at significant levels into the 2030s.

  4. Aging of polyurethane foam insulation in simulated refrigerator walls

    SciTech Connect

    Wilkes, K.E.; Yarbrough, D.W.; Weaver, F.J.

    1997-10-01

    Laboratory data are presented on the thermal conductivity of polyurethane foam insulation in composite test panels that simulate refrigerator walls. The test panels consisted of a steel skin, an ABS plastic liner, and a polyurethane foam core. Foam cores were produced with three different blowing agents (CFC-11, HCFC-141b, and a HCFC-142/22 blend). Periodic thermal measurements have been made on these panels over a three and one half year period in an effort to detect aging processes. Data obtained on foam encased in the panels were compared with measurements on thin foam slices that were removed from similar panels. The data show that the encapsulation of the foam in the solid boundary materials greatly reduces the aging rate. The plan is presented for a follow-on project that is being conducted on the aging of foams blown with HCFC-141b, HFC-134a, HFC-245fa, and cyclopentane.

  5. Alternatives to CFC-114 in high-temperature heat pumps: Compressor performance with HFC-236ea and HFC-236fa

    SciTech Connect

    Kazachki, G S; Gage, C L; Hendriks, R V

    1996-01-01

    The paper gives results of comprehensive calorimeter tests on a semihermetic compressor with chlorofluorocarbon (CFC)-114, hydrofluorocarbon (HFC)-236ea, and HFC-236fa over a wide range of temperature test conditions: evaporating temperatures from 0 to 35 C and condensing temperatures from 40 to 110 C. Parameters assessed as criteria for performance evaluation and for reliable performance include: cooling capacity; electric power input, current, and voltage; coefficients of performance; compressor volumetric and isentropic efficiencies; and discharge and oil temperatures. Polyolester oil was used as lubricant in the compressor.

  6. Infrared absorption cross-sections and integrated absorption intensities of HFC-134 and HFC-143a vapour.

    NASA Astrophysics Data System (ADS)

    Smith, K.; Newnham, D.; Page, M.; Ballard, J.; Duxbury, G.

    1998-05-01

    Infrared absorption cross-sections and integrated absorption intensities of HFC-134 (1,1,2,2-tetrafluoroethane) and HFC-143a (1,1,1-trifluoroethane) vapour have been determined from laboratory measurements at six temperatures (203, 213, 233, 253, 273 and 297 K) for the region 560-1900 cm-1 (5.3-17.9 μm) at 0.03 cm-1 instrument resolution, by Fourier transform infrared spectroscopy. In addition, air-broadened spectra have been recorded at 297 K and pressures of 5, 20 and 100 kPa air. Inter-comparisons between this work and previous studies have been made where possible.

  7. Perfluoropropenyl-containing phosphines from HFC replacements.

    PubMed

    Brisdon, Alan K; Ali Ghaba, Hana; Beutel, Bernd; Ejgandi, Amina; Egjandi, Amina; Addaraidi, Arij; Pritchard, Robin G

    2015-12-01

    A series of new perfluoropropenyl-containing phosphines of the type R3-nP(E-CF[double bond, length as m-dash]CFCF3)n (R = Ph, iPr, n = 1, 2; R = tBu, n = 2) have been prepared from the reaction of the hydrofluoroolefin Z-CF3CF[double bond, length as m-dash]CFH (HFO-1225ye) with base and the appropriate chlorophosphine, while reaction with Cl2PCH2CH2PCl2 gave (CF3CF[double bond, length as m-dash]CF)2PCH2CH2P(CF[double bond, length as m-dash]CFCF3)2, the first example of a bidentate perfluoroalkenyl-containing phosphine. An alternative route to these phosphines based on the room- or low-temperature deprotonation of CF3CF2CH2F (HFC-236ea) gives mainly the E-isomer, but also a small amount of the Z-isomer, the ratio of which depends on the reaction temperature. All of the phosphines could be readily oxidised with either H2O2 or urea·H2O2, and the phosphine selenides R3-nP(Se)(E-CF[double bond, length as m-dash]CFCF3)n (R = Ph, n = 1,2; R = iPr, n = 1; R = tBu, n = 2) were also prepared. The steric and electronic properties of these ligands were determined based on their platinum(ii), palladium(ii) and molybdenum carbonyl complexes. The crystal structures of (CF3CF[double bond, length as m-dash]CF)2PCH2CH2P(CF[double bond, length as m-dash]CFCF3)2, (CF3CF[double bond, length as m-dash]CF)2P(O)CH2CH2P(O)(CF[double bond, length as m-dash]CFCF3)2, iPr2P(Se)(CF[double bond, length as m-dash]CFCF3)2, trans-[PtCl2{Ph(3-n)P(E-CF[double bond, length as m-dash]CFCF3)n}2] (n = 1 or 2), trans-[PdCl2{R2P(E-CF[double bond, length as m-dash]CFCF3)}2] (R = Ph, iPr) and [Mo(CO)4{(CF3CF[double bond, length as m-dash]CF)2PCH2CH2P(CF[double bond, length as m-dash]CFCF3)2}] are reported. PMID:26212860

  8. Recent Refrigeration Cycle Technologies for Household Refrigerators

    NASA Astrophysics Data System (ADS)

    Nagatomo, Shigemi

    The household refrigerator is one of the most important and the biggest energy-consuming home appliances. This paper summarize recent refrigeration cycle developments in the field of domestic household refrigerators based on a survey of publications.

  9. Compatibility of refrigerants and lubricants with engineering plastics. Final report

    SciTech Connect

    Cavestri, R.C.

    1993-12-01

    23 plastics have been subjected to immersion studies using 7 different lubricants at 60 C and 100 C, and 10 different refrigerants at ambient and 60 C. In the first part of the study, 22 hermetic stress crack-creep rupture test chambers were used to determine dynamic effects of a constant dead weight load on plastic test bars immersed at 20 C in a 40% refrigerant 32 ISOVG branched acid polyolester lubricant. The creep modulus data of the 10 refrigerants, using a dead weight load of 25% of ultimate tensile, are compared to values for air and HCFC-22. In the second part, the plastic test bars were aged for 14 d at constant refrigerant pressure 300 psia with 17 refrigerant lubricant combinations at 150 C. Additional evaluations were conducted to elucidate the effects of temperature, refrigerant, and lubricant on the plastics. At 150 C, high acid formation (high TAN) was further examined with dehydrated plastics. These evaluations indicate that dehydrating the plastics reduced, but did not eliminate, high TAN values and that heat alone caused the lost physicals. Alternative HFC refrigerants had little impact on plastics; some polyolester lubricants caused identifiable changes.

  10. Thermoelectric refrigerator

    NASA Technical Reports Server (NTRS)

    Park, Brian V. (Inventor); Smith, Jr., Malcolm C. (Inventor); McGrath, Ralph D. (Inventor); Gilley, Michael D. (Inventor); Criscuolo, Lance (Inventor); Nelson, John L. (Inventor)

    1996-01-01

    A refrigerator is provided which combines the benefits of superinsulation materials with thermoelectric devices and phase change materials to provide an environmentally benign system that is energy efficient and can maintain relatively uniform temperatures for extended periods of time with relatively low electrical power requirements. The refrigerator includes a thermoelectric assembly having a thermoelectric device with a hot sink and a cold sink. The superinsulation materials include a plurality of vacuum panels. The refrigerator is formed from an enclosed structure having a door. The vacuum panels may be contained within the walls of the enclosed structure and the door. By mounting the thermoelectric assembly on the door, the manufacturer of the enclosed structure is simplified and the overall R rating of the refrigerator increased. Also an electrical motor and propellers may be mounted on the door to assist in the circulation of air to improve the efficiency of the cold sink and the hot sink. A propeller and/or impeller is preferably mounted within the refrigerator to assist in establishing the desired air circulation flow path.

  11. Alternatives to ozone depleting refrigerants in test equipment

    NASA Technical Reports Server (NTRS)

    Hall, Richard L.; Johnson, Madeleine R.

    1995-01-01

    This paper describes the initial results of a refrigerant retrofit project at the Aerospace Guidance and Metrology Center (AGMC) at Newark Air Force Base, Ohio. The objective is to convert selected types of test equipment to properly operate on hydrofluorocarbon (HFC) alternative refrigerants, having no ozone depleting potential, without compromising system reliability or durability. This paper discusses the primary technical issues and summarizes the test results for 17 different types of test equipment: ten environmental chambers, two ultralow temperature freezers, two coolant recirculators, one temperature control unit, one vapor degreaser, and one refrigerant recovery system. The postconversion performance test results have been very encouraging: system capacity and input power remained virtually unchanged. In some cases, the minimum operating temperature increased by a few degrees as a result of the conversion, but never beyond AGMC's functional requirements.

  12. The hierarchical fair competition (HFC) framework for sustainable evolutionary algorithms.

    PubMed

    Hu, Jianjun; Goodman, Erik; Seo, Kisung; Fan, Zhun; Rosenberg, Rondal

    2005-01-01

    Many current Evolutionary Algorithms (EAs) suffer from a tendency to converge prematurely or stagnate without progress for complex problems. This may be due to the loss of or failure to discover certain valuable genetic material or the loss of the capability to discover new genetic material before convergence has limited the algorithm's ability to search widely. In this paper, the Hierarchical Fair Competition (HFC) model, including several variants, is proposed as a generic framework for sustainable evolutionary search by transforming the convergent nature of the current EA framework into a non-convergent search process. That is, the structure of HFC does not allow the convergence of the population to the vicinity of any set of optimal or locally optimal solutions. The sustainable search capability of HFC is achieved by ensuring a continuous supply and the incorporation of genetic material in a hierarchical manner, and by culturing and maintaining, but continually renewing, populations of individuals of intermediate fitness levels. HFC employs an assembly-line structure in which subpopulations are hierarchically organized into different fitness levels, reducing the selection pressure within each subpopulation while maintaining the global selection pressure to help ensure the exploitation of the good genetic material found. Three EAs based on the HFC principle are tested - two on the even-10-parity genetic programming benchmark problem and a real-world analog circuit synthesis problem, and another on the HIFF genetic algorithm (GA) benchmark problem. The significant gain in robustness, scalability and efficiency by HFC, with little additional computing effort, and its tolerance of small population sizes, demonstrates its effectiveness on these problems and shows promise of its potential for improving other existing EAs for difficult problems. A paradigm shift from that of most EAs is proposed: rather than trying to escape from local optima or delay convergence at a

  13. HFC-6000 for Nuclear I and C Upgrade

    SciTech Connect

    Taylor, Jonathan; Hsu, Allen; Gerardis, Terry; Stevens, John; McCreary, Tim; Yang, Steve

    2006-07-01

    The scalability of the HFC-6000 product line makes it an effective solution for nuclear power plant I and C upgrade applications. Its 19-in. rack-mounted platform provides a modular structure whose components can be used for many different nuclear power plant safety applications. This single-platform solution reduces the overall complexity of I and C implementation by minimizing operational and maintenance requirements. The HFC-6000 product line is designed to operate with either single or multiple control remote units in each channel. The main controller module in a remote unit is the system controller (HFCSBC06), which executes control logic programs, I/O scan, and C-Link communication. All three functions are handled by dedicated 64/32-bit microprocessors. A redundant configuration of system controllers consists of two HFC-SBC06 modules and one HFC-DPM06 dual-ported memory module. The hardware interface with external peripheral equipment is provided by an HFC-PCC06 peripheral interface module in the same rack. This module communicates with dedicated Control Switch Modules (the operator interface for digital control) and M/A stations (the operator interface for analog control), which are mounted on the plant main control board. Individual input/output modules serve as the hardware interface with the field devices under control and are implemented by different types of I/O modules. Each I/O module has a redundant serial communication interface. This serial interface employs a proprietary poll-response intercommunication link (ICL) protocol for communication with the system controllers. When a remote is configured with redundant controllers, the two ICL interfaces on each I/O module are connected to separate system controllers to create a redundant link. The I/O modules can be installed locally or remotely. If the I/O modules are physically remote from the controller, the ICL can be implemented with fiber optics to provide physical and electrical isolation from non

  14. Refrigeration Showcases

    NASA Technical Reports Server (NTRS)

    1997-01-01

    Through the Technology Affiliates Program at the Jet Propulsion Laboratory (JPL), valuable modifications were made to refrigerator displays built by Displaymor Manufacturing Company, Inc. By working with JPL, Displaymor could address stiffer requirements that ensure the freshness of foods. The application of the space technology meant that the small business would be able to continue to market its cases without incurring expenses that could threaten the viability of the business, and the future of several dozen jobs. Research and development improvements in air flow distribution and refrigeration coil technology contributed greatly to certifying Displaymor's showcases given the new federal regulations. These modifications resulted in a refrigerator case that will keep foods cooler, longer. Such changes maintained the openness of the display, critical to customer visibility and accessibility, impulse buying, and cross-merchandising.

  15. Properties and Cycle Performance of Refrigerant Blends Operating Near and Above the Refrigerant Critical Point, Task 2: Air Conditioner System Study

    SciTech Connect

    Piotr A. Domanski; W. Vance Payne

    2002-10-31

    The main goal of this project was to investigate and compare the performance of an R410A air conditioner to that of an R22 air conditioner, with specific interest in performance at high ambient temperatures at which the condenser of the R410A system may be operating above the refrigerant's critical point. Part 1 of this project consisted of conducting comprehensive measurements of thermophysical for refrigerant R125 and refrigerant blends R410A and R507A and developing new equation of state formulations and mixture models for predicting thermophysical properties of HFC refrigerant blends. Part 2 of this project conducted performance measurements of split-system, 3-ton R22 and R410A residential air conditioners in the 80 to 135 F (27.8 to 57.2 C) outdoor temperature range and development of a system performance model. The performance data was used in preparing a beta version of EVAP-COND, a windows-based simulation package for predicting performance of finned-tube evaporators and condensers. The modeling portion of this project also included the formulation of a model for an air-conditioner equipped with a thermal expansion valve (TXV). Capacity and energy efficiency ratio (EER) were measured and compared. The R22 system's performance was measured over the outdoor ambient temperature range of 80 to 135 F (27.8 to 57.2 C). The same test range was planned for the R410A system. However, the compressor's safety system cut off the compressor at the 135.0 F (57.2 C) test temperature. The highest measurement on this system was at 130.0 F (54.4 C). Subsequently, a custom-manufactured R410A compressor with a disabled safety system and a more powerful motor was installed and performance was measured at outdoor temperatures up to 155.0 F (68.3 C). Both systems had similar capacity and EER performance at 82.0 F (27.8 C). The capacity and EER degradation of both systems were nearly linearly dependent with rising ambient outdoor ambient test temperatures. The performance

  16. Drying R-407C and R-410A refrigerant blends with molecular sieve desiccants

    SciTech Connect

    Cohen, A.P.; Tucker, D.M.

    1998-10-01

    The hydrofluorocarbon (HFC) R-32 (CF{sub 2}H{sub 2}) is a component of refrigerant blends in the 407 and 410 series being tested and commercialized for use as replacements for R-502 and the hydrochlorofluorocarbon (HCFC) R-22. The molecular sieve desiccants used with chlorofluorocarbon (CFC) and HCFC mineral oil systems in the past have achieved high water capacity by excluding the refrigerant and adsorbing only the water. Unfortunately, R-32 is adsorbed on commercial type 3A molecular sieve desiccant products. The result of this adsorption is a loss of water capacity when drying R-32 compared to drying R-22 or R-502 and a reduced level of chemical compatibility of the desiccant with the refrigerant. Some compressor manufacturers are seeking a water concentration as low as 10 mg/kg (ppm[wt]) in the circulating refrigerant of polyolester-lubricated refrigerating equipment using these HFC blends. This paper compares unmodified commercial type 3A molecular sieve desiccants with a recently developed, modified 3A molecular sieve that excludes R-32. The modified 3A has better chemical compatibility with R-32 and high water capacity in liquid R-407C and R-410A. The drying rates of the two desiccants in R-407C and R-410A are similar. Data and test methods are reported on refrigerant adsorption, water capacity, drying rate, and chemical compatibility.

  17. Supercooling Refrigerator

    NASA Technical Reports Server (NTRS)

    1986-01-01

    A Goddard/Philips research project resulted in a refrigeration system which works without seals, lubricants or bearings. The system, originally developed to cool satellite-based scientific instruments, has an extensive range of potential spinoffs. It is called the Stirling Cycle Cryogenic Cooler and eliminates friction by using electronically controlled linear magnetic bearings. Mechanical failure, contamination are eliminated.

  18. Refrigeration Servicing.

    ERIC Educational Resources Information Center

    Hamilton, Donald L.; And Others

    This self-study course is designed to familiarize Marine enlisted personnel with the services required to be performed on refrigeration equipment. The course contains four study units. Each study unit begins with a general objective, which is a statement of what the student should learn from the unit. The study units are divided into numbered work…

  19. 40 CFR Appendix E to Subpart B of... - The Standard for Automotive Refrigerant Recycling Equipment Intended for Use With Both CFC-12 and...

    Code of Federal Regulations, 2012 CFR

    2012-07-01

    ... cannot exceed 80% of volume at 21.1 °C of its maximum rating as defined by DOT standards, 49 CFR 173.304... Refrigerant Recycling Equipment Intended for Use With Both CFC-12 and HFC-134a E Appendix E to Subpart B of... Appendix E to Subpart B of Part 82—The Standard for Automotive Refrigerant Recycling Equipment Intended...

  20. 40 CFR Appendix E to Subpart B of... - The Standard for Automotive Refrigerant Recycling Equipment Intended for Use With Both CFC-12 and...

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ... cannot exceed 80% of volume at 21.1 °C of its maximum rating as defined by DOT standards, 49 CFR 173.304... Refrigerant Recycling Equipment Intended for Use With Both CFC-12 and HFC-134a E Appendix E to Subpart B of... Appendix E to Subpart B of Part 82—The Standard for Automotive Refrigerant Recycling Equipment Intended...

  1. 40 CFR Appendix E to Subpart B of... - The Standard for Automotive Refrigerant Recycling Equipment Intended for Use With Both CFC-12 and...

    Code of Federal Regulations, 2013 CFR

    2013-07-01

    ... cannot exceed 80% of volume at 21.1 °C of its maximum rating as defined by DOT standards, 49 CFR 173.304... Refrigerant Recycling Equipment Intended for Use With Both CFC-12 and HFC-134a E Appendix E to Subpart B of... Appendix E to Subpart B of Part 82—The Standard for Automotive Refrigerant Recycling Equipment Intended...

  2. 40 CFR Appendix E to Subpart B of... - The Standard for Automotive Refrigerant Recycling Equipment Intended for Use With Both CFC-12 and...

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... cannot exceed 80% of volume at 21.1 °C of its maximum rating as defined by DOT standards, 49 CFR 173.304... Refrigerant Recycling Equipment Intended for Use With Both CFC-12 and HFC-134a E Appendix E to Subpart B of... Appendix E to Subpart B of Part 82—The Standard for Automotive Refrigerant Recycling Equipment Intended...

  3. Hydrofluorocarbon (HFC) Emissions in China: An Inventory for 2005-2013 and Projections to 2050.

    PubMed

    Fang, Xuekun; Velders, Guus J M; Ravishankara, A R; Molina, Mario J; Hu, Jianxin; Prinn, Ronald G

    2016-02-16

    Many hydrofluorocarbons (HFCs) that are widely used as substitutes for ozone-depleting substances (now regulated under the Montreal Protocol) are very potent greenhouse gases (GHGs). China's past and future HFC emissions are of great interest because China has emerged as a major producer and consumer of HFCs. Here, we present for the first time a comprehensive inventory estimate of China's HFC emissions during 2005-2013. Results show a rapid increase in HFC production, consumption, and emissions in China during the period and that the emissions of HFC with a relatively high global warming potential (GWP) grew faster than those with a relatively low GWP. The proportions of China's historical HFC CO2-equivalent emissions to China's CO2 emissions or global HFC CO2-equivalent emissions increased rapidly during 2005-2013. Using the "business-as-usual" (BAU) scenario, in which HFCs are used to replace a significant fraction of hydrochlorofluorocarbons (HCFCs) in China (to date, there are no regulations on HFC uses in China), emissions of HFCs are projected to be significant components of China's and global future GHG emissions. However, potentials do exist for minimizing China's HFC emissions (for example, if regulations on HFC uses are established in China). Our findings on China's historical and projected HFC emission trajectories could also apply to other developing countries, with important implications for mitigating global GHG emissions. PMID:26731627

  4. An Evaluation of the Environmental Impact of Different Commercial Supermarket Refrigeration Systems Using Low Global Warming Potential Refrigerants

    SciTech Connect

    Beshr, Mohamed; Aute, Vikrant; Abdelaziz, Omar; Fricke, Brian A; Radermacher, Reinhard

    2014-01-01

    Commercial refrigeration systems consumed 1.21 Quads of primary energy in 2010 and are known to be a major source for refrigerant charge leakage into the environment. Thus, it is important to study the environmental impact of commercial supermarket refrigeration systems and improve their design to minimize any adverse impacts. The system s Life Cycle Climate Performance (LCCP) was presented as a comprehensive metric with the aim of calculating the equivalent mass of carbon dioxide released into the atmosphere throughout its lifetime, from construction to operation and destruction. In this paper, an open source tool for the evaluation of the LCCP of different air-conditioning and refrigeration systems is presented and used to compare the environmental impact of a typical multiplex direct expansion (DX) supermarket refrigeration systems based on three different refrigerants as follows: two hydrofluorocarbon (HFC) refrigerants (R-404A, and R-407F), and a low global warming potential (GWP) refrigerant (N-40). The comparison is performed in 8 US cities representing different climates. The hourly energy consumption of the refrigeration system, required for the calculation of the indirect emissions, is calculated using a widely used building energy modeling tool (EnergyPlus). A sensitivity analysis is performed to determine the impact of system charge and power plant emission factor on the LCCP results. Finally, we performed an uncertainty analysis to determine the uncertainty in total emissions for both R-404A and N-40 operated systems. We found that using low GWP refrigerants causes a considerable drop in the impact of uncertainty in the inputs related to direct emissions on the uncertainty of the total emissions of the system.

  5. Laboratory evaluation of skin refrigerants used in dermabrasion.

    PubMed

    Hanke, C W; O'Brian, J J; Solow, E B

    1985-01-01

    Six skin refrigerants were evaluated for maximum cooling temperature. The temperatures produced correlated well with the chemical components and also the gelatin freeze-thaw times. Freon 114 and Freon 114-ethyl chloride mixtures are time-tested, safe skin refrigerants. Some of the newer skin refrigerants are pure sources of Freon 12 or mixtures of Freon 12 and Freon 11. These newer, colder products have the potential to damage the skin and represent a hazard to successful dermabrasion. PMID:3965519

  6. Carbon dioxide emission implications if hydrofluorocarbons are regulated: a refrigeration case study.

    PubMed

    Blowers, Paul; Lownsbury, James M

    2010-03-01

    The U.S. is strongly considering regulating hydrofluorocarbons (HFCs) due to their global climate change forcing effects. A drop-in replacement hydrofluoroether has been evaluated using a gate-to-grave life cycle assessment of greenhouse gas emissions for the trade-offs between direct and indirect carbon dioxide equivalent emissions compared to a current HFC and a historically used refrigerant. The results indicate current regulations being considered may increase global climate change. PMID:20050659

  7. Hermetic compressor and block expansion valve in refrigeration performance

    NASA Astrophysics Data System (ADS)

    Santoso, Budi; Susilo, Didik Djoko; Tjahjana, D. D. D. P.

    2016-03-01

    Vehicle cabin in tropical countries requires the cooling during the day for comfort of passengers. Air conditioning machine is commonly driven by an internal combustion engine having a great power, which the conventional compressor is connected to crank shaft. The stage of research done is driving the hermetic compressor with an electric motor, and using block expansion valve. The HFC-134a was used as refrigerant working. The primary parameters observed during the experiment are pressure, temperature, and power consumption for different cooling capacities. The results show that the highest coefficient of performance (COP) and the electric power of system are 6.3 and 638 Watt, respectively.

  8. Global emissions of HFC-143a (CH3CF3) and HFC-32 (CH2F2) from in situ and air archive atmospheric observations

    NASA Astrophysics Data System (ADS)

    O'Doherty, S.; Rigby, M.; Mühle, J.; Ivy, D. J.; Miller, B. R.; Young, D.; Simmonds, P. G.; Reimann, S.; Vollmer, M. K.; Krummel, P. B.; Fraser, P. J.; Steele, L. P.; Dunse, B.; Salameh, P. K.; Harth, C. M.; Arnold, T.; Weiss, R. F.; Kim, J.; Park, S.; Li, S.; Lunder, C.; Hermansen, O.; Schmidbauer, N.; Zhou, L. X.; Yao, B.; Wang, R. H. J.; Manning, A. J.; Prinn, R. G.

    2014-09-01

    High-frequency, in situ observations from the Advanced Global Atmospheric Gases Experiment (AGAGE), for the period 2003 to 2012, combined with archive flask measurements dating back to 1977, have been used to capture the rapid growth of HFC-143a (CH3CF3) and HFC-32 (CH2F2) mole fractions and emissions into the atmosphere. Here we report the first in situ global measurements of these two gases. HFC-143a and HFC-32 are the third and sixth most abundant hydrofluorocarbons (HFCs) respectively and they currently make an appreciable contribution to the HFCs in terms of atmospheric radiative forcing (1.7 ± 0.04 and 0.7 ± 0.02 mW m-2 in 2012 respectively). In 2012 the global average mole fraction of HFC-143a was 13.4 ± 0.3 ppt (1σ) in the lower troposphere and its growth rate was 1.4 ± 0.04 ppt yr-1; HFC-32 had a global mean mole fraction of 6.2 ± 0.2 ppt and a growth rate of 1.1 ± 0.04 ppt yr-1 in 2012. The extensive observations presented in this work have been combined with an atmospheric transport model to simulate global atmospheric abundances and derive global emission estimates. It is estimated that 23 ± 3 Gg yr-1 of HFC-143a and 21 ± 11 Gg yr-1 of HFC-32 were emitted globally in 2012, and the emission rates are estimated to be increasing by 7 ± 5% yr-1 for HFC-143a and 14 ± 11% yr-1 for HFC-32.

  9. Global emissions of HFC-143a (CH3CF3) and HFC-32 (CH2F2) from in situ and air archive atmospheric observations

    NASA Astrophysics Data System (ADS)

    O'Doherty, S.; Rigby, M.; Mühle, J.; Ivy, D. J.; Miller, B. R.; Young, D.; Simmonds, P. G.; Reimann, S.; Vollmer, M. K.; Krummel, P. B.; Fraser, P. J.; Steele, L. P.; Dunse, B.; Salameh, P. K.; Harth, C. M.; Arnold, T.; Weiss, R. F.; Kim, J.; Park, S.; Li, S.; Lunder, C.; Hermansen, O.; Schmidbauer, N.; Zhou, L. X.; Yao, B.; Wang, R. H. J.; Manning, A.; Prinn, R. G.

    2014-03-01

    High frequency, in situ observations from the Advanced Global Atmospheric Gases Experiment (AGAGE), for the period 2003 to 2012, combined with archive flask measurements dating back to 1977, have been used to capture the rapid growth of HFC-143a (CH3CF3) and HFC-32 (CH2F2) mole fractions and emissions into the atmosphere. Here we report the first in situ global measurements of these two gases. HFC-143a and HFC-32 are the third and sixth most abundant HFCs respectively and they currently make an appreciable contribution to the HFCs in terms of atmospheric radiative forcing (1.7 and 0.7 mW m2 in 2012, respectively). In 2012 the global average mole fraction of HFC-143a was 13.4 ± 0.3 ppt (1-sigma) in the lower troposphere and its growth rate was 1.4 ± 0.04 ppt yr-1; HFC-32 had a global mean mole fraction of 6.2 ± 0.2 ppt and a growth rate of 1.1 ± 0.04 ppt yr-1 in 2012. The extensive observations presented in this work have been combined with an atmospheric transport model to simulate global atmospheric abundances and derive global emission estimates. It is estimated that 23 ± 3 Gg yr-1 of HFC-143a and 21 ± 11 Gg yr-1 of HFC-32 were emitted globally in 2012, and the emission rates are estimated to be increasing 7 ± 5% yr-1 for HFC-143a and 14 ± 11% yr-1 for HFC-32.

  10. Study on two stage activated carbon/HFC-134a based adsorption chiller

    NASA Astrophysics Data System (ADS)

    >K Habib, M. Amin B. A.; Sulaiman, Shaharin Anwar B.

    2013-06-01

    In this paper, a theoretical analysis on the performance of a thermally driven two-stage four-bed adsorption chiller utilizing low-grade waste heat of temperatures between 50°C and 70°C in combination with a heat sink (cooling water) of 30°C for air-conditioning applications has been described. Activated carbon (AC) of type Maxsorb III/HFC-134a pair has been examined as an adsorbent/refrigerant pair. FORTRAN simulation program is developed to analyze the influence of operating conditions (hot and cooling water temperatures and adsorption/desorption cycle times) on the cycle performance in terms of cooling capacity and COP. The main advantage of this two-stage chiller is that it can be operational with smaller regenerating temperature lifts than other heat-driven single-stage chillers. Simulation results shows that the two-stage chiller can be operated effectively with heat sources of 50°C and 70°C in combination with a coolant at 30°C.

  11. Choked flow mechanism of HFC-134a flowing through short-tube orifices

    SciTech Connect

    Nilpueng, Kitti; Wongwises, Somchai

    2011-02-15

    This paper is a continuation of the author's previous work. New experimental data on the occurrence of choked flow phenomenon and mass flow rate of HFC-134a inside short-tube orifices under choked flow condition are presented. Short-tube orifices diameters ranging from 0.406 mm to 0.686 mm with lengths ranging from 1 mm to 3 mm which can be applied to a miniature vapour-compression refrigeration system are examined. The experimental results indicated that the occurrence of choked flow phenomena inside short-tube orifices is different from that obtained from short-tube orifice diameters of greater than 1 mm, which are typically used in air-conditioner. The beginning of choked flow is dependent on the downstream pressure, degree of subcooling, and length-to-diameter ratio. Under choked flow condition, the mass flow rate is greatly varied with the short-tube orifice dimension, but it is slightly affected by the operating conditions. A correlation of mass flow rate through short-tube orifices is proposed in terms of the dimensionless parameters. The predicted results show good agreement with experimental data with a mean deviation of 4.69%. (author) transfer coefficient was also proposed. (author)

  12. Precipitation of polystyrene by spraying polystyrene-toluene solution into compressed HFC-134a

    SciTech Connect

    Tan, C.S.; Lin, H.Y.

    1999-10-01

    A precipitation process employing compressed 1,1,1,2-tetrafluoroethane (HFC-134a) as anti-solvent was used to recover polystyrene from toluene solution. In a continuous mode of operation, almost all the dissolved polystyrene could be precipitated under the condition that liquid HFC-134a was present in the precipitator. When the precipitator was full of gaseous HFC-134a only, a significant temperature rise was observed and the amount of the precipitated polystyrene was small. The effects of temperature, pressure, toluene solution flow rate, HFC-134a flow rate, and polystyrene concentration on the yield and morphology for the precipitated polystyrene were examined in this study. Microparticles of the precipitated polystyrene were obtained only when the solution jet traveled through gaseous HFC-134a first and then contacted with liquid HFC-134a in the precipitator.

  13. Field emission from single-crystalline HfC nanowires

    SciTech Connect

    Yuan, Jinshi; Tang, Jie; Zhang Han; Shinya, Norio; Nakajima, Kiyomi; Qin, Lu-Chang

    2012-03-12

    Single HfC nanowire field emitter/electrode structures have been fabricated using nano-assembling and electron beam induced deposition. Field ion microscopy has been applied to study the atomic arrangement of facets formed on a field evaporation-modified HfC nanowire tip. Field evaporation and crystal form studies suggest that the {l_brace}111{r_brace} and {l_brace}110{r_brace} crystal planes have lower work functions, while the {l_brace}100{r_brace}, {l_brace}210{r_brace}, and {l_brace}311{r_brace} planes have higher work functions. Field emission measurement permits us to obtain that the work function of the {l_brace}111{r_brace} crystal plane is about 3.4 eV.

  14. Magnetic Refrigeration Development

    NASA Technical Reports Server (NTRS)

    Deardoff, D. D.; Johnson, D. L.

    1984-01-01

    Magnetic refrigeration is being developed to determine whether it may be used as an alternative to the Joule-Thomson circuit of a closed cycle refrigerator for providing 4 K refrigeration. An engineering model 4-15 K magnetic refrigerator has been designed and is being fabricated. This article describes the overall design of the magnetic refrigerator.

  15. Fluorescent refrigeration

    DOEpatents

    Epstein, Richard I.; Edwards, Bradley C.; Buchwald, Melvin I.; Gosnell, Timothy R.

    1995-01-01

    Fluorescent refrigeration is based on selective radiative pumping, using substantially monochromatic radiation, of quantum excitations which are then endothermically redistributed to higher energies. Ultimately, the populated energy levels radiatively deexcite emitting, on the average, more radiant energy than was initially absorbed. The material utilized to accomplish the cooling must have dimensions such that the exciting radiation is strongly absorbed, but the fluorescence may exit the material through a significantly smaller optical pathlength. Optical fibers and mirrored glasses and crystals provide this requirement.

  16. 46 CFR 154.1735 - Methyl acetylene-propadiene mixture.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... mixture must have a refrigeration system without vapor compression or have a refrigeration system with the... separate cargo piping, vent piping, and refrigeration equipment for methyl acetylene-propadiene that are segregated from other cargo piping, vent piping and refrigeration equipment on the vessel....

  17. 46 CFR 154.1735 - Methyl acetylene-propadiene mixture.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... mixture must have a refrigeration system without vapor compression or have a refrigeration system with the... separate cargo piping, vent piping, and refrigeration equipment for methyl acetylene-propadiene that are segregated from other cargo piping, vent piping and refrigeration equipment on the vessel....

  18. 46 CFR 154.1735 - Methyl acetylene-propadiene mixture.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... mixture must have a refrigeration system without vapor compression or have a refrigeration system with the... separate cargo piping, vent piping, and refrigeration equipment for methyl acetylene-propadiene that are segregated from other cargo piping, vent piping and refrigeration equipment on the vessel....

  19. Reduced-temperature processing and consolidation of ultra-refractory Ta4HfC5

    SciTech Connect

    Gaballa, Osama; Cook, B. A.; Russell, A. M.

