Sample records for hierarchical bayesian models

  1. Hierarchical Bayesian Modeling of Fluid-Induced Seismicity

    NASA Astrophysics Data System (ADS)

    Broccardo, M.; Mignan, A.; Wiemer, S.; Stojadinovic, B.; Giardini, D.

    2017-11-01

    In this study, we present a Bayesian hierarchical framework to model fluid-induced seismicity. The framework is based on a nonhomogeneous Poisson process with a fluid-induced seismicity rate proportional to the rate of injected fluid. The fluid-induced seismicity rate model depends upon a set of physically meaningful parameters and has been validated for six fluid-induced case studies. In line with the vision of hierarchical Bayesian modeling, the rate parameters are considered as random variables. We develop both the Bayesian inference and updating rules, which are used to develop a probabilistic forecasting model. We tested the Basel 2006 fluid-induced seismic case study to prove that the hierarchical Bayesian model offers a suitable framework to coherently encode both epistemic uncertainty and aleatory variability. Moreover, it provides a robust and consistent short-term seismic forecasting model suitable for online risk quantification and mitigation.

  2. Constructive Epistemic Modeling: A Hierarchical Bayesian Model Averaging Method

    NASA Astrophysics Data System (ADS)

    Tsai, F. T. C.; Elshall, A. S.

    2014-12-01

    Constructive epistemic modeling is the idea that our understanding of a natural system through a scientific model is a mental construct that continually develops through learning about and from the model. Using the hierarchical Bayesian model averaging (HBMA) method [1], this study shows that segregating different uncertain model components through a BMA tree of posterior model probabilities, model prediction, within-model variance, between-model variance and total model variance serves as a learning tool [2]. First, the BMA tree of posterior model probabilities permits the comparative evaluation of the candidate propositions of each uncertain model component. Second, systemic model dissection is imperative for understanding the individual contribution of each uncertain model component to the model prediction and variance. Third, the hierarchical representation of the between-model variance facilitates the prioritization of the contribution of each uncertain model component to the overall model uncertainty. We illustrate these concepts using the groundwater modeling of a siliciclastic aquifer-fault system. The sources of uncertainty considered are from geological architecture, formation dip, boundary conditions and model parameters. The study shows that the HBMA analysis helps in advancing knowledge about the model rather than forcing the model to fit a particularly understanding or merely averaging several candidate models. [1] Tsai, F. T.-C., and A. S. Elshall (2013), Hierarchical Bayesian model averaging for hydrostratigraphic modeling: Uncertainty segregation and comparative evaluation. Water Resources Research, 49, 5520-5536, doi:10.1002/wrcr.20428. [2] Elshall, A.S., and F. T.-C. Tsai (2014). Constructive epistemic modeling of groundwater flow with geological architecture and boundary condition uncertainty under Bayesian paradigm, Journal of Hydrology, 517, 105-119, doi: 10.1016/j.jhydrol.2014.05.027.

  3. Hierarchical Bayesian Models of Subtask Learning

    ERIC Educational Resources Information Center

    Anglim, Jeromy; Wynton, Sarah K. A.

    2015-01-01

    The current study used Bayesian hierarchical methods to challenge and extend previous work on subtask learning consistency. A general model of individual-level subtask learning was proposed focusing on power and exponential functions with constraints to test for inconsistency. To study subtask learning, we developed a novel computer-based booking…

  4. Advances in Applications of Hierarchical Bayesian Methods with Hydrological Models

    NASA Astrophysics Data System (ADS)

    Alexander, R. B.; Schwarz, G. E.; Boyer, E. W.

    2017-12-01

    Mechanistic and empirical watershed models are increasingly used to inform water resource decisions. Growing access to historical stream measurements and data from in-situ sensor technologies has increased the need for improved techniques for coupling models with hydrological measurements. Techniques that account for the intrinsic uncertainties of both models and measurements are especially needed. Hierarchical Bayesian methods provide an efficient modeling tool for quantifying model and prediction uncertainties, including those associated with measurements. Hierarchical methods can also be used to explore spatial and temporal variations in model parameters and uncertainties that are informed by hydrological measurements. We used hierarchical Bayesian methods to develop a hybrid (statistical-mechanistic) SPARROW (SPAtially Referenced Regression On Watershed attributes) model of long-term mean annual streamflow across diverse environmental and climatic drainages in 18 U.S. hydrological regions. Our application illustrates the use of a new generation of Bayesian methods that offer more advanced computational efficiencies than the prior generation. Evaluations of the effects of hierarchical (regional) variations in model coefficients and uncertainties on model accuracy indicates improved prediction accuracies (median of 10-50%) but primarily in humid eastern regions, where model uncertainties are one-third of those in arid western regions. Generally moderate regional variability is observed for most hierarchical coefficients. Accounting for measurement and structural uncertainties, using hierarchical state-space techniques, revealed the effects of spatially-heterogeneous, latent hydrological processes in the "localized" drainages between calibration sites; this improved model precision, with only minor changes in regional coefficients. Our study can inform advances in the use of hierarchical methods with hydrological models to improve their integration with stream

  5. A Hierarchical Multivariate Bayesian Approach to Ensemble Model output Statistics in Atmospheric Prediction

    DTIC Science & Technology

    2017-09-01

    efficacy of statistical post-processing methods downstream of these dynamical model components with a hierarchical multivariate Bayesian approach to...Bayesian hierarchical modeling, Markov chain Monte Carlo methods , Metropolis algorithm, machine learning, atmospheric prediction 15. NUMBER OF PAGES...scale processes. However, this dissertation explores the efficacy of statistical post-processing methods downstream of these dynamical model components

  6. A Bayesian hierarchical diffusion model decomposition of performance in Approach–Avoidance Tasks

    PubMed Central

    Krypotos, Angelos-Miltiadis; Beckers, Tom; Kindt, Merel; Wagenmakers, Eric-Jan

    2015-01-01

    Common methods for analysing response time (RT) tasks, frequently used across different disciplines of psychology, suffer from a number of limitations such as the failure to directly measure the underlying latent processes of interest and the inability to take into account the uncertainty associated with each individual's point estimate of performance. Here, we discuss a Bayesian hierarchical diffusion model and apply it to RT data. This model allows researchers to decompose performance into meaningful psychological processes and to account optimally for individual differences and commonalities, even with relatively sparse data. We highlight the advantages of the Bayesian hierarchical diffusion model decomposition by applying it to performance on Approach–Avoidance Tasks, widely used in the emotion and psychopathology literature. Model fits for two experimental data-sets demonstrate that the model performs well. The Bayesian hierarchical diffusion model overcomes important limitations of current analysis procedures and provides deeper insight in latent psychological processes of interest. PMID:25491372

  7. A Hierarchical Bayesian Model for Crowd Emotions

    PubMed Central

    Urizar, Oscar J.; Baig, Mirza S.; Barakova, Emilia I.; Regazzoni, Carlo S.; Marcenaro, Lucio; Rauterberg, Matthias

    2016-01-01

    Estimation of emotions is an essential aspect in developing intelligent systems intended for crowded environments. However, emotion estimation in crowds remains a challenging problem due to the complexity in which human emotions are manifested and the capability of a system to perceive them in such conditions. This paper proposes a hierarchical Bayesian model to learn in unsupervised manner the behavior of individuals and of the crowd as a single entity, and explore the relation between behavior and emotions to infer emotional states. Information about the motion patterns of individuals are described using a self-organizing map, and a hierarchical Bayesian network builds probabilistic models to identify behaviors and infer the emotional state of individuals and the crowd. This model is trained and tested using data produced from simulated scenarios that resemble real-life environments. The conducted experiments tested the efficiency of our method to learn, detect and associate behaviors with emotional states yielding accuracy levels of 74% for individuals and 81% for the crowd, similar in performance with existing methods for pedestrian behavior detection but with novel concepts regarding the analysis of crowds. PMID:27458366

  8. Fast Low-Rank Bayesian Matrix Completion With Hierarchical Gaussian Prior Models

    NASA Astrophysics Data System (ADS)

    Yang, Linxiao; Fang, Jun; Duan, Huiping; Li, Hongbin; Zeng, Bing

    2018-06-01

    The problem of low rank matrix completion is considered in this paper. To exploit the underlying low-rank structure of the data matrix, we propose a hierarchical Gaussian prior model, where columns of the low-rank matrix are assumed to follow a Gaussian distribution with zero mean and a common precision matrix, and a Wishart distribution is specified as a hyperprior over the precision matrix. We show that such a hierarchical Gaussian prior has the potential to encourage a low-rank solution. Based on the proposed hierarchical prior model, a variational Bayesian method is developed for matrix completion, where the generalized approximate massage passing (GAMP) technique is embedded into the variational Bayesian inference in order to circumvent cumbersome matrix inverse operations. Simulation results show that our proposed method demonstrates superiority over existing state-of-the-art matrix completion methods.

  9. Probabilistic Inference: Task Dependency and Individual Differences of Probability Weighting Revealed by Hierarchical Bayesian Modeling

    PubMed Central

    Boos, Moritz; Seer, Caroline; Lange, Florian; Kopp, Bruno

    2016-01-01

    Cognitive determinants of probabilistic inference were examined using hierarchical Bayesian modeling techniques. A classic urn-ball paradigm served as experimental strategy, involving a factorial two (prior probabilities) by two (likelihoods) design. Five computational models of cognitive processes were compared with the observed behavior. Parameter-free Bayesian posterior probabilities and parameter-free base rate neglect provided inadequate models of probabilistic inference. The introduction of distorted subjective probabilities yielded more robust and generalizable results. A general class of (inverted) S-shaped probability weighting functions had been proposed; however, the possibility of large differences in probability distortions not only across experimental conditions, but also across individuals, seems critical for the model's success. It also seems advantageous to consider individual differences in parameters of probability weighting as being sampled from weakly informative prior distributions of individual parameter values. Thus, the results from hierarchical Bayesian modeling converge with previous results in revealing that probability weighting parameters show considerable task dependency and individual differences. Methodologically, this work exemplifies the usefulness of hierarchical Bayesian modeling techniques for cognitive psychology. Theoretically, human probabilistic inference might be best described as the application of individualized strategic policies for Bayesian belief revision. PMID:27303323

  10. Testing adaptive toolbox models: a Bayesian hierarchical approach.

    PubMed

    Scheibehenne, Benjamin; Rieskamp, Jörg; Wagenmakers, Eric-Jan

    2013-01-01

    Many theories of human cognition postulate that people are equipped with a repertoire of strategies to solve the tasks they face. This theoretical framework of a cognitive toolbox provides a plausible account of intra- and interindividual differences in human behavior. Unfortunately, it is often unclear how to rigorously test the toolbox framework. How can a toolbox model be quantitatively specified? How can the number of toolbox strategies be limited to prevent uncontrolled strategy sprawl? How can a toolbox model be formally tested against alternative theories? The authors show how these challenges can be met by using Bayesian inference techniques. By means of parameter recovery simulations and the analysis of empirical data across a variety of domains (i.e., judgment and decision making, children's cognitive development, function learning, and perceptual categorization), the authors illustrate how Bayesian inference techniques allow toolbox models to be quantitatively specified, strategy sprawl to be contained, and toolbox models to be rigorously tested against competing theories. The authors demonstrate that their approach applies at the individual level but can also be generalized to the group level with hierarchical Bayesian procedures. The suggested Bayesian inference techniques represent a theoretical and methodological advancement for toolbox theories of cognition and behavior.

  11. Bayesian hierarchical model of ceftriaxone resistance proportions among Salmonella serotype Heidelberg infections.

    PubMed

    Gu, Weidong; Medalla, Felicita; Hoekstra, Robert M

    2018-02-01

    The National Antimicrobial Resistance Monitoring System (NARMS) at the Centers for Disease Control and Prevention tracks resistance among Salmonella infections. The annual number of Salmonella isolates of a particular serotype from states may be small, making direct estimation of resistance proportions unreliable. We developed a Bayesian hierarchical model to improve estimation by borrowing strength from relevant sampling units. We illustrate the models with different specifications of spatio-temporal interaction using 2004-2013 NARMS data for ceftriaxone-resistant Salmonella serotype Heidelberg. Our results show that Bayesian estimates of resistance proportions were smoother than observed values, and the difference between predicted and observed proportions was inversely related to the number of submitted isolates. The model with interaction allowed for tracking of annual changes in resistance proportions at the state level. We demonstrated that Bayesian hierarchical models provide a useful tool to examine spatio-temporal patterns of small sample size such as those found in NARMS. Published by Elsevier Ltd.

  12. Hierarchical Bayesian spatial models for multispecies conservation planning and monitoring.

    PubMed

    Carroll, Carlos; Johnson, Devin S; Dunk, Jeffrey R; Zielinski, William J

    2010-12-01

    Biologists who develop and apply habitat models are often familiar with the statistical challenges posed by their data's spatial structure but are unsure of whether the use of complex spatial models will increase the utility of model results in planning. We compared the relative performance of nonspatial and hierarchical Bayesian spatial models for three vertebrate and invertebrate taxa of conservation concern (Church's sideband snails [Monadenia churchi], red tree voles [Arborimus longicaudus], and Pacific fishers [Martes pennanti pacifica]) that provide examples of a range of distributional extents and dispersal abilities. We used presence-absence data derived from regional monitoring programs to develop models with both landscape and site-level environmental covariates. We used Markov chain Monte Carlo algorithms and a conditional autoregressive or intrinsic conditional autoregressive model framework to fit spatial models. The fit of Bayesian spatial models was between 35 and 55% better than the fit of nonspatial analogue models. Bayesian spatial models outperformed analogous models developed with maximum entropy (Maxent) methods. Although the best spatial and nonspatial models included similar environmental variables, spatial models provided estimates of residual spatial effects that suggested how ecological processes might structure distribution patterns. Spatial models built from presence-absence data improved fit most for localized endemic species with ranges constrained by poorly known biogeographic factors and for widely distributed species suspected to be strongly affected by unmeasured environmental variables or population processes. By treating spatial effects as a variable of interest rather than a nuisance, hierarchical Bayesian spatial models, especially when they are based on a common broad-scale spatial lattice (here the national Forest Inventory and Analysis grid of 24 km(2) hexagons), can increase the relevance of habitat models to multispecies

  13. Hierarchical Bayesian spatial models for multispecies conservation planning and monitoring

    Treesearch

    Carlos Carroll; Devin S. Johnson; Jeffrey R. Dunk; William J. Zielinski

    2010-01-01

    Biologists who develop and apply habitat models are often familiar with the statistical challenges posed by their data’s spatial structure but are unsure of whether the use of complex spatial models will increase the utility of model results in planning. We compared the relative performance of nonspatial and hierarchical Bayesian spatial models for three vertebrate and...

  14. HDDM: Hierarchical Bayesian estimation of the Drift-Diffusion Model in Python.

    PubMed

    Wiecki, Thomas V; Sofer, Imri; Frank, Michael J

    2013-01-01

    The diffusion model is a commonly used tool to infer latent psychological processes underlying decision-making, and to link them to neural mechanisms based on response times. Although efficient open source software has been made available to quantitatively fit the model to data, current estimation methods require an abundance of response time measurements to recover meaningful parameters, and only provide point estimates of each parameter. In contrast, hierarchical Bayesian parameter estimation methods are useful for enhancing statistical power, allowing for simultaneous estimation of individual subject parameters and the group distribution that they are drawn from, while also providing measures of uncertainty in these parameters in the posterior distribution. Here, we present a novel Python-based toolbox called HDDM (hierarchical drift diffusion model), which allows fast and flexible estimation of the the drift-diffusion model and the related linear ballistic accumulator model. HDDM requires fewer data per subject/condition than non-hierarchical methods, allows for full Bayesian data analysis, and can handle outliers in the data. Finally, HDDM supports the estimation of how trial-by-trial measurements (e.g., fMRI) influence decision-making parameters. This paper will first describe the theoretical background of the drift diffusion model and Bayesian inference. We then illustrate usage of the toolbox on a real-world data set from our lab. Finally, parameter recovery studies show that HDDM beats alternative fitting methods like the χ(2)-quantile method as well as maximum likelihood estimation. The software and documentation can be downloaded at: http://ski.clps.brown.edu/hddm_docs/

  15. Hierarchical Bayesian sparse image reconstruction with application to MRFM.

    PubMed

    Dobigeon, Nicolas; Hero, Alfred O; Tourneret, Jean-Yves

    2009-09-01

    This paper presents a hierarchical Bayesian model to reconstruct sparse images when the observations are obtained from linear transformations and corrupted by an additive white Gaussian noise. Our hierarchical Bayes model is well suited to such naturally sparse image applications as it seamlessly accounts for properties such as sparsity and positivity of the image via appropriate Bayes priors. We propose a prior that is based on a weighted mixture of a positive exponential distribution and a mass at zero. The prior has hyperparameters that are tuned automatically by marginalization over the hierarchical Bayesian model. To overcome the complexity of the posterior distribution, a Gibbs sampling strategy is proposed. The Gibbs samples can be used to estimate the image to be recovered, e.g., by maximizing the estimated posterior distribution. In our fully Bayesian approach, the posteriors of all the parameters are available. Thus, our algorithm provides more information than other previously proposed sparse reconstruction methods that only give a point estimate. The performance of the proposed hierarchical Bayesian sparse reconstruction method is illustrated on synthetic data and real data collected from a tobacco virus sample using a prototype MRFM instrument.

  16. Bayesian hierarchical model for large-scale covariance matrix estimation.

    PubMed

    Zhu, Dongxiao; Hero, Alfred O

    2007-12-01

    Many bioinformatics problems implicitly depend on estimating large-scale covariance matrix. The traditional approaches tend to give rise to high variance and low accuracy due to "overfitting." We cast the large-scale covariance matrix estimation problem into the Bayesian hierarchical model framework, and introduce dependency between covariance parameters. We demonstrate the advantages of our approaches over the traditional approaches using simulations and OMICS data analysis.

  17. Assimilating multi-source uncertainties of a parsimonious conceptual hydrological model using hierarchical Bayesian modeling

    Treesearch

    Wei Wu; James Clark; James Vose

    2010-01-01

    Hierarchical Bayesian (HB) modeling allows for multiple sources of uncertainty by factoring complex relationships into conditional distributions that can be used to draw inference and make predictions. We applied an HB model to estimate the parameters and state variables of a parsimonious hydrological model – GR4J – by coherently assimilating the uncertainties from the...

  18. Bayesian X-ray computed tomography using a three-level hierarchical prior model

    NASA Astrophysics Data System (ADS)

    Wang, Li; Mohammad-Djafari, Ali; Gac, Nicolas

    2017-06-01

    In recent decades X-ray Computed Tomography (CT) image reconstruction has been largely developed in both medical and industrial domain. In this paper, we propose using the Bayesian inference approach with a new hierarchical prior model. In the proposed model, a generalised Student-t distribution is used to enforce the Haar transformation of images to be sparse. Comparisons with some state of the art methods are presented. It is shown that by using the proposed model, the sparsity of sparse representation of images is enforced, so that edges of images are preserved. Simulation results are also provided to demonstrate the effectiveness of the new hierarchical model for reconstruction with fewer projections.

  19. Topics in Computational Bayesian Statistics With Applications to Hierarchical Models in Astronomy and Sociology

    NASA Astrophysics Data System (ADS)

    Sahai, Swupnil

    This thesis includes three parts. The overarching theme is how to analyze structured hierarchical data, with applications to astronomy and sociology. The first part discusses how expectation propagation can be used to parallelize the computation when fitting big hierarchical bayesian models. This methodology is then used to fit a novel, nonlinear mixture model to ultraviolet radiation from various regions of the observable universe. The second part discusses how the Stan probabilistic programming language can be used to numerically integrate terms in a hierarchical bayesian model. This technique is demonstrated on supernovae data to significantly speed up convergence to the posterior distribution compared to a previous study that used a Gibbs-type sampler. The third part builds a formal latent kernel representation for aggregate relational data as a way to more robustly estimate the mixing characteristics of agents in a network. In particular, the framework is applied to sociology surveys to estimate, as a function of ego age, the age and sex composition of the personal networks of individuals in the United States.

  20. Hierarchical Bayesian Model (HBM) - Derived Estimates of Air Quality for 2008: Annual Report

    EPA Science Inventory

    This report describes EPA’s Hierarchical Bayesian model generated (HBM) estimates of ozone (O3) and fine particulate matter (PM2.5, particles with aerodynamic diameter < 2.5 microns) concentrations throughout the continental United States during the 2007 ca...

  1. Hierarchical Bayesian Model (HBM) - Derived Estimates of Air Quality for 2007: Annual Report

    EPA Science Inventory

    This report describes EPA's Hierarchical Bayesian model generated (HBM) estimates of ozone (O3) and fine particulate matter (PM2.5 particles with aerodynamic diameter < 2.5 microns)concentrations throughout the continental United States during the 2007 calen...

  2. Hierarchical Bayesian Model (HBM)-Derived Estimates of Air Quality for 2004 - Annual Report

    EPA Science Inventory

    This report describes EPA's Hierarchical Bayesian model-generated (HBM) estimates of O3 and PM2.5 concentrations throughout the continental United States during the 2004 calendar year. HBM estimates provide the spatial and temporal variance of O3 ...

  3. Relating memory to functional performance in normal aging to dementia using hierarchical Bayesian cognitive processing models.

    PubMed

    Shankle, William R; Pooley, James P; Steyvers, Mark; Hara, Junko; Mangrola, Tushar; Reisberg, Barry; Lee, Michael D

    2013-01-01

    Determining how cognition affects functional abilities is important in Alzheimer disease and related disorders. A total of 280 patients (normal or Alzheimer disease and related disorders) received a total of 1514 assessments using the functional assessment staging test (FAST) procedure and the MCI Screen. A hierarchical Bayesian cognitive processing model was created by embedding a signal detection theory model of the MCI Screen-delayed recognition memory task into a hierarchical Bayesian framework. The signal detection theory model used latent parameters of discriminability (memory process) and response bias (executive function) to predict, simultaneously, recognition memory performance for each patient and each FAST severity group. The observed recognition memory data did not distinguish the 6 FAST severity stages, but the latent parameters completely separated them. The latent parameters were also used successfully to transform the ordinal FAST measure into a continuous measure reflecting the underlying continuum of functional severity. Hierarchical Bayesian cognitive processing models applied to recognition memory data from clinical practice settings accurately translated a latent measure of cognition into a continuous measure of functional severity for both individuals and FAST groups. Such a translation links 2 levels of brain information processing and may enable more accurate correlations with other levels, such as those characterized by biomarkers.

  4. Bayesian Hierarchical Model Characterization of Model Error in Ocean Data Assimilation and Forecasts

    DTIC Science & Technology

    2013-09-30

    wind ensemble with the increments in the surface momentum flux control vector in a four-dimensional variational (4dvar) assimilation system. The...stability  effects?   surface  stress   Surface   Momentum  Flux  Ensembles  from  Summaries  of  BHM  Winds  (Mediterranean...surface wind speed given ensemble winds from a Bayesian Hierarchical Model to provide surface momentum flux ensembles. 3 Figure 2: Domain of

  5. A Hierarchical Bayesian Model for Calibrating Estimates of Species Divergence Times

    PubMed Central

    Heath, Tracy A.

    2012-01-01

    In Bayesian divergence time estimation methods, incorporating calibrating information from the fossil record is commonly done by assigning prior densities to ancestral nodes in the tree. Calibration prior densities are typically parametric distributions offset by minimum age estimates provided by the fossil record. Specification of the parameters of calibration densities requires the user to quantify his or her prior knowledge of the age of the ancestral node relative to the age of its calibrating fossil. The values of these parameters can, potentially, result in biased estimates of node ages if they lead to overly informative prior distributions. Accordingly, determining parameter values that lead to adequate prior densities is not straightforward. In this study, I present a hierarchical Bayesian model for calibrating divergence time analyses with multiple fossil age constraints. This approach applies a Dirichlet process prior as a hyperprior on the parameters of calibration prior densities. Specifically, this model assumes that the rate parameters of exponential prior distributions on calibrated nodes are distributed according to a Dirichlet process, whereby the rate parameters are clustered into distinct parameter categories. Both simulated and biological data are analyzed to evaluate the performance of the Dirichlet process hyperprior. Compared with fixed exponential prior densities, the hierarchical Bayesian approach results in more accurate and precise estimates of internal node ages. When this hyperprior is applied using Markov chain Monte Carlo methods, the ages of calibrated nodes are sampled from mixtures of exponential distributions and uncertainty in the values of calibration density parameters is taken into account. PMID:22334343

  6. Bayesian hierarchical modeling for detecting safety signals in clinical trials.

    PubMed

    Xia, H Amy; Ma, Haijun; Carlin, Bradley P

    2011-09-01

    Detection of safety signals from clinical trial adverse event data is critical in drug development, but carries a challenging statistical multiplicity problem. Bayesian hierarchical mixture modeling is appealing for its ability to borrow strength across subgroups in the data, as well as moderate extreme findings most likely due merely to chance. We implement such a model for subject incidence (Berry and Berry, 2004 ) using a binomial likelihood, and extend it to subject-year adjusted incidence rate estimation under a Poisson likelihood. We use simulation to choose a signal detection threshold, and illustrate some effective graphics for displaying the flagged signals.

  7. Bayesian Hierarchical Model Characterization of Model Error in Ocean Data Assimilation and Forecasts

    DTIC Science & Technology

    2013-09-30

    proof-of-concept results comparing a BHM surface wind ensemble with the increments in the surface momentum flux control vector in a four-dimensional...Surface   Momentum  Flux  Ensembles  from  Summaries  of  BHM  Winds  (Mediterranean)   include  ocean  current  effect   Td...Bayesian Hierarchical Model to provide surface momentum flux ensembles. 3 Figure 2: Domain of interest : squares indicate spatial locations where

  8. Bayesian Hierarchical Random Intercept Model Based on Three Parameter Gamma Distribution

    NASA Astrophysics Data System (ADS)

    Wirawati, Ika; Iriawan, Nur; Irhamah

    2017-06-01

    Hierarchical data structures are common throughout many areas of research. Beforehand, the existence of this type of data was less noticed in the analysis. The appropriate statistical analysis to handle this type of data is the hierarchical linear model (HLM). This article will focus only on random intercept model (RIM), as a subclass of HLM. This model assumes that the intercept of models in the lowest level are varied among those models, and their slopes are fixed. The differences of intercepts were suspected affected by some variables in the upper level. These intercepts, therefore, are regressed against those upper level variables as predictors. The purpose of this paper would demonstrate a proven work of the proposed two level RIM of the modeling on per capita household expenditure in Maluku Utara, which has five characteristics in the first level and three characteristics of districts/cities in the second level. The per capita household expenditure data in the first level were captured by the three parameters Gamma distribution. The model, therefore, would be more complex due to interaction of many parameters for representing the hierarchical structure and distribution pattern of the data. To simplify the estimation processes of parameters, the computational Bayesian method couple with Markov Chain Monte Carlo (MCMC) algorithm and its Gibbs Sampling are employed.

  9. Evaluating scaling models in biology using hierarchical Bayesian approaches

    PubMed Central

    Price, Charles A; Ogle, Kiona; White, Ethan P; Weitz, Joshua S

    2009-01-01

    Theoretical models for allometric relationships between organismal form and function are typically tested by comparing a single predicted relationship with empirical data. Several prominent models, however, predict more than one allometric relationship, and comparisons among alternative models have not taken this into account. Here we evaluate several different scaling models of plant morphology within a hierarchical Bayesian framework that simultaneously fits multiple scaling relationships to three large allometric datasets. The scaling models include: inflexible universal models derived from biophysical assumptions (e.g. elastic similarity or fractal networks), a flexible variation of a fractal network model, and a highly flexible model constrained only by basic algebraic relationships. We demonstrate that variation in intraspecific allometric scaling exponents is inconsistent with the universal models, and that more flexible approaches that allow for biological variability at the species level outperform universal models, even when accounting for relative increases in model complexity. PMID:19453621

  10. A Bayesian Hierarchical Model for Glacial Dynamics Based on the Shallow Ice Approximation and its Evaluation Using Analytical Solutions

    NASA Astrophysics Data System (ADS)

    Gopalan, Giri; Hrafnkelsson, Birgir; Aðalgeirsdóttir, Guðfinna; Jarosch, Alexander H.; Pálsson, Finnur

    2018-03-01

    Bayesian hierarchical modeling can assist the study of glacial dynamics and ice flow properties. This approach will allow glaciologists to make fully probabilistic predictions for the thickness of a glacier at unobserved spatio-temporal coordinates, and it will also allow for the derivation of posterior probability distributions for key physical parameters such as ice viscosity and basal sliding. The goal of this paper is to develop a proof of concept for a Bayesian hierarchical model constructed, which uses exact analytical solutions for the shallow ice approximation (SIA) introduced by Bueler et al. (2005). A suite of test simulations utilizing these exact solutions suggests that this approach is able to adequately model numerical errors and produce useful physical parameter posterior distributions and predictions. A byproduct of the development of the Bayesian hierarchical model is the derivation of a novel finite difference method for solving the SIA partial differential equation (PDE). An additional novelty of this work is the correction of numerical errors induced through a numerical solution using a statistical model. This error correcting process models numerical errors that accumulate forward in time and spatial variation of numerical errors between the dome, interior, and margin of a glacier.

  11. Parameterization of aquatic ecosystem functioning and its natural variation: Hierarchical Bayesian modelling of plankton food web dynamics

    NASA Astrophysics Data System (ADS)

    Norros, Veera; Laine, Marko; Lignell, Risto; Thingstad, Frede

    2017-10-01

    Methods for extracting empirically and theoretically sound parameter values are urgently needed in aquatic ecosystem modelling to describe key flows and their variation in the system. Here, we compare three Bayesian formulations for mechanistic model parameterization that differ in their assumptions about the variation in parameter values between various datasets: 1) global analysis - no variation, 2) separate analysis - independent variation and 3) hierarchical analysis - variation arising from a shared distribution defined by hyperparameters. We tested these methods, using computer-generated and empirical data, coupled with simplified and reasonably realistic plankton food web models, respectively. While all methods were adequate, the simulated example demonstrated that a well-designed hierarchical analysis can result in the most accurate and precise parameter estimates and predictions, due to its ability to combine information across datasets. However, our results also highlighted sensitivity to hyperparameter prior distributions as an important caveat of hierarchical analysis. In the more complex empirical example, hierarchical analysis was able to combine precise identification of parameter values with reasonably good predictive performance, although the ranking of the methods was less straightforward. We conclude that hierarchical Bayesian analysis is a promising tool for identifying key ecosystem-functioning parameters and their variation from empirical datasets.

  12. A hierarchical Bayesian GEV model for improving local and regional flood quantile estimates

    NASA Astrophysics Data System (ADS)

    Lima, Carlos H. R.; Lall, Upmanu; Troy, Tara; Devineni, Naresh

    2016-10-01

    We estimate local and regional Generalized Extreme Value (GEV) distribution parameters for flood frequency analysis in a multilevel, hierarchical Bayesian framework, to explicitly model and reduce uncertainties. As prior information for the model, we assume that the GEV location and scale parameters for each site come from independent log-normal distributions, whose mean parameter scales with the drainage area. From empirical and theoretical arguments, the shape parameter for each site is shrunk towards a common mean. Non-informative prior distributions are assumed for the hyperparameters and the MCMC method is used to sample from the joint posterior distribution. The model is tested using annual maximum series from 20 streamflow gauges located in an 83,000 km2 flood prone basin in Southeast Brazil. The results show a significant reduction of uncertainty estimates of flood quantile estimates over the traditional GEV model, particularly for sites with shorter records. For return periods within the range of the data (around 50 years), the Bayesian credible intervals for the flood quantiles tend to be narrower than the classical confidence limits based on the delta method. As the return period increases beyond the range of the data, the confidence limits from the delta method become unreliable and the Bayesian credible intervals provide a way to estimate satisfactory confidence bands for the flood quantiles considering parameter uncertainties and regional information. In order to evaluate the applicability of the proposed hierarchical Bayesian model for regional flood frequency analysis, we estimate flood quantiles for three randomly chosen out-of-sample sites and compare with classical estimates using the index flood method. The posterior distributions of the scaling law coefficients are used to define the predictive distributions of the GEV location and scale parameters for the out-of-sample sites given only their drainage areas and the posterior distribution of the

  13. A Bayesian hierarchical model for mortality data from cluster-sampling household surveys in humanitarian crises.

    PubMed

    Heudtlass, Peter; Guha-Sapir, Debarati; Speybroeck, Niko

    2018-05-31

    The crude death rate (CDR) is one of the defining indicators of humanitarian emergencies. When data from vital registration systems are not available, it is common practice to estimate the CDR from household surveys with cluster-sampling design. However, sample sizes are often too small to compare mortality estimates to emergency thresholds, at least in a frequentist framework. Several authors have proposed Bayesian methods for health surveys in humanitarian crises. Here, we develop an approach specifically for mortality data and cluster-sampling surveys. We describe a Bayesian hierarchical Poisson-Gamma mixture model with generic (weakly informative) priors that could be used as default in absence of any specific prior knowledge, and compare Bayesian and frequentist CDR estimates using five different mortality datasets. We provide an interpretation of the Bayesian estimates in the context of an emergency threshold and demonstrate how to interpret parameters at the cluster level and ways in which informative priors can be introduced. With the same set of weakly informative priors, Bayesian CDR estimates are equivalent to frequentist estimates, for all practical purposes. The probability that the CDR surpasses the emergency threshold can be derived directly from the posterior of the mean of the mixing distribution. All observation in the datasets contribute to the estimation of cluster-level estimates, through the hierarchical structure of the model. In a context of sparse data, Bayesian mortality assessments have advantages over frequentist ones already when using only weakly informative priors. More informative priors offer a formal and transparent way of combining new data with existing data and expert knowledge and can help to improve decision-making in humanitarian crises by complementing frequentist estimates.

  14. An approach based on Hierarchical Bayesian Graphical Models for measurement interpretation under uncertainty

    NASA Astrophysics Data System (ADS)

    Skataric, Maja; Bose, Sandip; Zeroug, Smaine; Tilke, Peter

    2017-02-01

    It is not uncommon in the field of non-destructive evaluation that multiple measurements encompassing a variety of modalities are available for analysis and interpretation for determining the underlying states of nature of the materials or parts being tested. Despite and sometimes due to the richness of data, significant challenges arise in the interpretation manifested as ambiguities and inconsistencies due to various uncertain factors in the physical properties (inputs), environment, measurement device properties, human errors, and the measurement data (outputs). Most of these uncertainties cannot be described by any rigorous mathematical means, and modeling of all possibilities is usually infeasible for many real time applications. In this work, we will discuss an approach based on Hierarchical Bayesian Graphical Models (HBGM) for the improved interpretation of complex (multi-dimensional) problems with parametric uncertainties that lack usable physical models. In this setting, the input space of the physical properties is specified through prior distributions based on domain knowledge and expertise, which are represented as Gaussian mixtures to model the various possible scenarios of interest for non-destructive testing applications. Forward models are then used offline to generate the expected distribution of the proposed measurements which are used to train a hierarchical Bayesian network. In Bayesian analysis, all model parameters are treated as random variables, and inference of the parameters is made on the basis of posterior distribution given the observed data. Learned parameters of the posterior distribution obtained after the training can therefore be used to build an efficient classifier for differentiating new observed data in real time on the basis of pre-trained models. We will illustrate the implementation of the HBGM approach to ultrasonic measurements used for cement evaluation of cased wells in the oil industry.

  15. Bayesian multivariate hierarchical transformation models for ROC analysis.

    PubMed

    O'Malley, A James; Zou, Kelly H

    2006-02-15

    A Bayesian multivariate hierarchical transformation model (BMHTM) is developed for receiver operating characteristic (ROC) curve analysis based on clustered continuous diagnostic outcome data with covariates. Two special features of this model are that it incorporates non-linear monotone transformations of the outcomes and that multiple correlated outcomes may be analysed. The mean, variance, and transformation components are all modelled parametrically, enabling a wide range of inferences. The general framework is illustrated by focusing on two problems: (1) analysis of the diagnostic accuracy of a covariate-dependent univariate test outcome requiring a Box-Cox transformation within each cluster to map the test outcomes to a common family of distributions; (2) development of an optimal composite diagnostic test using multivariate clustered outcome data. In the second problem, the composite test is estimated using discriminant function analysis and compared to the test derived from logistic regression analysis where the gold standard is a binary outcome. The proposed methodology is illustrated on prostate cancer biopsy data from a multi-centre clinical trial.

  16. Bayesian multivariate hierarchical transformation models for ROC analysis

    PubMed Central

    O'Malley, A. James; Zou, Kelly H.

    2006-01-01

    SUMMARY A Bayesian multivariate hierarchical transformation model (BMHTM) is developed for receiver operating characteristic (ROC) curve analysis based on clustered continuous diagnostic outcome data with covariates. Two special features of this model are that it incorporates non-linear monotone transformations of the outcomes and that multiple correlated outcomes may be analysed. The mean, variance, and transformation components are all modelled parametrically, enabling a wide range of inferences. The general framework is illustrated by focusing on two problems: (1) analysis of the diagnostic accuracy of a covariate-dependent univariate test outcome requiring a Box–Cox transformation within each cluster to map the test outcomes to a common family of distributions; (2) development of an optimal composite diagnostic test using multivariate clustered outcome data. In the second problem, the composite test is estimated using discriminant function analysis and compared to the test derived from logistic regression analysis where the gold standard is a binary outcome. The proposed methodology is illustrated on prostate cancer biopsy data from a multi-centre clinical trial. PMID:16217836

  17. Prion Amplification and Hierarchical Bayesian Modeling Refine Detection of Prion Infection

    NASA Astrophysics Data System (ADS)

    Wyckoff, A. Christy; Galloway, Nathan; Meyerett-Reid, Crystal; Powers, Jenny; Spraker, Terry; Monello, Ryan J.; Pulford, Bruce; Wild, Margaret; Antolin, Michael; Vercauteren, Kurt; Zabel, Mark

    2015-02-01

    Prions are unique infectious agents that replicate without a genome and cause neurodegenerative diseases that include chronic wasting disease (CWD) of cervids. Immunohistochemistry (IHC) is currently considered the gold standard for diagnosis of a prion infection but may be insensitive to early or sub-clinical CWD that are important to understanding CWD transmission and ecology. We assessed the potential of serial protein misfolding cyclic amplification (sPMCA) to improve detection of CWD prior to the onset of clinical signs. We analyzed tissue samples from free-ranging Rocky Mountain elk (Cervus elaphus nelsoni) and used hierarchical Bayesian analysis to estimate the specificity and sensitivity of IHC and sPMCA conditional on simultaneously estimated disease states. Sensitivity estimates were higher for sPMCA (99.51%, credible interval (CI) 97.15-100%) than IHC of obex (brain stem, 76.56%, CI 57.00-91.46%) or retropharyngeal lymph node (90.06%, CI 74.13-98.70%) tissues, or both (98.99%, CI 90.01-100%). Our hierarchical Bayesian model predicts the prevalence of prion infection in this elk population to be 18.90% (CI 15.50-32.72%), compared to previous estimates of 12.90%. Our data reveal a previously unidentified sub-clinical prion-positive portion of the elk population that could represent silent carriers capable of significantly impacting CWD ecology.

  18. Prion amplification and hierarchical Bayesian modeling refine detection of prion infection.

    PubMed

    Wyckoff, A Christy; Galloway, Nathan; Meyerett-Reid, Crystal; Powers, Jenny; Spraker, Terry; Monello, Ryan J; Pulford, Bruce; Wild, Margaret; Antolin, Michael; VerCauteren, Kurt; Zabel, Mark

    2015-02-10

    Prions are unique infectious agents that replicate without a genome and cause neurodegenerative diseases that include chronic wasting disease (CWD) of cervids. Immunohistochemistry (IHC) is currently considered the gold standard for diagnosis of a prion infection but may be insensitive to early or sub-clinical CWD that are important to understanding CWD transmission and ecology. We assessed the potential of serial protein misfolding cyclic amplification (sPMCA) to improve detection of CWD prior to the onset of clinical signs. We analyzed tissue samples from free-ranging Rocky Mountain elk (Cervus elaphus nelsoni) and used hierarchical Bayesian analysis to estimate the specificity and sensitivity of IHC and sPMCA conditional on simultaneously estimated disease states. Sensitivity estimates were higher for sPMCA (99.51%, credible interval (CI) 97.15-100%) than IHC of obex (brain stem, 76.56%, CI 57.00-91.46%) or retropharyngeal lymph node (90.06%, CI 74.13-98.70%) tissues, or both (98.99%, CI 90.01-100%). Our hierarchical Bayesian model predicts the prevalence of prion infection in this elk population to be 18.90% (CI 15.50-32.72%), compared to previous estimates of 12.90%. Our data reveal a previously unidentified sub-clinical prion-positive portion of the elk population that could represent silent carriers capable of significantly impacting CWD ecology.

  19. Risk Assessment for Mobile Systems Through a Multilayered Hierarchical Bayesian Network.

    PubMed

    Li, Shancang; Tryfonas, Theo; Russell, Gordon; Andriotis, Panagiotis

    2016-08-01

    Mobile systems are facing a number of application vulnerabilities that can be combined together and utilized to penetrate systems with devastating impact. When assessing the overall security of a mobile system, it is important to assess the security risks posed by each mobile applications (apps), thus gaining a stronger understanding of any vulnerabilities present. This paper aims at developing a three-layer framework that assesses the potential risks which apps introduce within the Android mobile systems. A Bayesian risk graphical model is proposed to evaluate risk propagation in a layered risk architecture. By integrating static analysis, dynamic analysis, and behavior analysis in a hierarchical framework, the risks and their propagation through each layer are well modeled by the Bayesian risk graph, which can quantitatively analyze risks faced to both apps and mobile systems. The proposed hierarchical Bayesian risk graph model offers a novel way to investigate the security risks in mobile environment and enables users and administrators to evaluate the potential risks. This strategy allows to strengthen both app security as well as the security of the entire system.

  20. A Bayesian hierarchical model for discrete choice data in health care.

    PubMed

    Antonio, Anna Liza M; Weiss, Robert E; Saigal, Christopher S; Dahan, Ely; Crespi, Catherine M

    2017-01-01

    In discrete choice experiments, patients are presented with sets of health states described by various attributes and asked to make choices from among them. Discrete choice experiments allow health care researchers to study the preferences of individual patients by eliciting trade-offs between different aspects of health-related quality of life. However, many discrete choice experiments yield data with incomplete ranking information and sparsity due to the limited number of choice sets presented to each patient, making it challenging to estimate patient preferences. Moreover, methods to identify outliers in discrete choice data are lacking. We develop a Bayesian hierarchical random effects rank-ordered multinomial logit model for discrete choice data. Missing ranks are accounted for by marginalizing over all possible permutations of unranked alternatives to estimate individual patient preferences, which are modeled as a function of patient covariates. We provide a Bayesian version of relative attribute importance, and adapt the use of the conditional predictive ordinate to identify outlying choice sets and outlying individuals with unusual preferences compared to the population. The model is applied to data from a study using a discrete choice experiment to estimate individual patient preferences for health states related to prostate cancer treatment.

  1. Bayesian models: A statistical primer for ecologists

    USGS Publications Warehouse

    Hobbs, N. Thompson; Hooten, Mevin B.

    2015-01-01

    Bayesian modeling has become an indispensable tool for ecological research because it is uniquely suited to deal with complexity in a statistically coherent way. This textbook provides a comprehensive and accessible introduction to the latest Bayesian methods—in language ecologists can understand. Unlike other books on the subject, this one emphasizes the principles behind the computations, giving ecologists a big-picture understanding of how to implement this powerful statistical approach.Bayesian Models is an essential primer for non-statisticians. It begins with a definition of probability and develops a step-by-step sequence of connected ideas, including basic distribution theory, network diagrams, hierarchical models, Markov chain Monte Carlo, and inference from single and multiple models. This unique book places less emphasis on computer coding, favoring instead a concise presentation of the mathematical statistics needed to understand how and why Bayesian analysis works. It also explains how to write out properly formulated hierarchical Bayesian models and use them in computing, research papers, and proposals.This primer enables ecologists to understand the statistical principles behind Bayesian modeling and apply them to research, teaching, policy, and management.Presents the mathematical and statistical foundations of Bayesian modeling in language accessible to non-statisticiansCovers basic distribution theory, network diagrams, hierarchical models, Markov chain Monte Carlo, and moreDeemphasizes computer coding in favor of basic principlesExplains how to write out properly factored statistical expressions representing Bayesian models

  2. A Bayesian hierarchical approach to comparative audit for carotid surgery.

    PubMed

    Kuhan, G; Marshall, E C; Abidia, A F; Chetter, I C; McCollum, P T

    2002-12-01

    the aim of this study was to illustrate how a Bayesian hierarchical modelling approach can aid the reliable comparison of outcome rates between surgeons. retrospective analysis of prospective and retrospective data. binary outcome data (death/stroke within 30 days), together with information on 15 possible risk factors specific for CEA were available on 836 CEAs performed by four vascular surgeons from 1992-99. The median patient age was 68 (range 38-86) years and 60% were men. the model was developed using the WinBUGS software. After adjusting for patient-level risk factors, a cross-validatory approach was adopted to identify "divergent" performance. A ranking exercise was also carried out. the overall observed 30-day stroke/death rate was 3.9% (33/836). The model found diabetes, stroke and heart disease to be significant risk factors. There was no significant difference between the predicted and observed outcome rates for any surgeon (Bayesian p -value>0.05). Each surgeon had a median rank of 3 with associated 95% CI 1.0-5.0, despite the variability of observed stroke/death rate from 2.9-4.4%. After risk adjustment, there was very little residual between-surgeon variability in outcome rate. Bayesian hierarchical models can help to accurately quantify the uncertainty associated with surgeons' performance and rank.

  3. A Bayesian Hierarchical Modeling Scheme for Estimating Erosion Rates Under Current Climate Conditions

    NASA Astrophysics Data System (ADS)

    Lowman, L.; Barros, A. P.

    2014-12-01

    Computational modeling of surface erosion processes is inherently difficult because of the four-dimensional nature of the problem and the multiple temporal and spatial scales that govern individual mechanisms. Landscapes are modified via surface and fluvial erosion and exhumation, each of which takes place over a range of time scales. Traditional field measurements of erosion/exhumation rates are scale dependent, often valid for a single point-wise location or averaging over large aerial extents and periods with intense and mild erosion. We present a method of remotely estimating erosion rates using a Bayesian hierarchical model based upon the stream power erosion law (SPEL). A Bayesian approach allows for estimating erosion rates using the deterministic relationship given by the SPEL and data on channel slopes and precipitation at the basin and sub-basin scale. The spatial scale associated with this framework is the elevation class, where each class is characterized by distinct morphologic behavior observed through different modes in the distribution of basin outlet elevations. Interestingly, the distributions of first-order outlets are similar in shape and extent to the distribution of precipitation events (i.e. individual storms) over a 14-year period between 1998-2011. We demonstrate an application of the Bayesian hierarchical modeling framework for five basins and one intermontane basin located in the central Andes between 5S and 20S. Using remotely sensed data of current annual precipitation rates from the Tropical Rainfall Measuring Mission (TRMM) and topography from a high resolution (3 arc-seconds) digital elevation map (DEM), our erosion rate estimates are consistent with decadal-scale estimates based on landslide mapping and sediment flux observations and 1-2 orders of magnitude larger than most millennial and million year timescale estimates from thermochronology and cosmogenic nuclides.

  4. Bayesian Variable Selection for Hierarchical Gene-Environment and Gene-Gene Interactions

    PubMed Central

    Liu, Changlu; Ma, Jianzhong; Amos, Christopher I.

    2014-01-01

    We propose a Bayesian hierarchical mixture model framework that allows us to investigate the genetic and environmental effects, gene by gene interactions and gene by environment interactions in the same model. Our approach incorporates the natural hierarchical structure between the main effects and interaction effects into a mixture model, such that our methods tend to remove the irrelevant interaction effects more effectively, resulting in more robust and parsimonious models. We consider both strong and weak hierarchical models. For a strong hierarchical model, both of the main effects between interacting factors must be present for the interactions to be considered in the model development, while for a weak hierarchical model, only one of the two main effects is required to be present for the interaction to be evaluated. Our simulation results show that the proposed strong and weak hierarchical mixture models work well in controlling false positive rates and provide a powerful approach for identifying the predisposing effects and interactions in gene-environment interaction studies, in comparison with the naive model that does not impose this hierarchical constraint in most of the scenarios simulated. We illustrated our approach using data for lung cancer and cutaneous melanoma. PMID:25154630

  5. Topics in Bayesian Hierarchical Modeling and its Monte Carlo Computations

    NASA Astrophysics Data System (ADS)

    Tak, Hyung Suk

    The first chapter addresses a Beta-Binomial-Logit model that is a Beta-Binomial conjugate hierarchical model with covariate information incorporated via a logistic regression. Various researchers in the literature have unknowingly used improper posterior distributions or have given incorrect statements about posterior propriety because checking posterior propriety can be challenging due to the complicated functional form of a Beta-Binomial-Logit model. We derive data-dependent necessary and sufficient conditions for posterior propriety within a class of hyper-prior distributions that encompass those used in previous studies. Frequency coverage properties of several hyper-prior distributions are also investigated to see when and whether Bayesian interval estimates of random effects meet their nominal confidence levels. The second chapter deals with a time delay estimation problem in astrophysics. When the gravitational field of an intervening galaxy between a quasar and the Earth is strong enough to split light into two or more images, the time delay is defined as the difference between their travel times. The time delay can be used to constrain cosmological parameters and can be inferred from the time series of brightness data of each image. To estimate the time delay, we construct a Gaussian hierarchical model based on a state-space representation for irregularly observed time series generated by a latent continuous-time Ornstein-Uhlenbeck process. Our Bayesian approach jointly infers model parameters via a Gibbs sampler. We also introduce a profile likelihood of the time delay as an approximation of its marginal posterior distribution. The last chapter specifies a repelling-attracting Metropolis algorithm, a new Markov chain Monte Carlo method to explore multi-modal distributions in a simple and fast manner. This algorithm is essentially a Metropolis-Hastings algorithm with a proposal that consists of a downhill move in density that aims to make local modes

  6. When mechanism matters: Bayesian forecasting using models of ecological diffusion

    USGS Publications Warehouse

    Hefley, Trevor J.; Hooten, Mevin B.; Russell, Robin E.; Walsh, Daniel P.; Powell, James A.

    2017-01-01

    Ecological diffusion is a theory that can be used to understand and forecast spatio-temporal processes such as dispersal, invasion, and the spread of disease. Hierarchical Bayesian modelling provides a framework to make statistical inference and probabilistic forecasts, using mechanistic ecological models. To illustrate, we show how hierarchical Bayesian models of ecological diffusion can be implemented for large data sets that are distributed densely across space and time. The hierarchical Bayesian approach is used to understand and forecast the growth and geographic spread in the prevalence of chronic wasting disease in white-tailed deer (Odocoileus virginianus). We compare statistical inference and forecasts from our hierarchical Bayesian model to phenomenological regression-based methods that are commonly used to analyse spatial occurrence data. The mechanistic statistical model based on ecological diffusion led to important ecological insights, obviated a commonly ignored type of collinearity, and was the most accurate method for forecasting.

  7. DM-BLD: differential methylation detection using a hierarchical Bayesian model exploiting local dependency.

    PubMed

    Wang, Xiao; Gu, Jinghua; Hilakivi-Clarke, Leena; Clarke, Robert; Xuan, Jianhua

    2017-01-15

    The advent of high-throughput DNA methylation profiling techniques has enabled the possibility of accurate identification of differentially methylated genes for cancer research. The large number of measured loci facilitates whole genome methylation study, yet posing great challenges for differential methylation detection due to the high variability in tumor samples. We have developed a novel probabilistic approach, D: ifferential M: ethylation detection using a hierarchical B: ayesian model exploiting L: ocal D: ependency (DM-BLD), to detect differentially methylated genes based on a Bayesian framework. The DM-BLD approach features a joint model to capture both the local dependency of measured loci and the dependency of methylation change in samples. Specifically, the local dependency is modeled by Leroux conditional autoregressive structure; the dependency of methylation changes is modeled by a discrete Markov random field. A hierarchical Bayesian model is developed to fully take into account the local dependency for differential analysis, in which differential states are embedded as hidden variables. Simulation studies demonstrate that DM-BLD outperforms existing methods for differential methylation detection, particularly when the methylation change is moderate and the variability of methylation in samples is high. DM-BLD has been applied to breast cancer data to identify important methylated genes (such as polycomb target genes and genes involved in transcription factor activity) associated with breast cancer recurrence. A Matlab package of DM-BLD is available at http://www.cbil.ece.vt.edu/software.htm CONTACT: Xuan@vt.eduSupplementary information: Supplementary data are available at Bioinformatics online. © The Author 2016. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

  8. Relating Memory To Functional Performance In Normal Aging to Dementia Using Hierarchical Bayesian Cognitive Processing Models

    PubMed Central

    Shankle, William R.; Pooley, James P.; Steyvers, Mark; Hara, Junko; Mangrola, Tushar; Reisberg, Barry; Lee, Michael D.

    2012-01-01

    Determining how cognition affects functional abilities is important in Alzheimer’s disease and related disorders (ADRD). 280 patients (normal or ADRD) received a total of 1,514 assessments using the Functional Assessment Staging Test (FAST) procedure and the MCI Screen (MCIS). A hierarchical Bayesian cognitive processing (HBCP) model was created by embedding a signal detection theory (SDT) model of the MCIS delayed recognition memory task into a hierarchical Bayesian framework. The SDT model used latent parameters of discriminability (memory process) and response bias (executive function) to predict, simultaneously, recognition memory performance for each patient and each FAST severity group. The observed recognition memory data did not distinguish the six FAST severity stages, but the latent parameters completely separated them. The latent parameters were also used successfully to transform the ordinal FAST measure into a continuous measure reflecting the underlying continuum of functional severity. HBCP models applied to recognition memory data from clinical practice settings accurately translated a latent measure of cognition to a continuous measure of functional severity for both individuals and FAST groups. Such a translation links two levels of brain information processing, and may enable more accurate correlations with other levels, such as those characterized by biomarkers. PMID:22407225

  9. Bayesian Hierarchical Random Effects Models in Forensic Science.

    PubMed

    Aitken, Colin G G

    2018-01-01

    Statistical modeling of the evaluation of evidence with the use of the likelihood ratio has a long history. It dates from the Dreyfus case at the end of the nineteenth century through the work at Bletchley Park in the Second World War to the present day. The development received a significant boost in 1977 with a seminal work by Dennis Lindley which introduced a Bayesian hierarchical random effects model for the evaluation of evidence with an example of refractive index measurements on fragments of glass. Many models have been developed since then. The methods have now been sufficiently well-developed and have become so widespread that it is timely to try and provide a software package to assist in their implementation. With that in mind, a project (SAILR: Software for the Analysis and Implementation of Likelihood Ratios) was funded by the European Network of Forensic Science Institutes through their Monopoly programme to develop a software package for use by forensic scientists world-wide that would assist in the statistical analysis and implementation of the approach based on likelihood ratios. It is the purpose of this document to provide a short review of a small part of this history. The review also provides a background, or landscape, for the development of some of the models within the SAILR package and references to SAILR as made as appropriate.

  10. Hierarchical Bayesian spatial models for alcohol availability, drug "hot spots" and violent crime.

    PubMed

    Zhu, Li; Gorman, Dennis M; Horel, Scott

    2006-12-07

    Ecologic studies have shown a relationship between alcohol outlet densities, illicit drug use and violence. The present study examined this relationship in the City of Houston, Texas, using a sample of 439 census tracts. Neighborhood sociostructural covariates, alcohol outlet density, drug crime density and violent crime data were collected for the year 2000, and analyzed using hierarchical Bayesian models. Model selection was accomplished by applying the Deviance Information Criterion. The counts of violent crime in each census tract were modelled as having a conditional Poisson distribution. Four neighbourhood explanatory variables were identified using principal component analysis. The best fitted model was selected as the one considering both unstructured and spatial dependence random effects. The results showed that drug-law violation explained a greater amount of variance in violent crime rates than alcohol outlet densities. The relative risk for drug-law violation was 2.49 and that for alcohol outlet density was 1.16. Of the neighbourhood sociostructural covariates, males of age 15 to 24 showed an effect on violence, with a 16% decrease in relative risk for each increase the size of its standard deviation. Both unstructured heterogeneity random effect and spatial dependence need to be included in the model. The analysis presented suggests that activity around illicit drug markets is more strongly associated with violent crime than is alcohol outlet density. Unique among the ecological studies in this field, the present study not only shows the direction and magnitude of impact of neighbourhood sociostructural covariates as well as alcohol and illicit drug activities in a neighbourhood, it also reveals the importance of applying hierarchical Bayesian models in this research field as both spatial dependence and heterogeneity random effects need to be considered simultaneously.

  11. An economic growth model based on financial credits distribution to the government economy priority sectors of each regency in Indonesia using hierarchical Bayesian method

    NASA Astrophysics Data System (ADS)

    Yasmirullah, Septia Devi Prihastuti; Iriawan, Nur; Sipayung, Feronika Rosalinda

    2017-11-01

    The success of regional economic establishment could be measured by economic growth. Since the Act No. 32 of 2004 has been implemented, unbalance economic among the regency in Indonesia is increasing. This condition is contrary different with the government goal to build society welfare through the economic activity development in each region. This research aims to examine economic growth through the distribution of bank credits to each Indonesia's regency. The data analyzed in this research is hierarchically structured data which follow normal distribution in first level. Two modeling approaches are employed in this research, a global-one level Bayesian approach and two-level hierarchical Bayesian approach. The result shows that hierarchical Bayesian has succeeded to demonstrate a better estimation than a global-one level Bayesian. It proves that the different economic growth in each province is significantly influenced by the variations of micro level characteristics in each province. These variations are significantly affected by cities and province characteristics in second level.

  12. Approximate Bayesian Computation by Subset Simulation using hierarchical state-space models

    NASA Astrophysics Data System (ADS)

    Vakilzadeh, Majid K.; Huang, Yong; Beck, James L.; Abrahamsson, Thomas

    2017-02-01

    A new multi-level Markov Chain Monte Carlo algorithm for Approximate Bayesian Computation, ABC-SubSim, has recently appeared that exploits the Subset Simulation method for efficient rare-event simulation. ABC-SubSim adaptively creates a nested decreasing sequence of data-approximating regions in the output space that correspond to increasingly closer approximations of the observed output vector in this output space. At each level, multiple samples of the model parameter vector are generated by a component-wise Metropolis algorithm so that the predicted output corresponding to each parameter value falls in the current data-approximating region. Theoretically, if continued to the limit, the sequence of data-approximating regions would converge on to the observed output vector and the approximate posterior distributions, which are conditional on the data-approximation region, would become exact, but this is not practically feasible. In this paper we study the performance of the ABC-SubSim algorithm for Bayesian updating of the parameters of dynamical systems using a general hierarchical state-space model. We note that the ABC methodology gives an approximate posterior distribution that actually corresponds to an exact posterior where a uniformly distributed combined measurement and modeling error is added. We also note that ABC algorithms have a problem with learning the uncertain error variances in a stochastic state-space model and so we treat them as nuisance parameters and analytically integrate them out of the posterior distribution. In addition, the statistical efficiency of the original ABC-SubSim algorithm is improved by developing a novel strategy to regulate the proposal variance for the component-wise Metropolis algorithm at each level. We demonstrate that Self-regulated ABC-SubSim is well suited for Bayesian system identification by first applying it successfully to model updating of a two degree-of-freedom linear structure for three cases: globally

  13. Sparse Event Modeling with Hierarchical Bayesian Kernel Methods

    DTIC Science & Technology

    2016-01-05

    SECURITY CLASSIFICATION OF: The research objective of this proposal was to develop a predictive Bayesian kernel approach to model count data based on...several predictive variables. Such an approach, which we refer to as the Poisson Bayesian kernel model , is able to model the rate of occurrence of...which adds specificity to the model and can make nonlinear data more manageable. Early results show that the 1. REPORT DATE (DD-MM-YYYY) 4. TITLE

  14. A spectral-spatial-dynamic hierarchical Bayesian (SSD-HB) model for estimating soybean yield

    NASA Astrophysics Data System (ADS)

    Kazama, Yoriko; Kujirai, Toshihiro

    2014-10-01

    A method called a "spectral-spatial-dynamic hierarchical-Bayesian (SSD-HB) model," which can deal with many parameters (such as spectral and weather information all together) by reducing the occurrence of multicollinearity, is proposed. Experiments conducted on soybean yields in Brazil fields with a RapidEye satellite image indicate that the proposed SSD-HB model can predict soybean yield with a higher degree of accuracy than other estimation methods commonly used in remote-sensing applications. In the case of the SSD-HB model, the mean absolute error between estimated yield of the target area and actual yield is 0.28 t/ha, compared to 0.34 t/ha when conventional PLS regression was applied, showing the potential effectiveness of the proposed model.

  15. Bayesian Mass Estimates of the Milky Way: Including Measurement Uncertainties with Hierarchical Bayes

    NASA Astrophysics Data System (ADS)

    Eadie, Gwendolyn M.; Springford, Aaron; Harris, William E.

    2017-02-01

    We present a hierarchical Bayesian method for estimating the total mass and mass profile of the Milky Way Galaxy. The new hierarchical Bayesian approach further improves the framework presented by Eadie et al. and Eadie and Harris and builds upon the preliminary reports by Eadie et al. The method uses a distribution function f({ E },L) to model the Galaxy and kinematic data from satellite objects, such as globular clusters (GCs), to trace the Galaxy’s gravitational potential. A major advantage of the method is that it not only includes complete and incomplete data simultaneously in the analysis, but also incorporates measurement uncertainties in a coherent and meaningful way. We first test the hierarchical Bayesian framework, which includes measurement uncertainties, using the same data and power-law model assumed in Eadie and Harris and find the results are similar but more strongly constrained. Next, we take advantage of the new statistical framework and incorporate all possible GC data, finding a cumulative mass profile with Bayesian credible regions. This profile implies a mass within 125 kpc of 4.8× {10}11{M}⊙ with a 95% Bayesian credible region of (4.0{--}5.8)× {10}11{M}⊙ . Our results also provide estimates of the true specific energies of all the GCs. By comparing these estimated energies to the measured energies of GCs with complete velocity measurements, we observe that (the few) remote tracers with complete measurements may play a large role in determining a total mass estimate of the Galaxy. Thus, our study stresses the need for more remote tracers with complete velocity measurements.

  16. Bayesian Hierarchical Modeling for Big Data Fusion in Soil Hydrology

    NASA Astrophysics Data System (ADS)

    Mohanty, B.; Kathuria, D.; Katzfuss, M.

    2016-12-01

    Soil moisture datasets from remote sensing (RS) platforms (such as SMOS and SMAP) and reanalysis products from land surface models are typically available on a coarse spatial granularity of several square km. Ground based sensors on the other hand provide observations on a finer spatial scale (meter scale or less) but are sparsely available. Soil moisture is affected by high variability due to complex interactions between geologic, topographic, vegetation and atmospheric variables. Hydrologic processes usually occur at a scale of 1 km or less and therefore spatially ubiquitous and temporally periodic soil moisture products at this scale are required to aid local decision makers in agriculture, weather prediction and reservoir operations. Past literature has largely focused on downscaling RS soil moisture for a small extent of a field or a watershed and hence the applicability of such products has been limited. The present study employs a spatial Bayesian Hierarchical Model (BHM) to derive soil moisture products at a spatial scale of 1 km for the state of Oklahoma by fusing point scale Mesonet data and coarse scale RS data for soil moisture and its auxiliary covariates such as precipitation, topography, soil texture and vegetation. It is seen that the BHM model handles change of support problems easily while performing accurate uncertainty quantification arising from measurement errors and imperfect retrieval algorithms. The computational challenge arising due to the large number of measurements is tackled by utilizing basis function approaches and likelihood approximations. The BHM model can be considered as a complex Bayesian extension of traditional geostatistical prediction methods (such as Kriging) for large datasets in the presence of uncertainties.

  17. A Bayesian hierarchical model for accident and injury surveillance.

    PubMed

    MacNab, Ying C

    2003-01-01

    This article presents a recent study which applies Bayesian hierarchical methodology to model and analyse accident and injury surveillance data. A hierarchical Poisson random effects spatio-temporal model is introduced and an analysis of inter-regional variations and regional trends in hospitalisations due to motor vehicle accident injuries to boys aged 0-24 in the province of British Columbia, Canada, is presented. The objective of this article is to illustrate how the modelling technique can be implemented as part of an accident and injury surveillance and prevention system where transportation and/or health authorities may routinely examine accidents, injuries, and hospitalisations to target high-risk regions for prevention programs, to evaluate prevention strategies, and to assist in health planning and resource allocation. The innovation of the methodology is its ability to uncover and highlight important underlying structure of the data. Between 1987 and 1996, British Columbia hospital separation registry registered 10,599 motor vehicle traffic injury related hospitalisations among boys aged 0-24 who resided in British Columbia, of which majority (89%) of the injuries occurred to boys aged 15-24. The injuries were aggregated by three age groups (0-4, 5-14, and 15-24), 20 health regions (based of place-of-residence), and 10 calendar years (1987 to 1996) and the corresponding mid-year population estimates were used as 'at risk' population. An empirical Bayes inference technique using penalised quasi-likelihood estimation was implemented to model both rates and counts, with spline smoothing accommodating non-linear temporal effects. The results show that (a) crude rates and ratios at health region level are unstable, (b) the models with spline smoothing enable us to explore possible shapes of injury trends at both the provincial level and the regional level, and (c) the fitted models provide a wealth of information about the patterns (both over space and time

  18. Rigorous Approach in Investigation of Seismic Structure and Source Characteristicsin Northeast Asia: Hierarchical and Trans-dimensional Bayesian Inversion

    NASA Astrophysics Data System (ADS)

    Mustac, M.; Kim, S.; Tkalcic, H.; Rhie, J.; Chen, Y.; Ford, S. R.; Sebastian, N.

    2015-12-01

    Conventional approaches to inverse problems suffer from non-linearity and non-uniqueness in estimations of seismic structures and source properties. Estimated results and associated uncertainties are often biased by applied regularizations and additional constraints, which are commonly introduced to solve such problems. Bayesian methods, however, provide statistically meaningful estimations of models and their uncertainties constrained by data information. In addition, hierarchical and trans-dimensional (trans-D) techniques are inherently implemented in the Bayesian framework to account for involved error statistics and model parameterizations, and, in turn, allow more rigorous estimations of the same. Here, we apply Bayesian methods throughout the entire inference process to estimate seismic structures and source properties in Northeast Asia including east China, the Korean peninsula, and the Japanese islands. Ambient noise analysis is first performed to obtain a base three-dimensional (3-D) heterogeneity model using continuous broadband waveforms from more than 300 stations. As for the tomography of surface wave group and phase velocities in the 5-70 s band, we adopt a hierarchical and trans-D Bayesian inversion method using Voronoi partition. The 3-D heterogeneity model is further improved by joint inversions of teleseismic receiver functions and dispersion data using a newly developed high-efficiency Bayesian technique. The obtained model is subsequently used to prepare 3-D structural Green's functions for the source characterization. A hierarchical Bayesian method for point source inversion using regional complete waveform data is applied to selected events from the region. The seismic structure and source characteristics with rigorously estimated uncertainties from the novel Bayesian methods provide enhanced monitoring and discrimination of seismic events in northeast Asia.

  19. Bayesian hierarchical modelling of North Atlantic windiness

    NASA Astrophysics Data System (ADS)

    Vanem, E.; Breivik, O. N.

    2013-03-01

    Extreme weather conditions represent serious natural hazards to ship operations and may be the direct cause or contributing factor to maritime accidents. Such severe environmental conditions can be taken into account in ship design and operational windows can be defined that limits hazardous operations to less extreme conditions. Nevertheless, possible changes in the statistics of extreme weather conditions, possibly due to anthropogenic climate change, represent an additional hazard to ship operations that is less straightforward to account for in a consistent way. Obviously, there are large uncertainties as to how future climate change will affect the extreme weather conditions at sea and there is a need for stochastic models that can describe the variability in both space and time at various scales of the environmental conditions. Previously, Bayesian hierarchical space-time models have been developed to describe the variability and complex dependence structures of significant wave height in space and time. These models were found to perform reasonably well and provided some interesting results, in particular, pertaining to long-term trends in the wave climate. In this paper, a similar framework is applied to oceanic windiness and the spatial and temporal variability of the 10-m wind speed over an area in the North Atlantic ocean is investigated. When the results from the model for North Atlantic windiness is compared to the results for significant wave height over the same area, it is interesting to observe that whereas an increasing trend in significant wave height was identified, no statistically significant long-term trend was estimated in windiness. This may indicate that the increase in significant wave height is not due to an increase in locally generated wind waves, but rather to increased swell. This observation is also consistent with studies that have suggested a poleward shift of the main storm tracks.

  20. Improving satellite-based PM2.5 estimates in China using Gaussian processes modeling in a Bayesian hierarchical setting.

    PubMed

    Yu, Wenxi; Liu, Yang; Ma, Zongwei; Bi, Jun

    2017-08-01

    Using satellite-based aerosol optical depth (AOD) measurements and statistical models to estimate ground-level PM 2.5 is a promising way to fill the areas that are not covered by ground PM 2.5 monitors. The statistical models used in previous studies are primarily Linear Mixed Effects (LME) and Geographically Weighted Regression (GWR) models. In this study, we developed a new regression model between PM 2.5 and AOD using Gaussian processes in a Bayesian hierarchical setting. Gaussian processes model the stochastic nature of the spatial random effects, where the mean surface and the covariance function is specified. The spatial stochastic process is incorporated under the Bayesian hierarchical framework to explain the variation of PM 2.5 concentrations together with other factors, such as AOD, spatial and non-spatial random effects. We evaluate the results of our model and compare them with those of other, conventional statistical models (GWR and LME) by within-sample model fitting and out-of-sample validation (cross validation, CV). The results show that our model possesses a CV result (R 2  = 0.81) that reflects higher accuracy than that of GWR and LME (0.74 and 0.48, respectively). Our results indicate that Gaussian process models have the potential to improve the accuracy of satellite-based PM 2.5 estimates.

  1. A Flexible Hierarchical Bayesian Modeling Technique for Risk Analysis of Major Accidents.

    PubMed

    Yu, Hongyang; Khan, Faisal; Veitch, Brian

    2017-09-01

    Safety analysis of rare events with potentially catastrophic consequences is challenged by data scarcity and uncertainty. Traditional causation-based approaches, such as fault tree and event tree (used to model rare event), suffer from a number of weaknesses. These include the static structure of the event causation, lack of event occurrence data, and need for reliable prior information. In this study, a new hierarchical Bayesian modeling based technique is proposed to overcome these drawbacks. The proposed technique can be used as a flexible technique for risk analysis of major accidents. It enables both forward and backward analysis in quantitative reasoning and the treatment of interdependence among the model parameters. Source-to-source variability in data sources is also taken into account through a robust probabilistic safety analysis. The applicability of the proposed technique has been demonstrated through a case study in marine and offshore industry. © 2017 Society for Risk Analysis.

  2. Bayesian hierarchical functional data analysis via contaminated informative priors.

    PubMed

    Scarpa, Bruno; Dunson, David B

    2009-09-01

    A variety of flexible approaches have been proposed for functional data analysis, allowing both the mean curve and the distribution about the mean to be unknown. Such methods are most useful when there is limited prior information. Motivated by applications to modeling of temperature curves in the menstrual cycle, this article proposes a flexible approach for incorporating prior information in semiparametric Bayesian analyses of hierarchical functional data. The proposed approach is based on specifying the distribution of functions as a mixture of a parametric hierarchical model and a nonparametric contamination. The parametric component is chosen based on prior knowledge, while the contamination is characterized as a functional Dirichlet process. In the motivating application, the contamination component allows unanticipated curve shapes in unhealthy menstrual cycles. Methods are developed for posterior computation, and the approach is applied to data from a European fecundability study.

  3. Hierarchical Bayesian Markov switching models with application to predicting spawning success of shovelnose sturgeon

    USGS Publications Warehouse

    Holan, S.H.; Davis, G.M.; Wildhaber, M.L.; DeLonay, A.J.; Papoulias, D.M.

    2009-01-01

    The timing of spawning in fish is tightly linked to environmental factors; however, these factors are not very well understood for many species. Specifically, little information is available to guide recruitment efforts for endangered species such as the sturgeon. Therefore, we propose a Bayesian hierarchical model for predicting the success of spawning of the shovelnose sturgeon which uses both biological and behavioural (longitudinal) data. In particular, we use data that were produced from a tracking study that was conducted in the Lower Missouri River. The data that were produced from this study consist of biological variables associated with readiness to spawn along with longitudinal behavioural data collected by using telemetry and archival data storage tags. These high frequency data are complex both biologically and in the underlying behavioural process. To accommodate such complexity we developed a hierarchical linear regression model that uses an eigenvalue predictor, derived from the transition probability matrix of a two-state Markov switching model with generalized auto-regressive conditional heteroscedastic dynamics. Finally, to minimize the computational burden that is associated with estimation of this model, a parallel computing approach is proposed. ?? Journal compilation 2009 Royal Statistical Society.

  4. Application of hierarchical Bayesian unmixing models in river sediment source apportionment

    NASA Astrophysics Data System (ADS)

    Blake, Will; Smith, Hugh; Navas, Ana; Bodé, Samuel; Goddard, Rupert; Zou Kuzyk, Zou; Lennard, Amy; Lobb, David; Owens, Phil; Palazon, Leticia; Petticrew, Ellen; Gaspar, Leticia; Stock, Brian; Boeckx, Pacsal; Semmens, Brice

    2016-04-01

    Fingerprinting and unmixing concepts are used widely across environmental disciplines for forensic evaluation of pollutant sources. In aquatic and marine systems, this includes tracking the source of organic and inorganic pollutants in water and linking problem sediment to soil erosion and land use sources. It is, however, the particular complexity of ecological systems that has driven creation of the most sophisticated mixing models, primarily to (i) evaluate diet composition in complex ecological food webs, (ii) inform population structure and (iii) explore animal movement. In the context of the new hierarchical Bayesian unmixing model, MIXSIAR, developed to characterise intra-population niche variation in ecological systems, we evaluate the linkage between ecological 'prey' and 'consumer' concepts and river basin sediment 'source' and sediment 'mixtures' to exemplify the value of ecological modelling tools to river basin science. Recent studies have outlined advantages presented by Bayesian unmixing approaches in handling complex source and mixture datasets while dealing appropriately with uncertainty in parameter probability distributions. MixSIAR is unique in that it allows individual fixed and random effects associated with mixture hierarchy, i.e. factors that might exert an influence on model outcome for mixture groups, to be explored within the source-receptor framework. This offers new and powerful ways of interpreting river basin apportionment data. In this contribution, key components of the model are evaluated in the context of common experimental designs for sediment fingerprinting studies namely simple, nested and distributed catchment sampling programmes. Illustrative examples using geochemical and compound specific stable isotope datasets are presented and used to discuss best practice with specific attention to (1) the tracer selection process, (2) incorporation of fixed effects relating to sample timeframe and sediment type in the modelling

  5. Trans-dimensional and hierarchical Bayesian approaches toward rigorous estimation of seismic sources and structures in the Northeast Asia

    NASA Astrophysics Data System (ADS)

    Kim, Seongryong; Tkalčić, Hrvoje; Mustać, Marija; Rhie, Junkee; Ford, Sean

    2016-04-01

    A framework is presented within which we provide rigorous estimations for seismic sources and structures in the Northeast Asia. We use Bayesian inversion methods, which enable statistical estimations of models and their uncertainties based on data information. Ambiguities in error statistics and model parameterizations are addressed by hierarchical and trans-dimensional (trans-D) techniques, which can be inherently implemented in the Bayesian inversions. Hence reliable estimation of model parameters and their uncertainties is possible, thus avoiding arbitrary regularizations and parameterizations. Hierarchical and trans-D inversions are performed to develop a three-dimensional velocity model using ambient noise data. To further improve the model, we perform joint inversions with receiver function data using a newly developed Bayesian method. For the source estimation, a novel moment tensor inversion method is presented and applied to regional waveform data of the North Korean nuclear explosion tests. By the combination of new Bayesian techniques and the structural model, coupled with meaningful uncertainties related to each of the processes, more quantitative monitoring and discrimination of seismic events is possible.

