Science.gov

Sample records for higgs boson coupling

  1. Determining triple gauge boson couplings from Higgs data.

    PubMed

    Corbett, Tyler; Éboli, O J P; Gonzalez-Fraile, J; Gonzalez-Garcia, M C

    2013-07-01

    In the framework of effective Lagrangians with the SU(2)(L)×U(1)(Y) symmetry linearly realized, modifications of the couplings of the Higgs field to the electroweak gauge bosons are related to anomalous triple gauge couplings (TGCs). Here, we show that the analysis of the latest Higgs boson production data at the LHC and Tevatron give rise to strong bounds on TGCs that are complementary to those from direct TGC analysis. We present the constraints on TGCs obtained by combining all available data on direct TGC studies and on Higgs production analysis. PMID:23862992

  2. Limits on Higgs boson couplings in Effective field theory

    NASA Astrophysics Data System (ADS)

    Belyaev, N.; Reid, T.

    2016-02-01

    We review the Effective Field Theory (EFT) to make projections on physics beyond the Standard Model in the Higgs sector. We provide relations between the non-Standard Model couplings of the Strongly-Interacting Light Higgs (SILH) effective Lagrangian implemented in the eHDecay package and the corresponding terms of the spin-0 Higgs Characterisation model's effective Lagrangian used with the aMC@NLO Monte Carlo generator. Constraints on BSM couplings are determined on the basis of existing experimental limits on Higgs boson width and branching ratios.

  3. Higgs boson couplings to bosons with the ATLAS detector: Run 1 legacy

    NASA Astrophysics Data System (ADS)

    Petit, E.; Atlas Collaboration

    2016-07-01

    The final ATLAS measurements of Higgs boson production and couplings in the decay channels H → ZZ^{(*)} → ℓℓℓℓ , H → γγ and H → WW(*) → ℓ νℓ ν are presented, based on the run 1 of the LHC. The analyses are optimised to measure the number of observed Higgs boson decays divided by the corresponding Standard Model predictions for individual Higgs boson production processes. Total, fiducial and differential cross-sections are also measured. No significant deviations from the predictions of the Standard Model are found.

  4. Measuring the Higgs-bottom coupling in weak boson fusion

    NASA Astrophysics Data System (ADS)

    Englert, Christoph; Mattelaer, Olivier; Spannowsky, Michael

    2016-05-01

    We study Higgs production through weak boson fusion with subsequent decay to bottom quarks. By combining jet substructure techniques and matrix element methods in different limits we motivate this channel as a probe of the bottom-Yukawa interactions in the boosted regime. In particular we ameliorate the "no-go" results of cut-and-count analyses in this channel. After applying a data-driven reconstruction approach we find that the Higgs-bottom coupling can be limited to 0.82

  5. Trilinear gauge boson couplings in the gauge—Higgs unification

    NASA Astrophysics Data System (ADS)

    Adachi, Yuki; Maru, Nobuhito

    2016-07-01

    We examine trilinear gauge boson couplings (TGCs) in the context of the SU(3)_W⊗ U(1)' gauge-Higgs unification scenario. The TGCs play important roles in probes of the physics beyond the standard model, since they are highly restricted by the experiments. We discuss the mass spectrum of the neutral gauge boson with brane-localized mass terms carefully and find that the TGCs and ρ parameter may deviate from standard model predictions. Finally, we put a constraint on these observables and discuss the possible parameter space.

  6. Prospects for measuring the Higgs boson coupling to light quarks

    NASA Astrophysics Data System (ADS)

    Perez, Gilad; Soreq, Yotam; Stamou, Emmanuel; Tobioka, Kohsaku

    2016-01-01

    We discuss the prospects to probe the light-quark Yukawa couplings to the Higgs boson. The Higgs coupling to the charm quark can be probed both via inclusive and exclusive approaches. On the inclusive frontier, we use our recently proposed method together with published experimental studies for the sensitivity of the Higgs coupling to bottom quarks to find that the high-luminosity LHC can be sensitive to modifications of the charm Yukawa of the order of a few times its standard model (SM) value. We also present a preliminary study of this mode for a 100 TeV hadronic machine (with similar luminosity) and find that the bound can be further improved, possibly within the reach of the expected signal in the SM. On the exclusive frontier, we use the recent ATLAS search for charmonia and photon final state. This study yields the first measurement of the background relevant to these modes. Using this background measurement we project that at the high-luminosity LHC, unless the analysis strategy is changed, the sensitivity of the exclusive final state to the charm Yukawa to the charm Yukawa will be rather poor, of the order of 50 times the SM coupling. We then use a Monte-Carlo study to rescale the above backgrounds to the h →ϕ γ case and obtain a much weaker sensitivity to the strange Yukawa, of order of 3000 times the SM value. We briefly speculate what would be required to improve the prospects of the exclusive modes.

  7. Constraints on new phenomena via Higgs boson couplings and invisible decays with the ATLAS detector

    NASA Astrophysics Data System (ADS)

    Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Aben, R.; Abolins, M.; AbouZeid, O. S.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Adelman, J.; Adomeit, S.; Adye, T.; Affolder, A. A.; Agatonovic-Jovin, T.; Agricola, J.; Aguilar-Saavedra, J. A.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akerstedt, H.; Åkesson, T. P. A.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albrand, S.; Alconada Verzini, M. J.; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexopoulos, T.; Alhroob, M.; Alimonti, G.; Alio, L.; Alison, J.; Alkire, S. P.; Allbrooke, B. M. M.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Altheimer, A.; Alvarez Gonzalez, B.; Álvarez Piqueras, D.; Alviggi, M. G.; Amadio, B. T.; Amako, K.; Amaral Coutinho, Y.; Amelung, C.; Amidei, D.; Amor Dos Santos, S. P.; Amorim, A.; Amoroso, S.; Amram, N.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anders, J. K.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Angelidakis, S.; Angelozzi, I.; Anger, P.; Angerami, A.; Anghinolfi, F.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antonelli, M.; Antonov, A.; Antos, J.; Anulli, F.; Aoki, M.; Aperio Bella, L.; Arabidze, G.; Arai, Y.; Araque, J. P.; Arce, A. T. H.; Arduh, F. A.; Arguin, J.-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnal, V.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Asai, S.; Asbah, N.; Ashkenazi, A.; Åsman, B.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Augsten, K.; Aurousseau, M.; Avolio, G.; Axen, B.; Ayoub, M. K.; Azuelos, G.; Baak, M. A.; Baas, A. E.; Baca, M. J.; Bacci, C.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Bagiacchi, P.; Bagnaia, P.; Bai, Y.; Bain, T.; Baines, J. T.; Baker, O. K.; Baldin, E. M.; Balek, P.; Balestri, T.; Balli, F.; Balunas, W. K.; Banas, E.; Banerjee, Sw.; Bannoura, A. A. E.; Bansil, H. S.; Barak, L.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnes, S. L.; Barnett, B. M.; Barnett, R. M.; Barnovska, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Bartoldus, R.; Barton, A. E.; Bartos, P.; Basalaev, A.; Bassalat, A.; Basye, A.; Bates, R. L.; Batista, S. J.; Batley, J. R.; Battaglia, M.; Bauce, M.; Bauer, F.; Bawa, H. S.; Beacham, J. B.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, M.; Beckingham, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bee, C. P.; Beemster, L. J.; Beermann, T. A.; Begel, M.; Behr, J. K.; Belanger-Champagne, C.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Benary, O.; Benchekroun, D.; Bender, M.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez Garcia, J. A.; Benjamin, D. P.; Bensinger, J. R.; Bentvelsen, S.; Beresford, L.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Beringer, J.; Bernard, C.; Bernard, N. R.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertolucci, F.; Bertsche, C.; Bertsche, D.; Besana, M. I.; Besjes, G. J.; Bessidskaia Bylund, O.; Bessner, M.; Besson, N.; Betancourt, C.; Bethke, S.; Bevan, A. J.; Bhimji, W.; Bianchi, R. M.; Bianchini, L.; Bianco, M.; Biebel, O.; Biedermann, D.; Bieniek, S. P.; Biglietti, M.; Bilbao De Mendizabal, J.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biondi, S.; Bjergaard, D. M.; Black, C. W.; Black, J. E.; Black, K. M.; Blackburn, D.; Blair, R. E.; Blanchard, J.-B.; Blanco, J. E.; Blazek, T.; Bloch, I.; Blocker, C.; Blum, W.; Blumenschein, U.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boehler, M.; Bogaerts, J. A.; Bogavac, D.; Bogdanchikov, A. G.; Bohm, C.; Boisvert, V.; Bold, T.; Boldea, V.; Boldyrev, A. S.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Borroni, S.; Bortfeldt, J.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Boudreau, J.; Bouffard, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Bousson, N.; Boutle, S. K.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozic, I.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Brazzale, S. F.; Breaden Madden, W. D.; Brendlinger, K.; Brennan, A. J.; Brenner, L.; Brenner, R.; Bressler, S.; Bristow, K.; Bristow, T. M.; Britton, D.; Britzger, D.; Brochu, F. M.; Brock, I.; Brock, R.; Bronner, J.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Brown, J.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Bruni, A.; Bruni, G.; Bruschi, M.; Bruscino, N.; Bryngemark, L.; Buanes, T.; Buat, Q.; Buchholz, P.; Buckley, A. G.; Buda, S. I.; Budagov, I. A.; Buehrer, F.; Bugge, L.; Bugge, M. K.; Bulekov, O.; Bullock, D.; Burckhart, H.; Burdin, S.; Burgard, C. D.; Burghgrave, B.; Burke, S.; Burmeister, I.; Busato, E.; Büscher, D.; Büscher, V.; Bussey, P.; Butler, J. M.; Butt, A. I.; Buttar, C. M.; Butterworth, J. M.; Butti, P.; Buttinger, W.; Buzatu, A.; Buzykaev, A. R.; Cabrera Urbán, S.; Caforio, D.; Cairo, V. M.; Cakir, O.; Calace, N.; Calafiura, P.; Calandri, A.; Calderini, G.; Calfayan, P.; Caloba, L. P.; Calvet, D.; Calvet, S.; Camacho Toro, R.; Camarda, S.; Camarri, P.; Cameron, D.; Caminal Armadans, R.; Campana, S.; Campanelli, M.; Campoverde, A.; Canale, V.; Canepa, A.; Cano Bret, M.; Cantero, J.; Cantrill, R.; Cao, T.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capua, M.; Caputo, R.; Cardarelli, R.; Cardillo, F.; Carli, T.; Carlino, G.; Carminati, L.; Caron, S.; Carquin, E.; Carrillo-Montoya, G. D.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Casolino, M.; Castaneda-Miranda, E.; Castelli, A.; Castillo Gimenez, V.; Castro, N. F.; Catastini, P.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Caudron, J.; Cavaliere, V.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerio, B. C.; Cerny, K.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cerv, M.; Cervelli, A.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chalupkova, I.; Chang, P.; Chapman, J. D.; Charlton, D. G.; Chau, C. C.; Chavez Barajas, C. A.; Cheatham, S.; Chegwidden, A.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, K.; Chen, L.; Chen, S.; Chen, S.; Chen, X.; Chen, Y.; Cheng, H. C.; Cheng, Y.; Cheplakov, A.; Cheremushkina, E.; Cherkaoui El Moursli, R.; Chernyatin, V.; Cheu, E.; Chevalier, L.; Chiarella, V.; Chiarelli, G.; Chiodini, G.; Chisholm, A. S.; Chislett, R. T.; Chitan, A.; Chizhov, M. V.; Choi, K.; Chouridou, S.; Chow, B. K. B.; Christodoulou, V.; Chromek-Burckhart, D.; Chudoba, J.; Chuinard, A. J.; Chwastowski, J. J.; Chytka, L.; Ciapetti, G.; Ciftci, A. K.; Cinca, D.; Cindro, V.; Cioara, I. A.; Ciocio, A.; Cirotto, F.; Citron, Z. H.; Ciubancan, M.; Clark, A.; Clark, B. L.; Clark, P. J.; Clarke, R. N.; Cleland, W.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coffey, L.; Cogan, J. G.; Colasurdo, L.; Cole, B.; Cole, S.; Colijn, A. P.; Collot, J.; Colombo, T.; Compostella, G.; Conde Muiño, P.; Coniavitis, E.; Connell, S. H.; Connelly, I. A.; Consorti, V.; Constantinescu, S.; Conta, C.; Conti, G.; Conventi, F.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Côté, D.; Cottin, G.; Cowan, G.; Cox, B. E.; Cranmer, K.; Cree, G.; Crépé-Renaudin, S.; Crescioli, F.; Cribbs, W. A.; Crispin Ortuzar, M.; Cristinziani, M.; Croft, V.; Crosetti, G.; Cuhadar Donszelmann, T.; Cummings, J.; Curatolo, M.; Cúth, J.; Cuthbert, C.; Czirr, H.; Czodrowski, P.; D'Auria, S.; D'Onofrio, M.; Da Cunha Sargedas De Sousa, M. J.; Da Via, C.; Dabrowski, W.; Dafinca, A.; Dai, T.; Dale, O.; Dallaire, F.; Dallapiccola, C.; Dam, M.; Dandoy, J. R.; Dang, N. P.; Daniells, A. C.; Danninger, M.; Dano Hoffmann, M.; Dao, V.; Darbo, G.; Darmora, S.; Dassoulas, J.; Dattagupta, A.; Davey, W.; David, C.; Davidek, T.; Davies, E.; Davies, M.; Davison, P.; Davygora, Y.; Dawe, E.; Dawson, I.; Daya-Ishmukhametova, R. K.; De, K.; de Asmundis, R.; De Benedetti, A.; De Castro, S.; De Cecco, S.; De Groot, N.; de Jong, P.; De la Torre, H.; De Lorenzi, F.; De Pedis, D.; De Salvo, A.; De Sanctis, U.; De Santo, A.; De Vivie De Regie, J. B.; Dearnaley, W. J.; Debbe, R.; Debenedetti, C.; Dedovich, D. V.; Deigaard, I.; Del Peso, J.; Del Prete, T.; Delgove, D.; Deliot, F.; Delitzsch, C. M.; Deliyergiyev, M.; Dell'Acqua, A.; Dell'Asta, L.; Dell'Orso, M.; Della Pietra, M.; della Volpe, D.; Delmastro, M.; Delsart, P. A.; Deluca, C.; DeMarco, D. A.; Demers, S.; Demichev, M.; Demilly, A.; Denisov, S. P.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deterre, C.; Deviveiros, P. O.; Dewhurst, A.; Dhaliwal, S.; Di Ciaccio, A.; Di Ciaccio, L.; Di Domenico, A.; Di Donato, C.; Di Girolamo, A.; Di Girolamo, B.; Di Mattia, A.; Di Micco, B.; Di Nardo, R.; Di Simone, A.; Di Sipio, R.; Di Valentino, D.; Diaconu, C.; Diamond, M.; Dias, F. A.; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Diglio, S.; Dimitrievska, A.; Dingfelder, J.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Djuvsland, J. I.; do Vale, M. A. B.; Dobos, D.; Dobre, M.; Doglioni, C.; Dohmae, T.; Dolejsi, J.; Dolezal, Z.; Dolgoshein, B. A.; Donadelli, M.; Donati, S.; Dondero, P.; Donini, J.; Dopke, J.; Doria, A.; Dova, M. T.; Doyle, A. T.; Drechsler, E.; Dris, M.; Dubreuil, E.; Duchovni, E.; Duckeck, G.; Ducu, O. A.; Duda, D.; Dudarev, A.; Duflot, L.; Duguid, L.; Dührssen, M.; Dunford, M.; Duran Yildiz, H.; Düren, M.; Durglishvili, A.; Duschinger, D.; Dyndal, M.; Eckardt, C.; Ecker, K. M.; Edgar, R. C.; Edson, W.; Edwards, N. C.; Ehrenfeld, W.; Eifert, T.; Eigen, G.; Einsweiler, K.; Ekelof, T.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellinghaus, F.; Elliot, A. A.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Enari, Y.; Endner, O. C.; Endo, M.; Erdmann, J.; Ereditato, A.; Ernis, G.; Ernst, J.; Ernst, M.; Errede, S.; Ertel, E.; Escalier, M.; Esch, H.; Escobar, C.; Esposito, B.; Etienvre, A. I.; Etzion, E.; Evans, H.; Ezhilov, A.; Fabbri, L.; Facini, G.; Fakhrutdinov, R. M.; Falciano, S.; Falla, R. J.; Faltova, J.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Faucci Giannelli, M.; Favareto, A.; Fayard, L.; Federic, P.; Fedin, O. L.; Fedorko, W.; Feigl, S.; Feligioni, L.; Feng, C.; Feng, E. J.; Feng, H.; Fenyuk, A. B.; Feremenga, L.; Fernandez Martinez, P.; Fernandez Perez, S.; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferreira de Lima, D. E.; Ferrer, A.; Ferrere, D.; Ferretti, C.; Ferretto Parodi, A.; Fiascaris, M.; Fiedler, F.; Filipčič, A.; Filipuzzi, M.; Filthaut, F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, A.; Fischer, C.; Fischer, J.; Fisher, W. C.; Fitzgerald, E. A.; Flaschel, N.; Fleck, I.; Fleischmann, P.; Fleischmann, S.; Fletcher, G. T.; Fletcher, G.; Fletcher, R. R. M.; Flick, T.; Floderus, A.; Flores Castillo, L. R.; Flowerdew, M. J.; Formica, A.; Forti, A.; Fournier, D.; Fox, H.; Fracchia, S.; Francavilla, P.; Franchini, M.; Francis, D.; Franconi, L.; Franklin, M.; Frate, M.; Fraternali, M.; Freeborn, D.; French, S. T.; Friedrich, F.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fullana Torregrosa, E.; Fulsom, B. G.; Fusayasu, T.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.; Gach, G. P.; Gadatsch, S.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallop, B. J.; Gallus, P.; Galster, G.; Gan, K. K.; Gao, J.; Gao, Y.; Gao, Y. S.; Garay Walls, F. M.; Garberson, F.; García, C.; García Navarro, J. E.; Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.; Garonne, V.; Gatti, C.; Gaudiello, A.; Gaudio, G.; Gaur, B.; Gauthier, L.; Gauzzi, P.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Ge, P.; Gecse, Z.; Gee, C. N. P.; Geich-Gimbel, Ch.; Geisler, M. P.; Gemme, C.; Genest, M. H.; Gentile, S.; George, M.; George, S.; Gerbaudo, D.; Gershon, A.; Ghasemi, S.; Ghazlane, H.; Giacobbe, B.; Giagu, S.; Giangiobbe, V.; Giannetti, P.; Gibbard, B.; Gibson, S. M.; Gilchriese, M.; Gillam, T. P. S.; Gillberg, D.; Gilles, G.; Gingrich, D. M.; Giokaris, N.; Giordani, M. P.; Giorgi, F. M.; Giorgi, F. M.; Giraud, P. F.; Giromini, P.; Giugni, D.; Giuliani, C.; Giulini, M.; Gjelsten, B. K.; Gkaitatzis, S.; Gkialas, I.; Gkougkousis, E. L.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glaysher, P. C. F.; Glazov, A.; Goblirsch-Kolb, M.; Goddard, J. R.; Godlewski, J.; Goldfarb, S.; Golling, T.; Golubkov, D.; Gomes, A.; Gonçalo, R.; Goncalves Pinto Firmino Da Costa, J.; Gonella, L.; González de la Hoz, S.; Gonzalez Parra, G.; Gonzalez-Sevilla, S.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Goshaw, A. T.; Gössling, C.; Gostkin, M. I.; Goujdami, D.; Goussiou, A. G.; Govender, N.; Gozani, E.; Grabas, H. M. X.; Graber, L.; Grabowska-Bold, I.; Gradin, P. O. J.; Grafström, P.; Grahn, K.-J.; Gramling, J.; Gramstad, E.; Grancagnolo, S.; Gratchev, V.; Gray, H. M.; Graziani, E.; Greenwood, Z. D.; Grefe, C.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Griffiths, J.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Gris, Ph.; Grivaz, J.-F.; Grohs, J. P.; Grohsjean, A.; Gross, E.; Grosse-Knetter, J.; Grossi, G. C.; Grout, Z. J.; Guan, L.; Guenther, J.; Guescini, F.; Guest, D.; Gueta, O.; Guido, E.; Guillemin, T.; Guindon, S.; Gul, U.; Gumpert, C.; Guo, J.; Guo, Y.; Gupta, S.; Gustavino, G.; Gutierrez, P.; Gutierrez Ortiz, N. G.; Gutschow, C.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haber, C.; Hadavand, H. K.; Haddad, N.; Haefner, P.; Hageböck, S.; Hajduk, Z.; Hakobyan, H.; Haleem, M.; Haley, J.; Hall, D.; Halladjian, G.; Hallewell, G. D.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamilton, A.; Hamity, G. N.; Hamnett, P. G.; Han, L.; Hanagaki, K.; Hanawa, K.; Hance, M.; Haney, B.; Hanke, P.; Hanna, R.; Hansen, J. B.; Hansen, J. D.; Hansen, M. C.; Hansen, P. H.; Hara, K.; Hard, A. S.; Harenberg, T.; Hariri, F.; Harkusha, S.; Harrington, R. D.; Harrison, P. F.; Hartjes, F.; Hasegawa, M.; Hasegawa, Y.; Hasib, A.; Hassani, S.; Haug, S.; Hauser, R.; Hauswald, L.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hawkins, A. D.; Hayashi, T.; Hayden, D.; Hays, C. P.; Hays, J. M.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Heck, T.; Hedberg, V.; Heelan, L.; Heim, S.; Heim, T.; Heinemann, B.; Heinrich, L.; Hejbal, J.; Helary, L.; Hellman, S.; Hellmich, D.; Helsens, C.; Henderson, J.; Henderson, R. C. W.; Heng, Y.; Hengler, C.; Henkelmann, S.; Henrichs, A.; Henriques Correia, A. M.; Henrot-Versille, S.; Herbert, G. H.; Hernández Jiménez, Y.; Herrberg-Schubert, R.; Herten, G.; Hertenberger, R.; Hervas, L.; Hesketh, G. G.; Hessey, N. P.; Hetherly, J. W.; Hickling, R.; Higón-Rodriguez, E.; Hill, E.; Hill, J. C.; Hiller, K. H.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hinman, R. R.; Hirose, M.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoenig, F.; Hohlfeld, M.; Hohn, D.; Holmes, T. R.; Homann, M.; Hong, T. M.; Hopkins, W. H.; Horii, Y.; Horton, A. J.; Hostachy, J.-Y.; Hou, S.; Hoummada, A.; Howard, J.; Howarth, J.; Hrabovsky, M.; Hristova, I.; Hrivnac, J.; Hryn'ova, T.; Hrynevich, A.; Hsu, C.; Hsu, P. J.; Hsu, S.-C.; Hu, D.; Hu, Q.; Hu, X.; Huang, Y.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Huhtinen, M.; Hülsing, T. A.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Ideal, E.; Idrissi, Z.; Iengo, P.; Igonkina, O.; Iizawa, T.; Ikegami, Y.; Ikematsu, K.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilic, N.; Ince, T.; Introzzi, G.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Irles Quiles, A.; Isaksson, C.; Ishino, M.; Ishitsuka, M.; Ishmukhametov, R.; Issever, C.; Istin, S.; Iturbe Ponce, J. M.; Iuppa, R.; Ivarsson, J.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jabbar, S.; Jackson, B.; Jackson, M.; Jackson, P.; Jaekel, M. R.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jakubek, J.; Jamin, D. O.; Jana, D. K.; Jansen, E.; Jansky, R.; Janssen, J.; Janus, M.; Jarlskog, G.; Javadov, N.; Javůrek, T.; Jeanty, L.; Jejelava, J.; Jeng, G.-Y.; Jennens, D.; Jenni, P.; Jentzsch, J.; Jeske, C.; Jézéquel, S.; Ji, H.; Jia, J.; Jiang, Y.; Jiggins, S.; Jimenez Pena, J.; Jin, S.; Jinaru, A.; Jinnouchi, O.; Joergensen, M. D.; Johansson, P.; Johns, K. A.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, T. J.; Jongmanns, J.; Jorge, P. M.; Joshi, K. D.; Jovicevic, J.; Ju, X.; Jung, C. A.; Jussel, P.; Juste Rozas, A.; Kaci, M.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kahn, S. J.; Kajomovitz, E.; Kalderon, C. W.; Kama, S.; Kamenshchikov, A.; Kanaya, N.; Kaneti, S.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kaplan, L. S.; Kapliy, A.; Kar, D.; Karakostas, K.; Karamaoun, A.; Karastathis, N.; Kareem, M. J.; Karentzos, E.; Karnevskiy, M.; Karpov, S. N.; Karpova, Z. M.; Karthik, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kasahara, K.; Kashif, L.; Kass, R. D.; Kastanas, A.; Kataoka, Y.; Kato, C.; Katre, A.; Katzy, J.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kazama, S.; Kazanin, V. F.; Keeler, R.; Kehoe, R.; Keller, J. S.; Kempster, J. J.; Keoshkerian, H.; Kepka, O.; Kerševan, B. P.; Kersten, S.; Keyes, R. A.; Khalil-zada, F.; Khandanyan, H.; Khanov, A.; Kharlamov, A. G.; Khoo, T. J.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kido, S.; Kim, H. Y.; Kim, S. H.; Kim, Y. K.; Kimura, N.; Kind, O. M.; King, B. T.; King, M.; King, S. B.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kiss, F.; Kiuchi, K.; Kivernyk, O.; Kladiva, E.; Klein, M. H.; Klein, M.; Klein, U.; Kleinknecht, K.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klinger, J. A.; Klioutchnikova, T.; Kluge, E.-E.; Kluit, P.; Kluth, S.; Knapik, J.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Kobayashi, A.; Kobayashi, D.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koffas, T.; Koffeman, E.; Kogan, L. A.; Kohlmann, S.; Kohout, Z.; Kohriki, T.; Koi, T.; Kolanoski, H.; Kolb, M.; Koletsou, I.; Komar, A. A.; Komori, Y.; Kondo, T.; Kondrashova, N.; Köneke, K.; König, A. C.; Kono, T.; Konoplich, R.; Konstantinidis, N.; Kopeliansky, R.; Koperny, S.; Köpke, L.; Kopp, A. K.; Korcyl, K.; Kordas, K.; Korn, A.; Korol, A. A.; Korolkov, I.; Korolkova, E. V.; Kortner, O.; Kortner, S.; Kosek, T.; Kostyukhin, V. V.; Kotov, V. M.; Kotwal, A.; Kourkoumeli-Charalampidi, A.; Kourkoumelis, C.; Kouskoura, V.; Koutsman, A.; Kowalewski, R.; Kowalski, T. Z.; Kozanecki, W.; Kozhin, A. S.; Kramarenko, V. A.; Kramberger, G.; Krasnopevtsev, D.; Krasny, M. W.; Krasznahorkay, A.; Kraus, J. K.; Kravchenko, A.; Kreiss, S.; Kretz, M.; Kretzschmar, J.; Kreutzfeldt, K.; Krieger, P.; Krizka, K.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumnack, N.; Kruse, A.; Kruse, M. C.; Kruskal, M.; Kubota, T.; Kucuk, H.; Kuday, S.; Kuehn, S.; Kugel, A.; Kuger, F.; Kuhl, A.; Kuhl, T.; Kukhtin, V.; Kukla, R.; Kulchitsky, Y.; Kuleshov, S.; Kuna, M.; Kunigo, T.; Kupco, A.; Kurashige, H.; Kurochkin, Y. A.; Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; Kwan, T.; Kyriazopoulos, D.; La Rosa, A.; La Rosa Navarro, J. L.; La Rotonda, L.; Lacasta, C.; Lacava, F.; Lacey, J.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lambourne, L.; Lammers, S.; Lampen, C. L.; Lampl, W.; Lançon, E.; Landgraf, U.; Landon, M. P. J.; Lang, V. S.; Lange, J. C.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Lanza, A.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Lasagni Manghi, F.; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Law, A. T.; Laycock, P.; Lazovich, T.; Le Dortz, O.; Le Guirriec, E.; Le Menedeu, E.; LeBlanc, M.; LeCompte, T.; Ledroit-Guillon, F.; Lee, C. A.; Lee, S. C.; Lee, L.; Lefebvre, G.; Lefebvre, M.; Legger, F.; Leggett, C.; Lehan, A.; Lehmann Miotto, G.; Lei, X.; Leight, W. A.; Leisos, A.; Leister, A. G.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Leney, K. J. C.; Lenz, T.; Lenzi, B.; Leone, R.; Leone, S.; Leonidopoulos, C.; Leontsinis, S.; Leroy, C.; Lester, C. G.; Levchenko, M.; Levêque, J.; Levin, D.; Levinson, L. J.; Levy, M.; Lewis, A.; Leyko, A. M.; Leyton, M.; Li, B.; Li, H.; Li, H. L.; Li, L.; Li, L.; Li, S.; Li, X.; Li, Y.; Liang, Z.; Liao, H.; Liberti, B.; Liblong, A.; Lichard, P.; Lie, K.; Liebal, J.; Liebig, W.; Limbach, C.; Limosani, A.; Lin, S. C.; Lin, T. H.; Linde, F.; Lindquist, B. E.; Linnemann, J. T.; Lipeles, E.; Lipniacka, A.; Lisovyi, M.; Liss, T. M.; Lissauer, D.; Lister, A.; Litke, A. M.; Liu, B.; Liu, D.; Liu, H.; Liu, J.; Liu, J. B.; Liu, K.; Liu, L.; Liu, M.; Liu, M.; Liu, Y.; Livan, M.; Lleres, A.; Llorente Merino, J.; Lloyd, S. L.; Lo Sterzo, F.; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Loebinger, F. K.; Loevschall-Jensen, A. E.; Loew, K. M.; Loginov, A.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Long, B. A.; Long, J. D.; Long, R. E.; Looper, K. A.; Lopes, L.; Lopez Mateos, D.; Lopez Paredes, B.; Lopez Paz, I.; Lorenz, J.; Lorenzo Martinez, N.; Losada, M.; Lösel, P. J.; Lou, X.; Lounis, A.; Love, J.; Love, P. A.; Lu, N.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Luehring, F.; Lukas, W.; Luminari, L.; Lundberg, O.; Lund-Jensen, B.; Lynn, D.; Lysak, R.; Lytken, E.; Ma, H.; Ma, L. L.; Maccarrone, G.; Macchiolo, A.; Macdonald, C. M.; Maček, B.; Machado Miguens, J.; Macina, D.; Madaffari, D.; Madar, R.; Maddocks, H. J.; Mader, W. F.; Madsen, A.; Maeda, J.; Maeland, S.; Maeno, T.; Maevskiy, A.; Magradze, E.; Mahboubi, K.; Mahlstedt, J.; Maiani, C.; Maidantchik, C.; Maier, A. A.; Maier, T.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Malaescu, B.; Malecki, Pa.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyshev, V. M.; Malyukov, S.; Mamuzic, J.; Mancini, G.; Mandelli, B.; Mandelli, L.; Mandić, I.; Mandrysch, R.; Maneira, J.; Manfredini, A.; Manhaes de Andrade Filho, L.; Manjarres Ramos, J.; Mann, A.; Manousakis-Katsikakis, A.; Mansoulie, B.; Mantifel, R.; Mantoani, M.; Mapelli, L.; March, L.; Marchiori, G.; Marcisovsky, M.; Marino, C. P.; Marjanovic, M.; Marley, D. E.; Marroquim, F.; Marsden, S. P.; Marshall, Z.; Marti, L. F.; Marti-Garcia, S.; Martin, B.; Martin, T. A.; Martin, V. J.; Martin dit Latour, B.; Martinez, M.; Martin-Haugh, S.; Martoiu, V. S.; Martyniuk, A. C.; Marx, M.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, I.; Massa, L.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mättig, P.; Mattmann, J.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mazini, R.; Mazza, S. M.; Mazzaferro, L.; Mc Goldrick, G.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McCubbin, N. A.; McFarlane, K. W.; Mcfayden, J. A.; Mchedlidze, G.; McMahon, S. J.; McPherson, R. A.; Medinnis, M.; Meehan, S.; Mehlhase, S.; Mehta, A.; Meier, K.; Meineck, C.; Meirose, B.; Mellado Garcia, B. R.; Meloni, F.; Mengarelli, A.; Menke, S.; Meoni, E.; Mercurio, K. M.; Mergelmeyer, S.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Meyer Zu Theenhausen, H.; Middleton, R. P.; Miglioranzi, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Milesi, M.; Milic, A.; Miller, D. W.; Mills, C.; Milov, A.; Milstead, D. A.; Minaenko, A. A.; Minami, Y.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mistry, K. P.; Mitani, T.; Mitrevski, J.; Mitsou, V. A.; Miucci, A.; Miyagawa, P. S.; Mjörnmark, J. U.; Moa, T.; Mochizuki, K.; Mohapatra, S.; Mohr, W.; Molander, S.; Moles-Valls, R.; Monden, R.; Mönig, K.; Monini, C.; Monk, J.; Monnier, E.; Montejo Berlingen, J.; Monticelli, F.; Monzani, S.; Moore, R. W.; Morange, N.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Mori, D.; Mori, T.; Morii, M.; Morinaga, M.; Morisbak, V.; Moritz, S.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Mortensen, S. S.; Morton, A.; Morvaj, L.; Mosidze, M.; Moss, J.; Motohashi, K.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Muanza, S.; Mudd, R. D.; Mueller, F.; Mueller, J.; Mueller, R. S. P.; Mueller, T.; Muenstermann, D.; Mullen, P.; Mullier, G. A.; Murillo Quijada, J. A.; Murray, W. J.; Musheghyan, H.; Musto, E.; Myagkov, A. G.; Myska, M.; Nachman, B. P.; Nackenhorst, O.; Nadal, J.; Nagai, K.; Nagai, R.; Nagai, Y.; Nagano, K.; Nagarkar, A.; Nagasaka, Y.; Nagata, K.; Nagel, M.; Nagy, E.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Namasivayam, H.; Naranjo Garcia, R. F.; Narayan, R.; Narrias Villar, D. I.; Naumann, T.; Navarro, G.; Nayyar, R.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Nef, P. D.; Negri, A.; Negrini, M.; Nektarijevic, S.; Nellist, C.; Nelson, A.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Neves, R. M.; Nevski, P.; Newman, P. R.; Nguyen, D. H.; Nickerson, R. B.; Nicolaidou, R.; Nicquevert, B.; Nielsen, J.; Nikiforou, N.; Nikiforov, A.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, J. K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nisius, R.; Nobe, T.; Nomachi, M.; Nomidis, I.; Nooney, T.; Norberg, S.; Nordberg, M.; Novgorodova, O.; Nowak, S.; Nozaki, M.; Nozka, L.; Ntekas, K.; Nunes Hanninger, G.; Nunnemann, T.; Nurse, E.; Nuti, F.; O'Brien, B. J.; O'grady, F.; O'Neil, D. C.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Obermann, T.; Ocariz, J.; Ochi, A.; Ochoa, I.; Ochoa-Ricoux, J. P.; Oda, S.; Odaka, S.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohman, H.; Oide, H.; Okamura, W.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Olivares Pino, S. A.; Oliveira Damazio, D.; Oliver Garcia, E.; Olszewski, A.; Olszowska, J.; Onofre, A.; Onogi, K.; Onyisi, P. U. E.; Oram, C. J.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Oropeza Barrera, C.; Orr, R. S.; Osculati, B.; Ospanov, R.; Otero y Garzon, G.; Otono, H.; Ouchrif, M.; Ould-Saada, F.; Ouraou, A.; Oussoren, K. P.; Ouyang, Q.; Ovcharova, A.; Owen, M.; Owen, R. E.; Ozcan, V. E.; Ozturk, N.; Pachal, K.; Pacheco Pages, A.; Padilla Aranda, C.; Pagáčová, M.; Pagan Griso, S.; Paganis, E.; Paige, F.; Pais, P.; Pajchel, K.; Palacino, G.; Palestini, S.; Palka, M.; Pallin, D.; Palma, A.; Pan, Y. B.; Panagiotopoulou, E.; Pandini, C. E.; Panduro Vazquez, J. G.; Pani, P.; Panitkin, S.; Pantea, D.; Paolozzi, L.; Papadopoulou, Th. D.; Papageorgiou, K.; Paramonov, A.; Paredes Hernandez, D.; Parker, M. A.; Parker, K. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pasqualucci, E.; Passaggio, S.; Pastore, F.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Patel, N. D.; Pater, J. R.; Pauly, T.; Pearce, J.; Pearson, B.; Pedersen, L. E.; Pedersen, M.; Pedraza Lopez, S.; Pedro, R.; Peleganchuk, S. V.; Pelikan, D.; Penc, O.; Peng, C.; Peng, H.; Penning, B.; Penwell, J.; Perepelitsa, D. V.; Perez Codina, E.; Pérez García-Estañ, M. T.; Perini, L.; Pernegger, H.; Perrella, S.; Peschke, R.; Peshekhonov, V. D.; Peters, K.; Peters, R. F. Y.; Petersen, B. A.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petroff, P.; Petrolo, E.; Petrucci, F.; Pettersson, N. E.; Pezoa, R.; Phillips, P. W.; Piacquadio, G.; Pianori, E.; Picazio, A.; Piccaro, E.; Piccinini, M.; Pickering, M. A.; Piegaia, R.; Pignotti, D. T.; Pilcher, J. E.; Pilkington, A. D.; Pina, J.; Pinamonti, M.; Pinfold, J. L.; Pingel, A.; Pires, S.; Pirumov, H.; Pitt, M.; Pizio, C.; Plazak, L.; Pleier, M.-A.; Pleskot, V.; Plotnikova, E.; Plucinski, P.; Pluth, D.; Poettgen, R.; Poggioli, L.; Pohl, D.; Polesello, G.; Poley, A.; Policicchio, A.; Polifka, R.; Polini, A.; Pollard, C. S.; Polychronakos, V.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Popovic, D. S.; Poppleton, A.; Pospisil, S.; Potamianos, K.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda, J.; Pozdnyakov, V.; Pralavorio, P.; Pranko, A.; Prasad, S.; Prell, S.; Price, D.; Price, L. E.; Primavera, M.; Prince, S.; Proissl, M.; Prokofiev, K.; Prokoshin, F.; Protopapadaki, E.; Protopopescu, S.; Proudfoot, J.; Przybycien, M.; Ptacek, E.; Puddu, D.; Pueschel, E.; Puldon, D.; Purohit, M.; Puzo, P.; Qian, J.; Qin, G.; Qin, Y.; Quadt, A.; Quarrie, D. R.; Quayle, W. B.; Queitsch-Maitland, M.; Quilty, D.; Raddum, S.; Radeka, V.; Radescu, V.; Radhakrishnan, S. K.; Radloff, P.; Rados, P.; Ragusa, F.; Rahal, G.; Rajagopalan, S.; Rammensee, M.; Rangel-Smith, C.; Rauscher, F.; Rave, S.; Ravenscroft, T.; Raymond, M.; Read, A. L.; Readioff, N. P.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Rehnisch, L.; Reichert, J.; Reisin, H.; Rembser, C.; Ren, H.; Renaud, A.; Rescigno, M.; Resconi, S.; Rezanova, O. L.; Reznicek, P.; Rezvani, R.; Richter, R.; Richter, S.; Richter-Was, E.; Ricken, O.; Ridel, M.; Rieck, P.; Riegel, C. J.; Rieger, J.; Rifki, O.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Ristić, B.; Ritsch, E.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Roda, C.; Roe, S.; Røhne, O.; Rolli, S.; Romaniouk, A.; Romano, M.; Romano Saez, S. M.; Romero Adam, E.; Rompotis, N.; Ronzani, M.; Roos, L.; Ros, E.; Rosati, S.; Rosbach, K.; Rose, P.; Rosendahl, P. L.; Rosenthal, O.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rosten, J. H. N.; Rosten, R.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Rubinskiy, I.; Rud, V. I.; Rudolph, C.; Rudolph, M. S.; Rühr, F.; Ruiz-Martinez, A.; Rurikova, Z.; Rusakovich, N. A.; Ruschke, A.; Russell, H. L.; Rutherfoord, J. P.; Ruthmann, N.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryder, N. C.; Saavedra, A. F.; Sabato, G.; Sacerdoti, S.; Saddique, A.; Sadrozinski, H. F.-W.; Sadykov, R.; Safai Tehrani, F.; Sahinsoy, M.; Saimpert, M.; Saito, T.; Sakamoto, H.; Sakurai, Y.; Salamanna, G.; Salamon, A.; Salazar Loyola, J. E.; Saleem, M.; Salek, D.; Sales De Bruin, P. H.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sammel, D.; Sampsonidis, D.; Sanchez, A.; Sánchez, J.; Sanchez Martinez, V.; Sandaker, H.; Sandbach, R. L.; Sander, H. G.; Sanders, M. P.; Sandhoff, M.; Sandoval, C.; Sandstroem, R.; Sankey, D. P. C.; Sannino, M.; Sansoni, A.; Santoni, C.; Santonico, R.; Santos, H.; Santoyo Castillo, I.; Sapp, K.; Sapronov, A.; Saraiva, J. G.; Sarrazin, B.; Sasaki, O.; Sasaki, Y.; Sato, K.; Sauvage, G.; Sauvan, E.; Savage, G.; Savard, P.; Sawyer, C.; Sawyer, L.; Saxon, J.; Sbarra, C.; Sbrizzi, A.; Scanlon, T.; Scannicchio, D. A.; Scarcella, M.; Scarfone, V.; Schaarschmidt, J.; Schacht, P.; Schaefer, D.; Schaefer, R.; Schaeffer, J.; Schaepe, S.; Schaetzel, S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Schiavi, C.; Schillo, C.; Schioppa, M.; Schlenker, S.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schmitt, S.; Schneider, B.; Schnellbach, Y. J.; Schnoor, U.; Schoeffel, L.; Schoening, A.; Schoenrock, B. D.; Schopf, E.; Schorlemmer, A. L. S.; Schott, M.; Schouten, D.; Schovancova, J.; Schramm, S.; Schreyer, M.; Schroeder, C.; Schuh, N.; Schultens, M. J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwanenberger, C.; Schwartzman, A.; Schwarz, T. A.; Schwegler, Ph.; Schweiger, H.; Schwemling, Ph.; Schwienhorst, R.; Schwindling, J.; Schwindt, T.; Sciacca, F. G.; Scifo, E.; Sciolla, G.; Scuri, F.; Scutti, F.; Searcy, J.; Sedov, G.; Sedykh, E.; Seema, P.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Sekhon, K.; Sekula, S. J.; Seliverstov, D. M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Serkin, L.; Serre, T.; Sessa, M.; Seuster, R.; Severini, H.; Sfiligoj, T.; Sforza, F.; Sfyrla, A.; Shabalina, E.; Shamim, M.; Shan, L. Y.; Shang, R.; Shank, J. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Shaw, S. M.; Shcherbakova, A.; Shehu, C. Y.; Sherwood, P.; Shi, L.; Shimizu, S.; Shimmin, C. O.; Shimojima, M.; Shiyakova, M.; Shmeleva, A.; Shoaleh Saadi, D.; Shochet, M. J.; Shojaii, S.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Shushkevich, S.; Sicho, P.; Sidebo, P. E.; Sidiropoulou, O.; Sidorov, D.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silva, J.; Silver, Y.; Silverstein, S. B.; Simak, V.; Simard, O.; Simic, Lj.; Simion, S.; Simioni, E.; Simmons, B.; Simon, D.; Sinervo, P.; Sinev, N. B.; Sioli, M.; Siragusa, G.; Sisakyan, A. N.; Sivoklokov, S. Yu.; Sjölin, J.; Sjursen, T. B.; Skinner, M. B.; Skottowe, H. P.; Skubic, P.; Slater, M.; Slavicek, T.; Slawinska, M.; Sliwa, K.; Smakhtin, V.; Smart, B. H.; Smestad, L.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, M. N. K.; Smith, R. W.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snidero, G.; Snyder, S.; Sobie, R.; Socher, F.; Soffer, A.; Soh, D. A.; Sokhrannyi, G.; Solans, C. A.; Solar, M.; Solc, J.; Soldatov, E. Yu.; Soldevila, U.; Solodkov, A. A.; Soloshenko, A.; Solovyanov, O. V.; Solovyev, V.; Sommer, P.; Song, H. Y.; Soni, N.; Sood, A.; Sopczak, A.; Sopko, B.; Sopko, V.; Sorin, V.; Sosa, D.; Sosebee, M.; Sotiropoulou, C. L.; Soualah, R.; Soukharev, A. M.; South, D.; Sowden, B. C.; Spagnolo, S.; Spalla, M.; Spangenberg, M.; Spanò, F.; Spearman, W. R.; Sperlich, D.; Spettel, F.; Spighi, R.; Spigo, G.; Spiller, L. A.; Spousta, M.; Spreitzer, T.; Denis, R. D. St.; Stabile, A.; Staerz, S.; Stahlman, J.; Stamen, R.; Stamm, S.; Stanecka, E.; Stanescu, C.; Stanescu-Bellu, M.; Stanitzki, M. M.; Stapnes, S.; Starchenko, E. A.; Stark, J.; Staroba, P.; Starovoitov, P.; Staszewski, R.; Steinberg, P.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stewart, G. A.; Stillings, J. A.; Stockton, M. C.; Stoebe, M.; Stoicea, G.; Stolte, P.; Stonjek, S.; Stradling, A. R.; Straessner, A.; Stramaglia, M. E.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, E.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Strubig, A.; Stucci, S. A.; Stugu, B.; Styles, N. A.; Su, D.; Su, J.; Subramaniam, R.; Succurro, A.; Sugaya, Y.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, S.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Susinno, G.; Sutton, M. R.; Suzuki, S.; Svatos, M.; Swiatlowski, M.; Sykora, I.; Sykora, T.; Ta, D.; Taccini, C.; Tackmann, K.; Taenzer, J.; Taffard, A.; Tafirout, R.; Taiblum, N.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A. A.; Tam, J. Y. C.; Tan, K. G.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tannenwald, B. B.; Tannoury, N.; Tapprogge, S.; Tarem, S.; Tarrade, F.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tashiro, T.; Tassi, E.; Tavares Delgado, A.; Tayalati, Y.; Taylor, F. E.; Taylor, G. N.; Taylor, P. T. E.; Taylor, W.; Teischinger, F. A.; Teixeira Dias Castanheira, M.; Teixeira-Dias, P.; Temming, K. K.; Temple, D.; Ten Kate, H.; Teng, P. K.; Teoh, J. J.; Tepel, F.; Terada, S.; Terashi, K.; Terron, J.; Terzo, S.; Testa, M.; Teuscher, R. J.; Theveneaux-Pelzer, T.; Thomas, J. P.; Thomas-Wilsker, J.; Thompson, E. N.; Thompson, P. D.; Thompson, R. J.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Thomson, M.; Thun, R. P.; Tibbetts, M. J.; Ticse Torres, R. E.; Tikhomirov, V. O.; Tikhonov, Yu. A.; Timoshenko, S.; Tiouchichine, E.; Tipton, P.; Tisserant, S.; Todome, K.; Todorov, T.; Todorova-Nova, S.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tollefson, K.; Tolley, E.; Tomlinson, L.; Tomoto, M.; Tompkins, L.; Toms, K.; Torrence, E.; Torres, H.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Trischuk, W.; Trocmé, B.; Troncon, C.; Trottier-McDonald, M.; Trovatelli, M.; Truong, L.; Trzebinski, M.; Trzupek, A.; Tsarouchas, C.; Tseng, J. C.-L.; Tsiareshka, P. V.; Tsionou, D.; Tsipolitis, G.; Tsirintanis, N.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsukerman, I. I.; Tsulaia, V.; Tsuno, S.; Tsybychev, D.; Tudorache, A.; Tudorache, V.; Tuna, A. N.; Tupputi, S. A.; Turchikhin, S.; Turecek, D.; Turra, R.; Turvey, A. J.; Tuts, P. M.; Tykhonov, A.; Tylmad, M.; Tyndel, M.; Ueda, I.; Ueno, R.; Ughetto, M.; Ugland, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Ungaro, F. C.; Unno, Y.; Unverdorben, C.; Urban, J.; Urquijo, P.; Urrejola, P.; Usai, G.; Usanova, A.; Vacavant, L.; Vacek, V.; Vachon, B.; Valderanis, C.; Valencic, N.; Valentinetti, S.; Valero, A.; Valery, L.; Valkar, S.; Valladolid Gallego, E.; Vallecorsa, S.; Valls Ferrer, J. A.; Van Den Wollenberg, W.; Van Der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; van Eldik, N.; van Gemmeren, P.; Van Nieuwkoop, J.; van Vulpen, I.; van Woerden, M. C.; Vanadia, M.; Vandelli, W.; Vanguri, R.; Vaniachine, A.; Vannucci, F.; Vardanyan, G.; Vari, R.; Varnes, E. W.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vazeille, F.; Vazquez Schroeder, T.; Veatch, J.; Veloce, L. M.; Veloso, F.; Velz, T.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Venturini, A.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Viazlo, O.; Vichou, I.; Vickey, T.; Vickey Boeriu, O. E.; Viehhauser, G. H. A.; Viel, S.; Vigne, R.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinogradov, V. B.; Vivarelli, I.; Vives Vaque, F.; Vlachos, S.; Vladoiu, D.; Vlasak, M.; Vogel, M.; Vokac, P.; Volpi, G.; Volpi, M.; von der Schmitt, H.; von Radziewski, H.; von Toerne, E.; Vorobel, V.; Vorobev, K.; Vos, M.; Voss, R.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vuillermet, R.; Vukotic, I.; Vykydal, Z.; Wagner, P.; Wagner, W.; Wahlberg, H.; Wahrmund, S.; Wakabayashi, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wang, C.; Wang, F.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, K.; Wang, R.; Wang, S. M.; Wang, T.; Wang, T.; Wang, X.; Wanotayaroj, C.; Warburton, A.; Ward, C. P.; Wardrope, D. R.; Washbrook, A.; Wasicki, C.; Watkins, P. M.; Watson, A. T.; Watson, I. J.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, B. M.; Webb, S.; Weber, M. S.; Weber, S. W.; Webster, J. S.; Weidberg, A. R.; Weinert, B.; Weingarten, J.; Weiser, C.; Weits, H.; Wells, P. S.; Wenaus, T.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Wessels, M.; Wetter, J.; Whalen, K.; Wharton, A. M.; White, A.; White, M. J.; White, R.; White, S.; Whiteson, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wildauer, A.; Wilkens, H. G.; Williams, H. H.; Williams, S.; Willis, C.; Willocq, S.; Wilson, A.; Wilson, J. A.; Wingerter-Seez, I.; Winklmeier, F.; Winter, B. T.; Wittgen, M.; Wittkowski, J.; Wollstadt, S. J.; Wolter, M. W.; Wolters, H.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wozniak, K. W.; Wu, M.; Wu, M.; Wu, S. L.; Wu, X.; Wu, Y.; Wyatt, T. R.; Wynne, B. M.; Xella, S.; Xu, D.; Xu, L.; Yabsley, B.; Yacoob, S.; Yakabe, R.; Yamada, M.; Yamaguchi, D.; Yamaguchi, Y.; Yamamoto, A.; Yamamoto, S.; Yamanaka, T.; Yamauchi, K.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, H.; Yang, Y.; Yao, W.-M.; Yasu, Y.; Yatsenko, E.; Yau Wong, K. H.; Ye, J.; Ye, S.; Yeletskikh, I.; Yen, A. L.; Yildirim, E.; Yorita, K.; Yoshida, R.; Yoshihara, K.; Young, C.; Young, C. J. S.; Youssef, S.; Yu, D. R.; Yu, J.; Yu, J. M.; Yu, J.; Yuan, L.; Yuen, S. P. Y.; Yurkewicz, A.; Yusuff, I.; Zabinski, B.; Zaidan, R.; Zaitsev, A. M.; Zalieckas, J.; Zaman, A.; Zambito, S.; Zanello, L.; Zanzi, D.; Zeitnitz, C.; Zeman, M.; Zemla, A.; Zeng, Q.; Zengel, K.; Zenin, O.; Ženiš, T.; Zerwas, D.; Zhang, D.; Zhang, F.; Zhang, H.; Zhang, J.; Zhang, L.; Zhang, R.; Zhang, X.; Zhang, Z.; Zhao, X.; Zhao, Y.; Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou, B.; Zhou, C.; Zhou, L.; Zhou, L.; Zhou, M.; Zhou, N.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhukov, K.; Zibell, A.; Zieminska, D.; Zimine, N. I.; Zimmermann, C.; Zimmermann, S.; Zinonos, Z.; Zinser, M.; Ziolkowski, M.; Živković, L.; Zobernig, G.; Zoccoli, A.; zur Nedden, M.; Zurzolo, G.; Zwalinski, L.

    2015-11-01

    The ATLAS experiment at the LHC has measured the Higgs boson couplings and mass, and searched for invisible Higgs boson decays, using multiple production and decay channels with up to 4.7 fb-1 of pp collision data at √{s}=7 TeV and 20.3 fb-1 at √{s}=8 TeV. In the current study, the measured production and decay rates of the observed Higgs boson in the γγ, ZZ, W W , Zγ, bb, τ τ , and μμ decay channels, along with results from the associated production of a Higgs boson with a top-quark pair, are used to probe the scaling of the couplings with mass. Limits are set on parameters in extensions of the Standard Model including a composite Higgs boson, an additional electroweak singlet, and two-Higgs-doublet models. Together with the measured mass of the scalar Higgs boson in the γγ and ZZ decay modes, a lower limit is set on the pseudoscalar Higgs boson mass of m A > 370 GeV in the "hMSSM" simplified Minimal Supersymmetric Standard Model. Results from direct searches for heavy Higgs bosons are also interpreted in the hMSSM. Direct searches for invisible Higgs boson decays in the vector-boson fusion and associated production of a Higgs boson with W/Z ( Z → ℓℓ, W/Z → jj) modes are statistically combined to set an upper limit on the Higgs boson invisible branching ratio of 0.25. The use of the measured visible decay rates in a more general coupling fit improves the upper limit to 0.23, constraining a Higgs portal model of dark matter. [Figure not available: see fulltext.

  8. Constraints on new phenomena via Higgs boson couplings and invisible decays with the ATLAS detector

    SciTech Connect

    Aad, G.

    2015-11-30

    The ATLAS experiment at the LHC has measured the Higgs boson couplings and mass, and searched for invisible Higgs boson decays, using multiple production and decay channels with up to 4.7 fb-1 of pp collision data at √s=7 TeV and 20.3 fb-1 at √s=8 TeV. In the current study, the measured production and decay rates of the observed Higgs boson in the γγ, ZZ, W W , Zγ, bb, τ τ , and μμ decay channels, along with results from the associated production of a Higgs boson with a top-quark pair, are used to probe the scaling of the couplings with mass. The limits are set on parameters in extensions of the Standard Model including a composite Higgs boson, an additional electroweak singlet, and two-Higgs-doublet models. Together with the measured mass of the scalar Higgs boson in the γγ and ZZ decay modes, a lower limit is set on the pseudoscalar Higgs boson mass of mA > 370 GeV in the “hMSSM” simplified Minimal Supersymmetric Standard Model. Results from direct searches for heavy Higgs bosons are also interpreted in the hMSSM. Finally, direct searches for invisible Higgs boson decays in the vector-boson fusion and associated production of a Higgs boson with W/Z (Z → ℓℓ, W/Z → jj) modes are statistically combined to set an upper limit on the Higgs boson invisible branching ratio of 0.25. As a result, the use of the measured visible decay rates in a more general coupling fit improves the upper limit to 0.23, constraining a Higgs portal model of dark matter.

  9. Strongly Coupled Models with a Higgs-like Boson

    NASA Astrophysics Data System (ADS)

    Pich, Antonio; Rosell, Ignasi; José Sanz-Cillero, Juan

    2013-11-01

    Considering the one-loop calculation of the oblique S and T parameters, we have presented a study of the viability of strongly-coupled scenarios of electroweak symmetry breaking with a light Higgs-like boson. The calculation has been done by using an effective Lagrangian, being short-distance constraints and dispersive relations the main ingredients of the estimation. Contrary to a widely spread believe, we have demonstrated that strongly coupled electroweak models with massive resonances are not in conflict with experimentalconstraints on these parameters and the recently observed Higgs-like resonance. So there is room for these models, but they are stringently constrained. The vector and axial-vector states should be heavy enough (with masses above the TeV scale), the mass splitting between them is highly preferred to be small and the Higgs-like scalar should have a WW coupling close to the Standard Model one. It is important to stress that these conclusions do not depend critically on the inclusion of the second Weinberg sum rule. We wish to thank the organizers of LHCP 2013 for the pleasant conference. This work has been supported in part by the Spanish Government and the European Commission [FPA2010-17747, FPA2011- 23778, AIC-D-2011-0818, SEV-2012-0249 (Severo Ochoa Program), CSD2007-00042 (Consolider Project CPAN)], the Generalitat Valenciana [PrometeoII/2013/007] and the Comunidad de Madrid [HEPHACOS S2009/ESP-1473].

  10. Constraints on new phenomena via Higgs boson couplings and invisible decays with the ATLAS detector

    DOE PAGESBeta

    Aad, G.

    2015-11-30

    The ATLAS experiment at the LHC has measured the Higgs boson couplings and mass, and searched for invisible Higgs boson decays, using multiple production and decay channels with up to 4.7 fb-1 of pp collision data at √s=7 TeV and 20.3 fb-1 at √s=8 TeV. In the current study, the measured production and decay rates of the observed Higgs boson in the γγ, ZZ, W W , Zγ, bb, τ τ , and μμ decay channels, along with results from the associated production of a Higgs boson with a top-quark pair, are used to probe the scaling of the couplingsmore » with mass. The limits are set on parameters in extensions of the Standard Model including a composite Higgs boson, an additional electroweak singlet, and two-Higgs-doublet models. Together with the measured mass of the scalar Higgs boson in the γγ and ZZ decay modes, a lower limit is set on the pseudoscalar Higgs boson mass of mA > 370 GeV in the “hMSSM” simplified Minimal Supersymmetric Standard Model. Results from direct searches for heavy Higgs bosons are also interpreted in the hMSSM. Finally, direct searches for invisible Higgs boson decays in the vector-boson fusion and associated production of a Higgs boson with W/Z (Z → ℓℓ, W/Z → jj) modes are statistically combined to set an upper limit on the Higgs boson invisible branching ratio of 0.25. As a result, the use of the measured visible decay rates in a more general coupling fit improves the upper limit to 0.23, constraining a Higgs portal model of dark matter.« less

  11. Flavor violation in Higgs-boson couplings to baryons

    SciTech Connect

    Bagchi, B. ); Niyogi, S. )

    1992-06-01

    The 1/2{sup +} baryon mass spectrum is studied to determine the {ital {bar u}u}, {ital {bar d}d}, and {ital {bar s}s} contents in the nucleon. We find that higher-order symmetry-breaking terms in the mass operator are necessary to estimate {l angle}{ital p}{vert bar}{ital {bar u}u}{vert bar}{ital p}{r angle}, {l angle}{ital p}{vert bar}{ital {bar d}d}{vert bar}{ital p}{r angle}, and {l angle}{ital p}{vert bar}{ital {bar s}s}{vert bar}{ital p}{r angle} in a self-consistent way. We also assess the scalar (pseudoscalar) Higgs-boson couplings to baryons.

  12. Measuring the trilinear neutral Higgs boson couplings in the minimal supersymmetric standard model at e+e‑ colliders in the light of the discovery of a Higgs boson

    NASA Astrophysics Data System (ADS)

    Khosa, Charanjit K.; Pandita, P. N.

    2016-06-01

    We consider the measurement of the trilinear couplings of the neutral Higgs bosons in the minimal supersymmetric standard model (MSSM) at a high energy e+e‑ linear collider in the light of the discovery of a Higgs boson at the CERN Large Hadron Collider (LHC). We identify the state observed at the LHC with the lightest Higgs boson (h0) of the MSSM, and impose the constraints following from this identification, as well as other experimental constraints on the MSSM parameter space. In order to measure trilinear neutral Higgs couplings, we consider different processes where the heavier Higgs boson (H0) of the MSSM is produced in electron-positron collisions, which subsequently decays into a pair of lighter Higgs boson. We identify the regions of the MSSM parameter space where it may be possible to measure the trilinear couplings of the Higgs boson at a future electron-positron collider. A measurement of the trilinear Higgs couplings is a crucial step in the construction of the Higgs potential, and hence in establishing the phenomena of spontaneous symmetry breaking in gauge theories.

  13. Effective Yukawa couplings and flavor-changing Higgs boson decays at linear colliders

    SciTech Connect

    Gabrielli, E.; Mele, B.

    2011-04-01

    We analyze the advantages of a linear-collider program for testing a recent theoretical proposal where the Higgs boson Yukawa couplings are radiatively generated, keeping unchanged the standard-model mechanism for electroweak-gauge-symmetry breaking. Fermion masses arise at a large energy scale through an unknown mechanism, and the standard model at the electroweak scale is regarded as an effective field theory. In this scenario, Higgs boson decays into photons and electroweak gauge-boson pairs are considerably enhanced for a light Higgs boson, which makes a signal observation at the LHC straightforward. On the other hand, the clean environment of a linear collider is required to directly probe the radiative fermionic sector of the Higgs boson couplings. Also, we show that the flavor-changing Higgs boson decays are dramatically enhanced with respect to the standard model. In particular, we find a measurable branching ratio in the range (10{sup -4}-10{sup -3}) for the decay H{yields}bs for a Higgs boson lighter than 140 GeV, depending on the high-energy scale where Yukawa couplings vanish. We present a detailed analysis of the Higgs boson production cross sections at linear colliders for interesting decay signatures, as well as branching-ratio correlations for different flavor-conserving/nonconserving fermionic decays.

  14. The Higgs Boson.

    ERIC Educational Resources Information Center

    Veltman, Martinus J. G.

    1986-01-01

    Reports recent findings related to the particle Higgs boson and examines its possible contribution to the standard mode of elementary processes. Critically explores the strengths and uncertainties of the Higgs boson and proposed Higgs field. (ML)

  15. Universality test of the charged Higgs boson couplings at the LHC and at B factories

    SciTech Connect

    Cornell, Alan S.; Deandrea, Aldo; Gaur, Naveen; Itoh, Hideo; Klasen, Michael; Okada, Yasuhiro

    2010-06-01

    Many extensions of the standard model of particle physics predict the existence of charged Higgs bosons with substantial couplings to standard model particles, which would render them observable both directly at the LHC and indirectly at B-factories. For example, the charged Higgs boson couplings to fermions in two Higgs doublet models of type II are proportional to the ratio of the two Higgs doublet vacuum expectation values (tan{beta}) and fermionic mass factors and could thus be substantial at large tan{beta} and/or for heavy fermions. In this work we perform a model-independent study of the charged Higgs boson couplings at the LHC and at B-factories for large values of tan{beta}. We have shown that at high luminosity it is possible to measure the couplings of a charged Higgs boson to the third generation of quarks up to an accuracy of 10%. We further argue that by combining the possible measurements of the LHC and the B-factories, it is possible to perform a universality test of charged Higgs boson couplings to quarks.

  16. Two-loop unitarity constraints on the Higgs-boson coupling

    NASA Astrophysics Data System (ADS)

    Durand, Loyal; Maher, Peter N.; Riesselmann, Kurt

    1993-08-01

    We use the results of Maher et al. (preceding paper) to construct the matrix of j=0 partial-wave two-body and 2-->3 scattering amplitudes for the scattering of longitudinally polarized gauge bosons W+L,ZL and Higgs bosons H correct to two loops in the high-energy, heavy-Higgs-boson limit √s >>MH>>MW. We show explicitly that the energy dependence of the 2-->2 amplitudes can be completely adsorbed into a running quartic Higgs boson coupling λs=λs(s,M2H) and factors which involve small anomalous dimensions and remain near unity. After diagonalizing the matrix of partial-wave amplitudes we use an Argand-diagram analysis to show that the elastic scattering amplitudes are approximately unitary and weakly interacting for λs<~2.3, but that three-loop corrections are necessary to restore unitarity for larger values of λs. That is, the interactions in the Higgs sector of the standard model are effectively strong with respect to the perturbative expansion for λs>~2.3. The bound λs<~2.3 for a weakly interacting theory translates to a physical Higgs boson mass MH<~380 GeV if the bound is to hold for energies up to a few TeV, or MH<=155 GeV in perturbatively unified theories with mass scales of order 1016 GeV.

  17. Measurements of Higgs boson production and couplings in diboson final states with the ATLAS detector at the LHC

    SciTech Connect

    ATLAS Collaboration,

    2013-10-01

    Measurements are presented of production properties and couplings of the recently discovered Higgs boson using the decays into boson pairs, H→γγ, H→ZZ{sup *}→4ℓ and H→WW{sup *}→ℓνℓν. The results are based on the complete pp collision data sample recorded by the ATLAS experiment at the CERN Large Hadron Collider at centre-of-mass energies of {radical s}=7 TeV and {radical s}=8 TeV, corresponding to an integrated luminosity of about 25 fb{sup -1}. Evidence for Higgs boson production through vector-boson fusion is reported. Results of combined fits probing Higgs boson couplings to fermions and bosons, as well as anomalous contributions to loop-induced production and decay modes, are presented. All measurements are consistent with expectations for the Standard Model Higgs boson.

  18. Search for a low-mass neutral Higgs boson with suppressed couplings to fermions using events with multiphoton final states

    NASA Astrophysics Data System (ADS)

    Aaltonen, T.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J. A.; Arisawa, T.; Artikov, A.; Asaadi, J.; Ashmanskas, W.; Auerbach, B.; Aurisano, A.; Azfar, F.; Badgett, W.; Bae, T.; Barbaro-Galtieri, A.; Barnes, V. E.; Barnett, B. A.; Barria, P.; Bartos, P.; Bauce, M.; Bedeschi, F.; Behari, S.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Beretvas, A.; Bhatti, A.; Bland, K. R.; Blumenfeld, B.; Bocci, A.; Bodek, A.; Bortoletto, D.; Boudreau, J.; Boveia, A.; Brigliadori, L.; Bromberg, C.; Brucken, E.; Budagov, J.; Budd, H. S.; Burkett, K.; Busetto, G.; Bussey, P.; Butti, P.; Buzatu, A.; Calamba, A.; Camarda, S.; Campanelli, M.; Canelli, F.; Carls, B.; Carlsmith, D.; Carosi, R.; Carrillo, S.; Casal, B.; Casarsa, M.; Castro, A.; Catastini, P.; Cauz, D.; Cavaliere, V.; Cerri, A.; Cerrito, L.; Chen, Y. C.; Chertok, M.; Chiarelli, G.; Chlachidze, G.; Cho, K.; Chokheli, D.; Clark, A.; Clarke, C.; Convery, M. E.; Conway, J.; Corbo, M.; Cordelli, M.; Cox, C. A.; Cox, D. J.; Cremonesi, M.; Cruz, D.; Cuevas, J.; Culbertson, R.; d'Ascenzo, N.; Datta, M.; de Barbaro, P.; Demortier, L.; Deninno, M.; D'Errico, M.; Devoto, F.; Di Canto, A.; Di Ruzza, B.; Dittmann, J. R.; Donati, S.; D'Onofrio, M.; Dorigo, M.; Driutti, A.; Ebina, K.; Edgar, R.; Erbacher, R.; Errede, S.; Esham, B.; Farrington, S.; Fernández Ramos, J. P.; Field, R.; Flanagan, G.; Forrest, R.; Franklin, M.; Freeman, J. C.; Frisch, H.; Funakoshi, Y.; Galloni, C.; Garfinkel, A. F.; Garosi, P.; Gerberich, H.; Gerchtein, E.; Giagu, S.; Giakoumopoulou, V.; Gibson, K.; Ginsburg, C. M.; Giokaris, N.; Giromini, P.; Glagolev, V.; Glenzinski, D.; Gold, M.; Goldin, D.; Golossanov, A.; Gomez, G.; Gomez-Ceballos, G.; Goncharov, M.; González López, O.; Gorelov, I.; Goshaw, A. T.; Goulianos, K.; Gramellini, E.; Grosso-Pilcher, C.; Guimaraes da Costa, J.; Hahn, S. R.; Han, J. Y.; Happacher, F.; Hara, K.; Hare, M.; Harr, R. F.; Harrington-Taber, T.; Hatakeyama, K.; Hays, C.; Heinrich, J.; Herndon, M.; Hocker, A.; Hong, Z.; Hopkins, W.; Hou, S.; Hughes, R. E.; Husemann, U.; Hussein, M.; Huston, J.; Introzzi, G.; Iori, M.; Ivanov, A.; James, E.; Jang, D.; Jayatilaka, B.; Jeon, E. J.; Jindariani, S.; Jones, M.; Joo, K. K.; Jun, S. Y.; Junk, T. R.; Kambeitz, M.; Kamon, T.; Karchin, P. E.; Kasmi, A.; Kato, Y.; Ketchum, W.; Keung, J.; Kilminster, B.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, M. J.; Kim, S. H.; Kim, S. B.; Kim, Y. J.; Kim, Y. K.; Kimura, N.; Kirby, M.; Knoepfel, K.; Kondo, K.; Kong, D. J.; Konigsberg, J.; Kotwal, A. V.; Kreps, M.; Kroll, J.; Kruse, M.; Kuhr, T.; Kurata, M.; Laasanen, A. T.; Lammel, S.; Lancaster, M.; Lannon, K.; Latino, G.; Lee, H. S.; Lee, J. S.; Leo, S.; Leone, S.; Lewis, J. D.; Limosani, A.; Lipeles, E.; Lister, A.; Liu, Q.; Liu, T.; Lockwitz, S.; Loginov, A.; Lucchesi, D.; Lucà, A.; Lueck, J.; Lujan, P.; Lukens, P.; Lungu, G.; Lys, J.; Lysak, R.; Madrak, R.; Maestro, P.; Malik, S.; Manca, G.; Manousakis-Katsikakis, A.; Marchese, L.; Margaroli, F.; Marino, P.; Matera, K.; Mattson, M. E.; Mazzacane, A.; Mazzanti, P.; McNulty, R.; Mehta, A.; Mehtala, P.; Mesropian, C.; Miao, T.; Mietlicki, D.; Mitra, A.; Miyake, H.; Moed, S.; Moggi, N.; Moon, C. S.; Moore, R.; Morello, M. J.; Mukherjee, A.; Muller, Th.; Murat, P.; Mussini, M.; Nachtman, J.; Nagai, Y.; Naganoma, J.; Nakano, I.; Napier, A.; Nett, J.; Nigmanov, T.; Nodulman, L.; Noh, S. Y.; Norniella, O.; Oakes, L.; Oh, S. H.; Oh, Y. D.; Okusawa, T.; Orava, R.; Ortolan, L.; Pagliarone, C.; Palencia, E.; Palni, P.; Papadimitriou, V.; Parker, W.; Pauletta, G.; Paulini, M.; Paus, C.; Phillips, T. J.; Piacentino, G.; Pianori, E.; Pilot, J.; Pitts, K.; Plager, C.; Pondrom, L.; Poprocki, S.; Potamianos, K.; Pranko, A.; Prokoshin, F.; Ptohos, F.; Punzi, G.; Redondo Fernández, I.; Renton, P.; Rescigno, M.; Rimondi, F.; Ristori, L.; Robson, A.; Rodriguez, T.; Rolli, S.; Ronzani, M.; Roser, R.; Rosner, J. L.; Ruffini, F.; Ruiz, A.; Russ, J.; Rusu, V.; Sakumoto, W. K.; Sakurai, Y.; Santi, L.; Sato, K.; Saveliev, V.; Savoy-Navarro, A.; Schlabach, P.; Schmidt, E. E.; Schwarz, T.; Scodellaro, L.; Scuri, F.; Seidel, S.; Seiya, Y.; Semenov, A.; Sforza, F.; Shalhout, S. Z.; Shears, T.; Shepard, P. F.; Shimojima, M.; Shochet, M.; Shreyber-Tecker, I.; Simonenko, A.; Sliwa, K.; Smith, J. R.; Snider, F. D.; Song, H.; Sorin, V.; St. Denis, R.; Stancari, M.; Stentz, D.; Strologas, J.; Sudo, Y.; Sukhanov, A.; Suslov, I.; Takemasa, K.; Takeuchi, Y.; Tang, J.; Tecchio, M.; Teng, P. K.; Thom, J.; Thomson, E.; Thukral, V.; Toback, D.; Tokar, S.; Tollefson, K.; Tomura, T.; Tonelli, D.; Torre, S.; Torretta, D.; Totaro, P.; Trovato, M.; Ukegawa, F.; Uozumi, S.; Vázquez, F.; Velev, G.; Vellidis, C.; Vernieri, C.; Vidal, M.; Vilar, R.; Vizán, J.; Vogel, M.; Volpi, G.; Wagner, P.; Wallny, R.; Wang, S. M.; Waters, D.

    2016-06-01

    A search for a Higgs boson with suppressed couplings to fermions, hf, assumed to be the neutral, lower-mass partner of the Higgs boson discovered at the Large Hadron Collider, is reported. Such a Higgs boson could exist in extensions of the standard model with two Higgs doublets, and could be produced via p p ¯→H±hf→W*hfhf→4 γ +X , where H± is a charged Higgs boson. This analysis uses all events with at least three photons in the final state from proton-antiproton collisions at a center-of-mass energy of 1.96 TeV collected by the Collider Detector at Fermilab, corresponding to an integrated luminosity of 9.2 fb-1. No evidence of a signal is observed in the data. Values of Higgs-boson masses between 10 and 100 GeV /c2 are excluded at 95% Bayesian credibility.

  19. Probing charged Higgs boson couplings at a future circular hadron collider

    NASA Astrophysics Data System (ADS)

    Ćakır, I. T.; Kuday, S.; Saygın, H.; Şenol, A.; ćakır, O.

    2016-07-01

    Many of the new physics models predict a light Higgs boson similar to the Higgs boson of the Standard Model (SM) and also extra scalar bosons. Beyond the search channels for a SM Higgs boson, the future collider experiments will explore additional channels that are specific to extended Higgs sectors. We study the charged Higgs boson production within the framework of two Higgs doublet models (THDM) in the proton-proton collisions at a future circular hadron collider (FCC-hh). With an integrated luminosity of Lint=500 fb-1 at very high energy frontier (√{s }=100 TeV ), we obtain a significant coverage of the parameter space and distinguish the charged Higgs-top-bottom interaction within the THDM or other new physics models with charged Higgs boson mass up to 1.5 TeV.

  20. Viability of strongly coupled scenarios with a light Higgs-like boson.

    PubMed

    Pich, Antonio; Rosell, Ignasi; Sanz-Cillero, Juan José

    2013-05-01

    We present a one-loop calculation of the oblique S and T parameters within strongly coupled models of electroweak symmetry breaking with a light Higgs-like boson. We use a general effective Lagrangian, implementing the chiral symmetry breaking SU(2)(L) [Symbol: see text]SU(2)(R) → SU(2)(L+R) with Goldstone bosons, gauge bosons, the Higgs-like scalar, and one multiplet of vector and axial-vector massive resonance states. Using a dispersive representation and imposing a proper ultraviolet behavior, we obtain S and T at the next-to-leading order in terms of a few resonance parameters. The experimentally allowed range forces the vector and axial-vector states to be heavy, with masses above the TeV scale, and suggests that the Higgs-like scalar should have a WW coupling close to the standard model one. Our conclusions are generic and apply to more specific scenarios such as the minimal SO(5)/SO(4) composite Higgs model. PMID:23683189

  1. Note on anomalous Higgs-boson couplings in effective field theory

    NASA Astrophysics Data System (ADS)

    Buchalla, G.; Catà, O.; Celis, A.; Krause, C.