    2013-04-26

    TaC, HfC, and WC powders were subjected to high-energy milling and hot pressing to produce Ta4HfC5, a composite of Ta(4)HfC5 + 30 vol.% WC, and a composite of Ta4HfC5 + 50 vol.% WC. Sub-micron powders were examined after four different milling intervals prior to hot pressing. XRD was used to verify proper phase formation. SEM, relative density, and hardness measurements were used to examine the resulting phases. Hot pressed compacts of Ta4HfC5 showed densification as high as 98.6% along with Vickers hardness values of 21.4 GPa. Similarly, Ta4HfC5 + 30 vol.% WC exhibited 99% densification with a Vickers hardness of 22.5 GPa. These levels of densification were achieved at 1500 degrees C, which is lower than any previously reported sintering temperature for Ta4HfC5. Microhardness values measured in this study were higher than those previously reported for Ta4HfC5. The WC additions to Ta4HfC5 were found to improve densification and increase microhardness. (C) 2013 Elsevier Ltd. All rights reserved.

  20. Refrigerant pressurization system with a two-phase condensing ejector

    DOEpatents

    Bergander, Mark

    2009-07-14

    A refrigerant pressurization system including an ejector having a first conduit for flowing a liquid refrigerant therethrough and a nozzle for accelerating a vapor refrigerant therethrough. The first conduit is positioned such that the liquid refrigerant is discharged from the first conduit into the nozzle. The ejector includes a mixing chamber for condensing the vapor refrigerant. The mixing chamber comprises at least a portion of the nozzle and transitions into a second conduit having a substantially constant cross sectional area. The condensation of the vapor refrigerant in the mixing chamber causes the refrigerant mixture in at least a portion of the mixing chamber to be at a pressure greater than that of the refrigerant entering the nozzle and greater than that entering the first conduit.

  1. Refrigeration and Food Safety

    MedlinePlus

    ... Types of Bacteria in Refrigerated Foods Safe Refrigerator Temperature Safe Handling of Foods for Refrigerating Placement of ... or packed in snow. He realized the cold temperatures would keep game for times when food was ...

  2. Measurements with a recuperative superfluid Stirling refrigerator

    SciTech Connect

    Watanabe, A.; Swift, G.W.; Brisson, J.G.

    1995-08-01

    A superfluid Stirling refrigerator cooled to 168 mK using a 4.9% {sup 3}He- {sup 4}He mixture and exhausting its waste heat at 383 mK. Cooling power versus temperature and speed is presented for 4.9%, 17%, and 36% mixtures. At the highest concentration, a dissipation mechanism of unknown origin is observed.

  3. Refrigerant directly cooled capacitors

    DOEpatents

    Hsu, John S.; Seiber, Larry E.; Marlino, Laura D.; Ayers, Curtis W.

    2007-09-11

    The invention is a direct contact refrigerant cooling system using a refrigerant floating loop having a refrigerant and refrigeration devices. The cooling system has at least one hermetic container disposed in the refrigerant floating loop. The hermetic container has at least one electronic component selected from the group consisting of capacitors, power electronic switches and gating signal module. The refrigerant is in direct contact with the electronic component.

  4. Fluorescent refrigeration

    DOEpatents

    Epstein, R.I.; Edwards, B.C.; Buchwald, M.I.; Gosnell, T.R.

    1995-09-05

    Fluorescent refrigeration is based on selective radiative pumping, using substantially monochromatic radiation, of quantum excitations which are then endothermically redistributed to higher energies. Ultimately, the populated energy levels radiatively deexcite emitting, on the average, more radiant energy than was initially absorbed. The material utilized to accomplish the cooling must have dimensions such that the exciting radiation is strongly absorbed, but the fluorescence may exit the material through a significantly smaller optical pathlength. Optical fibers and mirrored glasses and crystals provide this requirement. 6 figs.

  5. LABORATORY INVESTIGATIONS OF INTERACTIONS OF IRRADIATED O-XYLENE/NOX/SO2/AIR MIXTURES WITH AQUEOUS MEDIA CONTAINING SODIUM FLUORIDE, SODIUM TRIFLUOROACETATE, AMMONIUM NITRATE AND HYDROGEN PEROXIDE

    EPA Science Inventory

    Laboratory experiments were conducted to investigate interactions between complex air mixtures and aqueous films containing hydrolysis products of hydrochlorofluorocarbon (HCFC) and hydrofluorocarbon (HFC) oxidation products. he experiments consisted of exposing aqueous films con...

  6. REFRIGERATION ESPECIALLY FOR VERY LOW TEMPERATURES

    DOEpatents

    Kennedy, P.B.; Smith, H.R. Jr.

    1960-09-13

    A refrigeration system for producing very low temperatures is described. The system of the invention employs a binary mixture refrigerant in a closed constant volume, e.g., Freon and ethylene. Such mixture is compressed in the gaseous state and is then separated in a fractionating column element of the system. Thenceforth, the first liquid to separate is employed stagewise to cool and liq uefy successive portions of the refrigerant at successively lower temperatures by means of heat exchangers coupled between the successive stages. When shut down, all of the volumes of the system are interconnected and a portion of the refrigerant remains liquid at ambient temperatures so that no dangerous overpressures develop. The system is therefore rugged, simple and dependable in operation.

  7. Optimal refrigerator

    NASA Astrophysics Data System (ADS)

    Allahverdyan, Armen E.; Hovhannisyan, Karen; Mahler, Guenter

    2010-05-01

    We study a refrigerator model which consists of two n -level systems interacting via a pulsed external field. Each system couples to its own thermal bath at temperatures Th and Tc , respectively (θ≡Tc/Th<1) . The refrigerator functions in two steps: thermally isolated interaction between the systems driven by the external field and isothermal relaxation back to equilibrium. There is a complementarity between the power of heat transfer from the cold bath and the efficiency: the latter nullifies when the former is maximized and vice versa. A reasonable compromise is achieved by optimizing the product of the heat-power and efficiency over the Hamiltonian of the two systems. The efficiency is then found to be bounded from below by ζCA=(1)/(1-θ)-1 (an analog of the Curzon-Ahlborn efficiency), besides being bound from above by the Carnot efficiency ζC=(1)/(1-θ)-1 . The lower bound is reached in the equilibrium limit θ→1 . The Carnot bound is reached (for a finite power and a finite amount of heat transferred per cycle) for lnn≫1 . If the above maximization is constrained by assuming homogeneous energy spectra for both systems, the efficiency is bounded from above by ζCA and converges to it for n≫1 .

  8. Optimal refrigerator.

    PubMed

    Allahverdyan, Armen E; Hovhannisyan, Karen; Mahler, Guenter

    2010-05-01

    We study a refrigerator model which consists of two n -level systems interacting via a pulsed external field. Each system couples to its own thermal bath at temperatures T h and T c, respectively (θ ≡ T c/T h < 1). The refrigerator functions in two steps: thermally isolated interaction between the systems driven by the external field and isothermal relaxation back to equilibrium. There is a complementarity between the power of heat transfer from the cold bath and the efficiency: the latter nullifies when the former is maximized and vice versa. A reasonable compromise is achieved by optimizing the product of the heat-power and efficiency over the Hamiltonian of the two systems. The efficiency is then found to be bounded from below by [formula: see text] (an analog of the Curzon-Ahlborn efficiency), besides being bound from above by the Carnot efficiency [formula: see text]. The lower bound is reached in the equilibrium limit θ → 1. The Carnot bound is reached (for a finite power and a finite amount of heat transferred per cycle) for ln n > 1. If the above maximization is constrained by assuming homogeneous energy spectra for both systems, the efficiency is bounded from above by ζ CA and converges to it for n > 1. PMID:20866207

  9. NEW CHEMICAL ALTERNATIVE FOR OZONE-DEPLETING SUBSTANCES: HFC-245CA

    EPA Science Inventory

    The report gives results of a preliminary evaluation of a new hydrofluorocarbon (HFC) -- HFC-245ca or 1,1,2,2,3-pentafluoropropane -- as a possible alternative for chlorofluorocarbon (CFC)-11 (trichlorofluoromethane) and hydrochlorofluorocarbon (HCFC)-123 (1,1,1-trifluoro-2,2-dic...

  10. Aging of polyurethane foam insulation in simulated refrigerator panels -- Initial results with third-generation blowing agents

    SciTech Connect

    Wilkes, K.E.; Gabbard, W.A.; Weaver, F.J.

    1998-11-01

    Laboratory data are presented on the effect of constant-temperature aging on the apparent thermal conductivity of polyurethane foam insulation for refrigerators and freezers. The foam specimens were blown with HCFC-141b and with three of its potential replacements -- HFC-134a, HFC-245fa, and cyclopentane. Specimens were aged at constant temperatures of 90 F, 40 F, and {minus}10 F. Thermal conductivity measurements were made on two types of specimens: full-thickness simulated refrigerator panels containing foam enclosed between solid plastic sheets, and thin slices of core foam cut from similar panels. Results are presented for about 250 days of aging for the core-foam specimens and for the first six months of aging for the full-thickness panels.

  11. Aging of Polyurethane Foam Insulation in Simulated Refrigerator Panels--One-Year Results with Third-Generation Blowing Agents

    SciTech Connect

    Gabbard, W.A.; Weaver, F.J.; Wilkes, K.E.

    1999-09-27

    Laboratory data are presented on the effect of constant-temperature aging on the apparent thermal conductivity of polyurethane foam insulation for refrigerators and freezers. The foam specimens were blown with HCFC-141b and with three of its potential replacements--HFC-134a, HFC-245fa, and cyclopentane. Specimens were aged at constant temperatures of 90 F, 40 F, and {minus}10 F. Thermal conductivity measurements were made on two types of specimens: full-thickness simulated refrigerator panels containing foam enclosed between solid plastic sheets, and thin slices of core foam cut from similar panels. Results are presented for the first year of a multi-year study for the full-thickness panels and for about 1-1/2 years of aging for the core-foam specimens.

  12. Aging of Polyurethane Foam Insulation in Simulated Refrigerator Panels--Three-Year Results with Third-Generation Blowing Agents

    SciTech Connect

    Wilkes, K.E.

    2001-05-29

    Laboratory data are presented on the effect of constant-temperature aging on the apparent thermal conductivity of polyurethane foam insulation for refrigerators and freezers. The foam specimens were blown with HCFC-141b and with three of its potential replacements--HFC-134a, HFC-245fa, and cyclopentane. Specimens were aged at constant temperatures of 90 F, 40 F, and -10 F. Thermal conductivity measurements were made on two types of specimens: full-thickness simulated refrigerator panels containing foam enclosed between solid plastic sheets, and thin slices of core foam cut from similar panels. Results are presented for the first three years of a multi-year aging study. Preliminary comparisons of measured data with predictions of a mathematical aging model are presented.

  13. Adsorption of hydrofluorocarbons HFC-134 and HFC-134A on X and Y zeolites: Effect of ion-exchange on selectivity and heat of adsorption

    SciTech Connect

    Savitz, S.; Siperstein, F.R.; Huber, R.; Tieri, S.M.; Gorte, R.J.; Myers, A.L.; Grey, C.P.; Corbin, D.R.

    1999-09-30

    Adsorption isotherms and heats of adsorption were measured for HFC-134 (1,1,2,2-tetrafluoroethane) and HFC-134a (1,1,1,2-tetrafluoroethane) on a series of ion-exchanged (H, Li, Na, Rb, Cs) faujasites using volumetric and calorimetric techniques. The species and number of ions present in the zeolite strongly influence the heats of adsorption and the preferential adsorption of HFC-134 compared to HFC-134a. The selectivity is considerably higher in X than in Y zeolites because of the larger number of nonframework ions in X zeolites. The saturation capacity is six molecules per supercavity for both HFCs. The differences in observed heats of adsorption (except for RbX) can be explained by reasonable and consistent values of dispersion and ion-dipole electrostatic energies. The high selectivities for NaX and RbX indicate that either zeolite would be highly effective for gas separation.

  14. New SI-traceable reference gas mixtures for fluorinated gases at atmospheric concentration

    NASA Astrophysics Data System (ADS)

    Guillevic, Myriam; Wyss, Simon A.; Pascale, Céline; Vollmer, Martin K.; Niederhauser, Bernhard; Reimann, Stefan

    2016-04-01

    In order to better support the monitoring of greenhouse gases in the atmosphere, we develop a method to produce reference gas mixtures for fluorinated gases (F-gases, i.e. gases containing fluorine atoms) in a SI-traceable way, meaning that the amount of substance fraction in mole per mole is traceable to SI-units. These research activities are conducted in the framework of the HIGHGAS and AtmoChem-ECV projects. First, single-component mixtures in synthetic air at ~85 nmol/mol (ppb) are generated for HFC-125 (pentafluoroethane, a widely used HFC) and HFC-1234yf (2,3,3,3-tetrafluoropropene, a car air conditioner fluid of growing importance). These mixtures are first dynamically produced by permeation: a permeator containing the pure substance loses mass linearly over time under a constant gas flow, in the permeation chamber of a magnetic suspension balance, which is regularly calibrated. This primary mixture is then pressurised into Silconert2000-coated stainless steel cylinders by cryo-filling. In a second step these mixtures are dynamically diluted using 2 subsequent dilution steps piloted by mass flow controllers (MFC) and pressure controllers. The assigned mixture concentration is calculated mostly based on the permeator mass loss, on the carrier gas purity and on the MFCs flows. An uncertainty budget is presented, resulting in an expanded uncertainty of 2% for the HFC-125 reference mixture and of 2.5% for the HFC-1234yf mixture (95% confidence interval). The final gas, with near-atmospheric concentration (17.11 pmol/mol for HFC-125, 2.14 pmol/mol for HFC-1234yf) is then measured with Medusa-GC/MS technology against standards calibrated on existing reference scales. The assigned values of the dynamic standards are in excellent agreement with measurements vs the existing reference scales, SIO-14 from the Scripps Institution of Oceanography for HFC-125 and Empa-2013 for HFC-1234yf. Moreover, the Medusa-GC/MS measurements show the excellent purity of the SI

  15. REACH. Refrigeration Units.

    ERIC Educational Resources Information Center

    Snow, Rufus; And Others

    As a part of the REACH (Refrigeration, Electro-Mechanical, Air-Conditioning, Heating) electromechanical cluster, this student manual contains individualized instructional units in the area of refrigeration. The instructional units focus on refrigeration fundamentals, tubing and pipe, refrigerants, troubleshooting, window air conditioning, and…

  16. Evaluated rate constants for selected HCFC's and HFC's with OH and O((sup)1D)

    NASA Technical Reports Server (NTRS)

    Hampson, Robert F.; Kurylo, Michael J.; Sander, Stanley P.

    1990-01-01

    The chemistry of HCFC's and HFC's in the troposphere is controlled by reactions with OH in which a hydrogen atom is abstracted from the halocarbon to form water and a halo-alkyl radical. The halo-alkyl radical subsequently reacts with molecular oxygen to form a peroxy radical. The reactions of HCFC's and HFC's with O(exp1D) atoms are unimportant in the troposphere, but may be important in producing active chlorine of OH in the stratosphere. Here, the rate constants for the reactions of OH and O(exp1D) with many HFC's and HCFC's are evaluated. Recommendations are given for the five HCFC's and three HFC's specified by AFEAS as primary alternatives as well as for all other isomers of C1 and C2 HCFC's and HFC's where rate data exist. In addition, recommendations are included for CH3CCl3, CH2Cl2, and CH4.

  17. Stirling Refrigerator

    NASA Astrophysics Data System (ADS)

    Kagawa, Noboru

    A Stirling cooler (refrigerator) was proposed in 1862 and the first Stirling cooler was put on market in 1955. Since then, many Stirling coolers have been developed and marketed as cryocoolers. Recently, Stirling cycle machines for heating and cooling at near-ambient temperatures between 173 and 400K, are recognized as promising candidates for alternative system which are more compatible with people and the Earth. The ideal cycles of Stirling cycle machine offer the highest thermal efficiencies and the working fluids do not cause serious environmental problems of ozone depletion and global warming. In this review, the basic thermodynamics of Stirling cycle are briefly described to quantify the attractive cycle performance. The fundamentals to realize actual Stirling coolers and heat pumps are introduced in detail. The current status of the Stirling cycle machine technologies is reviewed. Some machines have almost achieved the target performance. Also, duplex-Stirling-cycle and Vuilleumier-cycle machines and their performance are introduced.

  18. ARTI refrigerant database

    SciTech Connect

    Calm, J.M.

    1996-11-15

    The Refrigerant Database is an information system on alternative refrigerants, associated lubricants, and their use in air conditioning and refrigeration. It consolidates and facilitates access to property, compatibility, environmental, safety, application and other information. It provides corresponding information on older refrigerants, to assist manufacturers and those using alternative refrigerants, to make comparisons and determine differences. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern.

  19. ARTI refrigerant database

    SciTech Connect

    Calm, J.M.

    1999-01-01

    The Refrigerant Database is an information system on alternative refrigerants, associated lubricants, and their use in air conditioning and refrigeration. It consolidates and facilities access to property, compatibility, environmental, safety, application and other information. It provides corresponding information on older refrigerants, to assist manufacturers and those using alternative refrigerants, to make comparisons and determine differences. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern.

  20. ARTI refrigerant database

    SciTech Connect

    Calm, J.M.

    1996-07-01

    The Refrigerant Database is an information system on alternative refrigerants, associated lubricants, and their use in air conditioning and refrigeration. It consolidates and facilitates access to property, compatibility, environmental, safety, application and other information. It provides corresponding information on older refrigerants, to assist manufacturers and those using alternative refrigerants, to make comparisons and determine differences. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern.

  1. ARTI refrigerant database

    SciTech Connect

    Calm, J.M.

    1996-01-15

    The Refrigerant Database is an information system on alternative refrigerants, associated lubricants, and their use in air conditioning and refrigeration. it consolidates and facilitates.access to property, compatibility, environmental, safety, application and other information. It provides corresponding information on older refrigerants, to assist manufacturers and those using alternative refrigerants, to make comparisons and determine differences. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern.

  2. Liquid-air partition coefficients of 1,1-difluoroethane (HFC152a), 1,1,1-trifluoroethane (HFC143a), 1,1,1,2-tetrafluoroethane (HFC134a), 1,1,1,2,2-pentafluoroethane (HFC125) and 1,1,1,3,3-pentafluoropropane (HFC245fa).

    PubMed

    Ernstgård, Lena; Lind, Birger; Andersen, Melvin E; Johanson, Gunnar

    2010-01-01

    Blood-air and tissue-blood coefficients (lambda) are essential to characterize the uptake and disposition of volatile substances, e.g. by physiologically based pharmacokinetic (PBPK) modelling. Highly volatile chemicals, including many hydrofluorocarbons (HFC) have low solubility in liquid media. These characteristics pose challenges for determining lambda values. A modified head-space vial equilibrium method was used to determine lambda values for five widely used HFCs. The method is based on automated head-space gas chromatography and injection of equal amount of chemical in two head-space vials with identical air phase volumes but different volumes of the liquid phase. The liquids used were water (physiological saline), fresh human blood, and olive oil. The average lambda values (n = 8) were as follows: 1,1-difluoroethane (HFC152a) - 1.08 (blood-air), 1.11 (water-air) and 5.6 (oil-air); 1,1,1-trifluoroethane (HFC143a) - 0.15, 0.15 and 1.90; 1,1,1,2-tetrafluoroethane (HFC134a) - 0.36, 0.35 and 3.5; 1,1,1,2,2-pentafluoroethane (HFC125) - 0.083, 0.074 and 1.71; and 1,1,1,3,3-pentafluoropropane (HFC245fa) - 0.62, 0.58 and 12.1. The lambda values appeared to be concentration-independent in the investigated range (2-200 ppm). In spite of the low lambda values, the method errors were modest, with coefficients of variation of 9, 11 and 10% for water, blood and oil, respectively. PMID:19701883

  3. Molecular properties of alternative refrigerants derived from dielectric-constant measurements

    SciTech Connect

    Barao, M.T.; Castro, C.A.N. de; Mardolcar, U.V.

    1997-03-01

    A review of the current work in Lisbon on the measurement of the dielectric constant of the liquid phase of some environmentally acceptable refrigerants proposed as alternative replacements of the chlorofluorocarbons (CFCs), responsible for the destruction of the ozone layer, is presented. Measurements on HCFC 141b, HCFC 142b, HCFC 123, HFC 134a, HFC 152a, and HFC 32 samples of stated purities of 99.8 mass % or better were performed as a function of pressure and temperature, in the temperature range from 200 to 300 K and at pressures up to 20 MPa. The ratio of the capacitances of a cell filled with the sample and under vacuum was measured with a direct capacitance method. The dielectric-constant measurements have a repeatability of 0.003% and an accuracy of 0.1%. The theory developed by Vedam et al. based on the Eulerian Strain and the Kirkwood equation for the variation of the modified molar polarization with temperature and density were applied to obtain the dipole moments of the refrigerants in the liquid state, to obtain a physical insight of the molecular behavior, and to understand the equilibrium configuration of these liquids.

  4. Multiannual top-down estimate of HFC-23 emissions in East Asia.

    PubMed

    Fang, X; Stohl, A; Yokouchi, Y; Kim, J; Li, S; Saito, T; Park, S; Hu, J

    2015-04-01

    Trifluoromethane (CHF3, HFC-23), with a 100-year global warming potential (GWP) of 12400, is regulated under the Kyoto Protocol. HFC-23 emissions in East Asia, especially in China, are currently thought to represent the majority of global HFC-23 emissions. This study provides both a bottom-up emission inventory and the multiannual top-down estimate of HFC-23 emissions in East Asia during 2007-2012. The new bottom-up inventory yields improved simulated HFC-23 mixing ratios compared to previous bottom-up inventories. The top-down estimate uses inverse modeling to further improve the model-measurement agreement. Results show that China contributed 94-98% of all HFC-23 emissions in East Asia. Annual a posteriori emissions from China were around 6.3 Gg/yr during the period 2007-2010 after which they increased to 7.1 ± 0.7 Gg/yr in 2011 and 8.8 ± 0.8 Gg/yr in 2012. For the first time, this study also provides a top-down estimate of HFC-23/HCFC-22 (chlorodifluoromethane, CHClF2) coproduction ratios in non-CDM (Clean Development Mechanism) HCFC-22 production plants as well as in all HCFC-22 production plants in China. PMID:25785483

  5. Method and refrigerants for replacing existing refrigerants in centrifugal compressors

    SciTech Connect

    Kopko, W.L.

    1991-12-31

    This patent describes a method for replacing an existing refrigerant in a centrifugal compressor. It comprises selecting a desired impeller Mach number for the centrifugal compressor; selecting a base refrigerant constituent; combining at least one additive refrigerant constituent with the base refrigerant constituent to form a replacement refrigerant having at least one physical or chemical property different from the existing refrigerant and substantially providing the desired impeller Mach number in the centrifugal compressor; and replacing the existing refrigerant with the replacement refrigerant.

  6. Refrigerating machine oil

    SciTech Connect

    Nozawa, K.

    1981-03-17

    Refrigerating machine oil to be filled in a sealed motorcompressor unit constituting a refrigerating cycle system including an electric refrigerator, an electric cold-storage box, a small-scaled electric refrigerating show-case, a small-scaled electric cold-storage show-case and the like, is arranged to have a specifically enhanced property, in which smaller initial driving power consumption of the sealed motor-compressor and easier supply of the predetermined amount of the refrigerating machine oil to the refrigerating system are both guaranteed even in a rather low environmental temperature condition.

  7. Influence of Oil on Refrigerant Evaporator Performance

    NASA Astrophysics Data System (ADS)

    Kim, Jong-Soo; Nagata, Karsuya; Katsuta, Masafumi; Tomosugi, Hiroyuki; Kikuchi, Kouichiro; Horichi, Toshiaki

    In vapor compression refrigeration system using oil-lubricated compressors, some amount of oil is always circulated through the system. Oil circulation can have a significant influence on the evaporator performance of automotive air conditioner which is especially required to cool quickly the car interior after a period standing in the sun. An experimental investigation was carried out an electrically heated horizontal tube to measure local heat transfer coefficients for various flow rates and heat fluxes during forced convection boiling of pure refrigerant R12 and refrigerant-oil mixtures (0-11% oil concentration by weight) and the results were compared with oil free performance. Local heat transfer coefficients increased at the region of low vapor quality by the addition of oil. On the other hand, because the oil-rich liquid film was formed on the heat transfer surface, heat transfer coefficients gradually decreased as the vapor quality became higher. Average heat transfer coefficient reached a maximum at about 4% oil concentration and this trend agreed well with the results of Green and Furse. Previous correlations, using the properties of the refrigerant-oil mixture, could not predict satisfactorily the local heat transfer coefficients data. New correlation modified by oil concentration factor was developed for predicting the corresponding heat transfer coefficient for refrigerant-oil mixture convection boiling. The maximum percent deviation between predicted and measured heat transfer coefficient was within ±30%.

  8. ARTI Refrigerant Database

    SciTech Connect

    Calm, J.M.

    1994-05-27

    The Refrigerant Database consolidates and facilitates access to information to assist industry in developing equipment using alternative refrigerants. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern.

  9. Refrigeration for Cryogenic Sensors

    NASA Technical Reports Server (NTRS)

    Gasser, M. G. (Editor)

    1983-01-01

    Research in cryogenically cooled refrigerators is discussed. Low-power Stirling cryocoolers; spacecraft-borne long-life units; heat exchangers; performance tests; split-stirling, linear-resonant, cryogenic refrigerators; and computer models are among the topics discussed.

  10. New Rules for Refrigerants.

    ERIC Educational Resources Information Center

    Jackson, Robert

    1999-01-01

    Discusses how educational facilities can comply with new Environmental Protection Agency regulations regarding commercial refrigerants. Tips include developing a compliance plan with a manager in charge of it, and developing an accurate and complete refrigerant-systems assessment. (GR)

  11. ARTI Refrigerant Database

    SciTech Connect

    Calm, J.M.

    1995-06-01

    The Refrigerant Database consolidates and facilitates access to information to assist industry in developing equipment using alternative refrigerants. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern.

  12. ARTI Refrigerant Database

    SciTech Connect

    Calm, J.M.

    1995-02-01

    The Refrigerant Database consolidates and facilitates access to information to assist industry in developing equipment using alternative refrigerants. The underlying purpose is to accelerate phase-out of chemical compounds of environmental concern.

  13. Chromium-based catalyst for HFC-125 synthesis: promoters effect

    NASA Astrophysics Data System (ADS)

    Reshetnikov, S. I.; Simonova, L. G.; Zirka, A. A.; Petrov, R. V.

    2016-01-01

    A variation of promoters, including rare-earth elements, allows to control of the specific surface and, perhaps, oxidation state of chromium and, consequently, catalyst activity and selectivity of chromium-based catalyst for HFC-125. To improve the catalytic properties of the 15% Cr2O3 γ - 85% -Al2O3 oxide system were added promoters (Ni or Cu or Co) in an amount of 5 wt% in terms of oxides. It was found that additional promotion Cr-Al samples by nickel and copper allow to increase the specific surface area of about 25-40% and the activity increased about 2 times. Modification of cobalt resulted in a decrease of the surface by 20% and the activity decreased by about 2 times.

  14. Molecular modeling of fluoropropene refrigerants.

    PubMed

    Raabe, Gabriele

    2012-05-17

    Different fluoropropenes are currently considered as refrigerants, either as pure compounds or as components in low GWP (global warming potential) refrigerant mixtures. Due to their limited commercial production, experimental data for the thermophysical properties of fluoropropenes and their mixtures are in general rare, which hampers the exploration of their performance in technical applications. In principle, molecular simulation can be used to predict the relevant properties of refrigerants and refrigerant blends, provided that adequate intermolecular potential functions ("force fields") are available. In our earlier work (Raabe, G.; Maginn, E. J., J. Phys. Chem. B2010, 114, 10133-10142), we introduced a transferable force field for fluoropropenes comprising the compounds 3,3,3-trifluoro-1-propene (HFO-1243zf), 2,3,3,3-tetrafluoro-1-propene (HFO-1234yf), and hexafluoro-1-propene (HFO-1216). In this paper, we provide an extension of the force field model to the trans- and cis-1,3,3,3-tetrafluoro-1-propene (HFO-1234ze(E), HFO-1234ze) and the cis-1,2,3,3,3-pentafluoro-1-propene (HFO-1225ye(Z)) as well as revised simulation results for HFO-1216. We present Gibbs ensemble simulation results on the vapor pressures, saturated densities, and heats of vaporization of these compounds in comparison with experimental results. The simulation results show that the force field model enables reliable predictions of the properties of the different fluoropropenes and also reproduces well the differing vapor-liquid coexistence and vapor pressure curve of the cis- and trans-isomers of 1,3,3,3-tetrafluoro-1-propene, HFO-1234ze and HFO-1234ze(E). For these two isomers, we also present molecular dynamics simulation studies on their local structure. PMID:22519953

  15. Increase in HFC-134a emissions in response to the success of the Montreal Protocol

    NASA Astrophysics Data System (ADS)

    Fortems-Cheiney, A.; Saunois, M.; Pison, I.; Chevallier, F.; Bousquet, P.; Cressot, C.; Montzka, S. A.; Fraser, P. J.; Vollmer, M. K.; Simmonds, P. G.; Young, D.; O'Doherty, S.; Weiss, R. F.; Artuso, F.; Barletta, B.; Blake, D. R.; Li, S.; Lunder, C.; Miller, B. R.; Park, S.; Prinn, R.; Saito, T.; Steele, L. P.; Yokouchi, Y.

    2015-11-01

    The 1,1,1,2-tetrafluoroethane (HFC-134a), an important alternative to CFC-12 in accordance with the Montreal Protocol on Substances that Deplete the Ozone Layer, is a high global warming potential greenhouse gas. Here we evaluate variations in global and regional HFC-134a emissions and emission trends, from 1995 to 2010, at a relatively high spatial and temporal (3.75° in longitude × 2.5° in latitude and 8 day) resolution, using surface HFC-134a measurements. Our results show a progressive increase of global HFC-134a emissions from 19 ± 2 Gg/yr in 1995 to 167 ± 5 Gg/yr in 2010, with both a slowdown in developed countries and a 20%/yr increase in China since 2005. A seasonal cycle is also seen since 2002, which becomes enhanced over time, with larger values during the boreal summer.

  16. ALTERNATIVES FOR OZONE-DEPLETING REFRIGERANTS

    EPA Science Inventory

    The paper gives results of tests of 2 of 11 compounds and several mixtures selected for intensive evaluation from about 40 new synthesized compounds that may serve as environmentally safe and effective refrigerant alternatives over the long term. he two compounds are: 1, 1, 1, 2,...

  17. Compatibility of refrigerants and lubricants with elastomers. Final report

    SciTech Connect

    Hamed, G.R.; Seiple, R.H.; Taikum, Orawan

    1994-01-01

    The information contained in this report is designed to assist the air-conditioning and refrigeration industry in the selection of suitable elastomeric gasket and seal materials that will prove useful in various refrigerant and refrigeration lubricant environments. In part I of the program the swell behavior in the test fluids has been determined using weight and in situ diameter measurements for the refrigerants and weight, diameter and thickness measurements for the lubricants. Weight and diameter measurements are repeated after 2 and 24 hours for samples removed fro the refrigerant test fluids and 24 hours after removal from the lubricants. Part II of the testing program includes the evaluation of tensile strength, hardness, weight, and dimensional changes after immersion aging in refrigerant/lubricant mixtures of selected elastomer formulations at elevated temperature and pressure.

  18. Historical emissions of HFC-23 (CHF3) in China and projections upon policy options by 2050.

    PubMed

    Fang, Xuekun; Miller, Benjamin R; Su, Shenshen; Wu, Jing; Zhang, Jianbo; Hu, Jianxin

    2014-04-01

    Trifluoromethane (CHF3, HFC-23) is one of the hydrofluorocarbons (HFCs) regulated under the Kyoto Protocol with a global warming potential (GWP) of 14 800 (100-year). China's past, present, and future HFC-23 emissions are of considerable interest to researchers and policymakers involved in climate change. In this study, we compiled a comprehensive historical inventory (1980-2012) and a projection (2013-2050) of HFC-23 production, abatements, and emissions in China. Results show that HFC-23 production in China increased from 0.08 ± 0.05 Gg/yr in 1980 to 15.4 ± 2.1 Gg/yr (228 ± 31 Tg/yr CO2-eq) in 2012, while actual HFC-23 emissions reached a peak of 10.5 ± 1.8 Gg/yr (155 ± 27 Tg/y CO2-eq) in 2006, and decreased to a minimum of 7.3 ± 1.3 Gg/yr (108 ± 19 Tg/yr CO2-eq) in 2008 and 2009. Under the examined business-as-usual (BAU) scenario, the cumulative emissions of HFC-23 in China over the period 2013-2050 are projected to be 609 Gg (9015 Tg CO2-eq which approximates China's 2012 CO2 emissions). Currently, China's annual HFC-23 emissions are much higher than those from the developed countries, while it is estimated that by year 2027, China's historic contribution to the global atmospheric burden of HFC-23 will have surpassed that of the developed nations under the BAU scenario. PMID:24605818

  19. HFC-134a emissions from mobile air conditioning in China from 1995 to 2030

    NASA Astrophysics Data System (ADS)

    Su, Shenshen; Fang, Xuekun; Li, Li; Wu, Jing; Zhang, Jianbo; Xu, Weiguang; Hu, Jianxin

    2015-02-01

    Since 1995, 1,1,1,2-tetrafluoroethane (CH2FCF3, HFC-134a) has become the most important substitute of CFC-12 in mobile air conditioning (MAC) in China and MAC sector has dominated all the emissions of HFC-134a. In this study, we developed an accurate, updated and county-level inventory of the HFC-134a emissions from MAC in China for the period of 1995-2030 with an improved bottom-up method. Our estimation indicated that the total HFC-134a emissions kept growing at increase rates of ∼100% per year for 1995-2000 and ∼34% per year for 2001-2010. In 2010, HFC-134a emissions from MAC in China reached 16.7 Gg (10.5-22.7 Gg at 95% confidential interval), equivalent to 21.7 Tg CO2 (CO2-eq). Furthermore, the emissions in China estimated in this study accounted for 9.8% of global HFC-134a emissions and 29.0% of total emissions from Non-Annex_I countries in 2010. Due to the more advanced social-economic conditions and more intensive ownership of automobiles, greater HFC-134a were observed to come from big cities in East China. Under a Business-as-usual (BAU) Scenario, projected emissions will grow to 89.4 (57.9-123.9) Gg (about 75.3-161.1 Tg CO2-eq) in 2030, but under an Alternative Scenario, 88.6% of the projected emissions under BAU scenario could be curbed. Our estimation demonstrates huge emission mitigation potential of HFC-134a in China's MAC sector.