  6. Estimating effectiveness in HIV prevention trials with a Bayesian hierarchical compound Poisson frailty model

    PubMed Central

    Coley, Rebecca Yates; Browna, Elizabeth R.

    2016-01-01

    Inconsistent results in recent HIV prevention trials of pre-exposure prophylactic interventions may be due to heterogeneity in risk among study participants. Intervention effectiveness is most commonly estimated with the Cox model, which compares event times between populations. When heterogeneity is present, this population-level measure underestimates intervention effectiveness for individuals who are at risk. We propose a likelihood-based Bayesian hierarchical model that estimates the individual-level effectiveness of candidate interventions by accounting for heterogeneity in risk with a compound Poisson-distributed frailty term. This model reflects the mechanisms of HIV risk and allows that some participants are not exposed to HIV and, therefore, have no risk of seroconversion during the study. We assess model performance via simulation and apply the model to data from an HIV prevention trial. PMID:26869051

  7. Hierarchical Bayesian modeling of ionospheric TEC disturbances as non-stationary processes

    NASA Astrophysics Data System (ADS)

    Seid, Abdu Mohammed; Berhane, Tesfahun; Roininen, Lassi; Nigussie, Melessew

    2018-03-01

    We model regular and irregular variation of ionospheric total electron content as stationary and non-stationary processes, respectively. We apply the method developed to SCINDA GPS data set observed at Bahir Dar, Ethiopia (11.6 °N, 37.4 °E) . We use hierarchical Bayesian inversion with Gaussian Markov random process priors, and we model the prior parameters in the hyperprior. We use Matérn priors via stochastic partial differential equations, and use scaled Inv -χ2 hyperpriors for the hyperparameters. For drawing posterior estimates, we use Markov Chain Monte Carlo methods: Gibbs sampling and Metropolis-within-Gibbs for parameter and hyperparameter estimations, respectively. This allows us to quantify model parameter estimation uncertainties as well. We demonstrate the applicability of the method proposed using a synthetic test case. Finally, we apply the method to real GPS data set, which we decompose to regular and irregular variation components. The result shows that the approach can be used as an accurate ionospheric disturbance characterization technique that quantifies the total electron content variability with corresponding error uncertainties.

  8. A bayesian hierarchical model for classification with selection of functional predictors.

    PubMed

    Zhu, Hongxiao; Vannucci, Marina; Cox, Dennis D

    2010-06-01

    In functional data classification, functional observations are often contaminated by various systematic effects, such as random batch effects caused by device artifacts, or fixed effects caused by sample-related factors. These effects may lead to classification bias and thus should not be neglected. Another issue of concern is the selection of functions when predictors consist of multiple functions, some of which may be redundant. The above issues arise in a real data application where we use fluorescence spectroscopy to detect cervical precancer. In this article, we propose a Bayesian hierarchical model that takes into account random batch effects and selects effective functions among multiple functional predictors. Fixed effects or predictors in nonfunctional form are also included in the model. The dimension of the functional data is reduced through orthonormal basis expansion or functional principal components. For posterior sampling, we use a hybrid Metropolis-Hastings/Gibbs sampler, which suffers slow mixing. An evolutionary Monte Carlo algorithm is applied to improve the mixing. Simulation and real data application show that the proposed model provides accurate selection of functional predictors as well as good classification.

  9. Predicting individual brain functional connectivity using a Bayesian hierarchical model.

    PubMed

    Dai, Tian; Guo, Ying

    2017-02-15

    Network-oriented analysis of functional magnetic resonance imaging (fMRI), especially resting-state fMRI, has revealed important association between abnormal connectivity and brain disorders such as schizophrenia, major depression and Alzheimer's disease. Imaging-based brain connectivity measures have become a useful tool for investigating the pathophysiology, progression and treatment response of psychiatric disorders and neurodegenerative diseases. Recent studies have started to explore the possibility of using functional neuroimaging to help predict disease progression and guide treatment selection for individual patients. These studies provide the impetus to develop statistical methodology that would help provide predictive information on disease progression-related or treatment-related changes in neural connectivity. To this end, we propose a prediction method based on Bayesian hierarchical model that uses individual's baseline fMRI scans, coupled with relevant subject characteristics, to predict the individual's future functional connectivity. A key advantage of the proposed method is that it can improve the accuracy of individualized prediction of connectivity by combining information from both group-level connectivity patterns that are common to subjects with similar characteristics as well as individual-level connectivity features that are particular to the specific subject. Furthermore, our method also offers statistical inference tools such as predictive intervals that help quantify the uncertainty or variability of the predicted outcomes. The proposed prediction method could be a useful approach to predict the changes in individual patient's brain connectivity with the progression of a disease. It can also be used to predict a patient's post-treatment brain connectivity after a specified treatment regimen. Another utility of the proposed method is that it can be applied to test-retest imaging data to develop a more reliable estimator for individual

  10. Bayesian hierarchical models for cost-effectiveness analyses that use data from cluster randomized trials.

    PubMed

    Grieve, Richard; Nixon, Richard; Thompson, Simon G

    2010-01-01

    Cost-effectiveness analyses (CEA) may be undertaken alongside cluster randomized trials (CRTs) where randomization is at the level of the cluster (for example, the hospital or primary care provider) rather than the individual. Costs (and outcomes) within clusters may be correlated so that the assumption made by standard bivariate regression models, that observations are independent, is incorrect. This study develops a flexible modeling framework to acknowledge the clustering in CEA that use CRTs. The authors extend previous Bayesian bivariate models for CEA of multicenter trials to recognize the specific form of clustering in CRTs. They develop new Bayesian hierarchical models (BHMs) that allow mean costs and outcomes, and also variances, to differ across clusters. They illustrate how each model can be applied using data from a large (1732 cases, 70 primary care providers) CRT evaluating alternative interventions for reducing postnatal depression. The analyses compare cost-effectiveness estimates from BHMs with standard bivariate regression models that ignore the data hierarchy. The BHMs show high levels of cost heterogeneity across clusters (intracluster correlation coefficient, 0.17). Compared with standard regression models, the BHMs yield substantially increased uncertainty surrounding the cost-effectiveness estimates, and altered point estimates. The authors conclude that ignoring clustering can lead to incorrect inferences. The BHMs that they present offer a flexible modeling framework that can be applied more generally to CEA that use CRTs.

  11. Application of Bayesian inference to the study of hierarchical organization in self-organized complex adaptive systems

    NASA Astrophysics Data System (ADS)

    Knuth, K. H.

    2001-05-01

    We consider the application of Bayesian inference to the study of self-organized structures in complex adaptive systems. In particular, we examine the distribution of elements, agents, or processes in systems dominated by hierarchical structure. We demonstrate that results obtained by Caianiello [1] on Hierarchical Modular Systems (HMS) can be found by applying Jaynes' Principle of Group Invariance [2] to a few key assumptions about our knowledge of hierarchical organization. Subsequent application of the Principle of Maximum Entropy allows inferences to be made about specific systems. The utility of the Bayesian method is considered by examining both successes and failures of the hierarchical model. We discuss how Caianiello's original statements suffer from the Mind Projection Fallacy [3] and we restate his assumptions thus widening the applicability of the HMS model. The relationship between inference and statistical physics, described by Jaynes [4], is reiterated with the expectation that this realization will aid the field of complex systems research by moving away from often inappropriate direct application of statistical mechanics to a more encompassing inferential methodology.

  12. Bayesian Hierarchical Classes Analysis

    ERIC Educational Resources Information Center

    Leenen, Iwin; Van Mechelen, Iven; Gelman, Andrew; De Knop, Stijn

    2008-01-01

    Hierarchical classes models are models for "N"-way "N"-mode data that represent the association among the "N" modes and simultaneously yield, for each mode, a hierarchical classification of its elements. In this paper we present a stochastic extension of the hierarchical classes model for two-way two-mode binary data. In line with the original…

  13. Hierarchical models of animal abundance and occurrence

    USGS Publications Warehouse

    Royle, J. Andrew; Dorazio, R.M.

    2006-01-01

    Much of animal ecology is devoted to studies of abundance and occurrence of species, based on surveys of spatially referenced sample units. These surveys frequently yield sparse counts that are contaminated by imperfect detection, making direct inference about abundance or occurrence based on observational data infeasible. This article describes a flexible hierarchical modeling framework for estimation and inference about animal abundance and occurrence from survey data that are subject to imperfect detection. Within this framework, we specify models of abundance and detectability of animals at the level of the local populations defined by the sample units. Information at the level of the local population is aggregated by specifying models that describe variation in abundance and detection among sites. We describe likelihood-based and Bayesian methods for estimation and inference under the resulting hierarchical model. We provide two examples of the application of hierarchical models to animal survey data, the first based on removal counts of stream fish and the second based on avian quadrat counts. For both examples, we provide a Bayesian analysis of the models using the software WinBUGS.

  14. Bayesian hierarchical models for regional climate reconstructions of the last glacial maximum

    NASA Astrophysics Data System (ADS)

    Weitzel, Nils; Hense, Andreas; Ohlwein, Christian

    2017-04-01

    Spatio-temporal reconstructions of past climate are important for the understanding of the long term behavior of the climate system and the sensitivity to forcing changes. Unfortunately, they are subject to large uncertainties, have to deal with a complex proxy-climate structure, and a physically reasonable interpolation between the sparse proxy observations is difficult. Bayesian Hierarchical Models (BHMs) are a class of statistical models that is well suited for spatio-temporal reconstructions of past climate because they permit the inclusion of multiple sources of information (e.g. records from different proxy types, uncertain age information, output from climate simulations) and quantify uncertainties in a statistically rigorous way. BHMs in paleoclimatology typically consist of three stages which are modeled individually and are combined using Bayesian inference techniques. The data stage models the proxy-climate relation (often named transfer function), the process stage models the spatio-temporal distribution of the climate variables of interest, and the prior stage consists of prior distributions of the model parameters. For our BHMs, we translate well-known proxy-climate transfer functions for pollen to a Bayesian framework. In addition, we can include Gaussian distributed local climate information from preprocessed proxy records. The process stage combines physically reasonable spatial structures from prior distributions with proxy records which leads to a multivariate posterior probability distribution for the reconstructed climate variables. The prior distributions that constrain the possible spatial structure of the climate variables are calculated from climate simulation output. We present results from pseudoproxy tests as well as new regional reconstructions of temperatures for the last glacial maximum (LGM, ˜ 21,000 years BP). These reconstructions combine proxy data syntheses with information from climate simulations for the LGM that were

  15. Bayesian Poisson hierarchical models for crash data analysis: Investigating the impact of model choice on site-specific predictions.

    PubMed

    Khazraee, S Hadi; Johnson, Valen; Lord, Dominique

    2018-08-01

    The Poisson-gamma (PG) and Poisson-lognormal (PLN) regression models are among the most popular means for motor vehicle crash data analysis. Both models belong to the Poisson-hierarchical family of models. While numerous studies have compared the overall performance of alternative Bayesian Poisson-hierarchical models, little research has addressed the impact of model choice on the expected crash frequency prediction at individual sites. This paper sought to examine whether there are any trends among candidate models predictions e.g., that an alternative model's prediction for sites with certain conditions tends to be higher (or lower) than that from another model. In addition to the PG and PLN models, this research formulated a new member of the Poisson-hierarchical family of models: the Poisson-inverse gamma (PIGam). Three field datasets (from Texas, Michigan and Indiana) covering a wide range of over-dispersion characteristics were selected for analysis. This study demonstrated that the model choice can be critical when the calibrated models are used for prediction at new sites, especially when the data are highly over-dispersed. For all three datasets, the PIGam model would predict higher expected crash frequencies than would the PLN and PG models, in order, indicating a clear link between the models predictions and the shape of their mixing distributions (i.e., gamma, lognormal, and inverse gamma, respectively). The thicker tail of the PIGam and PLN models (in order) may provide an advantage when the data are highly over-dispersed. The analysis results also illustrated a major deficiency of the Deviance Information Criterion (DIC) in comparing the goodness-of-fit of hierarchical models; models with drastically different set of coefficients (and thus predictions for new sites) may yield similar DIC values, because the DIC only accounts for the parameters in the lowest (observation) level of the hierarchy and ignores the higher levels (regression coefficients

  16. A Bayesian Approach to Model Selection in Hierarchical Mixtures-of-Experts Architectures.

    PubMed

    Tanner, Martin A.; Peng, Fengchun; Jacobs, Robert A.

    1997-03-01

    There does not exist a statistical model that shows good performance on all tasks. Consequently, the model selection problem is unavoidable; investigators must decide which model is best at summarizing the data for each task of interest. This article presents an approach to the model selection problem in hierarchical mixtures-of-experts architectures. These architectures combine aspects of generalized linear models with those of finite mixture models in order to perform tasks via a recursive "divide-and-conquer" strategy. Markov chain Monte Carlo methodology is used to estimate the distribution of the architectures' parameters. One part of our approach to model selection attempts to estimate the worth of each component of an architecture so that relatively unused components can be pruned from the architecture's structure. A second part of this approach uses a Bayesian hypothesis testing procedure in order to differentiate inputs that carry useful information from nuisance inputs. Simulation results suggest that the approach presented here adheres to the dictum of Occam's razor; simple architectures that are adequate for summarizing the data are favored over more complex structures. Copyright 1997 Elsevier Science Ltd. All Rights Reserved.

  17. How does aging affect recognition-based inference? A hierarchical Bayesian modeling approach.

    PubMed

    Horn, Sebastian S; Pachur, Thorsten; Mata, Rui

    2015-01-01

    The recognition heuristic (RH) is a simple strategy for probabilistic inference according to which recognized objects are judged to score higher on a criterion than unrecognized objects. In this article, a hierarchical Bayesian extension of the multinomial r-model is applied to measure use of the RH on the individual participant level and to re-evaluate differences between younger and older adults' strategy reliance across environments. Further, it is explored how individual r-model parameters relate to alternative measures of the use of recognition and other knowledge, such as adherence rates and indices from signal-detection theory (SDT). Both younger and older adults used the RH substantially more often in an environment with high than low recognition validity, reflecting adaptivity in strategy use across environments. In extension of previous analyses (based on adherence rates), hierarchical modeling revealed that in an environment with low recognition validity, (a) older adults had a stronger tendency than younger adults to rely on the RH and (b) variability in RH use between individuals was larger than in an environment with high recognition validity; variability did not differ between age groups. Further, the r-model parameters correlated moderately with an SDT measure expressing how well people can discriminate cases where the RH leads to a correct vs. incorrect inference; this suggests that the r-model and the SDT measures may offer complementary insights into the use of recognition in decision making. In conclusion, younger and older adults are largely adaptive in their application of the RH, but cognitive aging may be associated with an increased tendency to rely on this strategy. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Hierarchical Bayesian modelling of mobility metrics for hazard model input calibration

    NASA Astrophysics Data System (ADS)

    Calder, Eliza; Ogburn, Sarah; Spiller, Elaine; Rutarindwa, Regis; Berger, Jim

    2015-04-01

    In this work we present a method to constrain flow mobility input parameters for pyroclastic flow models using hierarchical Bayes modeling of standard mobility metrics such as H/L and flow volume etc. The advantage of hierarchical modeling is that it can leverage the information in global dataset for a particular mobility metric in order to reduce the uncertainty in modeling of an individual volcano, especially important where individual volcanoes have only sparse datasets. We use compiled pyroclastic flow runout data from Colima, Merapi, Soufriere Hills, Unzen and Semeru volcanoes, presented in an open-source database FlowDat (https://vhub.org/groups/massflowdatabase). While the exact relationship between flow volume and friction varies somewhat between volcanoes, dome collapse flows originating from the same volcano exhibit similar mobility relationships. Instead of fitting separate regression models for each volcano dataset, we use a variation of the hierarchical linear model (Kass and Steffey, 1989). The model presents a hierarchical structure with two levels; all dome collapse flows and dome collapse flows at specific volcanoes. The hierarchical model allows us to assume that the flows at specific volcanoes share a common distribution of regression slopes, then solves for that distribution. We present comparisons of the 95% confidence intervals on the individual regression lines for the data set from each volcano as well as those obtained from the hierarchical model. The results clearly demonstrate the advantage of considering global datasets using this technique. The technique developed is demonstrated here for mobility metrics, but can be applied to many other global datasets of volcanic parameters. In particular, such methods can provide a means to better contain parameters for volcanoes for which we only have sparse data, a ubiquitous problem in volcanology.

  19. A Bayesian hierarchical model with spatial variable selection: the effect of weather on insurance claims

    PubMed Central

    Scheel, Ida; Ferkingstad, Egil; Frigessi, Arnoldo; Haug, Ola; Hinnerichsen, Mikkel; Meze-Hausken, Elisabeth

    2013-01-01

    Climate change will affect the insurance industry. We develop a Bayesian hierarchical statistical approach to explain and predict insurance losses due to weather events at a local geographic scale. The number of weather-related insurance claims is modelled by combining generalized linear models with spatially smoothed variable selection. Using Gibbs sampling and reversible jump Markov chain Monte Carlo methods, this model is fitted on daily weather and insurance data from each of the 319 municipalities which constitute southern and central Norway for the period 1997–2006. Precise out-of-sample predictions validate the model. Our results show interesting regional patterns in the effect of different weather covariates. In addition to being useful for insurance pricing, our model can be used for short-term predictions based on weather forecasts and for long-term predictions based on downscaled climate models. PMID:23396890

  20. A dust spectral energy distribution model with hierarchical Bayesian inference - I. Formalism and benchmarking

    NASA Astrophysics Data System (ADS)

    Galliano, Frédéric

    2018-05-01

    This article presents a new dust spectral energy distribution (SED) model, named HerBIE, aimed at eliminating the noise-induced correlations and large scatter obtained when performing least-squares fits. The originality of this code is to apply the hierarchical Bayesian approach to full dust models, including realistic optical properties, stochastic heating, and the mixing of physical conditions in the observed regions. We test the performances of our model by applying it to synthetic observations. We explore the impact on the recovered parameters of several effects: signal-to-noise ratio, SED shape, sample size, the presence of intrinsic correlations, the wavelength coverage, and the use of different SED model components. We show that this method is very efficient: the recovered parameters are consistently distributed around their true values. We do not find any clear bias, even for the most degenerate parameters, or with extreme signal-to-noise ratios.

  1. Comparing hierarchical models via the marginalized deviance information criterion.

    PubMed

    Quintero, Adrian; Lesaffre, Emmanuel

    2018-07-20

    Hierarchical models are extensively used in pharmacokinetics and longitudinal studies. When the estimation is performed from a Bayesian approach, model comparison is often based on the deviance information criterion (DIC). In hierarchical models with latent variables, there are several versions of this statistic: the conditional DIC (cDIC) that incorporates the latent variables in the focus of the analysis and the marginalized DIC (mDIC) that integrates them out. Regardless of the asymptotic and coherency difficulties of cDIC, this alternative is usually used in Markov chain Monte Carlo (MCMC) methods for hierarchical models because of practical convenience. The mDIC criterion is more appropriate in most cases but requires integration of the likelihood, which is computationally demanding and not implemented in Bayesian software. Therefore, we consider a method to compute mDIC by generating replicate samples of the latent variables that need to be integrated out. This alternative can be easily conducted from the MCMC output of Bayesian packages and is widely applicable to hierarchical models in general. Additionally, we propose some approximations in order to reduce the computational complexity for large-sample situations. The method is illustrated with simulated data sets and 2 medical studies, evidencing that cDIC may be misleading whilst mDIC appears pertinent. Copyright © 2018 John Wiley & Sons, Ltd.

  2. Bayesian Hierarchical Grouping: perceptual grouping as mixture estimation

    PubMed Central

    Froyen, Vicky; Feldman, Jacob; Singh, Manish

    2015-01-01

    We propose a novel framework for perceptual grouping based on the idea of mixture models, called Bayesian Hierarchical Grouping (BHG). In BHG we assume that the configuration of image elements is generated by a mixture of distinct objects, each of which generates image elements according to some generative assumptions. Grouping, in this framework, means estimating the number and the parameters of the mixture components that generated the image, including estimating which image elements are “owned” by which objects. We present a tractable implementation of the framework, based on the hierarchical clustering approach of Heller and Ghahramani (2005). We illustrate it with examples drawn from a number of classical perceptual grouping problems, including dot clustering, contour integration, and part decomposition. Our approach yields an intuitive hierarchical representation of image elements, giving an explicit decomposition of the image into mixture components, along with estimates of the probability of various candidate decompositions. We show that BHG accounts well for a diverse range of empirical data drawn from the literature. Because BHG provides a principled quantification of the plausibility of grouping interpretations over a wide range of grouping problems, we argue that it provides an appealing unifying account of the elusive Gestalt notion of Prägnanz. PMID:26322548

  3. Hierarchical Bayesian modeling of heterogeneous variances in average daily weight gain of commercial feedlot cattle.

    PubMed

    Cernicchiaro, N; Renter, D G; Xiang, S; White, B J; Bello, N M

    2013-06-01

    Variability in ADG of feedlot cattle can affect profits, thus making overall returns more unstable. Hence, knowledge of the factors that contribute to heterogeneity of variances in animal performance can help feedlot managers evaluate risks and minimize profit volatility when making managerial and economic decisions in commercial feedlots. The objectives of the present study were to evaluate heteroskedasticity, defined as heterogeneity of variances, in ADG of cohorts of commercial feedlot cattle, and to identify cattle demographic factors at feedlot arrival as potential sources of variance heterogeneity, accounting for cohort- and feedlot-level information in the data structure. An operational dataset compiled from 24,050 cohorts from 25 U. S. commercial feedlots in 2005 and 2006 was used for this study. Inference was based on a hierarchical Bayesian model implemented with Markov chain Monte Carlo, whereby cohorts were modeled at the residual level and feedlot-year clusters were modeled as random effects. Forward model selection based on deviance information criteria was used to screen potentially important explanatory variables for heteroskedasticity at cohort- and feedlot-year levels. The Bayesian modeling framework was preferred as it naturally accommodates the inherently hierarchical structure of feedlot data whereby cohorts are nested within feedlot-year clusters. Evidence for heterogeneity of variance components of ADG was substantial and primarily concentrated at the cohort level. Feedlot-year specific effects were, by far, the greatest contributors to ADG heteroskedasticity among cohorts, with an estimated ∼12-fold change in dispersion between most and least extreme feedlot-year clusters. In addition, identifiable demographic factors associated with greater heterogeneity of cohort-level variance included smaller cohort sizes, fewer days on feed, and greater arrival BW, as well as feedlot arrival during summer months. These results support that

  4. Correlation Between Hierarchical Bayesian and Aerosol Optical Depth PM2.5 Data and Respiratory-Cardiovascular Chronic Diseases

    EPA Science Inventory

    Tools to estimate PM2.5 mass have expanded in recent years, and now include: 1) stationary monitor readings, 2) Community Multi-Scale Air Quality (CMAQ) model estimates, 3) Hierarchical Bayesian (HB) estimates from combined stationary monitor readings and CMAQ model output; and, ...

  5. Transdimensional, hierarchical, Bayesian inversion of ambient seismic noise: Australia

    NASA Astrophysics Data System (ADS)

    Crowder, E.; Rawlinson, N.; Cornwell, D. G.

    2017-12-01

    We present models of crustal velocity structure in southeastern Australia using a novel, transdimensional and hierarchical, Bayesian inversion approach. The inversion is applied to long-time ambient noise cross-correlations. The study area of SE Australia is thought to represent the eastern margin of Gondwana. Conflicting tectonic models have been proposed to explain the formation of eastern Gondwana and the enigmatic geological relationships in Bass Strait, which separates Tasmania and the mainland. A geologically complex area of crustal accretion, Bass Strait may contain part of an exotic continental block entrained in colliding crusts. Ambient noise data recorded by an array of 24 seismometers is used to produce a high resolution, 3D shear wave velocity model of Bass Strait. Phase velocity maps in the period range 2-30 s are produced and subsequently inverted for 3D shear wave velocity structure. The transdimensional, hierarchical Bayesian, inversion technique is used. This technique proves far superior to linearised inversion. The inversion model is dynamically parameterised during the process, implicitly controlled by the data, and noise is treated as an inversion unknown. The resulting shear wave velocity model shows three sedimentary basins in Bass Strait constrained by slow shear velocities (2.4-2.9 km/s) at 2-10 km depth. These failed rift basins from the breakup of Australia-Antartica appear to be overlying thinned crust, where typical mantle velocities of 3.8-4.0 km/s occur at depths greater than 20 km. High shear wave velocities ( 3.7-3.8 km/s) in our new model also match well with regions of high magnetic and gravity anomalies. Furthermore, we use both Rayleigh and Love wave phase data to to construct Vsv and Vsh maps. These are used to estimate crustal radial anisotropy in the Bass Strait. We interpret that structures delineated by our velocity models support the presence and extent of the exotic Precambrian micro-continent (the Selwyn Block) that was

  6. Inferring on the Intentions of Others by Hierarchical Bayesian Learning

    PubMed Central

    Diaconescu, Andreea O.; Mathys, Christoph; Weber, Lilian A. E.; Daunizeau, Jean; Kasper, Lars; Lomakina, Ekaterina I.; Fehr, Ernst; Stephan, Klaas E.

    2014-01-01

    Inferring on others' (potentially time-varying) intentions is a fundamental problem during many social transactions. To investigate the underlying mechanisms, we applied computational modeling to behavioral data from an economic game in which 16 pairs of volunteers (randomly assigned to “player” or “adviser” roles) interacted. The player performed a probabilistic reinforcement learning task, receiving information about a binary lottery from a visual pie chart. The adviser, who received more predictive information, issued an additional recommendation. Critically, the game was structured such that the adviser's incentives to provide helpful or misleading information varied in time. Using a meta-Bayesian modeling framework, we found that the players' behavior was best explained by the deployment of hierarchical learning: they inferred upon the volatility of the advisers' intentions in order to optimize their predictions about the validity of their advice. Beyond learning, volatility estimates also affected the trial-by-trial variability of decisions: participants were more likely to rely on their estimates of advice accuracy for making choices when they believed that the adviser's intentions were presently stable. Finally, our model of the players' inference predicted the players' interpersonal reactivity index (IRI) scores, explicit ratings of the advisers' helpfulness and the advisers' self-reports on their chosen strategy. Overall, our results suggest that humans (i) employ hierarchical generative models to infer on the changing intentions of others, (ii) use volatility estimates to inform decision-making in social interactions, and (iii) integrate estimates of advice accuracy with non-social sources of information. The Bayesian framework presented here can quantify individual differences in these mechanisms from simple behavioral readouts and may prove useful in future clinical studies of maladaptive social cognition. PMID:25187943

  7. Cross-validation to select Bayesian hierarchical models in phylogenetics.

    PubMed

    Duchêne, Sebastián; Duchêne, David A; Di Giallonardo, Francesca; Eden, John-Sebastian; Geoghegan, Jemma L; Holt, Kathryn E; Ho, Simon Y W; Holmes, Edward C

    2016-05-26

    Recent developments in Bayesian phylogenetic models have increased the range of inferences that can be drawn from molecular sequence data. Accordingly, model selection has become an important component of phylogenetic analysis. Methods of model selection generally consider the likelihood of the data under the model in question. In the context of Bayesian phylogenetics, the most common approach involves estimating the marginal likelihood, which is typically done by integrating the likelihood across model parameters, weighted by the prior. Although this method is accurate, it is sensitive to the presence of improper priors. We explored an alternative approach based on cross-validation that is widely used in evolutionary analysis. This involves comparing models according to their predictive performance. We analysed simulated data and a range of viral and bacterial data sets using a cross-validation approach to compare a variety of molecular clock and demographic models. Our results show that cross-validation can be effective in distinguishing between strict- and relaxed-clock models and in identifying demographic models that allow growth in population size over time. In most of our empirical data analyses, the model selected using cross-validation was able to match that selected using marginal-likelihood estimation. The accuracy of cross-validation appears to improve with longer sequence data, particularly when distinguishing between relaxed-clock models. Cross-validation is a useful method for Bayesian phylogenetic model selection. This method can be readily implemented even when considering complex models where selecting an appropriate prior for all parameters may be difficult.

  8. Bayesian hierarchical Poisson models with a hidden Markov structure for the detection of influenza epidemic outbreaks.

    PubMed

    Conesa, D; Martínez-Beneito, M A; Amorós, R; López-Quílez, A

    2015-04-01

    Considerable effort has been devoted to the development of statistical algorithms for the automated monitoring of influenza surveillance data. In this article, we introduce a framework of models for the early detection of the onset of an influenza epidemic which is applicable to different kinds of surveillance data. In particular, the process of the observed cases is modelled via a Bayesian Hierarchical Poisson model in which the intensity parameter is a function of the incidence rate. The key point is to consider this incidence rate as a normal distribution in which both parameters (mean and variance) are modelled differently, depending on whether the system is in an epidemic or non-epidemic phase. To do so, we propose a hidden Markov model in which the transition between both phases is modelled as a function of the epidemic state of the previous week. Different options for modelling the rates are described, including the option of modelling the mean at each phase as autoregressive processes of order 0, 1 or 2. Bayesian inference is carried out to provide the probability of being in an epidemic state at any given moment. The methodology is applied to various influenza data sets. The results indicate that our methods outperform previous approaches in terms of sensitivity, specificity and timeliness. © The Author(s) 2011 Reprints and permissions: sagepub.co.uk/journalsPermissions.nav.

  9. Bayesian hierarchical models for smoothing in two-phase studies, with application to small area estimation.

    PubMed

    Ross, Michelle; Wakefield, Jon

    2015-10-01

    Two-phase study designs are appealing since they allow for the oversampling of rare sub-populations which improves efficiency. In this paper we describe a Bayesian hierarchical model for the analysis of two-phase data. Such a model is particularly appealing in a spatial setting in which random effects are introduced to model between-area variability. In such a situation, one may be interested in estimating regression coefficients or, in the context of small area estimation, in reconstructing the population totals by strata. The efficiency gains of the two-phase sampling scheme are compared to standard approaches using 2011 birth data from the research triangle area of North Carolina. We show that the proposed method can overcome small sample difficulties and improve on existing techniques. We conclude that the two-phase design is an attractive approach for small area estimation.

  10. A Bayesian hierarchical latent trait model for estimating rater bias and reliability in large-scale performance assessment

    PubMed Central

    2018-01-01

    We propose a novel approach to modelling rater effects in scoring-based assessment. The approach is based on a Bayesian hierarchical model and simulations from the posterior distribution. We apply it to large-scale essay assessment data over a period of 5 years. Empirical results suggest that the model provides a good fit for both the total scores and when applied to individual rubrics. We estimate the median impact of rater effects on the final grade to be ± 2 points on a 50 point scale, while 10% of essays would receive a score at least ± 5 different from their actual quality. Most of the impact is due to rater unreliability, not rater bias. PMID:29614129

  11. Prediction of road accidents: A Bayesian hierarchical approach.

    PubMed

    Deublein, Markus; Schubert, Matthias; Adey, Bryan T; Köhler, Jochen; Faber, Michael H

    2013-03-01

    In this paper a novel methodology for the prediction of the occurrence of road accidents is presented. The methodology utilizes a combination of three statistical methods: (1) gamma-updating of the occurrence rates of injury accidents and injured road users, (2) hierarchical multivariate Poisson-lognormal regression analysis taking into account correlations amongst multiple dependent model response variables and effects of discrete accident count data e.g. over-dispersion, and (3) Bayesian inference algorithms, which are applied by means of data mining techniques supported by Bayesian Probabilistic Networks in order to represent non-linearity between risk indicating and model response variables, as well as different types of uncertainties which might be present in the development of the specific models. Prior Bayesian Probabilistic Networks are first established by means of multivariate regression analysis of the observed frequencies of the model response variables, e.g. the occurrence of an accident, and observed values of the risk indicating variables, e.g. degree of road curvature. Subsequently, parameter learning is done using updating algorithms, to determine the posterior predictive probability distributions of the model response variables, conditional on the values of the risk indicating variables. The methodology is illustrated through a case study using data of the Austrian rural motorway network. In the case study, on randomly selected road segments the methodology is used to produce a model to predict the expected number of accidents in which an injury has occurred and the expected number of light, severe and fatally injured road users. Additionally, the methodology is used for geo-referenced identification of road sections with increased occurrence probabilities of injury accident events on a road link between two Austrian cities. It is shown that the proposed methodology can be used to develop models to estimate the occurrence of road accidents for any

  12. Bayesian state space models for dynamic genetic network construction across multiple tissues.

    PubMed

    Liang, Yulan; Kelemen, Arpad

    2016-08-01

    Construction of gene-gene interaction networks and potential pathways is a challenging and important problem in genomic research for complex diseases while estimating the dynamic changes of the temporal correlations and non-stationarity are the keys in this process. In this paper, we develop dynamic state space models with hierarchical Bayesian settings to tackle this challenge for inferring the dynamic profiles and genetic networks associated with disease treatments. We treat both the stochastic transition matrix and the observation matrix time-variant and include temporal correlation structures in the covariance matrix estimations in the multivariate Bayesian state space models. The unevenly spaced short time courses with unseen time points are treated as hidden state variables. Hierarchical Bayesian approaches with various prior and hyper-prior models with Monte Carlo Markov Chain and Gibbs sampling algorithms are used to estimate the model parameters and the hidden state variables. We apply the proposed Hierarchical Bayesian state space models to multiple tissues (liver, skeletal muscle, and kidney) Affymetrix time course data sets following corticosteroid (CS) drug administration. Both simulation and real data analysis results show that the genomic changes over time and gene-gene interaction in response to CS treatment can be well captured by the proposed models. The proposed dynamic Hierarchical Bayesian state space modeling approaches could be expanded and applied to other large scale genomic data, such as next generation sequence (NGS) combined with real time and time varying electronic health record (EHR) for more comprehensive and robust systematic and network based analysis in order to transform big biomedical data into predictions and diagnostics for precision medicine and personalized healthcare with better decision making and patient outcomes.

  13. Clarifying the Hubble constant tension with a Bayesian hierarchical model of the local distance ladder

    NASA Astrophysics Data System (ADS)

    Feeney, Stephen M.; Mortlock, Daniel J.; Dalmasso, Niccolò

    2018-05-01

    Estimates of the Hubble constant, H0, from the local distance ladder and from the cosmic microwave background (CMB) are discrepant at the ˜3σ level, indicating a potential issue with the standard Λ cold dark matter (ΛCDM) cosmology. A probabilistic (i.e. Bayesian) interpretation of this tension requires a model comparison calculation, which in turn depends strongly on the tails of the H0 likelihoods. Evaluating the tails of the local H0 likelihood requires the use of non-Gaussian distributions to faithfully represent anchor likelihoods and outliers, and simultaneous fitting of the complete distance-ladder data set to ensure correct uncertainty propagation. We have hence developed a Bayesian hierarchical model of the full distance ladder that does not rely on Gaussian distributions and allows outliers to be modelled without arbitrary data cuts. Marginalizing over the full ˜3000-parameter joint posterior distribution, we find H0 = (72.72 ± 1.67) km s-1 Mpc-1 when applied to the outlier-cleaned Riess et al. data, and (73.15 ± 1.78) km s-1 Mpc-1 with supernova outliers reintroduced (the pre-cut Cepheid data set is not available). Using our precise evaluation of the tails of the H0 likelihood, we apply Bayesian model comparison to assess the evidence for deviation from ΛCDM given the distance-ladder and CMB data. The odds against ΛCDM are at worst ˜10:1 when considering the Planck 2015 XIII data, regardless of outlier treatment, considerably less dramatic than naïvely implied by the 2.8σ discrepancy. These odds become ˜60:1 when an approximation to the more-discrepant Planck Intermediate XLVI likelihood is included.

  14. On the importance of avoiding shortcuts in applying cognitive models to hierarchical data.

    PubMed

    Boehm, Udo; Marsman, Maarten; Matzke, Dora; Wagenmakers, Eric-Jan

    2018-06-12

    Psychological experiments often yield data that are hierarchically structured. A number of popular shortcut strategies in cognitive modeling do not properly accommodate this structure and can result in biased conclusions. To gauge the severity of these biases, we conducted a simulation study for a two-group experiment. We first considered a modeling strategy that ignores the hierarchical data structure. In line with theoretical results, our simulations showed that Bayesian and frequentist methods that rely on this strategy are biased towards the null hypothesis. Secondly, we considered a modeling strategy that takes a two-step approach by first obtaining participant-level estimates from a hierarchical cognitive model and subsequently using these estimates in a follow-up statistical test. Methods that rely on this strategy are biased towards the alternative hypothesis. Only hierarchical models of the multilevel data lead to correct conclusions. Our results are particularly relevant for the use of hierarchical Bayesian parameter estimates in cognitive modeling.

  15. Investigating different approaches to develop informative priors in hierarchical Bayesian safety performance functions.

    PubMed

    Yu, Rongjie; Abdel-Aty, Mohamed

    2013-07-01

    The Bayesian inference method has been frequently adopted to develop safety performance functions. One advantage of the Bayesian inference is that prior information for the independent variables can be included in the inference procedures. However, there are few studies that discussed how to formulate informative priors for the independent variables and evaluated the effects of incorporating informative priors in developing safety performance functions. This paper addresses this deficiency by introducing four approaches of developing informative priors for the independent variables based on historical data and expert experience. Merits of these informative priors have been tested along with two types of Bayesian hierarchical models (Poisson-gamma and Poisson-lognormal models). Deviance information criterion (DIC), R-square values, and coefficients of variance for the estimations were utilized as evaluation measures to select the best model(s). Comparison across the models indicated that the Poisson-gamma model is superior with a better model fit and it is much more robust with the informative priors. Moreover, the two-stage Bayesian updating informative priors provided the best goodness-of-fit and coefficient estimation accuracies. Furthermore, informative priors for the inverse dispersion parameter have also been introduced and tested. Different types of informative priors' effects on the model estimations and goodness-of-fit have been compared and concluded. Finally, based on the results, recommendations for future research topics and study applications have been made. Copyright © 2013 Elsevier Ltd. All rights reserved.

  16. Merging information from multi-model flood projections in a hierarchical Bayesian framework

    NASA Astrophysics Data System (ADS)

    Le Vine, Nataliya

    2016-04-01

    Multi-model ensembles are becoming widely accepted for flood frequency change analysis. The use of multiple models results in large uncertainty around estimates of flood magnitudes, due to both uncertainty in model selection and natural variability of river flow. The challenge is therefore to extract the most meaningful signal from the multi-model predictions, accounting for both model quality and uncertainties in individual model estimates. The study demonstrates the potential of a recently proposed hierarchical Bayesian approach to combine information from multiple models. The approach facilitates explicit treatment of shared multi-model discrepancy as well as the probabilistic nature of the flood estimates, by treating the available models as a sample from a hypothetical complete (but unobserved) set of models. The advantages of the approach are: 1) to insure an adequate 'baseline' conditions with which to compare future changes; 2) to reduce flood estimate uncertainty; 3) to maximize use of statistical information in circumstances where multiple weak predictions individually lack power, but collectively provide meaningful information; 4) to adjust multi-model consistency criteria when model biases are large; and 5) to explicitly consider the influence of the (model performance) stationarity assumption. Moreover, the analysis indicates that reducing shared model discrepancy is the key to further reduction of uncertainty in the flood frequency analysis. The findings are of value regarding how conclusions about changing exposure to flooding are drawn, and to flood frequency change attribution studies.

  17. Hierarchical Bayesian modeling of spatio-temporal patterns of lung cancer incidence risk in Georgia, USA: 2000-2007

    NASA Astrophysics Data System (ADS)

    Yin, Ping; Mu, Lan; Madden, Marguerite; Vena, John E.

    2014-10-01

    Lung cancer is the second most commonly diagnosed cancer in both men and women in Georgia, USA. However, the spatio-temporal patterns of lung cancer risk in Georgia have not been fully studied. Hierarchical Bayesian models are used here to explore the spatio-temporal patterns of lung cancer incidence risk by race and gender in Georgia for the period of 2000-2007. With the census tract level as the spatial scale and the 2-year period aggregation as the temporal scale, we compare a total of seven Bayesian spatio-temporal models including two under a separate modeling framework and five under a joint modeling framework. One joint model outperforms others based on the deviance information criterion. Results show that the northwest region of Georgia has consistently high lung cancer incidence risk for all population groups during the study period. In addition, there are inverse relationships between the socioeconomic status and the lung cancer incidence risk among all Georgian population groups, and the relationships in males are stronger than those in females. By mapping more reliable variations in lung cancer incidence risk at a relatively fine spatio-temporal scale for different Georgian population groups, our study aims to better support healthcare performance assessment, etiological hypothesis generation, and health policy making.

  18. Sub-seasonal-to-seasonal Reservoir Inflow Forecast using Bayesian Hierarchical Hidden Markov Model

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, S.; Arumugam, S.

    2017-12-01

    Sub-seasonal-to-seasonal (S2S) (15-90 days) streamflow forecasting is an emerging area of research that provides seamless information for reservoir operation from weather time scales to seasonal time scales. From an operational perspective, sub-seasonal inflow forecasts are highly valuable as these enable water managers to decide short-term releases (15-30 days), while holding water for seasonal needs (e.g., irrigation and municipal supply) and to meet end-of-the-season target storage at a desired level. We propose a Bayesian Hierarchical Hidden Markov Model (BHHMM) to develop S2S inflow forecasts for the Tennessee Valley Area (TVA) reservoir system. Here, the hidden states are predicted by relevant indices that influence the inflows at S2S time scale. The hidden Markov model also captures the both spatial and temporal hierarchy in predictors that operate at S2S time scale with model parameters being estimated as a posterior distribution using a Bayesian framework. We present our work in two steps, namely single site model and multi-site model. For proof of concept, we consider inflows to Douglas Dam, Tennessee, in the single site model. For multisite model we consider reservoirs in the upper Tennessee valley. Streamflow forecasts are issued and updated continuously every day at S2S time scale. We considered precipitation forecasts obtained from NOAA Climate Forecast System (CFSv2) GCM as predictors for developing S2S streamflow forecasts along with relevant indices for predicting hidden states. Spatial dependence of the inflow series of reservoirs are also preserved in the multi-site model. To circumvent the non-normality of the data, we consider the HMM in a Generalized Linear Model setting. Skill of the proposed approach is tested using split sample validation against a traditional multi-site canonical correlation model developed using the same set of predictors. From the posterior distribution of the inflow forecasts, we also highlight different system behavior

  19. A Bayesian Hierarchical Modeling Approach to Predicting Flow in Ungauged Basins

    NASA Astrophysics Data System (ADS)

    Gronewold, A.; Alameddine, I.; Anderson, R. M.

    2009-12-01

    Recent innovative approaches to identifying and applying regression-based relationships between land use patterns (such as increasing impervious surface area and decreasing vegetative cover) and rainfall-runoff model parameters represent novel and promising improvements to predicting flow from ungauged basins. In particular, these approaches allow for predicting flows under uncertain and potentially variable future conditions due to rapid land cover changes, variable climate conditions, and other factors. Despite the broad range of literature on estimating rainfall-runoff model parameters, however, the absence of a robust set of modeling tools for identifying and quantifying uncertainties in (and correlation between) rainfall-runoff model parameters represents a significant gap in current hydrological modeling research. Here, we build upon a series of recent publications promoting novel Bayesian and probabilistic modeling strategies for quantifying rainfall-runoff model parameter estimation uncertainty. Our approach applies alternative measures of rainfall-runoff model parameter joint likelihood (including Nash-Sutcliffe efficiency, among others) to simulate samples from the joint parameter posterior probability density function. We then use these correlated samples as response variables in a Bayesian hierarchical model with land use coverage data as predictor variables in order to develop a robust land use-based tool for forecasting flow in ungauged basins while accounting for, and explicitly acknowledging, parameter estimation uncertainty. We apply this modeling strategy to low-relief coastal watersheds of Eastern North Carolina, an area representative of coastal resource waters throughout the world because of its sensitive embayments and because of the abundant (but currently threatened) natural resources it hosts. Consequently, this area is the subject of several ongoing studies and large-scale planning initiatives, including those conducted through the United

  20. Bayesian hierarchical modeling for subject-level response classification in peptide microarray immunoassays

    PubMed Central

    Imholte, Gregory; Gottardo, Raphael

    2017-01-01

    Summary The peptide microarray immunoassay simultaneously screens sample serum against thousands of peptides, determining the presence of antibodies bound to array probes. Peptide microarrays tiling immunogenic regions of pathogens (e.g. envelope proteins of a virus) are an important high throughput tool for querying and mapping antibody binding. Because of the assay’s many steps, from probe synthesis to incubation, peptide microarray data can be noisy with extreme outliers. In addition, subjects may produce different antibody profiles in response to an identical vaccine stimulus or infection, due to variability among subjects’ immune systems. We present a robust Bayesian hierarchical model for peptide microarray experiments, pepBayes, to estimate the probability of antibody response for each subject/peptide combination. Heavy-tailed error distributions accommodate outliers and extreme responses, and tailored random effect terms automatically incorporate technical effects prevalent in the assay. We apply our model to two vaccine trial datasets to demonstrate model performance. Our approach enjoys high sensitivity and specificity when detecting vaccine induced antibody responses. A simulation study shows an adaptive thresholding classification method has appropriate false discovery rate control with high sensitivity, and receiver operating characteristics generated on vaccine trial data suggest that pepBayes clearly separates responses from non-responses. PMID:27061097

  1. Efficient Bayesian hierarchical functional data analysis with basis function approximations using Gaussian-Wishart processes.

    PubMed

    Yang, Jingjing; Cox, Dennis D; Lee, Jong Soo; Ren, Peng; Choi, Taeryon

    2017-12-01

    Functional data are defined as realizations of random functions (mostly smooth functions) varying over a continuum, which are usually collected on discretized grids with measurement errors. In order to accurately smooth noisy functional observations and deal with the issue of high-dimensional observation grids, we propose a novel Bayesian method based on the Bayesian hierarchical model with a Gaussian-Wishart process prior and basis function representations. We first derive an induced model for the basis-function coefficients of the functional data, and then use this model to conduct posterior inference through Markov chain Monte Carlo methods. Compared to the standard Bayesian inference that suffers serious computational burden and instability in analyzing high-dimensional functional data, our method greatly improves the computational scalability and stability, while inheriting the advantage of simultaneously smoothing raw observations and estimating the mean-covariance functions in a nonparametric way. In addition, our method can naturally handle functional data observed on random or uncommon grids. Simulation and real studies demonstrate that our method produces similar results to those obtainable by the standard Bayesian inference with low-dimensional common grids, while efficiently smoothing and estimating functional data with random and high-dimensional observation grids when the standard Bayesian inference fails. In conclusion, our method can efficiently smooth and estimate high-dimensional functional data, providing one way to resolve the curse of dimensionality for Bayesian functional data analysis with Gaussian-Wishart processes. © 2017, The International Biometric Society.

  2. Clustering and Bayesian hierarchical modeling for the definition of informative prior distributions in hydrogeology

    NASA Astrophysics Data System (ADS)

    Cucchi, K.; Kawa, N.; Hesse, F.; Rubin, Y.

    2017-12-01

    In order to reduce uncertainty in the prediction of subsurface flow and transport processes, practitioners should use all data available. However, classic inverse modeling frameworks typically only make use of information contained in in-situ field measurements to provide estimates of hydrogeological parameters. Such hydrogeological information about an aquifer is difficult and costly to acquire. In this data-scarce context, the transfer of ex-situ information coming from previously investigated sites can be critical for improving predictions by better constraining the estimation procedure. Bayesian inverse modeling provides a coherent framework to represent such ex-situ information by virtue of the prior distribution and combine them with in-situ information from the target site. In this study, we present an innovative data-driven approach for defining such informative priors for hydrogeological parameters at the target site. Our approach consists in two steps, both relying on statistical and machine learning methods. The first step is data selection; it consists in selecting sites similar to the target site. We use clustering methods for selecting similar sites based on observable hydrogeological features. The second step is data assimilation; it consists in assimilating data from the selected similar sites into the informative prior. We use a Bayesian hierarchical model to account for inter-site variability and to allow for the assimilation of multiple types of site-specific data. We present the application and validation of the presented methods on an established database of hydrogeological parameters. Data and methods are implemented in the form of an open-source R-package and therefore facilitate easy use by other practitioners.

  3. Bayesian cross-validation for model evaluation and selection, with application to the North American Breeding Bird Survey

    USGS Publications Warehouse

    Link, William; Sauer, John R.

    2016-01-01

    The analysis of ecological data has changed in two important ways over the last 15 years. The development and easy availability of Bayesian computational methods has allowed and encouraged the fitting of complex hierarchical models. At the same time, there has been increasing emphasis on acknowledging and accounting for model uncertainty. Unfortunately, the ability to fit complex models has outstripped the development of tools for model selection and model evaluation: familiar model selection tools such as Akaike's information criterion and the deviance information criterion are widely known to be inadequate for hierarchical models. In addition, little attention has been paid to the evaluation of model adequacy in context of hierarchical modeling, i.e., to the evaluation of fit for a single model. In this paper, we describe Bayesian cross-validation, which provides tools for model selection and evaluation. We describe the Bayesian predictive information criterion and a Bayesian approximation to the BPIC known as the Watanabe-Akaike information criterion. We illustrate the use of these tools for model selection, and the use of Bayesian cross-validation as a tool for model evaluation, using three large data sets from the North American Breeding Bird Survey.

  4. A hierarchical model for spatial capture-recapture data

    USGS Publications Warehouse

    Royle, J. Andrew; Young, K.V.

    2008-01-01

    Estimating density is a fundamental objective of many animal population studies. Application of methods for estimating population size from ostensibly closed populations is widespread, but ineffective for estimating absolute density because most populations are subject to short-term movements or so-called temporary emigration. This phenomenon invalidates the resulting estimates because the effective sample area is unknown. A number of methods involving the adjustment of estimates based on heuristic considerations are in widespread use. In this paper, a hierarchical model of spatially indexed capture recapture data is proposed for sampling based on area searches of spatial sample units subject to uniform sampling intensity. The hierarchical model contains explicit models for the distribution of individuals and their movements, in addition to an observation model that is conditional on the location of individuals during sampling. Bayesian analysis of the hierarchical model is achieved by the use of data augmentation, which allows for a straightforward implementation in the freely available software WinBUGS. We present results of a simulation study that was carried out to evaluate the operating characteristics of the Bayesian estimator under variable densities and movement patterns of individuals. An application of the model is presented for survey data on the flat-tailed horned lizard (Phrynosoma mcallii) in Arizona, USA.

  5. Sampling-free Bayesian inversion with adaptive hierarchical tensor representations

    NASA Astrophysics Data System (ADS)

    Eigel, Martin; Marschall, Manuel; Schneider, Reinhold

    2018-03-01

    A sampling-free approach to Bayesian inversion with an explicit polynomial representation of the parameter densities is developed, based on an affine-parametric representation of a linear forward model. This becomes feasible due to the complete treatment in function spaces, which requires an efficient model reduction technique for numerical computations. The advocated perspective yields the crucial benefit that error bounds can be derived for all occuring approximations, leading to provable convergence subject to the discretization parameters. Moreover, it enables a fully adaptive a posteriori control with automatic problem-dependent adjustments of the employed discretizations. The method is discussed in the context of modern hierarchical tensor representations, which are used for the evaluation of a random PDE (the forward model) and the subsequent high-dimensional quadrature of the log-likelihood, alleviating the ‘curse of dimensionality’. Numerical experiments demonstrate the performance and confirm the theoretical results.

  6. UNSUPERVISED TRANSIENT LIGHT CURVE ANALYSIS VIA HIERARCHICAL BAYESIAN INFERENCE

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sanders, N. E.; Soderberg, A. M.; Betancourt, M., E-mail: nsanders@cfa.harvard.edu

    2015-02-10

    Historically, light curve studies of supernovae (SNe) and other transient classes have focused on individual objects with copious and high signal-to-noise observations. In the nascent era of wide field transient searches, objects with detailed observations are decreasing as a fraction of the overall known SN population, and this strategy sacrifices the majority of the information contained in the data about the underlying population of transients. A population level modeling approach, simultaneously fitting all available observations of objects in a transient sub-class of interest, fully mines the data to infer the properties of the population and avoids certain systematic biases. Wemore » present a novel hierarchical Bayesian statistical model for population level modeling of transient light curves, and discuss its implementation using an efficient Hamiltonian Monte Carlo technique. As a test case, we apply this model to the Type IIP SN sample from the Pan-STARRS1 Medium Deep Survey, consisting of 18,837 photometric observations of 76 SNe, corresponding to a joint posterior distribution with 9176 parameters under our model. Our hierarchical model fits provide improved constraints on light curve parameters relevant to the physical properties of their progenitor stars relative to modeling individual light curves alone. Moreover, we directly evaluate the probability for occurrence rates of unseen light curve characteristics from the model hyperparameters, addressing observational biases in survey methodology. We view this modeling framework as an unsupervised machine learning technique with the ability to maximize scientific returns from data to be collected by future wide field transient searches like LSST.« less

  7. Hierarchical models and Bayesian analysis of bird survey information

    USGS Publications Warehouse

    Sauer, J.R.; Link, W.A.; Royle, J. Andrew; Ralph, C. John; Rich, Terrell D.

    2005-01-01

    Summary of bird survey information is a critical component of conservation activities, but often our summaries rely on statistical methods that do not accommodate the limitations of the information. Prioritization of species requires ranking and analysis of species by magnitude of population trend, but often magnitude of trend is a misleading measure of actual decline when trend is poorly estimated. Aggregation of population information among regions is also complicated by varying quality of estimates among regions. Hierarchical models provide a reasonable means of accommodating concerns about aggregation and ranking of quantities of varying precision. In these models the need to consider multiple scales is accommodated by placing distributional assumptions on collections of parameters. For collections of species trends, this allows probability statements to be made about the collections of species-specific parameters, rather than about the estimates. We define and illustrate hierarchical models for two commonly encountered situations in bird conservation: (1) Estimating attributes of collections of species estimates, including ranking of trends, estimating number of species with increasing populations, and assessing population stability with regard to predefined trend magnitudes; and (2) estimation of regional population change, aggregating information from bird surveys over strata. User-friendly computer software makes hierarchical models readily accessible to scientists.

  8. Testing comparative phylogeographic models of marine vicariance and dispersal using a hierarchical Bayesian approach

    PubMed Central

    2008-01-01

    Background Marine allopatric speciation is an enigma because pelagic larval dispersal can potentially connect disjunct populations thereby preventing reproductive and morphological divergence. Here we present a new hierarchical approximate Bayesian computation model (HABC) that tests two hypotheses of marine allopatric speciation: 1.) "soft vicariance", where a speciation involves fragmentation of a large widespread ancestral species range that was previously connected by long distance gene flow; and 2.) peripatric colonization, where speciations in peripheral archipelagos emerge from sweepstakes colonizations from central source regions. The HABC approach analyzes all the phylogeographic datasets at once in order to make across taxon-pair inferences about biogeographic processes while explicitly allowing for uncertainty in the demographic differences within each taxon-pair. Our method uses comparative phylogeographic data that consists of single locus mtDNA sequences from multiple co-distributed taxa containing pairs of central and peripheral populations. We use the method on two comparative phylogeographic data sets consisting of cowrie gastropod endemics co-distributed in the Hawaiian (11 taxon-pairs) and Marquesan archipelagos (7 taxon-pairs). Results Given the Marquesan data, we find strong evidence of simultaneous colonization across all seven cowrie gastropod endemics co-distributed in the Marquesas. In contrast, the lower sample sizes in the Hawaiian data lead to greater uncertainty associated with the Hawaiian estimates. Although, the hyper-parameter estimates point to soft vicariance in a subset of the 11 Hawaiian taxon-pairs, the hyper-prior and hyper-posterior are too similar to make a definitive conclusion. Both results are not inconsistent with what is known about the geologic history of the archipelagos. Simulations verify that our method can successfully distinguish these two histories across a wide range of conditions given sufficient sampling

  9. Hierarchical Bayesian method for mapping biogeochemical hot spots using induced polarization imaging

    DOE PAGES

    Wainwright, Haruko M.; Flores Orozco, Adrian; Bucker, Matthias; ...

    2016-01-29

    In floodplain environments, a naturally reduced zone (NRZ) is considered to be a common biogeochemical hot spot, having distinct microbial and geochemical characteristics. Although important for understanding their role in mediating floodplain biogeochemical processes, mapping the subsurface distribution of NRZs over the dimensions of a floodplain is challenging, as conventional wellbore data are typically spatially limited and the distribution of NRZs is heterogeneous. In this work, we present an innovative methodology for the probabilistic mapping of NRZs within a three-dimensional (3-D) subsurface domain using induced polarization imaging, which is a noninvasive geophysical technique. Measurements consist of surface geophysical surveys andmore » drilling-recovered sediments at the U.S. Department of Energy field site near Rifle, CO (USA). Inversion of surface time domain-induced polarization (TDIP) data yielded 3-D images of the complex electrical resistivity, in terms of magnitude and phase, which are associated with mineral precipitation and other lithological properties. By extracting the TDIP data values colocated with wellbore lithological logs, we found that the NRZs have a different distribution of resistivity and polarization from the other aquifer sediments. To estimate the spatial distribution of NRZs, we developed a Bayesian hierarchical model to integrate the geophysical and wellbore data. In addition, the resistivity images were used to estimate hydrostratigraphic interfaces under the floodplain. Validation results showed that the integration of electrical imaging and wellbore data using a Bayesian hierarchical model was capable of mapping spatially heterogeneous interfaces and NRZ distributions thereby providing a minimally invasive means to parameterize a hydrobiogeochemical model of the floodplain.« less

  10. What are hierarchical models and how do we analyze them?

    USGS Publications Warehouse

    Royle, Andy

    2016-01-01

    In this chapter we provide a basic definition of hierarchical models and introduce the two canonical hierarchical models in this book: site occupancy and N-mixture models. The former is a hierarchical extension of logistic regression and the latter is a hierarchical extension of Poisson regression. We introduce basic concepts of probability modeling and statistical inference including likelihood and Bayesian perspectives. We go through the mechanics of maximizing the likelihood and characterizing the posterior distribution by Markov chain Monte Carlo (MCMC) methods. We give a general perspective on topics such as model selection and assessment of model fit, although we demonstrate these topics in practice in later chapters (especially Chapters 5, 6, 7, and 10 Chapter 5 Chapter 6 Chapter 7 Chapter 10)

  11. Hierarchical Bayesian models to assess between- and within-batch variability of pathogen contamination in food.

    PubMed

    Commeau, Natalie; Cornu, Marie; Albert, Isabelle; Denis, Jean-Baptiste; Parent, Eric

    2012-03-01

    Assessing within-batch and between-batch variability is of major interest for risk assessors and risk managers in the context of microbiological contamination of food. For example, the ratio between the within-batch variability and the between-batch variability has a large impact on the results of a sampling plan. Here, we designed hierarchical Bayesian models to represent such variability. Compatible priors were built mathematically to obtain sound model comparisons. A numeric criterion is proposed to assess the contamination structure comparing the ability of the models to replicate grouped data at the batch level using a posterior predictive loss approach. Models were applied to two case studies: contamination by Listeria monocytogenes of pork breast used to produce diced bacon and contamination by the same microorganism on cold smoked salmon at the end of the process. In the first case study, a contamination structure clearly exists and is located at the batch level, that is, between batches variability is relatively strong, whereas in the second a structure also exists but is less marked. © 2012 Society for Risk Analysis.

  12. Hierarchical Bayesian Model Averaging for Non-Uniqueness and Uncertainty Analysis of Artificial Neural Networks

    NASA Astrophysics Data System (ADS)

    Fijani, E.; Chitsazan, N.; Nadiri, A.; Tsai, F. T.; Asghari Moghaddam, A.

    2012-12-01

    Artificial Neural Networks (ANNs) have been widely used to estimate concentration of chemicals in groundwater systems. However, estimation uncertainty is rarely discussed in the literature. Uncertainty in ANN output stems from three sources: ANN inputs, ANN parameters (weights and biases), and ANN structures. Uncertainty in ANN inputs may come from input data selection and/or input data error. ANN parameters are naturally uncertain because they are maximum-likelihood estimated. ANN structure is also uncertain because there is no unique ANN model given a specific case. Therefore, multiple plausible AI models are generally resulted for a study. One might ask why good models have to be ignored in favor of the best model in traditional estimation. What is the ANN estimation variance? How do the variances from different ANN models accumulate to the total estimation variance? To answer these questions we propose a Hierarchical Bayesian Model Averaging (HBMA) framework. Instead of choosing one ANN model (the best ANN model) for estimation, HBMA averages outputs of all plausible ANN models. The model weights are based on the evidence of data. Therefore, the HBMA avoids overconfidence on the single best ANN model. In addition, HBMA is able to analyze uncertainty propagation through aggregation of ANN models in a hierarchy framework. This method is applied for estimation of fluoride concentration in the Poldasht plain and the Bazargan plain in Iran. Unusually high fluoride concentration in the Poldasht and Bazargan plains has caused negative effects on the public health. Management of this anomaly requires estimation of fluoride concentration distribution in the area. The results show that the HBMA provides a knowledge-decision-based framework that facilitates analyzing and quantifying ANN estimation uncertainties from different sources. In addition HBMA allows comparative evaluation of the realizations for each source of uncertainty by segregating the uncertainty sources in

  13. Bayesian model reduction and empirical Bayes for group (DCM) studies

    PubMed Central

    Friston, Karl J.; Litvak, Vladimir; Oswal, Ashwini; Razi, Adeel; Stephan, Klaas E.; van Wijk, Bernadette C.M.; Ziegler, Gabriel; Zeidman, Peter

    2016-01-01

    This technical note describes some Bayesian procedures for the analysis of group studies that use nonlinear models at the first (within-subject) level – e.g., dynamic causal models – and linear models at subsequent (between-subject) levels. Its focus is on using Bayesian model reduction to finesse the inversion of multiple models of a single dataset or a single (hierarchical or empirical Bayes) model of multiple datasets. These applications of Bayesian model reduction allow one to consider parametric random effects and make inferences about group effects very efficiently (in a few seconds). We provide the relatively straightforward theoretical background to these procedures and illustrate their application using a worked example. This example uses a simulated mismatch negativity study of schizophrenia. We illustrate the robustness of Bayesian model reduction to violations of the (commonly used) Laplace assumption in dynamic causal modelling and show how its recursive application can facilitate both classical and Bayesian inference about group differences. Finally, we consider the application of these empirical Bayesian procedures to classification and prediction. PMID:26569570

  14. Bayesian model reduction and empirical Bayes for group (DCM) studies.

    PubMed

    Friston, Karl J; Litvak, Vladimir; Oswal, Ashwini; Razi, Adeel; Stephan, Klaas E; van Wijk, Bernadette C M; Ziegler, Gabriel; Zeidman, Peter

    2016-03-01

    This technical note describes some Bayesian procedures for the analysis of group studies that use nonlinear models at the first (within-subject) level - e.g., dynamic causal models - and linear models at subsequent (between-subject) levels. Its focus is on using Bayesian model reduction to finesse the inversion of multiple models of a single dataset or a single (hierarchical or empirical Bayes) model of multiple datasets. These applications of Bayesian model reduction allow one to consider parametric random effects and make inferences about group effects very efficiently (in a few seconds). We provide the relatively straightforward theoretical background to these procedures and illustrate their application using a worked example. This example uses a simulated mismatch negativity study of schizophrenia. We illustrate the robustness of Bayesian model reduction to violations of the (commonly used) Laplace assumption in dynamic causal modelling and show how its recursive application can facilitate both classical and Bayesian inference about group differences. Finally, we consider the application of these empirical Bayesian procedures to classification and prediction. Copyright © 2015 The Authors. Published by Elsevier Inc. All rights reserved.

  15. Multimethod, multistate Bayesian hierarchical modeling approach for use in regional monitoring of wolves.

    PubMed

    Jiménez, José; García, Emilio J; Llaneza, Luis; Palacios, Vicente; González, Luis Mariano; García-Domínguez, Francisco; Múñoz-Igualada, Jaime; López-Bao, José Vicente

    2016-08-01

    In many cases, the first step in large-carnivore management is to obtain objective, reliable, and cost-effective estimates of population parameters through procedures that are reproducible over time. However, monitoring predators over large areas is difficult, and the data have a high level of uncertainty. We devised a practical multimethod and multistate modeling approach based on Bayesian hierarchical-site-occupancy models that combined multiple survey methods to estimate different population states for use in monitoring large predators at a regional scale. We used wolves (Canis lupus) as our model species and generated reliable estimates of the number of sites with wolf reproduction (presence of pups). We used 2 wolf data sets from Spain (Western Galicia in 2013 and Asturias in 2004) to test the approach. Based on howling surveys, the naïve estimation (i.e., estimate based only on observations) of the number of sites with reproduction was 9 and 25 sites in Western Galicia and Asturias, respectively. Our model showed 33.4 (SD 9.6) and 34.4 (3.9) sites with wolf reproduction, respectively. The number of occupied sites with wolf reproduction was 0.67 (SD 0.19) and 0.76 (0.11), respectively. This approach can be used to design more cost-effective monitoring programs (i.e., to define the sampling effort needed per site). Our approach should inspire well-coordinated surveys across multiple administrative borders and populations and lead to improved decision making for management of large carnivores on a landscape level. The use of this Bayesian framework provides a simple way to visualize the degree of uncertainty around population-parameter estimates and thus provides managers and stakeholders an intuitive approach to interpreting monitoring results. Our approach can be widely applied to large spatial scales in wildlife monitoring where detection probabilities differ between population states and where several methods are being used to estimate different population

  16. Abrupt strategy change underlies gradual performance change: Bayesian hierarchical models of component and aggregate strategy use.

    PubMed

    Wynton, Sarah K A; Anglim, Jeromy

    2017-10-01

    While researchers have often sought to understand the learning curve in terms of multiple component processes, few studies have measured and mathematically modeled these processes on a complex task. In particular, there remains a need to reconcile how abrupt changes in strategy use can co-occur with gradual changes in task completion time. Thus, the current study aimed to assess the degree to which strategy change was abrupt or gradual, and whether strategy aggregation could partially explain gradual performance change. It also aimed to show how Bayesian methods could be used to model the effect of practice on strategy use. To achieve these aims, 162 participants completed 15 blocks of practice on a complex computer-based task-the Wynton-Anglim booking (WAB) task. The task allowed for multiple component strategies (i.e., memory retrieval, information reduction, and insight) that could also be aggregated to a global measure of strategy use. Bayesian hierarchical models were used to compare abrupt and gradual functions of component and aggregate strategy use. Task completion time was well-modeled by a power function, and global strategy use explained substantial variance in performance. Change in component strategy use tended to be abrupt, whereas change in global strategy use was gradual and well-modeled by a power function. Thus, differential timing of component strategy shifts leads to gradual changes in overall strategy efficiency, and this provides one reason for why smooth learning curves can co-occur with abrupt changes in strategy use. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  17. Advances in Parameter and Uncertainty Quantification Using Bayesian Hierarchical Techniques with a Spatially Referenced Watershed Model (Invited)

    NASA Astrophysics Data System (ADS)

    Alexander, R. B.; Boyer, E. W.; Schwarz, G. E.; Smith, R. A.

    2013-12-01

    Estimating water and material stores and fluxes in watershed studies is frequently complicated by uncertainties in quantifying hydrological and biogeochemical effects of factors such as land use, soils, and climate. Although these process-related effects are commonly measured and modeled in separate catchments, researchers are especially challenged by their complexity across catchments and diverse environmental settings, leading to a poor understanding of how model parameters and prediction uncertainties vary spatially. To address these concerns, we illustrate the use of Bayesian hierarchical modeling techniques with a dynamic version of the spatially referenced watershed model SPARROW (SPAtially Referenced Regression On Watershed attributes). The dynamic SPARROW model is designed to predict streamflow and other water cycle components (e.g., evapotranspiration, soil and groundwater storage) for monthly varying hydrological regimes, using mechanistic functions, mass conservation constraints, and statistically estimated parameters. In this application, the model domain includes nearly 30,000 NHD (National Hydrologic Data) stream reaches and their associated catchments in the Susquehanna River Basin. We report the results of our comparisons of alternative models of varying complexity, including models with different explanatory variables as well as hierarchical models that account for spatial and temporal variability in model parameters and variance (error) components. The model errors are evaluated for changes with season and catchment size and correlations in time and space. The hierarchical models consist of a two-tiered structure in which climate forcing parameters are modeled as random variables, conditioned on watershed properties. Quantification of spatial and temporal variations in the hydrological parameters and model uncertainties in this approach leads to more efficient (lower variance) and less biased model predictions throughout the river network

  18. Estimating the Term Structure With a Semiparametric Bayesian Hierarchical Model: An Application to Corporate Bonds.

    PubMed

    Cruz-Marcelo, Alejandro; Ensor, Katherine B; Rosner, Gary L

    2011-06-01

    The term structure of interest rates is used to price defaultable bonds and credit derivatives, as well as to infer the quality of bonds for risk management purposes. We introduce a model that jointly estimates term structures by means of a Bayesian hierarchical model with a prior probability model based on Dirichlet process mixtures. The modeling methodology borrows strength across term structures for purposes of estimation. The main advantage of our framework is its ability to produce reliable estimators at the company level even when there are only a few bonds per company. After describing the proposed model, we discuss an empirical application in which the term structure of 197 individual companies is estimated. The sample of 197 consists of 143 companies with only one or two bonds. In-sample and out-of-sample tests are used to quantify the improvement in accuracy that results from approximating the term structure of corporate bonds with estimators by company rather than by credit rating, the latter being a popular choice in the financial literature. A complete description of a Markov chain Monte Carlo (MCMC) scheme for the proposed model is available as Supplementary Material.

  19. An Evaluation of Hierarchical Bayes Estimation for the Two- Parameter Logistic Model.

    ERIC Educational Resources Information Center

    Kim, Seock-Ho

    Hierarchical Bayes procedures for the two-parameter logistic item response model were compared for estimating item parameters. Simulated data sets were analyzed using two different Bayes estimation procedures, the two-stage hierarchical Bayes estimation (HB2) and the marginal Bayesian with known hyperparameters (MB), and marginal maximum…

  20. Hierarchical Bayesian Logistic Regression to forecast metabolic control in type 2 DM patients.

    PubMed

    Dagliati, Arianna; Malovini, Alberto; Decata, Pasquale; Cogni, Giulia; Teliti, Marsida; Sacchi, Lucia; Cerra, Carlo; Chiovato, Luca; Bellazzi, Riccardo

    2016-01-01

    In this work we present our efforts in building a model able to forecast patients' changes in clinical conditions when repeated measurements are available. In this case the available risk calculators are typically not applicable. We propose a Hierarchical Bayesian Logistic Regression model, which allows taking into account individual and population variability in model parameters estimate. The model is used to predict metabolic control and its variation in type 2 diabetes mellitus. In particular we have analyzed a population of more than 1000 Italian type 2 diabetic patients, collected within the European project Mosaic. The results obtained in terms of Matthews Correlation Coefficient are significantly better than the ones gathered with standard logistic regression model, based on data pooling.

  1. Air toxics and birth defects: a Bayesian hierarchical approach to evaluate multiple pollutants and spina bifida.

    PubMed

    Swartz, Michael D; Cai, Yi; Chan, Wenyaw; Symanski, Elaine; Mitchell, Laura E; Danysh, Heather E; Langlois, Peter H; Lupo, Philip J

    2015-02-09

    While there is evidence that maternal exposure to benzene is associated with spina bifida in offspring, to our knowledge there have been no assessments to evaluate the role of multiple hazardous air pollutants (HAPs) simultaneously on the risk of this relatively common birth defect. In the current study, we evaluated the association between maternal exposure to HAPs identified by the United States Environmental Protection Agency (U.S. EPA) and spina bifida in offspring using hierarchical Bayesian modeling that includes Stochastic Search Variable Selection (SSVS). The Texas Birth Defects Registry provided data on spina bifida cases delivered between 1999 and 2004. The control group was a random sample of unaffected live births, frequency matched to cases on year of birth. Census tract-level estimates of annual HAP levels were obtained from the U.S. EPA's 1999 Assessment System for Population Exposure Nationwide. Using the distribution among controls, exposure was categorized as high exposure (>95(th) percentile), medium exposure (5(th)-95(th) percentile), and low exposure (<5(th) percentile, reference). We used hierarchical Bayesian logistic regression models with SSVS to evaluate the association between HAPs and spina bifida by computing an odds ratio (OR) for each HAP using the posterior mean, and a 95% credible interval (CI) using the 2.5(th) and 97.5(th) quantiles of the posterior samples. Based on previous assessments, any pollutant with a Bayes factor greater than 1 was selected for inclusion in a final model. Twenty-five HAPs were selected in the final analysis to represent "bins" of highly correlated HAPs (ρ > 0.80). We identified two out of 25 HAPs with a Bayes factor greater than 1: quinoline (ORhigh = 2.06, 95% CI: 1.11-3.87, Bayes factor = 1.01) and trichloroethylene (ORmedium = 2.00, 95% CI: 1.14-3.61, Bayes factor = 3.79). Overall there is evidence that quinoline and trichloroethylene may be significant contributors to the risk of spina bifida

  2. Estimating the Term Structure With a Semiparametric Bayesian Hierarchical Model: An Application to Corporate Bonds1

    PubMed Central

    Cruz-Marcelo, Alejandro; Ensor, Katherine B.; Rosner, Gary L.