    2015-11-01

    We propose a parametrization of anomalous Higgs-boson couplings that is both systematic and practical. It is based on the electroweak chiral Lagrangian, including a light Higgs boson, as the effective field theory (EFT) at the electroweak scale v. This is the appropriate framework for the case of sizeable deviations in the Higgs couplings of order 10% from the Standard Model, considered to be parametrically larger than new-physics effects in the sector of electroweak gauge interactions. The role of power counting in identifying the relevant parameters is emphasized. The three relevant scales, v, the scale of new Higgs dynamics f, and the cut-off Λ = 4 πf, admit expansions in ξ =v2 /f2 and f2 /Λ2. The former corresponds to an organization of operators by their canonical dimension, the latter by their loop order or chiral dimension. In full generality the EFT is thus organized as a double expansion. However, as long as ξ ≫ 1 / 16π2 the EFT systematics is closer to the chiral counting. The leading effects in the consistent approximation provided by the EFT, relevant for the presently most important processes of Higgs production and decay, are given by a few (typically six) couplings. These parameters allow us to describe the properties of the Higgs boson in a general and systematic way, and with a precision adequate for the measurements to be performed at the LHC. The framework can be systematically extended to include loop corrections and higher-order terms in the EFT.

  2. Higgs boson searches and the Hbb coupling at the LHeC

    SciTech Connect

    Han Tao; Mellado, Bruce

    2010-07-01

    Once the existence of the Higgs boson is established at the CERN Large Hadron Collider (LHC), the focus will be shifted toward understanding its couplings to other particles. A crucial aspect is the measurement of the bottom Yukawa coupling, which is challenging at the LHC. In this paper we study the use of forward jet tagging as a means to secure the observation and to significantly improve the purity of the Higgs boson signal in the H{yields}bb decay mode from deep inelastic electron-proton scattering at the LHC. We demonstrate that the requirement of forward jet tagging in charged current events strongly enhances the signal-to-background ratio. The impact of a veto on additional partons is also discussed. Excellent response to hadronic shower and b-tagging capabilities are pivotal detector performance aspects.

  3. Higgs boson hunting

    SciTech Connect

    Dawson, S.; Haber, H.E.; Rindani, S.D.

    1989-05-01

    This is the summary report of the Higgs Boson Working Group. We discuss a variety of search techniques for a Higgs boson which is lighter than the Z. The processes K /yields/ /pi/H, /eta//prime/ /yields/ /eta/H,/Upsilon/ /yields/ H/gamma/ and e/sup +/e/sup /minus// /yields/ ZH are examined with particular attention paid to theoretical uncertainties in the calculations. We also briefly examine new features of Higgs phenomenology in a model which contains Higgs triplets as well as the usual doublet of scalar fields. 33 refs., 6 figs., 1 tab.

  4. Higgs boson-μ -τ coupling at high and low energy colliders

    NASA Astrophysics Data System (ADS)

    Mao, Ying-nan; Zhu, Shou-hua

    2016-02-01

    There is no tree-level flavor changing neutral current (FCNC) in the standard model (SM) which contains only one Higgs doublet. If more Higgs doublets are introduced for various reasons, the tree-level FCNC would be inevitable, except that extra symmetry was imposed. Therefore, FCNC processes are an excellent probe for physics beyond the SM (BSM). In this paper, we study the lepton flavor violated decay processes h →μ τ and τ →μ γ induced by the Higgs boson-μ -τ vertex. For τ →μ γ , its branching ratio is also related to the h t t ¯, h τ+τ-, and h W+W- vertices. We categorize the BSM into two scenarios for the Higgs boson coupling strengths near or away from the SM. For the latter scenario, we take the spontaneously broken two Higgs doublet model (the Lee model) as an example. We consider the constraints by recent data from the LHC and B factories, and we find that the measurements give weak constraints. At LHC run II, h →μ τ will be confirmed or will have a stricter limit set on its branching ratio. Accordingly, Br (τ →μ γ )≲O (10-10-10-8) for general chosen parameters. For the positive case, τ →μ γ can be discovered with O (1010) τ pair samples at the SuperB factory, the Super τ -charm factory, and the new Z factory. The future measurements for Br (h →μ τ ) and Br (τ →μ γ ) will be used to distinguish these two scenarios or set strict constraints on the correlations among different Higgs couplings.

  5. Radiative corrections to the Higgs boson couplings in the model with an additional real singlet scalar field

    NASA Astrophysics Data System (ADS)

    Kanemura, Shinya; Kikuchi, Mariko; Yagyu, Kei

    2016-06-01

    We calculate renormalized Higgs boson couplings with gauge bosons and fermions at the one-loop level in the model with an additional isospin singlet real scalar field. These coupling constants can deviate from the predictions in the standard model due to tree-level mixing effects and one-loop contributions of the extra neutral scalar boson. We investigate how they can be significant under the theoretical constraints from perturbative unitarity and vacuum stability and also the condition of avoiding the wrong vacuum. Furthermore, comparing with the predictions in the Type I two Higgs doublet model, we numerically demonstrate how the singlet extension model can be distinguished and identified by using precision measurements of the Higgs boson couplings at future collider experiments.

  6. Constraining the Higgs boson coupling to light quarks in the H →Z Z final states

    NASA Astrophysics Data System (ADS)

    Zhou, Yaofu

    2016-01-01

    We constrain the Higgs boson (Yukawa) coupling to quarks in the first two generations in the H →Z Z final states. Deviation of these couplings from the Standard Model values leads to changes in the Higgs boson width and in the cross sections of relevant processes. In the Higgs boson resonance region, an increased light Yukawa coupling leads to an increased Higgs boson width, which in turn leads to a decreased cross section. In the off-shell region, increased Yukawa couplings result in an enhancement of the Higgs boson signal through q q ¯ annihilation. With the assumption of scaling one Yukawa coupling at a time, this study is conceptually simple and yields results with the same order of magnitude as the tightest in the literature. The study is based on results published by the CMS experiment at the LHC in 2014, corresponding to integrated luminosities of 5.1 fb-1 at a centre-of-mass energy √{s }=7 TeV and 19.7 fb-1 at 8 TeV.

  7. Higgs in bosonic channels (CMS)

    NASA Astrophysics Data System (ADS)

    Gori, Valentina

    2015-05-01

    The main Higgs boson decays into bosonic channels will be considered, presenting and discussing results from the latest reprocessing of data collected by the CMS experiment at the LHC, using the full dataset recorded at centre-of-mass energies of 7 and 8 TeV. For this purpose, results from the final Run-I papers for the H → ZZ → 4ℓ, H → γγ and H → WW analyses are presented, focusing on the Higgs boson properties, like the mass, the signal strenght, the couplings to fermions and vector bosons, the spin and parity properties. Furthermore, the Higgs boson width measurement exploiting the on-shell versus the off-shell cross section (in the H → ZZ → 4ℓ and H → ZZ → 2ℓ2ν decay channels) will be shown. All the investigated properties result to be fully consistent with the SM predictions: the signal strength and the signal strength modifiers are consistent with unity in all the bosonic channels considered; the hypothesis of a scalar particle is strongly favored, against the pseudoscalar or the vector/pseudovector or the spin-2 boson hypotheses (all excluded at 99% CL or higher in the H → ZZ → 4ℓ channel). The Higgs boson mass measurement from the combination of H → ZZ → 4ℓ and H → γγ channels gives a value mH = 125.03+0.26-0.27 (stat.) +0.13-0.15 (syst.). An upper limit ΓH < 22 MeV can be put on the Higgs boson width thanks to the new indirect method.

  8. Higgs boson self-coupling from two-loop analysis

    SciTech Connect

    Alhendi, H. A.; Barakat, T.; Loqman, I. Gh.

    2010-09-01

    The scale invariant of the effective potential of the standard model at two loop is used as a boundary condition under the assumption that the two-loop effective potential approximates the full effective potential. This condition leads with the help of the renormalization-group functions of the model at two loop to an algebraic equation of the scalar self-coupling with coefficients that depend on the gauge and the top quark couplings. It admits only two real positive solutions. One of them, in the absence of the gauge and top quark couplings, corresponds to the nonperturbative ultraviolet fixed point of the scalar renormalization-group function and the other corresponds to the perturbative infrared fixed point. The dependence of the scalar coupling on the top quark and the strong couplings at two-loop radiative corrections is analyzed.

  9. Is the Higgs boson composed of neutrinos?

    SciTech Connect

    Krog, Jens; Hill, Christopher T.

    2015-11-09

    We show that conventional Higgs compositeness conditions can be achieved by the running of large Higgs-Yukawa couplings involving right-handed neutrinos that become active at ~1013–1014 GeV. Together with a somewhat enhanced quartic coupling arising by a Higgs portal interaction to a dark matter sector, we can obtain a Higgs boson composed of neutrinos. Furthermore, this is a “next-to-minimal” dynamical electroweak symmetry breaking scheme.

  10. Is the Higgs boson composed of neutrinos?

    DOE PAGESBeta

    Krog, Jens; Hill, Christopher T.

    2015-11-09

    We show that conventional Higgs compositeness conditions can be achieved by the running of large Higgs-Yukawa couplings involving right-handed neutrinos that become active at ~1013–1014 GeV. Together with a somewhat enhanced quartic coupling arising by a Higgs portal interaction to a dark matter sector, we can obtain a Higgs boson composed of neutrinos. Furthermore, this is a “next-to-minimal” dynamical electroweak symmetry breaking scheme.

  11. A Search for Dark Higgs Bosons

    SciTech Connect

    Lees, J.P.

    2012-06-08

    Recent astrophysical and terrestrial experiments have motivated the proposal of a dark sector with GeV-scale gauge boson force carriers and new Higgs bosons. We present a search for a dark Higgs boson using 516 fb{sup -1} of data collected with the BABAR detector. We do not observe a significant signal and we set 90% confidence level upper limits on the product of the Standard Model-dark sector mixing angle and the dark sector coupling constant.

  12. Higher order QCD predictions for associated Higgs production with anomalous couplings to gauge bosons

    NASA Astrophysics Data System (ADS)

    Mimasu, Ken; Sanz, Verónica; Williams, Ciaran

    2016-08-01

    We present predictions for the associated production of a Higgs boson at NLO+PS accuracy, including the effect of anomalous interactions between the Higgs and gauge bosons. We present our results in different frameworks, one in which the interaction vertex between the Higgs boson and Standard Model W and Z bosons is parameterized in terms of general Lorentz structures, and one in which Electroweak symmetry breaking is manifestly linear and the resulting operators arise through a six-dimensional effective field theory framework. We present analytic calculations of the Standard Model and Beyond the Standard Model contributions, and discuss the phenomenological impact of the higher order pieces. Our results are implemented in the NLO Monte Carlo program MCFM, and interfaced to shower Monte Carlos through the Powheg box framework.

  13. A Study to Enhance the Sensitivity for the Discovery of the Higgs Boson Coupling to Dimuons in Association with a Vector Boson

    NASA Astrophysics Data System (ADS)

    Regnery, Brendan; Acosta, Darin; Hugon, Justin

    2015-04-01

    We present our optimized selection criteria for the predicted Higgs coupling to dimuons with associated production of a vector boson. On July 4th 2012, the discovery of the Higgs boson was announced by the ATLAS and CMS collaborations in data from the Large Hadron Collider (LHC) at the European Organization for Nuclear Research (CERN). Researchers must search for the rare decay modes of the Higgs, as predicted in the Standard Model of Particle Physics, to confirm its predicted couplings to mass. We are contributing to that process by developing a dedicated search strategy for the Higgs decay to dimuons, with associated production of a W or Z vector boson detected in the dijet final state. In order to optimize the search for this channel, we improved upon the published CMS search for the Higgs decay to dimuons by adding additional discrimination criteria: invariant mass of the dijet decay of the W or Z vector boson, dimuon transverse momentum, the angle between the dimuon and dijet systems in the transverse plane, and missing transverse momentum. We optimized these criteria on 7, 8, and 13 TeV CMS simulated data to improve the sensitivity for discovery of this decay channel and will report on the result. Compact Muon Solenoid (CMS) and University of Florida University Scholar's Program.

  14. A light Higgs boson would invite supersymmetry

    NASA Astrophysics Data System (ADS)

    Ellis, J.; Ross, D.

    2001-05-01

    If the Higgs boson weighs about 115 GeV, the effective potential of the Standard Model becomes unstable above a scale of about 106 GeV. This instability may be rectified only by new bosonic particles such as stop squarks. However, avoiding the instability requires fine-tuning of the model couplings, in particular if the theory is not to become non-perturbative before the Planck scale. Such fine-tuning is automatic in a supersymmetric model, but is lost if there are no higgsinos. A light Higgs boson would be prima facie evidence for supersymmetry in the top-quark and Higgs sectors.

  15. Dark matter coupling to electroweak gauge and Higgs bosons: An effective field theory approach

    NASA Astrophysics Data System (ADS)

    Chen, Jing-Yuan; Kolb, Edward W.; Wang, Lian-Tao

    2013-12-01

    If dark matter is a new species of particle produced in the early universe as a cold thermal relic (a weakly-interacting massive particle-WIMP), its present abundance, its scattering with matter in direct-detection experiments, its present-day annihilation signature in indirect-detection experiments, and its production and detection at colliders, depend crucially on the WIMP coupling to standard-model (SM) particles. It is usually assumed that the WIMP couples to the SM sector through its interactions with quarks and leptons. In this paper we explore the possibility that the WIMP coupling to the SM sector is via electroweak gauge and Higgs bosons. In the absence of an ultraviolet-complete particle-physics model, we employ effective field theory to describe the WIMP-SM coupling. We consider both scalars and Dirac fermions as possible dark-matter candidates. Starting with an exhaustive list of operators up to dimension 8, we present detailed calculation of dark-matter annihilations to all possible final states, including γγ, γZ, γh, ZZ, Zh, W+W-, hh, and ffbar, and demonstrate the correlations among them. We compute the mass scale of the effective field theory necessary to obtain the correct dark-matter mass density, and well as the resulting photon line signals.

  16. Study of (W/Z)H production and Higgs boson couplings using H→ W W * decays with the ATLAS detector

    DOE PAGESBeta

    Aad, G.

    2015-08-27

    A search for Higgs boson production in association with a W or Z boson, in the H→ W W * decay channel, is performed with a data sample collected with the ATLAS detector at the LHC in proton-proton collisions at centre-of-mass energies \\( \\sqrt{s}=7 \\) TeV and 8 TeV, corresponding to integrated luminosities of 4.5 fb-1 and 20.3 fb-1, respectively. The WH production mode is studied in two-lepton and three-lepton final states, while two- lepton and four-lepton final states are used to search for the ZH production mode. The observed significance, for the combined W H and ZH production, ismore » 2.5 standard deviations while a significance of 0.9 standard deviations is expected in the Standard Model Higgs boson hypothesis. The ratio of the combined W H and ZH signal yield to the Standard Model expectation, μV H , is found to be μ V H = 3.0-1.1+1.3 (stat.)-0.7 +1.0 (sys.) for the Higgs boson mass of 125.36 GeV. The W H and ZH production modes are also combined with the gluon fusion and vector boson fusion production modes studied in the H → W W * → ℓνℓν decay channel, resulting in an overall observed significance of 6.5 standard deviations and μggF + VBF + VH = 1.16-0.15+0.16 (stat.) -0.15+0.18 (sys.). The results are interpreted in terms of scaling factors of the Higgs boson couplings to vector bosons (κV ) and fermions (κF ); the combined results are: |κ V | = 1.06-0.10+0.10, |κ F| = 0.85-0.20+0.26.« less

  17. Complementarity between nonstandard Higgs boson searches and precision Higgs boson measurements in the MSSM

    SciTech Connect

    Carena, Marcela; Haber, Howard E.; Low, Ian; Shah, Nausheen R.; Wagner, Carlos E. M.

    2015-02-03

    Precision measurements of the Higgs boson properties at the LHC provide relevant constraints on possible weak-scale extensions of the Standard Model (SM). In the context of the minimal supersymmetric Standard Model (MSSM) these constraints seem to suggest that all the additional, non-SM-like Higgs bosons should be heavy, with masses larger than about 400 GeV. This article shows that such results do not hold when the theory approaches the conditions for “alignment independent of decoupling,” where the lightest CP-even Higgs boson has SM-like tree-level couplings to fermions and gauge bosons, independently of the nonstandard Higgs boson masses. In addition, the combination of current bounds from direct Higgs boson searches at the LHC, along with the alignment conditions, have a significant impact on the allowed MSSM parameter space yielding light additional Higgs bosons. In particular, after ensuring the correct mass for the lightest CP-even Higgs boson, we find that precision measurements and direct searches are complementary and may soon be able to probe the region of non-SM-like Higgs boson with masses below the top quark pair mass threshold of 350 GeV and low to moderate values of tanβ.

  18. Complementarity between nonstandard Higgs boson searches and precision Higgs boson measurements in the MSSM

    DOE PAGESBeta

    Carena, Marcela; Haber, Howard E.; Low, Ian; Shah, Nausheen R.; Wagner, Carlos E. M.

    2015-02-03

    Precision measurements of the Higgs boson properties at the LHC provide relevant constraints on possible weak-scale extensions of the Standard Model (SM). In the context of the minimal supersymmetric Standard Model (MSSM) these constraints seem to suggest that all the additional, non-SM-like Higgs bosons should be heavy, with masses larger than about 400 GeV. This article shows that such results do not hold when the theory approaches the conditions for “alignment independent of decoupling,” where the lightest CP-even Higgs boson has SM-like tree-level couplings to fermions and gauge bosons, independently of the nonstandard Higgs boson masses. In addition, the combinationmore » of current bounds from direct Higgs boson searches at the LHC, along with the alignment conditions, have a significant impact on the allowed MSSM parameter space yielding light additional Higgs bosons. In particular, after ensuring the correct mass for the lightest CP-even Higgs boson, we find that precision measurements and direct searches are complementary and may soon be able to probe the region of non-SM-like Higgs boson with masses below the top quark pair mass threshold of 350 GeV and low to moderate values of tanβ.« less

  19. Limits on light Higgs bosons

    SciTech Connect

    Dawson, S.

    1988-01-01

    Experimental limits on light Higgs bosons (M/sub H/ < 5 GeV) are examined. Particular attention is paid to the process K H. It is shown that there may be an allowed window for light Higgs bosons between about 100 and 210 MeV. 13 refs., 2 figs.

  20. Evidence for the Higgs-boson Yukawa coupling to tau leptons with the ATLAS detector

    DOE PAGESBeta

    Aad, G.

    2015-04-21

    Results of a search for H → ττ decays are presented, based on the full set of proton-proton collision data recorded by the ATLAS experiment at the LHC during 2011 and 2012. The data correspond to integrated luminosities of 4.5 fb–1 and 20.3 fb–1 at centre-of-mass energies of √s=7 TeV and √s=8 TeV respectively. All combinations of leptonic (τ → ℓνν¯ with ℓ = e, μ) and hadronic (τ → hadrons ν) tau decays are considered. An excess of events over the expected background from other Standard Model processes is found with an observed (expected) significance of 4.5 (3.4) standardmore » deviations. This excess provides evidence for the direct coupling of the recently discovered Higgs boson to fermions. The measured signal strength, normalized to the Standard Model expectation, of μ = 1.43–0.37+0.43 is consistent with the predicted Yukawa coupling strength in the Standard Model.« less

  1. Evidence for the Higgs-boson Yukawa coupling to tau leptons with the ATLAS detector

    SciTech Connect

    Aad, G.

    2015-04-21

    Results of a search for H → ττ decays are presented, based on the full set of proton-proton collision data recorded by the ATLAS experiment at the LHC during 2011 and 2012. The data correspond to integrated luminosities of 4.5 fb–1 and 20.3 fb–1 at centre-of-mass energies of √s=7 TeV and √s=8 TeV respectively. All combinations of leptonic (τ → ℓνν¯ with ℓ = e, μ) and hadronic (τ → hadrons ν) tau decays are considered. An excess of events over the expected background from other Standard Model processes is found with an observed (expected) significance of 4.5 (3.4) standard deviations. This excess provides evidence for the direct coupling of the recently discovered Higgs boson to fermions. The measured signal strength, normalized to the Standard Model expectation, of μ = 1.43–0.37+0.43 is consistent with the predicted Yukawa coupling strength in the Standard Model.

  2. Dark light Higgs bosons.

    SciTech Connect

    Draper, P.; Liu, T.; Wagner, C. E. M.; Wang, L.-T.; Zhang, H.

    2011-03-24

    We study a limit of the nearly Peccei-Quinn-symmetric next-to-minimal supersymmetric standard model possessing novel Higgs and dark matter (DM) properties. In this scenario, there naturally coexist three light singletlike particles: a scalar, a pseudoscalar, and a singlinolike DM candidate, all with masses of order 0.1-10 GeV. The decay of a standard model-like Higgs boson to pairs of the light scalars or pseudoscalars is generically suppressed, avoiding constraints from collider searches for these channels. For a certain parameter window annihilation into the light pseudoscalar and exchange of the light scalar with nucleons allow the singlino to achieve the correct relic density and a large direct-detection cross section consistent with the DM direct-detection experiments, CoGeNT and DAMA/LIBRA, preferred region simultaneously. This parameter space is consistent with experimental constraints from LEP, the Tevatron, ?, and flavor physics.

  3. MSSM Higgs bosons at the LHC

    NASA Astrophysics Data System (ADS)

    Christensen, Neil; Han, Tao; Su, Shufang

    2012-06-01

    The recent results on Higgs boson searches from LHC experiments provide significant guidance in exploring the minimal supersymmetric (SUSY) standard model (MSSM) Higgs sector. If we accept the existence of a SM-like Higgs boson in the mass window of 123 GeV-127 GeV as indicated by the observed γγ events, there are two distinct mass regions (in mA) left in the MSSM Higgs sector: (a) the lighter CP-even Higgs boson being SM-like and the non-SM-like Higgs bosons all heavy and nearly degenerate above 300 GeV (an extended decoupling region); (b) the heavier CP-even Higgs boson being SM-like and the neutral non-SM-like Higgs bosons all nearly degenerate around 100 GeV (a small non-decoupling region). On the other hand, due to the strong correlation between the Higgs decays to W+W- and to γγ predicted in the MSSM, the apparent absence of a W+W- final state signal is in direct conflict with the γγ peak. If we consider the W+W- channel on its own, the absence of the W+W- signal would imply that the SM-like Higgs boson has reduced coupling to W±, and that the other non-SM-like Higgs bosons should not be too heavy and do not decouple. If both the γγ excess and the absence of a W+W- signal continue, new physics beyond the MSSM will be required. A similar correlation exists between the W+W- and τ+τ- channels: a reduced W+W- channel would force the τ+τ- channel to be larger. Future searches for the SM-like Higgs boson at the LHC will provide critical tests for the MSSM prediction. We also study the signals predicted for the non-SM-like Higgs bosons and emphasize the potential importance of the electroweak processes pp→H+H-, H±A0, which are independent of the SUSY parameters except for their masses. In addition, there may be sizable contributions from pp→H±h0, A0h0 and W±H0, ZH0 in the low-mass non-decoupling region, which may serve to discriminate the model parameters. We allow variations of the relevant SUSY parameters in a broad range and demonstrate the

  4. Higgs boson flavor-changing neutral coupling and h{yields}t*c decay at a muon collider

    SciTech Connect

    Tetlalmatzi, G.; Contreras, J. G.; Larios, F.; Perez, M. A.

    2010-02-01

    We study the discovery potential of the flavor-changing neutral coupling (FCNC) htc of the Higgs boson and the top quark through the rare tree-body decay h{yields}Wbc at muon colliders for a light Higgs boson with mass 114{<=}m{sub h{<=}}145 GeV. This decay mode may compete with the standard model (SM) background induced by the hWW coupling in some models with a tree-level htc coupling and with models that predict this coupling at the one-loop level in the range 10{sup -2}-10{sup -1}. A future muon collider could test the scalar FCNC decay t{yields}hc via Higgs decay h{yields}t*c{yields}bW{sup +}c down to values of the coupling g{sub tc}=0.5[that are equivalent to BR(t{yields}hc){approx}5x10{sup -3}]. The LHC could probe values of g{sub tc} 1 order of magnitude smaller, unless other processes beyond the SM appear that through intense multijet activity may clutter the t{yields}hc signal.

  5. Higgs boson masses in supersymmetric models

    SciTech Connect

    Berger, M.S.

    1991-04-01

    Imposing supersymmetry on a Higgs potential constrains the parameters that define the potential. In supersymmetric extensions to the stranded model containing only Higgs SU(2){sub L} doublets there exist Higgs boson mass sum rules and bounds on the Higgs masses at tree level. The prescription for renormalizing these sum rules is derived. An explicit calculation is performed in the minimal supersymmetric extension to the standard model (MSSM). In this model at tree level the mass sum rule is M{sub H}{sup 2} + M{sub h}{sup 2} = M{sub A}{sup 2} + M{sub Z}{sup 2}. The results indicate that large corrections to the sum rules may arise from heavy matter fields, e.g. a heavy top quark. Squarks significantly heavier than their fermionic partners contribute large contributions when mixing occurs in the squark sector. These large corrections result from squark-Higgs couplings that become large in this limit. Contributions to individual Higgs boson masses that are quadratic in the squark masses cancel in the sum rule. Thus the naturalness constraint on Higgs boson masses is hidden in the combination of Higgs boson masses that comprise the sum rule. 39 refs., 13 figs.

  6. Distinguishing C P -odd couplings of the Higgs boson to weak boson pairs

    NASA Astrophysics Data System (ADS)

    Dwivedi, Siddharth; Ghosh, Dilip Kumar; Mukhopadhyaya, Biswarup; Shivaji, Ambresh

    2016-06-01

    We consider the observable effects of C P -violating anomalous Z Z h interaction arising from gauge-invariant dimension-six operators at the Large Hadron Collider (LHC), with the purpose of distinguishing them from not only the standard model effects but also those of C P -even anomalous interactions of a similar nature. The postulation of a gauge-invariant origin makes various couplings of this kind interrelated. The updated constraints from the LHC as well as limits from neutron and electron dipole moments are used in selecting the benchmark interaction strengths. We use some asymmetry parameters that have no contribution from standard or C P -even anomalous interactions. Parton showering and detector-level simulation are included to make our analysis as realistic as possible. On the whole, we conclude that gauge-invariant interaction of strength ≥40 /TeV2 can be successfully isolated using integrated luminosities in the 1.5 - 3.0 ab-1 range.

  7. Higgs constraints from vector boson fusion and scattering

    DOE PAGESBeta

    Campbell, John M.; Ellis, R. Keith

    2015-04-07

    We present results on 4-lepton + 2-jet production, the partonic processes most commonly described as vector boson pair production in the Vector Boson Fusion (VBF) mode. That final state contains diagrams that are mediated by Higgs boson exchange. We focus particularly on the high-mass behaviour of the Higgs boson mediated diagrams, which unlike on-shell production, gives information about the Higgs couplings without assumptions on the Higgs boson total width. We assess the sensitivity of the high-mass region to Higgs coupling strengths, considering all vector boson pair channels, W - W +, W ± W ±, W ± Z and ZZ.more » Because of the small background, the most promising mode is W + W + which has sensitivity to Higgs couplings because of Higgs boson exchange in the t-channel. Furthermore, using the Caola-Melnikov (CM) method, the off-shell couplings can be interpreted as bounds on the Higgs boson total width. We estimate the bound that can be obtained with current data, as well as the bounds that could be obtained at √s=13 TeV in the VBF channel for data samples of 100 and 300 fb-1. The CM method has already been successfully applied in the gluon fusion (GGF) production channel. The VBF production channel gives important complementary information, because both production and decay of the Higgs boson occur already at tree graph level.« less

  8. What is a Higgs Boson?

    ScienceCinema

    Lincoln, Don

    2014-08-12

    Fermilab scientist Don Lincoln describes the nature of the Higgs boson. Several large experimental groups are hot on the trail of this elusive subatomic particle which is thought to explain the origins of particle mass.

  9. What is a Higgs Boson?

    SciTech Connect

    Lincoln, Don

    2011-07-07

    Fermilab scientist Don Lincoln describes the nature of the Higgs boson. Several large experimental groups are hot on the trail of this elusive subatomic particle which is thought to explain the origins of particle mass.

  10. OVERVIEW OF HIGGS BOSON STUDIES AT THE TEVATRON

    SciTech Connect

    Zivkovic, Lidija

    2014-05-01

    The CDF and D0 experiments at the Tevatron p¯p Collider collected data between 2002 and 2011, accumulating up to 10 fb−1 of data. During that time, an extensive search for the standard model Higgs boson was performed. Combined results from the searches for the standard model Higgs boson with the final dataset are presented, together with results on the Higgs boson couplings and spin and parity.

  11. Study of (W/Z)H production and Higgs boson couplings using H→ W W * decays with the ATLAS detector

    SciTech Connect

    Aad, G.

    2015-08-27

    A search for Higgs boson production in association with a W or Z boson, in the H→ W W * decay channel, is performed with a data sample collected with the ATLAS detector at the LHC in proton-proton collisions at centre-of-mass energies \\( \\sqrt{s}=7 \\) TeV and 8 TeV, corresponding to integrated luminosities of 4.5 fb-1 and 20.3 fb-1, respectively. The WH production mode is studied in two-lepton and three-lepton final states, while two- lepton and four-lepton final states are used to search for the ZH production mode. The observed significance, for the combined W H and ZH production, is 2.5 standard deviations while a significance of 0.9 standard deviations is expected in the Standard Model Higgs boson hypothesis. The ratio of the combined W H and ZH signal yield to the Standard Model expectation, μV H , is found to be μ V H = 3.0-1.1+1.3 (stat.)-0.7 +1.0 (sys.) for the Higgs boson mass of 125.36 GeV. The W H and ZH production modes are also combined with the gluon fusion and vector boson fusion production modes studied in the H → W W * → ℓνℓν decay channel, resulting in an overall observed significance of 6.5 standard deviations and μggF + VBF + VH = 1.16-0.15+0.16 (stat.) -0.15+0.18 (sys.). The results are interpreted in terms of scaling factors of the Higgs boson couplings to vector bosonsV ) and fermions (κF ); the combined results are: |κ V | = 1.06-0.10+0.10, |κ F| = 0.85-0.20+0.26.

  12. The sensitivity of the Higgs boson branching ratios to the W boson width

    NASA Astrophysics Data System (ADS)

    Murray, William

    2016-07-01

    The Higgs boson branching ratio into vector bosons is sensitive to the decay widths of those vector bosons because they are produced with at least one boson significantly off-shell. Γ (H → VV) is approximately proportional to the product of the Higgs boson coupling and the vector boson width. ΓZ is well measured, but ΓW gives an uncertainty on Γ (H → WW) which is not negligible. The ratio of branching ratios, BR (H → WW) / BR (H → ZZ) measured by a combination of ATLAS and CMS at LHC is used herein to extract a width for the W boson of ΓW =1.8-0.3+0.4 GeV by assuming Standard Model couplings of the Higgs bosons. This dependence of the branching ratio on ΓW is not discussed in most Higgs boson coupling analyses.

  13. Supersymmetric Higgs Bosons in Weak Boson Fusion

    SciTech Connect

    Hollik, Wolfgang; Plehn, Tilman; Rauch, Michael; Rzehak, Heidi

    2009-03-06

    We compute the complete supersymmetric next-to-leading-order corrections to the production of a light Higgs boson in weak-boson fusion. The size of the electroweak corrections is of similar order as the next-to-leading-order corrections in the standard model. The supersymmetric QCD corrections turn out to be significantly smaller than expected and than their electroweak counterparts. These corrections are an important ingredient to a precision analysis of the (supersymmetric) Higgs sector at the LHC, either as a known correction factor or as a contribution to the theory error.

  14. Neutral Supersymmetric Higgs Boson Searches

    SciTech Connect

    Robinson, Stephen Luke

    2008-07-01

    In some Supersymmetric extensions of the Standard Model, including the Minimal Supersymmetric Standard Model (MSSM), the coupling of Higgs bosons to b-quarks is enhanced. This enhancement makes the associated production of the Higgs with b-quarks an interesting search channel for the Higgs and Supersymmetry at D0. The identification of b-quarks, both online and offline, is essential to this search effort. This thesis describes the author's involvement in the development of both types of b-tagging and in the application of these techniques to the MSSM Higgs search. Work was carried out on the Level-3 trigger b-tagging algorithms. The impact parameter (IP) b-tagger was retuned and the effects of increased instantaneous luminosity on the tagger were studied. An extension of the IP-tagger to use the z-tracking information was developed. A new b-tagger using secondary vertices was developed and commissioned. A tool was developed to allow the use of large multi-run samples for trigger studies involving b-quarks. Offline, a neural network (NN) b-tagger was trained combining the existing offline lifetime based b-tagging tools. The efficiency and fake rate of the NN b-tagger were measured in data and MC. This b-tagger was internally reviewed and certified by the Collaboration and now provides the official b-tagging for all analyses using the Run IIa dataset at D0. A search was performed for neutral MSSM Higgs bosons decaying to a b{bar b} pair and produced in association with one or more b-quarks. Limits are set on the cross-section times the branching ratio for such a process. The limits were interpreted in various MSSM scenarios. This analysis uses the NN b-tagger and was the first to use this tool. The analysis also relies on triggers using the Level-3 IP b-tagging tool described previously. A likelihood discriminant was used to improve the analysis and a neural network was developed to cross-check this technique. The result of the analysis has been submitted to PRL and

  15. Review of Physics Results from the Tevatron: Higgs Boson Physics

    DOE PAGESBeta

    Junk, Thomas R.; Juste, Aurelio

    2015-02-17

    We review the techniques and results of the searches for the Higgs boson performed by the two Tevatron collaborations, CDF and DØ. The Higgs boson predicted by the Standard Model was sought in the mass range 90 GeV < mH < 200 GeV in all main production modes at the Tevatron: gluon–gluon fusion, WH and ZH associated production, vector boson fusion, and tt- H production, and in five main decay modes: H→ bb-, H→τ+τ-, H→WW(*), H→ZZ(*) and H→γγ. An excess of events was seen in the H→ bb- searches consistent with a Standard Model Higgs boson with a mass inmore » the range 115 GeV < mH < 135 GeV. We assume a Higgs boson mass of mH = 125 GeV, studies of Higgs boson properties were performed, including measurements of the product of the cross section times the branching ratio in various production and decay modes, constraints on Higgs boson couplings to fermions and vector bosons, and tests of spin and parity. We also summarize the results of searches for supersymmetric Higgs bosons, and Higgs bosons in other extensions of the Standard Model.« less

  16. Review of Physics Results from the Tevatron: Higgs Boson Physics

    SciTech Connect

    Junk, Thomas R.; Juste, Aurelio

    2015-02-17

    We review the techniques and results of the searches for the Higgs boson performed by the two Tevatron collaborations, CDF and DØ. The Higgs boson predicted by the Standard Model was sought in the mass range 90 GeV < mH < 200 GeV in all main production modes at the Tevatron: gluon–gluon fusion, WH and ZH associated production, vector boson fusion, and tt- H production, and in five main decay modes: H→ bb-, H→τ+τ-, H→WW(*), H→ZZ(*) and H→γγ. An excess of events was seen in the H→ bb- searches consistent with a Standard Model Higgs boson with a mass in the range 115 GeV < mH < 135 GeV. We assume a Higgs boson mass of mH = 125 GeV, studies of Higgs boson properties were performed, including measurements of the product of the cross section times the branching ratio in various production and decay modes, constraints on Higgs boson couplings to fermions and vector bosons, and tests of spin and parity. We also summarize the results of searches for supersymmetric Higgs bosons, and Higgs bosons in other extensions of the Standard Model.

  17. Review of physics results from the Tevatron: Higgs boson physics

    NASA Astrophysics Data System (ADS)

    Junk, Thomas R.; Juste, Aurelio

    2015-02-01

    We review the techniques and results of the searches for the Higgs boson performed by the two Tevatron collaborations, CDF and DØ. The Higgs boson predicted by the Standard Model was sought in the mass range 90 GeV < mH < 200 GeV in all main production modes at the Tevatron: gluon-gluon fusion, WH and ZH associated production, vector boson fusion, and t\\bar {t}H production, and in five main decay modes: H-> b{\\bar {b}}, H→τ+τ-, H→WW(*), H→ZZ(*) and H→γγ. An excess of events was seen in the H-> b{\\bar b} searches consistent with a Standard Model Higgs boson with a mass in the range 115 GeV < mH < 135 GeV. Assuming a Higgs boson mass of mH = 125 GeV, studies of Higgs boson properties were performed, including measurements of the product of the cross section times the branching ratio in various production and decay modes, constraints on Higgs boson couplings to fermions and vector bosons, and tests of spin and parity. We also summarize the results of searches for supersymmetric Higgs bosons, and Higgs bosons in other extensions of the Standard Model.

  18. Comparison of associated Higgs boson-radion and Higgs boson pair production processes

    NASA Astrophysics Data System (ADS)

    Boos, E.; Keizerov, S.; Rakhmetov, E.; Svirina, K.

    2016-07-01

    Many models—in particular, the brane-world models with two branes—predict the existence of the scalar radion, whose mass can be somewhat smaller than those of all the Kaluza-Klein modes of the graviton and Standard Model (SM) particles. Due to its origin the radion interacts with the trace of the energy-momentum tensor of the SM. The fermion part of the radion interaction Lagrangian is different from that for the SM Higgs boson due to the presence of additional terms playing a role for off-shell fermions. It was shown previously [Phys. Rev. D 90, 095026 (2014), 10.1103/PhysRevD.90.095026] that for the case of the single radion and single Higgs boson production processes in association with an arbitrary number of SM gauge bosons all the contributions to the perturbative amplitudes appearing due to these additional terms were canceled out, making the processes similar up to a replacement of masses and overall coupling constants. For the case of the associated Higgs boson-radion and the Higgs boson pair-production processes involving the SM gauge bosons, the similarity property also appears. However, a detailed consideration shows that in this case it is not enough to simply replace the masses and the constants (mh→mr and v →Λr). One should also rescale the triple Higgs coupling by the factor ξ ≡1 +m/r2-mh2 3 mh2 .

  19. Possibility of early Higgs boson discovery in nonminimal Higgs sectors

    SciTech Connect

    Chang, Spencer; Evans, Jared A.; Luty, Markus A.

    2011-11-01

    Particle physics models with more than one Higgs boson occur in many frameworks for physics beyond the standard model, including supersymmetry, technicolor, composite Higgs, and ''little Higgs'' models. If the Higgs sector contains couplings stronger than electroweak gauge couplings, there will be heavy Higgs particles that decay to lighter Higgs particles plus heavy particles such as W, Z, and t. This motivates searches for final states involving multiple W, Z, t, and bb pairs. A two Higgs doublet model with custodial symmetry is a useful simplified model to describe many of these signals. The model can be parameterized by the physical Higgs masses and the mixing angles {alpha} and {beta}, so discovery or exclusion in this parameter space has a straightforward physical interpretation. We illustrate this with a detailed analysis of the process gg{yields}A followed by A{yields}hZ and h{yields}WW. For m{sub A}{approx_equal}330 GeV, m{sub h}{approx_equal}200 GeV we can get a 4.5{sigma} signal with 1 fb{sup -1} of integrated luminosity at the Large Hadron Collider.

  20. Higgs bosons searches at CDF

    SciTech Connect

    Cuenca Almenar, Cristobal; /UC, Irvine

    2010-01-01

    Advanced analysis techniques together with increasing data samples are bringing the sensitivity of CDF to the Higgs boson very close to the SM predictions. These improvements translate into more stringent exclusions of parameter space in BSM Higgs sectors and of the SM mass range. The CDF Collaboration has a very active program on Higgs searches that comprises most accessible production mechanisms and decay channels in {bar p}p collisions at {radical}s = 1.96 TeV. This contribution will also review the combination of the different channels, data samples and analysis techinques that currently produces one of the most exciting experimental results in our field.

  1. Search for low-mass dark-sector Higgs bosons.

    PubMed

    Lees, J P; Poireau, V; Tisserand, V; Garra Tico, J; Grauges, E; Milanes, D A; Palano, A; Pappagallo, M; Eigen, G; Stugu, B; Brown, D N; Kerth, L T; Kolomensky, Yu G; Lynch, G; Koch, H; Schroeder, T; Asgeirsson, D J; Hearty, C; Mattison, T S; McKenna, J A; Khan, A; Blinov, V E; Buzykaev, A R; Druzhinin, V P; Golubev, V B; Kravchenko, E A; Onuchin, A P; Serednyakov, S I; Skovpen, Yu I; Solodov, E P; Todyshev, K Yu; Yushkov, A N; Bondioli, M; Kirkby, D; Lankford, A J; Mandelkern, M; Atmacan, H; Gary, J W; Liu, F; Long, O; Vitug, G M; Campagnari, C; Hong, T M; Kovalskyi, D; Richman, J D; West, C A; Eisner, A M; Kroseberg, J; Lockman, W S; Martinez, A J; Schalk, T; Schumm, B A; Seiden, A; Chao, D S; Cheng, C H; Doll, D A; Echenard, B; Flood, K T; Hitlin, D G; Ongmongkolkul, P; Porter, F C; Rakitin, A Y; Andreassen, R; Huard, Z; Meadows, B T; Sokoloff, M D; Sun, L; Bloom, P C; Ford, W T; Gaz, A; Nagel, M; Nauenberg, U; Smith, J G; Wagner, S R; Ayad, R; Toki, W H; Spaan, B; Kobel, M J; Schubert, K R; Schwierz, R; Bernard, D; Verderi, M; Clark, P J; Playfer, S; Bettoni, D; Bozzi, C; Calabrese, R; Cibinetto, G; Fioravanti, E; Garzia, I; Luppi, E; Munerato, M; Negrini, M; Piemontese, L; Santoro, V; Baldini-Ferroli, R; Calcaterra, A; de Sangro, R; Finocchiaro, G; Patteri, P; Peruzzi, I M; Piccolo, M; Rama, M; Zallo, A; Contri, R; Guido, E; Lo Vetere, M; Monge, M R; Passaggio, S; Patrignani, C; Robutti, E; Bhuyan, B; Prasad, V; Lee, C L; Morii, M; Edwards, A J; Adametz, A; Marks, J; Uwer, U; Lacker, H M; Lueck, T; Dauncey, P D; Behera, P K; Mallik, U; Chen, C; Cochran, J; Meyer, W T; Prell, S; Rubin, A E; Gritsan, A V; Guo, Z J; Arnaud, N; Davier, M; Derkach, D; Grosdidier, G; Le Diberder, F; Lutz, A M; Malaescu, B; Roudeau, P; Schune, M H; Stocchi, A; Wormser, G; Lange, D J; Wright, D M; Bingham, I; Chavez, C A; Coleman, J P; Fry, J R; Gabathuler, E; Hutchcroft, D E; Payne, D J; Touramanis, C; Bevan, A J; Di Lodovico, F; Sacco, R; Sigamani, M; Cowan, G; Brown, D N; Davis, C L; Denig, A G; Fritsch, M; Gradl, W; Hafner, A; Prencipe, E; Bailey, D; Barlow, R J; Jackson, G; Lafferty, G D; Behn, E; Cenci, R; Hamilton, B; Jawahery, A; Roberts, D A; Simi, G; Dallapiccola, C; Cowan, R; Dujmic, D; Sciolla, G; Cheaib, R; Lindemann, D; Patel, P M; Robertson, S H; Schram, M; Biassoni, P; Neri, N; Palombo, F; Stracka, S; Cremaldi, L; Godang, R; Kroeger, R; Sonnek, P; Summers, D J; Nguyen, X; Simard, M; Taras, P; De Nardo, G; Monorchio, D; Onorato, G; Sciacca, C; Martinelli, M; Raven, G; Jessop, C P; Knoepfel, K J; Losecco, J M; Wang, W F; Honscheid, K; Kass, R; Brau, J; Frey, R; Sinev, N B; Strom, D; Torrence, E; Feltresi, E; Gagliardi, N; Margoni, M; Morandin, M; Posocco, M; Rotondo, M; Simonetto, F; Stroili, R; Akar, S; Ben-Haim, E; Bomben, M; Bonneaud, G R; Briand, H; Calderini, G; Chauveau, J; Hamon, O; Leruste, Ph; Marchiori, G; Ocariz, J; Sitt, S; Biasini, M; Manoni, E; Pacetti, S; Rossi, A; Angelini, C; Batignani, G; Bettarini, S; Carpinelli, M; Casarosa, G; Cervelli, A; Forti, F; Giorgi, M A; Lusiani, A; Oberhof, B; Paoloni, E; Perez, A; Rizzo, G; Walsh, J J; Lopes Pegna, D; Olsen, J; Smith, A J S; Telnov, A V; Anulli, F; Cavoto, G; Faccini, R; Ferrarotto, F; Ferroni, F; Gaspero, M; Li Gioi, L; Mazzoni, M A; Piredda, G; Bünger, C; Grünberg, O; Hartmann, T; Leddig, T; Schröder, H; Voss, C; Waldi, R; Adye, T; Olaiya, E O; Wilson, F F; Emery, S; Hamel de Monchenault, G; Vasseur, G; Yèche, Ch; Aston, D; Bard, D J; Bartoldus, R; Cartaro, C; Convery, M R; Dorfan, J; Dubois-Felsmann, G P; Dunwoodie, W; Ebert, M; Field, R C; Franco Sevilla, M; Fulsom, B G; Gabareen, A M; Graham, M T; Grenier, P; Hast, C; Innes, W R; Kelsey, M H; Kim, P; Kocian, M L; Leith, D W G S; Lewis, P; Lindquist, B; Luitz, S; Luth, V; Lynch, H L; Macfarlane, D B; Muller, D R; Neal, H; Nelson, S; Perl, M; Pulliam, T; Ratcliff, B N; Roodman, A; Salnikov, A A; Schindler, R H; Snyder, A; Su, D; Sullivan, M K; Va'vra, J; Wagner, A P; Weaver, M; Wisniewski, W J; Wittgen, M; Wright, D H; Wulsin, H W; Young, C C; Ziegler, V; Park, W; Purohit, M V; White, R M; Wilson, J R; Randle-Conde, A; Sekula, S J; Bellis, M; Benitez, J F; Burchat, P R; Miyashita, T S; Alam, M S; Ernst, J A; Gorodeisky, R; Guttman, N; Peimer, D R; Soffer, A; Lund, P; Spanier, S M; Eckmann, R; Ritchie, J L; Ruland, A M; Schilling, C J; Schwitters, R F; Wray, B C; Izen, J M; Lou, X C; Bianchi, F; Gamba, D; Lanceri, L; Vitale, L; Martinez-Vidal, F; Oyanguren, A; Ahmed, H; Albert, J; Banerjee, Sw; Bernlochner, F U; Choi, H H F; King, G J; Kowalewski, R; Lewczuk, M J; Nugent, I M; Roney, J M; Sobie, R J; Tasneem, N; Gershon, T J; Harrison, P F; Latham, T E; Puccio, E M T; Band, H R; Dasu, S; Pan, Y; Prepost, R; Wu, S L

    2012-05-25

    Recent astrophysical and terrestrial experiments have motivated the proposal of a dark sector with GeV-scale gauge boson force carriers and new Higgs bosons. We present a search for a dark Higgs boson using 516 fb(-1) of data collected with the BABAR detector. We do not observe a significant signal and we set 90% confidence level upper limits on the product of the standard model-dark-sector mixing angle and the dark-sector coupling constant. PMID:23003239

  2. Light Higgs bosons in NMSSM at the LHC

    NASA Astrophysics Data System (ADS)

    Guchait, Monoranjan; Kumar, Jacky

    2016-04-01

    The next-to-minimal supersymmetric Standard Model (NMSSM) with an extended Higgs sector offers at least one Higgs boson as the Standard Model (SM)-like Higgs with a mass around 125 GeV. In this work, we revisit the mass spectrum and couplings of non-SM-like Higgs bosons taking into consideration most relevant constraints and identify the relevant parameter space. The discovery potential of these non-SM-like Higgs bosons, apart from their masses, is guided by their couplings with gauge bosons and fermions which are very much parameter space sensitive. We evaluate the rates of productions of these non-SM-like Higgs bosons at the LHC for a variety of decay channels in the allowed region of the parameter space. Although bb¯, ττ modes appear to be the most promising decay channels, but for a substantial region of parameter space the two-photon decay mode has a remarkably large rate. In this study we emphasize that this diphoton mode can be exploited to find the non-SM-like Higgs bosons of the NMSSM and can also be a potential avenue to distinguish the NMSSM from the MSSM. In addition, we discuss briefly the various detectable signals of these non-SM Higgs bosons at the LHC.

  3. Higgs constraints from vector boson fusion and scattering

    SciTech Connect

    Campbell, John M.; Ellis, R. Keith

    2015-04-07

    We present results on 4-lepton + 2-jet production, the partonic processes most commonly described as vector boson pair production in the Vector Boson Fusion (VBF) mode. That final state contains diagrams that are mediated by Higgs boson exchange. We focus particularly on the high-mass behaviour of the Higgs boson mediated diagrams, which unlike on-shell production, gives information about the Higgs couplings without assumptions on the Higgs boson total width. We assess the sensitivity of the high-mass region to Higgs coupling strengths, considering all vector boson pair channels, W - W +, W ± W ±, W ± Z and ZZ. Because of the small background, the most promising mode is W + W + which has sensitivity to Higgs couplings because of Higgs boson exchange in the t-channel. Furthermore, using the Caola-Melnikov (CM) method, the off-shell couplings can be interpreted as bounds on the Higgs boson total width. We estimate the bound that can be obtained with current data, as well as the bounds that could be obtained at √s=13 TeV in the VBF channel for data samples of 100 and 300 fb-1. The CM method has already been successfully applied in the gluon fusion (GGF) production channel. The VBF production channel gives important complementary information, because both production and decay of the Higgs boson occur already at tree graph level.

  4. Higgs bosons from top quark decays

    NASA Astrophysics Data System (ADS)

    Han, Tao; Ruiz, Richard

    2014-04-01

    In light of the discovery of a standard model (SM)-like Higgs boson (h) at the LHC, we investigate the top quark to Higgs boson transition t→W*bh, which is the leading t→h decay mode in the SM. We find the decay branching fraction to be 1.80×10-9. In comparison, the two-body, loop-induced t→ch transition occurs at ˜10-14 in the SM. We consider the consequences of gauge-invariant dimension-six operators affecting the tt ¯h interaction and find that the decay branching fraction may be increased by a factor of 2 within current constraints on the coupling parameters from collider experiments. We also extend the calculation to the CP-conserving Type I and Type II two-Higgs-doublet models, including both CP-even and CP-odd Higgs bosons. For neutral scalar masses at about 100 GeV, the decay rates can be several times larger than the SM result in the allowed range of model parameters. Observation prospects at present and future colliders are briefly addressed.

  5. The Higgs Boson for the Masses?

    SciTech Connect

    Quigg, Chris

    2012-04-04

    The Higgs boson is the object of one of the greatest campaigns in the history of particle physics and a pop-culture icon. But what is a Higgs boson, and what would we like it to do for us? What will we understand after a discovery that we don't understand before? How would the world be different if nothing did the job of the Higgs boson? We will explore all these questions and more through demonstration, simulation, and audience participation.

  6. Supersymmetric Higgs Bosons and Beyond

    SciTech Connect

    Carena, Marcela; Kong, Kyoungchul; Ponton, Eduardo; Zurita, Jose; /Fermilab /Buenos Aires U.

    2010-08-26

    We consider supersymmetric models that include particles beyond the Minimal Supersymmetric Standard Model (MSSM) with masses in the TeV range, and that couple significantly to the MSSM Higgs sector. We perform a model-independent analysis of the spectrum and couplings of the MSSM Higgs fields, based on an effective theory of the MSSM degrees of freedom. The tree-level mass of the lightest CP-even state can easily be above the LEP bound of 114 GeV, thus allowing for a relatively light spectrum of superpartners, restricted only by direct searches. The Higgs spectrum and couplings can be significantly modified compared to the MSSM ones, often allowing for interesting new decay modes. We also observe that the gluon fusion production cross section of the SM-like Higgs can be enhanced with respect to both the Standard Model and the MSSM.

  7. Precise determination of the mass of the Higgs boson and tests of compatibility of its couplings with the standard model predictions using proton collisions at 7 and 8

    NASA Astrophysics Data System (ADS)

    Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Bergauer, T.; Dragicevic, M.; Erö, J.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Knünz, V.; Krammer, M.; Krätschmer, I.; Liko, D.; Mikulec, I.; Rabady, D.; Rahbaran, B.; Rohringer, H.; Schöfbeck, R.; Strauss, J.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Alderweireldt, S.; Bansal, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Knutsson, A.; Lauwers, J.; Luyckx, S.; Ochesanu, S.; Rougny, R.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Blekman, F.; Blyweert, S.; D'Hondt, J.; Daci, N.; Heracleous, N.; Keaveney, J.; Lowette, S.; Maes, M.; Olbrechts, A.; Python, Q.; Strom, D.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.; Caillol, C.; Clerbaux, B.; De Lentdecker, G.; Dobur, D.; Favart, L.; Gay, A. P. R.; Grebenyuk, A.; Léonard, A.; Mohammadi, A.; Perniè, L.; Randle-conde, A.; Reis, T.; Seva, T.; Thomas, L.; Vander Velde, C.; Vanlaer, P.; Wang, J.; Zenoni, F.; Adler, V.; Beernaert, K.; Benucci, L.; Cimmino, A.; Costantini, S.; Crucy, S.; Fagot, A.; Garcia, G.; Mccartin, J.; Ocampo Rios, A. A.; Poyraz, D.; Ryckbosch, D.; Salva Diblen, S.; Sigamani, M.; Strobbe, N.; Thyssen, F.; Tytgat, M.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Beluffi, C.; Bruno, G.; Castello, R.; Caudron, A.; Ceard, L.; Da Silveira, G. G.; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Jafari, A.; Jez, P.; Komm, M.; Lemaitre, V.; Nuttens, C.; Pagano, D.; Perrini, L.; Pin, A.; Piotrzkowski, K.; Popov, A.; Quertenmont, L.; Selvaggi, M.; Vidal Marono, M.; Vizan Garcia, J. M.; Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.; Júnior, W. L. Aldá; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Martins, T. Dos Reis; Molina, J.; Mora Herrera, C.; Pol, M. E.; Teles, P. Rebello; Carvalho, W.; Chinellato, J.; Custódio, A.; Da Costa, E. M.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Malbouisson, H.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santaolalla, J.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.; Bernardes, C. A.; Dogra, S.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.; Aleksandrov, A.; Genchev, V.; Hadjiiska, R.; Iaydjiev, P.; Marinov, A.; Piperov, S.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Cheng, T.; Du, R.; Jiang, C. H.; Plestina, R.; Romeo, F.; Tao, J.; Wang, Z.; Asawatangtrakuldee, C.; Ban, Y.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Zhang, F.; Zhang, L.; Zou, W.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; Gomez Moreno, B.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Polic, D.; Puljak, I.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Kadija, K.; Luetic, J.; Mekterovic, D.; Sudic, L.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Bodlak, M.; Finger, M.; Finger, M.; Assran, Y.; Ellithi Kame, A.; Mahmoud, M. A.; Radi, A.; Kadastik, M.; Murumaa, M.; Raidal, M.; Tiko, A.; Eerola, P.; Voutilainen, M.; Härkönen, J.; Heikkilä, J. K.; Karimäki, V.; Kinnunen, R.; Kortelainen, M. J.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Baffioni, S.; Beaudette, F.; Busson, P.; Chapon, E.; Charlot, C.; Dahms, T.; Dobrzynski, L.; Filipovic, N.; Florent, A.; Granier de Cassagnac, R.; Mastrolorenzo, L.; Miné, P.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Regnard, S.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Veelken, C.; Yilmaz, Y.; Zabi, A.; Agram, J.-L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J.-M.; Chabert, E. C.; Collard, C.; Conte, E.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Goetzmann, C.; Le Bihan, A.-C.; Skovpen, K.; Van Hove, P.; Gadrat, S.; Beauceron, S.; Beaupere, N.; Bernet, C.; Boudoul, G.; Bouvier, E.; Brochet, S.; Carrillo Montoya, C. A.; Chasserat, J.; Chierici, R.; Contardo, D.; Courbon, B.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Kurca, T.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Ruiz Alvarez, J. D.; Sabes, D.; Sgandurra, L.; Sordini, V.; Vander Donckt, M.; Verdier, P.; Viret, S.; Xiao, H.; Tsamalaidze, Z.; Autermann, C.; Beranek, S.; Bontenackels, M.; Edelhoff, M.; Feld, L.; Heister, A.; Klein, K.; Lipinski, M.; Ostapchuk, A.; Preuten, M.; Raupach, F.; Sammet, J.; Schael, S.; Schulte, J. F.; Weber, H.; Wittmer, B.; Zhukov, V.; Ata, M.; Brodski, M.; Dietz-Laursonn, E.; Duchardt, D.; Erdmann, M.; Fischer, R.; Güth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Klingebiel, D.; Knutzen, S.; Kreuzer, P.; Merschmeyer, M.; Meyer, A.; Millet, P.; Olschewski, M.; Padeken, K.; Papacz, P.; Reithler, H.; Schmitz, S. A.; Sonnenschein, L.; Teyssier, D.; Thüer, S.; Cherepanov, V.; Erdogan, Y.; Flügge, G.; Geenen, H.; Geisler, M.; Haj Ahmad, W.; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Künsken, A.; Lingemann, J.; Nowack, A.; Nugent, I. M.; Pistone, C.; Pooth, O.; Stahl, A.; Aldaya Martin, M.; Asin, I.; Bartosik, N.; Behr, J.; Behrens, U.; Bell, A. J.; Bethani, A.; Borras, K.; Burgmeier, A.; Cakir, A.; Calligaris, L.; Campbell, A.; Choudhury, S.; Costanza, F.; Diez Pardos, C.; Dolinska, G.; Dooling, S.; Dorland, T.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Flucke, G.; Garcia, J. Garay; Geiser, A.; Gizhko, A.; Gunnellini, P.; Hauk, J.; Hempel, M.; Jung, H.; Kalogeropoulos, A.; Karacheban, O.; Kasemann, M.; Katsas, P.; Kieseler, J.; Kleinwort, C.; Korol, I.; Krücker, D.; Lange, W.; Leonard, J.; Lipka, K.; Lobanov, A.; Lohmann, W.; Lutz, B.; Mankel, R.; Marfin, I.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Nayak, A.; Ntomari, E.; Perrey, H.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Ribeiro Cipriano, P. M.; Roland, B.; Ron, E.; Sahin, M. Ö.; Salfeld-Nebgen, J.; Saxena, P.; Schoerner-Sadenius, T.; Schröder, M.; Seitz, C.; Spannagel, S.; Vargas Trevino, A. D. R.; Walsh, R.; Wissing, C.; Blobel, V.; Centis Vignali, M.; Draeger, A. R.; Erfle, J.; Garutti, E.; Goebel, K.; Görner, M.; Haller, J.; Hoffmann, M.; Höing, R. S.; Junkes, A.; Kirschenmann, H.; Klanner, R.; Kogler, R.; Lapsien, T.; Lenz, T.; Marchesini, I.; Marconi, D.; Ott, J.; Peiffer, T.; Perieanu, A.; Pietsch, N.; Poehlsen, J.; Poehlsen, T.; Rathjens, D.; Sander, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Seidel, M.; Sola, V.; Stadie, H.; Steinbrück, G.; Troendle, D.; Usai, E.; Vanelderen, L.; Vanhoefer, A.; Barth, C.; Baus, C.; Berger, J.; Böser, C.; Butz, E.; Chwalek, T.; De Boer, W.; Descroix, A.; Dierlamm, A.; Feindt, M.; Frensch, F.; Giffels, M.; Gilbert, A.; Hartmann, F.; Hauth, T.; Husemann, U.; Katkov, I.; Kornmayer, A.; Lobelle Pardo, P.; Mozer, M. U.; Müller, T.; Müller, Th.; Nürnberg, A.; Quast, G.; Rabbertz, K.; Röcker, S.; Simonis, H. J.; Stober, F. M.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weiler, T.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Markou, A.; Markou, C.; Psallidas, A.; Topsis-Giotis, I.; Agapitos, A.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Stiliaris, E.; Tziaferi, E.; Aslanoglou, X.; Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Strologas, J.; Bencze, G.; Hajdu, C.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.; Beni, N.; Czellar, S.; Karancsi, J.; Molnar, J.; Palinkas, J.; Szillasi, Z.; Makovec, A.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Swain, S. K.; Beri, S. B.; Bhatnagar, V.; Gupta, R.; Bhawandeep, U.; Kalsi, A. K.; Kaur, M.; Kumar, R.; Mittal, M.; Nishu, N.; Singh, J. B.; Kumar, Ashok; Kumar, Arun; Ahuja, S.; Bhardwaj, A.; Choudhary, B. C.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, V.; Banerjee, S.; Bhattacharya, S.; Chatterjee, K.; Dutta, S.; Gomber, B.; Jain, Sa.; Jain, Sh.; Khurana, R.; Modak, A.; Mukherjee, S.; Roy, D.; Sarkar, S.; Sharan, M.; Abdulsalam, A.; Dutta, D.; Kumar, V.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Banerjee, S.; Bhowmik, S.; Chatterjee, R. M.; Dewanjee, R. K.; Dugad, S.; Ganguly, S.; Ghosh, S.; Guchait, M.; Gurtu, A.; Kole, G.; Kumar, S.; Maity, M.; Majumder, G.; Mazumdar, K.; Mohanty, G. B.; Parida, B.; Sudhakar, K.; Wickramage, N.; Sharma, S.; Bakhshiansohi, H.; Behnamian, H.; Etesami, S. M.; Fahim, A.; Goldouzian, R.; Khakzad, M.; Mohammadi Najafabadi, M.; Naseri, M.; Paktinat Mehdiabadi, S.; Rezaei Hosseinabadi, F.; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Calabria, C.; Chhibra, S. S.; Colaleo, A.; Creanza, D.; Cristella, L.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Selvaggi, G.; Sharma, A.; Silvestris, L.; Venditti, R.; Verwilligen, P.; Abbiendi, G.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.; Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Gallo, E.; Gonzi, S.; Gori, V.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Ferretti, R.; Ferro, F.; Lo Vetere, M.; Robutti, E.; Tosi, S.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Gerosa, R.; Ghezzi, A.; Govoni, P.; Lucchini, M. T.; Malvezzi, S.; Manzoni, R. A.; Martelli, A.; Marzocchi, B.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; Di Guida, S.; Fabozzi, F.; Iorio, A. O. M.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.; Azzi, P.; Bacchetta, N.; Biselloa, D.; Branca, A.; Carlin, R.; Checchia, P.; Dall'Osso, M.; Dorigo, T.; Dosselli, U.; Gasparini, F.; Gasparini, U.; Gozzelino, A.; Kanishchev, K.; Lacaprara, S.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Zotto, P.; Zucchetta, A.; Zumerle, G.; Gabusi, M.; Ratti, S. P.; Re, V.; Riccardi, C.; Salvini, P.; Vitulo, P.; Biasini, M.; Bilei, G. M.; Ciangottini, D.; Fanò, L.; Lariccia, P.; Mantovani, G.; Menichelli, M.; Saha, A.; Santocchia, A.; Spiezia, A.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Broccolo, G.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fedi, G.; Fiori, F.; Foà, L.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Moon, C. S.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Serban, A. T.; Spagnolo, P.; Squillacioti, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Vernieri, C.; Barone, L.; Cavallari, F.; D'imperio, G.; Del Re, D.; Diemoz, M.; Jorda, C.; Longo, E.; Margaroli, F.; Meridiani, P.; Micheli, F.; Organtini, G.; Paramatti, R.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Soffi, L.; Traczyk, P.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bellan, R.; Biino, C.; Cartiglia, N.; Casasso, S.; Costa, M.; Covarelli, R.; Degano, A.; Demaria, N.; Finco, L.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Musich, M.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Potenza, A.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Tamponi, U.; Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; La Licata, C.; Marone, M.; Schizzi, A.; Umer, T.; Zanetti, A.; Chang, S.; Kropivnitskaya, T. A.; Nam, S. K.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Kim, M. S.; Kong, D. J.; Lee, S.; Oh, Y. D.; Park, H.; Sakharov, A.; Son, D. C.; Kim, T. J.; Ryu, M. S.; Kim, J. Y.; Moon, D. H.; Song, S.; Choi, S.; Gyun, D.; Hong, B.; Jo, M.; Kim, H.; Kim, Y.; Lee, B.; Lee, K. S.; Park, S. K.; Roh, Y.; Yoo, H. D.; Choi, M.; Kim, J. H.; Park, I. C.; Ryu, G.; Choi, Y.; Choi, Y. K.; Goh, J.; Kim, D.; Kwon, E.; Lee, J.; Yu, I.; Juodagalvis, A.; Komaragiri, J. R.; Md Ali, M. A. B.; Wan Abdullah, W. A. T.; Casimiro Linares, E.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-de La Cruz, I.; Hernandez-Almada, A.; Lopez-Fernandez, R.; Sanchez-Hernandez, A.; Carrillo Moreno, S.; Vazquez Valencia, F.; Pedraza, I.; Salazar Ibarguen, H. A.; Morelos Pineda, A.; Krofcheck, D.; Butler, P. H.; Reucroft, S.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Khan, W. A.; Khurshid, T.; Shoaib, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Zalewski, P.; Brona, G.; Bunkowski, K.; Cwiok, M.; Dominik, W.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Bargassa, P.; Beirão Da Cruz E Silva, C.; Faccioli, P.; Parracho, P. G. Ferreira; Gallinaro, M.; Lloret Iglesias, L.; Nguyen, F.; Rodrigues Antunes, J.; Seixas, J.; Varela, J.; Vischia, P.; Afanasiev, S.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Konoplyanikov, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Skatchkov, N.; Smirnov, V.; Zarubin, A.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Vorobyev, An.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Semenov, S.; Spiridonov, A.; Stolin, V.; Vlasov, E.; Zhokin, A.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Vinogradov, A.; Belyaev, A.; Boos, E.; Bunichev, V.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Ekmedzic, M.; Milosevic, J.; Rekovic, V.; Alcaraz Maestre, J.; Battilana, C.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Domínguez Vázquez, D.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Ramos, J. P. Fernández; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Navarro De Martino, E.; Yzquierdo, A. Pérez-Calero; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.; Albajar, C.; de Trocóniz, J. F.; Missiroli, M.; Moran, D.; Brun, H.; Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Brochero Cifuentes, J. A.; Cabrillo, I. J.; Calderon, A.; Duarte Campderros, J.; Fernandez, M.; Gomez, G.; Graziano, A.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Munoz Sanchez, F. J.; Piedra Gomez, J.; Rodrigo, T.; Rodríguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Benaglia, A.; Bendavid, J.; Benhabib, L.; Benitez, J. F.; Bloch, P.; Bocci, A.; Bonato, A.; Bondu, O.; Botta, C.; Breuker, H.; Camporesi, T.; Cerminara, G.; Colafranceschi, S.; D'Alfonso, M.; d'Enterria, D.; Dabrowski, A.; David, A.; De Guio, F.; De Roeck, A.; De Visscher, S.; Di Marco, E.; Dobson, M.; Dordevic, M.; Dorney, B.; Dupont-Sagorin, N.; Elliott-Peisert, A.; Franzoni, G.; Funk, W.; Gigi, D.; Gill, K.; Giordano, D.; Girone, M.; Glege, F.; Guida, R.; Gundacker, S.; Guthoff, M.; Hammer, J.; Hansen, M.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Kousouris, K.; Krajczar, K.; Lecoq, P.; Lourenço, C.; Magini, N.; Malgeri, L.; Mannelli, M.; Marrouche, J.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moortgat, F.; Morovic, S.; Mulders, M.; Orfanelli, S.; Orsini, L.; Pape, L.; Perez, E.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pimiä, M.; Piparo, D.; Plagge, M.; Racz, A.; Rolandi, G.; Rovere, M.; Sakulin, H.; Schäfer, C.; Schwick, C.; Sharma, A.; Siegrist, P.; Silva, P.; Simon, M.; Sphicas, P.; Spiga, D.; Steggemann, J.; Stieger, B.; Stoye, M.; Takahashi, Y.; Treille, D.; Tsirou, A.; Veres, G. I.; Wardle, N.; Wöhri, H. K.; Wollny, H.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Renker, D.; Rohe, T.; Bachmair, F.; Bäni, L.; Bianchini, L.; Buchmann, M. A.; Casal, B.; Chanon, N.; Dissertori, G.; Dittmar, M.; Donegà, M.; Dünser, M.; Eller, P.; Grab, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Lustermann, W.; Mangano, B.; Marini, A. C.; Marionneau, M.; Martinez Ruiz del Arbol, P.; Masciovecchio, M.; Meister, D.; Mohr, N.; Musella, P.; Nägeli, C.; Nessi-Tedaldi, F.; Pandolfi, F.; Pauss, F.; Perrozzi, L.; Peruzzi, M.; Quittnat, M.; Rebane, L.; Rossini, M.; Starodumov, A.; Takahashi, M.; Theofilatos, K.; Wallny, R.; Weber, H. A.; Amsler, C.; Canelli, M. F.; Chiochia, V.; De Cosa, A.; Hinzmann, A.; Hreus, T.; Kilminster, B.; Lange, C.; Ngadiuba, J.; Pinna, D.; Robmann, P.; Ronga, F. J.; Taroni, S.; Yang, Y.; Cardaci, M.; Chen, K. H.; Ferro, C.; Kuo, C. M.; Lin, W.; Lu, Y. J.; Volpe, R.; Yu, S. S.; Chang, P.; Chang, Y. H.; Chao, Y.; Chen, K. F.; Chen, P. H.; Dietz, C.; Grundler, U.; Hou, W.-S.; Liu, Y. F.; Lu, R.-S.; Mi nano Moya, M.; Petrakou, E.; Tsai, J. F.; Tzeng, Y. M.; Wilken, R.; Asavapibhop, B.; Singh, G.; Srimanobhas, N.; Suwonjandee, N.; Adiguzel, A.; Bakirci, M. N.; Cerci, S.; Dozen, C.; Dumanoglu, I.; Eskut, E.; Girgis, S.; Gokbulut, G.; Guler, Y.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Kayis Topaksu, A.; Onengut, G.; Ozdemir, K.; Ozturk, S.; Polatoz, A.; Sunar Cerci, D.; Tali, B.; Topakli, H.; Vergili, M.; Zorbilmez, C.; Akin, I. V.; Bilin, B.; Bilmis, S.; Gamsizkan, H.; Isildak, B.; Karapinar, G.; Ocalan, K.; Sekmen, S.; Surat, U. E.; Yalvac, M.; Zeyrek, M.; Albayrak, E. A.; Gülmez, E.; Kaya, M.; Kaya, O.; Yetkin, T.; Cankocak, K.; Vardarlı, F. I.; Levchuk, L.; Sorokin, P.; Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Meng, Z.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Sakuma, T.; Seif El Nasr-storey, S.; Senkin, S.; Smith, V. J.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Williams, T.; Womersley, W. J.; Worm, S. D.; Baber, M.; Bainbridge, R.; Buchmuller, O.; Burton, D.; Colling, D.; Cripps, N.; Dauncey, P.; Davies, G.; Della Negra, M.; Dunne, P.; Elwood, A.; Ferguson, W.; Fulcher, J.; Futyan, D.; Hall, G.; Iles, G.; Jarvis, M.; Karapostoli, G.; Kenzie, M.; Lane, R.; Lucas, R.; Lyons, L.; Magnan, A.-M.; Malik, S.; Mathias, B.; Nash, J.; Nikitenko, A.; Pela, J.; Pesaresi, M.; Petridis, K.; Raymond, D. M.; Rogerson, S.; Rose, A.; Seez, C.; Sharp, P.; Tapper, A.; Vazquez Acosta, M.; Virdee, T.; Zenz, S. C.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leggat, D.; Leslie, D.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Dittmann, J.; Hatakeyama, K.; Kasmi, A.; Liu, H.; Pastika, N.; Scarborough, T.; Wu, Z.; Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.; Avetisyan, A.; Bose, T.; Fantasia, C.; Lawson, P.; Richardson, C.; Rohlf, J.; St. John, J.; Sulak, L.; Alimena, J.; Berry, E.; Bhattacharya, S.; Christopher, G.; Cutts, D.; Demiragli, Z.; Dhingra, N.; Ferapontov, A.; Garabedian, A.; Heintz, U.; Laird, E.; Landsberg, G.; Mao, Z.; Narain, M.; Sagir, S.; Sinthuprasith, T.; Speer, T.; Swanson, J.; Breedon, R.; Breto, G.; De La Barca Sanchez, M. Calderon; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Gardner, M.; Ko, W.; Lander, R.; Mulhearn, M.; Pellett, D.; Pilot, J.; Ricci-Tam, F.; Shalhout, S.; Smith, J.; Squires, M.; Stolp, D.; Tripathi, M.; Wilbur, S.; Yohay, R.; Cousins, R.; Everaerts, P.; Farrell, C.; Hauser, J.; Ignatenko, M.; Rakness, G.; Takasugi, E.; Valuev, V.; Weber, M.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Hanson, G.; Heilman, J.; Ivova Rikova, M.; Jandir, P.; Kennedy, E.; Lacroix, F.; Long, O. R.; Luthra, A.; Malberti, M.; Negrete, M. Olmedo; Shrinivas, A.; Sumowidagdo, S.; Wimpenny, S.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; D'Agnolo, R. T.; Holzner, A.; Kelley, R.; Klein, D.; Letts, J.; Macneill, I.; Olivito, D.; Padhi, S.; Palmer, C.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Tadel, M.; Tu, Y.; Vartak, A.; Welke, C.; Würthwein, F.; Yagil, A.; Zevi Della Porta, G.; Barge, D.; Bradmiller-Feld, J.; Campagnari, C.; Danielson, T.; Dishaw, A.; Dutta, V.; Flowers, K.; Franco Sevilla, M.; Geffert, P.; George, C.; Golf, F.; Gouskos, L.; Incandela, J.; Justus, C.; Mccoll, N.; Mullin, S. D.; Richman, J.; Stuart, D.; To, W.; West, C.; Yoo, J.; Apresyan, A.; Bornheim, A.; Bunn, J.; Chen, Y.; Duarte, J.; Mott, A.; Newman, H. B.; Pena, C.; Pierini, M.; Spiropulu, M.; Vlimant, R.; Wilkinson, R.; Xie, S.; Zhu, R. Y.; Azzolini, V.; Calamba, A.; Carlson, B.; Ferguson, T.; Iiyama, Y.; Paulini, M.; Russ, J.; Vogel, H.; Vorobiev, I.; Cumalat, J. P.; Ford, W. T.; Gaz, A.; Krohn, M.; Luiggi Lopez, E.; Nauenberg, U.; Smith, J. G.; Stenson, K.; Wagner, S. R.; Alexander, J.; Chatterjee, A.; Chaves, J.; Chu, J.; Dittmer, S.; Eggert, N.; Mirman, N.; Nicolas Kaufman, G.; Patterson, J. R.; Ryd, A.; Salvati, E.; Skinnari, L.; Sun, W.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Weng, Y.; Winstrom, L.; Wittich, P.; Winn, D.; Abdullin, S.; Albrow, M.; Anderson, J.; Apollinari, G.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Hanlon, J.; Hare, D.; Harris, R. M.; Hirschauer, J.; Hooberman, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Klima, B.; Kreis, B.; Kwan, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, T.; Lopes De Sá, R.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Martinez Outschoorn, V. I.; Maruyama, S.; Mason, D.; McBride, P.; Merkel, P.; Mishra, K.; Mrenna, S.; Nahn, S.; Newman-Holmes, C.; O'Dell, V.; Prokofyev, O.; Sexton-Kennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vidal, R.; Whitbeck, A.; Whitmore, J.; Yang, F.; Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Carver, M.; Curry, D.; Das, S.; De Gruttola, M.; Di Giovanni, G. P.; Field, R. D.; Fisher, M.; Furic, I. K.; Hugon, J.; Konigsberg, J.; Korytov, A.; Kypreos, T.; Low, J. F.; Matchev, K.; Mei, H.; Milenovic, P.; Mitselmakher, G.; Muniz, L.; Rinkevicius, A.; Shchutska, L.; Snowball, M.; Sperka, D.; Yelton, J.; Zakaria, M.; Hewamanage, S.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Adams, J. R.; Adams, T.; Askew, A.; Bochenek, J.; Diamond, B.; Haas, J.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Prosper, H.; Veeraraghavan, V.; Weinberg, M.; Baarmand, M. M.; Hohlmann, M.; Kalakhety, H.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Bucinskaite, I.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Kurt, P.; O'Brien, C.; Sandoval Gonzalez, I. D.; Silkworth, C.; Turner, P.; Varelas, N.; Bilki, B.; Clarida, W.; Dilsiz, K.; Haytmyradov, M.; Khristenko, V.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Rahmat, R.; Sen, S.; Tan, P.; Tiras, E.; Wetzel, J.; Yi, K.; Anderson, I.; Barnett, B. A.; Blumenfeld, B.; Bolognesi, S.; Fehling, D.; Gritsan, A. V.; Maksimovic, P.; Martin, C.; Swartz, M.; Xiao, M.; Baringer, P.; Bean, A.; Benelli, G.; Bruner, C.; Gray, J.; Kenny, R. P.; Majumder, D.; Malek, M.; Murray, M.; Noonan, D.; Sanders, S.; Sekaric, J.; Stringer, R.; Wang, Q.; Wood, J. S.; Chakaberia, I.; Ivanov, A.; Kaadze, K.; Khalil, S.; Makouski, M.; Maravin, Y.; Saini, L. K.; Skhirtladze, N.; Svintradze, I.; Gronberg, J.; Lange, D.; Rebassoo, F.; Wright, D.; Baden, A.; Belloni, A.; Calvert, B.; Eno, S. C.; Gomez, J. A.; Hadley, N. J.; Jabeen, S.; Kellogg, R. G.; Kolberg, T.; Lu, Y.; Mignerey, A. C.; Pedro, K.; Skuja, A.; Tonjes, M. B.; Tonwar, S. C.; Apyan, A.; Barbieri, R.; Bierwagen, K.; Busza, W.; Cali, I. A.; Di Matteo, L.; Gomez Ceballos, G.; Goncharov, M.; Gulhan, D.; Klute, M.; Lai, Y. S.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Stephans, G. S. F.; Sumorok, K.; Velicanu, D.; Veverka, J.; Wyslouch, B.; Yang, M.; Zanetti, M.; Zhukova, V.; Dahmes, B.; Gude, A.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Mans, J.; Nourbakhsh, S.; Rusack, R.; Singovsky, A.; Tambe, N.; Turkewitz, J.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Gonzalez Suarez, R.; Keller, J.; Knowlton, D.; Kravchenko, I.; Lazo-Flores, J.; Meier, F.; Ratnikov, F.; Snow, G. R.; Zvada, M.; Dolen, J.; Godshalk, A.; Iashvili, I.; Kharchilava, A.; Kumar, A.; Rappoccio, S.; Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; Trocino, D.; Wang, R. J.; Wood, D.; Zhang, J.; Hahn, K. A.; Kubik, A.; Mucia, N.; Odell, N.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Sung, K.; Velasco, M.; Won, S.; Brinkerhoff, A.; Chan, K. M.; Drozdetskiy, A.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Lynch, S.; Marinelli, N.; Musienko, Y.; Pearson, T.; Planer, M.; Ruchti, R.; Smith, G.; Valls, N.; Wayne, M.; Wolf, M.; Woodard, A.; Antonelli, L.; Brinson, J.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Hart, A.; Hill, C.; Hughes, R.; Kotov, K.; Ling, T. Y.; Luo, W.; Puigh, D.; Rodenburg, M.; Winer, B. L.; Wolfe, H.; Wulsin, H. W.; Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Koay, S. A.; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Piroué, P.; Quan, X.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zuranski, A.; Brownson, E.; Malik, S.; Mendez, H.; Ramirez Vargas, J. E.; Barnes, V. E.; Benedetti, D.; Bortoletto, D.; Gutay, L.; Hu, Z.; Jha, M. K.; Jones, M.; Jung, K.; Kress, M.; Leonardo, N.; Miller, D. H.; Neumeister, N.; Primavera, F.; Radburn-Smith, B. C.; Shi, X.; Shipsey, I.; Silvers, D.; Svyatkovskiy, A.; Wang, F.; Xie, W.; Xu, L.; Zablocki, J.; Parashar, N.; Stupak, J.; Adair, A.; Akgun, B.; Ecklund, K. M.; Geurts, F. J. M.; Li, W.; Michlin, B.; Padley, B. P.; Redjimi, R.; Roberts, J.; Zabel, J.; Betchart, B.; Bodek, A.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Goldenzweig, P.; Han, J.; Harel, A.; Hindrichs, O.; Khukhunaishvili, A.; Korjenevski, S.; Petrillo, G.; Verzetti, M.; Vishnevskiy, D.; Ciesielski, R.; Demortier, L.; Goulianos, K.; Mesropian, C.; Arora, S.; Barker, A.; Chou, J. P.; Contreras-Campana, C.; Contreras-Campana, E.; Duggan, D.; Ferencek, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Kaplan, S.; Lath, A.; Panwalkar, S.; Park, M.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Rose, K.; Spanier, S.; York, A.; Bouhali, O.; Castaneda Hernandez, A.; Dalchenko, M.; De Mattia, M.; Dildick, S.; Eusebi, R.; Flanagan, W.; Gilmore, J.; Kamon, T.; Khotilovich, V.; Krutelyov, V.; Montalvo, R.; Osipenkov, I.; Pakhotin, Y.; Patel, R.; Perloff, A.; Roe, J.; Rose, A.; Safonov, A.; Suarez, I.; Tatarinov, A.; Ulmer, K. A.; Akchurin, N.; Cowden, C.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Kovitanggoon, K.; Kunori, S.; Lee, S. W.; Libeiro, T.; Volobouev, I.; Appelt, E.; Delannoy, A. G.; Greene, S.; Gurrola, A.; Johns, W.; Maguire, C.; Mao, Y.; Melo, A.; Sharma, M.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.; Arenton, M. W.; Boutle, S.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Li, H.; Lin, C.; Neu, C.; Wolfe, E.; Wood, J.; Clarke, C.; Harr, R.; Karchin, P. E.; Kottachchi Kankanamge Don, C.; Lamichhane, P.; Sturdy, J.; Belknap, D. A.; Carlsmith, D.; Cepeda, M.; Dasu, S.; Dodd, L.; Duric, S.; Friis, E.; Hall-Wilton, R.; Herndon, M.; Hervé, A.; Klabbers, P.; Lanaro, A.; Lazaridis, C.; Levine, A.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Perry, T.; Pierro, G. A.; Polese, G.; Ross, I.; Sarangi, T.; Savin, A.; Smith, W. H.; Taylor, D.; Vuosalo, C.; Woods, N.; Roinishvili, V.