  20. Reciprocating magnetic refrigerator

    NASA Technical Reports Server (NTRS)

    Johnson, D. L.

    1985-01-01

    A 4 to 15 K magnetic refrigerator to test as an alternative to the Joule-Thomson circuit as the low temperature stage of a 4 to 300 K closed-cycle refrigerator was developed. The reciprocating magnetic refrigerator consists of two matrices of gadolinium gallium garnet spheres located in tandem on a single piston which alternately moves each matrix into a 7 telsa magnetic field. A separate helium gas circuit is used as the heat exchange mechanism for the low and the high temperature extremes of the magnetic refrigerator. Details of the design and results of the initial refrigerator component tests are presented.

  1. Docmentation of newly developed methods to assess material compatibility in refrigeration and air-conditioning applications. Final report, 1 October 1993--31 August 1994

    SciTech Connect

    Hawley, M.

    1994-08-01

    This document summarizes the experimental methods used during the materials compatibility and lubricants research program (MCLR). The MCLR program was jointly sponsored by the U.S. Department of Energy and the air-conditioning and refrigeration industry. The individual projects were managed by the Air-Conditioning and Refrigeration Technology Institute. The projects presented in this report are: Chemical and Thermal Stability of Refrigerant/Lubricant Mixtures with Metals, Miscibility of Lubricants with Refrigerants, Compatibility of Refrigerants and Lubricants with Motor Materials, Compatibility of Refrigerants and Lubricants with Elastomers, Compatibility of Refrigerants and Lubricants with Engineering Plastics and Sealed Tube Comparisons of the Compatibility of Desiccants with Refrigerants and Lubricants.

  2. Development of Low Global Warming Potential Refrigerant Solutions for Commercial Refrigeration Systems using a Life Cycle Climate Performance Design Tool

    SciTech Connect

    Abdelaziz, Omar; Fricke, Brian A; Vineyard, Edward Allan

    2012-01-01

    Commercial refrigeration systems are known to be prone to high leak rates and to consume large amounts of electricity. As such, direct emissions related to refrigerant leakage and indirect emissions resulting from primary energy consumption contribute greatly to their Life Cycle Climate Performance (LCCP). In this paper, an LCCP design tool is used to evaluate the performance of a typical commercial refrigeration system with alternative refrigerants and minor system modifications to provide lower Global Warming Potential (GWP) refrigerant solutions with improved LCCP compared to baseline systems. The LCCP design tool accounts for system performance, ambient temperature, and system load; system performance is evaluated using a validated vapor compression system simulation tool while ambient temperature and system load are devised from a widely used building energy modeling tool (EnergyPlus). The LCCP design tool also accounts for the change in hourly electricity emission rate to yield an accurate prediction of indirect emissions. The analysis shows that conventional commercial refrigeration system life cycle emissions are largely due to direct emissions associated with refrigerant leaks and that system efficiency plays a smaller role in the LCCP. However, as a transition occurs to low GWP refrigerants, the indirect emissions become more relevant. Low GWP refrigerants may not be suitable for drop-in replacements in conventional commercial refrigeration systems; however some mixtures may be introduced as transitional drop-in replacements. These transitional refrigerants have a significantly lower GWP than baseline refrigerants and as such, improved LCCP. The paper concludes with a brief discussion on the tradeoffs between refrigerant GWP, efficiency and capacity.

  3. HFC-134a Emissions in China: An Inventory for 1995-2030

    NASA Astrophysics Data System (ADS)

    Su, Shenshen; Fang, Xuekun; Wu, Jing; Li, Li; Hu, Jianxin; Han, Jiarui

    2014-05-01

    HFC-134a is the most important substitute of CFC-12 used in the mobile air-conditioner in China since 1995. The bottom-up method was used to estimate HFC-134a emissions in China, from 1995 to 2030, basing on updated automobile industry data and latest emission characters. From 1995, total HFC-134a emission has kept a high growth rate of nearly 60% per year, and reached 16,414.3 Mg (11,959.4-20,834.5 Mg) in 2010, which was equivalent to 23.5 Mt CO2-eq emissions. Furthermore, the emissions in China accounted for nearly half of total emissions of Non-AnnexI countries in 2008. As for provincial emissions in 2010, provinces with emission greater than 1,000 Mg are Guangdong, Shandong, Jiangsu and Beijing. Quantitative relationship between provincial HFC-134a emissions and GRP of the Tertiary Industry was used to estimate HFC-134a emissions at county level, and Hangzhou municipal district held the maximum emission intensity (4,605 Mg/10,000 km2). For HFC-134a, emissions calculated from the observations within 46 cities through Euler box model are in good agreement with the corresponding emissions estimated from the bottom-up method, verifying that the emission inventory at county level adequately describes the emission spatial pattern. For the future emissions of HFC-134a, projected emissions will reach 89,370.4 Mg (65,959.7- 114,068.2 Mg) in 2030 under the Business-as-usual (BAU) Scenario, but under the Alternative Scenario, a emission reduction potential of 88.6% of the projected BAU emissions would be obtained.

  4. Vapor-liquid equilibria of alternative refrigerants by molecular dynamics simulations

    SciTech Connect

    Lisal, M.; Aim, K.; Budinsky, R.; Vacek, V.

    1999-01-01

    Alternative refrigerants HFC-152a (CHF{sub 2}CH{sub 3}), HFC-143a (CF{sub 3}CH{sub 3}), HFC-134a (CF{sub 3}CH{sub 2}F), and HCFC-142b (CF{sub 2}ClCH{sub 3}) are modeled as a dipolar two-center Lennard-Jones fluid. Potential parameters of the model are fitted to the critical temperature and vapor-liquid equilibrium data. The required vapor-liquid equilibrium data of the model fluid are computed by the Gibbs-Duhem integration for molecular elongations L = 0.505 and 0.67, and dipole moments {mu}{sup *2} = 0, 2, 4, 5, 6, 7, and 8. Critical properties of the model fluid are estimated from the law of rectilinear diameter and critical scaling relation. The vapor-liquid equilibrium data are presented by Wagner equations. Comparison of the vapor-liquid equilibrium data based on the dipolar two-center Lennard-Jones fluid with data from the REFPROP database shows good-to-excellent agreement for coexisting densities and vapor pressure.

  5. Refrigerator Based on Chemisorption

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.

    1987-01-01

    Reversible chemical reaction generates pressurized oxygen for cooling. Concept for cryogenic refrigerator based on chemical absorption of oxygen by praseodymium/cerium oxide (PCO) compound. Refrigerator produces cryogenic liquid for cooling infrared sensors. Also used for liquefying air and separating oxygen from nitrogen in air. In chemisorption refrigerator, PCO alternately absorbs and desorbs oxygen depending on whether cooled or heated. One pair of compressors accepts oxygen while others releases it. Compressed oxygen liquefied when precooked and expanded.

  6. ARTI refrigerant database

    SciTech Connect

    Calm, J.M.

    1997-02-01

    The Refrigerant Database is an information system on alternative refrigerants, associated lubricants, and their use in air conditioning and refrigeration. It consolidates and facilitates access to property, compatibility, environmental, safety, application and other information. It provides corresponding information on older refrigerants, to assist manufacturers and those using alterative refrigerants, to make comparisons and determine differences. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern. The database provides bibliographic citations and abstracts for publications that may be useful in research and design of air-conditioning and refrigeration equipment. The complete documents are not included, though some may be added at a later date. The database identifies sources of specific information on various refrigerants. It addresses lubricants including alkylbenzene, polyalkylene glycol, polyolester, and other synthetics as well as mineral oils. It also references documents addressing compatibility of refrigerants and lubricants with metals, plastics, elastomers, motor insulation, and other materials used in refrigerant circuits. Incomplete citations or abstracts are provided for some documents. They are included to accelerate availability of the information and will be completed or replaced in future updates.

  7. ARTI refrigerant database

    SciTech Connect

    Calm, J.M.

    1998-08-01

    The Refrigerant Database is an information system on alternative refrigerants, associated lubricants, and their use in air conditioning and refrigeration. It consolidates and facilitates access to property, compatibility, environmental, safety, application and other information. It provides corresponding information on older refrigerants, to assist manufactures and those using alternative refrigerants, to make comparisons and determine differences. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern. The database provides bibliographic citations and abstracts for publications that may be useful in research and design of air-conditioning and refrigeration equipment. The complete documents are not included, though some may be added at a later date. The database identifies sources of specific information on many refrigerants including propane, ammonia, water, carbon dioxide, propylene, ethers, and others as well as azeotropic and zeotropic blends of these fluids. It addresses lubricants including alkylbenzene, polyalkylene glycol, polyolester, and other synthetics as well as mineral oils. It also references documents addressing compatibility of refrigerants and lubricants with metals, plastics, elastomers, motor insulation, and other materials used in refrigerant circuits. Incomplete citations or abstracts are provided for some documents. They are included to accelerate availability of the information and will be completed or replaced in future updates.

  8. Chemically assisted mechanical refrigeration process

    DOEpatents

    Vobach, Arnold R.

    1987-01-01

    There is provided a chemically assisted mechanical refrigeration process including the steps of: mechanically compressing a refrigerant stream which includes vaporized refrigerant; contacting the refrigerant with a solvent in a mixer (11) at a pressure sufficient to promote substantial dissolving of the refrigerant in the solvent in the mixer (11) to form a refrigerant-solvent solution while concurrently placing the solution in heat exchange relation with a working medium to transfer energy to the working medium, said refrigerant-solvent solution exhibiting a negative deviation from Raoult's Law; reducing the pressure over the refrigerant-solvent solution in an evaporator (10) to allow the refrigerant to vaporize and substantially separate from the solvent while concurrently placing he evolving refrigerant-solvent solution in heat exchange relation with a working medium to remove energy from the working medium to thereby form a refrigerant stream and a solvent stream; and passing the solvent and refrigerant stream from the evaporator.

  9. Chemically assisted mechanical refrigeration process

    DOEpatents

    Vobach, Arnold R.

    1987-01-01

    There is provided a chemically assisted mechanical refrigeration process including the steps of: mechanically compressing a refrigerant stream which includes vaporized refrigerant; contacting the refrigerant with a solvent in a mixer (11) at a pressure sufficient to promote substantial dissolving of the refrigerant in the solvent in the mixer (11) to form a refrigerant-solvent solution while concurrently placing the solution in heat exchange relation with a working medium to transfer energy to the working medium, said refrigerant-solvent solution exhibiting a negative deviation from Raoult's Law; reducing the pressure over the refrigerant-solvent solution in an evaporator (10) to allow the refrigerant to vaporize and substantially separate from the solvent while concurrently placing the evolving refrigerant-solvent solution in heat exchange relation with a working medium to remove energy from the working medium to thereby form a refrigerant stream and a solvent stream; and passing the solvent and refrigerant stream from the evaporator.

  10. Chemically assisted mechanical refrigeration process

    DOEpatents

    Vobach, A.R.

    1987-06-23

    There is provided a chemically assisted mechanical refrigeration process including the steps of: mechanically compressing a refrigerant stream which includes vaporized refrigerant; contacting the refrigerant with a solvent in a mixer at a pressure sufficient to promote substantial dissolving of the refrigerant in the solvent in the mixer to form a refrigerant-solvent solution while concurrently placing the solution in heat exchange relation with a working medium to transfer energy to the working medium, said refrigerant-solvent solution exhibiting a negative deviation from Raoult's Law; reducing the pressure over the refrigerant-solvent solution in an evaporator to allow the refrigerant to vaporize and substantially separate from the solvent while concurrently placing the evolving refrigerant-solvent solution in heat exchange relation with a working medium to remove energy from the working medium to thereby form a refrigerant stream and a solvent stream; and passing the solvent and refrigerant stream from the evaporator. 5 figs.

  11. Chemically assisted mechanical refrigeration process

    DOEpatents

    Vobach, A.R.

    1987-11-24

    There is provided a chemically assisted mechanical refrigeration process including the steps of: mechanically compressing a refrigerant stream which includes vaporized refrigerant; contacting the refrigerant with a solvent in a mixer at a pressure sufficient to promote substantial dissolving of the refrigerant in the solvent in the mixer to form a refrigerant-solvent solution while concurrently placing the solution in heat exchange relation with a working medium to transfer energy to the working medium, said refrigerant-solvent solution exhibiting a negative deviation from Raoult's Law; reducing the pressure over the refrigerant-solvent solution in an evaporator to allow the refrigerant to vaporize and substantially separate from the solvent while concurrently placing the evolving refrigerant-solvent solution in heat exchange relation with a working medium to remove energy from the working medium to thereby form a refrigerant stream and a solvent stream; and passing the solvent and refrigerant stream from the evaporator. 5 figs.

  12. Highly porous activated carbon based adsorption cooling system employing difluoromethane and a mixture of pentafluoroethane and difluoromethane

    NASA Astrophysics Data System (ADS)

    Askalany, Ahmed A.; Saha, Bidyut B.

    2016-03-01

    This paper presents a simulation for a low-grade thermally powered two-beds adsorption cooling system employing HFC-32 and a mixture of HFC-32 and HFC-125 (HFC-410a) with activated carbon of type Maxsorb III. The present simulation model adopts experimentally measured adsorption isotherms, adsorption kinetics and isosteric heat of adsorption data. Effect of operating conditions (mass flow rate of hot water, driving heat source temperature and evaporator temperature) on the system performance has been studied in detail. The simulation results showed that the system could be powered by low-grade heat source temperature (below 85 °C). AC/HFC-32 and AC/HFC-410a adsorption cooling cycles achieved close specific cooling power and coefficient of performance values of 0.15 kW/kg and 0.3, respectively at a regeneration temperature of 90 °C along with evaporator temperature of 10 °C. The investigated semi continuous adsorption cooling system could produce a cooling power of 9 kW.

  13. Assessment of Environmentally Friendly Refrigerants for Window Air Conditioners

    SciTech Connect

    Bansal, Pradeep; Shen, Bo

    2014-01-01

    This paper presents technical assessment of environmentally friendly refrigerants for window air conditioners that currently use refrigerant R410A for residential and commercial applications. The alternative refrigerants that are studied for its replacement include R32, R600a, R290, R1234yf, R1234ze and a mixture of R32 (90% molar concentration) and R125 (10% molar concentration). Baseline experiments were performed on a window unit charged with R410A. The ORNL Heat Pump Design Model was calibrated with the baseline data and was used to assess the comparative performance of the WAC with alternative refrigerants. The paper discusses the advantages and disadvantages of each refrigerants and their suitability for window air conditioners.

  14. Analysis of Environmentally Friendly Refrigerant Options for Window Air Conditioners

    DOE PAGESBeta

    Bansal, Pradeep; Shen, Bo

    2015-03-12

    This paper presents a technical assessment of environmentally friendly refrigerants as alternatives to R410A for window air conditioners. The alternative refrigerants that are studied for its replacement include R32, a mixture of R32/R125 with 90%/10% molar concentration, R600a, R290, R1234yf, R1234ze and R134a. Baseline experiments were performed on a window unit charged with R410A. The heat pump design model (HPDM) was modified and calibrated with the baseline data and was used to evaluate the comparative performance of the WAC with alternative refrigerants. The paper discusses the advantages and disadvantages of each refrigerants and their suitability for window air conditioners. Amongmore » all the refrigerants studied, R32 offers the best efficiency and the lowest Global Warming Potential (GWP), and hence its use will result in the overall environmental friendliness.« less

  15. Analysis of Environmentally Friendly Refrigerant Options for Window Air Conditioners

    SciTech Connect

    Bansal, Pradeep; Shen, Bo

    2015-03-12

    This paper presents a technical assessment of environmentally friendly refrigerants as alternatives to R410A for window air conditioners. The alternative refrigerants that are studied for its replacement include R32, a mixture of R32/R125 with 90%/10% molar concentration, R600a, R290, R1234yf, R1234ze and R134a. Baseline experiments were performed on a window unit charged with R410A. The heat pump design model (HPDM) was modified and calibrated with the baseline data and was used to evaluate the comparative performance of the WAC with alternative refrigerants. The paper discusses the advantages and disadvantages of each refrigerants and their suitability for window air conditioners. Among all the refrigerants studied, R32 offers the best efficiency and the lowest Global Warming Potential (GWP), and hence its use will result in the overall environmental friendliness.

  16. Refrigerant leak detector

    NASA Technical Reports Server (NTRS)

    Byrne, E. J.

    1979-01-01

    Quantitative leak detector visually demonstrates refrigerant loss from precision volume of large refrigeration system over established period of time from single test point. Mechanical unit is less costly than electronic "sniffers" and is more reliable due to absence of electronic circuits that are susceptible to drift.

  17. Theory of cascade refrigeration

    NASA Astrophysics Data System (ADS)

    Quack, Hans H.

    2012-06-01

    The maximum difference between the warm and cold temperature of a refrigeration cycle is limited by properties of the refrigerant and/or losses associated with the transport of the refrigerant. For larger temperature differences, one has to arrange several refrigeration cycles "above" each other, each cycle spanning a certain temperature difference. This approach is called cascade refrigeration and has played an important role in the history of cryogenics. For a theory of cascade refrigeration it is helpful to define a general one-stage non-reversible refrigeration step and to visualize it within the temperature-entropy diagram. Then one can combine several one-stage cycles to a cascade. There exist two types of cascades: "Full" cascades, where all entropy gains of a lower stage are transferred to the next higher temperature stage, and "partial" cascades, where each single cycle goes up to ambient temperature, where a part of the entropy gain is removed, and only the rest of the entropy gain is transferred to the next higher temperature stage. In cryogenic refrigeration "partial" cascades are generally more efficient than "full" cascades.

  18. Thermoacoustic engines and refrigerators

    NASA Astrophysics Data System (ADS)

    Garrett, Steven L.

    2012-06-01

    Thermoacoustic engines and refrigerators use gas inertia and compressibility to eliminate many of the mechanical contrivances required by traditional engines and refrigerators while providing potentially attractive options that might reduce environmental impacts. The operation of both standing-wave and traveling-wave devices will be described and illustrated with thermoacoustic devices that have been used outside the laboratory.

  19. Ranking of refrigerants.

    PubMed

    Restrepo, Guillermo; Weckert, Monika; Brüggemann, Rainer; Gerstmann, Silke; Frank, Hartmut

    2008-04-15

    Environmental ranking of refrigerants is of need in many instances. The aim is to assess the relative environmental hazard posed by 40 refrigerants, including those used in the past, those presently used, and some proposed substitutes. Ranking is based upon ozone depletion potential, global warming potential, and atmospheric lifetime and is achieved by applying the Hasse diagram technique, a mathematical method that allows us to assess order relationships of chemicals. The refrigerants are divided into 13 classes, of which the chlorofluorocarbons, hydrofluorocarbons, hydrochlorofluorocarbons, hydrofluoroethers, and hydrocarbons contain the largest number of single substances. The dominance degree, a method for measuring order relationships among classes, is discussed and applied to the 13 refrigerant classes. The results show that some hydrofluoroethers are as problematic as the hydrofluorocarbons. Hydrocarbons and ammonia are the least problematic refrigerants with respect to the three environmental properties. PMID:18497145

  20. ARTI Refrigerant Database

    SciTech Connect

    Calm, J.M.

    1992-04-30

    The Refrigerant Database consolidates and facilitates access to information to assist industry in developing equipment using alternative refrigerants. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern. The database provides bibliographic citations and abstracts for publications that may be useful in research and design of air- conditioning and refrigeration equipment. The complete documents are not included, though some may be added at a later date. The database identifies sources of specific information on R-32, R-123, R-124, R- 125, R-134a, R-141b, R142b, R-143a, R-152a, R-290 (propane), R-717 (ammonia), ethers, and others as well as azeotropic and zeotropic blends of these fluids. It addresses polyalkylene glycol (PAG), ester, and other lubricants. It also references documents addressing compatibility of refrigerants and lubricants with metals, plastics, elastomers, motor insulation, and other materials used in refrigerant circuits.

  1. An evaluation on the environmental consequences of residual CFCs from obsolete household refrigerators in China.

    PubMed

    Zhao, Xiangyang; Duan, Huabo; Li, Jinhui

    2011-03-01

    Chlorofluorocarbons (CFCs) contained in household refrigerators consist mainly of CFC-11 and CFC-12, which will be eventually released into the environment. Consequentially, environmental releases of these refrigerants will lead to ozone depletion and contribute significantly to the greenhouse effect, if waste refrigerators are not disposed of properly. In the present paper, the potential release of residual CFCs and their substitutes from obsolete household refrigerators in China is examined, and their contributions to ozone depletion and greenhouse effect are compared with those of other recognized ozone-depleting substances (ODS) and greenhouse gases (GHGs). The results imply that annual potential amounts of released residual CFC-11 and CFC-12 will reach their maximums at 4600 and 2300 tons, respectively in 2011, and then decrease gradually to zero until 2020. Meanwhile, the amounts of their most widely used substitutes HCFC-141b and HFC-134a will keep increasing. Subsequently, the contribution ratio of these CFCs and their substitutes to ozone depletion will remain at 25% through 2011, and reach its peak value of 34% by 2018. The contribution to greenhouse effect will reach its peak value of 0.57% by 2010. Moreover, the contribution ratio of these CFCs to the total global release of CFCs will steadily increase, reaching its peak of 15% by 2018. Thus, this period from 2010 to 2018 is a crucial time during which residual CFCs and their substitutes from obsolete household refrigerators in China will contribute significantly to ozone depletion. PMID:21093246

  2. An evaluation on the environmental consequences of residual CFCs from obsolete household refrigerators in China

    SciTech Connect

    Zhao Xiangyang; Duan Huabo; Li Jinhui

    2011-03-15

    Chlorofluorocarbons (CFCs) contained in household refrigerators consist mainly of CFC-11 and CFC-12, which will be eventually released into the environment. Consequentially, environmental releases of these refrigerants will lead to ozone depletion and contribute significantly to the greenhouse effect, if waste refrigerators are not disposed of properly. In the present paper, the potential release of residual CFCs and their substitutes from obsolete household refrigerators in China is examined, and their contributions to ozone depletion and greenhouse effect are compared with those of other recognized ozone-depleting substances (ODS) and greenhouse gases (GHGs). The results imply that annual potential amounts of released residual CFC-11 and CFC-12 will reach their maximums at 4600 and 2300 tons, respectively in 2011, and then decrease gradually to zero until 2020. Meanwhile, the amounts of their most widely used substitutes HCFC-141b and HFC-134a will keep increasing. Subsequently, the contribution ratio of these CFCs and their substitutes to ozone depletion will remain at 25% through 2011, and reach its peak value of 34% by 2018. The contribution to greenhouse effect will reach its peak value of 0.57% by 2010. Moreover, the contribution ratio of these CFCs to the total global release of CFCs will steadily increase, reaching its peak of 15% by 2018. Thus, this period from 2010 to 2018 is a crucial time during which residual CFCs and their substitutes from obsolete household refrigerators in China will contribute significantly to ozone depletion.

  3. Near azeotropic mixture substitute

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor)

    1996-01-01

    The present invention comprises a refrigerant mixture consisting of a first mole fraction of 1,1,1,2-tetrafluoroethane (R134a) and a second mole fraction of a component selected from the group consisting of a mixture of CHClFCF.sub.3 (R124) and CH.sub.3 CClF.sub.2 (R142b); a mixture of CHF.sub.2 CH.sub.3 (R152a) and CHClFCF.sub.3 (R124); a mixture of CHF.sub.2 CH.sub.3 (R152a) and CH.sub.3 CClF.sub.2 (R142b); and a mixture of CHClFCF.sub.3 (R124), CH.sub.3 CClF.sub.2 (R142b) and CHF.sub.2 CH.sub.3 (R152a).

  4. Rotary two-phase refrigeration apparatus and method

    SciTech Connect

    McCutchen, W.H.

    1994-01-04

    Rotary vacuum evaporation of a primary refrigerant cools a secondary refrigerant mixed with it. The secondary refrigerant does not change state and meanders through a low pressure cooling circuit for refrigeration applications. The primary refrigerant changes state and remains in a short and secure circuit. Evaporation is produced at a surface around the axis of rotation and within the mixture by opposed centrifugal and centripetal forces acting through a narrow afferent mesial passage between rotating disks mounted on a hollow shaft. Vapor is stripped from the surface, scrubbed by cyclonic flow through the afferent mesial passage, and condensed by a centrifugal compressor, which is a centrifugal pump having its inlet communicating with the bore of the hollow shaft and the afferent mesial passage. Latent heat is drawn off by water, making this a water heater, and the water is produced by de-humidification. The primary refrigerant and the secondary refrigerant are cheap and environmentally harmless, e.g. propylene glycol and acetone. A method and apparatus for refrigeration using only water is disclosed. Energy efficiency is maximized by avoidance of positive displacement pumps and narrow conduits, and by operation during times when excess power is in the grid. 7 figs.

  5. Pulse Tube Refrigerator

    NASA Astrophysics Data System (ADS)

    Matsubara, Yoichi

    The pulse tube refrigerator is one of the regenerative cycle refrigerators such as Stirling cycle or Gifford-McMahon cycle which gives the cooling temperature below 150 K down to liquid helium temperature. In 1963, W. E. Gifford invented a simple refrigeration cycle which is composed of compressor, regenerator and simple tube named as pulse tube which gives a similar function of the expander in Stirling or Gifford-McMahon cycle. The thermodynamically performance of this pulse tube refrigerator is inferior to that of other regenerative cycles. In 1984, however, Mikulin and coworkers made a significant advance in pulse tube configuration called as orifice pulse tube. After this, several modifications of the pulse tube hot end configuration have been developed. With those modifications, the thermodynamic performance of the pulse tube refrigerator became the same order to that of Stirling and Gifford-McMahon refrigerator. This article reviews the brief history of the pulse tube refrigerator development in the view point of its thermodynamically efficiency. Simplified theories of the energy flow in the pulse tube have also been described.

  6. Refrigerated cryogenic envelope

    DOEpatents

    Loudon, John D.

    1976-11-16

    An elongated cryogenic envelope including an outer tube and an inner tube coaxially spaced within said inner tube so that the space therebetween forms a vacuum chamber for holding a vacuum. The inner and outer tubes are provided with means for expanding or contracting during thermal changes. A shield is located in the vacuum chamber intermediate the inner and outer tubes; and, a refrigeration tube for directing refrigeration to the shield is coiled about at least a portion of the inner tube within the vacuum chamber to permit the refrigeration tube to expand or contract along its length during thermal changes within said vacuum chamber.

  7. The toxicity of refrigerants

    SciTech Connect

    Calm, J.M.

    1996-07-01

    This paper presents toxicity data and exposure limits for refrigerants. The data address both acute (short-term, single exposure) and chronic (long-term, repeated exposure) effects, with emphasis on the former. The refrigerants covered include those in common use for the last decade, those used as components in alternatives, and selected candidates for future replacements. The paper also reviews the toxicity indicators used in both safety standards and building, mechanical, and fire codes. It then outlines current classification methods for refrigerant safety and relates them to standard and code usage.

  8. HEAT TRANSFER EVALUATION OF HFC-236EA WITH HIGH PERFORMANCE ENHANCED TUBES IN CONDENSATION AND EVAPORATION

    EPA Science Inventory

    The report gives results of an evaluation of the heat transfer performance of pure hydrofluorocarbon (HFC)-236ea for high performance enhanced tubes which had not been previously used in Navy shipboard chillers. Shell-side heat transfer coefficient data are presented for condensa...

  9. HEAT TRANSFER EVALUATION OF HFC-236FA IN CONDENSATION AND EVAPORATION

    EPA Science Inventory

    The report gives results of an evaluation of the shell-side heat transfer performance of hydrofluorocarbon (HFC)-236fa, which is considered to be a potential substitute for chlorofluorocarbon (CFC)-114 in Navy shipboard chillers, for both conventional finned [1024- and 1575-fpm (...

  10. Evidence for under-reported western European emissions of the potent greenhouse gas HFC-23

    NASA Astrophysics Data System (ADS)

    Keller, Christoph A.; Brunner, Dominik; Henne, Stephan; Vollmer, Martin K.; O'Doherty, Simon; Reimann, Stefan

    2011-08-01

    Western European emission inventories of the potent greenhouse gas trifluoromethane (HFC-23) are validated at a country level by combining 2-hourly atmospheric in-situ measurements at Jungfraujoch (Switzerland) and Mace Head (Ireland) with Lagrangian transport simulations. HFC-23 has an atmospheric lifetime of ˜270 yr and a 100-yr global warming potential (GWP) of 14,800 and is unintentionally produced during the manufacture of chlorodifluoromethane (HCFC-22). For the study region we derive emissions of 144-216 Mg/yr for July 2008-July 2010, which are 60-140% higher than the official emissions gathered from the national reports for the year 2009. The largest discrepancy is found for Italy, where our estimate of 26-56 Mg/yr exceeds the national inventory (2.6 Mg/yr) by more than an order of magnitude. These findings suggest that non-reported emissions from Annex 1 countries partly explain the recently derived gap between global bottom-up and top-down HFC-23 emission estimates. The results presented here provide independent information to relevant authorities on effective reporting of HFC-23 emissions, and demonstrate the potential of atmospheric measurements for real-world verification of greenhouse gas emissions.

  11. HEAT TRANSFER EVALUATION OF HFC-236EA WITH HIGH PERFORMANCE ENHANCED TUBES IN CONDENSATION AND EVAPORATION

    EPA Science Inventory

    The report gives results of an evaluation of the heat transfer performance of pure hydrofluorocarbon (HFC)-236ea for high performance enhanced tubes which had not been previously used in Navy shipboard chillers. Shell-side heat transfer coefficient data are presented for conde...

  12. HEAT TRANSFER EVALUATION OF HFC-236FA IN CONDENSATION AND EVAPORATION

    EPA Science Inventory

    The report gives results of an evaluation of the shell-side heat transfer performance of hydrofluorocarbon (HFC)-236fa, which is considered to be a potential substitute for chlorofluorocarbon (CFC)-114 in Navy shipboard chillers, for both conventional finned (1024- and 1575-fpm (...

  13. Joule Thomson refrigerator

    NASA Technical Reports Server (NTRS)

    Chan, Chung K. (Inventor); Gatewood, John R. (Inventor)

    1988-01-01

    A bi-directional Joule Thomson refrigerator is described, which is of simple construction at the cold end of the refrigerator. Compressed gas flowing in either direction through the Joule Thomson expander valve and becoming liquid, is captured in a container in direct continuous contact with the heat load. The Joule Thomson valve is responsive to the temperature of the working fluid near the valve, to vary the flow resistance through the valve so as to maintain a generally constant flow mass between the time that the refrigerator is first turned on and the fluid is warm, and the time when the refrigerator is near its coldest temperature and the fluid is cold. The valve is operated by differences in thermal coefficients of expansion of materials to squeeze and release a small tube which acts as the expander valve.

  14. Thermoacoustic engines and refrigerators

    SciTech Connect

    Swift, G.

    1996-12-31

    This report is a transcript of a practice lecture given in preparation for a review lecture on the operation of thermoacoustic engines and refrigerators. The author begins by a brief review of the thermodynamic principles underlying the operation of thermoacoustic engines and refrigerators. Remember from thermodynamics class that there are two kinds of heat engines, the heat engine or the prime mover which produces work from heat, and the refrigerator or heat pump that uses work to pump heat. The device operates between two thermal reservoirs at temperatures T{sub hot} and T{sub cold}. In the heat engine, heat flows into the device from the reservoir at T{sub hot}, produces work, and delivers waste heat into the reservoir at T{sub cold}. In the refrigerator, work flows into the device, lifting heat Q{sub cold} from reservoir at T{sub cold} and rejecting waste heat into the reservoir at T{sub hot}.

  15. Future emissions and atmospheric fate of HFC-1234yf from mobile air conditioners in Europe.

    PubMed

    Henne, Stephan; Shallcross, Dudley E; Reimann, Stefan; Xiao, Ping; Brunner, Dominik; O'Doherty, Simon; Buchmann, Brigitte

    2012-02-01

    HFC-1234yf (2,3,3,3-tetrafluoropropene) is under discussion for replacing HFC-134a (1,1,1,2-tetrafluoroethane) as a cooling agent in mobile air conditioners (MACs) in the European vehicle fleet. Some HFC-1234yf will be released into the atmosphere, where it is almost completely transformed to the persistent trifluoroacetic acid (TFA). Future emissions of HFC-1234yf after a complete conversion of the European vehicle fleet were assessed. Taking current day leakage rates and predicted vehicle numbers for the year 2020 into account, European total HFC-1234yf emissions from MACs were predicted to range between 11.0 and 19.2 Gg yr(-1). Resulting TFA deposition rates and rainwater concentrations over Europe were assessed with two Lagrangian chemistry transport models. Mean European summer-time TFA mixing ratios of about 0.15 ppt (high emission scenario) will surpass previously measured levels in background air in Germany and Switzerland by more than a factor of 10. Mean deposition rates (wet + dry) of TFA were estimated to be 0.65-0.76 kg km(-2) yr(-1), with a maxium of ∼2.0 kg km(-2) yr(-1) occurring in Northern Italy. About 30-40% of the European HFC-1234yf emissions were deposited as TFA within Europe, while the remaining fraction was exported toward the Atlantic Ocean, Central Asia, Northern, and Tropical Africa. Largest annual mean TFA concentrations in rainwater were simulated over the Mediterranean and Northern Africa, reaching up to 2500 ng L(-1), while maxima over the continent of about 2000 ng L(-1) occurred in the Czech Republic and Southern Germany. These highest annual mean concentrations are at least 60 times lower than previously determined to be a safe level for the most sensitive aquatic life-forms. Rainwater concentrations during individual rain events would still be 1 order of magnitude lower than the no effect level. To verify these results future occasional sampling of TFA in the atmospheric environment should be considered. If future HFC-1234yf

  16. High temperature refrigerator

    DOEpatents

    Steyert, Jr., William A.