    2011-01-01

    The term structure of interest rates is used to price defaultable bonds and credit derivatives, as well as to infer the quality of bonds for risk management purposes. We introduce a model that jointly estimates term structures by means of a Bayesian hierarchical model with a prior probability model based on Dirichlet process mixtures. The modeling methodology borrows strength across term structures for purposes of estimation. The main advantage of our framework is its ability to produce reliable estimators at the company level even when there are only a few bonds per company. After describing the proposed model, we discuss an empirical application in which the term structure of 197 individual companies is estimated. The sample of 197 consists of 143 companies with only one or two bonds. In-sample and out-of-sample tests are used to quantify the improvement in accuracy that results from approximating the term structure of corporate bonds with estimators by company rather than by credit rating, the latter being a popular choice in the financial literature. A complete description of a Markov chain Monte Carlo (MCMC) scheme for the proposed model is available as Supplementary Material. PMID:21765566

  3. A Bayesian hierarchical model with novel prior specifications for estimating HIV testing rates.

    PubMed

    An, Qian; Kang, Jian; Song, Ruiguang; Hall, H Irene

    2016-04-30

    Human immunodeficiency virus (HIV) infection is a severe infectious disease actively spreading globally, and acquired immunodeficiency syndrome (AIDS) is an advanced stage of HIV infection. The HIV testing rate, that is, the probability that an AIDS-free HIV infected person seeks a test for HIV during a particular time interval, given no previous positive test has been obtained prior to the start of the time, is an important parameter for public health. In this paper, we propose a Bayesian hierarchical model with two levels of hierarchy to estimate the HIV testing rate using annual AIDS and AIDS-free HIV diagnoses data. At level one, we model the latent number of HIV infections for each year using a Poisson distribution with the intensity parameter representing the HIV incidence rate. At level two, the annual numbers of AIDS and AIDS-free HIV diagnosed cases and all undiagnosed cases stratified by the HIV infections at different years are modeled using a multinomial distribution with parameters including the HIV testing rate. We propose a new class of priors for the HIV incidence rate and HIV testing rate taking into account the temporal dependence of these parameters to improve the estimation accuracy. We develop an efficient posterior computation algorithm based on the adaptive rejection metropolis sampling technique. We demonstrate our model using simulation studies and the analysis of the national HIV surveillance data in the USA. Copyright © 2015 John Wiley & Sons, Ltd.

  4. A Bayesian hierarchical model with novel prior specifications for estimating HIV testing rates

    PubMed Central

    An, Qian; Kang, Jian; Song, Ruiguang; Hall, H. Irene

    2016-01-01

    Human immunodeficiency virus (HIV) infection is a severe infectious disease actively spreading globally, and acquired immunodeficiency syndrome (AIDS) is an advanced stage of HIV infection. The HIV testing rate, that is, the probability that an AIDS-free HIV infected person seeks a test for HIV during a particular time interval, given no previous positive test has been obtained prior to the start of the time, is an important parameter for public health. In this paper, we propose a Bayesian hierarchical model with two levels of hierarchy to estimate the HIV testing rate using annual AIDS and AIDS-free HIV diagnoses data. At level one, we model the latent number of HIV infections for each year using a Poisson distribution with the intensity parameter representing the HIV incidence rate. At level two, the annual numbers of AIDS and AIDS-free HIV diagnosed cases and all undiagnosed cases stratified by the HIV infections at different years are modeled using a multinomial distribution with parameters including the HIV testing rate. We propose a new class of priors for the HIV incidence rate and HIV testing rate taking into account the temporal dependence of these parameters to improve the estimation accuracy. We develop an efficient posterior computation algorithm based on the adaptive rejection metropolis sampling technique. We demonstrate our model using simulation studies and the analysis of the national HIV surveillance data in the USA. PMID:26567891

  5. Estimating temporal trend in the presence of spatial complexity: A Bayesian hierarchical model for a wetland plant population undergoing restoration

    USGS Publications Warehouse

    Rodhouse, T.J.; Irvine, K.M.; Vierling, K.T.; Vierling, L.A.

    2011-01-01

    Monitoring programs that evaluate restoration and inform adaptive management are important for addressing environmental degradation. These efforts may be well served by spatially explicit hierarchical approaches to modeling because of unavoidable spatial structure inherited from past land use patterns and other factors. We developed Bayesian hierarchical models to estimate trends from annual density counts observed in a spatially structured wetland forb (Camassia quamash [camas]) population following the cessation of grazing and mowing on the study area, and in a separate reference population of camas. The restoration site was bisected by roads and drainage ditches, resulting in distinct subpopulations ("zones") with different land use histories. We modeled this spatial structure by fitting zone-specific intercepts and slopes. We allowed spatial covariance parameters in the model to vary by zone, as in stratified kriging, accommodating anisotropy and improving computation and biological interpretation. Trend estimates provided evidence of a positive effect of passive restoration, and the strength of evidence was influenced by the amount of spatial structure in the model. Allowing trends to vary among zones and accounting for topographic heterogeneity increased precision of trend estimates. Accounting for spatial autocorrelation shifted parameter coefficients in ways that varied among zones depending on strength of statistical shrinkage, autocorrelation and topographic heterogeneity-a phenomenon not widely described. Spatially explicit estimates of trend from hierarchical models will generally be more useful to land managers than pooled regional estimates and provide more realistic assessments of uncertainty. The ability to grapple with historical contingency is an appealing benefit of this approach.

  6. Bayesian Models for Astrophysical Data Using R, JAGS, Python, and Stan

    NASA Astrophysics Data System (ADS)

    Hilbe, Joseph M.; de Souza, Rafael S.; Ishida, Emille E. O.

    2017-05-01

    This comprehensive guide to Bayesian methods in astronomy enables hands-on work by supplying complete R, JAGS, Python, and Stan code, to use directly or to adapt. It begins by examining the normal model from both frequentist and Bayesian perspectives and then progresses to a full range of Bayesian generalized linear and mixed or hierarchical models, as well as additional types of models such as ABC and INLA. The book provides code that is largely unavailable elsewhere and includes details on interpreting and evaluating Bayesian models. Initial discussions offer models in synthetic form so that readers can easily adapt them to their own data; later the models are applied to real astronomical data. The consistent focus is on hands-on modeling, analysis of data, and interpretations that address scientific questions. A must-have for astronomers, its concrete approach will also be attractive to researchers in the sciences more generally.

  7. Hierarchical Bayesian Model Averaging for Chance Constrained Remediation Designs

    NASA Astrophysics Data System (ADS)

    Chitsazan, N.; Tsai, F. T.

    2012-12-01

    Groundwater remediation designs are heavily relying on simulation models which are subjected to various sources of uncertainty in their predictions. To develop a robust remediation design, it is crucial to understand the effect of uncertainty sources. In this research, we introduce a hierarchical Bayesian model averaging (HBMA) framework to segregate and prioritize sources of uncertainty in a multi-layer frame, where each layer targets a source of uncertainty. The HBMA framework provides an insight to uncertainty priorities and propagation. In addition, HBMA allows evaluating model weights in different hierarchy levels and assessing the relative importance of models in each level. To account for uncertainty, we employ a chance constrained (CC) programming for stochastic remediation design. Chance constrained programming was implemented traditionally to account for parameter uncertainty. Recently, many studies suggested that model structure uncertainty is not negligible compared to parameter uncertainty. Using chance constrained programming along with HBMA can provide a rigorous tool for groundwater remediation designs under uncertainty. In this research, the HBMA-CC was applied to a remediation design in a synthetic aquifer. The design was to develop a scavenger well approach to mitigate saltwater intrusion toward production wells. HBMA was employed to assess uncertainties from model structure, parameter estimation and kriging interpolation. An improved harmony search optimization method was used to find the optimal location of the scavenger well. We evaluated prediction variances of chloride concentration at the production wells through the HBMA framework. The results showed that choosing the single best model may lead to a significant error in evaluating prediction variances for two reasons. First, considering the single best model, variances that stem from uncertainty in the model structure will be ignored. Second, considering the best model with non

  8. Correlation Between Hierarchical Bayesian and Aerosol ...

    EPA Pesticide Factsheets

    Tools to estimate PM2.5 mass have expanded in recent years, and now include: 1) stationary monitor readings, 2) Community Multi-Scale Air Quality (CMAQ) model estimates, 3) Hierarchical Bayesian (HB) estimates from combined stationary monitor readings and CMAQ model output; and, 4) calibrated Aerosol Optical Depth (AOD) readings from two Moderate Resolution Imaging Spetroradiometer (MODIS) units on National Aeronautics and Space Administration’s (NASA) Terra and Aqua satellites. Case-crossover design and conditional logistic regression were used to determine concentration response (CR) functions for three different PM2.5 levels on asthma emergency department (ED) visits and acute myocardial infarction (MI) inpatient hospitalizations in ninety-nine, 12 km2 grids in Baltimore, MD (2005 data). HB analyses for asthma ED visits produced significant results at 3-day lags for the main effect (OR=1.002, 95% CI=1.000-1.005), and two effect modifiers for females (OR=1.003, 95% CI=1.000-1.006), and non-Caucasian/non-African American persons (OR=1.010, 95% CI=1.001-1.019). HB analyses for acute MI inpatient hospitalizations also consistently produced a significant outcome for persons of other race (OR=1.031, 95% CI=1.006-1.056). Correlation coefficients computed between stationary monitor and satellite AOD PM2.5 values were significant for both asthma (rxy=0.944) and acute MI (rxy=0.940). Both monitor and AOD PM2.5 values were higher in February and June through Aug

  9. Extreme Rainfall Analysis using Bayesian Hierarchical Modeling in the Willamette River Basin, Oregon

    NASA Astrophysics Data System (ADS)

    Love, C. A.; Skahill, B. E.; AghaKouchak, A.; Karlovits, G. S.; England, J. F.; Duren, A. M.

    2016-12-01

    We present preliminary results of ongoing research directed at evaluating the worth of including various covariate data to support extreme rainfall analysis in the Willamette River basin using Bayesian hierarchical modeling (BHM). We also compare the BHM derived extreme rainfall estimates with their respective counterparts obtained from a traditional regional frequency analysis (RFA) using the same set of rain gage extreme rainfall data. The U.S. Army Corps of Engineers (USACE) Portland District operates thirteen dams in the 11,478 square mile Willamette River basin (WRB) located in northwestern Oregon, a major tributary of the Columbia River whose 187 miles long main stem, the Willamette River, flows northward between the Coastal and Cascade Ranges. The WRB contains approximately two-thirds of Oregon's population and 20 of the 25 most populous cities in the state. Extreme rainfall estimates are required to support risk-informed hydrologic analyses for these projects as part of the USACE Dam Safety Program. We analyze daily annual rainfall maxima data for the WRB utilizing the spatial BHM R package "spatial.gev.bma", which has been shown to be efficient in developing coherent maps of extreme rainfall by return level. Our intent is to profile for the USACE an alternate methodology to a RFA which was developed in 2008 due to the lack of an official NOAA Atlas 14 update for the state of Oregon. Unlike RFA, the advantage of a BHM-based analysis of hydrometeorological extremes is its ability to account for non-stationarity while providing robust estimates of uncertainty. BHM also allows for the inclusion of geographical and climatological factors which we show for the WRB influence regional rainfall extremes. Moreover, the Bayesian framework permits one to combine additional data types into the analysis; for example, information derived via elicitation and causal information expansion data, both being additional opportunities for future related research.

  10. Bayesian hierarchical piecewise regression models: a tool to detect trajectory divergence between groups in long-term observational studies.

    PubMed

    Buscot, Marie-Jeanne; Wotherspoon, Simon S; Magnussen, Costan G; Juonala, Markus; Sabin, Matthew A; Burgner, David P; Lehtimäki, Terho; Viikari, Jorma S A; Hutri-Kähönen, Nina; Raitakari, Olli T; Thomson, Russell J

    2017-06-06

    Bayesian hierarchical piecewise regression (BHPR) modeling has not been previously formulated to detect and characterise the mechanism of trajectory divergence between groups of participants that have longitudinal responses with distinct developmental phases. These models are useful when participants in a prospective cohort study are grouped according to a distal dichotomous health outcome. Indeed, a refined understanding of how deleterious risk factor profiles develop across the life-course may help inform early-life interventions. Previous techniques to determine between-group differences in risk factors at each age may result in biased estimate of the age at divergence. We demonstrate the use of Bayesian hierarchical piecewise regression (BHPR) to generate a point estimate and credible interval for the age at which trajectories diverge between groups for continuous outcome measures that exhibit non-linear within-person response profiles over time. We illustrate our approach by modeling the divergence in childhood-to-adulthood body mass index (BMI) trajectories between two groups of adults with/without type 2 diabetes mellitus (T2DM) in the Cardiovascular Risk in Young Finns Study (YFS). Using the proposed BHPR approach, we estimated the BMI profiles of participants with T2DM diverged from healthy participants at age 16 years for males (95% credible interval (CI):13.5-18 years) and 21 years for females (95% CI: 19.5-23 years). These data suggest that a critical window for weight management intervention in preventing T2DM might exist before the age when BMI growth rate is naturally expected to decrease. Simulation showed that when using pairwise comparison of least-square means from categorical mixed models, smaller sample sizes tended to conclude a later age of divergence. In contrast, the point estimate of the divergence time is not biased by sample size when using the proposed BHPR method. BHPR is a powerful analytic tool to model long-term non

  11. An accessible method for implementing hierarchical models with spatio-temporal abundance data

    USGS Publications Warehouse

    Ross, Beth E.; Hooten, Melvin B.; Koons, David N.

    2012-01-01

    A common goal in ecology and wildlife management is to determine the causes of variation in population dynamics over long periods of time and across large spatial scales. Many assumptions must nevertheless be overcome to make appropriate inference about spatio-temporal variation in population dynamics, such as autocorrelation among data points, excess zeros, and observation error in count data. To address these issues, many scientists and statisticians have recommended the use of Bayesian hierarchical models. Unfortunately, hierarchical statistical models remain somewhat difficult to use because of the necessary quantitative background needed to implement them, or because of the computational demands of using Markov Chain Monte Carlo algorithms to estimate parameters. Fortunately, new tools have recently been developed that make it more feasible for wildlife biologists to fit sophisticated hierarchical Bayesian models (i.e., Integrated Nested Laplace Approximation, ‘INLA’). We present a case study using two important game species in North America, the lesser and greater scaup, to demonstrate how INLA can be used to estimate the parameters in a hierarchical model that decouples observation error from process variation, and accounts for unknown sources of excess zeros as well as spatial and temporal dependence in the data. Ultimately, our goal was to make unbiased inference about spatial variation in population trends over time.

  12. Multi-subject hierarchical inverse covariance modelling improves estimation of functional brain networks.

    PubMed

    Colclough, Giles L; Woolrich, Mark W; Harrison, Samuel J; Rojas López, Pedro A; Valdes-Sosa, Pedro A; Smith, Stephen M

    2018-05-07

    A Bayesian model for sparse, hierarchical, inver-covariance estimation is presented, and applied to multi-subject functional connectivity estimation in the human brain. It enables simultaneous inference of the strength of connectivity between brain regions at both subject and population level, and is applicable to fMRI, MEG and EEG data. Two versions of the model can encourage sparse connectivity, either using continuous priors to suppress irrelevant connections, or using an explicit description of the network structure to estimate the connection probability between each pair of regions. A large evaluation of this model, and thirteen methods that represent the state of the art of inverse covariance modelling, is conducted using both simulated and resting-state functional imaging datasets. Our novel Bayesian approach has similar performance to the best extant alternative, Ng et al.'s Sparse Group Gaussian Graphical Model algorithm, which also is based on a hierarchical structure. Using data from the Human Connectome Project, we show that these hierarchical models are able to reduce the measurement error in MEG beta-band functional networks by 10%, producing concomitant increases in estimates of the genetic influence on functional connectivity. Copyright © 2018. Published by Elsevier Inc.

  13. A Robust Deconvolution Method based on Transdimensional Hierarchical Bayesian Inference

    NASA Astrophysics Data System (ADS)

    Kolb, J.; Lekic, V.

    2012-12-01

    Analysis of P-S and S-P conversions allows us to map receiver side crustal and lithospheric structure. This analysis often involves deconvolution of the parent wave field from the scattered wave field as a means of suppressing source-side complexity. A variety of deconvolution techniques exist including damped spectral division, Wiener filtering, iterative time-domain deconvolution, and the multitaper method. All of these techniques require estimates of noise characteristics as input parameters. We present a deconvolution method based on transdimensional Hierarchical Bayesian inference in which both noise magnitude and noise correlation are used as parameters in calculating the likelihood probability distribution. Because the noise for P-S and S-P conversion analysis in terms of receiver functions is a combination of both background noise - which is relatively easy to characterize - and signal-generated noise - which is much more difficult to quantify - we treat measurement errors as an known quantity, characterized by a probability density function whose mean and variance are model parameters. This transdimensional Hierarchical Bayesian approach has been successfully used previously in the inversion of receiver functions in terms of shear and compressional wave speeds of an unknown number of layers [1]. In our method we used a Markov chain Monte Carlo (MCMC) algorithm to find the receiver function that best fits the data while accurately assessing the noise parameters. In order to parameterize the receiver function we model the receiver function as an unknown number of Gaussians of unknown amplitude and width. The algorithm takes multiple steps before calculating the acceptance probability of a new model, in order to avoid getting trapped in local misfit minima. Using both observed and synthetic data, we show that the MCMC deconvolution method can accurately obtain a receiver function as well as an estimate of the noise parameters given the parent and daughter

  14. Bayesian Correction for Misclassification in Multilevel Count Data Models.

    PubMed

    Nelson, Tyler; Song, Joon Jin; Chin, Yoo-Mi; Stamey, James D

    2018-01-01

    Covariate misclassification is well known to yield biased estimates in single level regression models. The impact on hierarchical count models has been less studied. A fully Bayesian approach to modeling both the misclassified covariate and the hierarchical response is proposed. Models with a single diagnostic test and with multiple diagnostic tests are considered. Simulation studies show the ability of the proposed model to appropriately account for the misclassification by reducing bias and improving performance of interval estimators. A real data example further demonstrated the consequences of ignoring the misclassification. Ignoring misclassification yielded a model that indicated there was a significant, positive impact on the number of children of females who observed spousal abuse between their parents. When the misclassification was accounted for, the relationship switched to negative, but not significant. Ignoring misclassification in standard linear and generalized linear models is well known to lead to biased results. We provide an approach to extend misclassification modeling to the important area of hierarchical generalized linear models.

  15. A Hierarchical Modeling Approach to Data Analysis and Study Design in a Multi-Site Experimental fMRI Study

    ERIC Educational Resources Information Center

    Zhou, Bo; Konstorum, Anna; Duong, Thao; Tieu, Kinh H.; Wells, William M.; Brown, Gregory G.; Stern, Hal S.; Shahbaba, Babak

    2013-01-01

    We propose a hierarchical Bayesian model for analyzing multi-site experimental fMRI studies. Our method takes the hierarchical structure of the data (subjects are nested within sites, and there are multiple observations per subject) into account and allows for modeling between-site variation. Using posterior predictive model checking and model…

  16. Analyzing thresholds and efficiency with hierarchical Bayesian logistic regression.

    PubMed

    Houpt, Joseph W; Bittner, Jennifer L

    2018-07-01

    Ideal observer analysis is a fundamental tool used widely in vision science for analyzing the efficiency with which a cognitive or perceptual system uses available information. The performance of an ideal observer provides a formal measure of the amount of information in a given experiment. The ratio of human to ideal performance is then used to compute efficiency, a construct that can be directly compared across experimental conditions while controlling for the differences due to the stimuli and/or task specific demands. In previous research using ideal observer analysis, the effects of varying experimental conditions on efficiency have been tested using ANOVAs and pairwise comparisons. In this work, we present a model that combines Bayesian estimates of psychometric functions with hierarchical logistic regression for inference about both unadjusted human performance metrics and efficiencies. Our approach improves upon the existing methods by constraining the statistical analysis using a standard model connecting stimulus intensity to human observer accuracy and by accounting for variability in the estimates of human and ideal observer performance scores. This allows for both individual and group level inferences. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Estimating mono- and bi-phasic regression parameters using a mixture piecewise linear Bayesian hierarchical model

    PubMed Central

    Zhao, Rui; Catalano, Paul; DeGruttola, Victor G.; Michor, Franziska

    2017-01-01

    The dynamics of tumor burden, secreted proteins or other biomarkers over time, is often used to evaluate the effectiveness of therapy and to predict outcomes for patients. Many methods have been proposed to investigate longitudinal trends to better characterize patients and to understand disease progression. However, most approaches assume a homogeneous patient population and a uniform response trajectory over time and across patients. Here, we present a mixture piecewise linear Bayesian hierarchical model, which takes into account both population heterogeneity and nonlinear relationships between biomarkers and time. Simulation results show that our method was able to classify subjects according to their patterns of treatment response with greater than 80% accuracy in the three scenarios tested. We then applied our model to a large randomized controlled phase III clinical trial of multiple myeloma patients. Analysis results suggest that the longitudinal tumor burden trajectories in multiple myeloma patients are heterogeneous and nonlinear, even among patients assigned to the same treatment cohort. In addition, between cohorts, there are distinct differences in terms of the regression parameters and the distributions among categories in the mixture. Those results imply that longitudinal data from clinical trials may harbor unobserved subgroups and nonlinear relationships; accounting for both may be important for analyzing longitudinal data. PMID:28723910

  18. Combining information from multiple flood projections in a hierarchical Bayesian framework

    NASA Astrophysics Data System (ADS)

    Le Vine, Nataliya

    2016-04-01

    This study demonstrates, in the context of flood frequency analysis, the potential of a recently proposed hierarchical Bayesian approach to combine information from multiple models. The approach explicitly accommodates shared multimodel discrepancy as well as the probabilistic nature of the flood estimates, and treats the available models as a sample from a hypothetical complete (but unobserved) set of models. The methodology is applied to flood estimates from multiple hydrological projections (the Future Flows Hydrology data set) for 135 catchments in the UK. The advantages of the approach are shown to be: (1) to ensure adequate "baseline" with which to compare future changes; (2) to reduce flood estimate uncertainty; (3) to maximize use of statistical information in circumstances where multiple weak predictions individually lack power, but collectively provide meaningful information; (4) to diminish the importance of model consistency when model biases are large; and (5) to explicitly consider the influence of the (model performance) stationarity assumption. Moreover, the analysis indicates that reducing shared model discrepancy is the key to further reduction of uncertainty in the flood frequency analysis. The findings are of value regarding how conclusions about changing exposure to flooding are drawn, and to flood frequency change attribution studies.

  19. Efficient hierarchical trans-dimensional Bayesian inversion of magnetotelluric data

    NASA Astrophysics Data System (ADS)

    Xiang, Enming; Guo, Rongwen; Dosso, Stan E.; Liu, Jianxin; Dong, Hao; Ren, Zhengyong

    2018-06-01

    This paper develops an efficient hierarchical trans-dimensional (trans-D) Bayesian algorithm to invert magnetotelluric (MT) data for subsurface geoelectrical structure, with unknown geophysical model parameterization (the number of conductivity-layer interfaces) and data-error models parameterized by an auto-regressive (AR) process to account for potential error correlations. The reversible-jump Markov-chain Monte Carlo algorithm, which adds/removes interfaces and AR parameters in birth/death steps, is applied to sample the trans-D posterior probability density for model parameterization, model parameters, error variance and AR parameters, accounting for the uncertainties of model dimension and data-error statistics in the uncertainty estimates of the conductivity profile. To provide efficient sampling over the multiple subspaces of different dimensions, advanced proposal schemes are applied. Parameter perturbations are carried out in principal-component space, defined by eigen-decomposition of the unit-lag model covariance matrix, to minimize the effect of inter-parameter correlations and provide effective perturbation directions and length scales. Parameters of new layers in birth steps are proposed from the prior, instead of focused distributions centred at existing values, to improve birth acceptance rates. Parallel tempering, based on a series of parallel interacting Markov chains with successively relaxed likelihoods, is applied to improve chain mixing over model dimensions. The trans-D inversion is applied in a simulation study to examine the resolution of model structure according to the data information content. The inversion is also applied to a measured MT data set from south-central Australia.

  20. A hierarchical Bayesian approach to adaptive vision testing: A case study with the contrast sensitivity function.

    PubMed

    Gu, Hairong; Kim, Woojae; Hou, Fang; Lesmes, Luis Andres; Pitt, Mark A; Lu, Zhong-Lin; Myung, Jay I

    2016-01-01

    Measurement efficiency is of concern when a large number of observations are required to obtain reliable estimates for parametric models of vision. The standard entropy-based Bayesian adaptive testing procedures addressed the issue by selecting the most informative stimulus in sequential experimental trials. Noninformative, diffuse priors were commonly used in those tests. Hierarchical adaptive design optimization (HADO; Kim, Pitt, Lu, Steyvers, & Myung, 2014) further improves the efficiency of the standard Bayesian adaptive testing procedures by constructing an informative prior using data from observers who have already participated in the experiment. The present study represents an empirical validation of HADO in estimating the human contrast sensitivity function. The results show that HADO significantly improves the accuracy and precision of parameter estimates, and therefore requires many fewer observations to obtain reliable inference about contrast sensitivity, compared to the method of quick contrast sensitivity function (Lesmes, Lu, Baek, & Albright, 2010), which uses the standard Bayesian procedure. The improvement with HADO was maintained even when the prior was constructed from heterogeneous populations or a relatively small number of observers. These results of this case study support the conclusion that HADO can be used in Bayesian adaptive testing by replacing noninformative, diffuse priors with statistically justified informative priors without introducing unwanted bias.

  1. A hierarchical Bayesian approach to adaptive vision testing: A case study with the contrast sensitivity function

    PubMed Central

    Gu, Hairong; Kim, Woojae; Hou, Fang; Lesmes, Luis Andres; Pitt, Mark A.; Lu, Zhong-Lin; Myung, Jay I.

    2016-01-01

    Measurement efficiency is of concern when a large number of observations are required to obtain reliable estimates for parametric models of vision. The standard entropy-based Bayesian adaptive testing procedures addressed the issue by selecting the most informative stimulus in sequential experimental trials. Noninformative, diffuse priors were commonly used in those tests. Hierarchical adaptive design optimization (HADO; Kim, Pitt, Lu, Steyvers, & Myung, 2014) further improves the efficiency of the standard Bayesian adaptive testing procedures by constructing an informative prior using data from observers who have already participated in the experiment. The present study represents an empirical validation of HADO in estimating the human contrast sensitivity function. The results show that HADO significantly improves the accuracy and precision of parameter estimates, and therefore requires many fewer observations to obtain reliable inference about contrast sensitivity, compared to the method of quick contrast sensitivity function (Lesmes, Lu, Baek, & Albright, 2010), which uses the standard Bayesian procedure. The improvement with HADO was maintained even when the prior was constructed from heterogeneous populations or a relatively small number of observers. These results of this case study support the conclusion that HADO can be used in Bayesian adaptive testing by replacing noninformative, diffuse priors with statistically justified informative priors without introducing unwanted bias. PMID:27105061

  2. Recent global methane trends: an investigation using hierarchical Bayesian methods

    NASA Astrophysics Data System (ADS)

    Rigby, M. L.; Stavert, A.; Ganesan, A.; Lunt, M. F.

    2014-12-01

    Following a decade with little growth, methane concentrations began to increase across the globe in 2007, and have continued to rise ever since. The reasons for this renewed growth are currently the subject of much debate. Here, we discuss the recent observed trends, and highlight some of the strengths and weaknesses in current "inverse" methods for quantifying fluxes using observations. In particular, we focus on the outstanding problems of accurately quantifying uncertainties in inverse frameworks. We examine to what extent the recent methane changes can be explained by the current generation of flux models and inventories. We examine the major modes of variability in wetland models along with the Global Fire Emissions Database (GFED) and the Emissions Database for Global Atmospheric Research (EDGAR). Using the Model for Ozone and Related Tracers (MOZART), we determine whether the spatial and temporal atmospheric trends predicted using these emissions can be brought into consistency with in situ atmospheric observations. We use a novel hierarchical Bayesian methodology in which scaling factors applied to the principal components of the flux fields are estimated simultaneously with the uncertainties associated with the a priori fluxes and with model representations of the observations. Using this method, we examine the predictive power of methane flux models for explaining recent fluctuations.

  3. Comparison of Extreme Precipitation Return Levels using Spatial Bayesian Hierarchical Modeling versus Regional Frequency Analysis

    NASA Astrophysics Data System (ADS)

    Love, C. A.; Skahill, B. E.; AghaKouchak, A.; Karlovits, G. S.; England, J. F.; Duren, A. M.

    2017-12-01

    We compare gridded extreme precipitation return levels obtained using spatial Bayesian hierarchical modeling (BHM) with their respective counterparts from a traditional regional frequency analysis (RFA) using the same set of extreme precipitation data. Our study area is the 11,478 square mile Willamette River basin (WRB) located in northwestern Oregon, a major tributary of the Columbia River whose 187 miles long main stem, the Willamette River, flows northward between the Coastal and Cascade Ranges. The WRB contains approximately two ­thirds of Oregon's population and 20 of the 25 most populous cities in the state. The U.S. Army Corps of Engineers (USACE) Portland District operates thirteen dams and extreme precipitation estimates are required to support risk­ informed hydrologic analyses as part of the USACE Dam Safety Program. Our intent is to profile for the USACE an alternate methodology to an RFA that was developed in 2008 due to the lack of an official NOAA Atlas 14 update for the state of Oregon. We analyze 24-hour annual precipitation maxima data for the WRB utilizing the spatial BHM R package "spatial.gev.bma", which has been shown to be efficient in developing coherent maps of extreme precipitation by return level. Our BHM modeling analysis involved application of leave-one-out cross validation (LOO-CV), which not only supported model selection but also a comprehensive assessment of location specific model performance. The LOO-CV results will provide a basis for the BHM RFA comparison.

  4. A hierarchical Bayesian method for vibration-based time domain force reconstruction problems

    NASA Astrophysics Data System (ADS)

    Li, Qiaofeng; Lu, Qiuhai

    2018-05-01

    Traditional force reconstruction techniques require prior knowledge on the force nature to determine the regularization term. When such information is unavailable, the inappropriate term is easily chosen and the reconstruction result becomes unsatisfactory. In this paper, we propose a novel method to automatically determine the appropriate q as in ℓq regularization and reconstruct the force history. The method incorporates all to-be-determined variables such as the force history, precision parameters and q into a hierarchical Bayesian formulation. The posterior distributions of variables are evaluated by a Metropolis-within-Gibbs sampler. The point estimates of variables and their uncertainties are given. Simulations of a cantilever beam and a space truss under various loading conditions validate the proposed method in providing adaptive determination of q and better reconstruction performance than existing Bayesian methods.

  5. Assessing Local Model Adequacy in Bayesian Hierarchical Models Using the Partitioned Deviance Information Criterion

    PubMed Central

    Wheeler, David C.; Hickson, DeMarc A.; Waller, Lance A.

    2010-01-01

    Many diagnostic tools and goodness-of-fit measures, such as the Akaike information criterion (AIC) and the Bayesian deviance information criterion (DIC), are available to evaluate the overall adequacy of linear regression models. In addition, visually assessing adequacy in models has become an essential part of any regression analysis. In this paper, we focus on a spatial consideration of the local DIC measure for model selection and goodness-of-fit evaluation. We use a partitioning of the DIC into the local DIC, leverage, and deviance residuals to assess local model fit and influence for both individual observations and groups of observations in a Bayesian framework. We use visualization of the local DIC and differences in local DIC between models to assist in model selection and to visualize the global and local impacts of adding covariates or model parameters. We demonstrate the utility of the local DIC in assessing model adequacy using HIV prevalence data from pregnant women in the Butare province of Rwanda during 1989-1993 using a range of linear model specifications, from global effects only to spatially varying coefficient models, and a set of covariates related to sexual behavior. Results of applying the diagnostic visualization approach include more refined model selection and greater understanding of the models as applied to the data. PMID:21243121

  6. Applying Bayesian Modeling and Receiver Operating Characteristic Methodologies for Test Utility Analysis

    ERIC Educational Resources Information Center

    Wang, Qiu; Diemer, Matthew A.; Maier, Kimberly S.

    2013-01-01

    This study integrated Bayesian hierarchical modeling and receiver operating characteristic analysis (BROCA) to evaluate how interest strength (IS) and interest differentiation (ID) predicted low–socioeconomic status (SES) youth's interest-major congruence (IMC). Using large-scale Kuder Career Search online-assessment data, this study fit three…

  7. A hierarchical, ontology-driven Bayesian concept for ubiquitous medical environments--a case study for pulmonary diseases.

    PubMed

    Maragoudakis, Manolis; Lymberopoulos, Dimitrios; Fakotakis, Nikos; Spiropoulos, Kostas

    2008-01-01

    The present paper extends work on an existing computer-based Decision Support System (DSS) that aims to provide assistance to physicians as regards to pulmonary diseases. The extension deals with allowing for a hierarchical decomposition of the task, at different levels of domain granularity, using a novel approach, i.e. Hierarchical Bayesian Networks. The proposed framework uses data from various networking appliances such as mobile phones and wireless medical sensors to establish a ubiquitous environment for medical treatment of pulmonary diseases. Domain knowledge is encoded at the upper levels of the hierarchy, thus making the process of generalization easier to accomplish. The experimental results were carried out under the Pulmonary Department, University Regional Hospital Patras, Patras, Greece. They have supported our initial beliefs about the ability of Bayesian networks to provide an effective, yet semantically-oriented, means of prognosis and reasoning under conditions of uncertainty.

  8. Differentiating Wheat Genotypes by Bayesian Hierarchical Nonlinear Mixed Modeling of Wheat Root Density.

    PubMed

    Wasson, Anton P; Chiu, Grace S; Zwart, Alexander B; Binns, Timothy R

    2017-01-01

    Ensuring future food security for a growing population while climate change and urban sprawl put pressure on agricultural land will require sustainable intensification of current farming practices. For the crop breeder this means producing higher crop yields with less resources due to greater environmental stresses. While easy gains in crop yield have been made mostly "above ground," little progress has been made "below ground"; and yet it is these root system traits that can improve productivity and resistance to drought stress. Wheat pre-breeders use soil coring and core-break counts to phenotype root architecture traits, with data collected on rooting density for hundreds of genotypes in small increments of depth. The measured densities are both large datasets and highly variable even within the same genotype, hence, any rigorous, comprehensive statistical analysis of such complex field data would be technically challenging. Traditionally, most attributes of the field data are therefore discarded in favor of simple numerical summary descriptors which retain much of the high variability exhibited by the raw data. This poses practical challenges: although plant scientists have established that root traits do drive resource capture in crops, traits that are more randomly (rather than genetically) determined are difficult to breed for. In this paper we develop a hierarchical nonlinear mixed modeling approach that utilizes the complete field data for wheat genotypes to fit, under the Bayesian paradigm, an "idealized" relative intensity function for the root distribution over depth. Our approach was used to determine heritability : how much of the variation between field samples was purely random vs. being mechanistically driven by the plant genetics? Based on the genotypic intensity functions, the overall heritability estimate was 0.62 (95% Bayesian confidence interval was 0.52 to 0.71). Despite root count profiles that were statistically very noisy, our approach led

  9. Differentiating Wheat Genotypes by Bayesian Hierarchical Nonlinear Mixed Modeling of Wheat Root Density

    PubMed Central

    Wasson, Anton P.; Chiu, Grace S.; Zwart, Alexander B.; Binns, Timothy R.

    2017-01-01

    Ensuring future food security for a growing population while climate change and urban sprawl put pressure on agricultural land will require sustainable intensification of current farming practices. For the crop breeder this means producing higher crop yields with less resources due to greater environmental stresses. While easy gains in crop yield have been made mostly “above ground,” little progress has been made “below ground”; and yet it is these root system traits that can improve productivity and resistance to drought stress. Wheat pre-breeders use soil coring and core-break counts to phenotype root architecture traits, with data collected on rooting density for hundreds of genotypes in small increments of depth. The measured densities are both large datasets and highly variable even within the same genotype, hence, any rigorous, comprehensive statistical analysis of such complex field data would be technically challenging. Traditionally, most attributes of the field data are therefore discarded in favor of simple numerical summary descriptors which retain much of the high variability exhibited by the raw data. This poses practical challenges: although plant scientists have established that root traits do drive resource capture in crops, traits that are more randomly (rather than genetically) determined are difficult to breed for. In this paper we develop a hierarchical nonlinear mixed modeling approach that utilizes the complete field data for wheat genotypes to fit, under the Bayesian paradigm, an “idealized” relative intensity function for the root distribution over depth. Our approach was used to determine heritability: how much of the variation between field samples was purely random vs. being mechanistically driven by the plant genetics? Based on the genotypic intensity functions, the overall heritability estimate was 0.62 (95% Bayesian confidence interval was 0.52 to 0.71). Despite root count profiles that were statistically very noisy, our

  10. A Bayesian Approach for Summarizing and Modeling Time-Series Exposure Data with Left Censoring.

    PubMed

    Houseman, E Andres; Virji, M Abbas

    2017-08-01

    Direct reading instruments are valuable tools for measuring exposure as they provide real-time measurements for rapid decision making. However, their use is limited to general survey applications in part due to issues related to their performance. Moreover, statistical analysis of real-time data is complicated by autocorrelation among successive measurements, non-stationary time series, and the presence of left-censoring due to limit-of-detection (LOD). A Bayesian framework is proposed that accounts for non-stationary autocorrelation and LOD issues in exposure time-series data in order to model workplace factors that affect exposure and estimate summary statistics for tasks or other covariates of interest. A spline-based approach is used to model non-stationary autocorrelation with relatively few assumptions about autocorrelation structure. Left-censoring is addressed by integrating over the left tail of the distribution. The model is fit using Markov-Chain Monte Carlo within a Bayesian paradigm. The method can flexibly account for hierarchical relationships, random effects and fixed effects of covariates. The method is implemented using the rjags package in R, and is illustrated by applying it to real-time exposure data. Estimates for task means and covariates from the Bayesian model are compared to those from conventional frequentist models including linear regression, mixed-effects, and time-series models with different autocorrelation structures. Simulations studies are also conducted to evaluate method performance. Simulation studies with percent of measurements below the LOD ranging from 0 to 50% showed lowest root mean squared errors for task means and the least biased standard deviations from the Bayesian model compared to the frequentist models across all levels of LOD. In the application, task means from the Bayesian model were similar to means from the frequentist models, while the standard deviations were different. Parameter estimates for covariates

  11. Weakly Informative Prior for Point Estimation of Covariance Matrices in Hierarchical Models

    ERIC Educational Resources Information Center

    Chung, Yeojin; Gelman, Andrew; Rabe-Hesketh, Sophia; Liu, Jingchen; Dorie, Vincent

    2015-01-01

    When fitting hierarchical regression models, maximum likelihood (ML) estimation has computational (and, for some users, philosophical) advantages compared to full Bayesian inference, but when the number of groups is small, estimates of the covariance matrix (S) of group-level varying coefficients are often degenerate. One can do better, even from…

  12. Bridging Inter- and Intraspecific Trait Evolution with a Hierarchical Bayesian Approach.

    PubMed

    Kostikova, Anna; Silvestro, Daniele; Pearman, Peter B; Salamin, Nicolas

    2016-05-01

    The evolution of organisms is crucially dependent on the evolution of intraspecific variation. Its interactions with selective agents in the biotic and abiotic environments underlie many processes, such as intraspecific competition, resource partitioning and, eventually, species formation. Nevertheless, comparative models of trait evolution neither allow explicit testing of hypotheses related to the evolution of intraspecific variation nor do they simultaneously estimate rates of trait evolution by accounting for both trait mean and variance. Here, we present a model of phenotypic trait evolution using a hierarchical Bayesian approach that simultaneously incorporates interspecific and intraspecific variation. We assume that species-specific trait means evolve under a simple Brownian motion process, whereas species-specific trait variances are modeled with Brownian or Ornstein-Uhlenbeck processes. After evaluating the power of the method through simulations, we examine whether life-history traits impact evolution of intraspecific variation in the Eriogonoideae (buckwheat family, Polygonaceae). Our model is readily extendible to more complex scenarios of the evolution of inter- and intraspecific variation and presents a step toward more comprehensive comparative models for macroevolutionary studies. © The Author(s) 2016. Published by Oxford University Press, on behalf of the Society of Systematic Biologists. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  13. Influence of Climate Change on Flood Hazard using Climate Informed Bayesian Hierarchical Model in Johnson Creek River

    NASA Astrophysics Data System (ADS)

    Zarekarizi, M.; Moradkhani, H.

    2015-12-01

    Extreme events are proven to be affected by climate change, influencing hydrologic simulations for which stationarity is usually a main assumption. Studies have discussed that this assumption would lead to large bias in model estimations and higher flood hazard consequently. Getting inspired by the importance of non-stationarity, we determined how the exceedance probabilities have changed over time in Johnson Creek River, Oregon. This could help estimate the probability of failure of a structure that was primarily designed to resist less likely floods according to common practice. Therefore, we built a climate informed Bayesian hierarchical model and non-stationarity was considered in modeling framework. Principle component analysis shows that North Atlantic Oscillation (NAO), Western Pacific Index (WPI) and Eastern Asia (EA) are mostly affecting stream flow in this river. We modeled flood extremes using peaks over threshold (POT) method rather than conventional annual maximum flood (AMF) mainly because it is possible to base the model on more information. We used available threshold selection methods to select a suitable threshold for the study area. Accounting for non-stationarity, model parameters vary through time with climate indices. We developed a couple of model scenarios and chose one which could best explain the variation in data based on performance measures. We also estimated return periods under non-stationarity condition. Results show that ignoring stationarity could increase the flood hazard up to four times which could increase the probability of an in-stream structure being overtopped.

  14. Variational Bayesian identification and prediction of stochastic nonlinear dynamic causal models.

    PubMed

    Daunizeau, J; Friston, K J; Kiebel, S J

    2009-11-01

    In this paper, we describe a general variational Bayesian approach for approximate inference on nonlinear stochastic dynamic models. This scheme extends established approximate inference on hidden-states to cover: (i) nonlinear evolution and observation functions, (ii) unknown parameters and (precision) hyperparameters and (iii) model comparison and prediction under uncertainty. Model identification or inversion entails the estimation of the marginal likelihood or evidence of a model. This difficult integration problem can be finessed by optimising a free-energy bound on the evidence using results from variational calculus. This yields a deterministic update scheme that optimises an approximation to the posterior density on the unknown model variables. We derive such a variational Bayesian scheme in the context of nonlinear stochastic dynamic hierarchical models, for both model identification and time-series prediction. The computational complexity of the scheme is comparable to that of an extended Kalman filter, which is critical when inverting high dimensional models or long time-series. Using Monte-Carlo simulations, we assess the estimation efficiency of this variational Bayesian approach using three stochastic variants of chaotic dynamic systems. We also demonstrate the model comparison capabilities of the method, its self-consistency and its predictive power.

  15. Subjective value of risky foods for individual domestic chicks: a hierarchical Bayesian model.

    PubMed

    Kawamori, Ai; Matsushima, Toshiya

    2010-05-01

    For animals to decide which prey to attack, the gain and delay of the food item must be integrated in a value function. However, the subjective value is not obtained by expected profitability when it is accompanied by risk. To estimate the subjective value, we examined choices in a cross-shaped maze with two colored feeders in domestic chicks. When tested by a reversal in food amount or delay, chicks changed choices similarly in both conditions (experiment 1). We therefore examined risk sensitivity for amount and delay (experiment 2) by supplying one feeder with food of fixed profitability and the alternative feeder with high- or low-profitability food at equal probability. Profitability varied in amount (groups 1 and 2 at high and low variance) or in delay (group 3). To find the equilibrium, the amount (groups 1 and 2) or delay (group 3) of the food in the fixed feeder was adjusted in a total of 18 blocks. The Markov chain Monte Carlo method was applied to a hierarchical Bayesian model to estimate the subjective value. Chicks undervalued the variable feeder in group 1 and were indifferent in group 2 but overvalued the variable feeder in group 3 at a population level. Re-examination without the titration procedure (experiment 3) suggested that the subjective value was not absolute for each option. When the delay was varied, the variable option was often given a paradoxically high value depending on fixed alternative. Therefore, the basic assumption of the uniquely determined value function might be questioned.

  16. Hierarchical Bayesian inference of the initial mass function in composite stellar populations

    NASA Astrophysics Data System (ADS)

    Dries, M.; Trager, S. C.; Koopmans, L. V. E.; Popping, G.; Somerville, R. S.

    2018-03-01

    The initial mass function (IMF) is a key ingredient in many studies of galaxy formation and evolution. Although the IMF is often assumed to be universal, there is continuing evidence that it is not universal. Spectroscopic studies that derive the IMF of the unresolved stellar populations of a galaxy often assume that this spectrum can be described by a single stellar population (SSP). To alleviate these limitations, in this paper we have developed a unique hierarchical Bayesian framework for modelling composite stellar populations (CSPs). Within this framework, we use a parametrized IMF prior to regulate a direct inference of the IMF. We use this new framework to determine the number of SSPs that is required to fit a set of realistic CSP mock spectra. The CSP mock spectra that we use are based on semi-analytic models and have an IMF that varies as a function of stellar velocity dispersion of the galaxy. Our results suggest that using a single SSP biases the determination of the IMF slope to a higher value than the true slope, although the trend with stellar velocity dispersion is overall recovered. If we include more SSPs in the fit, the Bayesian evidence increases significantly and the inferred IMF slopes of our mock spectra converge, within the errors, to their true values. Most of the bias is already removed by using two SSPs instead of one. We show that we can reconstruct the variable IMF of our mock spectra for signal-to-noise ratios exceeding ˜75.

  17. LiDAR based prediction of forest biomass using hierarchical models with spatially varying coefficients

    Treesearch

    Chad Babcock; Andrew O. Finley; John B. Bradford; Randy Kolka; Richard Birdsey; Michael G. Ryan

    2015-01-01

    Many studies and production inventory systems have shown the utility of coupling covariates derived from Light Detection and Ranging (LiDAR) data with forest variables measured on georeferenced inventory plots through regression models. The objective of this study was to propose and assess the use of a Bayesian hierarchical modeling framework that accommodates both...

  18. Hierarchical Bayesian Spatio–Temporal Analysis of Climatic and Socio–Economic Determinants of Rocky Mountain Spotted Fever

    PubMed Central

    Raghavan, Ram K.; Goodin, Douglas G.; Neises, Daniel; Anderson, Gary A.; Ganta, Roman R.

    2016-01-01

    This study aims to examine the spatio-temporal dynamics of Rocky Mountain spotted fever (RMSF) prevalence in four contiguous states of Midwestern United States, and to determine the impact of environmental and socio–economic factors associated with this disease. Bayesian hierarchical models were used to quantify space and time only trends and spatio–temporal interaction effect in the case reports submitted to the state health departments in the region. Various socio–economic, environmental and climatic covariates screened a priori in a bivariate procedure were added to a main–effects Bayesian model in progressive steps to evaluate important drivers of RMSF space-time patterns in the region. Our results show a steady increase in RMSF incidence over the study period to newer geographic areas, and the posterior probabilities of county-specific trends indicate clustering of high risk counties in the central and southern parts of the study region. At the spatial scale of a county, the prevalence levels of RMSF is influenced by poverty status, average relative humidity, and average land surface temperature (>35°C) in the region, and the relevance of these factors in the context of climate–change impacts on tick–borne diseases are discussed. PMID:26942604

  19. Hierarchical Bayesian Spatio-Temporal Analysis of Climatic and Socio-Economic Determinants of Rocky Mountain Spotted Fever.

    PubMed

    Raghavan, Ram K; Goodin, Douglas G; Neises, Daniel; Anderson, Gary A; Ganta, Roman R

    2016-01-01

    This study aims to examine the spatio-temporal dynamics of Rocky Mountain spotted fever (RMSF) prevalence in four contiguous states of Midwestern United States, and to determine the impact of environmental and socio-economic factors associated with this disease. Bayesian hierarchical models were used to quantify space and time only trends and spatio-temporal interaction effect in the case reports submitted to the state health departments in the region. Various socio-economic, environmental and climatic covariates screened a priori in a bivariate procedure were added to a main-effects Bayesian model in progressive steps to evaluate important drivers of RMSF space-time patterns in the region. Our results show a steady increase in RMSF incidence over the study period to newer geographic areas, and the posterior probabilities of county-specific trends indicate clustering of high risk counties in the central and southern parts of the study region. At the spatial scale of a county, the prevalence levels of RMSF is influenced by poverty status, average relative humidity, and average land surface temperature (>35°C) in the region, and the relevance of these factors in the context of climate-change impacts on tick-borne diseases are discussed.

  20. Bayesian Inference: with ecological applications

    USGS Publications Warehouse

    Link, William A.; Barker, Richard J.

    2010-01-01

    This text provides a mathematically rigorous yet accessible and engaging introduction to Bayesian inference with relevant examples that will be of interest to biologists working in the fields of ecology, wildlife management and environmental studies as well as students in advanced undergraduate statistics.. This text opens the door to Bayesian inference, taking advantage of modern computational efficiencies and easily accessible software to evaluate complex hierarchical models.

  1. Bayesian Decision Support

    NASA Astrophysics Data System (ADS)

    Berliner, M.

    2017-12-01

    Bayesian statistical decision theory offers a natural framework for decision-policy making in the presence of uncertainty. Key advantages of the approach include efficient incorporation of information and observations. However, in complicated settings it is very difficult, perhaps essentially impossible, to formalize the mathematical inputs needed in the approach. Nevertheless, using the approach as a template is useful for decision support; that is, organizing and communicating our analyses. Bayesian hierarchical modeling is valuable in quantifying and managing uncertainty such cases. I review some aspects of the idea emphasizing statistical model development and use in the context of sea-level rise.

  2. EVOLUTION OF THE VELOCITY-DISPERSION FUNCTION OF LUMINOUS RED GALAXIES: A HIERARCHICAL BAYESIAN MEASUREMENT

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Shu Yiping; Bolton, Adam S.; Dawson, Kyle S.

    2012-04-15

    We present a hierarchical Bayesian determination of the velocity-dispersion function of approximately 430,000 massive luminous red galaxies observed at relatively low spectroscopic signal-to-noise ratio (S/N {approx} 3-5 per 69 km s{sup -1}) by the Baryon Oscillation Spectroscopic Survey (BOSS) of the Sloan Digital Sky Survey III. We marginalize over spectroscopic redshift errors, and use the full velocity-dispersion likelihood function for each galaxy to make a self-consistent determination of the velocity-dispersion distribution parameters as a function of absolute magnitude and redshift, correcting as well for the effects of broadband magnitude errors on our binning. Parameterizing the distribution at each point inmore » the luminosity-redshift plane with a log-normal form, we detect significant evolution in the width of the distribution toward higher intrinsic scatter at higher redshifts. Using a subset of deep re-observations of BOSS galaxies, we demonstrate that our distribution-parameter estimates are unbiased regardless of spectroscopic S/N. We also show through simulation that our method introduces no systematic parameter bias with redshift. We highlight the advantage of the hierarchical Bayesian method over frequentist 'stacking' of spectra, and illustrate how our measured distribution parameters can be adopted as informative priors for velocity-dispersion measurements from individual noisy spectra.« less

  3. DEIsoM: a hierarchical Bayesian model for identifying differentially expressed isoforms using biological replicates

    PubMed Central

    Peng, Hao; Yang, Yifan; Zhe, Shandian; Wang, Jian; Gribskov, Michael; Qi, Yuan

    2017-01-01

    Abstract Motivation High-throughput mRNA sequencing (RNA-Seq) is a powerful tool for quantifying gene expression. Identification of transcript isoforms that are differentially expressed in different conditions, such as in patients and healthy subjects, can provide insights into the molecular basis of diseases. Current transcript quantification approaches, however, do not take advantage of the shared information in the biological replicates, potentially decreasing sensitivity and accuracy. Results We present a novel hierarchical Bayesian model called Differentially Expressed Isoform detection from Multiple biological replicates (DEIsoM) for identifying differentially expressed (DE) isoforms from multiple biological replicates representing two conditions, e.g. multiple samples from healthy and diseased subjects. DEIsoM first estimates isoform expression within each condition by (1) capturing common patterns from sample replicates while allowing individual differences, and (2) modeling the uncertainty introduced by ambiguous read mapping in each replicate. Specifically, we introduce a Dirichlet prior distribution to capture the common expression pattern of replicates from the same condition, and treat the isoform expression of individual replicates as samples from this distribution. Ambiguous read mapping is modeled as a multinomial distribution, and ambiguous reads are assigned to the most probable isoform in each replicate. Additionally, DEIsoM couples an efficient variational inference and a post-analysis method to improve the accuracy and speed of identification of DE isoforms over alternative methods. Application of DEIsoM to an hepatocellular carcinoma (HCC) dataset identifies biologically relevant DE isoforms. The relevance of these genes/isoforms to HCC are supported by principal component analysis (PCA), read coverage visualization, and the biological literature. Availability and implementation The software is available at https

  4. Bayesian data analysis in population ecology: motivations, methods, and benefits

    USGS Publications Warehouse

    Dorazio, Robert

    2016-01-01

    During the 20th century ecologists largely relied on the frequentist system of inference for the analysis of their data. However, in the past few decades ecologists have become increasingly interested in the use of Bayesian methods of data analysis. In this article I provide guidance to ecologists who would like to decide whether Bayesian methods can be used to improve their conclusions and predictions. I begin by providing a concise summary of Bayesian methods of analysis, including a comparison of differences between Bayesian and frequentist approaches to inference when using hierarchical models. Next I provide a list of problems where Bayesian methods of analysis may arguably be preferred over frequentist methods. These problems are usually encountered in analyses based on hierarchical models of data. I describe the essentials required for applying modern methods of Bayesian computation, and I use real-world examples to illustrate these methods. I conclude by summarizing what I perceive to be the main strengths and weaknesses of using Bayesian methods to solve ecological inference problems.

  5. Improved Model Fitting for the Empirical Green's Function Approach Using Hierarchical Models

    NASA Astrophysics Data System (ADS)

    Van Houtte, Chris; Denolle, Marine

    2018-04-01

    Stress drops calculated from source spectral studies currently show larger variability than what is implied by empirical ground motion models. One of the potential origins of the inflated variability is the simplified model-fitting techniques used in most source spectral studies. This study examines a variety of model-fitting methods and shows that the choice of method can explain some of the discrepancy. The preferred method is Bayesian hierarchical modeling, which can reduce bias, better quantify uncertainties, and allow additional effects to be resolved. Two case study earthquakes are examined, the 2016 MW7.1 Kumamoto, Japan earthquake and a MW5.3 aftershock of the 2016 MW7.8 Kaikōura earthquake. By using hierarchical models, the variation of the corner frequency, fc, and the falloff rate, n, across the focal sphere can be retrieved without overfitting the data. Other methods commonly used to calculate corner frequencies may give substantial biases. In particular, if fc was calculated for the Kumamoto earthquake using an ω-square model, the obtained fc could be twice as large as a realistic value.

  6. Modeling Associations among Multivariate Longitudinal Categorical Variables in Survey Data: A Semiparametric Bayesian Approach

    ERIC Educational Resources Information Center

    Tchumtchoua, Sylvie; Dey, Dipak K.

    2012-01-01

    This paper proposes a semiparametric Bayesian framework for the analysis of associations among multivariate longitudinal categorical variables in high-dimensional data settings. This type of data is frequent, especially in the social and behavioral sciences. A semiparametric hierarchical factor analysis model is developed in which the…

  7. A Bayesian, generalized frailty model for comet assays.

    PubMed

    Ghebretinsae, Aklilu Habteab; Faes, Christel; Molenberghs, Geert; De Boeck, Marlies; Geys, Helena

    2013-05-01

    This paper proposes a flexible modeling approach for so-called comet assay data regularly encountered in preclinical research. While such data consist of non-Gaussian outcomes in a multilevel hierarchical structure, traditional analyses typically completely or partly ignore this hierarchical nature by summarizing measurements within a cluster. Non-Gaussian outcomes are often modeled using exponential family models. This is true not only for binary and count data, but also for, example, time-to-event outcomes. Two important reasons for extending this family are for (1) the possible occurrence of overdispersion, meaning that the variability in the data may not be adequately described by the models, which often exhibit a prescribed mean-variance link, and (2) the accommodation of a hierarchical structure in the data, owing to clustering in the data. The first issue is dealt with through so-called overdispersion models. Clustering is often accommodated through the inclusion of random subject-specific effects. Though not always, one conventionally assumes such random effects to be normally distributed. In the case of time-to-event data, one encounters, for example, the gamma frailty model (Duchateau and Janssen, 2007 ). While both of these issues may occur simultaneously, models combining both are uncommon. Molenberghs et al. ( 2010 ) proposed a broad class of generalized linear models accommodating overdispersion and clustering through two separate sets of random effects. Here, we use this method to model data from a comet assay with a three-level hierarchical structure. Although a conjugate gamma random effect is used for the overdispersion random effect, both gamma and normal random effects are considered for the hierarchical random effect. Apart from model formulation, we place emphasis on Bayesian estimation. Our proposed method has an upper hand over the traditional analysis in that it (1) uses the appropriate distribution stipulated in the literature; (2) deals

  8. Hierarchical modeling and inference in ecology: The analysis of data from populations, metapopulations and communities

    USGS Publications Warehouse

    Royle, J. Andrew; Dorazio, Robert M.

    2008-01-01

    A guide to data collection, modeling and inference strategies for biological survey data using Bayesian and classical statistical methods. This book describes a general and flexible framework for modeling and inference in ecological systems based on hierarchical models, with a strict focus on the use of probability models and parametric inference. Hierarchical models represent a paradigm shift in the application of statistics to ecological inference problems because they combine explicit models of ecological system structure or dynamics with models of how ecological systems are observed. The principles of hierarchical modeling are developed and applied to problems in population, metapopulation, community, and metacommunity systems. The book provides the first synthetic treatment of many recent methodological advances in ecological modeling and unifies disparate methods and procedures. The authors apply principles of hierarchical modeling to ecological problems, including * occurrence or occupancy models for estimating species distribution * abundance models based on many sampling protocols, including distance sampling * capture-recapture models with individual effects * spatial capture-recapture models based on camera trapping and related methods * population and metapopulation dynamic models * models of biodiversity, community structure and dynamics.

  9. Using Bayesian hierarchical models to better understand nitrate sources and sinks in agricultural watersheds.

    PubMed

    Xia, Yongqiu; Weller, Donald E; Williams, Meghan N; Jordan, Thomas E; Yan, Xiaoyuan

    2016-11-15

    Export coefficient models (ECMs) are often used to predict nutrient sources and sinks in watersheds because ECMs can flexibly incorporate processes and have minimal data requirements. However, ECMs do not quantify uncertainties in model structure, parameters, or predictions; nor do they account for spatial and temporal variability in land characteristics, weather, and management practices. We applied Bayesian hierarchical methods to address these problems in ECMs used to predict nitrate concentration in streams. We compared four model formulations, a basic ECM and three models with additional terms to represent competing hypotheses about the sources of error in ECMs and about spatial and temporal variability of coefficients: an ADditive Error Model (ADEM), a SpatioTemporal Parameter Model (STPM), and a Dynamic Parameter Model (DPM). The DPM incorporates a first-order random walk to represent spatial correlation among parameters and a dynamic linear model to accommodate temporal correlation. We tested the modeling approach in a proof of concept using watershed characteristics and nitrate export measurements from watersheds in the Coastal Plain physiographic province of the Chesapeake Bay drainage. Among the four models, the DPM was the best--it had the lowest mean error, explained the most variability (R 2  = 0.99), had the narrowest prediction intervals, and provided the most effective tradeoff between fit complexity (its deviance information criterion, DIC, was 45.6 units lower than any other model, indicating overwhelming support for the DPM). The superiority of the DPM supports its underlying hypothesis that the main source of error in ECMs is their failure to account for parameter variability rather than structural error. Analysis of the fitted DPM coefficients for cropland export and instream retention revealed some of the factors controlling nitrate concentration: cropland nitrate exports were positively related to stream flow and watershed average slope

  10. Nonparametric Hierarchical Bayesian Model for Functional Brain Parcellation

    PubMed Central

    Lashkari, Danial; Sridharan, Ramesh; Vul, Edward; Hsieh, Po-Jang; Kanwisher, Nancy; Golland, Polina

    2011-01-01

    We develop a method for unsupervised analysis of functional brain images that learns group-level patterns of functional response. Our algorithm is based on a generative model that comprises two main layers. At the lower level, we express the functional brain response to each stimulus as a binary activation variable. At the next level, we define a prior over the sets of activation variables in all subjects. We use a Hierarchical Dirichlet Process as the prior in order to simultaneously learn the patterns of response that are shared across the group, and to estimate the number of these patterns supported by data. Inference based on this model enables automatic discovery and characterization of salient and consistent patterns in functional signals. We apply our method to data from a study that explores the response of the visual cortex to a collection of images. The discovered profiles of activation correspond to selectivity to a number of image categories such as faces, bodies, and scenes. More generally, our results appear superior to the results of alternative data-driven methods in capturing the category structure in the space of stimuli. PMID:21841977

  11. Bayesian spatio-temporal modeling of particulate matter concentrations in Peninsular Malaysia

    NASA Astrophysics Data System (ADS)

    Manga, Edna; Awang, Norhashidah

    2016-06-01

    This article presents an application of a Bayesian spatio-temporal Gaussian process (GP) model on particulate matter concentrations from Peninsular Malaysia. We analyze daily PM10 concentration levels from 35 monitoring sites in June and July 2011. The spatiotemporal model set in a Bayesian hierarchical framework allows for inclusion of informative covariates, meteorological variables and spatiotemporal interactions. Posterior density estimates of the model parameters are obtained by Markov chain Monte Carlo methods. Preliminary data analysis indicate information on PM10 levels at sites classified as industrial locations could explain part of the space time variations. We include the site-type indicator in our modeling efforts. Results of the parameter estimates for the fitted GP model show significant spatio-temporal structure and positive effect of the location-type explanatory variable. We also compute some validation criteria for the out of sample sites that show the adequacy of the model for predicting PM10 at unmonitored sites.

  12. Mapping brucellosis increases relative to elk density using hierarchical Bayesian models

    USGS Publications Warehouse

    Cross, Paul C.; Heisey, Dennis M.; Scurlock, Brandon M.; Edwards, William H.; Brennan, Angela; Ebinger, Michael R.

    2010-01-01

    The relationship between host density and parasite transmission is central to the effectiveness of many disease management strategies. Few studies, however, have empirically estimated this relationship particularly in large mammals. We applied hierarchical Bayesian methods to a 19-year dataset of over 6400 brucellosis tests of adult female elk (Cervus elaphus) in northwestern Wyoming. Management captures that occurred from January to March were over two times more likely to be seropositive than hunted elk that were killed in September to December, while accounting for site and year effects. Areas with supplemental feeding grounds for elk had higher seroprevalence in 1991 than other regions, but by 2009 many areas distant from the feeding grounds were of comparable seroprevalence. The increases in brucellosis seroprevalence were correlated with elk densities at the elk management unit, or hunt area, scale (mean 2070 km2; range = [95–10237]). The data, however, could not differentiate among linear and non-linear effects of host density. Therefore, control efforts that focus on reducing elk densities at a broad spatial scale were only weakly supported. Additional research on how a few, large groups within a region may be driving disease dynamics is needed for more targeted and effective management interventions. Brucellosis appears to be expanding its range into new regions and elk populations, which is likely to further complicate the United States brucellosis eradication program. This study is an example of how the dynamics of host populations can affect their ability to serve as disease reservoirs.

  13. Improving Hierarchical Models Using Historical Data with Applications in High-Throughput Genomics Data Analysis.

    PubMed

    Li, Ben; Li, Yunxiao; Qin, Zhaohui S

    2017-06-01

    Modern high-throughput biotechnologies such as microarray and next generation sequencing produce a massive amount of information for each sample assayed. However, in a typical high-throughput experiment, only limited amount of data are observed for each individual feature, thus the classical 'large p , small n ' problem. Bayesian hierarchical model, capable of borrowing strength across features within the same dataset, has been recognized as an effective tool in analyzing such data. However, the shrinkage effect, the most prominent feature of hierarchical features, can lead to undesirable over-correction for some features. In this work, we discuss possible causes of the over-correction problem and propose several alternative solutions. Our strategy is rooted in the fact that in the Big Data era, large amount of historical data are available which should be taken advantage of. Our strategy presents a new framework to enhance the Bayesian hierarchical model. Through simulation and real data analysis, we demonstrated superior performance of the proposed strategy. Our new strategy also enables borrowing information across different platforms which could be extremely useful with emergence of new technologies and accumulation of data from different platforms in the Big Data era. Our method has been implemented in R package "adaptiveHM", which is freely available from https://github.com/benliemory/adaptiveHM.

  14. Spatio Temporal EEG Source Imaging with the Hierarchical Bayesian Elastic Net and Elitist Lasso Models

    PubMed Central

    Paz-Linares, Deirel; Vega-Hernández, Mayrim; Rojas-López, Pedro A.; Valdés-Hernández, Pedro A.; Martínez-Montes, Eduardo; Valdés-Sosa, Pedro A.

    2017-01-01

    The estimation of EEG generating sources constitutes an Inverse Problem (IP) in Neuroscience. This is an ill-posed problem due to the non-uniqueness of the solution and regularization or prior information is needed to undertake Electrophysiology Source Imaging. Structured Sparsity priors can be attained through combinations of (L1 norm-based) and (L2 norm-based) constraints such as the Elastic Net (ENET) and Elitist Lasso (ELASSO) models. The former model is used to find solutions with a small number of smooth nonzero patches, while the latter imposes different degrees of sparsity simultaneously along different dimensions of the spatio-temporal matrix solutions. Both models have been addressed within the penalized regression approach, where the regularization parameters are selected heuristically, leading usually to non-optimal and computationally expensive solutions. The existing Bayesian formulation of ENET allows hyperparameter learning, but using the computationally intensive Monte Carlo/Expectation Maximization methods, which makes impractical its application to the EEG IP. While the ELASSO have not been considered before into the Bayesian context. In this work, we attempt to solve the EEG IP using a Bayesian framework for ENET and ELASSO models. We propose a Structured Sparse Bayesian Learning algorithm based on combining the Empirical Bayes and the iterative coordinate descent procedures to estimate both the parameters and hyperparameters. Using realistic simulations and avoiding the inverse crime we illustrate that our methods are able to recover complicated source setups more accurately and with a more robust estimation of the hyperparameters and behavior under different sparsity scenarios than classical LORETA, ENET and LASSO Fusion solutions. We also solve the EEG IP using data from a visual attention experiment, finding more interpretable neurophysiological patterns with our methods. The Matlab codes used in this work, including Simulations, Methods

  15. Spatio Temporal EEG Source Imaging with the Hierarchical Bayesian Elastic Net and Elitist Lasso Models.

    PubMed

    Paz-Linares, Deirel; Vega-Hernández, Mayrim; Rojas-López, Pedro A; Valdés-Hernández, Pedro A; Martínez-Montes, Eduardo; Valdés-Sosa, Pedro A

    2017-01-01

    The estimation of EEG generating sources constitutes an Inverse Problem (IP) in Neuroscience. This is an ill-posed problem due to the non-uniqueness of the solution and regularization or prior information is needed to undertake Electrophysiology Source Imaging. Structured Sparsity priors can be attained through combinations of (L1 norm-based) and (L2 norm-based) constraints such as the Elastic Net (ENET) and Elitist Lasso (ELASSO) models. The former model is used to find solutions with a small number of smooth nonzero patches, while the latter imposes different degrees of sparsity simultaneously along different dimensions of the spatio-temporal matrix solutions. Both models have been addressed within the penalized regression approach, where the regularization parameters are selected heuristically, leading usually to non-optimal and computationally expensive solutions. The existing Bayesian formulation of ENET allows hyperparameter learning, but using the computationally intensive Monte Carlo/Expectation Maximization methods, which makes impractical its application to the EEG IP. While the ELASSO have not been considered before into the Bayesian context. In this work, we attempt to solve the EEG IP using a Bayesian framework for ENET and ELASSO models. We propose a Structured Sparse Bayesian Learning algorithm based on combining the Empirical Bayes and the iterative coordinate descent procedures to estimate both the parameters and hyperparameters. Using realistic simulations and avoiding the inverse crime we illustrate that our methods are able to recover complicated source setups more accurately and with a more robust estimation of the hyperparameters and behavior under different sparsity scenarios than classical LORETA, ENET and LASSO Fusion solutions. We also solve the EEG IP using data from a visual attention experiment, finding more interpretable neurophysiological patterns with our methods. The Matlab codes used in this work, including Simulations, Methods

  16. Differential Gene Expression (DEX) and Alternative Splicing Events (ASE) for Temporal Dynamic Processes Using HMMs and Hierarchical Bayesian Modeling Approaches.

    PubMed

    Oh, Sunghee; Song, Seongho

    2017-01-01

    In gene expression profile, data analysis pipeline is categorized into four levels, major downstream tasks, i.e., (1) identification of differential expression; (2) clustering co-expression patterns; (3) classification of subtypes of samples; and (4) detection of genetic regulatory networks, are performed posterior to preprocessing procedure such as normalization techniques. To be more specific, temporal dynamic gene expression data has its inherent feature, namely, two neighboring time points (previous and current state) are highly correlated with each other, compared to static expression data which samples are assumed as independent individuals. In this chapter, we demonstrate how HMMs and hierarchical Bayesian modeling methods capture the horizontal time dependency structures in time series expression profiles by focusing on the identification of differential expression. In addition, those differential expression genes and transcript variant isoforms over time detected in core prerequisite steps can be generally further applied in detection of genetic regulatory networks to comprehensively uncover dynamic repertoires in the aspects of system biology as the coupled framework.

  17. The Neural Correlates of Hierarchical Predictions for Perceptual Decisions.

    PubMed

    Weilnhammer, Veith A; Stuke, Heiner; Sterzer, Philipp; Schmack, Katharina

    2018-05-23

    Sensory information is inherently noisy, sparse, and ambiguous. In contrast, visual experience is usually clear, detailed, and stable. Bayesian theories of perception resolve this discrepancy by assuming that prior knowledge about the causes underlying sensory stimulation actively shapes perceptual decisions. The CNS is believed to entertain a generative model aligned to dynamic changes in the hierarchical states of our volatile sensory environment. Here, we used model-based fMRI to study the neural correlates of the dynamic updating of hierarchically structured predictions in male and female human observers. We devised a crossmodal associative learning task with covertly interspersed ambiguous trials in which participants engaged in hierarchical learning based on changing contingencies between auditory cues and visual targets. By inverting a Bayesian model of perceptual inference, we estimated individual hierarchical predictions, which significantly biased perceptual decisions under ambiguity. Although "high-level" predictions about the cue-target contingency correlated with activity in supramodal regions such as orbitofrontal cortex and hippocampus, dynamic "low-level" predictions about the conditional target probabilities were associated with activity in retinotopic visual cortex. Our results suggest that our CNS updates distinct representations of hierarchical predictions that continuously affect perceptual decisions in a dynamically changing environment. SIGNIFICANCE STATEMENT Bayesian theories posit that our brain entertains a generative model to provide hierarchical predictions regarding the causes of sensory information. Here, we use behavioral modeling and fMRI to study the neural underpinnings of such hierarchical predictions. We show that "high-level" predictions about the strength of dynamic cue-target contingencies during crossmodal associative learning correlate with activity in orbitofrontal cortex and the hippocampus, whereas "low-level" conditional

  18. Assessment of Matrix Multiplication Learning with a Rule-Based Analytical Model--"A Bayesian Network Representation"

    ERIC Educational Resources Information Center

    Zhang, Zhidong

    2016-01-01

    This study explored an alternative assessment procedure to examine learning trajectories of matrix multiplication. It took rule-based analytical and cognitive task analysis methods specifically to break down operation rules for a given matrix multiplication. Based on the analysis results, a hierarchical Bayesian network, an assessment model,…

  19. An adaptive sparse-grid high-order stochastic collocation method for Bayesian inference in groundwater reactive transport modeling

    NASA Astrophysics Data System (ADS)

    Zhang, Guannan; Lu, Dan; Ye, Ming; Gunzburger, Max; Webster, Clayton

    2013-10-01

    Bayesian analysis has become vital to uncertainty quantification in groundwater modeling, but its application has been hindered by the computational cost associated with numerous model executions required by exploring the posterior probability density function (PPDF) of model parameters. This is particularly the case when the PPDF is estimated using Markov Chain Monte Carlo (MCMC) sampling. In this study, a new approach is developed to improve the computational efficiency of Bayesian inference by constructing a surrogate of the PPDF, using an adaptive sparse-grid high-order stochastic collocation (aSG-hSC) method. Unlike previous works using first-order hierarchical basis, this paper utilizes a compactly supported higher-order hierarchical basis to construct the surrogate system, resulting in a significant reduction in the number of required model executions. In addition, using the hierarchical surplus as an error indicator allows locally adaptive refinement of sparse grids in the parameter space, which further improves computational efficiency. To efficiently build the surrogate system for the PPDF with multiple significant modes, optimization techniques are used to identify the modes, for which high-probability regions are defined and components of the aSG-hSC approximation are constructed. After the surrogate is determined, the PPDF can be evaluated by sampling the surrogate system directly without model execution, resulting in improved efficiency of the surrogate-based MCMC compared with conventional MCMC. The developed method is evaluated using two synthetic groundwater reactive transport models. The first example involves coupled linear reactions and demonstrates the accuracy of our high-order hierarchical basis approach in approximating high-dimensional posteriori distribution. The second example is highly nonlinear because of the reactions of uranium surface complexation, and demonstrates how the iterative aSG-hSC method is able to capture multimodal and

  20. The Type Ia Supernova Color-Magnitude Relation and Host Galaxy Dust: A Simple Hierarchical Bayesian Model

    NASA Astrophysics Data System (ADS)

    Mandel, Kaisey S.; Scolnic, Daniel M.; Shariff, Hikmatali; Foley, Ryan J.; Kirshner, Robert P.

    2017-06-01

    Conventional Type Ia supernova (SN Ia) cosmology analyses currently use a simplistic linear regression of magnitude versus color and light curve shape, which does not model intrinsic SN Ia variations and host galaxy dust as physically distinct effects, resulting in low color-magnitude slopes. We construct a probabilistic generative model for the dusty distribution of extinguished absolute magnitudes and apparent colors as the convolution of an intrinsic SN Ia color-magnitude distribution and a host galaxy dust reddening-extinction distribution. If the intrinsic color-magnitude (M B versus B - V) slope {β }{int} differs from the host galaxy dust law R B , this convolution results in a specific curve of mean extinguished absolute magnitude versus apparent color. The derivative of this curve smoothly transitions from {β }{int} in the blue tail to R B in the red tail of the apparent color distribution. The conventional linear fit approximates this effective curve near the average apparent color, resulting in an apparent slope {β }{app} between {β }{int} and R B . We incorporate these effects into a hierarchical Bayesian statistical model for SN Ia light curve measurements, and analyze a data set of SALT2 optical light curve fits of 248 nearby SNe Ia at z< 0.10. The conventional linear fit gives {β }{app}≈ 3. Our model finds {β }{int}=2.3+/- 0.3 and a distinct dust law of {R}B=3.8+/- 0.3, consistent with the average for Milky Way dust, while correcting a systematic distance bias of ˜0.10 mag in the tails of the apparent color distribution. Finally, we extend our model to examine the SN Ia luminosity-host mass dependence in terms of intrinsic and dust components.