    2015-05-01

    Properties of the Higgs boson with mass near 125 are measured in proton-proton collisions with the CMS experiment at the LHC. Comprehensive sets of production and decay measurements are combined. The decay channels include , , , , , and pairs. The data samples were collected in 2011 and 2012 and correspond to integrated luminosities of up to 5.1 at 7 and up to 19.7 at 8. From the high-resolution and channels, the mass of the Higgs boson is determined to be . For this mass value, the event yields obtained in the different analyses tagging specific decay channels and production mechanisms are consistent with those expected for the standard model Higgs boson. The combined best-fit signal relative to the standard model expectation is at the measured mass. The couplings of the Higgs boson are probed for deviations in magnitude from the standard model predictions in multiple ways, including searches for invisible and undetected decays. No significant deviations are found.

  8. Study of (W/Z)H production and Higgs boson couplings using H→ W W * decays with the ATLAS detector

    SciTech Connect

    Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Aben, R.; Abolins, M.; AbouZeid, O. S.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Adelman, J.; Adomeit, S.; Adye, T.; Affolder, A. A.; Agatonovic-Jovin, T.; Aguilar-Saavedra, J. A.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akerstedt, H.; Åkesson, T. P. A.; Akimoto, G.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albrand, S.; Alconada Verzini, M. J.; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexopoulos, T.; Alhroob, M.; Alimonti, G.; Alio, L.; Alison, J.; Alkire, S. P.; Allbrooke, B. M. M.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Altheimer, A.; Alvarez Gonzalez, B.; Álvarez Piqueras, D.; Alviggi, M. G.; Amadio, B. T.; Amako, K.; Amaral Coutinho, Y.; Amelung, C.; Amidei, D.; Amor Dos Santos, S. P.; Amorim, A.; Amoroso, S.; Amram, N.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anders, J. K.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Angelidakis, S.; Angelozzi, I.; Anger, P.; Angerami, A.; Anghinolfi, F.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antonelli, M.; Antonov, A.; Antos, J.; Anulli, F.; Aoki, M.; Aperio Bella, L.; Arabidze, G.; Arai, Y.; Araque, J. P.; Arce, A. T. H.; Arduh, F. A.; Arguin, J-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnal, V.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Asai, S.; Asbah, N.; Ashkenazi, A.; Åsman, B.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Auerbach, B.; Augsten, K.; Aurousseau, M.; Avolio, G.; Axen, B.; Ayoub, M. K.; Azuelos, G.; Baak, M. A.; Baas, A. E.; Bacci, C.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Bagiacchi, P.; Bagnaia, P.; Bai, Y.; Bain, T.; Baines, J. T.; Baker, O. K.; Balek, P.; Balestri, T.; Balli, F.; Banas, E.; Banerjee, Sw.; Bannoura, A. A. E.; Bansil, H. S.; Barak, L.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnes, S. L.; Barnett, B. M.; Barnett, R. M.; Barnovska, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Bartoldus, R.; Barton, A. E.; Bartos, P.; Basalaev, A.; Bassalat, A.; Basye, A.; Bates, R. L.; Batista, S. J.; Batley, J. R.; Battaglia, M.; Bauce, M.; Bauer, F.; Bawa, H. S.; Beacham, J. B.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, M.; Becker, S.; Beckingham, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bee, C. P.; Beemster, L. J.; Beermann, T. A.; Begel, M.; Behr, J. K.; Belanger-Champagne, C.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Benary, O.; Benchekroun, D.; Bender, M.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez Garcia, J. A.; Benjamin, D. P.; Bensinger, J. R.; Bentvelsen, S.; Beresford, L.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Beringer, J.; Bernard, C.; Bernard, N. R.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertolucci, F.; Bertsche, C.; Bertsche, D.; Besana, M. I.; Besjes, G. J.; Bessidskaia Bylund, O.; Bessner, M.; Besson, N.; Betancourt, C.; Bethke, S.; Bevan, A. J.; Bhimji, W.; Bianchi, R. M.; Bianchini, L.; Bianco, M.; Biebel, O.; Bieniek, S. P.; Biglietti, M.; Bilbao De Mendizabal, J.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Black, C. W.; Black, J. E.; Black, K. M.; Blackburn, D.; Blair, R. E.; Blanchard, J. -B.; Blanco, J. E.; Blazek, T.; Bloch, I.; Blocker, C.; Blum, W.; Blumenschein, U.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boehler, M.; Bogaerts, J. A.; Bogdanchikov, A. G.; Bohm, C.; Boisvert, V.; Bold, T.; Boldea, V.; Boldyrev, A. S.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Borroni, S.; Bortfeldt, J.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Boudreau, J.; Bouffard, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Bousson, N.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozic, I.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Brazzale, S. F.; Brendlinger, K.; Brennan, A. J.; Brenner, L.; Brenner, R.; Bressler, S.; Bristow, K.; Bristow, T. M.; Britton, D.; Britzger, D.; Brochu, F. M.; Brock, I.; Brock, R.; Bronner, J.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Brown, J.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Bruni, A.; Bruni, G.; Bruschi, M.; Bryngemark, L.; Buanes, T.; Buat, Q.; Buchholz, P.; Buckley, A. G.; Buda, S. I.; Budagov, I. A.; Buehrer, F.; Bugge, L.; Bugge, M. K.; Bulekov, O.

    2015-08-01

    A search for Higgs boson production in association with a W or Z boson, in the H→ W W* decay channel, is performed with a data sample collected with the ATLAS detector at the LHC in proton-proton collisions at centre-of-mass energies √s=7 TeV and 8 TeV, corresponding to integrated luminosities of 4.5 fb-1 and 20.3 fb-1, respectively. The WH production mode is studied in two-lepton and three-lepton final states, while two- lepton and four-lepton final states are used to search for the ZH production mode. The observed significance, for the combined W H and ZH production, is 2.5 standard deviations while a significance of 0.9 standard deviations is expected in the Standard Model Higgs boson hypothesis. The ratio of the combined W H and ZH signal yield to the Standard Model expectation, μ V H , is found to be μ V H =3.0 -1.1 + 1.3 (stat.) -0.7 +1.0 (sys.) for the Higgs boson mass of 125.36 GeV. The W H and ZH production modes are also combined with the gluon fusion and vector boson fusion production modes studied in the H → W W * → ℓνℓν decay channel, resulting in an overall observed significance of 6.5 standard deviations and μ ggF+VBF+VH=1.16 -0.15 +0.16 (stat.) -0.15 +0.18 (sys.). The results are interpreted in terms of scaling factors of the Higgs boson couplings to vector bosons (κ V ) and fermions (κ F ); the combined results are: |κ V |=1.06 -0.10 +0.10 , |κ F |=0.85 -0.20 +0.26 .

  9. Constraints on the spin-parity and anomalous HVV couplings of the Higgs boson in proton collisions at 7 and 8 TeV

    DOE PAGESBeta

    Khachatryan, Vardan

    2015-07-13

    Our study of the spin-parity and tensor structure of the interactions of the recently discovered Higgs boson is performed using the H→ZZ,Zγ*,γ*γ*→4ℓ, H→WW→ℓνℓν, and H→γγ decay modes. The full data set recorded by the CMS experiment during the LHC run 1 is used, corresponding to an integrated luminosity of up to 5.1 fb-1 at a center-of-mass energy of 7 TeV and up to 19.7 fb-1 at 8 TeV. A wide range of spin-two models is excluded at a 99% confidence level or higher, or at a 99.87% confidence level for the minimal gravitylike couplings, regardless of whether assumptions are mademore » on the production mechanism. Any mixed-parity spin-one state is excluded in the ZZ and WW modes at a greater than 99.999% confidence level. Under the hypothesis that the resonance is a spin-zero boson, the tensor structure of the interactions of the Higgs boson with two vector bosons ZZ, Zγ, γγ, and WW is investigated and limits on eleven anomalous contributions are set. Furthermore, the tighter constraints on anomalous HVV interactions are obtained by combining the HZZand HWW measurements. All observations are consistent with the expectations for the standard model Higgs boson with the quantum numbers JPC=0++.« less

  10. Constraints on the spin-parity and anomalous HVV couplings of the Higgs boson in proton collisions at 7 and 8 TeV

    SciTech Connect

    Khachatryan, Vardan

    2015-07-13

    Our study of the spin-parity and tensor structure of the interactions of the recently discovered Higgs boson is performed using the H→ZZ,Zγ*,γ*γ*→4ℓ, H→WW→ℓνℓν, and H→γγ decay modes. The full data set recorded by the CMS experiment during the LHC run 1 is used, corresponding to an integrated luminosity of up to 5.1 fb-1 at a center-of-mass energy of 7 TeV and up to 19.7 fb-1 at 8 TeV. A wide range of spin-two models is excluded at a 99% confidence level or higher, or at a 99.87% confidence level for the minimal gravitylike couplings, regardless of whether assumptions are made on the production mechanism. Any mixed-parity spin-one state is excluded in the ZZ and WW modes at a greater than 99.999% confidence level. Under the hypothesis that the resonance is a spin-zero boson, the tensor structure of the interactions of the Higgs boson with two vector bosons ZZ, Zγ, γγ, and WW is investigated and limits on eleven anomalous contributions are set. Furthermore, the tighter constraints on anomalous HVV interactions are obtained by combining the HZZand HWW measurements. All observations are consistent with the expectations for the standard model Higgs boson with the quantum numbers JPC=0++.

  11. Higgs bosons of a supersymmetric U(1)' model

    SciTech Connect

    Ham, Seung Woo; Oh, Sun Kun

    2008-11-23

    The lightest scalar Higgs boson is predicted to be smaller than 162 GeV in the leptophobic {eta}-model, at the one-loop level, for a reasonable region of parameter space. In the NMSSM, the sum of the square of the normalized scalar Higgs coupling coefficients to a pair of Z bosons is unity, whereas the corresponding quantity in the leptophobic {eta}-model is less than unity. Thus, by measuring the scalar Higgs coupling coefficients at the ILC, the leptophobic {eta}-model might be distinguished from the NMSSM.

  12. Twin Higgs mechanism and a composite Higgs boson

    NASA Astrophysics Data System (ADS)

    Low, Matthew; Tesi, Andrea; Wang, Lian-Tao

    2015-05-01

    We combine the twin Higgs mechanism with the paradigm of composite Higgs models. In this class of models the Higgs is a pseudo-Nambu-Goldstone boson from a strongly coupled sector near the TeV scale, and it is additionally protected by a discrete symmetry due to the twin mechanism. We discuss the model-building issues associated with this setup and quantify the tuning needed to achieve the correct electroweak vacuum and the Higgs mass. In contrast to standard composite Higgs models, the lightest resonance associated with the top sector is the uncolored mirror top, while the colored top partners can be made parameterically heavier without extra tuning. In some cases, the vector resonances are predicted to lie in the multi-TeV range. We present models where the resonances—both fermions and vectors—being heavier alleviates the pressure on naturalness coming from direct searches demonstrating that theories with low tuning may survive constraints from the Large Hadron Collider.

  13. Higgs Boson Mass, Neutrino Oscillations and Inflation

    SciTech Connect

    Shafi, Qaisar

    2008-11-23

    Finding the Standard Model scalar (Higgs) boson is arguably the single most important mission of the LHC. I review predictions for the Higgs boson mass based on stability and perturbativity arguments, taking into account neutrino oscillations. Primordial inflation based on the Coleman-Weinberg potential is briefly discussed.

  14. Perturbative unitarity and high-energy W+/-L,ZL,H scattering. One-loop corrections and the Higgs-boson coupling

    NASA Astrophysics Data System (ADS)

    Durand, Loyal; Johnson, James M.; Lopez, Jorge L.

    1992-05-01

    We reexamine the unitarity constraints on the high-energy scattering of longitudinally polarized W's and Z's and Higgs bosons in the standard model including one-loop corrections. Using an Argand diagram analysis, we find that the j=0 scattering amplitudes are approximately unitary and weakly interacting at order λ2 for Higgs-boson couplings λ(s,M2H)<~2, but that corrections of order λ3 or higher must be included to restore perturbative unitarity for larger values of λ. We show also that two-loop [O(λ3)] corrections cannot extend the range of validity of perturbation theory beyond λ~=2.2. An analysis of inelastic 2-->4 scattering in the W+/-L,ZL, H system gives an independent but weaker limit λ(s,M2H)<~5. The limit λ(s,M2H)<2 translates to a physical-Higgs-boson mass MH<~400 GeV if the bound is to hold up to energies of a few TeV, or MH<~160 GeV in perturbatively unified theories with a mass scale of order 1015 GeV. For masses much larger than these bounds, low-order perturbation theory fails and the Higgs sector of the standard model becomes effectively strongly interacting.

  15. Dark Light-Higgs Bosons

    SciTech Connect

    Draper, Patrick; Liu Tao; Wagner, Carlos E. M.; Wang, Lian-Tao; Zhang Hao

    2011-03-25

    We study a limit of the nearly Peccei-Quinn-symmetric next-to-minimal supersymmetric standard model possessing novel Higgs and dark matter (DM) properties. In this scenario, there naturally coexist three light singletlike particles: a scalar, a pseudoscalar, and a singlinolike DM candidate, all with masses of order 0.1-10 GeV. The decay of a standard model-like Higgs boson to pairs of the light scalars or pseudoscalars is generically suppressed, avoiding constraints from collider searches for these channels. For a certain parameter window annihilation into the light pseudoscalar and exchange of the light scalar with nucleons allow the singlino to achieve the correct relic density and a large direct-detection cross section consistent with the DM direct-detection experiments, CoGeNT and DAMA/LIBRA, preferred region simultaneously. This parameter space is consistent with experimental constraints from LEP, the Tevatron, {Upsilon}, and flavor physics.

  16. A Historical Profile of the Higgs Boson

    SciTech Connect

    Ellis, John; Gaillard, Mary K.; Nanopoulos, Dimitri V.

    2012-01-31

    The Higgs boson was postulated in 1964, and phenomenological studies of its possible production and decays started in the early 1970s, followed by studies of its possible productionin e{sup +} e{sup -}, {anti p}p and pp collisions, in particular. Until recently, the most sensitive searches for the Higgs boson were at LEP between 1989 and 2000, which have been complemented bysearches at the Fermilab Tevatron. The LHC has recently entered the hunt, excluding a Higgs boson over a large range of masses and revealing a tantalizing hint in the range 119 to125 GeV, and there are good prospects that the existence or otherwise of the Higgs boson will soon be established. One of the most attractive possibilities is that the Higgs bosonis accompanied by supersymmetry, though composite options have yet to be excluded. This article reviews some of the key historical developments in Higgs physics over the past half-century.

  17. Electroweak Baryogenesis with Anomalous Higgs Couplings

    NASA Astrophysics Data System (ADS)

    Kobakhidze, Archil; Wu, Lei; Yue, Jason

    2016-07-01

    In non-linear realisation of the electroweak gauge symmetry, the LHC Higgs boson can be assumed to be a singlet under SU(2)L ⊗ U(1)Y. In such scenario, the Standard Model particle content can be kept but new sets of couplings are allowed. We identify a range of anomalous Higgs cubic and the 𝒞𝒫-violating Higgs-top quark couplings that leads to first order phase transition and successful baryogenesis at the electroweak scale.

  18. Benchmarks for Higgs boson pair production and heavy Higgs boson searches in the two-Higgs-doublet model of type II

    NASA Astrophysics Data System (ADS)

    Baglio, Julien; Eberhardt, Otto; Nierste, Ulrich; Wiebusch, Martin

    2014-07-01

    The search for additional Higgs particles and the exact measurements of Higgs (self-)couplings is a major goal of future collider experiments. In this paper we investigate the possible sizes of new physics signals in these searches in the context of the CP-conserving two-Higgs-doublet model (2HDM) of type II. Using current constraints from flavor, electroweak precision, and Higgs signal strength data, we determine the allowed sizes of the triple-Higgs couplings and the branching fractions of the heavy Higgs bosons into lighter Higgs bosons. Identifying the observed Higgs resonance with the light CP-even 2HDM Higgs boson h, we find that the hhh coupling cannot exceed its Standard Model (SM) value, but can be reduced by a factor of 0.56 at the 2σ level. The branching fractions of the heavy neutral Higgs bosons H and A into two-fermion or two-vector-boson final states can be reduced by factors of 0.4 and 0.01, respectively, if decays into a lighter Higgs boson are possible and if the mass of the decaying Higgs is below the tt ¯ threshold. To facilitate future studies of collider signatures in 2HDM scenarios with large triple-Higgs couplings or decay modes of the heavy Higgs bosons not covered by the SM Higgs searches we provide a set of benchmark points which exhibit these features and agree with all current constraints. We also discuss the effect of the heavy Higgs bosons on the gg→hh cross section at a 14 TeV LHC for some of these benchmarks. For mH below the hh threshold we see a reduction of the SM gg→hh cross section due to destructive interference, but for mH above the hh threshold current constraints allow enhancement factors above 50. An enhancement factor of 6 is still possible in scenarios in which the heavy Higgs particles would not be discovered by standard searches after 300 fb-1 of data.

  19. Bc production in Higgs boson decays

    NASA Astrophysics Data System (ADS)

    Jiang, Jun; Qiao, Cong-Feng

    2016-03-01

    The Bc production rate in Higgs boson decays is evaluated in the nonrelativistic QCD framework. Given that the Higgs total decay width is about 4.20 MeV and the vector Bc* meson decays completely to the ground state, we find that the branching fraction of Bc meson production in Higgs decays is 8.50 ×10-4, where both leading QCD and QED contributions are included. This process is hence detectable in the high-luminosity/-energy LHC. It is found that the coupling of H b b ¯ dominates the processes, and contributions from the triangle top-quark loop and other couplings (H c c ¯, H W W and H Z Z ) are small. In confronting the quarkonia production, we find that the fraction rate of Bc production is more than an order of magnitude bigger than those of charmonium and bottomonium production in Higgs decays. Moreover, various uncertainties and differential distributions of the concerned processes are analyzed carefully.

  20. Heavy Higgs boson coupled to vectorlike quarks: Strong C P problem and search prospects at the 14 TeV LHC

    NASA Astrophysics Data System (ADS)

    Alves, Alexandre; Camargo, Daniel A.; Dias, Alex G.

    2016-07-01

    Motivated by a solution to the strong C P problem, we propose a model where a new heavy neutral C P -even Higgs boson couples to vectorlike quarks enhancing its production cross section whose dominant decays are into weak bosons. The masses of the vectorlike quarks are generated through interactions with a singlet scalar field charged under a broken global U (1 ) symmetry, providing a solution to the strong C P problem by means of the Peccei-Quinn mechanism. The diboson excess observed by the ATLAS Collaboration is discussed as the new heavy Higgs boson is a candidate to explain a possible signal in this channel. We also show that the 14 TeV LHC is capable of discovering this heavy Higgs with masses up to 1 TeV in the H →Z Z →ℓ+ℓ,SUP- ℓ'+ℓ'- search channel using boosted decision trees to better discriminate between signals and backgrounds and to tame systematic uncertainties in the background rates.

  1. Higgs boson at LHC: a diffractive opportunity

    SciTech Connect

    Ducati, M. B. Gay; Silveira, G. G.

    2009-03-23

    An alternative process is presented for diffractive Higgs boson production in peripheral pp collisions, where the particles interact through the Double Pomeron Exchange. The event rate is computed as a central-rapidity distribution for Tevatron and LHC energies leading to a result around 0.6 pb, higher than the predictions from previous approaches. Therefore, this result arises as an enhanced signal for the detection of the Higgs boson in hadron colliders. The predictions for the Higgs boson photoproduction are compared to the ones obtained from a similar approach proposed by the Durham group, enabling an analysis of the future developments of its application to pp and AA collisions.

  2. Impersonating the Standard Model Higgs boson: Alignment without decoupling

    SciTech Connect

    Carena, Marcela; Low, Ian; Shah, Nausheen R.; Wagner, Carlos E. M.

    2014-04-03

    In models with an extended Higgs sector there exists an alignment limit, in which the lightest CP-even Higgs boson mimics the Standard Model Higgs. The alignment limit is commonly associated with the decoupling limit, where all non-standard scalars are significantly heavier than the Z boson. However, alignment can occur irrespective of the mass scale of the rest of the Higgs sector. In this work we discuss the general conditions that lead to “alignment without decoupling”, therefore allowing for the existence of additional non-standard Higgs bosons at the weak scale. The values of tan β for which this happens are derived in terms of the effective Higgs quartic couplings in general two-Higgs-doublet models as well as in supersymmetric theories, including the MSSM and the NMSSM. In addition, we study the information encoded in the variations of the SM Higgs-fermion couplings to explore regions in the mA – tan β parameter space.

  3. Impersonating the Standard Model Higgs boson: Alignment without decoupling

    DOE PAGESBeta

    Carena, Marcela; Low, Ian; Shah, Nausheen R.; Wagner, Carlos E. M.

    2014-04-03

    In models with an extended Higgs sector there exists an alignment limit, in which the lightest CP-even Higgs boson mimics the Standard Model Higgs. The alignment limit is commonly associated with the decoupling limit, where all non-standard scalars are significantly heavier than the Z boson. However, alignment can occur irrespective of the mass scale of the rest of the Higgs sector. In this work we discuss the general conditions that lead to “alignment without decoupling”, therefore allowing for the existence of additional non-standard Higgs bosons at the weak scale. The values of tan β for which this happens are derivedmore » in terms of the effective Higgs quartic couplings in general two-Higgs-doublet models as well as in supersymmetric theories, including the MSSM and the NMSSM. In addition, we study the information encoded in the variations of the SM Higgs-fermion couplings to explore regions in the mA – tan β parameter space.« less

  4. Dark side of the Higgs boson.

    SciTech Connect

    Low, I.; Schwaller, P.; Shaughnessy, G.; Wagner, C. E. M.

    2012-01-01

    Current limits from the Large Hadron Collider exclude a standard model-like Higgs mass above 150 GeV, by placing an upper bound on the Higgs production rate. We emphasize that, alternatively, the limit could be interpreted as a lower bound on the total decay width of the Higgs boson. If the invisible decay width of the Higgs is of the same order as the visible decay width, a heavy Higgs boson could be consistent with null results from current searches. We propose a method to infer the invisible decay of the Higgs by using the width of the measured h {yields} ZZ {yields} 4 {ell} line shape, and study the effect on the width extraction due to a reduced signal strength. Assuming the invisible decay product is the dark matter, we show that minimal models are tightly constrained by limits from Higgs searches at the LHC and direct detection experiments of dark matter, unless the relic density constraint is relaxed.

  5. Top quark and Higgs boson masses from wormhole physics

    SciTech Connect

    Harris, B.A.; Joshi, G.C. )

    1994-11-01

    We bring together quantum field theory on [ital S][sub 4] with the Coleman wormhole hypothesis, which imposes constraints on terms in the gravitational Lagrangian. In particular, we investigate the effect of matter fields on the trace anomaly, which is related to the (curvature)[sup 2] terms, by the use of the renormalization group equations. We consider a toy model of a nonconformally coupled Higgs boson to a single top'' quark. By numerically solving the renormalization group equations for the couplings of the model, we can find preferred values of the particle masses for various values of the bare nonconformal coupling. By making the [ital ad] [ital hoc] assumption that the tree-level, Higgs boson treace anomaly vanishes on shell, a unique prediction can be made within this model for the masses of both the Higgs boson and the top quark.

  6. Measurements of the Higgs boson production and decay rates and coupling strengths using pp collision data at √s = 7 and 8 TeV in the ATLAS experiment

    DOE PAGESBeta

    Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Aben, R.; Abolins, M.; AbouZeid, O. S.; Abramowicz, H.; Abreu, H.; Abreu, R.; et al

    2016-01-05

    In this study, combined analyses of the Higgs boson production and decay rates as well as its coupling strengths to vector bosons and fermions are presented. The combinations include the results of the analyses of the H → γγ, ZZ*, WW*, Zγ, bb¯, ττ and μμ decay modes, and the constraints on the associated production with a pair of top quarks and on the off-shell coupling strengths of the Higgs boson. The results are based on the LHC proton-proton collision datasets, with integrated luminosities of up to 4.7 fb–1 at √s = 7 TeV and 20.3 fb–1 at √s =more » 8 TeV, recorded by the ATLAS detector in 2011 and 2012. Combining all production modes and decay channels, the measured signal yield, normalised to the Standard Model expectation, is 1.18+0.15-0.14. The observed Higgs boson production and decay rates are interpreted in a leading-order coupling framework, exploring a wide range of benchmark coupling models both with and without assumptions on the Higgs boson width and on the Standard Model particle content in loop processes. The data are found to be compatible with the Standard Model expectations for a Higgs boson at a mass of 125.36 GeV for all models considered.« less

  7. Measurements of the Higgs boson production and decay rates and coupling strengths using pp collision data at √{s}=7 and 8 TeV in the ATLAS experiment

    NASA Astrophysics Data System (ADS)

    Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Aben, R.; Abolins, M.; AbouZeid, O. S.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Adelman, J.; Adomeit, S.; Adye, T.; Affolder, A. A.; Agatonovic-Jovin, T.; Aguilar-Saavedra, J. A.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akerstedt, H.; Åkesson, T. P. A.; Akimoto, G.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albrand, S.; Alconada Verzini, M. J.; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexopoulos, T.; Alhroob, M.; Alimonti, G.; Alio, L.; Alison, J.; Alkire, S. P.; Allbrooke, B. M. M.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Altheimer, A.; Alvarez Gonzalez, B.; Álvarez Piqueras, D.; Alviggi, M. G.; Amadio, B. T.; Amako, K.; Amaral Coutinho, Y.; Amelung, C.; Amidei, D.; Amor Dos Santos, S. P.; Amorim, A.; Amoroso, S.; Amram, N.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anders, J. K.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Angelidakis, S.; Angelozzi, I.; Anger, P.; Angerami, A.; Anghinolfi, F.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antonelli, M.; Antonov, A.; Antos, J.; Anulli, F.; Aoki, M.; Aperio Bella, L.; Arabidze, G.; Arai, Y.; Araque, J. P.; Arce, A. T. H.; Arduh, F. A.; Arguin, J.-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnal, V.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Asai, S.; Asbah, N.; Ashkenazi, A.; Åsman, B.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Auerbach, B.; Augsten, K.; Aurousseau, M.; Avolio, G.; Axen, B.; Ayoub, M. K.; Azuelos, G.; Baak, M. A.; Baas, A. E.; Bacci, C.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Bagiacchi, P.; Bagnaia, P.; Bai, Y.; Bain, T.; Baines, J. T.; Baker, O. K.; Balek, P.; Balestri, T.; Balli, F.; Banas, E.; Banerjee, Sw.; Bannoura, A. A. E.; Bansil, H. S.; Barak, L.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnes, S. L.; Barnett, B. M.; Barnett, R. M.; Barnovska, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Bartoldus, R.; Barton, A. E.; Bartos, P.; Basalaev, A.; Bassalat, A.; Basye, A.; Bates, R. L.; Batista, S. J.; Batley, J. R.; Battaglia, M.; Bauce, M.; Bauer, F.; Bawa, H. S.; Beacham, J. B.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, M.; Becker, S.; Beckingham, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bednyakov, V. A.; Bee, C. P.; Beemster, L. J.; Beermann, T. A.; Begel, M.; Behr, J. K.; Belanger-Champagne, C.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Benary, O.; Benchekroun, D.; Bender, M.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez Garcia, J. A.; Benjamin, D. P.; Bensinger, J. R.; Bentvelsen, S.; Beresford, L.; Beretta, M.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Beringer, J.; Bernard, C.; Bernard, N. R.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertolucci, F.; Bertsche, C.; Bertsche, D.; Besana, M. I.; Besjes, G. J.; Bessidskaia Bylund, O.; Bessner, M.; Besson, N.; Betancourt, C.; Bethke, S.; Bevan, A. J.; Bhimji, W.; Bianchi, R. M.; Bianchini, L.; Bianco, M.; Biebel, O.; Bieniek, S. P.; Biglietti, M.; Bilbao De Mendizabal, J.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Black, C. W.; Black, J. E.; Black, K. M.; Blackburn, D.; Blair, R. E.; Blanchard, J.-B.; Blanco, J. E.; Blazek, T.; Bloch, I.; Blocker, C.; Blum, W.; Blumenschein, U.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boehler, M.; Bogaerts, J. A.; Bogdanchikov, A. G.; Bohm, C.; Boisvert, V.; Bold, T.; Boldea, V.; Boldyrev, A. S.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Borroni, S.; Bortfeldt, J.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Boudreau, J.; Bouffard, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Bousson, N.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozic, I.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Brazzale, S. F.; Brendlinger, K.; Brennan, A. J.; Brenner, L.; Brenner, R.; Bressler, S.; Bristow, K.; Bristow, T. M.; Britton, D.; Britzger, D.; Brochu, F. M.; Brock, I.; Brock, R.; Bronner, J.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Brown, J.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Bruni, A.; Bruni, G.; Bruschi, M.; Bryngemark, L.; Buanes, T.; Buat, Q.; Buchholz, P.; Buckley, A. G.; Buda, S. I.; Budagov, I. A.; Buehrer, F.; Bugge, L.; Bugge, M. K.; Bulekov, O.; Bullock, D.; Burckhart, H.; Burdin, S.; Burghgrave, B.; Burke, S.; Burmeister, I.; Busato, E.; Büscher, D.; Büscher, V.; Bussey, P.; Butler, J. M.; Butt, A. I.; Buttar, C. M.; Butterworth, J. M.; Butti, P.; Buttinger, W.; Buzatu, A.; Buzykaev, A. R.; Cabrera Urbán, S.; Caforio, D.; Cairo, V. M.; Cakir, O.; Calafiura, P.; Calandri, A.; Calderini, G.; Calfayan, P.; Caloba, L. P.; Calvet, D.; Calvet, S.; Camacho Toro, R.; Camarda, S.; Camarri, P.; Cameron, D.; Caminada, L. M.; Caminal Armadans, R.; Campana, S.; Campanelli, M.; Campoverde, A.; Canale, V.; Canepa, A.; Cano Bret, M.; Cantero, J.; Cantrill, R.; Cao, T.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capua, M.; Caputo, R.; Cardarelli, R.; Carli, T.; Carlino, G.; Carminati, L.; Caron, S.; Carquin, E.; Carrillo-Montoya, G. D.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Casolino, M.; Castaneda-Miranda, E.; Castelli, A.; Castillo Gimenez, V.; Castro, N. F.; Catastini, P.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Caudron, J.; Cavaliere, V.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerio, B. C.; Cerny, K.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cerv, M.; Cervelli, A.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chalupkova, I.; Chang, P.; Chapleau, B.; Chapman, J. D.; Charlton, D. G.; Chau, C. C.; Chavez Barajas, C. A.; Cheatham, S.; Chegwidden, A.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, K.; Chen, L.; Chen, S.; Chen, X.; Chen, Y.; Cheng, H. C.; Cheng, Y.; Cheplakov, A.; Cheremushkina, E.; Cherkaoui El Moursli, R.; Chernyatin, V.; Cheu, E.; Chevalier, L.; Chiarella, V.; Childers, J. T.; Chiodini, G.; Chisholm, A. S.; Chislett, R. T.; Chitan, A.; Chizhov, M. V.; Choi, K.; Chouridou, S.; Chow, B. K. B.; Christodoulou, V.; Chromek-Burckhart, D.; Chu, M. L.; Chudoba, J.; Chuinard, A. J.; Chwastowski, J. J.; Chytka, L.; Ciapetti, G.; Ciftci, A. K.; Cinca, D.; Cindro, V.; Cioara, I. A.; Ciocio, A.; Citron, Z. H.; Ciubancan, M.; Clark, A.; Clark, B. L.; Clark, P. J.; Clarke, R. N.; Cleland, W.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coffey, L.; Cogan, J. G.; Cole, B.; Cole, S.; Colijn, A. P.; Collot, J.; Colombo, T.; Compostella, G.; Conde Muiño, P.; Coniavitis, E.; Connell, S. H.; Connelly, I. A.; Consonni, S. M.; Consorti, V.; Constantinescu, S.; Conta, C.; Conti, G.; Conventi, F.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Côté, D.; Cottin, G.; Cowan, G.; Cox, B. E.; Cranmer, K.; Cree, G.; Crépé-Renaudin, S.; Crescioli, F.; Cribbs, W. A.; Crispin Ortuzar, M.; Cristinziani, M.; Croft, V.; Crosetti, G.; Cuhadar Donszelmann, T.; Cummings, J.; Curatolo, M.; Cuthbert, C.; Czirr, H.; Czodrowski, P.; D'Auria, S.; D'Onofrio, M.; Da Cunha Sargedas De Sousa, M. J.; Da Via, C.; Dabrowski, W.; Dafinca, A.; Dai, T.; Dale, O.; Dallaire, F.; Dallapiccola, C.; Dam, M.; Dandoy, J. R.; Dang, N. P.; Daniells, A. C.; Danninger, M.; Dano Hoffmann, M.; Dao, V.; Darbo, G.; Darmora, S.; Dassoulas, J.; Dattagupta, A.; Davey, W.; David, C.; Davidek, T.; Davies, E.; Davies, M.; Davison, P.; Davygora, Y.; Dawe, E.; Dawson, I.; Daya-Ishmukhametova, R. K.; De, K.; de Asmundis, R.; De Castro, S.; De Cecco, S.; De Groot, N.; de Jong, P.; De la Torre, H.; De Lorenzi, F.; De Nooij, L.; De Pedis, D.; De Salvo, A.; De Sanctis, U.; De Santo, A.; De Vivie De Regie, J. B.; Dearnaley, W. J.; Debbe, R.; Debenedetti, C.; Dedovich, D. V.; Deigaard, I.; Del Peso, J.; Del Prete, T.; Delgove, D.; Deliot, F.; Delitzsch, C. M.; Deliyergiyev, M.; Dell'Acqua, A.; Dell'Asta, L.; Dell'Orso, M.; Della Pietra, M.; della Volpe, D.; Delmastro, M.; Delsart, P. A.; Deluca, C.; DeMarco, D. A.; Demers, S.; Demichev, M.; Demilly, A.; Denisov, S. P.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deterre, C.; Deviveiros, P. O.; Dewhurst, A.; Dhaliwal, S.; Di Ciaccio, A.; Di Ciaccio, L.; Di Domenico, A.; Di Donato, C.; Di Girolamo, A.; Di Girolamo, B.; Di Mattia, A.; Di Micco, B.; Di Nardo, R.; Di Simone, A.; Di Sipio, R.; Di Valentino, D.; Diaconu, C.; Diamond, M.; Dias, F. A.; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Diglio, S.; Dimitrievska, A.; Dingfelder, J.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; Djuvsland, J. I.; do Vale, M. A. B.; Dobos, D.; Dobre, M.; Doglioni, C.; Dohmae, T.; Dolejsi, J.; Dolezal, Z.; Dolgoshein, B. A.; Donadelli, M.; Donati, S.; Dondero, P.; Donini, J.; Dopke, J.; Doria, A.; Dova, M. T.; Doyle, A. T.; Drechsler, E.; Dris, M.; Dubreuil, E.; Duchovni, E.; Duckeck, G.; Ducu, O. A.; Duda, D.; Dudarev, A.; Duflot, L.; Duguid, L.; Dührssen, M.; Dunford, M.; Duran Yildiz, H.; Düren, M.; Durglishvili, A.; Duschinger, D.; Dyndal, M.; Eckardt, C.; Ecker, K. M.; Edgar, R. C.; Edson, W.; Edwards, N. C.; Ehrenfeld, W.; Eifert, T.; Eigen, G.; Einsweiler, K.; Ekelof, T.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellinghaus, F.; Elliot, A. A.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Enari, Y.; Endner, O. C.; Endo, M.; Erdmann, J.; Ereditato, A.; Ernis, G.; Ernst, J.; Ernst, M.; Errede, S.; Ertel, E.; Escalier, M.; Esch, H.; Escobar, C.; Esposito, B.; Etienvre, A. I.; Etzion, E.; Evans, H.; Ezhilov, A.; Fabbri, L.; Facini, G.; Fakhrutdinov, R. M.; Falciano, S.; Falla, R. J.; Faltova, J.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Faucci Giannelli, M.; Favareto, A.; Fayard, L.; Federic, P.; Fedin, O. L.; Fedorko, W.; Feigl, S.; Feligioni, L.; Feng, C.; Feng, E. J.; Feng, H.; Fenyuk, A. B.; Fernandez Martinez, P.; Fernandez Perez, S.; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferreira de Lima, D. E.; Ferrer, A.; Ferrere, D.; Ferretti, C.; Ferretto Parodi, A.; Fiascaris, M.; Fiedler, F.; Filipčič, A.; Filipuzzi, M.; Filthaut, F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, A.; Fischer, C.; Fischer, J.; Fisher, W. C.; Fitzgerald, E. A.; Flechl, M.; Fleck, I.; Fleischmann, P.; Fleischmann, S.; Fletcher, G. T.; Fletcher, G.; Flick, T.; Floderus, A.; Flores Castillo, L. R.; Flowerdew, M. J.; Formica, A.; Forti, A.; Fournier, D.; Fox, H.; Fracchia, S.; Francavilla, P.; Franchini, M.; Francis, D.; Franconi, L.; Franklin, M.; Fraternali, M.; Freeborn, D.; French, S. T.; Friedrich, F.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fullana Torregrosa, E.; Fulsom, B. G.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.; Gadatsch, S.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallop, B. J.; Gallus, P.; Galster, G.; Gan, K. K.; Gao, J.; Gao, Y.; Gao, Y. S.; Garay Walls, F. M.; Garberson, F.; García, C.; García Navarro, J. E.; Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.; Garonne, V.; Gatti, C.; Gaudiello, A.; Gaudio, G.; Gaur, B.; Gauthier, L.; Gauzzi, P.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Ge, P.; Gecse, Z.; Gee, C. N. P.; Geerts, D. A. A.; Geich-Gimbel, Ch.; Geisler, M. P.; Gemme, C.; Genest, M. H.; Gentile, S.; George, M.; George, S.; Gerbaudo, D.; Gershon, A.; Ghazlane, H.; Giacobbe, B.; Giagu, S.; Giangiobbe, V.; Giannetti, P.; Gibbard, B.; Gibson, S. M.; Gilchriese, M.; Gillam, T. P. S.; Gillberg, D.; Gilles, G.; Gingrich, D. M.; Giokaris, N.; Giordani, M. P.; Giorgi, F. M.; Giorgi, F. M.; Giraud, P. F.; Giromini, P.; Giugni, D.; Giuliani, C.; Giulini, M.; Gjelsten, B. K.; Gkaitatzis, S.; Gkialas, I.; Gkougkousis, E. L.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glaysher, P. C. F.; Glazov, A.; Goblirsch-Kolb, M.; Goddard, J. R.; Godlewski, J.; Goldfarb, S.; Golling, T.; Golubkov, D.; Gomes, A.; Gonçalo, R.; Goncalves Pinto Firmino Da Costa, J.; Gonella, L.; González de la Hoz, S.; Gonzalez Parra, G.; Gonzalez-Sevilla, S.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Goshaw, A. T.; Gössling, C.; Gostkin, M. I.; Goujdami, D.; Goussiou, A. G.; Govender, N.; Grabas, H. M. X.; Graber, L.; Grabowska-Bold, I.; Grafström, P.; Grahn, K.-J.; Gramling, J.; Gramstad, E.; Grancagnolo, S.; Grassi, V.; Gratchev, V.; Gray, H. M.; Graziani, E.; Greenwood, Z. D.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Griffiths, J.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Gris, Ph.; Grivaz, J.-F.; Grohs, J. P.; Grohsjean, A.; Gross, E.; Grosse-Knetter, J.; Grossi, G. C.; Grout, Z. J.; Guan, L.; Guenther, J.; Guescini, F.; Guest, D.; Gueta, O.; Guido, E.; Guillemin, T.; Guindon, S.; Gul, U.; Gumpert, C.; Guo, J.; Gupta, S.; Gutierrez, P.; Gutierrez Ortiz, N. G.; Gutschow, C.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haber, C.; Hadavand, H. K.; Haddad, N.; Haefner, P.; Hageböck, S.; Hajduk, Z.; Hakobyan, H.; Haleem, M.; Haley, J.; Hall, D.; Halladjian, G.; Hallewell, G. D.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamer, M.; Hamilton, A.; Hamity, G. N.; Hamnett, P. G.; Han, L.; Hanagaki, K.; Hanawa, K.; Hance, M.; Hanke, P.; Hanna, R.; Hansen, J. B.; Hansen, J. D.; Hansen, M. C.; Hansen, P. H.; Hara, K.; Hard, A. S.; Harenberg, T.; Hariri, F.; Harkusha, S.; Harrington, R. D.; Harrison, P. F.; Hartjes, F.; Hasegawa, M.; Hasegawa, S.; Hasegawa, Y.; Hasib, A.; Hassani, S.; Haug, S.; Hauser, R.; Hauswald, L.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hawkins, A. D.; Hayashi, T.; Hayden, D.; Hays, C. P.; Hays, J. M.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Heck, T.; Hedberg, V.; Heelan, L.; Heim, S.; Heim, T.; Heinemann, B.; Heinrich, L.; Hejbal, J.; Helary, L.; Hellman, S.; Hellmich, D.; Helsens, C.; Henderson, J.; Henderson, R. C. W.; Heng, Y.; Hengler, C.; Henrichs, A.; Henriques Correia, A. M.; Henrot-Versille, S.; Herbert, G. H.; Hernández Jiménez, Y.; Herrberg-Schubert, R.; Herten, G.; Hertenberger, R.; Hervas, L.; Hesketh, G. G.; Hessey, N. P.; Hetherly, J. W.; Hickling, R.; Higón-Rodriguez, E.; Hill, E.; Hill, J. C.; Hiller, K. H.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hinman, R. R.; Hirose, M.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoenig, F.; Hohlfeld, M.; Hohn, D.; Holmes, T. R.; Homann, M.; Hong, T. M.; Hooft van Huysduynen, L.; Hopkins, W. H.; Horii, Y.; Horton, A. J.; Hostachy, J.-Y.; Hou, S.; Hoummada, A.; Howard, J.; Howarth, J.; Hrabovsky, M.; Hristova, I.; Hrivnac, J.; Hryn'ova, T.; Hrynevich, A.; Hsu, C.; Hsu, P. J.; Hsu, S.-C.; Hu, D.; Hu, Q.; Hu, X.; Huang, Y.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Huhtinen, M.; Hülsing, T. A.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Ideal, E.; Idrissi, Z.; Iengo, P.; Igonkina, O.; Iizawa, T.; Ikegami, Y.; Ikematsu, K.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilic, N.; Inamaru, Y.; Ince, T.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Irles Quiles, A.; Isaksson, C.; Ishino, M.; Ishitsuka, M.; Ishmukhametov, R.; Issever, C.; Istin, S.; Iturbe Ponce, J. M.; Iuppa, R.; Ivarsson, J.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jabbar, S.; Jackson, B.; Jackson, M.; Jackson, P.; Jaekel, M. R.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jakubek, J.; Jamin, D. O.; Jana, D. K.; Jansen, E.; Jansky, R. W.; Janssen, J.; Janus, M.; Jarlskog, G.; Javadov, N.; Javůrek, T.; Jeanty, L.; Jejelava, J.; Jeng, G.-Y.; Jennens, D.; Jenni, P.; Jentzsch, J.; Jeske, C.; Jézéquel, S.; Ji, H.; Jia, J.; Jiang, Y.; Jiggins, S.; Jimenez Pena, J.; Jin, S.; Jinaru, A.; Jinnouchi, O.; Joergensen, M. D.; Johansson, P.; Johns, K. A.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, T. J.; Jongmanns, J.; Jorge, P. M.; Joshi, K. D.; Jovicevic, J.; Ju, X.; Jung, C. A.; Jussel, P.; Juste Rozas, A.; Kaci, M.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kahn, S. J.; Kajomovitz, E.; Kalderon, C. W.; Kama, S.; Kamenshchikov, A.; Kanaya, N.; Kaneda, M.; Kaneti, S.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kapliy, A.; Kar, D.; Karakostas, K.; Karamaoun, A.; Karastathis, N.; Kareem, M. J.; Karnevskiy, M.; Karpov, S. N.; Karpova, Z. M.; Karthik, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kashif, L.; Kass, R. D.; Kastanas, A.; Kataoka, Y.; Katre, A.; Katzy, J.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kazama, S.; Kazanin, V. F.; Kazarinov, M. Y.; Keeler, R.; Kehoe, R.; Keller, J. S.; Kempster, J. J.; Keoshkerian, H.; Kepka, O.; Kerševan, B. P.; Kersten, S.; Keyes, R. A.; Khalil-zada, F.; Khandanyan, H.; Khanov, A.; Kharlamov, A. G.; Khoo, T. J.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kim, H. Y.; Kim, H.; Kim, S. H.; Kim, Y.; Kimura, N.; Kind, O. M.; King, B. T.; King, M.; King, R. S. B.; King, S. B.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kiss, F.; Kiuchi, K.; Kivernyk, O.; Kladiva, E.; Klein, M. H.; Klein, M.; Klein, U.; Kleinknecht, K.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klinger, J. A.; Klioutchnikova, T.; Kluge, E.-E.; Kluit, P.; Kluth, S.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Kobayashi, A.; Kobayashi, D.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koffas, T.; Koffeman, E.; Kogan, L. A.; Kohlmann, S.; Kohout, Z.; Kohriki, T.; Koi, T.; Kolanoski, H.; Koletsou, I.; Komar, A. A.; Komori, Y.; Kondo, T.; Kondrashova, N.; Köneke, K.; König, A. C.; König, S.; Kono, T.; Konoplich, R.; Konstantinidis, N.; Kopeliansky, R.; Koperny, S.; Köpke, L.; Kopp, A. K.; Korcyl, K.; Kordas, K.; Korn, A.; Korol, A. A.; Korolkov, I.; Korolkova, E. V.; Kortner, O.; Kortner, S.; Kosek, T.; Kostyukhin, V. V.; Kotov, V. M.; Kotwal, A.; Kourkoumeli-Charalampidi, A.; Kourkoumelis, C.; Kouskoura, V.; Koutsman, A.; Kowalewski, R.; Kowalski, T. Z.; Kozanecki, W.; Kozhin, A. S.; Kramarenko, V. A.; Kramberger, G.; Krasnopevtsev, D.; Krasznahorkay, A.; Kraus, J. K.; Kravchenko, A.; Kreiss, S.; Kretz, M.; Kretzschmar, J.; Kreutzfeldt, K.; Krieger, P.; Krizka, K.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Krumnack, N.; Krumshteyn, Z. V.; Kruse, A.; Kruse, M. C.; Kruskal, M.; Kubota, T.; Kucuk, H.; Kuday, S.; Kuehn, S.; Kugel, A.; Kuger, F.; Kuhl, A.; Kuhl, T.; Kukhtin, V.; Kulchitsky, Y.; Kuleshov, S.; Kuna, M.; Kunigo, T.; Kupco, A.; Kurashige, H.; Kurochkin, Y. A.; Kurumida, R.; Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; Kwan, T.; Kyriazopoulos, D.; La Rosa, A.; La Rosa Navarro, J. L.; La Rotonda, L.; Lacasta, C.; Lacava, F.; Lacey, J.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Lambourne, L.; Lammers, S.; Lampen, C. L.; Lampl, W.; Lançon, E.; Landgraf, U.; Landon, M. P. J.; Lang, V. S.; Lange, J. C.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Lasagni Manghi, F.; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Law, A. T.; Laycock, P.; Lazovich, T.; Le Dortz, O.; Le Guirriec, E.; Le Menedeu, E.; LeBlanc, M.; LeCompte, T.; Ledroit-Guillon, F.; Lee, C. A.; Lee, S. C.; Lee, L.; Lefebvre, G.; Lefebvre, M.; Legger, F.; Leggett, C.; Lehan, A.; Lehmann Miotto, G.; Lei, X.; Leight, W. A.; Leisos, A.; Leister, A. G.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Leney, K. J. C.; Lenz, T.; Lenzi, B.; Leone, R.; Leone, S.; Leonidopoulos, C.; Leontsinis, S.; Leroy, C.; Lester, C. G.; Levchenko, M.; Levêque, J.; Levin, D.; Levinson, L. J.; Levy, M.; Lewis, A.; Leyko, A. M.; Leyton, M.; Li, B.; Li, H.; Li, H. L.; Li, L.; Li, L.; Li, S.; Li, Y.; Liang, Z.; Liao, H.; Liberti, B.; Liblong, A.; Lichard, P.; Lie, K.; Liebal, J.; Liebig, W.; Limbach, C.; Limosani, A.; Lin, S. C.; Lin, T. H.; Linde, F.; Lindquist, B. E.; Linnemann, J. T.; Lipeles, E.; Lipniacka, A.; Lisovyi, M.; Liss, T. M.; Lissauer, D.; Lister, A.; Litke, A. M.; Liu, B.; Liu, D.; Liu, J.; Liu, J. B.; Liu, K.; Liu, L.; Liu, M.; Liu, M.; Liu, Y.; Livan, M.; Lleres, A.; Llorente Merino, J.; Lloyd, S. L.; Lo Sterzo, F.; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Loebinger, F. K.; Loevschall-Jensen, A. E.; Loginov, A.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Long, B. A.; Long, J. D.; Long, R. E.; Looper, K. A.; Lopes, L.; Lopez Mateos, D.; Lopez Paredes, B.; Lopez Paz, I.; Lorenz, J.; Lorenzo Martinez, N.; Losada, M.; Loscutoff, P.; Lösel, P. J.; Lou, X.; Lounis, A.; Love, J.; Love, P. A.; Lu, N.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Luehring, F.; Lukas, W.; Luminari, L.; Lundberg, O.; Lund-Jensen, B.; Lynn, D.; Lysak, R.; Lytken, E.; Ma, H.; Ma, L. L.; Maccarrone, G.; Macchiolo, A.; Macdonald, C. M.; Machado Miguens, J.; Macina, D.; Madaffari, D.; Madar, R.; Maddocks, H. J.; Mader, W. F.; Madsen, A.; Maeland, S.; Maeno, T.; Maevskiy, A.; Magradze, E.; Mahboubi, K.; Mahlstedt, J.; Maiani, C.; Maidantchik, C.; Maier, A. A.; Maier, T.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Malaescu, B.; Malecki, Pa.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyshev, V. M.; Malyukov, S.; Mamuzic, J.; Mancini, G.; Mandelli, B.; Mandelli, L.; Mandić, I.; Mandrysch, R.; Maneira, J.; Manfredini, A.; Manhaes de Andrade Filho, L.; Manjarres Ramos, J.; Mann, A.; Manning, P. M.; Manousakis-Katsikakis, A.; Mansoulie, B.; Mantifel, R.; Mantoani, M.; Mapelli, L.; March, L.; Marchiori, G.; Marcisovsky, M.; Marino, C. P.; Marjanovic, M.; Marroquim, F.; Marsden, S. P.; Marshall, Z.; Marti, L. F.; Marti-Garcia, S.; Martin, B.; Martin, T. A.; Martin, V. J.; Martin dit Latour, B.; Martinez, M.; Martin-Haugh, S.; Martoiu, V. S.; Martyniuk, A. C.; Marx, M.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, I.; Massa, L.; Massol, N.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mättig, P.; Mattmann, J.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mazini, R.; Mazza, S. M.; Mazzaferro, L.; Mc Goldrick, G.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McCubbin, N. A.; McFarlane, K. W.; Mcfayden, J. A.; Mchedlidze, G.; McMahon, S. J.; McPherson, R. A.; Medinnis, M.; Meehan, S.; Mehlhase, S.; Mehta, A.; Meier, K.; Meineck, C.; Meirose, B.; Mellado Garcia, B. R.; Meloni, F.; Mengarelli, A.; Menke, S.; Meoni, E.; Mercurio, K. M.; Mergelmeyer, S.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Middleton, R. P.; Miglioranzi, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Milesi, M.; Milic, A.; Miller, D. W.; Mills, C.; Milov, A.; Milstead, D. A.; Minaenko, A. A.; Minami, Y.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mitani, T.; Mitrevski, J.; Mitsou, V. A.; Miucci, A.; Miyagawa, P. S.; Mjörnmark, J. U.; Moa, T.; Mochizuki, K.; Mohapatra, S.; Mohr, W.; Molander, S.; Moles-Valls, R.; Mönig, K.; Monini, C.; Monk, J.; Monnier, E.; Montejo Berlingen, J.; Monticelli, F.; Monzani, S.; Moore, R. W.; Morange, N.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Morgenstern, M.; Morii, M.; Morinaga, M.; Morisbak, V.; Moritz, S.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Mortensen, S. S.; Morton, A.; Morvaj, L.; Mosidze, M.; Moss, J.; Motohashi, K.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Muanza, S.; Mudd, R. D.; Mueller, F.; Mueller, J.; Mueller, K.; Mueller, R. S. P.; Mueller, T.; Muenstermann, D.; Mullen, P.; Munwes, Y.; Murillo Quijada, J. A.; Murray, W. J.; Musheghyan, H.; Musto, E.; Myagkov, A. G.; Myska, M.; Nackenhorst, O.; Nadal, J.; Nagai, K.; Nagai, R.; Nagai, Y.; Nagano, K.; Nagarkar, A.; Nagasaka, Y.; Nagata, K.; Nagel, M.; Nagy, E.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Namasivayam, H.; Naranjo Garcia, R. F.; Narayan, R.; Naumann, T.; Navarro, G.; Nayyar, R.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Nef, P. D.; Negri, A.; Negrini, M.; Nektarijevic, S.; Nellist, C.; Nelson, A.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Neves, R. M.; Nevski, P.; Newman, P. R.; Nguyen, D. H.; Nickerson, R. B.; Nicolaidou, R.; Nicquevert, B.; Nielsen, J.; Nikiforou, N.; Nikiforov, A.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolopoulos, K.; Nilsen, J. K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nisius, R.; Nobe, T.; Nomachi, M.; Nomidis, I.; Nooney, T.; Norberg, S.; Nordberg, M.; Novgorodova, O.; Nowak, S.; Nozaki, M.; Nozka, L.; Ntekas, K.; Nunes Hanninger, G.; Nunnemann, T.; Nurse, E.; Nuti, F.; O'Brien, B. J.; O'grady, F.; O'Neil, D. C.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Obermann, T.; Ocariz, J.; Ochi, A.; Ochoa, I.; Ochoa-Ricoux, J. P.; Oda, S.; Odaka, S.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohman, H.; Oide, H.; Okamura, W.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Olivares Pino, S. A.; Oliveira Damazio, D.; Oliver Garcia, E.; Olszewski, A.; Olszowska, J.; Onofre, A.; Onyisi, P. U. E.; Oram, C. J.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Oropeza Barrera, C.; Orr, R. S.; Osculati, B.; Ospanov, R.; Otero y Garzon, G.; Otono, H.; Ouchrif, M.; Ouellette, E. A.; Ould-Saada, F.; Ouraou, A.; Oussoren, K. P.; Ouyang, Q.; Ovcharova, A.; Owen, M.; Owen, R. E.; Ozcan, V. E.; Ozturk, N.; Pachal, K.; Pacheco Pages, A.; Padilla Aranda, C.; Pagáčová, M.; Pagan Griso, S.; Paganis, E.; Pahl, C.; Paige, F.; Pais, P.; Pajchel, K.; Palacino, G.; Palestini, S.; Palka, M.; Pallin, D.; Palma, A.; Pan, Y. B.; Panagiotopoulou, E.; Pandini, C. E.; Panduro Vazquez, J. G.; Pani, P.; Panitkin, S.; Pantea, D.; Paolozzi, L.; Papadopoulou, Th. D.; Papageorgiou, K.; Paramonov, A.; Paredes Hernandez, D.; Parker, M. A.; Parker, K. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pasqualucci, E.; Passaggio, S.; Pastore, F.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Patel, N. D.; Pater, J. R.; Pauly, T.; Pearce, J.; Pearson, B.; Pedersen, L. E.; Pedersen, M.; Pedraza Lopez, S.; Pedro, R.; Peleganchuk, S. V.; Pelikan, D.; Peng, H.; Penning, B.; Penwell, J.; Perepelitsa, D. V.; Perez Codina, E.; Pérez García-Estañ, M. T.; Perini, L.; Pernegger, H.; Perrella, S.; Peschke, R.; Peshekhonov, V. D.; Peters, K.; Peters, R. F. Y.; Petersen, B. A.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petrolo, E.; Petrucci, F.; Pettersson, N. E.; Pezoa, R.; Phillips, P. W.; Piacquadio, G.; Pianori, E.; Picazio, A.; Piccaro, E.; Piccinini, M.; Pickering, M. A.; Piegaia, R.; Pignotti, D. T.; Pilcher, J. E.; Pilkington, A. D.; Pina, J.; Pinamonti, M.; Pinfold, J. L.; Pingel, A.; Pinto, B.; Pires, S.; Pitt, M.; Pizio, C.; Plazak, L.; Pleier, M.-A.; Pleskot, V.; Plotnikova, E.; Plucinski, P.; Pluth, D.; Poettgen, R.; Poggioli, L.; Pohl, D.; Polesello, G.; Policicchio, A.; Polifka, R.; Polini, A.; Pollard, C. S.; Polychronakos, V.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Popovic, D. S.; Poppleton, A.; Pospisil, S.; Potamianos, K.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda, J.; Pozdnyakov, V.; Pralavorio, P.; Pranko, A.; Prasad, S.; Prell, S.; Price, D.; Price, L. E.; Primavera, M.; Prince, S.; Proissl, M.; Prokofiev, K.; Prokoshin, F.; Protopapadaki, E.; Protopopescu, S.; Proudfoot, J.; Przybycien, M.; Ptacek, E.; Puddu, D.; Pueschel, E.; Puldon, D.; Purohit, M.; Puzo, P.; Qian, J.; Qin, G.; Qin, Y.; Quadt, A.; Quarrie, D. R.; Quayle, W. B.; Queitsch-Maitland, M.; Quilty, D.; Raddum, S.; Radeka, V.; Radescu, V.; Radhakrishnan, S. K.; Radloff, P.; Rados, P.; Ragusa, F.; Rahal, G.; Rajagopalan, S.; Rammensee, M.; Rangel-Smith, C.; Rauscher, F.; Rave, S.; Ravenscroft, T.; Raymond, M.; Read, A. L.; Readioff, N. P.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Rehnisch, L.; Reisin, H.; Relich, M.; Rembser, C.; Ren, H.; Renaud, A.; Rescigno, M.; Resconi, S.; Rezanova, O. L.; Reznicek, P.; Rezvani, R.; Richter, R.; Richter, S.; Richter-Was, E.; Ricken, O.; Ridel, M.; Rieck, P.; Riegel, C. J.; Rieger, J.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Ristić, B.; Ritsch, E.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Roda, C.; Roe, S.; Røhne, O.; Rolli, S.; Romaniouk, A.; Romano, M.; Romano Saez, S. M.; Romero Adam, E.; Rompotis, N.; Ronzani, M.; Roos, L.; Ros, E.; Rosati, S.; Rosbach, K.; Rose, P.; Rosendahl, P. L.; Rosenthal, O.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rosten, R.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Rubinskiy, I.; Rud, V. I.; Rudolph, C.; Rudolph, M. S.; Rühr, F.; Ruiz-Martinez, A.; Rurikova, Z.; Rusakovich, N. A.; Ruschke, A.; Russell, H. L.; Rutherfoord, J. P.; Ruthmann, N.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryder, N. C.; Saavedra, A. F.; Sabato, G.; Sacerdoti, S.; Saddique, A.; Sadrozinski, H. F.-W.; Sadykov, R.; Safai Tehrani, F.; Saimpert, M.; Sakamoto, H.; Sakurai, Y.; Salamanna, G.; Salamon, A.; Saleem, M.; Salek, D.; Sales De Bruin, P. H.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sampsonidis, D.; Sanchez, A.; Sánchez, J.; Sanchez Martinez, V.; Sandaker, H.; Sandbach, R. L.; Sander, H. G.; Sanders, M. P.; Sandhoff, M.; Sandoval, C.; Sandstroem, R.; Sankey, D. P. C.; Sannino, M.; Sansoni, A.; Santoni, C.; Santonico, R.; Santos, H.; Santoyo Castillo, I.; Sapp, K.; Sapronov, A.; Saraiva, J. G.; Sarrazin, B.; Sasaki, O.; Sasaki, Y.; Sato, K.; Sauvage, G.; Sauvan, E.; Savage, G.; Savard, P.; Sawyer, C.; Sawyer, L.; Saxon, J.; Sbarra, C.; Sbrizzi, A.; Scanlon, T.; Scannicchio, D. A.; Scarcella, M.; Scarfone, V.; Schaarschmidt, J.; Schacht, P.; Schaefer, D.; Schaefer, R.; Schaeffer, J.; Schaepe, S.; Schaetzel, S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Schiavi, C.; Schillo, C.; Schioppa, M.; Schlenker, S.; Schmidt, E.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schmitt, S.; Schneider, B.; Schnellbach, Y. J.; Schnoor, U.; Schoeffel, L.; Schoening, A.; Schoenrock, B. D.; Schopf, E.; Schorlemmer, A. L. S.; Schott, M.; Schouten, D.; Schovancova, J.; Schramm, S.; Schreyer, M.; Schroeder, C.; Schuh, N.; Schultens, M. J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwanenberger, C.; Schwartzman, A.; Schwarz, T. A.; Schwegler, Ph.; Schweiger, H.; Schwemling, Ph.; Schwienhorst, R.; Schwindling, J.; Schwindt, T.; Schwoerer, M.; Sciacca, F. G.; Scifo, E.; Sciolla, G.; Scuri, F.; Scutti, F.; Searcy, J.; Sedov, G.; Sedykh, E.; Seema, P.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Sekhon, K.; Sekula, S. J.; Selbach, K. E.; Seliverstov, D. M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Serkin, L.; Serre, T.; Sessa, M.; Seuster, R.; Severini, H.; Sfiligoj, T.; Sforza, F.; Sfyrla, A.; Shabalina, E.; Shamim, M.; Shan, L. Y.; Shang, R.; Shank, J. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Shaw, S. M.; Shcherbakova, A.; Shehu, C. Y.; Sherwood, P.; Shi, L.; Shimizu, S.; Shimmin, C. O.; Shimojima, M.; Shiyakova, M.; Shmeleva, A.; Shoaleh Saadi, D.; Shochet, M. J.; Shojaii, S.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Shushkevich, S.; Sicho, P.; Sidiropoulou, O.; Sidorov, D.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silva, J.; Silver, Y.; Silverstein, S. B.; Simak, V.; Simard, O.; Simic, Lj.; Simion, S.; Simioni, E.; Simmons, B.; Simon, D.; Simoniello, R.; Sinervo, P.; Sinev, N. B.; Siragusa, G.; Sisakyan, A. N.; Sivoklokov, S. Yu.; Sjölin, J.; Sjursen, T. B.; Skinner, M. B.; Skottowe, H. P.; Skubic, P.; Slater, M.; Slavicek, T.; Slawinska, M.; Sliwa, K.; Smakhtin, V.; Smart, B. H.; Smestad, L.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, M. N. K.; Smith, R. W.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snidero, G.; Snyder, S.; Sobie, R.; Socher, F.; Soffer, A.; Soh, D. A.; Solans, C. A.; Solar, M.; Solc, J.; Soldatov, E. Yu.; Soldevila, U.; Solodkov, A. A.; Soloshenko, A.; Solovyanov, O. V.; Solovyev, V.; Sommer, P.; Song, H. Y.; Soni, N.; Sood, A.; Sopczak, A.; Sopko, B.; Sopko, V.; Sorin, V.; Sosa, D.; Sosebee, M.; Sotiropoulou, C. L.; Soualah, R.; Soueid, P.; Soukharev, A. M.; South, D.; Sowden, B. C.; Spagnolo, S.; Spalla, M.; Spanò, F.; Spearman, W. R.; Spettel, F.; Spighi, R.; Spigo, G.; Spiller, L. A.; Spousta, M.; Spreitzer, T.; St. Denis, R. D.; Staerz, S.; Stahlman, J.; Stamen, R.; Stamm, S.; Stanecka, E.; Stanescu, C.; Stanescu-Bellu, M.; Stanitzki, M. M.; Stapnes, S.; Starchenko, E. A.; Stark, J.; Staroba, P.; Starovoitov, P.; Staszewski, R.; Stavina, P.; Steinberg, P.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stern, S.; Stewart, G. A.; Stillings, J. A.; Stockton, M. C.; Stoebe, M.; Stoicea, G.; Stolte, P.; Stonjek, S.; Stradling, A. R.; Straessner, A.; Stramaglia, M. E.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, E.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Strubig, A.; Stucci, S. A.; Stugu, B.; Styles, N. A.; Su, D.; Su, J.; Subramaniam, R.; Succurro, A.; Sugaya, Y.; Suhr, C.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, S.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Susinno, G.; Sutton, M. R.; Suzuki, S.; Suzuki, Y.; Svatos, M.; Swedish, S.; Swiatlowski, M.; Sykora, I.; Sykora, T.; Ta, D.; Taccini, C.; Tackmann, K.; Taenzer, J.; Taffard, A.; Tafirout, R.; Taiblum, N.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A. A.; Tam, J. Y. C.; Tan, K. G.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tannenwald, B. B.; Tannoury, N.; Tapprogge, S.; Tarem, S.; Tarrade, F.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tashiro, T.; Tassi, E.; Tavares Delgado, A.; Tayalati, Y.; Taylor, F. E.; Taylor, G. N.; Taylor, W.; Teischinger, F. A.; Teixeira Dias Castanheira, M.; Teixeira-Dias, P.; Temming, K. K.; Ten Kate, H.; Teng, P. K.; Teoh, J. J.; Tepel, F.; Terada, S.; Terashi, K.; Terron, J.; Terzo, S.; Testa, M.; Teuscher, R. J.; Therhaag, J.; Theveneaux-Pelzer, T.; Thomas, J. P.; Thomas-Wilsker, J.; Thompson, E. N.; Thompson, P. D.; Thompson, R. J.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Thomson, M.; Thun, R. P.; Tibbetts, M. J.; Ticse Torres, R. E.; Tikhomirov, V. O.; Tikhonov, Yu. A.; Timoshenko, S.; Tiouchichine, E.; Tipton, P.; Tisserant, S.; Todorov, T.; Todorova-Nova, S.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tollefson, K.; Tolley, E.; Tomlinson, L.; Tomoto, M.; Tompkins, L.; Toms, K.; Torrence, E.; Torres, H.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Trischuk, W.; Trocmé, B.; Troncon, C.; Trottier-McDonald, M.; Trovatelli, M.; True, P.; Truong, L.; Trzebinski, M.; Trzupek, A.; Tsarouchas, C.; Tseng, J. C.-L.; Tsiareshka, P. V.; Tsionou, D.; Tsipolitis, G.; Tsirintanis, N.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsukerman, I. I.; Tsulaia, V.; Tsuno, S.; Tsybychev, D.; Tudorache, A.; Tudorache, V.; Tuna, A. N.; Tupputi, S. A.; Turchikhin, S.; Turecek, D.; Turra, R.; Turvey, A. J.; Tuts, P. M.; Tykhonov, A.; Tylmad, M.; Tyndel, M.; Ueda, I.; Ueno, R.; Ughetto, M.; Ugland, M.; Uhlenbrock, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Ungaro, F. C.; Unno, Y.; Unverdorben, C.; Urban, J.; Urquijo, P.; Urrejola, P.; Usai, G.; Usanova, A.; Vacavant, L.; Vacek, V.; Vachon, B.; Valderanis, C.; Valencic, N.; Valentinetti, S.; Valero, A.; Valery, L.; Valkar, S.; Valladolid Gallego, E.; Vallecorsa, S.; Valls Ferrer, J. A.; Van Den Wollenberg, W.; Van Der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; Van Der Leeuw, R.; van Eldik, N.; van Gemmeren, P.; Van Nieuwkoop, J.; van Vulpen, I.; van Woerden, M. C.; Vanadia, M.; Vandelli, W.; Vanguri, R.; Vaniachine, A.; Vannucci, F.; Vardanyan, G.; Vari, R.; Varnes, E. W.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vazeille, F.; Vazquez Schroeder, T.; Veatch, J.; Veloce, L. M.; Veloso, F.; Velz, T.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Venturini, A.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Viazlo, O.; Vichou, I.; Vickey, T.; Vickey Boeriu, O. E.; Viehhauser, G. H. A.; Viel, S.; Vigne, R.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinogradov, V. B.; Vivarelli, I.; Vives Vaque, F.; Vlachos, S.; Vladoiu, D.; Vlasak, M.; Vogel, M.; Vokac, P.; Volpi, G.; Volpi, M.; von der Schmitt, H.; von Radziewski, H.; von Toerne, E.; Vorobel, V.; Vorobev, K.; Vos, M.; Voss, R.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vuillermet, R.; Vukotic, I.; Vykydal, Z.; Wagner, P.; Wagner, W.; Wahlberg, H.; Wahrmund, S.; Wakabayashi, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wang, C.; Wang, F.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, K.; Wang, R.; Wang, S. M.; Wang, T.; Wang, X.; Wanotayaroj, C.; Warburton, A.; Ward, C. P.; Wardrope, D. R.; Warsinsky, M.; Washbrook, A.; Wasicki, C.; Watkins, P. M.; Watson, A. T.; Watson, I. J.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, B. M.; Webb, S.; Weber, M. S.; Weber, S. W.; Webster, J. S.; Weidberg, A. R.; Weinert, B.; Weingarten, J.; Weiser, C.; Weits, H.; Wells, P. S.; Wenaus, T.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Wessels, M.; Wetter, J.; Whalen, K.; Wharton, A. M.; White, A.; White, M. J.; White, R.; White, S.; Whiteson, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wildauer, A.; Wilkens, H. G.; Williams, H. H.; Williams, S.; Willis, C.; Willocq, S.; Wilson, A.; Wilson, J. A.; Wingerter-Seez, I.; Winklmeier, F.; Winter, B. T.; Wittgen, M.; Wittkowski, J.; Wollstadt, S. J.; Wolter, M. W.; Wolters, H.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wozniak, K. W.; Wu, M.; Wu, M.; Wu, S. L.; Wu, X.; Wu, Y.; Wyatt, T. R.; Wynne, B. M.; Xella, S.; Xu, D.; Xu, L.; Yabsley, B.; Yacoob, S.; Yakabe, R.; Yamada, M.; Yamaguchi, Y.; Yamamoto, A.; Yamamoto, S.; Yamanaka, T.; Yamauchi, K.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, H.; Yang, Y.; Yao, L.; Yao, W.-M.; Yasu, Y.; Yatsenko, E.; Yau Wong, K. H.; Ye, J.; Ye, S.; Yeletskikh, I.; Yen, A. L.; Yildirim, E.; Yorita, K.; Yoshida, R.; Yoshihara, K.; Young, C.; Young, C. J. S.; Youssef, S.; Yu, D. R.; Yu, J.; Yu, J. M.; Yu, J.; Yuan, L.; Yurkewicz, A.; Yusuff, I.; Zabinski, B.; Zaidan, R.; Zaitsev, A. M.; Zalieckas, J.; Zaman, A.; Zambito, S.; Zanello, L.; Zanzi, D.; Zeitnitz, C.; Zeman, M.; Zemla, A.; Zengel, K.; Zenin, O.; Ženiš, T.; Zerwas, D.; Zhang, D.; Zhang, F.; Zhang, J.; Zhang, L.; Zhang, R.; Zhang, X.; Zhang, Z.; Zhao, X.; Zhao, Y.; Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou, B.; Zhou, C.; Zhou, L.; Zhou, L.; Zhou, N.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhukov, K.; Zibell, A.; Zieminska, D.; Zimine, N. I.; Zimmermann, C.; Zimmermann, S.; Zinonos, Z.; Zinser, M.; Ziolkowski, M.; Živković, L.; Zobernig, G.; Zoccoli, A.; zur Nedden, M.; Zurzolo, G.; Zwalinski, L.