    1978-01-01

    A high temperature magnetic refrigerator which uses a Stirling-like cycle in which rotating magnetic working material is heated in zero field and adiabatically magnetized, cooled in high field, then adiabatically demagnetized. During this cycle said working material is in heat exchange with a pumped fluid which absorbs heat from a low temperature heat source and deposits heat in a high temperature reservoir. The magnetic refrigeration cycle operates at an efficiency 70% of Carnot.

  17. THERMODYNAMIC PERFORMANCE LIMIT AND EVAPORATOR DESIGN CONSIDERATIONS FOR NARM-BASED DOMESTIC REFRIGERATOR-FREEZER SYSTEMS

    EPA Science Inventory

    The paper gives results of an investigation of non-azeotrophic refrigerant mixtures (NARMs) for a two-temperature-level heat exchange process found in a domestic refrigerator-freezer. deal (constant air temperature) heat exhcange processes are assumed. he results allow the effect...

  18. The Effect of Modified Atmosphere Packaging and Addition of Rosemary Extract, Sodium Acetate and Calcium Lactate Mixture on the Quality of Pre-cooked Hamburger Patties during Refrigerated Storage.

    PubMed

    Muhlisin; Kang, Sun Moon; Choi, Won Hee; Lee, Keun Taik; Cheong, Sung Hee; Lee, Sung Ki

    2013-01-01

    The effect of modified atmosphere packaging (MAP; 30% CO2+70% N2 or 100% N2) and an additive mixture (500 ppm rosemary extract, 3,000 ppm sodium acetate and 1,500 ppm calcium lactate) on the quality of pre-cooked hamburger patties during storage at 5°C for 14 d was evaluated. The addition of the additive mixture reduced aerobic and anaerobic bacteria counts in both 30% CO2-MAP (30% CO2+70% N2) and 100% N2-MAP (p<0.05). The 30% CO2-MAP was more effective to suppress the microbial growth than 100% N2-MAP, moreover the 30% CO2-MAP combined with additive mixture resulted in the lowest bacterial counts. The hamburger patties with additive mixture showed lower CIE L* and CIE a*, and higher CIE b* than those with no additive mixture. The 30% CO2-MAP tended to decrease the TBARS during storage regardless of the addition of additives. The use of 30% CO2-MAP in combination with additives mixture was effective for maintaining the quality and extending the shelf-life of pre-cooked hamburger patties. PMID:25049716

  19. Refrigeration and Air-Conditioning Technology Workshop

    NASA Astrophysics Data System (ADS)

    Lewis, P. J.; Counce, D. M.

    1993-12-01

    The Alternative Fluorocarbon Environmental Acceptability Study (AFEAS), a consortium of fluorocarbon manufacturers, and the U.S. Department of Energy (DOE) are collaborating on a project to evaluate the energy use and global warming impacts of CFC alternatives. The goal of this project is to identify technologies that could replace the use of CFC's in refrigeration, heating, and air-conditioning equipment; to evaluate the direct impacts of chemical emissions on global warming; and to compile accurate estimates of energy use and indirect CO2 emissions of substitute technologies. The first phase of this work focused on alternatives that could be commercialized before the year 2000. The second phase of the project is examining not-in-kind and next-generation technologies that could be developed to replace CFC's, HCFC's, and HFC's over a longer period. As part of this effort, Oak Ridge National Laboratory held a workshop on June 23-25, 1993. The preliminary agenda covered a broad range of alternative technologies and at least one speaker was invited to make a brief presentation at the workshop on each technology. Some of the invited speakers were unable to participate, and in a few cases other experts could not be identified. As a result, those technologies were not represented at the workshop. Each speaker was asked to prepare a five to seven page paper addressing six key issues concerning the technology he/she is developing. These points are listed in the sidebar. Each expert also spoke for 20 to 25 minutes at the workshop and answered questions from the other participants concerning the presentation and area of expertise. The primary goal of the presentations and discussions was to identify the developmental state of the technology and to obtain comparable data on system efficiencies.

  20. 46 CFR 151.50-79 - Methyl acetylene-propadiene mixture.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... acetylene-propadiene mixture must have a refrigeration system that does not compress the cargo vapor or have a refrigeration system with the following features: (1) A vapor compressor that does not raise the... suction line. (c) The piping system, including the cargo refrigeration system, for tanks to be loaded...

  1. 46 CFR 151.50-79 - Methyl acetylene-propadiene mixture.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... acetylene-propadiene mixture must have a refrigeration system that does not compress the cargo vapor or have a refrigeration system with the following features: (1) A vapor compressor that does not raise the... suction line. (c) The piping system, including the cargo refrigeration system, for tanks to be loaded...

  2. 46 CFR 151.50-79 - Methyl acetylene-propadiene mixture.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... acetylene-propadiene mixture must have a refrigeration system that does not compress the cargo vapor or have a refrigeration system with the following features: (1) A vapor compressor that does not raise the... suction line. (c) The piping system, including the cargo refrigeration system, for tanks to be loaded...

  3. 46 CFR 151.50-79 - Methyl acetylene-propadiene mixture.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... acetylene-propadiene mixture must have a refrigeration system that does not compress the cargo vapor or have a refrigeration system with the following features: (1) A vapor compressor that does not raise the... suction line. (c) The piping system, including the cargo refrigeration system, for tanks to be loaded...

  4. 46 CFR 151.50-79 - Methyl acetylene-propadiene mixture.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... acetylene-propadiene mixture must have a refrigeration system that does not compress the cargo vapor or have a refrigeration system with the following features: (1) A vapor compressor that does not raise the... suction line. (c) The piping system, including the cargo refrigeration system, for tanks to be loaded...

  5. The effect of refrigerants in the mixed lubrication regime

    SciTech Connect

    Mizuhara, Kazuyuki; Tomimoto, Makoto

    1997-12-31

    Because of environmental concerns, CFC (chlorofluorocarbon) refrigerants must be replaced with HFCs (hydrofluorocarbons). As a result, many tribological problems are caused especially in rotary piston compressors. To solve the problem, the effects of refrigerants on friction and wear characteristics of the oil and refrigerant mixtures at the mixed lubrication regime are investigated. The difference in refrigerants are clearly observed not only in boundary but also in the mixed lubrication regime. The effects of operating conditions on sliding conditions and experimental results are also discussed. It is concluded that for practical application where long life is essential, experiments must be conducted under the mixed lubrication regime. Also, the importance of defining the lubrication regime in terms of film parameter is emphasized.

  6. Dry Dilution Refrigerator with High Cooling Power

    NASA Astrophysics Data System (ADS)

    Uhlig, K.

    2008-03-01

    We present the construction concept and cooling capacity measurements of a 3,4He dilution refrigerator (DR), which was pre-cooled by a commercial pulse tube refrigerator (PTR). No cryogens are needed for the operation of this type of cryostat. The condensation of the helium mash was done in an integrated Joule-Thomson circuit, which was part of the dilution unit. The composition of the dilution unit was standard, but its components (still, heat exchangers, mixing chamber) were designed for high 3He flow. For thermometry, calibrated RuO chip resistance thermometers were available. In order to condense the mixture before an experiment, the fridge was operated like a Joule-Thomson liquefier with a relatively high inlet pressure (4 bar), where the liquid fraction of the circulating 3,4He mixture was accumulated in the dilution unit. The condensation took about 2 hours, and after 2 more hours of running, the temperature of the mixing chamber approached its minimum temperature of 10 mK. The maximum flow rate of the fridge was 1 mmol/s, and the refrigeration capacity of the mixing chamber was 700 μW at 100 mK. High cooling capacity, ease of operation and reliability distinguish this type of milli-Kelvin cooler.

  7. ARTI Refrigerant Database

    SciTech Connect

    Cain, J.M.

    1993-04-30

    The Refrigerant Database consolidates and facilitates access to information to assist industry in developing equipment using alternative refrigerants. The underlying purpose is to accelerate phase out of chemical compounds of environmental concern. The database provides bibliographic citations and abstracts for publications that may be useful in research and design of air-conditioning and refrigeration equipment. The complete documents are not included. The database identifies sources of specific information on R-32, R-123, R-124, R-125, R-134, R-134a, R-141b, R-142b, R-143a, R-152a, R-245ca, R-290 (propane), R-717 (ammonia), ethers, and others as well as azeotropic and zeotropic blends of these fluids. It addresses lubricants including alkylbenzene, polyalkylene glycol, ester, and other synthetics as well as mineral oils. It also references documents addressing compatibility of refrigerants and lubricants with metals, plastics, elastomers, motor insulation, and other materials used in refrigerant circuits. Incomplete citations or abstracts are provided for some documents to accelerate availability of the information and will be completed or replaced in future updates.

  8. Downhole pulse tube refrigerators

    SciTech Connect

    Swift, G.; Gardner, D.

    1997-12-01

    This report summarizes a preliminary design study to explore the plausibility of using pulse tube refrigeration to cool instruments in a hot down-hole environment. The original motivation was to maintain Dave Reagor`s high-temperature superconducting electronics at 75 K, but the study has evolved to include three target design criteria: cooling at 30 C in a 300 C environment, cooling at 75 K in a 50 C environment, cooling at both 75 K and 30 C in a 250 C environment. These specific temperatures were chosen arbitrarily, as representative of what is possible. The primary goals are low cost, reliability, and small package diameter. Pulse-tube refrigeration is a rapidly growing sub-field of cryogenic refrigeration. The pulse tube refrigerator has recently become the simplest, cheapest, most rugged and reliable low-power cryocooler. The authors expect this technology will be applicable downhole because of the ratio of hot to cold temperatures (in absolute units, such as Kelvin) of interest in deep drilling is comparable to the ratios routinely achieved with cryogenic pulse-tube refrigerators.

  9. Adsorption Refrigeration System

    SciTech Connect

    Wang, Kai; Vineyard, Edward Allan

    2011-01-01

    Adsorption refrigeration is an environmentally friendly cooling technology which could be driven by recovered waste heat or low-grade heat such as solar energy. In comparison with absorption system, an adsorption system has no problems such as corrosion at high temperature and salt crystallization. In comparison with vapor compression refrigeration system, it has the advantages of simple control, no moving parts and less noise. This paper introduces the basic theory of adsorption cycle as well as the advanced adsorption cycles such as heat and mass recovery cycle, thermal wave cycle and convection thermal wave cycle. The types, characteristics, advantages and drawbacks of different adsorbents used in adsorption refrigeration systems are also summarized. This article will increase the awareness of this emerging cooling technology among the HVAC engineers and help them select appropriate adsorption systems in energy-efficient building design.

  10. ARTI Refrigerant Database

    SciTech Connect

    Calm, J.M.

    1992-11-09

    The database provides bibliographic citations and abstracts for publications that may be useful in research and design of air- conditioning and refrigeration equipment. The database identifies sources of specific information on R-32, R-123, R-124, R-125, R-134, R-134a, R-141b, R-142b, R-143a, R-152a, R-245ca, R-290 (propane), R- 717 (ammonia), ethers, and others as well as azeotropic and zeotropic and zeotropic blends of these fluids. It addresses lubricants including alkylbenzene, polyalkylene glycol, ester, and other synthetics as well as mineral oils. It also references documents on compatibility of refrigerants and lubricants with metals, plastics, elastomers, motor insulation, and other materials used in refrigerant circuits. A computerized version is available that includes retrieval software.

  11. Helium-refrigeration system

    SciTech Connect

    Specht, J.R.; Millar, B.; Sutherland, A.

    1995-08-01

    The design, procurement, and preliminary construction was completed for adding two more wet expansion engines to two helium refrigerators. These will be added in mid-year FY 1995. In addition a variable speed drive will be added to an existing helium compressor. This is part of an energy conservation upgrade project to reduce operating costs from the use of electricity and liquid nitrogen. This project involves the replacement of Joule-Thompson valves in the refrigerators with expansion engines resulting in system efficiency improvements of about 30% and improved system reliability.

  12. Refrigeration for photomultipliers.

    PubMed

    Broadfoot, A L

    1966-08-01

    A closed-cycle mechanical refrigeration system has been adapted to cool photomultipliers automatically. Temperature is adjustable between +50 degrees and -55 degrees C and is stable to within +/-0.30 degrees C. An important feature of the design is the flexible connection to the cold box which allows extensive freedom of motion; this freedom is particularly important in astronomy where the cold box is mounted on the end of a telescope. Liquid Freon refrigerants have been used to cool photomultipliers for rocket flights. A brief description of two methods is given. PMID:20057521

  13. Low-temperature magnetic refrigerator

    DOEpatents

    Barclay, J.A.

    1983-05-26

    The invention relates to magnetic refrigeration and more particularly to low temperature refrigeration between about 4 and about 20 K, with an apparatus and method utilizing a belt of magnetic material passed in and out of a magnetic field with heat exchangers within and outside the field operably disposed to accomplish refrigeration.

  14. Status Of Sorption Cryogenic Refrigeration

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.

    1988-01-01

    Report reviews sorption refrigeration. Developed for cooling infrared detectors, cryogenic research, and other advanced applications, sorption refrigerators have few moving parts, little vibration, and lifetimes of 10 years or more. Describes types of sorption stages, multistage and hybrid refrigeration systems, power requirements, cooling capacities, and advantages and disadvantages of various stages and systems.

  15. MOBILE AIR CONDITIONER REFRIGERANT EVALUATION

    EPA Science Inventory

    The paper discusses an evaluation of refrigerant from mobile air conditioners. The data gathered indicate that CFC-l2 refrigerant does not degrade significantly with use. Furthermore, while small amounts of contaminant are removed with the refrigerant during servicing, most of th...

  16. Refrigeration Playbook: Natural Refrigerants; Selecting and Designing Energy-Efficient Commercial Refrigeration Systems That Use Low Global Warming Potential Refrigerants

    SciTech Connect

    Nelson, Caleb; Reis, Chuck; Nelson, Eric; Armer, James; Arthur, Rob; Heath, Richard; Rono, James; Hirsch, Adam; Doebber, Ian

    2015-03-01

    This report provides guidance for selecting and designing energy efficient commercial refrigeration systems using low global warming potential refrigerants. Refrigeration systems are generally the largest energy end use in a supermarket type building, often accounting for more than half of a building's energy consumption.

  17. PERFORMANCE EVALUATION OF A VARIABLE SPEED, MIXED REFRIGERANT HEAT PUMP

    EPA Science Inventory

    The report gives results of an evaluation of the performance of an innovative heat pump, equipped with a distillation column to shift the composition of a zeotropic refrigerant mixture. t gives results of U.S. Department of Energy (DOE) rating tests and seasonal energy calculatio...

  18. Mixed-Gas Sorption Joule-Thomson Refrigerator

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.; Petrick, S. Walter; Bard, Steven

    1991-01-01

    Proposed mixed-gas sorption Joule-Thomson refrigerator provides cooling down to temperature of 70 K. Includes only one stage and no mechanical compressor. Simpler, operates without vibrating, and consumes less power in producing same amount of cooling. Same sorption principle of operation applicable in compressor that chemisorbs oxygen or hydrogen from mixture with helium, neon, and/or other nonreactive gases.

  19. Comprehensive Compressor Calorimeter Testing of Lower-GWP Alternative Refrigerants for Heat Pump and Medium Temperature Refrigeration Applications

    SciTech Connect

    Shrestha, Som S; Sharma, Vishaldeep; Abdelaziz, Omar

    2014-01-01

    In response to environmental concerns raised by the use of refrigerants with high Global Warming Potential (GWP), the Air-Conditioning, Heating, and Refrigeration Institute (AHRI) has launched an industry-wide cooperative research program, referred to as the Low-GWP Alternative Refrigerants Evaluation Program (AREP), to identify and evaluate promising alternative refrigerants for major product categories. This paper reports one of the Oak Ridge National Laboratory (ORNL) contributions to AREP. It compares performance of alternative refrigerants to that of R-410A and R-404A for heat pump and medium temperature applications, respectively. The alternatives reported in this paper are: R-32, DR-5, and L-41a for R-410A and ARM-31a, D2Y-65, L-40, and a mixture of R-32 and R-134a for R-404A. All performance comparison tests were conducted using scroll compressors of ~1.85 tons (6.5 kW) cooling capacity. Tests were conducted over a range of combinations of saturation suction and saturation discharge temperatures for both compressors. The tests showed that, in general, energy efficiency ratio (EER) and cooling capacity of R-410A alternative refrigerants were slightly lower than that of the baseline refrigerant with a moderate increases in discharge temperature. On the other hand, R-404A alternative refrigerants showed relative performance dependence on saturation suction and saturation discharge temperatures and larger increases in discharge temperature than for the R-410A alternatives. This paper summarizes the relative performance of all alternative refrigerants compared to their respective baseline.

  20. Investigation of pressure drop in capillary tube for mixed refrigerant Joule-Thomson cryocooler

    SciTech Connect

    Ardhapurkar, P. M.; Sridharan, Arunkumar; Atrey, M. D.

    2014-01-29

    A capillary tube is commonly used in small capacity refrigeration and air-conditioning systems. It is also a preferred expansion device in mixed refrigerant Joule-Thomson (MR J-T) cryocoolers, since it is inexpensive and simple in configuration. However, the flow inside a capillary tube is complex, since flashing process that occurs in case of refrigeration and air-conditioning systems is metastable. A mixture of refrigerants such as nitrogen, methane, ethane, propane and iso-butane expands below its inversion temperature in the capillary tube of MR J-T cryocooler and reaches cryogenic temperature. The mass flow rate of refrigerant mixture circulating through capillary tube depends on the pressure difference across it. There are many empirical correlations which predict pressure drop across the capillary tube. However, they have not been tested for refrigerant mixtures and for operating conditions of the cryocooler. The present paper assesses the existing empirical correlations for predicting overall pressure drop across the capillary tube for the MR J-T cryocooler. The empirical correlations refer to homogeneous as well as separated flow models. Experiments are carried out to measure the overall pressure drop across the capillary tube for the cooler. Three different compositions of refrigerant mixture are used to study the pressure drop variations. The predicted overall pressure drop across the capillary tube is compared with the experimentally obtained value. The predictions obtained using homogeneous model show better match with the experimental results compared to separated flow models.

  1. Saturated Liquid Densities of HCFC123, HFC134a, CFC11 and CFC12

    NASA Astrophysics Data System (ADS)

    Fukushima, Masato

    The saturated liquid densities of two environmentally acceptable hydrogen-containing halocarbons (HCFC123 and HFC134a) and two fully halogenated chlorofluorocarbons (CFCl1 and CFC12) were determined experimentally. The measurement has been conducted by the method using pyrex glass floats. Eleven saturated liquid densities were obtained in the range of temperature from 281 to 352 K for HCFC123. Seven saturated liquid densities were obtained in the range of temperature from 244 to 292 K for HFC134a. Eleven saturated liquid densities were obtained in the range of temperature from 285 to 361 K for CFC11. And ten saturated liquid densities were obtained in the range of temperature from 237 to 297 K for CFC12. The uncertainties of temperature and density are less than ±20 mK and ±3 kg/m3, respectively. On the basis of these results, the saturated liquid density correlations were developed for four halocarbons. The satuated liquid densities for HCFC123 are close to those for CFC11. And the saturated liquid densities for HFC134a are smaller than those for CFC12.

  2. Thermal conductivity of halogenated ethanes, HFC-134a, HCFC-123, and HCFC-141b

    SciTech Connect

    Yamamoto, R. ); Matsuo, S.; Tanaka, Y. )

    1993-01-01

    The gaseous thermal conductivity of three CFC alternatives, HFC-134a (1,1,1,2-tetrafluoroethane), HCFC-123 (1,1-dichloro-2,2,2-trifluoroethane), and HCFC-141b (1,1-dichloro-1-fluoroethane), has been measured in the temperature ranges 273-363 K (HFC-134a) and 313-373K (HCFC-123, JCFC-141b) at pressures up to saturation. The measurements were performed with a new improved transient hot-wire apparatus. The uncertainty of the experimental data is estimated to be within 1%. The gaseous thermal conductivity obtained in this work together with the liquid thermal-conductivity data from the literature were correlated with temperature and density by an empirical equation based on the excess thermal-conductivity concept. The equation is found to represent the experimental results with average deviations of 2.5% for HFC-134a, 0.75% for HCFC-123, and 0.55% for HCFC-141B, respectively.

  3. Measurements of the PVT Properties of HCFC123 and HFC134a

    NASA Astrophysics Data System (ADS)

    Fukushima, Masato; Watanabe, Naohiro; Kamimura, Toru

    The vapor pressure and PVT properties in a superheated vapor and compressed liquid phase region of two environmentally acceptable hydrogen-containing halocarbons (HCFC123 and HFC134a) were determined experimentally. The measurements of vapor pressure and PVT properties were made using constant-volume method. Sixty-five vapor pressure points were obtained in the range of temperature of 314 K to critical temperature for HCFC123, and forty-one vapor pressure points were obtained in the range of temperature of 262K to critical temperature for HFC134a. Fifty-nine PVT data points were obtained in the range of temperature 352K to 484K, of pressure 0.5 to 5.2MPa and of density 29 to 1030 kg/m3. And sixty-three PVT data points, were obtained in the range of temperature 294K to 424K, of pressure 0.6 to 5.7MPa and of density 24 to 1101kg/m3. On the basis of these results, the critical pressure was determined to be 3.672MPa for HCFC123, and it was determined to be 4.055MPa for HFC134a. In addition, the equation of state and vapor pressure correlation were developed.

  4. The thermal conductivity of liquid 1,1,1,2-tetrafluoroethane (HFC-134a)

    SciTech Connect

    Gurova, A.N.; Mardolcar, U.V.; Nieto de Castro, C.A.

    1997-09-01

    The thermal conductivity of HFC 134a was measured in the liquid phase with the polarized transient hot-wire technique. The experiments were performed at temperatures from 213 to 293 K at pressures up to 20 MPa. The data were analyzed to obtain correlations in terms of density and pressure. This study is part of an international project coordinated by the Subcommittee on Transport Properties of Commission I.2 of IUPAC, conducted to investigate the large discrepancies between the results reported by various authors for the transport properties of HFC 134a, using samples of different origin. Two samples of HFC 134a from different sources have been used. The thermal conductivity of the first sample was measured along the saturation line as a function of temperature and the data were presented earlier. The thermal conductivity of the second one, the round-robin sample, was measured as a function of pressure and temperature. These data were extrapolated to the saturation line and compared with the data obtained, previously in order to demonstrate the importance of the sample origin and their real purity. The accuracy of the measurements is estimated to be 0.5%. Finally, the results are compared with the existing literature data.

  5. Dynamical quality of service (QoS) support for DOCSIS HFC networks

    NASA Astrophysics Data System (ADS)

    Kuo, Wen-Kuang; Kumar, Sunil; Kuo, C.-C. Jay

    2001-07-01

    The Data Over Cable Service Interface Specifications (DOCSIS) of the Multimedia Cable Network System (MCNS) organization intends to support IP traffics over HFC (hybrid fiber/coax) networks with significantly higher data rates than analog modems and Integrated Service Digital Network (ISDN) links. The availability of high speed-access enables the delivery of high quality audio, video and interactive services. To support quality-of-service (QoS) for such multimedia applications, it is important for HFC networks to provide effective medium access and traffic scheduling mechanisms. In this work, we consider an HFC network that has a shared upstream channel for transmissions from stations assigned with different service priorities to the headend. We first present a multilevel priority collision resolution scheme with adaptive contention window adjustment. The proposed collision resolution scheme separates and resolves collisions for different classes of critically delay-sensitive and best effort traffics, thereby, achieving the capability for preemptive priorities. To enhance the performance of the proposed scheme, we adopt a novel methodology in which the headend dynamically selects the optimal backoff window size according to the estimate of the number of contending stations for each priority class. A traffic scheduling policy with multiple priority queues is also employed in the headend to schedule data transmissions. This scheduling strategy is used to satisfy bandwidth requirements for higher priority traffics. Simulations are conducted by using OPNET. We present a set of simulation scenarios to demonstrate the performance efficiency of the proposed scheme.

  6. Dilution refrigeration for space applications

    NASA Technical Reports Server (NTRS)

    Israelsson, U. E.; Petrac, D.

    1990-01-01

    Dilution refrigerators are presently used routinely in ground based applications where temperatures below 0.3 K are required. The operation of a conventional dilution refrigerator depends critically on the presence of gravity. To operate a dilution refrigerator in space many technical difficulties must be overcome. Some of the anticipated difficulties are identified in this paper and possible solutions are described. A single cycle refrigerator is described conceptually that uses forces other than gravity to function and the stringent constraints imposed on the design by requiring the refrigerator to function on the earth without using gravity are elaborated upon.

  7. Fundamentals of Refrigeration.

    ERIC Educational Resources Information Center

    Sutliff, Ronald D.; And Others

    This self-study course is designed to familiarize Marine enlisted personnel with the principles of the refrigeration process. The course contains five study units. Each study unit begins with a general objective, which is a statement of what the student should learn from the unit. The study units are divided into numbered work units, each…

  8. Improved cryogenic refrigeration system

    NASA Technical Reports Server (NTRS)

    Higa, W. H.

    1967-01-01

    Two-position shuttle valve simplifies valving arrangement and crank-shaft configuration in gas-balancing and Stirling-cycle refrigeration systems used to produce temperatures below 173 degrees K. It connects the displacer and regenerator alternately to the supply line or the return line of the compressor, and establishes constant pressure on the drive piston.

  9. Solar Powered Refrigeration System

    NASA Technical Reports Server (NTRS)

    Ewert, Michael K. (Inventor); Bergeron, David J., III (Inventor)

    2002-01-01

    A solar powered vapor compression refrigeration system is made practicable with thermal storage and novel control techniques. In one embodiment, the refrigeration system includes a photovoltaic panel, a variable speed compressor, an insulated enclosure, and a thermal reservoir. The photovoltaic (PV) panel converts sunlight into DC (direct current) electrical power. The DC electrical power drives a compressor that circulates refrigerant through a vapor compression refrigeration loop to extract heat from the insulated enclosure. The thermal reservoir is situated inside the insulated enclosure and includes a phase change material. As heat is extracted from the insulated enclosure, the phase change material is frozen, and thereafter is able to act as a heat sink to maintain the temperature of the insulated enclosure in the absence of sunlight. The conversion of solar power into stored thermal energy is optimized by a compressor control method that effectively maximizes the compressor's usage of available energy. A capacitor is provided to smooth the power voltage and to provide additional current during compressor start-up. A controller monitors the rate of change of the smoothed power voltage to determine if the compressor is operating below or above the available power maximum, and adjusts the compressor speed accordingly. In this manner, the compressor operation is adjusted to convert substantially all available solar power into stored thermal energy.

  10. Scaling of Thermoacoustic Refrigerators

    NASA Astrophysics Data System (ADS)

    Li, Y.; Zeegers, J. C. H.; ter Brake, H. J. M.

    2008-03-01

    The possibility of scaling-down thermoacoustic refrigerators is theoretically investigated. Standing-wave systems are considered as well as traveling-wave. In the former case, a reference system is taken that consists of a resonator tube (50 cm) with a closed end and a PVC stack (length 5 cm). Helium is used at a mean pressure of 10 bar and an amplitude of 1 bar. The resulting operating frequency is 1 kHz. The variation of the performance of the refrigerator when scaled down in size is computed under the prerequisites that the temperature drop over the stack or the energy flux or its density are fixed. The analytical results show that there is a limitation in scaling-down a standing-wave thermoacoustic refrigerator due to heat conduction. Similar scaling trends are considered in traveling-wave refrigerators. The traveling-wave reference system consists of a feedback inertance tube of 0.567 m long, inside diameter 78 mm, a compliance volume of 2830 cm3 and a 24 cm thermal buffer tube. The regenerator is sandwiched between two heat exchangers. The system is operated at 125 Hz and filled with 30 bar helium gas. Again, the thermal conductance forms a practical limitation in down-scaling.

  11. Thermoacoustic engines and refrigerators

    SciTech Connect

    Swift, G.W.

    1995-07-01

    We ordinarily think of a sound wave in a gas as consisting of coupled pressure and displacement oscillations. However, temperature oscillations always accompany the pressure changes. The combination of all these oscillations, and their interaction with solid boundaries, produces a rich variety of `thermoacoustic` effects. Although these effects as they occur in every-day life are too small to be noticed, one can harness extremely loud sound waves in acoustically sealed chambers to produce powerful heat engines, heat pumps and refrigerators. Whereas typical engines and refrigerators have crankshaft-coupled pistons or rotating turbines, thermoacoustic engines and refrigerators have at most a single flexing moving part (as in a loudspeaker) with no sliding seals. Thermoacoustic devices may be of practical use where simplicity, reliability or low cost is more important than the highest efficiency (although one cannot say much more about their cost-competitiveness at this early stage). This paper discusses the fundamentals of thermoacoustic engines and refrigerators, research in this field, and their commercial development. 16 refs., 5 figs.

  12. HFC-152a and HFC-134a emission estimates and characterization of CFCs, CFC replacements, and other halogenated solvents measured during the 2008 ARCTAS campaign (CARB phase) over the South Coast Air Basin of California

    NASA Astrophysics Data System (ADS)

    Barletta, B.; Nissenson, P.; Meinardi, S.; Dabdub, D.; Rowland, F.; Vancuren, R. A.; Pederson, J.; Blake, D. R.

    2010-11-01

    This work presents results from the NASA Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) study. Whole air samples were obtained on board research flights that flew over California during June 2008 and analyzed for selected volatile organic compounds, including several halogenated species. Samples collected over the South Coast Air Basin of California (SoCAB), which includes much of Los Angeles (LA) County, were compared with samples from inflow air masses over the Pacific Ocean. The levels of many halocarbon species were enhanced significantly over the SoCAB, including compounds regulated by the Montreal Protocol and subsequent amendments (e.g., enhancements of 13 pptv and 11 pptv for CFC-11 and CFC-12, respectively). Emissions estimates of HFC-152a (0.98±0.05 Gg) and HFC-134a (1.40±0.11 Gg) in LA County for 2008 were obtained using the observed HFC:CO enhancement ratio. The emission rates were extrapolated to the SoCAB (1.48±0.07 Gg for HFC-152a and 2.12±0.17 Gg for HFC-134a) and US (30.1±1.5 Gg for HFC-152a and 43.0±3.4 Gg for HFC-134a) using population data. In addition, emission rates of the two HFCs in LA County and SoCAB also were calculated by a second method that utilizes air quality modeling. Estimates obtained using both methods agree well.

  13. HFC-152a and HFC-134a emission estimates and characterization of CFCs, CFC replacements, and other halogenated solvents measured during the 2008 ARCTAS campaign (CARB phase) over the South Coast Air Basin of California

    NASA Astrophysics Data System (ADS)

    Barletta, B.; Nissenson, P.; Meinardi, S.; Dabdub, D.; Sherwood Rowland, F.; Vancuren, R. A.; Pederson, J.; Diskin, G. S.; Blake, D. R.

    2011-03-01

    This work presents results from the NASA Arctic Research of the Composition of the Troposphere from Aircraft and Satellites (ARCTAS) study. Whole air samples were obtained on board research flights that flew over California during June 2008 and analyzed for selected volatile organic compounds, including several halogenated species. Samples collected over the South Coast Air Basin of California (SoCAB), which includes much of Los Angeles (LA) County, were compared with samples from inflow air masses over the Pacific Ocean. The levels of many halocarbon species were enhanced significantly over the SoCAB, including compounds regulated by the Montreal Protocol and subsequent amendments. Emissions estimates of HFC-152a (1,1-difluoroethane, CH3CHF2; 0.82 ± 0.11 Gg) and HFC-134a (1,1,1,2-tetrafluoroethane, CH2FCF3; 1.16 ± 0.22 Gg) in LA County for 2008 were obtained using the observed HFC:carbon monoxide (CO) enhancement ratio. Emission rates also were calculated for the SoCAB (1.60 ± 0.22 Gg yr-1 for HFC-152a and 2.12 ± 0.28 Gg yr-1 for HFC-134a) and then extrapolated to the United States (32 ± 4 Gg yr-1 for HFC-152a and 43 ± 6 Gg yr-1 for HFC-134a) using population data. In addition, emission rates of the two HFCs in LA County and SoCAB were calculated by a second method that utilizes air quality modeling. Emissions estimates obtained using both methods differ by less than 25% for the LA County and less than 45% for the SoCAB.

  14. Australian HFC, PFC and SF6 emissions: atmospheric verification

    NASA Astrophysics Data System (ADS)

    Fraser, P.; Dunse, B.; Krummel, P. B.; Steele, P.; Manning, A. J.

    2011-12-01

    The synthetic greenhouse gases (GHGs: hydrofluorocarbons - HFCs, perfluorocarbons - PFCs, and sulfur hexafluoride - SF6), emitted largely by the refrigeration, aluminium and electricity distribution industries respectively, are currently responsible for less than 2% of Australia's net long-lived GHG emissions (DCCEE, 2011). Nevertheless, they have attracted the attention of policymakers because (1) if their growth in concentrations and emissions continues unabated, particularly HFCs - currently growing at 10% per year - then they could be responsible globally (and in Australia) for more than 10% of the radiative forcing due to long-lived GHGs by 2050 (Velders et al., 2009); and (2) they provide the opportunity for a very cost-effective GHG mitigation strategy, because emissions can be reduced significantly through better engineering to minimize emissions, through a ban on dispersive uses (as solvents for example) and through the use of low GWP (Global Warming Potential) alternatives (for example hydrofluoroethers - HFEs). CSIRO, through its involvement in the AGAGE global program of monitoring non-carbon dioxide GHGs (Prinn et al., 2000), has been making high precision in situ measurements (12 per day) of HFCs, PFCs and SF6 at Cape Grim, Tasmania, since 2004, using a gas chromatograph-mass spectrometer detector (GC-MSD) fitted with a custom-built cryo-focussing unit (Medusa: Miller et al., 2008). The resultant data have been used to derive Australian emissions by inverse modelling (NAME, TAPM) and interspecies correlation (ISC). The overall agreement between so-called bottom-up estimates of Australian emissions, as reported to the UNFCCC (United Nations Framework Convention on Climate Change), and top-down estimates from atmospheric observations, using NAME, TAPM and ISC, is encouraging. Australian UNFCCC reported emissions (DCCEE, 2011) generally agree to within of 10% of emissions calculated from Cape Grim data, scaled on a population basis, with some notable

  15. Design analysis of the Einstein refrigeration cycle

    SciTech Connect

    Shelton, S.V.; Delano, A.; Schaefer, L.A.