  1. A hierarchical Bayesian model for understanding the spatiotemporal dynamics of the intestinal epithelium

    PubMed Central

    Parker, Aimée; Pin, Carmen; Carding, Simon R.; Watson, Alastair J. M.; Byrne, Helen M.

    2017-01-01

    Our work addresses two key challenges, one biological and one methodological. First, we aim to understand how proliferation and cell migration rates in the intestinal epithelium are related under healthy, damaged (Ara-C treated) and recovering conditions, and how these relations can be used to identify mechanisms of repair and regeneration. We analyse new data, presented in more detail in a companion paper, in which BrdU/IdU cell-labelling experiments were performed under these respective conditions. Second, in considering how to more rigorously process these data and interpret them using mathematical models, we use a probabilistic, hierarchical approach. This provides a best-practice approach for systematically modelling and understanding the uncertainties that can otherwise undermine the generation of reliable conclusions—uncertainties in experimental measurement and treatment, difficult-to-compare mathematical models of underlying mechanisms, and unknown or unobserved parameters. Both spatially discrete and continuous mechanistic models are considered and related via hierarchical conditional probability assumptions. We perform model checks on both in-sample and out-of-sample datasets and use them to show how to test possible model improvements and assess the robustness of our conclusions. We conclude, for the present set of experiments, that a primarily proliferation-driven model suffices to predict labelled cell dynamics over most time-scales. PMID:28753601

  2. A hierarchical Bayesian model for understanding the spatiotemporal dynamics of the intestinal epithelium.

    PubMed

    Maclaren, Oliver J; Parker, Aimée; Pin, Carmen; Carding, Simon R; Watson, Alastair J M; Fletcher, Alexander G; Byrne, Helen M; Maini, Philip K

    2017-07-01

    Our work addresses two key challenges, one biological and one methodological. First, we aim to understand how proliferation and cell migration rates in the intestinal epithelium are related under healthy, damaged (Ara-C treated) and recovering conditions, and how these relations can be used to identify mechanisms of repair and regeneration. We analyse new data, presented in more detail in a companion paper, in which BrdU/IdU cell-labelling experiments were performed under these respective conditions. Second, in considering how to more rigorously process these data and interpret them using mathematical models, we use a probabilistic, hierarchical approach. This provides a best-practice approach for systematically modelling and understanding the uncertainties that can otherwise undermine the generation of reliable conclusions-uncertainties in experimental measurement and treatment, difficult-to-compare mathematical models of underlying mechanisms, and unknown or unobserved parameters. Both spatially discrete and continuous mechanistic models are considered and related via hierarchical conditional probability assumptions. We perform model checks on both in-sample and out-of-sample datasets and use them to show how to test possible model improvements and assess the robustness of our conclusions. We conclude, for the present set of experiments, that a primarily proliferation-driven model suffices to predict labelled cell dynamics over most time-scales.

  3. AzTEC Survey of the Central Molecular Zone: Modeling Dust SEDs and N-PDF with Hierarchical Bayesian Analysis

    NASA Astrophysics Data System (ADS)

    Tang, Yuping; Wang, Daniel; Wilson, Grant; Gutermuth, Robert; Heyer, Mark

    2018-01-01

    We present the AzTEC/LMT survey of dust continuum at 1.1mm on the central ˜ 200pc (CMZ) of our Galaxy. A joint SED analysis of all existing dust continuum surveys on the CMZ is performed, from 160µm to 1.1mm. Our analysis follows a MCMC sampling strategy incorporating the knowledge of PSFs in different maps, which provides unprecedented spacial resolution on distributions of dust temperature, column density and emissivity index. The dense clumps in the CMZ typically show low dust temperature ( 20K), with no significant sign of buried star formation, and a weak evolution of higher emissivity index toward dense peak. A new model is proposed, allowing for varying dust temperature inside a cloud and self-shielding of dust emission, which leads to similar conclusions on dust temperature and grain properties. We further apply a hierarchical Bayesian analysis to infer the column density probability distribution function (N-PDF), while simultaneously removing the Galactic foreground and background emission. The N-PDF shows a steep power-law profile with α > 3, indicating that formation of dense structures are suppressed.

  4. Relative age and birthplace effect in Japanese professional sports: a quantitative evaluation using a Bayesian hierarchical Poisson model.

    PubMed

    Ishigami, Hideaki

    2016-01-01

    Relative age effect (RAE) in sports has been well documented. Recent studies investigate the effect of birthplace in addition to the RAE. The first objective of this study was to show the magnitude of the RAE in two major professional sports in Japan, baseball and soccer. Second, we examined the birthplace effect and compared its magnitude with that of the RAE. The effect sizes were estimated using a Bayesian hierarchical Poisson model with the number of players as dependent variable. The RAEs were 9.0% and 7.7% per month for soccer and baseball, respectively. These estimates imply that children born in the first month of a school year have about three times greater chance of becoming a professional player than those born in the last month of the year. Over half of the difference in likelihoods of becoming a professional player between birthplaces was accounted for by weather conditions, with the likelihood decreasing by 1% per snow day. An effect of population size was not detected in the data. By investigating different samples, we demonstrated that using quarterly data leads to underestimation and that the age range of sampled athletes should be set carefully.

  5. Hierarchical spatial capture-recapture models: Modeling population density from stratified populations

    USGS Publications Warehouse

    Royle, J. Andrew; Converse, Sarah J.

    2014-01-01

    Capture–recapture studies are often conducted on populations that are stratified by space, time or other factors. In this paper, we develop a Bayesian spatial capture–recapture (SCR) modelling framework for stratified populations – when sampling occurs within multiple distinct spatial and temporal strata.We describe a hierarchical model that integrates distinct models for both the spatial encounter history data from capture–recapture sampling, and also for modelling variation in density among strata. We use an implementation of data augmentation to parameterize the model in terms of a latent categorical stratum or group membership variable, which provides a convenient implementation in popular BUGS software packages.We provide an example application to an experimental study involving small-mammal sampling on multiple trapping grids over multiple years, where the main interest is in modelling a treatment effect on population density among the trapping grids.Many capture–recapture studies involve some aspect of spatial or temporal replication that requires some attention to modelling variation among groups or strata. We propose a hierarchical model that allows explicit modelling of group or strata effects. Because the model is formulated for individual encounter histories and is easily implemented in the BUGS language and other free software, it also provides a general framework for modelling individual effects, such as are present in SCR models.

  6. From least squares to multilevel modeling: A graphical introduction to Bayesian inference

    NASA Astrophysics Data System (ADS)

    Loredo, Thomas J.

    2016-01-01

    This tutorial presentation will introduce some of the key ideas and techniques involved in applying Bayesian methods to problems in astrostatistics. The focus will be on the big picture: understanding the foundations (interpreting probability, Bayes's theorem, the law of total probability and marginalization), making connections to traditional methods (propagation of errors, least squares, chi-squared, maximum likelihood, Monte Carlo simulation), and highlighting problems where a Bayesian approach can be particularly powerful (Poisson processes, density estimation and curve fitting with measurement error). The "graphical" component of the title reflects an emphasis on pictorial representations of some of the math, but also on the use of graphical models (multilevel or hierarchical models) for analyzing complex data. Code for some examples from the talk will be available to participants, in Python and in the Stan probabilistic programming language.

  7. A Bayesian generative model for learning semantic hierarchies

    PubMed Central

    Mittelman, Roni; Sun, Min; Kuipers, Benjamin; Savarese, Silvio

    2014-01-01

    Building fine-grained visual recognition systems that are capable of recognizing tens of thousands of categories, has received much attention in recent years. The well known semantic hierarchical structure of categories and concepts, has been shown to provide a key prior which allows for optimal predictions. The hierarchical organization of various domains and concepts has been subject to extensive research, and led to the development of the WordNet domains hierarchy (Fellbaum, 1998), which was also used to organize the images in the ImageNet (Deng et al., 2009) dataset, in which the category count approaches the human capacity. Still, for the human visual system, the form of the hierarchy must be discovered with minimal use of supervision or innate knowledge. In this work, we propose a new Bayesian generative model for learning such domain hierarchies, based on semantic input. Our model is motivated by the super-subordinate organization of domain labels and concepts that characterizes WordNet, and accounts for several important challenges: maintaining context information when progressing deeper into the hierarchy, learning a coherent semantic concept for each node, and modeling uncertainty in the perception process. PMID:24904452

  8. Model Diagnostics for Bayesian Networks

    ERIC Educational Resources Information Center

    Sinharay, Sandip

    2006-01-01

    Bayesian networks are frequently used in educational assessments primarily for learning about students' knowledge and skills. There is a lack of works on assessing fit of Bayesian networks. This article employs the posterior predictive model checking method, a popular Bayesian model checking tool, to assess fit of simple Bayesian networks. A…

  9. Improving Hierarchical Models Using Historical Data with Applications in High-Throughput Genomics Data Analysis

    PubMed Central

    Li, Ben; Li, Yunxiao; Qin, Zhaohui S.

    2016-01-01

    Modern high-throughput biotechnologies such as microarray and next generation sequencing produce a massive amount of information for each sample assayed. However, in a typical high-throughput experiment, only limited amount of data are observed for each individual feature, thus the classical ‘large p, small n’ problem. Bayesian hierarchical model, capable of borrowing strength across features within the same dataset, has been recognized as an effective tool in analyzing such data. However, the shrinkage effect, the most prominent feature of hierarchical features, can lead to undesirable over-correction for some features. In this work, we discuss possible causes of the over-correction problem and propose several alternative solutions. Our strategy is rooted in the fact that in the Big Data era, large amount of historical data are available which should be taken advantage of. Our strategy presents a new framework to enhance the Bayesian hierarchical model. Through simulation and real data analysis, we demonstrated superior performance of the proposed strategy. Our new strategy also enables borrowing information across different platforms which could be extremely useful with emergence of new technologies and accumulation of data from different platforms in the Big Data era. Our method has been implemented in R package “adaptiveHM”, which is freely available from https://github.com/benliemory/adaptiveHM. PMID:28919931

  10. Linking bovine tuberculosis on cattle farms to white-tailed deer and environmental variables using Bayesian hierarchical analysis

    USGS Publications Warehouse

    Walter, W. David; Smith, Rick; Vanderklok, Mike; VerCauterren, Kurt C.

    2014-01-01

    Bovine tuberculosis is a bacterial disease caused by Mycobacterium bovis in livestock and wildlife with hosts that include Eurasian badgers (Meles meles), brushtail possum (Trichosurus vulpecula), and white-tailed deer (Odocoileus virginianus). Risk-assessment efforts in Michigan have been initiated on farms to minimize interactions of cattle with wildlife hosts but research onM. bovis on cattle farms has not investigated the spatial context of disease epidemiology. To incorporate spatially explicit data, initial likelihood of infection probabilities for cattle farms tested for M. bovis, prevalence of M. bovis in white-tailed deer, deer density, and environmental variables for each farm were modeled in a Bayesian hierarchical framework. We used geo-referenced locations of 762 cattle farms that have been tested for M. bovis, white-tailed deer prevalence, and several environmental variables that may lead to long-term survival and viability of M. bovis on farms and surrounding habitats (i.e., soil type, habitat type). Bayesian hierarchical analyses identified deer prevalence and proportion of sandy soil within our sampling grid as the most supported model. Analysis of cattle farms tested for M. bovisidentified that for every 1% increase in sandy soil resulted in an increase in odds of infection by 4%. Our analysis revealed that the influence of prevalence of M. bovis in white-tailed deer was still a concern even after considerable efforts to prevent cattle interactions with white-tailed deer through on-farm mitigation and reduction in the deer population. Cattle farms test positive for M. bovis annually in our study area suggesting that the potential for an environmental source either on farms or in the surrounding landscape may contributing to new or re-infections with M. bovis. Our research provides an initial assessment of potential environmental factors that could be incorporated into additional modeling efforts as more knowledge of deer herd

  11. Hierarchical imputation of systematically and sporadically missing data: An approximate Bayesian approach using chained equations.

    PubMed

    Jolani, Shahab

    2018-03-01

    In health and medical sciences, multiple imputation (MI) is now becoming popular to obtain valid inferences in the presence of missing data. However, MI of clustered data such as multicenter studies and individual participant data meta-analysis requires advanced imputation routines that preserve the hierarchical structure of data. In clustered data, a specific challenge is the presence of systematically missing data, when a variable is completely missing in some clusters, and sporadically missing data, when it is partly missing in some clusters. Unfortunately, little is known about how to perform MI when both types of missing data occur simultaneously. We develop a new class of hierarchical imputation approach based on chained equations methodology that simultaneously imputes systematically and sporadically missing data while allowing for arbitrary patterns of missingness among them. Here, we use a random effect imputation model and adopt a simplification over fully Bayesian techniques such as Gibbs sampler to directly obtain draws of parameters within each step of the chained equations. We justify through theoretical arguments and extensive simulation studies that the proposed imputation methodology has good statistical properties in terms of bias and coverage rates of parameter estimates. An illustration is given in a case study with eight individual participant datasets. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. Assessing risk profiles for Salmonella serotypes in breeding pig operations in Portugal using a Bayesian hierarchical model.

    PubMed

    Correia-Gomes, Carla; Economou, Theodoros; Mendonça, Denisa; Vieira-Pinto, Madalena; Niza-Ribeiro, João

    2012-11-21

    The EU Regulation No 2160/2003 imposes a reduction in the prevalence of Salmonella in pigs. The efficiency of control programmes for Salmonella in pigs, reported among the EU Member States, varies and definitive eradication seems very difficult. Control measures currently recommended for Salmonella are not serotype-specific. Is it possible that the risk factors for different Salmonella serotypes are different? The aim of this study was to investigate potential risk factors for two groups of Salmonella sp serotypes using pen faecal samples from breeding pig holdings representative of the Portuguese pig sector. The data used come from the Baseline Survey for the Prevalence of Salmonella in breeding pigs in Portugal. A total of 1670 pen faecal samples from 167 herds were tested, and 170 samples were positive for Salmonella. The presence of Salmonella in each sample (outcome variable) was classified in three categories: i) no Salmonella, ii) Salmonella Typhimurium or S. Typhimurium-like strains with the antigenic formula: 1,4,5,12:i:-, , and iii) other serotypes. Along with the sample collection, a questionnaire concerning herd management and potential risk factors was utilised. The data have a "natural" hierarchical structure so a categorical multilevel analysis of the dataset was carried out using a Bayesian hierarchical model. The model was estimated using Markov Chain Monte Carlo methods, implemented in the software WinBUGS. The significant associations found (when compared to category "no Salmonella"), for category "serotype Typhimurium or S. Typhimurium-like strains with the antigenic formula: 1,4,5,12:i:-" were: age of breeding sows, size of the herd, number of pigs/pen and source of semen. For the category "other serotypes" the significant associations found were: control of rodents, region of the country, source of semen, breeding sector room and source of feed. The risk factors significantly associated with Salmonella shedding from the category "serotype

  13. Assessing risk profiles for Salmonella serotypes in breeding pig operations in Portugal using a Bayesian hierarchical model

    PubMed Central

    2012-01-01

    Background The EU Regulation No 2160/2003 imposes a reduction in the prevalence of Salmonella in pigs. The efficiency of control programmes for Salmonella in pigs, reported among the EU Member States, varies and definitive eradication seems very difficult. Control measures currently recommended for Salmonella are not serotype-specific. Is it possible that the risk factors for different Salmonella serotypes are different? The aim of this study was to investigate potential risk factors for two groups of Salmonella sp serotypes using pen faecal samples from breeding pig holdings representative of the Portuguese pig sector. Methods The data used come from the Baseline Survey for the Prevalence of Salmonella in breeding pigs in Portugal. A total of 1670 pen faecal samples from 167 herds were tested, and 170 samples were positive for Salmonella. The presence of Salmonella in each sample (outcome variable) was classified in three categories: i) no Salmonella, ii) Salmonella Typhimurium or S. Typhimurium-like strains with the antigenic formula: 1,4,5,12:i:-, , and iii) other serotypes. Along with the sample collection, a questionnaire concerning herd management and potential risk factors was utilised. The data have a “natural” hierarchical structure so a categorical multilevel analysis of the dataset was carried out using a Bayesian hierarchical model. The model was estimated using Markov Chain Monte Carlo methods, implemented in the software WinBUGS. Results The significant associations found (when compared to category “no Salmonella”), for category “serotype Typhimurium or S. Typhimurium-like strains with the antigenic formula: 1,4,5,12:i:-” were: age of breeding sows, size of the herd, number of pigs/pen and source of semen. For the category “other serotypes” the significant associations found were: control of rodents, region of the country, source of semen, breeding sector room and source of feed. Conclusions The risk factors significantly associated

  14. Hierarchical animal movement models for population-level inference

    USGS Publications Warehouse

    Hooten, Mevin B.; Buderman, Frances E.; Brost, Brian M.; Hanks, Ephraim M.; Ivans, Jacob S.

    2016-01-01

    New methods for modeling animal movement based on telemetry data are developed regularly. With advances in telemetry capabilities, animal movement models are becoming increasingly sophisticated. Despite a need for population-level inference, animal movement models are still predominantly developed for individual-level inference. Most efforts to upscale the inference to the population level are either post hoc or complicated enough that only the developer can implement the model. Hierarchical Bayesian models provide an ideal platform for the development of population-level animal movement models but can be challenging to fit due to computational limitations or extensive tuning required. We propose a two-stage procedure for fitting hierarchical animal movement models to telemetry data. The two-stage approach is statistically rigorous and allows one to fit individual-level movement models separately, then resample them using a secondary MCMC algorithm. The primary advantages of the two-stage approach are that the first stage is easily parallelizable and the second stage is completely unsupervised, allowing for an automated fitting procedure in many cases. We demonstrate the two-stage procedure with two applications of animal movement models. The first application involves a spatial point process approach to modeling telemetry data, and the second involves a more complicated continuous-time discrete-space animal movement model. We fit these models to simulated data and real telemetry data arising from a population of monitored Canada lynx in Colorado, USA.

  15. An evaluation of the Bayesian approach to fitting the N-mixture model for use with pseudo-replicated count data

    USGS Publications Warehouse

    Toribo, S.G.; Gray, B.R.; Liang, S.

    2011-01-01

    The N-mixture model proposed by Royle in 2004 may be used to approximate the abundance and detection probability of animal species in a given region. In 2006, Royle and Dorazio discussed the advantages of using a Bayesian approach in modelling animal abundance and occurrence using a hierarchical N-mixture model. N-mixture models assume replication on sampling sites, an assumption that may be violated when the site is not closed to changes in abundance during the survey period or when nominal replicates are defined spatially. In this paper, we studied the robustness of a Bayesian approach to fitting the N-mixture model for pseudo-replicated count data. Our simulation results showed that the Bayesian estimates for abundance and detection probability are slightly biased when the actual detection probability is small and are sensitive to the presence of extra variability within local sites.

  16. Bayesian Multiscale Modeling of Closed Curves in Point Clouds

    PubMed Central

    Gu, Kelvin; Pati, Debdeep; Dunson, David B.

    2014-01-01

    Modeling object boundaries based on image or point cloud data is frequently necessary in medical and scientific applications ranging from detecting tumor contours for targeted radiation therapy, to the classification of organisms based on their structural information. In low-contrast images or sparse and noisy point clouds, there is often insufficient data to recover local segments of the boundary in isolation. Thus, it becomes critical to model the entire boundary in the form of a closed curve. To achieve this, we develop a Bayesian hierarchical model that expresses highly diverse 2D objects in the form of closed curves. The model is based on a novel multiscale deformation process. By relating multiple objects through a hierarchical formulation, we can successfully recover missing boundaries by borrowing structural information from similar objects at the appropriate scale. Furthermore, the model’s latent parameters help interpret the population, indicating dimensions of significant structural variability and also specifying a ‘central curve’ that summarizes the collection. Theoretical properties of our prior are studied in specific cases and efficient Markov chain Monte Carlo methods are developed, evaluated through simulation examples and applied to panorex teeth images for modeling teeth contours and also to a brain tumor contour detection problem. PMID:25544786

  17. Online Dectection and Modeling of Safety Boundaries for Aerospace Application Using Bayesian Statistics

    NASA Technical Reports Server (NTRS)

    He, Yuning

    2015-01-01

    The behavior of complex aerospace systems is governed by numerous parameters. For safety analysis it is important to understand how the system behaves with respect to these parameter values. In particular, understanding the boundaries between safe and unsafe regions is of major importance. In this paper, we describe a hierarchical Bayesian statistical modeling approach for the online detection and characterization of such boundaries. Our method for classification with active learning uses a particle filter-based model and a boundary-aware metric for best performance. From a library of candidate shapes incorporated with domain expert knowledge, the location and parameters of the boundaries are estimated using advanced Bayesian modeling techniques. The results of our boundary analysis are then provided in a form understandable by the domain expert. We illustrate our approach using a simulation model of a NASA neuro-adaptive flight control system, as well as a system for the detection of separation violations in the terminal airspace.

  18. Quantifying inter- and intra-population niche variability using hierarchical bayesian stable isotope mixing models.

    PubMed

    Semmens, Brice X; Ward, Eric J; Moore, Jonathan W; Darimont, Chris T

    2009-07-09

    Variability in resource use defines the width of a trophic niche occupied by a population. Intra-population variability in resource use may occur across hierarchical levels of population structure from individuals to subpopulations. Understanding how levels of population organization contribute to population niche width is critical to ecology and evolution. Here we describe a hierarchical stable isotope mixing model that can simultaneously estimate both the prey composition of a consumer diet and the diet variability among individuals and across levels of population organization. By explicitly estimating variance components for multiple scales, the model can deconstruct the niche width of a consumer population into relevant levels of population structure. We apply this new approach to stable isotope data from a population of gray wolves from coastal British Columbia, and show support for extensive intra-population niche variability among individuals, social groups, and geographically isolated subpopulations. The analytic method we describe improves mixing models by accounting for diet variability, and improves isotope niche width analysis by quantitatively assessing the contribution of levels of organization to the niche width of a population.

  19. Spatial variability of the effect of air pollution on term birth weight: evaluating influential factors using Bayesian hierarchical models.

    PubMed

    Li, Lianfa; Laurent, Olivier; Wu, Jun

    2016-02-05

    Epidemiological studies suggest that air pollution is adversely associated with pregnancy outcomes. Such associations may be modified by spatially-varying factors including socio-demographic characteristics, land-use patterns and unaccounted exposures. Yet, few studies have systematically investigated the impact of these factors on spatial variability of the air pollution's effects. This study aimed to examine spatial variability of the effects of air pollution on term birth weight across Census tracts and the influence of tract-level factors on such variability. We obtained over 900,000 birth records from 2001 to 2008 in Los Angeles County, California, USA. Air pollution exposure was modeled at individual level for nitrogen dioxide (NO2) and nitrogen oxides (NOx) using spatiotemporal models. Two-stage Bayesian hierarchical non-linear models were developed to (1) quantify the associations between air pollution exposure and term birth weight within each tract; and (2) examine the socio-demographic, land-use, and exposure-related factors contributing to the between-tract variability of the associations between air pollution and term birth weight. Higher air pollution exposure was associated with lower term birth weight (average posterior effects: -14.7 (95 % CI: -19.8, -9.7) g per 10 ppb increment in NO2 and -6.9 (95 % CI: -12.9, -0.9) g per 10 ppb increment in NOx). The variation of the association across Census tracts was significantly influenced by the tract-level socio-demographic, exposure-related and land-use factors. Our models captured the complex non-linear relationship between these factors and the associations between air pollution and term birth weight: we observed the thresholds from which the influence of the tract-level factors was markedly exacerbated or attenuated. Exacerbating factors might reflect additional exposure to environmental insults or lower socio-economic status with higher vulnerability, whereas attenuating factors might indicate reduced

  20. An introduction to Bayesian statistics in health psychology.

    PubMed

    Depaoli, Sarah; Rus, Holly M; Clifton, James P; van de Schoot, Rens; Tiemensma, Jitske

    2017-09-01

    The aim of the current article is to provide a brief introduction to Bayesian statistics within the field of health psychology. Bayesian methods are increasing in prevalence in applied fields, and they have been shown in simulation research to improve the estimation accuracy of structural equation models, latent growth curve (and mixture) models, and hierarchical linear models. Likewise, Bayesian methods can be used with small sample sizes since they do not rely on large sample theory. In this article, we discuss several important components of Bayesian statistics as they relate to health-based inquiries. We discuss the incorporation and impact of prior knowledge into the estimation process and the different components of the analysis that should be reported in an article. We present an example implementing Bayesian estimation in the context of blood pressure changes after participants experienced an acute stressor. We conclude with final thoughts on the implementation of Bayesian statistics in health psychology, including suggestions for reviewing Bayesian manuscripts and grant proposals. We have also included an extensive amount of online supplementary material to complement the content presented here, including Bayesian examples using many different software programmes and an extensive sensitivity analysis examining the impact of priors.

  1. Constraining mass anomalies in the interior of spherical bodies using Trans-dimensional Bayesian Hierarchical inference.

    NASA Astrophysics Data System (ADS)

    Izquierdo, K.; Lekic, V.; Montesi, L.

    2017-12-01

    Gravity inversions are especially important for planetary applications since measurements of the variations in gravitational acceleration are often the only constraint available to map out lateral density variations in the interiors of planets and other Solar system objects. Currently, global gravity data is available for the terrestrial planets and the Moon. Although several methods for inverting these data have been developed and applied, the non-uniqueness of global density models that fit the data has not yet been fully characterized. We make use of Bayesian inference and a Reversible Jump Markov Chain Monte Carlo (RJMCMC) approach to develop a Trans-dimensional Hierarchical Bayesian (THB) inversion algorithm that yields a large sample of models that fit a gravity field. From this group of models, we can determine the most likely value of parameters of a global density model and a measure of the non-uniqueness of each parameter when the number of anomalies describing the gravity field is not fixed a priori. We explore the use of a parallel tempering algorithm and fast multipole method to reduce the number of iterations and computing time needed. We applied this method to a synthetic gravity field of the Moon and a long wavelength synthetic model of density anomalies in the Earth's lower mantle. We obtained a good match between the given gravity field and the gravity field produced by the most likely model in each inversion. The number of anomalies of the models showed parsimony of the algorithm, the value of the noise variance of the input data was retrieved, and the non-uniqueness of the models was quantified. Our results show that the ability to constrain the latitude and longitude of density anomalies, which is excellent at shallow locations (<200 km), decreases with increasing depth. With higher computational resources, this THB method for gravity inversion could give new information about the overall density distribution of celestial bodies even when there

  2. Basics of Bayesian methods.

    PubMed

    Ghosh, Sujit K

    2010-01-01

    Bayesian methods are rapidly becoming popular tools for making statistical inference in various fields of science including biology, engineering, finance, and genetics. One of the key aspects of Bayesian inferential method is its logical foundation that provides a coherent framework to utilize not only empirical but also scientific information available to a researcher. Prior knowledge arising from scientific background, expert judgment, or previously collected data is used to build a prior distribution which is then combined with current data via the likelihood function to characterize the current state of knowledge using the so-called posterior distribution. Bayesian methods allow the use of models of complex physical phenomena that were previously too difficult to estimate (e.g., using asymptotic approximations). Bayesian methods offer a means of more fully understanding issues that are central to many practical problems by allowing researchers to build integrated models based on hierarchical conditional distributions that can be estimated even with limited amounts of data. Furthermore, advances in numerical integration methods, particularly those based on Monte Carlo methods, have made it possible to compute the optimal Bayes estimators. However, there is a reasonably wide gap between the background of the empirically trained scientists and the full weight of Bayesian statistical inference. Hence, one of the goals of this chapter is to bridge the gap by offering elementary to advanced concepts that emphasize linkages between standard approaches and full probability modeling via Bayesian methods.

  3. Bayesian modeling of the mass and density of asteroids

    NASA Astrophysics Data System (ADS)

    Dotson, Jessie L.; Mathias, Donovan

    2017-10-01

    Mass and density are two of the fundamental properties of any object. In the case of near earth asteroids, knowledge about the mass of an asteroid is essential for estimating the risk due to (potential) impact and planning possible mitigation options. The density of an asteroid can illuminate the structure of the asteroid. A low density can be indicative of a rubble pile structure whereas a higher density can imply a monolith and/or higher metal content. The damage resulting from an impact of an asteroid with Earth depends on its interior structure in addition to its total mass, and as a result, density is a key parameter to understanding the risk of asteroid impact. Unfortunately, measuring the mass and density of asteroids is challenging and often results in measurements with large uncertainties. In the absence of mass / density measurements for a specific object, understanding the range and distribution of likely values can facilitate probabilistic assessments of structure and impact risk. Hierarchical Bayesian models have recently been developed to investigate the mass - radius relationship of exoplanets (Wolfgang, Rogers & Ford 2016) and to probabilistically forecast the mass of bodies large enough to establish hydrostatic equilibrium over a range of 9 orders of magnitude in mass (from planemos to main sequence stars; Chen & Kipping 2017). Here, we extend this approach to investigate the mass and densities of asteroids. Several candidate Bayesian models are presented, and their performance is assessed relative to a synthetic asteroid population. In addition, a preliminary Bayesian model for probablistically forecasting masses and densities of asteroids is presented. The forecasting model is conditioned on existing asteroid data and includes observational errors, hyper-parameter uncertainties and intrinsic scatter.

  4. A novel approach to quantifying the sensitivity of current and future cosmological datasets to the neutrino mass ordering through Bayesian hierarchical modeling

    NASA Astrophysics Data System (ADS)

    Gerbino, Martina; Lattanzi, Massimiliano; Mena, Olga; Freese, Katherine

    2017-12-01

    We present a novel approach to derive constraints on neutrino masses, as well as on other cosmological parameters, from cosmological data, while taking into account our ignorance of the neutrino mass ordering. We derive constraints from a combination of current as well as future cosmological datasets on the total neutrino mass Mν and on the mass fractions fν,i =mi /Mν (where the index i = 1 , 2 , 3 indicates the three mass eigenstates) carried by each of the mass eigenstates mi, after marginalizing over the (unknown) neutrino mass ordering, either normal ordering (NH) or inverted ordering (IH). The bounds on all the cosmological parameters, including those on the total neutrino mass, take therefore into account the uncertainty related to our ignorance of the mass hierarchy that is actually realized in nature. This novel approach is carried out in the framework of Bayesian analysis of a typical hierarchical problem, where the distribution of the parameters of the model depends on further parameters, the hyperparameters. In this context, the choice of the neutrino mass ordering is modeled via the discrete hyperparameterhtype, which we introduce in the usual Markov chain analysis. The preference from cosmological data for either the NH or the IH scenarios is then simply encoded in the posterior distribution of the hyperparameter itself. Current cosmic microwave background (CMB) measurements assign equal odds to the two hierarchies, and are thus unable to distinguish between them. However, after the addition of baryon acoustic oscillation (BAO) measurements, a weak preference for the normal hierarchical scenario appears, with odds of 4 : 3 from Planck temperature and large-scale polarization in combination with BAO (3 : 2 if small-scale polarization is also included). Concerning next-generation cosmological experiments, forecasts suggest that the combination of upcoming CMB (COrE) and BAO surveys (DESI) may determine the neutrino mass hierarchy at a high statistical

  5. Modeling Heterogeneity in Relationships between Initial Status and Rates of Change: Latent Variable Regression in a Three-Level Hierarchical Model. CSE Report 647

    ERIC Educational Resources Information Center

    Choi, Kilchan; Seltzer, Michael

    2005-01-01

    In studies of change in education and numerous other fields, interest often centers on how differences in the status of individuals at the start of a time period of substantive interest relate to differences in subsequent change. This report presents a fully Bayesian approach to estimating three-level hierarchical models in which latent variable…

  6. Hierarchical Bayesian analysis of outcome- and process-based social preferences and beliefs in Dictator Games and sequential Prisoner's Dilemmas.

    PubMed

    Aksoy, Ozan; Weesie, Jeroen

    2014-05-01

    In this paper, using a within-subjects design, we estimate the utility weights that subjects attach to the outcome of their interaction partners in four decision situations: (1) binary Dictator Games (DG), second player's role in the sequential Prisoner's Dilemma (PD) after the first player (2) cooperated and (3) defected, and (4) first player's role in the sequential Prisoner's Dilemma game. We find that the average weights in these four decision situations have the following order: (1)>(2)>(4)>(3). Moreover, the average weight is positive in (1) but negative in (2), (3), and (4). Our findings indicate the existence of strong negative and small positive reciprocity for the average subject, but there is also high interpersonal variation in the weights in these four nodes. We conclude that the PD frame makes subjects more competitive than the DG frame. Using hierarchical Bayesian modeling, we simultaneously analyze beliefs of subjects about others' utility weights in the same four decision situations. We compare several alternative theoretical models on beliefs, e.g., rational beliefs (Bayesian-Nash equilibrium) and a consensus model. Our results on beliefs strongly support the consensus effect and refute rational beliefs: there is a strong relationship between own preferences and beliefs and this relationship is relatively stable across the four decision situations. Copyright © 2014 Elsevier Inc. All rights reserved.

  7. Using hierarchical Bayesian multi-species mixture models to estimate tandem hoop-net based habitat associations and detection probabilities of fishes in reservoirs

    USGS Publications Warehouse

    Stewart, David R.; Long, James M.

    2015-01-01

    Species distribution models are useful tools to evaluate habitat relationships of fishes. We used hierarchical Bayesian multispecies mixture models to evaluate the relationships of both detection and abundance with habitat of reservoir fishes caught using tandem hoop nets. A total of 7,212 fish from 12 species were captured, and the majority of the catch was composed of Channel Catfish Ictalurus punctatus (46%), Bluegill Lepomis macrochirus(25%), and White Crappie Pomoxis annularis (14%). Detection estimates ranged from 8% to 69%, and modeling results suggested that fishes were primarily influenced by reservoir size and context, water clarity and temperature, and land-use types. Species were differentially abundant within and among habitat types, and some fishes were found to be more abundant in turbid, less impacted (e.g., by urbanization and agriculture) reservoirs with longer shoreline lengths; whereas, other species were found more often in clear, nutrient-rich impoundments that had generally shorter shoreline length and were surrounded by a higher percentage of agricultural land. Our results demonstrated that habitat and reservoir characteristics may differentially benefit species and assemblage structure. This study provides a useful framework for evaluating capture efficiency for not only hoop nets but other gear types used to sample fishes in reservoirs.

  8. A Bayesian hierarchical model of Antarctic fur seal foraging and pup growth related to sea ice and prey abundance.

    PubMed

    Hiruki-Raring, Lisa M; Ver Hoef, Jay M; Boveng, Peter L; Bengtson, John L

    2012-03-01

    We created a Bayesian hierarchical model (BHM) to investigate ecosystem relationships between the physical ecosystem (sea ice extent), a prey measure (krill density), predator behaviors (diving and foraging effort of female Antarctic fur seals, Arctocephalus gazella, with pups) and predator characteristics (mass of maternal fur seals and pups). We collected data on Antarctic fur seals from 1987/1988 to 1994/1995 at Seal Island, Antarctica. The BHM allowed us to link together predators and prey into a model that uses all the data efficiently and accounts for major sources of uncertainty. Based on the literature, we made hypotheses about the relationships in the model, which we compared with the model outcome after fitting the BHM. For each BHM parameter, we calculated the mean of the posterior density and the 95% credible interval. Our model confirmed others' findings that increased sea ice was related to increased krill density. Higher krill density led to reduced dive intensity of maternal fur seals, as measured by dive depth and duration, and to less time spent foraging by maternal fur seals. Heavier maternal fur seals and lower maternal foraging effort resulted in heavier pups at 22 d. No relationship was found between krill density and maternal mass, or between maternal mass and foraging effort on pup growth rates between 22 and 85 days of age. Maternal mass may have reflected environmental conditions prior to the pup provisioning season, rather than summer prey densities. Maternal mass and foraging effort were not related to pup growth rates between 22 and 85 d, possibly indicating that food was not limiting, food sources other than krill were being used, or differences occurred before pups reached age 22 d.

  9. A FAST BAYESIAN METHOD FOR UPDATING AND FORECASTING HOURLY OZONE LEVELS

    EPA Science Inventory

    A Bayesian hierarchical space-time model is proposed by combining information from real-time ambient AIRNow air monitoring data, and output from a computer simulation model known as the Community Multi-scale Air Quality (Eta-CMAQ) forecast model. A model validation analysis shows...

  10. Multinomial Bayesian learning for modeling classical and nonclassical receptive field properties.

    PubMed

    Hosoya, Haruo

    2012-08-01

    We study the interplay of Bayesian inference and natural image learning in a hierarchical vision system, in relation to the response properties of early visual cortex. We particularly focus on a Bayesian network with multinomial variables that can represent discrete feature spaces similar to hypercolumns combining minicolumns, enforce sparsity of activation to learn efficient representations, and explain divisive normalization. We demonstrate that maximal-likelihood learning using sampling-based Bayesian inference gives rise to classical receptive field properties similar to V1 simple cells and V2 cells, while inference performed on the trained network yields nonclassical context-dependent response properties such as cross-orientation suppression and filling in. Comparison with known physiological properties reveals some qualitative and quantitative similarities.

  11. Calibrating the sqHIMMELI v1.0 wetland methane emission model with hierarchical modeling and adaptive MCMC

    NASA Astrophysics Data System (ADS)

    Susiluoto, Jouni; Raivonen, Maarit; Backman, Leif; Laine, Marko; Makela, Jarmo; Peltola, Olli; Vesala, Timo; Aalto, Tuula

    2018-03-01

    Estimating methane (CH4) emissions from natural wetlands is complex, and the estimates contain large uncertainties. The models used for the task are typically heavily parameterized and the parameter values are not well known. In this study, we perform a Bayesian model calibration for a new wetland CH4 emission model to improve the quality of the predictions and to understand the limitations of such models.The detailed process model that we analyze contains descriptions for CH4 production from anaerobic respiration, CH4 oxidation, and gas transportation by diffusion, ebullition, and the aerenchyma cells of vascular plants. The processes are controlled by several tunable parameters. We use a hierarchical statistical model to describe the parameters and obtain the posterior distributions of the parameters and uncertainties in the processes with adaptive Markov chain Monte Carlo (MCMC), importance resampling, and time series analysis techniques. For the estimation, the analysis utilizes measurement data from the Siikaneva flux measurement site in southern Finland. The uncertainties related to the parameters and the modeled processes are described quantitatively. At the process level, the flux measurement data are able to constrain the CH4 production processes, methane oxidation, and the different gas transport processes. The posterior covariance structures explain how the parameters and the processes are related. Additionally, the flux and flux component uncertainties are analyzed both at the annual and daily levels. The parameter posterior densities obtained provide information regarding importance of the different processes, which is also useful for development of wetland methane emission models other than the square root HelsinkI Model of MEthane buiLd-up and emIssion for peatlands (sqHIMMELI). The hierarchical modeling allows us to assess the effects of some of the parameters on an annual basis. The results of the calibration and the cross validation suggest that

  12. Hierarchical structure of the Sicilian goats revealed by Bayesian analyses of microsatellite information.

    PubMed

    Siwek, M; Finocchiaro, R; Curik, I; Portolano, B

    2011-02-01

    Genetic structure and relationship amongst the main goat populations in Sicily (Girgentana, Derivata di Siria, Maltese and Messinese) were analysed using information from 19 microsatellite markers genotyped on 173 individuals. A posterior Bayesian approach implemented in the program STRUCTURE revealed a hierarchical structure with two clusters at the first level (Girgentana vs. Messinese, Derivata di Siria and Maltese), explaining 4.8% of variation (amovaФ(ST) estimate). Seven clusters nested within these first two clusters (further differentiations of Girgentana, Derivata di Siria and Maltese), explaining 8.5% of variation (amovaФ(SC) estimate). The analyses and methods applied in this study indicate their power to detect subtle population structure. © 2010 The Authors, Animal Genetics © 2010 Stichting International Foundation for Animal Genetics.

  13. A hybrid Bayesian hierarchical model combining cohort and case-control studies for meta-analysis of diagnostic tests: Accounting for partial verification bias.

    PubMed

    Ma, Xiaoye; Chen, Yong; Cole, Stephen R; Chu, Haitao

    2016-12-01

    To account for between-study heterogeneity in meta-analysis of diagnostic accuracy studies, bivariate random effects models have been recommended to jointly model the sensitivities and specificities. As study design and population vary, the definition of disease status or severity could differ across studies. Consequently, sensitivity and specificity may be correlated with disease prevalence. To account for this dependence, a trivariate random effects model had been proposed. However, the proposed approach can only include cohort studies with information estimating study-specific disease prevalence. In addition, some diagnostic accuracy studies only select a subset of samples to be verified by the reference test. It is known that ignoring unverified subjects may lead to partial verification bias in the estimation of prevalence, sensitivities, and specificities in a single study. However, the impact of this bias on a meta-analysis has not been investigated. In this paper, we propose a novel hybrid Bayesian hierarchical model combining cohort and case-control studies and correcting partial verification bias at the same time. We investigate the performance of the proposed methods through a set of simulation studies. Two case studies on assessing the diagnostic accuracy of gadolinium-enhanced magnetic resonance imaging in detecting lymph node metastases and of adrenal fluorine-18 fluorodeoxyglucose positron emission tomography in characterizing adrenal masses are presented. © The Author(s) 2014.

  14. A Hybrid Bayesian Hierarchical Model Combining Cohort and Case-control Studies for Meta-analysis of Diagnostic Tests: Accounting for Partial Verification Bias

    PubMed Central

    Ma, Xiaoye; Chen, Yong; Cole, Stephen R.; Chu, Haitao

    2014-01-01

    To account for between-study heterogeneity in meta-analysis of diagnostic accuracy studies, bivariate random effects models have been recommended to jointly model the sensitivities and specificities. As study design and population vary, the definition of disease status or severity could differ across studies. Consequently, sensitivity and specificity may be correlated with disease prevalence. To account for this dependence, a trivariate random effects model had been proposed. However, the proposed approach can only include cohort studies with information estimating study-specific disease prevalence. In addition, some diagnostic accuracy studies only select a subset of samples to be verified by the reference test. It is known that ignoring unverified subjects may lead to partial verification bias in the estimation of prevalence, sensitivities and specificities in a single study. However, the impact of this bias on a meta-analysis has not been investigated. In this paper, we propose a novel hybrid Bayesian hierarchical model combining cohort and case-control studies and correcting partial verification bias at the same time. We investigate the performance of the proposed methods through a set of simulation studies. Two case studies on assessing the diagnostic accuracy of gadolinium-enhanced magnetic resonance imaging in detecting lymph node metastases and of adrenal fluorine-18 fluorodeoxyglucose positron emission tomography in characterizing adrenal masses are presented. PMID:24862512

  15. Modeling abundance using hierarchical distance sampling

    USGS Publications Warehouse

    Royle, Andy; Kery, Marc

    2016-01-01

    In this chapter, we provide an introduction to classical distance sampling ideas for point and line transect data, and for continuous and binned distance data. We introduce the conditional and the full likelihood, and we discuss Bayesian analysis of these models in BUGS using the idea of data augmentation, which we discussed in Chapter 7. We then extend the basic ideas to the problem of hierarchical distance sampling (HDS), where we have multiple point or transect sample units in space (or possibly in time). The benefit of HDS in practice is that it allows us to directly model spatial variation in population size among these sample units. This is a preeminent concern of most field studies that use distance sampling methods, but it is not a problem that has received much attention in the literature. We show how to analyze HDS models in both the unmarked package and in the BUGS language for point and line transects, and for continuous and binned distance data. We provide a case study of HDS applied to a survey of the island scrub-jay on Santa Cruz Island, California.

  16. Evaluation of spatio-temporal Bayesian models for the spread of infectious diseases in oil palm.

    PubMed

    Denis, Marie; Cochard, Benoît; Syahputra, Indra; de Franqueville, Hubert; Tisné, Sébastien

    2018-02-01

    In the field of epidemiology, studies are often focused on mapping diseases in relation to time and space. Hierarchical modeling is a common flexible and effective tool for modeling problems related to disease spread. In the context of oil palm plantations infected by the fungal pathogen Ganoderma boninense, we propose and compare two spatio-temporal hierarchical Bayesian models addressing the lack of information on propagation modes and transmission vectors. We investigate two alternative process models to study the unobserved mechanism driving the infection process. The models help gain insight into the spatio-temporal dynamic of the infection by identifying a genetic component in the disease spread and by highlighting a spatial component acting at the end of the experiment. In this challenging context, we propose models that provide assumptions on the unobserved mechanism driving the infection process while making short-term predictions using ready-to-use software. Copyright © 2018 Elsevier Ltd. All rights reserved.

  17. Bayesian Model Averaging for Propensity Score Analysis

    ERIC Educational Resources Information Center

    Kaplan, David; Chen, Jianshen

    2013-01-01

    The purpose of this study is to explore Bayesian model averaging in the propensity score context. Previous research on Bayesian propensity score analysis does not take into account model uncertainty. In this regard, an internally consistent Bayesian framework for model building and estimation must also account for model uncertainty. The…

  18. A BAYESIAN SPATIAL AND TEMPORAL MODELING APPROACH TO MAPPING GEOGRAPHIC VARIATION IN MORTALITY RATES FOR SUBNATIONAL AREAS WITH R-INLA.

    PubMed

    Khana, Diba; Rossen, Lauren M; Hedegaard, Holly; Warner, Margaret

    2018-01-01

    Hierarchical Bayes models have been used in disease mapping to examine small scale geographic variation. State level geographic variation for less common causes of mortality outcomes have been reported however county level variation is rarely examined. Due to concerns about statistical reliability and confidentiality, county-level mortality rates based on fewer than 20 deaths are suppressed based on Division of Vital Statistics, National Center for Health Statistics (NCHS) statistical reliability criteria, precluding an examination of spatio-temporal variation in less common causes of mortality outcomes such as suicide rates (SRs) at the county level using direct estimates. Existing Bayesian spatio-temporal modeling strategies can be applied via Integrated Nested Laplace Approximation (INLA) in R to a large number of rare causes of mortality outcomes to enable examination of spatio-temporal variations on smaller geographic scales such as counties. This method allows examination of spatiotemporal variation across the entire U.S., even where the data are sparse. We used mortality data from 2005-2015 to explore spatiotemporal variation in SRs, as one particular application of the Bayesian spatio-temporal modeling strategy in R-INLA to predict year and county-specific SRs. Specifically, hierarchical Bayesian spatio-temporal models were implemented with spatially structured and unstructured random effects, correlated time effects, time varying confounders and space-time interaction terms in the software R-INLA, borrowing strength across both counties and years to produce smoothed county level SRs. Model-based estimates of SRs were mapped to explore geographic variation.

  19. Modeling Heterogeneity in Relationships between Initial Status and Rates of Change: Treating Latent Variable Regression Coefficients as Random Coefficients in a Three-Level Hierarchical Model

    ERIC Educational Resources Information Center

    Choi, Kilchan; Seltzer, Michael

    2010-01-01

    In studies of change in education and numerous other fields, interest often centers on how differences in the status of individuals at the start of a period of substantive interest relate to differences in subsequent change. In this article, the authors present a fully Bayesian approach to estimating three-level Hierarchical Models in which latent…

  20. Hierarchical Bayesian Approach To Reduce Uncertainty in the Aquatic Effect Assessment of Realistic Chemical Mixtures.

    PubMed

    Oldenkamp, Rik; Hendriks, Harrie W M; van de Meent, Dik; Ragas, Ad M J

    2015-09-01

    Species in the aquatic environment differ in their toxicological sensitivity to the various chemicals they encounter. In aquatic risk assessment, this interspecies variation is often quantified via species sensitivity distributions. Because the information available for the characterization of these distributions is typically limited, optimal use of information is essential to reduce uncertainty involved in the assessment. In the present study, we show that the credibility intervals on the estimated potentially affected fraction of species after exposure to a mixture of chemicals at environmentally relevant surface water concentrations can be extremely wide if a classical approach is followed, in which each chemical in the mixture is considered in isolation. As an alternative, we propose a hierarchical Bayesian approach, in which knowledge on the toxicity of chemicals other than those assessed is incorporated. A case study with a mixture of 13 pharmaceuticals demonstrates that this hierarchical approach results in more realistic estimations of the potentially affected fraction, as a result of reduced uncertainty in species sensitivity distributions for data-poor chemicals.

  1. The Type Ia Supernova Color-Magnitude Relation and Host Galaxy Dust: A Simple Hierarchical Bayesian Model

    NASA Astrophysics Data System (ADS)

    Mandel, Kaisey; Scolnic, Daniel; Shariff, Hikmatali; Foley, Ryan; Kirshner, Robert

    2017-01-01

    Inferring peak optical absolute magnitudes of Type Ia supernovae (SN Ia) from distance-independent measures such as their light curve shapes and colors underpins the evidence for cosmic acceleration. SN Ia with broader, slower declining optical light curves are more luminous (“broader-brighter”) and those with redder colors are dimmer. But the “redder-dimmer” color-luminosity relation widely used in cosmological SN Ia analyses confounds its two separate physical origins. An intrinsic correlation arises from the physics of exploding white dwarfs, while interstellar dust in the host galaxy also makes SN Ia appear dimmer and redder. Conventional SN Ia cosmology analyses currently use a simplistic linear regression of magnitude versus color and light curve shape, which does not model intrinsic SN Ia variations and host galaxy dust as physically distinct effects, resulting in low color-magnitude slopes. We construct a probabilistic generative model for the dusty distribution of extinguished absolute magnitudes and apparent colors as the convolution of an intrinsic SN Ia color-magnitude distribution and a host galaxy dust reddening-extinction distribution. If the intrinsic color-magnitude (MB vs. B-V) slope βint differs from the host galaxy dust law RB, this convolution results in a specific curve of mean extinguished absolute magnitude vs. apparent color. The derivative of this curve smoothly transitions from βint in the blue tail to RB in the red tail of the apparent color distribution. The conventional linear fit approximates this effective curve near the average apparent color, resulting in an apparent slope βapp between βint and RB. We incorporate these effects into a hierarchical Bayesian statistical model for SN Ia light curve measurements, and analyze a dataset of SALT2 optical light curve fits of 277 nearby SN Ia at z < 0.10. The conventional linear fit obtains βapp ≈ 3. Our model finds a βint = 2.2 ± 0.3 and a distinct dust law of RB = 3.7 ± 0

  2. Hierarchical Bayesian modelling of gene expression time series across irregularly sampled replicates and clusters.

    PubMed

    Hensman, James; Lawrence, Neil D; Rattray, Magnus

    2013-08-20

    Time course data from microarrays and high-throughput sequencing experiments require simple, computationally efficient and powerful statistical models to extract meaningful biological signal, and for tasks such as data fusion and clustering. Existing methodologies fail to capture either the temporal or replicated nature of the experiments, and often impose constraints on the data collection process, such as regularly spaced samples, or similar sampling schema across replications. We propose hierarchical Gaussian processes as a general model of gene expression time-series, with application to a variety of problems. In particular, we illustrate the method's capacity for missing data imputation, data fusion and clustering.The method can impute data which is missing both systematically and at random: in a hold-out test on real data, performance is significantly better than commonly used imputation methods. The method's ability to model inter- and intra-cluster variance leads to more biologically meaningful clusters. The approach removes the necessity for evenly spaced samples, an advantage illustrated on a developmental Drosophila dataset with irregular replications. The hierarchical Gaussian process model provides an excellent statistical basis for several gene-expression time-series tasks. It has only a few additional parameters over a regular GP, has negligible additional complexity, is easily implemented and can be integrated into several existing algorithms. Our experiments were implemented in python, and are available from the authors' website: http://staffwww.dcs.shef.ac.uk/people/J.Hensman/.

  3. Individual differences in social information gathering revealed through Bayesian hierarchical models

    PubMed Central

    Pearson, John M.; Watson, Karli K.; Klein, Jeffrey T.; Ebitz, R. Becket; Platt, Michael L.

    2013-01-01

    As studies of the neural circuits underlying choice expand to include more complicated behaviors, analysis of behaviors elicited in laboratory paradigms has grown increasingly difficult. Social behaviors present a particular challenge, since inter- and intra-individual variation are expected to play key roles. However, due to limitations on data collection, studies must often choose between pooling data across all subjects or using individual subjects' data in isolation. Hierarchical models mediate between these two extremes by modeling individual subjects as drawn from a population distribution, allowing the population at large to serve as prior information about individuals' behavior. Here, we apply this method to data collected across multiple experimental sessions from a set of rhesus macaques performing a social information valuation task. We show that, while the values of social images vary markedly between individuals and between experimental sessions for the same individual, individuals also differentially value particular categories of social images. Furthermore, we demonstrate covariance between values for image categories within individuals and find evidence suggesting that magnitudes of stimulus values tend to diminish over time. PMID:24062635

  4. A Bayesian Hierarchical Approach to Galaxy-Galaxy Lensing

    NASA Astrophysics Data System (ADS)

    Sonnenfeld, Alessandro; Leauthaud, Alexie

    2018-04-01

    We present a Bayesian hierarchical inference formalism to study the relation between the properties of dark matter halos and those of their central galaxies using weak gravitational lensing. Unlike traditional methods, this technique does not resort to stacking the weak lensing signal in bins, and thus allows for a more efficient use of the information content in the data. Our method is particularly useful for constraining scaling relations between two or more galaxy properties and dark matter halo mass, and can also be used to constrain the intrinsic scatter in these scaling relations. We show that, if observational scatter is not properly accounted for, the traditional stacking method can produce biased results when exploring correlations between multiple galaxy properties and halo mass. For example, this bias can affect studies of the joint correlation between galaxy mass, halo mass, and galaxy size, or galaxy colour. In contrast, our method easily and efficiently handles the intrinsic and observational scatter in multiple galaxy properties and halo mass. We test our method on mocks with varying degrees of complexity. We find that we can recover the mean halo mass and concentration, each with a 0.1 dex accuracy, and the intrinsic scatter in halo mass with a 0.05 dex accuracy. In its current version, our method will be most useful for studying the weak lensing signal around central galaxies in groups and clusters, as well as massive galaxies samples with log M* > 11, which have low satellite fractions.

  5. A Bayesian hierarchical approach to galaxy-galaxy lensing

    NASA Astrophysics Data System (ADS)

    Sonnenfeld, Alessandro; Leauthaud, Alexie

    2018-07-01

    We present a Bayesian hierarchical inference formalism to study the relation between the properties of dark matter haloes and those of their central galaxies using weak gravitational lensing. Unlike traditional methods, this technique does not resort to stacking the weak lensing signal in bins, and thus allows for a more efficient use of the information content in the data. Our method is particularly useful for constraining scaling relations between two or more galaxy properties and dark matter halo mass, and can also be used to constrain the intrinsic scatter in these scaling relations. We show that, if observational scatter is not properly accounted for, the traditional stacking method can produce biased results when exploring correlations between multiple galaxy properties and halo mass. For example, this bias can affect studies of the joint correlation between galaxy mass, halo mass, and galaxy size, or galaxy colour. In contrast, our method easily and efficiently handles the intrinsic and observational scatter in multiple galaxy properties and halo mass. We test our method on mocks with varying degrees of complexity. We find that we can recover the mean halo mass and concentration, each with a 0.1 dex accuracy, and the intrinsic scatter in halo mass with a 0.05 dex accuracy. In its current version, our method will be most useful for studying the weak lensing signal around central galaxies in groups and clusters, as well as massive galaxies samples with log M* > 11, which have low satellite fractions.

  6. Hierarchical spatiotemporal matrix models for characterizing invasions

    USGS Publications Warehouse

    Hooten, M.B.; Wikle, C.K.; Dorazio, R.M.; Royle, J. Andrew

    2007-01-01

    The growth and dispersal of biotic organisms is an important subject in ecology. Ecologists are able to accurately describe survival and fecundity in plant and animal populations and have developed quantitative approaches to study the dynamics of dispersal and population size. Of particular interest are the dynamics of invasive species. Such nonindigenous animals and plants can levy significant impacts on native biotic communities. Effective models for relative abundance have been developed; however, a better understanding of the dynamics of actual population size (as opposed to relative abundance) in an invasion would be beneficial to all branches of ecology. In this article, we adopt a hierarchical Bayesian framework for modeling the invasion of such species while addressing the discrete nature of the data and uncertainty associated with the probability of detection. The nonlinear dynamics between discrete time points are intuitively modeled through an embedded deterministic population model with density-dependent growth and dispersal components. Additionally, we illustrate the importance of accommodating spatially varying dispersal rates. The method is applied to the specific case of the Eurasian Collared-Dove, an invasive species at mid-invasion in the United States at the time of this writing.

  7. Hierarchical spatiotemporal matrix models for characterizing invasions

    USGS Publications Warehouse

    Hooten, M.B.; Wikle, C.K.; Dorazio, R.M.; Royle, J. Andrew

    2007-01-01

    The growth and dispersal of biotic organisms is an important subject in ecology. Ecologists are able to accurately describe survival and fecundity in plant and animal populations and have developed quantitative approaches to study the dynamics of dispersal and population size. Of particular interest are the dynamics of invasive species. Such nonindigenous animals and plants can levy significant impacts on native biotic communities. Effective models for relative abundance have been developed; however, a better understanding of the dynamics of actual population size (as opposed to relative abundance) in an invasion would be beneficial to all branches of ecology. In this article, we adopt a hierarchical Bayesian framework for modeling the invasion of such species while addressing the discrete nature of the data and uncertainty associated with the probability of detection. The nonlinear dynamics between discrete time points are intuitively modeled through an embedded deterministic population model with density-dependent growth and dispersal components. Additionally, we illustrate the importance of accommodating spatially varying dispersal rates. The method is applied to the specific case of the Eurasian Collared-Dove, an invasive species at mid-invasion in the United States at the time of this writing. ?? 2006, The International Biometric Society.

  8. Assessing global vegetation activity using spatio-temporal Bayesian modelling

    NASA Astrophysics Data System (ADS)

    Mulder, Vera L.; van Eck, Christel M.; Friedlingstein, Pierre; Regnier, Pierre A. G.

    2016-04-01

    This work demonstrates the potential of modelling vegetation activity using a hierarchical Bayesian spatio-temporal model. This approach allows modelling changes in vegetation and climate simultaneous in space and time. Changes of vegetation activity such as phenology are modelled as a dynamic process depending on climate variability in both space and time. Additionally, differences in observed vegetation status can be contributed to other abiotic ecosystem properties, e.g. soil and terrain properties. Although these properties do not change in time, they do change in space and may provide valuable information in addition to the climate dynamics. The spatio-temporal Bayesian models were calibrated at a regional scale because the local trends in space and time can be better captured by the model. The regional subsets were defined according to the SREX segmentation, as defined by the IPCC. Each region is considered being relatively homogeneous in terms of large-scale climate and biomes, still capturing small-scale (grid-cell level) variability. Modelling within these regions is hence expected to be less uncertain due to the absence of these large-scale patterns, compared to a global approach. This overall modelling approach allows the comparison of model behavior for the different regions and may provide insights on the main dynamic processes driving the interaction between vegetation and climate within different regions. The data employed in this study encompasses the global datasets for soil properties (SoilGrids), terrain properties (Global Relief Model based on SRTM DEM and ETOPO), monthly time series of satellite-derived vegetation indices (GIMMS NDVI3g) and climate variables (Princeton Meteorological Forcing Dataset). The findings proved the potential of a spatio-temporal Bayesian modelling approach for assessing vegetation dynamics, at a regional scale. The observed interrelationships of the employed data and the different spatial and temporal trends support

  9. Bayesian techniques for analyzing group differences in the Iowa Gambling Task: A case study of intuitive and deliberate decision-makers.

    PubMed

    Steingroever, Helen; Pachur, Thorsten; Šmíra, Martin; Lee, Michael D

    2018-06-01

    The Iowa Gambling Task (IGT) is one of the most popular experimental paradigms for comparing complex decision-making across groups. Most commonly, IGT behavior is analyzed using frequentist tests to compare performance across groups, and to compare inferred parameters of cognitive models developed for the IGT. Here, we present a Bayesian alternative based on Bayesian repeated-measures ANOVA for comparing performance, and a suite of three complementary model-based methods for assessing the cognitive processes underlying IGT performance. The three model-based methods involve Bayesian hierarchical parameter estimation, Bayes factor model comparison, and Bayesian latent-mixture modeling. We illustrate these Bayesian methods by applying them to test the extent to which differences in intuitive versus deliberate decision style are associated with differences in IGT performance. The results show that intuitive and deliberate decision-makers behave similarly on the IGT, and the modeling analyses consistently suggest that both groups of decision-makers rely on similar cognitive processes. Our results challenge the notion that individual differences in intuitive and deliberate decision styles have a broad impact on decision-making. They also highlight the advantages of Bayesian methods, especially their ability to quantify evidence in favor of the null hypothesis, and that they allow model-based analyses to incorporate hierarchical and latent-mixture structures.

  10. Estimation of Coast-Wide Population Trends of Marbled Murrelets in Canada Using a Bayesian Hierarchical Model

    PubMed Central

    Schroeder, Bernard K.; Lindsay, David J.; Faust, Deborah A.

    2015-01-01

    Species at risk with secretive breeding behaviours, low densities, and wide geographic range pose a significant challenge to conservation actions because population trends are difficult to detect. Such is the case with the Marbled Murrelet (Brachyramphus marmoratus), a seabird listed as ‘Threatened’ by the Species at Risk Act in Canada largely due to the loss of its old growth forest nesting habitat. We report the first estimates of population trend of Marbled Murrelets in Canada derived from a monitoring program that uses marine radar to detect birds as they enter forest watersheds during 923 dawn surveys at 58 radar monitoring stations within the six Marbled Murrelet Conservation Regions on coastal British Columbia, Canada, 1996–2013. Temporal trends in radar counts were analyzed with a hierarchical Bayesian multivariate modeling approach that controlled for variation in tilt of the radar unit and day of year, included year-specific deviations from the overall trend (‘year effects’), and allowed for trends to be estimated at three spatial scales. A negative overall trend of -1.6%/yr (95% credibility interval: -3.2%, 0.01%) indicated moderate evidence for a coast-wide decline, although trends varied strongly among the six conservation regions. Negative annual trends were detected in East Vancouver Island (-9%/yr) and South Mainland Coast (-3%/yr) Conservation Regions. Over a quarter of the year effects were significantly different from zero, and the estimated standard deviation in common-shared year effects between sites within each region was about 50% per year. This large common-shared interannual variation in counts may have been caused by regional movements of birds related to changes in marine conditions that affect the availability of prey. PMID:26258803

  11. Bayesian Data-Model Fit Assessment for Structural Equation Modeling

    ERIC Educational Resources Information Center

    Levy, Roy

    2011-01-01

    Bayesian approaches to modeling are receiving an increasing amount of attention in the areas of model construction and estimation in factor analysis, structural equation modeling (SEM), and related latent variable models. However, model diagnostics and model criticism remain relatively understudied aspects of Bayesian SEM. This article describes…

  12. A hierarchical community occurrence model for North Carolina stream fish

    USGS Publications Warehouse

    Midway, S.R.; Wagner, Tyler; Tracy, B.H.

    2016-01-01

    The southeastern USA is home to one of the richest—and most imperiled and threatened—freshwater fish assemblages in North America. For many of these rare and threatened species, conservation efforts are often limited by a lack of data. Drawing on a unique and extensive data set spanning over 20 years, we modeled occurrence probabilities of 126 stream fish species sampled throughout North Carolina, many of which occur more broadly in the southeastern USA. Specifically, we developed species-specific occurrence probabilities from hierarchical Bayesian multispecies models that were based on common land use and land cover covariates. We also used index of biotic integrity tolerance classifications as a second level in the model hierarchy; we identify this level as informative for our work, but it is flexible for future model applications. Based on the partial-pooling property of the models, we were able to generate occurrence probabilities for many imperiled and data-poor species in addition to highlighting a considerable amount of occurrence heterogeneity that supports species-specific investigations whenever possible. Our results provide critical species-level information on many threatened and imperiled species as well as information that may assist with re-evaluation of existing management strategies, such as the use of surrogate species. Finally, we highlight the use of a relatively simple hierarchical model that can easily be generalized for similar situations in which conventional models fail to provide reliable estimates for data-poor groups.

  13. Diagnostics for generalized linear hierarchical models in network meta-analysis.

    PubMed

    Zhao, Hong; Hodges, James S; Carlin, Bradley P

    2017-09-01

    Network meta-analysis (NMA) combines direct and indirect evidence comparing more than 2 treatments. Inconsistency arises when these 2 information sources differ. Previous work focuses on inconsistency detection, but little has been done on how to proceed after identifying inconsistency. The key issue is whether inconsistency changes an NMA's substantive conclusions. In this paper, we examine such discrepancies from a diagnostic point of view. Our methods seek to detect influential and outlying observations in NMA at a trial-by-arm level. These observations may have a large effect on the parameter estimates in NMA, or they may deviate markedly from other observations. We develop formal diagnostics for a Bayesian hierarchical model to check the effect of deleting any observation. Diagnostics are specified for generalized linear hierarchical NMA models and investigated for both published and simulated datasets. Results from our example dataset using either contrast- or arm-based models and from the simulated datasets indicate that the sources of inconsistency in NMA tend not to be influential, though results from the example dataset suggest that they are likely to be outliers. This mimics a familiar result from linear model theory, in which outliers with low leverage are not influential. Future extensions include incorporating baseline covariates and individual-level patient data. Copyright © 2017 John Wiley & Sons, Ltd.

  14. Modeling Diagnostic Assessments with Bayesian Networks

    ERIC Educational Resources Information Center

    Almond, Russell G.; DiBello, Louis V.; Moulder, Brad; Zapata-Rivera, Juan-Diego

    2007-01-01

    This paper defines Bayesian network models and examines their applications to IRT-based cognitive diagnostic modeling. These models are especially suited to building inference engines designed to be synchronous with the finer grained student models that arise in skills diagnostic assessment. Aspects of the theory and use of Bayesian network models…

  15. Inferring the Growth of Massive Galaxies Using Bayesian Spectral Synthesis Modeling

    NASA Astrophysics Data System (ADS)

    Stillman, Coley Michael; Poremba, Megan R.; Moustakas, John

    2018-01-01

    The most massive galaxies in the universe are typically found at the centers of massive galaxy clusters. Studying these galaxies can provide valuable insight into the hierarchical growth of massive dark matter halos. One of the key challenges of measuring the stellar mass growth of massive galaxies is converting the measured light profiles into stellar mass. We use Prospector, a state-of-the-art Bayesian spectral synthesis modeling code, to infer the total stellar masses of a pilot sample of massive central galaxies selected from the Sloan Digital Sky Survey. We compare our stellar mass estimates to previous measurements, and present some of the quantitative diagnostics provided by Prospector.

  16. Moving beyond qualitative evaluations of Bayesian models of cognition.

    PubMed

    Hemmer, Pernille; Tauber, Sean; Steyvers, Mark

    2015-06-01

    Bayesian models of cognition provide a powerful way to understand the behavior and goals of individuals from a computational point of view. Much of the focus in the Bayesian cognitive modeling approach has been on qualitative model evaluations, where predictions from the models are compared to data that is often averaged over individuals. In many cognitive tasks, however, there are pervasive individual differences. We introduce an approach to directly infer individual differences related to subjective mental representations within the framework of Bayesian models of cognition. In this approach, Bayesian data analysis methods are used to estimate cognitive parameters and motivate the inference process within a Bayesian cognitive model. We illustrate this integrative Bayesian approach on a model of memory. We apply the model to behavioral data from a memory experiment involving the recall of heights of people. A cross-validation analysis shows that the Bayesian memory model with inferred subjective priors predicts withheld data better than a Bayesian model where the priors are based on environmental statistics. In addition, the model with inferred priors at the individual subject level led to the best overall generalization performance, suggesting that individual differences are important to consider in Bayesian models of cognition.

  17. Bayesian modeling of flexible cognitive control

    PubMed Central

    Jiang, Jiefeng; Heller, Katherine; Egner, Tobias

    2014-01-01

    “Cognitive control” describes endogenous guidance of behavior in situations where routine stimulus-response associations are suboptimal for achieving a desired goal. The computational and neural mechanisms underlying this capacity remain poorly understood. We examine recent advances stemming from the application of a Bayesian learner perspective that provides optimal prediction for control processes. In reviewing the application of Bayesian models to cognitive control, we note that an important limitation in current models is a lack of a plausible mechanism for the flexible adjustment of control over conflict levels changing at varying temporal scales. We then show that flexible cognitive control can be achieved by a Bayesian model with a volatility-driven learning mechanism that modulates dynamically the relative dependence on recent and remote experiences in its prediction of future control demand. We conclude that the emergent Bayesian perspective on computational mechanisms of cognitive control holds considerable promise, especially if future studies can identify neural substrates of the variables encoded by these models, and determine the nature (Bayesian or otherwise) of their neural implementation. PMID:24929218

  18. Nonparametric Bayesian inference of the microcanonical stochastic block model

    NASA Astrophysics Data System (ADS)

    Peixoto, Tiago P.

    2017-01-01

    A principled approach to characterize the hidden modular structure of networks is to formulate generative models and then infer their parameters from data. When the desired structure is composed of modules or "communities," a suitable choice for this task is the stochastic block model (SBM), where nodes are divided into groups, and the placement of edges is conditioned on the group memberships. Here, we present a nonparametric Bayesian method to infer the modular structure of empirical networks, including the number of modules and their hierarchical organization. We focus on a microcanonical variant of the SBM, where the structure is imposed via hard constraints, i.e., the generated networks are not allowed to violate the patterns imposed by the model. We show how this simple model variation allows simultaneously for two important improvements over more traditional inference approaches: (1) deeper Bayesian hierarchies, with noninformative priors replaced by sequences of priors and hyperpriors, which not only remove limitations that seriously degrade the inference on large networks but also reveal structures at multiple scales; (2) a very efficient inference algorithm that scales well not only for networks with a large number of nodes and edges but also with an unlimited number of modules. We show also how this approach can be used to sample modular hierarchies from the posterior distribution, as well as to perform model selection. We discuss and analyze the differences between sampling from the posterior and simply finding the single parameter estimate that maximizes it. Furthermore, we expose a direct equivalence between our microcanonical approach and alternative derivations based on the canonical SBM.

  19. Deep Learning with Hierarchical Convolutional Factor Analysis

    PubMed Central

    Chen, Bo; Polatkan, Gungor; Sapiro, Guillermo; Blei, David; Dunson, David; Carin, Lawrence

    2013-01-01

    Unsupervised multi-layered (“deep”) models are considered for general data, with a particular focus on imagery. The model is represented using a hierarchical convolutional factor-analysis construction, with sparse factor loadings and scores. The computation of layer-dependent model parameters is implemented within a Bayesian setting, employing a Gibbs sampler and variational Bayesian (VB) analysis, that explicitly exploit the convolutional nature of the expansion. In order to address large-scale and streaming data, an online version of VB is also developed. The number of basis functions or dictionary elements at each layer is inferred from the data, based on a beta-Bernoulli implementation of the Indian buffet process. Example results are presented for several image-processing applications, with comparisons to related models in the literature. PMID:23787342

  20. Does Mortality Vary between Asian Subgroups in New Zealand: An Application of Hierarchical Bayesian Modelling

    PubMed Central

    Jatrana, Santosh; Richardson, Ken; Blakely, Tony; Dayal, Saira

    2014-01-01

    The aim of this paper was to see whether all-cause and cause-specific mortality rates vary between Asian ethnic subgroups, and whether overseas born Asian subgroup mortality rate ratios varied by nativity and duration of residence. We used hierarchical Bayesian methods to allow for sparse data in the analysis of linked census-mortality data for 25–75 year old New Zealanders. We found directly standardised posterior all-cause and cardiovascular mortality rates were highest for the Indian ethnic group, significantly so when compared with those of Chinese ethnicity. In contrast, cancer mortality rates were lowest for ethnic Indians. Asian overseas born subgroups have about 70% of the mortality rate of their New Zealand born Asian counterparts, a result that showed little variation by Asian subgroup or cause of death. Within the overseas born population, all-cause mortality rates for migrants living 0–9 years in New Zealand were about 60% of the mortality rate of those living more than 25 years in New Zealand regardless of ethnicity. The corresponding figure for cardiovascular mortality rates was 50%. However, while Chinese cancer mortality rates increased with duration of residence, Indian and Other Asian cancer mortality rates did not. Future research on the mechanisms of worsening of health with increased time spent in the host country is required to improve the understanding of the process, and would assist the policy-makers and health planners. PMID:25140523

  1. Hierarchical Commensurate and Power Prior Models for Adaptive Incorporation of Historical Information in Clinical Trials

    PubMed Central

    Hobbs, Brian P.; Carlin, Bradley P.; Mandrekar, Sumithra J.; Sargent, Daniel J.

    2011-01-01

    Summary Bayesian clinical trial designs offer the possibility of a substantially reduced sample size, increased statistical power, and reductions in cost and ethical hazard. However when prior and current information conflict, Bayesian methods can lead to higher than expected Type I error, as well as the possibility of a costlier and lengthier trial. This motivates an investigation of the feasibility of hierarchical Bayesian methods for incorporating historical data that are adaptively robust to prior information that reveals itself to be inconsistent with the accumulating experimental data. In this paper, we present several models that allow for the commensurability of the information in the historical and current data to determine how much historical information is used. A primary tool is elaborating the traditional power prior approach based upon a measure of commensurability for Gaussian data. We compare the frequentist performance of several methods using simulations, and close with an example of a colon cancer trial that illustrates a linear models extension of our adaptive borrowing approach. Our proposed methods produce more precise estimates of the model parameters, in particular conferring statistical significance to the observed reduction in tumor size for the experimental regimen as compared to the control regimen. PMID:21361892

  2. Bayesian analysis of CCDM models

    NASA Astrophysics Data System (ADS)

    Jesus, J. F.; Valentim, R.; Andrade-Oliveira, F.

    2017-09-01

    Creation of Cold Dark Matter (CCDM), in the context of Einstein Field Equations, produces a negative pressure term which can be used to explain the accelerated expansion of the Universe. In this work we tested six different spatially flat models for matter creation using statistical criteria, in light of SNe Ia data: Akaike Information Criterion (AIC), Bayesian Information Criterion (BIC) and Bayesian Evidence (BE). These criteria allow to compare models considering goodness of fit and number of free parameters, penalizing excess of complexity. We find that JO model is slightly favoured over LJO/ΛCDM model, however, neither of these, nor Γ = 3αH0 model can be discarded from the current analysis. Three other scenarios are discarded either because poor fitting or because of the excess of free parameters. A method of increasing Bayesian evidence through reparameterization in order to reducing parameter degeneracy is also developed.