    2016-01-01

    Combined analyses of the Higgs boson production and decay rates as well as its coupling strengths to vector bosons and fermions are presented. The combinations include the results of the analyses of the H→ γ γ , ZZ^*, WW^*, Zγ , bbar{b}, τ τ and μ μ decay modes, and the constraints on the associated production with a pair of top quarks and on the off-shell coupling strengths of the Higgs boson. The results are based on the LHC proton-proton collision datasets, with integrated luminosities of up to 4.7 {fb}^{-1} at √{s}=7 TeV and 20.3 {fb}^{-1} at √{s}=8 TeV, recorded by the ATLAS detector in 2011 and 2012. Combining all production modes and decay channels, the measured signal yield, normalised to the Standard Model expectation, is 1.18^{+0.15}_{-0.14}. The observed Higgs boson production and decay rates are interpreted in a leading-order coupling framework, exploring a wide range of benchmark coupling models both with and without assumptions on the Higgs boson width and on the Standard Model particle content in loop processes. The data are found to be compatible with the Standard Model expectations for a Higgs boson at a mass of 125.36 GeV for all models considered.

  8. Invisible Higgs boson decays in spontaneously broken R parity

    SciTech Connect

    Hirsch, M.; Valle, J.W.F.; Villanova del Moral, A.

    2004-10-01

    The Higgs boson may decay mainly to an invisible mode characterized by missing energy, instead of the standard model channels. This is a generic feature of many models where neutrino masses arise from the spontaneous breaking of ungauged lepton number at relatively low scales, such as spontaneously broken R-parity models. Taking these models as framework, we reanalyze this striking suggestion in view of the recent data on neutrino oscillations that indicate nonzero neutrino masses. We show that, despite the smallness of neutrino masses, the Higgs boson can decay mainly to the invisible Goldstone boson associated to the spontaneous breaking of lepton number. This requires a gauge singlet superfield coupling to the electroweak doublet Higgses, as in the next to minimal supersymmetric standard model scenario for solving the {mu} problem. The search for invisibly decaying Higgs bosons should be taken into account in the planning of future accelerators, such as the Large Hadron Collider and the Next Linear Collider.

  9. Constraints on the spin-parity and anomalous H V V couplings of the Higgs boson in proton collisions at 7 and 8 TeV

    NASA Astrophysics Data System (ADS)

    Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Bergauer, T.; Dragicevic, M.; Erö, J.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Knünz, V.; Krammer, M.; Krätschmer, I.; Liko, D.; Mikulec, I.; Rabady, D.; Rahbaran, B.; Rohringer, H.; Schöfbeck, R.; Strauss, J.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Alderweireldt, S.; Bansal, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Knutsson, A.; Lauwers, J.; Luyckx, S.; Ochesanu, S.; Rougny, R.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Blekman, F.; Blyweert, S.; D'Hondt, J.; Daci, N.; Heracleous, N.; Keaveney, J.; Lowette, S.; Maes, M.; Olbrechts, A.; Python, Q.; Strom, D.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.; Caillol, C.; Clerbaux, B.; De Lentdecker, G.; Dobur, D.; Favart, L.; Gay, A. P. R.; Grebenyuk, A.; Léonard, A.; Mohammadi, A.; Perniè, L.; Randle-conde, A.; Reis, T.; Seva, T.; Thomas, L.; Vander Velde, C.; Vanlaer, P.; Wang, J.; Zenoni, F.; Adler, V.; Beernaert, K.; Benucci, L.; Cimmino, A.; Costantini, S.; Crucy, S.; Dildick, S.; Fagot, A.; Garcia, G.; Mccartin, J.; Ocampo Rios, A. A.; Ryckbosch, D.; Salva Diblen, S.; Sigamani, M.; Strobbe, N.; Thyssen, F.; Tytgat, M.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Beluffi, C.; Bruno, G.; Castello, R.; Caudron, A.; Ceard, L.; Da Silveira, G. G.; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Jafari, A.; Jez, P.; Komm, M.; Lemaitre, V.; Nuttens, C.; Perrini, L.; Pin, A.; Piotrzkowski, K.; Popov, A.; Quertenmont, L.; Selvaggi, M.; Vidal Marono, M.; Vizan Garcia, J. M.; Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.; Aldá Júnior, W. L.; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Dos Reis Martins, T.; Molina, J.; Mora Herrera, C.; Pol, M. E.; Rebello Teles, P.; Carvalho, W.; Chinellato, J.; Custódio, A.; Da Costa, E. M.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Malbouisson, H.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santaolalla, J.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.; Bernardes, C. A.; Dogra, S.; Tomei, T. R. Fernandez Perez; Gregores, E. M.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.; Aleksandrov, A.; Genchev, V.; Hadjiiska, R.; Iaydjiev, P.; Marinov, A.; Piperov, S.; Rodozov, M.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Cheng, T.; Du, R.; Jiang, C. H.; Plestina, R.; Romeo, F.; Tao, J.; Wang, Z.; Asawatangtrakuldee, C.; Ban, Y.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Zou, W.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; Gomez Moreno, B.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Polic, D.; Puljak, I.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Kadija, K.; Luetic, J.; Mekterovic, D.; Sudic, L.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Bodlak, M.; Finger, M.; Finger, M.; Assran, Y.; Ellithi Kamel, A.; Mahmoud, M. A.; Radi, A.; Kadastik, M.; Murumaa, M.; Raidal, M.; Tiko, A.; Eerola, P.; Fedi, G.; Voutilainen, M.; Härkönen, J.; Karimäki, V.; Kinnunen, R.; Kortelainen, M. J.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Baffioni, S.; Beaudette, F.; Busson, P.; Charlot, C.; Dahms, T.; Dalchenko, M.; Dobrzynski, L.; Filipovic, N.; Florent, A.; Granier de Cassagnac, R.; Mastrolorenzo, L.; Miné, P.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Regnard, S.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Veelken, C.; Yilmaz, Y.; Zabi, A.; Agram, J.-L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J.-M.; Chabert, E. C.; Collard, C.; Conte, E.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Goetzmann, C.; Le Bihan, A.-C.; Skovpen, K.; Van Hove, P.; Gadrat, S.; Beauceron, S.; Beaupere, N.; Bernet, C.; Boudoul, G.; Bouvier, E.; Brochet, S.; Carrillo Montoya, C. A.; Chasserat, J.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Kurca, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Ruiz Alvarez, J. D.; Sabes, D.; Sgandurra, L.; Sordini, V.; Vander Donckt, M.; Verdier, P.; Viret, S.; Xiao, H.; Tsamalaidze, Z.; Autermann, C.; Beranek, S.; Bontenackels, M.; Edelhoff, M.; Feld, L.; Heister, A.; Hindrichs, O.; Klein, K.; Ostapchuk, A.; Preuten, M.; Raupach, F.; Sammet, J.; Schael, S.; Schulte, J. F.; Weber, H.; Wittmer, B.; Zhukov, V.; Ata, M.; Brodski, M.; Dietz-Laursonn, E.; Duchardt, D.; Erdmann, M.; Fischer, R.; Güth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Klingebiel, D.; Knutzen, S.; Kreuzer, P.; Merschmeyer, M.; Meyer, A.; Millet, P.; Olschewski, M.; Padeken, K.; Papacz, P.; Reithler, H.; Schmitz, S. A.; Sonnenschein, L.; Teyssier, D.; Thüer, S.; Weber, M.; Cherepanov, V.; Erdogan, Y.; Flügge, G.; Geenen, H.; Geisler, M.; Haj Ahmad, W.; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Künsken, A.; Lingemann, J.; Nowack, A.; Nugent, I. M.; Pooth, O.; Stahl, A.; Aldaya Martin, M.; Asin, I.; Bartosik, N.; Behr, J.; Behrens, U.; Bell, A. J.; Bethani, A.; Borras, K.; Burgmeier, A.; Cakir, A.; Calligaris, L.; Campbell, A.; Choudhury, S.; Costanza, F.; Diez Pardos, C.; Dolinska, G.; Dooling, S.; Dorland, T.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Flucke, G.; Garay Garcia, J.; Geiser, A.; Gunnellini, P.; Hauk, J.; Hempel, M.; Jung, H.; Kalogeropoulos, A.; Kasemann, M.; Katsas, P.; Kieseler, J.; Kleinwort, C.; Korol, I.; Krücker, D.; Lange, W.; Leonard, J.; Lipka, K.; Lobanov, A.; Lohmann, W.; Lutz, B.; Mankel, R.; Marfin, I.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Nayak, A.; Ntomari, E.; Perrey, H.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Ribeiro Cipriano, P. M.; Roland, B.; Ron, E.; Sahin, M. Ã.-.; Salfeld-Nebgen, J.; Saxena, P.; Schoerner-Sadenius, T.; Schröder, M.; Seitz, C.; Spannagel, S.; Vargas Trevino, A. D. R.; Walsh, R.; Wissing, C.; Blobel, V.; Centis Vignali, M.; Draeger, A. R.; Erfle, J.; Garutti, E.; Goebel, K.; Görner, M.; Haller, J.; Hoffmann, M.; Höing, R. S.; Junkes, A.; Kirschenmann, H.; Klanner, R.; Kogler, R.; Lange, J.; Lapsien, T.; Lenz, T.; Marchesini, I.; Ott, J.; Peiffer, T.; Perieanu, A.; Pietsch, N.; Poehlsen, J.; Poehlsen, T.; Rathjens, D.; Sander, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Seidel, M.; Sola, V.; Stadie, H.; Steinbrück, G.; Troendle, D.; Usai, E.; Vanelderen, L.; Vanhoefer, A.; Barth, C.; Baus, C.; Berger, J.; Böser, C.; Butz, E.; Chwalek, T.; De Boer, W.; Descroix, A.; Dierlamm, A.; Feindt, M.; Frensch, F.; Giffels, M.; Gilbert, A.; Hartmann, F.; Hauth, T.; Husemann, U.; Katkov, I.; Kornmayer, A.; Kuznetsova, E.; Lobelle Pardo, P.; Mozer, M. U.; Müller, T.; Müller, Th.; Nürnberg, A.; Quast, G.; Rabbertz, K.; Röcker, S.; Simonis, H. J.; Stober, F. M.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weiler, T.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Markou, A.; Markou, C.; Psallidas, A.; Topsis-Giotis, I.; Agapitos, A.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Stiliaris, E.; Aslanoglou, X.; Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Strologas, J.; Bencze, G.; Hajdu, C.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.; Beni, N.; Czellar, S.; Karancsi, J.; Molnar, J.; Palinkas, J.; Szillasi, Z.; Makovec, A.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Swain, S. K.; Beri, S. B.; Bhatnagar, V.; Gupta, R.; Bhawandeep, U.; Kalsi, A. K.; Kaur, M.; Kumar, R.; Mittal, M.; Nishu, N.; Singh, J. B.; Kumar, Ashok; Kumar, Arun; Ahuja, S.; Bhardwaj, A.; Choudhary, B. C.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, V.; Banerjee, S.; Bhattacharya, S.; Chatterjee, K.; Dutta, S.; Gomber, B.; Jain, Sa.; Jain, Sh.; Khurana, R.; Modak, A.; Mukherjee, S.; Roy, D.; Sarkar, S.; Sharan, M.; Abdulsalam, A.; Dutta, D.; Kumar, V.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Banerjee, S.; Bhowmik, S.; Chatterjee, R. M.; Dewanjee, R. K.; Dugad, S.; Ganguly, S.; Ghosh, S.; Guchait, M.; Gurtu, A.; Kole, G.; Kumar, S.; Maity, M.; Majumder, G.; Mazumdar, K.; Mohanty, G. B.; Parida, B.; Sudhakar, K.; Wickramage, N.; Bakhshiansohi, H.; Behnamian, H.; Etesami, S. M.; Fahim, A.; Goldouzian, R.; Khakzad, M.; Mohammadi Najafabadi, M.; Naseri, M.; Paktinat Mehdiabadi, S.; Rezaei Hosseinabadi, F.; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Calabria, C.; Chhibra, S. S.; Colaleo, A.; Creanza, D.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Selvaggi, G.; Sharma, A.; Silvestris, L.; Venditti, R.; Verwilligen, P.; Abbiendi, G.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Primavera, F.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.; Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Gallo, E.; Gonzi, S.; Gori, V.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Ferretti, R.; Ferro, F.; Lo Vetere, M.; Robutti, E.; Tosi, S.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Gerosa, R.; Ghezzi, A.; Govoni, P.; Lucchini, M. T.; Malvezzi, S.; Manzoni, R. A.; Martelli, A.; Marzocchi, B.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; Di Guida, S.; Fabozzi, F.; Iorio, A. O. M.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.; Azzi, P.; Bacchetta, N.; Bisello, D.; Branca, A.; Carlin, R.; Checchia, P.; Dall'Osso, M.; Dorigo, T.; Dosselli, U.; Galanti, M.; Gasparini, F.; Gasparini, U.; Gozzelino, A.; Kanishchev, K.; Lacaprara, S.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Zotto, P.; Zucchetta, A.; Zumerle, G.; Gabusi, M.; Ratti, S. P.; Re, V.; Riccardi, C.; Salvini, P.; Vitulo, P.; Biasini, M.; Bilei, G. M.; Ciangottini, D.; Fanò, L.; Lariccia, P.; Mantovani, G.; Menichelli, M.; Saha, A.; Santocchia, A.; Spiezia, A.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Broccolo, G.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fiori, F.; Foà, L.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Moon, C. S.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Serban, A. T.; Spagnolo, P.; Squillacioti, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Vernieri, C.; Barone, L.; Cavallari, F.; D'imperio, G.; Del Re, D.; Diemoz, M.; Jorda, C.; Longo, E.; Margaroli, F.; Meridiani, P.; Micheli, F.; Organtini, G.; Paramatti, R.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Soffi, L.; Traczyk, P.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bellan, R.; Biino, C.; Cartiglia, N.; Casasso, S.; Costa, M.; Degano, A.; Demaria, N.; Finco, L.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Musich, M.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Potenza, A.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Tamponi, U.; Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; La Licata, C.; Marone, M.; Schizzi, A.; Umer, T.; Zanetti, A.; Chang, S.; Kropivnitskaya, A.; Nam, S. K.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Kong, D. J.; Lee, S.; Oh, Y. D.; Park, H.; Sakharov, A.; Son, D. C.; Kim, T. J.; Ryu, M. S.; Kim, J. Y.; Moon, D. H.; Song, S.; Choi, S.; Gyun, D.; Hong, B.; Jo, M.; Kim, H.; Kim, Y.; Lee, B.; Lee, K. S.; Park, S. K.; Roh, Y.; Yoo, H. D.; Choi, M.; Kim, J. H.; Park, I. C.; Ryu, G.; Choi, Y.; Choi, Y. K.; Goh, J.; Kim, D.; Kwon, E.; Lee, J.; Yu, I.; Juodagalvis, A.; Komaragiri, J. R.; Md Ali, M. A. B.; Casimiro Linares, E.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-de La Cruz, I.; Hernandez-Almada, A.; Lopez-Fernandez, R.; Sanchez-Hernandez, A.; Carrillo Moreno, S.; Vazquez Valencia, F.; Pedraza, I.; Salazar Ibarguen, H. A.; Morelos Pineda, A.; Krofcheck, D.; Butler, P. H.; Reucroft, S.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Khan, W. A.; Khurshid, T.; Shoaib, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Zalewski, P.; Brona, G.; Bunkowski, K.; Cwiok, M.; Dominik, W.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Bargassa, P.; Beirão Da Cruz E Silva, C.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Lloret Iglesias, L.; Nguyen, F.; Rodrigues Antunes, J.; Seixas, J.; Varela, J.; Vischia, P.; Afanasiev, S.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Konoplyanikov, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Skatchkov, N.; Smirnov, V.; Zarubin, A.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Vorobyev, An.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Semenov, S.; Spiridonov, A.; Stolin, V.; Vlasov, E.; Zhokin, A.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Vinogradov, A.; Belyaev, A.; Boos, E.; Bunichev, V.; Dubinin, M.; Dudko, L.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Obraztsov, S.; Perfilov, M.; Petrushanko, S.; Savrin, V.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Ekmedzic, M.; Milosevic, J.; Rekovic, V.; Alcaraz Maestre, J.; Battilana, C.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Domínguez Vázquez, D.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Navarro De Martino, E.; Pérez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.; Albajar, C.; de Trocóniz, J. F.; Missiroli, M.; Moran, D.; Brun, H.; Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Brochero Cifuentes, J. A.; Cabrillo, I. J.; Calderon, A.; Duarte Campderros, J.; Fernandez, M.; Gomez, G.; Graziano, A.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Munoz Sanchez, F. J.; Piedra Gomez, J.; Rodrigo, T.; Rodríguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Benaglia, A.; Bendavid, J.; Benhabib, L.; Benitez, J. F.; Bloch, P.; Bocci, A.; Bonato, A.; Bondu, O.; Botta, C.; Breuker, H.; Camporesi, T.; Cerminara, G.; Colafranceschi, S.; D'Alfonso, M.; d'Enterria, D.; Dabrowski, A.; David, A.; De Guio, F.; De Roeck, A.; De Visscher, S.; Di Marco, E.; Dobson, M.; Dordevic, M.; Dorney, B.; Dupont-Sagorin, N.; Elliott-Peisert, A.; Franzoni, G.; Funk, W.; Gigi, D.; Gill, K.; Giordano, D.; Girone, M.; Glege, F.; Guida, R.; Gundacker, S.; Guthoff, M.; Hammer, J.; Hansen, M.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Kousouris, K.; Krajczar, K.; Lecoq, P.; Lourenço, C.; Magini, N.; Malgeri, L.; Mannelli, M.; Marrouche, J.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moortgat, F.; Morovic, S.; Mulders, M.; Orsini, L.; Pape, L.; Perez, E.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pimiä, M.; Piparo, D.; Plagge, M.; Racz, A.; Rolandi, G.; Rovere, M.; Sakulin, H.; Schäfer, C.; Schwick, C.; Sharma, A.; Siegrist, P.; Silva, P.; Simon, M.; Sphicas, P.; Spiga, D.; Steggemann, J.; Stieger, B.; Stoye, M.; Takahashi, Y.; Treille, D.; Tsirou, A.; Veres, G. I.; Wardle, N.; Wöhri, H. K.; Wollny, H.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Renker, D.; Rohe, T.; Bachmair, F.; Bäni, L.; Bianchini, L.; Buchmann, M. A.; Casal, B.; Chanon, N.; Dissertori, G.; Dittmar, M.; Donegà, M.; Dünser, M.; Eller, P.; Grab, C.; Hits, D.; Hoss, J.; Lustermann, W.; Mangano, B.; Marini, A. C.; Marionneau, M.; Martinez Ruiz del Arbol, P.; Masciovecchio, M.; Meister, D.; Mohr, N.; Musella, P.; Nägeli, C.; Nessi-Tedaldi, F.; Pandolfi, F.; Pauss, F.; Perrozzi, L.; Peruzzi, M.; Quittnat, M.; Rebane, L.; Rossini, M.; Starodumov, A.; Takahashi, M.; Theofilatos, K.; Wallny, R.; Weber, H. A.; Amsler, C.; Canelli, M. F.; Chiochia, V.; De Cosa, A.; Hinzmann, A.; Hreus, T.; Kilminster, B.; Lange, C.; Millan Mejias, B.; Ngadiuba, J.; Pinna, D.; Robmann, P.; Ronga, F. J.; Taroni, S.; Verzetti, M.; Yang, Y.; Cardaci, M.; Chen, K. H.; Ferro, C.; Kuo, C. M.; Lin, W.; Lu, Y. J.; Volpe, R.; Yu, S. S.; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Chen, P. H.; Dietz, C.; Grundler, U.; Hou, W.-S.; Kao, K. Y.; Liu, Y. F.; Lu, R.-S.; Petrakou, E.; Tzeng, Y. M.; Wilken, R.; Asavapibhop, B.; Singh, G.; Srimanobhas, N.; Suwonjandee, N.; Adiguzel, A.; Bakirci, M. N.; Cerci, S.; Dozen, C.; Dumanoglu, I.; Eskut, E.; Girgis, S.; Gokbulut, G.; Guler, Y.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Kayis Topaksu, A.; Onengut, G.; Ozdemir, K.; Ozturk, S.; Polatoz, A.; Sunar Cerci, D.; Tali, B.; Topakli, H.; Vergili, M.; Zorbilmez, C.; Akin, I. V.; Bilin, B.; Bilmis, S.; Gamsizkan, H.; Isildak, B.; Karapinar, G.; Ocalan, K.; Sekmen, S.; Surat, U. E.; Yalvac, M.; Zeyrek, M.; Albayrak, E. A.; Gülmez, E.; Kaya, M.; Kaya, O.; Yetkin, T.; Cankocak, K.; Vardarlı, F. I.; Levchuk, L.; Sorokin, P.; Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Meng, Z.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Sakuma, T.; Seif El Nasr-storey, S.; Senkin, S.; Smith, V. J.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Williams, T.; Womersley, W. J.; Worm, S. D.; Baber, M.; Bainbridge, R.; Buchmuller, O.; Burton, D.; Colling, D.; Cripps, N.; Dauncey, P.; Davies, G.; Della Negra, M.; Dunne, P.; Ferguson, W.; Fulcher, J.; Futyan, D.; Hall, G.; Iles, G.; Jarvis, M.; Karapostoli, G.; Kenzie, M.; Lane, R.; Lucas, R.; Lyons, L.; Magnan, A.-M.; Malik, S.; Mathias, B.; Nash, J.; Nikitenko, A.; Pela, J.; Pesaresi, M.; Petridis, K.; Raymond, D. M.; Rogerson, S.; Rose, A.; Seez, C.; Sharp, P.; Tapper, A.; Vazquez Acosta, M.; Virdee, T.; Zenz, S. C.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leggat, D.; Leslie, D.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Dittmann, J.; Hatakeyama, K.; Kasmi, A.; Liu, H.; Scarborough, T.; Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.; Avetisyan, A.; Bose, T.; Fantasia, C.; Lawson, P.; Richardson, C.; Rohlf, J.; St. John, J.; Sulak, L.; Alimena, J.; Berry, E.; Bhattacharya, S.; Christopher, G.; Cutts, D.; Demiragli, Z.; Dhingra, N.; Ferapontov, A.; Garabedian, A.; Heintz, U.; Kukartsev, G.; Laird, E.; Landsberg, G.; Luk, M.; Narain, M.; Segala, M.; Sinthuprasith, T.; Speer, T.; Swanson, J.; Breedon, R.; Breto, G.; Calderon De La Barca Sanchez, M.; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Gardner, M.; Ko, W.; Lander, R.; Mulhearn, M.; Pellett, D.; Pilot, J.; Ricci-Tam, F.; Shalhout, S.; Smith, J.; Squires, M.; Stolp, D.; Tripathi, M.; Wilbur, S.; Yohay, R.; Cousins, R.; Everaerts, P.; Farrell, C.; Hauser, J.; Ignatenko, M.; Rakness, G.; Takasugi, E.; Valuev, V.; Weber, M.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Hanson, G.; Heilman, J.; Ivova Rikova, M.; Jandir, P.; Kennedy, E.; Lacroix, F.; Long, O. R.; Luthra, A.; Malberti, M.; Olmedo Negrete, M.; Shrinivas, A.; Sumowidagdo, S.; Wimpenny, S.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; D'Agnolo, R. T.; Holzner, A.; Kelley, R.; Klein, D.; Letts, J.; Macneill, I.; Olivito, D.; Padhi, S.; Palmer, C.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Tadel, M.; Tu, Y.; Vartak, A.; Welke, C.; Würthwein, F.; Yagil, A.; Barge, D.; Bradmiller-Feld, J.; Campagnari, C.; Danielson, T.; Dishaw, A.; Dutta, V.; Flowers, K.; Franco Sevilla, M.; Geffert, P.; George, C.; Golf, F.; Gouskos, L.; Incandela, J.; Justus, C.; Mccoll, N.; Richman, J.; Stuart, D.; To, W.; West, C.; Yoo, J.; Apresyan, A.; Bornheim, A.; Bunn, J.; Chen, Y.; Duarte, J.; Mott, A.; Newman, H. B.; Pena, C.; Pierini, M.; Spiropulu, M.; Vlimant, J. R.; Wilkinson, R.; Xie, S.; Zhu, R. Y.; Azzolini, V.; Calamba, A.; Carlson, B.; Ferguson, T.; Iiyama, Y.; Paulini, M.; Russ, J.; Vogel, H.; Vorobiev, I.; Cumalat, J. P.; Ford, W. T.; Gaz, A.; Krohn, M.; Luiggi Lopez, E.; Nauenberg, U.; Smith, J. G.; Stenson, K.; Wagner, S. R.; Alexander, J.; Chatterjee, A.; Chaves, J.; Chu, J.; Dittmer, S.; Eggert, N.; Mirman, N.; Nicolas Kaufman, G.; Patterson, J. R.; Ryd, A.; Salvati, E.; Skinnari, L.; Sun, W.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Weng, Y.; Winstrom, L.; Wittich, P.; Winn, D.; Abdullin, S.; Albrow, M.; Anderson, J.; Apollinari, G.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gao, Y.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Hanlon, J.; Hare, D.; Harris, R. M.; Hirschauer, J.; Hooberman, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Klima, B.; Kreis, B.; Kwan, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, T.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Martinez Outschoorn, V. I.; Maruyama, S.; Mason, D.; McBride, P.; Merkel, P.; Mishra, K.; Mrenna, S.; Nahn, S.; Newman-Holmes, C.; O'Dell, V.; Prokofyev, O.; Sexton-Kennedy, E.; Sharma, S.; Soha, A.; Spalding, W. J.; Spiegel, L.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vega Morales, R.; Vidal, R.; Whitbeck, A.; Whitmore, J.; Yang, F.; Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Carver, M.; Curry, D.; Das, S.; De Gruttola, M.; Di Giovanni, G. P.; Field, R. D.; Fisher, M.; Furic, I. K.; Gainer, J.; Hugon, J.; Konigsberg, J.; Korytov, A.; Kypreos, T.; Low, J. F.; Matchev, K.; Mei, H.; Milenovic, P.; Mitselmakher, G.; Muniz, L.; Rinkevicius, A.; Shchutska, L.; Snowball, M.; Sperka, D.; Yelton, J.; Zakaria, M.; Hewamanage, S.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Adams, T.; Askew, A.; Bochenek, J.; Diamond, B.; Haas, J.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Prosper, H.; Veeraraghavan, V.; Weinberg, M.; Baarmand, M. M.; Hohlmann, M.; Kalakhety, H.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Bucinskaite, I.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Kurt, P.; O'Brien, C.; Sandoval Gonzalez, I. D.; Silkworth, C.; Turner, P.; Varelas, N.; Bilki, B.; Clarida, W.; Dilsiz, K.; Haytmyradov, M.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Rahmat, R.; Sen, S.; Tan, P.; Tiras, E.; Wetzel, J.; Yi, K.; Anderson, I.; Barnett, B. A.; Blumenfeld, B.; Bolognesi, S.; Fehling, D.; Gritsan, A. V.; Maksimovic, P.; Martin, C.; Roskes, J.; Sarica, U.; Swartz, M.; Xiao, M.; You, C.; Baringer, P.; Bean, A.; Benelli, G.; Bruner, C.; Gray, J.; Kenny, R. P.; Majumder, D.; Malek, M.; Murray, M.; Noonan, D.; Sanders, S.; Sekaric, J.; Stringer, R.; Wang, Q.; Wood, J. S.; Chakaberia, I.; Ivanov, A.; Kaadze, K.; Khalil, S.; Makouski, M.; Maravin, Y.; Saini, L. K.; Skhirtladze, N.; Svintradze, I.; Gronberg, J.; Lange, D.; Rebassoo, F.; Wright, D.; Baden, A.; Belloni, A.; Calvert, B.; Eno, S. C.; Gomez, J. A.; Hadley, N. J.; Kellogg, R. G.; Kolberg, T.; Lu, Y.; Mignerey, A. C.; Pedro, K.; Skuja, A.; Tonjes, M. B.; Tonwar, S. C.; Apyan, A.; Barbieri, R.; Busza, W.; Cali, I. A.; Chan, M.; Di Matteo, L.; Gomez Ceballos, G.; Goncharov, M.; Gulhan, D.; Klute, M.; Lai, Y. S.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Stephans, G. S. F.; Sumorok, K.; Velicanu, D.; Veverka, J.; Wyslouch, B.; Yang, M.; Zanetti, M.; Zhukova, V.; Dahmes, B.; Gude, A.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Mans, J.; Nourbakhsh, S.; Pastika, N.; Rusack, R.; Singovsky, A.; Tambe, N.; Turkewitz, J.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Gonzalez Suarez, R.; Keller, J.; Knowlton, D.; Kravchenko, I.; Lazo-Flores, J.; Meier, F.; Ratnikov, F.; Snow, G. R.; Zvada, M.; Dolen, J.; Godshalk, A.; Iashvili, I.; Kharchilava, A.; Kumar, A.; Rappoccio, S.; Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; Trocino, D.; Wang, R.-J.; Wood, D.; Zhang, J.; Hahn, K. A.; Kubik, A.; Mucia, N.; Odell, N.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Sung, K.; Velasco, M.; Won, S.; Brinkerhoff, A.; Chan, K. M.; Drozdetskiy, A.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Lynch, S.; Marinelli, N.; Musienko, Y.; Pearson, T.; Planer, M.; Ruchti, R.; Smith, G.; Valls, N.; Wayne, M.; Wolf, M.; Woodard, A.; Antonelli, L.; Brinson, J.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Hart, A.; Hill, C.; Hughes, R.; Kotov, K.; Ling, T. Y.; Luo, W.; Puigh, D.; Rodenburg, M.; Winer, B. L.; Wolfe, H.; Wulsin, H. W.; Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Koay, S. A.; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Piroué, P.; Quan, X.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zuranski, A.; Brownson, E.; Malik, S.; Mendez, H.; Ramirez Vargas, J. E.; Barnes, V. E.; Benedetti, D.; Bortoletto, D.; De Mattia, M.; Gutay, L.; Hu, Z.; Jha, M. K.; Jones, M.; Jung, K.; Kress, M.; Leonardo, N.; Miller, D. H.; Neumeister, N.; Radburn-Smith, B. C.; Shi, X.; Shipsey, I.; Silvers, D.; Svyatkovskiy, A.; Wang, F.; Xie, W.; Xu, L.; Zablocki, J.; Parashar, N.; Stupak, J.; Adair, A.; Akgun, B.; Ecklund, K. M.; Geurts, F. J. M.; Li, W.; Michlin, B.; Padley, B. P.; Redjimi, R.; Roberts, J.; Zabel, J.; Betchart, B.; Bodek, A.; Covarelli, R.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Ferbel, T.; Garcia-Bellido, A.; Goldenzweig, P.; Han, J.; Harel, A.; Khukhunaishvili, A.; Korjenevski, S.; Petrillo, G.; Vishnevskiy, D.; Ciesielski, R.; Demortier, L.; Goulianos, K.; Mesropian, C.; Arora, S.; Barker, A.; Chou, J. P.; Contreras-Campana, C.; Contreras-Campana, E.; Duggan, D.; Ferencek, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Kaplan, S.; Lath, A.; Panwalkar, S.; Park, M.; Patel, R.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Rose, K.; Spanier, S.; York, A.; Bouhali, O.; Castaneda Hernandez, A.; Eusebi, R.; Flanagan, W.; Gilmore, J.; Kamon, T.; Khotilovich, V.; Krutelyov, V.; Montalvo, R.; Osipenkov, I.; Pakhotin, Y.; Perloff, A.; Roe, J.; Rose, A.; Safonov, A.; Suarez, I.; Tatarinov, A.; Ulmer, K. A.; Akchurin, N.; Cowden, C.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Kovitanggoon, K.; Kunori, S.; Lee, S. W.; Libeiro, T.; Volobouev, I.; Appelt, E.; Delannoy, A. G.; Greene, S.; Gurrola, A.; Johns, W.; Maguire, C.; Mao, Y.; Melo, A.; Sharma, M.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.; Arenton, M. W.; Boutle, S.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Li, H.; Lin, C.; Neu, C.; Wood, J.; Clarke, C.; Harr, R.; Karchin, P. E.; Kottachchi Kankanamge Don, C.; Lamichhane, P.; Sturdy, J.; Belknap, D. A.; Carlsmith, D.; Cepeda, M.; Dasu, S.; Dodd, L.; Duric, S.; Friis, E.; Hall-Wilton, R.; Herndon, M.; Hervé, A.; Klabbers, P.; Lanaro, A.; Lazaridis, C.; Levine, A.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Perry, T.; Pierro, G. A.; Polese, G.; Ross, I.; Sarangi, T.; Savin, A.; Smith, W. H.; Taylor, D.; Vuosalo, C.; Woods, N.; CMS Collaboration

    2015-07-01

    The study of the spin-parity and tensor structure of the interactions of the recently discovered Higgs boson is performed using the H →Z Z ,Z γ*,γ*γ*→4 ℓ , H →W W →ℓν ℓν , and H →γ γ decay modes. The full data set recorded by the CMS experiment during the LHC run 1 is used, corresponding to an integrated luminosity of up to 5.1 fb-1 at a center-of-mass energy of 7 TeV and up to 19.7 fb-1 at 8 TeV. A wide range of spin-two models is excluded at a 99% confidence level or higher, or at a 99.87% confidence level for the minimal gravitylike couplings, regardless of whether assumptions are made on the production mechanism. Any mixed-parity spin-one state is excluded in the Z Z and W W modes at a greater than 99.999% confidence level. Under the hypothesis that the resonance is a spin-zero boson, the tensor structure of the interactions of the Higgs boson with two vector bosons Z Z , Z γ , γ γ , and W W is investigated and limits on eleven anomalous contributions are set. Tighter constraints on anomalous H V V interactions are obtained by combining the H Z Z and H W W measurements. All observations are consistent with the expectations for the standard model Higgs boson with the quantum numbers JPC=0++ .

  10. Combined Analysis of CP Properties of Higgs Boson in Effective Higgs Lagrangian

    NASA Astrophysics Data System (ADS)

    Li, Rong; Zhang, Ying

    2016-01-01

    CP violation effects of the Higgs stem from not only the CP mixing state but also the CP-violation couplings to electroweak bosons. The two CPV sources are combinedly studied based on an effective Higgs Lagrangian. The constraints from unitarity limits for WW and ZZ scatterings are investigated. We classify free parameters into five cases to analyze CP properties of the Boson. The allowed ranges are shown from fitting results to the signal strengths of the Higgs measured by ATLAS and CMS. Supported by the National Natural Science Foundation of China under Grant No. 11105152

  11. The future of the Higgs boson

    SciTech Connect

    Lykken, Joseph; Spiropulu, Maria

    2013-12-15

    Experimentalists and theorists are still celebrating the Nobel-worthy discovery of the Higgs boson that was announced in July 2012 at CERN’s Large Hadron Collider. Now they are working on the profound implications of that discovery.

  12. Higgs boson decays in the littlest Higgs model

    SciTech Connect

    Gonzalez-Sprinberg, G.A.; Martinez, R.; Rodriguez, J.-Alexis

    2005-02-01

    We calculate the two body Higgs boson decays in the framework of the littlest Higgs model. The decay H{yields}{gamma}Z is computed at one-loop-level and, using previous results, we evaluate the branching fractions in the framework of the littlest Higgs model. A wide range of the space parameter of the model is considered and possible deviations from the standard model are explored.

  13. Standard electroweak interactions and Higgs bosons

    SciTech Connect

    Cox, B.; Gilman, F.J.

    1984-09-01

    In the standard model, only one basic component remains to be found: the Higgs boson. The specifics of Higgs boson production and detection, with decay to t anti t and a particular t quark mass range in mind, have not been examined in detail. As such, the working group on Standard Electroweak Interactions and Higgs Bosons at this meeting decided to concentrate on Higgs boson production and detection at SSC energies in the particular case where the Higgs mass is in the range so as to make t anti t quark-antiquark pairs the dominant decay mode. The study of this case, that of the so-called intermediate mass Higgs, had already been launched in the Berkeley PSSC Workshop on Electroweak Symmetry Breaking, and was continued and extended here. The problems of t quark jet identification and detection efficiency and the manner of rejection of background (especially from b quark jets) with realistic detectors then occupied much of the attention of the group. The subject of making precise measurements of parameters in the standard model at SSC energies is briefly examined. Then we delve into the Higgs sector, with an introduction to the neutral Higgs of the standard model together with its production cross-sections in various processes and the corresponding potential backgrounds. A similar, though briefer, discussion for a charged Higgs boson (outside the Standard Model) follows. The heart of the work on identifying and reconstructing the t and then the Higgs boson in the face of backgrounds is discussed. The problems with semileptonic decays, low energy jet fragments, mass resolution, and b-t discrimination all come to the fore. We have tried to make a serious step here towards a realistic assessment of the problems entailed in pulling a signal out of the background, including a rough simulation of calorimeter-detector properties. 25 references.

  14. About measurements of Higgs boson parity

    NASA Astrophysics Data System (ADS)

    Ginzburg, I. F.

    2016-02-01

    Recently CMS and ATLAS announced that they had measured the Higgs boson parity. In this note we show that their approach can determine this parity only under the additional assumption that an extension of Standard Model of some special type is realized in Nature. We show that the used approach gives no information about the Higgs boson parity when assuming most other extensions of the Standard Model.

  15. Self-coupling of the Higgs boson in the processes p p →Z H H H +X and p p →W H H H +X

    NASA Astrophysics Data System (ADS)

    Dicus, Duane A.; Kao, Chung; Repko, Wayne W.

    2016-06-01

    To gain some sense about the likelihood of measuring the Higgs boson quartic coupling, we calculate the contribution to the triple Higgs production cross section from the subprocesses q q ¯→Z H H H and q q¯'→W H H H . Our results illustrate that determining this coupling, or even providing experimental evidence that it exists, will be very difficult.

  16. Searching for invisibly decaying Higgs bosons at CERN LEP II

    SciTech Connect

    de Campos, F.; Eboli, O.J.; Rosiek, J.; Valle, J.W.

    1997-02-01

    We study the potential of CERN LEP II to unravel the existence of invisibly decaying Higgs bosons, predicted in a wide class of models. We perform a model-independent analysis, focusing our attention on the final state topologies exhibiting b{bar b} or scr(l){sup +}scr(l){sup {minus}} (scr(l)={mu} or e) pairs and missing energy. We carefully evaluate the signals and backgrounds, choosing appropriate cuts to enhance the discovery limits. Our results demonstrate that LEP II is capable of discovering such a Higgs boson for a wide range of masses and couplings. {copyright} {ital 1997} {ital The American Physical Society}

  17. Measurement of the properties of the Higgs boson at ATLAS

    SciTech Connect

    Bristow, Timothy; Collaboration: ATLAS Collaboration

    2014-03-05

    An update on the Higgs boson search in the decay channels H→γγ, H→ZZ{sup (*)}→4l, H→WW{sup (*)}→lvlv, H→τ{sup +}τ{sup −} and H→bb{sup ¯} at the ATLAS detector is presented. Proton-proton collision data recorded by the ATLAS experiment corresponding to an integrated luminosity of up to 25/fb at centre-of-mass energies of 7 and 8 TeV are used for these results. The latest combined and individual channel measurements of the mass, signal strength, spin and parity, coupling constants and Higgs boson production are reported. Results on the measurements of the properties of the Higgs boson are all consistent with the Standard Model.

  18. Bounding the Higgs boson width through interferometry.

    PubMed

    Dixon, Lance J; Li, Ye

    2013-09-13

    We study the change in the diphoton-invariant-mass distribution for Higgs boson decays to two photons, due to interference between the Higgs resonance in gluon fusion and the continuum background amplitude for gg→γγ. Previously, the apparent Higgs mass was found to shift by around 100 MeV in the standard model in the leading-order approximation, which may potentially be experimentally observable. We compute the next-to-leading-order QCD corrections to the apparent mass shift, which reduce it by about 40%. The apparent mass shift may provide a way to measure, or at least bound, the Higgs boson width at the Large Hadron Collider through "interferometry." We investigate how the shift depends on the Higgs width, in a model that maintains constant Higgs boson signal yields. At Higgs widths above 30 MeV, the mass shift is over 200 MeV and increases with the square root of the width. The apparent mass shift could be measured by comparing with the ZZ* channel, where the shift is much smaller. It might be possible to measure the shift more accurately by exploiting its strong dependence on the Higgs transverse momentum. PMID:24074073

  19. Warped dipole completed, with a tower of Higgs bosons

    NASA Astrophysics Data System (ADS)

    Agashe, Kaustubh; Azatov, Aleksandr; Cui, Yanou; Randall, Lisa; Son, Minho

    2015-06-01

    In the context of warped extra-dimensional models which address both the Planck-weak- and flavor-hierarchies of the Standard Model (SM), it has been argued that certain observables can be calculated within the 5D effective field theory only with the Higgs field propagating in the bulk of the extra dimension, just like other SM fields. The related studies also suggested an interesting form of decoupling of the heavy Kaluza-Klein (KK) fermion states in the warped 5D SM in the limit where the profile of the SM Higgs approaches the IR brane. We demonstrate that a similar phenomenon occurs when we include the mandatory KK excitations of the SM Higgs in loop diagrams giving dipole operators for SM fermions, where the earlier work only considered the SM Higgs (zero mode). In particular, in the limit of a quasi IR-localized SM Higgs, the effect from summing over KK Higgs modes is unsuppressed (yet finite), in contrast to the naive expectation that KK Higgs modes decouple as their masses become large. In this case, a wide range of KK Higgs modes have quasi-degenerate masses and enhanced couplings to fermions relative to those of the SM Higgs, which contribute to the above remarkable result. In addition, we find that the total contribution from KK Higgs modes in general can be comparable to that from the SM Higgs alone. It is also interesting that KK Higgs couplings to KK fermions of the same chirality as the corresponding SM modes have an unsuppressed overall contribution, in contrast to the result from the earlier studies involving the SM Higgs. Our studies suggest that KK Higgs bosons are generally an indispensable part of the warped 5D SM, and their phenomenology such as signals at the LHC are worth further investigation.

  20. Higgs gravitational interaction, weak boson scattering, and Higgs inflation in Jordan and Einstein frames

    SciTech Connect

    Ren, Jing; Xianyu, Zhong-Zhi; He, Hong-Jian E-mail: xianyuzhongzhi@gmail.com

    2014-06-01

    We study gravitational interaction of Higgs boson through the unique dimension-4 operator ξH{sup †}HR, with H  the Higgs doublet and R  the Ricci scalar curvature. We analyze the effect of this dimensionless nonminimal coupling ξ  on weak gauge boson scattering in both Jordan and Einstein frames. We explicitly establish the longitudinal-Goldstone equivalence theorem with nonzero ξ coupling in both frames, and analyze the unitarity constraints. We study the ξ-induced weak boson scattering cross sections at O(1−30) TeV scales, and propose to probe the Higgs-gravity coupling via weak boson scattering experiments at the LHC (14 TeV) and the next generation pp colliders (50-100 TeV). We further extend our study to Higgs inflation, and quantitatively derive the perturbative unitarity bounds via coupled channel analysis, under large field background at the inflation scale. We analyze the unitarity constraints on the parameter space in both the conventional Higgs inflation and the improved models in light of the recent BICEP2 data.

  1. Higgs gravitational interaction, weak boson scattering, and Higgs inflation in Jordan and Einstein frames

    NASA Astrophysics Data System (ADS)

    Ren, Jing; Xianyu, Zhong-Zhi; He, Hong-Jian

    2014-06-01

    We study gravitational interaction of Higgs boson through the unique dimension-4 operator ξH†HScript R, with H the Higgs doublet and Script R the Ricci scalar curvature. We analyze the effect of this dimensionless nonminimal coupling ξ on weak gauge boson scattering in both Jordan and Einstein frames. We explicitly establish the longitudinal-Goldstone equivalence theorem with nonzero ξ coupling in both frames, and analyze the unitarity constraints. We study the ξ-induced weak boson scattering cross sections at Script O(1-30) TeV scales, and propose to probe the Higgs-gravity coupling via weak boson scattering experiments at the LHC (14 TeV) and the next generation pp colliders (50-100 TeV). We further extend our study to Higgs inflation, and quantitatively derive the perturbative unitarity bounds via coupled channel analysis, under large field background at the inflation scale. We analyze the unitarity constraints on the parameter space in both the conventional Higgs inflation and the improved models in light of the recent BICEP2 data.

  2. Neutrino Oscillations, the Higgs Boson, and the Private Higgs Model

    NASA Astrophysics Data System (ADS)

    BenTov, Jonathan

    document are devoted in one way or another to phenomena associated with the Higgs sector of the Standard Model. Now that the Large Hadron Collider has finally observed what is presumably the Higgs boson with mass mh ≈ 125 GeV, every parameter in the Standard Model is known. However, there remains an enormous freedom to extend the scalar sector of the Standard Model, and I will study a particular multi-Higgs framework, which is called the "Private Higgs" model. Within this framework it becomes clear that the ratios of Yukawa couplings may be completely uncorrelated with the ratios of the corresponding quark masses and that much of the Higgs sector may remain shrouded in mystery for years to come.

  3. The HIGGS Boson Mass at 2 Loops in the Finely Tuned Split Supersymmetric Standard Model

    SciTech Connect

    Binger, M

    2004-09-08

    The mass of the Higgs boson in the finely tuned Split Supersymmetric Standard Model is calculated. All 1 loop threshold effects are included, in addition to the full RG running of the Higgs quartic coupling through 2 loops. The 2 loop corrections are very small, typically less than 1GeV. The 1 loop threshold corrections to the top yukawa coupling and the Higgs mass generally push the Higgs mass down a few GeV.

  4. The quest for the Higgs boson

    SciTech Connect

    Hinchliffe, I.

    1987-02-01

    Various ways are reviewed which have been suggested to search for the Higgs boson of the Weinberg-Salam model. It is found that if the Higgs mass is less than 40 GeV or so, it should be found in the decay of the Z either at the SLC or at LEP. Masses larger than this can be probed in the decay of toponium, if toponium exists in an accessible mass range. 27 refs., 15 figs. (LEW)

  5. Higgs boson photoproduction at the LHC

    SciTech Connect

    Ducati, M. B. Gay; Silveira, G. G.

    2011-07-15

    We present the current development of the photoproduction approach for the Higgs boson with its application to pp and pA collisions at the LHC. We perform a different analysis for the Gap Survival Probability, where we consider a probability of 3% and also a more optimistic value of 10% based on the HERA data for dijet production. As a result, the cross section for the exclusive Higgs boson production is about 2 fb and 6 fb in pp collisions and 617 and 2056 fb for pPb collisions, considering the gap survival factor of 3% and 10%, respectively.

  6. Topological Physics of Little Higgs Bosons

    SciTech Connect

    Hill, Christopher T.; Hill, Richard J.; /Fermilab

    2007-01-01

    Topological interactions will generally occur in composite Higgs or Little Higgs theories, extra-dimensional gauge theories in which A5 plays the role of a Higgs boson, and among the pNGB's of technicolor. This phenomena arises from the chiral and anomaly structure of the underlying UV completion theory, and/or through chiral delocalization in higher dimensions. These effects are described by a full Wess-Zumino-Witten term involving gauge fields and pNGB's. We give a general discussion of these interactions, some of which may have novel signatures at future colliders, such as the LHC and ILC.

  7. Lightest Higgs boson production at photon colliders in the two Higgs doublet model type III

    SciTech Connect

    Martinez, R.; Rodriguez, J.-Alexis; Milanes, D.A.

    2005-08-01

    The branching ratios of the lightest CP-even Higgs boson h{sup 0} are calculated in the framework of the general two higgs doublet model. Different scenarios are presented taking into account constraints on the flavor changing neutral currents factors obtained in previous works. Plausible scenarios where appear flavor changing processes at tree level like bs and tc are analyzed for relevant parameters. The loop-induced Higgs couplings to photon pairs can be tested with a photon collider. The number of events of h{sup 0} as a resonance in photon colliders are calculated taking into account its corresponding background signal at TESLA, CLIC, and NLC.

  8. Stable Higgs Bosons - new candidate for cold dark matter

    SciTech Connect

    Hosotani, Yutaka

    2010-08-12

    The Higgs boson is in the backbone of the standard model of electroweak interactions. It must exist in some form for achieving unification of interactions. In the gauge-Higgs unification scenario the Higgs boson becomes a part of the extra-dimensional component of gauge fields. The Higgs boson becomes absolutely stable in a class of the gauge-Higgs unification models, serving as a promising candidate for cold dark matter in the universe. The observed relic abundance of cold dark matter is obtained with the Higgs mass around 70 GeV. The Higgs-nucleon scattering cross section is found to be close to the recent CDMS II XENON10 bounds in the direct detection of dark matter. In collider experiments stable Higgs bosons are produced in a pair, appearing as missing energies momenta so that the way of detecting Higgs bosons must be altered.

  9. Ultra-weak sector, Higgs boson mass, and the dilaton

    DOE PAGESBeta

    Allison, Kyle; Hill, Christopher T.; Ross, Graham G.

    2014-09-26

    The Higgs boson mass may arise from a portal coupling to a singlet fieldmore » $$\\sigma$$ which has a very large VEV $$f \\gg m_\\text{Higgs}$$. This requires a sector of "ultra-weak" couplings $$\\zeta_i$$, where $$\\zeta_i \\lesssim m_\\text{Higgs}^2 / f^2$$. Ultra-weak couplings are technically naturally small due to a custodial shift symmetry of $$\\sigma$$ in the $$\\zeta_i \\rightarrow 0$$ limit. The singlet field $$\\sigma$$ has properties similar to a pseudo-dilaton. We engineer explicit breaking of scale invariance in the ultra-weak sector via a Coleman-Weinberg potential, which requires hierarchies amongst the ultra-weak couplings.« less

  10. Ultra-weak sector, Higgs boson mass, and the dilaton

    SciTech Connect

    Allison, Kyle; Hill, Christopher T.; Ross, Graham G.

    2014-09-26

    The Higgs boson mass may arise from a portal coupling to a singlet field $\\sigma$ which has a very large VEV $f \\gg m_\\text{Higgs}$. This requires a sector of "ultra-weak" couplings $\\zeta_i$, where $\\zeta_i \\lesssim m_\\text{Higgs}^2 / f^2$. Ultra-weak couplings are technically naturally small due to a custodial shift symmetry of $\\sigma$ in the $\\zeta_i \\rightarrow 0$ limit. The singlet field $\\sigma$ has properties similar to a pseudo-dilaton. We engineer explicit breaking of scale invariance in the ultra-weak sector via a Coleman-Weinberg potential, which requires hierarchies amongst the ultra-weak couplings.

  11. A Search for Neutral Supersymmetric Higgs Bosons at DØ

    SciTech Connect

    Osman, Nicolas Ahmed

    2010-09-01

    A search for Higgs bosons in multijet data from the DØ detector is reported in this thesis. The Higgs boson is the only remaining undiscovered particle in the Standard Model of particle physics, and plays an integral role in this model. It is known that this model is not a complete description of fundamental physics (it does not describe gravity, for example), and so searches for physics beyond the Standard Model are an important part of particle physics. One extension of the Standard Model, the Minimal Supersymmetric Standard Model (MSSM), predicts the existence of five Higgs bosons, two of which can show an enhanced coupling to bottom quarks. For this reason, a search in the bbb (multijet) channel is a sensitive test of Higgs boson physics. The analysis described in this thesis was conducted over 6.6 fb-1 of data. At the time of writing, the best limits on tan β (a key parameter of the MSSM) in the multijet channel were set by DØ. The new analysis described in this thesis included more data than the previous analysis in the channel, and made use of a new trigger and event-based analysis method. An improved Multivariate Analysis technique was used to separate signal and background events and produce a final discriminant for the limit setting process. These changes increased the expected sensitivity of this measurement by roughly 50% more than would be expected from the increase in the size of data sample alone.

  12. On the trail of the Higgs boson

    DOE PAGESBeta

    Peskin, Michael E.

    2015-09-11

    I review theoretical issues associated with the Higgs boson and the mystery of spontaneous breaking of the electroweak gauge symmetry. In addition, this essay is intended as an introduction to the special issue of Annalen der Physik, “Particle Physics after the Higgs”.

  13. Unraveling the Higgs Boson Discovery - Rik Yoshida

    ScienceCinema

    Rik Yoshida

    2013-06-06

    Argonne physicist Rik Yoshida explains what the Higgs boson is and what its discovery means for physics, the universe, and life. The third of Argonne's "OutLoud" public lecture series, held at the lab on September 27, 2012. Find out when the next one is at http://www.anl.gov/community/outloud

  14. Assumed Higgs Boson Discovery Proved Einstein Right

    NASA Astrophysics Data System (ADS)

    Morales, Manuel

    2012-12-01

    The selection-based Tempt Destiny experiment has provided evidence that the fundamental acts of selection are a dichotomy as are their effects. By applying this knowledge to evaluate the preliminary findings of the Higgs boson discovery, we find an omission error has taken place.

  15. Unraveling the Higgs Boson Discovery - Rik Yoshida

    SciTech Connect

    Rik Yoshida

    2012-10-02

    Argonne physicist Rik Yoshida explains what the Higgs boson is and what its discovery means for physics, the universe, and life. The third of Argonne's "OutLoud" public lecture series, held at the lab on September 27, 2012. Find out when the next one is at http://www.anl.gov/community/outloud

  16. Higgs-gauge boson interactions in the economical 3-3-1 model

    SciTech Connect

    Phung Van Dong; Hoang Ngoc Long; Dang Van Soa

    2006-04-01

    Interactions among the standard model gauge bosons and scalar fields in the framework of the SU(3){sub C}xSU(3){sub L}xU(1){sub X} gauge model with minimal (economical) Higgs content are presented. From these couplings, all scalar fields including the neutral scalar h and the Goldstone bosons can be identified and their couplings with the usual gauge bosons such as the photon, the charged W{sup {+-}}, and the neutral Z, without any additional conditions, are recovered. In the effective approximation, the full content of the scalar sector can be recognized. The CP-odd part of the Goldstone associated with the neutral non-Hermitian bilepton gauge boson G{sub X{sup 0}} is decoupled, while its CP-even counterpart has the mixing in the same way in the gauge boson sector. Masses of the new neutral Higgs boson H{sub 1}{sup 0} and the neutral non-Hermitian bilepton X{sup 0} are dependent on a coefficient of Higgs self-coupling ({lambda}{sub 1}). Similarly, masses of the singly charged Higgs boson H{sub 2}{sup {+-}} and of the charged bilepton Y{sup {+-}} are proportional through a coefficient of Higgs self-interaction ({lambda}{sub 4}). The hadronic cross section for production of this Higgs boson at the CERN LHC in the effective vector boson approximation is calculated. Numerical evaluation shows that the cross section can exceed 260 fb.

  17. Electroweak baryogenesis with anomalous Higgs couplings

    NASA Astrophysics Data System (ADS)

    Kobakhidze, Archil; Wu, Lei; Yue, Jason

    2016-04-01

    We investigate feasibility of efficient baryogenesis at the electroweak scale within the effective field theory framework based on a non-linear realisation of the electroweak gauge symmetry. In this framework the LHC Higgs boson is described by a singlet scalar field, which, therefore, admits new interactions. Assuming that Higgs couplings with the eletroweak gauge bosons are as in the Standard Model, we demonstrate that the Higgs cubic coupling and the CP-violating Higgs-top quark anomalous couplings alone may drive the a strongly first-order phase transition. The distinguished feature of this transition is that the anomalous Higgs vacuum expectation value is generally non-zero in both phases. We identify a range of anomalous couplings, consistent with current experimental data, where sphaleron rates are sufficiently fast in the `symmetric' phase and are suppressed in the `broken' phase and demonstrate that the desired baryon asymmetry can indeed be generated in this framework. This range of the Higgs anomalous couplings can be further constrained from the LHC Run 2 data and be probed at high luminosity LHC and beyond.

  18. Special Mixing of the Neutral Higgs Bosons States in the Standard Model with Two Higgs Doublets

    SciTech Connect

    Juarez W, S. R.; Morales C, D.

    2008-07-02

    The Higgs sector of the Standard Model (SM) requires careful investigation in order to look for new physics. In the SM the masses of the physical particles arise, after the spontaneous symmetry breaking (SSB), through its couplings with a single Higgs doublet. In the simplest extension of the SM, called the Two Higgs Doublet Model (2HDM), a second Higgs doublet is introduced, with a potential dependent on seven parameters, which are related to five Higgs bosons, whose existence is predicted by the model. In this context, we obtain the masses and the physical eigenstates of the new scalar particles: two charged ones (H{sup {+-}}) and three neutral (A{sup 0}), (h{sup 0},H{sup 0}). We explore a particular situation in which very simple relations between the parameters and the masses are satisfied.

  19. Special Mixing of the Neutral Higgs Bosons States in the Standard Model with Two Higgs Doublets

    NASA Astrophysics Data System (ADS)

    Juárez W., S. R.; Morales C., D.

    2008-07-01

    The Higgs sector of the Standard Model (SM) requires careful investigation in order to look for new physics. In the SM the masses of the physical particles arise, after the spontaneous symmetry breaking (SSB), through its couplings with a single Higgs doublet. In the simplest extension of the SM, called the Two Higgs Doublet Model (2HDM), a second Higgs doublet is introduced, with a potential dependent on seven parameters, which are related to five Higgs bosons, whose existence is predicted by the model. In this context, we obtain the masses and the physical eigenstates of the new scalar particles: two charged ones (H±) and three neutral (A0), (h0,H0). We explore a particular situation in which very simple relations between the parameters and the masses are satisfied.

  20. Searching for displaced Higgs boson decays

    NASA Astrophysics Data System (ADS)

    Csáki, Csaba; Kuflik, Eric; Lombardo, Salvator; Slone, Oren

    2015-10-01

    We study a simplified model of the Standard Model (SM) Higgs boson decaying to a degenerate pair of scalars which travel a macroscopic distance before decaying to SM particles. This is the leading signal for many well-motivated solutions to the hierarchy problem that do not propose additional light colored particles. Bounds for displaced Higgs boson decays below 10 cm are found by recasting existing tracker searches from Run I. New tracker search strategies, sensitive to the characteristics of these models and similar decays, are proposed with sensitivities projected for Run II at √{s }=13 TeV . With 20 fb-1 of data, we find that Higgs branching ratios down to 2 ×1 0-4 can be probed for centimeter decay lengths.

  1. Ian Hinchliffe Answers Your Higgs Boson Questions

    SciTech Connect

    Hinchliffe, Ian

    2012-01-01

    contingent with the ATLAS experiment at CERN, answers many of your questions about the Higgs boson. Ian invited viewers to send in questions about the Higgs via email, Twitter, Facebook, or YouTube in an "Ask a Scientist" video posted July 3: http://youtu.be/xhuA3wCg06s CERN's July 4 announcement that the ATLAS and CMS experiments at the Large Hadron Collider have discovered a particle "consistent with the Higgs boson" has raised questions about what scientists have found and what still remains to be found -- and what it all means. If you have suggestions for future "Ask a Scientist" videos, post them below or send ideas to askascientist@lbl.gov

  2. Ian Hinchliffe Answers Your Higgs Boson Questions

    ScienceCinema

    Hinchliffe, Ian

    2013-05-29

    contingent with the ATLAS experiment at CERN, answers many of your questions about the Higgs boson. Ian invited viewers to send in questions about the Higgs via email, Twitter, Facebook, or YouTube in an "Ask a Scientist" video posted July 3: http://youtu.be/xhuA3wCg06s CERN's July 4 announcement that the ATLAS and CMS experiments at the Large Hadron Collider have discovered a particle "consistent with the Higgs boson" has raised questions about what scientists have found and what still remains to be found -- and what it all means. If you have suggestions for future "Ask a Scientist" videos, post them below or send ideas to askascientist@lbl.gov

  3. Associated production of a Higgs boson at NNLO

    DOE PAGESBeta

    Campbell, John M.; Ellis, R. Keith; Williams, Ciaran

    2016-06-30

    Here we present a Next-to-Next-to Leading Order (NNLO) calculation of the production of a Higgs boson in association with a massive vector boson. We also include the decays of the unstable Higgs and vector bosons, resulting in a fully flexible parton-level Monte Carlo implementation. We also include allmore » $$\\mathcal{O}(\\alpha_s^2)$$ contributions that occur in production for these processes: those mediated by the exchange of a single off-shell vector boson in the $s$-channel, and those which arise from the coupling of the Higgs boson to a closed loop of fermions. Final states of interest for Run II phenomenology were studied, namely $$H\\rightarrow b\\bar{b}$$, $$\\gamma\\gamma$$ and $WW^*$. The treatment of the $$H\\rightarrow b\\bar{b}$$ decay includes QCD corrections at NLO. We use the recently developed $N$-jettiness regularization procedure, and study its viability in the presence of a large final-state phase space by studying $$pp\\rightarrow V(H\\rightarrow WW^*) \\rightarrow$$ leptons.« less

  4. Associated production of a Higgs boson at NNLO

    NASA Astrophysics Data System (ADS)

    Campbell, John M.; Ellis, R. Keith; Williams, Ciaran

    2016-06-01

    In this paper we present a Next-to-Next-to Leading Order (NNLO) calculation of the production of a Higgs boson in association with a massive vector boson. We include the decays of the unstable Higgs and vector bosons, resulting in a fully flexible parton-level Monte Carlo implementation. We also include all O({α}_s^2) contributions that occur in production for these processes: those mediated by the exchange of a single off-shell vector boson in the s-channel, and those which arise from the coupling of the Higgs boson to a closed loop of fermions. We study final states of interest for Run II phenomenology, namely Hto boverline{b} , γγ and WW ∗. The treatment of the Hto boverline{b} decay includes QCD corrections at NLO. We use the recently developed N -jettiness regularization procedure, and study its viability in the presence of a large final-state phase space by studying pp → V ( H → WW ∗) → leptons.

  5. Diphoton and diboson probes of fermiophobic Higgs bosons at the LHC

    NASA Astrophysics Data System (ADS)

    Delgado, Antonio; Garcia-Pepin, Mateo; Quirós, Mariano; Santiago, José; Vega-Morales, Roberto

    2016-06-01

    Extensions of the Standard Model Higgs sector with electroweak charged scalars can possess exotic `Higgs' bosons with vanishing or suppressed couplings to Standard Model fermions. These `fermiophobic' scalars, which cannot be produced via gluon fusion, are constrained by LHC measurements of the 125 GeV Higgs boson to have a small vacuum expectation value. This implies that vector boson fusion and associated vector boson production are in general suppressed rendering conventional Higgs searches insensitive. However, Drell-Yan Higgs pair production, which is not present in the SM, can be sizeable even in the limit of vanishing exotic Higgs vacuum expectation value. We utilize this to show that diphoton searches at 8 TeV LHC already rule out a large class of neutral fermiophobic Higgs bosons below ˜ 110 GeV. This includes fermiophobic scalars found in two Higgs doublet as well as Higgs triplet and Georgi-Machacek type models. Our results extend the only relevant limit on fermiophobic Higgs bosons obtained by a recent CDF analysis of 4 γ + X Tevatron data. Furthermore, diphoton limits are independent of the decay of the second Higgs boson and thus apply even for degenerate masses in contrast to the CDF search. We also find that if the fermiophobic Higgs has very enhanced couplings to photons, masses as large as ˜ 150 GeV can be ruled out while if these couplings are somehow highly suppressed, masses below ˜ 90 GeV can still be ruled out. Finally, we show that WW and ZZ diboson searches may serve as complementary probes for masses above the diphoton limit up to ˜ 250 GeV and discuss prospects at 13 TeV LHC.

  6. Higgs boson production with heavy quarks at hadron colliders

    NASA Astrophysics Data System (ADS)

    Jackson, Christopher B.

    2005-11-01

    One of the remaining puzzles in particle physics is the origin of electroweak symmetry breaking. In the Standard Model (SM), a single doublet of complex scalar fields is responsible for breaking the SU(2) L x U(1)Y gauge symmetry thus giving mass to the electroweak gauge bosons via the Higgs mechanism and to the fermions via Yukawa couplings. The remnant of the process is a vet to he discovered scalar particle, the Higgs boson (h). However, current and future experiments at hadron colliders hold great promise. Of particular interest at hadron colliders is the production of a Higgs boson in association with a pair of heavy quarks, pp¯(pp) → QQ¯h, where Q can be either a top or a bottom quark. Indeed, the production of a Higgs boson with a pair of top quarks provides a very distinctive signal in hadronic collisions where background processes are formidable, and it will be instrumental in the discovery of a Higgs boson below about 130 GeV at the LHC. On the other hand, the production of a Higgs boson with bottom quarks can be strongly enhanced in models of new physics beyond the SM, e.g. supersymmetric models. If this is the case, bb¯h production will play a crucial role at the Tevatron where it could provide the first signal of new physics. Given the prominent role that Higgs production with heavy quarks can play at hadron colliders, it becomes imperative to have precise theoretical predictions for total and differential cross sections. In this dissertation, we outline and present detailed results for the next-to-leading order (NLO) calculation of the Quantum Chromodynamic (QCD) corrections to QQ¯h production at both the Tevatron and the LHC. This calculation involves several difficult issues due to the three massive particles in the final state, a situation which is at the frontier of radiative correction calculations in quantum field theory. We detail the novel techniques developed to deal with these challenges. The calculation of pp¯(pp) → bb¯h at NLO in

  7. Maximal CP violation via Higgs-boson exchange

    SciTech Connect

    Lavoura, L.

    1992-03-06

    The unitarity of the mixing matrix of the charged Higgs bosons, and the orthogonality of the mixing matrix of the neutral Higgs bosons, are used to derive upper bounds on the values of general CP-violating expressions. The bounds are independent of the total number of Higgs fields in any specific model. They allow is to relax the usual assumption of only one Higgs boson being light. It is natural that the CP violation in the exchange of neutral Higgs bosons between bottom quarks be particularly large.

  8. Higgs boson spectra in supersymmetric left-right models

    NASA Astrophysics Data System (ADS)

    Babu, K. S.; Patra, Ayon

    2016-03-01

    We present a comprehensive analysis of the Higgs boson spectra in several versions of the supersymmetric left-right model based on the gauge symmetry S U (3 )c×S U (2 )L×S U (2 )R×U (1 )B-L. A variety of symmetry breaking sectors are studied, with a focus on the constraints placed on model parameters by the lightest neutral C P even Higgs boson mass Mh. The breaking of S U (2 )R symmetry is achieved by Higgs fields transforming either as triplets or doublets, and the electroweak symmetry breaking is triggered by either bi-doublets or doublets. The Higgs potential is analyzed with or without a gauge singlet Higgs field present. Seesaw models of Type I and Type II, inverse seesaw models, universal seesaw models and an E6 inspired alternate left-right model are included in our analysis. Several of these models lead to the tree-level relation Mh≤√{2 }mW (rather than Mh≤mZ that arises in the MSSM), realized when the S U (2 )R symmetry breaking scale is of order TeV. With such an enhanced upper limit, it becomes possible to accommodate a Higgs boson of mass 126 GeV with relatively light stops that mix negligibly. In models with Higgs triplets, a doubly charged scalar remains light below a TeV with its mass arising entirely from radiative corrections. We carry out the complete one-loop calculation for its mass induced by the Majorana Yukawa couplings and show the consistency of the framework. We argue that these models prefer a low S U (2 )R breaking scale. Other theoretical and phenomenological implications of these models are briefly discussed.

  9. The Higgs boson and cosmology.

    PubMed

    Shaposhnikov, Mikhail

    2015-01-13

    I will discuss how the Higgs field of the Standard Model may have played an important role in cosmology, leading to the homogeneity, isotropy and flatness of the Universe; producing the quantum fluctuations that seed structure formation; triggering the radiation-dominated era of the hot Big Bang; and contributing to the processes of baryogenesis and dark matter production. PMID:26949807

  10. The Higgs boson and cosmology

    PubMed Central

    Shaposhnikov, Mikhail

    2015-01-01

    I will discuss how the Higgs field of the Standard Model may have played an important role in cosmology, leading to the homogeneity, isotropy and flatness of the Universe; producing the quantum fluctuations that seed structure formation; triggering the radiation-dominated era of the hot Big Bang; and contributing to the processes of baryogenesis and dark matter production.

  11. Higgs Boson Searches at Hadron Colliders (1/4)

    ScienceCinema

    None

    2011-10-06

    In these Academic Training lectures, the phenomenology of Higgs bosons and search strategies at hadron colliders are discussed. After a brief introduction on Higgs bosons in the Standard Model and a discussion of present direct and indirect constraints on its mass the status of the theoretical cross section calculations for Higgs boson production at hadron colliders is reviewed. In the following lectures important experimental issues relevant for Higgs boson searches (trigger, measurements of leptons, jets and missing transverse energy) are presented. This is followed by a detailed discussion of the discovery potential for the Standard Model Higgs boson for both the Tevatron and the LHC experiments. In addition, various scenarios beyond the Standard Model, primarily the MSSM, are considered. Finally, the potential and strategies to measured Higgs boson parameters and the investigation of alternative symmetry breaking scenarios are addressed.

  12. Precise determination of the mass of the Higgs boson and tests of compatibility of its couplings with the standard model predictions using proton collisions at 7 and 8 $$\\,\\text {TeV}$$

    DOE PAGESBeta

    Khachatryan, Vardan

    2015-05-14

    Properties of the Higgs boson with mass near 125GeV are measured in proton-proton collisions with the CMS experiment at the LHC. Comprehensive sets of production and decay measurements are combined. The decay channels include γγ, ZZ, WW, ττ, bb, and μμ pairs. The data samples were collected in 2011 and 2012 and correspond to integrated luminosities of up to 5.1fb-1 at 7TeV and up to 19.7fb-1 at 8TeV. From the high-resolution γγ and ZZ channels, the mass of the Higgs boson is determined to be 125.02+0.26–0.27 (stat) +0.14–0.15 (syst) GeV. For this mass value, the event yields obtained in themore » different analyses tagging specific decay channels and production mechanisms are consistent with those expected for the standard model Higgs boson. The combined best-fit signal relative to the standard model expectation is 1.00 ± 0.09(stat)+0.08–0.07 (theo) ± 0.07(syst) at the measured mass. The couplings of the Higgs boson are probed for deviations in magnitude from the standard model predictions in multiple ways, including searches for invisible and undetected decays. As a result, no significant deviations are found.« less

  13. New decay modes of heavy Higgs bosons in a two Higgs doublet model with vectorlike leptons

    NASA Astrophysics Data System (ADS)

    Dermíšek, Radovan; Lunghi, Enrico; Shin, Seodong

    2016-05-01

    In models with extended Higgs sector and additional matter fields, the decay modes of heavy Higgs bosons can be dominated by cascade decays through the new fermions rendering present search strategies ineffective. We investigate new decay topologies of heavy neutral Higgses in two Higgs doublet model with vectorlike leptons. We also discus constraints from existing searches and discovery prospects. Among the most interesting signatures are monojet, mono Z, mono Higgs, and Z and Higgs bosons produced with a pair of charged leptons.

  14. Exclusive window onto Higgs Yukawa couplings.

    PubMed

    Kagan, Alexander L; Perez, Gilad; Petriello, Frank; Soreq, Yotam; Stoynev, Stoyan; Zupan, Jure

    2015-03-13

    We show that both flavor-conserving and flavor-violating Yukawa couplings of the Higgs boson to first- and second-generation quarks can be probed by measuring rare decays of the form h→MV, where M denotes a vector meson and V indicates either γ, W or Z. We calculate the branching ratios for these processes in both the standard model and its possible extensions. We discuss the experimental prospects for their observation. The possibility of accessing these Higgs couplings appears to be unique to the high-luminosity LHC and future hadron colliders, providing further motivation for those machines. PMID:25815924

  15. Invisible Decays of Supersymmetric Higgs Bosons

    SciTech Connect

    Aparicio Mendez, M. del R; Guevara, J. E. Barradas; Beltran, O. Felix

    2009-04-20

    We study the detection of the complete spectrum of Higgs bosons of the minimal supersymmetric standard model, through their decays into chargino ({chi}-tilde{sub i}{sup {+-}}) and neutralinos ({chi}-tilde{sub i}{sup o}), for several parametric scenarios. In the minimal supersymmetric model there are two charginos and four neutralinos, and the Higgs boson spectrum contains three neutral scalars, two CP-even (h{sup 0} and H{sup 0} with m{sub H{sup 0}}>m{sub h{sup 0}}) and one CP-odd (A{sup 0}, with m{sub A{sup 0}} as a free parameter); as well as a charged pair (H{sup {+-}}). An interesting signal comes from the decays of the Higgs bosons into invisible SUSY modes (h{sup 0}, H{sup 0},A{sup 0}{yields}{chi}-tilde{sub 1}{sup o}{chi}-tilde{sub 1}{sup o}), which could be detected at present and future high energy machines.