    1999-07-01

    After developing the theory of relativity, Albert Einstein spent several years working with Leo Szilard on absorption refrigeration cycles. In 1930, they obtained a US patent for a unique single pressure absorption cycle. The single pressure eliminates the need for a solution pump. Their cycle has only recently been rediscovered. The cycle utilizes butane as its refrigerant, ammonia as a pressure equalizing fluid, and water as an absorbing fluid. This cycle is dramatically different in both concept and detail than the better-known ammonia-water-hydrogen cycle. In this study, thermodynamic and mixture property models of the Einstein cycle were created to gain insight into the cycle's operating characteristics and to calculate its performance. A conceptual demonstration model was built and successfully operated, showing for the first time the viability of the cycle. The model results found that the system pressure is an important design parameter, with the COP having an optimum when the system pressure is equal to the saturation pressure of the butane refrigerant. It was also found that for a given system pressure, there is a maximum condenser-absorber temperature and a minimum evaporator temperature.

  16. Study to determine the existence of an azeotropic R-22 `drop-in` substitute

    SciTech Connect

    Kim, M.S.; Morrison, G.; Mulroy, W.J.; Didion, D.A.

    1996-03-01

    The reduction in chlorofluorocarbon (CFC) and hydrochlorofluorocarbon (HCFC) production and the scheduled phase-out of these ozone depleting refrigerants requires the development and determination of environmentally safe refrigerants for use in heat pumps, water chillers, air conditioners, and refrigerators. Azeotropic mixtures are attractive as alternative refrigerants because they behave very nearly as pure materials. A simple correlative scheme that allows one to judge whether or not an azeotrope is likely in a binary refrigerant mixture is discussed. This paper presents laboratory and computer simulation model evaluation of two of the azeotropic refrigerant mixtures which are identified, HFC-134a (1,1,1,2-tetrafluoroethane) with R-C290 (Propane) and HFC-134a with R-600a (Isobutane), in a generic heat pump apparatus. A third azeotropes mixture, HFC-134a with R-C290 (Cyclopropane) is examined by computer simulation only.

  17. Magnetic refrigeration apparatus with belt of ferro or paramagnetic material

    DOEpatents

    Barclay, John A.; Stewart, Walter F.; Henke, Michael D.; Kalash, Kenneth E.

    1987-01-01

    A magnetic refrigerator operating in the 12 to 77K range utilizes a belt which carries ferromagnetic or paramagnetic material and which is disposed in a loop which passes through the center of a solenoidal magnet to achieve cooling. The magnetic material carried by the belt, which can be blocks in frames of a linked belt, can be a mixture of substances with different Curie temperatures arranged such that the Curie temperatures progressively increase from one edge of the belt to the other. This magnetic refrigerator can be used to cool and liquefy hydrogen or other fluids.

  18. Magnetic refrigeration apparatus with belt of ferro or paramagnetic material

    DOEpatents

    Barclay, J.A.; Stewart, W.F.; Henke, M.D.; Kalash, K.E.

    1986-04-03

    A magnetic refrigerator operating in the 12 to 77 K range utilizes a belt which carries ferromagnetic or paramagnetic material and which is disposed in a loop which passes through the center of a solenoidal magnet to achieve cooling. The magnetic material carried by the belt, which can be blocks in frames of a linked belt, can be a mixture of substances with different Curie temperatures arranged such that the Curie temperatures progressively increase from one edge of the belt to the other. This magnetic refrigerator can be used to cool and liquefy hydrogen or other fluids.

  19. Discussion of Refrigeration Cycle Using Carbon Dioxide as Refrigerant

    NASA Astrophysics Data System (ADS)

    Ji, Amin; Sun, Miming; Li, Jie; Yin, Gang; Cheng, Keyong; Zhen, Bing; Sun, Ying

    Nowadays, the problem of the environment goes worse, it urges people to research and study new energy-saving and environment-friendly refrigerants, such as carbon dioxide, at present, people do research on carbon dioxide at home and abroad. This paper introduces the property of carbon dioxide as a refrigerant, sums up and analyses carbon dioxide refrigeration cycles, and points out the development and research direction in the future.

  20. Compact acoustic refrigerator

    DOEpatents

    Bennett, Gloria A.

    1992-01-01

    A compact acoustic refrigeration system actively cools components, e.g., electrical circuits (22), in a borehole environment. An acoustic engine (12, 14) includes first thermodynamic elements (12) for generating a standing acoustic wave in a selected medium. An acoustic refrigerator (16, 26, 28) includes second thermodynamic elements (16) located in the standing wave for generating a relatively cold temperature at a first end of the second thermodynamic elements (16) and a relatively hot temperature at a second end of the second thermodynamic elements (16). A resonator volume (18) cooperates with the first and second thermodynamic elements (12, 16) to support the standing wave. To accommodate the high heat fluxes required for heat transfer to/from the first and second thermodynamic elements (12, 16), first heat pipes (24, 26) transfer heat from the heat load (22) to the second thermodynamic elements (16) and second heat pipes (28, 32) transfer heat from first and second thermodynamic elements (12, 16) to the borehole environment.

  1. Oxygen chemisorption cryogenic refrigerator

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor)

    1987-01-01

    The present invention relates to a chemisorption compressor cryogenic refrigerator which employs oxygen to provide cooling at 60 to 100 K. The invention includes dual vessels containing an oxygen absorbent material, alternately heated and cooled to provide a continuous flow of high pressure oxygen, multiple heat exchangers for precooling the oxygen, a Joule-Thomson expansion valve system for expanding the oxygen to partially liquefy it and a liquid oxygen pressure vessel. The primary novelty is that, while it was believed that once oxygen combined with an element or compound the reaction could not reverse to release gaseous oxygen, in this case oxygen will indeed react in a reversible fashion with certain materials and will do so at temperatures and pressures which make it practical for incorporation into a cryogenic refrigeration system.

  2. Superfluid thermodynamic cycle refrigerator

    DOEpatents

    Swift, Gregory W.; Kotsubo, Vincent Y.

    1992-01-01

    A cryogenic refrigerator cools a heat source by cyclically concentrating and diluting the amount of .sup.3 He in a single phase .sup.3 He-.sup.4 He solution. The .sup.3 He in superfluid .sup.4 He acts in a manner of an ideal gas in a vacuum. Thus, refrigeration is obtained using any conventional thermal cycle, but preferably a Stirling or Carnot cycle. A single phase solution of liquid .sup.3 He at an initial concentration in superfluid .sup.4 He is contained in a first variable volume connected to a second variable volume through a superleak device that enables free passage of .sup.4 He while restricting passage of .sup.3 He. The .sup.3 He is compressed (concentrated) and expanded (diluted) in a phased manner to carry out the selected thermal cycle to remove heat from the heat load for cooling below 1 K.

  3. Superfluid thermodynamic cycle refrigerator

    DOEpatents

    Swift, G.W.; Kotsubo, V.Y.

    1992-12-22

    A cryogenic refrigerator cools a heat source by cyclically concentrating and diluting the amount of [sup 3]He in a single phase [sup 3]He-[sup 4]He solution. The [sup 3]He in superfluid [sup 4]He acts in a manner of an ideal gas in a vacuum. Thus, refrigeration is obtained using any conventional thermal cycle, but preferably a Stirling or Carnot cycle. A single phase solution of liquid [sup 3]He at an initial concentration in superfluid [sup 4]He is contained in a first variable volume connected to a second variable volume through a superleak device that enables free passage of [sup 4]He while restricting passage of [sup 3]He. The [sup 3]He is compressed (concentrated) and expanded (diluted) in a phased manner to carry out the selected thermal cycle to remove heat from the heat load for cooling below 1 K. 12 figs.

  4. Compact acoustic refrigerator

    SciTech Connect

    Bennett, G.A.

    1991-12-31

    This invention is comprised of a compact acoustic refrigeration system that actively cools components, e.g., electrical circuits, in a borehole environment. An acoustic engine includes first thermodynamic elements for generating a standing acoustic wave in a selected medium. An acoustic refrigerator includes second thermodynamic elements located in the standing wave for generating a relatively cold temperature at a first end of the second thermodynamic elements and a relatively hot temperature at a second end of the second thermodynamic elements. A resonator volume cooperates with the first and second thermodynamic elements to support the standing wave. To accommodate the high heat fluxes required for heat transfer to/from the first and second thermodynamic elements, first heat pipes transfer heat from the heat load to the second thermodynamic elements and second heat pipes transfer heat from first and second thermodynamic elements to the borehole environment.

  5. Compact acoustic refrigerator

    DOEpatents

    Bennett, G.A.

    1992-11-24

    A compact acoustic refrigeration system actively cools components, e.g., electrical circuits, in a borehole environment. An acoustic engine includes first thermodynamic elements for generating a standing acoustic wave in a selected medium. An acoustic refrigerator includes second thermodynamic elements located in the standing wave for generating a relatively cold temperature at a first end of the second thermodynamic elements and a relatively hot temperature at a second end of the second thermodynamic elements. A resonator volume cooperates with the first and second thermodynamic elements to support the standing wave. To accommodate the high heat fluxes required for heat transfer to/from the first and second thermodynamic elements, first heat pipes transfer heat from the heat load to the second thermodynamic elements and second heat pipes transfer heat from first and second thermodynamic elements to the borehole environment. 18 figs.

  6. Multilayer Thermionic Refrigeration

    SciTech Connect

    Mahan, G.D.

    1999-08-30

    A review is presented of our program to construct an efficient solid state refrigerator based on thermionic emission of electrons over periodic barriers in the solid. The experimental program is to construct a simple device with one barrier layer using a three layers: metal-semiconductor-metal. The theoretical program is doing calculations to determine: (i) the optimal layer thickness, and (ii) the thermal conductivity.

  7. Reciprocating Magnetic Refrigerator

    NASA Technical Reports Server (NTRS)

    Johnson, D. L.

    1985-01-01

    Unit cools to 4 K by adiabatic demagnetization. Two porous matrices of paramagnetic material gadolinium/gallium/garnet held in long piston called displacer, machined out of Micarta (phenol formaldehyde polymer). Holes in side of displacer allow heat-exchange fluid to flow to and through matrices within. Piston seals on displacer prevent substantial mixing of fluid in two loops. Magnetic refrigerator provides continuous rather than "one-shot" cooling.

  8. Toxicokinetics of 1,1,1,2-tetrafluoroethane (HFC-134a) in male volunteers after experimental exposure.

    PubMed

    Gunnare, Sara; Ernstgård, Lena; Sjögren, Bengt; Johanson, Gunnar

    2006-11-01

    The aim of this study was to determine the uptake and disposition of inhaled 1,1,1,2-tetrafluoroethane (HFC-134a) in humans. Ten male volunteers were exposed to 500 ppm HFC-134a (2 h, 50 W exercise). The HFC-134a levels were monitored in blood, exhaled air and urine up to 19 h post-exposure. The concentration in blood increased rapidly, reaching a plateau of 9.4+/-1.9 microM (mean+/-S.D.) within 30 min, followed by a fast post-exposure decrease. HFC-134a in expired air decreased rapidly as well and in parallel with that in blood. The post-exposure urinary excretion was 0.002% of the inhaled amount, and the half-time was 58 min (pooled data). A physiologically based toxicokinetic (PBTK) model was developed for further analysis. Experimental and simulated time courses in blood and exhaled air agreed well in all 10 subjects. Further, the late decay in blood was consistent with a wash-out of HFC-134a from fat tissues, with a half-time of 114+/-21 min. The simulated relative uptake during exposure was 3.7+/-0.5%. No remarkable findings were observed in the electrocardiographic recordings. Fibrinogen in plasma increased 1 day after exposure, whereas no effects on C-reactive protein, serum amyloid A protein, D-dimer or uric acid were seen. Further studies are needed to investigate the possible inflammatory response. PMID:17030466

  9. Sudden death involving inhalation of 1,1-difluoroethane (HFC-152a) with spray cleaner: three case reports.

    PubMed

    Sakai, Kentaro; Maruyama-Maebashi, Kyoko; Takatsu, Akihiro; Fukui, Kenji; Nagai, Tomonori; Aoyagi, Miwako; Ochiai, Eriko; Iwadate, Kimiharu

    2011-03-20

    Spray cleaner is a cleaning product containing compressed 1,1-difluoroethane (HFC-152a) to blow dust off electric devices and other sensitive equipment; however, it is also inhaled to induce euphoria. This report describes three cases of death involving HFC-152a inhalation with spray cleaner under different circumstances. In case 1, death was during inhalation for euphoria with which led to having frostbite. In case 2, death may have been associated with suicidal intention. Case 3 was also considered an accidental autoerotic death. In all three cases, HFC-152a was detected at 99.2-136.2mg/l in blood samples, 94.5-191.9 mg/l in urine samples and 3.6-18.4 mg in the gastric contents according to gas chromatography with flame ionization detection. To prevent death associated with HFC-152a inhalation from spray cleaner, the danger of the sudden death should be announced to people, given the ready availability of commercial products containing HFC-152a. PMID:20875935

  10. Thermoacoustic Refrigerator's Stack Optimization

    NASA Astrophysics Data System (ADS)

    El-Fawal, Mawahib Hassan; Mohd-Ghazali, Normah; Yaacob, Mohd. Shafik; Darus, Amer Nordin

    2010-06-01

    The standing wave thermoacoustic refrigerator, which uses sound generation to transfer heat, was developed rapidly during the past four decades. It was regarded as a new, promising and environmentally benign alternative to conventional compression vapor refrigerators, although it was not competitive regarding the coefficient of performance (COP) yet. Thus the aim of this paper is to enhance thermoacoustic refrigerator's stack performance through optimization. A computational optimization procedure of thermoacoustic stack design was fully developed. The procedure was designed to achieve optimal coefficient of performance based on most of the design and operating parameters. Cooling load and acoustic power governing equations were set assuming the linear thermoacoustic theory. Lagrange multipliers method was used as an optimization technique tool to solve the governing equations. Numerical analyses results of the developed design procedure are presented. The results showed that the stack design parameters are the most significant parameters for the optimal overall performance. The coefficient of performance obtained increases by about 48.8% from the published experimental optimization methods. The results are in good agreement with past established studies.

  11. Japanese activities in refrigeration technology

    NASA Astrophysics Data System (ADS)

    Fujita, T.; Ohtsuka, T.; Ishizaki, Y.

    This paper reviews recent activities in refrigeration technology in Japan. The projects described are stimulated by growing industrial needs or form part of large national projects. The JNR project on the MAGLEV train is currently the most powerful activity and it demands knowledge in all the different disciplines of cryogenics in particular on various scales of refrigeration. Research activities are also directed towards the development of Stirling cycle and magnetic refrigerators for applications in a wider area.

  12. NICE3: Industrial Refrigeration System

    SciTech Connect

    Simon, P.

    1999-09-29

    Energy Concepts has developed an absorption-augmented system as a cost-effective means of achieving more cooling capacity with a substantial reduction in energy consumption and greenhouse gas emissions for industrial refrigeration. It cuts fuel consumption by 30% by combining an internal combustion engine with a mechanical compression refrigeration system and an absorption refrigeration system. The absorption system is powered by engine waste heat. Conventional industrial refrigeration uses mechanical vapor compression, powered by electric motors, which results in higher energy costs. By the year 2010, the new system could cut fuel consumption by 19 trillion Btu and greenhouse emissions by more than 1 million tons per year.

  13. Piezoelectrically-driven Thermoacoustic Refrigerator

    NASA Astrophysics Data System (ADS)

    Chinn, Daniel George

    Thermoacoustic refrigeration is an emerging refrigeration technology which does not require any moving parts or harmful refrigerants in its operation. This technology uses acoustic waves to pump heat across a temperature gradient. The vast majority of thermoacoustic refrigerators to date have used electromagnetic loudspeakers to generate the acoustic input. In this thesis, the design, construction, operation, and modeling of a piezoelectrically-driven thermoacoustic refrigerator are detailed. This refrigerator demonstrates the effectiveness of piezoelectric actuation in moving 0.3 W of heat across an 18 degree C temperature difference with an input power of 7.6 W. The performance characteristics of this class of thermoacoustic-piezoelectric refrigerators are modeled by using DeltaEC software and the predictions are experimentally validated. The obtained results confirm the validity of the developed model. Furthermore, the potential of piezoelectric actuation as effective means for driving thermoacoustic refrigerators is demonstrated as compared to the conventional electromagnetic loudspeakers which are heavy and require high actuation energy. The developed theoretical and experimental tools can serve as invaluable means for the design and testing of other piezoelectrically-driven thermoacoustic refrigerator configurations.

  14. Atmospheric degradation mechanisms of hydrogen containing chlorofluorocarbons (HCFC) and fluorocarbons (HFC)

    NASA Technical Reports Server (NTRS)

    Zellner, Reinhard

    1990-01-01

    The current knowledge of atmospheric degradation of hydrogen containing chlorofluorocarbons (HCFC 22 (CHClF2), HCFC 123 (CHCl2CF3), HCFC 124 (CHClFCF3), HCFC 141b (CFCl2CH3), HCFC 142b (CF2ClCH3)) and fluorocarbons (HFC 125 (CHF2CF3), HFC 134a (CH2FCF3), HFC 152a (CHF2CH3)) is assessed. Except for the initiation reaction by OH radicals, there are virtually no experimental data available concerning the subsequent oxidative breakdown of these molecules. However, from an analogy to the degradation mechanisms of simple alkanes, some useful guidelines as to the expected intermediates and final products can be derived. A noteable exception from this analogy, however, appears for the oxi-radicals. Here, halogen substitution induces new reaction types (C-Cl and C-C bond ruptures) which are unknown to the unsubstituted analogues and which modify the nature of the expected carbonyl products. Based on an evaluation of these processes using estimated bond strength data, the following simplified rules with regards to the chlorine content of the HCFC's may be deduced: (1) HCFC's containing one chlorine atom such as 22 and 142b seem to release their chlorine content essentially instantaneous with the initial attack on the parent by OH radicals, and for HCFC 124, such release is apparently prevented; (2) HCFC's such as 123 and 141b with two chlorine atoms are expected to release only one of these instantaneously; and the second chlorine atom may be stored in potentially long-lived carbonyl compounds such as CF3CClO or CClFO.

  15. Trifluoroacetate in the environment. Evidence for sources other than HFC/HCFCs

    SciTech Connect

    Jordan, A.; Frank, H.

    1999-02-15

    The partly halogenated C{sub 2}-hydro(chloro)fluorocarbons (HFC, HCFC) 1,1,1-trifluoro-2,2-dichloroethane (HCFC-123), 1,1,1,2-tetrafluoro-2-chloroethane (HCFC-124), and 1,1,1,2-tetrafluoroethane (HFC-134a) are CFC substitutes found at increasing levels in the atmosphere. Trifluoroacetate (TFA) is an atmospheric degradation product of these compounds and due to its persistence its potential accumulation in some aquatic ecosystems is a matter of environmental concern. The present study was undertaken to determine the present-days base level of environmental TFA and whether model calculations are in line with the actual data. Average levels of about 120 ng L{sup {minus}1} as predicted for the year 2010 are found in rain in Germany already now, slightly higher than in rain collected in Switzerland or Nevada. In the major rivers in Germany, TFA is present at average concentrations of 140 ng L{sup {minus}1}. In air, levels of 45--60 pg m{sup {minus}3} have been found in Central Europe. Between March 1995 and September 1996, a period of substantial increase in atmospheric HFC-134a mixing ratio, the TFA concentrations in air and precipitation did not significantly increase. TFA is absent in old groundwater samples, and in river water from remote locations, concentrations are low. These data suggest that the total TFA in both compartments exceeds the formation potential of currently known sources, that TFA in atmosphere and rain is regionally associated with industrial or population density, and that other unresolved sources must contribute to the present concentrations.

  16. Viscosity of gaseous HFC-134a (1,1,1,2-tetrafluoroethane) under high pressures

    SciTech Connect

    Shibasaki-Kitakawa, N.; Takahashi, M.; Yokoyama, C.

    1998-09-01

    The viscosity of gaseous HFC-134a (1,1,1,2-tetrafluoroethane) was measured with an oscillating disk viscometer of the Maxwell type from 298.15 to 398.15 K at pressures up to 5.5 MPa. Intermolecular potential parameters for the Lennard-Jones 12-6 model were determined from the viscosity data at 0.1 MPa. The viscosity equation developed by Krauss et al. was applied to correlate the present viscosity data. In addition, the correlations proposed by Stiel and Thodos and by Lee and Thodos were tested for fitting the experimental viscosity data.

  17. Refrigerator-freezer energy testing with alternative refrigerants

    NASA Astrophysics Data System (ADS)

    Vineyard, E. A.; Sand, J. R.; Miller, W. A.

    1989-07-01

    As a result of the Montreal Protocol that limits the production of ozone-depleting refrigerants, manufacturers are searching for alternatives to replace the R12 that is presently used in residential refrigerator-freezers. Before an alternative can be selected, several issues must be resolved. Among these are energy impacts, system compatibility, cost, and availability. In an effort to determine the energy impacts of some of the alternatives, energy consumption tests were performed in accordance with section 8 of the Association of Home Appliance Manufacturers (AHAM) standard for household refrigerators and household freezers. The results are presented for an 18 cubic foot (0.51 cubic meter), top-mount refrigerator-freezer with a static condenser using the following refrigerants: R12, R500, R12/Dimethyl-ether (DME), R22/R142b, and R134a. Conclusions from the AHAM test are that R500 and R12 /DME have a reduced energy consumption relative to R12 when replaced in the test unit with no modifications to the refrigeration system. Run times were slightly lower than R12 for both refrigerants indicating a higher capacity. While the R134a and R22/R142b results were less promising, changes to the refrigeration system, such as a different capillary tube or compressor, may improve performance.

  18. Evaluation of volatile compounds and free fatty acids in set types yogurts made of ewes', goats' milk and their mixture using two different commercial starter cultures during refrigerated storage.

    PubMed

    Güler, Zehra; Gürsoy-Balcı, Alev Canan

    2011-08-01

    Six different types of yogurt were manufactured from Damascus goat milk, Awassi ewe milk and a mixture of equal portions of the 2 species of milk using 2 types of commercial yogurt cultures (CH-1 and YF-3331). Yogurts were chemically analysed at 1, 7, 14 and 21days of storage. Results showed that cultures significantly affected acetaldehyde (P<0.05), acetone (P<0.05) and diacetyl (P<0.001) contents. Type of milk significantly influenced acetaldehyde (P<0.05), diacetyl (P<0.001), acetoin (P<0.001) and ethanol (P<0.05) levels. Significant variations occurred in acetaldehyde (P<0.001) and acetoin (P<0.05) contents during the storage. Short-chain free fatty acids were the highest in ewes' milk yogurt made with culture YF-3331, and increased during storage, while the levels of medium-chain free fatty acids, except for decanoic acid, were unchanged and the amount of long-chain free fatty acids decreased during storage. Cultures used and types of milk had no effect on long-chain free fatty acids in yogurts. PMID:25214097

  19. Condensation of refrigerants flowing inside smooth and corrugated tubes

    SciTech Connect

    Hinton, D.L.; Conklin, J.C.; Vineyard, E.A.

    1995-07-01

    Because heat exchanger thermal performance has a direct fluence on the overall cycle performance of vapor-compression refrigeration machinery,enhanced heat transfer surfaces are of interest to improve the efficiency of heat pumps and air conditioners. We investigated R-22 and a nonazeotropic refrigerant mixture (NARM) of 75% R-143a and 25% R-124 (by mass) to study their thermal performance in a condenser made of conventional smooth tubes and another condenser made of corrugated, or spirally indented, tubes. We investigated the condensing heat transfer and pressure drop characteristics in an experimental test loop model of a domestic beat pump system employing a variable speed compressor. The refrigerant circulates inside the central tube and the water circulates in the annulus. At refrigerant mass fluxes of approximately 275--300 kg/m{sup 2}s, the measured irreversible pressure drop of the corrugated surface was 23% higher than that of the smooth surface for the R-22. At refrigerant mass fluxes of 350-370 kg/m{sup 2}s, the irreversible pressure drop of the corrugated surface was 36% higher than that of the smooth surface for the NARM. The average heat transfer coefficient for the corrugated surface for R-22 was roughly 40% higher than that for the smooth tube surface at refrigerant mass fluxes of 275--295 kg/m{sup 2}s. The average heat transfer coefficient for the corrugated surface for the NARM was typically 70% higher than that for the smooth tube surface at refrigerant mass fluxes of 340--385 kg/m{sup 2}s.

  20. Sun synchronous solar refrigeration

    NASA Astrophysics Data System (ADS)

    The primary goal of this project was to prototype a complete Sun Synchronous Solar Powered Refrigerator. The key element to the technology is the development of the hermetic motor compressor assembly. The prototype was to be developed to either the stage where Polar Products could receive additional venture capital or to the point whereby Polar could use their own capital to manufacture the systems. Our goal was to construct a prototype which would be the next step to a proven and market ready product. To demonstrate the technology under laboratory conditions was a very minimal goal.

  1. Cycling Joule Thomson refrigerator

    NASA Technical Reports Server (NTRS)

    Tward, E. (Inventor)

    1983-01-01

    A symmetrical adsorption pump/compressor system having a pair of mirror image legs and a Joule Thomson expander, or valve, interposed between the legs thereof for providing a, efficient refrigeration cycle is described. The system further includes a plurality of gas operational heat switches adapted selectively to transfer heat from a thermal load and to transfer or discharge heat through a heat projector, such as a radiator or the like. The heat switches comprise heat pressurizable chambers adapted for alternate pressurization in response to adsorption and desorption of a pressurizing gas confined therein.

  2. Regenerative Sorption Refrigerator

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.; Wen, Liang-Chi; Bard, Steven

    1991-01-01

    Two-stage sorption refrigerator achieves increased efficiency via regenerative-heating concept in which waste heat from praseodymium/cerium oxide (PCO) chemisorption compressor runs charcoal/krypton (C/Kr) sorption compressor. Waste heat from each PCO sorption compressor used to power surrounding C/Kr sorption compressor. Flows of heat in two compressor modules controlled by gas-gap thermal switches. Has no wearing moving parts other than extremely long life, room-temperature check valves operating about twice per hour. Virtually no measurable vibration, and has potential operating life of at least ten years.

  3. The refrigerator revolution

    SciTech Connect

    Ayres, E.; French, H.

    1996-09-01

    This article discusses how a simple, new technology threw the best-laid plans of the chemical and refrigerator industries into disarray-and provided a new perspective on how future environmental agreements can be reached. In recent years, a series of massive business mergers has mesmerized the industrial world. However in the early 1990s a German environmentalist, triggered global reprocussions in the wake of the mandate to phase out the use of ozone depleting substances. The economic and political background of this is explained in detail.

  4. Semiconductor-based optical refrigerator

    DOEpatents

    Epstein, Richard I.; Edwards, Bradley C.; Sheik-Bahae, Mansoor

    2002-01-01

    Optical refrigerators using semiconductor material as a cooling medium, with layers of material in close proximity to the cooling medium that carries away heat from the cooling material and preventing radiation trapping. In addition to the use of semiconducting material, the invention can be used with ytterbium-doped glass optical refrigerators.

  5. Near azeotropic mixture substitute for dichlorodifluoromethane

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor)

    1998-01-01

    A refrigerant and a process of formulating thereof that consists of a mixture of a first mole fraction of CH.sub.2 FCF.sub.3 and a second mole fraction of a component selected from the group consisting of a mixture of CHClFCF.sub.3 and CH.sub.3 CClF.sub.2 ; a mixture of CHF.sub.2 CH.sub.3 and CH.sub.3 CClF.sub.2 ; and a mixture of CHClFCF.sub.3, CH.sub.3 CClF.sub.2 and CHF.sub.2 CH.sub.3.

  6. Low refrigerant charge detecting device

    SciTech Connect

    Pettitt, E.D.

    1988-05-24

    In an air conditioning system charged with a refrigerant whose amount may diminish in time, the system is described including an evaporator, an improved low refrigerant charge detecting device comprising a sealed bellows containing refrigerant having a stationary end and an extendible end. The extendible end supports an electrical contact and forms with a protruding temperature probe portion exposed to the refrigerant leaving the evaporator. An open bellows has a stationary end open to the refrigerant leaving the evaporator and an extendible end fixed to the extendible end of the fixed bellows about the probe portion, and a bimetal element exposed to ambient air supporting an electrical contact located opposite the first mentioned contact.

  7. Integrated services to the home and small business over a service-independent HFC network

    NASA Astrophysics Data System (ADS)

    Counterman, Raymond

    1995-11-01

    This paper proposes three different approaches to providing integrated digital services to small businesses and residential customers over modern hybrid fiber and coaxial (HFC) access networks. The target delivery system is one that is flexible and forms a multiservice, service- independent platform capable of providing a wide range of services (voice, video, data, and multimedia). The merits and limitations of the three approaches are explored. In the first approach, the common facilities of an HFC access network may be shared by the frequency partitioning of the coaxial plant's radio frequency spectrum. video, data, and telephony services each use different portions of this spectrum -- a service-dependent network. In the second approach, asynchronous transfer mode (ATM) transmission is used as the information delivery vehicle all the way to the home or small business, creating a more flexible delivery system. The ATM-based architecture is expected to support any service or service mix -- a service-independent network. In the third approach, a common transport protocol composed of both asynchronous and synchronous transfer modes (ATM/STM) is used. Such an approach could (1) provide a common interface between home/small business premises equipment and both the circuit and ATM switching networks; (2) meet a wide range of delay and throughput requirements; and (3) allow for many network migration scenarios.

  8. Helium dilution refrigeration system

    DOEpatents

    Roach, P.R.; Gray, K.E.

    1988-09-13

    A helium dilution refrigeration system operable over a limited time period, and recyclable for a next period of operation is disclosed. The refrigeration system is compact with a self-contained pumping system and heaters for operation of the system. A mixing chamber contains [sup 3]He and [sup 4]He liquids which are precooled by a coupled container containing [sup 3]He liquid, enabling the phase separation of a [sup 3]He rich liquid phase from a dilute [sup 3]He-[sup 4]He liquid phase which leads to the final stage of a dilution cooling process for obtaining low temperatures. The mixing chamber and a still are coupled by a fluid line and are maintained at substantially the same level with the still cross sectional area being smaller than that of the mixing chamber. This configuration provides maximum cooling power and efficiency by the cooling period ending when the [sup 3]He liquid is depleted from the mixing chamber with the mixing chamber nearly empty of liquid helium, thus avoiding unnecessary and inefficient cooling of a large amount of the dilute [sup 3]He-[sup 4]He liquid phase. 2 figs.

  9. Helium dilution refrigeration system

    DOEpatents

    Roach, Patrick R.; Gray, Kenneth E.

    1988-01-01

    A helium dilution refrigeration system operable over a limited time period, and recyclable for a next period of operation. The refrigeration system is compact with a self-contained pumping system and heaters for operation of the system. A mixing chamber contains .sup.3 He and .sup.4 He liquids which are precooled by a coupled container containing .sup.3 He liquid, enabling the phase separation of a .sup.3 He rich liquid phase from a dilute .sup.3 He-.sup.4 He liquid phase which leads to the final stage of a dilution cooling process for obtaining low temperatures. The mixing chamber and a still are coupled by a fluid line and are maintained at substantially the same level with the still cross sectional area being smaller than that of the mixing chamber. This configuration provides maximum cooling power and efficiency by the cooling period ending when the .sup.3 He liquid is depleted from the mixing chamber with the mixing chamber nearly empty of liquid helium, thus avoiding unnecessary and inefficient cooling of a large amount of the dilute .sup.3 He-.sup.4 He liquid phase.

  10. Malone cycle refrigerator development

    SciTech Connect

    Shimko, M.A.; Crowley, C.J.

    1999-07-01

    This paper describes the progress made in demonstrating a Malone Cycle Refrigerator/Freezer. The Malone cycle is similar to the Stirling cycle but uses a supercritical fluid in place of real gas. In the approach, solid-metal diaphragms are used to seal and sweep the working volumes against the high working fluid pressures required in Malone cycle machines. This feature eliminates the friction and leakage that accounted for nearly half the losses in the best piston-defined Malone cycle machines built to date. The authors successfully built a Malone cycle refrigerator that: (1) used CO{sub 2} as the working fluid, (2) operated at pressures up to 19.3 Mpa (2,800 psi), (3) achieved a cold end metal temperatures of {minus}29 C ({minus}20 F), and (4) produced over 400 Watts of cooling at near ambient temperatures. The critical diaphragm components operated flawlessly throughout characterization and performance testing, supporting the conclusion of high reliability based on analysis of fatigue date and actual strain measurements.

  11. Anomalous Brownian refrigerator

    NASA Astrophysics Data System (ADS)

    Rana, Shubhashis; Pal, P. S.; Saha, Arnab; Jayannavar, A. M.

    2016-02-01

    We present a detailed study of a Brownian particle driven by Carnot-type refrigerating protocol operating between two thermal baths. Both the underdamped as well as the overdamped limits are investigated. The particle is in a harmonic potential with time-periodic strength that drives the system cyclically between the baths. Each cycle consists of two isothermal steps at different temperatures and two adiabatic steps connecting them. Besides working as a stochastic refrigerator, it is shown analytically that in the quasistatic regime the system can also act as stochastic heater, depending on the bath temperatures. Interestingly, in non-quasistatic regime, our system can even work as a stochastic heat engine for certain range of cycle time and bath temperatures. We show that the operation of this engine is not reliable. The fluctuations of stochastic efficiency/coefficient of performance (COP) dominate their mean values. Their distributions show power law tails, however the exponents are not universal. Our study reveals that microscopic machines are not the microscopic equivalent of the macroscopic machines that we come across in our daily life. We find that there is no one to one correspondence between the performance of our system under engine protocol and its reverse.

  12. JPL research to develop a He-3/He-4 dilution refrigerator for space applications

    NASA Technical Reports Server (NTRS)

    Petrac, D.; Israelsson, U. E.; Jackson, H. W.; Strayer, D. M.

    1990-01-01

    A research program to develop a He-3/He-4 solution refrigerator for space applications is underway. The results of the effort to use an electric field as a substitute for gravity to control the He-3/He-4 mixture interface that separates phases in terrestrial units are described. Further, experimental results obtained from an engineering model of a single-cycle dilution refrigerator with a mixing chamber capable of operating in a zero-gravity environment are described. Future research and development plans are outlined, in particular the need to test the operation of a single-cycle as well as a continuously operating dilution refrigerator in space.