  3. Bayesian modelling of lung function data from multiple-breath washout tests.

    PubMed

    Mahar, Robert K; Carlin, John B; Ranganathan, Sarath; Ponsonby, Anne-Louise; Vuillermin, Peter; Vukcevic, Damjan

    2018-05-30

    Paediatric respiratory researchers have widely adopted the multiple-breath washout (MBW) test because it allows assessment of lung function in unsedated infants and is well suited to longitudinal studies of lung development and disease. However, a substantial proportion of MBW tests in infants fail current acceptability criteria. We hypothesised that a model-based approach to analysing the data, in place of traditional simple empirical summaries, would enable more efficient use of these tests. We therefore developed a novel statistical model for infant MBW data and applied it to 1197 tests from 432 individuals from a large birth cohort study. We focus on Bayesian estimation of the lung clearance index, the most commonly used summary of lung function from MBW tests. Our results show that the model provides an excellent fit to the data and shed further light on statistical properties of the standard empirical approach. Furthermore, the modelling approach enables the lung clearance index to be estimated by using tests with different degrees of completeness, something not possible with the standard approach. Our model therefore allows previously unused data to be used rather than discarded, as well as routine use of shorter tests without significant loss of precision. Beyond our specific application, our work illustrates a number of important aspects of Bayesian modelling in practice, such as the importance of hierarchical specifications to account for repeated measurements and the value of model checking via posterior predictive distributions. Copyright © 2018 John Wiley & Sons, Ltd.

  4. Manual hierarchical clustering of regional geochemical data using a Bayesian finite mixture model

    USGS Publications Warehouse

    Ellefsen, Karl J.; Smith, David

    2016-01-01

    Interpretation of regional scale, multivariate geochemical data is aided by a statistical technique called “clustering.” We investigate a particular clustering procedure by applying it to geochemical data collected in the State of Colorado, United States of America. The clustering procedure partitions the field samples for the entire survey area into two clusters. The field samples in each cluster are partitioned again to create two subclusters, and so on. This manual procedure generates a hierarchy of clusters, and the different levels of the hierarchy show geochemical and geological processes occurring at different spatial scales. Although there are many different clustering methods, we use Bayesian finite mixture modeling with two probability distributions, which yields two clusters. The model parameters are estimated with Hamiltonian Monte Carlo sampling of the posterior probability density function, which usually has multiple modes. Each mode has its own set of model parameters; each set is checked to ensure that it is consistent both with the data and with independent geologic knowledge. The set of model parameters that is most consistent with the independent geologic knowledge is selected for detailed interpretation and partitioning of the field samples.

  5. Application of Bayesian networks in a hierarchical structure for environmental risk assessment: a case study of the Gabric Dam, Iran.

    PubMed

    Malekmohammadi, Bahram; Tayebzadeh Moghadam, Negar

    2018-04-13

    Environmental risk assessment (ERA) is a commonly used, effective tool applied to reduce adverse effects of environmental risk factors. In this study, ERA was investigated using the Bayesian network (BN) model based on a hierarchical structure of variables in an influence diagram (ID). ID facilitated ranking of the different alternatives under uncertainty that were then used to evaluate comparisons of the different risk factors. BN was used to present a new model for ERA applicable to complicated development projects such as dam construction. The methodology was applied to the Gabric Dam, in southern Iran. The main environmental risk factors in the region, presented by the Gabric Dam, were identified based on the Delphi technique and specific features of the study area. These included the following: flood, water pollution, earthquake, changes in land use, erosion and sedimentation, effects on the population, and ecosensitivity. These risk factors were then categorized based on results from the output decision node of the BN, including expected utility values for risk factors in the decision node. ERA was performed for the Gabric Dam using the analytical hierarchy process (AHP) method to compare results of BN modeling with those of conventional methods. Results determined that a BN-based hierarchical structure to ERA present acceptable and reasonable risk assessment prioritization in proposing suitable solutions to reduce environmental risks and can be used as a powerful decision support system for evaluating environmental risks.

  6. Explaining Inference on a Population of Independent Agents Using Bayesian Networks

    ERIC Educational Resources Information Center

    Sutovsky, Peter

    2013-01-01

    The main goal of this research is to design, implement, and evaluate a novel explanation method, the hierarchical explanation method (HEM), for explaining Bayesian network (BN) inference when the network is modeling a population of conditionally independent agents, each of which is modeled as a subnetwork. For example, consider disease-outbreak…

  7. Spatial Intensity Duration Frequency Relationships Using Hierarchical Bayesian Analysis for Urban Areas

    NASA Astrophysics Data System (ADS)

    Rupa, Chandra; Mujumdar, Pradeep

    2016-04-01

    In urban areas, quantification of extreme precipitation is important in the design of storm water drains and other infrastructure. Intensity Duration Frequency (IDF) relationships are generally used to obtain design return level for a given duration and return period. Due to lack of availability of extreme precipitation data for sufficiently large number of years, estimating the probability of extreme events is difficult. Typically, a single station data is used to obtain the design return levels for various durations and return periods, which are used in the design of urban infrastructure for the entire city. In an urban setting, the spatial variation of precipitation can be high; the precipitation amounts and patterns often vary within short distances of less than 5 km. Therefore it is crucial to study the uncertainties in the spatial variation of return levels for various durations. In this work, the extreme precipitation is modeled spatially using the Bayesian hierarchical analysis and the spatial variation of return levels is studied. The analysis is carried out with Block Maxima approach for defining the extreme precipitation, using Generalized Extreme Value (GEV) distribution for Bangalore city, Karnataka state, India. Daily data for nineteen stations in and around Bangalore city is considered in the study. The analysis is carried out for summer maxima (March - May), monsoon maxima (June - September) and the annual maxima rainfall. In the hierarchical analysis, the statistical model is specified in three layers. The data layer models the block maxima, pooling the extreme precipitation from all the stations. In the process layer, the latent spatial process characterized by geographical and climatological covariates (lat-lon, elevation, mean temperature etc.) which drives the extreme precipitation is modeled and in the prior level, the prior distributions that govern the latent process are modeled. Markov Chain Monte Carlo (MCMC) algorithm (Metropolis Hastings

  8. A guide to Bayesian model selection for ecologists

    USGS Publications Warehouse

    Hooten, Mevin B.; Hobbs, N.T.

    2015-01-01

    The steady upward trend in the use of model selection and Bayesian methods in ecological research has made it clear that both approaches to inference are important for modern analysis of models and data. However, in teaching Bayesian methods and in working with our research colleagues, we have noticed a general dissatisfaction with the available literature on Bayesian model selection and multimodel inference. Students and researchers new to Bayesian methods quickly find that the published advice on model selection is often preferential in its treatment of options for analysis, frequently advocating one particular method above others. The recent appearance of many articles and textbooks on Bayesian modeling has provided welcome background on relevant approaches to model selection in the Bayesian framework, but most of these are either very narrowly focused in scope or inaccessible to ecologists. Moreover, the methodological details of Bayesian model selection approaches are spread thinly throughout the literature, appearing in journals from many different fields. Our aim with this guide is to condense the large body of literature on Bayesian approaches to model selection and multimodel inference and present it specifically for quantitative ecologists as neutrally as possible. We also bring to light a few important and fundamental concepts relating directly to model selection that seem to have gone unnoticed in the ecological literature. Throughout, we provide only a minimal discussion of philosophy, preferring instead to examine the breadth of approaches as well as their practical advantages and disadvantages. This guide serves as a reference for ecologists using Bayesian methods, so that they can better understand their options and can make an informed choice that is best aligned with their goals for inference.

  9. Internal cycling, not external loading, decides the nutrient limitation in eutrophic lake: A dynamic model with temporal Bayesian hierarchical inference.

    PubMed

    Wu, Zhen; Liu, Yong; Liang, Zhongyao; Wu, Sifeng; Guo, Huaicheng

    2017-06-01

    Lake eutrophication is associated with excessive anthropogenic nutrients (mainly nitrogen (N) and phosphorus (P)) and unobserved internal nutrient cycling. Despite the advances in understanding the role of external loadings, the contribution of internal nutrient cycling is still an open question. A dynamic mass-balance model was developed to simulate and measure the contributions of internal cycling and external loading. It was based on the temporal Bayesian Hierarchical Framework (BHM), where we explored the seasonal patterns in the dynamics of nutrient cycling processes and the limitation of N and P on phytoplankton growth in hyper-eutrophic Lake Dianchi, China. The dynamic patterns of the five state variables (Chla, TP, ammonia, nitrate and organic N) were simulated based on the model. Five parameters (algae growth rate, sediment exchange rate of N and P, nitrification rate and denitrification rate) were estimated based on BHM. The model provided a good fit to observations. Our model results highlighted the role of internal cycling of N and P in Lake Dianchi. The internal cycling processes contributed more than external loading to the N and P changes in the water column. Further insights into the nutrient limitation analysis indicated that the sediment exchange of P determined the P limitation. Allowing for the contribution of denitrification to N removal, N was the more limiting nutrient in most of the time, however, P was the more important nutrient for eutrophication management. For Lake Dianchi, it would not be possible to recover solely by reducing the external watershed nutrient load; the mechanisms of internal cycling should also be considered as an approach to inhibit the release of sediments and to enhance denitrification. Copyright © 2017 Elsevier Ltd. All rights reserved.

  10. Probabilistic modeling of bifurcations in single-cell gene expression data using a Bayesian mixture of factor analyzers.

    PubMed

    Campbell, Kieran R; Yau, Christopher

    2017-03-15

    Modeling bifurcations in single-cell transcriptomics data has become an increasingly popular field of research. Several methods have been proposed to infer bifurcation structure from such data, but all rely on heuristic non-probabilistic inference. Here we propose the first generative, fully probabilistic model for such inference based on a Bayesian hierarchical mixture of factor analyzers. Our model exhibits competitive performance on large datasets despite implementing full Markov-Chain Monte Carlo sampling, and its unique hierarchical prior structure enables automatic determination of genes driving the bifurcation process. We additionally propose an Empirical-Bayes like extension that deals with the high levels of zero-inflation in single-cell RNA-seq data and quantify when such models are useful. We apply or model to both real and simulated single-cell gene expression data and compare the results to existing pseudotime methods. Finally, we discuss both the merits and weaknesses of such a unified, probabilistic approach in the context practical bioinformatics analyses.

  11. High-Dimensional Bayesian Geostatistics

    PubMed Central

    Banerjee, Sudipto

    2017-01-01

    With the growing capabilities of Geographic Information Systems (GIS) and user-friendly software, statisticians today routinely encounter geographically referenced data containing observations from a large number of spatial locations and time points. Over the last decade, hierarchical spatiotemporal process models have become widely deployed statistical tools for researchers to better understand the complex nature of spatial and temporal variability. However, fitting hierarchical spatiotemporal models often involves expensive matrix computations with complexity increasing in cubic order for the number of spatial locations and temporal points. This renders such models unfeasible for large data sets. This article offers a focused review of two methods for constructing well-defined highly scalable spatiotemporal stochastic processes. Both these processes can be used as “priors” for spatiotemporal random fields. The first approach constructs a low-rank process operating on a lower-dimensional subspace. The second approach constructs a Nearest-Neighbor Gaussian Process (NNGP) that ensures sparse precision matrices for its finite realizations. Both processes can be exploited as a scalable prior embedded within a rich hierarchical modeling framework to deliver full Bayesian inference. These approaches can be described as model-based solutions for big spatiotemporal datasets. The models ensure that the algorithmic complexity has ~ n floating point operations (flops), where n the number of spatial locations (per iteration). We compare these methods and provide some insight into their methodological underpinnings. PMID:29391920

  12. High-Dimensional Bayesian Geostatistics.

    PubMed

    Banerjee, Sudipto

    2017-06-01

    With the growing capabilities of Geographic Information Systems (GIS) and user-friendly software, statisticians today routinely encounter geographically referenced data containing observations from a large number of spatial locations and time points. Over the last decade, hierarchical spatiotemporal process models have become widely deployed statistical tools for researchers to better understand the complex nature of spatial and temporal variability. However, fitting hierarchical spatiotemporal models often involves expensive matrix computations with complexity increasing in cubic order for the number of spatial locations and temporal points. This renders such models unfeasible for large data sets. This article offers a focused review of two methods for constructing well-defined highly scalable spatiotemporal stochastic processes. Both these processes can be used as "priors" for spatiotemporal random fields. The first approach constructs a low-rank process operating on a lower-dimensional subspace. The second approach constructs a Nearest-Neighbor Gaussian Process (NNGP) that ensures sparse precision matrices for its finite realizations. Both processes can be exploited as a scalable prior embedded within a rich hierarchical modeling framework to deliver full Bayesian inference. These approaches can be described as model-based solutions for big spatiotemporal datasets. The models ensure that the algorithmic complexity has ~ n floating point operations (flops), where n the number of spatial locations (per iteration). We compare these methods and provide some insight into their methodological underpinnings.

  13. Bayesian Group Bridge for Bi-level Variable Selection.

    PubMed

    Mallick, Himel; Yi, Nengjun

    2017-06-01

    A Bayesian bi-level variable selection method (BAGB: Bayesian Analysis of Group Bridge) is developed for regularized regression and classification. This new development is motivated by grouped data, where generic variables can be divided into multiple groups, with variables in the same group being mechanistically related or statistically correlated. As an alternative to frequentist group variable selection methods, BAGB incorporates structural information among predictors through a group-wise shrinkage prior. Posterior computation proceeds via an efficient MCMC algorithm. In addition to the usual ease-of-interpretation of hierarchical linear models, the Bayesian formulation produces valid standard errors, a feature that is notably absent in the frequentist framework. Empirical evidence of the attractiveness of the method is illustrated by extensive Monte Carlo simulations and real data analysis. Finally, several extensions of this new approach are presented, providing a unified framework for bi-level variable selection in general models with flexible penalties.

  14. Hierarchical modeling of bycatch rates of sea turtles in the western North Atlantic

    USGS Publications Warehouse

    Gardner, B.; Sullivan, P.J.; Epperly, S.; Morreale, S.J.

    2008-01-01

    Previous studies indicate that the locations of the endangered loggerhead Caretta caretta and critically endangered leatherback Dermochelys coriacea sea turtles are influenced by water temperatures, and that incidental catch rates in the pelagic longline fishery vary by region. We present a Bayesian hierarchical model to examine the effects of environmental variables, including water temperature, on the number of sea turtles captured in the US pelagic longline fishery in the western North Atlantic. The modeling structure is highly flexible, utilizes a Bayesian model selection technique, and is fully implemented in the software program WinBUGS. The number of sea turtles captured is modeled as a zero-inflated Poisson distribution and the model incorporates fixed effects to examine region-specific differences in the parameter estimates. Results indicate that water temperature, region, bottom depth, and target species are all significant predictors of the number of loggerhead sea turtles captured. For leatherback sea turtles, the model with only target species had the most posterior model weight, though a re-parameterization of the model indicates that temperature influences the zero-inflation parameter. The relationship between the number of sea turtles captured and the variables of interest all varied by region. This suggests that management decisions aimed at reducing sea turtle bycatch may be more effective if they are spatially explicit. ?? Inter-Research 2008.

  15. A hierarchical nest survival model integrating incomplete temporally varying covariates

    PubMed Central

    Converse, Sarah J; Royle, J Andrew; Adler, Peter H; Urbanek, Richard P; Barzen, Jeb A

    2013-01-01

    Nest success is a critical determinant of the dynamics of avian populations, and nest survival modeling has played a key role in advancing avian ecology and management. Beginning with the development of daily nest survival models, and proceeding through subsequent extensions, the capacity for modeling the effects of hypothesized factors on nest survival has expanded greatly. We extend nest survival models further by introducing an approach to deal with incompletely observed, temporally varying covariates using a hierarchical model. Hierarchical modeling offers a way to separate process and observational components of demographic models to obtain estimates of the parameters of primary interest, and to evaluate structural effects of ecological and management interest. We built a hierarchical model for daily nest survival to analyze nest data from reintroduced whooping cranes (Grus americana) in the Eastern Migratory Population. This reintroduction effort has been beset by poor reproduction, apparently due primarily to nest abandonment by breeding birds. We used the model to assess support for the hypothesis that nest abandonment is caused by harassment from biting insects. We obtained indices of blood-feeding insect populations based on the spatially interpolated counts of insects captured in carbon dioxide traps. However, insect trapping was not conducted daily, and so we had incomplete information on a temporally variable covariate of interest. We therefore supplemented our nest survival model with a parallel model for estimating the values of the missing insect covariates. We used Bayesian model selection to identify the best predictors of daily nest survival. Our results suggest that the black fly Simulium annulus may be negatively affecting nest survival of reintroduced whooping cranes, with decreasing nest survival as abundance of S. annulus increases. The modeling framework we have developed will be applied in the future to a larger data set to evaluate the

  16. A hierarchical nest survival model integrating incomplete temporally varying covariates

    USGS Publications Warehouse

    Converse, Sarah J.; Royle, J. Andrew; Adler, Peter H.; Urbanek, Richard P.; Barzan, Jeb A.

    2013-01-01

    Nest success is a critical determinant of the dynamics of avian populations, and nest survival modeling has played a key role in advancing avian ecology and management. Beginning with the development of daily nest survival models, and proceeding through subsequent extensions, the capacity for modeling the effects of hypothesized factors on nest survival has expanded greatly. We extend nest survival models further by introducing an approach to deal with incompletely observed, temporally varying covariates using a hierarchical model. Hierarchical modeling offers a way to separate process and observational components of demographic models to obtain estimates of the parameters of primary interest, and to evaluate structural effects of ecological and management interest. We built a hierarchical model for daily nest survival to analyze nest data from reintroduced whooping cranes (Grus americana) in the Eastern Migratory Population. This reintroduction effort has been beset by poor reproduction, apparently due primarily to nest abandonment by breeding birds. We used the model to assess support for the hypothesis that nest abandonment is caused by harassment from biting insects. We obtained indices of blood-feeding insect populations based on the spatially interpolated counts of insects captured in carbon dioxide traps. However, insect trapping was not conducted daily, and so we had incomplete information on a temporally variable covariate of interest. We therefore supplemented our nest survival model with a parallel model for estimating the values of the missing insect covariates. We used Bayesian model selection to identify the best predictors of daily nest survival. Our results suggest that the black fly Simulium annulus may be negatively affecting nest survival of reintroduced whooping cranes, with decreasing nest survival as abundance of S. annulus increases. The modeling framework we have developed will be applied in the future to a larger data set to evaluate the

  17. Variational learning and bits-back coding: an information-theoretic view to Bayesian learning.

    PubMed

    Honkela, Antti; Valpola, Harri

    2004-07-01

    The bits-back coding first introduced by Wallace in 1990 and later by Hinton and van Camp in 1993 provides an interesting link between Bayesian learning and information-theoretic minimum-description-length (MDL) learning approaches. The bits-back coding allows interpreting the cost function used in the variational Bayesian method called ensemble learning as a code length in addition to the Bayesian view of misfit of the posterior approximation and a lower bound of model evidence. Combining these two viewpoints provides interesting insights to the learning process and the functions of different parts of the model. In this paper, the problem of variational Bayesian learning of hierarchical latent variable models is used to demonstrate the benefits of the two views. The code-length interpretation provides new views to many parts of the problem such as model comparison and pruning and helps explain many phenomena occurring in learning.

  18. Cosmological parameters, shear maps and power spectra from CFHTLenS using Bayesian hierarchical inference

    NASA Astrophysics Data System (ADS)

    Alsing, Justin; Heavens, Alan; Jaffe, Andrew H.

    2017-04-01

    We apply two Bayesian hierarchical inference schemes to infer shear power spectra, shear maps and cosmological parameters from the Canada-France-Hawaii Telescope (CFHTLenS) weak lensing survey - the first application of this method to data. In the first approach, we sample the joint posterior distribution of the shear maps and power spectra by Gibbs sampling, with minimal model assumptions. In the second approach, we sample the joint posterior of the shear maps and cosmological parameters, providing a new, accurate and principled approach to cosmological parameter inference from cosmic shear data. As a first demonstration on data, we perform a two-bin tomographic analysis to constrain cosmological parameters and investigate the possibility of photometric redshift bias in the CFHTLenS data. Under the baseline ΛCDM (Λ cold dark matter) model, we constrain S_8 = σ _8(Ω _m/0.3)^{0.5} = 0.67+0.03-0.03 (68 per cent), consistent with previous CFHTLenS analyses but in tension with Planck. Adding neutrino mass as a free parameter, we are able to constrain ∑mν < 4.6 eV (95 per cent) using CFHTLenS data alone. Including a linear redshift-dependent photo-z bias Δz = p2(z - p1), we find p_1=-0.25+0.53-0.60 and p_2 = -0.15+0.17-0.15, and tension with Planck is only alleviated under very conservative prior assumptions. Neither the non-minimal neutrino mass nor photo-z bias models are significantly preferred by the CFHTLenS (two-bin tomography) data.

  19. Compromise decision support problems for hierarchical design involving uncertainty

    NASA Astrophysics Data System (ADS)

    Vadde, S.; Allen, J. K.; Mistree, F.

    1994-08-01

    In this paper an extension to the traditional compromise Decision Support Problem (DSP) formulation is presented. Bayesian statistics is used in the formulation to model uncertainties associated with the information being used. In an earlier paper a compromise DSP that accounts for uncertainty using fuzzy set theory was introduced. The Bayesian Decision Support Problem is described in this paper. The method for hierarchical design is demonstrated by using this formulation to design a portal frame. The results are discussed and comparisons are made with those obtained using the fuzzy DSP. Finally, the efficacy of incorporating Bayesian statistics into the traditional compromise DSP formulation is discussed and some pending research issues are described. Our emphasis in this paper is on the method rather than the results per se.

  20. Dynamic classification of fetal heart rates by hierarchical Dirichlet process mixture models.

    PubMed

    Yu, Kezi; Quirk, J Gerald; Djurić, Petar M

    2017-01-01

    In this paper, we propose an application of non-parametric Bayesian (NPB) models for classification of fetal heart rate (FHR) recordings. More specifically, we propose models that are used to differentiate between FHR recordings that are from fetuses with or without adverse outcomes. In our work, we rely on models based on hierarchical Dirichlet processes (HDP) and the Chinese restaurant process with finite capacity (CRFC). Two mixture models were inferred from real recordings, one that represents healthy and another, non-healthy fetuses. The models were then used to classify new recordings and provide the probability of the fetus being healthy. First, we compared the classification performance of the HDP models with that of support vector machines on real data and concluded that the HDP models achieved better performance. Then we demonstrated the use of mixture models based on CRFC for dynamic classification of the performance of (FHR) recordings in a real-time setting.

  1. Dynamic classification of fetal heart rates by hierarchical Dirichlet process mixture models

    PubMed Central

    Yu, Kezi; Quirk, J. Gerald

    2017-01-01

    In this paper, we propose an application of non-parametric Bayesian (NPB) models for classification of fetal heart rate (FHR) recordings. More specifically, we propose models that are used to differentiate between FHR recordings that are from fetuses with or without adverse outcomes. In our work, we rely on models based on hierarchical Dirichlet processes (HDP) and the Chinese restaurant process with finite capacity (CRFC). Two mixture models were inferred from real recordings, one that represents healthy and another, non-healthy fetuses. The models were then used to classify new recordings and provide the probability of the fetus being healthy. First, we compared the classification performance of the HDP models with that of support vector machines on real data and concluded that the HDP models achieved better performance. Then we demonstrated the use of mixture models based on CRFC for dynamic classification of the performance of (FHR) recordings in a real-time setting. PMID:28953927

  2. Bayesian structural equation modeling in sport and exercise psychology.

    PubMed

    Stenling, Andreas; Ivarsson, Andreas; Johnson, Urban; Lindwall, Magnus

    2015-08-01

    Bayesian statistics is on the rise in mainstream psychology, but applications in sport and exercise psychology research are scarce. In this article, the foundations of Bayesian analysis are introduced, and we will illustrate how to apply Bayesian structural equation modeling in a sport and exercise psychology setting. More specifically, we contrasted a confirmatory factor analysis on the Sport Motivation Scale II estimated with the most commonly used estimator, maximum likelihood, and a Bayesian approach with weakly informative priors for cross-loadings and correlated residuals. The results indicated that the model with Bayesian estimation and weakly informative priors provided a good fit to the data, whereas the model estimated with a maximum likelihood estimator did not produce a well-fitting model. The reasons for this discrepancy between maximum likelihood and Bayesian estimation are discussed as well as potential advantages and caveats with the Bayesian approach.

  3. Analyzing Single-Molecule Protein Transportation Experiments via Hierarchical Hidden Markov Models

    PubMed Central

    Chen, Yang; Shen, Kuang

    2017-01-01

    To maintain proper cellular functions, over 50% of proteins encoded in the genome need to be transported to cellular membranes. The molecular mechanism behind such a process, often referred to as protein targeting, is not well understood. Single-molecule experiments are designed to unveil the detailed mechanisms and reveal the functions of different molecular machineries involved in the process. The experimental data consist of hundreds of stochastic time traces from the fluorescence recordings of the experimental system. We introduce a Bayesian hierarchical model on top of hidden Markov models (HMMs) to analyze these data and use the statistical results to answer the biological questions. In addition to resolving the biological puzzles and delineating the regulating roles of different molecular complexes, our statistical results enable us to propose a more detailed mechanism for the late stages of the protein targeting process. PMID:28943680

  4. Applying Bayesian hierarchical models to examine motorcycle crashes at signalized intersections.

    PubMed

    Haque, Md Mazharul; Chin, Hoong Chor; Huang, Helai

    2010-01-01

    Motorcycles are overrepresented in road traffic crashes and particularly vulnerable at signalized intersections. The objective of this study is to identify causal factors affecting the motorcycle crashes at both four-legged and T signalized intersections. Treating the data in time-series cross-section panels, this study explores different Hierarchical Poisson models and found that the model allowing autoregressive lag-1 dependence specification in the error term is the most suitable. Results show that the number of lanes at the four-legged signalized intersections significantly increases motorcycle crashes largely because of the higher exposure resulting from higher motorcycle accumulation at the stop line. Furthermore, the presence of a wide median and an uncontrolled left-turn lane at major roadways of four-legged intersections exacerbate this potential hazard. For T signalized intersections, the presence of exclusive right-turn lane at both major and minor roadways and an uncontrolled left-turn lane at major roadways increases motorcycle crashes. Motorcycle crashes increase on high-speed roadways because they are more vulnerable and less likely to react in time during conflicts. The presence of red light cameras reduces motorcycle crashes significantly for both four-legged and T intersections. With the red light camera, motorcycles are less exposed to conflicts because it is observed that they are more disciplined in queuing at the stop line and less likely to jump start at the start of green.

  5. Using time-varying asymptotic length and body condition of top piscivores to indicate ecosystem regime shift in the main basin of Lake Huron: a Bayesian hierarchical modeling approach

    USGS Publications Warehouse

    He, Ji X.; Bence, James R.; Roseman, Edward F.; Fielder, David G.; Ebener, Mark P.

    2015-01-01

    We evaluated the ecosystem regime shift in the main basin of Lake Huron that was indicated by the 2003 collapse of alewives, and dramatic declines in Chinook salmon abundance thereafter. We found that the period of 1995-2002 should be considered as the early phase of the final regime shift. We developed two Bayesian hierarchical models to describe time-varying growth based on the von Bertalanffy growth function and the length-mass relationship. We used asymptotic length as an index of growth potential, and predicted body mass at a given length as an index of body condition. Modeling fits to length and body mass at age of lake trout, Chinook salmon, and walleye were excellent. Based on posterior distributions, we evaluated the shifts in among-year geometric means of the growth potential and body condition. For a given top piscivore, one of the two indices responded to the regime shift much earlier than the 2003 collapse of alewives, the other corresponded to the 2003 changes, and which index provided the early signal differed among the three top piscivores.

  6. Examining driver injury severity outcomes in rural non-interstate roadway crashes using a hierarchical ordered logit model.

    PubMed

    Chen, Cong; Zhang, Guohui; Huang, Helai; Wang, Jiangfeng; Tarefder, Rafiqul A

    2016-11-01

    Rural non-interstate crashes induce a significant amount of severe injuries and fatalities. Examination of such injury patterns and the associated contributing factors is of practical importance. Taking into account the ordinal nature of injury severity levels and the hierarchical feature of crash data, this study employs a hierarchical ordered logit model to examine the significant factors in predicting driver injury severities in rural non-interstate crashes based on two-year New Mexico crash records. Bayesian inference is utilized in model estimation procedure and 95% Bayesian Credible Interval (BCI) is applied to testing variable significance. An ordinary ordered logit model omitting the between-crash variance effect is evaluated as well for model performance comparison. Results indicate that the model employed in this study outperforms ordinary ordered logit model in model fit and parameter estimation. Variables regarding crash features, environment conditions, and driver and vehicle characteristics are found to have significant influence on the predictions of driver injury severities in rural non-interstate crashes. Factors such as road segments far from intersection, wet road surface condition, collision with animals, heavy vehicle drivers, male drivers and driver seatbelt used tend to induce less severe driver injury outcomes than the factors such as multiple-vehicle crashes, severe vehicle damage in a crash, motorcyclists, females, senior drivers, driver with alcohol or drug impairment, and other major collision types. Research limitations regarding crash data and model assumptions are also discussed. Overall, this research provides reasonable results and insight in developing effective road safety measures for crash injury severity reduction and prevention. Copyright © 2016 Elsevier Ltd. All rights reserved.

  7. Bayesian Fundamentalism or Enlightenment? On the explanatory status and theoretical contributions of Bayesian models of cognition.

    PubMed

    Jones, Matt; Love, Bradley C

    2011-08-01

    The prominence of Bayesian modeling of cognition has increased recently largely because of mathematical advances in specifying and deriving predictions from complex probabilistic models. Much of this research aims to demonstrate that cognitive behavior can be explained from rational principles alone, without recourse to psychological or neurological processes and representations. We note commonalities between this rational approach and other movements in psychology - namely, Behaviorism and evolutionary psychology - that set aside mechanistic explanations or make use of optimality assumptions. Through these comparisons, we identify a number of challenges that limit the rational program's potential contribution to psychological theory. Specifically, rational Bayesian models are significantly unconstrained, both because they are uninformed by a wide range of process-level data and because their assumptions about the environment are generally not grounded in empirical measurement. The psychological implications of most Bayesian models are also unclear. Bayesian inference itself is conceptually trivial, but strong assumptions are often embedded in the hypothesis sets and the approximation algorithms used to derive model predictions, without a clear delineation between psychological commitments and implementational details. Comparing multiple Bayesian models of the same task is rare, as is the realization that many Bayesian models recapitulate existing (mechanistic level) theories. Despite the expressive power of current Bayesian models, we argue they must be developed in conjunction with mechanistic considerations to offer substantive explanations of cognition. We lay out several means for such an integration, which take into account the representations on which Bayesian inference operates, as well as the algorithms and heuristics that carry it out. We argue this unification will better facilitate lasting contributions to psychological theory, avoiding the pitfalls

  8. Maximum likelihood Bayesian model averaging and its predictive analysis for groundwater reactive transport models

    USGS Publications Warehouse

    Curtis, Gary P.; Lu, Dan; Ye, Ming

    2015-01-01

    While Bayesian model averaging (BMA) has been widely used in groundwater modeling, it is infrequently applied to groundwater reactive transport modeling because of multiple sources of uncertainty in the coupled hydrogeochemical processes and because of the long execution time of each model run. To resolve these problems, this study analyzed different levels of uncertainty in a hierarchical way, and used the maximum likelihood version of BMA, i.e., MLBMA, to improve the computational efficiency. This study demonstrates the applicability of MLBMA to groundwater reactive transport modeling in a synthetic case in which twenty-seven reactive transport models were designed to predict the reactive transport of hexavalent uranium (U(VI)) based on observations at a former uranium mill site near Naturita, CO. These reactive transport models contain three uncertain model components, i.e., parameterization of hydraulic conductivity, configuration of model boundary, and surface complexation reactions that simulate U(VI) adsorption. These uncertain model components were aggregated into the alternative models by integrating a hierarchical structure into MLBMA. The modeling results of the individual models and MLBMA were analyzed to investigate their predictive performance. The predictive logscore results show that MLBMA generally outperforms the best model, suggesting that using MLBMA is a sound strategy to achieve more robust model predictions relative to a single model. MLBMA works best when the alternative models are structurally distinct and have diverse model predictions. When correlation in model structure exists, two strategies were used to improve predictive performance by retaining structurally distinct models or assigning smaller prior model probabilities to correlated models. Since the synthetic models were designed using data from the Naturita site, the results of this study are expected to provide guidance for real-world modeling. Limitations of applying MLBMA to the

  9. Maximum likelihood Bayesian model averaging and its predictive analysis for groundwater reactive transport models

    DOE PAGES

    Lu, Dan; Ye, Ming; Curtis, Gary P.

    2015-08-01

    While Bayesian model averaging (BMA) has been widely used in groundwater modeling, it is infrequently applied to groundwater reactive transport modeling because of multiple sources of uncertainty in the coupled hydrogeochemical processes and because of the long execution time of each model run. To resolve these problems, this study analyzed different levels of uncertainty in a hierarchical way, and used the maximum likelihood version of BMA, i.e., MLBMA, to improve the computational efficiency. Our study demonstrates the applicability of MLBMA to groundwater reactive transport modeling in a synthetic case in which twenty-seven reactive transport models were designed to predict themore » reactive transport of hexavalent uranium (U(VI)) based on observations at a former uranium mill site near Naturita, CO. Moreover, these reactive transport models contain three uncertain model components, i.e., parameterization of hydraulic conductivity, configuration of model boundary, and surface complexation reactions that simulate U(VI) adsorption. These uncertain model components were aggregated into the alternative models by integrating a hierarchical structure into MLBMA. The modeling results of the individual models and MLBMA were analyzed to investigate their predictive performance. The predictive logscore results show that MLBMA generally outperforms the best model, suggesting that using MLBMA is a sound strategy to achieve more robust model predictions relative to a single model. MLBMA works best when the alternative models are structurally distinct and have diverse model predictions. When correlation in model structure exists, two strategies were used to improve predictive performance by retaining structurally distinct models or assigning smaller prior model probabilities to correlated models. Since the synthetic models were designed using data from the Naturita site, the results of this study are expected to provide guidance for real-world modeling. Finally

  10. Bayesian analysis of non-linear differential equation models with application to a gut microbial ecosystem.

    PubMed

    Lawson, Daniel J; Holtrop, Grietje; Flint, Harry

    2011-07-01

    Process models specified by non-linear dynamic differential equations contain many parameters, which often must be inferred from a limited amount of data. We discuss a hierarchical Bayesian approach combining data from multiple related experiments in a meaningful way, which permits more powerful inference than treating each experiment as independent. The approach is illustrated with a simulation study and example data from experiments replicating the aspects of the human gut microbial ecosystem. A predictive model is obtained that contains prediction uncertainty caused by uncertainty in the parameters, and we extend the model to capture situations of interest that cannot easily be studied experimentally. Copyright © 2011 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  11. A semiparametric Bayesian proportional hazards model for interval censored data with frailty effects.

    PubMed

    Henschel, Volkmar; Engel, Jutta; Hölzel, Dieter; Mansmann, Ulrich

    2009-02-10

    Multivariate analysis of interval censored event data based on classical likelihood methods is notoriously cumbersome. Likelihood inference for models which additionally include random effects are not available at all. Developed algorithms bear problems for practical users like: matrix inversion, slow convergence, no assessment of statistical uncertainty. MCMC procedures combined with imputation are used to implement hierarchical models for interval censored data within a Bayesian framework. Two examples from clinical practice demonstrate the handling of clustered interval censored event times as well as multilayer random effects for inter-institutional quality assessment. The software developed is called survBayes and is freely available at CRAN. The proposed software supports the solution of complex analyses in many fields of clinical epidemiology as well as health services research.

  12. Bayesian hierarchical modelling of continuous non‐negative longitudinal data with a spike at zero: An application to a study of birds visiting gardens in winter

    PubMed Central

    Buckland, Stephen T.; King, Ruth; Toms, Mike P.

    2015-01-01

    The development of methods for dealing with continuous data with a spike at zero has lagged behind those for overdispersed or zero‐inflated count data. We consider longitudinal ecological data corresponding to an annual average of 26 weekly maximum counts of birds, and are hence effectively continuous, bounded below by zero but also with a discrete mass at zero. We develop a Bayesian hierarchical Tweedie regression model that can directly accommodate the excess number of zeros common to this type of data, whilst accounting for both spatial and temporal correlation. Implementation of the model is conducted in a Markov chain Monte Carlo (MCMC) framework, using reversible jump MCMC to explore uncertainty across both parameter and model spaces. This regression modelling framework is very flexible and removes the need to make strong assumptions about mean‐variance relationships a priori. It can also directly account for the spike at zero, whilst being easily applicable to other types of data and other model formulations. Whilst a correlative study such as this cannot prove causation, our results suggest that an increase in an avian predator may have led to an overall decrease in the number of one of its prey species visiting garden feeding stations in the United Kingdom. This may reflect a change in behaviour of house sparrows to avoid feeding stations frequented by sparrowhawks, or a reduction in house sparrow population size as a result of sparrowhawk increase. PMID:25737026

  13. Differences in Mortality among Heroin, Cocaine, and Methamphetamine Users: A Hierarchical Bayesian Approach

    PubMed Central

    Liang, Li-Jung; Huang, David; Brecht, Mary-Lynn; Hser, Yih-ing

    2010-01-01

    Studies examining differences in mortality among long-term drug users have been limited. In this paper, we introduce a Bayesian framework that jointly models survival data using a Weibull proportional hazard model with frailty, and substance and alcohol data using mixed-effects models, to examine differences in mortality among heroin, cocaine, and methamphetamine users from five long-term follow-up studies. The traditional approach to analyzing combined survival data from numerous studies assumes that the studies are homogeneous, thus the estimates may be biased due to unobserved heterogeneity among studies. Our approach allows us to structurally combine the data from different studies while accounting for correlation among subjects within each study. Markov chain Monte Carlo facilitates the implementation of Bayesian analyses. Despite the complexity of the model, our approach is relatively straightforward to implement using WinBUGS. We demonstrate our joint modeling approach to the combined data and discuss the results from both approaches. PMID:21052518

  14. A small-area ecologic study of myocardial infarction, neighborhood deprivation, and sex: a Bayesian modeling approach.

    PubMed

    Deguen, Séverine; Lalloue, Benoît; Bard, Denis; Havard, Sabrina; Arveiler, Dominique; Zmirou-Navier, Denis

    2010-07-01

    Socioeconomic inequalities in the risk of coronary heart disease (CHD) are well documented for men and women. CHD incidence is greater for men but its association with socioeconomic status is usually found to be stronger among women. We explored the sex-specific association between neighborhood deprivation level and the risk of myocardial infarction (MI) at a small-area scale. We studied 1193 myocardial infarction events in people aged 35-74 years in the Strasbourg metropolitan area, France (2000-2003). We used a deprivation index to assess the neighborhood deprivation level. To take into account spatial dependence and the variability of MI rates due to the small number of events, we used a hierarchical Bayesian modeling approach. We fitted hierarchical Bayesian models to estimate sex-specific relative and absolute MI risks across deprivation categories. We tested departure from additive joint effects of deprivation and sex. The risk of MI increased with the deprivation level for both sexes, but was higher for men for all deprivation classes. Relative rates increased along the deprivation scale more steadily for women and followed a different pattern: linear for men and nonlinear for women. Our data provide evidence of effect modification, with departure from an additive joint effect of deprivation and sex. We document sex differences in the socioeconomic gradient of MI risk in Strasbourg. Women appear more susceptible at levels of extreme deprivation; this result is not a chance finding, given the large difference in event rates between men and women.

  15. Receiver function deconvolution using transdimensional hierarchical Bayesian inference

    NASA Astrophysics Data System (ADS)

    Kolb, J. M.; Lekić, V.

    2014-06-01

    Teleseismic waves can convert from shear to compressional (Sp) or compressional to shear (Ps) across impedance contrasts in the subsurface. Deconvolving the parent waveforms (P for Ps or S for Sp) from the daughter waveforms (S for Ps or P for Sp) generates receiver functions which can be used to analyse velocity structure beneath the receiver. Though a variety of deconvolution techniques have been developed, they are all adversely affected by background and signal-generated noise. In order to take into account the unknown noise characteristics, we propose a method based on transdimensional hierarchical Bayesian inference in which both the noise magnitude and noise spectral character are parameters in calculating the likelihood probability distribution. We use a reversible-jump implementation of a Markov chain Monte Carlo algorithm to find an ensemble of receiver functions whose relative fits to the data have been calculated while simultaneously inferring the values of the noise parameters. Our noise parametrization is determined from pre-event noise so that it approximates observed noise characteristics. We test the algorithm on synthetic waveforms contaminated with noise generated from a covariance matrix obtained from observed noise. We show that the method retrieves easily interpretable receiver functions even in the presence of high noise levels. We also show that we can obtain useful estimates of noise amplitude and frequency content. Analysis of the ensemble solutions produced by our method can be used to quantify the uncertainties associated with individual receiver functions as well as with individual features within them, providing an objective way for deciding which features warrant geological interpretation. This method should make possible more robust inferences on subsurface structure using receiver function analysis, especially in areas of poor data coverage or under noisy station conditions.

  16. Hierarchical spatial models for predicting pygmy rabbit distribution and relative abundance

    USGS Publications Warehouse

    Wilson, T.L.; Odei, J.B.; Hooten, M.B.; Edwards, T.C.

    2010-01-01

    Conservationists routinely use species distribution models to plan conservation, restoration and development actions, while ecologists use them to infer process from pattern. These models tend to work well for common or easily observable species, but are of limited utility for rare and cryptic species. This may be because honest accounting of known observation bias and spatial autocorrelation are rarely included, thereby limiting statistical inference of resulting distribution maps. We specified and implemented a spatially explicit Bayesian hierarchical model for a cryptic mammal species (pygmy rabbit Brachylagus idahoensis). Our approach used two levels of indirect sign that are naturally hierarchical (burrows and faecal pellets) to build a model that allows for inference on regression coefficients as well as spatially explicit model parameters. We also produced maps of rabbit distribution (occupied burrows) and relative abundance (number of burrows expected to be occupied by pygmy rabbits). The model demonstrated statistically rigorous spatial prediction by including spatial autocorrelation and measurement uncertainty. We demonstrated flexibility of our modelling framework by depicting probabilistic distribution predictions using different assumptions of pygmy rabbit habitat requirements. Spatial representations of the variance of posterior predictive distributions were obtained to evaluate heterogeneity in model fit across the spatial domain. Leave-one-out cross-validation was conducted to evaluate the overall model fit. Synthesis and applications. Our method draws on the strengths of previous work, thereby bridging and extending two active areas of ecological research: species distribution models and multi-state occupancy modelling. Our framework can be extended to encompass both larger extents and other species for which direct estimation of abundance is difficult. ?? 2010 The Authors. Journal compilation ?? 2010 British Ecological Society.

  17. Hiereachical Bayesian Model for Combining Geochemical and Geophysical Data for Environmental Applications Software

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chen, Jinsong

    2013-05-01

    Development of a hierarchical Bayesian model to estimate the spatiotemporal distribution of aqueous geochemical parameters associated with in-situ bioremediation using surface spectral induced polarization (SIP) data and borehole geochemical measurements collected during a bioremediation experiment at a uranium-contaminated site near Rifle, Colorado. The SIP data are first inverted for Cole-Cole parameters including chargeability, time constant, resistivity at the DC frequency and dependence factor, at each pixel of two-dimensional grids using a previously developed stochastic method. Correlations between the inverted Cole-Cole parameters and the wellbore-based groundwater chemistry measurements indicative of key metabolic processes within the aquifer (e.g. ferrous iron, sulfate, uranium)more » were established and used as a basis for petrophysical model development. The developed Bayesian model consists of three levels of statistical sub-models: 1) data model, providing links between geochemical and geophysical attributes, 2) process model, describing the spatial and temporal variability of geochemical properties in the subsurface system, and 3) parameter model, describing prior distributions of various parameters and initial conditions. The unknown parameters are estimated using Markov chain Monte Carlo methods. By combining the temporally distributed geochemical data with the spatially distributed geophysical data, we obtain the spatio-temporal distribution of ferrous iron, sulfate and sulfide, and their associated uncertainity information. The obtained results can be used to assess the efficacy of the bioremediation treatment over space and time and to constrain reactive transport models.« less

  18. Bayesian spatio-temporal discard model in a demersal trawl fishery

    NASA Astrophysics Data System (ADS)

    Grazia Pennino, M.; Muñoz, Facundo; Conesa, David; López-Quílez, Antonio; Bellido, José M.

    2014-07-01

    Spatial management of discards has recently been proposed as a useful tool for the protection of juveniles, by reducing discard rates and can be used as a buffer against management errors and recruitment failure. In this study Bayesian hierarchical spatial models have been used to analyze about 440 trawl fishing operations of two different metiers, sampled between 2009 and 2012, in order to improve our understanding of factors that influence the quantity of discards and to identify their spatio-temporal distribution in the study area. Our analysis showed that the relative importance of each variable was different for each metier, with a few similarities. In particular, the random vessel effect and seasonal variability were identified as main driving variables for both metiers. Predictive maps of the abundance of discards and maps of the posterior mean of the spatial component show several hot spots with high discard concentration for each metier. We argue how the seasonal/spatial effects, and the knowledge about the factors influential to discarding, could potentially be exploited as potential mitigation measures for future fisheries management strategies. However, misidentification of hotspots and uncertain predictions can culminate in inappropriate mitigation practices which can sometimes be irreversible. The proposed Bayesian spatial method overcomes these issues, since it offers a unified approach which allows the incorporation of spatial random-effect terms, spatial correlation of the variables and the uncertainty of the parameters in the modeling process, resulting in a better quantification of the uncertainty and accurate predictions.

  19. Spatiotemporal Bayesian analysis of Lyme disease in New York state, 1990-2000.

    PubMed

    Chen, Haiyan; Stratton, Howard H; Caraco, Thomas B; White, Dennis J

    2006-07-01

    Mapping ordinarily increases our understanding of nontrivial spatial and temporal heterogeneities in disease rates. However, the large number of parameters required by the corresponding statistical models often complicates detailed analysis. This study investigates the feasibility of a fully Bayesian hierarchical regression approach to the problem and identifies how it outperforms two more popular methods: crude rate estimates (CRE) and empirical Bayes standardization (EBS). In particular, we apply a fully Bayesian approach to the spatiotemporal analysis of Lyme disease incidence in New York state for the period 1990-2000. These results are compared with those obtained by CRE and EBS in Chen et al. (2005). We show that the fully Bayesian regression model not only gives more reliable estimates of disease rates than the other two approaches but also allows for tractable models that can accommodate more numerous sources of variation and unknown parameters.

  20. Dual Sticky Hierarchical Dirichlet Process Hidden Markov Model and Its Application to Natural Language Description of Motions.

    PubMed

    Hu, Weiming; Tian, Guodong; Kang, Yongxin; Yuan, Chunfeng; Maybank, Stephen

    2017-09-25

    In this paper, a new nonparametric Bayesian model called the dual sticky hierarchical Dirichlet process hidden Markov model (HDP-HMM) is proposed for mining activities from a collection of time series data such as trajectories. All the time series data are clustered. Each cluster of time series data, corresponding to a motion pattern, is modeled by an HMM. Our model postulates a set of HMMs that share a common set of states (topics in an analogy with topic models for document processing), but have unique transition distributions. For the application to motion trajectory modeling, topics correspond to motion activities. The learnt topics are clustered into atomic activities which are assigned predicates. We propose a Bayesian inference method to decompose a given trajectory into a sequence of atomic activities. On combining the learnt sources and sinks, semantic motion regions, and the learnt sequence of atomic activities, the action represented by the trajectory can be described in natural language in as automatic a way as possible. The effectiveness of our dual sticky HDP-HMM is validated on several trajectory datasets. The effectiveness of the natural language descriptions for motions is demonstrated on the vehicle trajectories extracted from a traffic scene.

  1. Optimizing an estuarine water quality monitoring program through an entropy-based hierarchical spatiotemporal Bayesian framework

    NASA Astrophysics Data System (ADS)

    Alameddine, Ibrahim; Karmakar, Subhankar; Qian, Song S.; Paerl, Hans W.; Reckhow, Kenneth H.

    2013-10-01

    The total maximum daily load program aims to monitor more than 40,000 standard violations in around 20,000 impaired water bodies across the United States. Given resource limitations, future monitoring efforts have to be hedged against the uncertainties in the monitored system, while taking into account existing knowledge. In that respect, we have developed a hierarchical spatiotemporal Bayesian model that can be used to optimize an existing monitoring network by retaining stations that provide the maximum amount of information, while identifying locations that would benefit from the addition of new stations. The model assumes the water quality parameters are adequately described by a joint matrix normal distribution. The adopted approach allows for a reduction in redundancies, while emphasizing information richness rather than data richness. The developed approach incorporates the concept of entropy to account for the associated uncertainties. Three different entropy-based criteria are adopted: total system entropy, chlorophyll-a standard violation entropy, and dissolved oxygen standard violation entropy. A multiple attribute decision making framework is adopted to integrate the competing design criteria and to generate a single optimal design. The approach is implemented on the water quality monitoring system of the Neuse River Estuary in North Carolina, USA. The model results indicate that the high priority monitoring areas identified by the total system entropy and the dissolved oxygen violation entropy criteria are largely coincident. The monitoring design based on the chlorophyll-a standard violation entropy proved to be less informative, given the low probabilities of violating the water quality standard in the estuary.

  2. Properties of the Bayesian Knowledge Tracing Model

    ERIC Educational Resources Information Center

    van de Sande, Brett

    2013-01-01

    Bayesian Knowledge Tracing is used very widely to model student learning. It comes in two different forms: The first form is the Bayesian Knowledge Tracing "hidden Markov model" which predicts the probability of correct application of a skill as a function of the number of previous opportunities to apply that skill and the model…

  3. Modeling Menstrual Cycle Length and Variability at the Approach of Menopause Using Hierarchical Change Point Models

    PubMed Central

    Huang, Xiaobi; Elliott, Michael R.; Harlow, Siobán D.

    2013-01-01

    SUMMARY As women approach menopause, the patterns of their menstrual cycle lengths change. To study these changes, we need to jointly model both the mean and variability of cycle length. Our proposed model incorporates separate mean and variance change points for each woman and a hierarchical model to link them together, along with regression components to include predictors of menopausal onset such as age at menarche and parity. Additional complexity arises from the fact that the calendar data have substantial missingness due to hormone use, surgery, and failure to report. We integrate multiple imputation and time-to event modeling in a Bayesian estimation framework to deal with different forms of the missingness. Posterior predictive model checks are applied to evaluate the model fit. Our method successfully models patterns of women’s menstrual cycle trajectories throughout their late reproductive life and identifies change points for mean and variability of segment length, providing insight into the menopausal process. More generally, our model points the way toward increasing use of joint mean-variance models to predict health outcomes and better understand disease processes. PMID:24729638

  4. Perceptual decision making: drift-diffusion model is equivalent to a Bayesian model

    PubMed Central

    Bitzer, Sebastian; Park, Hame; Blankenburg, Felix; Kiebel, Stefan J.

    2014-01-01

    Behavioral data obtained with perceptual decision making experiments are typically analyzed with the drift-diffusion model. This parsimonious model accumulates noisy pieces of evidence toward a decision bound to explain the accuracy and reaction times of subjects. Recently, Bayesian models have been proposed to explain how the brain extracts information from noisy input as typically presented in perceptual decision making tasks. It has long been known that the drift-diffusion model is tightly linked with such functional Bayesian models but the precise relationship of the two mechanisms was never made explicit. Using a Bayesian model, we derived the equations which relate parameter values between these models. In practice we show that this equivalence is useful when fitting multi-subject data. We further show that the Bayesian model suggests different decision variables which all predict equal responses and discuss how these may be discriminated based on neural correlates of accumulated evidence. In addition, we discuss extensions to the Bayesian model which would be difficult to derive for the drift-diffusion model. We suggest that these and other extensions may be highly useful for deriving new experiments which test novel hypotheses. PMID:24616689

  5. Posterior Predictive Bayesian Phylogenetic Model Selection

    PubMed Central

    Lewis, Paul O.; Xie, Wangang; Chen, Ming-Hui; Fan, Yu; Kuo, Lynn

    2014-01-01

    We present two distinctly different posterior predictive approaches to Bayesian phylogenetic model selection and illustrate these methods using examples from green algal protein-coding cpDNA sequences and flowering plant rDNA sequences. The Gelfand–Ghosh (GG) approach allows dissection of an overall measure of model fit into components due to posterior predictive variance (GGp) and goodness-of-fit (GGg), which distinguishes this method from the posterior predictive P-value approach. The conditional predictive ordinate (CPO) method provides a site-specific measure of model fit useful for exploratory analyses and can be combined over sites yielding the log pseudomarginal likelihood (LPML) which is useful as an overall measure of model fit. CPO provides a useful cross-validation approach that is computationally efficient, requiring only a sample from the posterior distribution (no additional simulation is required). Both GG and CPO add new perspectives to Bayesian phylogenetic model selection based on the predictive abilities of models and complement the perspective provided by the marginal likelihood (including Bayes Factor comparisons) based solely on the fit of competing models to observed data. [Bayesian; conditional predictive ordinate; CPO; L-measure; LPML; model selection; phylogenetics; posterior predictive.] PMID:24193892

  6. Bayesian model evidence as a model evaluation metric

    NASA Astrophysics Data System (ADS)

    Guthke, Anneli; Höge, Marvin; Nowak, Wolfgang

    2017-04-01

    When building environmental systems models, we are typically confronted with the questions of how to choose an appropriate model (i.e., which processes to include or neglect) and how to measure its quality. Various metrics have been proposed that shall guide the modeller towards a most robust and realistic representation of the system under study. Criteria for evaluation often address aspects of accuracy (absence of bias) or of precision (absence of unnecessary variance) and need to be combined in a meaningful way in order to address the inherent bias-variance dilemma. We suggest using Bayesian model evidence (BME) as a model evaluation metric that implicitly performs a tradeoff between bias and variance. BME is typically associated with model weights in the context of Bayesian model averaging (BMA). However, it can also be seen as a model evaluation metric in a single-model context or in model comparison. It combines a measure for goodness of fit with a penalty for unjustifiable complexity. Unjustifiable refers to the fact that the appropriate level of model complexity is limited by the amount of information available for calibration. Derived in a Bayesian context, BME naturally accounts for measurement errors in the calibration data as well as for input and parameter uncertainty. BME is therefore perfectly suitable to assess model quality under uncertainty. We will explain in detail and with schematic illustrations what BME measures, i.e. how complexity is defined in the Bayesian setting and how this complexity is balanced with goodness of fit. We will further discuss how BME compares to other model evaluation metrics that address accuracy and precision such as the predictive logscore or other model selection criteria such as the AIC, BIC or KIC. Although computationally more expensive than other metrics or criteria, BME represents an appealing alternative because it provides a global measure of model quality. Even if not applicable to each and every case, we aim

  7. Bayesian randomized clinical trials: From fixed to adaptive design.

    PubMed

    Yin, Guosheng; Lam, Chi Kin; Shi, Haolun

    2017-08-01

    Randomized controlled studies are the gold standard for phase III clinical trials. Using α-spending functions to control the overall type I error rate, group sequential methods are well established and have been dominating phase III studies. Bayesian randomized design, on the other hand, can be viewed as a complement instead of competitive approach to the frequentist methods. For the fixed Bayesian design, the hypothesis testing can be cast in the posterior probability or Bayes factor framework, which has a direct link to the frequentist type I error rate. Bayesian group sequential design relies upon Bayesian decision-theoretic approaches based on backward induction, which is often computationally intensive. Compared with the frequentist approaches, Bayesian methods have several advantages. The posterior predictive probability serves as a useful and convenient tool for trial monitoring, and can be updated at any time as the data accrue during the trial. The Bayesian decision-theoretic framework possesses a direct link to the decision making in the practical setting, and can be modeled more realistically to reflect the actual cost-benefit analysis during the drug development process. Other merits include the possibility of hierarchical modeling and the use of informative priors, which would lead to a more comprehensive utilization of information from both historical and longitudinal data. From fixed to adaptive design, we focus on Bayesian randomized controlled clinical trials and make extensive comparisons with frequentist counterparts through numerical studies. Copyright © 2017 Elsevier Inc. All rights reserved.

  8. Improving the Calibration of the SN Ia Anchor Datasets with a Bayesian Hierarchal Model

    NASA Astrophysics Data System (ADS)

    Currie, Miles; Rubin, David

    2018-01-01

    Inter-survey calibration remains one of the largest systematic uncertainties in SN Ia cosmology today. Ideally, each survey would measure their system throughputs and observe well characterized spectrophotometric standard stars, but many important surveys have not done so. For these surveys, we calibrate using tertiary survey stars tied to SDSS and Pan-STARRS. We improve on previous efforts by taking the spatially variable response of each telescope/camera into account, and using improved color transformations in the surveys’ natural instrumental photometric system. We use a global hierarchical model of the data, automatically providing a covariance matrix of magnitude offsets and bandpass shifts which reduces the systematic uncertainty in inter-survey calibration, thereby providing better cosmological constraints.

  9. Bayesian hierarchical modelling of continuous non-negative longitudinal data with a spike at zero: An application to a study of birds visiting gardens in winter.

    PubMed

    Swallow, Ben; Buckland, Stephen T; King, Ruth; Toms, Mike P

    2016-03-01

    The development of methods for dealing with continuous data with a spike at zero has lagged behind those for overdispersed or zero-inflated count data. We consider longitudinal ecological data corresponding to an annual average of 26 weekly maximum counts of birds, and are hence effectively continuous, bounded below by zero but also with a discrete mass at zero. We develop a Bayesian hierarchical Tweedie regression model that can directly accommodate the excess number of zeros common to this type of data, whilst accounting for both spatial and temporal correlation. Implementation of the model is conducted in a Markov chain Monte Carlo (MCMC) framework, using reversible jump MCMC to explore uncertainty across both parameter and model spaces. This regression modelling framework is very flexible and removes the need to make strong assumptions about mean-variance relationships a priori. It can also directly account for the spike at zero, whilst being easily applicable to other types of data and other model formulations. Whilst a correlative study such as this cannot prove causation, our results suggest that an increase in an avian predator may have led to an overall decrease in the number of one of its prey species visiting garden feeding stations in the United Kingdom. This may reflect a change in behaviour of house sparrows to avoid feeding stations frequented by sparrowhawks, or a reduction in house sparrow population size as a result of sparrowhawk increase. © 2015 The Author. Biometrical Journal published by WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  10. Exploring the Specifications of Spatial Adjacencies and Weights in Bayesian Spatial Modeling with Intrinsic Conditional Autoregressive Priors in a Small-area Study of Fall Injuries

    PubMed Central

    Law, Jane

    2016-01-01

    Intrinsic conditional autoregressive modeling in a Bayeisan hierarchical framework has been increasingly applied in small-area ecological studies. This study explores the specifications of spatial structure in this Bayesian framework in two aspects: adjacency, i.e., the set of neighbor(s) for each area; and (spatial) weight for each pair of neighbors. Our analysis was based on a small-area study of falling injuries among people age 65 and older in Ontario, Canada, that was aimed to estimate risks and identify risk factors of such falls. In the case study, we observed incorrect adjacencies information caused by deficiencies in the digital map itself. Further, when equal weights was replaced by weights based on a variable of expected count, the range of estimated risks increased, the number of areas with probability of estimated risk greater than one at different probability thresholds increased, and model fit improved. More importantly, significance of a risk factor diminished. Further research to thoroughly investigate different methods of variable weights; quantify the influence of specifications of spatial weights; and develop strategies for better defining spatial structure of a map in small-area analysis in Bayesian hierarchical spatial modeling is recommended. PMID:29546147

  11. Cholinergic stimulation enhances Bayesian belief updating in the deployment of spatial attention.

    PubMed

    Vossel, Simone; Bauer, Markus; Mathys, Christoph; Adams, Rick A; Dolan, Raymond J; Stephan, Klaas E; Friston, Karl J

    2014-11-19

    The exact mechanisms whereby the cholinergic neurotransmitter system contributes to attentional processing remain poorly understood. Here, we applied computational modeling to psychophysical data (obtained from a spatial attention task) under a psychopharmacological challenge with the cholinesterase inhibitor galantamine (Reminyl). This allowed us to characterize the cholinergic modulation of selective attention formally, in terms of hierarchical Bayesian inference. In a placebo-controlled, within-subject, crossover design, 16 healthy human subjects performed a modified version of Posner's location-cueing task in which the proportion of validly and invalidly cued targets (percentage of cue validity, % CV) changed over time. Saccadic response speeds were used to estimate the parameters of a hierarchical Bayesian model to test whether cholinergic stimulation affected the trial-wise updating of probabilistic beliefs that underlie the allocation of attention or whether galantamine changed the mapping from those beliefs to subsequent eye movements. Behaviorally, galantamine led to a greater influence of probabilistic context (% CV) on response speed than placebo. Crucially, computational modeling suggested this effect was due to an increase in the rate of belief updating about cue validity (as opposed to the increased sensitivity of behavioral responses to those beliefs). We discuss these findings with respect to cholinergic effects on hierarchical cortical processing and in relation to the encoding of expected uncertainty or precision. Copyright © 2014 the authors 0270-6474/14/3415735-08$15.00/0.

  12. A Bayesian Model of the Memory Colour Effect.

    PubMed

    Witzel, Christoph; Olkkonen, Maria; Gegenfurtner, Karl R

    2018-01-01

    According to the memory colour effect, the colour of a colour-diagnostic object is not perceived independently of the object itself. Instead, it has been shown through an achromatic adjustment method that colour-diagnostic objects still appear slightly in their typical colour, even when they are colourimetrically grey. Bayesian models provide a promising approach to capture the effect of prior knowledge on colour perception and to link these effects to more general effects of cue integration. Here, we model memory colour effects using prior knowledge about typical colours as priors for the grey adjustments in a Bayesian model. This simple model does not involve any fitting of free parameters. The Bayesian model roughly captured the magnitude of the measured memory colour effect for photographs of objects. To some extent, the model predicted observed differences in memory colour effects across objects. The model could not account for the differences in memory colour effects across different levels of realism in the object images. The Bayesian model provides a particularly simple account of memory colour effects, capturing some of the multiple sources of variation of these effects.

  13. A Bayesian Model of the Memory Colour Effect

    PubMed Central

    Olkkonen, Maria; Gegenfurtner, Karl R.

    2018-01-01

    According to the memory colour effect, the colour of a colour-diagnostic object is not perceived independently of the object itself. Instead, it has been shown through an achromatic adjustment method that colour-diagnostic objects still appear slightly in their typical colour, even when they are colourimetrically grey. Bayesian models provide a promising approach to capture the effect of prior knowledge on colour perception and to link these effects to more general effects of cue integration. Here, we model memory colour effects using prior knowledge about typical colours as priors for the grey adjustments in a Bayesian model. This simple model does not involve any fitting of free parameters. The Bayesian model roughly captured the magnitude of the measured memory colour effect for photographs of objects. To some extent, the model predicted observed differences in memory colour effects across objects. The model could not account for the differences in memory colour effects across different levels of realism in the object images. The Bayesian model provides a particularly simple account of memory colour effects, capturing some of the multiple sources of variation of these effects. PMID:29760874

  14. Predicting protein subcellular locations using hierarchical ensemble of Bayesian classifiers based on Markov chains.

    PubMed

    Bulashevska, Alla; Eils, Roland

    2006-06-14

    The subcellular location of a protein is closely related to its function. It would be worthwhile to develop a method to predict the subcellular location for a given protein when only the amino acid sequence of the protein is known. Although many efforts have been made to predict subcellular location from sequence information only, there is the need for further research to improve the accuracy of prediction. A novel method called HensBC is introduced to predict protein subcellular location. HensBC is a recursive algorithm which constructs a hierarchical ensemble of classifiers. The classifiers used are Bayesian classifiers based on Markov chain models. We tested our method on six various datasets; among them are Gram-negative bacteria dataset, data for discriminating outer membrane proteins and apoptosis proteins dataset. We observed that our method can predict the subcellular location with high accuracy. Another advantage of the proposed method is that it can improve the accuracy of the prediction of some classes with few sequences in training and is therefore useful for datasets with imbalanced distribution of classes. This study introduces an algorithm which uses only the primary sequence of a protein to predict its subcellular location. The proposed recursive scheme represents an interesting methodology for learning and combining classifiers. The method is computationally efficient and competitive with the previously reported approaches in terms of prediction accuracies as empirical results indicate. The code for the software is available upon request.

  15. A Bayesian alternative for multi-objective ecohydrological model specification

    NASA Astrophysics Data System (ADS)

    Tang, Yating; Marshall, Lucy; Sharma, Ashish; Ajami, Hoori

    2018-01-01

    Recent studies have identified the importance of vegetation processes in terrestrial hydrologic systems. Process-based ecohydrological models combine hydrological, physical, biochemical and ecological processes of the catchments, and as such are generally more complex and parametric than conceptual hydrological models. Thus, appropriate calibration objectives and model uncertainty analysis are essential for ecohydrological modeling. In recent years, Bayesian inference has become one of the most popular tools for quantifying the uncertainties in hydrological modeling with the development of Markov chain Monte Carlo (MCMC) techniques. The Bayesian approach offers an appealing alternative to traditional multi-objective hydrologic model calibrations by defining proper prior distributions that can be considered analogous to the ad-hoc weighting often prescribed in multi-objective calibration. Our study aims to develop appropriate prior distributions and likelihood functions that minimize the model uncertainties and bias within a Bayesian ecohydrological modeling framework based on a traditional Pareto-based model calibration technique. In our study, a Pareto-based multi-objective optimization and a formal Bayesian framework are implemented in a conceptual ecohydrological model that combines a hydrological model (HYMOD) and a modified Bucket Grassland Model (BGM). Simulations focused on one objective (streamflow/LAI) and multiple objectives (streamflow and LAI) with different emphasis defined via the prior distribution of the model error parameters. Results show more reliable outputs for both predicted streamflow and LAI using Bayesian multi-objective calibration with specified prior distributions for error parameters based on results from the Pareto front in the ecohydrological modeling. The methodology implemented here provides insight into the usefulness of multiobjective Bayesian calibration for ecohydrologic systems and the importance of appropriate prior

  16. Hierarchical species distribution models

    USGS Publications Warehouse

    Hefley, Trevor J.; Hooten, Mevin B.

    2016-01-01

    Determining the distribution pattern of a species is important to increase scientific knowledge, inform management decisions, and conserve biodiversity. To infer spatial and temporal patterns, species distribution models have been developed for use with many sampling designs and types of data. Recently, it has been shown that count, presence-absence, and presence-only data can be conceptualized as arising from a point process distribution. Therefore, it is important to understand properties of the point process distribution. We examine how the hierarchical species distribution modeling framework has been used to incorporate a wide array of regression and theory-based components while accounting for the data collection process and making use of auxiliary information. The hierarchical modeling framework allows us to demonstrate how several commonly used species distribution models can be derived from the point process distribution, highlight areas of potential overlap between different models, and suggest areas where further research is needed.

  17. Evaluating a fish monitoring protocol using state-space hierarchical models

    USGS Publications Warehouse

    Russell, Robin E.; Schmetterling, David A.; Guy, Chris S.; Shepard, Bradley B.; McFarland, Robert; Skaar, Donald

    2012-01-01

    Using data collected from three river reaches in Montana, we evaluated our ability to detect population trends and predict fish future fish abundance. Data were collected as part of a long-term monitoring program conducted by Montana Fish, Wildlife and Parks to primarily estimate rainbow (Oncorhynchus mykiss) and brown trout (Salmo trutta) abundance in numerous rivers across Montana. We used a hierarchical Bayesian mark-recapture model to estimate fish abundance over time in each of the three river reaches. We then fit a state-space Gompertz model to estimate current trends and future fish populations. Density dependent effects were detected in 1 of the 6 fish populations. Predictions of future fish populations displayed wide credible intervals. Our simulations indicated that given the observed variation in the abundance estimates, the probability of detecting a 30% decline in fish populations over a five-year period was less than 50%. We recommend a monitoring program that is closely tied to management objectives and reflects the precision necessary to make informed management decisions.

  18. Impacts of forest fragmentation on species richness: a hierarchical approach to community modelling

    USGS Publications Warehouse

    Zipkin, Elise F.; DeWan, Amielle; Royle, J. Andrew

    2009-01-01

    1. Species richness is often used as a tool for prioritizing conservation action. One method for predicting richness and other summaries of community structure is to develop species-specific models of occurrence probability based on habitat or landscape characteristics. However, this approach can be challenging for rare or elusive species for which survey data are often sparse. 2. Recent developments have allowed for improved inference about community structure based on species-specific models of occurrence probability, integrated within a hierarchical modelling framework. This framework offers advantages to inference about species richness over typical approaches by accounting for both species-level effects and the aggregated effects of landscape composition on a community as a whole, thus leading to increased precision in estimates of species richness by improving occupancy estimates for all species, including those that were observed infrequently. 3. We developed a hierarchical model to assess the community response of breeding birds in the Hudson River Valley, New York, to habitat fragmentation and analysed the model using a Bayesian approach. 4. The model was designed to estimate species-specific occurrence and the effects of fragment area and edge (as measured through the perimeter and the perimeter/area ratio, P/A), while accounting for imperfect detection of species. 5. We used the fitted model to make predictions of species richness within forest fragments of variable morphology. The model revealed that species richness of the observed bird community was maximized in small forest fragments with a high P/A. However, the number of forest interior species, a subset of the community with high conservation value, was maximized in large fragments with low P/A. 6. Synthesis and applications. Our results demonstrate the importance of understanding the responses of both individual, and groups of species, to environmental heterogeneity while illustrating the utility

  19. Estimating Tree Height-Diameter Models with the Bayesian Method

    PubMed Central

    Duan, Aiguo; Zhang, Jianguo; Xiang, Congwei

    2014-01-01

    Six candidate height-diameter models were used to analyze the height-diameter relationships. The common methods for estimating the height-diameter models have taken the classical (frequentist) approach based on the frequency interpretation of probability, for example, the nonlinear least squares method (NLS) and the maximum likelihood method (ML). The Bayesian method has an exclusive advantage compared with classical method that the parameters to be estimated are regarded as random variables. In this study, the classical and Bayesian methods were used to estimate six height-diameter models, respectively. Both the classical method and Bayesian method showed that the Weibull model was the “best” model using data1. In addition, based on the Weibull model, data2 was used for comparing Bayesian method with informative priors with uninformative priors and classical method. The results showed that the improvement in prediction accuracy with Bayesian method led to narrower confidence bands of predicted value in comparison to that for the classical method, and the credible bands of parameters with informative priors were also narrower than uninformative priors and classical method. The estimated posterior distributions for parameters can be set as new priors in estimating the parameters using data2. PMID:24711733

  20. Estimating tree height-diameter models with the Bayesian method.

    PubMed

    Zhang, Xiongqing; Duan, Aiguo; Zhang, Jianguo; Xiang, Congwei

    2014-01-01

    Six candidate height-diameter models were used to analyze the height-diameter relationships. The common methods for estimating the height-diameter models have taken the classical (frequentist) approach based on the frequency interpretation of probability, for example, the nonlinear least squares method (NLS) and the maximum likelihood method (ML). The Bayesian method has an exclusive advantage compared with classical method that the parameters to be estimated are regarded as random variables. In this study, the classical and Bayesian methods were used to estimate six height-diameter models, respectively. Both the classical method and Bayesian method showed that the Weibull model was the "best" model using data1. In addition, based on the Weibull model, data2 was used for comparing Bayesian method with informative priors with uninformative priors and classical method. The results showed that the improvement in prediction accuracy with Bayesian method led to narrower confidence bands of predicted value in comparison to that for the classical method, and the credible bands of parameters with informative priors were also narrower than uninformative priors and classical method. The estimated posterior distributions for parameters can be set as new priors in estimating the parameters using data2.

  1. Dynamic Bayesian network modeling for longitudinal brain morphometry

    PubMed Central

    Chen, Rong; Resnick, Susan M; Davatzikos, Christos; Herskovits, Edward H

    2011-01-01

    Identifying interactions among brain regions from structural magnetic-resonance images presents one of the major challenges in computational neuroanatomy. We propose a Bayesian data-mining approach to the detection of longitudinal morphological changes in the human brain. Our method uses a dynamic Bayesian network to represent evolving inter-regional dependencies. The major advantage of dynamic Bayesian network modeling is that it can represent complicated interactions among temporal processes. We validated our approach by analyzing a simulated atrophy study, and found that this approach requires only a small number of samples to detect the ground-truth temporal model. We further applied dynamic Bayesian network modeling to a longitudinal study of normal aging and mild cognitive impairment — the Baltimore Longitudinal Study of Aging. We found that interactions among regional volume-change rates for the mild cognitive impairment group are different from those for the normal-aging group. PMID:21963916

  2. Regulator Loss Functions and Hierarchical Modeling for Safety Decision Making.

    PubMed

    Hatfield, Laura A; Baugh, Christine M; Azzone, Vanessa; Normand, Sharon-Lise T

    2017-07-01

    Regulators must act to protect the public when evidence indicates safety problems with medical devices. This requires complex tradeoffs among risks and benefits, which conventional safety surveillance methods do not incorporate. To combine explicit regulator loss functions with statistical evidence on medical device safety signals to improve decision making. In the Hospital Cost and Utilization Project National Inpatient Sample, we select pediatric inpatient admissions and identify adverse medical device events (AMDEs). We fit hierarchical Bayesian models to the annual hospital-level AMDE rates, accounting for patient and hospital characteristics. These models produce expected AMDE rates (a safety target), against which we compare the observed rates in a test year to compute a safety signal. We specify a set of loss functions that quantify the costs and benefits of each action as a function of the safety signal. We integrate the loss functions over the posterior distribution of the safety signal to obtain the posterior (Bayes) risk; the preferred action has the smallest Bayes risk. Using simulation and an analysis of AMDE data, we compare our minimum-risk decisions to a conventional Z score approach for classifying safety signals. The 2 rules produced different actions for nearly half of hospitals (45%). In the simulation, decisions that minimize Bayes risk outperform Z score-based decisions, even when the loss functions or hierarchical models are misspecified. Our method is sensitive to the choice of loss functions; eliciting quantitative inputs to the loss functions from regulators is challenging. A decision-theoretic approach to acting on safety signals is potentially promising but requires careful specification of loss functions in consultation with subject matter experts.

  3. A hierarchical model for regional analysis of population change using Christmas Bird Count data, with application to the American Black Duck

    USGS Publications Warehouse

    Link, W.A.; Sauer, J.R.; Niven, D.K.

    2006-01-01

    Analysis of Christmas Bird Count (CBC) data is complicated by the need to account for variation in effort on counts and to provide summaries over large geographic regions. We describe a hierarchical model for analysis of population change using CBC data that addresses these needs. The effect of effort is modeled parametrically, with parameter values varying among strata as identically distributed random effects. Year and site effects are modeled hierarchically, accommodating large regional variation in number of samples and precision of estimates. The resulting model is complex, but a Bayesian analysis can be conducted using Markov chain Monte Carlo techniques. We analyze CBC data for American Black Ducks (Anas rubripes), a species of considerable management interest that has historically been monitored using winter surveys. Over the interval 1966-2003, Black Duck populations showed distinct regional patterns of population change. The patterns shown by CBC data are similar to those shown by the Midwinter Waterfowl Inventory for the United States.

  4. LiDAR based prediction of forest biomass using hierarchical models with spatially varying coefficients

    USGS Publications Warehouse

    Babcock, Chad; Finley, Andrew O.; Bradford, John B.; Kolka, Randall K.; Birdsey, Richard A.; Ryan, Michael G.