  16. Probing new physics of cubic Higgs boson interaction via Higgs pair production at hadron colliders

    NASA Astrophysics Data System (ADS)

    He, Hong-Jian; Ren, Jing; Yao, Weiming

    2016-01-01

    Despite the discovery of a Higgs boson h (125 GeV) at the LHC run 1, its self-interaction has fully evaded direct experimental probe so far. Such self-interaction is vital for electroweak symmetry breaking, vacuum stability, and electroweak phase transition. It is a most likely place to encode new physics beyond the standard model. We parametrize such new physics by model-independent dimension-six effective operators and study their tests via Higgs pair production at hadron colliders. We analyze three major di-Higgs production channels at the parton level and compare the parameter dependence of total cross sections and kinematic distributions at the LHC (14 TeV) and p p (100 TeV) hadron collider. We further perform full simulations for the di-Higgs production channel g g →h h →b b ¯γ γ and its backgrounds at the p p (100 TeV) hadron collider. We construct four kinds of benchmark points and study the sensitivities to probing different regions of the parameter space of cubic Higgs interactions. We find that for a one-parameter analysis and with a 3 ab-1 (30 ab-1 ) integrated luminosity, the g g →h h →b b ¯γ γ channel can measure the SM cubic Higgs coupling and the derivative cubic Higgs coupling to an accuracy of about 13% (4.2%) and 5% (1.6%), respectively.

  17. HIGGS BOSON PRODUCTION IN ASSOCIATION WITH BOTTOM QUARKS.

    SciTech Connect

    DAWSON, S.; CAMPBELL, J.; DITTMAIER, S.; JACKSON, C.; KRAMER, M.; MALTONI, F.; ET AL.

    2003-05-26

    In the Standard Model, the coupling of the Higgs boson to b quarks is weak, leading to small cross sections for producing a Higgs boson in association with b quarks. However, Higgs bosons with enhanced couplings to b quarks, such as occur in supersymmetric models for large values of tan {beta}, will be copiously produced at both the Tevatron and the LHC in association with b quarks which will be an important discovery channel. We investigate the connections between the production channels, bg {yields} bh and gg {yields} b{bar b}h, at next-to-leading order (NLO) in perturbative QCD and present results for the case with two high-p{sub T} b jets and with one high-p{sub T} b jet at both the Tevatron and the LHC. Finally, the total cross sections without cuts are compared between gg {yields} b{bar b}h at NLO and b{bar b} {yields} h at NNLO.

  18. Single and double production of the Higgs boson at hadron and lepton colliders in minimal composite Higgs models

    NASA Astrophysics Data System (ADS)

    Kanemura, Shinya; Kaneta, Kunio; Machida, Naoki; Odori, Shinya; Shindou, Tetsuo

    2016-07-01

    In the composite Higgs models, originally proposed by Georgi and Kaplan, the Higgs boson is a pseudo Nambu-Goldstone boson (pNGB) of spontaneous breaking of a global symmetry. In the minimal version of such models, global SO(5) symmetry is spontaneously broken to SO(4), and the pNGBs form an isospin doublet field, which corresponds to the Higgs doublet in the Standard Model (SM). Predicted coupling constants of the Higgs boson can in general deviate from the SM predictions, depending on the compositeness parameter. The deviation pattern is determined also by the detail of the matter sector. We comprehensively study how the model can be tested via measuring single and double production processes of the Higgs boson at the LHC and future electron-positron colliders. The possibility to distinguish the matter sector among the minimal composite Higgs models is also discussed. In addition, we point out differences in the cross section of double Higgs boson production from the prediction in other new physics models.

  19. Elementary Goldstone Higgs boson and dark matter

    NASA Astrophysics Data System (ADS)

    Alanne, Tommi; Gertov, Helene; Sannino, Francesco; Tuominen, Kimmo

    2015-05-01

    We investigate a perturbative extension of the Standard Model featuring elementary pseudo-Goldstone Higgs and dark matter particles. These are two of the five Goldstone bosons parametrizing the SU(4)/Sp(4) coset space. They acquire masses, and therefore become pseudo-Goldstone bosons, due to the embedding of the Yukawa and the electroweak gauge interactions that do not preserve the full SU(4) symmetry. At the one-loop order, the top corrections dominate and align the vacuum in the direction where the Higgs is mostly a pseudo-Goldstone boson. Because of the perturbative and elementary nature of the theory, the quantum corrections are precisely calculable. The remaining pseudo-Goldstone boson is identified with the dark matter candidate because it is neutral with respect to the Standard Model and stable. By a direct comparison with the Large Hadron Collider experiments, the model is found to be phenomenologically viable. Furthermore the dark matter particle leads to the observed thermal relic density while respecting the most stringent current experimental constraints.

  20. Measurements of the Higgs boson production and decay rates and constraints on its couplings from a combined ATLAS and CMS analysis of the LHC pp collision data at $$$\\sqrt{s}=7 $$$ and 8 TeV

    DOE PAGESBeta

    Aad, G.; Abbott, B.; Abdallah, J.; Abdinov, O.; Abeloos, B.; Aben, R.; AbouZeid, O. S.; Abraham, N. L.; Abramowicz, H.; Abreu, H.; et al

    2016-08-05

    Combined ATLAS and CMS measurements of the Higgs boson production and decay rates, as well as constraints on its couplings to vector bosons and fermions, are presented. The combination is based on the analysis of five production processes, namely gluon fusion, vector boson fusion, and associated production with a W or a Z boson or a pair of top quarks, and of the six decay modes H → ZZ, W W , γγ, ττ, bb, and μμ. All results are reported assuming a value of 125.09 GeV for the Higgs boson mass, the result of the combined measurement by the ATLAS and CMS experiments. The analysis uses the CERN LHC proton-proton collision data recorded by the ATLAS and CMS experiments in 2011 and 2012, corresponding to integrated luminosities per experiment of approximately 5 fbmore » $$^{–1}$$ at $$ \\sqrt{s}=7 $$ TeV and 20 fb$$^{–1}$$ at $$ \\sqrt{s}=8 $$ TeV. The Higgs boson production and decay rates measured by the two experiments are combined within the context of three generic parameterisations: two based on cross sections and branching fractions, and one on ratios of coupling modifiers. Several interpretations of the measurements with more model-dependent parameterisations are also given. The combined signal yield relative to the Standard Model prediction is measured to be 1.09 ± 0.11. The combined measurements lead to observed significances for the vector boson fusion production process and for the H → ττ decay of 5.4 and 5.5 standard deviations, respectively. In conclusion, the data are consistent with the Standard Model predictions for all parameterisations considered.« less

  1. Higgs boson pair production in new physics models at hadron, lepton, and photon colliders

    NASA Astrophysics Data System (ADS)

    Asakawa, Eri; Harada, Daisuke; Kanemura, Shinya; Okada, Yasuhiro; Tsumura, Koji

    2010-12-01

    We study Higgs boson pair production processes at future hadron and lepton colliders including the photon collision option in several new physics models; i.e., the two-Higgs-doublet model, the scalar leptoquark model, the sequential fourth generation fermion model and the vectorlike quark model. Cross sections for these processes can deviate significantly from the standard model predictions due to the one-loop correction to the triple Higgs boson coupling constant. For the one-loop induced processes such as gg→hh and γγ→hh, where h is the (lightest) Higgs boson and g and γ respectively represent a gluon and a photon, the cross sections can also be affected by new physics particles via additional one-loop diagrams. In the two-Higgs-doublet model and scalar leptoquark models, cross sections of e+e-→hhZ and γγ→hh can be enhanced due to the nondecoupling effect in the one-loop corrections to the triple Higgs boson coupling constant. In the sequential fourth generation fermion model, the cross section for gg→hh becomes very large because of the loop effect of the fermions. In the vectorlike quark model, effects are small because the theory has decoupling property. Measurements of the Higgs boson pair production processes can be useful to explore new physics through the determination of the Higgs potential.

  2. Higgs boson pair production in new physics models at hadron, lepton, and photon colliders

    SciTech Connect

    Asakawa, Eri; Harada, Daisuke; Okada, Yasuhiro; Kanemura, Shinya; Tsumura, Koji

    2010-12-01

    We study Higgs boson pair production processes at future hadron and lepton colliders including the photon collision option in several new physics models; i.e., the two-Higgs-doublet model, the scalar leptoquark model, the sequential fourth generation fermion model and the vectorlike quark model. Cross sections for these processes can deviate significantly from the standard model predictions due to the one-loop correction to the triple Higgs boson coupling constant. For the one-loop induced processes such as gg{yields}hh and {gamma}{gamma}{yields}hh, where h is the (lightest) Higgs boson and g and {gamma} respectively represent a gluon and a photon, the cross sections can also be affected by new physics particles via additional one-loop diagrams. In the two-Higgs-doublet model and scalar leptoquark models, cross sections of e{sup +}e{sup -}{yields}hhZ and {gamma}{gamma}{yields}hh can be enhanced due to the nondecoupling effect in the one-loop corrections to the triple Higgs boson coupling constant. In the sequential fourth generation fermion model, the cross section for gg{yields}hh becomes very large because of the loop effect of the fermions. In the vectorlike quark model, effects are small because the theory has decoupling property. Measurements of the Higgs boson pair production processes can be useful to explore new physics through the determination of the Higgs potential.

  3. MSSM Higgs Boson Searches at the LHC: Benchmark Scenarios after the Discovery of a Higgs-like Particle

    SciTech Connect

    Carena, M.; Heinemeyer, S.; Stål, O.; Wagner, C.E.M.; Weiglein, G.

    2013-09-01

    A Higgs-like particle with a mass of about 125.5 GeV has been discovered at the LHC. Within the current experimental uncertainties, this new state is compatible with both the predictions for the Standard Model (SM) Higgs boson and with the Higgs sector in the Minimal Supersymmetric Standard Model (MSSM). We propose new low-energy MSSM benchmark scenarios that, over a wide parameter range, are compatible with the mass and production rates of the observed signal. These scenarios also exhibit interesting phenomenology for the MSSM Higgs sector. We propose a slightly updated version of the well-known mh-max scenario, and a modified scenario (mh-mod), where the light CP-even Higgs boson can be interpreted as the LHC signal in large parts of the MA-tan \\beta\\ plane. Furthermore, we define a light stop scenario that leads to a suppression of the lightest CP-even Higgs gluon fusion rate, and a light stau scenario with an enhanced decay rate of h to \\gamma\\gamma\\ at large tan \\beta. We also suggest a \\tau-phobic Higgs scenario in which the lightest Higgs can have suppressed couplings to down-type fermions. We propose to supplement the specified value of the \\mu\\ parameter in some of these scenarios with additional values of both signs. This has a significant impact on the interpretation of searches for the non SM-like MSSM Higgs bosons. We also discuss the sensitivity of the searches to heavy Higgs decays into light charginos and neutralinos, and to decays of the form H to hh. Finally, in addition to all the other scenarios where the lightest CP-even Higgs is interpreted as the LHC signal, we propose a low-MH scenario, where instead the heavy CP-even Higgs boson corresponds to the new state around 125.5 GeV.

  4. New signatures of flavor violating Higgs couplings

    NASA Astrophysics Data System (ADS)

    Buschmann, Malte; Kopp, Joachim; Liu, Jia; Wang, Xiao-Ping

    2016-06-01

    We explore several novel LHC signatures arising from quark or lepton flavor violating couplings in the Higgs sector, and we constrain such couplings using LHC data. Since the largest signals are possible in channels involving top quarks or tau leptons, we consider in particular the following flavor violating processes: (1) pp → thh (top plus di-Higgs final state) arising from a dimension six coupling of up-type quarks to three insertions of the Higgs field. We develop a search strategy for this final state and demonstrate that detection is possible at the high luminosity LHC if flavor violating top-up-Higgs couplings are not too far below the current limit. (2) pp → tH 0, where H 0 is the heavy neutral CP-even Higgs boson in a two Higgs doublet model (2HDM). We consider the decay channels H 0 → tu, WW, ZZ, hh and use existing LHC data to constrain the first three of them. For the fourth, we adapt our search for the thh final state, and we demonstrate that in large regions of the parameter space, it is superior to other searches, including searches for flavor violating top quark decays ( t → hq). (3) H 0 → τ μ, again in the context of a 2HDM. This channel is particularly well motivated by the recent CMS excess in h → τ μ, and we use the data from this search to constrain the properties of H 0.

  5. Light Higgs boson discovery from fermion mixing

    NASA Astrophysics Data System (ADS)

    Aguilar–Saavedra, Juan Antonio

    2006-12-01

    We evaluate the LHC discovery potential for a light Higgs boson in tbar tH (→ellνbbar bbbar bjj) production, within the Standard Model and if a new Q = 2/3 quark singlet T with a moderate mass exists. In the latter case, T pair production with decays Tbar T→W+b Hbar t/Ht W-bar b→W+bW-bar bH provides an important additional source of Higgs bosons giving the same experimental signature, and other decay modes Tbar T→Ht Hbar t→W+bW-bar bHH, Tbar T→Zt Hbar t/Ht Zbar t→W+bW-bar bHZ further enhance this signal. Both analyses are carried out with particle-level simulations of signals and backgrounds, including tbar t plus n = 0,...,5 jets which constitute the main background by far. Our estimate for SM Higgs discovery in tbar tH production, 0.4σ significance for MH = 115 GeV and an integrated luminosity of 30 fb-1, is similar to the most recent ones by CMS which also include the full tbar tnj background. We show that, if a quark singlet with a mass mT = 500 GeV exists, the luminosity required for Higgs discovery in this final state is reduced by more than two orders of magnitude, and 5σ significance can be achieved already with 8 fb-1. This new Higgs signal will not be seen unless we look for it: with this aim, a new specific final state reconstruction method is presented. Finally, we consider the sensitivity to search for Q = 2/3 singlets. The combination of these three decay modes allows to discover a 500 GeV quark with 7 fb-1 of luminosity.

  6. Relativistic corrections to Higgs boson decays to quarkonia

    NASA Astrophysics Data System (ADS)

    Bodwin, Geoffrey T.; Chung, Hee Sok; Ee, June-Haak; Lee, Jungil; Petriello, Frank

    2014-12-01

    We improve the theoretical predictions for the decays of the Higgs boson to an S -wave vector quarkonium plus a photon by calculating the relativistic correction of order v2, where v is the heavy-quark velocity in the quarkonium rest frame. Our numerical results are given for the J /ψ and ϒ (n S ) channels, with n =1 , 2, 3. The numerical results include a previously calculated correction of order αs and summations, to all orders in αs, of leading logarithms of mH2/mQ2 , where mH is the Higgs-boson mass and mQ is the heavy-quark mass. These QCD corrections apply to the contribution of leading order in v and to part of the order-v2 correction. For the remainder of the order-v2 correction, we sum leading logarithms of mH/mQ through order αs2. These refinements reduce the theoretical uncertainties in the direct-production amplitudes for H →J /ψ +γ and H →ϒ (1 S )+γ by approximately a factor of 3 and open the door to improved determinations at the LHC of the Higgs-boson Yukawa couplings to the charm and bottom quarks.

  7. Have we observed the Higgs boson (imposter)?

    NASA Astrophysics Data System (ADS)

    Low, Ian; Lykken, Joseph; Shaughnessy, Gabe

    2012-11-01

    We interpret the new particle at the Large Hadron Collider as a CP-even scalar and investigate its electroweak quantum number. Assuming an unbroken custodial invariance as suggested by precision electroweak measurements, only four possibilities are allowed if the scalar decays to pairs of gauge bosons, as exemplified by a dilaton/radion, a nondilatonic electroweak singlet scalar, an electroweak doublet scalar, and electroweak triplet scalars. We show that current LHC data already strongly disfavor both the “plain-vanilla” dilatonic and nondilatonic singlet imposters. On the other hand, a generic Higgs doublet gives excellent fits to the measured event rates of the newly observed scalar resonance, while the Standard Model Higgs boson gives a slightly worse overall fit due to the lack of a signal in the ττ channel. The triplet imposter exhibits some tension with the data. The global fit indicates that the enhancement in the diphoton channel could be attributed to an enhanced partial decay width, while the production rates are consistent with the Standard Model expectations. We emphasize that more precise measurements of the ratio of event rates in the WW over ZZ channels, as well as the event rates in bb¯ and ττ channels, are needed to further distinguish the Higgs doublet from the triplet imposter.

  8. ATLAS Search for the MSSM Charged Higgs Boson

    SciTech Connect

    Potter, Chris

    2008-11-23

    The discovery of a charged Higgs boson would be definitive evidence of new physics beyond the Standard Model. The discovery potential of a MSSM charged Higgs boson with the ATLAS detector at the Large Hadron Collider is presented. The study is based on the analysis of signal and background simulated in detail through the experimental apparatus.

  9. Pseudo-scalar Higgs boson production at threshold N^3LO and N^3LL QCD

    NASA Astrophysics Data System (ADS)

    Ahmed, Taushif; Kumar, M. C.; Mathews, Prakash; Rana, Narayan; Ravindran, V.

    2016-06-01

    We present the first results on the production of pseudo-scalar Higgs boson through gluon fusion at the LHC to N^3LO in QCD taking into account only soft-gluon effects. We have used the effective Lagrangian that describes the coupling of the pseudo-scalar Higgs boson with the gluons in the large top quark mass limit. We have used quantities that have recently become available, namely the three-loop pseudo-scalar Higgs boson form factor and the third order universal soft function in QCD to achieve this. Along with the fixed order results, we also present the process dependent resummation coefficient for a threshold resummation to N^3LL in QCD. Phenomenological impact of these threshold N^3LO corrections to pseudo-scalar Higgs boson production at the LHC is presented and their role in the reduction of the renormalization scale dependence is demonstrated.

  10. Search for charged Higgs Bosons at D0

    SciTech Connect

    Peters, Yvonne

    2008-11-23

    In both Supersymmetry and in generic Two Higgs Doublet models (2HDM), the charged Higgs boson H{sup {+-}} exhibits a unique phenomenological signature. We report on a search for charged Higgs bosons, performed using 0.9 fb{sup -1} of data collected with the D0 detector at the Fermilab Tevatron pp-bar collider with a center-of-mass energy of {radical}(s) = 1.96 TeV. No evidence for a charged Higgs boson is found and we set limits on its production cross section or the branching fraction.

  11. Higgs Bosons in the NMSSM and its U(1) Extensions

    SciTech Connect

    Gunion, John F.

    2008-11-23

    I specify the characteristics of a Higgs boson that would be 'ideal' in the light of current data and theoretical attractiveness. I then review why it is that the Higgs bosons of the Standard Model and the Minimal Supersymmetric Model cannot be ideal whereas the lightest Higgs boson of the Next to Minimal Supersymmetric Model can be ideal. Experimental consequences for Higgs and supersymmetry discovery are then reviewed. I then examine the alternatives to the NMSSM in which the MSSM is extended via an extra U(1) symmetry.

  12. Production of heavy Higgs bosons and decay into top quarks at the LHC

    NASA Astrophysics Data System (ADS)

    Bernreuther, W.; Galler, P.; Mellein, C.; Si, Z.-G.; Uwer, P.

    2016-02-01

    We investigate the production of heavy, neutral Higgs boson resonances and their decays to top-quark top-antiquark (t t ¯) pairs at the Large Hadron Collider (LHC) at next-to-leading order (NLO) in the strong coupling of quantum chromodynamics (QCD). The NLO corrections to heavy Higgs boson production and the Higgs-QCD interference are calculated in the large mt limit with an effective K-factor rescaling. The nonresonant t t ¯ background is taken into account at NLO QCD including weak-interaction corrections. In order to consistently determine the total decay widths of the heavy Higgs bosons, we consider for definiteness the type-II two-Higgs-doublet extension of the standard model and choose three parameter scenarios that entail two heavy neutral Higgs bosons with masses above the t t ¯ threshold and unsuppressed Yukawa couplings to top quarks. For these three scenarios we compute, for the LHC operating at 13 TeV, the t t ¯ cross section and the distributions of the t t ¯ invariant mass, of the transverse top-quark momentum and rapidity, and of the cosine of the Collins-Soper angle with and without the two heavy Higgs resonances. For selected Mt t ¯ bins we estimate the significances for detecting a heavy Higgs signal in the t t ¯ dileptonic and lepton plus jets decay channels.

  13. Search for the standard model Higgs boson

    NASA Astrophysics Data System (ADS)

    Buskulic, D.; de Bonis, I.; Decamp, D.; Ghez, P.; Goy, C.; Lees, J.-P.; Minard, M.-N.; Pietrzyk, B.; Ariztizabal, F.; Comas, P.; Crespo, J. M.; Delfino, M.; Efthymiopoulos, I.; Fernandez, E.; Fernandez-Bosman, M.; Gaitan, V.; Garrido, Ll.; Mattison, T.; Pacheco, A.; Padilla, C.; Pascual, A.; Creanza, D.; de Palma, M.; Farilla, A.; Iaselli, G.; Maggi, G.; Natali, S.; Nuzzo, S.; Quattromini, M.; Ranieri, A.; Raso, G.; Romano, F.; Ruggieri, F.; Selvaggi, G.; Silvestris, L.; Tempesta, P.; Zito, G.; Chai, Y.; Hu, H.; Huang, D.; Huang, X.; Lin, J.; Wang, T.; Xie, Y.; Xu, D.; Xu, R.; Zhang, J.; Zhang, L.; Zhao, W.; Blucher, E.; Bonvicini, G.; Boudreau, J.; Casper, D.; Drevermann, H.; Forty, R. W.; Ganis, G.; Gay, C.; Hagelberg, R.; Harvey, J.; Hilgart, J.; Jacobsen, R.; Jost, B.; Knobloch, J.; Lehraus, I.; Lohse, T.; Maggi, M.; Markou, C.; Martinez, M.; Mato, P.; Meinhard, H.; Minten, A.; Miotto, A.; Miguel, R.; Moser, H.-G.; Palazzi, P.; Pater, J. R.; Perlas, J. A.; Pusztaszeri, J.-F.; Ranjard, F.; Redlinger, G.; Rolandi, L.; Rothberg, J.; Ruan, T.; Saich, M.; Schlatter, D.; Schmelling, M.; Sefkow, F.; Tejessy, W.; Tomalin, I. R.; Veenhof, R.; Wachsmuth, H.; Wasserbaech, S.; Wiedenmann, W.; Wildish, T.; Witzeling, W.; Wotschack, J.; Ajaltouni, Z.; Badaud, F.; Bardadin-Otwinowska, M.; El Fellous, R.; Falvard, A.; Gay, P.; Guicheney, C.; Henrard, P.; Jousset, J.; Michel, B.; Montret, J.-C.; Pallin, D.; Perret, P.; Podlyski, F.; Proriol, J.; Prulhière, F.; Saadi, F.; Fearnley, T.; Hansen, J. B.; Hansen, J. D.; Hansen, J. R.; Hansen, P. H.; Møllerud, R.; Nilsson, B. S.; Kyriakis, A.; Simopoulou, E.; Siotis, I.; Vayaki, A.; Zachariadou, K.; Badier, J.; Blondel, A.; Bonneaud, G.; Brient, J. C.; Fouque, G.; Orteu, S.; Rougé, A.; Rumpf, M.; Tanaka, R.; Verderi, M.; Videau, H.; Candlin, D. J.; Parsons, M. I.; Veitch, E.; Focardi, E.; Moneta, L.; Parrini, G.; Corden, M.; Georgiopoulos, C.; Ikeda, M.; Levinthal, D.; Antonelli, A.; Baldini, R.; Bencivenni, G.; Bologna, G.; Bossi, F.; Campana, P.; Capon, G.; Cerutti, F.; Chiarella, V.; D'Ettorre-Piazzoli, B.; Felici, G.; Laurelli, P.; Mannocchi, G.; Murtas, F.; Murtas, G. P.; Passalacqua, L.; Pepe-Altarelli, M.; Picchi, P.; Colrain, P.; Ten Have, I.; Lynch, J. G.; Maitland, W.; Morton, W. T.; Raine, C.; Reeves, P.; Scarr, J. M.; Smith, K.; Thompson, A. S.; Turnbull, R. M.; Brandl, B.; Braun, O.; Geweniger, C.; Hanke, P.; Hepp, V.; Kluge, E. E.; Maumary, Y.; Putzer, A.; Rensch, B.; Stahl, A.; Tittel, K.; Wunsch, M.; Beuselinck, R.; Binnie, D. M.; Cameron, W.; Cattaneo, M.; Colling, D. J.; Dornan, P. J.; Greene, A. M.; Hassard, J. F.; Lieske, N. M.; Moutoussi, A.; Nash, J.; Patton, S.; Payne, D. G.; Phillips, M. J.; San Martin, G.; Sedgbeer, J. K.; Wright, A. G.; Girtler, P.; Kuhn, D.; Rudolph, G.; Vogl, R.; Bowdery, C. K.; Brodbeck, T. J.; Finch, A. J.; Foster, F.; Hughes, G.; Jackson, D.; Keemer, N. R.; Nuttall, M.; Patel, A.; Sloan, T.; Snow, S. W.; Whelan, E. P.; Kleinknecht, K.; Raab, J.; Renk, B.; Sander, H.-G.; Schmidt, H.; Steeg, F.; Walther, S. M.; Wanke, R.; Wolf, B.; Bencheikh, A. M.; Benchouk, C.; Bonissent, A.; Carr, J.; Coyle, P.; Drinkard, J.; Etienne, F.; Nicod, D.; Papalexiou, S.; Payre, P.; Roos, L.; Rousseau, D.; Schwemling, P.; Talby, M.; Adlung, S.; Assmann, R.; Bauer, C.; Blum, W.; Brown, D.; Cattaneo, P.; Dehning, B.; Dietl, H.; Dydak, F.; Frank, M.; Halley, A. W.; Jakobs, K.; Lauber, J.; Lütjens, G.; Lutz, G.; Männer, W.; Richter, R.; Schröder, J.; Schwarz, A. S.; Settles, R.; Seywerd, H.; Stierlin, U.; Stiegler, U.; Dennis, R. St.; Wolf, G.; Alemany, R.; Boucrot, J.; Callot, O.; Cordier, A.; Davier, M.; Duflot, L.; Grivaz, J.-F.; Heusse, Ph.; Jaffe, D. E.; Janot, P.; Kim, D. W.; Le Diberder, F.; Lefrançois, J.; Lutz, A.-M.; Schune, M.-H.; Veillet, J.-J.; Videau, I.; Zhang, Z.; Abbaneo, D.; Bagliesi, G.; Batignani, G.; Bottigli, U.; Bozzi, C.; Calderini, G.; Carpinelli, M.; Ciocci, M. A.; Dell'Orso, R.; Ferrante, I.; Fidecaro, F.; Foà, L.; Forti, F.; Giassi, A.; Giorgi, M. A.; Gregorio, A.; Ligabue, F.; Lusiani, A.; Manneli, E. B.; Marrocchesi, P. S.; Messineo, A.; Palla, F.; Rizzo, G.; Sanguinetti, G.; Spagnolo, P.; Steinberger, J.; Techini, R.; Tonelli, G.; Triggiani, G.; Vannini, C.; Venturi, A.; Verdini, P. G.; Walsh, J.; Betteridge, A. P.; Gao, Y.; Green, M. G.; March, P. V.; Mir, Ll. M.; Medcalf, T.; Quazi, I. S.; Strong, J. A.; West, L. R.; Botterill, D. R.; Clifft, R. W.; Edgecock, T. R.; Haywood, S.; Norton, P. R.; Thompson, J. C.; Bloch-Devaux, B.; Colas, P.; Duarte, H.; Emery, S.; Kozanecki, W.; Lançon, E.; Lemaire, M. C.; Locci, E.; Marx, B.; Perez, P.; Rander, J.; Renardy, J.-F.; Rosowsky, A.; Roussarie, A.; Schuller, J.-P.; Schwindling, J.; Si Mohand, D.; Vallage, B.; Johnson, R. P.; Litke, A. M.; Taylor, G.; Wear, J.; Ashman, J. G.; Babbage, W.; Booth, C. N.; Buttar, C.; Cartwright, S.; Combley, F.; Dawson, I.; Thompson, L. F.; Barberio, E.; Böhrer, A.; Brandt, S.; Cowan, G.; Grupen, C.; Lutters, G.; Rivera, F.; Schäfer, U.; Smolik, L.; Bosisio, L.; Della Marina, R.; Giannini, G.; Gobbo, B.; Ragusa, F.; Bellantoni, L.; Chen, W.; Conway, J. S.; Feng, Z.; Ferguson, D. P. S.; Gao, Y. S.; Grahl, J.; Harton, J. L.; Hayes, O. J.; Nachtman, J. M.; Pan, Y. B.; Saadi, Y.; Schmitt, M.; Scott, I.; Sharma, V.; Shi, Z. H.; Turk, J. D.; Walsh, A. M.; Weber, F. V.; Sau Lan Wu; Wu, X.; Zheng, M.; Zobernig, G.; Aleph Collaboration

    1993-08-01

    Using a data sample corresponding to about 1 233 000 hadronic Z decays collected by the ALEPH experiment at LEP, the reaction e+e- → HZ∗ has been used to search for the standard model Higgs boson, in association with missing energy when Z∗ → v v¯, or with a pair of energetic leptons when Z∗ → e+e-or μ +μ -. No signal was found and, at the 95% confidence level, mH exceeds 58.4 GeV/ c2.

  14. Finding the Higgs boson through supersymmetry

    SciTech Connect

    Campos, F. de; Eboli, O. J. P.; Magro, M. B.; Restrepo, D.; Valle, J. W. F.

    2009-07-01

    The study of displaced vertices containing two b-jets may provide a double discovery at the Large Hadron Collider (LHC): we show how it may not only reveal evidence for supersymmetry, but also provide a way to uncover the Higgs boson necessary in the formulation of the electroweak theory in a large region of the parameter space. We quantify this explicitly using the simplest minimal supergravity model with bilinear breaking of R-parity, which accounts for the observed pattern of neutrino masses and mixings seen in neutrino oscillation experiments.

  15. Radiative PQ breaking and the Higgs boson mass

    NASA Astrophysics Data System (ADS)

    D'Eramo, Francesco; Hall, Lawrence J.; Pappadopulo, Duccio

    2015-06-01

    The small and negative value of the Standard Model Higgs quartic coupling at high scales can be understood in terms of anthropic selection on a landscape where large and negative values are favored: most universes have a very short-lived electroweak vacuum and typical observers are in universes close to the corresponding metastability boundary. We provide a simple example of such a landscape with a Peccei-Quinn symmetry breaking scale generated through dimensional transmutation and supersymmetry softly broken at an intermediate scale. Large and negative contributions to the Higgs quartic are typically generated on integrating out the saxion field. Cancellations among these contributions are forced by the anthropic requirement of a sufficiently long-lived electroweak vacuum, determining the multiverse distribution for the Higgs quartic in a similar way to that of the cosmological constant. This leads to a statistical prediction of the Higgs boson mass that, for a wide range of parameters, yields the observed value within the 1σ statistical uncertainty of ˜ 5 GeV originating from the multiverse distribution. The strong CP problem is solved and single-component axion dark matter is predicted, with an abundance that can be understood from environmental selection. A more general setting for the Higgs mass prediction is discussed.

  16. Higgs boson pair production merged to one jet

    NASA Astrophysics Data System (ADS)

    Maierhöfer, Philipp; Papaefstathiou, Andreas

    2014-03-01

    We develop a Monte Carlo event generator for Higgs Boson pair production merged to exact one-jet matrix elements. The matrix elements are generated with OpenLoops and event generation is performed with the HERWIG++ general-purpose event generator. This allows us to simulate fully-exclusive hadronic final states with accurate description of the kinematics of the leading jet in conjunction with a parton shower. We use the implementation to examine in detail the systematic uncertainties which result from the merging procedure. We assess the magnitude of the impact of the merging on experimental searches of Standard Model di-Higgs production that aim to constrain the Higgs boson self-coupling. We find that the use of a merged sample can reduce theoretical systematic uncertainties in the efficiencies of cuts on certain observables. This constitutes the most accurate simulation of the process available to date. The Monte Carlo event generator developed for this project is available as an add-on to the HERWIG++ event generator at http://www.physik.uzh.ch/data/openloops/download/projects/hhmerge/.

  17. Discovering the Higgs boson with low mass muon pairs

    SciTech Connect

    Lisanti, Mariangela; Wacker, Jay G.

    2009-06-01

    Many models of electroweak symmetry breaking have an additional light pseudoscalar. If the Higgs boson can decay to a new pseudoscalar, LEP searches for the Higgs can be significantly altered and the Higgs can be as light as 86 GeV. Discovering the Higgs boson in these models is challenging when the pseudoscalar is lighter than 10 GeV because it decays dominantly into tau leptons. In this paper, we discuss discovering the Higgs in a subdominant decay mode where one of the pseudoscalars decays to a pair of muons. This search allows for potential discovery of a cascade-decaying Higgs boson with the complete Tevatron data set or early data at the LHC.

  18. Precise determination of the mass of the Higgs boson and tests of compatibility of its couplings with the standard model predictions using proton collisions at 7 and 8 $\\,\\text {TeV}$

    SciTech Connect

    Khachatryan, Vardan

    2015-05-14

    Properties of the Higgs boson with mass near 125GeV are measured in proton-proton collisions with the CMS experiment at the LHC. Comprehensive sets of production and decay measurements are combined. The decay channels include γγ, ZZ, WW, ττ, bb, and μμ pairs. The data samples were collected in 2011 and 2012 and correspond to integrated luminosities of up to 5.1fb-1 at 7TeV and up to 19.7fb-1 at 8TeV. From the high-resolution γγ and ZZ channels, the mass of the Higgs boson is determined to be 125.02+0.26–0.27 (stat) +0.14–0.15 (syst) GeV. For this mass value, the event yields obtained in the different analyses tagging specific decay channels and production mechanisms are consistent with those expected for the standard model Higgs boson. The combined best-fit signal relative to the standard model expectation is 1.00 ± 0.09(stat)+0.08–0.07 (theo) ± 0.07(syst) at the measured mass. The couplings of the Higgs boson are probed for deviations in magnitude from the standard model predictions in multiple ways, including searches for invisible and undetected decays. As a result, no significant deviations are found.

  19. New physics in resonant production of Higgs boson pairs.

    PubMed

    Barger, Vernon; Everett, Lisa L; Jackson, C B; Peterson, Andrea D; Shaughnessy, Gabe

    2015-01-01

    We advocate a search for an extended scalar sector at the LHC via hh production, where h is the 125 GeV Higgs boson. A resonance feature in the hh invariant mass is a smoking gun of an s-channel heavy Higgs resonance, H. With one h decaying to two photons and the other decaying to b quarks, the resonant signal may be discoverable above the hh continuum background for M(H)<1  TeV. The product of the scalar and top Yukawa couplings can be measured to better than 10%-20% accuracy, and its sign can be inferred from the hh line shape via interference effects. PMID:25615458

  20. Hunting the Elusive Higgs Boson and the Origin of Mass

    SciTech Connect

    Dixon, Lance

    2007-12-11

    For over 40 years, physicists have been trying to track down a hypothetical particle called the Higgs boson. This particle could explain how known elementary particles like the electron can have mass, and also why one of the basic forces, the weak interaction, is in fact so incredibly weak. However, the Higgs boson has escaped detection so far, even at the most powerful particle accelerators. The next big chance to 'bag' this particle will come when the Large Hadron Collider turns on next year. Will the Higgs boson finally be found? Or will an unexpected explanation for these mysteries be revealed?

  1. Heavy Higgs bosons and the 2 TeV W ' boson

    NASA Astrophysics Data System (ADS)

    Dobrescu, Bogdan A.; Liu, Zhen

    2015-10-01

    The hints from the LHC for the existence of a W ' boson of mass around 1.9 TeV point towards a certain SU(2) L × SU(2) R × U(1) B- L gauge theory with an extended Higgs sector. We show that the decays of the W ' boson into heavy Higgs bosons have sizable branching fractions. Interpreting the ATLAS excess events in the search for same-sign lepton pairs plus b jets as arising from W ' cascade decays, we estimate that the masses of the heavy Higgs bosons are in the 400-700 GeV range.

  2. Heavy Higgs bosons and the 2 TeV $W'$ boson

    SciTech Connect

    Dobrescu, Bogdan A.; Liu, Zhen

    2015-10-19

    The hints from the LHC for the existence of a W' boson of mass around 1.9 TeV point towards a certain SU(2) L × SU(2) R × U(1) B-L gauge theory with an extended Higgs sector. We show that the decays of the W' boson into heavy Higgs bosons have sizable branching fractions. Interpreting the ATLAS excess events in the search for same-sign lepton pairs plus b jets as arising from W' cascade decays, we then estimate that the masses of the heavy Higgs bosons are in the 400-700 GeV range.

  3. Heavy Higgs bosons and the 2 TeV $W'$ boson

    DOE PAGESBeta

    Dobrescu, Bogdan A.; Liu, Zhen

    2015-10-19

    The hints from the LHC for the existence of a W' boson of mass around 1.9 TeV point towards a certain SU(2) L × SU(2) R × U(1) B-L gauge theory with an extended Higgs sector. We show that the decays of the W' boson into heavy Higgs bosons have sizable branching fractions. Interpreting the ATLAS excess events in the search for same-sign lepton pairs plus b jets as arising from W' cascade decays, we then estimate that the masses of the heavy Higgs bosons are in the 400-700 GeV range.

  4. Unraveling the physics behind modified Higgs couplings: LHC versus a Higgs factory

    NASA Astrophysics Data System (ADS)

    Giddings, Steven B.; Liu, Tao; Low, Ian; Mintun, Eric

    2013-11-01

    Strongly modified hγγ and hgg couplings indicate new electroweak and color mediators, respectively, with a light mass and a significant coupling to the Higgs boson. We point out the Higgs boson could have a significant decay width into the mediators. This represents one new class of exotic Higgs decay possibilities: off-shell exotic Higgs decays. We then propose uncovering the hidden new physics through such exotic decays. A great advantage of this strategy is that we can directly probe the couplings between the Higgs boson and the mediators, which is hard to achieve by using other methods. Focusing on the electroweak mediators, we study a simplified model using as an example final states with tau leptons and neutrinos. Because one of the mediators is off shell and its decay products are extremely soft, it is challenging to make a discovery at the Large Hadron Collider. A Higgs factory such as the International Linear Collider, however, could serve as a discovery machine for such exotic Higgs decays even in an early stage.

  5. Higgs-inflaton coupling from reheating and the metastable Universe

    NASA Astrophysics Data System (ADS)

    Gross, Christian; Lebedev, Oleg; Zatta, Marco

    2016-02-01

    Current Higgs boson and top quark data favor metastability of our vacuum which raises questions as to why the Universe has chosen an energetically disfavored state and remained there during inflation. In this Letter, we point out that these problems can be solved by a Higgs-inflaton coupling which appears in realistic models of inflation. Since an inflaton must couple to the Standard Model particles either directly or indirectly, such a coupling is generated radiatively, even if absent at tree level. As a result, the dynamics of the Higgs field can change dramatically.

  6. FeynHiggs: A program for the calculation of MSSM Higgs-boson observables - Version 2.6.5

    NASA Astrophysics Data System (ADS)

    Hahn, T.; Heinemeyer, S.; Hollik, W.; Rzehak, H.; Weiglein, G.

    2009-08-01

    FeynHiggs is a Fortran code for the calculation of physical observables in the field of high-energy physics. FeynHiggs calculates various observables in the Higgs sector of the Minimal Supersymmetric Standard Model (MSSM) for real or complex parameters. These observables comprise Higgs-boson masses, mixing angles, couplings, Tevatron/LHC production cross-sections, branching ratios, as well as some additional observables such as Δ ρ, M, the effective leptonic weak mixing angle, (, BR( b→sγ), electric dipole moments. New version program summaryProgram title: FeynHiggs v2.6.5 Catalogue identifier: ADKT_v2_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/ADKT_v2_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: GPL No. of lines in distributed program, including test data, etc.: 156 455 No. of bytes in distributed program, including test data, etc.: 1 058 758 Distribution format: tar.gz Programming language: Fortran 77, C, Mathematica Computer: Intel/AMD, PowerPC, Alpha Operating system: Linux, Windows (Cygwin), Mac OS, Tru64 Unix RAM: insignificant (typically a few MB) Classification: 11.5 Catalogue identifier of previous version: ADKT_v1_0 Journal reference of previous version: Comput. Phys. Comm. 124 (2000) 76 Does the new version supersede the previous version?: Yes Nature of problem: The experimental searches for Higgs bosons have to be compared with theory predictions at a high level of accuracy. Radiative corrections are especially important in the Minimal Supersymmetric Standard Model (MSSM). Solution method: High-precision calculations (mostly based on the Feynman-diagrammatic approach) for various Higgs-boson observables in the MSSM are implemented. The program takes the basic model parameters as input and evaluates many MSSM Higgs-boson observables relevant for experimental Higgs-boson physics. Reasons for new version: Existing calculations have been refined (e.g., by the inclusion

  7. Higgs boson production at hadron colliders: Signal and background processes

    SciTech Connect

    David Rainwater; Michael Spira; Dieter Zeppenfeld

    2004-01-12

    We review the theoretical status of signal and background calculations for Higgs boson production at hadron colliders. Particular emphasis is given to missing NLO results, which will play a crucial role for the Tevatron and the LHC.

  8. Is the Higgs boson a sign of extra dimensions?

    NASA Astrophysics Data System (ADS)

    So, Hiroto; Takenaga, Kazunori

    2013-07-01

    We introduce a four-dimensional cutoff in the scenario of gauge-Higgs unification to control the ultraviolet behavior. A one-loop effective potential for a Higgs field and the Higgs mass are obtained with the cutoff. We find an interrelation between the four-dimensional cutoff and the scale of extra dimensions, which is concretized through the Higgs mass. Combining this interrelation and the recently discovered Higgs boson at the LHC, we obtain an interesting constraint for the four-dimensional cutoff and the extra-dimensional scale.

  9. Anomalous gauge boson couplings

    SciTech Connect

    Barklow, T.; Rizzo, T.; Baur, U.

    1997-01-13

    The measurement of anomalous gauge boson self couplings is reviewed for a variety of present and planned accelerators. Sensitivities are compared for these accelerators using models based on the effective Lagrangian approach. The sensitivities described here are for measurement of {open_quotes}generic{close_quotes} parameters {kappa}{sub V}, {lambda}{sub V}, etc., defined in the text. Pre-LHC measurements will not probe these coupling parameters to precision better than O(10{sup -1}). The LHC should be sensitive to better than O(10{sup -2}), while a future NLC should achieve sensitivity of O(10{sup -3}) to O(10{sup -4}) for center of mass energies ranging from 0.5 to 1.5 TeV.

  10. Seesaw majoron model of neutrino mass and novel signals in Higgs boson production at LEP

    NASA Astrophysics Data System (ADS)

    Díaz, Marco A.; García-Jareño, M. A.; Restrepo, Diego A.; Valle, José W. F.

    1998-08-01

    We perform a careful study of the neutral scalar sector of a model which includes a singlet, a doublet, and a triplet scalar field under SU(2). This model is motivated by neutrino physics, since it is simply the most general version of the seesaw model of neutrino mass generation through spontaneous violation of lepton number. The neutral Higgs sector contains three CP-even and one massive CP-odd Higgs boson A, in addition to the massless CP-odd mojoron J. The weakly interacting majoron remains massless if the breaking of lepton number symmetry is purely spontaneous. We show that the massive CP-odd Higgs boson may invisibly decay to three majorons, as well as to a CP-even Higgs H boson plus a majoron. We consider the associated Higgs production e+e- → Z → HA followed by invisible decays A → JJJ and H → JJ and derive the corresponding limits on masses and coupling that follow from LEP I precision measurements of the invisible Z width. We also study a novel b overlinebb overlinebp T signal predicted by the model, analyze the background and perform a Monte Carlo simulation of the signal in order to illustrate the limits on Higgs boson mass, couplings and branching ratios that follow from that.

  11. Higgs couplings and electroweak phase transition

    NASA Astrophysics Data System (ADS)

    Katz, Andrey; Perelstein, Maxim

    2014-07-01

    We argue that extensions of the Standard Model (SM) with a strongly first-order electroweak phase transition generically predict significant deviations of the Higgs couplings to gluons, photons, and Z bosons from their SM values. Precise experimental measurements of the Higgs couplings at the LHC and at the proposed next-generation facilities will allow for a robust test of the phase transition dynamics. To illustrate this point, in this paper we focus on the scenario in which loops of a new scalar field are responsible for the first-order phase transition, and study a selection of benchmark models with various SM gauge quantum numbers of the new scalar. We find that the current LHC measurement of the Higgs coupling to gluons already excludes the possibility of a first-order phase transition induced by a scalar in a sextet, or larger, representation of the SU(3) c . Future LHC experiments (including HL-LHC) will be able to definitively probe the case when the new scalar is a color triplet. If the new scalar is not colored, an electron-positron Higgs factory, such as the proposed ILC or TLEP, would be required to test the nature of the phase transition. The extremely precise measurement of the Higgsstrahlung cross section possible at such machines will allow for a comprehensive and definitive probe of the possibility of a first-order electroweak phase transition in all models we considered, including the case when the new scalar is a pure gauge singlet.

  12. Higgs Bosons in Particle Physics and in Condensed Matter

    NASA Astrophysics Data System (ADS)

    Volovik, G. E.; Zubkov, M. A.

    2014-04-01

    Higgs bosons—the amplitude modes—have been experimentally investigated in condensed matter for many years. An example is superfluid 3He-B, where the broken symmetry leads to 4 Goldstone modes and at least 14 Higgs modes, which are characterized by angular momentum quantum number J and parity (Zeeman splitting of Higgs modes with J=2+ and J=2- in magnetic field has been observed in 80's). Based on the relation for the energy spectrum of these modes, Yoichiro Nambu proposed the general sum rule, which relates masses of Higgs bosons and masses of fermions. If this rule is applicable to Standard Model, one may expect that the observed Higgs boson with mass M H1=125 GeV has a Nambu partner—the second Higgs boson with mass M H2=325 GeV. Together they satisfy the Nambu relation , where M top is the top quark mass. Also the properties of the Higgs modes in superfluid 3He-A, where the symmetry breaking is similar to that of the Standard Model, suggest the possible existence of two electrically charged Higgs particles with masses M H+= M H-˜245 GeV, which together obey the Nambu rule . A certain excess of events at 325 GeV and at 245 GeV has been reported in 2011, though not confirmed in 2012 experiments. Besides, we consider the particular relativistic model of top—quark condensation that suggests the possibility that two twice degenerated Higgs bosons contribute to the Nambu sum rule. This gives the mass around 210 GeV for the Nambu partner of the 125 GeV Higgs boson. We also discuss the other possible lessons from the condensed matter to Standard Model, such as hidden symmetry, where light Higgs emerges as quasi Nambu-Goldstone mode, and the role of broken time reversal symmetry.

  13. Higgs boson decay into a pair of leptons.

    SciTech Connect

    Berger, E. L.; Sullivan, Z.; High Energy Physics

    2008-01-01

    The decay of a Higgs boson into a pair of W bosons h {yields} W{sup +}W{sup -}, is a dominant mode for Higgs boson masses above 135 GeV. At hadron colliders, searches for this decay focus on channels in which both W bosons decay leptonically, h {yields} W{sup +}W{sup -} {yields} l{sup +}l{sup -} plus missing energy. We show that semileptonic decays of heavy flavors are an important background to this signal. Lepton isolation provides too little suppression of heavy flavor contributions, and an additional 4 to 8 orders-of-magnitude suppression must come from physics cuts. An increase of the cut on the the minimum transverse momentum of non-leading leptons in multilepton events is one effective way to achieve the needed suppression, without appreciable loss of the Higgs boson signal.

  14. Hiding a Heavy Higgs Boson at the 7 TeV LHC

    SciTech Connect

    Bai, Yang; Fan, JiJi; Hewett, JoAnne L.

    2012-03-20

    A heavy Standard Model Higgs boson is not only disfavored by electroweak precision observables but is also excluded by direct searches at the 7 TeV LHC for a wide range of masses. Here, we examine scenarios where a heavy Higgs boson can be made consistent with both the indirect constraints and the direct null searches by adding only one new particle beyond the Standard Model. This new particle should be a weak multiplet in order to have additional contributions to the oblique parameters. If it is a color singlet, we find that a heavy Higgs with an intermediate mass of 200-300 GeV can decay into the new states, suppressing the branching ratios for the standard model modes, and thus hiding a heavy Higgs at the LHC. If the new particle is also charged under QCD, the Higgs production cross section from gluon fusion can be reduced significantly due to the new colored particle one-loop contribution. Current collider constraints on the new particles allow for viable parameter space to exist in order to hide a heavy Higgs boson. We categorize the general signatures of these new particles, identify favored regions of their parameter space and point out that discovering or excluding them at the LHC can provide important indirect information for a heavy Higgs. Finally, for a very heavy Higgs boson, beyond the search limit at the 7 TeV LHC, we discuss three additional scenarios where models would be consistent with electroweak precision tests: including an additional vector-like fermion mixing with the top quark, adding another U(1) gauge boson and modifying triple-gauge boson couplings.

  15. Prospects for MSSM Higgs boson searches at the Fermilab Tevatron

    SciTech Connect

    Draper, Patrick; Liu, Tao; Wagner, Carlos E. M.

    2009-08-01

    We analyze the Tevatron reach for neutral Higgs bosons in the minimal supersymmetric standard model, using current exclusion limits on the standard model Higgs. We study four common benchmark scenarios for the soft supersymmetry-breaking parameters of the minimal supersymmetric standard model, including cases where the Higgs decays differ significantly from the standard model, and provide projections for the improvements in luminosity and efficiency required for the Tevatron to probe sizeable regions of the (m{sub A},tan{beta}) plane.

  16. Double Higgs boson production in the models with isotriplets

    SciTech Connect

    Godunov, S. I. Vysotsky, M. I. Zhemchugov, E. V.

    2015-12-15

    The enhancement of double Higgs boson production in the extensions of the Standard Model with extra isotriplets is studied. It is found that in see-saw type II model decays of new heavy Higgs can contribute to the double Higgs production cross section as much as Standard Model channels. In Georgi–Machacek model the cross section can be much larger since the custodial symmetry is preserved and the strongest limitation on triplet parameters is removed.

  17. Precision Higgs Boson Physics and Implications for Beyond the Standard Model Physics Theories

    SciTech Connect

    Wells, James

    2015-06-10

    The discovery of the Higgs boson is one of science's most impressive recent achievements. We have taken a leap forward in understanding what is at the heart of elementary particle mass generation. We now have a significant opportunity to develop even deeper understanding of how the fundamental laws of nature are constructed. As such, we need intense focus from the scientific community to put this discovery in its proper context, to realign and narrow our understanding of viable theory based on this positive discovery, and to detail the implications the discovery has for theories that attempt to answer questions beyond what the Standard Model can explain. This project's first main object is to develop a state-of-the-art analysis of precision Higgs boson physics. This is to be done in the tradition of the electroweak precision measurements of the LEP/SLC era. Indeed, the electroweak precision studies of the past are necessary inputs to the full precision Higgs program. Calculations will be presented to the community of Higgs boson observables that detail just how well various couplings of the Higgs boson can be measured, and more. These will be carried out using state-of-the-art theory computations coupled with the new experimental results coming in from the LHC. The project's second main objective is to utilize the results obtained from LHC Higgs boson experiments and the precision analysis, along with the direct search studies at LHC, and discern viable theories of physics beyond the Standard Model that unify physics to a deeper level. Studies will be performed on supersymmetric theories, theories of extra spatial dimensions (and related theories, such as compositeness), and theories that contain hidden sector states uniquely accessible to the Higgs boson. In addition, if data becomes incompatible with the Standard Model's low-energy effective lagrangian, new physics theories will be developed that explain the anomaly and put it into a more unified framework beyond

  18. Limits on the Higgs boson lifetime and width from its decay to four charged leptons

    NASA Astrophysics Data System (ADS)

    Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Flechl, M.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Knünz, V.; König, A.; Krammer, M.; Krätschmer, I.; Liko, D.; Matsushita, T.; Mikulec, I.; Rabady, D.; Rahbaran, B.; Rohringer, H.; Schieck, J.; Schöfbeck, R.; Strauss, J.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Alderweireldt, S.; Cornelis, T.; de Wolf, E. A.; Janssen, X.; Knutsson, A.; Lauwers, J.; Luyckx, S.; Ochesanu, S.; Rougny, R.; van de Klundert, M.; van Haevermaet, H.; van Mechelen, P.; van Remortel, N.; van Spilbeeck, A.; Abu Zeid, S.; Blekman, F.; D'Hondt, J.; Daci, N.; de Bruyn, I.; Deroover, K.; Heracleous, N.; Keaveney, J.; Lowette, S.; Moreels, L.; Olbrechts, A.; Python, Q.; Strom, D.; Tavernier, S.; van Doninck, W.; van Mulders, P.; van Onsem, G. P.; van Parijs, I.; Barria, P.; Caillol, C.; Clerbaux, B.; de Lentdecker, G.; Delannoy, H.; Fasanella, G.; Favart, L.; Gay, A. P. R.; Grebenyuk, A.; Lenzi, T.; Léonard, A.; Maerschalk, T.; Marinov, A.; Perniè, L.; Randle-Conde, A.; Reis, T.; Seva, T.; Vander Velde, C.; Vanlaer, P.; Yonamine, R.; Zenoni, F.; Zhang, F.; Beernaert, K.; Benucci, L.; Cimmino, A.; Crucy, S.; Dobur, D.; Fagot, A.; Garcia, G.; Gul, M.; McCartin, J.; Ocampo Rios, A. A.; Poyraz, D.; Ryckbosch, D.; Salva, S.; Sigamani, M.; Strobbe, N.; Tytgat, M.; van Driessche, W.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Beluffi, C.; Bondu, O.; Brochet, S.; Bruno, G.; Castello, R.; Caudron, A.; Ceard, L.; da Silveira, G. G.; Delaere, C.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Jafari, A.; Jez, P.; Komm, M.; Lemaitre, V.; Mertens, A.; Nuttens, C.; Perrini, L.; Pin, A.; Piotrzkowski, K.; Popov, A.; Quertenmont, L.; Selvaggi, M.; Vidal Marono, M.; Beliy, N.; Hammad, G. H.; Aldá Júnior, W. L.; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Hamer, M.; Hensel, C.; Mora Herrera, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.; Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Custódio, A.; da Costa, E. M.; de Jesus Damiao, D.; de Oliveira Martins, C.; Fonseca de Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Prado da Silva, W. L.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.; Ahuja, S.; Bernardes, C. A.; de Souza Santos, A.; Dogra, S.; Tomei, T. R. Fernandez Perez; Gregores, E. M.; Mercadante, P. G.; Moon, C. S.; Novaes, S. F.; Padula, Sandra S.; Romero Abad, D.; Ruiz Vargas, J. C.; Aleksandrov, A.; Genchev, V.; Hadjiiska, R.; Iaydjiev, P.; Piperov, S.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.; Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Cheng, T.; Du, R.; Jiang, C. H.; Plestina, R.; Romeo, F.; Shaheen, S. M.; Tao, J.; Wang, C.; Wang, Z.; Zhang, H.; Asawatangtrakuldee, C.; Ban, Y.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Zou, W.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; Gomez Moreno, B.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Polic, D.; Puljak, I.; Ribeiro Cipriano, P. M.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Kadija, K.; Luetic, J.; Micanovic, S.; Sudic, L.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Bodlak, M.; Finger, M.; Finger, M.; El-Khateeb, E.; Elkafrawy, T.; Mohamed, A.; Salama, E.; Calpas, B.; Kadastik, M.; Murumaa, M.; Raidal, M.; Tiko, A.; Veelken, C.; Eerola, P.; Pekkanen, J.; Voutilainen, M.; Härkönen, J.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Machet, M.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Zghiche, A.; Antropov, I.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Chapon, E.; Charlot, C.; Dahms, T.; Davignon, O.; Filipovic, N.; Florent, A.; Granier de Cassagnac, R.; Lisniak, S.; Mastrolorenzo, L.; Miné, P.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Regnard, S.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Strebler, T.; Yilmaz, Y.; Zabi, A.; Agram, J.-L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J.-M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Coubez, X.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Goetzmann, C.

    2015-10-01

    Constraints on the lifetime and width of the Higgs boson are obtained from H →Z Z →4 ℓ events using data recorded by the CMS experiment during the LHC run 1 with an integrated luminosity of 5.1 and 19.7 fb-1 at a center-of-mass energy of 7 and 8 TeV, respectively. The measurement of the Higgs boson lifetime is derived from its flight distance in the CMS detector with an upper bound of τH<1.9 ×10-13 s at the 95% confidence level (C.L.), corresponding to a lower bound on the width of ΓH>3.5 ×10-9 MeV . The measurement of the width is obtained from an off-shell production technique, generalized to include anomalous couplings of the Higgs boson to two electroweak bosons. From this measurement, a joint constraint is set on the Higgs boson width and a parameter fΛ Q that expresses an anomalous coupling contribution as an on-shell cross-section fraction. The limit on the Higgs boson width is ΓH<46 MeV with fΛ Q unconstrained and ΓH<26 MeV for fΛ Q=0 at the 95% C.L. The constraint fΛ Q<3.8 ×10-3 at the 95% C.L. is obtained for the expected standard model Higgs boson width.

  19. Search for the Standard Model Higgs Boson in associated production with w boson at the Tevatron

    SciTech Connect

    Chun, Xu

    2009-11-01

    A search for the Standard Model Higgs boson in proton-antiproton collisions with center-of-mass energy 1.96 TeV at the Tevatron is presented in this dissertation. The process of interest is the associated production of W boson and Higgs boson, with the W boson decaying leptonically and the Higgs boson decaying into a pair of bottom quarks. The dataset in the analysis is accumulated by the D0 detector from April 2002 to April 2008 and corresponding to an integrated luminosity of 2.7 fb-1. The events are reconstructed and selected following the criteria of an isolated lepton, missing transverse energy and two jets. The D0 Neural Network b-jet identification algorithm is further used to discriminate b jets from light jets. A multivariate analysis combining Matrix Element and Neural Network methods is explored to improve the Higgs boson signal significance. No evidence of the Higgs boson is observed in this analysis. In consequence, an observed (expected) limit on the ratio of σ (p$\\bar{p}$ → WH) x Br (H → b$\\bar{b}$) to the Standard Model prediction is set to be 6.7 (6.4) at 95% C.L. for the Higgs boson with a mass of 115 GeV.

  20. Hidden sector dark matters and elusive Higgs boson(s) at the LHC

    SciTech Connect

    Ko, P.

    2012-07-27

    We consider two types of hidden sector dark matters (DM's), with and without QCD-like new strong interaction with confinement properties, and their interplays with the Standard Model (SM) Higgs boson. Assuming the hidden sector has only fermions (and gauge bosons in case of strongly interacting hidden sector), we have to introduce a real singlet scalar boson S as a messenger between the SM and the hidden sector dark matters. This singlet scalar will mix with the SM Higgs boson h, and we expect there are two Higgs-like scalar bosons H{sub 1} and H{sub 2}. Imposing all the relevant constraints from collider search bounds on Higgs boson, DM scattering cross section on proton and thermal relic density, we find that one of the two Higgs-like scalar bosons can easily escape the detections at the LHC. Recent results on the Higgs-like new boson with mass around with 125 GeV from the LHC will constrain this class of models, which is left for future study.

  1. Quartic gauge boson couplings

    NASA Astrophysics Data System (ADS)

    He, Hong-Jian

    1998-08-01

    We review the recent progress in studying the anomalous electroweak quartic gauge boson couplings (QGBCs) at the LHC and the next generation high energy e±e- linear colliders (LCs). The main focus is put onto the strong electroweak symmetry breaking scenario in which the non-decoupling guarantees sizable new physics effects for the QGBCs. After commenting upon the current low energy indirect bounds and summarizing the theoretical patterns of QGBCs predicted by the typical resonance/non-resonance models, we review our systematic model-independent analysis on bounding them via WW-fusion and WWZ/ZZZ-production. The interplay of the two production mechanisms and the important role of the beam-polarization at the LCs are emphasized. The same physics may be similarly and better studied at a multi-TeV muon collider with high luminosity.

  2. Natural SUSY and the Higgs boson

    NASA Astrophysics Data System (ADS)

    Huang, Peisi

    2014-06-01

    Supersymmetry (SUSY) solves the hierarchy problem by introducing a super partner to each Standard Model(SM) particle. SUSY must be broken in nature, which means the fine-tuning is reintroduced to some level. Natural SUSY models enjoy low fine-tuning by featuring a small super potential parameter μ ˜ 125 GeV, while the third generation squarks have mass less than 1.5 TeV. First and second generation sfermions can be at the multi-TeV level which yields a decoupling solution to the SUSY flavor and CP problem. However, models of Natural SUSY have difficulties in predicting a mh at 125 GeV, because the third generation is too light to give large radiative correction to the Higgs mass. The models of Radiative Natural SUSY (RNS) address this problem by allowing for high scale soft SUSY breaking Higgs mass mHu > m0, which leads to automatic cancellation by the Renormalization Group (RG) running effect. Coupled with the large mixing in the stop sector, RNS allows low fine-tuning at 3-10 % level and a 125 GeV SM-like Higgs. RNS can be reached at the LHC, and a linear collider. If the strong CP problem is solved by the Peccei-Quinn mechanism, then RNS accommodates mixed axion-Higgsino cold dark matter, where the Higgsino-like WIMPs, which in this case make up only a fraction of the relic abundance, can be detectable at future WIMP detectors.

  3. Searches for the standard model Higgs boson at the Tevatron

    SciTech Connect

    Dorigo, Tommaso; /Padua U.

    2005-05-01

    The CDF and D0 experiments at the Tevatron have searched for the Standard Model Higgs boson in data collected between 2001 and 2004. Upper limits have been placed on the production cross section times branching ratio to b{bar b} pairs or W{sup +}W{sup -} pairs as a function of the Higgs boson mass. projections indicate that the Tevatron experiments have a chance of discovering a M{sub H} = 115 GeV Higgs with the total dataset foreseen by 2009, or excluding it at 95% C.L. up to a mass of 135 GeV.

  4. Production of supersymmetric Higgs bosons at LEP ⊗ LHC

    NASA Astrophysics Data System (ADS)

    Franke, F.; Wöhrmann, T.

    1995-02-01

    Within the Minimal Supersymmetric Standard Model (MSSM), we study the production of the neutral scalar and pseudoscalar as well as the charged Higgs bosons together with fermions or sfermions in deep inelastic ep scattering at s=1.6 TeV. We focus on the parameter space where a Higgs particle is likely to be invisible at LEP2 and LHC. Although we choose gaugino/higgsino mixing scenarios that maximize the corresponding production rates we find only for the production of the scalar Higgs bosons in the non-supersymmetric channels non-negligible cross sections of the order of 10 2 fb.

  5. Effective field theory for Higgs boson plus jet production

    NASA Astrophysics Data System (ADS)

    Dawson, S.; Lewis, I. M.; Zeng, Mao

    2014-11-01

    We use an effective field theory which includes all possible gluon-Higgs dimension-5 and dimension-7 operators to study Higgs boson plus jet production in next-to-leading order QCD. The effective field theory sheds light on the effect of a finite top quark mass as well as any beyond-the-Standard-Model modifications of Higgs-gluon effective couplings. In the gluon channel, the accuracy of the heavy-top approximation for differential distributions arises from the noninterference between the helicity amplitudes of the G3h and G2h operators in the mh

  6. Searching heavier Higgs boson via di-Higgs production at LHC Run-2

    NASA Astrophysics Data System (ADS)

    Lü, Lan-Chun; Du, Chun; Fang, Yaquan; He, Hong-Jian; Zhang, Huijun

    2016-04-01

    The discovery of a light Higgs particle h0 (125 GeV) opens up new prospect for searching heavier Higgs boson(s) at the LHC Run-2, which will unambiguously point to new physics beyond the standard model (SM). We study the detection of a heavier neutral Higgs boson H0 via di-Higgs production channel at the LHC (14 TeV), H0 →h0h0 → WW* γγ. This directly probes the Hhh cubic Higgs interaction, which exists in most extensions of the SM Higgs sector. For the decay products of final states WW*, we include both pure leptonic mode WW* → ℓ ν bar ℓ bar ν and semi-leptonic mode WW* → qqbar‧ ℓν. We analyze signals and backgrounds by performing fast detector simulation for the full process pp → H → hh → WW* γγ → ℓ ν bar ℓ bar νγγ and pp → H → hh → WW* γγ → ℓνqqbar‧ γγ, over the mass range MH = 250- 600 GeV. For generic two-Higgs-doublet models (2HDM), we present the discovery reach of the heavier Higgs boson at the LHC Run-2, and compare it with the current Higgs global fit of the 2HDM parameter space.

  7. Searches for Higgs bosons beyond the Standard Model at the Tevatron

    SciTech Connect

    Biscarat, Catherine; /Lancaster U.

    2004-08-01

    Preliminary results from the CDF and D0 Collaborations on the searches for Higgs bosons beyond the Standard Model at the Run II Tevatron are reviewed. These results are based on datasets corresponding to an integrated luminosity of 100-200 pb{sup -1} collected from proton anti-proton collisions at a center of mass energy of 1.96 TeV. No evidence of signal is observed and limits on Higgs bosons production cross sections times branching ratio, couplings and masses from various models are set.

  8. One-loop perturbative unitarity and the Higgs-boson mass: A new approach

    NASA Astrophysics Data System (ADS)

    Durand, Loyal; Johnson, James M.; Lopez, Jorge L.

    1990-03-01

    We reexamine the unitarity constraints on the high-energy scattering of longitudinal W 's and Z's and Higgs bosons in the standard model including one-loop corrections, and make an Argand-diagram analysis of the j=0 scattering amplitudes. We find that the theory is approximately unitary and weakly interacting at O(λ2) for Higgs-boson couplings λ<λc=1.5-2 (equivalent to MH<350-400 GeV), but that O(λ3) or higher corrections must be included to restore perturbative unitarity for larger values of λ or MH.

  9. Diffractive Higgs boson photoproduction in {gamma}p process

    SciTech Connect

    Ducati, M. B. Gay; Silveira, G. G.

    2008-12-01

    We explore an alternative process for diffractive Higgs boson production in peripheral pp collisions arising from double Pomeron exchange in photon-proton interaction. We introduce the impact factor formalism in order to enable the gluon ladder exchange in the photon-proton subprocess, and to permit central Higgs production. The event rate for diffractive Higgs production in central rapidity is estimated to be about 0.6 pb at Tevatron and LHC energies. This result is higher than predictions from other approaches of diffractive Higgs production, showing that the alternative production process leads to an enhanced signal for the detection of the Higgs boson at hadron colliders. Our results are compared with those obtained from a similar approach proposed by the Durham Group. In this way, we may examine future developments in its application to pp and AA collisions.

  10. Standard model Higgs boson searches at CDF in Run II

    SciTech Connect

    Chuang, Shan-Huei; /Wisconsin U., Madison

    2004-10-01

    The SM Higgs boson has been searched in two channels: (1) q{bar q} {yields} WH {yields} {ell}{nu}b{bar b} for Higgs masses 110 < M{sub H} < 150 GeV and (2) gg {yields} H {yields} WW {yields} {ell}{nu}{ell}{nu} for 140 M{sub H} < 180 GeV, where {ell} {element_of} {l_brace}e,{mu}{r_brace}, using about 200 pb{sup -1} CDF Run II data. 95% C.L. limits on each Higgs production at Tevatron at {radical}s = 1.96 TeV were set as a function of Higgs mass by fitting the distribution of dijet mass (1) and dilepton azimuthal angular separation (2). They have significantly advanced the sensitivity to the SM Higgs boson cf. Run I.

  11. Discovery of the Higgs Boson Decaying to Two Photons

    NASA Astrophysics Data System (ADS)

    Palmer, Christopher Allan

    The Standard Model (SM) of particle physics fundamentally relies on the existence of the Higgs boson. This massive particle is a relic of the underlying and hidden Higgs field, whose transformation into the Higgs boson provides mass to weak bosons and all massive fermions in the SM. This particle has been long-sought and finally using data from proton-proton collisions at the LHC, CMS and ATLAS experiments have discovered a particle which is compatible with the SM Higgs boson. Presented here is the develeopment of one of the discovery channels, H → gammagamma, and the final H → gammagamma analysis and results using the full luminosity of the LHC Run 1 dataset ˜25 fb-1 at 7 or 8 TeV center of mass energy. The observed (expected) significance of this di-photon excess in the final analysis is 5.7sigma (5.2sigma) with a measured signal strength of sigma/sigma SM = 1.14+0.26-0.23. The mass of this Higgs boson is not predicted by the SM. Using the H → gammagamma channel, MH is measured to be 124.70+0.35-0.34 GeV. Other measured quantities are presented including the signal strength modifiers of different production mechanisms and spin hypothesis tests between spin-0 and spin-2 models. Searches for this Higgs boson decaying to the di-muon and di-electron states are presented. No excess is observed and universal lepton decays of this particle are therefore ruled out, supporting the SM Higgs boson interpretation. In addition, relevant searches, observations and measurements from CMS that characterize this particle are presented.

  12. Constraints on Models of the Higgs Boson with Exotic Spin and Parity using Decays to Bottom-Antibottom Quarks in the Full CDF Data Set

    NASA Astrophysics Data System (ADS)

    Aaltonen, T.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; Appel, J. A.; Arisawa, T.; Artikov, A.; Asaadi, J.; Ashmanskas, W.; Auerbach, B.; Aurisano, A.; Azfar, F.; Badgett, W.; Bae, T.; Barbaro-Galtieri, A.; Barnes, V. E.; Barnett, B. A.; Barria, P.; Bartos, P.; Bauce, M.; Bedeschi, F.; Behari, S.; Bellettini, G.; Bellinger, J.; Benjamin, D.; Beretvas, A.; Bhatti, A.; Bland, K. R.; Blumenfeld, B.; Bocci, A.; Bodek, A.; Bortoletto, D.; Boudreau, J.; Boveia, A.; Brigliadori, L.; Bromberg, C.; Brucken, E.; Budagov, J.; Budd, H. S.; Burkett, K.; Busetto, G.; Bussey, P.; Butti, P.; Buzatu, A.; Calamba, A.; Camarda, S.; Campanelli, M.; Canelli, F.; Carls, B.; Carlsmith, D.; Carosi, R.; Carrillo, S.; Casal, B.; Casarsa, M.; Castro, A.; Catastini, P.; Cauz, D.; Cavaliere, V.; Cerri, A.; Cerrito, L.; Chen, Y. C.; Chertok, M.; Chiarelli, G.; Chlachidze, G.; Cho, K.; Chokheli, D.; Clark, A.; Clarke, C.; Convery, M. E.; Conway, J.; Corbo, M.; Cordelli, M.; Cox, C. A.; Cox, D. J.; Cremonesi, M.; Cruz, D.; Cuevas, J.; Culbertson, R.; d'Ascenzo, N.; Datta, M.; de Barbaro, P.; Demortier, L.; Deninno, M.; D'Errico, M.; Devoto, F.; Di Canto, A.; Di Ruzza, B.; Dittmann, J. R.; Donati, S.; D'Onofrio, M.; Dorigo, M.; Driutti, A.; Ebina, K.; Edgar, R.; Elagin, A.; Erbacher, R.; Errede, S.; Esham, B.; Farrington, S.; Fernández Ramos, J. P.; Field, R.; Flanagan, G.; Forrest, R.; Franklin, M.; Freeman, J. C.; Frisch, H.; Funakoshi, Y.; Galloni, C.; Garfinkel, A. F.; Garosi, P.; Gerberich, H.; Gerchtein, E.; Giagu, S.; Giakoumopoulou, V.; Gibson, K.; Ginsburg, C. M.; Giokaris, N.; Giromini, P.; Glagolev, V.; Glenzinski, D.; Gold, M.; Goldin, D.; Golossanov, A.; Gomez, G.; Gomez-Ceballos, G.; Goncharov, M.; González López, O.; Gorelov, I.; Goshaw, A. T.; Goulianos, K.; Gramellini, E.; Grosso-Pilcher, C.; Group, R. C.; Guimaraes da Costa, J.; Hahn, S. R.; Han, J. Y.; Happacher, F.; Hara, K.; Hare, M.; Harr, R. F.; Harrington-Taber, T.; Hatakeyama, K.; Hays, C.; Heinrich, J.; Herndon, M.; Hocker, A.; Hong, Z.; Hopkins, W.; Hou, S.; Hughes, R. E.; Husemann, U.; Hussein, M.; Huston, J.; Introzzi, G.; Iori, M.; Ivanov, A.; James, E.; Jang, D.; Jayatilaka, B.; Jeon, E. J.; Jindariani, S.; Jones, M.; Joo, K. K.; Jun, S. Y.; Junk, T. R.; Kambeitz, M.; Kamon, T.; Karchin, P. E.; Kasmi, A.; Kato, Y.; Ketchum, W.; Keung, J.; Kilminster, B.; Kim, D. H.; Kim, H. S.; Kim, J. E.; Kim, M. J.; Kim, S. H.; Kim, S. B.; Kim, Y. J.; Kim, Y. K.; Kimura, N.; Kirby, M.; Knoepfel, K.; Kondo, K.; Kong, D. J.; Konigsberg, J.; Kotwal, A. V.; Kreps, M.; Kroll, J.; Kruse, M.; Kuhr, T.; Kurata, M.; Laasanen, A. T.; Lammel, S.; Lancaster, M.; Lannon, K.; Latino, G.; Lee, H. S.; Lee, J. S.; Leo, S.; Leone, S.; Lewis, J. D.; Limosani, A.; Lipeles, E.; Lister, A.; Liu, H.; Liu, Q.; Liu, T.; Lockwitz, S.; Loginov, A.; Lucchesi, D.; Lucà, A.; Lueck, J.; Lujan, P.; Lukens, P.; Lungu, G.; Lys, J.; Lysak, R.; Madrak, R.; Maestro, P.; Malik, S.; Manca, G.; Manousakis-Katsikakis, A.; Marchese, L.; Margaroli, F.; Marino, P.; Matera, K.; Mattson, M. E.; Mazzacane, A.; Mazzanti, P.; McNulty, R.; Mehta, A.; Mehtala, P.; Mesropian, C.; Miao, T.; Mietlicki, D.; Mitra, A.; Miyake, H.; Moed, S.; Moggi, N.; Moon, C. S.; Moore, R.; Morello, M. J.; Mukherjee, A.; Muller, Th.; Murat, P.; Mussini, M.; Nachtman, J.; Nagai, Y.; Naganoma, J.; Nakano, I.; Napier, A.; Nett, J.; Neu, C.; Nigmanov, T.; Nodulman, L.; Noh, S. Y.; Norniella, O.; Oakes, L.; Oh, S. H.; Oh, Y. D.; Oksuzian, I.; Okusawa, T.; Orava, R.; Ortolan, L.; Pagliarone, C.; Palencia, E.; Palni, P.; Papadimitriou, V.; Parker, W.; Pauletta, G.; Paulini, M.; Paus, C.; Phillips, T. J.; Piacentino, G.; Pianori, E.; Pilot, J.; Pitts, K.; Plager, C.; Pondrom, L.; Poprocki, S.; Potamianos, K.; Pranko, A.; Prokoshin, F.; Ptohos, F.; Punzi, G.; Redondo Fernández, I.; Renton, P.; Rescigno, M.; Rimondi, F.; Ristori, L.; Robson, A.; Rodriguez, T.; Rolli, S.; Ronzani, M.; Roser, R.; Rosner, J. L.; Ruffini, F.; Ruiz, A.; Russ, J.; Rusu, V.; Sakumoto, W. K.; Sakurai, Y.; Santi, L.; Sato, K.; Saveliev, V.; Savoy-Navarro, A.; Schlabach, P.; Schmidt, E. E.; Schwarz, T.; Scodellaro, L.; Scuri, F.; Seidel, S.; Seiya, Y.; Semenov, A.; Sforza, F.; Shalhout, S. Z.; Shears, T.; Shepard, P. F.; Shimojima, M.; Shochet, M.; Shreyber-Tecker, I.; Simonenko, A.; Sliwa, K.; Smith, J. R.; Snider, F. D.; Song, H.; Sorin, V.; St. Denis, R.; Stancari, M.; Stentz, D.; Strologas, J.; Sudo, Y.; Sukhanov, A.; Suslov, I.; Takemasa, K.; Takeuchi, Y.; Tang, J.; Tecchio, M.; Teng, P. K.; Thom, J.; Thomson, E.; Thukral, V.; Toback, D.; Tokar, S.; Tollefson, K.; Tomura, T.; Tonelli, D.; Torre, S.; Torretta, D.; Totaro, P.; Trovato, M.; Ukegawa, F.; Uozumi, S.; Vázquez, F.; Velev, G.; Vellidis, C.; Vernieri, C.; Vidal, M.; Vilar, R.; Vizán, J.; Vogel, M.; Volpi, G.; Wagner, P.; Wallny, R.; Wang, S. M.; Waters, D.; Wester, W. C.; Whiteson, D.; Wicklund, A. B.; Wilbur, S.; Williams, H. H.; Wilson, J. S.; Wilson, P.; Winer, B. L.; Wittich, P.; Wolbers, S.; Wolfe, H.; Wright, T.; Wu, X.; Wu, Z.; Yamamoto, K.; Yamato, D.; Yang, T.; Yang, U. K.; Yang, Y. C.; Yao, W.-M.; Yeh, G. P.; Yi, K.; Yoh, J.; Yorita, K.; Yoshida, T.; Yu, G. B.; Yu, I.; Zanetti, A. M.; Zeng, Y.; Zhou, C.; Zucchelli, S.; CDF Collaboration

    2015-04-01

    A search for particles with the same mass and couplings as those of the standard model Higgs boson but different spin and parity quantum numbers is presented. We test two specific alternative Higgs boson hypotheses: a pseudoscalar Higgs boson with spin-parity JP=0- and a gravitonlike Higgs boson with JP=2+, assuming for both a mass of 125 GeV /c2 . We search for these exotic states produced in association with a vector boson and decaying into a bottom-antibottom quark pair. The vector boson is reconstructed through its decay into an electron or muon pair, or an electron or muon and a neutrino, or it is inferred from an imbalance in total transverse momentum. We use expected kinematic differences between events containing exotic Higgs bosons and those containing standard model Higgs bosons. The data were collected by the CDF experiment at the Tevatron proton-antiproton collider, operating at a center-of-mass energy of √{s }=1.96 TeV , and correspond to an integrated luminosity of 9.45 fb-1 . We exclude deviations from the predictions of the standard model with a Higgs boson of mass 125 GeV /c2 at the level of 5 standard deviations, assuming signal strengths for exotic boson production equal to the prediction for the standard model Higgs boson, and set upper limits of approximately 30% relative to the standard model rate on the possible rate of production of each exotic state.