  13. Mechanism of the Enzymatic Synthesis of 4-(Hydroxymethyl)-2- furancarboxaldehyde-phosphate (4-HFC-P) from Glyceraldehyde-3-phosphate Catalyzed by 4-HFC-P Synthase.

    PubMed

    Wang, Yu; Jones, Michael K; Xu, Huimin; Ray, W Keith; White, Robert H

    2015-05-19

    A single enzyme, 4-(hydroxymethyl)-2-furancarboxaldehyde-phosphate synthase (MfnB), from the methanogen Methanocaldococcus jannaschii catalyzed at least 10 separate chemical reactions in converting two molecules of glyceraldehyde-3-P (GA-3-P) to 4-(hydroxymethyl)-2-furancarboxaldehyde-P (4-HFC-P), the first discrete intermediate in the biosynthetic pathway to the furan moiety of the coenzyme methanofuran. Here we describe the biochemical characterization of the recombinantly expressed MfnB to understand its catalytic mechanism. Site-directed mutagenesis showed that the strictly conserved residues (Asp25, Lys27, Lys85, and Asp151) around the active site are all essential for enzyme catalysis. Matrix-assisted laser desorption/ionization analysis of peptide fragments of MfnB incubated with GA-3-P followed by NaBH₄ reduction and trypsin digestion identified a peptide with a mass/charge ratio of 1668.8 m/z present only in the D25N, D151N, and K155R mutants, which is consistent with Lys27 having increased by a mass of 58 m/z, indicating that Lys27 forms a Schiff base with a methylglyoxal-like intermediate. In addition, incubation of MfnB with GA-3-P in the presence of deuterated water or incubation of MfnB with C-2 deuterated GA-3-P showed essentially no deuterium incorporated into the 4-HFC-P. Combined with structural analysis and molecular docking, we predict the potential binding sites for two GA-3P molecules in the active site. On the basis of our observations, a possible catalytic mechanism of MfnB is proposed in this study. A phosphate elimination reaction and a triose phosphate isomerase-like reaction occur at the GA-3-P binding site I and II, respectively, prior to the aldol condensation between the enzyme-bound enol form of methylglyoxal and dihydroxyacetone phosphate (DHAP), after which the catalytic cycle is completed by a cyclization and two dehydration reactions assisted by several general acids/bases at the same active site. PMID:25905665

  14. Visual investigation of solid-liquid phase equilibria for nonflammable mixed refrigerant

    NASA Astrophysics Data System (ADS)

    Lee, C.; Yoo, J.; Park, I.; Park, J.; Cha, J.; Jeong, S.

    2015-12-01

    Non-flammable mixed refrigerant (NF-MR) Joule Thomson (J-T) refrigerators have desirable characteristics and wide cooling temperature range compared to those of pure J-T refrigerators. However, the operating challenge due to freezing is a critical issue to construct this refrigerator. In this paper, the solid-liquid phase equilibria (i.e. freezing point) of the NF-MR which is composed of Argon, R14 (CF4), and R218 (C3F8), has been experimentally investigated by a visualized apparatus. Argon, R14 and R218 mixtures are selected to be effectively capable of reaching 100 K in the MR J-T refrigerator system. Freezing points of the mixtures have been measured with the molar compositions from 0.1 to 0.8 for each component. Each test result is simultaneously acquired by a camcorder for visual inspection and temperature measurement during a warming process. Experimental results show that the certain mole fraction of Argon, R14, and R218 mixture can achieve remarkably low freezing temperature even below 77 K. This unusual freezing point depression characteristic of the MR can be a useful information for designing a cryogenic MR J-T refrigerator to reach further down to 77 K.

  15. Complete Genome Sequence of Potential Probiotic Lactobacillus sp. HFC8, Isolated from Human Gut Using PacBio SMRT Sequencing.

    PubMed

    Kumari, Madhu; Swarnkar, Mohit Kumar; Kumar, Sanjay; Singh, Anil Kumar; Gupta, Mahesh

    2015-01-01

    We report a 3.07-Mb complete genome sequence of a lactic acid bacterium, Lactobacillus sp. HFC8. The gene-coding clusters are predicated for probiotic characteristics, like bacteriocin production, cell adhesion, bile salt hydrolysis, lactose metabolism, autoaggregation, and tolerance to oxidative stress. PMID:26586884

  16. Saturated liquid densities and bubble-point pressures of the binary HFC 152a+HCFC 142b system

    NASA Astrophysics Data System (ADS)

    Maezawa, Y.; Widiatmo, J. V.; Sato, H.; Watanabe, K.

    1991-11-01

    Forty-eight sets of the saturated liquid densities and bubble-point pressures of the binary HFC 152a + HCFC 142b system were measured with a magnetic densimeter coupled with a variable-volume cell. The measurements obtained at four compositions, 20, 40, 60, and 80 wt%, of HFC 152a cover a range of temperatures from 280 to 400 K. The experimental uncertainties in temperature, pressure, density, and composition were estimated to be within ±15mK, ±20kPa, ±0.2%, and between -0.14 and ±0.01 wt% HFC 152a (-0.01 and + 0.14 wt% HCFC 142b), respectively. The purities of the samples were 99.9 wt% for HFC 152a and 99.8 wt% for HCFC 142b. A binary interaction parameter, k ij , in the Peng-Robinson equation of state was determined as a function of temperature for representing the bubble-point pressures. On the other hand, two constant binary-interaction parameters, k ij and l ij , were introduced into the mixing rule of the Hankinson-Brobst-Thomson equation for representing the saturated liquid densities.

  17. PERFORMANCE TESTING OF A SEMI-HERMETIC COMPRESSOR WITH HFC-236EA AND CFC-114 AT CHILLER CONDITIONS

    EPA Science Inventory

    The paper gives results of tests of both HFC-236ea and CFC-114 at a range of temperatures covering surface craft and submarine chiller conditions. vaporating temperatures ranged from 1.7 to 12.8 C, and condensing temperatures from 40.6 to 65.6 C, in order to develop a nine-point ...

  18. 10 CFR 431.62 - Definitions concerning commercial refrigerators, freezers and refrigerator-freezers.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... factory-made assembly of refrigerating components designed to compress and liquefy a specific refrigerant that is remotely located from the refrigerated equipment and consists of 1 or more refrigerant compressors, refrigerant condensers, condenser fans and motors, and factory supplied accessories....

  19. 46 CFR 147.90 - Refrigerants.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Refrigerants. 147.90 Section 147.90 Shipping COAST GUARD... Special Requirements for Particular Materials § 147.90 Refrigerants. (a) Only refrigerants listed in ANSI/ASHRAE 34-78 may be carried as ships' stores. (b) Refrigerants contained in a vessel's operating...

  20. 46 CFR 147.90 - Refrigerants.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 5 2011-10-01 2011-10-01 false Refrigerants. 147.90 Section 147.90 Shipping COAST GUARD... Special Requirements for Particular Materials § 147.90 Refrigerants. (a) Only refrigerants listed in ANSI/ASHRAE 34-78 may be carried as ships' stores. (b) Refrigerants contained in a vessel's operating...

  1. 46 CFR 147.90 - Refrigerants.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Refrigerants. 147.90 Section 147.90 Shipping COAST GUARD... Special Requirements for Particular Materials § 147.90 Refrigerants. (a) Only refrigerants listed in ANSI/ASHRAE 34-78 may be carried as ships' stores. (b) Refrigerants contained in a vessel's operating...

  2. 46 CFR 154.1720 - Indirect refrigeration.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 5 2012-10-01 2012-10-01 false Indirect refrigeration. 154.1720 Section 154.1720... § 154.1720 Indirect refrigeration. A refrigeration system that is used to cool acetaldehyde, ethylene oxide, or methyl bromide, must be an indirect refrigeration system that does not use vapor compression....

  3. 46 CFR 154.1720 - Indirect refrigeration.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Indirect refrigeration. 154.1720 Section 154.1720... § 154.1720 Indirect refrigeration. A refrigeration system that is used to cool acetaldehyde, ethylene oxide, or methyl bromide, must be an indirect refrigeration system that does not use vapor compression....

  4. 46 CFR 154.1720 - Indirect refrigeration.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Indirect refrigeration. 154.1720 Section 154.1720... § 154.1720 Indirect refrigeration. A refrigeration system that is used to cool acetaldehyde, ethylene oxide, or methyl bromide, must be an indirect refrigeration system that does not use vapor compression....

  5. 46 CFR 147.90 - Refrigerants.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 5 2014-10-01 2014-10-01 false Refrigerants. 147.90 Section 147.90 Shipping COAST GUARD... Special Requirements for Particular Materials § 147.90 Refrigerants. (a) Only refrigerants listed in ANSI/ASHRAE 34-78 may be carried as ships' stores. (b) Refrigerants contained in a vessel's operating...

  6. 46 CFR 147.90 - Refrigerants.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 5 2013-10-01 2013-10-01 false Refrigerants. 147.90 Section 147.90 Shipping COAST GUARD... Special Requirements for Particular Materials § 147.90 Refrigerants. (a) Only refrigerants listed in ANSI/ASHRAE 34-78 may be carried as ships' stores. (b) Refrigerants contained in a vessel's operating...

  7. Cryogenic refrigeration apparatus

    DOEpatents

    Crunkleton, J.A.

    1992-03-31

    A technique for producing a cold environment in a refrigerant system in which input fluid from a compressor at a first temperature is introduced into an input channel of the system and is pre-cooled to a second temperature for supply to one of at least two stages of the system, and to a third temperature for supply to another stage thereof. The temperatures at such stages are reduced to fourth and fifth temperatures below the second and third temperatures, respectively. Fluid at the fourth temperature from the one stage is returned through the input channel to the compressor and fluid at the fifth temperature from the other stage is returned to the compressor through an output channel so that pre-cooling of the input fluid to the one stage occurs by regenerative cooling and counterflow cooling and pre-cooling of the input fluid to the other stage occurs primarily by counterflow cooling. 6 figs.

  8. Cryogenic refrigeration apparatus

    DOEpatents

    Crunkleton, James A.

    1992-01-01

    A technique for producing a cold environment in a refrigerant system in which input fluid from a compressor at a first temperature is introduced into an input channel of the system and is pre-cooled to a second temperature for supply to one of at least two stages of the system, and to a third temperature for supply to another stage thereof. The temperatures at such stages are reduced to fourth and fifth temperatures below the second and third temperatures, respectively. Fluid at the fourth temperature from the one stage is returned through the input channel to the compressor and fluid at the fifth temperature from the other stage is returned to the compressor through an output channel so that pre-cooling of the input fluid to the one stage occurs by regenerative cooling and counterflow cooling and pre-cooling of the input fluid to the other stage occurs primarily by counterflow cooling.

  9. Multistation refrigeration system

    NASA Technical Reports Server (NTRS)

    Wiebe, E. R. (Inventor)

    1978-01-01

    A closed cycle refrigeration (CCR) system is disclosed for providing cooling at different parts of a maser. The CCR includes a first station for cooling the maser's parts, except the amplifier portion, to 4.5 K. The CCR further includes means with a 3.0 K station for cooling the maser's amplifier to 3.0 K and, thereby, increases the maser's gain and/or bandwith by a significant factor. The means which provide the 3.0 K cooling include a pressure regulator, heat exchangers, an expansion valve, and a vacuum pump, which coact to cause helium, provided from a compressor, to liquefy and thereafter expand so as to vaporize. The heat of vaporization for the helium is provided by the maser amplifier, which is thereby cooled to 3.0 K.

  10. Magnetic refrigeration for maser amplifier cooling

    NASA Technical Reports Server (NTRS)

    Johnson, D. L.

    1982-01-01

    The development of a multifrequency upconverter-maser system for the DSN has created the need to develop a closed-cycle refrigerator (CCR) capable of providing more than 3 watts of refrigeration capability at 4.5 K. In addition, operating concerns such as the high cost of electrical power consumption and the loss of maser operation due to CCR failures require that improvements be made to increase the efficiency and reliability of the CCR. One refrigeration method considered is the replacement of the Joule-Thomson expansion circuit with a magnetic refrigeration. Magnetic refrigerators can provide potentially reliable and highly efficient refrigeration at a variety of temperature ranges and cooling power. The concept of magnetic refrigeration is summarized and a literature review of existing magnetic refrigerator designs which have been built and tested and that may also be considered as possibilities as a 4 K to 15 K magnetic refrigeration stage for the DSN closed-cycle refrigerator is provided.

  11. Influence of lubricant oil on heat transfer performance of refrigerant flow boiling inside small diameter tubes. Part II: Correlations

    SciTech Connect

    Wei, Wenjian; Ding, Guoliang; Hu, Haitao; Wang, Kaijian

    2007-10-15

    The predictive ability of the available state-of-the-art heat transfer correlations of refrigerant-oil mixture is evaluated with the present experiment data of small tubes with inside diameter of 6.34 mm and 2.50 mm. Most of these correlations can be used to predict the heat transfer coefficient of 6.34 mm tube, but none of them can predict heat transfer coefficient of 2.50 mm tube satisfactorily. A new correlation of two-phase heat transfer multiplier with local properties of refrigerant-oil mixture is developed. This correlation approaches the actual physical mechanism of flow boiling heat transfer of refrigerant-oil mixture and can reflect the actual co-existing conditions of refrigerant and lubricant oil. More than 90% of the experiment data of both test tubes have less than {+-}20% deviation from the prediction values of the new correlations. (author)

  12. Oxidation resistance and mechanical properties of HfC nanowire-toughened ultra-high temperature ceramic coating for SiC-coated C/C composites

    NASA Astrophysics Data System (ADS)

    Ren, Jincui; Zhang, Yulei; Hu, Heng; Fei, Tian; Li, Hejun

    2016-01-01

    To improve the oxidation resistance of carbon/carbon (C/C) composites, a dense HfC nanowire-toughened ultra-high temperature ceramic multiphase coating was prepared on SiC-coated C/C composites by chemical vapor deposition (CVD) and pack cementation. The microstructure, mechanical and oxidation resistance properties of the coating were investigated. The results show that the HfC nanowires in the coating could suppress the cracking of the coating and then improve the toughness of the coating. The flexural property, thermal shock and isothermal oxidation resistance of the coating were all improved due to the incorporation of HfC nanowires.

  13. Characterization of RPC operation with new environmental friendly mixtures for LHC application and beyond

    NASA Astrophysics Data System (ADS)

    Guida, R.; Capeans, M.; Mandelli, B.

    2016-07-01

    The large muon trigger systems based on Resistive Plate Chambers (RPC) at the LHC experiments are currently operated with R134a based mixture. Unfortunately R134a is considered a greenhouse gas with high impact on the enviroment and therefore will be subject to regulations aiming in strongly reducing the available quantity on the market. The immediat effects might be instability on the price and incertitude in the product availability. Alternative gases (HFO-1234yf and HFO-1234ze) have been already identified by industry for specific applications as replacement of R134a. Moreover, HFCs similar to the R134a but with lower global warming potential (GWP) are already available (HFC-245fa, HFC-32, HFC-152a). The present contribution describes the results obtained with RPCs operated with new enviromemtal friendly gases. A particular attention has been addressed to the possibility of maintening the current operation conditions (i.e. currently used applied voltage and front-end electronics) in order to be able to use a new mixture for RPC systems even where the common infrastructure (i.e. high voltage and detector components) cannot be replaced for operation at higher applied voltages.

  14. Using Acid Number as a Leading Indicator of Refrigeration and Air Conditioning System Performance

    SciTech Connect

    Dennis Cartlidge; Hans Schellhase

    2003-07-31

    This report summarizes a literature review to assess the acidity characteristics of the older mineral oil and newer polyolester (POE) refrigeration systems as well as to evaluate acid measuring techniques used in other non-aqueous systems which may be applicable for refrigeration systems. Failure in the older chlorofluorocarbon/hydrochlorofluorocarbon (CFC/HCFC) / mineral oil systems was primarily due to thermal degradation of the refrigerant which resulted in the formation of hydrochloric and hydrofluoric acids. These are strong mineral acids, which can, over time, severely corrode the system metals and lead to the formation of copper plating on iron surfaces. The oil lubricants used in the older systems were relatively stable and were not prone to hydrolytic degradation due to the low solubility of water in oil. The refrigerants in the newer hydrofluorocarbon (HFC)/POE systems are much more thermally stable than the older CFC/HCFC refrigerants and mineral acid formation is negligible. However, acidity is produced in the new systems by hydrolytic decomposition of the POE lubricants with water to produce the parent organic acids and alcohols used to prepare the POE. The individual acids can therefore vary but they are generally C5 to C9 carboxylic acids. Organic acids are much weaker and far less corrosive to metals than the mineral acids from the older systems but they can, over long time periods, react with metals to form carboxylic metal salts. The salts tend to accumulate in narrow areas such as capillary tubes, particularly if residual hydrocarbon processing chemicals are present in the system, which can lead to plugging. The rate of acid production from POEs varies on a number of factors including chemical structure, moisture levels, temperature, acid concentration and metals. The hydrolysis rate of reaction can be reduced by using driers to reduce the free water concentration and by using scavenging chemicals which react with the system acids. Total acid

  15. Control system for thermoelectric refrigerator

    NASA Technical Reports Server (NTRS)

    Nelson, John L. (Inventor); Criscuolo, Lance (Inventor); Gilley, Michael D. (Inventor); Park, Brian V. (Inventor)

    1996-01-01

    Apparatus including a power supply (202) and control system is provided for maintaining the temperature within an enclosed structure (40) using thermoelectric devices (92). The apparatus may be particularly beneficial for use with a refrigerator (20) having superinsulation materials (46) and phase change materials (112) which cooperate with the thermoelectric device (92) to substantially enhance the overall operating efficiency of the refrigerator (20). The electrical power supply (202) and control system allows increasing the maximum power capability of the thermoelectric device (92) in response to increased heat loads within the refrigerator (20). The electrical power supply (202) and control system may also be used to monitor the performance of the cooling system (70) associated with the refrigerator (20).

  16. Magnetic refrigeration apparatus and method

    DOEpatents

    Barclay, J.A.; Overton, W.C. Jr.; Stewart, W.F.

    The disclosure relates to refrigeration through magnetizing and demagnitizing a body by rotating it within a magnetic field. Internal and external heat exchange fluids and in one embodiment, a regenerator, are used.

  17. Magnetic refrigeration apparatus and method

    DOEpatents

    Barclay, John A.; Overton, Jr., William C.; Stewart, Walter F.

    1984-01-01

    The disclosure relates to refrigeration through magnetizing and demagnitizing a body by rotating it within a magnetic field. Internal and external heat exchange fluids and in one embodiment, a regenerator, are used.

  18. ISS Update: Solar Powered Refrigerator

    NASA Video Gallery

    NASA Public Affairs Officer Dan Huot interviews Mike Ewert, Life Support and Thermal Systems Engineer. Ewert co-invented the solar powered refrigerator for stowage of medical samples, preservation ...

  19. Ten degree Kelvin hydride refrigerator

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor)

    1987-01-01

    A compact hydride absorption refrigeration system with few moving parts for 10 Kelvin operation is disclosed and comprises liquid hydrogen producing means in combination with means for solidifying and subliming the liquid hydrogen produced. The liquid hydrogen is sublimed at about 10 Kelvin. By using a symmetrical all hydrogen redundant loop system, a 10 Kelvin refrigeration system can be operated for many years with only a fraction of the power required for prior art systems.

  20. Short-Cycle Adsorption Refrigerator

    NASA Technical Reports Server (NTRS)

    Chan, C. K.

    1988-01-01

    Modular adsorption/Joule-Thomson-effect refrigerator offers fast regeneration; adsorption/desorption cycle time expected to be 1 minute. Pressurized hydrogen generated by bank of compressor modules during heating phase passes through system of check valves and expands in Joule-Thomson junction as it enters refrigeration chamber. Hydrogen absorbs heat from load before it is sucked out by another bank of compressor modules in cooling phase.

  1. Non-intrusive refrigerant charge indicator

    DOEpatents

    Mei, Viung C.; Chen, Fang C.; Kweller, Esher

    2005-03-22

    A non-intrusive refrigerant charge level indicator includes a structure for measuring at least one temperature at an outside surface of a two-phase refrigerant line section. The measured temperature can be used to determine the refrigerant charge status of an HVAC system, and can be converted to a pressure of the refrigerant in the line section and compared to a recommended pressure range to determine whether the system is under-charged, properly charged or over-charged. A non-intrusive method for assessing the refrigerant charge level in a system containing a refrigerant fluid includes the step of measuring a temperature at least one outside surface of a two-phase region of a refrigerant containing refrigerant line, wherein the temperature measured can be converted to a refrigerant pressure within the line section.

  2. Interaction between HfC precipitates and vacancies in quenched Cu:Hf as studied by TDPAC and positron lifetime measurements

    NASA Astrophysics Data System (ADS)

    Govindaraj, R.; Rajaraman, R.

    2004-09-01

    A Cu:Hf sample with 1 wt% Hf as prepared by arc melting is characterized by TEM and microdiffraction analysis to contain HfC precipitates. HfC precipitates in a Cu matrix bind vacancies and divacancies strongly in the quenched Cu:Hf sample as deduced by time differential perturbed angular correlation (TDPAC) studies. Isochronal annealing studies using TDPAC and positron lifetime measurements indicate the stability of these vacancy complexes in the quenched sample for annealing treatments up to 1200 K, beyond which the de-trapping of the vacancies from HfC precipitates is observed to occur. This shows that HfC precipitates present in Cu inhibit the formation of voids by strongly binding quenched vacancies.

  3. Adsorbability of 1,1,1,2-tetrafluoromethane (HFC134a) onto plasma-treated activated carbon in CF{sub 4} and CCl{sub 4}

    SciTech Connect

    Tanada, Seiki; Kawasaki, Naohito; Nakamura, Takeo; Ohue, Takashi; Abe, Ikuo

    1997-07-15

    The adsorbability of 1,1,1,2-tetrafluoroethane (HFC134a), which has been the CFC12 replacement, onto tetrafluoromethane and tetrachloromethane plasma-treated activated carbon (FT-ACs and CT-ACs) was investigated. It is proved that the fluorine and the chlorine, which were produced by plasma treatment, were included into the pores having radii greater than 7.5 {angstrom} and with less than 7.5 {angstrom} by plasma treatment, respectively. The adsorption site of HFC134a onto activated carbon may change with the quantities of fluorine or chlorine on the surface of the activated carbon. The amount of HFC134a adsorbed per unit specific surface area of FT-ACs and CT-ACs slightly increased a little compared to the untreated activated carbon (U-AC). The amount of fluoride ion eluted before the adsorption of HFC134a from the FT-ACs increased with the increasing plasma treatment time. That after the adsorption of HFC134a from only the activated carbon with the shortest plasma treatment time decreased. The amount of chloride ion eluted before the adsorption of HFC134a from the CT-ACs increased after 15 min of plasma treatment, but decreased with 30 min of plasma treatment. The chloride ion amount from the CT-ACs decreased after the adsorption of HCF134a. These results could be explained by the Langmuir constants a and Ws, which represent the adsorption equilibrium constant and the saturated amount of HFC134a adsorbed, respectively. The ratio of fluorine and chlorine species, the adsorption type, the layer interstitial type, and the covalent type, is different based on the plasma treatment time. It is concluded that the amount of HFC134a adsorbed onto the FT-ACs and CT-ACs did not depend upon the change of pore structure by the fluorine and chlorine.

  4. Influence of HX size and augmentation on performance potential of mixtures in air-to-air heat pumps

    SciTech Connect

    Rice, C.K.

    1993-05-01

    A modified Carnot analysis with finite heat exchanger (HX) sizes, counterflow HX configurations, and ideal glide matching was conducted for an air-to-air heat pump application. The purpose of the analysis was to determine the envelope of potential HX size and refrigerant-side augmentation benefits for ideal mixtures relative to pure refrigerant alternatives. The mixture COP benefits examined are those due to exact external fluid glide-matching of idealized mixtures in more effective heat exchangers. Maximum possible mixture COP gains are evaluated for four steady-state air-to-air heat pump conditions. Performance improvement opportunities are found to be primarily in the cooling mode. The effects of deviation from counterflow by use of crossflow and countercrossflow HX configurations are addressed. Refrigerant-side augmentation with pure and mixed refrigerants is examined for air-side dominant and air-to-refrigerant balanced HXs.

  5. Heat transfer characteristics of alternate refrigerants: Volume 2, Condenser inside tube. Final report

    SciTech Connect

    Dunn, B.

    1996-01-01

    An experimental facility was constructed to determine the condensing heat transfer coefficients of alternative refrigerants in horizontal, enhanced tubes. The experimental facility was designed to handle a wide range of operating conditions while demanding a minimal refrigerant charge. Gas chromatography was utilized to measure the composition of refrigerant mixtures and the oil concentration. Measurements were obtained for six R-22 replacements and four R-502 replacements along with baseline data for R-22 and R-502. Each refrigerant was tested at 0% and 1% oil by weight, four different mass flow rates (75, 150, 250, and 400 lb{sub m}/hr), and three different heat fluxes (corresponding to full condensation in 18.5, 37, and 55.5-ft.). All tests were performed in a 3/8 in. Wolverine Turbo A microgrooved tube. The data for R-22 compared well with published data and correlations. The measured heat transfer coefficients for most of the alternatives were very close to the heat transfer coefficient of the refrigerant they would be replacing. It was found that some of the zeotropic refrigerants performed poorly at low heat fluxes and low mass flow rates, as expected. 1% oil in the refrigerant flow had very little impact on heat transfer coefficients. Also, it was found that at the highest mass flow rates the data compare well with published data for smooth tubes, indicating that very little enhancement occurs in this regime.

  6. Modelling of a refrigerating system coupled with a refrigerated room

    NASA Astrophysics Data System (ADS)

    Wang, Hongwei

    1991-08-01

    The development of a set of comprehensive computer models to simulate and analyze both steady state and non steady state behavior of a refrigerating system coupled with a refrigerated room is described. The refrigerating system is a single stage vapor compression system consisting of four basic elements: a reciprocating piston compressor, a dry expansion evaporator (or cooler), a shell and tube watercooled condensor and a thermostatic expansion valve. To validate the computer models, a test plant on which steady state and dynamic measurements were carried out, was set up. Experiments to determine several empirical constants encountered in the models were done, and the simulation results were compared with a series of measurements within a wide range of operation conditions. The validated models were applied to the prediction of the air distributions in a cold store and the study of a system with different capacity control systems, proving the capability and reliability of the models.

  7. Superinsulation in refrigerators and freezers

    SciTech Connect

    Vineyard, E.; Stovall, T.K.; Wilkes, K.E.; Childs, K.W.

    1998-02-01

    The results presented here were obtained during Phase 4 of the first CRADA, which had the specific objective of determining the lifetime of superinsulations when installed in simulated refrigerator doors. The second CRADA was established to evaluate and test design concepts proposed to significantly reduce energy consumption in a refrigerator-freezer that is representative of approximately 60% of the US market. The stated goal of this CRADA is to demonstrate advanced technologies which reduce, by 50%, the 1993 National Appliance Energy Conservation Act (NAECA) standard energy consumption for a 20 ft{sup 3} (570 L) top-mount, automatic-defrost, refrigerator-freezer. For a unit this size, the goal translates to an energy consumption of 1.003 kWh/d. The general objective of the research is to facilitate the introduction of efficient appliances by demonstrating design changes that can be effectively incorporated into new products. In previous work on this project, a Phase 1 prototype refrigerator-freezer achieved an energy consumption of 1.413 kWh/d [Vineyard, et al., 1995]. Following discussions with an advisory group comprised of all the major refrigerator-freezer manufacturers, several options were considered for the Phase 2 effort, one of which was cabinet heat load reductions.

  8. Air conditioning and refrigeration engineering

    SciTech Connect

    Kreith, F.

    1999-12-01

    This book supplies the basics of design, from selecting the optimum system and equipment to preparing the drawings and specifications. It discusses the four phases of preparing a project: gathering information, developing alternatives, evaluating alternatives, and selling the best solution. In addition, the author breaks down the responsibilities of the engineer design documents, computer aided design, and government codes and standards. It provides you with an easy reference to all aspects of the topic. This resource addresses the most current areas of interest, such as computer aided design and drafting, desiccant air conditioning and energy conservation. It is a thorough and convenient guide to air conditioning and refrigeration engineering. Contents include: introduction; psychrometrics; air-conditioning processes and cycles; refrigerants and refrigeration cycles; outdoor design conditions and indoor design criteria; load calculations; air handling units and packaged units; refrigeration components and evaporative coolers; water systems; heating systems; refrigeration systems; thermal storage system; air system basics; absorption systems; air-conditioning systems and selection; and desiccant dehumidification and air-conditioning.

  9. Final Project Closeout Report for Sprint Hydrogen Fuel Cell (HFC) Deployment Project in California, Gulf Coast and Eastern Seaboard Markets

    SciTech Connect

    Kenny, Kevin; Bradley, Dwayne

    2015-09-01

    Sprint is one of the telecommunications industry leaders in the deployment of hydrogen fuel cell (HFC) systems to provide backup power for their mission critical wireless network facilities. With several hundred fuel cells commissioned in California, states in the gulf coast region, and along the upper eastern seaboard. A strong incentive for advancing the integration of fuel cells into the Sprint network came through the award of a Department of Energy (DOE) grant focused on Market Transformation activities for project (EE0000486). This grant was funded by the 2009 American Recovery and Reinvestment Act (ARRA). The funding provided by DOE ($7.295M) was allocated to support the installation of 260 new HFC systems, equipped with an on-site refillable Medium Pressure Hydrogen Storage Solution (MPHSS), as well as for the conversion of 21 low pressure hydrogen systems to the MPHSS, in hopes of reducing barriers to market acceptance.

  10. Performance of two mixed refrigerant processes providing refrigeration at 70 K

    NASA Astrophysics Data System (ADS)

    Narayanan, Vineed; Venkatarathnam, G.

    2016-09-01

    Mixed refrigerant process refrigerators are ideal for use in superconducting transformers, fault current limiters, etc. placed in a liquid nitrogen bath. Traditional mixed refrigerant processes used above 70 K cannot be used in these applications. The performance of two mixed refrigerant processes suitable for the above applications has been studied, the results of which are presented in this paper.

  11. REDUCING REFRIGERANT EMISSIONS FROM SUPERMARKET SYSTEMS

    EPA Science Inventory

    Large refrigeration systems are found in several applications including supermarkets, cold storage warehouses, and industrial processes. The sizes of these systems are a contributing factor to their problems of high refrigerant leak rates because of the thousands of connections, ...

  12. A review of pulse tube refrigeration

    NASA Technical Reports Server (NTRS)

    Radebaugh, Ray

    1990-01-01

    This paper reviews the development of the three types of pulse tube refrigerators: basic, resonant, and orifice types. The principles of operation are given. It is shown that the pulse tube refrigerator is a variation of the Stirling-cycle refrigerator, where the moving displacer is substituted by a heat transfer mechanism or by an orifice to bring about the proper phase shifts between pressure and mass flow rate. A harmonic analysis with phasors is described which gives reasonable results for the refrigeration power, yet is simple enough to make clear the processes which give rise to the refrigeration. The efficiency and refrigeration power are compared with those of other refrigeration cycles. A brief review is given of the research being done at various laboratories on both one- and two-stage pulse tubes. A preliminary assessment of the role of pulse tube refrigerators is discussed.

  13. Krypton based adsorption type cryogenic refrigerator

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor); Schember, Helene (Inventor)

    1987-01-01

    Krypton and monolithic porous carbon such as Saran carbon are used respectively as the sorbate and sorbent of an absorption type refrigerator to improve refrigeration efficiency and operational longevity.

  14. Krypton based adsorption type cryogenic refrigerator

    NASA Technical Reports Server (NTRS)

    Jones, Jack A. (Inventor); Schember, Helene R. (Inventor)

    1989-01-01

    Krypton and a monolithic porous carbon such as Saran carbon are used respectively as the sorbate and sorbent of an adsorption type refrigerator to improve refrigeration efficiency and operational longevity.

  15. A class of internally irreversible refrigeration cycles

    NASA Astrophysics Data System (ADS)

    Ait-Ali, Mohand A.

    1996-03-01

    A Carnot-like irreversible refrigeration cycle is modelled with two isothermal and two non-adiabatic, irreversible processes. The generic source of internal irreversibility, measured by the Clausius inequality, is a general irreversibility term which could include any heat leaks into the Joule - Thompson expansion valve, the evaporator and compressor cold boxes. This cycle is optimized first for maximum refrigeration power and maximum refrigeration load, then for maximum coefficient of performance. Its performances are compared with those of the endoreversible refrigeration cycle, based on a propane stage of a classical cascade liquefaction cycle example. Both cycle models achieve optimum power and maximum refrigeration load at nearly the same refrigeration temperature, but only the coefficient of performance of the irreversible refrigeration cycle reaches a maximum. Moreover, its prediction of heat conductance allocation between evaporator and condenser appears to be not only more conservative, but also more realistic for actual design considerations of refrigeration cycles.

  16. Refrigeration system having dual suction port compressor

    DOEpatents

    Wu, Guolian

    2016-01-05

    A cooling system for appliances, air conditioners, and other spaces includes a compressor, and a condenser that receives refrigerant from the compressor. The system also includes an evaporator that receives refrigerant from the condenser. Refrigerant received from the condenser flows through an upstream portion of the evaporator. A first portion of the refrigerant flows to the compressor without passing through a downstream portion of the evaporator, and a second portion of the refrigerant from the upstream portion of the condenser flows through the downstream portion of the evaporator after passing through the upstream portion of the evaporator. The second portion of the refrigerant flows to the compressor after passing through the downstream portion of the evaporator. The refrigeration system may be configured to cool an appliance such as a refrigerator and/or freezer, or it may be utilized in air conditioners for buildings, motor vehicles, or other such spaces.

  17. Thermoelectric refrigerator having improved temperature stabilization means

    DOEpatents

    Falco, Charles M.

    1982-01-01

    A control system for thermoelectric refrigerators is disclosed. The thermoelectric refrigerator includes at least one thermoelectric element that undergoes a first order change at a predetermined critical temperature. The element functions as a thermoelectric refrigerator element above the critical temperature, but discontinuously ceases to function as a thermoelectric refrigerator element below the critical temperature. One example of such an arrangement includes thermoelectric refrigerator elements which are superconductors. The transition temperature of one of the superconductor elements is selected as the temperature control point of the refrigerator. When the refrigerator attempts to cool below the point, the metals become superconductors losing their ability to perform as a thermoelectric refrigerator. An extremely accurate, first-order control is realized.