    2015-01-01

    Many studies and production inventory systems have shown the utility of coupling covariates derived from Light Detection and Ranging (LiDAR) data with forest variables measured on georeferenced inventory plots through regression models. The objective of this study was to propose and assess the use of a Bayesian hierarchical modeling framework that accommodates both residual spatial dependence and non-stationarity of model covariates through the introduction of spatial random effects. We explored this objective using four forest inventory datasets that are part of the North American Carbon Program, each comprising point-referenced measures of above-ground forest biomass and discrete LiDAR. For each dataset, we considered at least five regression model specifications of varying complexity. Models were assessed based on goodness of fit criteria and predictive performance using a 10-fold cross-validation procedure. Results showed that the addition of spatial random effects to the regression model intercept improved fit and predictive performance in the presence of substantial residual spatial dependence. Additionally, in some cases, allowing either some or all regression slope parameters to vary spatially, via the addition of spatial random effects, further improved model fit and predictive performance. In other instances, models showed improved fit but decreased predictive performance—indicating over-fitting and underscoring the need for cross-validation to assess predictive ability. The proposed Bayesian modeling framework provided access to pixel-level posterior predictive distributions that were useful for uncertainty mapping, diagnosing spatial extrapolation issues, revealing missing model covariates, and discovering locally significant parameters.

  5. A comment on priors for Bayesian occupancy models

    PubMed Central

    Gerber, Brian D.

    2018-01-01

    Understanding patterns of species occurrence and the processes underlying these patterns is fundamental to the study of ecology. One of the more commonly used approaches to investigate species occurrence patterns is occupancy modeling, which can account for imperfect detection of a species during surveys. In recent years, there has been a proliferation of Bayesian modeling in ecology, which includes fitting Bayesian occupancy models. The Bayesian framework is appealing to ecologists for many reasons, including the ability to incorporate prior information through the specification of prior distributions on parameters. While ecologists almost exclusively intend to choose priors so that they are “uninformative” or “vague”, such priors can easily be unintentionally highly informative. Here we report on how the specification of a “vague” normally distributed (i.e., Gaussian) prior on coefficients in Bayesian occupancy models can unintentionally influence parameter estimation. Using both simulated data and empirical examples, we illustrate how this issue likely compromises inference about species-habitat relationships. While the extent to which these informative priors influence inference depends on the data set, researchers fitting Bayesian occupancy models should conduct sensitivity analyses to ensure intended inference, or employ less commonly used priors that are less informative (e.g., logistic or t prior distributions). We provide suggestions for addressing this issue in occupancy studies, and an online tool for exploring this issue under different contexts. PMID:29481554

  6. A comment on priors for Bayesian occupancy models.

    PubMed

    Northrup, Joseph M; Gerber, Brian D

    2018-01-01

    Understanding patterns of species occurrence and the processes underlying these patterns is fundamental to the study of ecology. One of the more commonly used approaches to investigate species occurrence patterns is occupancy modeling, which can account for imperfect detection of a species during surveys. In recent years, there has been a proliferation of Bayesian modeling in ecology, which includes fitting Bayesian occupancy models. The Bayesian framework is appealing to ecologists for many reasons, including the ability to incorporate prior information through the specification of prior distributions on parameters. While ecologists almost exclusively intend to choose priors so that they are "uninformative" or "vague", such priors can easily be unintentionally highly informative. Here we report on how the specification of a "vague" normally distributed (i.e., Gaussian) prior on coefficients in Bayesian occupancy models can unintentionally influence parameter estimation. Using both simulated data and empirical examples, we illustrate how this issue likely compromises inference about species-habitat relationships. While the extent to which these informative priors influence inference depends on the data set, researchers fitting Bayesian occupancy models should conduct sensitivity analyses to ensure intended inference, or employ less commonly used priors that are less informative (e.g., logistic or t prior distributions). We provide suggestions for addressing this issue in occupancy studies, and an online tool for exploring this issue under different contexts.

  7. Bayesian learning of visual chunks by human observers

    PubMed Central

    Orbán, Gergő; Fiser, József; Aslin, Richard N.; Lengyel, Máté

    2008-01-01

    Efficient and versatile processing of any hierarchically structured information requires a learning mechanism that combines lower-level features into higher-level chunks. We investigated this chunking mechanism in humans with a visual pattern-learning paradigm. We developed an ideal learner based on Bayesian model comparison that extracts and stores only those chunks of information that are minimally sufficient to encode a set of visual scenes. Our ideal Bayesian chunk learner not only reproduced the results of a large set of previous empirical findings in the domain of human pattern learning but also made a key prediction that we confirmed experimentally. In accordance with Bayesian learning but contrary to associative learning, human performance was well above chance when pair-wise statistics in the exemplars contained no relevant information. Thus, humans extract chunks from complex visual patterns by generating accurate yet economical representations and not by encoding the full correlational structure of the input. PMID:18268353

  8. Comparing Bayesian stable isotope mixing models: Which tools are best for sediments?

    NASA Astrophysics Data System (ADS)

    Morris, David; Macko, Stephen

    2016-04-01

    Bayesian stable isotope mixing models have received much attention as a means of coping with multiple sources and uncertainty in isotope ecology (e.g. Phillips et al., 2014), enabling the probabilistic determination of the contributions made by each food source to the total diet of the organism in question. We have applied these techniques to marine sediments for the first time. The sediments of the Chukchi Sea and Beaufort Sea offer an opportunity to utilize these models for organic geochemistry, as there are three likely sources of organic carbon; pelagic phytoplankton, sea ice algae and terrestrial material from rivers and coastal erosion, as well as considerable variation in the marine δ13C values. Bayesian mixing models using bulk δ13C and δ15N data from Shelf Basin Interaction samples allow for the probabilistic determination of the contributions made by each of the sources to the organic carbon budget, and can be compared with existing source contribution estimates based upon biomarker models (e.g. Belicka & Harvey, 2009, Faux, Belicka, & Rodger Harvey, 2011). The δ13C of this preserved material varied from -22.1 to -16.7‰ (mean -19.4±1.3‰), while δ15N varied from 4.1 to 7.6‰ (mean 5.7±1.1‰). Using the SIAR model, we found that water column productivity was the source of between 50 and 70% of the organic carbon buried in this portion of the western Arctic with the remainder mainly supplied by sea ice algal productivity (25-35%) and terrestrial inputs (15%). With many mixing models now available, this study will compare SIAR with MixSIAR and the new FRUITS model. Monte Carlo modeling of the mixing polygon will be used to validate the models, and hierarchical models will be utilised to glean more information from the data set.

  9. Mechanisms of Hierarchical Reinforcement Learning in Corticostriatal Circuits 1: Computational Analysis

    PubMed Central

    Badre, David

    2012-01-01

    Growing evidence suggests that the prefrontal cortex (PFC) is organized hierarchically, with more anterior regions having increasingly abstract representations. How does this organization support hierarchical cognitive control and the rapid discovery of abstract action rules? We present computational models at different levels of description. A neural circuit model simulates interacting corticostriatal circuits organized hierarchically. In each circuit, the basal ganglia gate frontal actions, with some striatal units gating the inputs to PFC and others gating the outputs to influence response selection. Learning at all of these levels is accomplished via dopaminergic reward prediction error signals in each corticostriatal circuit. This functionality allows the system to exhibit conditional if–then hypothesis testing and to learn rapidly in environments with hierarchical structure. We also develop a hybrid Bayesian-reinforcement learning mixture of experts (MoE) model, which can estimate the most likely hypothesis state of individual participants based on their observed sequence of choices and rewards. This model yields accurate probabilistic estimates about which hypotheses are attended by manipulating attentional states in the generative neural model and recovering them with the MoE model. This 2-pronged modeling approach leads to multiple quantitative predictions that are tested with functional magnetic resonance imaging in the companion paper. PMID:21693490

  10. Bayesian analysis of non-homogeneous Markov chains: application to mental health data.

    PubMed

    Sung, Minje; Soyer, Refik; Nhan, Nguyen

    2007-07-10

    In this paper we present a formal treatment of non-homogeneous Markov chains by introducing a hierarchical Bayesian framework. Our work is motivated by the analysis of correlated categorical data which arise in assessment of psychiatric treatment programs. In our development, we introduce a Markovian structure to describe the non-homogeneity of transition patterns. In doing so, we introduce a logistic regression set-up for Markov chains and incorporate covariates in our model. We present a Bayesian model using Markov chain Monte Carlo methods and develop inference procedures to address issues encountered in the analyses of data from psychiatric treatment programs. Our model and inference procedures are implemented to some real data from a psychiatric treatment study. Copyright 2006 John Wiley & Sons, Ltd.

  11. MEG source localization of spatially extended generators of epileptic activity: comparing entropic and hierarchical bayesian approaches.

    PubMed

    Chowdhury, Rasheda Arman; Lina, Jean Marc; Kobayashi, Eliane; Grova, Christophe

    2013-01-01

    Localizing the generators of epileptic activity in the brain using Electro-EncephaloGraphy (EEG) or Magneto-EncephaloGraphy (MEG) signals is of particular interest during the pre-surgical investigation of epilepsy. Epileptic discharges can be detectable from background brain activity, provided they are associated with spatially extended generators. Using realistic simulations of epileptic activity, this study evaluates the ability of distributed source localization methods to accurately estimate the location of the generators and their sensitivity to the spatial extent of such generators when using MEG data. Source localization methods based on two types of realistic models have been investigated: (i) brain activity may be modeled using cortical parcels and (ii) brain activity is assumed to be locally smooth within each parcel. A Data Driven Parcellization (DDP) method was used to segment the cortical surface into non-overlapping parcels and diffusion-based spatial priors were used to model local spatial smoothness within parcels. These models were implemented within the Maximum Entropy on the Mean (MEM) and the Hierarchical Bayesian (HB) source localization frameworks. We proposed new methods in this context and compared them with other standard ones using Monte Carlo simulations of realistic MEG data involving sources of several spatial extents and depths. Detection accuracy of each method was quantified using Receiver Operating Characteristic (ROC) analysis and localization error metrics. Our results showed that methods implemented within the MEM framework were sensitive to all spatial extents of the sources ranging from 3 cm(2) to 30 cm(2), whatever were the number and size of the parcels defining the model. To reach a similar level of accuracy within the HB framework, a model using parcels larger than the size of the sources should be considered.

  12. MEG Source Localization of Spatially Extended Generators of Epileptic Activity: Comparing Entropic and Hierarchical Bayesian Approaches

    PubMed Central

    Chowdhury, Rasheda Arman; Lina, Jean Marc; Kobayashi, Eliane; Grova, Christophe

    2013-01-01

    Localizing the generators of epileptic activity in the brain using Electro-EncephaloGraphy (EEG) or Magneto-EncephaloGraphy (MEG) signals is of particular interest during the pre-surgical investigation of epilepsy. Epileptic discharges can be detectable from background brain activity, provided they are associated with spatially extended generators. Using realistic simulations of epileptic activity, this study evaluates the ability of distributed source localization methods to accurately estimate the location of the generators and their sensitivity to the spatial extent of such generators when using MEG data. Source localization methods based on two types of realistic models have been investigated: (i) brain activity may be modeled using cortical parcels and (ii) brain activity is assumed to be locally smooth within each parcel. A Data Driven Parcellization (DDP) method was used to segment the cortical surface into non-overlapping parcels and diffusion-based spatial priors were used to model local spatial smoothness within parcels. These models were implemented within the Maximum Entropy on the Mean (MEM) and the Hierarchical Bayesian (HB) source localization frameworks. We proposed new methods in this context and compared them with other standard ones using Monte Carlo simulations of realistic MEG data involving sources of several spatial extents and depths. Detection accuracy of each method was quantified using Receiver Operating Characteristic (ROC) analysis and localization error metrics. Our results showed that methods implemented within the MEM framework were sensitive to all spatial extents of the sources ranging from 3 cm2 to 30 cm2, whatever were the number and size of the parcels defining the model. To reach a similar level of accuracy within the HB framework, a model using parcels larger than the size of the sources should be considered. PMID:23418485

  13. A Bayesian random effects discrete-choice model for resource selection: Population-level selection inference

    USGS Publications Warehouse

    Thomas, D.L.; Johnson, D.; Griffith, B.

    2006-01-01

    Bayesian hierarchical discrete-choice model for resource selection can provide managers with 2 components of population-level inference: average population selection and variability of selection. Both components are necessary to make sound management decisions based on animal selection.

  14. Model-based Bayesian inference for ROC data analysis

    NASA Astrophysics Data System (ADS)

    Lei, Tianhu; Bae, K. Ty

    2013-03-01

    This paper presents a study of model-based Bayesian inference to Receiver Operating Characteristics (ROC) data. The model is a simple version of general non-linear regression model. Different from Dorfman model, it uses a probit link function with a covariate variable having zero-one two values to express binormal distributions in a single formula. Model also includes a scale parameter. Bayesian inference is implemented by Markov Chain Monte Carlo (MCMC) method carried out by Bayesian analysis Using Gibbs Sampling (BUGS). Contrast to the classical statistical theory, Bayesian approach considers model parameters as random variables characterized by prior distributions. With substantial amount of simulated samples generated by sampling algorithm, posterior distributions of parameters as well as parameters themselves can be accurately estimated. MCMC-based BUGS adopts Adaptive Rejection Sampling (ARS) protocol which requires the probability density function (pdf) which samples are drawing from be log concave with respect to the targeted parameters. Our study corrects a common misconception and proves that pdf of this regression model is log concave with respect to its scale parameter. Therefore, ARS's requirement is satisfied and a Gaussian prior which is conjugate and possesses many analytic and computational advantages is assigned to the scale parameter. A cohort of 20 simulated data sets and 20 simulations from each data set are used in our study. Output analysis and convergence diagnostics for MCMC method are assessed by CODA package. Models and methods by using continuous Gaussian prior and discrete categorical prior are compared. Intensive simulations and performance measures are given to illustrate our practice in the framework of model-based Bayesian inference using MCMC method.

  15. Spatio-temporal hierarchical modeling of rates and variability of Holocene sea-level changes in the western North Atlantic and the Caribbean

    NASA Astrophysics Data System (ADS)

    Ashe, E.; Kopp, R. E.; Khan, N.; Horton, B.; Engelhart, S. E.

    2016-12-01

    Sea level varies over of both space and time. Prior to the instrumental period, the sea-level record depends upon geological reconstructions that contain vertical and temporal uncertainty. Spatio-temporal statistical models enable the interpretation of RSL and rates of change as well as the reconstruction of the entire sea-level field from such noisy data. Hierarchical models explicitly distinguish between a process level, which characterizes the spatio-temporal field, and a data level, by which sparse proxy data and its noise is recorded. A hyperparameter level depicts prior expectations about the structure of variability in the spatio-temporal field. Spatio-temporal hierarchical models are amenable to several analysis approaches, with tradeoffs regarding computational efficiency and comprehensiveness of uncertainty characterization. A fully-Bayesian hierarchical model (BHM), which places prior probability distributions upon the hyperparameters, is more computationally intensive than an empirical hierarchical model (EHM), which uses point estimates of hyperparameters, derived from the data [1]. Here, we assess the sensitivity of posterior estimates of relative sea level (RSL) and rates to different statistical approaches by varying prior assumptions about the spatial and temporal structure of sea-level variability and applying multiple analytical approaches to Holocene sea-level proxies along the Atlantic coast of North American and the Caribbean [2]. References: 1. N Cressie, Wikle CK (2011) Statistics for spatio-temporal data (John Wiley & Sons). 2. Kahn N et al. (2016). Quaternary Science Reviews (in revision).

  16. Bayesian Modeling of a Human MMORPG Player

    NASA Astrophysics Data System (ADS)

    Synnaeve, Gabriel; Bessière, Pierre

    2011-03-01

    This paper describes an application of Bayesian programming to the control of an autonomous avatar in a multiplayer role-playing game (the example is based on World of Warcraft). We model a particular task, which consists of choosing what to do and to select which target in a situation where allies and foes are present. We explain the model in Bayesian programming and show how we could learn the conditional probabilities from data gathered during human-played sessions.

  17. A Bayesian Supertree Model for Genome-Wide Species Tree Reconstruction

    PubMed Central

    De Oliveira Martins, Leonardo; Mallo, Diego; Posada, David

    2016-01-01

    Current phylogenomic data sets highlight the need for species tree methods able to deal with several sources of gene tree/species tree incongruence. At the same time, we need to make most use of all available data. Most species tree methods deal with single processes of phylogenetic discordance, namely, gene duplication and loss, incomplete lineage sorting (ILS) or horizontal gene transfer. In this manuscript, we address the problem of species tree inference from multilocus, genome-wide data sets regardless of the presence of gene duplication and loss and ILS therefore without the need to identify orthologs or to use a single individual per species. We do this by extending the idea of Maximum Likelihood (ML) supertrees to a hierarchical Bayesian model where several sources of gene tree/species tree disagreement can be accounted for in a modular manner. We implemented this model in a computer program called guenomu whose inputs are posterior distributions of unrooted gene tree topologies for multiple gene families, and whose output is the posterior distribution of rooted species tree topologies. We conducted extensive simulations to evaluate the performance of our approach in comparison with other species tree approaches able to deal with more than one leaf from the same species. Our method ranked best under simulated data sets, in spite of ignoring branch lengths, and performed well on empirical data, as well as being fast enough to analyze relatively large data sets. Our Bayesian supertree method was also very successful in obtaining better estimates of gene trees, by reducing the uncertainty in their distributions. In addition, our results show that under complex simulation scenarios, gene tree parsimony is also a competitive approach once we consider its speed, in contrast to more sophisticated models. PMID:25281847

  18. Development and comparison of Bayesian modularization method in uncertainty assessment of hydrological models

    NASA Astrophysics Data System (ADS)

    Li, L.; Xu, C.-Y.; Engeland, K.

    2012-04-01

    With respect to model calibration, parameter estimation and analysis of uncertainty sources, different approaches have been used in hydrological models. Bayesian method is one of the most widely used methods for uncertainty assessment of hydrological models, which incorporates different sources of information into a single analysis through Bayesian theorem. However, none of these applications can well treat the uncertainty in extreme flows of hydrological models' simulations. This study proposes a Bayesian modularization method approach in uncertainty assessment of conceptual hydrological models by considering the extreme flows. It includes a comprehensive comparison and evaluation of uncertainty assessments by a new Bayesian modularization method approach and traditional Bayesian models using the Metropolis Hasting (MH) algorithm with the daily hydrological model WASMOD. Three likelihood functions are used in combination with traditional Bayesian: the AR (1) plus Normal and time period independent model (Model 1), the AR (1) plus Normal and time period dependent model (Model 2) and the AR (1) plus multi-normal model (Model 3). The results reveal that (1) the simulations derived from Bayesian modularization method are more accurate with the highest Nash-Sutcliffe efficiency value, and (2) the Bayesian modularization method performs best in uncertainty estimates of entire flows and in terms of the application and computational efficiency. The study thus introduces a new approach for reducing the extreme flow's effect on the discharge uncertainty assessment of hydrological models via Bayesian. Keywords: extreme flow, uncertainty assessment, Bayesian modularization, hydrological model, WASMOD

  19. Analysis hierarchical model for discrete event systems

    NASA Astrophysics Data System (ADS)

    Ciortea, E. M.

    2015-11-01

    The This paper presents the hierarchical model based on discrete event network for robotic systems. Based on the hierarchical approach, Petri network is analysed as a network of the highest conceptual level and the lowest level of local control. For modelling and control of complex robotic systems using extended Petri nets. Such a system is structured, controlled and analysed in this paper by using Visual Object Net ++ package that is relatively simple and easy to use, and the results are shown as representations easy to interpret. The hierarchical structure of the robotic system is implemented on computers analysed using specialized programs. Implementation of hierarchical model discrete event systems, as a real-time operating system on a computer network connected via a serial bus is possible, where each computer is dedicated to local and Petri model of a subsystem global robotic system. Since Petri models are simplified to apply general computers, analysis, modelling, complex manufacturing systems control can be achieved using Petri nets. Discrete event systems is a pragmatic tool for modelling industrial systems. For system modelling using Petri nets because we have our system where discrete event. To highlight the auxiliary time Petri model using transport stream divided into hierarchical levels and sections are analysed successively. Proposed robotic system simulation using timed Petri, offers the opportunity to view the robotic time. Application of goods or robotic and transmission times obtained by measuring spot is obtained graphics showing the average time for transport activity, using the parameters sets of finished products. individually.

  20. Bayesian population receptive field modelling.

    PubMed

    Zeidman, Peter; Silson, Edward Harry; Schwarzkopf, Dietrich Samuel; Baker, Chris Ian; Penny, Will

    2017-09-08

    We introduce a probabilistic (Bayesian) framework and associated software toolbox for mapping population receptive fields (pRFs) based on fMRI data. This generic approach is intended to work with stimuli of any dimension and is demonstrated and validated in the context of 2D retinotopic mapping. The framework enables the experimenter to specify generative (encoding) models of fMRI timeseries, in which experimental stimuli enter a pRF model of neural activity, which in turns drives a nonlinear model of neurovascular coupling and Blood Oxygenation Level Dependent (BOLD) response. The neuronal and haemodynamic parameters are estimated together on a voxel-by-voxel or region-of-interest basis using a Bayesian estimation algorithm (variational Laplace). This offers several novel contributions to receptive field modelling. The variance/covariance of parameters are estimated, enabling receptive fields to be plotted while properly representing uncertainty about pRF size and location. Variability in the haemodynamic response across the brain is accounted for. Furthermore, the framework introduces formal hypothesis testing to pRF analysis, enabling competing models to be evaluated based on their log model evidence (approximated by the variational free energy), which represents the optimal tradeoff between accuracy and complexity. Using simulations and empirical data, we found that parameters typically used to represent pRF size and neuronal scaling are strongly correlated, which is taken into account by the Bayesian methods we describe when making inferences. We used the framework to compare the evidence for six variants of pRF model using 7 T functional MRI data and we found a circular Difference of Gaussians (DoG) model to be the best explanation for our data overall. We hope this framework will prove useful for mapping stimulus spaces with any number of dimensions onto the anatomy of the brain. Copyright © 2017 The Authors. Published by Elsevier Inc. All rights reserved.

  1. TYPE Ia SUPERNOVA COLORS AND EJECTA VELOCITIES: HIERARCHICAL BAYESIAN REGRESSION WITH NON-GAUSSIAN DISTRIBUTIONS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mandel, Kaisey S.; Kirshner, Robert P.; Foley, Ryan J., E-mail: kmandel@cfa.harvard.edu

    2014-12-20

    We investigate the statistical dependence of the peak intrinsic colors of Type Ia supernovae (SNe Ia) on their expansion velocities at maximum light, measured from the Si II λ6355 spectral feature. We construct a new hierarchical Bayesian regression model, accounting for the random effects of intrinsic scatter, measurement error, and reddening by host galaxy dust, and implement a Gibbs sampler and deviance information criteria to estimate the correlation. The method is applied to the apparent colors from BVRI light curves and Si II velocity data for 79 nearby SNe Ia. The apparent color distributions of high-velocity (HV) and normal velocitymore » (NV) supernovae exhibit significant discrepancies for B – V and B – R, but not other colors. Hence, they are likely due to intrinsic color differences originating in the B band, rather than dust reddening. The mean intrinsic B – V and B – R color differences between HV and NV groups are 0.06 ± 0.02 and 0.09 ± 0.02 mag, respectively. A linear model finds significant slopes of –0.021 ± 0.006 and –0.030 ± 0.009 mag (10{sup 3} km s{sup –1}){sup –1} for intrinsic B – V and B – R colors versus velocity, respectively. Because the ejecta velocity distribution is skewed toward high velocities, these effects imply non-Gaussian intrinsic color distributions with skewness up to +0.3. Accounting for the intrinsic-color-velocity correlation results in corrections to A{sub V} extinction estimates as large as –0.12 mag for HV SNe Ia and +0.06 mag for NV events. Velocity measurements from SN Ia spectra have the potential to diminish systematic errors from the confounding of intrinsic colors and dust reddening affecting supernova distances.« less

  2. Object-Oriented Bayesian Networks (OOBN) for Aviation Accident Modeling and Technology Portfolio Impact Assessment

    NASA Technical Reports Server (NTRS)

    Shih, Ann T.; Ancel, Ersin; Jones, Sharon M.

    2012-01-01

    The concern for reducing aviation safety risk is rising as the National Airspace System in the United States transforms to the Next Generation Air Transportation System (NextGen). The NASA Aviation Safety Program is committed to developing an effective aviation safety technology portfolio to meet the challenges of this transformation and to mitigate relevant safety risks. The paper focuses on the reasoning of selecting Object-Oriented Bayesian Networks (OOBN) as the technique and commercial software for the accident modeling and portfolio assessment. To illustrate the benefits of OOBN in a large and complex aviation accident model, the in-flight Loss-of-Control Accident Framework (LOCAF) constructed as an influence diagram is presented. An OOBN approach not only simplifies construction and maintenance of complex causal networks for the modelers, but also offers a well-organized hierarchical network that is easier for decision makers to exploit the model examining the effectiveness of risk mitigation strategies through technology insertions.

  3. Two-Stage Bayesian Model Averaging in Endogenous Variable Models*

    PubMed Central

    Lenkoski, Alex; Eicher, Theo S.; Raftery, Adrian E.

    2013-01-01

    Economic modeling in the presence of endogeneity is subject to model uncertainty at both the instrument and covariate level. We propose a Two-Stage Bayesian Model Averaging (2SBMA) methodology that extends the Two-Stage Least Squares (2SLS) estimator. By constructing a Two-Stage Unit Information Prior in the endogenous variable model, we are able to efficiently combine established methods for addressing model uncertainty in regression models with the classic technique of 2SLS. To assess the validity of instruments in the 2SBMA context, we develop Bayesian tests of the identification restriction that are based on model averaged posterior predictive p-values. A simulation study showed that 2SBMA has the ability to recover structure in both the instrument and covariate set, and substantially improves the sharpness of resulting coefficient estimates in comparison to 2SLS using the full specification in an automatic fashion. Due to the increased parsimony of the 2SBMA estimate, the Bayesian Sargan test had a power of 50 percent in detecting a violation of the exogeneity assumption, while the method based on 2SLS using the full specification had negligible power. We apply our approach to the problem of development accounting, and find support not only for institutions, but also for geography and integration as development determinants, once both model uncertainty and endogeneity have been jointly addressed. PMID:24223471

  4. Statistical label fusion with hierarchical performance models

    PubMed Central

    Asman, Andrew J.; Dagley, Alexander S.; Landman, Bennett A.

    2014-01-01

    Label fusion is a critical step in many image segmentation frameworks (e.g., multi-atlas segmentation) as it provides a mechanism for generalizing a collection of labeled examples into a single estimate of the underlying segmentation. In the multi-label case, typical label fusion algorithms treat all labels equally – fully neglecting the known, yet complex, anatomical relationships exhibited in the data. To address this problem, we propose a generalized statistical fusion framework using hierarchical models of rater performance. Building on the seminal work in statistical fusion, we reformulate the traditional rater performance model from a multi-tiered hierarchical perspective. This new approach provides a natural framework for leveraging known anatomical relationships and accurately modeling the types of errors that raters (or atlases) make within a hierarchically consistent formulation. Herein, we describe several contributions. First, we derive a theoretical advancement to the statistical fusion framework that enables the simultaneous estimation of multiple (hierarchical) performance models within the statistical fusion context. Second, we demonstrate that the proposed hierarchical formulation is highly amenable to the state-of-the-art advancements that have been made to the statistical fusion framework. Lastly, in an empirical whole-brain segmentation task we demonstrate substantial qualitative and significant quantitative improvement in overall segmentation accuracy. PMID:24817809

  5. Discriminative Bayesian Dictionary Learning for Classification.

    PubMed

    Akhtar, Naveed; Shafait, Faisal; Mian, Ajmal

    2016-12-01

    We propose a Bayesian approach to learn discriminative dictionaries for sparse representation of data. The proposed approach infers probability distributions over the atoms of a discriminative dictionary using a finite approximation of Beta Process. It also computes sets of Bernoulli distributions that associate class labels to the learned dictionary atoms. This association signifies the selection probabilities of the dictionary atoms in the expansion of class-specific data. Furthermore, the non-parametric character of the proposed approach allows it to infer the correct size of the dictionary. We exploit the aforementioned Bernoulli distributions in separately learning a linear classifier. The classifier uses the same hierarchical Bayesian model as the dictionary, which we present along the analytical inference solution for Gibbs sampling. For classification, a test instance is first sparsely encoded over the learned dictionary and the codes are fed to the classifier. We performed experiments for face and action recognition; and object and scene-category classification using five public datasets and compared the results with state-of-the-art discriminative sparse representation approaches. Experiments show that the proposed Bayesian approach consistently outperforms the existing approaches.

  6. A SEMIPARAMETRIC BAYESIAN MODEL FOR CIRCULAR-LINEAR REGRESSION

    EPA Science Inventory

    We present a Bayesian approach to regress a circular variable on a linear predictor. The regression coefficients are assumed to have a nonparametric distribution with a Dirichlet process prior. The semiparametric Bayesian approach gives added flexibility to the model and is usefu...

  7. Dissecting Magnetar Variability with Bayesian Hierarchical Models

    NASA Astrophysics Data System (ADS)

    Huppenkothen, Daniela; Brewer, Brendon J.; Hogg, David W.; Murray, Iain; Frean, Marcus; Elenbaas, Chris; Watts, Anna L.; Levin, Yuri; van der Horst, Alexander J.; Kouveliotou, Chryssa

    2015-09-01

    Neutron stars are a prime laboratory for testing physical processes under conditions of strong gravity, high density, and extreme magnetic fields. Among the zoo of neutron star phenomena, magnetars stand out for their bursting behavior, ranging from extremely bright, rare giant flares to numerous, less energetic recurrent bursts. The exact trigger and emission mechanisms for these bursts are not known; favored models involve either a crust fracture and subsequent energy release into the magnetosphere, or explosive reconnection of magnetic field lines. In the absence of a predictive model, understanding the physical processes responsible for magnetar burst variability is difficult. Here, we develop an empirical model that decomposes magnetar bursts into a superposition of small spike-like features with a simple functional form, where the number of model components is itself part of the inference problem. The cascades of spikes that we model might be formed by avalanches of reconnection, or crust rupture aftershocks. Using Markov Chain Monte Carlo sampling augmented with reversible jumps between models with different numbers of parameters, we characterize the posterior distributions of the model parameters and the number of components per burst. We relate these model parameters to physical quantities in the system, and show for the first time that the variability within a burst does not conform to predictions from ideas of self-organized criticality. We also examine how well the properties of the spikes fit the predictions of simplified cascade models for the different trigger mechanisms.

  8. Bayesian modeling of consumer behavior in the presence of anonymous visits

    NASA Astrophysics Data System (ADS)

    Novak, Julie Esther

    Tailoring content to consumers has become a hallmark of marketing and digital media, particularly as it has become easier to identify customers across usage or purchase occasions. However, across a wide variety of contexts, companies find that customers do not consistently identify themselves, leaving a substantial fraction of anonymous visits. We develop a Bayesian hierarchical model that allows us to probabilistically assign anonymous sessions to users. These probabilistic assignments take into account a customer's demographic information, frequency of visitation, activities taken when visiting, and times of arrival. We present two studies, one with synthetic and one with real data, where we demonstrate improved performance over two popular practices (nearest-neighbor matching and deleting the anonymous visits) due to increased efficiency and reduced bias driven by the non-ignorability of which types of events are more likely to be anonymous. Using our proposed model, we avoid potential bias in understanding the effect of a firm's marketing on its customers, improve inference about the total number of customers in the dataset, and provide more precise targeted marketing to both previously observed and unobserved customers.

  9. DISSECTING MAGNETAR VARIABILITY WITH BAYESIAN HIERARCHICAL MODELS

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Huppenkothen, Daniela; Elenbaas, Chris; Watts, Anna L.

    Neutron stars are a prime laboratory for testing physical processes under conditions of strong gravity, high density, and extreme magnetic fields. Among the zoo of neutron star phenomena, magnetars stand out for their bursting behavior, ranging from extremely bright, rare giant flares to numerous, less energetic recurrent bursts. The exact trigger and emission mechanisms for these bursts are not known; favored models involve either a crust fracture and subsequent energy release into the magnetosphere, or explosive reconnection of magnetic field lines. In the absence of a predictive model, understanding the physical processes responsible for magnetar burst variability is difficult. Here,more » we develop an empirical model that decomposes magnetar bursts into a superposition of small spike-like features with a simple functional form, where the number of model components is itself part of the inference problem. The cascades of spikes that we model might be formed by avalanches of reconnection, or crust rupture aftershocks. Using Markov Chain Monte Carlo sampling augmented with reversible jumps between models with different numbers of parameters, we characterize the posterior distributions of the model parameters and the number of components per burst. We relate these model parameters to physical quantities in the system, and show for the first time that the variability within a burst does not conform to predictions from ideas of self-organized criticality. We also examine how well the properties of the spikes fit the predictions of simplified cascade models for the different trigger mechanisms.« less

  10. SBML Level 3 package: Hierarchical Model Composition, Version 1 Release 3

    PubMed Central

    Smith, Lucian P.; Hucka, Michael; Hoops, Stefan; Finney, Andrew; Ginkel, Martin; Myers, Chris J.; Moraru, Ion; Liebermeister, Wolfram

    2017-01-01

    Summary Constructing a model in a hierarchical fashion is a natural approach to managing model complexity, and offers additional opportunities such as the potential to re-use model components. The SBML Level 3 Version 1 Core specification does not directly provide a mechanism for defining hierarchical models, but it does provide a mechanism for SBML packages to extend the Core specification and add additional syntactical constructs. The SBML Hierarchical Model Composition package for SBML Level 3 adds the necessary features to SBML to support hierarchical modeling. The package enables a modeler to include submodels within an enclosing SBML model, delete unneeded or redundant elements of that submodel, replace elements of that submodel with element of the containing model, and replace elements of the containing model with elements of the submodel. In addition, the package defines an optional “port” construct, allowing a model to be defined with suggested interfaces between hierarchical components; modelers can chose to use these interfaces, but they are not required to do so and can still interact directly with model elements if they so chose. Finally, the SBML Hierarchical Model Composition package is defined in such a way that a hierarchical model can be “flattened” to an equivalent, non-hierarchical version that uses only plain SBML constructs, thus enabling software tools that do not yet support hierarchy to nevertheless work with SBML hierarchical models. PMID:26528566

  11. A hierarchical model for estimating density in camera-trap studies

    USGS Publications Warehouse

    Royle, J. Andrew; Nichols, James D.; Karanth, K.Ullas; Gopalaswamy, Arjun M.

    2009-01-01

    Estimating animal density using capture–recapture data from arrays of detection devices such as camera traps has been problematic due to the movement of individuals and heterogeneity in capture probability among them induced by differential exposure to trapping.We develop a spatial capture–recapture model for estimating density from camera-trapping data which contains explicit models for the spatial point process governing the distribution of individuals and their exposure to and detection by traps.We adopt a Bayesian approach to analysis of the hierarchical model using the technique of data augmentation.The model is applied to photographic capture–recapture data on tigers Panthera tigris in Nagarahole reserve, India. Using this model, we estimate the density of tigers to be 14·3 animals per 100 km2 during 2004.Synthesis and applications. Our modelling framework largely overcomes several weaknesses in conventional approaches to the estimation of animal density from trap arrays. It effectively deals with key problems such as individual heterogeneity in capture probabilities, movement of traps, presence of potential ‘holes’ in the array and ad hoc estimation of sample area. The formulation, thus, greatly enhances flexibility in the conduct of field surveys as well as in the analysis of data, from studies that may involve physical, photographic or DNA-based ‘captures’ of individual animals.

  12. A hierarchical spatial model for well yield in complex aquifers

    NASA Astrophysics Data System (ADS)

    Montgomery, J.; O'sullivan, F.

    2017-12-01

    Efficiently siting and managing groundwater wells requires reliable estimates of the amount of water that can be produced, or the well yield. This can be challenging to predict in highly complex, heterogeneous fractured aquifers due to the uncertainty around local hydraulic properties. Promising statistical approaches have been advanced in recent years. For instance, kriging and multivariate regression analysis have been applied to well test data with limited but encouraging levels of prediction accuracy. Additionally, some analytical solutions to diffusion in homogeneous porous media have been used to infer "effective" properties consistent with observed flow rates or drawdown. However, this is an under-specified inverse problem with substantial and irreducible uncertainty. We describe a flexible machine learning approach capable of combining diverse datasets with constraining physical and geostatistical models for improved well yield prediction accuracy and uncertainty quantification. Our approach can be implemented within a hierarchical Bayesian framework using Markov Chain Monte Carlo, which allows for additional sources of information to be incorporated in priors to further constrain and improve predictions and reduce the model order. We demonstrate the usefulness of this approach using data from over 7,000 wells in a fractured bedrock aquifer.

  13. Reasons for Hierarchical Linear Modeling: A Reminder.

    ERIC Educational Resources Information Center

    Wang, Jianjun

    1999-01-01

    Uses examples of hierarchical linear modeling (HLM) at local and national levels to illustrate proper applications of HLM and dummy variable regression. Raises cautions about the circumstances under which hierarchical data do not need HLM. (SLD)

  14. Calibrating Bayesian Network Representations of Social-Behavioral Models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Whitney, Paul D.; Walsh, Stephen J.

    2010-04-08

    While human behavior has long been studied, recent and ongoing advances in computational modeling present opportunities for recasting research outcomes in human behavior. In this paper we describe how Bayesian networks can represent outcomes of human behavior research. We demonstrate a Bayesian network that represents political radicalization research – and show a corresponding visual representation of aspects of this research outcome. Since Bayesian networks can be quantitatively compared with external observations, the representation can also be used for empirical assessments of the research which the network summarizes. For a political radicalization model based on published research, we show this empiricalmore » comparison with data taken from the Minorities at Risk Organizational Behaviors database.« less

  15. Hierarchic models for laminated plates

    NASA Technical Reports Server (NTRS)

    Szabo, Barna A.; Actis, Ricardo L.

    1991-01-01

    The research conducted in the formulation of hierarchic models for laminated plates is described. The work is an extension of the work done for laminated strips. The use of a single parameter, beta, is investigated that represents the degree to which the equilibrium equations of three dimensional elasticity are satisfied. The powers of beta identify members in the hierarchic sequence. Numerical examples that were analyzed with the proposed sequence of models are included. The results obtained for square plates with uniform loading and homogeneous boundary conditions are very encouraging. Several cross-ply and angle-ply laminates were evaluated and the results compared with those of the fully three dimensional model, computed using MSC/PROBE, and with previously reported work on laminated strips.

  16. Nonparametric Bayesian Modeling for Automated Database Schema Matching

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ferragut, Erik M; Laska, Jason A

    2015-01-01

    The problem of merging databases arises in many government and commercial applications. Schema matching, a common first step, identifies equivalent fields between databases. We introduce a schema matching framework that builds nonparametric Bayesian models for each field and compares them by computing the probability that a single model could have generated both fields. Our experiments show that our method is more accurate and faster than the existing instance-based matching algorithms in part because of the use of nonparametric Bayesian models.

  17. Bayesian generalized linear mixed modeling of Tuberculosis using informative priors.

    PubMed

    Ojo, Oluwatobi Blessing; Lougue, Siaka; Woldegerima, Woldegebriel Assefa

    2017-01-01

    TB is rated as one of the world's deadliest diseases and South Africa ranks 9th out of the 22 countries with hardest hit of TB. Although many pieces of research have been carried out on this subject, this paper steps further by inculcating past knowledge into the model, using Bayesian approach with informative prior. Bayesian statistics approach is getting popular in data analyses. But, most applications of Bayesian inference technique are limited to situations of non-informative prior, where there is no solid external information about the distribution of the parameter of interest. The main aim of this study is to profile people living with TB in South Africa. In this paper, identical regression models are fitted for classical and Bayesian approach both with non-informative and informative prior, using South Africa General Household Survey (GHS) data for the year 2014. For the Bayesian model with informative prior, South Africa General Household Survey dataset for the year 2011 to 2013 are used to set up priors for the model 2014.

  18. Bayesian generalized linear mixed modeling of Tuberculosis using informative priors

    PubMed Central

    Woldegerima, Woldegebriel Assefa

    2017-01-01

    TB is rated as one of the world’s deadliest diseases and South Africa ranks 9th out of the 22 countries with hardest hit of TB. Although many pieces of research have been carried out on this subject, this paper steps further by inculcating past knowledge into the model, using Bayesian approach with informative prior. Bayesian statistics approach is getting popular in data analyses. But, most applications of Bayesian inference technique are limited to situations of non-informative prior, where there is no solid external information about the distribution of the parameter of interest. The main aim of this study is to profile people living with TB in South Africa. In this paper, identical regression models are fitted for classical and Bayesian approach both with non-informative and informative prior, using South Africa General Household Survey (GHS) data for the year 2014. For the Bayesian model with informative prior, South Africa General Household Survey dataset for the year 2011 to 2013 are used to set up priors for the model 2014. PMID:28257437

  19. Bayesian Analysis of Longitudinal Data Using Growth Curve Models

    ERIC Educational Resources Information Center

    Zhang, Zhiyong; Hamagami, Fumiaki; Wang, Lijuan Lijuan; Nesselroade, John R.; Grimm, Kevin J.

    2007-01-01

    Bayesian methods for analyzing longitudinal data in social and behavioral research are recommended for their ability to incorporate prior information in estimating simple and complex models. We first summarize the basics of Bayesian methods before presenting an empirical example in which we fit a latent basis growth curve model to achievement data…

  20. Hierarchical modeling of population stability and species group attributes from survey data

    USGS Publications Warehouse

    Sauer, J.R.; Link, W.A.

    2002-01-01

    Many ecological studies require analysis of collections of estimates. For example, population change is routinely estimated for many species from surveys such as the North American Breeding Bird Survey (BBS), and the species are grouped and used in comparative analyses. We developed a hierarchical model for estimation of group attributes from a collection of estimates of population trend. The model uses information from predefined groups of species to provide a context and to supplement data for individual species; summaries of group attributes are improved by statistical methods that simultaneously analyze collections of trend estimates. The model is Bayesian; trends are treated as random variables rather than fixed parameters. We use Markov Chain Monte Carlo (MCMC) methods to fit the model. Standard assessments of population stability cannot distinguish magnitude of trend and statistical significance of trend estimates, but the hierarchical model allows us to legitimately describe the probability that a trend is within given bounds. Thus we define population stability in terms of the probability that the magnitude of population change for a species is less than or equal to a predefined threshold. We applied the model to estimates of trend for 399 species from the BBS to estimate the proportion of species with increasing populations and to identify species with unstable populations. Analyses are presented for the collection of all species and for 12 species groups commonly used in BBS summaries. Overall, we estimated that 49% of species in the BBS have positive trends and 33 species have unstable populations. However, the proportion of species with increasing trends differs among habitat groups, with grassland birds having only 19% of species with positive trend estimates and wetland birds having 68% of species with positive trend estimates.

  1. An agglomerative hierarchical clustering approach to visualisation in Bayesian clustering problems

    PubMed Central

    Dawson, Kevin J.; Belkhir, Khalid

    2009-01-01

    Clustering problems (including the clustering of individuals into outcrossing populations, hybrid generations, full-sib families and selfing lines) have recently received much attention in population genetics. In these clustering problems, the parameter of interest is a partition of the set of sampled individuals, - the sample partition. In a fully Bayesian approach to clustering problems of this type, our knowledge about the sample partition is represented by a probability distribution on the space of possible sample partitions. Since the number of possible partitions grows very rapidly with the sample size, we can not visualise this probability distribution in its entirety, unless the sample is very small. As a solution to this visualisation problem, we recommend using an agglomerative hierarchical clustering algorithm, which we call the exact linkage algorithm. This algorithm is a special case of the maximin clustering algorithm that we introduced previously. The exact linkage algorithm is now implemented in our software package Partition View. The exact linkage algorithm takes the posterior co-assignment probabilities as input, and yields as output a rooted binary tree, - or more generally, a forest of such trees. Each node of this forest defines a set of individuals, and the node height is the posterior co-assignment probability of this set. This provides a useful visual representation of the uncertainty associated with the assignment of individuals to categories. It is also a useful starting point for a more detailed exploration of the posterior distribution in terms of the co-assignment probabilities. PMID:19337306

  2. Hierarchical models for estimating density from DNA mark-recapture studies

    USGS Publications Warehouse

    Gardner, B.; Royle, J. Andrew; Wegan, M.T.

    2009-01-01

    Genetic sampling is increasingly used as a tool by wildlife biologists and managers to estimate abundance and density of species. Typically, DNA is used to identify individuals captured in an array of traps ( e. g., baited hair snares) from which individual encounter histories are derived. Standard methods for estimating the size of a closed population can be applied to such data. However, due to the movement of individuals on and off the trapping array during sampling, the area over which individuals are exposed to trapping is unknown, and so obtaining unbiased estimates of density has proved difficult. We propose a hierarchical spatial capture-recapture model which contains explicit models for the spatial point process governing the distribution of individuals and their exposure to (via movement) and detection by traps. Detection probability is modeled as a function of each individual's distance to the trap. We applied this model to a black bear (Ursus americanus) study conducted in 2006 using a hair-snare trap array in the Adirondack region of New York, USA. We estimated the density of bears to be 0.159 bears/km2, which is lower than the estimated density (0.410 bears/km2) based on standard closed population techniques. A Bayesian analysis of the model is fully implemented in the software program WinBUGS.

  3. The Advantages of Hierarchical Linear Modeling. ERIC/AE Digest.

    ERIC Educational Resources Information Center

    Osborne, Jason W.

    This digest introduces hierarchical data structure, describes how hierarchical models work, and presents three approaches to analyzing hierarchical data. Hierarchical, or nested data, present several problems for analysis. People or creatures that exist within hierarchies tend to be more similar to each other than people randomly sampled from the…

  4. Bayesian stable isotope mixing models

    EPA Science Inventory

    In this paper we review recent advances in Stable Isotope Mixing Models (SIMMs) and place them into an over-arching Bayesian statistical framework which allows for several useful extensions. SIMMs are used to quantify the proportional contributions of various sources to a mixtur...

  5. Hierarchical Context Modeling for Video Event Recognition.

    PubMed

    Wang, Xiaoyang; Ji, Qiang

    2016-10-11

    Current video event recognition research remains largely target-centered. For real-world surveillance videos, targetcentered event recognition faces great challenges due to large intra-class target variation, limited image resolution, and poor detection and tracking results. To mitigate these challenges, we introduced a context-augmented video event recognition approach. Specifically, we explicitly capture different types of contexts from three levels including image level, semantic level, and prior level. At the image level, we introduce two types of contextual features including the appearance context features and interaction context features to capture the appearance of context objects and their interactions with the target objects. At the semantic level, we propose a deep model based on deep Boltzmann machine to learn event object representations and their interactions. At the prior level, we utilize two types of prior-level contexts including scene priming and dynamic cueing. Finally, we introduce a hierarchical context model that systematically integrates the contextual information at different levels. Through the hierarchical context model, contexts at different levels jointly contribute to the event recognition. We evaluate the hierarchical context model for event recognition on benchmark surveillance video datasets. Results show that incorporating contexts in each level can improve event recognition performance, and jointly integrating three levels of contexts through our hierarchical model achieves the best performance.

  6. BCM: toolkit for Bayesian analysis of Computational Models using samplers.

    PubMed

    Thijssen, Bram; Dijkstra, Tjeerd M H; Heskes, Tom; Wessels, Lodewyk F A

    2016-10-21

    Computational models in biology are characterized by a large degree of uncertainty. This uncertainty can be analyzed with Bayesian statistics, however, the sampling algorithms that are frequently used for calculating Bayesian statistical estimates are computationally demanding, and each algorithm has unique advantages and disadvantages. It is typically unclear, before starting an analysis, which algorithm will perform well on a given computational model. We present BCM, a toolkit for the Bayesian analysis of Computational Models using samplers. It provides efficient, multithreaded implementations of eleven algorithms for sampling from posterior probability distributions and for calculating marginal likelihoods. BCM includes tools to simplify the process of model specification and scripts for visualizing the results. The flexible architecture allows it to be used on diverse types of biological computational models. In an example inference task using a model of the cell cycle based on ordinary differential equations, BCM is significantly more efficient than existing software packages, allowing more challenging inference problems to be solved. BCM represents an efficient one-stop-shop for computational modelers wishing to use sampler-based Bayesian statistics.

  7. Spatial Bayesian Latent Factor Regression Modeling of Coordinate-based Meta-analysis Data

    PubMed Central

    Montagna, Silvia; Wager, Tor; Barrett, Lisa Feldman; Johnson, Timothy D.; Nichols, Thomas E.

    2017-01-01

    Summary Now over 20 years old, functional MRI (fMRI) has a large and growing literature that is best synthesised with meta-analytic tools. As most authors do not share image data, only the peak activation coordinates (foci) reported in the paper are available for Coordinate-Based Meta-Analysis (CBMA). Neuroimaging meta-analysis is used to 1) identify areas of consistent activation; and 2) build a predictive model of task type or cognitive process for new studies (reverse inference). To simultaneously address these aims, we propose a Bayesian point process hierarchical model for CBMA. We model the foci from each study as a doubly stochastic Poisson process, where the study-specific log intensity function is characterised as a linear combination of a high-dimensional basis set. A sparse representation of the intensities is guaranteed through latent factor modeling of the basis coefficients. Within our framework, it is also possible to account for the effect of study-level covariates (meta-regression), significantly expanding the capabilities of the current neuroimaging meta-analysis methods available. We apply our methodology to synthetic data and neuroimaging meta-analysis datasets. PMID:28498564

  8. Spatial Bayesian latent factor regression modeling of coordinate-based meta-analysis data.

    PubMed

    Montagna, Silvia; Wager, Tor; Barrett, Lisa Feldman; Johnson, Timothy D; Nichols, Thomas E

    2018-03-01

    Now over 20 years old, functional MRI (fMRI) has a large and growing literature that is best synthesised with meta-analytic tools. As most authors do not share image data, only the peak activation coordinates (foci) reported in the article are available for Coordinate-Based Meta-Analysis (CBMA). Neuroimaging meta-analysis is used to (i) identify areas of consistent activation; and (ii) build a predictive model of task type or cognitive process for new studies (reverse inference). To simultaneously address these aims, we propose a Bayesian point process hierarchical model for CBMA. We model the foci from each study as a doubly stochastic Poisson process, where the study-specific log intensity function is characterized as a linear combination of a high-dimensional basis set. A sparse representation of the intensities is guaranteed through latent factor modeling of the basis coefficients. Within our framework, it is also possible to account for the effect of study-level covariates (meta-regression), significantly expanding the capabilities of the current neuroimaging meta-analysis methods available. We apply our methodology to synthetic data and neuroimaging meta-analysis datasets. © 2017, The International Biometric Society.

  9. A neural model of hierarchical reinforcement learning.

    PubMed

    Rasmussen, Daniel; Voelker, Aaron; Eliasmith, Chris

    2017-01-01

    We develop a novel, biologically detailed neural model of reinforcement learning (RL) processes in the brain. This model incorporates a broad range of biological features that pose challenges to neural RL, such as temporally extended action sequences, continuous environments involving unknown time delays, and noisy/imprecise computations. Most significantly, we expand the model into the realm of hierarchical reinforcement learning (HRL), which divides the RL process into a hierarchy of actions at different levels of abstraction. Here we implement all the major components of HRL in a neural model that captures a variety of known anatomical and physiological properties of the brain. We demonstrate the performance of the model in a range of different environments, in order to emphasize the aim of understanding the brain's general reinforcement learning ability. These results show that the model compares well to previous modelling work and demonstrates improved performance as a result of its hierarchical ability. We also show that the model's behaviour is consistent with available data on human hierarchical RL, and generate several novel predictions.

  10. Hierarchic models for laminated plates. Ph.D. Thesis

    NASA Technical Reports Server (NTRS)

    Actis, Ricardo Luis

    1991-01-01

    Structural plates and shells are three-dimensional bodies, one dimension of which happens to be much smaller than the other two. Thus, the quality of a plate or shell model must be judged on the basis of how well its exact solution approximates the corresponding three-dimensional problem. Of course, the exact solution depends not only on the choice of the model but also on the topology, material properties, loading and constraints. The desired degree of approximation depends on the analyst's goals in performing the analysis. For these reasons models have to be chosen adaptively. Hierarchic sequences of models make adaptive selection of the model which is best suited for the purposes of a particular analysis possible. The principles governing the formulation of hierarchic models for laminated plates are presented. The essential features of the hierarchic models described models are: (1) the exact solutions corresponding to the hierarchic sequence of models converge to the exact solution of the corresponding problem of elasticity for a fixed laminate thickness; and (2) the exact solution of each model converges to the same limit as the exact solution of the corresponding problem of elasticity with respect to the laminate thickness approaching zero. The formulation is based on one parameter (beta) which characterizes the hierarchic sequence of models, and a set of constants whose influence was assessed by a numerical sensitivity study. The recommended selection of these constants results in the number of fields increasing by three for each increment in the power of beta. Numerical examples analyzed with the proposed sequence of models are included and good correlation with the reference solutions was found. Results were obtained for laminated strips (plates in cylindrical bending) and for square and rectangular plates with uniform loading and with homogeneous boundary conditions. Cross-ply and angle-ply laminates were evaluated and the results compared with those of

  11. Bayesian Analysis of the Association between Family-Level Factors and Siblings' Dental Caries.

    PubMed

    Wen, A; Weyant, R J; McNeil, D W; Crout, R J; Neiswanger, K; Marazita, M L; Foxman, B

    2017-07-01

    We conducted a Bayesian analysis of the association between family-level socioeconomic status and smoking and the prevalence of dental caries among siblings (children from infant to 14 y) among children living in rural and urban Northern Appalachia using data from the Center for Oral Health Research in Appalachia (COHRA). The observed proportion of siblings sharing caries was significantly different from predicted assuming siblings' caries status was independent. Using a Bayesian hierarchical model, we found the inclusion of a household factor significantly improved the goodness of fit. Other findings showed an inverse association between parental education and siblings' caries and a positive association between households with smokers and siblings' caries. Our study strengthens existing evidence suggesting that increased parental education and decreased parental cigarette smoking are associated with reduced childhood caries in the household. Our results also demonstrate the value of a Bayesian approach, which allows us to include household as a random effect, thereby providing more accurate estimates than obtained using generalized linear mixed models.

  12. Reconstruction of late Holocene climate based on tree growth and mechanistic hierarchical models

    USGS Publications Warehouse

    Tipton, John; Hooten, Mevin B.; Pederson, Neil; Tingley, Martin; Bishop, Daniel

    2016-01-01

    Reconstruction of pre-instrumental, late Holocene climate is important for understanding how climate has changed in the past and how climate might change in the future. Statistical prediction of paleoclimate from tree ring widths is challenging because tree ring widths are a one-dimensional summary of annual growth that represents a multi-dimensional set of climatic and biotic influences. We develop a Bayesian hierarchical framework using a nonlinear, biologically motivated tree ring growth model to jointly reconstruct temperature and precipitation in the Hudson Valley, New York. Using a common growth function to describe the response of a tree to climate, we allow for species-specific parameterizations of the growth response. To enable predictive backcasts, we model the climate variables with a vector autoregressive process on an annual timescale coupled with a multivariate conditional autoregressive process that accounts for temporal correlation and cross-correlation between temperature and precipitation on a monthly scale. Our multi-scale temporal model allows for flexibility in the climate response through time at different temporal scales and predicts reasonable climate scenarios given tree ring width data.

  13. Development and comparison in uncertainty assessment based Bayesian modularization method in hydrological modeling

    NASA Astrophysics Data System (ADS)

    Li, Lu; Xu, Chong-Yu; Engeland, Kolbjørn

    2013-04-01

    SummaryWith respect to model calibration, parameter estimation and analysis of uncertainty sources, various regression and probabilistic approaches are used in hydrological modeling. A family of Bayesian methods, which incorporates different sources of information into a single analysis through Bayes' theorem, is widely used for uncertainty assessment. However, none of these approaches can well treat the impact of high flows in hydrological modeling. This study proposes a Bayesian modularization uncertainty assessment approach in which the highest streamflow observations are treated as suspect information that should not influence the inference of the main bulk of the model parameters. This study includes a comprehensive comparison and evaluation of uncertainty assessments by our new Bayesian modularization method and standard Bayesian methods using the Metropolis-Hastings (MH) algorithm with the daily hydrological model WASMOD. Three likelihood functions were used in combination with standard Bayesian method: the AR(1) plus Normal model independent of time (Model 1), the AR(1) plus Normal model dependent on time (Model 2) and the AR(1) plus Multi-normal model (Model 3). The results reveal that the Bayesian modularization method provides the most accurate streamflow estimates measured by the Nash-Sutcliffe efficiency and provide the best in uncertainty estimates for low, medium and entire flows compared to standard Bayesian methods. The study thus provides a new approach for reducing the impact of high flows on the discharge uncertainty assessment of hydrological models via Bayesian method.

  14. Further insights on the French WISC-IV factor structure through Bayesian structural equation modeling.

    PubMed

    Golay, Philippe; Reverte, Isabelle; Rossier, Jérôme; Favez, Nicolas; Lecerf, Thierry

    2013-06-01

    The interpretation of the Wechsler Intelligence Scale for Children--Fourth Edition (WISC-IV) is based on a 4-factor model, which is only partially compatible with the mainstream Cattell-Horn-Carroll (CHC) model of intelligence measurement. The structure of cognitive batteries is frequently analyzed via exploratory factor analysis and/or confirmatory factor analysis. With classical confirmatory factor analysis, almost all cross-loadings between latent variables and measures are fixed to zero in order to allow the model to be identified. However, inappropriate zero cross-loadings can contribute to poor model fit, distorted factors, and biased factor correlations; most important, they do not necessarily faithfully reflect theory. To deal with these methodological and theoretical limitations, we used a new statistical approach, Bayesian structural equation modeling (BSEM), among a sample of 249 French-speaking Swiss children (8-12 years). With BSEM, zero-fixed cross-loadings between latent variables and measures are replaced by approximate zeros, based on informative, small-variance priors. Results indicated that a direct hierarchical CHC-based model with 5 factors plus a general intelligence factor better represented the structure of the WISC-IV than did the 4-factor structure and the higher order models. Because a direct hierarchical CHC model was more adequate, it was concluded that the general factor should be considered as a breadth rather than a superordinate factor. Because it was possible for us to estimate the influence of each of the latent variables on the 15 subtest scores, BSEM allowed improvement of the understanding of the structure of intelligence tests and the clinical interpretation of the subtest scores. PsycINFO Database Record (c) 2013 APA, all rights reserved.

  15. Trans-dimensional inversion of microtremor array dispersion data with hierarchical autoregressive error models

    NASA Astrophysics Data System (ADS)

    Dettmer, Jan; Molnar, Sheri; Steininger, Gavin; Dosso, Stan E.; Cassidy, John F.

    2012-02-01

    This paper applies a general trans-dimensional Bayesian inference methodology and hierarchical autoregressive data-error models to the inversion of microtremor array dispersion data for shear wave velocity (vs) structure. This approach accounts for the limited knowledge of the optimal earth model parametrization (e.g. the number of layers in the vs profile) and of the data-error statistics in the resulting vs parameter uncertainty estimates. The assumed earth model parametrization influences estimates of parameter values and uncertainties due to different parametrizations leading to different ranges of data predictions. The support of the data for a particular model is often non-unique and several parametrizations may be supported. A trans-dimensional formulation accounts for this non-uniqueness by including a model-indexing parameter as an unknown so that groups of models (identified by the indexing parameter) are considered in the results. The earth model is parametrized in terms of a partition model with interfaces given over a depth-range of interest. In this work, the number of interfaces (layers) in the partition model represents the trans-dimensional model indexing. In addition, serial data-error correlations are addressed by augmenting the geophysical forward model with a hierarchical autoregressive error model that can account for a wide range of error processes with a small number of parameters. Hence, the limited knowledge about the true statistical distribution of data errors is also accounted for in the earth model parameter estimates, resulting in more realistic uncertainties and parameter values. Hierarchical autoregressive error models do not rely on point estimates of the model vector to estimate data-error statistics, and have no requirement for computing the inverse or determinant of a data-error covariance matrix. This approach is particularly useful for trans-dimensional inverse problems, as point estimates may not be representative of the

  16. Investigation of hit-and-run crash occurrence and severity using real-time loop detector data and hierarchical Bayesian binary logit model with random effects.

    PubMed

    Xie, Meiquan; Cheng, Wen; Gill, Gurdiljot Singh; Zhou, Jiao; Jia, Xudong; Choi, Simon

    2018-02-17

    Most of the extensive research dedicated to identifying the influential factors of hit-and-run (HR) crashes has utilized typical maximum likelihood estimation binary logit models, and none have employed real-time traffic data. To fill this gap, this study focused on investigating factors contributing to HR crashes, as well as the severity levels of HR. This study analyzed 4-year crash and real-time loop detector data by employing hierarchical Bayesian models with random effects within a sequential logit structure. In addition to evaluation of the impact of random effects on model fitness and complexity, the prediction capability of the models was examined. Stepwise incremental sensitivity and specificity were calculated and receiver operating characteristic (ROC) curves were utilized to graphically illustrate the predictive performance of the model. Among the real-time flow variables, the average occupancy and speed from the upstream detector were observed to be positively correlated with HR crash possibility. The average upstream speed and speed difference between upstream and downstream speeds were correlated with the occurrence of severe HR crashes. In addition to real-time factors, other variables found influential for HR and severe HR crashes were length of segment, adverse weather conditions, dark lighting conditions with malfunctioning street lights, driving under the influence of alcohol, width of inner shoulder, and nighttime. This study suggests the potential traffic conditions of HR and severe HR occurrence, which refer to relatively congested upstream traffic conditions with high upstream speed and significant speed deviations on long segments. The above findings suggest that traffic enforcement should be directed toward mitigating risky driving under the aforementioned traffic conditions. Moreover, enforcement agencies may employ alcohol checkpoints to counter driving under the influence (DUI) at night. With regard to engineering improvements, wider

  17. A neural model of hierarchical reinforcement learning

    PubMed Central

    Rasmussen, Daniel; Eliasmith, Chris

    2017-01-01

    We develop a novel, biologically detailed neural model of reinforcement learning (RL) processes in the brain. This model incorporates a broad range of biological features that pose challenges to neural RL, such as temporally extended action sequences, continuous environments involving unknown time delays, and noisy/imprecise computations. Most significantly, we expand the model into the realm of hierarchical reinforcement learning (HRL), which divides the RL process into a hierarchy of actions at different levels of abstraction. Here we implement all the major components of HRL in a neural model that captures a variety of known anatomical and physiological properties of the brain. We demonstrate the performance of the model in a range of different environments, in order to emphasize the aim of understanding the brain’s general reinforcement learning ability. These results show that the model compares well to previous modelling work and demonstrates improved performance as a result of its hierarchical ability. We also show that the model’s behaviour is consistent with available data on human hierarchical RL, and generate several novel predictions. PMID:28683111

  18. Testing students' e-learning via Facebook through Bayesian structural equation modeling.

    PubMed

    Salarzadeh Jenatabadi, Hashem; Moghavvemi, Sedigheh; Wan Mohamed Radzi, Che Wan Jasimah Bt; Babashamsi, Parastoo; Arashi, Mohammad

    2017-01-01

    Learning is an intentional activity, with several factors affecting students' intention to use new learning technology. Researchers have investigated technology acceptance in different contexts by developing various theories/models and testing them by a number of means. Although most theories/models developed have been examined through regression or structural equation modeling, Bayesian analysis offers more accurate data analysis results. To address this gap, the unified theory of acceptance and technology use in the context of e-learning via Facebook are re-examined in this study using Bayesian analysis. The data (S1 Data) were collected from 170 students enrolled in a business statistics course at University of Malaya, Malaysia, and tested with the maximum likelihood and Bayesian approaches. The difference between the two methods' results indicates that performance expectancy and hedonic motivation are the strongest factors influencing the intention to use e-learning via Facebook. The Bayesian estimation model exhibited better data fit than the maximum likelihood estimator model. The results of the Bayesian and maximum likelihood estimator approaches are compared and the reasons for the result discrepancy are deliberated.

  19. Testing students’ e-learning via Facebook through Bayesian structural equation modeling

    PubMed Central

    Moghavvemi, Sedigheh; Wan Mohamed Radzi, Che Wan Jasimah Bt; Babashamsi, Parastoo; Arashi, Mohammad

    2017-01-01

    Learning is an intentional activity, with several factors affecting students’ intention to use new learning technology. Researchers have investigated technology acceptance in different contexts by developing various theories/models and testing them by a number of means. Although most theories/models developed have been examined through regression or structural equation modeling, Bayesian analysis offers more accurate data analysis results. To address this gap, the unified theory of acceptance and technology use in the context of e-learning via Facebook are re-examined in this study using Bayesian analysis. The data (S1 Data) were collected from 170 students enrolled in a business statistics course at University of Malaya, Malaysia, and tested with the maximum likelihood and Bayesian approaches. The difference between the two methods’ results indicates that performance expectancy and hedonic motivation are the strongest factors influencing the intention to use e-learning via Facebook. The Bayesian estimation model exhibited better data fit than the maximum likelihood estimator model. The results of the Bayesian and maximum likelihood estimator approaches are compared and the reasons for the result discrepancy are deliberated. PMID:28886019

  20. Development of uncertainty-based work injury model using Bayesian structural equation modelling.

    PubMed

    Chatterjee, Snehamoy

    2014-01-01

    This paper proposed a Bayesian method-based structural equation model (SEM) of miners' work injury for an underground coal mine in India. The environmental and behavioural variables for work injury were identified and causal relationships were developed. For Bayesian modelling, prior distributions of SEM parameters are necessary to develop the model. In this paper, two approaches were adopted to obtain prior distribution for factor loading parameters and structural parameters of SEM. In the first approach, the prior distributions were considered as a fixed distribution function with specific parameter values, whereas, in the second approach, prior distributions of the parameters were generated from experts' opinions. The posterior distributions of these parameters were obtained by applying Bayesian rule. The Markov Chain Monte Carlo sampling in the form Gibbs sampling was applied for sampling from the posterior distribution. The results revealed that all coefficients of structural and measurement model parameters are statistically significant in experts' opinion-based priors, whereas, two coefficients are not statistically significant when fixed prior-based distributions are applied. The error statistics reveals that Bayesian structural model provides reasonably good fit of work injury with high coefficient of determination (0.91) and less mean squared error as compared to traditional SEM.

  1. Bayesian inference in camera trapping studies for a class of spatial capture-recapture models

    USGS Publications Warehouse

    Royle, J. Andrew; Karanth, K. Ullas; Gopalaswamy, Arjun M.; Kumar, N. Samba

    2009-01-01

    We develop a class of models for inference about abundance or density using spatial capture-recapture data from studies based on camera trapping and related methods. The model is a hierarchical model composed of two components: a point process model describing the distribution of individuals in space (or their home range centers) and a model describing the observation of individuals in traps. We suppose that trap- and individual-specific capture probabilities are a function of distance between individual home range centers and trap locations. We show that the models can be regarded as generalized linear mixed models, where the individual home range centers are random effects. We adopt a Bayesian framework for inference under these models using a formulation based on data augmentation. We apply the models to camera trapping data on tigers from the Nagarahole Reserve, India, collected over 48 nights in 2006. For this study, 120 camera locations were used, but cameras were only operational at 30 locations during any given sample occasion. Movement of traps is common in many camera-trapping studies and represents an important feature of the observation model that we address explicitly in our application.

  2. Hierarchical statistical modeling of xylem vulnerability to cavitation.

    PubMed

    Ogle, Kiona; Barber, Jarrett J; Willson, Cynthia; Thompson, Brenda

    2009-01-01

    Cavitation of xylem elements diminishes the water transport capacity of plants, and quantifying xylem vulnerability to cavitation is important to understanding plant function. Current approaches to analyzing hydraulic conductivity (K) data to infer vulnerability to cavitation suffer from problems such as the use of potentially unrealistic vulnerability curves, difficulty interpreting parameters in these curves, a statistical framework that ignores sampling design, and an overly simplistic view of uncertainty. This study illustrates how two common curves (exponential-sigmoid and Weibull) can be reparameterized in terms of meaningful parameters: maximum conductivity (k(sat)), water potential (-P) at which percentage loss of conductivity (PLC) =X% (P(X)), and the slope of the PLC curve at P(X) (S(X)), a 'sensitivity' index. We provide a hierarchical Bayesian method for fitting the reparameterized curves to K(H) data. We illustrate the method using data for roots and stems of two populations of Juniperus scopulorum and test for differences in k(sat), P(X), and S(X) between different groups. Two important results emerge from this study. First, the Weibull model is preferred because it produces biologically realistic estimates of PLC near P = 0 MPa. Second, stochastic embolisms contribute an important source of uncertainty that should be included in such analyses.

  3. A bayesian hierarchical model for spatio-temporal prediction and uncertainty assessment using repeat LiDAR acquisitions for the Kenai Peninsula, AK, USA

    Treesearch

    Chad Babcock; Hans Andersen; Andrew O. Finley; Bruce D. Cook

    2015-01-01

    Models leveraging repeat LiDAR and field collection campaigns may be one possible mechanism to monitor carbon flux in remote forested regions. Here, we look to the spatio-temporally data-rich Kenai Peninsula in Alaska, USA to examine the potential for Bayesian spatio-temporal mapping of terrestrial forest carbon storage and uncertainty.

  4. Model selection and model averaging in phylogenetics: advantages of akaike information criterion and bayesian approaches over likelihood ratio tests.

    PubMed

    Posada, David; Buckley, Thomas R

    2004-10-01

    Model selection is a topic of special relevance in molecular phylogenetics that affects many, if not all, stages of phylogenetic inference. Here we discuss some fundamental concepts and techniques of model selection in the context of phylogenetics. We start by reviewing different aspects of the selection of substitution models in phylogenetics from a theoretical, philosophical and practical point of view, and summarize this comparison in table format. We argue that the most commonly implemented model selection approach, the hierarchical likelihood ratio test, is not the optimal strategy for model selection in phylogenetics, and that approaches like the Akaike Information Criterion (AIC) and Bayesian methods offer important advantages. In particular, the latter two methods are able to simultaneously compare multiple nested or nonnested models, assess model selection uncertainty, and allow for the estimation of phylogenies and model parameters using all available models (model-averaged inference or multimodel inference). We also describe how the relative importance of the different parameters included in substitution models can be depicted. To illustrate some of these points, we have applied AIC-based model averaging to 37 mitochondrial DNA sequences from the subgenus Ohomopterus(genus Carabus) ground beetles described by Sota and Vogler (2001).

  5. A study of finite mixture model: Bayesian approach on financial time series data

    NASA Astrophysics Data System (ADS)

    Phoong, Seuk-Yen; Ismail, Mohd Tahir

    2014-07-01

    Recently, statistician have emphasized on the fitting finite mixture model by using Bayesian method. Finite mixture model is a mixture of distributions in modeling a statistical distribution meanwhile Bayesian method is a statistical method that use to fit the mixture model. Bayesian method is being used widely because it has asymptotic properties which provide remarkable result. In addition, Bayesian method also shows consistency characteristic which means the parameter estimates are close to the predictive distributions. In the present paper, the number of components for mixture model is studied by using Bayesian Information Criterion. Identify the number of component is important because it may lead to an invalid result. Later, the Bayesian method is utilized to fit the k-component mixture model in order to explore the relationship between rubber price and stock market price for Malaysia, Thailand, Philippines and Indonesia. Lastly, the results showed that there is a negative effect among rubber price and stock market price for all selected countries.

  6. Dynamic Bayesian Networks for Student Modeling

    ERIC Educational Resources Information Center

    Kaser, Tanja; Klingler, Severin; Schwing, Alexander G.; Gross, Markus

    2017-01-01

    Intelligent tutoring systems adapt the curriculum to the needs of the individual student. Therefore, an accurate representation and prediction of student knowledge is essential. Bayesian Knowledge Tracing (BKT) is a popular approach for student modeling. The structure of BKT models, however, makes it impossible to represent the hierarchy and…

  7. An exactly solvable model of hierarchical self-assembly

    NASA Astrophysics Data System (ADS)

    Dudowicz, Jacek; Douglas, Jack F.; Freed, Karl F.

    2009-06-01

    Many living and nonliving structures in the natural world form by hierarchical organization, but physical theories that describe this type of organization are scarce. To address this problem, a model of equilibrium self-assembly is formulated in which dynamically associating species organize into hierarchical structures that preserve their shape at each stage of assembly. In particular, we consider symmetric m-gons that associate at their vertices into Sierpinski gasket structures involving the hierarchical association of triangles, squares, hexagons, etc., at their corner vertices, thereby leading to fractal structures after many generations of assembly. This rather idealized model of hierarchical assembly yields an infinite sequence of self-assembly transitions as the morphology progressively organizes to higher levels of the hierarchy, and these structures coexists at dynamic equilibrium, as found in real hierarchically self-assembling systems such as amyloid fiber forming proteins. Moreover, the transition sharpness progressively grows with increasing m, corresponding to larger and larger loops in the assembled structures. Calculations are provided for several basic thermodynamic properties (including the order parameters for assembly for each stage of the hierarchy, average mass of clusters, specific heat, transition sharpness, etc.) that are required for characterizing the interaction parameters governing this type of self-assembly and for elucidating other basic qualitative aspects of these systems. Our idealized model of hierarchical assembly gives many insights into this ubiquitous type of self-organization process.

  8. Hierarchical algorithms for modeling the ocean on hierarchical architectures

    NASA Astrophysics Data System (ADS)

    Hill, C. N.

    2012-12-01

    This presentation will describe an approach to using accelerator/co-processor technology that maps hierarchical, multi-scale modeling techniques to an underlying hierarchical hardware architecture. The focus of this work is on making effective use of both CPU and accelerator/co-processor parts of a system, for large scale ocean modeling. In the work, a lower resolution basin scale ocean model is locally coupled to multiple, "embedded", limited area higher resolution sub-models. The higher resolution models execute on co-processor/accelerator hardware and do not interact directly with other sub-models. The lower resolution basin scale model executes on the system CPU(s). The result is a multi-scale algorithm that aligns with hardware designs in the co-processor/accelerator space. We demonstrate this approach being used to substitute explicit process models for standard parameterizations. Code for our sub-models is implemented through a generic abstraction layer, so that we can target multiple accelerator architectures with different programming environments. We will present two application and implementation examples. One uses the CUDA programming environment and targets GPU hardware. This example employs a simple non-hydrostatic two dimensional sub-model to represent vertical motion more accurately. The second example uses a highly threaded three-dimensional model at high resolution. This targets a MIC/Xeon Phi like environment and uses sub-models as a way to explicitly compute sub-mesoscale terms. In both cases the accelerator/co-processor capability provides extra compute cycles that allow improved model fidelity for little or no extra wall-clock time cost.

  9. BiomeNet: A Bayesian Model for Inference of Metabolic Divergence among Microbial Communities

    PubMed Central

    Chipman, Hugh; Gu, Hong; Bielawski, Joseph P.