  13. Shadow Higgs boson from a scale-invariant hidden U(1){sub s} model

    SciTech Connect

    Chang, W.-F.; Ng, John N.; Wu, Jackson M. S.

    2007-06-01

    We study a scale-invariant SU(2)xU(1){sub Y}xU(1){sub s} model which has only dimensionless couplings. The shadow U(1){sub s} is hidden, and it interacts with the standard model (SM) solely through mixing in the scalar sector and kinetic mixing of the U(1) gauge bosons. The gauge symmetries are broken radiatively by the Coleman-Weinberg mechanism. Lifting of the flat direction in the scalar potential gives rise to a light scalar, the scalon, or the shadow Higgs, and a heavier scalar which we identify as the SM Higgs boson. The phenomenology of this model is discussed. In particular, the constraints on the shadow Higgs in different mass ranges, and the possibility of discovering a shadow Higgs with a mass a few tens of GeV in precision t-quark studies at the LHC, are investigated.

  14. Resonance--Continuum Interference in Light Higgs Boson Production at a Photon Collider

    SciTech Connect

    Dixon, Lance J.; Sofianatos, Yorgos; /SLAC /Stanford U., Phys. Dept.

    2009-01-06

    We study the effect of interference between the Standard Model Higgs boson resonance and the continuum background in the process {gamma}{gamma} {yields} H {yields} b{bar b} at a photon collider. Taking into account virtual gluon exchange between the final-state quarks, we calculate the leading corrections to the height of the resonance for the case of a light (m{sub H} < 160 GeV) Higgs boson. We find that the interference is destructive and around 0.1-0.2% of the peak height, depending on the mass of the Higgs and the scattering angle. This suppression is smaller by an order of magnitude than the anticipated experimental accuracy at a photon collider. However, the fractional suppression can be significantly larger if the Higgs coupling to b quarks is increased by physics beyond the Standard Model.

  15. Top-phobic heavy Higgs boson as the 750 GeV diphoton resonance

    NASA Astrophysics Data System (ADS)

    Kang, Sin Kyu; Song, Jeonghyeon

    2016-06-01

    A hint of a new resonance at a mass of 750 GeV has been shown in the diphoton channel of the Run-2 LHC data. The observed signal rate is usually too large to interpret it as a new scalar boson in the context of weakly coupled renormalizable models. One way is to reduce its total decay rate, which is possible if the C P -even heavy Higgs boson H0 in the aligned two Higgs doublet model becomes top-phobic. To ensure sufficient gluon fusion production, we introduce vector-like quarks (VLQ). The Higgs precision data as well as the exclusion limits from no excesses in other resonance searches through Z γ , b b ¯, τ+τ-, and j j channels at the Run-1 LHC are comprehensively studied. In Type I, the top-phobic H0 cannot simultaneously explain the 750 GeV diphoton excess and the Higgs precision data since the same Yukawa couplings of the up-type and down-type VLQs to H0 always make more contribution to the diphoton signal rate of the standard model Higgs boson than that of H0. In Type II, small Yukawa coupling of the up-type VLQ but sizable Yukawa coupling of the down-type VLQ is shown to explain the signal while satisfying other LHC exclusion limits.

  16. Detection of Higgs bosons decaying to bottom quarks

    SciTech Connect

    Gilman, F.J.; Price, L.E.

    1986-11-01

    Several developments affecting the possibility of Higgs detection are discussed. These include the level of certainty about the t quark mass, Monte Carlo programs to generate both signal and background events, and separation and/or enhancement of heavy quark jets from jets due to light quarks or gluons, and the possibility that the neutral Higgs decay into bottom quarks might be the decay mode of choice for detecting the intermediate mass Higgs. Possible means of detection of an intermediate mass Higgs at the SSC, particularly if a prominent decay mode is to bottom quarks, are examined, using the PYTHIA Monte Carlo program to generate both signal and background events. For the signal, events were generated in which Higgs bosons are created in proton-proton collisions, with the Higgs decaying into bottom quarks. The presence of W or Z bosons, created in the same proton-proton collision, is used to enhance the likelihood of Higgs production and to reduce the potentially enormous background. It is found that the Higgs decay to bottom quarks, if important, would be more favorable for detection of the Higgs than decay to top quarks was found to be because of the smaller background. 3 refs., 4 figs. (LEW)

  17. Higgs boson finder and mass estimator: The Higgs boson to WW to leptons decay channel at the LHC

    SciTech Connect

    Barger, Vernon; Huang, Peisi

    2011-11-01

    We exploit the spin and kinematic correlations in the decay of a scalar boson into a pair of real or virtual W-bosons, with both W-bosons decaying leptonically, for Higgs boson discovery at 7 TeV LHC energy with 10 fb{sup -1} luminosity. Without reconstruction of the events, we obtain estimators of the Higgs mass from the peak and width of the signal distribution in m{sub ll}. The separation of signal and background with other distributions, such as the azimuthal angle between two W decay planes, the rapidity difference between the two leptons, missing E{sub T}, and the p{sub T} of leptons, are also prescribed. Our approach identifies the salient Higgs to dilepton signatures that allow subtraction of the continuum W*W* background.

  18. Natural SUSY and the Higgs boson

    SciTech Connect

    Huang, Peisi

    2014-01-01

    Supersymmetry (SUSY) solves the hierarchy problem by introducing a super partner to each Standard Model(SM) particle. SUSY must be broken in nature, which means the fine-tuning is reintroduced to some level. Natural SUSY models enjoy low fine-tuning by featuring a small super potential parameter μ ~ 125 GeV, while the third generation squarks have mass less than 1.5 TeV. First and second generation sfermions can be at the multi-TeV level which yields a decoupling solution to the SUSY flavor and CP problem. However, models of Natural SUSY have difficulties in predicting a m{sub h} at 125 GeV, because the third generation is too light to give large radiative correction to the Higgs mass. The models of Radiative Natural SUSY (RNS) address this problem by allowing for high scale soft SUSY breaking Higgs mass m{sub Hu} > m{sub 0}, which leads to automatic cancellation by the Renormalization Group (RG) running effect. Coupled with the large mixing in the stop sector, RNS allows low fine-tuning at 3-10 % level and a 125 GeV SM-like Higgs. RNS can be reached at the LHC, and a linear collider. If the strong CP problem is solved by the Peccei-Quinn mechanism, then RNS accommodates mixed axion-Higgsino cold dark matter, where the Higgsino-like WIMPs, which in this case make up only a fraction of the relic abundance, can be detectable at future WIMP detectors.

  19. The Curious Ontology of a Light Higgs Boson

    NASA Astrophysics Data System (ADS)

    Riordan, Michael

    2016-03-01

    When the Superconducting Super Collider was being contemplated and designed in the mid-1980s, few high-energy physicists considered it likely that a light Higgs boson, as was eventually discovered at the Large Hadron Collider, would exist. Most theorists expected that the Higgs boson would occur at a mass near the TeV scale, and accelerator physicists designed the Super Collider accordingly. The possibility of a light Higgs boson with a mass less than 200 GeV began to be taken seriously during the 1990s, especially after the 1995 Fermilab discovery of the top quark near 175 GeV, but it was too late to influence the SSC design. With a peak collision energy of 40 TeV, this collider was guaranteed to discover the Higgs boson -- or whatever other mass-generating phenomenon might be occurring in the Standard Model -- even if it were to appear at masses or energies up to 2 TeV. As it turned out, therefore, the SSC was overdesigned for its principal physics goal. A substantially smaller Fermilab project known as the Dedicated Collider, which never made it beyond the drawing boards, could probably have allowed the 125 GeV Higgs boson to be discovered at least a decade earlier than it occurred at the LHC.

  20. Next generation Higgs bosons: Theory, constraints, and discovery prospects at the Large Hadron Collider

    SciTech Connect

    Gupta, Rick S.; Wells, James D.

    2010-03-01

    Particle physics model building within the context of string theory suggests that further copies of the Higgs boson sector may be expected. Concerns regarding tree-level flavor-changing neutral currents are easiest to allay if little or no couplings of next generation Higgs bosons to standard model fermions are allowed. We detail the resulting general Higgs potential and mass spectroscopy in both a standard model extension and a supersymmetric extension. We present the important experimental constraints from meson-meson mixing, loop-induced b{yields}s{gamma} decays, and LEP2 direct production limits. We investigate the energy range of the valid perturbation theory of these ideas. In the supersymmetric context we present a class of examples that marginally aids the fine-tuning problem for parameter space where the lightest Higgs boson mass is greater than the standard model limit of 114 GeV. Finally, we study collider physics signatures generic to next generation Higgs bosons, with special emphasis on Ah{yields}hhZ{yields}4b+2l signal events, and describe the capability of discovery at the Large Hadron Collider.

  1. Supersymmetric Higgs boson pair production at hadron colliders

    SciTech Connect

    Belyaev, A.; Drees, M.; Eboli, O.J.; Novaes, S.F.; Belyaev, A.; Mizukoshi, J.K.

    1999-10-01

    We study the pair production of neutral Higgs bosons through gluon fusion at hadron colliders in the framework of the minimal supersymmetric standard model. We present analytical expressions for the relevant amplitudes, including both quark and squark loop contributions, and allowing for mixing between the superpartners of left- and right-handed quarks. Squark loop contributions can increase the cross section for the production of two CP-even Higgs bosons by more than two orders of magnitude, if the relevant trilinear soft breaking parameter is large and the mass of the lighter squark eigenstate is not too far above its current lower bound. In the region of large tan&hthinsp;{beta}, neutral Higgs boson pair production might even be observable in the 4b final state during the next run of the Fermilab Tevatron collider. {copyright} {ital 1999} {ital The American Physical Society}

  2. Search for doubly charged Higgs bosons through vector boson fusion at the LHC and beyond

    NASA Astrophysics Data System (ADS)

    Bambhaniya, G.; Chakrabortty, J.; Gluza, J.; Jeliński, T.; Szafron, R.

    2015-07-01

    Production and decays of doubly charged Higgs bosons at the LHC and future hadron colliders triggered by a vector boson fusion mechanism are discussed in the context of the minimal left-right symmetric model. Our analysis is based on the Higgs boson mass spectrum compatible with available constraints which include flavor changing neutral current (FCNC) effects and vacuum stability of the scalar potential. Though the parity breaking scale vR is large (˜ few TeV) and scalar masses which contribute to FCNC effects are even larger, a consistent Higgs boson mass spectrum still allows us to keep doubly charged scalar masses below 1 TeV which is an interesting situation for LHC and future circular collider (FCC). We have shown that the allowed Higgs boson mass spectrum constrains the splittings (MH1±±-MH1± ), closing the possibility of H1±±→W1±H1± decays. Assuming that doubly charged Higgs bosons decay predominantly into a pair of same-sign charged leptons through the process p p →H1/2 ±±H1/2 ∓∓j j →ℓ±ℓ±ℓ∓ℓ∓j j , we find that for the LHC operating at √{s }=14 TeV with an integrated luminosity at the level of 3000 fb-1 (HL-LHC), there is practically no chance to detect such particles at the reasonable significance level through this channel. However, at 33 TeV HE-LHC and (or) 100 TeV FCC-hh, a wide region opens up for exploring the doubly charged Higgs boson mass spectrum. In FCC-hh, the doubly charged Higgs bosons mass up to 1 TeV can be easily probed.

  3. A new mechanism for light composite Higgs bosons

    NASA Astrophysics Data System (ADS)

    Lane, Kenneth; Martin, Adam

    2006-04-01

    Repeated symmetry-breaking and restoration phase transitions occur as one traverses the parameter space of interactions competing to align the vacuum. This phenomenon, augmented with a topcolor-like interaction, can make a composite Higgs boson's mass and vacuum expectation value naturally much less than its underlying structure scale, without introducing new symmetries and their associated TeV-scale particles. We illustrate it by reconstructing a simple light composite Higgs model of electroweak symmetry breaking proposed by Georgi and Kaplan.

  4. A search for charged Higgs bosons at tristan

    NASA Astrophysics Data System (ADS)

    Adachi, I.; Aihara, H.; Doser, M.; Enomoto, R.; Fujii, H.; Fujii, T.; Fujimoto, J.; Fujiwara, K.; Fujiwara, N.; Hayashii, H.; Higashi, S.; Howell, B.; Iida, N.; Imanishi, A.; Ikeda, H.; Ishii, T.; Itoh, R.; Iwasaki, H.; Iwashiro, K.; Kajikawa, R.; Kamae, T.; Kato, S.; Kato, Y.; Kawabata, S.; Kayahara, Y.; Kichimi, H.; Kishida, T.; Kobayashi, M.; Koltick, D.; Kusuki, N.; Levine, I.; Maruyama, A.; Maruyama, K.; Matsushita, K.; Miyamoto, A.; Muramatsu, K.; Nagai, K.; Nagira, T.; Nitoh, O.; Noguchi, S.; Ochiai, F.; Okuno, H.; Okusawa, T.; Onodera, S.; Ozaki, H.; Sasayama, N.; Shimonaka, A.; Shimozawa, K.; Shirahashi, A.; Sugahara, R.; Sugiyama, A.; Suzuki, S.; Takahashi, K.; Takahashi, T.; Takahashi, T.; Takahashi, T.; Takamure, H.; Tauchi, T.; Teramoto, Y.; Tsukamoto, T.; Ukai, K.; Uno, S.; Watanabe, Y.; Yamamoto, A.; Yamamoto, S.; Yamashita, S.; Yamauchi, M.; Yoake, Y.; Yoshizawa, J.; Topaz Collaboration

    1990-04-01

    We searched for pair production of charged Higgs bosons via e +e - annihilation, using data (23.3 pb -) collected by the TOPAZ detector in the energy range s=52.0-61.4 GeV. We observed no evidence for charged Higgs pair production and extended the excluded region in the MH±BR (hadron) plane. The 95% CL lower mass limit is the most stringent for BR (hadron) = 0.6, giving mH±<22 GeV.

  5. Higgs Boson Mass in Yukawa Unified SUSY SO(10)

    NASA Astrophysics Data System (ADS)

    Shafi, Qaisar

    2012-09-01

    We employ third family Yukawa unification, predicted by simple supersymmetric SO(10) models, to estimate the lightest MSSM Higgs boson mass. For μ > 0 (or μ < 0) and mt = 173.1 GeV, the Higgs mass is estimated to lie close to 123-124 GeV. The theoretical uncertainty in this estimate is ±3 GeV. We highlight some LHC testable benchmark points which also display the presence of neutralino-stau coannihilation channel.

  6. Multivariate Search of the Standard Model Higgs Boson at LHC

    SciTech Connect

    Mjahed, Mostafa

    2007-01-12

    resent an attempt to identify the SM Higgs boson at LHC in the channel (pp-bar {yields} HX {yields} W+ W-X {yields} l+ vl- v X). We use a multivariate processing of data as a tool for a better discrimination between signal and background (via Principal Components Analysis, Genetic Algorithms and Neural Network). Events were produced at LHC energies (MH = 140 - 200 GeV), using the Lund Monte Carlo generator PYTHIA 6.1. Higgs boson events (pp-bar {yields} HX {yields} W+W-X {yields} l+ vl- v X) and the most relevant background are considered.

  7. The Discovery of the Higgs Boson: America's Role

    ScienceCinema

    None

    2014-05-30

    The discovery of the Higgs boson was an international endeavor, involving thousands of physicists from across the world. While the accelerator at which the experimental work was done is located on Europe, the US supplied more physicists than any other single country. America had a very large role in the discovery of the Higgs particle and continues to have a leading role in the ongoing studies of the boson's properties. This video describes some of the contributions of U.S. universities and laboratories.

  8. Higgs-Boson Production in Nucleus-Nucleus Collisions

    NASA Technical Reports Server (NTRS)

    Norbury, John W.

    1992-01-01

    Cross section calculations are presented for the production of intermediate-mass Higgs bosons produced in ultrarelativistic nucleus-nucleus collisions via two photon fusion. The calculations are performed in position space using Baur's method for folding together the Weizsacker-Williams virtual-photon spectra of the two colliding nuclei. It is found that two photon fusion in nucleus-nucleus collisions is a plausible way of finding intermediate-mass Higgs bosons at the Superconducting Super Collider or the CERN Large Hadron Collider.

  9. Higgs-boson production in nucleus-nucleus collisions

    NASA Technical Reports Server (NTRS)

    Norbury, J. W.; Townsend, L. W. (Principal Investigator)

    1990-01-01

    Cross-section calculations are presented for the production of intermediate-mass Higgs bosons produced in ultrarelativistic nucleus-nucleus collisions via two-photon fusion. The calculations are performed in position space using Baur's method for folding together the Weizsacker-Williams virtual-photon spectra of the two colliding nuclei. It is found that two-photon fusion in nucleus-nucleus collisions is a plausible way of finding intermediate-mass Higgs bosons at the Superconducting Super Collider or the CERN Large Hadron Collider.

  10. The Discovery of the Higgs Boson: America's Role

    SciTech Connect

    2013-10-08

    The discovery of the Higgs boson was an international endeavor, involving thousands of physicists from across the world. While the accelerator at which the experimental work was done is located on Europe, the US supplied more physicists than any other single country. America had a very large role in the discovery of the Higgs particle and continues to have a leading role in the ongoing studies of the boson's properties. This video describes some of the contributions of U.S. universities and laboratories.

  11. Detecting the heavy Higgs boson at the SSC

    SciTech Connect

    Cahn, R.N.; Chanowitz, M.; Golden, M.; Herrero, M.J.; Hinchliffe, I.; Wang, E.M.; Paige, F.E.; Gunion, J.F.; Gilchriese, M.G.D.

    1987-12-18

    Detection of a heavy Higgs boson (2M/sub z/ < M/sub H/ < 1 TeV) is considered. The production mechanisms and backgrounds are discussed. Their implementation in the PYTHIA and ISAJET Monte Carlo programs are checked. The decay modes H ..-->.. ZZ ..-->.. llll and H ..-->.. ZZ ..-->.. llvv are discussed in detail. The signal/background is evaluated and some relevant detector parameters are specified. Some remarks are also made concerning the requirements imposed on detectors by the decay mode H ..-->.. WW ..-->.. lv + jets. Experimental signatures for models in which there is no Higgs boson of mass less than 1 TeV are outlined. 44 refs.

  12. The Higgs boson masses and mixings of the complex MSSM in the Feynman-diagrammatic approach

    NASA Astrophysics Data System (ADS)

    Frank, Meikel; Hahn, Thomas; Heinemeyer, Sven; Hollik, Wolfgang; Rzehak, Heidi; Weiglein, Georg

    2007-02-01

    New results for the complete one-loop contributions to the masses and mixing effects in the Higgs sector are obtained for the MSSM with complex parameters using the Feynman-diagrammatic approach. The full dependence on all relevant complex phases is taken into account, and all the imaginary parts appearing in the calculation are treated in a consistent way. The renormalization is discussed in detail, and a hybrid on-shell/bar Dbar R scheme is adopted. We also derive the wave function normalization factors needed in processes with external Higgs bosons and discuss effective couplings incorporating leading higher-order effects. The complete one-loop corrections, supplemented by the available two-loop corrections in the Feynman-diagrammatic approach for the MSSM with real parameters and a resummation of the leading (s)bottom corrections for complex parameters, are implemented into the public Fortran code FeynHiggs 2.5. In our numerical analysis the full results for the Higgs-boson masses and couplings are compared with various approximations, and Script CScript P-violating effects in the mixing of the heavy Higgs bosons are analyzed in detail. We find sizable deviations in comparison with the approximations often made in the literature.

  13. Di-boson production and SM SUSY Higgs searches at the Tevatron

    SciTech Connect

    Elvira, V.Daniel; /Fermilab

    2005-07-01

    The discovery of the Higgs boson would be a major success for the Standard Model (SM) and would provide further insights into the electroweak symmetry breaking mechanism. This report contains the latest results from the D0 and CDF Tevatron experiments on searches for the SM Higgs produced from gluon fusion with H {yields} WW, and in association with a W boson. It also includes searches for a supersymmetric Higgs in the b{bar b} and {tau}{sup +}{tau}{sup -} decay channels. The study of di-boson production at the Tevatron is important to understand backgrounds in high mass Higgs searches. It also provides a test of the SM through the measurement of the production cross section and the gauge boson self couplings. This paper includes measurements of the WW, W{gamma}, and WZ production cross sections, as well as limits on the anomalous couplings associated with the WW{gamma} and WWZ interactions. The results are based on sets of up to 320 pb{sup -1} of data collected by the D0 and CDF experiments at the {bar p}p Tevatron collider, running at a center-of-mass energy of 1.96 TeV.

  14. Search for a Light Higgs Boson at BaBar

    SciTech Connect

    Banerjee, Swagato; /Victoria U.

    2011-12-05

    We search for evidence of a light Higgs boson (A{sup 0}) in the radiative decays of the narrow {Upsilon}(3S) resonance: {Upsilon}(3S) {yields} {gamma}A{sup 0}, where A{sup 0} {yields} invisible or A{sup 0} {yields} {mu}{sup +}{mu}{sup -}. Such an object appears in extensions of the Standard Model, where a light CP-odd Higgs boson naturally couples strongly to b-quarks. We find no evidence for such processes in a sample of 122 x 106 {Upsilon}(3S) decays collected by the BABAR collaboration at the PEP-II B-factory, and set 90% C.L. upper limits on the product of the branching fractions {Beta}({Upsilon}(3S) {yields} {gamma}A{sup 0}) x {Beta}(A{sup 0} {yields} invisible) at (0.7-31) x 10{sup -6} in the mass range mA{sup 0} {le} 7.8 GeV, and on the product {Beta}({Upsilon}(3S) {yields} {gamma}A{sup 0}) x {Beta}(A{sup 0} {yields} {mu}{sup +}{mu}{sup -}) at (0.25-5.2) x 10{sup -6} in the mass range 0.212 {le} mA{sup 0} {le} 9.3GeV. We also set a limit on the dimuon branching fraction of the recently discovered {eta}{sub b} meson {Beta}({eta}{sub b} {yields} {mu}{sup +}{mu}{sup -}) < 0.8% at 90% C.L. The results are preliminary.

  15. Natural SM-like 126 GeV Higgs boson via nondecoupling D terms

    NASA Astrophysics Data System (ADS)

    Bertuzzo, Enrico; Frugiuele, Claudia

    2016-02-01

    Accommodating both a 126 GeV mass and standard model (SM)-like couplings for the Higgs has a fine-tuning price in supersymmetric models. Examples are the minimal supersymmetric standard model, in which SM-like couplings are natural, but raising the Higgs mass to 126 GeV requires a considerable tuning, and the nonminimal supersymmetric standard model, in which the situation is reversed: the Higgs is naturally heavier, but being SM-like requires some tuning. We show that models with nondecoupling D terms alleviate this tension—a 126 GeV SM-like Higgs comes out basically with no fine-tuning cost. In addition, the analysis of the fine-tuning of the extended gauge sector shows that naturalness requires the heavy gauge bosons to likely be within the reach of LHC run II.

  16. Natural SM-like 126 GeV Higgs boson via nondecoupling D terms

    DOE PAGESBeta

    Bertuzzo, Enrico; Frugiuele, Claudia

    2016-02-16

    Accommodating both a 126 GeV mass and standard model (SM)-like couplings for the Higgs has a fine-tuning price in supersymmetric models. Examples are the minimal supersymmetric standard model, in which SM-like couplings are natural, but raising the Higgs mass to 126 GeV requires a considerable tuning, and the nonminimal supersymmetric standard model, in which the situation is reversed: the Higgs is naturally heavier, but being SM-like requires some tuning. Finally, we show that models with nondecoupling D terms alleviate this tension—a 126 GeV SM-like Higgs comes out basically with no fine-tuning cost. In addition, the analysis of the fine-tuning of the extended gaugemore » sector shows that naturalness requires the heavy gauge bosons to likely be within the reach of LHC run II.« less

  17. Searching for stoponium along with the Higgs boson.

    PubMed

    Barger, Vernon; Ishida, Muneyuki; Keung, Wai-Yee

    2012-02-24

    Stoponium, a bound state of the top squark and its antiparticle in a supersymmetric model, may be found in the ongoing Higgs searches at the LHC. Its WW and ZZ detection ratios relative to the standard model Higgs boson can be more than unity from the WW* threshold to the two Higgs threshold. The γγ channel is equally promising. Some regions of the stoponium mass below 150 GeV are already being probed by the ATLAS and CMS experiments. PMID:22463520

  18. Lepton flavor-violating decays of the Higgs boson from sgoldstino mixing

    NASA Astrophysics Data System (ADS)

    Demidov, S. V.; Sobolev, I. V.

    2016-08-01

    We study lepton flavor violation in a class of supersymmetric models with light sgoldstino — scalar superpartner of Goldstone fermions responsible for spontaneous supersymmetry breaking. Sgoldstino couplings to the Standard Model (SM) fermions are determined by the MSSM soft terms and, in general, provide with flavor violation in this sector. Sgoldstino admixture to the lightest Higgs boson results in changes of its coupling constants and, in particular, leads to lepton flavor-violating decay h → τ μ of the Higgs resonance. We discuss viability and phenomenological consequences of this scenario.

  19. New Physics Opportunities in the Boosted Di-Higgs-Boson Plus Missing Transverse Energy Signature

    NASA Astrophysics Data System (ADS)

    Kang, Zhaofeng; Ko, P.; Li, Jinmian

    2016-04-01

    The Higgs field in the standard model may couple to new physics sectors related to dark matter and/or massive neutrinos. In this Letter we propose a novel signature, the boosted di-Higgs-boson plus ET (which is either a dark matter or neutrino), to probe those new physics sectors. In a large class of models, in particular, the supersymmetric standard models and low scale seesaw mechanisms, this signature can play a key role. The signature has a clear background, and at the √{s }=14 TeV high luminosity LHC, we can probe it with a production rate as low as ˜0.1 fb . We apply it to benchmark models, supersymmetry in the bino-Higgsino limit, the canonical seesaw model, and the little Higgs model, finding that the masses of the Higgsino, right-handed neutrino, and heavy vector boson can be probed up to ˜500 , 650, and 900 GeV, respectively.

  20. Charged Higgs boson in the economical 3-3-1 model

    SciTech Connect

    Soa, D. V. Thuy, D. L.; Thuc, L. N.; Huong, T. T.

    2007-12-15

    The SU(3){sub C} - SU(3){sub L} - U(1){sub X} gauge model with two Higgs triplets (the economical 3-3-1 model) is presented. The minimal Higgs potential is considered in detail, and new Higgs bosons with the mass proportional to the bilepton mass are predicted. In the effective approximation, the charged Higgs bosons H{sub 2}{sup {+-}} are scalar bileptons, while the neutral scalar bosons H{sup 0} and H{sub 1}{sup 0} do not carry a lepton number. The couplings of the charged Higgs bosons to leptons and quarks are given. We show that Yukawa couplings of H{sub 2}{sup {+-}} to ordinary leptons and quarks are lepton-number violating. The pair production of H{sub 2}{sup {+-}} at high-energy e{sup +}e{sup -} colliders with the polarization of the e{sup +}, e{sup -} beams is studied in detail. A numerical evaluation shows that, if the Higgs mass is not too heavy, then the reaction can give an observable cross section in future colliders at a high degree of polarization. The reaction e{sup +}e{sup -} {sup {yields}} H{sub 2}{sup {+-}}W{sup {+-}} is also examined. We show that the production cross sections of H{sub 2}{sup {+-}}W{sup {+-}} are very small, much below the pair production of H{sub 2}{sup {+-}}, and, therefore, the associated production of H{sub 2}{sup {+-}} and W{sup {+-}} is, in general, not expected to lead to easily observable signals in the e{sup +}e{sup -} annihilation.

  1. LHC accessible second Higgs boson in the left-right model

    NASA Astrophysics Data System (ADS)

    Mohapatra, Rabindra N.; Zhang, Yongchao

    2014-03-01

    A second Higgs doublet arises naturally as a parity partner of the standard model (SM) Higgs, once the SM is extended to its left-right symmetric version (LRSM) to understand the origin of parity violation in weak interactions, as well as to accommodate small neutrino masses via the seesaw mechanism. The flavor-changing neutral Higgs (FCNH) effects in the minimal version of this model (LRSM), however, push the second Higgs mass to more than 15 TeV, making it inaccessible at the LHC. Furthermore, since the second Higgs mass is directly linked to the WR mass, discovery of a "low" mass WR (MWR≤5-6 TeV) at the LHC would require values for some Higgs self-couplings larger than 1. In this paper we present an extension of LRSM by adding a vectorlike SU(2)R quark doublet which weakens the FCNH constraints, allowing the second Higgs mass to be near or below the TeV range and a third neutral Higgs below 3 TeV for a WR mass below 5 TeV. It is then possible to search for these heavier Higgs bosons at the LHC without conflicting with FCNH constraints. A right-handed WR mass in the few TeV range is quite natural in this class of models without having to resort to large scalar coupling parameters. The CKM mixings are intimately linked to the vectorlike quark mixings with the known quarks, which is the main reason why the constraints on the second Higgs mass are relaxed. We present a detailed theoretical and phenomenological analysis of this extended left-right model and point out some tests as well as its potential for discovery of a second Higgs at the LHC. Two additional features of the model are a 5/3-charged quark and a fermionic top partner with masses in the TeV range.

  2. Higgs Boson Search at LHC (and LHC/CMS status)

    SciTech Connect

    Korytov, Andrey

    2008-11-23

    Presented are the results of the most recent studies by the CMS and ATLAS collaborations on the expected sensitivity of their detectors to observing a Higgs boson at LHC. The overview is preceded with a brief summary of the LHC and the CMS Experiment status.

  3. Searches for Beyond SM Higgs Boson at the Tevatron

    SciTech Connect

    Safonov, A.; /Texas A-M

    2006-05-01

    In the following, the authors describe preliminary results of searches for non-SM higgs bosons at the CDF and D0 experiments. Both experiments use data obtained in p{bar p} collisions at the Tevatron at {radical}s = 1.96 TeV.

  4. The Higgs Boson: Is the End in Sight?

    ERIC Educational Resources Information Center

    Lincoln, Don

    2012-01-01

    This summer, perhaps while you were lounging around the pool in the blistering heat, the blogosphere was buzzing about data taken at the Large Hadron Collider at CERN. The buzz reached a crescendo in the first week of July when both Fermilab and CERN announced the results of their searches for the Higgs boson. Hard data confronted a theory nearly…

  5. Can We Tell Students where the Higgs Boson Lies?

    ERIC Educational Resources Information Center

    Chu, Z. Kwang-Hua

    2010-01-01

    We pedagogically introduce the search for the Higgs boson and the measurement of its properties which will be one of the primary goals of the Large Hadron Collider. Our presentation will be useful to the relevant graduate and senior undergraduate students studying physics, as well as researchers in this field. (Contains 1 figure.)

  6. The precision of higgs boson measurements and their implications

    SciTech Connect

    J. Conway et al.

    2002-12-05

    The prospects for a precise exploration of the properties of a single or many observed Higgs bosons at future accelerators are summarized, with particular emphasis on the abilities of a Linear Collider (LC). Some implications of these measurements for discerning new physics beyond the Standard Model (SM) are also discussed.

  7. Higgs Boson: How do you search for it?

    SciTech Connect

    Lincoln, Don

    2011-12-12

    Updated: http://youtu.be/ktEpSvzPROc Fermilab scientist Don Lincoln describes the concept of how the search for the Higgs boson is accomplished. Several large experimental groups are hot on the trail of this elusive subatomic particle which is thought to explain the origins of particle mass.

  8. The Higgs as a pseudo-Goldstone boson

    NASA Astrophysics Data System (ADS)

    Georgi, Howard

    2007-11-01

    The old idea of the Higgs as a pseudo-Goldstone boson has been revived and re-energized as a possible solution to the little hierarchy puzzle in the Standard Model. Its most natural implementation may be in the context of models with supersymmetry not far above the electroweak breaking scale. To cite this article: H. Georgi, C. R. Physique 8 (2007).

  9. Higgs Boson: How do you search for it?

    ScienceCinema

    Lincoln, Don

    2014-08-12

    Updated: http://youtu.be/ktEpSvzPROc Fermilab scientist Don Lincoln describes the concept of how the search for the Higgs boson is accomplished. Several large experimental groups are hot on the trail of this elusive subatomic particle which is thought to explain the origins of particle mass.

  10. Higgs boson and Z physics at the first muon collider

    SciTech Connect

    Demarteau, M.; Han, T.

    1998-01-01

    The potential for the Higgs boson and Z-pole physics at the first muon collider is summarized, based on the discussions at the ``Workshop on the Physics at the First Muon Collider and at the Front End of a Muon Collider``.

  11. Search for charged Higgs bosons: combined results using LEP data

    NASA Astrophysics Data System (ADS)

    Aleph Collaboration; Delphi Collaboration; L3 Collaboration; Opal Collaboration; LEP Working GroupHiggs Boson Searches

    2013-07-01

    The four LEP collaborations, ALEPH, DELPHI, L3 and OPAL, have searched for pair-produced charged Higgs bosons in the framework of Two Higgs Doublet Models (2HDMs). The data of the four experiments have been statistically combined. The results are interpreted within the 2HDM for Type I and Type II benchmark scenarios. No statistically significant excess has been observed when compared to the Standard Model background prediction, and the combined LEP data exclude large regions of the model parameter space. Charged Higgs bosons with mass below 80 (Type II scenario) or 72.5 (Type I scenario, for pseudo-scalar masses above 12 ) are excluded at the 95 % confidence level.

  12. Flavor-changing leptonic decays of heavy Higgs bosons

    NASA Astrophysics Data System (ADS)

    Sher, Marc; Thrasher, Keith

    2016-03-01

    CMS has reported indications (2.4 σ ) of the decay of the Higgs boson into μ τ . The simplest explanation for such a decay would be a general two-Higgs doublet model (2HDM). In this case, one would expect the heavy neutral Higgs bosons, H and A , to also decay in a similar manner. We study two specific models. The first is the type III 2HDM, and the second is a 2HDM, originally proposed by Branco et al., in which all flavor-changing neutral processes are given by the weak mixing matrix. In the latter model, since mixing between the second and third generations in the lepton sector is large, flavor-changing interactions are large. In this model, we find that the decays of H and A to μ τ can be as high as 60%.

  13. Lineshape of the Higgs boson in future lepton colliders

    NASA Astrophysics Data System (ADS)

    Jadach, S.; Kycia, R. A.

    2016-04-01

    The effect of the photon emission (initial-state radiation) in the cross section of the process of direct production of the Higgs boson in future high luminosity electron and muon colliders is calculated. It was found that the cross section at the top of the Higgs boson resonance peak is reduced by a factor 0.348 for the electron collider and 0.548 for the muon collider. A centre-of-mass energy spread of the centre-of-mass energy of 4.2 MeV (equal to the Higgs width) would reduce peak cross section further, by a factor 0.170 and 0.256 (QED and energy spread) for electron and muon beams respectively. Possible uncertainties in the resummed QED calculations are discussed. Numerical results for the lineshape cross section including QED and many values of the centre-of-mass energy spread are provided.

  14. Search for the Higgs Boson and for Anomalous Quartic Gauge Boson Couplings in the WW Channel with Dielectron Events with the D0 Experiment at the Tevatron; Recherche du boson de Higgs et de couplages de jauge quartiques anormaux dans le canal WW en électrons dans l'expérience D0 au Tevatron

    SciTech Connect

    Chapon, Emilien

    2013-01-01

    Le paysage de la physique des particules a subi des changements majeurs entre le début de cette thèse, en septembre 2010, et sa n en juin 2013. On peut notamment qualier l'année 2012 de date-clé dans l'histoire de la physique des particules. En 2012, une nouvelle particule a été découverte au LHC [1, 2], dont la majeure partie de la communauté s'accorde aujourd'hui à dire qu'il s'agit très probablement du boson de Higgs. Cet événement est intervenu peu après une sorte de passage de relais entre le Tevatron, arrêté le 30 septembre 2011, et le LHC, dont les toutes premières collisions sont intervenues le 23 novembre 2009.

  15. Interference effects for Higgs boson mediated Z-pair plus jet production

    DOE PAGESBeta

    Campbell, John M.; Ellis, R. Keith; Furlan, Elisabetta; Rontsch, Raoul

    2014-11-25

    Here, we study interference effects in the production channel ZZ + jet, in particular focusing on the role of the Higgs boson. This production channel receives contributions both from Higgs boson mediated diagrams via the decay H → ZZ (signal diagrams), as well as from diagrams where the Z bosons couple directly to a quark loop (background diagrams). We consider the partonic processes gggZZ and gqmore » $$\\bar{q}$$ZZ in which interference between signal and background diagrams first occurs. Since interference is primarily an off-resonant effect for the Higgs boson, we treat the Z bosons as on shell. Thus our analysis is limited to the region above threshold, where the invariant mass of the Z-pair mZZ satisfies the condition mZZ>2mZ. In the region mZZ > 300 GeV we find that the interference in the ZZ + jet channel is qualitatively similar to interference in the inclusive ZZ channel. Moreover, the rates are sufficient to study these effects at the LHC once jet-binned data become available.« less

  16. Improved naturalness with a heavy Higgs boson: An alternative road to CERN LHC physics

    NASA Astrophysics Data System (ADS)

    Barbieri, Riccardo; Hall, Lawrence J.; Rychkov, Vyacheslav S.

    2006-07-01

    The quadratic divergences of the Higgs mass may be cancelled either accidentally or by the exchange of some new particles. Alternatively its impact on naturalness may be weakened by raising the Higgs mass, which requires changing the standard model below its natural cutoff. We show in detail how this can be achieved, while preserving perturbativity and consistency with the electroweak precision tests, by extending the standard model to include a second Higgs doublet that has neither a vev nor couplings to quarks and leptons. This inert doublet model yields a perturbative and completely natural description of electroweak physics at all energies up to 1.5 TeV. The discrete symmetry that yields the inert doublet is unbroken, so that dark matter may be composed of neutral inert Higgs bosons, which may have escaped detection at LEP2. Predictions are given for multilepton events with missing transverse energy at the Large Hadron Collider, and for the direct detection of dark matter.

  17. Probing triple Higgs couplings of the two Higgs doublet model at a linear collider

    SciTech Connect

    Arhrib, Abdesslam; Benbrik, Rachid; Chiang, C.-W.

    2008-06-01

    We study double Higgs production at the future linear collider in the framework of the two Higgs doublet models through the following channels: e{sup +}e{sup -}{yields}{phi}{sub i}{phi}{sub j}Z, {phi}{sub i}=h{sup 0}, H{sup 0}, A{sup 0}, H{sup {+-}}. All these processes are sensitive to triple Higgs couplings. Hence observations of them provide information on the triple Higgs couplings that help reconstructing the scalar potential. We also discuss the double Higgs-Strahlung e{sup +}e{sup -}{yields}h{sup 0}h{sup 0}Z in the decoupling limit where h{sup 0} mimics the standard model Higgs boson. The processes e{sup +}e{sup -}{yields}h{sup 0}h{sup 0}Z and e{sup +}e{sup -}{yields}h{sup 0}H{sup 0}Z are also discussed in the fermiophobic limit where distinctive signatures such as 4{gamma}+X, 2{gamma}+X, and 6{gamma}+X are expected in the Type-I two Higgs doublet model.

  18. Next-to-leading order QCD corrections to associated production of a SM Higgs boson with a pair of weak bosons in the POWHEG-BOX

    NASA Astrophysics Data System (ADS)

    Baglio, Julien

    2016-03-01

    After the discovery of a Higgs boson in 2012 at the CERN Large Hadron Collider (LHC) the detailed study of its properties, and most importantly its couplings to other particles, has started. This is a very important task to be completed, in particular to test whether it is indeed the Higgs boson predicted by the Standard Model (SM). The precise study of the Higgs couplings to gauge bosons is of particular importance and requires as much information as possible. In this view this paper provides the next-to-leading order (NLO) QCD corrections to the production cross sections and differential distributions of a SM Higgs boson in association with a pair of weak bosons W+W- , W±Z and Z Z , matched with parton shower (PS) in the POWHEG-BOX framework. The NLO QCD corrections are found to be significant and PS effects are sizable at low pT in the jet differential distributions, as expected, while these effects are negligible in other distributions. We will also provide a detailed study of the theoretical uncertainties affecting the total production rates at the LHC and at the Future Circular Collider in hadron-hadron mode, the potential 100 TeV follow-up of the LHC machine: the scale uncertainty calculated by the variation of the renormalization and factorization scales, the parton distribution function and related αs errors as well as the parametric uncertainties on the input weak boson masses.

  19. Search for the Standard Model Higgs Boson Produced in Association with Top Quarks

    SciTech Connect

    Wilson, Jonathan Samuel

    2011-01-01

    We have performed a search for the Standard Model Higgs boson produced in association with top quarks in the lepton plus jets channel. We impose no constraints on the decay of the Higgs boson. We employ ensembles of neural networks to discriminate events containing a Higgs boson from the dominant tt¯background, and set upper bounds on the Higgs production cross section. At a Higgs boson mass mH = 120 GeV/c2 , we expect to exclude a cross section 12.7 times the Standard Model prediction, and we observe an exclusion 27.4 times the Standard Model prediction with 95 % confidence.

  20. Trilinear gauge boson couplings in the MSSM

    NASA Astrophysics Data System (ADS)

    Argyres, E. N.; Lahanas, A. B.; Papadopoulos, C. G.; Spanos, V. C.

    1996-02-01

    We study the C and P even WWγ and WWZ trilinear gauge boson vertices (TGV's), in the context of the MSSM assuming that the external W's are on their mass shell. We find that for energies s  q 2 ⩽ 200 GeV squark and slepton contributions to the aforementioned couplings are two orders of magnitude smaller than those of the Standard Model (SM). In the same energy range the bulk of the supersymmetric Higgs corrections to the TGV's is due to the lightest neutral Higgs, h0, whose contribution is like that of a Standard Model Higgs of the same mass. The contributions of the neutralinos and charginos are sensitive to the input value for the soft gaugino mass M {1}/{2}, being more pronounced for values M {1}/{2} < 100 GeV. In this case and in the unphysical region, 0 < s < 2M W, their contributions are substantially enhanced resulting in large corrections to the static quantities of the W boson. However, such an enhancement is not observed in the physical region. In general for 2M W < s < 200 GeV the MSSM predictions differ from those of the SM but they are of the same order of magnitude. To be detectable deviations from the SM require sensitivities reaching the per mille level and hence unlikely to be observed at LEP200. For higher energies SM and MSSM predictions exhibit a fast fall-off behaviour, in accord with unitarity requirements, getting smaller, in most cases, by almost an order of magnitude already at energies s ≈ 0.5 TeV.

  1. LHC signals for coset electroweak gauge bosons in warped/composite pseudo-Goldstone boson Higgs models

    NASA Astrophysics Data System (ADS)

    Agashe, Kaustubh; Azatov, Aleksandr; Han, Tao; Li, Yingchuan; Si, Zong-Guo; Zhu, Lijun

    2010-05-01

    The framework of a warped extra dimension with the standard model (SM) fields propagating in it is a very well-motivated extension of the SM since it can address both the Planck-weak and flavor hierarchy problems of the SM. Within this framework, solution to the little hierarchy problem motivates extending the SM electroweak (EW) 5D gauge symmetry in such a way that its breakdown to the SM delivers the SM Higgs boson. We study signals at the large hadron collider (LHC) for the extra EW (called coset) gauge bosons, a fundamental ingredient of this framework. The coset gauge bosons, due to their unique EW gauge quantum numbers [doublets of SU(2)L], do not couple at leading order to two SM particles. We find that, using the associated production of the charged coset gauge bosons via their coupling to bottom quark and a (light) Kaluza-Klein excitation of the top quark, the LHC can have a 3σ reach of ˜2(2.6)TeV for the coset gauge boson masses with ˜100(1000)fb-1 luminosity. Since current theoretical framework(s) suggest an indirect lower limit on coset gauge boson masses of ≳3TeV, luminosity or energy upgrade of LHC is likely to be crucial in observing these states.

  2. New limits on the SUSY Higgs boson mass

    SciTech Connect

    Matchev, Konstantin T.; Pierce, Damien M.

    1998-05-01

    We present new upper limits on the light Higgs boson mass mh in supersymmetric models. We consider two gravity-mediated models (with and without universal scalar masses) and two gauge-mediated models (with a 5+5 or 10+10 messenger sector). We impose standard phenomenological constraints, as well as SU(5) Yukawa coupling unification. Requiring that the bottom and tau Yukawa couplings meet at the unification scale to within 15%, we find the upper limit mh<114 GeV in the universal supergravity model. This reverts to the usual upper bound of 125 GeV with a particular nonuniversality in the scalar spectrum. In the 5+5 gauge-mediated model we find mh<97 GeV for small tan beta and mh = 116 GeV for large tan beta, and in the 10+10 model we find mh<94 GeV. We discuss the implications for upcoming searches at LEP-II and the Tevatron.

  3. A Search for the Standard Model Higgs Boson Produced in Association with a $W$ Boson

    SciTech Connect

    Frank, Martin Johannes

    2011-05-01

    We present a search for a standard model Higgs boson produced in association with a W boson using data collected with the CDF II detector from p$\\bar{p}$ collisions at √s = 1.96 TeV. The search is performed in the WH → ℓvb$\\bar{b}$ channel. The two quarks usually fragment into two jets, but sometimes a third jet can be produced via gluon radiation, so we have increased the standard two-jet sample by including events that contain three jets. We reconstruct the Higgs boson using two or three jets depending on the kinematics of the event. We find an improvement in our search sensitivity using the larger sample together with this multijet reconstruction technique. Our data show no evidence of a Higgs boson, so we set 95% confidence level upper limits on the WH production rate. We set limits between 3.36 and 28.7 times the standard model prediction for Higgs boson masses ranging from 100 to 150 GeV/c2.

  4. The discovery and measurements of a Higgs boson.

    PubMed

    Gianotti, F; Virdee, T S

    2015-01-13

    In July 2012, the ATLAS and CMS collaborations at CERN's Large Hadron Collider announced the discovery of a Higgs-like boson, a new heavy particle at a mass more than 130 times the mass of a proton. Since then, further data have revealed its properties to be strikingly similar to those of the Standard Model Higgs boson, a particle expected from the mechanism introduced almost 50 years ago by six theoreticians including British physicists Peter Higgs from Edinburgh University and Tom Kibble from Imperial College London. The discovery is the culmination of a truly remarkable scientific journey and undoubtedly the most significant scientific discovery of the twenty-first century so far. Its experimental confirmation turned out to be a monumental task requiring the creation of an accelerator and experiments of unprecedented capability and complexity, designed to discern the signatures that correspond to the Higgs boson. Thousands of scientists and engineers, in each of the ATLAS and CMS teams, came together from all four corners of the world to make this massive discovery possible. PMID:26949804

  5. Got Questions About the Higgs Boson? Ask a Scientist

    SciTech Connect

    Hinchliffe, Ian

    2012-01-01

    Ask a scientist about the Higgs boson. There's a lot of buzz this week over new data from CERN's Large Hadron Collider (LHC) and the final data from Fermilab's Tevatron about the Higgs boson. It raises questions about what scientists have found and what still remains to be found -- and what it all means. Berkeley Lab's Ian Hinchliffe invites you to send in questions about the Higgs. He'll answer a few of your questions in a follow-up video later this week. Hinchliffe is a theoretical physicist who heads Berkeley Lab's sizable contingent with the ATLAS experiment at CERN. • Post your questions in the comment box • E-mail your questions to askascientist@lbl.gov • Tweet to @BerkeleyLab • Or post on our facebook page: facebook/berkeleylab Update on July 5: Ian responds to several of your questions in this video: http://youtu.be/1BkpD1IS62g Update on 7/04: Here's CERN's press release from earlier today on the latest preliminary results in the search for the long sought Higgs particle: http://press.web.cern.ch/press/PressReleases/Releases2012/PR17.12E.htm And here's a Q&A on what the news tells us: http://cdsweb.cern.ch/journal/CERNBulletin/2012/28/News%20Articles/1459460?ln=en CERN will present the new LHC data at a seminar July 4th at 9:00 in the morning Geneva time (3:00 in the morning Eastern Daylight Time, midnight on the Pacific Coast), where the ATLAS collaboration and their rivals in the CMS experiment will announce their results. Tevatron results were announced by Fermilab on Monday morning. For more background on the LHC's search for the Higgs boson, visit http://newscenter.lbl.gov/feature-stories/2012/06/28/higgs-2012/.

  6. Got Questions About the Higgs Boson? Ask a Scientist

    ScienceCinema

    Hinchliffe, Ian

    2013-05-29

    Ask a scientist about the Higgs boson. There's a lot of buzz this week over new data from CERN's Large Hadron Collider (LHC) and the final data from Fermilab's Tevatron about the Higgs boson. It raises questions about what scientists have found and what still remains to be found -- and what it all means. Berkeley Lab's Ian Hinchliffe invites you to send in questions about the Higgs. He'll answer a few of your questions in a follow-up video later this week. Hinchliffe is a theoretical physicist who heads Berkeley Lab's sizable contingent with the ATLAS experiment at CERN. ? Post your questions in the comment box ? E-mail your questions to askascientist@lbl.gov ? Tweet to @BerkeleyLab ? Or post on our facebook page: facebook/berkeleylab Update on July 5: Ian responds to several of your questions in this video: http://youtu.be/1BkpD1IS62g Update on 7/04: Here's CERN's press release from earlier today on the latest preliminary results in the search for the long sought Higgs particle: http://press.web.cern.ch/press/PressReleases/Releases2012/PR17.12E.htm And here's a Q&A on what the news tells us: http://cdsweb.cern.ch/journal/CERNBulletin/2012/28/News%20Articles/1459460?ln=en CERN will present the new LHC data at a seminar July 4th at 9:00 in the morning Geneva time (3:00 in the morning Eastern Daylight Time, midnight on the Pacific Coast), where the ATLAS collaboration and their rivals in the CMS experiment will announce their results. Tevatron results were announced by Fermilab on Monday morning. For more background on the LHC's search for the Higgs boson, visit http://newscenter.lbl.gov/feature-stories/2012/06/28/higgs-2012/.

  7. Analytic one-loop amplitudes for a Higgs boson plus four partons

    SciTech Connect

    Dixon, Lance J.; Sofianatos, Yorgos; /SLAC

    2009-06-02

    We compute the one-loop QCD amplitudes for the processes H{anti q}q{anti Q}Q and H{anti q}qgg, the latter restricted to the case of opposite-helicity gluons. Analytic expressions are presented for the color- and helicity-decomposed amplitudes. The coupling of the Higgs boson to gluons is treated by an effective interaction in the limit of large top quark mass. The Higgs field is split into a complex field {phi} and its complex conjugate {phi}{sup {dagger}}. The split is useful because amplitudes involving {phi} have different analytic structure from those involving {phi}{sup {dagger}}. We compute the cut-containing pieces of the amplitudes using generalized unitarity. The remaining rational parts are obtained by on-shell recursion. Our results for H{anti q}q{anti Q}Q agree with previous semi-numerical computations. We also show how to convert existing semi-numerical results for the production of a scalar Higgs boson into analogous results for a pseudoscalar Higgs boson.

  8. Search for the standard model Higgs boson in association with a W boson at D0.

    SciTech Connect

    Shaw, Savanna Marie

    2013-01-01

    I present a search for the standard model Higgs boson, H, produced in association with a W boson in data events containing a charged lepton (electron or muon), missing energy, and two or three jets. The data analysed correspond to 9.7 fb-1 of integrated luminosity collected at a center-of-momentum energy of √s = 1.96 TeV with the D0 detector at the Fermilab Tevatron p$\\bar{p}$ collider. This search uses algorithms to identify the signature of bottom quark production and multivariate techniques to improve the purity of H → b$\\bar{b}$ production. We validate our methodology by measuring WZ and ZZ production with Z → b$\\bar{b}$ and find production rates consistent with the standard model prediction. For a Higgs boson mass of 125 GeV, we determine a 95% C.L. upper limit on the production of a standard model Higgs boson of 4.8 times the standard model Higgs boson production cross section, while the expected limit is 4.7 times the standard model production cross section. I also present a novel method for improving the energy resolution for charged particles within hadronic signatures. This is achieved by replacing the calorimeter energy measurement for charged particles within a hadronic signature with the tracking momentum measurement. This technique leads to a ~ 20% improvement in the jet energy resolution, which yields a ~ 7% improvement in the reconstructed dijet mass width for H → b$\\bar{b}$ events. The improved energy calculation leads to a ~ 5% improvement in our expected 95% C.L. upper limit on the Higgs boson production cross section.

  9. Single Higgs boson production at the ILC in the left-right twin Higgs model

    NASA Astrophysics Data System (ADS)

    Liu, Yao-Bei; Xiao, Zhen-Jun

    2015-06-01

    In this work, we analyze three dominant single SM-like Higgs boson production processes in the left-right twin Higgs model (LRTHM): the Higgs-strahlung (HS) process {{e}+}{{e}-}\\to Zh, the vector boson fusion (VBF) process {{e}+}{{e}-}\\to ν \\bar{ν }h and the associate production with top pair process {{e}+}{{e}-}\\to t\\bar{t}h for three possible energy stages of the International Linear Collider (ILC), and compared our results with the expected experimental accuracies for various accessible Higgs decay channels. The following observations have been obtained. (1) In the reasonable parameter space, the LRTHM can generate moderate contributions to theses processes with polarized beams. (2) Among various Higgs boson decay channels, the b\\bar{b} signal strength is the most sensitive to the LRTHM due to the high expected precision. For the t\\bar{t}h production process, the absolute value of {{μ }b\\bar{b}} may deviate from the SM prediction by over 8.7% and thus may be detectable at the proposed ILC with \\sqrt{s}=1 TeV. (3) ILC experiments may give a strong limit on the scale parameter f: for the case of ILC-250 GeV, for example, the lower limit for parameter f of the LRTHM is f > 1150 GeV at the 2σ level.

  10. Discovery Reach of Charged MSSM Higgs Bosons at CMS

    SciTech Connect

    Heinemeyer, S.; Nikitenko, A.; Weiglein, G.

    2008-11-23

    We review the 5{sigma} discovery contours for the charged MSSM Higgs boson at the CMS experiment with 30 fb{sup -1} for the two cases M{sub H{sup {+-}}}m{sub t}. In order to analyze the search reach we combine the latest results for the CMS experimental sensitivities based on full simulation studies with state-of-the-art theoretical predictions of MSSM Higgs-boson production and decay properties. Special emphasis is put on the SUSY parameter dependence of the 5{sigma} contours. The variation of {mu} can shift the prospective discovery reach in tan{beta} by up to {delta}tan{beta} = 40.

  11. Conformal barrier for new vector bosons decay to the Higgs

    NASA Astrophysics Data System (ADS)

    Fukano, Hidenori S.; Matsuzaki, Shinya; Yamawaki, Koichi

    2016-03-01

    The ATLAS collaboration has recently reported excesses about 2.5 σ at mass around 2 TeV in the diboson channels, which can be identified with new vector bosons as a hint for the new physics. It is shown that spontaneously broken conformal/scale symmetry prohibits new vector bosons decay to the Higgs, which is contrasted to the popular “equivalence theorem” valid only in a special limit not necessarily relevant to the 2 TeV mass. If the decay V → WH/ZH is not observed in the ongoing Run-II of the large hadron collider (LHC), then the 125 GeV Higgs can be a dilaton.

  12. Dark-photon searches via Higgs-boson production at the LHC

    NASA Astrophysics Data System (ADS)

    Biswas, Sanjoy; Gabrielli, Emidio; Heikinheimo, Matti; Mele, Barbara

    2016-05-01

    Dark photons γ ¯ mediating long-range forces in a dark sector are predicted by various new physics scenarios, and are being intensively searched for in experiments. We extend a previous study of a new discovery process for dark photons proceeding via Higgs-boson production at the LHC. Thanks to the nondecoupling properties of the Higgs boson, BR (H →γ γ ¯ ) values up to a few percent are possible for a massless dark photon, even for heavy dark-sector scenarios. The corresponding signature consists (for a Higgs boson at rest) of a striking monochromatic photon with energy Eγ=mH/2 , and a similar amount of missing energy. We perform a model-independent analysis at the LHC of both the gluon-fusion and vector-boson fusion (VBF) Higgs production mechanisms at 14 TeV, including parton-shower effects, and updating our previous parton-level analysis at 8 TeV in the gluon-fusion channel by a more realistic background modeling. We find that a 5 σ sensitivity can be reached in the gluon-fusion channel for BR (H →γ γ ¯)≃0.1 % with an integrated luminosity of L ≃300 fb-1. The corresponding VBF reach is instead restricted to 1%. Such decay rates can be naturally obtained in dark-photon scenarios arising from unbroken U (1 )F models explaining the origin and hierarchy of the Yukawa couplings, strongly motivating the search for this exotic Higgs decay at the LHC.

  13. Search for the Standard Model Higgs Boson in the $WH \\to \\ell \

    SciTech Connect

    Nagai, Yoshikazu; /Tsukuba U.

    2010-02-01

    We have searched for the Standard Model Higgs boson in the WH {yields} lvbb channel in 1.96 TeV pp collisions at CDF. This search is based on the data collected by March 2009, corresponding to an integrated luminosity of 4.3 fb-1. The W H channel is one of the most promising channels for the Higgs boson search at Tevatron in the low Higgs boson mass region.

  14. Search for supersymmetric neutral Higgs bosons at the Tevatron

    SciTech Connect

    Scanlon, Tim; /Imperial Coll., London

    2007-10-01

    Recent preliminary results obtained by the CDF and D0 Collaborations on searches for Higgs bosons beyond the Standard Model at Run II of the Tevatron are discussed. The data, corresponding to integrated luminosities of up to 1 fb{sup -1}, are compared to theoretical expectations. No significant excess of signal above the expected background is observed in any of the various final states examined, and so limits at 95% Confidence Level (CL) are presented.

  15. Search for the neutral MSSM Higgs bosons with ATLAS

    SciTech Connect

    Schaarschmidt, Jana

    2008-11-23

    The discovery of a neutral Higgs boson with large branching fractions into tau or muon pair final states would be a strong evidence of New Physics beyond the Standard Model. The discovery potential of these processes with the ATLAS detector at the Large Hadron Collider for integrated luminosities of 10 fb{sup -1} and 30 fb{sup -1} is presented. The studies are based on the analysis of fully simulated Monte Carlo samples.

  16. The Higgs Boson: Is the End in Sight?

    NASA Astrophysics Data System (ADS)

    Lincoln, Don

    2012-09-01

    This summer, perhaps while you were lounging around the pool in the blistering heat, the blogosphere was buzzing about data taken at the Large Hadron Collider at CERN. The buzz reached a crescendo in the first week of July when both Fermilab and CERN announced the results of their searches for the Higgs boson. Hard data confronted a theory nearly half a century old and the theory survived.

  17. Study of the spin and parity of the Higgs boson in diboson decays with the ATLAS detector

    DOE PAGESBeta

    Aad, G.

    2015-10-06

    Studies of the spin, parity and tensor couplings of the Higgs boson in the H→ZZ*→4ℓ, H→WW*→eνμν and H→γγ decay processes at the LHC are presented. The investigations are based on 25fb–1 of pp collision data collected by the ATLAS experiment at √s=7 TeV and √s=8 TeV. The Standard Model (SM) Higgs boson hypothesis, corresponding to the quantum numbers JP=0+, is tested against several alternative spin scenarios, including non-SM spin-0 and spin-2 models with universal and non-universal couplings to fermions and vector bosons. All tested alternative models are excluded in favour of the SM Higgs boson hypothesis at more than 99.9more » % confidence level. Using the H→ZZ*→4ℓ and H→WW*→eνμν decays, the tensor structure of the interaction between the spin-0 boson and the SM vector bosons is also investigated. Thus, the observed distributions of variables sensitive to the non SM tensor couplings are compatible with the SM predictions and constraints on the non SM couplings are derived.« less

  18. Study of the spin and parity of the Higgs boson in diboson decays with the ATLAS detector

    SciTech Connect

    Aad, G.

    2015-10-06

    Studies of the spin, parity and tensor couplings of the Higgs boson in the H→ZZ*→4ℓ, H→WW*→eνμν and H→γγ decay processes at the LHC are presented. The investigations are based on 25fb–1 of pp collision data collected by the ATLAS experiment at √s=7 TeV and √s=8 TeV. The Standard Model (SM) Higgs boson hypothesis, corresponding to the quantum numbers JP=0+, is tested against several alternative spin scenarios, including non-SM spin-0 and spin-2 models with universal and non-universal couplings to fermions and vector bosons. All tested alternative models are excluded in favour of the SM Higgs boson hypothesis at more than 99.9 % confidence level. Using the H→ZZ*→4ℓ and H→WW*→eνμν decays, the tensor structure of the interaction between the spin-0 boson and the SM vector bosons is also investigated. Thus, the observed distributions of variables sensitive to the non SM tensor couplings are compatible with the SM predictions and constraints on the non SM couplings are derived.

  19. Higgs boson production and decay in 5D warped models

    NASA Astrophysics Data System (ADS)

    Frank, Mariana; Pourtolami, Nima; Toharia, Manuel

    2016-03-01

    We calculate the production and decay rates of the Higgs boson at the LHC in the context of general five-dimensional warped scenarios with a spacetime background modified from the usual AdS5 , with Standard Model (SM) fields propagating in the bulk. We extend previous work by considering the full flavor structure of the SM, and thus including all possible flavor effects coming from mixings with heavy fermions. We proceed in three different ways, first by only including two complete Kaluza-Klein (KK) levels (15 ×15 fermion mass matrices), then including three complete KK levels (21 ×21 fermion mass matrices) and finally we compare with the effect of including the infinite (full) KK towers. We present numerical results for the Higgs production cross section via gluon fusion and Higgs decay branching fractions in both the modified metric scenario and in the usual Randall-Sundrum metric scenario.

  20. Higgs boson production and decay at e+e- colliders as a probe of the Left-Right twin Higgs model

    NASA Astrophysics Data System (ADS)

    Han, Jinzhong; Li, Shaofeng; Yang, Bingfang; Liu, Ning

    2015-07-01

    In the framework of the Left-Right twin Higgs (LRTH) model, we consider the constrains from the latest search for high-mass dilepton resonances at the LHC and find that the heavy neutral boson ZH is excluded with mass below 2.76 TeV. Under these constrains, we study the Higgs-Gauge coupling production processes e+e- → ZH, e+e- →νeνe bar H and e+e- →e+e- H, top quark Yukawa coupling production process e+e- → t t bar H, Higgs self-couplings production processes e+e- → ZHH and e+e- →νeνe bar HH at e+e- colliders. Besides, we study the major decay modes of the Higgs boson, namely h → f f bar (f = b, c, τ), VV* (V = W, Z), gg, γγ. We find that the LRTH effects are sizable so that the Higgs boson processes at e+e- collider can be a sensitive probe for the LRTH model.

  1. Yang-Mills Gauge Theory and the Higgs Boson Family

    NASA Astrophysics Data System (ADS)

    Chang, Ngee-Pong

    The gauge symmetry principles of the Yang-Mills field of 1954 provide the solid rock foundation for the Standard Model of particle physics. To give masses to the quarks and leptons, however, SM calls on the solitary Higgs field using a set of mysterious complex Yukawa coupling matrices. We enrich the SM by reducing the Yukawa coupling matrices to a single Yukawa coupling constant, and endowing it with a family of Higgs fields that are degenerate in mass. The recent experimental discovery of the Higgs resonance at 125.09±0.21 GeV does not preclude this possibility. Instead, it presents an opportunity to explore the interference effects in background events at the LHC. We present a study based on the maximally symmetric Higgs potential in a leading hierarchy scenario.

  2. Yang-Mills gauge theory and the Higgs boson family

    NASA Astrophysics Data System (ADS)

    Chang, Ngee-Pong

    2016-01-01

    The gauge symmetry principles of the Yang-Mills field of 1954 provide the solid rock foundation for the Standard Model of particle physics. To give masses to the quarks and leptons, however, SM calls on the solitary Higgs field using a set of mysterious complex Yukawa coupling matrices. We enrich the SM by reducing the Yukawa coupling matrices to a single Yukawa coupling constant, and endowing it with a family of Higgs fields that are degenerate in mass. The recent experimental discovery of the Higgs resonance at 125.09 ± 0.21 GeV does not preclude this possibility. Instead, it presents an opportunity to explore the interference effects in background events at the LHC. We present a study based on the maximally symmetric Higgs potential in a leading hierarchy scenario.

  3. Diffractive Higgs boson photoproduction in ultraperipheral collisions at LHC

    SciTech Connect

    Gay Ducati, M. B.; Silveira, G. G.

    2010-10-01

    A new production mechanism for the standard model Higgs boson in ultraperipheral collisions at the LHC, which allows central exclusive diffractive production by double pomeron exchange in photon-proton processes, is presented. The Higgs boson is centrally produced by gluon fusion with two large rapidity gaps emerging in the final state, being the main experimental signature for this process. As already studied for Pomeron-Pomeron and two-photon processes, the Higgs boson photoproduction is studied within this new mechanism in proton-proton (pp) and proton-nucleus (pA) collisions, where each system has a different dynamics to be taken into account. As a result, this mechanism predicts a production cross section for pp collisions of about 1.8 fb, which is similar to that obtained in Pomeron-Pomeron processes. Besides, in pPb collisions the cross sections have increased to about 0.6 pb, being comparable with the results of two-photon processes in pAu collisions. Therefore, as the rapidity gap survival probability is an open question in high-energy physics, an analysis for different values of this probability shows how competitive the mechanisms are in the LHC kinematical regime.

  4. Status of the 98-125 GeV Higgs bosons scenario with updated LHC-8 data

    NASA Astrophysics Data System (ADS)

    Bhattacherjee, Biplob; Chakraborti, Manimala; Chakraborty, Amit; Chattopadhyay, Utpal; Ghosh, Dilip Kumar

    2016-04-01

    In the context of the minimal supersymmetric standard model (MSSM), we discuss the possibility of the lightest Higgs boson with mass Mh=98 GeV to be consistent with the 2.3 σ excess observed at the LEP in the decay mode e+e-→Z h , with h →b b ¯. In the same region of the MSSM parameter space, the heavier Higgs boson (H ) with mass MH˜125 GeV is required to be consistent with the latest data on Higgs coupling measurements at the end of the 7 +8 TeV LHC run with 25 fb-1 of data. While scanning the MSSM parameter space, we impose constraints coming from flavor physics, relic density of the cold dark matter as well as direct dark matter searches. We study the possibility of observing this light Higgs boson in vector boson fusion process and associated production with W /Z -boson at the high luminosity (3000 fb-1 ) run of the 14 TeV LHC. Our analysis shows that this scenario can hardly be ruled out even at the high luminosity run of the LHC. However, the precise measurement of the Higgs signal strength ratios can play a major role to distinguish this scenario from the canonical MSSM one.

  5. Search for a Higgs boson decaying to two W bosons at CDF.

    PubMed

    Aaltonen, T; Adelman, J; Akimoto, T; Albrow, M G; Alvarez González, B; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Apresyan, A; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Azzurri, P; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Bartsch, V; Bauer, G; Beauchemin, P-H; Bedeschi, F; Beecher, D; Behari, S; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Beringer, J; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Bridgeman, A; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burke, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrera, S; Calancha, C; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carls, B; Carlsmith, D; Carosi, R; Carrillo, S; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavaliere, V; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Chwalek, T; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Compostella, G; Convery, M E; Conway, J; Cordelli, M; Cortiana, G; Cox, C A; Cox, D J; Crescioli, F; Cuenca Almenar, C; Cuevas, J; Culbertson, R; Cully, J C; Dagenhart, D; Datta, M; Davies, T; de Barbaro, P; De Cecco, S; Deisher, A; De Lorenzo, G; Dell'orso, M; Deluca, C; Demortier, L; Deng, J; Deninno, M; Derwent, P F; di Giovanni, G P; Dionisi, C; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Elagin, A; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Ferrazza, C; Field, R; Flanagan, G; Forrest, R; Frank, M J; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garberson, F; Garcia, J E; Garfinkel, A F; Genser, K; Gerberich, H; Gerdes, D; Gessler, A; Giagu, S; Giakoumopoulou, V; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C M; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Giurgiu, G; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Grundler, U; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Han, B-Y; Han, J Y; Happacher, F; Hara, K; Hare, D; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hays, C; Heck, M; Heijboer, A; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hewamanage, S; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Husemann, U; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; James, E; Jayatilaka, B; Jeon, E J; Jha, M K; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Kar, D; Karchin, P E; Kato, Y; Kephart, R; Keung, J; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, H W; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Knuteson, B; Ko, B R; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kreps, M; Kroll, J; Krop, D; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhr, T; Kulkarni, N P; Kurata, M; Kusakabe, Y; Kwang, S; Laasanen, A T; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; Lecompte, T; Lee, E; Lee, H S; Lee, S W; Leone, S; Lewis, J D; Lin, C-S; Linacre, J; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, C; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Lovas, L; Lucchesi, D; Luci, C; Lueck, J; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Macqueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maki, T; Maksimovic, P; Malde, S; Malik, S; Manca, G; Manousakis-Katsikakis, A; Margaroli, F; Marino, C; Marino, C P; Martin, A; Martin, V; Martínez, M; Martínez-Ballarín, R; Maruyama, T; Mastrandrea, P; Masubuchi, T; Mathis, M; Mattson, M E; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzione, A; Merkel, P; Mesropian, C; Miao, T; Miladinovic, N; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyake, H; Moggi, N; Moon, C S; Moore, R; Morello, M J; Morlok, J; Movilla Fernandez, P; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Nagano, A; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Necula, V; Nett, J; Neu, C; Neubauer, M S; Neubauer, S; Nielsen, J; Nodulman, L; Norman, M; Norniella, O; Nurse, E; Oakes, L; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Orava, R; Griso, S Pagan; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Peiffer, T; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Pianori, E; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Pueschel, E; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Rekovic, V; Renton, P; Renz, M; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rodriguez, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Roy, P; Ruiz, A; Russ, J; Rusu, V; Safonov, A; Sakumoto, W K; Saltó, O; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savoy-Navarro, A; Schlabach, P; Schmidt, A; Schmidt, E E; Schmidt, M A; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sforza, F; Sfyrla, A; Shalhout, S Z; Shears, T; Shepard, P F; Shimojima, M; Shiraishi, S; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Sinervo, P; Sisakyan, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spreitzer, T; Squillacioti, P; Stanitzki, M; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Strycker, G L; Stuart, D; Suh, J S; Sukhanov, A; Suslov, I; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Thom, J; Thompson, A S; Thompson, G A; Thomson, E; Tipton, P; Ttito-Guzmán, P; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Totaro, P; Tourneur, S; Trovato, M; Tsai, S-Y; Tu, Y; Turini, N; Ukegawa, F; Vallecorsa, S; van Remortel, N; Varganov, A; Vataga, E; Vázquez, F; Velev, G; Vellidis, C; Veszpremi, V; Vidal, M; Vidal, R; Vila, I; Vilar, R; Vine, T; Vogel, M; Volobouev, I; Volpi, G; Wagner, P; Wagner, R G; Wagner, R L; Wagner, W; Wagner-Kuhr, J; Wakisaka, T; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Weinelt, J; Wester Iii, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Wilbur, S; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Würthwein, F; Wynne, S M; Xie, S; Yagil, A; Yamamoto, K; Yamaoka, J; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zhang, X; Zheng, Y; Zucchelli, S

    2009-01-16

    We present a search for a Higgs boson decaying to two W bosons in pp[over ] collisions at sqrt[s]=1.96 TeV center-of-mass energy. The data sample corresponds to an integrated luminosity of 3.0 fb;(-1) collected with the CDF II detector. We find no evidence for production of a Higgs boson with mass between 110 and 200 GeV/c;(2), and determine upper limits on the production cross section. For the mass of 160 GeV/c;(2), where the analysis is most sensitive, the observed (expected) limit is 0.7 pb (0.9 pb) at 95% Bayesian credibility level which is 1.7 (2.2) times the standard model cross section. PMID:19257265

  6. Search for a Higgs Boson Decaying to Two W Bosons at CDF

    SciTech Connect

    Aaltonen, T.; Adelman, J.; Akimoto, T.; Albrow, Michael G.; Alvarez Gonzalez, B.; Amerio, S.; Amidei, Dante E.; Anastassov, A.; Annovi, Alberto; Antos, J.; Apollinari, G.; /Fermilab /Purdue U.

    2008-09-01

    We present a search for a Higgs boson decaying to two W bosons in p{bar p} collisions at {radical}s = 1.96 TeV center-of-mass energy. The data sample corresponds to an integrated luminosity of 3.0 fb{sup -1} collected with the CDF II detector. We find no evidence for production of a Higgs boson with mass between 110 and 200 GeV/c{sup 2}, and determine upper limits on the production cross section. For the mass of 160 GeV/c{sup 2}, where the analysis is most sensitive, the observed (expected) limit is 0.7 pb (0.9 pb) at 95% Bayesian credibility level which is 1.7 (2.2) times the standard model cross section.

  7. On the light quark mass effects in Higgs boson production in gluon fusion

    NASA Astrophysics Data System (ADS)

    Melnikov, Kirill; Penin, Alexander

    2016-05-01

    Production of Higgs bosons at the LHC is affected by the contribution of light quarks, that mediate the gg → Hg transition. Although their impact is suppressed by small Yukawa couplings, it is enhanced by large logarithms of the ratio of the Higgs boson mass or its transverse momentum to light quark masses. We study the origin of this enhancement, focusing on the abelian corrections to gg → Hg amplitudes of the form {({C}_F{α}_s{mathcal{L}}^2)}^n , where mathcal{L}in \\{ ln (s/{m}_b^2),kern0.5em ln ({p}_{perp}^2/{m}_b^2)\\} . We show how these non-Sudakov double logarithmic terms can be resummed to all orders in the strong coupling constant. Interestingly, we find that the transverse momentum dependence of these corrections is very weak due to a peculiar cancellation between different logarithmic terms. Although the abelian part of QCD corrections is not expected to be dominant, it can be used to estimate missing higher-order corrections to light quark contributions to Higgs boson production at the LHC.