  18. EVALUATION OF REFRIGERANT FROM MOBILE AIR CONDITIONERS

    EPA Science Inventory

    The report gives results of a project to provide a scientific basis for choosing a reasonable standard of purity for recycled chlorofluorocarbon (CFC) refrigerant in operating automobile air conditioners. The quality of refrigerant from air conditioners in automobiles of differen...

  19. Single shot demountable self-contained He-3 refrigerator

    NASA Astrophysics Data System (ADS)

    Kittel, P.; Brooks, W. F.

    The present investigation is concerned with the development of a self-contained demountable He-3 refrigerator which greatly increases the versatility of a cold-plate-style helium Dewar. The refrigerator is controlled by a single heater. The considered design makes it possible to achieve a temperature of 0.27 K without costly or time-consuming modifications to the Dewar. An example for an employment of a temperature of less than 1 K in space is related to the study of the critical behavior of He-3/He-4 mixtures in the absence of gravitational mixing. This requires a temperature of 0.87 K. Such low temperatures can also be utilized in the space operation of infrared telescopes. Attention is given to details of system design, the operating principles, and aspects of performance.

  20. Extrinsic allergic alveolitis with eosinophil infiltration induced by 1,1,1,2-tetrafluoroethane (HFC-134a): a case report.

    PubMed

    Ishiguro, Takashi; Yasui, Masahide; Nakade, Yusuke; Kimura, Hideharu; Katayama, Nobuyuki; Kasahara, Kazuo; Fujimura, Masaki

    2007-01-01

    A 22-year-old woman was admitted with symptoms of dyspnea and fever with pulmonary infiltrates noted on her chest X-ray study. She developed these symptoms in the workplace; her job included the removal of body hair using a diode-laser with 1,1,1,2-tetrafluoroethane (HFC134a, an alternative to chlorofluorocarbon) as a coolant. A chest X-ray examination revealed ground-glass opacities in the lower lung fields, and a chest computed tomographic study showed diffuse centrilobular opacities. An examination of the bronchoalveolar lavage fluid revealed increased lymphocytes with a slight increase in the number of eosinophils. An examination of the transbronchial biopsy specimens revealed eosinophil infiltration. A peripheral blood eosinophilia was also seen. The patient's symptoms, chest X-ray findings, and arterial blood gas analysis all returned to normal within a week. A challenge test of 1,1,1,2-tetrafluoroethane (HFC134a) inhalation was performed, which resulted in an elevation of body temperature, the development of a cough, and laboratory data indicating increased inflammation. We then determined the patient's diagnosis to be extrinsic allergic alveolitis with eosinophil infiltration, caused by HFC134a. PMID:17827848

  1. Measurements of the Vapor-Liquid Coexistence Curves and the Critical Parameters of HCFC123 and HFC134a

    NASA Astrophysics Data System (ADS)

    Fukushima, Masato; Watanabe, Naohiro; Kamimura, Toru

    The critical parameters and vapor-liquid coexistence curves in the critical region of two environmentally acceptable hydrogen-containing halocarbons (HCFC123 and HFC134a) were determined experimentally. The measurements of vapor-liquid coexistence curves were made through visual observation of the disappearance of meniscus at the vapor-liquid interface within the optical cell. Thirty eight saturated densities in the range of 209 to 1176 kg/m3 were obtained between the temperature of 392 K and the critical temperature for HCFC123. And seventeen saturated densities in the range of 322 to 746 kg/m3 were obtained between the temperature of 370 K and the critical temperature for HFC134a. On the basis of these results, the critical temperature and critical density of HCFC123 were determined to be 456.94 K and 553 kg/m3, respectively. And these parameters of HFC134a were determined to be 374.18 K and 507 kg/m3. In addition, the critical exponents were determined and the correlation of vapor-liquid coexistence curves were developed.

  2. A historical look at chlorofluorocarbon refrigerants

    SciTech Connect

    Bhatti, M.S.

    1999-07-01

    A class of chemical compounds called chlorofluorocarbon refrigerants has been in widespread use since the 1930s in such diverse applications as refrigerants for refrigerating and air-conditioning systems, blowing agents for plastic foams, solvents for microelectronic circuitry and dry cleaning, sterilants for medical instruments, aerosol propellants for personal hygiene products and pesticides, and freezants for food. This paper describes the historical development of the chlorofluorocarbon refrigerants and gives brief biographical sketches of the inventors. 85 refs., 8 figs., 4 tabs.

  3. Shear viscosity of binary mixtures: The Gay-Berne potential

    NASA Astrophysics Data System (ADS)

    Khordad, R.

    2012-05-01

    The Gay-Berne (GB) potential model is an interesting and useful model to study the real systems. Using the potential model, we intend to examine the thermodynamical properties of some anisotropic binary mixtures in two different phases, liquid and gas. For this purpose, we apply the integral equation method and solve numerically the Percus-Yevick (PY) integral equation. Then, we obtain the expansion coefficients of correlation functions to calculate the thermodynamical properties. Finally, we compare our results with the available experimental data [e.g., HFC-125 + propane, R-125/143a, methanol + toluene, benzene + methanol, cyclohexane + ethanol, benzene + ethanol, carbon tetrachloride + ethyl acetate, and methanol + ethanol]. The results show that the GB potential model is capable for predicting the thermodynamical properties of binary mixtures with acceptable accuracy.

  4. Methods development for measuring and classifying flammability/combustibility of refrigerants. Final report

    SciTech Connect

    Heinonen, E.W.; Tapscott, R.E.; Crawford, F.R.

    1994-12-01

    Because of concerns for the effect that chlorofluorocarbon (CFC) fluids currently in use as refrigerants have on the environment, the refrigeration industry is considering the use of natural refrigerants, many of which are potentially flammable. In some cases, these flammable fluids may result in the least environmental damage when considering ozone depletion, global warming, efficiency, and photochemical reactivity. Many potentially flammable fluids have been proven to be effective when used either by themselves or as a part of a binary or ternary mixture. However, despite favorable initial test results, these fluids may not be acceptable to the general public if questions of safety cannot be adequately addressed. Significant research is being conducted to investigate the flammability of these materials. The purpose of this project is to experimentally determine the impact and variability of eleven different parameters which may affect flammability and/or combustibility of refrigerants and refrigerant blends, as a function of composition and test conditions, and to develop a better understanding of methods and conditions to measure the flammability of refrigerants. The refrigerants used in this study are being considered as new refrigerants and reviewed published data on these materials is scarce. The data contained herein should not be considered complete and should be used only to make relative comparisons of the impacts of the test parameters, not to represent the flammability characteristics of the materials. This report documents Task 3 of the test program. During Task 1, technical literature was thoroughly reviewed and a database of available documents was constructed. During Task 2, the test plan for this task was written. The goals of Task 3 are to investigate the flammability characteristics of selected blends of refrigerants R32, R134a, and R125 using an existing explosion sphere and a newly-constructed ASTM E681 apparatus.

  5. Wheel-type magnetic refrigerator

    DOEpatents

    Barclay, John A.

    1983-01-01

    The disclosure is directed to a wheel-type magnetic refrigerator capable of cooling over a large temperature range. Ferromagnetic or paramagnetic porous materials are layered circumferentially according to their Curie temperature. The innermost layer has the lowest Curie temperature and the outermost layer has the highest Curie temperature. The wheel is rotated through a magnetic field perpendicular to the axis of the wheel and parallel to its direction of rotation. A fluid is pumped through portions of the layers using inner and outer manifolds to achieve refrigeration of a thermal load.

  6. Wheel-type magnetic refrigerator

    DOEpatents

    Barclay, J.A.

    1983-10-11

    The disclosure is directed to a wheel-type magnetic refrigerator capable of cooling over a large temperature range. Ferromagnetic or paramagnetic porous materials are layered circumferentially according to their Curie temperature. The innermost layer has the lowest Curie temperature and the outermost layer has the highest Curie temperature. The wheel is rotated through a magnetic field perpendicular to the axis of the wheel and parallel to its direction of rotation. A fluid is pumped through portions of the layers using inner and outer manifolds to achieve refrigeration of a thermal load. 7 figs.

  7. Wheel-type magnetic refrigerator

    DOEpatents

    Barclay, J.A.

    1982-01-20

    The disclosure is directed to a wheel-type magnetic refrigerator capable of cooling over a large temperature range. Ferromagnetic or paramagnetic porous materials are layered circumferentially according to their Curie temperature. The innermost layer has the lowest Curie temperature and the outermost layer has the highest Curie temperature. The wheel is rotated through a magnetic field perpendicular to the axis of the wheel and parallel to its direction of rotation. A fluid is pumped through portions of the layers using inner and outer manifolds to achieve refrigeration of a thermal load.

  8. Ternary Dy-Er-Al magnetic refrigerants

    DOEpatents

    Gschneidner, Jr., Karl A.; Takeya, Hiroyuki

    1995-07-25

    A ternary magnetic refrigerant material comprising (Dy.sub.1-x Er.sub.x)Al.sub.2 for a magnetic refrigerator using the Joule-Brayton thermodynamic cycle spanning a temperature range from about 60K to about 10K, which can be adjusted by changing the Dy to Er ratio of the refrigerant.

  9. Ideal orifice pulse tube refrigerator performance

    NASA Technical Reports Server (NTRS)

    Kittel, P.

    1992-01-01

    The recent development of orifice pulse tube refrigerators has raised questions as to what limits their ultimate performance. Using an analogy to the Stirling cycle refrigerator, the efficiency (cooling power per unit input power) of an ideal orifice pulse tube refrigerator is shown to be T1/T0, the ratio of the cold temperature to the hot temperature.

  10. 49 CFR 173.174 - Refrigerating machines.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 49 Transportation 2 2011-10-01 2011-10-01 false Refrigerating machines. 173.174 Section 173.174 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY... Refrigerating machines. A refrigerating machine assembled for shipment and containing 7 kg (15 pounds) or...

  11. 49 CFR 173.174 - Refrigerating machines.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 49 Transportation 2 2014-10-01 2014-10-01 false Refrigerating machines. 173.174 Section 173.174 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY... Refrigerating machines. A refrigerating machine assembled for shipment and containing 7 kg (15 pounds) or...

  12. 49 CFR 173.174 - Refrigerating machines.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 49 Transportation 2 2013-10-01 2013-10-01 false Refrigerating machines. 173.174 Section 173.174 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY... Refrigerating machines. A refrigerating machine assembled for shipment and containing 7 kg (15 pounds) or...

  13. 49 CFR 173.174 - Refrigerating machines.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 49 Transportation 2 2010-10-01 2010-10-01 false Refrigerating machines. 173.174 Section 173.174 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY... Refrigerating machines. A refrigerating machine assembled for shipment and containing 7 kg (15 pounds) or...

  14. 49 CFR 173.174 - Refrigerating machines.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 49 Transportation 2 2012-10-01 2012-10-01 false Refrigerating machines. 173.174 Section 173.174 Transportation Other Regulations Relating to Transportation PIPELINE AND HAZARDOUS MATERIALS SAFETY... Refrigerating machines. A refrigerating machine assembled for shipment and containing 7 kg (15 pounds) or...

  15. Piston sealing arrangement for a cryogenic refrigerator

    SciTech Connect

    Green, G.F.; Humphrey, J.C.

    1984-02-21

    A sealing arrangement for a rectilinear reciprocable piston within a cryogenic refrigerator comprising a buffer defined by dual O-rings disposed around the circumference of the piston and containing pressurized gas of the same type as the refrigeration gas. The buffer limits or prevents both the entrance of contaminants and also the escape of the refrigeration gas.

  16. Solar Refrigerators Store Life-Saving Vaccines

    NASA Technical Reports Server (NTRS)

    2014-01-01

    Former Johnson Space Center engineer David Bergeron used his experience on the Advanced Refrigeration Technology Team to found SunDanzer Refrigeration Inc., a company specializing in solar-powered refrigerators. The company has created a battery-free unit that provides safe storage for vaccines in rural and remote areas around the world.

  17. Method and apparatus for desuperheating refrigerant

    DOEpatents

    Zess, James A.; Drost, M. Kevin; Call, Charles J.

    1997-01-01

    The present invention is an apparatus and method for de-superheating a primary refrigerant leaving a compressor wherein a secondary refrigerant is used between the primary refrigerant to be de-superheated. Reject heat is advantageously used for heat reclaim.

  18. Ternary Dy-Er-Al magnetic refrigerants

    DOEpatents

    Gschneidner, K.A. Jr.; Takeya, Hiroyuki

    1995-07-25

    A ternary magnetic refrigerant material comprising (Dy{sub 1{minus}x}Er{sub x})Al{sub 2} for a magnetic refrigerator using the Joule-Brayton thermodynamic cycle spanning a temperature range from about 60K to about 10K, which can be adjusted by changing the Dy to Er ratio of the refrigerant. 29 figs.

  19. Review of recent research on heat transfer with mixtures. Part 1: Condensation

    SciTech Connect

    Wang, S.P.; Chato, J.C.

    1995-08-01

    During the past 10 years, interest in heat transfer with mixtures has increased for several reasons. First, the use of zeotropic refrigerant mixtures (ZERMs) as working fluids in heat pump and refrigeration systems indicates potential advantages in efficiency and capacity. Second, ZERMs are prospective substitutes for chlorofluorocarbon (CFC) and hydrochlorofluorocarbon (HCFC) refrigerants (such as R12, R-11, and R-22). However, before the refrigerant mixtures will be put to use in heat pump, refrigerator, and air conditioning systems, the problem of possibly changed heat transfer performance and pressure drop in condensation processes has to be considered to realize the claimed advantages. Thus, it is necessary to study the mechanisms of condensation with mixtures. In this paper, a companion to one on boiling and evaporation, the recent research on condensation heat transfer with mixtures is reviewed. The main points are the thermal resistance of the vapor diffusion layer affecting the condensation, the influence of the flow direction of vapor on the condensation, the turbulence in the vapor generated by the fins, and the enhancement of the condensation performance of mixtures. This review is mainly concerned with the condensation of miscible mixtures, especially ZERMs. Only a few selected papers related to immiscible mixtures are reviewed here.

  20. Update: HFC 245fa Blown Foam Development with External Tank Spray Foams

    NASA Technical Reports Server (NTRS)

    Davis, S.

    2001-01-01

    The Marshall Space Flight Center (MSFC) Thermal Protection Systems (TPS) Materials Research Laboratory is currently investigating environmentally friendly blowing agents for use in the insulations of the Space Shuttle's External Tank. The original TPS foam materials of the External Tank were blown with chlorofluorocarbon 11, which is now regulated because of its high Ozone Depletion Potential (ODP). Hydrochlorofluorocarbons (HCFCs), with an ODP that is one tenth that of CFCs, have been widely adopted as an interim blowing agent in urethane insulations. In FY96, Lockheed Martin completed the production qualification and validation of HCFC 141b blown insulations. Because of the expected limited commercial lifetime of HCFC 141b, research efforts are underway to identify and develop alternatives with zero ODP. HFC245fa (1,1,1,3,3-pentaflouropropane) has been chosen by the manufacturer as a third-generation blowing agent to be marketed commercially. Preliminary work evaluating this third-generation candidate has demonstrated promising material mechanical property data. Favorable results from small-scale spray activities have justified evaluations using production foam processing spray parameters. With the scale-up of the spray equipment, however, additional processing issues have been identified. This paper will present data collected to date regarding the use of this blowing agent in External Tank spray foams.

  1. Perverse effects of carbon markets on HFC-23 and SF6 abatement projects in Russia

    NASA Astrophysics Data System (ADS)

    Schneider, Lambert; Kollmuss, Anja

    2015-12-01

    Carbon markets are considered a key policy tool to achieve cost-effective climate mitigation. Project-based carbon market mechanisms allow private sector entities to earn tradable emissions reduction credits from mitigation projects. The environmental integrity of project-based mechanisms has been subject to controversial debate and extensive research, in particular for projects abating industrial waste gases with a high global warming potential (GWP). For such projects, revenues from credits can significantly exceed abatement costs, creating perverse incentives to increase production or generation of waste gases as a means to increase credit revenues from waste gas abatement. Here we show that all projects abating HFC-23 and SF6 under the Kyoto Protocol’s Joint Implementation mechanism in Russia increased waste gas generation to unprecedented levels once they could generate credits from producing more waste gas. Our results suggest that perverse incentives can substantially undermine the environmental integrity of project-based mechanisms and that adequate regulatory oversight is crucial. Our findings are critical for mechanisms in both national jurisdictions and under international agreements.

  2. Magnetic refrigeration using flux compression in superconductors

    NASA Technical Reports Server (NTRS)

    Israelsson, U. E.; Strayer, D. M.; Jackson, H. W.; Petrac, D.

    1990-01-01

    The feasibility of using flux compression in high-temperature superconductors to produce the large time-varying magnetic fields required in a field cycled magnetic refrigerator operating between 20 K and 4 K is presently investigated. This paper describes the refrigerator concept and lists limitations and advantages in comparison with conventional refrigeration techniques. The maximum fields obtainable by flux compression in high-temperature supercoductor materials, as presently prepared, are too low to serve in such a refrigerator. However, reports exist of critical current values that are near usable levels for flux pumps in refrigerator applications.

  3. Solar-powered jet refrigerator

    NASA Technical Reports Server (NTRS)

    Chai, V. W.; Lansing, F. L.

    1979-01-01

    Design criteria are easily evaluated by tool. Thermodynamic analysis of solar-powered vapor-jet refrigerator combines important performance parameters in nomogram that assist design of practical system. Projected coefficients of performance for difference ejector configurations, working fluids, and other design variables are easily obtained from nomogram.

  4. Solar-Powered Refrigeration System

    NASA Technical Reports Server (NTRS)

    Ewert, Michael K. (Inventor); Bergeron, David J., III (Inventor)

    2001-01-01

    A solar powered vapor compression refrigeration system is made practicable with thermal storage and novel control techniques. In one embodiment, the refrigeration system includes a photovoltaic panel, a variable speed compressor, an insulated enclosure. and a thermal reservoir. The photovoltaic (PV) panel converts sunlight into DC (direct current) electrical power. The DC electrical power drives a compressor that circulates refrigerant through a vapor compression refrigeration loop to extract heat from the insulated enclosure. The thermal reservoir is situated inside the insulated enclosure and includes a phase change material. As heat is extracted from the insulated enclosure, the phase change material is frozen, and thereafter is able to act as a heat sink to maintain the temperature of the insulated enclosure in the absence of sunlight. The conversion of solar power into stored thermal energy is optimized by a compressor control method that effectively maximizes the compressor's usage of available energy. A capacitor is provided to smooth the power voltage and to provide additional current during compressor start-up. A controller monitors the rate of change of the smoothed power voltage to determine if the compressor is operating below or above the available power maximum, and adjusts the compressor speed accordingly. In this manner, the compressor operation is adjusted to convert substantially all available solar power into stored thermal energy.

  5. Solar-Powered Refrigeration System

    NASA Technical Reports Server (NTRS)

    Ewert, Michael K. (Inventor); Bergeron, David J., III (Inventor)

    2002-01-01

    A solar powered vapor compression refrigeration system is made practicable with thermal storage and novel control techniques. In one embodiment, the refrigeration system includes a photovoltaic panel, a variable speed compressor, an insulated enclosure, and a thermal reservoir. The photovoltaic (PV) panel converts sunlight into DC (direct current) electrical power. The DC electrical power drives a compressor that circulates refrigerant through a vapor compression refrigeration loop to extract heat from the insulated enclosure. The thermal reservoir is situated inside the insulated enclosure and includes a phase change material. As heat is extracted from the insulated enclosure, the phase change material is frozen, and thereafter is able to act as a heat sink to maintain the temperature of the insulated enclosure in the absence of sunlight. The conversion of solar power into stored thermal energy is optimized by a compressor control method that effectively maximizes the compressor's usage of available energy. A capacitor is provided to smooth the power voltage and to provide additional current during compressor start-up. A controller monitors the rate of change of the smoothed power voltage to determine if the compressor is operating below or above the available power maximum, and adjusts the compressor speed accordingly. In this manner, the compressor operation is adjusted to convert substantially all available solar power into stored thermal energy.

  6. Low-temperature magnetic refrigerator

    DOEpatents

    Barclay, John A.

    1985-01-01

    The disclosure is directed to a low temperature 4 to 20 K. refrigeration apparatus and method utilizing a ring of magnetic material moving through a magnetic field. Heat exchange is accomplished in and out of the magnetic field to appropriately utilize the device to execute Carnot and Stirling cycles.

  7. Direct condensation refrigerant recovery and restoration system

    SciTech Connect

    Grant, D.C.H.

    1992-03-10

    This patent describes a refrigerant recovery and purification system for removing gaseous refrigerant from a disabled refrigeration unit, cleaning the refrigerant of contaminants, and converting the gaseous refrigerant to a liquid state for storage. It comprises a low pressure inlet section; a high pressure storage section; the low pressure inlet section comprising: an oil and refrigerant gas separator, including a separated oil removal means, first conduit means for connecting an inlet of the separator to the disabled refrigerant unit, a slack-sided accumulator, second conduit means connecting the separator to the slack-sided accumulator, a reclaim condenser, third conduit means connecting the separator and the reclaim condenser in series, an evaporator coil in the reclaim condenser connectable to a conventional operating refrigeration system for receiving a liquid refrigerant under pressure for expansion therein, the evaporator coil forming a condensing surface for condensing the refrigerant gas at near atmospheric pressure in the condenser, a liquid receiver, a reclaimed refrigerant storage tank, fourth conduit means further connecting the liquid receiver in series with the reclaim condenser, downstream thereof, means between the reclaim condenser and the liquid receiver.

  8. Keeping Cool With Solar-Powered Refrigeration

    NASA Technical Reports Server (NTRS)

    2003-01-01

    In the midst of developing battery-free, solar-powered refrigeration and air conditioning systems for habitats in space, David Bergeron, the team leader for NASA's Advanced Refrigerator Technology Team at Johnson Space Center, acknowledged the need for a comparable solar refrigerator that could operate in conjunction with the simple lighting systems already in place on Earth. Bergeron, a 20-year veteran in the aerospace industry, founded the company Solus Refrigeration, Inc., in 1999 to take the patented advanced refrigeration technology he co-developed with his teammate, Johnson engineer Michael Ewert, to commercial markets. Now known as SunDanzer Refrigeration, Inc., Bergeron's company is producing battery-free, photovoltaic (PV) refrigeration systems under license to NASA, and selling them globally.

  9. Dynamic chiral-at-metal stability of tetrakis(d/l-hfc)Ln(III) complexes capped with an alkali metal cation in solution.

    PubMed

    Lin, Yiji; Zou, Fang; Wan, Shigang; Ouyang, Jie; Lin, Lirong; Zhang, Hui

    2012-06-14

    Chiral tetrakis(β-diketonate) Ln(III) complexes Δ-[NaLa(d-hfc)(4)(CH(3)CN)] (1) and Λ-[NaLa(l-hfc)(4) (CH(3)CN)] (2) (d/l-hfc(-) = 3-heptafluo-robutylryl-(+)/(-)-camphorate) are a pair of enantiomers and crystallize in the same Sohncke space group (P2(1)2(1)2(1)) with dodecahedral (DD) geometry. Typically positive and negative exciton splitting patterns around 320 nm were observed in the solid-state circular dichroism (CD) spectra of complexes 1 and 2, which indicate that their shell configurational chiralities are Δ and Λ, respectively. The apparent bisignate couplets in the solid-state CD spectra of [CsLn(d-hfc)(4)(H(2)O)] [Ln = La (3), Yb (5)] and [CsLn(l-hfc)(4)(H(2)O)] [Ln = La (4), Yb (6)] show that they are a pair of enantiomers and their absolute configurations are denoted Δ and Λ, respectively. The crystallographic data of 5 reveals that its coordination polyhedron is the square antiprism (SAP) geometry and it undergoes a phase transition from triclinic (α phase, P1) to monoclinic (β phase, C2) upon cooling. The difference between the two phases is brought about by the temperature dependent behaviour of the coordination water molecules, but this did not affect the configurational chirality of the Δ-SAP-[Yb(d-hfc)(4)](-) moiety. Furthermore, time-dependent CD, UV-vis and (19)F NMR were applied to study the solution behavior of these complexes. It was found that the chiral-at-metal stability of the three pairs of complexes is different and affected by both the Ln(3+) and M(+) ion size. The results show that the Cs(+) cation can retain the metal center chirality and stablize the structures of [Ln(d/l-hfc)(4)](-) or the dissociated tris(d/l-hfc)Ln(III) species in solution for a longer time than that of the Na(+) cation, and it is important that the Cs(+) ion successfully lock the configurational chirality around the Yb(3+) center of the complex species in solution. This is reasoned by the short Cs(+)···FC, Cs(+)···O-Yb and Cs(+)···Yb(3

  10. Evaluation on environment-friendly refrigerants with similar normal boiling points in ejector refrigeration system

    NASA Astrophysics Data System (ADS)

    Wang, F.; Shen, S. Q.; Li, D. Y.

    2014-12-01

    Based on the "hypothetical throat area" theory and the "constant-pressure mixing" theory, a thermodynamic model for ejector was set up by introducing the real properties of refrigerants. Refrigerants which have similar normal boiling points with each other may act as replacement to each other in substitute progress. In this paper, eight environment-friendly refrigerants were divided into 4 pairs for study according to their normal boiling point. In each refrigerant pair, the entrainment ratios of ejector, system COP, pump power et al. of refrigerants were compared and analyzed. Lastly, the performances of the transcritical and subcritical ejector refrigeration cycles with propylene were calculated and compared.

  11. Dilution Refrigerator for Nuclear Refrigeration and Cryogenic Thermometry Studies

    NASA Astrophysics Data System (ADS)

    Nakagawa, Hisashi; Hata, Tohru

    2014-07-01

    This study explores the design and construction of an ultra-low temperature facility in order to realize the Provisional low-temperature scale from 0.9 mK to 1 K (PLTS-2000) in Japan, to disseminate its use through calibration services, and to study thermometry at low temperatures below 1 K. To this end, a dilution refrigerator was constructed in-house that has four sintered silver discrete heat exchangers for use as a precooling stage of a copper nuclear demagnetization stage. A melting curve thermometer attached to the mixing chamber flange could be cooled continuously to 4.0 mK using the refrigerator. The dependence of minimum temperatures on circulation rates can be explained by the calculation of Frossati's formula based on a perfect continuous counterflow heat exchanger model, assuming that the Kapitza resistance has a temperature dependence. Residual heat leakage to the mixing chamber was estimated to be around 86 nW. A nuclear demagnetization cryostat with a nuclear stage containing an effective amount of copper (51 mol in a 9 T magnetic field) is under construction, and we will presently start to work toward the realization of the PLTS-2000. In this article, the design and performance of the dilution refrigerator are reported.

  12. 40 CFR Appendix D to Subpart B of... - SAE J2810 Standard for Recovery Only Equipment for HFC-134a Refrigerant

    Code of Federal Regulations, 2011 CFR

    2011-07-01

    ..., DC 20402-9320. CFR 49, Section 173.304Shippers—General Requirements for Shipments and Packagings. 2.1... require maintenance or replacement that affect the proper operation of the equipment. Operation manuals... heating or use of any device (such as shields, reflectors, special lights, etc.), which could...

  13. 40 CFR Appendix D to Subpart B of... - SAE J2810 Standard for Recovery Only Equipment for HFC-134a Refrigerant

    Code of Federal Regulations, 2010 CFR

    2010-07-01

    ..., DC 20402-9320. CFR 49, Section 173.304Shippers—General Requirements for Shipments and Packagings. 2.1...). This will ensure that the container meets Department of Transportation (DOT) Standard, CFR Title 49... refillable containers used in conjunction with this equipment must meet applicable DOT Standards. The...

  14. Study on the Materials for Compressor and Reliability of Refrigeration Circuit in Refrigerator with R134a Refrigerant

    NASA Astrophysics Data System (ADS)

    Komatsubara, Takeo; Sunaga, Takasi; Takahasi, Yasuki

    R134a was selected as the alternative refrigerant for R12 because of the similar thermodynamic properties with R12. But refrigeration oil for R12 couldn't be used for R134a because of the immiscibility with R134a. To solve this problem we researched miscible oil with R134a and selected polyol ester oil (POE) as refrigeration oil. But we found sludge deposition into capillary tube after life test of refrigerator with POE and detected metal soap, decomposed oil and alkaline ions by analysis of sludge. This results was proof of phenomena like oil degradation, precipitation of process materials and wear of compressor. Therefore we improved stability and lubricity of POE, reevaluated process materials and contaminations in refrigerating circuit. In this paper we discuss newly developed these technologies and evaluation results of it by life test of refrigerator.

  15. Quantum-enhanced absorption refrigerators

    PubMed Central

    Correa, Luis A.; Palao, José P.; Alonso, Daniel; Adesso, Gerardo

    2014-01-01

    Thermodynamics is a branch of science blessed by an unparalleled combination of generality of scope and formal simplicity. Based on few natural assumptions together with the four laws, it sets the boundaries between possible and impossible in macroscopic aggregates of matter. This triggered groundbreaking achievements in physics, chemistry and engineering over the last two centuries. Close analogues of those fundamental laws are now being established at the level of individual quantum systems, thus placing limits on the operation of quantum-mechanical devices. Here we study quantum absorption refrigerators, which are driven by heat rather than external work. We establish thermodynamic performance bounds for these machines and investigate their quantum origin. We also show how those bounds may be pushed beyond what is classically achievable, by suitably tailoring the environmental fluctuations via quantum reservoir engineering techniques. Such superefficient quantum-enhanced cooling realises a promising step towards the technological exploitation of autonomous quantum refrigerators. PMID:24492860

  16. Novel materials for laser refrigeration

    NASA Astrophysics Data System (ADS)

    Hehlen, Markus P.

    2009-02-01

    The status of optical refrigeration of rare-earth-doped solids is reviewed, and the various factors that limit the performance of current laser-cooling materials are discussed. Efficient optical refrigeration is possible in materials for which hωmax < Ep/8, where h&omegamax is the maximum phonon energy of the host material and Ep is the pump energy for the rare-earth dopant. Transition-metal and OH- impurities at levels >100 ppb are believed to be the main reason for the limited laser-cooling performance in current materials. The many components of doped ZBLAN glass pose particular processing challenges. Binary fluoride glasses such as YF3-LiF are considered as alternatives to ZBLAN, and the crystalline system KPb2Cl5 :Dy3+ is identified as a prime candidate for high-efficiency laser cooling.

  17. Quantum-enhanced absorption refrigerators

    NASA Astrophysics Data System (ADS)

    Correa, Luis A.; Palao, José P.; Alonso, Daniel; Adesso, Gerardo

    2014-02-01

    Thermodynamics is a branch of science blessed by an unparalleled combination of generality of scope and formal simplicity. Based on few natural assumptions together with the four laws, it sets the boundaries between possible and impossible in macroscopic aggregates of matter. This triggered groundbreaking achievements in physics, chemistry and engineering over the last two centuries. Close analogues of those fundamental laws are now being established at the level of individual quantum systems, thus placing limits on the operation of quantum-mechanical devices. Here we study quantum absorption refrigerators, which are driven by heat rather than external work. We establish thermodynamic performance bounds for these machines and investigate their quantum origin. We also show how those bounds may be pushed beyond what is classically achievable, by suitably tailoring the environmental fluctuations via quantum reservoir engineering techniques. Such superefficient quantum-enhanced cooling realises a promising step towards the technological exploitation of autonomous quantum refrigerators.

  18. Quantum-enhanced absorption refrigerators.

    PubMed

    Correa, Luis A; Palao, José P; Alonso, Daniel; Adesso, Gerardo

    2014-01-01

    Thermodynamics is a branch of science blessed by an unparalleled combination of generality of scope and formal simplicity. Based on few natural assumptions together with the four laws, it sets the boundaries between possible and impossible in macroscopic aggregates of matter. This triggered groundbreaking achievements in physics, chemistry and engineering over the last two centuries. Close analogues of those fundamental laws are now being established at the level of individual quantum systems, thus placing limits on the operation of quantum-mechanical devices. Here we study quantum absorption refrigerators, which are driven by heat rather than external work. We establish thermodynamic performance bounds for these machines and investigate their quantum origin. We also show how those bounds may be pushed beyond what is classically achievable, by suitably tailoring the environmental fluctuations via quantum reservoir engineering techniques. Such superefficient quantum-enhanced cooling realises a promising step towards the technological exploitation of autonomous quantum refrigerators. PMID:24492860

  19. Stability of split Stirling refrigerators

    NASA Astrophysics Data System (ADS)

    de Waele, A. T. A. M.; Liang, W.

    2009-02-01

    In many thermal systems spontaneous mechanical oscillations are generated under the influence of large temperature gradients. Well-known examples are Taconis oscillations in liquid-helium cryostats and oscillations in thermoacoustic systems. In split Stirling refrigerators the compressor and the cold finger are connected by a flexible tube. The displacer in the cold head is suspended by a spring. Its motion is pneumatically driven by the pressure oscillations generated by the compressor. In this paper we give the basic dynamic equations of split Stirling refrigerators and investigate the possibility of spontaneous mechanical oscillations if a large temperature gradient develops in the cold finger, e.g. during or after cool down. These oscillations would be superimposed on the pressure oscillations of the compressor and could ruin the cooler performance.

  20. Mountain Plains Learning Experience Guide: Heating, Refrigeration, & Air Conditioning.

    ERIC Educational Resources Information Center

    Carey, John

    This Heating, Refrigeration, and Air Conditioning course is comprised of eleven individualized units: (1) Refrigeration Tools, Materials, and Refrigerant; (2) Basic Heating and Air Conditioning; (3) Sealed System Repairs; (4) Basic Refrigeration Systems; (5) Compression Systems and Compressors; (6) Refrigeration Controls; (7) Electric Circuit…

  1. Atmospheric observations for quantifying emissions of point-source synthetic greenhouse gases (CF4, NF3 and HFC-23)

    NASA Astrophysics Data System (ADS)

    Arnold, Tim; Manning, Alistair J.; Li, Shanlan; Kim, Jooil; Park, Sunyoung; Fraser, Paul J.; Mitrevski, Blagoj; Steele, L. Paul; Krummel, Paul B.; Mühle, Jens; Weiss, Ray F.