    2014-01-01

    Metagenomics yields enormous numbers of microbial sequences that can be assigned a metabolic function. Using such data to infer community-level metabolic divergence is hindered by the lack of a suitable statistical framework. Here, we describe a novel hierarchical Bayesian model, called BiomeNet (Bayesian inference of metabolic networks), for inferring differential prevalence of metabolic subnetworks among microbial communities. To infer the structure of community-level metabolic interactions, BiomeNet applies a mixed-membership modelling framework to enzyme abundance information. The basic idea is that the mixture components of the model (metabolic reactions, subnetworks, and networks) are shared across all groups (microbiome samples), but the mixture proportions vary from group to group. Through this framework, the model can capture nested structures within the data. BiomeNet is unique in modeling each metagenome sample as a mixture of complex metabolic systems (metabosystems). The metabosystems are composed of mixtures of tightly connected metabolic subnetworks. BiomeNet differs from other unsupervised methods by allowing researchers to discriminate groups of samples through the metabolic patterns it discovers in the data, and by providing a framework for interpreting them. We describe a collapsed Gibbs sampler for inference of the mixture weights under BiomeNet, and we use simulation to validate the inference algorithm. Application of BiomeNet to human gut metagenomes revealed a metabosystem with greater prevalence among inflammatory bowel disease (IBD) patients. Based on the discriminatory subnetworks for this metabosystem, we inferred that the community is likely to be closely associated with the human gut epithelium, resistant to dietary interventions, and interfere with human uptake of an antioxidant connected to IBD. Because this metabosystem has a greater capacity to exploit host-associated glycans, we speculate that IBD-associated communities might arise

  10. Model Comparison of Bayesian Semiparametric and Parametric Structural Equation Models

    ERIC Educational Resources Information Center

    Song, Xin-Yuan; Xia, Ye-Mao; Pan, Jun-Hao; Lee, Sik-Yum

    2011-01-01

    Structural equation models have wide applications. One of the most important issues in analyzing structural equation models is model comparison. This article proposes a Bayesian model comparison statistic, namely the "L[subscript nu]"-measure for both semiparametric and parametric structural equation models. For illustration purposes, we consider…

  11. Bayesian Analysis of High Dimensional Classification

    NASA Astrophysics Data System (ADS)

    Mukhopadhyay, Subhadeep; Liang, Faming

    2009-12-01

    Modern data mining and bioinformatics have presented an important playground for statistical learning techniques, where the number of input variables is possibly much larger than the sample size of the training data. In supervised learning, logistic regression or probit regression can be used to model a binary output and form perceptron classification rules based on Bayesian inference. In these cases , there is a lot of interest in searching for sparse model in High Dimensional regression(/classification) setup. we first discuss two common challenges for analyzing high dimensional data. The first one is the curse of dimensionality. The complexity of many existing algorithms scale exponentially with the dimensionality of the space and by virtue of that algorithms soon become computationally intractable and therefore inapplicable in many real applications. secondly, multicollinearities among the predictors which severely slowdown the algorithm. In order to make Bayesian analysis operational in high dimension we propose a novel 'Hierarchical stochastic approximation monte carlo algorithm' (HSAMC), which overcomes the curse of dimensionality, multicollinearity of predictors in high dimension and also it possesses the self-adjusting mechanism to avoid the local minima separated by high energy barriers. Models and methods are illustrated by simulation inspired from from the feild of genomics. Numerical results indicate that HSAMC can work as a general model selection sampler in high dimensional complex model space.

  12. BUMPER: the Bayesian User-friendly Model for Palaeo-Environmental Reconstruction

    NASA Astrophysics Data System (ADS)

    Holden, Phil; Birks, John; Brooks, Steve; Bush, Mark; Hwang, Grace; Matthews-Bird, Frazer; Valencia, Bryan; van Woesik, Robert

    2017-04-01

    We describe the Bayesian User-friendly Model for Palaeo-Environmental Reconstruction (BUMPER), a Bayesian transfer function for inferring past climate and other environmental variables from microfossil assemblages. The principal motivation for a Bayesian approach is that the palaeoenvironment is treated probabilistically, and can be updated as additional data become available. Bayesian approaches therefore provide a reconstruction-specific quantification of the uncertainty in the data and in the model parameters. BUMPER is fully self-calibrating, straightforward to apply, and computationally fast, requiring 2 seconds to build a 100-taxon model from a 100-site training-set on a standard personal computer. We apply the model's probabilistic framework to generate thousands of artificial training-sets under ideal assumptions. We then use these to demonstrate both the general applicability of the model and the sensitivity of reconstructions to the characteristics of the training-set, considering assemblage richness, taxon tolerances, and the number of training sites. We demonstrate general applicability to real data, considering three different organism types (chironomids, diatoms, pollen) and different reconstructed variables. In all of these applications an identically configured model is used, the only change being the input files that provide the training-set environment and taxon-count data.

  13. A Hierarchical Bayesian Procedure for Two-Mode Cluster Analysis

    ERIC Educational Resources Information Center

    DeSarbo, Wayne S.; Fong, Duncan K. H.; Liechty, John; Saxton, M. Kim

    2004-01-01

    This manuscript introduces a new Bayesian finite mixture methodology for the joint clustering of row and column stimuli/objects associated with two-mode asymmetric proximity, dominance, or profile data. That is, common clusters are derived which partition both the row and column stimuli/objects simultaneously into the same derived set of clusters.…

  14. Fast model updating coupling Bayesian inference and PGD model reduction

    NASA Astrophysics Data System (ADS)

    Rubio, Paul-Baptiste; Louf, François; Chamoin, Ludovic

    2018-04-01

    The paper focuses on a coupled Bayesian-Proper Generalized Decomposition (PGD) approach for the real-time identification and updating of numerical models. The purpose is to use the most general case of Bayesian inference theory in order to address inverse problems and to deal with different sources of uncertainties (measurement and model errors, stochastic parameters). In order to do so with a reasonable CPU cost, the idea is to replace the direct model called for Monte-Carlo sampling by a PGD reduced model, and in some cases directly compute the probability density functions from the obtained analytical formulation. This procedure is first applied to a welding control example with the updating of a deterministic parameter. In the second application, the identification of a stochastic parameter is studied through a glued assembly example.

  15. Technical note: Bayesian calibration of dynamic ruminant nutrition models.

    PubMed

    Reed, K F; Arhonditsis, G B; France, J; Kebreab, E

    2016-08-01

    Mechanistic models of ruminant digestion and metabolism have advanced our understanding of the processes underlying ruminant animal physiology. Deterministic modeling practices ignore the inherent variation within and among individual animals and thus have no way to assess how sources of error influence model outputs. We introduce Bayesian calibration of mathematical models to address the need for robust mechanistic modeling tools that can accommodate error analysis by remaining within the bounds of data-based parameter estimation. For the purpose of prediction, the Bayesian approach generates a posterior predictive distribution that represents the current estimate of the value of the response variable, taking into account both the uncertainty about the parameters and model residual variability. Predictions are expressed as probability distributions, thereby conveying significantly more information than point estimates in regard to uncertainty. Our study illustrates some of the technical advantages of Bayesian calibration and discusses the future perspectives in the context of animal nutrition modeling. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights reserved.

  16. Bayesian Computation for Log-Gaussian Cox Processes: A Comparative Analysis of Methods

    PubMed Central

    Teng, Ming; Nathoo, Farouk S.; Johnson, Timothy D.

    2017-01-01

    The Log-Gaussian Cox Process is a commonly used model for the analysis of spatial point pattern data. Fitting this model is difficult because of its doubly-stochastic property, i.e., it is an hierarchical combination of a Poisson process at the first level and a Gaussian Process at the second level. Various methods have been proposed to estimate such a process, including traditional likelihood-based approaches as well as Bayesian methods. We focus here on Bayesian methods and several approaches that have been considered for model fitting within this framework, including Hamiltonian Monte Carlo, the Integrated nested Laplace approximation, and Variational Bayes. We consider these approaches and make comparisons with respect to statistical and computational efficiency. These comparisons are made through several simulation studies as well as through two applications, the first examining ecological data and the second involving neuroimaging data. PMID:29200537

  17. A Bayesian Model of Category-Specific Emotional Brain Responses

    PubMed Central

    Wager, Tor D.; Kang, Jian; Johnson, Timothy D.; Nichols, Thomas E.; Satpute, Ajay B.; Barrett, Lisa Feldman

    2015-01-01

    Understanding emotion is critical for a science of healthy and disordered brain function, but the neurophysiological basis of emotional experience is still poorly understood. We analyzed human brain activity patterns from 148 studies of emotion categories (2159 total participants) using a novel hierarchical Bayesian model. The model allowed us to classify which of five categories—fear, anger, disgust, sadness, or happiness—is engaged by a study with 66% accuracy (43-86% across categories). Analyses of the activity patterns encoded in the model revealed that each emotion category is associated with unique, prototypical patterns of activity across multiple brain systems including the cortex, thalamus, amygdala, and other structures. The results indicate that emotion categories are not contained within any one region or system, but are represented as configurations across multiple brain networks. The model provides a precise summary of the prototypical patterns for each emotion category, and demonstrates that a sufficient characterization of emotion categories relies on (a) differential patterns of involvement in neocortical systems that differ between humans and other species, and (b) distinctive patterns of cortical-subcortical interactions. Thus, these findings are incompatible with several contemporary theories of emotion, including those that emphasize emotion-dedicated brain systems and those that propose emotion is localized primarily in subcortical activity. They are consistent with componential and constructionist views, which propose that emotions are differentiated by a combination of perceptual, mnemonic, prospective, and motivational elements. Such brain-based models of emotion provide a foundation for new translational and clinical approaches. PMID:25853490

  18. Bayesian Framework for Water Quality Model Uncertainty Estimation and Risk Management

    EPA Science Inventory

    A formal Bayesian methodology is presented for integrated model calibration and risk-based water quality management using Bayesian Monte Carlo simulation and maximum likelihood estimation (BMCML). The primary focus is on lucid integration of model calibration with risk-based wat...

  19. Bayesian Parameter Inference and Model Selection by Population Annealing in Systems Biology

    PubMed Central

    Murakami, Yohei

    2014-01-01

    Parameter inference and model selection are very important for mathematical modeling in systems biology. Bayesian statistics can be used to conduct both parameter inference and model selection. Especially, the framework named approximate Bayesian computation is often used for parameter inference and model selection in systems biology. However, Monte Carlo methods needs to be used to compute Bayesian posterior distributions. In addition, the posterior distributions of parameters are sometimes almost uniform or very similar to their prior distributions. In such cases, it is difficult to choose one specific value of parameter with high credibility as the representative value of the distribution. To overcome the problems, we introduced one of the population Monte Carlo algorithms, population annealing. Although population annealing is usually used in statistical mechanics, we showed that population annealing can be used to compute Bayesian posterior distributions in the approximate Bayesian computation framework. To deal with un-identifiability of the representative values of parameters, we proposed to run the simulations with the parameter ensemble sampled from the posterior distribution, named “posterior parameter ensemble”. We showed that population annealing is an efficient and convenient algorithm to generate posterior parameter ensemble. We also showed that the simulations with the posterior parameter ensemble can, not only reproduce the data used for parameter inference, but also capture and predict the data which was not used for parameter inference. Lastly, we introduced the marginal likelihood in the approximate Bayesian computation framework for Bayesian model selection. We showed that population annealing enables us to compute the marginal likelihood in the approximate Bayesian computation framework and conduct model selection depending on the Bayes factor. PMID:25089832

  20. Hierarchical Multinomial Processing Tree Models: A Latent-Trait Approach

    ERIC Educational Resources Information Center

    Klauer, Karl Christoph

    2010-01-01

    Multinomial processing tree models are widely used in many areas of psychology. A hierarchical extension of the model class is proposed, using a multivariate normal distribution of person-level parameters with the mean and covariance matrix to be estimated from the data. The hierarchical model allows one to take variability between persons into…

  1. Posterior Predictive Model Checking in Bayesian Networks

    ERIC Educational Resources Information Center

    Crawford, Aaron

    2014-01-01

    This simulation study compared the utility of various discrepancy measures within a posterior predictive model checking (PPMC) framework for detecting different types of data-model misfit in multidimensional Bayesian network (BN) models. The investigated conditions were motivated by an applied research program utilizing an operational complex…

  2. Validation of Bayesian analysis of compartmental kinetic models in medical imaging.

    PubMed

    Sitek, Arkadiusz; Li, Quanzheng; El Fakhri, Georges; Alpert, Nathaniel M

    2016-10-01

    Kinetic compartmental analysis is frequently used to compute physiologically relevant quantitative values from time series of images. In this paper, a new approach based on Bayesian analysis to obtain information about these parameters is presented and validated. The closed-form of the posterior distribution of kinetic parameters is derived with a hierarchical prior to model the standard deviation of normally distributed noise. Markov chain Monte Carlo methods are used for numerical estimation of the posterior distribution. Computer simulations of the kinetics of F18-fluorodeoxyglucose (FDG) are used to demonstrate drawing statistical inferences about kinetic parameters and to validate the theory and implementation. Additionally, point estimates of kinetic parameters and covariance of those estimates are determined using the classical non-linear least squares approach. Posteriors obtained using methods proposed in this work are accurate as no significant deviation from the expected shape of the posterior was found (one-sided P>0.08). It is demonstrated that the results obtained by the standard non-linear least-square methods fail to provide accurate estimation of uncertainty for the same data set (P<0.0001). The results of this work validate new methods for a computer simulations of FDG kinetics. Results show that in situations where the classical approach fails in accurate estimation of uncertainty, Bayesian estimation provides an accurate information about the uncertainties in the parameters. Although a particular example of FDG kinetics was used in the paper, the methods can be extended for different pharmaceuticals and imaging modalities. Copyright © 2016 Associazione Italiana di Fisica Medica. Published by Elsevier Ltd. All rights reserved.

  3. Tracing the influence of land-use change on water quality and coral reefs using a Bayesian model.

    PubMed

    Brown, Christopher J; Jupiter, Stacy D; Albert, Simon; Klein, Carissa J; Mangubhai, Sangeeta; Maina, Joseph M; Mumby, Peter; Olley, Jon; Stewart-Koster, Ben; Tulloch, Vivitskaia; Wenger, Amelia

    2017-07-06

    Coastal ecosystems can be degraded by poor water quality. Tracing the causes of poor water quality back to land-use change is necessary to target catchment management for coastal zone management. However, existing models for tracing the sources of pollution require extensive data-sets which are not available for many of the world's coral reef regions that may have severe water quality issues. Here we develop a hierarchical Bayesian model that uses freely available satellite data to infer the connection between land-uses in catchments and water clarity in coastal oceans. We apply the model to estimate the influence of land-use change on water clarity in Fiji. We tested the model's predictions against underwater surveys, finding that predictions of poor water quality are consistent with observations of high siltation and low coverage of sediment-sensitive coral genera. The model thus provides a means to link land-use change to declines in coastal water quality.

  4. Development of dynamic Bayesian models for web application test management

    NASA Astrophysics Data System (ADS)

    Azarnova, T. V.; Polukhin, P. V.; Bondarenko, Yu V.; Kashirina, I. L.

    2018-03-01

    The mathematical apparatus of dynamic Bayesian networks is an effective and technically proven tool that can be used to model complex stochastic dynamic processes. According to the results of the research, mathematical models and methods of dynamic Bayesian networks provide a high coverage of stochastic tasks associated with error testing in multiuser software products operated in a dynamically changing environment. Formalized representation of the discrete test process as a dynamic Bayesian model allows us to organize the logical connection between individual test assets for multiple time slices. This approach gives an opportunity to present testing as a discrete process with set structural components responsible for the generation of test assets. Dynamic Bayesian network-based models allow us to combine in one management area individual units and testing components with different functionalities and a direct influence on each other in the process of comprehensive testing of various groups of computer bugs. The application of the proposed models provides an opportunity to use a consistent approach to formalize test principles and procedures, methods used to treat situational error signs, and methods used to produce analytical conclusions based on test results.

  5. Bayesian Model Averaging of Artificial Intelligence Models for Hydraulic Conductivity Estimation

    NASA Astrophysics Data System (ADS)

    Nadiri, A.; Chitsazan, N.; Tsai, F. T.; Asghari Moghaddam, A.

    2012-12-01

    This research presents a Bayesian artificial intelligence model averaging (BAIMA) method that incorporates multiple artificial intelligence (AI) models to estimate hydraulic conductivity and evaluate estimation uncertainties. Uncertainty in the AI model outputs stems from error in model input as well as non-uniqueness in selecting different AI methods. Using one single AI model tends to bias the estimation and underestimate uncertainty. BAIMA employs Bayesian model averaging (BMA) technique to address the issue of using one single AI model for estimation. BAIMA estimates hydraulic conductivity by averaging the outputs of AI models according to their model weights. In this study, the model weights were determined using the Bayesian information criterion (BIC) that follows the parsimony principle. BAIMA calculates the within-model variances to account for uncertainty propagation from input data to AI model output. Between-model variances are evaluated to account for uncertainty due to model non-uniqueness. We employed Takagi-Sugeno fuzzy logic (TS-FL), artificial neural network (ANN) and neurofuzzy (NF) to estimate hydraulic conductivity for the Tasuj plain aquifer, Iran. BAIMA combined three AI models and produced better fitting than individual models. While NF was expected to be the best AI model owing to its utilization of both TS-FL and ANN models, the NF model is nearly discarded by the parsimony principle. The TS-FL model and the ANN model showed equal importance although their hydraulic conductivity estimates were quite different. This resulted in significant between-model variances that are normally ignored by using one AI model.

  6. Bayesian Recurrent Neural Network for Language Modeling.

    PubMed

    Chien, Jen-Tzung; Ku, Yuan-Chu

    2016-02-01

    A language model (LM) is calculated as the probability of a word sequence that provides the solution to word prediction for a variety of information systems. A recurrent neural network (RNN) is powerful to learn the large-span dynamics of a word sequence in the continuous space. However, the training of the RNN-LM is an ill-posed problem because of too many parameters from a large dictionary size and a high-dimensional hidden layer. This paper presents a Bayesian approach to regularize the RNN-LM and apply it for continuous speech recognition. We aim to penalize the too complicated RNN-LM by compensating for the uncertainty of the estimated model parameters, which is represented by a Gaussian prior. The objective function in a Bayesian classification network is formed as the regularized cross-entropy error function. The regularized model is constructed not only by calculating the regularized parameters according to the maximum a posteriori criterion but also by estimating the Gaussian hyperparameter by maximizing the marginal likelihood. A rapid approximation to a Hessian matrix is developed to implement the Bayesian RNN-LM (BRNN-LM) by selecting a small set of salient outer-products. The proposed BRNN-LM achieves a sparser model than the RNN-LM. Experiments on different corpora show the robustness of system performance by applying the rapid BRNN-LM under different conditions.

  7. Bayesian methods for characterizing unknown parameters of material models

    DOE PAGES

    Emery, J. M.; Grigoriu, M. D.; Field Jr., R. V.

    2016-02-04

    A Bayesian framework is developed for characterizing the unknown parameters of probabilistic models for material properties. In this framework, the unknown parameters are viewed as random and described by their posterior distributions obtained from prior information and measurements of quantities of interest that are observable and depend on the unknown parameters. The proposed Bayesian method is applied to characterize an unknown spatial correlation of the conductivity field in the definition of a stochastic transport equation and to solve this equation by Monte Carlo simulation and stochastic reduced order models (SROMs). As a result, the Bayesian method is also employed tomore » characterize unknown parameters of material properties for laser welds from measurements of peak forces sustained by these welds.« less

  8. Bayesian methods for characterizing unknown parameters of material models

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Emery, J. M.; Grigoriu, M. D.; Field Jr., R. V.

    A Bayesian framework is developed for characterizing the unknown parameters of probabilistic models for material properties. In this framework, the unknown parameters are viewed as random and described by their posterior distributions obtained from prior information and measurements of quantities of interest that are observable and depend on the unknown parameters. The proposed Bayesian method is applied to characterize an unknown spatial correlation of the conductivity field in the definition of a stochastic transport equation and to solve this equation by Monte Carlo simulation and stochastic reduced order models (SROMs). As a result, the Bayesian method is also employed tomore » characterize unknown parameters of material properties for laser welds from measurements of peak forces sustained by these welds.« less

  9. Resolving the Antarctic contribution to sea-level rise: a hierarchical modelling framework†

    PubMed Central

    Zammit-Mangion, Andrew; Rougier, Jonathan; Bamber, Jonathan; Schön, Nana

    2014-01-01

    Determining the Antarctic contribution to sea-level rise from observational data is a complex problem. The number of physical processes involved (such as ice dynamics and surface climate) exceeds the number of observables, some of which have very poor spatial definition. This has led, in general, to solutions that utilise strong prior assumptions or physically based deterministic models to simplify the problem. Here, we present a new approach for estimating the Antarctic contribution, which only incorporates descriptive aspects of the physically based models in the analysis and in a statistical manner. By combining physical insights with modern spatial statistical modelling techniques, we are able to provide probability distributions on all processes deemed to play a role in both the observed data and the contribution to sea-level rise. Specifically, we use stochastic partial differential equations and their relation to geostatistical fields to capture our physical understanding and employ a Gaussian Markov random field approach for efficient computation. The method, an instantiation of Bayesian hierarchical modelling, naturally incorporates uncertainty in order to reveal credible intervals on all estimated quantities. The estimated sea-level rise contribution using this approach corroborates those found using a statistically independent method. © 2013 The Authors. Environmetrics Published by John Wiley & Sons, Ltd. PMID:25505370

  10. Resolving the Antarctic contribution to sea-level rise: a hierarchical modelling framework.

    PubMed

    Zammit-Mangion, Andrew; Rougier, Jonathan; Bamber, Jonathan; Schön, Nana

    2014-06-01

    Determining the Antarctic contribution to sea-level rise from observational data is a complex problem. The number of physical processes involved (such as ice dynamics and surface climate) exceeds the number of observables, some of which have very poor spatial definition. This has led, in general, to solutions that utilise strong prior assumptions or physically based deterministic models to simplify the problem. Here, we present a new approach for estimating the Antarctic contribution, which only incorporates descriptive aspects of the physically based models in the analysis and in a statistical manner. By combining physical insights with modern spatial statistical modelling techniques, we are able to provide probability distributions on all processes deemed to play a role in both the observed data and the contribution to sea-level rise. Specifically, we use stochastic partial differential equations and their relation to geostatistical fields to capture our physical understanding and employ a Gaussian Markov random field approach for efficient computation. The method, an instantiation of Bayesian hierarchical modelling, naturally incorporates uncertainty in order to reveal credible intervals on all estimated quantities. The estimated sea-level rise contribution using this approach corroborates those found using a statistically independent method. © 2013 The Authors. Environmetrics Published by John Wiley & Sons, Ltd.

  11. A hierarchical model for estimating change in American Woodcock populations

    USGS Publications Warehouse

    Sauer, J.R.; Link, W.A.; Kendall, W.L.; Kelley, J.R.; Niven, D.K.

    2008-01-01

    The Singing-Ground Survey (SGS) is a primary source of information on population change for American woodcock (Scolopax minor). We analyzed the SGS using a hierarchical log-linear model and compared the estimates of change and annual indices of abundance to a route regression analysis of SGS data. We also grouped SGS routes into Bird Conservation Regions (BCRs) and estimated population change and annual indices using BCRs within states and provinces as strata. Based on the hierarchical model?based estimates, we concluded that woodcock populations were declining in North America between 1968 and 2006 (trend = -0.9%/yr, 95% credible interval: -1.2, -0.5). Singing-Ground Survey results are generally similar between analytical approaches, but the hierarchical model has several important advantages over the route regression. Hierarchical models better accommodate changes in survey efficiency over time and space by treating strata, years, and observers as random effects in the context of a log-linear model, providing trend estimates that are derived directly from the annual indices. We also conducted a hierarchical model analysis of woodcock data from the Christmas Bird Count and the North American Breeding Bird Survey. All surveys showed general consistency in patterns of population change, but the SGS had the shortest credible intervals. We suggest that population management and conservation planning for woodcock involving interpretation of the SGS use estimates provided by the hierarchical model.

  12. Bayesian Models Leveraging Bioactivity and Cytotoxicity Information for Drug Discovery

    PubMed Central

    Ekins, Sean; Reynolds, Robert C.; Kim, Hiyun; Koo, Mi-Sun; Ekonomidis, Marilyn; Talaue, Meliza; Paget, Steve D.; Woolhiser, Lisa K.; Lenaerts, Anne J.; Bunin, Barry A.; Connell, Nancy; Freundlich, Joel S.

    2013-01-01

    SUMMARY Identification of unique leads represents a significant challenge in drug discovery. This hurdle is magnified in neglected diseases such as tuberculosis. We have leveraged public high-throughput screening (HTS) data, to experimentally validate virtual screening approach employing Bayesian models built with bioactivity information (single-event model) as well as bioactivity and cytotoxicity information (dual-event model). We virtually screen a commercial library and experimentally confirm actives with hit rates exceeding typical HTS results by 1-2 orders of magnitude. The first dual-event Bayesian model identified compounds with antitubercular whole-cell activity and low mammalian cell cytotoxicity from a published set of antimalarials. The most potent hit exhibits the in vitro activity and in vitro/in vivo safety profile of a drug lead. These Bayesian models offer significant economies in time and cost to drug discovery. PMID:23521795

  13. Bayesian Inference of High-Dimensional Dynamical Ocean Models

    NASA Astrophysics Data System (ADS)

    Lin, J.; Lermusiaux, P. F. J.; Lolla, S. V. T.; Gupta, A.; Haley, P. J., Jr.

    2015-12-01

    This presentation addresses a holistic set of challenges in high-dimension ocean Bayesian nonlinear estimation: i) predict the probability distribution functions (pdfs) of large nonlinear dynamical systems using stochastic partial differential equations (PDEs); ii) assimilate data using Bayes' law with these pdfs; iii) predict the future data that optimally reduce uncertainties; and (iv) rank the known and learn the new model formulations themselves. Overall, we allow the joint inference of the state, equations, geometry, boundary conditions and initial conditions of dynamical models. Examples are provided for time-dependent fluid and ocean flows, including cavity, double-gyre and Strait flows with jets and eddies. The Bayesian model inference, based on limited observations, is illustrated first by the estimation of obstacle shapes and positions in fluid flows. Next, the Bayesian inference of biogeochemical reaction equations and of their states and parameters is presented, illustrating how PDE-based machine learning can rigorously guide the selection and discovery of complex ecosystem models. Finally, the inference of multiscale bottom gravity current dynamics is illustrated, motivated in part by classic overflows and dense water formation sites and their relevance to climate monitoring and dynamics. This is joint work with our MSEAS group at MIT.

  14. Identification of transmissivity fields using a Bayesian strategy and perturbative approach

    NASA Astrophysics Data System (ADS)

    Zanini, Andrea; Tanda, Maria Giovanna; Woodbury, Allan D.

    2017-10-01

    The paper deals with the crucial problem of the groundwater parameter estimation that is the basis for efficient modeling and reclamation activities. A hierarchical Bayesian approach is developed: it uses the Akaike's Bayesian Information Criteria in order to estimate the hyperparameters (related to the covariance model chosen) and to quantify the unknown noise variance. The transmissivity identification proceeds in two steps: the first, called empirical Bayesian interpolation, uses Y* (Y = lnT) observations to interpolate Y values on a specified grid; the second, called empirical Bayesian update, improve the previous Y estimate through the addition of hydraulic head observations. The relationship between the head and the lnT has been linearized through a perturbative solution of the flow equation. In order to test the proposed approach, synthetic aquifers from literature have been considered. The aquifers in question contain a variety of boundary conditions (both Dirichelet and Neuman type) and scales of heterogeneities (σY2 = 1.0 and σY2 = 5.3). The estimated transmissivity fields were compared to the true one. The joint use of Y* and head measurements improves the estimation of Y considering both degrees of heterogeneity. Even if the variance of the strong transmissivity field can be considered high for the application of the perturbative approach, the results show the same order of approximation of the non-linear methods proposed in literature. The procedure allows to compute the posterior probability distribution of the target quantities and to quantify the uncertainty in the model prediction. Bayesian updating has advantages related both to the Monte-Carlo (MC) and non-MC approaches. In fact, as the MC methods, Bayesian updating allows computing the direct posterior probability distribution of the target quantities and as non-MC methods it has computational times in the order of seconds.

  15. Application of a predictive Bayesian model to environmental accounting.

    PubMed

    Anex, R P; Englehardt, J D

    2001-03-30

    Environmental accounting techniques are intended to capture important environmental costs and benefits that are often overlooked in standard accounting practices. Environmental accounting methods themselves often ignore or inadequately represent large but highly uncertain environmental costs and costs conditioned by specific prior events. Use of a predictive Bayesian model is demonstrated for the assessment of such highly uncertain environmental and contingent costs. The predictive Bayesian approach presented generates probability distributions for the quantity of interest (rather than parameters thereof). A spreadsheet implementation of a previously proposed predictive Bayesian model, extended to represent contingent costs, is described and used to evaluate whether a firm should undertake an accelerated phase-out of its PCB containing transformers. Variability and uncertainty (due to lack of information) in transformer accident frequency and severity are assessed simultaneously using a combination of historical accident data, engineering model-based cost estimates, and subjective judgement. Model results are compared using several different risk measures. Use of the model for incorporation of environmental risk management into a company's overall risk management strategy is discussed.

  16. Bayesian Regression with Network Prior: Optimal Bayesian Filtering Perspective

    PubMed Central

    Qian, Xiaoning; Dougherty, Edward R.

    2017-01-01

    The recently introduced intrinsically Bayesian robust filter (IBRF) provides fully optimal filtering relative to a prior distribution over an uncertainty class ofjoint random process models, whereas formerly the theory was limited to model-constrained Bayesian robust filters, for which optimization was limited to the filters that are optimal for models in the uncertainty class. This paper extends the IBRF theory to the situation where there are both a prior on the uncertainty class and sample data. The result is optimal Bayesian filtering (OBF), where optimality is relative to the posterior distribution derived from the prior and the data. The IBRF theories for effective characteristics and canonical expansions extend to the OBF setting. A salient focus of the present work is to demonstrate the advantages of Bayesian regression within the OBF setting over the classical Bayesian approach in the context otlinear Gaussian models. PMID:28824268

  17. Modeling and validating Bayesian accrual models on clinical data and simulations using adaptive priors.

    PubMed

    Jiang, Yu; Simon, Steve; Mayo, Matthew S; Gajewski, Byron J

    2015-02-20

    Slow recruitment in clinical trials leads to increased costs and resource utilization, which includes both the clinic staff and patient volunteers. Careful planning and monitoring of the accrual process can prevent the unnecessary loss of these resources. We propose two hierarchical extensions to the existing Bayesian constant accrual model: the accelerated prior and the hedging prior. The new proposed priors are able to adaptively utilize the researcher's previous experience and current accrual data to produce the estimation of trial completion time. The performance of these models, including prediction precision, coverage probability, and correct decision-making ability, is evaluated using actual studies from our cancer center and simulation. The results showed that a constant accrual model with strongly informative priors is very accurate when accrual is on target or slightly off, producing smaller mean squared error, high percentage of coverage, and a high number of correct decisions as to whether or not continue the trial, but it is strongly biased when off target. Flat or weakly informative priors provide protection against an off target prior but are less efficient when the accrual is on target. The accelerated prior performs similar to a strong prior. The hedging prior performs much like the weak priors when the accrual is extremely off target but closer to the strong priors when the accrual is on target or only slightly off target. We suggest improvements in these models and propose new models for future research. Copyright © 2014 John Wiley & Sons, Ltd.

  18. Hierarchical model analysis of the Atlantic Flyway Breeding Waterfowl Survey

    USGS Publications Warehouse

    Sauer, John R.; Zimmerman, Guthrie S.; Klimstra, Jon D.; Link, William A.

    2014-01-01

    We used log-linear hierarchical models to analyze data from the Atlantic Flyway Breeding Waterfowl Survey. The survey has been conducted by state biologists each year since 1989 in the northeastern United States from Virginia north to New Hampshire and Vermont. Although yearly population estimates from the survey are used by the United States Fish and Wildlife Service for estimating regional waterfowl population status for mallards (Anas platyrhynchos), black ducks (Anas rubripes), wood ducks (Aix sponsa), and Canada geese (Branta canadensis), they are not routinely adjusted to control for time of day effects and other survey design issues. The hierarchical model analysis permits estimation of year effects and population change while accommodating the repeated sampling of plots and controlling for time of day effects in counting. We compared population estimates from the current stratified random sample analysis to population estimates from hierarchical models with alternative model structures that describe year to year changes as random year effects, a trend with random year effects, or year effects modeled as 1-year differences. Patterns of population change from the hierarchical model results generally were similar to the patterns described by stratified random sample estimates, but significant visibility differences occurred between twilight to midday counts in all species. Controlling for the effects of time of day resulted in larger population estimates for all species in the hierarchical model analysis relative to the stratified random sample analysis. The hierarchical models also provided a convenient means of estimating population trend as derived statistics from the analysis. We detected significant declines in mallard and American black ducks and significant increases in wood ducks and Canada geese, a trend that had not been significant for 3 of these 4 species in the prior analysis. We recommend using hierarchical models for analysis of the Atlantic

  19. Modeling Non-Gaussian Time Series with Nonparametric Bayesian Model.

    PubMed

    Xu, Zhiguang; MacEachern, Steven; Xu, Xinyi

    2015-02-01

    We present a class of Bayesian copula models whose major components are the marginal (limiting) distribution of a stationary time series and the internal dynamics of the series. We argue that these are the two features with which an analyst is typically most familiar, and hence that these are natural components with which to work. For the marginal distribution, we use a nonparametric Bayesian prior distribution along with a cdf-inverse cdf transformation to obtain large support. For the internal dynamics, we rely on the traditionally successful techniques of normal-theory time series. Coupling the two components gives us a family of (Gaussian) copula transformed autoregressive models. The models provide coherent adjustments of time scales and are compatible with many extensions, including changes in volatility of the series. We describe basic properties of the models, show their ability to recover non-Gaussian marginal distributions, and use a GARCH modification of the basic model to analyze stock index return series. The models are found to provide better fit and improved short-range and long-range predictions than Gaussian competitors. The models are extensible to a large variety of fields, including continuous time models, spatial models, models for multiple series, models driven by external covariate streams, and non-stationary models.

  20. Cortical Hierarchies Perform Bayesian Causal Inference in Multisensory Perception

    PubMed Central

    Rohe, Tim; Noppeney, Uta

    2015-01-01

    To form a veridical percept of the environment, the brain needs to integrate sensory signals from a common source but segregate those from independent sources. Thus, perception inherently relies on solving the “causal inference problem.” Behaviorally, humans solve this problem optimally as predicted by Bayesian Causal Inference; yet, the underlying neural mechanisms are unexplored. Combining psychophysics, Bayesian modeling, functional magnetic resonance imaging (fMRI), and multivariate decoding in an audiovisual spatial localization task, we demonstrate that Bayesian Causal Inference is performed by a hierarchy of multisensory processes in the human brain. At the bottom of the hierarchy, in auditory and visual areas, location is represented on the basis that the two signals are generated by independent sources (= segregation). At the next stage, in posterior intraparietal sulcus, location is estimated under the assumption that the two signals are from a common source (= forced fusion). Only at the top of the hierarchy, in anterior intraparietal sulcus, the uncertainty about the causal structure of the world is taken into account and sensory signals are combined as predicted by Bayesian Causal Inference. Characterizing the computational operations of signal interactions reveals the hierarchical nature of multisensory perception in human neocortex. It unravels how the brain accomplishes Bayesian Causal Inference, a statistical computation fundamental for perception and cognition. Our results demonstrate how the brain combines information in the face of uncertainty about the underlying causal structure of the world. PMID:25710328

  1. Relating mesocarnivore relative abundance to anthropogenic land-use with a hierarchical spatial count model

    USGS Publications Warehouse

    Crimmins, Shawn M.; Walleser, Liza R.; Hertel, Dan R.; McKann, Patrick C.; Rohweder, Jason J.; Thogmartin, Wayne E.

    2016-01-01

    There is growing need to develop models of spatial patterns in animal abundance, yet comparatively few examples of such models exist. This is especially true in situations where the abundance of one species may inhibit that of another, such as the intensively-farmed landscape of the Prairie Pothole Region (PPR) of the central United States, where waterfowl production is largely constrained by mesocarnivore nest predation. We used a hierarchical Bayesian approach to relate the distribution of various land-cover types to the relative abundances of four mesocarnivores in the PPR: coyote Canis latrans, raccoon Procyon lotor, red fox Vulpes vulpes, and striped skunk Mephitis mephitis. We developed models for each species at multiple spatial resolutions (41.4 km2, 10.4 km2, and 2.6 km2) to address different ecological and management-related questions. Model results for each species were similar irrespective of resolution. We found that the amount of row-crop agriculture was nearly ubiquitous in our best models, exhibiting a positive relationship with relative abundance for each species. The amount of native grassland land-cover was positively associated with coyote and raccoon relative abundance, but generally absent from models for red fox and skunk. Red fox and skunk were positively associated with each other, suggesting potential niche overlap. We found no evidence that coyote abundance limited that of other mesocarnivore species, as might be expected under a hypothesis of mesopredator release. The relationships between relative abundance and land-cover types were similar across spatial resolutions. Our results indicated that mesocarnivores in the PPR are most likely to occur in portions of the landscape with large amounts of agricultural land-cover. Further, our results indicated that track-survey data can be used in a hierarchical framework to gain inferences regarding spatial patterns in animal relative abundance.

  2. Bayesian network modelling of upper gastrointestinal bleeding

    NASA Astrophysics Data System (ADS)

    Aisha, Nazziwa; Shohaimi, Shamarina; Adam, Mohd Bakri

    2013-09-01

    Bayesian networks are graphical probabilistic models that represent causal and other relationships between domain variables. In the context of medical decision making, these models have been explored to help in medical diagnosis and prognosis. In this paper, we discuss the Bayesian network formalism in building medical support systems and we learn a tree augmented naive Bayes Network (TAN) from gastrointestinal bleeding data. The accuracy of the TAN in classifying the source of gastrointestinal bleeding into upper or lower source is obtained. The TAN achieves a high classification accuracy of 86% and an area under curve of 92%. A sensitivity analysis of the model shows relatively high levels of entropy reduction for color of the stool, history of gastrointestinal bleeding, consistency and the ratio of blood urea nitrogen to creatinine. The TAN facilitates the identification of the source of GIB and requires further validation.

  3. Robust Real-Time Music Transcription with a Compositional Hierarchical Model.

    PubMed

    Pesek, Matevž; Leonardis, Aleš; Marolt, Matija

    2017-01-01

    The paper presents a new compositional hierarchical model for robust music transcription. Its main features are unsupervised learning of a hierarchical representation of input data, transparency, which enables insights into the learned representation, as well as robustness and speed which make it suitable for real-world and real-time use. The model consists of multiple layers, each composed of a number of parts. The hierarchical nature of the model corresponds well to hierarchical structures in music. The parts in lower layers correspond to low-level concepts (e.g. tone partials), while the parts in higher layers combine lower-level representations into more complex concepts (tones, chords). The layers are learned in an unsupervised manner from music signals. Parts in each layer are compositions of parts from previous layers based on statistical co-occurrences as the driving force of the learning process. In the paper, we present the model's structure and compare it to other hierarchical approaches in the field of music information retrieval. We evaluate the model's performance for the multiple fundamental frequency estimation. Finally, we elaborate on extensions of the model towards other music information retrieval tasks.

  4. Bayesian Analysis of Nonlinear Structural Equation Models with Nonignorable Missing Data

    ERIC Educational Resources Information Center

    Lee, Sik-Yum

    2006-01-01

    A Bayesian approach is developed for analyzing nonlinear structural equation models with nonignorable missing data. The nonignorable missingness mechanism is specified by a logistic regression model. A hybrid algorithm that combines the Gibbs sampler and the Metropolis-Hastings algorithm is used to produce the joint Bayesian estimates of…

  5. Bayesian models for comparative analysis integrating phylogenetic uncertainty.

    PubMed

    de Villemereuil, Pierre; Wells, Jessie A; Edwards, Robert D; Blomberg, Simon P

    2012-06-28

    Uncertainty in comparative analyses can come from at least two sources: a) phylogenetic uncertainty in the tree topology or branch lengths, and b) uncertainty due to intraspecific variation in trait values, either due to measurement error or natural individual variation. Most phylogenetic comparative methods do not account for such uncertainties. Not accounting for these sources of uncertainty leads to false perceptions of precision (confidence intervals will be too narrow) and inflated significance in hypothesis testing (e.g. p-values will be too small). Although there is some application-specific software for fitting Bayesian models accounting for phylogenetic error, more general and flexible software is desirable. We developed models to directly incorporate phylogenetic uncertainty into a range of analyses that biologists commonly perform, using a Bayesian framework and Markov Chain Monte Carlo analyses. We demonstrate applications in linear regression, quantification of phylogenetic signal, and measurement error models. Phylogenetic uncertainty was incorporated by applying a prior distribution for the phylogeny, where this distribution consisted of the posterior tree sets from Bayesian phylogenetic tree estimation programs. The models were analysed using simulated data sets, and applied to a real data set on plant traits, from rainforest plant species in Northern Australia. Analyses were performed using the free and open source software OpenBUGS and JAGS. Incorporating phylogenetic uncertainty through an empirical prior distribution of trees leads to more precise estimation of regression model parameters than using a single consensus tree and enables a more realistic estimation of confidence intervals. In addition, models incorporating measurement errors and/or individual variation, in one or both variables, are easily formulated in the Bayesian framework. We show that BUGS is a useful, flexible general purpose tool for phylogenetic comparative analyses

  6. Bayesian models for comparative analysis integrating phylogenetic uncertainty

    PubMed Central

    2012-01-01

    Background Uncertainty in comparative analyses can come from at least two sources: a) phylogenetic uncertainty in the tree topology or branch lengths, and b) uncertainty due to intraspecific variation in trait values, either due to measurement error or natural individual variation. Most phylogenetic comparative methods do not account for such uncertainties. Not accounting for these sources of uncertainty leads to false perceptions of precision (confidence intervals will be too narrow) and inflated significance in hypothesis testing (e.g. p-values will be too small). Although there is some application-specific software for fitting Bayesian models accounting for phylogenetic error, more general and flexible software is desirable. Methods We developed models to directly incorporate phylogenetic uncertainty into a range of analyses that biologists commonly perform, using a Bayesian framework and Markov Chain Monte Carlo analyses. Results We demonstrate applications in linear regression, quantification of phylogenetic signal, and measurement error models. Phylogenetic uncertainty was incorporated by applying a prior distribution for the phylogeny, where this distribution consisted of the posterior tree sets from Bayesian phylogenetic tree estimation programs. The models were analysed using simulated data sets, and applied to a real data set on plant traits, from rainforest plant species in Northern Australia. Analyses were performed using the free and open source software OpenBUGS and JAGS. Conclusions Incorporating phylogenetic uncertainty through an empirical prior distribution of trees leads to more precise estimation of regression model parameters than using a single consensus tree and enables a more realistic estimation of confidence intervals. In addition, models incorporating measurement errors and/or individual variation, in one or both variables, are easily formulated in the Bayesian framework. We show that BUGS is a useful, flexible general purpose tool for

  7. Intelligent multiagent coordination based on reinforcement hierarchical neuro-fuzzy models.

    PubMed

    Mendoza, Leonardo Forero; Vellasco, Marley; Figueiredo, Karla

    2014-12-01

    This paper presents the research and development of two hybrid neuro-fuzzy models for the hierarchical coordination of multiple intelligent agents. The main objective of the models is to have multiple agents interact intelligently with each other in complex systems. We developed two new models of coordination for intelligent multiagent systems, which integrates the Reinforcement Learning Hierarchical Neuro-Fuzzy model with two proposed coordination mechanisms: the MultiAgent Reinforcement Learning Hierarchical Neuro-Fuzzy with a market-driven coordination mechanism (MA-RL-HNFP-MD) and the MultiAgent Reinforcement Learning Hierarchical Neuro-Fuzzy with graph coordination (MA-RL-HNFP-CG). In order to evaluate the proposed models and verify the contribution of the proposed coordination mechanisms, two multiagent benchmark applications were developed: the pursuit game and the robot soccer simulation. The results obtained demonstrated that the proposed coordination mechanisms greatly improve the performance of the multiagent system when compared with other strategies.

  8. Modeling Soot Oxidation and Gasification with Bayesian Statistics

    DOE PAGES

    Josephson, Alexander J.; Gaffin, Neal D.; Smith, Sean T.; ...

    2017-08-22

    This paper presents a statistical method for model calibration using data collected from literature. The method is used to calibrate parameters for global models of soot consumption in combustion systems. This consumption is broken into two different submodels: first for oxidation where soot particles are attacked by certain oxidizing agents; second for gasification where soot particles are attacked by H 2O or CO 2 molecules. Rate data were collected from 19 studies in the literature and evaluated using Bayesian statistics to calibrate the model parameters. Bayesian statistics are valued in their ability to quantify uncertainty in modeling. The calibrated consumptionmore » model with quantified uncertainty is presented here along with a discussion of associated implications. The oxidation results are found to be consistent with previous studies. Significant variation is found in the CO 2 gasification rates.« less

  9. Modeling Soot Oxidation and Gasification with Bayesian Statistics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Josephson, Alexander J.; Gaffin, Neal D.; Smith, Sean T.

    This paper presents a statistical method for model calibration using data collected from literature. The method is used to calibrate parameters for global models of soot consumption in combustion systems. This consumption is broken into two different submodels: first for oxidation where soot particles are attacked by certain oxidizing agents; second for gasification where soot particles are attacked by H 2O or CO 2 molecules. Rate data were collected from 19 studies in the literature and evaluated using Bayesian statistics to calibrate the model parameters. Bayesian statistics are valued in their ability to quantify uncertainty in modeling. The calibrated consumptionmore » model with quantified uncertainty is presented here along with a discussion of associated implications. The oxidation results are found to be consistent with previous studies. Significant variation is found in the CO 2 gasification rates.« less

  10. A Tutorial Introduction to Bayesian Models of Cognitive Development

    ERIC Educational Resources Information Center

    Perfors, Amy; Tenenbaum, Joshua B.; Griffiths, Thomas L.; Xu, Fei

    2011-01-01

    We present an introduction to Bayesian inference as it is used in probabilistic models of cognitive development. Our goal is to provide an intuitive and accessible guide to the "what", the "how", and the "why" of the Bayesian approach: what sorts of problems and data the framework is most relevant for, and how and why it may be useful for…

  11. Scale Mixture Models with Applications to Bayesian Inference

    NASA Astrophysics Data System (ADS)

    Qin, Zhaohui S.; Damien, Paul; Walker, Stephen

    2003-11-01

    Scale mixtures of uniform distributions are used to model non-normal data in time series and econometrics in a Bayesian framework. Heteroscedastic and skewed data models are also tackled using scale mixture of uniform distributions.

  12. Model-based hierarchical reinforcement learning and human action control

    PubMed Central

    Botvinick, Matthew; Weinstein, Ari

    2014-01-01

    Recent work has reawakened interest in goal-directed or ‘model-based’ choice, where decisions are based on prospective evaluation of potential action outcomes. Concurrently, there has been growing attention to the role of hierarchy in decision-making and action control. We focus here on the intersection between these two areas of interest, considering the topic of hierarchical model-based control. To characterize this form of action control, we draw on the computational framework of hierarchical reinforcement learning, using this to interpret recent empirical findings. The resulting picture reveals how hierarchical model-based mechanisms might play a special and pivotal role in human decision-making, dramatically extending the scope and complexity of human behaviour. PMID:25267822

  13. Traffic & safety statewide model and GIS modeling.

    DOT National Transportation Integrated Search

    2012-07-01

    Several steps have been taken over the past two years to advance the Utah Department of Transportation (UDOT) safety initiative. Previous research projects began the development of a hierarchical Bayesian model to analyze crashes on Utah roadways. De...

  14. Bayesian inference based on dual generalized order statistics from the exponentiated Weibull model

    NASA Astrophysics Data System (ADS)

    Al Sobhi, Mashail M.

    2015-02-01

    Bayesian estimation for the two parameters and the reliability function of the exponentiated Weibull model are obtained based on dual generalized order statistics (DGOS). Also, Bayesian prediction bounds for future DGOS from exponentiated Weibull model are obtained. The symmetric and asymmetric loss functions are considered for Bayesian computations. The Markov chain Monte Carlo (MCMC) methods are used for computing the Bayes estimates and prediction bounds. The results have been specialized to the lower record values. Comparisons are made between Bayesian and maximum likelihood estimators via Monte Carlo simulation.

  15. The traveling salesman problem: a hierarchical model.

    PubMed

    Graham, S M; Joshi, A; Pizlo, Z

    2000-10-01

    Our review of prior literature on spatial information processing in perception, attention, and memory indicates that these cognitive functions involve similar mechanisms based on a hierarchical architecture. The present study extends the application of hierarchical models to the area of problem solving. First, we report results of an experiment in which human subjects were tested on a Euclidean traveling salesman problem (TSP) with 6 to 30 cities. The subject's solutions were either optimal or near-optimal in length and were produced in a time that was, on average, a linear function of the number of cities. Next, the performance of the subjects is compared with that of five representative artificial intelligence and operations research algorithms, that produce approximate solutions for Euclidean problems. None of these algorithms was found to be an adequate psychological model. Finally, we present a new algorithm for solving the TSP, which is based on a hierarchical pyramid architecture. The performance of this new algorithm is quite similar to the performance of the subjects.

  16. [Evaluation of estimation of prevalence ratio using bayesian log-binomial regression model].

    PubMed

    Gao, W L; Lin, H; Liu, X N; Ren, X W; Li, J S; Shen, X P; Zhu, S L

    2017-03-10

    To evaluate the estimation of prevalence ratio ( PR ) by using bayesian log-binomial regression model and its application, we estimated the PR of medical care-seeking prevalence to caregivers' recognition of risk signs of diarrhea in their infants by using bayesian log-binomial regression model in Openbugs software. The results showed that caregivers' recognition of infant' s risk signs of diarrhea was associated significantly with a 13% increase of medical care-seeking. Meanwhile, we compared the differences in PR 's point estimation and its interval estimation of medical care-seeking prevalence to caregivers' recognition of risk signs of diarrhea and convergence of three models (model 1: not adjusting for the covariates; model 2: adjusting for duration of caregivers' education, model 3: adjusting for distance between village and township and child month-age based on model 2) between bayesian log-binomial regression model and conventional log-binomial regression model. The results showed that all three bayesian log-binomial regression models were convergence and the estimated PRs were 1.130(95 %CI : 1.005-1.265), 1.128(95 %CI : 1.001-1.264) and 1.132(95 %CI : 1.004-1.267), respectively. Conventional log-binomial regression model 1 and model 2 were convergence and their PRs were 1.130(95 % CI : 1.055-1.206) and 1.126(95 % CI : 1.051-1.203), respectively, but the model 3 was misconvergence, so COPY method was used to estimate PR , which was 1.125 (95 %CI : 1.051-1.200). In addition, the point estimation and interval estimation of PRs from three bayesian log-binomial regression models differed slightly from those of PRs from conventional log-binomial regression model, but they had a good consistency in estimating PR . Therefore, bayesian log-binomial regression model can effectively estimate PR with less misconvergence and have more advantages in application compared with conventional log-binomial regression model.

  17. Bayesian-MCMC-based parameter estimation of stealth aircraft RCS models

    NASA Astrophysics Data System (ADS)

    Xia, Wei; Dai, Xiao-Xia; Feng, Yuan

    2015-12-01

    When modeling a stealth aircraft with low RCS (Radar Cross Section), conventional parameter estimation methods may cause a deviation from the actual distribution, owing to the fact that the characteristic parameters are estimated via directly calculating the statistics of RCS. The Bayesian-Markov Chain Monte Carlo (Bayesian-MCMC) method is introduced herein to estimate the parameters so as to improve the fitting accuracies of fluctuation models. The parameter estimations of the lognormal and the Legendre polynomial models are reformulated in the Bayesian framework. The MCMC algorithm is then adopted to calculate the parameter estimates. Numerical results show that the distribution curves obtained by the proposed method exhibit improved consistence with the actual ones, compared with those fitted by the conventional method. The fitting accuracy could be improved by no less than 25% for both fluctuation models, which implies that the Bayesian-MCMC method might be a good candidate among the optimal parameter estimation methods for stealth aircraft RCS models. Project supported by the National Natural Science Foundation of China (Grant No. 61101173), the National Basic Research Program of China (Grant No. 613206), the National High Technology Research and Development Program of China (Grant No. 2012AA01A308), the State Scholarship Fund by the China Scholarship Council (CSC), and the Oversea Academic Training Funds, and University of Electronic Science and Technology of China (UESTC).

  18. Profile-Based LC-MS Data Alignment—A Bayesian Approach

    PubMed Central

    Tsai, Tsung-Heng; Tadesse, Mahlet G.; Wang, Yue; Ressom, Habtom W.

    2014-01-01

    A Bayesian alignment model (BAM) is proposed for alignment of liquid chromatography-mass spectrometry (LC-MS) data. BAM belongs to the category of profile-based approaches, which are composed of two major components: a prototype function and a set of mapping functions. Appropriate estimation of these functions is crucial for good alignment results. BAM uses Markov chain Monte Carlo (MCMC) methods to draw inference on the model parameters and improves on existing MCMC-based alignment methods through 1) the implementation of an efficient MCMC sampler and 2) an adaptive selection of knots. A block Metropolis-Hastings algorithm that mitigates the problem of the MCMC sampler getting stuck at local modes of the posterior distribution is used for the update of the mapping function coefficients. In addition, a stochastic search variable selection (SSVS) methodology is used to determine the number and positions of knots. We applied BAM to a simulated data set, an LC-MS proteomic data set, and two LC-MS metabolomic data sets, and compared its performance with the Bayesian hierarchical curve registration (BHCR) model, the dynamic time-warping (DTW) model, and the continuous profile model (CPM). The advantage of applying appropriate profile-based retention time correction prior to performing a feature-based approach is also demonstrated through the metabolomic data sets. PMID:23929872

  19. Bayesian model selection: Evidence estimation based on DREAM simulation and bridge sampling

    NASA Astrophysics Data System (ADS)

    Volpi, Elena; Schoups, Gerrit; Firmani, Giovanni; Vrugt, Jasper A.

    2017-04-01

    Bayesian inference has found widespread application in Earth and Environmental Systems Modeling, providing an effective tool for prediction, data assimilation, parameter estimation, uncertainty analysis and hypothesis testing. Under multiple competing hypotheses, the Bayesian approach also provides an attractive alternative to traditional information criteria (e.g. AIC, BIC) for model selection. The key variable for Bayesian model selection is the evidence (or marginal likelihood) that is the normalizing constant in the denominator of Bayes theorem; while it is fundamental for model selection, the evidence is not required for Bayesian inference. It is computed for each hypothesis (model) by averaging the likelihood function over the prior parameter distribution, rather than maximizing it as by information criteria; the larger a model evidence the more support it receives among a collection of hypothesis as the simulated values assign relatively high probability density to the observed data. Hence, the evidence naturally acts as an Occam's razor, preferring simpler and more constrained models against the selection of over-fitted ones by information criteria that incorporate only the likelihood maximum. Since it is not particularly easy to estimate the evidence in practice, Bayesian model selection via the marginal likelihood has not yet found mainstream use. We illustrate here the properties of a new estimator of the Bayesian model evidence, which provides robust and unbiased estimates of the marginal likelihood; the method is coined Gaussian Mixture Importance Sampling (GMIS). GMIS uses multidimensional numerical integration of the posterior parameter distribution via bridge sampling (a generalization of importance sampling) of a mixture distribution fitted to samples of the posterior distribution derived from the DREAM algorithm (Vrugt et al., 2008; 2009). Some illustrative examples are presented to show the robustness and superiority of the GMIS estimator with

  20. Variational Bayesian Learning for Wavelet Independent Component Analysis

    NASA Astrophysics Data System (ADS)

    Roussos, E.; Roberts, S.; Daubechies, I.

    2005-11-01

    In an exploratory approach to data analysis, it is often useful to consider the observations as generated from a set of latent generators or "sources" via a generally unknown mapping. For the noisy overcomplete case, where we have more sources than observations, the problem becomes extremely ill-posed. Solutions to such inverse problems can, in many cases, be achieved by incorporating prior knowledge about the problem, captured in the form of constraints. This setting is a natural candidate for the application of the Bayesian methodology, allowing us to incorporate "soft" constraints in a natural manner. The work described in this paper is mainly driven by problems in functional magnetic resonance imaging of the brain, for the neuro-scientific goal of extracting relevant "maps" from the data. This can be stated as a `blind' source separation problem. Recent experiments in the field of neuroscience show that these maps are sparse, in some appropriate sense. The separation problem can be solved by independent component analysis (ICA), viewed as a technique for seeking sparse components, assuming appropriate distributions for the sources. We derive a hybrid wavelet-ICA model, transforming the signals into a domain where the modeling assumption of sparsity of the coefficients with respect to a dictionary is natural. We follow a graphical modeling formalism, viewing ICA as a probabilistic generative model. We use hierarchical source and mixing models and apply Bayesian inference to the problem. This allows us to perform model selection in order to infer the complexity of the representation, as well as automatic denoising. Since exact inference and learning in such a model is intractable, we follow a variational Bayesian mean-field approach in the conjugate-exponential family of distributions, for efficient unsupervised learning in multi-dimensional settings. The performance of the proposed algorithm is demonstrated on some representative experiments.

  1. Dynamic Bayesian Network Modeling of Game Based Diagnostic Assessments. CRESST Report 837

    ERIC Educational Resources Information Center

    Levy, Roy

    2014-01-01

    Digital games offer an appealing environment for assessing student proficiencies, including skills and misconceptions in a diagnostic setting. This paper proposes a dynamic Bayesian network modeling approach for observations of student performance from an educational video game. A Bayesian approach to model construction, calibration, and use in…

  2. Benefits of Applying Hierarchical Models to the Empirical Green's Function Approach

    NASA Astrophysics Data System (ADS)

    Denolle, M.; Van Houtte, C.

    2017-12-01

    Stress drops calculated from source spectral studies currently show larger variability than what is implied by empirical ground motion models. One of the potential origins of the inflated variability is the simplified model-fitting techniques used in most source spectral studies. This study improves upon these existing methods, and shows that the fitting method may explain some of the discrepancy. In particular, Bayesian hierarchical modelling is shown to be a method that can reduce bias, better quantify uncertainties and allow additional effects to be resolved. The method is applied to the Mw7.1 Kumamoto, Japan earthquake, and other global, moderate-magnitude, strike-slip earthquakes between Mw5 and Mw7.5. It is shown that the variation of the corner frequency, fc, and the falloff rate, n, across the focal sphere can be reliably retrieved without overfitting the data. Additionally, it is shown that methods commonly used to calculate corner frequencies can give substantial biases. In particular, if fc were calculated for the Kumamoto earthquake using a model with a falloff rate fixed at 2 instead of the best fit 1.6, the obtained fc would be as large as twice its realistic value. The reliable retrieval of the falloff rate allows deeper examination of this parameter for a suite of global, strike-slip earthquakes, and its scaling with magnitude. The earthquake sequences considered in this study are from Japan, New Zealand, Haiti and California.

  3. Theory-based Bayesian Models of Inductive Inference

    DTIC Science & Technology

    2010-07-19

    Subjective randomness and natural scene statistics. Psychonomic Bulletin & Review . http://cocosci.berkeley.edu/tom/papers/randscenes.pdf Page 1...in press). Exemplar models as a mechanism for performing Bayesian inference. Psychonomic Bulletin & Review . http://cocosci.berkeley.edu/tom

  4. Conceptual hierarchical modeling to describe wetland plant community organization

    USGS Publications Warehouse

    Little, A.M.; Guntenspergen, G.R.; Allen, T.F.H.

    2010-01-01

    Using multivariate analysis, we created a hierarchical modeling process that describes how differently-scaled environmental factors interact to affect wetland-scale plant community organization in a system of small, isolated wetlands on Mount Desert Island, Maine. We followed the procedure: 1) delineate wetland groups using cluster analysis, 2) identify differently scaled environmental gradients using non-metric multidimensional scaling, 3) order gradient hierarchical levels according to spatiotem-poral scale of fluctuation, and 4) assemble hierarchical model using group relationships with ordination axes and post-hoc tests of environmental differences. Using this process, we determined 1) large wetland size and poor surface water chemistry led to the development of shrub fen wetland vegetation, 2) Sphagnum and water chemistry differences affected fen vs. marsh / sedge meadows status within small wetlands, and 3) small-scale hydrologic differences explained transitions between forested vs. non-forested and marsh vs. sedge meadow vegetation. This hierarchical modeling process can help explain how upper level contextual processes constrain biotic community response to lower-level environmental changes. It creates models with more nuanced spatiotemporal complexity than classification and regression tree procedures. Using this process, wetland scientists will be able to generate more generalizable theories of plant community organization, and useful management models. ?? Society of Wetland Scientists 2009.

  5. Modeling Error Distributions of Growth Curve Models through Bayesian Methods

    ERIC Educational Resources Information Center

    Zhang, Zhiyong

    2016-01-01

    Growth curve models are widely used in social and behavioral sciences. However, typical growth curve models often assume that the errors are normally distributed although non-normal data may be even more common than normal data. In order to avoid possible statistical inference problems in blindly assuming normality, a general Bayesian framework is…

  6. Developing a Hierarchical Model for the Spatial Analysis of PM10 Pollution Extremes in the Mexico City Metropolitan Area.

    PubMed

    Aguirre-Salado, Alejandro Ivan; Vaquera-Huerta, Humberto; Aguirre-Salado, Carlos Arturo; Reyes-Mora, Silvia; Olvera-Cervantes, Ana Delia; Lancho-Romero, Guillermo Arturo; Soubervielle-Montalvo, Carlos

    2017-07-06

    We implemented a spatial model for analysing PM 10 maxima across the Mexico City metropolitan area during the period 1995-2016. We assumed that these maxima follow a non-identical generalized extreme value (GEV) distribution and modeled the trend by introducing multivariate smoothing spline functions into the probability GEV distribution. A flexible, three-stage hierarchical Bayesian approach was developed to analyse the distribution of the PM 10 maxima in space and time. We evaluated the statistical model's performance by using a simulation study. The results showed strong evidence of a positive correlation between the PM 10 maxima and the longitude and latitude. The relationship between time and the PM 10 maxima was negative, indicating a decreasing trend over time. Finally, a high risk of PM 10 maxima presenting levels above 1000 μ g/m 3 (return period: 25 yr) was observed in the northwestern region of the study area.

  7. Estimation of selection intensity under overdominance by Bayesian methods.

    PubMed

    Buzbas, Erkan Ozge; Joyce, Paul; Abdo, Zaid

    2009-01-01

    A balanced pattern in the allele frequencies of polymorphic loci is a potential sign of selection, particularly of overdominance. Although this type of selection is of some interest in population genetics, there exists no likelihood based approaches specifically tailored to make inference on selection intensity. To fill this gap, we present Bayesian methods to estimate selection intensity under k-allele models with overdominance. Our model allows for an arbitrary number of loci and alleles within a locus. The neutral and selected variability within each locus are modeled with corresponding k-allele models. To estimate the posterior distribution of the mean selection intensity in a multilocus region, a hierarchical setup between loci is used. The methods are demonstrated with data at the Human Leukocyte Antigen loci from world-wide populations.

  8. Detecting concerted demographic response across community assemblages using hierarchical approximate Bayesian computation.

    PubMed

    Chan, Yvonne L; Schanzenbach, David; Hickerson, Michael J

    2014-09-01

    Methods that integrate population-level sampling from multiple taxa into a single community-level analysis are an essential addition to the comparative phylogeographic toolkit. Detecting how species within communities have demographically tracked each other in space and time is important for understanding the effects of future climate and landscape changes and the resulting acceleration of extinctions, biological invasions, and potential surges in adaptive evolution. Here, we present a statistical framework for such an analysis based on hierarchical approximate Bayesian computation (hABC) with the goal of detecting concerted demographic histories across an ecological assemblage. Our method combines population genetic data sets from multiple taxa into a single analysis to estimate: 1) the proportion of a community sample that demographically expanded in a temporally clustered pulse and 2) when the pulse occurred. To validate the accuracy and utility of this new approach, we use simulation cross-validation experiments and subsequently analyze an empirical data set of 32 avian populations from Australia that are hypothesized to have expanded from smaller refugia populations in the late Pleistocene. The method can accommodate data set heterogeneity such as variability in effective population size, mutation rates, and sample sizes across species and exploits the statistical strength from the simultaneous analysis of multiple species. This hABC framework used in a multitaxa demographic context can increase our understanding of the impact of historical climate change by determining what proportion of the community responded in concert or independently and can be used with a wide variety of comparative phylogeographic data sets as biota-wide DNA barcoding data sets accumulate. © The Author 2014. Published by Oxford University Press on behalf of the Society for Molecular Biology and Evolution.

  9. Bayesian estimation and use of high-throughput remote sensing indices for quantitative genetic analyses of leaf growth.

    PubMed

    Baker, Robert L; Leong, Wen Fung; An, Nan; Brock, Marcus T; Rubin, Matthew J; Welch, Stephen; Weinig, Cynthia

    2018-02-01

    importance for evolutionary biologists and plant breeders, hierarchical Bayesian models estimating FVT parameters improve heritabilities compared to frequentist approaches.

  10. A Bayesian Alternative for Multi-objective Ecohydrological Model Specification

    NASA Astrophysics Data System (ADS)

    Tang, Y.; Marshall, L. A.; Sharma, A.; Ajami, H.

    2015-12-01

    Process-based ecohydrological models combine the study of hydrological, physical, biogeochemical and ecological processes of the catchments, which are usually more complex and parametric than conceptual hydrological models. Thus, appropriate calibration objectives and model uncertainty analysis are essential for ecohydrological modeling. In recent years, Bayesian inference has become one of the most popular tools for quantifying the uncertainties in hydrological modeling with the development of Markov Chain Monte Carlo (MCMC) techniques. Our study aims to develop appropriate prior distributions and likelihood functions that minimize the model uncertainties and bias within a Bayesian ecohydrological framework. In our study, a formal Bayesian approach is implemented in an ecohydrological model which combines a hydrological model (HyMOD) and a dynamic vegetation model (DVM). Simulations focused on one objective likelihood (Streamflow/LAI) and multi-objective likelihoods (Streamflow and LAI) with different weights are compared. Uniform, weakly informative and strongly informative prior distributions are used in different simulations. The Kullback-leibler divergence (KLD) is used to measure the dis(similarity) between different priors and corresponding posterior distributions to examine the parameter sensitivity. Results show that different prior distributions can strongly influence posterior distributions for parameters, especially when the available data is limited or parameters are insensitive to the available data. We demonstrate differences in optimized parameters and uncertainty limits in different cases based on multi-objective likelihoods vs. single objective likelihoods. We also demonstrate the importance of appropriately defining the weights of objectives in multi-objective calibration according to different data types.

  11. Hierarchical Spatial Concept Formation Based on Multimodal Information for Human Support Robots.

    PubMed

    Hagiwara, Yoshinobu; Inoue, Masakazu; Kobayashi, Hiroyoshi; Taniguchi, Tadahiro

    2018-01-01

    In this paper, we propose a hierarchical spatial concept formation method based on the Bayesian generative model with multimodal information e.g., vision, position and word information. Since humans have the ability to select an appropriate level of abstraction according to the situation and describe their position linguistically, e.g., "I am in my home" and "I am in front of the table," a hierarchical structure of spatial concepts is necessary in order for human support robots to communicate smoothly with users. The proposed method enables a robot to form hierarchical spatial concepts by categorizing multimodal information using hierarchical multimodal latent Dirichlet allocation (hMLDA). Object recognition results using convolutional neural network (CNN), hierarchical k-means clustering result of self-position estimated by Monte Carlo localization (MCL), and a set of location names are used, respectively, as features in vision, position, and word information. Experiments in forming hierarchical spatial concepts and evaluating how the proposed method can predict unobserved location names and position categories are performed using a robot in the real world. Results verify that, relative to comparable baseline methods, the proposed method enables a robot to predict location names and position categories closer to predictions made by humans. As an application example of the proposed method in a home environment, a demonstration in which a human support robot moves to an instructed place based on human speech instructions is achieved based on the formed hierarchical spatial concept.

  12. Hierarchical Spatial Concept Formation Based on Multimodal Information for Human Support Robots

    PubMed Central

    Hagiwara, Yoshinobu; Inoue, Masakazu; Kobayashi, Hiroyoshi; Taniguchi, Tadahiro

    2018-01-01

    In this paper, we propose a hierarchical spatial concept formation method based on the Bayesian generative model with multimodal information e.g., vision, position and word information. Since humans have the ability to select an appropriate level of abstraction according to the situation and describe their position linguistically, e.g., “I am in my home” and “I am in front of the table,” a hierarchical structure of spatial concepts is necessary in order for human support robots to communicate smoothly with users. The proposed method enables a robot to form hierarchical spatial concepts by categorizing multimodal information using hierarchical multimodal latent Dirichlet allocation (hMLDA). Object recognition results using convolutional neural network (CNN), hierarchical k-means clustering result of self-position estimated by Monte Carlo localization (MCL), and a set of location names are used, respectively, as features in vision, position, and word information. Experiments in forming hierarchical spatial concepts and evaluating how the proposed method can predict unobserved location names and position categories are performed using a robot in the real world. Results verify that, relative to comparable baseline methods, the proposed method enables a robot to predict location names and position categories closer to predictions made by humans. As an application example of the proposed method in a home environment, a demonstration in which a human support robot moves to an instructed place based on human speech instructions is achieved based on the formed hierarchical spatial concept. PMID:29593521

  13. Prediction of community prevalence of human onchocerciasis in the Amazonian onchocerciasis focus: Bayesian approach.

    PubMed

    Carabin, Hélène; Escalona, Marisela; Marshall, Clare; Vivas-Martínez, Sarai; Botto, Carlos; Joseph, Lawrence; Basáñez, María-Gloria

    2003-01-01

    To develop a Bayesian hierarchical model for human onchocerciasis with which to explore the factors that influence prevalence of microfilariae in the Amazonian focus of onchocerciasis and predict the probability of any community being at least mesoendemic (>20% prevalence of microfilariae), and thus in need of priority ivermectin treatment. Models were developed with data from 732 individuals aged > or =15 years who lived in 29 Yanomami communities along four rivers of the south Venezuelan Orinoco basin. The models' abilities to predict prevalences of microfilariae in communities were compared. The deviance information criterion, Bayesian P-values, and residual values were used to select the best model with an approximate cross-validation procedure. A three-level model that acknowledged clustering of infection within communities performed best, with host age and sex included at the individual level, a river-dependent altitude effect at the community level, and additional clustering of communities along rivers. This model correctly classified 25/29 (86%) villages with respect to their need for priority ivermectin treatment. Bayesian methods are a flexible and useful approach for public health research and control planning. Our model acknowledges the clustering of infection within communities, allows investigation of links between individual- or community-specific characteristics and infection, incorporates additional uncertainty due to missing covariate data, and informs policy decisions by predicting the probability that a new community is at least mesoendemic.

  14. Reclaiming the past: Using hierarchical Bayesian analysis to fill missing values in the tide gauge mean sea level record, with application to extreme value analysis

    NASA Astrophysics Data System (ADS)

    Piecuch, C. G.; Huybers, P. J.; Tingley, M.

    2015-12-01

    Tide gauge records of mean sea level are some of the most valuable instrumental time series of oceanic variability and change. Yet these time series sometimes have short record lengths and intermittently missing values. Such issues can limit the utility of the data, for example, precluding rigorous analyses of return periods of extreme mean sea level events and whether they are unprecedented. With a view to filling gaps in the tide gauge mean sea level time series, we describe a hierarchical Bayesian modeling approach. The model, which is predicated on the notion of conditional probabilities, comprises three levels: a process level, which casts mean sea level as a field with spatiotemporal covariance; a data level, which represents tide gauge observations as noisy, biased versions of the true process; and a prior level, which gives prior functional forms to model parameters. Using Bayes' rule, this technique gives estimates of the posterior probability of the process and the parameters given the observations. To demonstrate the approach, we apply it to 2,967 station-years of annual mean sea level observations over 1856-2013 from 70 tide gauges along the United States East Coast from Florida to Maine (i.e., 26.8% record completeness). The model overcomes the data paucity by sharing information across space and time. The result is an ensemble of realizations, each member of which is a possible history of sea level changes at these locations over this period, which is consistent with and equally likely given the tide gauge data and underlying model assumptions. Using the ensemble of histories furnished by the Bayesian model, we identify extreme events of mean sea level change in the tide gauge time series. Specifically, we use the model to address the particular hypothesis (with rigorous uncertainty quantification) that a recently reported interannual sea level rise during 2008-2010 was unprecedented in the instrumental record along the northeast coast of North

  15. A comparison of machine learning and Bayesian modelling for molecular serotyping.

    PubMed

    Newton, Richard; Wernisch, Lorenz

    2017-08-11

    Streptococcus pneumoniae is a human pathogen that is a major cause of infant mortality. Identifying the pneumococcal serotype is an important step in monitoring the impact of vaccines used to protect against disease. Genomic microarrays provide an effective method for molecular serotyping. Previously we developed an empirical Bayesian model for the classification of serotypes from a molecular serotyping array. With only few samples available, a model driven approach was the only option. In the meanwhile, several thousand samples have been made available to us, providing an opportunity to investigate serotype classification by machine learning methods, which could complement the Bayesian model. We compare the performance of the original Bayesian model with two machine learning algorithms: Gradient Boosting Machines and Random Forests. We present our results as an example of a generic strategy whereby a preliminary probabilistic model is complemented or replaced by a machine learning classifier once enough data are available. Despite the availability of thousands of serotyping arrays, a problem encountered when applying machine learning methods is the lack of training data containing mixtures of serotypes; due to the large number of possible combinations. Most of the available training data comprises samples with only a single serotype. To overcome the lack of training data we implemented an iterative analysis, creating artificial training data of serotype mixtures by combining raw data from single serotype arrays. With the enhanced training set the machine learning algorithms out perform the original Bayesian model. However, for serotypes currently lacking sufficient training data the best performing implementation was a combination of the results of the Bayesian Model and the Gradient Boosting Machine. As well as being an effective method for classifying biological data, machine learning can also be used as an efficient method for revealing subtle biological

  16. Hierarchical Dirichlet process model for gene expression clustering

    PubMed Central

    2013-01-01

    Clustering is an important data processing tool for interpreting microarray data and genomic network inference. In this article, we propose a clustering algorithm based on the hierarchical Dirichlet processes (HDP). The HDP clustering introduces a hierarchical structure in the statistical model which captures the hierarchical features prevalent in biological data such as the gene express data. We develop a Gibbs sampling algorithm based on the Chinese restaurant metaphor for the HDP clustering. We apply the proposed HDP algorithm to both regulatory network segmentation and gene expression clustering. The HDP algorithm is shown to outperform several popular clustering algorithms by revealing the underlying hierarchical structure of the data. For the yeast cell cycle data, we compare the HDP result to the standard result and show that the HDP algorithm provides more information and reduces the unnecessary clustering fragments. PMID:23587447

  17. Bayesian Model Selection under Time Constraints

    NASA Astrophysics Data System (ADS)

    Hoege, M.; Nowak, W.; Illman, W. A.