  8. Constraints on models of the Higgs boson with exotic spin and parity using decays to bottom-antibottom quarks in the full CDF data set

    SciTech Connect

    Aaltonen, Timo Antero

    2015-04-10

    In this study, a search for particles with the same mass and couplings as those of the standard model Higgs boson but different spin and parity quantum numbers is presented. We test two specific alternative Higgs boson hypotheses: a pseudoscalar Higgs boson with spin-parity JP = 0 and a gravitonlike Higgs boson with JP = 2+, assuming for both a mass of 125 GeV/c2. We search for these exotic states produced in association with a vector boson and decaying into a bottom-antibottom quark pair. The vector boson is reconstructed through its decay into an electron or muon pair, or an electron or muon and a neutrino, or it is inferred from an imbalance in total transverse momentum. We use expected kinematic differences between events containing exotic Higgs bosons and those containing standard model Higgs bosons. The data were collected by the CDF experiment at the Tevatron proton-antiproton collider, operating at a center-of-mass energy of √s = 1.96 TeV, and correspond to an integrated luminosity of 9.45 fb–1. We exclude deviations from the predictions of the standard model with a Higgs boson of mass 125 GeV/c2 at the level of 5 standard deviations, assuming signal strengths for exotic boson production equal to the prediction for the standard model Higgs boson, and set upper limits of approximately 30% relative to the standard model rate on the possible rate of production of each exotic state.

  9. Constraints on models of the Higgs boson with exotic spin and parity using decays to bottom-antibottom quarks in the full CDF data set.

    PubMed

    Aaltonen, T; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Apollinari, G; Appel, J A; Arisawa, T; Artikov, A; Asaadi, J; Ashmanskas, W; Auerbach, B; Aurisano, A; Azfar, F; Badgett, W; Bae, T; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Barria, P; Bartos, P; Bauce, M; Bedeschi, F; Behari, S; Bellettini, G; Bellinger, J; Benjamin, D; Beretvas, A; Bhatti, A; Bland, K R; Blumenfeld, B; Bocci, A; Bodek, A; Bortoletto, D; Boudreau, J; Boveia, A; Brigliadori, L; Bromberg, C; Brucken, E; Budagov, J; Budd, H S; Burkett, K; Busetto, G; Bussey, P; Butti, P; Buzatu, A; Calamba, A; Camarda, S; Campanelli, M; Canelli, F; Carls, B; Carlsmith, D; Carosi, R; Carrillo, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavaliere, V; Cerri, A; Cerrito, L; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Cho, K; Chokheli, D; Clark, A; Clarke, C; Convery, M E; Conway, J; Corbo, M; Cordelli, M; Cox, C A; Cox, D J; Cremonesi, M; Cruz, D; Cuevas, J; Culbertson, R; d'Ascenzo, N; Datta, M; de Barbaro, P; Demortier, L; Deninno, M; D'Errico, M; Devoto, F; Di Canto, A; Di Ruzza, B; Dittmann, J R; Donati, S; D'Onofrio, M; Dorigo, M; Driutti, A; Ebina, K; Edgar, R; Elagin, A; Erbacher, R; Errede, S; Esham, B; Farrington, S; Fernández Ramos, J P; Field, R; Flanagan, G; Forrest, R; Franklin, M; Freeman, J C; Frisch, H; Funakoshi, Y; Galloni, C; Garfinkel, A F; Garosi, P; Gerberich, H; Gerchtein, E; Giagu, S; Giakoumopoulou, V; Gibson, K; Ginsburg, C M; Giokaris, N; Giromini, P; Glagolev, V; Glenzinski, D; Gold, M; Goldin, D; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González López, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gramellini, E; Grosso-Pilcher, C; Group, R C; Guimaraes da Costa, J; Hahn, S R; Han, J Y; Happacher, F; Hara, K; Hare, M; Harr, R F; Harrington-Taber, T; Hatakeyama, K; Hays, C; Heinrich, J; Herndon, M; Hocker, A; Hong, Z; Hopkins, W; Hou, S; Hughes, R E; Husemann, U; Hussein, M; Huston, J; Introzzi, G; Iori, M; Ivanov, A; James, E; Jang, D; Jayatilaka, B; Jeon, E J; Jindariani, S; Jones, M; Joo, K K; Jun, S Y; Junk, T R; Kambeitz, M; Kamon, T; Karchin, P E; Kasmi, A; Kato, Y; Ketchum, W; Keung, J; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S H; Kim, S B; Kim, Y J; Kim, Y K; Kimura, N; Kirby, M; Knoepfel, K; Kondo, K; Kong, D J; Konigsberg, J; Kotwal, A V; Kreps, M; Kroll, J; Kruse, M; Kuhr, T; Kurata, M; Laasanen, A T; Lammel, S; Lancaster, M; Lannon, K; Latino, G; Lee, H S; Lee, J S; Leo, S; Leone, S; Lewis, J D; Limosani, A; Lipeles, E; Lister, A; Liu, H; Liu, Q; Liu, T; Lockwitz, S; Loginov, A; Lucchesi, D; Lucà, A; Lueck, J; Lujan, P; Lukens, P; Lungu, G; Lys, J; Lysak, R; Madrak, R; Maestro, P; Malik, S; Manca, G; Manousakis-Katsikakis, A; Marchese, L; Margaroli, F; Marino, P; Matera, K; Mattson, M E; Mazzacane, A; Mazzanti, P; McNulty, R; Mehta, A; Mehtala, P; Mesropian, C; Miao, T; Mietlicki, D; Mitra, A; Miyake, H; Moed, S; Moggi, N; Moon, C S; Moore, R; Morello, M J; Mukherjee, A; Muller, Th; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Naganoma, J; Nakano, I; Napier, A; Nett, J; Neu, C; Nigmanov, T; Nodulman, L; Noh, S Y; Norniella, O; Oakes, L; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Orava, R; Ortolan, L; Pagliarone, C; Palencia, E; Palni, P; Papadimitriou, V; Parker, W; Pauletta, G; Paulini, M; Paus, C; Phillips, T J; Piacentino, G; Pianori, E; Pilot, J; Pitts, K; Plager, C; Pondrom, L; Poprocki, S; Potamianos, K; Pranko, A; Prokoshin, F; Ptohos, F; Punzi, G; Redondo Fernández, I; Renton, P; Rescigno, M; Rimondi, F; Ristori, L; Robson, A; Rodriguez, T; Rolli, S; Ronzani, M; Roser, R; Rosner, J L; Ruffini, F; Ruiz, A; Russ, J; Rusu, V; Sakumoto, W K; Sakurai, Y; Santi, L; Sato, K; Saveliev, V; Savoy-Navarro, A; Schlabach, P; Schmidt, E E; Schwarz, T; Scodellaro, L; Scuri, F; Seidel, S; Seiya, Y; Semenov, A; Sforza, F; Shalhout, S Z; Shears, T; Shepard, P F; Shimojima, M; Shochet, M; Shreyber-Tecker, I; Simonenko, A; Sliwa, K; Smith, J R; Snider, F D; Song, H; Sorin, V; St Denis, R; Stancari, M; Stentz, D; Strologas, J; Sudo, Y; Sukhanov, A; Suslov, I; Takemasa, K; Takeuchi, Y; Tang, J; Tecchio, M; Teng, P K; Thom, J; Thomson, E; Thukral, V; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Totaro, P; Trovato, M; Ukegawa, F; Uozumi, S; Vázquez, F; Velev, G; Vellidis, C; Vernieri, C; Vidal, M; Vilar, R; Vizán, J; Vogel, M; Volpi, G; Wagner, P; Wallny, R; Wang, S M; Waters, D; Wester, W C; Whiteson, D; Wicklund, A B; Wilbur, S; Williams, H H; Wilson, J S; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, H; Wright, T; Wu, X; Wu, Z; Yamamoto, K; Yamato, D; Yang, T; Yang, U K; Yang, Y C; Yao, W-M; Yeh, G P; Yi, K; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Zanetti, A M; Zeng, Y; Zhou, C; Zucchelli, S

    2015-04-10

    A search for particles with the same mass and couplings as those of the standard model Higgs boson but different spin and parity quantum numbers is presented. We test two specific alternative Higgs boson hypotheses: a pseudoscalar Higgs boson with spin-parity J^{P}=0^{-} and a gravitonlike Higgs boson with J^{P}=2^{+}, assuming for both a mass of 125  GeV/c^{2}. We search for these exotic states produced in association with a vector boson and decaying into a bottom-antibottom quark pair. The vector boson is reconstructed through its decay into an electron or muon pair, or an electron or muon and a neutrino, or it is inferred from an imbalance in total transverse momentum. We use expected kinematic differences between events containing exotic Higgs bosons and those containing standard model Higgs bosons. The data were collected by the CDF experiment at the Tevatron proton-antiproton collider, operating at a center-of-mass energy of sqrt[s]=1.96  TeV, and correspond to an integrated luminosity of 9.45  fb^{-1}. We exclude deviations from the predictions of the standard model with a Higgs boson of mass 125  GeV/c^{2} at the level of 5 standard deviations, assuming signal strengths for exotic boson production equal to the prediction for the standard model Higgs boson, and set upper limits of approximately 30% relative to the standard model rate on the possible rate of production of each exotic state. PMID:25910110

  10. Towards precise predictions for Higgs-boson production in the MSSM

    NASA Astrophysics Data System (ADS)

    Bagnaschi, E.; Harlander, R. V.; Liebler, S.; Mantler, H.; Slavich, P.; Vicini, A.

    2014-06-01

    We study the production of scalar and pseudoscalar Higgs bosons via gluon fusion and bottom-quark annihilation in the MSSM. Relying on the NNLO-QCD calculation implemented in the public code SusHi, we provide precise predictions for the Higgs-production cross section in six benchmark scenarios compatible with the LHC searches. We also provide a detailed discussion of the sources of theoretical uncertainty in our calculation. We examine the dependence of the cross section on the renormalization and factorization scales, on the precise definition of the Higgs-bottom coupling and on the choice of PDFs, as well as the uncertainties associated to our incomplete knowledge of the SUSY contributions through NNLO. In particular, a potentially large uncertainty originates from uncomputed higher-order QCD corrections to the bottom-quark contributions to gluon fusion.

  11. Neutral Higgs boson pair production in photon-photon annihilation in the two Higgs doublet model

    SciTech Connect

    Arhrib, Abdesslam; Benbrik, Rachid; Chen, C.-H.; Santos, Rui

    2009-07-01

    We study double Higgs production in photon-photon collisions as a probe of the new dynamics of Higgs interactions in the framework of two Higgs doublet models. We analyze neutral Higgs bosons production and decay in the fusion processes, {gamma}{gamma}{yields}S{sub i}S{sub j}, S{sub i}=h{sup 0}, H{sup 0}, A{sup 0}, and show that both h{sup 0}h{sup 0} and A{sup 0}A{sup 0} production can be enhanced by threshold effects in the region E{sub {gamma}}{sub {gamma}}{approx_equal}2m{sub H{+-}}. Resonant effects due to the heavy Higgs H{sup 0} can also play a role in the cross section enhancement when it is allowed to decay to two light CP-even h{sup 0} or to two light CP-odd A{sup 0} scalars. We have scanned the allowed parameter space of the two Higgs doublet model and found a vast region of the parameter space where the cross section is 2 orders of magnitude above the standard model cross section. We further show that the standard model experimental analysis can be used to discover or to constrain the two Higgs doublet model parameter space.

  12. Linear collider signals of an invisible Higgs boson in theories of large extra dimensions

    SciTech Connect

    Datta, Anindya; Huitu, Katri; Laamanen, Jari; Mukhopadhyaya, Biswarup

    2004-10-01

    We discuss the possibility of detecting a Higgs boson in electron-positron collider experiments if large extra dimensions are realized in nature. In such a case, the Higgs boson can decay invisibly by oscillating into a graviscalar Kaluza-Klein tower. We show that the search for such a Higgs boson at an e{sup +}e{sup -} linear collider entails more complications than are usually thought of in relation to an invisibly decaying Higgs boson. The main sources of such complications are due to the simultaneous presence of a continuum graviton production and the broadening of the Higgs peak. We discuss possible ways of overcoming such difficulties and conclude that the detection of such a Higgs boson might still be a problem beyond the mass range of 250-300 GeV.

  13. Constraints on the off-shell Higgs boson signal strength in the high-mass ZZ and WW final states with the ATLAS detector

    DOE PAGESBeta

    Aad, G.

    2015-07-17

    The measurements of the ZZ and WW final states in the mass range above the \\(2m_Z\\) and \\(2m_W\\) thresholds provide a unique opportunity to measure the off-shell coupling strength of the Higgs boson. This paper presents constraints on the off-shell Higgs boson event yields normalised to the Standard Model prediction (signal strength) in the \\(ZZ \\rightarrow 4\\ell \\), \\(ZZ\\rightarrow 2\\ell 2\

  14. Search for invisible decays of Higgs bosons in the vector boson fusion and associated ZH production modes

    DOE PAGESBeta

    Chatrchyan, Serguei

    2014-08-01

    A search for invisible decays of Higgs bosons is performed using the vector boson fusion and associated ZH production modes. In the ZH mode, the Z boson is required to decay to a pair of charged leptons or a b b-bar quark pair. The searches use the 8 TeV pp collision dataset collected by the CMS detector at the LHC, corresponding to an integrated luminosity of up to 19.7 inverse femtobarns. Certain channels include data from 7 TeV collisions corresponding to an integrated luminosity of 4.9 inverse femtobarns. The searches are sensitive to non-standard-model invisible decays of the recently observedmore » Higgs boson, as well as additional Higgs bosons with similar production modes and large invisible branching fractions. In all channels, the observed data are consistent with the expected standard model backgrounds. Limits are set on the production cross section times invisible branching fraction, as a function of the Higgs boson mass, for the vector boson fusion and ZH production modes. By combining all channels, and assuming standard model Higgs boson cross sections and acceptances, the observed (expected) upper limit on the invisible branching fraction at m[H] = 125 GeV is found to be 0.58 (0.44) at 95% confidence level. We interpret this limit in terms of a Higgs-portal model of dark matter interactions.« less

  15. Search for invisible decays of Higgs bosons in the vector boson fusion and associated ZH production modes

    SciTech Connect

    Chatrchyan, Serguei

    2014-08-01

    A search for invisible decays of Higgs bosons is performed using the vector boson fusion and associated ZH production modes. In the ZH mode, the Z boson is required to decay to a pair of charged leptons or a b b-bar quark pair. The searches use the 8 TeV pp collision dataset collected by the CMS detector at the LHC, corresponding to an integrated luminosity of up to 19.7 inverse femtobarns. Certain channels include data from 7 TeV collisions corresponding to an integrated luminosity of 4.9 inverse femtobarns. The searches are sensitive to non-standard-model invisible decays of the recently observed Higgs boson, as well as additional Higgs bosons with similar production modes and large invisible branching fractions. In all channels, the observed data are consistent with the expected standard model backgrounds. Limits are set on the production cross section times invisible branching fraction, as a function of the Higgs boson mass, for the vector boson fusion and ZH production modes. By combining all channels, and assuming standard model Higgs boson cross sections and acceptances, the observed (expected) upper limit on the invisible branching fraction at m[H] = 125 GeV is found to be 0.58 (0.44) at 95% confidence level. We interpret this limit in terms of a Higgs-portal model of dark matter interactions.

  16. Search for H → γγ produced in association with top quarks and constraints on the Yukawa coupling between the top quark and the Higgs boson using data taken at 7 TeV and 8 TeV with the ATLAS detector

    NASA Astrophysics Data System (ADS)

    Aad, G.; Abbott, B.; Abdallah, J.; Abdel Khalek, S.; Abdinov, O.; Aben, R.; Abi, B.; Abolins, M.; AbouZeid, O. S.; Abramowicz, H.; Abreu, H.; Abreu, R.; Abulaiti, Y.; Acharya, B. S.; Adamczyk, L.; Adams, D. L.; Adelman, J.; Adomeit, S.; Adye, T.; Agatonovic-Jovin, T.; Aguilar-Saavedra, J. A.; Agustoni, M.; Ahlen, S. P.; Ahmadov, F.; Aielli, G.; Akerstedt, H.; Åkesson, T. P. A.; Akimoto, G.; Akimov, A. V.; Alberghi, G. L.; Albert, J.; Albrand, S.; Alconada Verzini, M. J.; Aleksa, M.; Aleksandrov, I. N.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Alimonti, G.; Alio, L.; Alison, J.; Allbrooke, B. M. M.; Allison, L. J.; Allport, P. P.; Aloisio, A.; Alonso, A.; Alonso, F.; Alpigiani, C.; Altheimer, A.; Alvarez Gonzalez, B.; Alviggi, M. G.; Amako, K.; Amaral Coutinho, Y.; Amelung, C.; Amidei, D.; Amor Dos Santos, S. P.; Amorim, A.; Amoroso, S.; Amram, N.; Amundsen, G.; Anastopoulos, C.; Ancu, L. S.; Andari, N.; Andeen, T.; Anders, C. F.; Anders, G.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Anduaga, X. S.; Angelidakis, S.; Angelozzi, I.; Anger, P.; Angerami, A.; Anghinolfi, F.; Anisenkov, A. V.; Anjos, N.; Annovi, A.; Antonaki, A.; Antonelli, M.; Antonov, A.; Antos, J.; Anulli, F.; Aoki, M.; Aperio Bella, L.; Apolle, R.; Arabidze, G.; Aracena, I.; Arai, Y.; Araque, J. P.; Arce, A. T. H.; Arguin, J.-F.; Argyropoulos, S.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnal, V.; Arnold, H.; Arratia, M.; Arslan, O.; Artamonov, A.; Artoni, G.; Asai, S.; Asbah, N.; Ashkenazi, A.; Åsman, B.; Asquith, L.; Assamagan, K.; Astalos, R.; Atkinson, M.; Atlay, N. B.; Auerbach, B.; Augsten, K.; Aurousseau, M.; Avolio, G.; Azuelos, G.; Azuma, Y.; Baak, M. A.; Baas, A. E.; Bacci, C.; Bachacou, H.; Bachas, K.; Backes, M.; Backhaus, M.; Backus Mayes, J.; Badescu, E.; Bagiacchi, P.; Bagnaia, P.; Bai, Y.; Bain, T.; Baines, J. T.; Baker, O. K.; Balek, P.; Balli, F.; Banas, E.; Banerjee, Sw.; Bannoura, A. A. E.; Bansal, V.; Bansil, H. S.; Barak, L.; Baranov, S. P.; Barberio, E. L.; Barberis, D.; Barbero, M.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnett, B. M.; Barnett, R. M.; Barnovska, Z.; Baroncelli, A.; Barone, G.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Bartoldus, R.; Barton, A. E.; Bartos, P.; Bartsch, V.; Bassalat, A.; Basye, A.; Bates, R. L.; Batley, J. R.; Battaglia, M.; Battistin, M.; Bauer, F.; Bawa, H. S.; Beattie, M. D.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Bechtle, P.; Beck, H. P.; Becker, K.; Becker, S.; Beckingham, M.; Becot, C.; Beddall, A. J.; Beddall, A.; Bedikian, S.; Bednyakov, V. A.; Bee, C. P.; Beemster, L. J.; Beermann, T. A.; Begel, M.; Behr, K.; Belanger-Champagne, C.; Bell, P. J.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellerive, A.; Bellomo, M.; Belotskiy, K.; Beltramello, O.; Benary, O.; Benchekroun, D.; Bendtz, K.; Benekos, N.; Benhammou, Y.; Benhar Noccioli, E.; Benitez Garcia, J. A.; Benjamin, D. P.; Bensinger, J. R.; Benslama, K.; Bentvelsen, S.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Beringer, J.; Bernard, C.; Bernat, P.; Bernius, C.; Bernlochner, F. U.; Berry, T.; Berta, P.; Bertella, C.; Bertoli, G.; Bertolucci, F.; Bertsche, C.; Bertsche, D.; Besana, M. I.; Besjes, G. J.; Bessidskaia, O.; Bessner, M.; Besson, N.; Betancourt, C.; Bethke, S.; Bhimji, W.; Bianchi, R. M.; Bianchini, L.; Bianco, M.; Biebel, O.; Bieniek, S. P.; Bierwagen, K.; Biesiada, J.; Biglietti, M.; Bilbao De Mendizabal, J.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Black, C. W.; Black, J. E.; Black, K. M.; Blackburn, D.; Blair, R. E.; Blanchard, J.-B.; Blazek, T.; Bloch, I.; Blocker, C.; Blum, W.; Blumenschein, U.; Bobbink, G. J.; Bobrovnikov, V. S.; Bocchetta, S. S.; Bocci, A.; Bock, C.; Boddy, C. R.; Boehler, M.; Boek, T. T.; Bogaerts, J. A.; Bogdanchikov, A. G.; Bogouch, A.; Bohm, C.; Bohm, J.; Boisvert, V.; Bold, T.; Boldea, V.; Boldyrev, A. S.; Bomben, M.; Bona, M.; Boonekamp, M.; Borisov, A.; Borissov, G.; Borri, M.; Borroni, S.; Bortfeldt, J.; Bortolotto, V.; Bos, K.; Boscherini, D.; Bosman, M.; Boterenbrood, H.; Boudreau, J.; Bouffard, J.; Bouhova-Thacker, E. V.; Boumediene, D.; Bourdarios, C.; Bousson, N.; Boutouil, S.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozic, I.; Bracinik, J.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Brazzale, S. F.; Brelier, B.; Brendlinger, K.; Brennan, A. J.; Brenner, R.; Bressler, S.; Bristow, K.; Bristow, T. M.; Britton, D.; Brochu, F. M.; Brock, I.; Brock, R.; Bromberg, C.; Bronner, J.; Brooijmans, G.; Brooks, T.; Brooks, W. K.; Brosamer, J.; Brost, E.; Brown, J.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Brunet, S.; Bruni, A.; Bruni, G.; Bruschi, M.; Bryngemark, L.; Buanes, T.; Buat, Q.; Bucci, F.; Buchholz, P.; Buckingham, R. M.; Buckley, A. G.; Buda, S. I.; Budagov, I. A.; Buehrer, F.; Bugge, L.; Bugge, M. K.; Bulekov, O.; Bundock, A. C.; Burckhart, H.; Burdin, S.; Burghgrave, B.; Burke, S.; Burmeister, I.; Busato, E.; Büscher, D.; Büscher, V.; Bussey, P.; Buszello, C. P.; Butler, B.; Butler, J. M.; Butt, A. I.; Buttar, C. M.; Butterworth, J. M.; Butti, P.; Buttinger, W.; Buzatu, A.; Byszewski, M.; Cabrera Urbán, S.; Caforio, D.; Cakir, O.; Calafiura, P.; Calandri, A.; Calderini, G.; Calfayan, P.; Calkins, R.; Caloba, L. P.; Calvet, D.; Calvet, S.; Camacho Toro, R.; Camarda, S.; Cameron, D.; Caminada, L. M.; Caminal Armadans, R.; Campana, S.; Campanelli, M.; Campoverde, A.; Canale, V.; Canepa, A.; Cano Bret, M.; Cantero, J.; Cantrill, R.; Cao, T.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capua, M.; Caputo, R.; Cardarelli, R.; Carli, T.; Carlino, G.; Carminati, L.; Caron, S.; Carquin, E.; Carrillo-Montoya, G. D.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Casolino, M.; Castaneda-Miranda, E.; Castelli, A.; Castillo Gimenez, V.; Castro, N. F.; Catastini, P.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Cattani, G.; Cavaliere, V.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerio, B. C.; Cerny, K.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cerv, M.; Cervelli, A.; Cetin, S. A.; Chafaq, A.; Chakraborty, D.; Chalupkova, I.; Chang, P.; Chapleau, B.; Chapman, J. D.; Charfeddine, D.; Charlton, D. G.; Chau, C. C.; Chavez Barajas, C. A.; Cheatham, S.; Chegwidden, A.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, K.; Chen, L.; Chen, S.; Chen, X.; Chen, Y.; Chen, Y.; Cheng, H. C.; Cheng, Y.; Cheplakov, A.; Cherkaoui El Moursli, R.; Chernyatin, V.; Cheu, E.; Chevalier, L.; Chiarella, V.; Chiefari, G.; Childers, J. T.; Chilingarov, A.; Chiodini, G.; Chisholm, A. S.; Chislett, R. T.; Chitan, A.; Chizhov, M. V.; Chouridou, S.; Chow, B. K. B.; Chromek-Burckhart, D.; Chu, M. L.; Chudoba, J.; Chwastowski, J. J.; Chytka, L.; Ciapetti, G.; Ciftci, A. K.; Ciftci, R.; Cinca, D.; Cindro, V.; Ciocio, A.; Cirkovic, P.; Citron, Z. H.; Citterio, M.; Ciubancan, M.; Clark, A.; Clark, P. J.; Clarke, R. N.; Cleland, W.; Clemens, J. C.; Clement, C.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coffey, L.; Cogan, J. G.; Coggeshall, J.; Cole, B.; Cole, S.; Colijn, A. P.; Collot, J.; Colombo, T.; Colon, G.; Compostella, G.; Conde Muiño, P.; Coniavitis, E.; Conidi, M. C.; Connell, S. H.; Connelly, I. A.; Consonni, S. M.; Consorti, V.; Constantinescu, S.; Conta, C.; Conti, G.; Conventi, F.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cooper-Smith, N. J.; Copic, K.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Corso-Radu, A.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Côté, D.; Cottin, G.; Cowan, G.; Cox, B. E.; Cranmer, K.; Cree, G.; Crépé-Renaudin, S.; Crescioli, F.; Cribbs, W. A.; Crispin Ortuzar, M.; Cristinziani, M.; Croft, V.; Crosetti, G.; Cuciuc, C.-M.; Cuhadar Donszelmann, T.; Cummings, J.; Curatolo, M.; Cuthbert, C.; Czirr, H.; Czodrowski, P.; Czyczula, Z.; D'Auria, S.; D'Onofrio, M.; Da Cunha Sargedas De Sousa, M. J.; Da Via, C.; Dabrowski, W.; Dafinca, A.; Dai, T.; Dale, O.; Dallaire, F.; Dallapiccola, C.; Dam, M.; Daniells, A. C.; Dano Hoffmann, M.; Dao, V.; Darbo, G.; Darmora, S.; Dassoulas, J. A.; Dattagupta, A.; Davey, W.; David, C.; Davidek, T.; Davies, E.; Davies, M.; Davignon, O.; Davison, A. R.; Davison, P.; Davygora, Y.; Dawe, E.; Dawson, I.; Daya-Ishmukhametova, R. K.; De, K.; de Asmundis, R.; De Castro, S.; De Cecco, S.; De Groot, N.; de Jong, P.; De la Torre, H.; De Lorenzi, F.; De Nooij, L.; De Pedis, D.; De Salvo, A.; De Sanctis, U.; De Santo, A.; De Vivie De Regie, J. B.; Dearnaley, W. J.; Debbe, R.; Debenedetti, C.; Dechenaux, B.; Dedovich, D. V.; Deigaard, I.; Del Peso, J.; Del Prete, T.; Deliot, F.; Delitzsch, C. M.; Deliyergiyev, M.; Dell'Acqua, A.; Dell'Asta, L.; Dell'Orso, M.; Della Pietra, M.; della Volpe, D.; Delmastro, M.; Delsart, P. A.; Deluca, C.; Demers, S.; Demichev, M.; Demilly, A.; Denisov, S. P.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Deterre, C.; Deviveiros, P. O.; Dewhurst, A.; Dhaliwal, S.; Di Ciaccio, A.; Di Ciaccio, L.; Di Domenico, A.; Di Donato, C.; Di Girolamo, A.; Di Girolamo, B.; Di Mattia, A.; Di Micco, B.; Di Nardo, R.; Di Simone, A.; Di Sipio, R.; Di Valentino, D.; Dias, F. A.; Diaz, M. A.; Diehl, E. B.; Dietrich, J.; Dietzsch, T. A.; Diglio, S.; Dimitrievska, A.; Dingfelder, J.; Dionisi, C.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; do Vale, M. A. B.; Do Valle Wemans, A.; Dobos, D.; Doglioni, C.; Doherty, T.; Dohmae, T.; Dolejsi, J.; Dolezal, Z.; Dolgoshein, B. A.; Donadelli, M.; Donati, S.; Dondero, P.; Donini, J.; Dopke, J.; Doria, A.; Dova, M. T.; Doyle, A. T.; Dris, M.; Dubbert, J.; Dube, S.; Dubreuil, E.; Duchovni, E.; Duckeck, G.; Ducu, O. A.; Duda, D.; Dudarev, A.; Dudziak, F.; Duflot, L.; Duguid, L.; Dührssen, M.; Dunford, M.; Duran Yildiz, H.; Düren, M.; Durglishvili, A.; Dwuznik, M.; Dyndal, M.; Ebke, J.; Edson, W.; Edwards, N. C.; Ehrenfeld, W.; Eifert, T.; Eigen, G.; Einsweiler, K.; Ekelof, T.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellinghaus, F.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Emeliyanov, D.; Enari, Y.; Endner, O. C.; Endo, M.; Engelmann, R.; Erdmann, J.; Ereditato, A.; Eriksson, D.; Ernis, G.; Ernst, J.; Ernst, M.; Ernwein, J.; Errede, D.; Errede, S.; Ertel, E.; Escalier, M.; Esch, H.; Escobar, C.; Esposito, B.; Etienvre, A. I.; Etzion, E.; Evans, H.; Ezhilov, A.; Fabbri, L.; Facini, G.; Fakhrutdinov, R. M.; Falciano, S.; Falla, R. J.; Faltova, J.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farooque, T.; Farrell, S.; Farrington, S. M.; Farthouat, P.; Fassi, F.; Fassnacht, P.; Fassouliotis, D.; Favareto, A.; Fayard, L.; Federic, P.; Fedin, O. L.; Fedorko, W.; Fehling-Kaschek, M.; Feigl, S.; Feligioni, L.; Feng, C.; Feng, E. J.; Feng, H.; Fenyuk, A. B.; Fernandez Perez, S.; Ferrag, S.; Ferrando, J.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferreira de Lima, D. E.; Ferrer, A.; Ferrere, D.; Ferretti, C.; Ferretto Parodi, A.; Fiascaris, M.; Fiedler, F.; Filipčič, A.; Filipuzzi, M.; Filthaut, F.; Fincke-Keeler, M.; Finelli, K. D.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, A.; Fischer, J.; Fisher, W. C.; Fitzgerald, E. A.; Flechl, M.; Fleck, I.; Fleischmann, P.; Fleischmann, S.; Fletcher, G. T.; Fletcher, G.; Flick, T.; Floderus, A.; Flores Castillo, L. R.; Florez Bustos, A. C.; Flowerdew, M. J.; Formica, A.; Forti, A.; Fortin, D.; Fournier, D.; Fox, H.; Fracchia, S.; Francavilla, P.; Franchini, M.; Franchino, S.; Francis, D.; Franconi, L.; Franklin, M.; Franz, S.; Fraternali, M.; French, S. T.; Friedrich, C.; Friedrich, F.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fullana Torregrosa, E.; Fulsom, B. G.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gabrielli, A.; Gabrielli, A.; Gadatsch, S.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Galhardo, B.; Gallas, E. J.; Gallo, V.; Gallop, B. J.; Gallus, P.; Galster, G.; Gan, K. K.; Gao, J.; Gao, Y. S.; Garay Walls, F. M.; Garberson, F.; García, C.; García Navarro, J. E.; Garcia-Sciveres, M.; Gardner, R. W.; Garelli, N.; Garonne, V.; Gatti, C.; Gaudio, G.; Gaur, B.; Gauthier, L.; Gauzzi, P.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gazis, E. N.; Ge, P.; Gecse, Z.; Gee, C. N. P.; Geerts, D. A. A.; Geich-Gimbel, Ch.; Gellerstedt, K.; Gemme, C.; Gemmell, A.; Genest, M. H.; Gentile, S.; George, M.; George, S.; Gerbaudo, D.; Gershon, A.; Ghazlane, H.; Ghodbane, N.; Giacobbe, B.; Giagu, S.; Giangiobbe, V.; Giannetti, P.; Gianotti, F.; Gibbard, B.; Gibson, S. M.; Gilchriese, M.; Gillam, T. P. S.; Gillberg, D.; Gilles, G.; Gingrich, D. M.; Giokaris, N.; Giordani, M. P.; Giordano, R.; Giorgi, F. M.; Giorgi, F. M.; Giraud, P. F.; Giugni, D.; Giuliani, C.; Giulini, M.; Gjelsten, B. K.; Gkaitatzis, S.; Gkialas, I.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glaysher, P. C. F.; Glazov, A.; Glonti, G. L.; Goblirsch-Kolb, M.; Goddard, J. R.; Godlewski, J.; Goeringer, C.; Goldfarb, S.; Golling, T.; Golubkov, D.; Gomes, A.; Gomez Fajardo, L. S.; Gonçalo, R.; Goncalves Pinto Firmino Da Costa, J.; Gonella, L.; González de la Hoz, S.; Gonzalez Parra, G.; Gonzalez-Sevilla, S.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Goshaw, A. T.; Gössling, C.; Gostkin, M. I.; Gouighri, M.; Goujdami, D.; Goulette, M. P.; Goussiou, A. G.; Goy, C.; Gozpinar, S.; Grabas, H. M. X.; Graber, L.; Grabowska-Bold, I.; Grafström, P.; Grahn, K.-J.; Gramling, J.; Gramstad, E.; Grancagnolo, S.; Grassi, V.; Gratchev, V.; Gray, H. M.; Graziani, E.; Grebenyuk, O. G.; Greenwood, Z. D.; Gregersen, K.; Gregor, I. M.; Grenier, P.; Griffiths, J.; Grillo, A. A.; Grimm, K.; Grinstein, S.; Gris, Ph.; Grishkevich, Y. V.; Grivaz, J.-F.; Grohs, J. P.; Grohsjean, A.; Gross, E.; Grosse-Knetter, J.; Grossi, G. C.; Groth-Jensen, J.; Grout, Z. J.; Guan, L.; Guescini, F.; Guest, D.; Gueta, O.; Guicheney, C.; Guido, E.; Guillemin, T.; Guindon, S.; Gul, U.; Gumpert, C.; Gunther, J.; Guo, J.; Gupta, S.; Gutierrez, P.; Gutierrez Ortiz, N. G.; Gutschow, C.; Guttman, N.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haber, C.; Hadavand, H. K.; Haddad, N.; Haefner, P.; Hageböck, S.; Hajduk, Z.; Hakobyan, H.; Haleem, M.; Hall, D.; Halladjian, G.; Hamacher, K.; Hamal, P.; Hamano, K.; Hamer, M.; Hamilton, A.; Hamilton, S.; Hamity, G. N.; Hamnett, P. G.; Han, L.; Hanagaki, K.; Hanawa, K.; Hance, M.; Hanke, P.; Hanna, R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Hara, K.; Hard, A. S.; Harenberg, T.; Hariri, F.; Harkusha, S.; Harper, D.; Harrington, R. D.; Harris, O. M.; Harrison, P. F.; Hartjes, F.; Hasegawa, M.; Hasegawa, S.; Hasegawa, Y.; Hasib, A.; Hassani, S.; Haug, S.; Hauschild, M.; Hauser, R.; Havranek, M.; Hawkes, C. M.; Hawkings, R. J.; Hawkins, A. D.; Hayashi, T.; Hayden, D.; Hays, C. P.; Hayward, H. S.; Haywood, S. J.; Head, S. J.; Heck, T.; Hedberg, V.; Heelan, L.; Heim, S.; Heim, T.; Heinemann, B.; Heinrich, L.; Hejbal, J.; Helary, L.; Heller, C.; Heller, M.; Hellman, S.; Hellmich, D.; Helsens, C.; Henderson, J.; Henderson, R. C. W.; Heng, Y.; Hengler, C.; Henrichs, A.; Henriques Correia, A. M.; Henrot-Versille, S.; Herbert, G. H.; Hernández Jiménez, Y.; Herrberg-Schubert, R.; Herten, G.; Hertenberger, R.; Hervas, L.; Hesketh, G. G.; Hessey, N. P.; Hickling, R.; Higón-Rodriguez, E.; Hill, E.; Hill, J. C.; Hiller, K. H.; Hillert, S.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hirose, M.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoenig, F.; Hoffman, J.; Hoffmann, D.; Hofmann, J. I.; Hohlfeld, M.; Holmes, T. R.; Hong, T. M.; Hooft van Huysduynen, L.; Hopkins, W. H.; Horii, Y.; Hostachy, J.-Y.; Hou, S.; Hoummada, A.; Howard, J.; Howarth, J.; Hrabovsky, M.; Hristova, I.; Hrivnac, J.; Hryn'ova, T.; Hsu, C.; Hsu, P. J.; Hsu, S.-C.; Hu, D.; Hu, X.; Huang, Y.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Huhtinen, M.; Hülsing, T. A.; Hurwitz, M.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibragimov, I.; Iconomidou-Fayard, L.; Ideal, E.; Idrissi, Z.; Iengo, P.; Igonkina, O.; Iizawa, T.; Ikegami, Y.; Ikematsu, K.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Ilic, N.; Inamaru, Y.; Ince, T.; Ioannou, P.; Iodice, M.; Iordanidou, K.; Ippolito, V.; Irles Quiles, A.; Isaksson, C.; Ishino, M.; Ishitsuka, M.; Ishmukhametov, R.; Issever, C.; Istin, S.; Iturbe Ponce, J. M.; Iuppa, R.; Ivarsson, J.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jackson, B.; Jackson, M.; Jackson, P.; Jaekel, M. R.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakoubek, T.; Jakubek, J.; Jamin, D. O.; Jana, D. K.; Jansen, E.; Jansen, H.; Janssen, J.; Janus, M.; Jarlskog, G.; Javadov, N.; Javůrek, T.; Jeanty, L.; Jejelava, J.; Jeng, G.-Y.; Jennens, D.; Jenni, P.; Jentzsch, J.; Jeske, C.; Jézéquel, S.; Ji, H.; Jia, J.; Jiang, Y.; Jimenez Belenguer, M.; Jin, S.; Jinaru, A.; Jinnouchi, O.; Joergensen, M. D.; Johansson, K. E.; Johansson, P.; Johns, K. A.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, T. J.; Jongmanns, J.; Jorge, P. M.; Joshi, K. D.; Jovicevic, J.; Ju, X.; Jung, C. A.; Jungst, R. M.; Jussel, P.; Juste Rozas, A.; Kaci, M.; Kaczmarska, A.; Kado, M.; Kagan, H.; Kagan, M.; Kajomovitz, E.; Kalderon, C. W.; Kama, S.; Kamenshchikov, A.; Kanaya, N.; Kaneda, M.; Kaneti, S.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kapliy, A.; Kar, D.; Karakostas, K.; Karastathis, N.; Kareem, M. J.; Karnevskiy, M.; Karpov, S. N.; Karpova, Z. M.; Karthik, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kashif, L.; Kasieczka, G.; Kass, R. D.; Kastanas, A.; Kataoka, Y.; Katre, A.; Katzy, J.; Kaushik, V.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kazama, S.; Kazanin, V. F.; Kazarinov, M. Y.; Keeler, R.; Kehoe, R.; Keil, M.; Keller, J. S.; Kempster, J. J.; Keoshkerian, H.; Kepka, O.; Kerševan, B. P.; Kersten, S.; Kessoku, K.; Keung, J.; Khalil-zada, F.; Khandanyan, H.; Khanov, A.; Khodinov, A.; Khomich, A.; Khoo, T. J.; Khoriauli, G.; Khoroshilov, A.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kim, H. Y.; Kim, H.; Kim, S. H.; Kimura, N.; Kind, O.; King, B. T.; King, M.; King, R. S. B.; King, S. B.; Kirk, J.; Kiryunin, A. E.; Kishimoto, T.; Kisielewska, D.; Kiss, F.; Kittelmann, T.; Kiuchi, K.; Kladiva, E.; Klein, M.; Klein, U.; Kleinknecht, K.; Klimek, P.; Klimentov, A.; Klingenberg, R.; Klinger, J. A.; Klioutchnikova, T.; Klok, P. F.; Kluge, E.-E.; Kluit, P.; Kluth, S.; Kneringer, E.; Knoops, E. B. F. G.; Knue, A.; Kobayashi, D.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kodys, P.; Koevesarki, P.; Koffas, T.; Koffeman, E.; Kogan, L. A.; Kohlmann, S.; Kohout, Z.; Kohriki, T.; Koi, T.; Kolanoski, H.; Koletsou, I.; Koll, J.; Komar, A. A.; Komori, Y.; Kondo, T.; Kondrashova, N.; Köneke, K.; König, A. C.; König, S.; Kono, T.; Konoplich, R.; Konstantinidis, N.; Kopeliansky, R.; Koperny, S.; Köpke, L.; Kopp, A. K.; Korcyl, K.; Kordas, K.; Korn, A.; Korol, A. A.; Korolkov, I.; Korolkova, E. V.; Korotkov, V. A.; Kortner, O.; Kortner, S.; Kostyukhin, V. V.; Kotov, V. M.; Kotwal, A.; Kourkoumelis, C.; Kouskoura, V.; Koutsman, A.; Kowalewski, R.; Kowalski, T. Z.; Kozanecki, W.; Kozhin, A. S.; Kral, V.; Kramarenko, V. A.; Kramberger, G.; Krasnopevtsev, D.; Krasny, M. W.; Krasznahorkay, A.; Kraus, J. K.; Kravchenko, A.; Kreiss, S.; Kretz, M.; Kretzschmar, J.; Kreutzfeldt, K.; Krieger, P.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Kruker, T.; Krumnack, N.; Krumshteyn, Z. V.; Kruse, A.; Kruse, M. C.; Kruskal, M.; Kubota, T.; Kuday, S.; Kuehn, S.; Kugel, A.; Kuhl, A.; Kuhl, T.; Kukhtin, V.; Kulchitsky, Y.; Kuleshov, S.; Kuna, M.; Kunkle, J.; Kupco, A.; Kurashige, H.; Kurochkin, Y. A.; Kurumida, R.; Kus, V.; Kuwertz, E. S.; Kuze, M.; Kvita, J.; La Rosa, A.; La Rotonda, L.; Lacasta, C.; Lacava, F.; Lacey, J.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Laier, H.; Lambourne, L.; Lammers, S.; Lampen, C. L.; Lampl, W.; Lançon, E.; Landgraf, U.; Landon, M. P. J.; Lang, V. S.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Lasagni Manghi, F.; Lassnig, M.; Laurelli, P.; Lavrijsen, W.; Law, A. T.; Laycock, P.; Le Dortz, O.; Le Guirriec, E.; Le Menedeu, E.; LeCompte, T.; Ledroit-Guillon, F.; Lee, C. A.; Lee, H.; Lee, J. S. H.; Lee, S. C.; Lee, L.; Lefebvre, G.; Lefebvre, M.; Legger, F.; Leggett, C.; Lehan, A.; Lehmacher, M.; Lehmann Miotto, G.; Lei, X.; Leight, W. A.; Leisos, A.; Leister, A. G.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lemmer, B.; Leney, K. J. C.; Lenz, T.; Lenzen, G.; Lenzi, B.; Leone, R.; Leone, S.; Leonidopoulos, C.; Leontsinis, S.; Leroy, C.; Lester, C. G.; Lester, C. M.; Levchenko, M.; Levêque, J.; Levin, D.; Levinson, L. J.; Levy, M.; Lewis, A.; Lewis, G. H.; Leyko, A. M.; Leyton, M.; Li, B.; Li, B.; Li, H.; Li, H. L.; Li, L.; Li, L.; Li, S.; Li, Y.; Liang, Z.; Liao, H.; Liberti, B.; Lichard, P.; Lie, K.; Liebal, J.; Liebig, W.; Limbach, C.; Limosani, A.; Lin, S. C.; Lin, T. H.; Linde, F.; Lindquist, B. E.; Linnemann, J. T.; Lipeles, E.; Lipniacka, A.; Lisovyi, M.; Liss, T. M.; Lissauer, D.; Lister, A.; Litke, A. M.; Liu, B.; Liu, D.; Liu, J. B.; Liu, K.; Liu, L.; Liu, M.; Liu, M.; Liu, Y.; Livan, M.; Livermore, S. S. A.; Lleres, A.; Llorente Merino, J.; Lloyd, S. L.; Lo Sterzo, F.; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Loddenkoetter, T.; Loebinger, F. K.; Loevschall-Jensen, A. E.; Loginov, A.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Lombardo, V. P.; Long, B. A.; Long, J. D.; Long, R. E.; Lopes, L.; Lopez Mateos, D.; Lopez Paredes, B.; Lopez Paz, I.; Lorenz, J.; Lorenzo Martinez, N.; Losada, M.; Loscutoff, P.; Lou, X.; Lounis, A.; Love, J.; Love, P. A.; Lowe, A. J.; Lu, F.; Lu, N.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Luehring, F.; Lukas, W.; Luminari, L.; Lundberg, O.; Lund-Jensen, B.; Lungwitz, M.; Lynn, D.; Lysak, R.; Lytken, E.; Ma, H.; Ma, L. L.; Maccarrone, G.; Macchiolo, A.; Machado Miguens, J.; Macina, D.; Madaffari, D.; Madar, R.; Maddocks, H. J.; Mader, W. F.; Madsen, A.; Maeno, M.; Maeno, T.; Maevskiy, A.; Magradze, E.; Mahboubi, K.; Mahlstedt, J.; Mahmoud, S.; Maiani, C.; Maidantchik, C.; Maier, A. A.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Mal, P.; Malaescu, B.; Malecki, Pa.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Malone, C.; Maltezos, S.; Malyshev, V. M.; Malyukov, S.; Mamuzic, J.; Mandelli, B.; Mandelli, L.; Mandić, I.; Mandrysch, R.; Maneira, J.; Manfredini, A.; Manhaes de Andrade Filho, L.; Manjarres Ramos, J. A.; Mann, A.; Manning, P. M.; Manousakis-Katsikakis, A.; Mansoulie, B.; Mantifel, R.; Mapelli, L.; March, L.; Marchand, J. F.; Marchiori, G.; Marcisovsky, M.; Marino, C. P.; Marjanovic, M.; Marques, C. N.; Marroquim, F.; Marsden, S. P.; Marshall, Z.; Marti, L. F.; Marti-Garcia, S.; Martin, B.; Martin, B.; Martin, T. A.; Martin, V. J.; Martin dit Latour, B.; Martinez, H.; Martinez, M.; Martin-Haugh, S.; Martyniuk, A. C.; Marx, M.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Massa, I.; Massa, L.; Massol, N.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mättig, P.; Mattmann, J.; Maurer, J.; Maxfield, S. J.; Maximov, D. A.; Mazini, R.; Mazzaferro, L.; Mc Goldrick, G.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McCubbin, N. A.; McFarlane, K. W.; Mcfayden, J. A.; Mchedlidze, G.; McMahon, S. J.; McPherson, R. A.; Mechnich, J.; Medinnis, M.; Meehan, S.; Mehlhase, S.; Mehta, A.; Meier, K.; Meineck, C.; Meirose, B.; Melachrinos, C.; Mellado Garcia, B. R.; Meloni, F.; Mengarelli, A.; Menke, S.; Meoni, E.; Mercurio, K. M.; Mergelmeyer, S.; Meric, N.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Merritt, H.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meyer, C.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Middleton, R. P.; Migas, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Milic, A.; Miller, D. W.; Mills, C.; Milov, A.; Milstead, D. A.; Milstein, D.; Minaenko, A. A.; Minami, Y.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Mir, L. M.; Mirabelli, G.; Mitani, T.; Mitrevski, J.; Mitsou, V. A.; Mitsui, S.; Miucci, A.; Miyagawa, P. S.; Mjörnmark, J. U.; Moa, T.; Mochizuki, K.; Mohapatra, S.; Mohr, W.; Molander, S.; Moles-Valls, R.; Mönig, K.; Monini, C.; Monk, J.; Monnier, E.; Montejo Berlingen, J.; Monticelli, F.; Monzani, S.; Moore, R. W.; Morange, N.; Moreno, D.; Moreno Llácer, M.; Morettini, P.; Morgenstern, M.; Morii, M.; Moritz, S.; Morley, A. K.; Mornacchi, G.; Morris, J. D.; Morvaj, L.; Moser, H. G.; Mosidze, M.; Moss, J.; Motohashi, K.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Muanza, S.; Mudd, R. D.; Mueller, F.; Mueller, J.; Mueller, K.; Mueller, T.; Mueller, T.; Muenstermann, D.; Munwes, Y.; Murillo Quijada, J. A.; Murray, W. J.; Musheghyan, H.; Musto, E.; Myagkov, A. G.; Myska, M.; Nackenhorst, O.; Nadal, J.; Nagai, K.; Nagai, R.; Nagai, Y.; Nagano, K.; Nagarkar, A.; Nagasaka, Y.; Nagel, M.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakamura, T.; Nakano, I.; Namasivayam, H.; Nanava, G.; Narayan, R.; Nattermann, T.; Naumann, T.; Navarro, G.; Nayyar, R.; Neal, H. A.; Nechaeva, P. Yu.; Neep, T. J.; Nef, P. D.; Negri, A.; Negri, G.; Negrini, M.; Nektarijevic, S.; Nellist, C.; Nelson, A.; Nelson, T. K.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Neubauer, M. S.; Neumann, M.; Neves, R. M.; Nevski, P.; Newman, P. R.; Nguyen, D. H.; Nickerson, R. B.; Nicolaidou, R.; Nicquevert, B.; Nielsen, J.; Nikiforou, N.; Nikiforov, A.; Nikolaenko, V.; Nikolic-Audit, I.; Nikolics, K.; Nikolopoulos, K.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nisius, R.; Nobe, T.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Norberg, S.; Nordberg, M.; Novgorodova, O.; Nowak, S.; Nozaki, M.; Nozka, L.; Ntekas, K.; Nunes Hanninger, G.; Nunnemann, T.; Nurse, E.; Nuti, F.; O'Brien, B. J.; O'grady, F.; O'Neil, D. C.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Obermann, T.; Ocariz, J.; Ochi, A.; Ochoa, M. I.; Oda, S.; Odaka, S.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohman, H.; Okamura, W.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olariu, A.; Olchevski, A. G.; Olivares Pino, S. A.; Oliveira Damazio, D.; Oliver Garcia, E.; Olszewski, A.; Olszowska, J.; Onofre, A.; Onyisi, P. U. E.; Oram, C. J.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlando, N.; Oropeza Barrera, C.; Orr, R. S.; Osculati, B.; Ospanov, R.; Otero y Garzon, G.; Otono, H.; Ouchrif, M.; Ouellette, E. A.; Ould-Saada, F.; Ouraou, A.; Oussoren, K. P.; Ouyang, Q.; Ovcharova, A.; Owen, M.; Ozcan, V. E.; Ozturk, N.; Pachal, K.; Pacheco Pages, A.; Padilla Aranda, C.; Pagáčová, M.; Pagan Griso, S.; Paganis, E.; Pahl, C.; Paige, F.; Pais, P.; Pajchel, K.; Palacino, G.; Palestini, S.; Palka, M.; Pallin, D.; Palma, A.; Palmer, J. D.; Pan, Y. B.; Panagiotopoulou, E.; Panduro Vazquez, J. G.; Pani, P.; Panikashvili, N.; Panitkin, S.; Pantea, D.; Paolozzi, L.; Papadopoulou, Th. D.; Papageorgiou, K.; Paramonov, A.; Paredes Hernandez, D.; Parker, M. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pasqualucci, E.; Passaggio, S.; Passeri, A.; Pastore, F.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Patel, N. D.; Pater, J. R.; Patricelli, S.; Pauly, T.; Pearce, J.; Pedersen, L. E.; Pedersen, M.; Pedraza Lopez, S.; Pedro, R.; Peleganchuk, S. V.; Pelikan, D.; Peng, H.; Penning, B.; Penwell, J.; Perepelitsa, D. V.; Perez Codina, E.; Pérez García-Estañ, M. T.; Perez Reale, V.; Perini, L.; Pernegger, H.; Perrella, S.; Perrino, R.; Peschke, R.; Peshekhonov, V. D.; Peters, K.; Peters, R. F. Y.; Petersen, B. A.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petrolo, E.; Petrucci, F.; Pettersson, N. E.; Pezoa, R.; Phillips, P. W.; Piacquadio, G.; Pianori, E.; Picazio, A.; Piccaro, E.; Piccinini, M.; Piegaia, R.; Pignotti, D. T.; Pilcher, J. E.; Pilkington, A. D.; Pina, J.; Pinamonti, M.; Pinder, A.; Pinfold, J. L.; Pingel, A.; Pinto, B.; Pires, S.; Pitt, M.; Pizio, C.; Plazak, L.; Pleier, M.-A.; Pleskot, V.; Plotnikova, E.; Plucinski, P.; Poddar, S.; Podlyski, F.; Poettgen, R.; Poggioli, L.; Pohl, D.; Pohl, M.; Polesello, G.; Policicchio, A.; Polifka, R.; Polini, A.; Pollard, C. S.; Polychronakos, V.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Popovic, D. S.; Poppleton, A.; Portell Bueso, X.; Pospisil, S.; Potamianos, K.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda, J.; Pozdnyakov, V.; Pralavorio, P.; Pranko, A.; Prasad, S.; Pravahan, R.; Prell, S.; Price, D.; Price, J.; Price, L. E.; Prieur, D.; Primavera, M.; Proissl, M.; Prokofiev, K.; Prokoshin, F.; Protopapadaki, E.; Protopopescu, S.; Proudfoot, J.; Przybycien, M.; Przysiezniak, H.; Ptacek, E.; Puddu, D.; Pueschel, E.; Puldon, D.; Purohit, M.; Puzo, P.; Qian, J.; Qin, G.; Qin, Y.; Quadt, A.; Quarrie, D. R.; Quayle, W. B.; Queitsch-Maitland, M.; Quilty, D.; Qureshi, A.; Radeka, V.; Radescu, V.; Radhakrishnan, S. K.; Radloff, P.; Rados, P.; Ragusa, F.; Rahal, G.; Rajagopalan, S.; Rammensee, M.; Randle-Conde, A. S.; Rangel-Smith, C.; Rao, K.; Rauscher, F.; Rave, T. C.; Ravenscroft, T.; Raymond, M.; Read, A. L.; Readioff, N. P.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Rehnisch, L.; Reisin, H.; Relich, M.; Rembser, C.; Ren, H.; Ren, Z. L.; Renaud, A.; Rescigno, M.; Resconi, S.; Rezanova, O. L.; Reznicek, P.; Rezvani, R.; Richter, R.; Ridel, M.; Rieck, P.; Rieger, J.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Ritsch, E.; Riu, I.; Rizatdinova, F.; Rizvi, E.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robson, A.; Roda, C.; Rodrigues, L.; Roe, S.; Røhne, O.; Rolli, S.; Romaniouk, A.; Romano, M.; Romero Adam, E.; Rompotis, N.; Ronzani, M.; Roos, L.; Ros, E.; Rosati, S.; Rosbach, K.; Rose, M.; Rose, P.; Rosendahl, P. L.; Rosenthal, O.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rosten, R.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubbo, F.; Rubinskiy, I.; Rud, V. I.; Rudolph, C.; Rudolph, M. S.; Rühr, F.; Ruiz-Martinez, A.; Rurikova, Z.; Rusakovich, N. A.; Ruschke, A.; Rutherfoord, J. P.; Ruthmann, N.; Ryabov, Y. F.; Rybar, M.; Rybkin, G.; Ryder, N. C.; Saavedra, A. F.; Sabato, G.; Sacerdoti, S.; Saddique, A.; Sadeh, I.; Sadrozinski, H. F.-W.; Sadykov, R.; Safai Tehrani, F.; Sakamoto, H.; Sakurai, Y.; Salamanna, G.; Salamon, A.; Saleem, M.; Salek, D.; Sales De Bruin, P. H.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sampsonidis, D.; Sanchez, A.; Sánchez, J.; Sanchez Martinez, V.; Sandaker, H.; Sandbach, R. L.; Sander, H. G.; Sanders, M. P.; Sandhoff, M.; Sandoval, T.; Sandoval, C.; Sandstroem, R.; Sankey, D. P. C.; Sansoni, A.; Santoni, C.; Santonico, R.; Santos, H.; Santoyo Castillo, I.; Sapp, K.; Sapronov, A.; Saraiva, J. G.; Sarrazin, B.; Sartisohn, G.; Sasaki, O.; Sasaki, Y.; Sauvage, G.; Sauvan, E.; Savard, P.; Savu, D. O.; Sawyer, C.; Sawyer, L.; Saxon, D. H.; Saxon, J.; Sbarra, C.; Sbrizzi, A.; Scanlon, T.; Scannicchio, D. A.; Scarcella, M.; Scarfone, V.; Schaarschmidt, J.; Schacht, P.; Schaefer, D.; Schaefer, R.; Schaepe, S.; Schaetzel, S.; Schäfer, U.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Schernau, M.; Scherzer, M. I.; Schiavi, C.; Schieck, J.; Schillo, C.; Schioppa, M.; Schlenker, S.; Schmidt, E.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schneider, B.; Schnellbach, Y. J.; Schnoor, U.; Schoeffel, L.; Schoening, A.; Schoenrock, B. D.; Schorlemmer, A. L. S.; Schott, M.; Schouten, D.; Schovancova, J.; Schramm, S.; Schreyer, M.; Schroeder, C.; Schuh, N.; Schultens, M. J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwanenberger, C.; Schwartzman, A.; Schwarz, T. A.; Schwegler, Ph.; Schwemling, Ph.; Schwienhorst, R.; Schwindling, J.; Schwindt, T.; Schwoerer, M.; Sciacca, F. G.; Scifo, E.; Sciolla, G.; Scott, W. G.; Scuri, F.; Scutti, F.; Searcy, J.; Sedov, G.; Sedykh, E.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Sekula, S. J.; Selbach, K. E.; Seliverstov, D. M.; Sellers, G.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Serkin, L.; Serre, T.; Seuster, R.; Severini, H.; Sfiligoj, T.; Sforza, F.; Sfyrla, A.; Shabalina, E.; Shamim, M.; Shan, L. Y.; Shang, R.; Shank, J. T.; Shapiro, M.; Shatalov, P. B.; Shaw, K.; Shehu, C. Y.; Sherwood, P.; Shi, L.; Shimizu, S.; Shimmin, C. O.; Shimojima, M.; Shiyakova, M.; Shmeleva, A.; Shochet, M. J.; Short, D.; Shrestha, S.; Shulga, E.; Shupe, M. A.; Shushkevich, S.; Sicho, P.; Sidiropoulou, O.; Sidorov, D.; Sidoti, A.; Siegert, F.; Sijacki, Dj.; Silva, J.; Silver, Y.; Silverstein, D.; Silverstein, S. B.; Simak, V.; Simard, O.; Simic, Lj.; Simion, S.; Simioni, E.; Simmons, B.; Simoniello, R.; Simonyan, M.; Sinervo, P.; Sinev, N. B.; Sipica, V.; Siragusa, G.; Sircar, A.; Sisakyan, A. N.; Sivoklokov, S. Yu.; Sjölin, J.; Sjursen, T. B.; Skottowe, H. P.; Skovpen, K. Yu.; Skubic, P.; Slater, M.; Slavicek, T.; Sliwa, K.; Smakhtin, V.; Smart, B. H.; Smestad, L.; Smirnov, S. Yu.; Smirnov, Y.; Smirnova, L. N.; Smirnova, O.; Smith, K. M.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snidero, G.; Snyder, S.; Sobie, R.; Socher, F.; Soffer, A.; Soh, D. A.; Solans, C. A.; Solar, M.; Solc, J.; Soldatov, E. Yu.; Soldevila, U.; Solodkov, A. A.; Soloshenko, A.; Solovyanov, O. V.; Solovyev, V.; Sommer, P.; Song, H. Y.; Soni, N.; Sood, A.; Sopczak, A.; Sopko, B.; Sopko, V.; Sorin, V.; Sosebee, M.; Soualah, R.; Soueid, P.; Soukharev, A. M.; South, D.; Spagnolo, S.; Spanò, F.; Spearman, W. R.; Spettel, F.; Spighi, R.; Spigo, G.; Spiller, L. A.; Spousta, M.; Spreitzer, T.; Spurlock, B.; St. Denis, R. D.; Staerz, S.; Stahlman, J.; Stamen, R.; Stamm, S.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stanescu-Bellu, M.; Stanitzki, M. M.; Stapnes, S.; Starchenko, E. A.; Stark, J.; Staroba, P.; Starovoitov, P.; Staszewski, R.; Stavina, P.; Steinberg, P.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stern, S.; Stewart, G. A.; Stillings, J. A.; Stockton, M. C.; Stoebe, M.; Stoicea, G.; Stolte, P.; Stonjek, S.; Stradling, A. R.; Straessner, A.; Stramaglia, M. E.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strauss, E.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Stroynowski, R.; Strubig, A.; Stucci, S. A.; Stugu, B.; Styles, N. A.; Su, D.; Su, J.; Subramaniam, R.; Succurro, A.; Sugaya, Y.; Suhr, C.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, S.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Susinno, G.; Sutton, M. R.; Suzuki, Y.; Svatos, M.; Swedish, S.; Swiatlowski, M.; Sykora, I.; Sykora, T.; Ta, D.; Taccini, C.; Tackmann, K.; Taenzer, J.; Taffard, A.; Tafirout, R.; Taiblum, N.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Takubo, Y.; Talby, M.; Talyshev, A. A.; Tam, J. Y. C.; Tan, K. G.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tanaka, S.; Tanasijczuk, A. J.; Tannenwald, B. B.; Tannoury, N.; Tapprogge, S.; Tarem, S.; Tarrade, F.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tashiro, T.; Tassi, E.; Tavares Delgado, A.; Tayalati, Y.; Taylor, F. E.; Taylor, G. N.; Taylor, W.; Teischinger, F. A.; Teixeira Dias Castanheira, M.; Teixeira-Dias, P.; Temming, K. K.; Ten Kate, H.; Teng, P. K.; Teoh, J. J.; Terada, S.; Terashi, K.; Terron, J.; Terzo, S.; Testa, M.; Teuscher, R. J.; Therhaag, J.; Theveneaux-Pelzer, T.; Thomas, J. P.; Thomas-Wilsker, J.; Thompson, E. N.; Thompson, P. D.; Thompson, P. D.; Thompson, R. J.; Thompson, A. S.; Thomsen, L. A.; Thomson, E.; Thomson, M.; Thong, W. M.; Thun, R. P.; Tian, F.; Tibbetts, M. J.; Tikhomirov, V. O.; Tikhonov, Yu. A.; Timoshenko, S.; Tiouchichine, E.; Tipton, P.; Tisserant, S.; Todorov, T.; Todorova-Nova, S.; Toggerson, B.; Tojo, J.; Tokár, S.; Tokushuku, K.; Tollefson, K.; Tolley, E.; Tomlinson, L.; Tomoto, M.; Tompkins, L.; Toms, K.; Topilin, N. D.; Torrence, E.; Torres, H.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Tran, H. L.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Tripiana, M. F.; Trischuk, W.; Trocmé, B.; Troncon, C.; Trottier-McDonald, M.; Trovatelli, M.; True, P.; Trzebinski, M.; Trzupek, A.; Tsarouchas, C.; Tseng, J. C.-L.; Tsiareshka, P. V.; Tsionou, D.; Tsipolitis, G.; Tsirintanis, N.; Tsiskaridze, S.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsukerman, I. I.; Tsulaia, V.; Tsuno, S.; Tsybychev, D.; Tudorache, A.; Tudorache, V.; Tuna, A. N.; Tupputi, S. A.; Turchikhin, S.; Turecek, D.; Turk Cakir, I.; Turra, R.; Tuts, P. M.; Tykhonov, A.; Tylmad, M.; Tyndel, M.; Uchida, K.; Ueda, I.; Ueno, R.; Ughetto, M.; Ugland, M.; Uhlenbrock, M.; Ukegawa, F.; Unal, G.; Undrus, A.; Unel, G.; Ungaro, F. C.; Unno, Y.; Unverdorben, C.; Urbaniec, D.; Urquijo, P.; Usai, G.; Usanova, A.; Vacavant, L.; Vacek, V.; Vachon, B.; Valencic, N.; Valentinetti, S.; Valero, A.; Valery, L.; Valkar, S.; Valladolid Gallego, E.; Vallecorsa, S.; Valls Ferrer, J. A.; Van Den Wollenberg, W.; Van Der Deijl, P. C.; van der Geer, R.; van der Graaf, H.; Van Der Leeuw, R.; van der Ster, D.; van Eldik, N.; van Gemmeren, P.; Van Nieuwkoop, J.; van Vulpen, I.; van Woerden, M. C.; Vanadia, M.; Vandelli, W.; Vanguri, R.; Vaniachine, A.; Vankov, P.; Vannucci, F.; Vardanyan, G.; Vari, R.; Varnes, E. W.; Varol, T.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vazeille, F.; Vazquez Schroeder, T.; Veatch, J.; Veloso, F.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Venturini, A.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Viazlo, O.; Vichou, I.; Vickey, T.; Vickey Boeriu, O. E.; Viehhauser, G. H. A.; Viel, S.; Vigne, R.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinogradov, V. B.; Virzi, J.; Vivarelli, I.; Vives Vaque, F.; Vlachos, S.; Vladoiu, D.; Vlasak, M.; Vogel, A.; Vogel, M.; Vokac, P.; Volpi, G.; Volpi, M.; von der Schmitt, H.; von Radziewski, H.; von Toerne, E.; Vorobel, V.; Vorobev, K.; Vos, M.; Voss, R.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Vu Anh, T.; Vuillermet, R.; Vukotic, I.; Vykydal, Z.; Wagner, P.; Wagner, W.; Wahlberg, H.; Wahrmund, S.; Wakabayashi, J.; Walder, J.; Walker, R.; Walkowiak, W.; Wall, R.; Waller, P.; Walsh, B.; Wang, C.; Wang, C.; Wang, F.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, K.; Wang, R.; Wang, S. M.; Wang, T.; Wang, X.; Wanotayaroj, C.; Warburton, A.; Ward, C. P.; Wardrope, D. R.; Warsinsky, M.; Washbrook, A.; Wasicki, C.; Watkins, P. M.; Watson, A. T.; Watson, I. J.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, B. M.; Webb, S.; Weber, M. S.; Weber, S. W.; Webster, J. S.; Weidberg, A. R.; Weigell, P.; Weinert, B.; Weingarten, J.; Weiser, C.; Weits, H.; Wells, P. S.; Wenaus, T.; Wendland, D.; Weng, Z.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Wessels, M.; Wetter, J.; Whalen, K.; White, A.; White, M. J.; White, R.; White, S.; Whiteson, D.; Wicke, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik-Fuchs, L. A. M.; Wijeratne, P. A.; Wildauer, A.; Wildt, M. A.; Wilkens, H. G.; Will, J. Z.; Williams, H. H.; Williams, S.; Willis, C.; Willocq, S.; Wilson, A.; Wilson, J. A.; Wingerter-Seez, I.; Winklmeier, F.; Winter, B. T.; Wittgen, M.; Wittig, T.; Wittkowski, J.; Wollstadt, S. J.; Wolter, M. W.; Wolters, H.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wozniak, K. W.; Wright, M.; Wu, M.; Wu, S. L.; Wu, X.; Wu, Y.; Wulf, E.; Wyatt, T. R.; Wynne, B. M.; Xella, S.; Xiao, M.; Xu, D.; Xu, L.; Yabsley, B.; Yacoob, S.; Yakabe, R.; Yamada, M.; Yamaguchi, H.; Yamaguchi, Y.; Yamamoto, A.; Yamamoto, K.; Yamamoto, S.; Yamamura, T.; Yamanaka, T.; Yamauchi, K.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, H.; Yang, U. K.; Yang, Y.; Yanush, S.; Yao, L.; Yao, W.-M.; Yasu, Y.; Yatsenko, E.; Yau Wong, K. H.; Ye, J.; Ye, S.; Yeletskikh, I.; Yen, A. L.; Yildirim, E.; Yilmaz, M.; Yoosoofmiya, R.; Yorita, K.; Yoshida, R.; Yoshihara, K.; Young, C.; Young, C. J. S.; Youssef, S.; Yu, D. R.; Yu, J.; Yu, J. M.; Yu, J.; Yuan, L.; Yurkewicz, A.; Yusuff, I.; Zabinski, B.; Zaidan, R.; Zaitsev, A. M.; Zaman, A.; Zambito, S.; Zanello, L.; Zanzi, D.; Zeitnitz, C.; Zeman, M.; Zemla, A.; Zengel, K.; Zenin, O.; Ženiš, T.; Zerwas, D.; Zevi della Porta, G.; Zhang, D.; Zhang, F.; Zhang, H.; Zhang, J.; Zhang, L.; Zhang, X.; Zhang, Z.; Zhao, Z.; Zhemchugov, A.; Zhong, J.; Zhou, B.; Zhou, L.; Zhou, N.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhukov, K.; Zibell, A.; Zieminska, D.; Zimine, N. I.; Zimmermann, C.; Zimmermann, R.; Zimmermann, S.; Zimmermann, S.; Zinonos, Z.; Ziolkowski, M.; Zobernig, G.; Zoccoli, A.; zur Nedden, M.; Zurzolo, G.; Zutshi, V.; Zwalinski, L.

    2015-01-01

    A search is performed for Higgs bosons produced in association with top quarks using the diphoton decay mode of the Higgs boson. Selection requirements are optimized separately for leptonic and fully hadronic final states from the top quark decays. The dataset used corresponds to an integrated luminosity of 4.5 fb-1 of proton-proton collisions at a center-of-mass energy of 7 TeV and 20.3 fb-1 at 8 TeV recorded by the ATLAS detector at the CERN Large Hadron Collider. No significant excess over the background prediction is observed and upper limits are set on the t t bar H production cross section. The observed exclusion upper limit at 95% confidence level is 6.7 times the predicted Standard Model cross section value. In addition, limits are set on the strength of the Yukawa coupling between the top quark and the Higgs boson, taking into account the dependence of the t t bar H and tH cross sections as well as the H → γγ branching fraction on the Yukawa coupling. Lower and upper limits at 95% confidence level are set at -1.3 and +8.0 times the Yukawa coupling strength in the Standard Model.

  17. Search for Standard Model Higgs Bosons Produced in Association with W Bosons

    SciTech Connect

    Aaltonen, T.

    2007-10-01

    The authors report on the results of a search for standard model Higgs bosons produced in association with W bosons from p{bar p} collisions at {radical}s = 1.96 TeV. The search uses a data sample corresponding to approximately 1 fb{sup -1} of integrated luminosity. Events consistent with the W {yields} {ell}{nu} and H {yields} b{bar b} signature are selected by triggering on a high-p{sub T} electron or muon candidate and tagging one or two of the jet candidates as having originated from b quarks. A neural network filter rejects a fraction of tagged charm and light flavor jets, increasing the b-jet purity in the sample and thereby reducing the background to Higgs boson production. They observe no excess {ell}{nu}b{bar b} production beyond the background expectation, and they set 95% confidence level upper limits on the production cross section times branching fraction {sigma}(p{bar p} {yields} WH) {center_dot} Br(H {yields} b{bar b}) ranging from 3.9 to 1.3 pb, for specific Higgs boson mass hypotheses in the range 110 to 150 GeV/c{sup 2}, respectively.

  18. Higgs Boson: god particle or divine comedy?

    NASA Astrophysics Data System (ADS)

    Rangacharyulu, Chary

    2013-10-01

    While particle physicists around the world rejoice the announcement of discovery of Higgs particle as a momentous event, it is also an opportune moment to assess the physicists' conception of nature. Particle theorists, in their ingenious efforts to unravel mysteries of the physical universe at a very fundamental level, resort to macroscopic many body theoretical methods of solid state physicists. Their efforts render the universe a superconductor of correlated quasi-particle pairs. Experimentalists, devoted to ascertain the elementary constituents and symmetries, depend heavily on numerical simulations based on those models and conform to theoretical slang in planning and interpretation of measurements . It is to the extent that the boundaries between theory/modeling and experiment are blurred. Is it possible that they are meandering in Dante's Inferno?

  19. Search for the standard model Higgs boson in tau lepton final states

    SciTech Connect

    Abazov, Victor Mukhamedovich; et al.

    2012-08-01

    We present a search for the standard model Higgs boson in final states with an electron or muon and a hadronically decaying tau lepton in association with zero, one, or two or more jets using data corresponding to an integrated luminosity of up to 7.3 fb{sup -1} collected with the D0 detector at the Fermilab Tevatron collider. The analysis is sensitive to Higgs boson production via gluon gluon fusion, associated vector boson production, and vector boson fusion, and to Higgs boson decays to tau lepton pairs or W boson pairs. Observed (expected) limits are set on the ratio of 95% C.L. upper limits on the cross section times branching ratio, relative to those predicted by the Standard Model, of 14 (22) at a Higgs boson mass of 115 GeV and 7.7 (6.8) at 165 GeV.

  20. Higgs boson pair production in the D = 6 extension of the SM

    NASA Astrophysics Data System (ADS)

    Goertz, Florian; Papaefstathiou, Andreas; Yang, Li Lin; Zurita, José

    2015-04-01

    We derive the constraints that can be imposed on the dimension-6 effective theory extension of the Standard Model, using gluon fusion-initiated Higgs boson pair production at the LHC. We use a realistic analysis focussing on the final state, including initial-state radiation and non-perturbative effects. We include the statistical uncertainties on the signal rates as well as conservative estimates of the theoretical uncertainties. We first consider a theory containing only modifications of the trilinear coupling, through a c 6λ H 6 /v 2 Lagrangian term, and then examine the full parameter space of the effective theory, incorporating current bounds obtained through single Higgs boson measurements. We also consider an alternative scenario, where we vary a smaller sub-set of parameters. Allowing, finally, the values of the other coefficients to vary within projected experimental ranges, we find that the currently unbounded parameter, c 6, could be constrained to lie within | c 6| ≲ 0 .6 at 1 σ confidence, at the end of the high-luminosity run of the LHC (14 TeV) in the full model, and to -0 .6 ≲ c 6 ≲ 0 .5 in the alternative model. This study constitutes a first step towards the inclusion of multi-Higgs boson production in a full fit to the dimension-6 effective field theory framework.

  1. Search for a Low-Mass Higgs Boson (A0) at BaBar

    SciTech Connect

    Mokhtar, Arafat Gabareen; /SLAC

    2012-04-05

    The BABAR Collaboration has performed three searches for a light Higgs boson, A{sup 0}, in radiative Upsilon ({Upsilon}) decays: {Upsilon}(3S) {yields} {gamma}A{sup 0}, A{sup 0} {yields} {tau}{sup +}{tau}{sup -}; {Upsilon}(nS) {yields} {gamma}A{sup 0}, A{sup 0} {yields} {mu}{sup +}{mu}{sup -} (n = 2,3); and {Upsilon}(3S) {yields} {gamma}A{sup 0}, A{sup 0} {yields} invisible. Such a Higgs boson (A{sup 0}) appears in the Next-to-Minimal Supersymmetric extensions of the Standard Model, where a light CP-odd Higgs boson couples strongly to b-quarks. The searches are based on data samples that consist of 122 x 10{sup 6} {Upsilon}(3S) and 99 x 10{sup 6} {Upsilon}(2S) decays, collected by the BABAR detector at the SLAC National Accelerator Laboratory. The searches reveal no evidence for an A{sup 0}, and product of branching fractions upper limits, at 90% C.L., of (1.5-16) x 10{sup -5}, (0.44-44) x 10{sup -6}, and (0.7-31) x 10{sup -6} were obtained for these searches, respectively. Also, we set the upper limits {Beta}({eta}{sub b} {yields} {tau}{sup +}{tau}{sup -}) < 8% and {Beta}({eta}{sub b} {yields} {mu}{sup +}{mu}{sup -}) < 0.9%.