    2016-04-01

    The fluorinated species carbon tetrafluoride (CF4; PFC-14), nitrogen trifluoride (NF3) and trifluoromethane (CHF3; HFC-23) are potent greenhouse gases with 100-year global warming potentials of 6,630, 16,100 and 12,400, respectively. Unlike the majority of CFC-replacement compounds that are emitted from fugitive and mobile emission sources, these gases are largely emitted from large single point sources - semiconductor manufacturing facilities (all three), aluminium smelting plants (CF4) and chlorodifluoromethane factories (HFC-23). In this work we show the potential for atmospheric measurements to understand regional sources of these gases and to highlight emission 'hotspots'. We target our analysis on measurements from two Advanced Global Atmospheric Gases Experiment (AGAGE) long term monitoring sites that are particularly sensitive to regional emissions of these gases: Gosan on Jeju Island in the Republic of Korea and Cape Grim on Tasmania in Australia. These sites measure CF4, NF3 and HFC-23 alongside a suite of greenhouse and stratospheric ozone depleting gases every two hours using automated in situ gas-chromatography mass-spectrometry instrumentation. We couple each measurement to an analysis of air history using the regional atmospheric transport model NAME (Numerical Atmospheric dispersion Modelling Environment) driven by 3D meteorology from the Met Office's Unified Model, and use a Bayesian inverse method (InTEM - Inversion Technique for Emission Modelling) to calculate yearly emission changes over a decade (2005-2015) at high spatial resolution. At present these gases make a small contribution to global radiative forcing, however, given that their impact could rise significantly and that point sources of such gases can be mitigated, atmospheric monitoring could be an important tool for aiding emissions reduction policy.

  2. Suction muffler for refrigeration compressor

    DOEpatents

    Nelson, Richard T.; Middleton, Marc G.

    1983-01-01

    A hermetic refrigeration compressor includes a suction muffler formed from two pieces of plastic material mounted on the cylinder housing. One piece is cylindrical in shape with an end wall having an aperture for receiving a suction tube connected to the cylinder head. The other piece fits over and covers the other end of the cylindrical piece, and includes a flaring entrance horn which extends toward the return line on the sidewall of the compressor shell.

  3. Suction muffler for refrigeration compressor

    DOEpatents

    Nelson, R.T.; Middleton, M.G.

    1983-01-25

    A hermetic refrigeration compressor includes a suction muffler formed from two pieces of plastic material mounted on the cylinder housing. One piece is cylindrical in shape with an end wall having an aperture for receiving a suction tube connected to the cylinder head. The other piece fits over and covers the other end of the cylindrical piece, and includes a flaring entrance horn which extends toward the return line on the sidewall of the compressor shell. 5 figs.

  4. Vapor-liquid equilibria for hydrogen fluoride + difluoromethane, + 1,1,1,2-tetrafluoroethane, and + 1-chloro-1,2,2,2-tetrafluoromethane at 283.3 and 298.2 K

    SciTech Connect

    Lee, J.; Kim, H.; Lim, J.S.; Kim, J.D.; Lee, Y.Y.

    1996-01-01

    The production of refrigerants involves the separation of multicomponent mixtures containing hydrogen fluoride, hydrogen chloride, and various chlorinated and fluorinated hydrocarbons. Therefore, it is essential to known the phase behavior of these mixtures. Isothermal vapor-liquid equilibria for hydrogen fluoride (HF) + difluoromethane (HFC-32), HF + 1,1,1,2-tetrafluoroethane (HFC-134a), and HF + 1-chloro-1,2,2,2-tetrafluoroethane (HCFC-124) were measured by the P-T-x method at 283.3 and 298.2 K. Vapor compositions were calculated from these results. Among these systems, the HF + HFC-134a and HF + HCFC-124 systems exhibit minimum boiling azeotropes at both temperatures.

  5. Simulation of a refrigerant evaporator

    NASA Astrophysics Data System (ADS)

    Vandermeer, Jakob Stefanus

    A computer model for the design and optimization of the compressor refrigeration cycle especially with respect to dynamic behavior was developed. A steady state version was also developed. The model describing the refrigerant is divided into the evaporation and superheating regions. A mechanism based on empirics corrects the model for the influence of transportation times in the evaporation region. The mass balance of the refrigerant in the superheat region is regarded as quasi-static, because of the small mass of the vapor. The energy balance accounts for a distributed model and is represented by the steady state solution of the partial differential equation which describes this area for the steady conditions. A correction for the dynamical effects was added to this solution, for all influencing parameters, according to the analytical dynamic solution for the case of the evaporation temperature as input parameter. The expansion device model was worked out for the usual type of device in combination with a dry evaporator, the thermostatic expansion valve. Validation tests are described.

  6. Magnetic refrigerator for hydrogen liquefaction

    NASA Astrophysics Data System (ADS)

    Numazawa, T.; Kamiya, K.; Utaki, T.; Matsumoto, K.

    2014-07-01

    This paper reviews the status of magnetic refrigeration system for hydrogen liquefaction. There is no doubt that hydrogen is one of most important energy sources in the near future. In particular, liquid hydrogen can be utilized for infrastructure construction consisting of storage and transportation. When we compare the consuming energy of hydrogen liquefaction with high pressurized hydrogen gas, FOM must be larger than 0.57 for hydrogen liquefaction. Thus, we need to develop a highly efficient liquefaction method. Magnetic refrigeration using the magneto-caloric effect has potential to realize not only the higher liquefaction efficiency >50%, but also to be environmentally friendly and cost effective. Our hydrogen magnetic refrigeration system consists of Carnot cycle for liquefaction stage and AMR (active magnetic regenerator) cycle for precooling stages. For the Carnot cycle, we develop the high efficient system with >80% liquefaction efficiency by using the heat pipe. For the AMR cycle, we studied two kinds of displacer systems, which transferred the working fluid. We confirmed the AMR effect with the cooling temperature span of 12 K for 1.8 T of the magnetic field and 6 s of the cycle. By using the simulation, we estimate the efficiency of the hydrogen liquefaction plant for 10 kg/day. A FOM of 0.47 is obtained for operation temperature between 20 K and 77 K including LN2 work input.

  7. Substituting HCFC-22 for HFC-410A: an environmental impact trade-off between the ozone depletion and climate change regimes

    NASA Astrophysics Data System (ADS)

    Wang, Z.; Fang, X.; Zhang, J.

    2015-12-01

    After the phase-out of hydrochlorofluorocarbons (HCFCs) as ozone-depleting substances pursuant to the requirements of the Montreal Protocol, hydrofluorocarbons (HFCs) are worldwide used as substitutes although the bulk of them are potent greenhouse gases (GHGs). Therefore, the alternation may bring side effect on global climate change. The trade-off of its environmental impacts between the ozone depletion and climate change regimes necessitates a quantification of the past and future consumption and emissions of both the original HCFCs and their alternative HFCs. Now a dilemma arise in China's RAC industry that HCFC-22, which has an ozone-depleting potential (ODP) of 0.055, has been replaced by HFC-410A, which is a blended potent GHG from respective 50% HFC-32 and HFC-125 with a global warming potential (GWP) of 1923.5. Here, we present our results of estimates of consumption and emissions of HCFC-22 and HFC-410A from 1994 to 2050. Historic emissions of HCFC-22 contributed to global total HCFCs by 4.0% (3.0%-5.6%) ODP-weighted. Projection under a baseline scenario shows future accumulative emissions of HFC-410A make up 5.9%-11.0% of global GWP-weighted HFCs emissions, and its annual contribution to national overall CO2 emissions can be 5.5% in 2050. This makes HCFC-22 and HFC-410A emissions of significant importance in ozone depletion and climate change regimes. Two mitigation scenarios were set to assess the mitigation performance under the North America Proposal and an accelerated schedule. In practice of international environmental agreement, "alternative to alternative" should be developed to avoid regrettable alternations.

  8. Nelium, a Refrigerant with High Potential for the Temperature Range between 27 and 70 K

    NASA Astrophysics Data System (ADS)

    Quack, Hans; Haberstroh, Christoph; Seemann, Ilka; Klaus, Marcel

    In the search for the optimum process for the liquefaction of hydrogen, it was found that mixtures of helium and neon, called "Nelium", allow processes with very high efficiency compared to pure helium or pure neon. This is demonstrated in the design of a 500 kW refrigerator between 40 and 60 K, whereby the composition is varied between pure helium and pure neon. It turns out that helium-rich mixtures have an advantage for the heat exchange, whereas the neon-rich mixtures are easier to compress in turbo compressors. In any case a process efficiency of over 44% is feasible.

  9. 10 CFR 431.62 - Definitions concerning commercial refrigerators, freezers and refrigerator-freezers.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ...-freezer means refrigeration equipment that— (1) Is not a consumer product (as defined in § 430.2 of part... in cross-section. Holding temperature application means a use of commercial refrigeration...

  10. 10 CFR 431.62 - Definitions concerning commercial refrigerators, freezers and refrigerator-freezers.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ...-freezer means refrigeration equipment that— (1) Is not a consumer product (as defined in § 430.2 of part... in cross-section. Holding temperature application means a use of commercial refrigeration...

  11. Magnetic refrigeration for low-temperature applications

    NASA Technical Reports Server (NTRS)

    Barclay, J. A.

    1985-01-01

    The application of refrigeration at low temperatures ranging from production of liquid helium for medical imaging systems to cooling of infrared sensors on surveillance satellites is discussed. Cooling below about 15 K with regenerative refrigerators is difficult because of the decreasing thermal mass of the regenerator compared to that of the working material. In order to overcome this difficulty with helium gas as the working material, a heat exchanger plus a Joule-Thomson or other exponder is used. Regenerative magnetic refrigerators with magnetic solids as the working material have the same regenerator problem as gas refrigerators. This problem provides motivation for the development of nonregenerative magnetic refrigerators that span approximately 1 K to approximately 0 K. Particular emphasis is placed on high reliability and high efficiency. Calculations indicate considerable promise in this area. The principles, the potential, the problems, and the progress towards development of successful 4 to 20 K magnetic refrigerators are discussed.

  12. Compatibility of refrigerants and lubricants with elastomers

    SciTech Connect

    Hamed, G.R.; Seiple, R.H.

    1992-07-01

    Information contained in this reporters designed to assist the air-conditioning and refrigeration industry in the selection of suitable elastomeric gasket and seal materials that will prove useful in various refrigerant and refrigeration lubricant environments. Swell measurements have been made on approximately 50% of the proposed elastomers (94 total)in both the lubricant (7 total) and refrigerant (10 total) materials. Swell behavior in the these fluids have been determined using weight and in situ diameter measurements for the refrigerants and weight, diameter and thickness measurements for the lubricants. Weight and diameter measurements are repeated after 2 hours and 24 hours for samples removed from the refrigerant test fluids and 24 hours after removal from the lubricants.

  13. Not all counterclockwise thermodynamic cycles are refrigerators

    NASA Astrophysics Data System (ADS)

    Dickerson, R. H.; Mottmann, J.

    2016-06-01

    Clockwise cycles on PV diagrams always represent heat engines. It is therefore tempting to assume that counterclockwise cycles always represent refrigerators. This common assumption is incorrect: most counterclockwise cycles cannot be refrigerators. This surprising result is explored here for quasi-static ideal gas cycles, and the necessary conditions for refrigeration cycles are clarified. Three logically self-consistent criteria can be used to determine if a counterclockwise cycle is a refrigerator. The most fundamental test compares the counterclockwise cycle with a correctly determined corresponding Carnot cycle. Other criteria we employ include a widely accepted description of the functional behavior of refrigerators, and a corollary to the second law that limits a refrigerator's coefficient of performance.

  14. [Factors affecting the temperature of domestic refrigerators].

    PubMed

    Derens, E; Laguerre, O; Palagos, B

    2001-01-01

    A survey was carried out in France in 1999 in order to know the air temperature in domestic refrigerators and the factors which may effect this temperature. Temperatures were recorded at three levels (top, middle and bottom of the refrigerator compartment). A questionnaire was filled to acquire the following information: characteristic of family (number of family members, age, profession, income...), characteristic of refrigerator (trade, type, age, temperature setting, refrigerating type...) and the use condition (room temperature, near by heat source, built in, door opening frequency...). The average temperature of the 119 surveyed refrigerators was 6.6 degrees C. Descriptive analysis and multi dimensional analysis of factors effecting refrigerator temperature were carried out. The classification tree and the segmentation confirm the influence of the use condition (frequency of door opening, temperature setting, near by heat source and built in). There is no direct effect of one factor but the combination of all of them. PMID:11474586

  15. High-Performance, Low Environmental Impact Refrigerants

    NASA Technical Reports Server (NTRS)

    McCullough, E. T.; Dhooge, P. M.; Glass, S. M.; Nimitz, J. S.

    2001-01-01

    Refrigerants used in process and facilities systems in the US include R-12, R-22, R-123, R-134a, R-404A, R-410A, R-500, and R-502. All but R-134a, R-404A, and R-410A contain ozone-depleting substances that will be phased out under the Montreal Protocol. Some of the substitutes do not perform as well as the refrigerants they are replacing, require new equipment, and have relatively high global warming potentials (GWPs). New refrigerants are needed that addresses environmental, safety, and performance issues simultaneously. In efforts sponsored by Ikon Corporation, NASA Kennedy Space Center (KSC), and the US Environmental Protection Agency (EPA), ETEC has developed and tested a new class of refrigerants, the Ikon (registered) refrigerants, based on iodofluorocarbons (IFCs). These refrigerants are nonflammable, have essentially zero ozone-depletion potential (ODP), low GWP, high performance (energy efficiency and capacity), and can be dropped into much existing equipment.

  16. Atmospheric Degradation Initiated by OH Radicals of the Potential Foam Expansion Agent, CF3(CF2)2CH═CH2 (HFC-1447fz): Kinetics and Formation of Gaseous Products and Secondary Organic Aerosols.

    PubMed

    Jiménez, Elena; González, Sergio; Cazaunau, Mathieu; Chen, Hui; Ballesteros, Bernabé; Daële, Véronique; Albaladejo, José; Mellouki, Abdelwahid

    2016-02-01

    The assessment of the atmospheric impact of the potential foam expansion agent, CF3(CF2)2CH═CH2 (HFC-1447fz), requires the knowledge of its degradation routes, oxidation products, and radiative properties. In this paper, the gas-phase reactivity of HFC-1447fz with OH radicals is presented as a function of temperature, obtaining kOH (T = 263-358 K) = (7.4 ± 0.4) × 10(-13)exp{(161 ± 16)/T} (cm(3)·molecule(-1)·s(-1)) (uncertainties: ±2σ). The formation of gaseous oxidation products and secondary organic aerosols (SOAs) from the OH + HFC-1447fz reaction was investigated in the presence of NOx at 298 K. CF3(CF2)2CHO was observed at low- and high-NOx conditions. Evidence of SOA formation (ultrafine particles in the range 10-100 nm) is reported with yields ranging from 0.12 to 1.79%. In addition, the absolute UV (190-368 nm) and IR (500-4000 cm(-1)) absorption cross-sections of HFC-1447fz were determined at room temperature. No appreciable absorption in the solar actinic region (λ > 290 nm) was observed, leaving the removal by OH radicals as the main atmospheric loss process for HFC-1447fz. The major contribution of the atmospheric loss of HFC-1447fz is due to OH reaction (84%), followed by ozone (10%) and chlorine atoms (6%). Correction of the instantaneous radiative efficiency (0.36 W m(-2)·ppbv(-1)) with the relatively short lifetime of HFC-1447fz (ca. 8 days) implies that its global warming potential at a time horizon of 100 year is negligible (0.19) compared to that of HCFC-141b (782) and to that of modern foam-expansion blowing agents (148, 882, and 804 for HFC-152a, HFC-245fa and HFC-365mfc, respectively). PMID:26704369

  17. Modeling phase equilibria in mixtures containing hydrogen fluoride and halocarbons

    SciTech Connect

    Lencka, M. ); Anderko, A. Polish Academy of Sciences, Warszawa )

    1993-03-01

    Recently, much attention has been focused on the production of environmentally acceptable refrigerants, which not only offer desirable physico-chemical properties, but do not deplete the ozone layer and do not cause the greenhouse effect. The production of such refrigerants involves the separation of multicomponent mixtures containing hydrogen fluoride, hydrogen chloride, and various chlorinated and fluorinated hydrocarbons. Therefore, it is indispensable to know the phase behavior of these mixtures. While the phase behavior of refrigerant mixtures can be adequately modeled in the absence of HF using standard thermodynamic techniques, drastically increases the complexity of the mixture because of its unusually strong association. The association of HF manifests itself in its significantly reduced gas-phase compressibility factor and the strong nonideality of mixtures containing HF and hydrocarbons or halocarbons. In this work, the authors develop an accurate, yet simple, association model for HF and compare it with simulation data. The model is combined with a simple equation of state to yield a closed-form expression that is applicable to both pure fluids and mixtures. In addition to representing the pure-component data for HF, the theory accurately predicts phase equilibria in HF + halocarbon systems.

  18. Hydrogen Refrigerator Would Cool Below 10 K

    NASA Technical Reports Server (NTRS)

    Jones, J. A.

    1986-01-01

    Closed-cycle hydrogen refrigerator uses low-level heat energy to cool objects to temperature of 10 K. Refrigerator needs only fraction of energy of previous equipment with similar low-temperature capability. Unit compact and light in weight. With valves as only moving parts, reliable for many years. Refrigeration concept adapted to cooling superconducting magnets on magnetically levitated railcars, nuclear-particle accelerators, and variety of other cryogenic equipment.

  19. Manganese Nitride Sorption Joule-Thomson Refrigerator

    NASA Technical Reports Server (NTRS)

    Jones, Jack A.; Phillips, Wayne M.

    1992-01-01

    Proposed sorption refrigeration system of increased power efficiency combines MnxNy sorption refrigeration stage with systems described in "Regenerative Sorption Refrigerator" (NPO-17630). Measured pressure-vs-composition isotherms for reversible chemisorption of N2 in MnxNy suggest feasibility to incorporate MnxNy chemisorption stage in Joule-Thomson cryogenic system. Discovery represents first known reversible nitrogen chemisorption compression system. Has potential in nitrogen-isotope separation, nitrogen purification, or contamination-free nitrogen compression.

  20. Environmental fate of the next generation refrigerant 2,3,3,3-tetrafluoropropene (HFO-1234yf).

    PubMed

    Im, Jeongdae; Walshe-Langford, Gillian E; Moon, Ji-Won; Löffler, Frank E

    2014-11-18

    The hydrofluoroolefin 2,3,3,3-tetrafluoropropene (HFO-1234yf) has been introduced to replace 1,1,1,2-tetrafluoroethane (HFC-134a) as refrigerant in mobile, including vehicle, air conditioning systems because of its lower global warming potential. HFO-1234yf is volatile at ambient temperatures; however, high production volumes and widespread handling are expected to release this fluorocarbon into terrestrial and aquatic environments, including groundwater. Laboratory experiments explored HFO-1234yf degradation by (i) microbial processes under oxic and anoxic conditions, (ii) abiotic processes mediated by reactive mineral phases and zerovalent iron (Fe(0), ZVI), and (iii) cobalamin-catalyzed biomimetic transformation. These investigations demonstrated that HFO-1234yf was recalcitrant to microbial (co)metabolism and no transformation was observed in incubations with ZVI, makinawite (FeS), sulfate green rust (GR(SO4)), magnetite (Fe(3)O(4)), and manganese oxide (MnO2). Sequential reductive defluorination of HFO-1234yf to 3,3,3-trifluoropropene and 3,3-dichloropropene with concomitant stoichiometric release of fluoride occurred in incubations with reduced cobalamins (e.g., vitamin B12) indicating that biomolecules can transform HFO-1234yf at circumneutral pH and at ambient temperature. Taken together, these findings suggest that HFO-1234yf recalcitrance in aquifers should be expected; however, HFO-1234yf is not inert and a biomolecule may mediate reductive transformation in low redox environments, albeit at low rates. PMID:25329364

  1. Magnetic refrigeration: the basis for a new refrigeration technology. Los Alamos Mini-Review

    SciTech Connect

    Keller, W.E.

    1982-11-01

    The history of and operating principle for magnetic refrigeration, the selection of magnetic refrigeration materials with favorable thermomagnetic properties, e.g., gadolinium alloys and compounds, the advantages of greater compactness, efficiency and reliability for magnetic refrigeration as compared with conventional gas systems, and research in this field at Los Alamos are described. (LCL)

  2. Magnon-driven quantum dot refrigerators

    NASA Astrophysics Data System (ADS)

    Wang, Yuan; Huang, Chuankun; Liao, Tianjun; Chen, Jincan

    2015-12-01

    A new model of refrigerator consisting of a spin-splitting quantum dot coupled with two ferromagnetic reservoirs and a ferromagnetic insulator is proposed. The rate equation is used to calculate the occupation probabilities of the quantum dot. The expressions of the electron and magnon currents are obtained. The region that the system can work in as a refrigerator is determined. The cooling power and coefficient of performance (COP) of the refrigerator are derived. The influences of the magnetic field, applied voltage, and polarization of two leads on the performance are discussed. The performances of two different magnon-driven quantum dot refrigerators are compared.

  3. Piezoelectric driven thermo-acoustic refrigerator

    NASA Astrophysics Data System (ADS)

    Chinn, D. G.; Nouh, M.; Aldraihem, O.; Baz, A.

    2011-03-01

    Thermoacoustic refrigeration is an emerging refrigeration technology which does not rely for in its operation on the use of any moving parts or harmful refrigerants. This technology uses acoustic waves to pump heat across a temperature gradient. The vast majority of thermoacoustic refrigerators to date have used electromagnetic loudspeakers to generate the acoustic input. In this paper, the design, construction, operation, and modeling of a piezoelectric-driven thermoacoustic refrigerator are detailed. This refrigerator demonstrates the effectiveness of piezoelectric actuation in moving 0.3 W of heat across an 18 degree C temperature difference with an input power of 7.6 W. The performance characteristics of this class of thermoacoustic-piezoelectric refrigerator are modeled using DeltaEC software and the predictions are validated experimentally. The obtained results confirm the validity of the developed model. Furthermore, the potential of piezoelectric actuation as effective means for driving thermoacoustic refrigerators is demonstrated as compared to the conventional electromagnetic loudspeakers which are heavy and require high actuation energy. The developed theoretical and experimental tools can serve as invaluable means for the design and testing of other piezoelectric driven thermoacoustic refrigerator configurations.

  4. Application of magnetic refrigeration and its assessment

    NASA Astrophysics Data System (ADS)

    Kitanovski, Andrej; Egolf, Peter W.

    2009-04-01

    Magnetic refrigeration has the potential to replace conventional refrigeration—with often problematic refrigerants—in several niche markets or even some main markets of the refrigeration domain. Based on this insight, for the Swiss Federal Office of Energy a list of almost all existing refrigeration technologies was worked out. Then an evaluation how good magnetic refrigeration applies to each of these technologies was performed. For this purpose a calculation tool to determine the coefficient of performance ( COP) and the exergy efficiency as a function of the magnetic field strength and the rotation frequency of a rotary-type magnetic refrigerator was developed. The evaluation clearly shows that some application domains are more ideal for a replacement of conventional refrigerators by their magnetic counterparts than others. In the pre-study, four good examples were chosen for a more comprehensive investigation and working out of more detailed results. In this article, the calculation method is briefly described. COP values and exergy efficiencies of one very suitable technology, namely the magnetic household refrigerator, are presented for different operation conditions. Summarizing, it is stated that magnetic refrigeration is a serious environmentally benign alternative to some conventional cooling, refrigeration and air-conditioning technologies.

  5. 46 CFR 130.230 - Protection from refrigerants.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... refrigerants. (a) For each refrigeration system that exceeds 0.6 cubic meters (20 cubic feet) of storage... refrigeration equipment. (c) A complete recharge in the form of a spare charge must be carried for each...

  6. 46 CFR 130.230 - Protection from refrigerants.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... refrigerants. (a) For each refrigeration system that exceeds 0.6 cubic meters (20 cubic feet) of storage... refrigeration equipment. (c) A complete recharge in the form of a spare charge must be carried for each...

  7. 46 CFR 130.230 - Protection from refrigerants.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... refrigerants. (a) For each refrigeration system that exceeds 0.6 cubic meters (20 cubic feet) of storage... refrigeration equipment. (c) A complete recharge in the form of a spare charge must be carried for each...

  8. 46 CFR 130.230 - Protection from refrigerants.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... refrigerants. (a) For each refrigeration system that exceeds 0.6 cubic meters (20 cubic feet) of storage... refrigeration equipment. (c) A complete recharge in the form of a spare charge must be carried for each...

  9. 46 CFR 130.230 - Protection from refrigerants.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... refrigerants. (a) For each refrigeration system that exceeds 0.6 cubic meters (20 cubic feet) of storage... refrigeration equipment. (c) A complete recharge in the form of a spare charge must be carried for each...

  10. Refrigerant charge management in a heat pump water heater

    DOEpatents

    Chen, Jie; Hampton, Justin W.

    2016-07-05

    Heat pumps that heat or cool a space and that also heat water, refrigerant management systems for such heat pumps, and methods of managing refrigerant charge. Various embodiments remove idle refrigerant from a heat exchanger that is not needed for transferring heat by opening a refrigerant recovery valve and delivering the idle refrigerant from the heat exchanger to an inlet port on the compressor. The heat exchanger can be isolated by closing an electronic expansion valve, actuating a refrigerant management valve, or both. Refrigerant charge can be controlled by controlling how much refrigerant is drawn from the heat exchanger, by letting some refrigerant back into the heat exchanger, or both. Heat pumps can be operated in different modes of operation, and various components can be interconnected with refrigerant conduit. Some embodiments deliver refrigerant gas to the heat exchanger and drive liquid refrigerant out prior to isolating the heat exchanger.

  11. ALTERNATIVE TECHNOLOGIES FOR REFRIGERATION AND AIR-CONDITIONING APPLICATIONS

    EPA Science Inventory

    The report gives results of an assessment of refrigeration technologies that are alternatives to vapor compression refrigeration for use in five application categories: domestic air conditioning, commercial air conditioning, mobile air conditioning, domestic refrigeration, and co...

  12. Materials compatibility and lubricants research on CFC-refrigerant substitutes: Thermophysical properties

    SciTech Connect

    Kayser, R.F. . Thermophysics Div.)

    1992-04-01

    Numerous fluids have been identified as promising alternative refrigerants, but much of the information needed to predict their behavior as pure fluids and as components in mixtures does not exist. In particular, reliable thermophysical properties data and models are needed to predict the performance of the new refrigerants in heating and cooling equipment, and to design and optimize equipment to be reliable and energy efficient. The objective of this project is to provide highly accurate, selected thermophysical properties data for Refrigerants 32, 123, 124, and 125, and to use these data to fit simple and complex equations of state and detailed transport property models. The new data will fill in the gaps in existing data sets and resolve the problems and uncertainties that exist in and between the data sets. This report describes the progress made during the first quarter of this fifteen-month project, which was initiated in late January, 1992.

  13. Continuous Crystallization of Urea-Water Mixture

    NASA Astrophysics Data System (ADS)

    Hokamura, Taku; Ohkubo, Hidetoshi; Watanabe, Satoshi; Seki, Mitsuo; Murakoshi, Hiromichi

    Ice slurries have been used as environmentally-friendly secondary refrigerants. In addition to such ice slurries, aqueous solutions in slurry-state have also been put to practical use at temperatures below 0 oC. Urea-water mixture is a multi-component substance that has a eutectic point. If we can form a two-phase fluid substance by the liquid-solid phases at the eutectic point, it can be used as a fluid latent heat storage material, which will maintain the secondary refrigerant in a heat exchanger at constant temperature. In the present study, we propose a urea-water mixture as a novel functional thermal fluid that can be used as a fluid latent heat material. To demonstrate its feasibility, we first measured the latent heat and density of a urea-water mixture, and then used a counter-flow double tube heat exchanger to produce a liquid-solid two-phase flow of the urea-water mixture. This work demonstrates that it is possible to make a fluid latent heat storage material continuously from an aqueous solution at the eutectic point by flowing it through a double tube heat exchanger equipped with a stirrer.

  14. Surface properties and work function changes induced by atomic oxygen adsorbed on HfC(1 1 1) surface

    NASA Astrophysics Data System (ADS)

    Wang, Jian; Wang, Shao-qing

    2015-12-01

    Hafnium carbide (HfC) is regarded as one of the most promising cathode materials for field emission. But the experimental results did not provide a detail picture of the surface properties. In this work, we perform an ab initio study of the surface energies and work functions for the (1 0 0), (1 1 0), (1 1 1), (2 1 0), (3 1 0) and (3 1 1) surfaces of hafnium carbide. For the polar surface of (1 1 1) and (3 1 1) plane, a new method is taken to calculate the surface energy of the different surface terminations. The results indicate that the Hf termination surface is most stable, which are consistent with the experimental results. Additionally, we focused in particular on oxygen atom induced work function changes on HfC(1 1 1) plane as a function of coverage. An unexpected decrease of the work function is found at low coverage, and a reasonable resolution for this anomaly is given based on the method of Roman et al.

  15. Refrigeration generation using expander-generator units

    NASA Astrophysics Data System (ADS)

    Klimenko, A. V.; Agababov, V. S.; Koryagin, A. V.; Baidakova, Yu. O.

    2016-05-01

    The problems of using the expander-generator unit (EGU) to generate refrigeration, along with electricity were considered. It is shown that, on the level of the temperatures of refrigeration flows using the EGU, one can provide the refrigeration supply of the different consumers: ventilation and air conditioning plants and industrial refrigerators and freezers. The analysis of influence of process parameters on the cooling power of the EGU, which depends on the parameters of the gas expansion process in the expander and temperatures of cooled environment, was carried out. The schematic diagram of refrigeration generation plant based on EGU is presented. The features and advantages of EGU to generate refrigeration compared with thermotransformer of steam compressive and absorption types were shown, namely: there is no need to use the energy generated by burning fuel to operate the EGU; beneficial use of the heat delivered to gas from the flow being cooled in equipment operating on gas; energy production along with refrigeration generation, which makes it possible to create, using EGU, the trigeneration plants without using the energy power equipment. It is shown that the level of the temperatures of refrigeration flows, which can be obtained by using the EGU on existing technological decompression stations of the transported gas, allows providing the refrigeration supply of various consumers. The information that the refrigeration capacity of an expander-generator unit not only depends on the parameters of the process of expansion of gas flowing in the expander (flow rate, temperatures and pressures at the inlet and outlet) but it is also determined by the temperature needed for a consumer and the initial temperature of the flow of the refrigeration-carrier being cooled. The conclusion was made that the expander-generator units can be used to create trigeneration plants both at major power plants and at small energy.

  16. Experimental investigation of the performance of a single-stage auto-cascade refrigerator

    NASA Astrophysics Data System (ADS)

    Rui, Shengjun; Zhang, Hua; Zhang, Bohan; Wen, Dongsheng

    2016-01-01

    Auto-refrigerating cascade (ARC) systems possess many advantages comparing with traditional cascade refrigeration systems. This work proposed a novel ternary mixture, R600a/R23/R14, for ARC systems for 190 K applications. The performance of the ternary mixture and the influences of compositional ratio and bypass scheme were assessed in a modified domestic cooler. The results demonstrated the feasibility of the proposed R600a/R23/R14 ternary mixture as an environmental benign alternative for ARC systems. The performance varied little within a certain composition range and a mass ratio of 35/30/35 for R600a/R23/R14 mixture was recommended. It also showed that the two bypass schemes, which can regulate more effectively the refrigerant compositions, were better than the conventional hot-gas bypass approach. The variation of the evaporator temperature suggested the presence of local dryout at high heat loads (i.e., larger than the design value), which should be carefully prevented.

  17. Prediction of Dangerous Time in Case Hydrocarbon Refrigerant Leaks into Household Refrigerator Cabinet

    NASA Astrophysics Data System (ADS)

    Meguro, Takatoshi; Kaji, Nobufuji; Miyake, Kunihiro

    Hydrocarbon refrigerators are now on sale in European countries. However, hydrocarbons are flammable. A common claim is that concentration of hydrocarbon in the refrigerator could exceed the lower explosive limit by a sudden leak and then a spark ignites a flame causing overpressure. There is the need of the studies on potential risks originated from the use of flammable refrigerants. Thus, the flow rate of the fresh air into the refrigerator cabinet has been defined experimentally, and the spatial average concentration in the refrigerator cabinet has been analyzed theoretically to predict the dangerous time in excess of the lower explosive limit.

  18. Seven-effect absorption refrigeration

    DOEpatents

    DeVault, Robert C.; Biermann, Wendell J.

    1989-01-01

    A seven-effect absorption refrigeration cycle is disclosed utilizing three absorption circuits. In addition, a heat exchanger is used for heating the generator of the low absorption circuit with heat rejected from the condenser and absorber of the medium absorption circuit. A heat exchanger is also provided for heating the generator of the medium absorption circuit with heat rejected from the condenser and absorber of the high absorption circuit. If desired, another heat exchanger can also be provided for heating the evaporator of the high absorption circuit with rejected heat from either the condenser or absorber of the low absorption circuit.

  19. Refrigeration system with clearance seals

    SciTech Connect

    Holland, N. J.

    1985-02-26

    In a refrigeration system such as a split Stirling system, fluid seals associated with the reciprocating displacer are virtually dragless clearance seals. Movement of the displacer relative to the pressure variations in the working volume of gas is retarded by a discrete braking element. Because it is not necessary that the brake providing any sealing action, the brake can be designed for greater durability and less dependence on ambient and operating temperatures. Similarly, the clearance seal can be formed of elements having low thermal expansion such that the seal is not temperature dependent. In the primary embodiments the braking element is a split friction brake.

  20. Fermilab's Satellite Refrigerator Expansion Engines

    SciTech Connect

    Peterson, Thomas J.

    1983-01-01

    Each of Fermilab's 24 satellite refrigerators includes two reciprocating expanders, a "wet" engine and a "dry" engine. The wet engines and all but eleven of the dry engines were manufactured by Koch Process Systems (Westboro, Massachusetts). These are basically Koch Model 1400 expaaders installed in cryostats designed by Fermilab. The other eleven dry engines are an in-hou~e design referred to as "Gardner-Fermi" engines since they evolved from the GX3-2500 engines purchas~d from Gardner Cryogenics. Table I surmnarizes the features of our three types of expanders....