    2017-12-01

    Bayesian model selection (BMS) provides a consistent framework for rating and comparing models in multi-model inference. In cases where models of vastly different complexity compete with each other, we also face vastly different computational runtimes of such models. For instance, time series of a quantity of interest can be simulated by an autoregressive process model that takes even less than a second for one run, or by a partial differential equations-based model with runtimes up to several hours or even days. The classical BMS is based on a quantity called Bayesian model evidence (BME). It determines the model weights in the selection process and resembles a trade-off between bias of a model and its complexity. However, in practice, the runtime of models is another weight relevant factor for model selection. Hence, we believe that it should be included, leading to an overall trade-off problem between bias, variance and computing effort. We approach this triple trade-off from the viewpoint of our ability to generate realizations of the models under a given computational budget. One way to obtain BME values is through sampling-based integration techniques. We argue with the fact that more expensive models can be sampled much less under time constraints than faster models (in straight proportion to their runtime). The computed evidence in favor of a more expensive model is statistically less significant than the evidence computed in favor of a faster model, since sampling-based strategies are always subject to statistical sampling error. We present a straightforward way to include this misbalance into the model weights that are the basis for model selection. Our approach follows directly from the idea of insufficient significance. It is based on a computationally cheap bootstrapping error estimate of model evidence and is easy to implement. The approach is illustrated in a small synthetic modeling study.

  18. Hierarchical graphs for rule-based modeling of biochemical systems

    PubMed Central

    2011-01-01

    Background In rule-based modeling, graphs are used to represent molecules: a colored vertex represents a component of a molecule, a vertex attribute represents the internal state of a component, and an edge represents a bond between components. Components of a molecule share the same color. Furthermore, graph-rewriting rules are used to represent molecular interactions. A rule that specifies addition (removal) of an edge represents a class of association (dissociation) reactions, and a rule that specifies a change of a vertex attribute represents a class of reactions that affect the internal state of a molecular component. A set of rules comprises an executable model that can be used to determine, through various means, the system-level dynamics of molecular interactions in a biochemical system. Results For purposes of model annotation, we propose the use of hierarchical graphs to represent structural relationships among components and subcomponents of molecules. We illustrate how hierarchical graphs can be used to naturally document the structural organization of the functional components and subcomponents of two proteins: the protein tyrosine kinase Lck and the T cell receptor (TCR) complex. We also show that computational methods developed for regular graphs can be applied to hierarchical graphs. In particular, we describe a generalization of Nauty, a graph isomorphism and canonical labeling algorithm. The generalized version of the Nauty procedure, which we call HNauty, can be used to assign canonical labels to hierarchical graphs or more generally to graphs with multiple edge types. The difference between the Nauty and HNauty procedures is minor, but for completeness, we provide an explanation of the entire HNauty algorithm. Conclusions Hierarchical graphs provide more intuitive formal representations of proteins and other structured molecules with multiple functional components than do the regular graphs of current languages for specifying rule-based models

  19. Semiparametric Thurstonian Models for Recurrent Choices: A Bayesian Analysis

    ERIC Educational Resources Information Center

    Ansari, Asim; Iyengar, Raghuram

    2006-01-01

    We develop semiparametric Bayesian Thurstonian models for analyzing repeated choice decisions involving multinomial, multivariate binary or multivariate ordinal data. Our modeling framework has multiple components that together yield considerable flexibility in modeling preference utilities, cross-sectional heterogeneity and parameter-driven…

  20. Truth, models, model sets, AIC, and multimodel inference: a Bayesian perspective

    USGS Publications Warehouse

    Barker, Richard J.; Link, William A.

    2015-01-01

    Statistical inference begins with viewing data as realizations of stochastic processes. Mathematical models provide partial descriptions of these processes; inference is the process of using the data to obtain a more complete description of the stochastic processes. Wildlife and ecological scientists have become increasingly concerned with the conditional nature of model-based inference: what if the model is wrong? Over the last 2 decades, Akaike's Information Criterion (AIC) has been widely and increasingly used in wildlife statistics for 2 related purposes, first for model choice and second to quantify model uncertainty. We argue that for the second of these purposes, the Bayesian paradigm provides the natural framework for describing uncertainty associated with model choice and provides the most easily communicated basis for model weighting. Moreover, Bayesian arguments provide the sole justification for interpreting model weights (including AIC weights) as coherent (mathematically self consistent) model probabilities. This interpretation requires treating the model as an exact description of the data-generating mechanism. We discuss the implications of this assumption, and conclude that more emphasis is needed on model checking to provide confidence in the quality of inference.

  1. FRIT characterized hierarchical kernel memory arrangement for multiband palmprint recognition

    NASA Astrophysics Data System (ADS)

    Kisku, Dakshina R.; Gupta, Phalguni; Sing, Jamuna K.

    2015-10-01

    In this paper, we present a hierarchical kernel associative memory (H-KAM) based computational model with Finite Ridgelet Transform (FRIT) representation for multispectral palmprint recognition. To characterize a multispectral palmprint image, the Finite Ridgelet Transform is used to achieve a very compact and distinctive representation of linear singularities while it also captures the singularities along lines and edges. The proposed system makes use of Finite Ridgelet Transform to represent multispectral palmprint image and it is then modeled by Kernel Associative Memories. Finally, the recognition scheme is thoroughly tested with a benchmarking multispectral palmprint database CASIA. For recognition purpose a Bayesian classifier is used. The experimental results exhibit robustness of the proposed system under different wavelengths of palm image.

  2. Bayesian Semiparametric Structural Equation Models with Latent Variables

    ERIC Educational Resources Information Center

    Yang, Mingan; Dunson, David B.

    2010-01-01

    Structural equation models (SEMs) with latent variables are widely useful for sparse covariance structure modeling and for inferring relationships among latent variables. Bayesian SEMs are appealing in allowing for the incorporation of prior information and in providing exact posterior distributions of unknowns, including the latent variables. In…

  3. Competing risk models in reliability systems, a weibull distribution model with bayesian analysis approach

    NASA Astrophysics Data System (ADS)

    Iskandar, Ismed; Satria Gondokaryono, Yudi

    2016-02-01

    In reliability theory, the most important problem is to determine the reliability of a complex system from the reliability of its components. The weakness of most reliability theories is that the systems are described and explained as simply functioning or failed. In many real situations, the failures may be from many causes depending upon the age and the environment of the system and its components. Another problem in reliability theory is one of estimating the parameters of the assumed failure models. The estimation may be based on data collected over censored or uncensored life tests. In many reliability problems, the failure data are simply quantitatively inadequate, especially in engineering design and maintenance system. The Bayesian analyses are more beneficial than the classical one in such cases. The Bayesian estimation analyses allow us to combine past knowledge or experience in the form of an apriori distribution with life test data to make inferences of the parameter of interest. In this paper, we have investigated the application of the Bayesian estimation analyses to competing risk systems. The cases are limited to the models with independent causes of failure by using the Weibull distribution as our model. A simulation is conducted for this distribution with the objectives of verifying the models and the estimators and investigating the performance of the estimators for varying sample size. The simulation data are analyzed by using Bayesian and the maximum likelihood analyses. The simulation results show that the change of the true of parameter relatively to another will change the value of standard deviation in an opposite direction. For a perfect information on the prior distribution, the estimation methods of the Bayesian analyses are better than those of the maximum likelihood. The sensitivity analyses show some amount of sensitivity over the shifts of the prior locations. They also show the robustness of the Bayesian analysis within the range

  4. Semantic Image Segmentation with Contextual Hierarchical Models.

    PubMed

    Seyedhosseini, Mojtaba; Tasdizen, Tolga

    2016-05-01

    Semantic segmentation is the problem of assigning an object label to each pixel. It unifies the image segmentation and object recognition problems. The importance of using contextual information in semantic segmentation frameworks has been widely realized in the field. We propose a contextual framework, called contextual hierarchical model (CHM), which learns contextual information in a hierarchical framework for semantic segmentation. At each level of the hierarchy, a classifier is trained based on downsampled input images and outputs of previous levels. Our model then incorporates the resulting multi-resolution contextual information into a classifier to segment the input image at original resolution. This training strategy allows for optimization of a joint posterior probability at multiple resolutions through the hierarchy. Contextual hierarchical model is purely based on the input image patches and does not make use of any fragments or shape examples. Hence, it is applicable to a variety of problems such as object segmentation and edge detection. We demonstrate that CHM performs at par with state-of-the-art on Stanford background and Weizmann horse datasets. It also outperforms state-of-the-art edge detection methods on NYU depth dataset and achieves state-of-the-art on Berkeley segmentation dataset (BSDS 500).

  5. EFFICIENT MODEL-FITTING AND MODEL-COMPARISON FOR HIGH-DIMENSIONAL BAYESIAN GEOSTATISTICAL MODELS. (R826887)

    EPA Science Inventory

    Geostatistical models are appropriate for spatially distributed data measured at irregularly spaced locations. We propose an efficient Markov chain Monte Carlo (MCMC) algorithm for fitting Bayesian geostatistical models with substantial numbers of unknown parameters to sizable...

  6. Ozone and childhood respiratory disease in three US cities: evaluation of effect measure modification by neighborhood socioeconomic status using a Bayesian hierarchical approach.

    PubMed

    O' Lenick, Cassandra R; Chang, Howard H; Kramer, Michael R; Winquist, Andrea; Mulholland, James A; Friberg, Mariel D; Sarnat, Stefanie Ebelt

    2017-04-05

    Ground-level ozone is a potent airway irritant and a determinant of respiratory morbidity. Susceptibility to the health effects of ambient ozone may be influenced by both intrinsic and extrinsic factors, such as neighborhood socioeconomic status (SES). Questions remain regarding the manner and extent that factors such as SES influence ozone-related health effects, particularly across different study areas. Using a 2-stage modeling approach we evaluated neighborhood SES as a modifier of ozone-related pediatric respiratory morbidity in Atlanta, Dallas, & St. Louis. We acquired multi-year data on emergency department (ED) visits among 5-18 year olds with a primary diagnosis of respiratory disease in each city. Daily concentrations of 8-h maximum ambient ozone were estimated for all ZIP Code Tabulation Areas (ZCTA) in each city by fusing observed concentration data from available network monitors with simulations from an emissions-based chemical transport model. In the first stage, we used conditional logistic regression to estimate ZCTA-specific odds ratios (OR) between ozone and respiratory ED visits, controlling for temporal trends and meteorology. In the second stage, we combined ZCTA-level estimates in a Bayesian hierarchical model to assess overall associations and effect modification by neighborhood SES considering categorical and continuous SES indicators (e.g., ZCTA-specific levels of poverty). We estimated ORs and 95% posterior intervals (PI) for a 25 ppb increase in ozone. The hierarchical model combined effect estimates from 179 ZCTAs in Atlanta, 205 ZCTAs in Dallas, and 151 ZCTAs in St. Louis. The strongest overall association of ozone and pediatric respiratory disease was in Atlanta (OR = 1.08, 95% PI: 1.06, 1.11), followed by Dallas (OR = 1.04, 95% PI: 1.01, 1.07) and St. Louis (OR = 1.03, 95% PI: 0.99, 1.07). Patterns of association across levels of neighborhood SES in each city suggested stronger ORs in low compared to high SES areas, with

  7. Testing for Divergent Transmission Histories among Cultural Characters: A Study Using Bayesian Phylogenetic Methods and Iranian Tribal Textile Data

    PubMed Central

    Matthews, Luke J.; Tehrani, Jamie J.; Jordan, Fiona M.; Collard, Mark; Nunn, Charles L.

    2011-01-01

    Background Archaeologists and anthropologists have long recognized that different cultural complexes may have distinct descent histories, but they have lacked analytical techniques capable of easily identifying such incongruence. Here, we show how Bayesian phylogenetic analysis can be used to identify incongruent cultural histories. We employ the approach to investigate Iranian tribal textile traditions. Methods We used Bayes factor comparisons in a phylogenetic framework to test two models of cultural evolution: the hierarchically integrated system hypothesis and the multiple coherent units hypothesis. In the hierarchically integrated system hypothesis, a core tradition of characters evolves through descent with modification and characters peripheral to the core are exchanged among contemporaneous populations. In the multiple coherent units hypothesis, a core tradition does not exist. Rather, there are several cultural units consisting of sets of characters that have different histories of descent. Results For the Iranian textiles, the Bayesian phylogenetic analyses supported the multiple coherent units hypothesis over the hierarchically integrated system hypothesis. Our analyses suggest that pile-weave designs represent a distinct cultural unit that has a different phylogenetic history compared to other textile characters. Conclusions The results from the Iranian textiles are consistent with the available ethnographic evidence, which suggests that the commercial rug market has influenced pile-rug designs but not the techniques or designs incorporated in the other textiles produced by the tribes. We anticipate that Bayesian phylogenetic tests for inferring cultural units will be of great value for researchers interested in studying the evolution of cultural traits including language, behavior, and material culture. PMID:21559083

  8. Predicting Bison Migration out of Yellowstone National Park Using Bayesian Models

    PubMed Central

    Geremia, Chris; White, P. J.; Wallen, Rick L.; Watson, Fred G. R.; Treanor, John J.; Borkowski, John; Potter, Christopher S.; Crabtree, Robert L.

    2011-01-01

    Long distance migrations by ungulate species often surpass the boundaries of preservation areas where conflicts with various publics lead to management actions that can threaten populations. We chose the partially migratory bison (Bison bison) population in Yellowstone National Park as an example of integrating science into management policies to better conserve migratory ungulates. Approximately 60% of these bison have been exposed to bovine brucellosis and thousands of migrants exiting the park boundary have been culled during the past two decades to reduce the risk of disease transmission to cattle. Data were assimilated using models representing competing hypotheses of bison migration during 1990–2009 in a hierarchal Bayesian framework. Migration differed at the scale of herds, but a single unifying logistic model was useful for predicting migrations by both herds. Migration beyond the northern park boundary was affected by herd size, accumulated snow water equivalent, and aboveground dried biomass. Migration beyond the western park boundary was less influenced by these predictors and process model performance suggested an important control on recent migrations was excluded. Simulations of migrations over the next decade suggest that allowing increased numbers of bison beyond park boundaries during severe climate conditions may be the only means of avoiding episodic, large-scale reductions to the Yellowstone bison population in the foreseeable future. This research is an example of how long distance migration dynamics can be incorporated into improved management policies. PMID:21340035

  9. Predicting coin flips: using resampling and hierarchical models to help untangle the NHL's shoot-out.

    PubMed

    Lopez, Michael J; Schuckers, Michael

    2017-05-01

    Roughly 14% of regular season National Hockey League games since the 2005-06 season have been decided by a shoot-out, and the resulting allocation of points has impacted play-off races each season. But despite interest from fans, players and league officials, there is little in the way of published research on team or individual shoot-out performance. This manuscript attempts to fill that void. We present both generalised linear mixed model and Bayesian hierarchical model frameworks to model shoot-out outcomes, with results suggesting that there are (i) small but statistically significant talent gaps between shooters, (ii) marginal differences in performance among netminders and (iii) few, if any, predictors of player success after accounting for individual talent. We also provide a resampling strategy to highlight a selection bias with respect to shooter assignment, in which coaches choose their most skilled offensive players early in shoot-out rounds and are less likely to select players with poor past performances. Finally, given that per-shot data for shoot-outs do not currently exist in a single location for public use, we provide both our data and source code for other researchers interested in studying shoot-out outcomes.

  10. Bayesian dynamic modeling of time series of dengue disease case counts.

    PubMed

    Martínez-Bello, Daniel Adyro; López-Quílez, Antonio; Torres-Prieto, Alexander

    2017-07-01

    The aim of this study is to model the association between weekly time series of dengue case counts and meteorological variables, in a high-incidence city of Colombia, applying Bayesian hierarchical dynamic generalized linear models over the period January 2008 to August 2015. Additionally, we evaluate the model's short-term performance for predicting dengue cases. The methodology shows dynamic Poisson log link models including constant or time-varying coefficients for the meteorological variables. Calendar effects were modeled using constant or first- or second-order random walk time-varying coefficients. The meteorological variables were modeled using constant coefficients and first-order random walk time-varying coefficients. We applied Markov Chain Monte Carlo simulations for parameter estimation, and deviance information criterion statistic (DIC) for model selection. We assessed the short-term predictive performance of the selected final model, at several time points within the study period using the mean absolute percentage error. The results showed the best model including first-order random walk time-varying coefficients for calendar trend and first-order random walk time-varying coefficients for the meteorological variables. Besides the computational challenges, interpreting the results implies a complete analysis of the time series of dengue with respect to the parameter estimates of the meteorological effects. We found small values of the mean absolute percentage errors at one or two weeks out-of-sample predictions for most prediction points, associated with low volatility periods in the dengue counts. We discuss the advantages and limitations of the dynamic Poisson models for studying the association between time series of dengue disease and meteorological variables. The key conclusion of the study is that dynamic Poisson models account for the dynamic nature of the variables involved in the modeling of time series of dengue disease, producing useful

  11. Modelling habitat associations with fingernail clam (Family: Sphaeriidae) counts at multiple spatial scales using hierarchical count models

    USGS Publications Warehouse

    Gray, B.R.; Haro, R.J.; Rogala, J.T.; Sauer, J.S.

    2005-01-01

    1. Macroinvertebrate count data often exhibit nested or hierarchical structure. Examples include multiple measurements along each of a set of streams, and multiple synoptic measurements from each of a set of ponds. With data exhibiting hierarchical structure, outcomes at both sampling (e.g. Within stream) and aggregated (e.g. Stream) scales are often of interest. Unfortunately, methods for modelling hierarchical count data have received little attention in the ecological literature. 2. We demonstrate the use of hierarchical count models using fingernail clam (Family: Sphaeriidae) count data and habitat predictors derived from sampling and aggregated spatial scales. The sampling scale corresponded to that of a standard Ponar grab (0.052 m(2)) and the aggregated scale to impounded and backwater regions within 38-197 km reaches of the Upper Mississippi River. Impounded and backwater regions were resampled annually for 10 years. Consequently, measurements on clams were nested within years. Counts were treated as negative binomial random variates, and means from each resampling event as random departures from the impounded and backwater region grand means. 3. Clam models were improved by the addition of covariates that varied at both the sampling and regional scales. Substrate composition varied at the sampling scale and was associated with model improvements, and reductions (for a given mean) in variance at the sampling scale. Inorganic suspended solids (ISS) levels, measured in the summer preceding sampling, also yielded model improvements and were associated with reductions in variances at the regional rather than sampling scales. ISS levels were negatively associated with mean clam counts. 4. Hierarchical models allow hierarchically structured data to be modelled without ignoring information specific to levels of the hierarchy. In addition, information at each hierarchical level may be modelled as functions of covariates that themselves vary by and within levels. As

  12. Bayesian selection of misspecified models is overconfident and may cause spurious posterior probabilities for phylogenetic trees.

    PubMed

    Yang, Ziheng; Zhu, Tianqi

    2018-02-20

    The Bayesian method is noted to produce spuriously high posterior probabilities for phylogenetic trees in analysis of large datasets, but the precise reasons for this overconfidence are unknown. In general, the performance of Bayesian selection of misspecified models is poorly understood, even though this is of great scientific interest since models are never true in real data analysis. Here we characterize the asymptotic behavior of Bayesian model selection and show that when the competing models are equally wrong, Bayesian model selection exhibits surprising and polarized behaviors in large datasets, supporting one model with full force while rejecting the others. If one model is slightly less wrong than the other, the less wrong model will eventually win when the amount of data increases, but the method may become overconfident before it becomes reliable. We suggest that this extreme behavior may be a major factor for the spuriously high posterior probabilities for evolutionary trees. The philosophical implications of our results to the application of Bayesian model selection to evaluate opposing scientific hypotheses are yet to be explored, as are the behaviors of non-Bayesian methods in similar situations.

  13. Higher-Order Item Response Models for Hierarchical Latent Traits

    ERIC Educational Resources Information Center

    Huang, Hung-Yu; Wang, Wen-Chung; Chen, Po-Hsi; Su, Chi-Ming

    2013-01-01

    Many latent traits in the human sciences have a hierarchical structure. This study aimed to develop a new class of higher order item response theory models for hierarchical latent traits that are flexible in accommodating both dichotomous and polytomous items, to estimate both item and person parameters jointly, to allow users to specify…

  14. Impact of censoring on learning Bayesian networks in survival modelling.

    PubMed

    Stajduhar, Ivan; Dalbelo-Basić, Bojana; Bogunović, Nikola

    2009-11-01

    Bayesian networks are commonly used for presenting uncertainty and covariate interactions in an easily interpretable way. Because of their efficient inference and ability to represent causal relationships, they are an excellent choice for medical decision support systems in diagnosis, treatment, and prognosis. Although good procedures for learning Bayesian networks from data have been defined, their performance in learning from censored survival data has not been widely studied. In this paper, we explore how to use these procedures to learn about possible interactions between prognostic factors and their influence on the variate of interest. We study how censoring affects the probability of learning correct Bayesian network structures. Additionally, we analyse the potential usefulness of the learnt models for predicting the time-independent probability of an event of interest. We analysed the influence of censoring with a simulation on synthetic data sampled from randomly generated Bayesian networks. We used two well-known methods for learning Bayesian networks from data: a constraint-based method and a score-based method. We compared the performance of each method under different levels of censoring to those of the naive Bayes classifier and the proportional hazards model. We did additional experiments on several datasets from real-world medical domains. The machine-learning methods treated censored cases in the data as event-free. We report and compare results for several commonly used model evaluation metrics. On average, the proportional hazards method outperformed other methods in most censoring setups. As part of the simulation study, we also analysed structural similarities of the learnt networks. Heavy censoring, as opposed to no censoring, produces up to a 5% surplus and up to 10% missing total arcs. It also produces up to 50% missing arcs that should originally be connected to the variate of interest. Presented methods for learning Bayesian networks from

  15. Reuse, Recycle, Reweigh: Combating Influenza through Efficient Sequential Bayesian Computation for Massive Data.

    PubMed

    Tom, Jennifer A; Sinsheimer, Janet S; Suchard, Marc A

    Massive datasets in the gigabyte and terabyte range combined with the availability of increasingly sophisticated statistical tools yield analyses at the boundary of what is computationally feasible. Compromising in the face of this computational burden by partitioning the dataset into more tractable sizes results in stratified analyses, removed from the context that justified the initial data collection. In a Bayesian framework, these stratified analyses generate intermediate realizations, often compared using point estimates that fail to account for the variability within and correlation between the distributions these realizations approximate. However, although the initial concession to stratify generally precludes the more sensible analysis using a single joint hierarchical model, we can circumvent this outcome and capitalize on the intermediate realizations by extending the dynamic iterative reweighting MCMC algorithm. In doing so, we reuse the available realizations by reweighting them with importance weights, recycling them into a now tractable joint hierarchical model. We apply this technique to intermediate realizations generated from stratified analyses of 687 influenza A genomes spanning 13 years allowing us to revisit hypotheses regarding the evolutionary history of influenza within a hierarchical statistical framework.

  16. Reuse, Recycle, Reweigh: Combating Influenza through Efficient Sequential Bayesian Computation for Massive Data

    PubMed Central

    Tom, Jennifer A.; Sinsheimer, Janet S.; Suchard, Marc A.

    2015-01-01

    Massive datasets in the gigabyte and terabyte range combined with the availability of increasingly sophisticated statistical tools yield analyses at the boundary of what is computationally feasible. Compromising in the face of this computational burden by partitioning the dataset into more tractable sizes results in stratified analyses, removed from the context that justified the initial data collection. In a Bayesian framework, these stratified analyses generate intermediate realizations, often compared using point estimates that fail to account for the variability within and correlation between the distributions these realizations approximate. However, although the initial concession to stratify generally precludes the more sensible analysis using a single joint hierarchical model, we can circumvent this outcome and capitalize on the intermediate realizations by extending the dynamic iterative reweighting MCMC algorithm. In doing so, we reuse the available realizations by reweighting them with importance weights, recycling them into a now tractable joint hierarchical model. We apply this technique to intermediate realizations generated from stratified analyses of 687 influenza A genomes spanning 13 years allowing us to revisit hypotheses regarding the evolutionary history of influenza within a hierarchical statistical framework. PMID:26681992

  17. Bayesian dynamic modeling of time series of dengue disease case counts

    PubMed Central

    López-Quílez, Antonio; Torres-Prieto, Alexander

    2017-01-01

    The aim of this study is to model the association between weekly time series of dengue case counts and meteorological variables, in a high-incidence city of Colombia, applying Bayesian hierarchical dynamic generalized linear models over the period January 2008 to August 2015. Additionally, we evaluate the model’s short-term performance for predicting dengue cases. The methodology shows dynamic Poisson log link models including constant or time-varying coefficients for the meteorological variables. Calendar effects were modeled using constant or first- or second-order random walk time-varying coefficients. The meteorological variables were modeled using constant coefficients and first-order random walk time-varying coefficients. We applied Markov Chain Monte Carlo simulations for parameter estimation, and deviance information criterion statistic (DIC) for model selection. We assessed the short-term predictive performance of the selected final model, at several time points within the study period using the mean absolute percentage error. The results showed the best model including first-order random walk time-varying coefficients for calendar trend and first-order random walk time-varying coefficients for the meteorological variables. Besides the computational challenges, interpreting the results implies a complete analysis of the time series of dengue with respect to the parameter estimates of the meteorological effects. We found small values of the mean absolute percentage errors at one or two weeks out-of-sample predictions for most prediction points, associated with low volatility periods in the dengue counts. We discuss the advantages and limitations of the dynamic Poisson models for studying the association between time series of dengue disease and meteorological variables. The key conclusion of the study is that dynamic Poisson models account for the dynamic nature of the variables involved in the modeling of time series of dengue disease, producing useful

  18. Hierarchical modeling of molecular energies using a deep neural network

    NASA Astrophysics Data System (ADS)

    Lubbers, Nicholas; Smith, Justin S.; Barros, Kipton

    2018-06-01

    We introduce the Hierarchically Interacting Particle Neural Network (HIP-NN) to model molecular properties from datasets of quantum calculations. Inspired by a many-body expansion, HIP-NN decomposes properties, such as energy, as a sum over hierarchical terms. These terms are generated from a neural network—a composition of many nonlinear transformations—acting on a representation of the molecule. HIP-NN achieves the state-of-the-art performance on a dataset of 131k ground state organic molecules and predicts energies with 0.26 kcal/mol mean absolute error. With minimal tuning, our model is also competitive on a dataset of molecular dynamics trajectories. In addition to enabling accurate energy predictions, the hierarchical structure of HIP-NN helps to identify regions of model uncertainty.

  19. Bayesian Models for Streamflow and River Network Reconstruction using Tree Rings

    NASA Astrophysics Data System (ADS)

    Ravindranath, A.; Devineni, N.

    2016-12-01

    Water systems face non-stationary, dynamically shifting risks due to shifting societal conditions and systematic long-term variations in climate manifesting as quasi-periodic behavior on multi-decadal time scales. Water systems are thus vulnerable to long periods of wet or dry hydroclimatic conditions. Streamflow is a major component of water systems and a primary means by which water is transported to serve ecosystems' and human needs. Thus, our concern is in understanding streamflow variability. Climate variability and impacts on water resources are crucial factors affecting streamflow, and multi-scale variability increases risk to water sustainability and systems. Dam operations are necessary for collecting water brought by streamflow while maintaining downstream ecological health. Rules governing dam operations are based on streamflow records that are woefully short compared to periods of systematic variation present in the climatic factors driving streamflow variability and non-stationarity. We use hierarchical Bayesian regression methods in order to reconstruct paleo-streamflow records for dams within a basin using paleoclimate proxies (e.g. tree rings) to guide the reconstructions. The riverine flow network for the entire basin is subsequently modeled hierarchically using feeder stream and tributary flows. This is a starting point in analyzing streamflow variability and risks to water systems, and developing a scientifically-informed dynamic risk management framework for formulating dam operations and water policies to best hedge such risks. We will apply this work to the Missouri and Delaware River Basins (DRB). Preliminary results of streamflow reconstructions for eight dams in the upper DRB using standard Gaussian regression with regional tree ring chronologies give streamflow records that now span two to two and a half centuries, and modestly smoothed versions of these reconstructed flows indicate physically-justifiable trends in the time series.

  20. A Bayesian model for visual space perception

    NASA Technical Reports Server (NTRS)

    Curry, R. E.

    1972-01-01

    A model for visual space perception is proposed that contains desirable features in the theories of Gibson and Brunswik. This model is a Bayesian processor of proximal stimuli which contains three important elements: an internal model of the Markov process describing the knowledge of the distal world, the a priori distribution of the state of the Markov process, and an internal model relating state to proximal stimuli. The universality of the model is discussed and it is compared with signal detection theory models. Experimental results of Kinchla are used as a special case.

  1. A Bayesian approach to model structural error and input variability in groundwater modeling

    NASA Astrophysics Data System (ADS)

    Xu, T.; Valocchi, A. J.; Lin, Y. F. F.; Liang, F.

    2015-12-01

    Effective water resource management typically relies on numerical models to analyze groundwater flow and solute transport processes. Model structural error (due to simplification and/or misrepresentation of the "true" environmental system) and input forcing variability (which commonly arises since some inputs are uncontrolled or estimated with high uncertainty) are ubiquitous in groundwater models. Calibration that overlooks errors in model structure and input data can lead to biased parameter estimates and compromised predictions. We present a fully Bayesian approach for a complete assessment of uncertainty for spatially distributed groundwater models. The approach explicitly recognizes stochastic input and uses data-driven error models based on nonparametric kernel methods to account for model structural error. We employ exploratory data analysis to assist in specifying informative prior for error models to improve identifiability. The inference is facilitated by an efficient sampling algorithm based on DREAM-ZS and a parameter subspace multiple-try strategy to reduce the required number of forward simulations of the groundwater model. We demonstrate the Bayesian approach through a synthetic case study of surface-ground water interaction under changing pumping conditions. It is found that explicit treatment of errors in model structure and input data (groundwater pumping rate) has substantial impact on the posterior distribution of groundwater model parameters. Using error models reduces predictive bias caused by parameter compensation. In addition, input variability increases parametric and predictive uncertainty. The Bayesian approach allows for a comparison among the contributions from various error sources, which could inform future model improvement and data collection efforts on how to best direct resources towards reducing predictive uncertainty.

  2. Modeling Bivariate Longitudinal Hormone Profiles by Hierarchical State Space Models.

    PubMed

    Liu, Ziyue; Cappola, Anne R; Crofford, Leslie J; Guo, Wensheng

    2014-01-01

    The hypothalamic-pituitary-adrenal (HPA) axis is crucial in coping with stress and maintaining homeostasis. Hormones produced by the HPA axis exhibit both complex univariate longitudinal profiles and complex relationships among different hormones. Consequently, modeling these multivariate longitudinal hormone profiles is a challenging task. In this paper, we propose a bivariate hierarchical state space model, in which each hormone profile is modeled by a hierarchical state space model, with both population-average and subject-specific components. The bivariate model is constructed by concatenating the univariate models based on the hypothesized relationship. Because of the flexible framework of state space form, the resultant models not only can handle complex individual profiles, but also can incorporate complex relationships between two hormones, including both concurrent and feedback relationship. Estimation and inference are based on marginal likelihood and posterior means and variances. Computationally efficient Kalman filtering and smoothing algorithms are used for implementation. Application of the proposed method to a study of chronic fatigue syndrome and fibromyalgia reveals that the relationships between adrenocorticotropic hormone and cortisol in the patient group are weaker than in healthy controls.

  3. Comparing models for perfluorooctanoic acid pharmacokinetics using Bayesian analysis.

    PubMed

    Wambaugh, John F; Barton, Hugh A; Setzer, R Woodrow

    2008-12-01

    Selecting the appropriate pharmacokinetic (PK) model given the available data is investigated for perfluorooctanoic acid (PFOA), which has been widely analyzed with an empirical, one-compartment model. This research examined the results of experiments [Kemper R. A., DuPont Haskell Laboratories, USEPA Administrative Record AR-226.1499 (2003)] that administered single oral or iv doses of PFOA to adult male and female rats. PFOA concentration was observed over time; in plasma for some animals and in fecal and urinary excretion for others. There were four rats per dose group, for a total of 36 males and 36 females. Assuming that the PK parameters for each individual within a gender were drawn from the same, biologically varying population, plasma and excretion data were jointly analyzed using a hierarchical framework to separate uncertainty due to measurement error from actual biological variability. Bayesian analysis using Markov Chain Monte Carlo (MCMC) provides tools to perform such an analysis as well as quantitative diagnostics to evaluate and discriminate between models. Starting from a one-compartment PK model with separate clearances to urine and feces, the model was incrementally expanded using Bayesian measures to assess if the expansion was supported by the data. PFOA excretion is sexually dimorphic in rats; male rats have bi-phasic elimination that is roughly 40 times slower than that of the females, which appear to have a single elimination phase. The male and female data were analyzed separately, keeping only the parameters describing the measurement process in common. For male rats, including excretion data initially decreased certainty in the one-compartment parameter estimates compared to an analysis using plasma data only. Allowing a third, unspecified clearance improved agreement and increased certainty when all the data was used, however a significant amount of eliminated PFOA was estimated to be missing from the excretion data. Adding an additional

  4. Using Bayesian Stable Isotope Mixing Models to Enhance Marine Ecosystem Models

    EPA Science Inventory

    The use of stable isotopes in food web studies has proven to be a valuable tool for ecologists. We investigated the use of Bayesian stable isotope mixing models as constraints for an ecosystem model of a temperate seagrass system on the Atlantic coast of France. δ13C and δ15N i...

  5. Bayesian Spatiotemporal Pattern and Eco-climatological Drivers of Striped Skunk Rabies in the North Central Plains

    PubMed Central

    Raghavan, Ram K.; Hanlon, Cathleen A.; Goodin, Douglas G.; Anderson, Gary A.

    2016-01-01

    Striped skunks are one of the most important terrestrial reservoirs of rabies virus in North America, and yet the prevalence of rabies among this host is only passively monitored and the disease among this host remains largely unmanaged. Oral vaccination campaigns have not efficiently targeted striped skunks, while periodic spillovers of striped skunk variant viruses to other animals, including some domestic animals, are routinely recorded. In this study we evaluated the spatial and spatio-temporal patterns of infection status among striped skunk cases submitted for rabies testing in the North Central Plains of US in a Bayesian hierarchical framework, and also evaluated potential eco-climatological drivers of such patterns. Two Bayesian hierarchical models were fitted to point-referenced striped skunk rabies cases [n = 656 (negative), and n = 310 (positive)] received at a leading rabies diagnostic facility between the years 2007–2013. The first model included only spatial and temporal terms and a second covariate model included additional covariates representing eco-climatic conditions within a 4km2 home-range area for striped skunks. The better performing covariate model indicated the presence of significant spatial and temporal trends in the dataset and identified higher amounts of land covered by low-intensity developed areas [Odds ratio (OR) = 3.41; 95% Bayesian Credible Intervals (CrI) = 2.08, 3.85], higher level of patch fragmentation (OR = 1.70; 95% CrI = 1.25, 2.89), and diurnal temperature range (OR = 0.54; 95% CrI = 0.27, 0.91) to be important drivers of striped skunk rabies incidence in the study area. Model validation statistics indicated satisfactory performance for both models; however, the covariate model fared better. The findings of this study are important in the context of rabies management among striped skunks in North America, and the relevance of physical and climatological factors as risk factors for skunk to human rabies transmission and

  6. Finding Bayesian Optimal Designs for Nonlinear Models: A Semidefinite Programming-Based Approach.

    PubMed

    Duarte, Belmiro P M; Wong, Weng Kee

    2015-08-01

    This paper uses semidefinite programming (SDP) to construct Bayesian optimal design for nonlinear regression models. The setup here extends the formulation of the optimal designs problem as an SDP problem from linear to nonlinear models. Gaussian quadrature formulas (GQF) are used to compute the expectation in the Bayesian design criterion, such as D-, A- or E-optimality. As an illustrative example, we demonstrate the approach using the power-logistic model and compare results in the literature. Additionally, we investigate how the optimal design is impacted by different discretising schemes for the design space, different amounts of uncertainty in the parameter values, different choices of GQF and different prior distributions for the vector of model parameters, including normal priors with and without correlated components. Further applications to find Bayesian D-optimal designs with two regressors for a logistic model and a two-variable generalised linear model with a gamma distributed response are discussed, and some limitations of our approach are noted.

  7. Finding Bayesian Optimal Designs for Nonlinear Models: A Semidefinite Programming-Based Approach

    PubMed Central

    Duarte, Belmiro P. M.; Wong, Weng Kee

    2014-01-01

    Summary This paper uses semidefinite programming (SDP) to construct Bayesian optimal design for nonlinear regression models. The setup here extends the formulation of the optimal designs problem as an SDP problem from linear to nonlinear models. Gaussian quadrature formulas (GQF) are used to compute the expectation in the Bayesian design criterion, such as D-, A- or E-optimality. As an illustrative example, we demonstrate the approach using the power-logistic model and compare results in the literature. Additionally, we investigate how the optimal design is impacted by different discretising schemes for the design space, different amounts of uncertainty in the parameter values, different choices of GQF and different prior distributions for the vector of model parameters, including normal priors with and without correlated components. Further applications to find Bayesian D-optimal designs with two regressors for a logistic model and a two-variable generalised linear model with a gamma distributed response are discussed, and some limitations of our approach are noted. PMID:26512159

  8. A Bayesian hierarchical model to detect differentially methylated loci from single nucleotide resolution sequencing data

    PubMed Central

    Feng, Hao; Conneely, Karen N.; Wu, Hao

    2014-01-01

    DNA methylation is an important epigenetic modification that has essential roles in cellular processes including gene regulation, development and disease and is widely dysregulated in most types of cancer. Recent advances in sequencing technology have enabled the measurement of DNA methylation at single nucleotide resolution through methods such as whole-genome bisulfite sequencing and reduced representation bisulfite sequencing. In DNA methylation studies, a key task is to identify differences under distinct biological contexts, for example, between tumor and normal tissue. A challenge in sequencing studies is that the number of biological replicates is often limited by the costs of sequencing. The small number of replicates leads to unstable variance estimation, which can reduce accuracy to detect differentially methylated loci (DML). Here we propose a novel statistical method to detect DML when comparing two treatment groups. The sequencing counts are described by a lognormal-beta-binomial hierarchical model, which provides a basis for information sharing across different CpG sites. A Wald test is developed for hypothesis testing at each CpG site. Simulation results show that the proposed method yields improved DML detection compared to existing methods, particularly when the number of replicates is low. The proposed method is implemented in the Bioconductor package DSS. PMID:24561809

  9. Driver injury severity outcome analysis in rural interstate highway crashes: a two-level Bayesian logistic regression interpretation.

    PubMed

    Chen, Cong; Zhang, Guohui; Liu, Xiaoyue Cathy; Ci, Yusheng; Huang, Helai; Ma, Jianming; Chen, Yanyan; Guan, Hongzhi

    2016-12-01

    There is a high potential of severe injury outcomes in traffic crashes on rural interstate highways due to the significant amount of high speed traffic on these corridors. Hierarchical Bayesian models are capable of incorporating between-crash variance and within-crash correlations into traffic crash data analysis and are increasingly utilized in traffic crash severity analysis. This paper applies a hierarchical Bayesian logistic model to examine the significant factors at crash and vehicle/driver levels and their heterogeneous impacts on driver injury severity in rural interstate highway crashes. Analysis results indicate that the majority of the total variance is induced by the between-crash variance, showing the appropriateness of the utilized hierarchical modeling approach. Three crash-level variables and six vehicle/driver-level variables are found significant in predicting driver injury severities: road curve, maximum vehicle damage in a crash, number of vehicles in a crash, wet road surface, vehicle type, driver age, driver gender, driver seatbelt use and driver alcohol or drug involvement. Among these variables, road curve, functional and disabled vehicle damage in crash, single-vehicle crashes, female drivers, senior drivers, motorcycles and driver alcohol or drug involvement tend to increase the odds of drivers being incapably injured or killed in rural interstate crashes, while wet road surface, male drivers and driver seatbelt use are more likely to decrease the probability of severe driver injuries. The developed methodology and estimation results provide insightful understanding of the internal mechanism of rural interstate crashes and beneficial references for developing effective countermeasures for rural interstate crash prevention. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Predicting coastal cliff erosion using a Bayesian probabilistic model

    USGS Publications Warehouse

    Hapke, Cheryl J.; Plant, Nathaniel G.

    2010-01-01

    Regional coastal cliff retreat is difficult to model due to the episodic nature of failures and the along-shore variability of retreat events. There is a growing demand, however, for predictive models that can be used to forecast areas vulnerable to coastal erosion hazards. Increasingly, probabilistic models are being employed that require data sets of high temporal density to define the joint probability density function that relates forcing variables (e.g. wave conditions) and initial conditions (e.g. cliff geometry) to erosion events. In this study we use a multi-parameter Bayesian network to investigate correlations between key variables that control and influence variations in cliff retreat processes. The network uses Bayesian statistical methods to estimate event probabilities using existing observations. Within this framework, we forecast the spatial distribution of cliff retreat along two stretches of cliffed coast in Southern California. The input parameters are the height and slope of the cliff, a descriptor of material strength based on the dominant cliff-forming lithology, and the long-term cliff erosion rate that represents prior behavior. The model is forced using predicted wave impact hours. Results demonstrate that the Bayesian approach is well-suited to the forward modeling of coastal cliff retreat, with the correct outcomes forecast in 70–90% of the modeled transects. The model also performs well in identifying specific locations of high cliff erosion, thus providing a foundation for hazard mapping. This approach can be employed to predict cliff erosion at time-scales ranging from storm events to the impacts of sea-level rise at the century-scale.

  11. On the Adequacy of Bayesian Evaluations of Categorization Models: Reply to Vanpaemel and Lee (2012)

    ERIC Educational Resources Information Center

    Wills, Andy J.; Pothos, Emmanuel M.

    2012-01-01

    Vanpaemel and Lee (2012) argued, and we agree, that the comparison of formal models can be facilitated by Bayesian methods. However, Bayesian methods neither precede nor supplant our proposals (Wills & Pothos, 2012), as Bayesian methods can be applied both to our proposals and to their polar opposites. Furthermore, the use of Bayesian methods to…

  12. Bayesian Estimation of the Logistic Positive Exponent IRT Model

    ERIC Educational Resources Information Center

    Bolfarine, Heleno; Bazan, Jorge Luis

    2010-01-01

    A Bayesian inference approach using Markov Chain Monte Carlo (MCMC) is developed for the logistic positive exponent (LPE) model proposed by Samejima and for a new skewed Logistic Item Response Theory (IRT) model, named Reflection LPE model. Both models lead to asymmetric item characteristic curves (ICC) and can be appropriate because a symmetric…

  13. Hierarchical and coupling model of factors influencing vessel traffic flow.

    PubMed

    Liu, Zhao; Liu, Jingxian; Li, Huanhuan; Li, Zongzhi; Tan, Zhirong; Liu, Ryan Wen; Liu, Yi

    2017-01-01

    Understanding the characteristics of vessel traffic flow is crucial in maintaining navigation safety, efficiency, and overall waterway transportation management. Factors influencing vessel traffic flow possess diverse features such as hierarchy, uncertainty, nonlinearity, complexity, and interdependency. To reveal the impact mechanism of the factors influencing vessel traffic flow, a hierarchical model and a coupling model are proposed in this study based on the interpretative structural modeling method. The hierarchical model explains the hierarchies and relationships of the factors using a graph. The coupling model provides a quantitative method that explores interaction effects of factors using a coupling coefficient. The coupling coefficient is obtained by determining the quantitative indicators of the factors and their weights. Thereafter, the data obtained from Port of Tianjin is used to verify the proposed coupling model. The results show that the hierarchical model of the factors influencing vessel traffic flow can explain the level, structure, and interaction effect of the factors; the coupling model is efficient in analyzing factors influencing traffic volumes. The proposed method can be used for analyzing increases in vessel traffic flow in waterway transportation system.

  14. On the Bayesian Nonparametric Generalization of IRT-Type Models

    ERIC Educational Resources Information Center

    San Martin, Ernesto; Jara, Alejandro; Rolin, Jean-Marie; Mouchart, Michel

    2011-01-01

    We study the identification and consistency of Bayesian semiparametric IRT-type models, where the uncertainty on the abilities' distribution is modeled using a prior distribution on the space of probability measures. We show that for the semiparametric Rasch Poisson counts model, simple restrictions ensure the identification of a general…

  15. Prediction of community prevalence of human onchocerciasis in the Amazonian onchocerciasis focus: Bayesian approach.

    PubMed Central

    Carabin, Hélène; Escalona, Marisela; Marshall, Clare; Vivas-Martínez, Sarai; Botto, Carlos; Joseph, Lawrence; Basáñez, María-Gloria

    2003-01-01

    OBJECTIVE: To develop a Bayesian hierarchical model for human onchocerciasis with which to explore the factors that influence prevalence of microfilariae in the Amazonian focus of onchocerciasis and predict the probability of any community being at least mesoendemic (>20% prevalence of microfilariae), and thus in need of priority ivermectin treatment. METHODS: Models were developed with data from 732 individuals aged > or =15 years who lived in 29 Yanomami communities along four rivers of the south Venezuelan Orinoco basin. The models' abilities to predict prevalences of microfilariae in communities were compared. The deviance information criterion, Bayesian P-values, and residual values were used to select the best model with an approximate cross-validation procedure. FINDINGS: A three-level model that acknowledged clustering of infection within communities performed best, with host age and sex included at the individual level, a river-dependent altitude effect at the community level, and additional clustering of communities along rivers. This model correctly classified 25/29 (86%) villages with respect to their need for priority ivermectin treatment. CONCLUSION: Bayesian methods are a flexible and useful approach for public health research and control planning. Our model acknowledges the clustering of infection within communities, allows investigation of links between individual- or community-specific characteristics and infection, incorporates additional uncertainty due to missing covariate data, and informs policy decisions by predicting the probability that a new community is at least mesoendemic. PMID:12973640

  16. Linking big models to big data: efficient ecosystem model calibration through Bayesian model emulation

    NASA Astrophysics Data System (ADS)

    Fer, I.; Kelly, R.; Andrews, T.; Dietze, M.; Richardson, A. D.

    2016-12-01

    Our ability to forecast ecosystems is limited by how well we parameterize ecosystem models. Direct measurements for all model parameters are not always possible and inverse estimation of these parameters through Bayesian methods is computationally costly. A solution to computational challenges of Bayesian calibration is to approximate the posterior probability surface using a Gaussian Process that emulates the complex process-based model. Here we report the integration of this method within an ecoinformatics toolbox, Predictive Ecosystem Analyzer (PEcAn), and its application with two ecosystem models: SIPNET and ED2.1. SIPNET is a simple model, allowing application of MCMC methods both to the model itself and to its emulator. We used both approaches to assimilate flux (CO2 and latent heat), soil respiration, and soil carbon data from Bartlett Experimental Forest. This comparison showed that emulator is reliable in terms of convergence to the posterior distribution. A 10000-iteration MCMC analysis with SIPNET itself required more than two orders of magnitude greater computation time than an MCMC run of same length with its emulator. This difference would be greater for a more computationally demanding model. Validation of the emulator-calibrated SIPNET against both the assimilated data and out-of-sample data showed improved fit and reduced uncertainty around model predictions. We next applied the validated emulator method to the ED2, whose complexity precludes standard Bayesian data assimilation. We used the ED2 emulator to assimilate demographic data from a network of inventory plots. For validation of the calibrated ED2, we compared the model to results from Empirical Succession Mapping (ESM), a novel synthesis of successional patterns in Forest Inventory and Analysis data. Our results revealed that while the pre-assimilation ED2 formulation cannot capture the emergent demographic patterns from ESM analysis, constrained model parameters controlling demographic

  17. A Hierarchical Rater Model for Constructed Responses, with a Signal Detection Rater Model

    ERIC Educational Resources Information Center

    DeCarlo, Lawrence T.; Kim, YoungKoung; Johnson, Matthew S.

    2011-01-01

    The hierarchical rater model (HRM) recognizes the hierarchical structure of data that arises when raters score constructed response items. In this approach, raters' scores are not viewed as being direct indicators of examinee proficiency but rather as indicators of essay quality; the (latent categorical) quality of an examinee's essay in turn…

  18. Constraint of soil moisture on CO2 efflux from tundra lichen, moss, and tussock in Council, Alaska, using a hierarchical Bayesian model

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Nishina, K.; Chae, N.; Park, S. J.; Yoon, Y. J.; Lee, B. Y.

    2014-10-01

    The tundra ecosystem is quite vulnerable to drastic climate change in the Arctic, and the quantification of carbon dynamics is of significant importance regarding thawing permafrost, changes to the snow-covered period and snow and shrub community extent, and the decline of sea ice in the Arctic. Here, CO2 efflux measurements using a manual chamber system within a 40 m × 40 m (5 m interval; 81 total points) plot were conducted within dominant tundra vegetation on the Seward Peninsula of Alaska, during the growing seasons of 2011 and 2012, for the assessment of driving parameters of CO2 efflux. We applied a hierarchical Bayesian (HB) model - a function of soil temperature, soil moisture, vegetation type, and thaw depth - to quantify the effects of environmental factors on CO2 efflux and to estimate growing season CO2 emissions. Our results showed that average CO2 efflux in 2011 was 1.4 times higher than in 2012, resulting from the distinct difference in soil moisture between the 2 years. Tussock-dominated CO2 efflux is 1.4 to 2.3 times higher than those measured in lichen and moss communities, revealing tussock as a significant CO2 source in the Arctic, with a wide area distribution on the circumpolar scale. CO2 efflux followed soil temperature nearly exponentially from both the observed data and the posterior medians of the HB model. This reveals that soil temperature regulates the seasonal variation of CO2 efflux and that soil moisture contributes to the interannual variation of CO2 efflux for the two growing seasons in question. Obvious changes in soil moisture during the growing seasons of 2011 and 2012 resulted in an explicit difference between CO2 effluxes - 742 and 539 g CO2 m-2 period-1 for 2011 and 2012, respectively, suggesting the 2012 CO2 emission rate was reduced to 27% (95% credible interval: 17-36%) of the 2011 emission, due to higher soil moisture from severe rain. The estimated growing season CO2 emission rate ranged from 0.86 Mg CO2 in 2012 to 1

  19. Constraint of soil moisture on CO2 efflux from tundra lichen, moss, and tussock in Council, Alaska using a hierarchical Bayesian model

    NASA Astrophysics Data System (ADS)

    Kim, Y.; Nishina, K.; Chae, N.; Park, S.; Yoon, Y.; Lee, B.

    2014-04-01

    The tundra ecosystem is quite vulnerable to drastic climate change in the Arctic, and the quantification of carbon dynamics is of significant importance in response to thawing permafrost, changes in the snow-covered period and snow and shrub community extent, and the decline of sea ice in the Arctic. Here, CO2 efflux measurements using a manual chamber system within a 40 m × 40 m (5 m interval; 81 total points) plot were conducted in dominant tundra vegetation on the Seward Peninsula of Alaska, during the growing seasons of 2011 and 2012, for the assessment of the driving parameters of CO2 efflux. We applied a hierarchical Bayesian (HB) model - which is a function of soil temperature, soil moisture, vegetation type and thaw depth - to quantify the effect of environmental parameters on CO2 efflux, and to estimate growing season CO2 emission. Our results showed that average CO2 efflux in 2011 is 1.4-fold higher than in 2012, resulting from the distinct difference in soil moisture between the two years. Tussock-dominated CO2 efflux is 1.4 to 2.3 times higher than those measured in lichen and moss communities, reflecting tussock as a significant CO2 source in the Arctic, with wide area distribution on a circumpolar scale. CO2 efflux followed soil temperature nearly exponentially from both the observed data and the posterior medians of the HB model. This reveals soil temperature as the most important parameter in regulating CO2 efflux, rather than soil moisture and thaw depth. Obvious changes in soil moisture during the growing seasons of 2011 and 2012 resulted in an explicit difference in CO2 efflux - 742 and 539 g CO2 m-2 period-1 in 2011 and 2012, respectively, suggesting that the 2012 CO2 emission rate was constrained by 27% (95% credible interval: 17-36%) compared to 2011, due to higher soil moisture from severe rain. Estimated growing season CO2 emission rate ranged from 0.86 Mg CO2 period-1 in 2012 to 1.2 Mg CO2 period-1 in 2011 within a 40 m × 40 m plot

  20. A Bayesian modification to the Jelinski-Moranda software reliability growth model

    NASA Technical Reports Server (NTRS)

    Littlewood, B.; Sofer, A.

    1983-01-01

    The Jelinski-Moranda (JM) model for software reliability was examined. It is suggested that a major reason for the poor results given by this model is the poor performance of the maximum likelihood method (ML) of parameter estimation. A reparameterization and Bayesian analysis, involving a slight modelling change, are proposed. It is shown that this new Bayesian-Jelinski-Moranda model (BJM) is mathematically quite tractable, and several metrics of interest to practitioners are obtained. The BJM and JM models are compared by using several sets of real software failure data collected and in all cases the BJM model gives superior reliability predictions. A change in the assumption which underlay both models to present the debugging process more accurately is discussed.

  1. Simple and Hierarchical Models for Stochastic Test Misgrading.

    ERIC Educational Resources Information Center

    Wang, Jianjun

    1993-01-01

    Test misgrading is treated as a stochastic process. The expected number of misgradings, inter-occurrence time of misgradings, and waiting time for the "n"th misgrading are discussed based on a simple Poisson model and a hierarchical Beta-Poisson model. Examples of model construction are given. (SLD)

  2. Hierarchic plate and shell models based on p-extension

    NASA Technical Reports Server (NTRS)

    Szabo, Barna A.; Sahrmann, Glenn J.

    1988-01-01

    Formulations of finite element models for beams, arches, plates and shells based on the principle of virtual work was studied. The focus is on computer implementation of hierarchic sequences of finite element models suitable for numerical solution of a large variety of practical problems which may concurrently contain thin and thick plates and shells, stiffeners, and regions where three dimensional representation is required. The approximate solutions corresponding to the hierarchic sequence of models converge to the exact solution of the fully three dimensional model. The stopping criterion is based on: (1) estimation of the relative error in energy norm; (2) equilibrium tests, and (3) observation of the convergence of quantities of interest.

  3. Hierarchical Boltzmann simulations and model error estimation

    NASA Astrophysics Data System (ADS)

    Torrilhon, Manuel; Sarna, Neeraj

    2017-08-01

    A hierarchical simulation approach for Boltzmann's equation should provide a single numerical framework in which a coarse representation can be used to compute gas flows as accurately and efficiently as in computational fluid dynamics, but a subsequent refinement allows to successively improve the result to the complete Boltzmann result. We use Hermite discretization, or moment equations, for the steady linearized Boltzmann equation for a proof-of-concept of such a framework. All representations of the hierarchy are rotationally invariant and the numerical method is formulated on fully unstructured triangular and quadrilateral meshes using a implicit discontinuous Galerkin formulation. We demonstrate the performance of the numerical method on model problems which in particular highlights the relevance of stability of boundary conditions on curved domains. The hierarchical nature of the method allows also to provide model error estimates by comparing subsequent representations. We present various model errors for a flow through a curved channel with obstacles.

  4. A Bayesian Multilevel Model for Microcystin Prediction in ...

    EPA Pesticide Factsheets

    The frequency of cyanobacteria blooms in North American lakes is increasing. A major concernwith rising cyanobacteria blooms is microcystin, a common cyanobacterial hepatotoxin. Toexplore the conditions that promote high microcystin concentrations, we analyzed the US EPANational Lake Assessment (NLA) dataset collected in the summer of 2007. The NLA datasetis reported for nine eco-regions. We used the results of random forest modeling as a means ofvariable selection from which we developed a Bayesian multilevel model of microcystin concentrations.Model parameters under a multilevel modeling framework are eco-region specific, butthey are also assumed to be exchangeable across eco-regions for broad continental scaling. Theexchangeability assumption ensures that both the common patterns and eco-region specific featureswill be reflected in the model. Furthermore, the method incorporates appropriate estimatesof uncertainty. Our preliminary results show associations between microcystin and turbidity, totalnutrients, and N:P ratios. The NLA 2012 will be used for Bayesian updating. The results willhelp develop management strategies to alleviate microcystin impacts and improve lake quality. This work provides a probabilistic framework for predicting microcystin presences in lakes. It would allow for insights to be made about how changes in nutrient concentrations could potentially change toxin levels.

  5. Automatic thoracic anatomy segmentation on CT images using hierarchical fuzzy models and registration

    NASA Astrophysics Data System (ADS)

    Sun, Kaioqiong; Udupa, Jayaram K.; Odhner, Dewey; Tong, Yubing; Torigian, Drew A.

    2014-03-01

    This paper proposes a thoracic anatomy segmentation method based on hierarchical recognition and delineation guided by a built fuzzy model. Labeled binary samples for each organ are registered and aligned into a 3D fuzzy set representing the fuzzy shape model for the organ. The gray intensity distributions of the corresponding regions of the organ in the original image are recorded in the model. The hierarchical relation and mean location relation between different organs are also captured in the model. Following the hierarchical structure and location relation, the fuzzy shape model of different organs is registered to the given target image to achieve object recognition. A fuzzy connected delineation method is then used to obtain the final segmentation result of organs with seed points provided by recognition. The hierarchical structure and location relation integrated in the model provide the initial parameters for registration and make the recognition efficient and robust. The 3D fuzzy model combined with hierarchical affine registration ensures that accurate recognition can be obtained for both non-sparse and sparse organs. The results on real images are presented and shown to be better than a recently reported fuzzy model-based anatomy recognition strategy.

  6. Modeling Bivariate Longitudinal Hormone Profiles by Hierarchical State Space Models

    PubMed Central

    Liu, Ziyue; Cappola, Anne R.; Crofford, Leslie J.; Guo, Wensheng

    2013-01-01

    The hypothalamic-pituitary-adrenal (HPA) axis is crucial in coping with stress and maintaining homeostasis. Hormones produced by the HPA axis exhibit both complex univariate longitudinal profiles and complex relationships among different hormones. Consequently, modeling these multivariate longitudinal hormone profiles is a challenging task. In this paper, we propose a bivariate hierarchical state space model, in which each hormone profile is modeled by a hierarchical state space model, with both population-average and subject-specific components. The bivariate model is constructed by concatenating the univariate models based on the hypothesized relationship. Because of the flexible framework of state space form, the resultant models not only can handle complex individual profiles, but also can incorporate complex relationships between two hormones, including both concurrent and feedback relationship. Estimation and inference are based on marginal likelihood and posterior means and variances. Computationally efficient Kalman filtering and smoothing algorithms are used for implementation. Application of the proposed method to a study of chronic fatigue syndrome and fibromyalgia reveals that the relationships between adrenocorticotropic hormone and cortisol in the patient group are weaker than in healthy controls. PMID:24729646

  7. A Bayesian estimation of a stochastic predator-prey model of economic fluctuations

    NASA Astrophysics Data System (ADS)

    Dibeh, Ghassan; Luchinsky, Dmitry G.; Luchinskaya, Daria D.; Smelyanskiy, Vadim N.

    2007-06-01

    In this paper, we develop a Bayesian framework for the empirical estimation of the parameters of one of the best known nonlinear models of the business cycle: The Marx-inspired model of a growth cycle introduced by R. M. Goodwin. The model predicts a series of closed cycles representing the dynamics of labor's share and the employment rate in the capitalist economy. The Bayesian framework is used to empirically estimate a modified Goodwin model. The original model is extended in two ways. First, we allow for exogenous periodic variations of the otherwise steady growth rates of the labor force and productivity per worker. Second, we allow for stochastic variations of those parameters. The resultant modified Goodwin model is a stochastic predator-prey model with periodic forcing. The model is then estimated using a newly developed Bayesian estimation method on data sets representing growth cycles in France and Italy during the years 1960-2005. Results show that inference of the parameters of the stochastic Goodwin model can be achieved. The comparison of the dynamics of the Goodwin model with the inferred values of parameters demonstrates quantitative agreement with the growth cycle empirical data.

  8. Estimating virus occurrence using Bayesian modeling in multiple drinking water systems of the United States

    USGS Publications Warehouse

    Varughese, Eunice A.; Brinkman, Nichole E; Anneken, Emily M; Cashdollar, Jennifer S; Fout, G. Shay; Furlong, Edward T.; Kolpin, Dana W.; Glassmeyer, Susan T.; Keely, Scott P

    2017-01-01

    incorporated into a Bayesian model to more accurately determine viral load in both source and treated water. Results of the Bayesian model indicated that viruses are present in source water and treated water. By using a Bayesian framework that incorporates inhibition, as well as many other parameters that affect viral detection, this study offers an approach for more accurately estimating the occurrence of viral pathogens in environmental waters.

  9. The Bayesian reader: explaining word recognition as an optimal Bayesian decision process.

    PubMed

    Norris, Dennis

    2006-04-01

    This article presents a theory of visual word recognition that assumes that, in the tasks of word identification, lexical decision, and semantic categorization, human readers behave as optimal Bayesian decision makers. This leads to the development of a computational model of word recognition, the Bayesian reader. The Bayesian reader successfully simulates some of the most significant data on human reading. The model accounts for the nature of the function relating word frequency to reaction time and identification threshold, the effects of neighborhood density and its interaction with frequency, and the variation in the pattern of neighborhood density effects seen in different experimental tasks. Both the general behavior of the model and the way the model predicts different patterns of results in different tasks follow entirely from the assumption that human readers approximate optimal Bayesian decision makers. ((c) 2006 APA, all rights reserved).

  10. A flexible Bayesian hierarchical model of preterm birth risk among US Hispanic subgroups in relation to maternal nativity and education

    PubMed Central

    2011-01-01

    Background Previous research has documented heterogeneity in the effects of maternal education on adverse birth outcomes by nativity and Hispanic subgroup in the United States. In this article, we considered the risk of preterm birth (PTB) using 9 years of vital statistics birth data from New York City. We employed finer categorizations of exposure than used previously and estimated the risk dose-response across the range of education by nativity and ethnicity. Methods Using Bayesian random effects logistic regression models with restricted quadratic spline terms for years of completed maternal education, we calculated and plotted the estimated posterior probabilities of PTB (gestational age < 37 weeks) for each year of education by ethnic and nativity subgroups adjusted for only maternal age, as well as with more extensive covariate adjustments. We then estimated the posterior risk difference between native and foreign born mothers by ethnicity over the continuous range of education exposures. Results The risk of PTB varied substantially by education, nativity and ethnicity. Native born groups showed higher absolute risk of PTB and declining risk associated with higher levels of education beyond about 10 years, as did foreign-born Puerto Ricans. For most other foreign born groups, however, risk of PTB was flatter across the education range. For Mexicans, Central Americans, Dominicans, South Americans and "Others", the protective effect of foreign birth diminished progressively across the educational range. Only for Puerto Ricans was there no nativity advantage for the foreign born, although small numbers of foreign born Cubans limited precision of estimates for that group. Conclusions Using flexible Bayesian regression models with random effects allowed us to estimate absolute risks without strong modeling assumptions. Risk comparisons for any sub-groups at any exposure level were simple to calculate. Shrinkage of posterior estimates through the use of random

  11. A flexible Bayesian hierarchical model of preterm birth risk among US Hispanic subgroups in relation to maternal nativity and education.

    PubMed

    Kaufman, Jay S; MacLehose, Richard F; Torrone, Elizabeth A; Savitz, David A

    2011-04-19

    Previous research has documented heterogeneity in the effects of maternal education on adverse birth outcomes by nativity and Hispanic subgroup in the United States. In this article, we considered the risk of preterm birth (PTB) using 9 years of vital statistics birth data from New York City. We employed finer categorizations of exposure than used previously and estimated the risk dose-response across the range of education by nativity and ethnicity. Using Bayesian random effects logistic regression models with restricted quadratic spline terms for years of completed maternal education, we calculated and plotted the estimated posterior probabilities of PTB (gestational age < 37 weeks) for each year of education by ethnic and nativity subgroups adjusted for only maternal age, as well as with more extensive covariate adjustments. We then estimated the posterior risk difference between native and foreign born mothers by ethnicity over the continuous range of education exposures. The risk of PTB varied substantially by education, nativity and ethnicity. Native born groups showed higher absolute risk of PTB and declining risk associated with higher levels of education beyond about 10 years, as did foreign-born Puerto Ricans. For most other foreign born groups, however, risk of PTB was flatter across the education range. For Mexicans, Central Americans, Dominicans, South Americans and "Others", the protective effect of foreign birth diminished progressively across the educational range. Only for Puerto Ricans was there no nativity advantage for the foreign born, although small numbers of foreign born Cubans limited precision of estimates for that group. Using flexible Bayesian regression models with random effects allowed us to estimate absolute risks without strong modeling assumptions. Risk comparisons for any sub-groups at any exposure level were simple to calculate. Shrinkage of posterior estimates through the use of random effects allowed for finer categorization of

  12. Hierarchical and coupling model of factors influencing vessel traffic flow

    PubMed Central

    Liu, Jingxian; Li, Huanhuan; Li, Zongzhi; Tan, Zhirong; Liu, Ryan Wen; Liu, Yi

    2017-01-01

    Understanding the characteristics of vessel traffic flow is crucial in maintaining navigation safety, efficiency, and overall waterway transportation management. Factors influencing vessel traffic flow possess diverse features such as hierarchy, uncertainty, nonlinearity, complexity, and interdependency. To reveal the impact mechanism of the factors influencing vessel traffic flow, a hierarchical model and a coupling model are proposed in this study based on the interpretative structural modeling method. The hierarchical model explains the hierarchies and relationships of the factors using a graph. The coupling model provides a quantitative method that explores interaction effects of factors using a coupling coefficient. The coupling coefficient is obtained by determining the quantitative indicators of the factors and their weights. Thereafter, the data obtained from Port of Tianjin is used to verify the proposed coupling model. The results show that the hierarchical model of the factors influencing vessel traffic flow can explain the level, structure, and interaction effect of the factors; the coupling model is efficient in analyzing factors influencing traffic volumes. The proposed method can be used for analyzing increases in vessel traffic flow in waterway transportation system. PMID:28414747

  13. Continuum damage modeling and simulation of hierarchical dental enamel

    NASA Astrophysics Data System (ADS)

    Ma, Songyun; Scheider, Ingo; Bargmann, Swantje

    2016-05-01

    Dental enamel exhibits high fracture toughness and stiffness due to a complex hierarchical and graded microstructure, optimally organized from nano- to macro-scale. In this study, a 3D representative volume element (RVE) model is adopted to study the deformation and damage behavior of the fibrous microstructure. A continuum damage mechanics model coupled to hyperelasticity is developed for modeling the initiation and evolution of damage in the mineral fibers as well as protein matrix. Moreover, debonding of the interface between mineral fiber and protein is captured by employing a cohesive zone model. The dependence of the failure mechanism on the aspect ratio of the mineral fibers is investigated. In addition, the effect of the interface strength on the damage behavior is studied with respect to geometric features of enamel. Further, the effect of an initial flaw on the overall mechanical properties is analyzed to understand the superior damage tolerance of dental enamel. The simulation results are validated by comparison to experimental data from micro-cantilever beam testing at two hierarchical levels. The transition of the failure mechanism at different hierarchical levels is also well reproduced in the simulations.

  14. Developing a Hierarchical Model for the Spatial Analysis of PM10 Pollution Extremes in the Mexico City Metropolitan Area

    PubMed Central

    Aguirre-Salado, Alejandro Ivan; Vaquera-Huerta, Humberto; Aguirre-Salado, Carlos Arturo; Reyes-Mora, Silvia; Olvera-Cervantes, Ana Delia; Lancho-Romero, Guillermo Arturo; Soubervielle-Montalvo, Carlos

    2017-01-01

    We implemented a spatial model for analysing PM10 maxima across the Mexico City metropolitan area during the period 1995–2016. We assumed that these maxima follow a non-identical generalized extreme value (GEV) distribution and modeled the trend by introducing multivariate smoothing spline functions into the probability GEV distribution. A flexible, three-stage hierarchical Bayesian approach was developed to analyse the distribution of the PM10 maxima in space and time. We evaluated the statistical model’s performance by using a simulation study. The results showed strong evidence of a positive correlation between the PM10 maxima and the longitude and latitude. The relationship between time and the PM10 maxima was negative, indicating a decreasing trend over time. Finally, a high risk of PM10 maxima presenting levels above 1000 μg/m3 (return period: 25 yr) was observed in the northwestern region of the study area. PMID:28684720

  15. Invited commentary: Lost in estimation--searching for alternatives to markov chains to fit complex Bayesian models.

    PubMed

    Molitor, John

    2012-03-01

    Bayesian methods have seen an increase in popularity in a wide variety of scientific fields, including epidemiology. One of the main reasons for their widespread application is the power of the Markov chain Monte Carlo (MCMC) techniques generally used to fit these models. As a result, researchers often implicitly associate Bayesian models with MCMC estimation procedures. However, Bayesian models do not always require Markov-chain-based methods for parameter estimation. This is important, as MCMC estimation methods, while generally quite powerful, are complex and computationally expensive and suffer from convergence problems related to the manner in which they generate correlated samples used to estimate probability distributions for parameters of interest. In this issue of the Journal, Cole et al. (Am J Epidemiol. 2012;175(5):368-375) present an interesting paper that discusses non-Markov-chain-based approaches to fitting Bayesian models. These methods, though limited, can overcome some of the problems associated with MCMC techniques and promise to provide simpler approaches to fitting Bayesian models. Applied researchers will find these estimation approaches intuitively appealing and will gain a deeper understanding of Bayesian models through their use. However, readers should be aware that other non-Markov-chain-based methods are currently in active development and have been widely published in other fields.

  16. Modeling urban air pollution with optimized hierarchical fuzzy inference system.

    PubMed

    Tashayo, Behnam; Alimohammadi, Abbas

    2016-10-01

    Environmental exposure assessments (EEA) and epidemiological studies require urban air pollution models with appropriate spatial and temporal resolutions. Uncertain available data and inflexible models can limit air pollution modeling techniques, particularly in under developing countries. This paper develops a hierarchical fuzzy inference system (HFIS) to model air pollution under different land use, transportation, and meteorological conditions. To improve performance, the system treats the issue as a large-scale and high-dimensional problem and develops the proposed model using a three-step approach. In the first step, a geospatial information system (GIS) and probabilistic methods are used to preprocess the data. In the second step, a hierarchical structure is generated based on the problem. In the third step, the accuracy and complexity of the model are simultaneously optimized with a multiple objective particle swarm optimization (MOPSO) algorithm. We examine the capabilities of the proposed model for predicting daily and annual mean PM2.5 and NO2 and compare the accuracy of the results with representative models from existing literature. The benefits provided by the model features, including probabilistic preprocessing, multi-objective optimization, and hierarchical structure, are precisely evaluated by comparing five different consecutive models in terms of accuracy and complexity criteria. Fivefold cross validation is used to assess the performance of the generated models. The respective average RMSEs and coefficients of determination (R (2)) for the test datasets using proposed model are as follows: daily PM2.5 = (8.13, 0.78), annual mean PM2.5 = (4.96, 0.80), daily NO2 = (5.63, 0.79), and annual mean NO2 = (2.89, 0.83). The obtained results demonstrate that the developed hierarchical fuzzy inference system can be utilized for modeling air pollution in EEA and epidemiological studies.

  17. BASiCS: Bayesian Analysis of Single-Cell Sequencing Data

    PubMed Central

    Vallejos, Catalina A.; Marioni, John C.; Richardson, Sylvia

    2015-01-01

    Single-cell mRNA sequencing can uncover novel cell-to-cell heterogeneity in gene expression levels in seemingly homogeneous populations of cells. However, these experiments are prone to high levels of unexplained technical noise, creating new challenges for identifying genes that show genuine heterogeneous expression within the population of cells under study. BASiCS (Bayesian Analysis of Single-Cell Sequencing data) is an integrated Bayesian hierarchical model where: (i) cell-specific normalisation constants are estimated as part of the model parameters, (ii) technical variability is quantified based on spike-in genes that are artificially introduced to each analysed cell’s lysate and (iii) the total variability of the expression counts is decomposed into technical and biological components. BASiCS also provides an intuitive detection criterion for highly (or lowly) variable genes within the population of cells under study. This is formalised by means of tail posterior probabilities associated to high (or low) biological cell-to-cell variance contributions, quantities that can be easily interpreted by users. We demonstrate our method using gene expression measurements from mouse Embryonic Stem Cells. Cross-validation and meaningful enrichment of gene ontology categories within genes classified as highly (or lowly) variable supports the efficacy of our approach. PMID:26107944

  18. BASiCS: Bayesian Analysis of Single-Cell Sequencing Data.

    PubMed

    Vallejos, Catalina A; Marioni, John C; Richardson, Sylvia

    2015-06-01

    Single-cell mRNA sequencing can uncover novel cell-to-cell heterogeneity in gene expression levels in seemingly homogeneous populations of cells. However, these experiments are prone to high levels of unexplained technical noise, creating new challenges for identifying genes that show genuine heterogeneous expression within the population of cells under study. BASiCS (Bayesian Analysis of Single-Cell Sequencing data) is an integrated Bayesian hierarchical model where: (i) cell-specific normalisation constants are estimated as part of the model parameters, (ii) technical variability is quantified based on spike-in genes that are artificially introduced to each analysed cell's lysate and (iii) the total variability of the expression counts is decomposed into technical and biological components. BASiCS also provides an intuitive detection criterion for highly (or lowly) variable genes within the population of cells under study. This is formalised by means of tail posterior probabilities associated to high (or low) biological cell-to-cell variance contributions, quantities that can be easily interpreted by users. We demonstrate our method using gene expression measurements from mouse Embryonic Stem Cells. Cross-validation and meaningful enrichment of gene ontology categories within genes classified as highly (or lowly) variable supports the efficacy of our approach.

  19. A Bayesian Approach for Analyzing Longitudinal Structural Equation Models

    ERIC Educational Resources Information Center

    Song, Xin-Yuan; Lu, Zhao-Hua; Hser, Yih-Ing; Lee, Sik-Yum

    2011-01-01

    This article considers a Bayesian approach for analyzing a longitudinal 2-level nonlinear structural equation model with covariates, and mixed continuous and ordered categorical variables. The first-level model is formulated for measures taken at each time point nested within individuals for investigating their characteristics that are dynamically…

  20. Bayesian Estimation of the DINA Model with Gibbs Sampling

    ERIC Educational Resources Information Center

    Culpepper, Steven Andrew

    2015-01-01

    A Bayesian model formulation of the deterministic inputs, noisy "and" gate (DINA) model is presented. Gibbs sampling is employed to simulate from the joint posterior distribution of item guessing and slipping parameters, subject attribute parameters, and latent class probabilities. The procedure extends concepts in Béguin and Glas,…