  2. Rare top-quark decays to Higgs boson in MSSM

    NASA Astrophysics Data System (ADS)

    Dedes, A.; Paraskevas, M.; Rosiek, J.; Suxho, K.; Tamvakis, K.

    2014-11-01

    In full one-loop generality and in next-to-leading order in QCD, we study rare top to Higgs boson flavour changing decay processes t → qh with q = u, c quarks, in the general MSSM with R-parity conservation. Our primary goal is to search for enhanced effects on that could be visible at current and high luminosity LHC running. To this end, we perform an analytical expansion of the amplitude in terms of flavour changing squark mass insertions that treats both cases of hierarchical and degenerate squark masses in a unified way. We identify two enhanced effects allowed by various constraints: one from holomorphic trilinear soft SUSY breaking terms and/or right handed up squark mass insertions and another from non-holomorphic trilinear soft SUSY breaking terms and light Higgs boson masses. Interestingly, even with flavour violating effects in the, presently unconstrained, up-squark sector, SUSY effects on come out to be unobservable at LHC mainly due to leading order cancellations between penguin and self energy diagrams and the constraints from charge- and colour-breaking minima (CCB) of the MSSM vacuum. An exception to this conclusion may be effects arising from non-holomorphic soft SUSY breaking terms in the region where the CP-odd Higgs mass is smaller than the top-quark mass but this scenario is disfavoured by recent LHC searches. Our calculations for t → qh decay are made available in SUSY FLAVOUR numerical library.

  3. Prospects for a low-mass Higgs boson

    SciTech Connect

    Junk, Thomas R.; /Illinois U., Urbana

    2007-01-01

    The SU(2){sub L} x U(1){sub Y} gauge theory of the electroweak interactions has enjoyed tremendous success over the past four decades, accurately predicting, or at least accommodating, all high-energy collider data. The gauge group must be broken somehow to U(1){sub EM}, because the unbroken theory predicts massless gauge bosons and massless fermions. The Standard Model incorporates a minimal Higgs sector with a single complex doublet field, to break the symmetry spontaneously, but it is not the only possibility. SUSY Higgses, general two-Higgs-doublet models, and other ideas may prove to model nature better than the minimal model. Many of these models, and even the SM, prefer a light Higgs boson, with a mass between the LEP limit of 114.4 GeV and 200 GeV. The Constrained MSSM favors masses under 120 GeV. A survey of the experimental work so far at LEP and the Tevatron, with estimations of the sensitivity of the upcoming LHC experiments is provided.

  4. LHC searches for heavy neutral Higgs bosons with a top jet substructure analysis

    NASA Astrophysics Data System (ADS)

    Chen, Ning; Li, Jinmian; Liu, Yandong

    2016-05-01

    We study the LHC searches for the heavy C P -odd Higgs boson A and C P -even Higgs boson H in the context of a general two-Higgs-doublet model. Specifically, we consider the decay mode of A /H →t t ¯ through the t t ¯ associated production channels. In the so-called "alignment limit" of the two-Higgs-doublet model, this decay mode can be the most dominant one. By employing the HEPTopTagger and the multivariate analysis method, we present the search sensitivities for both C P -odd Higgs boson A and C P -even Higgs boson H via this channel with multiple top quarks at the high-luminosity LHC runs.

  5. A search for technipions and charged Higgs bosons at LEP

    NASA Astrophysics Data System (ADS)

    Akrawy, M. Z.; Alexander, G.; Allison, J.; Allport, P. P.; Anderson, K. J.; Armitage, J. C.; Arnison, G. T. J.; Ashton, P.; Azuelos, G.; Baines, J. T. M.; Ball, A. H.; Banks, J.; Barker, G. J.; Barlow, R. J.; Batley, J. R.; Becker, J.; Behnke, T.; Bell, K. W.; Bella, G.; Bethke, S.; Biebel, O.; Binder, U.; Bloodworth, I. J.; Bock, P.; Breuker, H.; Brown, R. M.; Brun, R.; Buijs, A.; Burckhart, H. J.; Capiluppi, P.; Carnegie, R. K.; Carter, A. A.; Carter, J. R.; Chang, C. Y.; Charlton, D. G.; Chrin, J. T. M.; Cohen, I.; Collins, W. J.; Conboy, J. E.; Couch, M.; Coupland, M.; Cuffiani, M.; Dado, S.; Dallavalle, G. M.; Debu, P.; Deninno, M. M.; Dieckmann, A.; Dittmar, M.; Dixit, M. S.; Duchovni, E.; Duerdoth, I. P.; Dumas, P.; el Mamouni, H.; Elcombe, P. A.; Estabrooks, P. G.; Etzion, E.; Fabbri, F.; Farthouat, P.; Fischer, H. M.; Fong, D. G.; French, M. T.; Fukunuga, C.; Gaidot, A.; Ganel, O.; Gary, J. W.; Gascon, J.; Geddes, N. I.; Gee, C. N. P.; Geich-Gimbel, C.; Gensler, S. W.; Gentit, F. X.; Giacomelli, G.; Gibson, V.; Gibson, W. R.; Gillies, J. D.; Goldberg, J.; Goodrick, M. J.; Gorn, W.; Granite, D.; Gross, E.; Grosse-Wiesmann, P.; Grunhaus, J.; Hagedorn, H.; Hagemann, J.; Hansroul, M.; Hargrove, C. K.; Hart, J.; Hattersley, P. M.; Hauschild, M.; Hawkes, C. M.; Helfin, E.; Hemingway, R. J.; Heuer, R. D.; Hill, J. C.; Hiller, S. J.; Ho, C.; Hobbs, J. D.; Hobson, P. R.; Hochman, D.; Holl, B.; Homer, R. J.; Hou, S. R.; Howarth, C. P.; Hughes-Jones, R. E.; Igo-Kimenes, P.; Ihssen, H.; Imrie, D. C.; Jawahery, A.; Jeffreys, P. W.; Jeremie, H.; Jimack, M.; Jobes, M.; Jones, R. W. L.; Jovanovic, P.; Karlen, D.; Kawagoe, K.; Kawamoto, T.; Kellogg, R. G.; Kennedy, B. W.; Kleinwort, C.; Klem, D. E.; Knop, G.; Kobayashi, T.; Kokott, T. P.; Ko¨pke, L.; Kowalewski, R.; Kreutzmann, H.; von Krogh, J.; Kroll, J.; Kuwano, M.; Kyberd, P.; Lafferty, G. D.; Lamarche, F.; Larson, W. J.; Lasota, M. M. B.; Layter, J. G.; le Du, P.; Leblanc, P.; Lee, A. M.; Lellouch, D.; Lennert, P.; Lessard, L.; Levinson, L.; Lloyd, S. L.; Loebinger, F. K.; Lorah, J. M.; Lorazo, B.; Losty, M. J.; Ludwig, J.; Lupu, N.; Ma, J.; Macbeth, A. A.; Mannelli, M.; Marcellini, S.; Maringer, G.; Martin, A. J.; Martin, J. P.; Mashimo, T.; Ma¨ttig, P.; Maur, U.; McMahon, T. J.; McPherson, A. C.; Meijers, F.; Menszner, D.; Merritt, F. S.; Mes, H.; Michelini, A.; Middleton, R. P.; Mikenberg, G.; Miller, D. J.; Milstene, C.; Minowa, M.; Mohr, W.; Montanari, A.; Mori, T.; Moss, M. W.; Murphy, P. G.; Murray, W. J.; Nellen, B.; Nguyen, H. H.; Nozaki, M.; O'Dowd, A. J. P.; O'neale, S. W.; O'neill, B. P.; Oakham, F. G.; Odorici, F.; Ogg, M.; Oh, H.; Oreglia, M. J.; Orito, S.; Pansart, J. P.; Patrick, G. N.; Pawley, S. J.; Pfister, P.; Pilcher, J. E.; Pinfold, J. L.; Plane, D. E.; Poli, B.; Pouladdej, A.; Pritchard, T. W.; Quast, G.; Raab, J.; Redmond, M. W.; Rees, D. L.; Regimbald, M.; Riles, K.; Roach, C. M.; Robins, S. A.; Rollnik, A.; Roney, J. M.; Rossberg, S.; Rossi, A. M.; Routenburg, P.; Runge, K.; Runolfsson, O.; Sanghera, S.; Sansum, R. A.; Sasaki, M.; Saunders, B. J.; Schaile, A. D.; Schaile, O.; Schappert, W.; Scharff-Hansen, P.; von der Schmitt, H.; Schreiber, S.; Schwarz, J.; Shapira, A.; Shen, B. C.; Sherwood, P.; Simon, A.; Siroli, G. P.; Skuja, A.; Smith, A. M.; Smith, T. J.; Snow, G. A.; Spreadbury, E. J.; Springer, R. W.; Sproston, M.; Stephens, K.; Stier, H. E.; Stro¨hmer, R.; Strom, D.; Takeda, H.; Takeshita, T.; Tsukamoto, T.; Turner, M. F.; Tysarczyk-Niemeyer, G.; van den Plas, D.; Vandalen, G. J.; Vasseur, G.; Virtue, C. J.; Wagner, A.; Wahl, C.; Ward, C. P.; Ward, D. R.; Waterhouse, J.; Watkins, P. M.; Watson, A. T.; Watson, N. K.; Weber, M.; Weisz, S.; Wermes, N.; Weymann, M.; Wilson, G. W.; Wilson, J. A.; Wingerter, I.; Winterer, V.-H.; Wood, N. C.; Wotton, S.; Wuensch, B.; Wyatt, T. R.; Yaari, R.; Yang, Y.; Yekutieli, G.; Yoshida, T.; Zeuner, W.; Zorn, G. T.

    1990-06-01

    A search has been performed for unstable charged scalar particles (S ±) such as technipions or charged Higgs bosons, pair-produced in e +e - annihilation at energies near the Z 0 pole. No evidence for such particles was observed in the decay modes e +e -→S +S -→(cs)(τv), (τv) (τv)and(cs)(cs). A lower limit (at the 95% CL ) of 35 Gev/c 2 is obtained for the mass of the charged scalar particles, independent of the branching ratio.

  6. Production of pseudoscalar Higgs-bosons in e {gamma} collisions

    SciTech Connect

    Dicus, D.A.; Repko, W.W.

    1995-08-21

    We investigate the production of a pseudoscalar Higgs-boson A{sup 0} using the reaction e{gamma} {yields} e A{sup 0} at an e{bar e} collider with center of mass energy of 500 GeV. Supersymmetric contributions are included and provide a substantial enhancement to the cross section for most values of the symmetry breaking parameters. We find that, despite the penalty incurred in converting one of the beams into a source of backscattered photons, the e{gamma} process is a promising channel for the detection of the A{sup 0}.

  7. Searches for non-standard-model Higgs bosons at the Tevatron

    SciTech Connect

    Landsberg, Greg L.; /Brown U.

    2007-05-01

    Search for non-Standard-Model Higgs bosons is one of the major goals of the ongoing Fermilab Tevatron run. Large data sets accumulated by the CDF and D{O} experiments break new grounds in sensitivity. We review recent Tevatron results on searches for Higgs bosons in Minimal Supersymmetric Model in the multi b-jet and {tau}{tau} final states, as well as a search for fermiophobic Higgs in the multiphoton final state.

  8. Can the 750-GeV diphoton resonance be the singlet Higgs boson of custodial Higgs triplet model?

    NASA Astrophysics Data System (ADS)

    Chiang, Cheng-Wei; Kuo, An-Li

    2016-09-01

    The observation of diphoton excess around the mass of 750 GeV in LHC Run-II motivates us to consider whether the singlet Higgs boson in the custodial Higgs triplet model can serve as a good candidate because an earlier study of comprehensive parameter scan shows that it can have the right mass in the viable mass spectra. By assuming the singlet Higgs mass at 750 GeV, its total width less than 50 GeV and imposing constraints from the LHC 8-TeV data, we identify an approximately linear region on the (vΔ , α) plane along which the exotic Higgs boson masses satisfy a specific hierarchy and have lower possible spectra, where vΔ denotes the triplet vacuum expectation value and α is the mixing angle between the singlet Higgs boson and the standard model-like Higgs boson. Although the diphoton decay rate can be enhanced by charged Higgs bosons running in the loop in this region, it is mostly orders of magnitude smaller than that required for the observed production rate, except for the small vΔ region when the diphoton fusion production mechanism becomes dominant. Nonetheless, this part of parameter space suffers from the problems of breakdown of perturbativity and large uncertainties in the photon parton distribution function of proton.

  9. Search for MSSM Higgs Bosons in Tau Final States with the D0 Detector

    SciTech Connect

    Yang, Wan-Ching

    2010-01-01

    The cross-section times branching ratio of the Higgs boson decaying to τ+τ- final state in the Standard Model (SM) is too small to play any role in the SM Higgs boson searches. This, however, is different in the Minimal Supersymmetric Standard Model (MSSM), which predicts two Higgs doublets leading to five Higgs bosons: a pair of charged Higgs boson (H±); two neutral CP-even Higgs bosons (h,H) and a CP-odd Higgs boson (A). A search for the production of neutral Higgs bosons decaying into τ+τ- final states in p{bar p} collisions at a centre-of-mass energy of √s = 1.96 TeV is presented in this thesis. One of the two τ leptons is required to decay into a muon while the other decays hadronically. The integrated luminosity is L = 1.0-5.36 fb -1, collected by the D0 experiment at the Fermilab Tevatron Collider from 2002 to 2009 in the Run II.

  10. Probing anomalous gauge boson couplings at LEP

    SciTech Connect

    Dawson, S.; Valencia, G.

    1994-12-31

    We bound anomalous gauge boson couplings using LEP data for the Z {yields} {bar {integral}}{integral} partial widths. We use an effective field theory formalism to compute the one-loop corrections resulting from non-standard model three and four gauge boson vertices. We find that measurements at LEP constrain the three gauge boson couplings at a level comparable to that obtainable at LEPII.

  11. Constraining the charm Yukawa and Higgs-quark coupling universality

    NASA Astrophysics Data System (ADS)

    Perez, Gilad; Soreq, Yotam; Stamou, Emmanuel; Tobioka, Kohsaku

    2015-08-01

    We introduce four different types of data-driven analyses with different levels of robustness that constrain the size of the Higgs-charm Yukawa coupling: (i) Recasting the vector-boson associated V h analyses that search for the bottom-pair final state. We use this mode to directly and model independently constrain the Higgs-to-charm coupling, yc/ycSM≲234 . (ii) The direct measurement of the total width, yc/ycSM≲120 - 140 . (iii) The search for h →J /ψ γ , yc/ycSM≲220 . (iv) A global fit to the Higgs signal strengths, yc/ycSM≲6.2 . A comparison with t t ¯h data allows us to show that the Higgs does not couple to quarks in a universal way, as is expected in the Standard Model. Finally, we demonstrate how the experimental collaborations can further improve our direct bound by roughly an order of magnitude by charm tagging, as is already used in new-physics searches.

  12. Search for a Higgs boson produced in association with a Z boson in p anti-p collisions

    SciTech Connect

    Abazov, V.M.; Abbott, B.; Abolins, M.; Acharya, B.S.; Adams, M.; Adams, T.; Aguilo, E.; Ahn, S.H.; Ahsan, M.; Alexeev, G.D.; Alkhazov, G.; /St. Petersburg, INP /Northeastern U.

    2007-04-01

    We describe a search for the standard model Higgs boson with a mass of 105 GeV/c{sup 2} to 145 GeV/c{sup 2} in data corresponding to an integrated luminosity of approximately 450 pb{sup -1} collected with the D0 detector at the Fermilab Tevatron p{bar p} collider at a center-of-mass energy of 1.96 TeV. The Higgs boson is required to be produced in association with a Z boson, and the Z boson is required to decay to either electrons or muons with the Higgs boson decaying to a b{bar b} pair. The data are well described by the expected background, leading to 95% confidence level cross section upper limits {sigma}p{bar p} {yields} ZH x B(H {yields} b{bar b}) in the range of 3.1 pb to 4.4 pb.

  13. Search for the Standard Model Higgs boson at LEP2 with the L3 experiment

    NASA Astrophysics Data System (ADS)

    Xu, Jianguo

    1998-06-01

    My thesis topic is the search for the Standard Model Higgs boson at LEP through the process of e+e/sp- annihilation to produce the gauge boson Z0 and the Higgs boson H0/ (e+e/sp-/to Z0H0), with the subsequent decays Z0/to q/bar q and H0/to b/bar b, where q denotes quark and b denotes bottom quark. I use data collected by the L3 detector in 1996. The search for the Higgs boson is one of the most important efforts in experimental high energy physics. In order to generate the masses for all elementary particles, the 'Higgs mechanism' for the breaking of electroweak symmetry is realized in the Standard Model, which is a very successful theory of combined weak and electromagnetic interactions. However, the Higgs mechanism requires the existence of at least one neutral spinless physical particle, the as yet unobserved Higgs boson. The data sample was collected at three centre-of-mass energies, 161.3, 170.3, and 172.3 GeV with integrated luminosities of 10.8, 1.0, and 9.2 pb-1, respectively. The challenge of the Higgs boson search analysis is to reject the large number of background events. Two important analysis techniques were developed and used in this thesis work. One is the b-quark jet tagging algorithm using the high precision particle tracking systems, the L3 Silicon Microvertex Detector, and the Time Expansion Chamber. This technique is crucial to separate the Higgs signal from the background, since the Higgs boson decays predominantly into b-quark jets. Another technique is the neural networks approach which is used to help to identify the Higgs event pattern with high efficiency. In contrast to the previous LEP1 Higgs search program, our analysis uses the maximum likelihood fitting method to extract the possible Higgs signature or to set the lower Higgs boson mass limit. My analysis showed no evidence of the Higgs signal in the four-jet channel. In combination with other Standard Model Higgs boson search channels and previous data taken at the Z resonance, a new

  14. Search for a pseudoscalar boson decaying into a Z boson and the 125 GeV Higgs boson in ℓ+ℓ- bbbar final states

    NASA Astrophysics Data System (ADS)

    Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Flechl, M.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Knünz, V.; König, A.; Krammer, M.; Krätschmer, I.; Liko, D.; Matsushita, T.; Mikulec, I.; Rabady, D.; Rahbaran, B.; Rohringer, H.; Schieck, J.; Schöfbeck, R.; Strauss, J.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Alderweireldt, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Knutsson, A.; Lauwers, J.; Luyckx, S.; Ochesanu, S.; Rougny, R.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Abu Zeid, S.; Blekman, F.; D'Hondt, J.; Daci, N.; De Bruyn, I.; Deroover, K.; Heracleous, N.; Keaveney, J.; Lowette, S.; Moreels, L.; Olbrechts, A.; Python, Q.; Strom, D.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Van Parijs, I.; Barria, P.; Caillol, C.; Clerbaux, B.; De Lentdecker, G.; Delannoy, H.; Dobur, D.; Fasanella, G.; Favart, L.; Gay, A. P. R.; Grebenyuk, A.; Léonard, A.; Mohammadi, A.; Perniè, L.; Randle-conde, A.; Reis, T.; Seva, T.; Thomas, L.; Vander Velde, C.; Vanlaer, P.; Wang, J.; Zenoni, F.; Beernaert, K.; Benucci, L.; Cimmino, A.; Crucy, S.; Fagot, A.; Garcia, G.; Gul, M.; Mccartin, J.; Ocampo Rios, A. A.; Poyraz, D.; Ryckbosch, D.; Salva Diblen, S.; Sigamani, M.; Strobbe, N.; Tytgat, M.; Van Driessche, W.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Beluffi, C.; Bondu, O.; Bruno, G.; Castello, R.; Caudron, A.; Ceard, L.; Da Silveira, G. G.; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Jafari, A.; Jez, P.; Komm, M.; Lemaitre, V.; Mertens, A.; Nuttens, C.; Perrini, L.; Pin, A.; Piotrzkowski, K.; Popov, A.; Quertenmont, L.; Selvaggi, M.; Vidal Marono, M.; Beliy, N.; Caebergs, T.; Hammad, G. H.; Aldá Júnior, W. L.; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Dos Reis Martins, T.; Hensel, C.; Mora Herrera, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.; Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Custódio, A.; Da Costa, E. M.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santaolalla, J.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.; Ahuja, S.; Bernardes, C. A.; Dogra, S.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Moon, C. S.; Novaes, S. F.; Padula, Sandra S.; Romero Abad, D.; Ruiz Vargas, J. C.; Aleksandrov, A.; Genchev, V.; Hadjiiska, R.; Iaydjiev, P.; Marinov, A.; Piperov, S.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.; Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Cheng, T.; Du, R.; Jiang, C. H.; Plestina, R.; Romeo, F.; Shaheen, S. M.; Tao, J.; Wang, C.; Wang, Z.; Zhang, H.; Asawatangtrakuldee, C.; Ban, Y.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Zhang, F.; Zou, W.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; Gomez Moreno, B.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Polic, D.; Puljak, I.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Kadija, K.; Luetic, J.; Sudic, L.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Bodlak, M.; Finger, M.; Finger, M.; Ali, A.; Aly, R.; Aly, S.; Assran, Y.; Ellithi Kamel, A.; Lotfy, A.; Mahmoud, M. A.; Masod, R.; Radi, A.; Calpas, B.; Kadastik, M.; Murumaa, M.; Raidal, M.; Tiko, A.; Veelken, C.; Eerola, P.; Voutilainen, M.; Härkönen, J.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Pekkanen, J.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Machet, M.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Zghiche, A.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Chapon, E.; Charlot, C.; Dahms, T.; Davignon, O.; Filipovic, N.; Florent, A.; Granier de Cassagnac, R.; Lisniak, S.; Mastrolorenzo, L.; Miné, P.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Regnard, S.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Strebler, T.; Yilmaz, Y.; Zabi, A.; Agram, J.-L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J.-M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Goetzmann, C.; Le Bihan, A.-C.; Merlin, J. A.; Skovpen, K.; Van Hove, P.; Gadrat, S.; Beauceron, S.; Beaupere, N.; Bernet, C.; Boudoul, G.; Bouvier, E.; Brochet, S.; Carrillo Montoya, C. A.; Chasserat, J.; Chierici, R.; Contardo, D.; Courbon, B.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Laktineh, I. B.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Ruiz Alvarez, J. D.; Sabes, D.; Sgandurra, L.; Sordini, V.; Vander Donckt, M.; Verdier, P.; Viret, S.; Xiao, H.; Tsamalaidze, Z.; Autermann, C.; Beranek, S.; Edelhoff, M.; Feld, L.; Heister, A.; Kiesel, M. K.; Klein, K.; Lipinski, M.; Ostapchuk, A.; Preuten, M.; Raupach, F.; Sammet, J.; Schael, S.; Schulte, J. F.; Verlage, T.; Weber, H.; Wittmer, B.; Zhukov, V.; Ata, M.; Brodski, M.; Dietz-Laursonn, E.; Duchardt, D.; Endres, M.; Erdmann, M.; Erdweg, S.; Esch, T.; Fischer, R.; Güth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Klingebiel, D.; Knutzen, S.; Kreuzer, P.; Merschmeyer, M.; Meyer, A.; Millet, P.; Olschewski, M.; Padeken, K.; Papacz, P.; Pook, T.; Radziej, M.; Reithler, H.; Rieger, M.; Sonnenschein, L.; Teyssier, D.; Thüer, S.; Cherepanov, V.; Erdogan, Y.; Flügge, G.; Geenen, H.; Geisler, M.; Haj Ahmad, W.; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Künsken, A.; Lingemann, J.; Nehrkorn, A.; Nowack, A.; Nugent, I. M.; Pistone, C.; Pooth, O.; Stahl, A.; Aldaya Martin, M.; Asin, I.; Bartosik, N.; Behnke, O.; Behrens, U.; Bell, A. J.; Borras, K.; Burgmeier, A.; Cakir, A.; Calligaris, L.; Campbell, A.; Choudhury, S.; Costanza, F.; Diez Pardos, C.; Dolinska, G.; Dooling, S.; Dorland, T.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Flucke, G.; Gallo, E.; Garay Garcia, J.; Geiser, A.; Gizhko, A.; Gunnellini, P.; Hauk, J.; Hempel, M.; Jung, H.; Kalogeropoulos, A.; Karacheban, O.; Kasemann, M.; Katsas, P.; Kieseler, J.; Kleinwort, C.; Korol, I.; Lange, W.; Leonard, J.; Lipka, K.; Lobanov, A.; Lohmann, W.; Mankel, R.; Marfin, I.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Nayak, A.; Ntomari, E.; Perrey, H.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Ribeiro Cipriano, P. M.; Roland, B.; Sahin, M. Ö.; Salfeld-Nebgen, J.; Saxena, P.; Schoerner-Sadenius, T.; Schröder, M.; Seitz, C.; Spannagel, S.; Trippkewitz, K. D.; Wissing, C.; Blobel, V.; Centis Vignali, M.; Draeger, A. R.; Erfle, J.; Garutti, E.; Goebel, K.; Gonzalez, D.; Görner, M.; Haller, J.; Hoffmann, M.; Höing, R. S.; Junkes, A.; Klanner, R.; Kogler, R.; Lapsien, T.; Lenz, T.; Marchesini, I.; Marconi, D.; Nowatschin, D.; Ott, J.; Pantaleo, F.; Peiffer, T.; Perieanu, A.; Pietsch, N.; Poehlsen, J.; Rathjens, D.; Sander, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Seidel, M.; Sola, V.; Stadie, H.; Steinbrück, G.; Tholen, H.; Troendle, D.; Usai, E.; Vanelderen, L.; Vanhoefer, A.; Akbiyik, M.; Barth, C.; Baus, C.; Berger, J.; Böser, C.; Butz, E.; Chwalek, T.; Colombo, F.; De Boer, W.; Descroix, A.; Dierlamm, A.; Feindt, M.; Frensch, F.; Giffels, M.; Gilbert, A.; Hartmann, F.; Husemann, U.; Kassel, F.; Katkov, I.; Kornmayer, A.; Lobelle Pardo, P.; Mozer, M. U.; Müller, T.; Müller, Th.; Plagge, M.; Quast, G.; Rabbertz, K.; Röcker, S.; Roscher, F.; Simonis, H. J.; Stober, F. M.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weiler, T.; Wöhrmann, C.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Markou, A.; Psallidas, A.; Topsis-Giotis, I.; Agapitos, A.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Tziaferi, E.; Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Loukas, N.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Strologas, J.; Bencze, G.; Hajdu, C.; Hazi, A.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.; Beni, N.; Czellar, S.; Karancsi, J.; Molnar, J.; Palinkas, J.; Szillasi, Z.; Bartók, M.; Makovec, A.; Raics, P.; Trocsanyi, Z. L.; Mal, P.; Mandal, K.; Sahoo, N.; Swain, S. K.; Bansal, S.; Beri, S. B.; Bhatnagar, V.; Chawla, R.; Gupta, R.; Bhawandeep, U.; Kalsi, A. K.; Kaur, A.; Kaur, M.; Kumar, R.; Mehta, A.; Mittal, M.; Nishu, N.; Singh, J. B.; Walia, G.; Kumar, Ashok; Kumar, Arun; Bhardwaj, A.; Choudhary, B. C.; Garg, R. B.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, R.; Sharma, V.; Banerjee, S.; Bhattacharya, S.; Chatterjee, K.; Dey, S.; Dutta, S.; Jain, Sa.; Jain, Sh.; Khurana, R.; Majumdar, N.; Modak, A.; Mondal, K.; Mukherjee, S.; Mukhopadhyay, S.; Roy, A.; Roy, D.; Roy Chowdhury, S.; Sarkar, S.; Sharan, M.; Abdulsalam, A.; Chudasama, R.; Dutta, D.; Jha, V.; Kumar, V.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Banerjee, S.; Bhowmik, S.; Chatterjee, R. M.; Dewanjee, R. K.; Dugad, S.; Ganguly, S.; Ghosh, S.; Guchait, M.; Gurtu, A.; Kole, G.; Kumar, S.; Mahakud, B.; Maity, M.; Majumder, G.; Mazumdar, K.; Mitra, S.; Mohanty, G. B.; Parida, B.; Sarkar, T.; Sudhakar, K.; Sur, N.; Sutar, B.; Wickramage, N.; Sharma, S.; Bakhshiansohi, H.; Behnamian, H.; Etesami, S. M.; Fahim, A.; Goldouzian, R.; Khakzad, M.; Mohammadi Najafabadi, M.; Naseri, M.; Paktinat Mehdiabadi, S.; Rezaei Hosseinabadi, F.; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Calabria, C.; Caputo, C.; Chhibra, S. S.; Colaleo, A.; Creanza, D.; Cristella, L.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; Miniello, G.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Ranieri, A.; Selvaggi, G.; Sharma, A.; Silvestris, L.; Venditti, R.; Verwilligen, P.; Abbiendi, G.; Battilana, C.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.; Cappello, G.; Chiorboli, M.; Costa, S.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Gonzi, S.; Gori, V.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.; Viliani, L.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Calvelli, V.; Ferro, F.; Lo Vetere, M.; Robutti, E.; Tosi, S.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Gerosa, R.; Ghezzi, A.; Govoni, P.; Lucchini, M. T.; Malvezzi, S.; Manzoni, R. A.; Marzocchi, B.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; Di Guida, S.; Esposito, M.; Fabozzi, F.; Iorio, A. O. M.; Lanza, G.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.; Sciacca, C.; Thyssen, F.; Azzi, P.; Bacchetta, N.; Bisello, D.; Branca, A.; Carlin, R.; Carvalho Antunes De Oliveira, A.; Checchia, P.; Dall'Osso, M.; Dorigo, T.; Gasparini, F.; Gasparini, U.; Gozzelino, A.; Kanishchev, K.; Lacaprara, S.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Vanini, S.; Zanetti, M.; Zotto, P.; Zucchetta, A.; Zumerle, G.; Braghieri, A.; Gabusi, M.; Magnani, A.; Ratti, S. P.; Re, V.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.; Alunni Solestizi, L.; Biasini, M.; Bilei, G. M.; Ciangottini, D.; Fanò, L.; Lariccia, P.; Mantovani, G.; Menichelli, M.; Saha, A.; Santocchia, A.; Spiezia, A.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Broccolo, G.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fedi, G.; Foà, L.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Serban, A. T.; Spagnolo, P.; Squillacioti, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; D'imperio, G.; Del Re, D.; Diemoz, M.; Gelli, S.; Jorda, C.; Longo, E.; Margaroli, F.; Meridiani, P.; Micheli, F.; Organtini, G.; Paramatti, R.; Preiato, F.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Soffi, L.; Traczyk, P.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bellan, R.; Biino, C.; Cartiglia, N.; Casasso, S.; Costa, M.; Covarelli, R.; Degano, A.; Demaria, N.; Finco, L.; Kiani, B.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Musich, M.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Tamponi, U.; Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; La Licata, C.; Marone, M.; Schizzi, A.; Umer, T.; Zanetti, A.; Chang, S.; Kropivnitskaya, A.; Nam, S. K.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Kong, D. J.; Lee, S.; Oh, Y. D.; Sakharov, A.; Son, D. C.; Kim, H.; Kim, T. J.; Ryu, M. S.; Song, S.; Choi, S.; Go, Y.; Gyun, D.; Hong, B.; Jo, M.; Kim, H.; Kim, Y.; Lee, B.; Lee, K.; Lee, K. S.; Lee, S.; Park, S. K.; Roh, Y.; Yoo, H. D.; Choi, M.; Kim, J. H.; Lee, J. S. H.; Park, I. C.; Ryu, G.; Choi, Y.; Choi, Y. K.; Goh, J.; Kim, D.; Kwon, E.; Lee, J.; Yu, I.; Juodagalvis, A.; Vaitkus, J.; Ibrahim, Z. A.; Komaragiri, J. R.; Md Ali, M. A. B.; Mohamad Idris, F.; Wan Abdullah, W. A. T.; Casimiro Linares, E.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-de La Cruz, I.; Hernandez-Almada, A.; Lopez-Fernandez, R.; Ramirez Sanchez, G.; Sanchez-Hernandez, A.; Carrillo Moreno, S.; Vazquez Valencia, F.; Carpinteyro, S.; Pedraza, I.; Salazar Ibarguen, H. A.; Morelos Pineda, A.; Krofcheck, D.; Butler, P. H.; Reucroft, S.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Khan, W. A.; Khurshid, T.; Shoaib, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Zalewski, P.; Brona, G.; Bunkowski, K.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Walczak, M.; Bargassa, P.; Beirão Da Cruz E Silva, C.; Di Francesco, A.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Lloret Iglesias, L.; Nguyen, F.; Rodrigues Antunes, J.; Seixas, J.; Toldaiev, O.; Vadruccio, D.; Varela, J.; Vischia, P.; Afanasiev, S.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Konoplyanikov, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Shulha, S.; Skatchkov, N.; Smirnov, V.; Toriashvili, T.; Zarubin, A.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Karneyeu, A.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Spiridonov, A.; Vlasov, E.; Zhokin, A.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Vinogradov, A.; Baskakov, A.; Belyaev, A.; Boos, E.; Bunichev, V.; Dubinin, M.; Dudko, L.; Ershov, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Myagkov, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Ekmedzic, M.; Milosevic, J.; Rekovic, V.; Alcaraz Maestre, J.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Domínguez Vázquez, D.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Navarro De Martino, E.; Pérez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.; Albajar, C.; de Trocóniz, J. F.; Missiroli, M.; Moran, D.; Brun, H.; Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Palencia Cortezon, E.; Vizan Garcia, J. M.; Brochero Cifuentes, J. A.; Cabrillo, I. J.; Calderon, A.; Castiñeiras De Saa, J. R.; Duarte Campderros, J.; Fernandez, M.; Gomez, G.; Graziano, A.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Munoz Sanchez, F. J.; Piedra Gomez, J.; Rodrigo, T.; Rodríguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Benaglia, A.; Bendavid, J.; Benhabib, L.; Benitez, J. F.; Berruti, G. M.; Bianchi, G.; Bloch, P.; Bocci, A.; Bonato, A.; Botta, C.; Breuker, H.; Camporesi, T.; Cerminara, G.; Colafranceschi, S.; D'Alfonso, M.; d'Enterria, D.; Dabrowski, A.; Daponte, V.; David, A.; De Gruttola, M.; De Guio, F.; De Roeck, A.; De Visscher, S.; Di Marco, E.; Dobson, M.; Dordevic, M.; Dupont-Sagorin, N.; Elliott-Peisert, A.; Eugster, J.; Franzoni, G.; Funk, W.; Gigi, D.; Gill, K.; Giordano, D.; Girone, M.; Glege, F.; Guida, R.; Gundacker, S.; Guthoff, M.; Hammer, J.; Hansen, M.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Kirschenmann, H.; Kortelainen, M. J.; Kousouris, K.; Krajczar, K.; Lecoq, P.; Lourenço, C.; Magini, N.; Malgeri, L.; Mannelli, M.; Marrouche, J.; Martelli, A.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moortgat, F.; Morovic, S.; Mulders, M.; Nemallapudi, M. V.; Neugebauer, H.; Orfanelli, S.; Orsini, L.; Pape, L.; Perez, E.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Piparo, D.; Racz, A.; Rolandi, G.; Rovere, M.; Ruan, M.; Sakulin, H.; Schäfer, C.; Schwick, C.; Sharma, A.; Silva, P.; Simon, M.; Sphicas, P.; Spiga, D.; Steggemann, J.; Stieger, B.; Stoye, M.; Takahashi, Y.; Treille, D.; Tsirou, A.; Veres, G. I.; Wardle, N.; Wöhri, H. K.; Zagozdzinska, A.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Rohe, T.; Bachmair, F.; Bäni, L.; Bianchini, L.; Buchmann, M. A.; Casal, B.; Dissertori, G.; Dittmar, M.; Donegà, M.; Dünser, M.; Eller, P.; Grab, C.; Heidegger, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Lustermann, W.; Mangano, B.; Marini, A. C.; Marionneau, M.; Martinez Ruiz del Arbol, P.; Masciovecchio, M.; Meister, D.; Mohr, N.; Musella, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pata, J.; Pauss, F.; Perrozzi, L.; Peruzzi, M.; Quittnat, M.; Rossini, M.; Starodumov, A.; Takahashi, M.; Tavolaro, V. R.; Theofilatos, K.; Wallny, R.; Weber, H. A.; Aarrestad, T. K.; Amsler, C.; Canelli, M. F.; Chiochia, V.; De Cosa, A.; Galloni, C.; Hinzmann, A.; Hreus, T.; Kilminster, B.; Lange, C.; Ngadiuba, J.; Pinna, D.; Robmann, P.; Ronga, F. J.; Salerno, D.; Taroni, S.; Yang, Y.; Cardaci, M.; Chen, K. H.; Doan, T. H.; Ferro, C.; Konyushikhin, M.; Kuo, C. M.; Lin, W.; Lu, Y. J.; Volpe, R.; Yu, S. S.; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Chen, P. H.; Dietz, C.; Fiori, F.; Grundler, U.; Hou, W.-S.; Hsiung, Y.; Liu, Y. F.; Lu, R.-S.; Miñano Moya, M.; Petrakou, E.; Tsai, J. f.; Tzeng, Y. M.; Wilken, R.; Asavapibhop, B.; Kovitanggoon, K.; Singh, G.; Srimanobhas, N.; Suwonjandee, N.; Adiguzel, A.; Cerci, S.; Dozen, C.; Girgis, S.; Gokbulut, G.; Guler, Y.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Kayis Topaksu, A.; Onengut, G.; Ozdemir, K.; Ozturk, S.; Tali, B.; Topakli, H.; Vergili, M.; Zorbilmez, C.; Akin, I. V.; Bilin, B.; Bilmis, S.; Isildak, B.; Karapinar, G.; Surat, U. E.; Yalvac, M.; Zeyrek, M.; Albayrak, E. A.; Gülmez, E.; Kaya, M.; Kaya, O.; Yetkin, T.; Cankocak, K.; Günaydin, Y. O.; Vardarlı, F. I.; Grynyov, B.; Levchuk, L.; Sorokin, P.; Aggleton, R.; Ball, F.; Beck, L.; Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Meng, Z.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Sakuma, T.; Seif El Nasr-storey, S.; Senkin, S.; Smith, D.; Smith, V. J.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Williams, T.; Womersley, W. J.; Worm, S. D.; Baber, M.; Bainbridge, R.; Buchmuller, O.; Bundock, A.; Burton, D.; Citron, M.; Colling, D.; Corpe, L.; Cripps, N.; Dauncey, P.; Davies, G.; De Wit, A.; Della Negra, M.; Dunne, P.; Elwood, A.; Ferguson, W.; Fulcher, J.; Futyan, D.; Hall, G.; Iles, G.; Karapostoli, G.; Kenzie, M.; Lane, R.; Lucas, R.; Lyons, L.; Magnan, A.-M.; Malik, S.; Nash, J.; Nikitenko, A.; Pela, J.; Pesaresi, M.; Petridis, K.; Raymond, D. M.; Richards, A.; Rose, A.; Seez, C.; Sharp, P.; Tapper, A.; Uchida, K.; Vazquez Acosta, M.; Virdee, T.; Zenz, S. C.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leggat, D.; Leslie, D.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Borzou, A.; Dittmann, J.; Hatakeyama, K.; Kasmi, A.; Liu, H.; Pastika, N.; Scarborough, T.; Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.; Avetisyan, A.; Bose, T.; Fantasia, C.; Gastler, D.; Lawson, P.; Rankin, D.; Richardson, C.; Rohlf, J.; St. John, J.; Sulak, L.; Zou, D.; Alimena, J.; Berry, E.; Bhattacharya, S.; Cutts, D.; Demiragli, Z.; Dhingra, N.; Ferapontov, A.; Garabedian, A.; Heintz, U.; Laird, E.; Landsberg, G.; Mao, Z.; Narain, M.; Sagir, S.; Sinthuprasith, T.; Breedon, R.; Breto, G.; Calderon De La Barca Sanchez, M.; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Gardner, M.; Ko, W.; Lander, R.; Mulhearn, M.; Pellett, D.; Pilot, J.; Ricci-Tam, F.; Shalhout, S.; Smith, J.; Squires, M.; Stolp, D.; Tripathi, M.; Wilbur, S.; Yohay, R.; Cousins, R.; Everaerts, P.; Farrell, C.; Hauser, J.; Ignatenko, M.; Rakness, G.; Saltzberg, D.; Takasugi, E.; Valuev, V.; Weber, M.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Hanson, G.; Heilman, J.; Ivova Rikova, M.; Jandir, P.; Kennedy, E.; Lacroix, F.; Long, O. R.; Luthra, A.; Malberti, M.; Olmedo Negrete, M.; Shrinivas, A.; Sumowidagdo, S.; Wei, H.; Wimpenny, S.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; D'Agnolo, R. T.; Holzner, A.; Kelley, R.; Klein, D.; Kovalskyi, D.; Letts, J.; Macneill, I.; Olivito, D.; Padhi, S.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Tadel, M.; Tu, Y.; Vartak, A.; Wasserbaech, S.; Welke, C.; Würthwein, F.; Yagil, A.; Zevi Della Porta, G.; Barge, D.; Bradmiller-Feld, J.; Campagnari, C.; Dishaw, A.; Dutta, V.; Flowers, K.; Franco Sevilla, M.; Geffert, P.; George, C.; Golf, F.; Gouskos, L.; Gran, J.; Incandela, J.; Justus, C.; Mccoll, N.; Mullin, S. D.; Richman, J.; Stuart, D.; To, W.; West, C.; Yoo, J.; Anderson, D.; Apresyan, A.; Bornheim, A.; Bunn, J.; Chen, Y.; Duarte, J.; Mott, A.; Newman, H. B.; Pena, C.; Pierini, M.; Spiropulu, M.; Vlimant, J. R.; Xie, S.; Zhu, R. Y.; Azzolini, V.; Calamba, A.; Carlson, B.; Ferguson, T.; Iiyama, Y.; Paulini, M.; Russ, J.; Sun, M.; Vogel, H.; Vorobiev, I.; Cumalat, J. P.; Ford, W. T.; Gaz, A.; Jensen, F.; Johnson, A.; Krohn, M.; Mulholland, T.; Nauenberg, U.; Smith, J. G.; Stenson, K.; Wagner, S. R.; Alexander, J.; Chatterjee, A.; Chaves, J.; Chu, J.; Dittmer, S.; Eggert, N.; Mirman, N.; Nicolas Kaufman, G.; Patterson, J. R.; Rinkevicius, A.; Ryd, A.; Skinnari, L.; Sun, W.; Tan, S. M.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Weng, Y.; Wittich, P.; Abdullin, S.; Albrow, M.; Anderson, J.; Apollinari, G.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Hanlon, J.; Hare, D.; Harris, R. M.; Hirschauer, J.; Hooberman, B.; Hu, Z.; Jindariani, S.; Johnson, M.; Joshi, U.; Jung, A. W.; Klima, B.; Kreis, B.; Kwan, S.; Lammel, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, T.; Lopes De Sá, R.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Martinez Outschoorn, V. I.; Maruyama, S.; Mason, D.; McBride, P.; Merkel, P.; Mishra, K.; Mrenna, S.; Nahn, S.; Newman-Holmes, C.; O'Dell, V.; Prokofyev, O.; Sexton-Kennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vernieri, C.; Verzocchi, M.; Vidal, R.; Whitbeck, A.; Yang, F.; Yin, H.; Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Carnes, A.; Carver, M.; Curry, D.; Das, S.; Di Giovanni, G. P.; Field, R. D.; Fisher, M.; Furic, I. K.; Hugon, J.; Konigsberg, J.; Korytov, A.; Kypreos, T.; Low, J. F.; Ma, P.; Matchev, K.; Mei, H.; Milenovic, P.; Mitselmakher, G.; Muniz, L.; Rank, D.; Shchutska, L.; Snowball, M.; Sperka, D.; Wang, S. J.; Yelton, J.; Hewamanage, S.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Ackert, A.; Adams, J. R.; Adams, T.; Askew, A.; Bochenek, J.; Diamond, B.; Haas, J.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Khatiwada, A.; Prosper, H.; Veeraraghavan, V.; Weinberg, M.; Bhopatkar, V.; Hohlmann, M.; Kalakhety, H.; Mareskas-palcek, D.; Roy, T.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Bucinskaite, I.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Kurt, P.; O'Brien, C.; Sandoval Gonzalez, I. D.; Silkworth, C.; Turner, P.; Varelas, N.; Wu, Z.; Zakaria, M.; Bilki, B.; Clarida, W.; Dilsiz, K.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Sen, S.; Snyder, C.; Tan, P.; Tiras, E.; Wetzel, J.; Yi, K.; Anderson, I.; Barnett, B. A.; Blumenfeld, B.; Fehling, D.; Feng, L.; Gritsan, A. V.; Maksimovic, P.; Martin, C.; Nash, K.; Osherson, M.; Swartz, M.; Xiao, M.; Xin, Y.; Baringer, P.; Bean, A.; Benelli, G.; Bruner, C.; Gray, J.; Kenny, R. P., III; Majumder, D.; Malek, M.; Murray, M.; Noonan, D.; Sanders, S.; Stringer, R.; Wang, Q.; Wood, J. S.; Chakaberia, I.; Ivanov, A.; Kaadze, K.; Khalil, S.; Makouski, M.; Maravin, Y.; Saini, L. K.; Skhirtladze, N.; Svintradze, I.; Lange, D.; Rebassoo, F.; Wright, D.; Anelli, C.; Baden, A.; Baron, O.; Belloni, A.; Calvert, B.; Eno, S. C.; Ferraioli, C.; Gomez, J. A.; Hadley, N. J.; Jabeen, S.; Kellogg, R. G.; Kolberg, T.; Kunkle, J.; Lu, Y.; Mignerey, A. C.; Pedro, K.; Shin, Y. H.; Skuja, A.; Tonjes, M. B.; Tonwar, S. C.; Apyan, A.; Barbieri, R.; Baty, A.; Bierwagen, K.; Brandt, S.; Busza, W.; Cali, I. A.; Di Matteo, L.; Gomez Ceballos, G.; Goncharov, M.; Gulhan, D.; Klute, M.; Lai, Y. S.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; Mcginn, C.; Niu, X.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Stephans, G. S. F.; Sumorok, K.; Varma, M.; Velicanu, D.; Veverka, J.; Wang, J.; Wang, T. W.; Wyslouch, B.; Yang, M.; Zhukova, V.; Dahmes, B.; Finkel, A.; Gude, A.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Mans, J.; Nourbakhsh, S.; Rusack, R.; Tambe, N.; Turkewitz, J.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Fangmeier, C.; Gonzalez Suarez, R.; Kamalieddin, R.; Keller, J.; Knowlton, D.; Kravchenko, I.; Lazo-Flores, J.; Meier, F.; Monroy, J.; Ratnikov, F.; Siado, J. E.; Snow, G. R.; Alyari, M.; Dolen, J.; George, J.; Godshalk, A.; Iashvili, I.; Kaisen, J.; Kharchilava, A.; Kumar, A.; Rappoccio, S.; Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Hortiangtham, A.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; Teixeira De Lima, R.; Trocino, D.; Wang, R.-J.; Wood, D.; Zhang, J.; Hahn, K. A.; Kubik, A.; Mucia, N.; Odell, N.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Sung, K.; Trovato, M.; Velasco, M.; Won, S.; Brinkerhoff, A.; Dev, N.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Lynch, S.; Marinelli, N.; Meng, F.; Mueller, C.; Musienko, Y.; Pearson, T.; Planer, M.; Ruchti, R.; Smith, G.; Valls, N.; Wayne, M.; Wolf, M.; Woodard, A.; Antonelli, L.; Brinson, J.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Hart, A.; Hill, C.; Hughes, R.; Kotov, K.; Ling, T. Y.; Liu, B.; Luo, W.; Puigh, D.; Rodenburg, M.; Winer, B. L.; Wulsin, H. W.; Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Koay, S. A.; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Palmer, C.; Piroué, P.; Quan, X.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zuranski, A.; Barnes, V. E.; Benedetti, D.; Bortoletto, D.; Gutay, L.; Jha, M. K.; Jones, M.; Jung, K.; Kress, M.; Leonardo, N.; Miller, D. H.; Neumeister, N.; Primavera, F.; Radburn-Smith, B. C.; Shi, X.; Shipsey, I.; Silvers, D.; Sun, J.; Svyatkovskiy, A.; Wang, F.; Xie, W.; Xu, L.; Zablocki, J.; Parashar, N.; Stupak, J.; Adair, A.; Akgun, B.; Chen, Z.; Ecklund, K. M.; Geurts, F. J. M.; Guilbaud, M.; Li, W.; Michlin, B.; Northup, M.; Padley, B. P.; Redjimi, R.; Roberts, J.; Rorie, J.; Tu, Z.; Zabel, J.; Betchart, B.; Bodek, A.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Goldenzweig, P.; Han, J.; Harel, A.; Hindrichs, O.; Khukhunaishvili, A.; Petrillo, G.; Verzetti, M.; Vishnevskiy, D.; Demortier, L.; Arora, S.; Barker, A.; Chou, J. P.; Contreras-Campana, C.; Contreras-Campana, E.; Duggan, D.; Ferencek, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Hughes, E.; Kaplan, S.; Kunnawalkam Elayavalli, R.; Lath, A.; Panwalkar, S.; Park, M.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Foerster, M.; Rose, K.; Spanier, S.; York, A.; Bouhali, O.; Castaneda Hernandez, A.; Dalchenko, M.; De Mattia, M.; Delgado, A.; Dildick, S.; Eusebi, R.; Flanagan, W.; Gilmore, J.; Kamon, T.; Krutelyov, V.; Montalvo, R.; Mueller, R.; Osipenkov, I.; Pakhotin, Y.; Patel, R.; Perloff, A.; Roe, J.; Rose, A.; Safonov, A.; Suarez, I.; Tatarinov, A.; Ulmer, K. A.; Akchurin, N.; Cowden, C.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Kunori, S.; Lamichhane, K.; Lee, S. W.; Libeiro, T.; Undleeb, S.; Volobouev, I.; Appelt, E.; Delannoy, A. G.; Greene, S.; Gurrola, A.; Janjam, R.; Johns, W.; Maguire, C.; Mao, Y.; Melo, A.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.; Xu, Q.; Arenton, M. W.; Boutle, S.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Li, H.; Lin, C.; Neu, C.; Wolfe, E.; Wood, J.; Xia, F.; Clarke, C.; Harr, R.; Karchin, P. E.; Kottachchi Kankanamge Don, C.; Lamichhane, P.; Sturdy, J.; Belknap, D. A.; Carlsmith, D.; Cepeda, M.; Christian, A.; Dasu, S.; Dodd, L.; Duric, S.; Friis, E.; Gomber, B.; Grothe, M.; Hall-Wilton, R.; Herndon, M.; Hervé, A.; Klabbers, P.; Lanaro, A.; Levine, A.; Long, K.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Perry, T.; Pierro, G. A.; Polese, G.; Ross, I.; Ruggles, T.; Sarangi, T.; Savin, A.; Smith, N.; Smith, W. H.; Taylor, D.; Woods, N.

    2015-09-01

    Results are reported on a search for decays of a pseudoscalar A boson into a Z boson and a light scalar h boson, where the Z boson decays into a pair of oppositely-charged electrons or muons, and the h boson decays into bbbar. The search is based on data from proton-proton collisions at a center-of-mass energy √{ s} = 8 TeV collected with the CMS detector, corresponding to an integrated luminosity of 19.7fb-1. The h boson is assumed to be the standard model-like Higgs boson with a mass of 125 GeV. With no evidence for signal, upper limits are obtained on the product of the production cross section and the branching fraction of the A boson in the Zh channel. Results are also interpreted in the context of two Higgs doublet models.

  15. Extracting Effective Higgs Couplings in the Golden Channel

    SciTech Connect

    Chen, Yi; Vega-Morales, Roberto

    2014-04-08

    Kinematic distributions in Higgs decays to four charged leptons, the so called ‘golden channel, are a powerful probe of the tensor structure of its couplings to neutral electroweak gauge bosons. In this study we construct the first part of a comprehensive analysis framework designed to maximize the information contained in this channel in order to perform direct extraction of the various possible Higgs couplings. We first complete an earlier analytic calculation of the leading order fully differential cross sections for the golden channel signal and background to include the 4e and 4μ final states with interference between identical final states. We also examine the relative fractions of the different possible combinations of scalar-tensor couplings by integrating the fully differential cross section over all kinematic variables as well as show various doubly differential spectra for both the signal and background. From these analytic expressions we then construct a ‘generator level’ analysis framework based on the maximum likelihood method. Then, we demonstrate the ability of our framework to perform multi-parameter extractions of all the possible effective couplings of a spin-0 scalar to pairs of neutral electroweak gauge bosons including any correlations. Furthermore, this framework provides a powerful method for study of these couplings and can be readily adapted to include the relevant detector and systematic effects which we demonstrate in an accompanying study to follow.

  16. Extracting Effective Higgs Couplings in the Golden Channel

    DOE PAGESBeta

    Chen, Yi; Vega-Morales, Roberto

    2014-04-08

    Kinematic distributions in Higgs decays to four charged leptons, the so called ‘golden channel, are a powerful probe of the tensor structure of its couplings to neutral electroweak gauge bosons. In this study we construct the first part of a comprehensive analysis framework designed to maximize the information contained in this channel in order to perform direct extraction of the various possible Higgs couplings. We first complete an earlier analytic calculation of the leading order fully differential cross sections for the golden channel signal and background to include the 4e and 4μ final states with interference between identical final states.more » We also examine the relative fractions of the different possible combinations of scalar-tensor couplings by integrating the fully differential cross section over all kinematic variables as well as show various doubly differential spectra for both the signal and background. From these analytic expressions we then construct a ‘generator level’ analysis framework based on the maximum likelihood method. Then, we demonstrate the ability of our framework to perform multi-parameter extractions of all the possible effective couplings of a spin-0 scalar to pairs of neutral electroweak gauge bosons including any correlations. Furthermore, this framework provides a powerful method for study of these couplings and can be readily adapted to include the relevant detector and systematic effects which we demonstrate in an accompanying study to follow.« less

  17. Singlet-catalyzed electroweak phase transitions and precision Higgs boson studies

    NASA Astrophysics Data System (ADS)

    Profumo, Stefano; Ramsey-Musolf, Michael J.; Wainwright, Carroll L.; Winslow, Peter

    2015-02-01

    We update the phenomenology of gauge-singlet extensions of the Standard Model scalar sector and their implications for the electroweak phase transition. Considering the introduction of one real scalar singlet to the scalar potential, we analyze present constraints on the potential parameters from Higgs coupling measurements at the Large Hadron Collider (LHC) and electroweak precision observables for the kinematic regime in which no new scalar decay modes arise. We then show how future precision measurements of Higgs boson signal strengths and the Higgs self-coupling could probe the scalar potential parameter space associated with a strong first-order electroweak phase transition. We illustrate using benchmark precision for several future collider options, including the high-luminosity LHC, the International Linear Collider, Triple-Large Electron-Positron collider, the China Electron-Positron Collider, and a 100 TeV proton-proton collider, such as the Very High Energy LHC or the Super Proton-Proton Collider. For the regions of parameter space leading to a strong first-order electroweak phase transition, we find that there exists considerable potential for observable deviations from purely Standard Model Higgs properties at these prospective future colliders.

  18. Trilinear neutral gauge boson couplings in effective theories

    NASA Astrophysics Data System (ADS)

    Larios, F.; Pérez, M. A.; Tavares-Velasco, G.; Toscano, J. J.

    2001-06-01

    We list all the lowest dimension effective operators inducing off-shell trilinear neutral gauge boson couplings ZZγ, Zγγ, and ZZZ within the effective Lagrangian approach, both in the linear and nonlinear realizations of SU(2)L × U(1)Y gauge symmetry. In the linear scenario we find that these couplings can be generated only by dimension-8 operators necessarily including the Higgs boson field, whereas in the nonlinear case they are induced by dimension-6 operators. We consider the impact of these couplings on some precision measurements such as the magnetic and electric dipole moments of fermions, as well as the Z boson rare decay Z-->νν¯γ. If the underlying new physics is of a decoupling nature, it is not expected that trilinear neutral gauge boson couplings may affect considerably any of these observables. On the contrary, it is just in the nonlinear scenario where these couplings have the more promising prospects of being perceptible through high precision experiments.

  19. The Higgs boson in the Standard Model theoretical constraints and a direct search in the wh channel at the Tevatron

    SciTech Connect

    Huske, Nils Kristian

    2010-09-10

    We have presented results in two different yet strongly linked aspects of Higgs boson physics. We have learned about the importance of the Higgs boson for the fate of the Standard Model, being either only a theory limited to explaining phenomena at the electroweak scale or, if the Higgs boson lies within a mass range of 130 < mH < 160 GeV the SM would remain a self consistent theory up to highest energy scales O(mPl). This could have direct implications on theories of cosmological inflation using the Higgs boson as the particle giving rise to inflation in the very early Universe, if it couples non-minimally to gravity, an effect that would only become significant at very high energies. After understanding the immense meaning of proving whether the Higgs boson exists and if so, at which mass, we have presented a direct search for a Higgs boson in associated production with a W boson in a mass range 100 < mH < 150 GeV. A light Higgs boson is favored regarding constraints from electroweak precision measurements. As a single analysis is not yet sensitive for an observation of the Higgs boson using 5.3 fb-1 of Tevatron data, we set limits on the production cross section times branching ratio. At the Tevatron, however, we are able to combine the sensitivity of our analyses not only across channels or analyses at a single experiment but also across both experiments, namely CDF and D0. This yields to the so-called Tevatron Higgs combination which, in total, combines 129 analyses from both experiments with luminosities of up to 6.7 fb-1. The results of a previous Tevatron combination led to the first exclusion of possible Higgs boson masses since the LEP exclusion in 2001. The latest Tevatron combination from July 2010 can be seen in Fig. 111 and limits compared to the Standard Model expectation are listed in Table 23. It excludes a SM Higgs boson in the regions of 100 < mH < 109 GeV as well as 158 < m

  20. New Physics Opportunities in the Boosted Di-Higgs-Boson Plus Missing Transverse Energy Signature.

    PubMed

    Kang, Zhaofeng; Ko, P; Li, Jinmian

    2016-04-01

    The Higgs field in the standard model may couple to new physics sectors related to dark matter and/or massive neutrinos. In this Letter we propose a novel signature, the boosted di-Higgs-boson plus E_{T} (which is either a dark matter or neutrino), to probe those new physics sectors. In a large class of models, in particular, the supersymmetric standard models and low scale seesaw mechanisms, this signature can play a key role. The signature has a clear background, and at the sqrt[s]=14  TeV high luminosity LHC, we can probe it with a production rate as low as ∼0.1  fb. We apply it to benchmark models, supersymmetry in the bino-Higgsino limit, the canonical seesaw model, and the little Higgs model, finding that the masses of the Higgsino, right-handed neutrino, and heavy vector boson can be probed up to ∼500, 650, and 900 GeV, respectively. PMID:27081968

  1. Lepton flavor violating decay of SM-like Higgs boson in a radiative neutrino mass model

    NASA Astrophysics Data System (ADS)

    Thuc, T. T.; Hue, L. T.; Long, H. N.; Nguyen, T. Phong

    2016-06-01

    The lepton flavor violating decay of the Standard Model-like Higgs boson (LFVHD) is discussed in the framework of the radiative neutrino mass model built in [K. Nishiwaki, H. Okada, and Y. Orikasa, Phys. Rev. D 92, 093013 (2015)]. The branching ratio (BR) of the LFVHD is shown to reach 10-5 in the most interesting region of the parameter space shown in [K. Nishiwaki, H. Okada, and Y. Orikasa, Phys. Rev. D 92, 093013 (2015)]. The dominant contributions come from the singly charged Higgs mediations, namely, the coupling of h2± with exotic neutrinos. Furthermore, if the doubly charged Higgs boson is heavy enough to allow the mass of h2± around 1 TeV, the mentioned BR can reach 10-4 . In addition, we obtain that the large values of Br (h →μ τ ) lead to very small ones of Br (h →e τ ) , much smaller than the various sensitivities of current experiments.

  2. Higgs sectors in which the only light higgs boson is CP-odd and linear collider strategies for its discovery

    SciTech Connect

    Tom Farris, John F. Gunion and Heather E. Logan

    2002-02-18

    We survey techniques for finding a CP-odd Higgs boson, A{sup 0}, at the Linear Collider that do not depend upon the presence of other light Higgs bosons. The potential reach in [m{sub A{sup 0}}, tan {beta}] parameter space for various production/discovery modes is evaluated and regions where discovery might not be possible at a given {radical}s are delineated. We give, for the first time, results for e{sup +}e{sup -} {yields} {nu}{bar {nu}} A{sup 0} one-loop W boson fusion production.

  3. Looking for a light Higgs boson in the Zγ→ll̄γ channel

    DOE PAGESBeta

    Gainer, James S.; Keung, Wai-Yee; Low, Ian; Schwaller, Pedro

    2012-08-24

    The final state obtained when a Higgs boson decays to a photon and a Z boson has been mostly overlooked in current searches for a light Higgs boson. However, when the Z boson decays leptonically, all final state particles in this channel can be measured, allowing for accurate reconstructions of the Higgs mass and angular correlations. We determine the sensitivity of the Large Hadron Collider (LHC) running at center of mass energies of 8 and 14 TeV to Standard Model (SM) Higgs bosons with masses in the 120–130 GeV range. For the 8 TeV LHC, sensitivity to several times themore » SM cross section times branching ratio may be obtained with 20 inverse femtobarns of integrated luminosity, while for the 14 TeV LHC, the SM rate is probed with about 100 inverse femtobarns of integrated luminosity.« less

  4. Measurements of trilinear gauge boson couplings

    SciTech Connect

    Abbott, B.

    1997-10-01

    Direct measurements of the trilinear gauge boson couplings by the D0 collaboration at Fermilab are reported. Limits on the anomalous couplings were obtained at a 95% CL from four diboson production processes: W{gamma} production with the W boson decaying to e{nu} or {mu}{nu}, WW production with both of the W bosons decaying to e{nu} or {mu}{nu}, WW/WZ production with one W boson decaying to e{nu} and the other W or Z boson decaying to two jets, and Z{gamma} production with the Z boson decaying to ee, {mu}{mu}, or {nu}{nu}. Limits were also obtained from a combined fit to W{gamma}, WW {yields} dileptons and WW/WZ {yields} e{nu}jj data samples.

  5. Cubic and Quartic Higgs Couplings of Higgs Potentials and CP Phases

    NASA Astrophysics Data System (ADS)

    Song, You; Yan, Qi-Shu; Zhao, Xiao-Ran

    2016-06-01

    We derive cubic and quartic couplings of the Higgs singlet extension of the SM and the two Higgs doublet model. We also examine the number of CP violated couplings in a model with n Higgs doublet model and a model with ns Higgs singlets and nd Higgs doublets. We conclude that in order to reconstruct the Higgs potential with multi Higgs fields at the LHC and future colliders, to detect the cubic/quartic couplings is necessary. Supported by the Natural Science Foundation of China under Grant Nos. 11175251 and 11575005

  6. Search for Standard Model Higgs Boson Production in Association with a W Boson at CDF

    SciTech Connect

    Aaltonen, T.; Adelman, J.; Akimoto, T.; Albrow, M.G.; Alvarez Gonzalez, B.; Amerio, S.; Amidei, D.; Anastassov, A.; Annovi, A.; Antos, J.; Apollinari, G.; /Fermilab

    2008-03-01

    We present a search for standard model Higgs boson production in association with a W boson in proton-antiproton collisions (p{bar p} {yields} W{sup {+-}}H {yields} {ell}{nu}b{bar b}) at a center of mass energy of 1.96 TeV. The search employs data collected with the CDF II detector which correspond to an integrated luminosity of approximately 1 fb{sup -1}. We select events consistent with a signature of a single lepton (e{sup {+-}}/{mu}{sup {+-}}), missing transverse energy, and two jets. Jets corresponding to bottom quarks are identified with a secondary vertex tagging method and a neural network filter technique. The observed number of events and the dijet mass distributions are consistent with the standard model background expectations, and we set 95% confidence level upper limits on the production cross section times branching ratio ranging from 3.9 to 1.3 pb for Higgs boson masses from 110 to 150 GeV/c{sup 2}, respectively.

  7. Search for standard model Higgs bosons produced in association with W bosons.

    PubMed

    Aaltonen, T; Adelman, J; Akimoto, T; Albrow, M G; González, B Alvarez; Amerio, S; Amidei, D; Anastassov, A; Annovi, A; Antos, J; Aoki, M; Apollinari, G; Apresyan, A; Arisawa, T; Artikov, A; Ashmanskas, W; Attal, A; Aurisano, A; Azfar, F; Azzi-Bacchetta, P; Azzurri, P; Bacchetta, N; Badgett, W; Barbaro-Galtieri, A; Barnes, V E; Barnett, B A; Baroiant, S; Bartsch, V; Bauer, G; Beauchemin, P-H; Bedeschi, F; Bednar, P; Behari, S; Bellettini, G; Bellinger, J; Belloni, A; Benjamin, D; Beretvas, A; Beringer, J; Berry, T; Bhatti, A; Binkley, M; Bisello, D; Bizjak, I; Blair, R E; Blocker, C; Blumenfeld, B; Bocci, A; Bodek, A; Boisvert, V; Bolla, G; Bolshov, A; Bortoletto, D; Boudreau, J; Boveia, A; Brau, B; Bridgeman, A; Brigliadori, L; Bromberg, C; Brubaker, E; Budagov, J; Budd, H S; Budd, S; Burkett, K; Busetto, G; Bussey, P; Buzatu, A; Byrum, K L; Cabrera, S; Campanelli, M; Campbell, M; Canelli, F; Canepa, A; Carlsmith, D; Carosi, R; Carrillo, S; Carron, S; Casal, B; Casarsa, M; Castro, A; Catastini, P; Cauz, D; Cavalli-Sforza, M; Cerri, A; Cerrito, L; Chang, S H; Chen, Y C; Chertok, M; Chiarelli, G; Chlachidze, G; Chlebana, F; Cho, K; Chokheli, D; Chou, J P; Choudalakis, G; Chuang, S H; Chung, K; Chung, W H; Chung, Y S; Ciobanu, C I; Ciocci, M A; Clark, A; Clark, D; Compostella, G; Convery, M E; Conway, J; Cooper, B; Copic, K; Cordelli, M; Cortiana, G; Crescioli, F; Almenar, C Cuenca; Cuevas, J; Culbertson, R; Cully, J C; Dagenhart, D; Datta, M; Davies, T; de Barbaro, P; De Cecco, S; Deisher, A; De Lentdecker, G; De Lorenzo, G; Dell'Orso, M; Demortier, L; Deng, J; Deninno, M; De Pedis, D; Derwent, P F; Di Giovanni, G P; Dionisi, C; Di Ruzza, B; Dittmann, J R; D'Onofrio, M; Donati, S; Dong, P; Donini, J; Dorigo, T; Dube, S; Efron, J; Erbacher, R; Errede, D; Errede, S; Eusebi, R; Fang, H C; Farrington, S; Fedorko, W T; Feild, R G; Feindt, M; Fernandez, J P; Ferrazza, C; Field, R; Flanagan, G; Forrest, R; Forrester, S; Franklin, M; Freeman, J C; Furic, I; Gallinaro, M; Galyardt, J; Garberson, F; Garcia, J E; Garfinkel, A F; Gerberich, H; Gerdes, D; Giagu, S; Giakoumopolou, V; Giannetti, P; Gibson, K; Gimmell, J L; Ginsburg, C M; Giokaris, N; Giordani, M; Giromini, P; Giunta, M; Glagolev, V; Glenzinski, D; Gold, M; Goldschmidt, N; Golossanov, A; Gomez, G; Gomez-Ceballos, G; Goncharov, M; González, O; Gorelov, I; Goshaw, A T; Goulianos, K; Gresele, A; Grinstein, S; Grosso-Pilcher, C; Grundler, U; Guimaraes da Costa, J; Gunay-Unalan, Z; Haber, C; Hahn, K; Hahn, S R; Halkiadakis, E; Hamilton, A; Han, B-Y; Han, J Y; Handler, R; Happacher, F; Hara, K; Hare, D; Hare, M; Harper, S; Harr, R F; Harris, R M; Hartz, M; Hatakeyama, K; Hauser, J; Hays, C; Heck, M; Heijboer, A; Heinemann, B; Heinrich, J; Henderson, C; Herndon, M; Heuser, J; Hewamanage, S; Hidas, D; Hill, C S; Hirschbuehl, D; Hocker, A; Hou, S; Houlden, M; Hsu, S-C; Huffman, B T; Hughes, R E; Husemann, U; Huston, J; Incandela, J; Introzzi, G; Iori, M; Ivanov, A; Iyutin, B; James, E; Jayatilaka, B; Jeans, D; Jeon, E J; Jindariani, S; Johnson, W; Jones, M; Joo, K K; Jun, S Y; Jung, J E; Junk, T R; Kamon, T; Kar, D; Karchin, P E; Kato, Y; Kephart, R; Kerzel, U; Khotilovich, V; Kilminster, B; Kim, D H; Kim, H S; Kim, J E; Kim, M J; Kim, S B; Kim, S H; Kim, Y K; Kimura, N; Kirsch, L; Klimenko, S; Klute, M; Knuteson, B; Ko, B R; Koay, S A; Kondo, K; Kong, D J; Konigsberg, J; Korytov, A; Kotwal, A V; Kraus, J; Kreps, M; Kroll, J; Krumnack, N; Kruse, M; Krutelyov, V; Kubo, T; Kuhlmann, S E; Kuhr, T; Kulkarni, N P; Kusakabe, Y; Kwang, S; Laasanen, A T; Lai, S; Lami, S; Lammel, S; Lancaster, M; Lander, R L; Lannon, K; Lath, A; Latino, G; Lazzizzera, I; LeCompte, T; Lee, J; Lee, J; Lee, Y J; Lee, S W; Lefèvre, R; Leonardo, N; Leone, S; Levy, S; Lewis, J D; Lin, C; Lin, C S; Linacre, J; Lindgren, M; Lipeles, E; Lister, A; Litvintsev, D O; Liu, T; Lockyer, N S; Loginov, A; Loreti, M; Lovas, L; Lu, R-S; Lucchesi, D; Lueck, J; Luci, C; Lujan, P; Lukens, P; Lungu, G; Lyons, L; Lys, J; Lysak, R; Lytken, E; Mack, P; MacQueen, D; Madrak, R; Maeshima, K; Makhoul, K; Maki, T; Maksimovic, P; Malde, S; Malik, S; Manca, G; Manousakis, A; Margaroli, F; Marino, C; Marino, C P; Martin, A; Martin, M; Martin, V; Martínez, M; Martínez-Ballarín, R; Maruyama, T; Mastrandrea, P; Masubuchi, T; Mattson, M E; Mazzanti, P; McFarland, K S; McIntyre, P; McNulty, R; Mehta, A; Mehtala, P; Menzemer, S; Menzione, A; Merkel, P; Mesropian, C; Messina, A; Miao, T; Miladinovic, N; Miles, J; Miller, R; Mills, C; Milnik, M; Mitra, A; Mitselmakher, G; Miyake, H; Moed, S; Moggi, N; Moon, C S; Moore, R; Morello, M; Fernandez, P Movilla; Mülmenstädt, J; Mukherjee, A; Muller, Th; Mumford, R; Murat, P; Mussini, M; Nachtman, J; Nagai, Y; Nagano, A; Naganoma, J; Nakamura, K; Nakano, I; Napier, A; Necula, V; Neu, C; Neubauer, M S; Nielsen, J; Nodulman, L; Norman, M; Norniella, O; Nurse, E; Oh, S H; Oh, Y D; Oksuzian, I; Okusawa, T; Oldeman, R; Orava, R; Osterberg, K; Griso, S Pagan; Pagliarone, C; Palencia, E; Papadimitriou, V; Papaikonomou, A; Paramonov, A A; Parks, B; Pashapour, S; Patrick, J; Pauletta, G; Paulini, M; Paus, C; Pellett, D E; Penzo, A; Phillips, T J; Piacentino, G; Piedra, J; Pinera, L; Pitts, K; Plager, C; Pondrom, L; Portell, X; Poukhov, O; Pounder, N; Prakoshyn, F; Pronko, A; Proudfoot, J; Ptohos, F; Punzi, G; Pursley, J; Rademacker, J; Rahaman, A; Ramakrishnan, V; Ranjan, N; Redondo, I; Reisert, B; Rekovic, V; Renton, P; Rescigno, M; Richter, S; Rimondi, F; Ristori, L; Robson, A; Rodrigo, T; Rogers, E; Rolli, S; Roser, R; Rossi, M; Rossin, R; Roy, P; Ruiz, A; Russ, J; Rusu, V; Saarikko, H; Safonov, A; Sakumoto, W K; Salamanna, G; Saltó, O; Santi, L; Sarkar, S; Sartori, L; Sato, K; Savoy-Navarro, A; Scheidle, T; Schlabach, P; Schmidt, E E; Schmidt, M A; Schmidt, M P; Schmitt, M; Schwarz, T; Scodellaro, L; Scott, A L; Scribano, A; Scuri, F; Sedov, A; Seidel, S; Seiya, Y; Semenov, A; Sexton-Kennedy, L; Sfyria, A; Shalhout, S Z; Shapiro, M D; Shears, T; Shepard, P F; Sherman, D; Shimojima, M; Shochet, M; Shon, Y; Shreyber, I; Sidoti, A; Siegrist, J; Sinervo, P; Sisakyan, A; Slaughter, A J; Slaunwhite, J; Sliwa, K; Smith, J R; Snider, F D; Snihur, R; Soderberg, M; Soha, A; Somalwar, S; Sorin, V; Spalding, J; Spinella, F; Spreitzer, T; Squillacioti, P; Stanitzki, M; St Denis, R; Stelzer, B; Stelzer-Chilton, O; Stentz, D; Strologas, J; Stuart, D; Suh, J S; Sukhanov, A; Sun, H; Suslov, I; Suzuki, T; Taffard, A; Takashima, R; Takeuchi, Y; Tanaka, R; Tecchio, M; Teng, P K; Terashi, K; Thom, J; Thompson, A S; Thompson, G A; Thomson, E; Tipton, P; Tiwari, V; Tkaczyk, S; Toback, D; Tokar, S; Tollefson, K; Tomura, T; Tonelli, D; Torre, S; Torretta, D; Tourneur, S; Trischuk, W; Tu, Y; Turini, N; Ukegawa, F; Uozumi, S; Vallecorsa, S; van Remortel, N; Varganov, A; Vataga, E; Vázquez, F; Velev, G; Vellidis, C; Veszpremi, V; Vidal, M; Vidal, R; Vila, I; Vilar, R; Vine, T; Vogel, M; Volobouev, I; Volpi, G; Würthwein, F; Wagner, P; Wagner, R G; Wagner, R L; Wagner-Kuhr, J; Wagner, W; Wakisaka, T; Wallny, R; Wang, S M; Warburton, A; Waters, D; Weinberger, M; Wester, W C; Whitehouse, B; Whiteson, D; Wicklund, A B; Wicklund, E; Williams, G; Williams, H H; Wilson, P; Winer, B L; Wittich, P; Wolbers, S; Wolfe, C; Wright, T; Wu, X; Wynne, S M; Yagil, A; Yamamoto, K; Yamaoka, J; Yamashita, T; Yang, C; Yang, U K; Yang, Y C; Yao, W M; Yeh, G P; Yoh, J; Yorita, K; Yoshida, T; Yu, G B; Yu, I; Yu, S S; Yun, J C; Zanello, L; Zanetti, A; Zaw, I; Zhang, X; Zheng, Y; Zucchelli, S; Group, R C

    2008-02-01

    We report on the results of a search for standard model Higgs bosons produced in association with W bosons from pp[over] collisions at sqrt[s]=1.96 TeV. The search uses a data sample corresponding to approximately 1 fb(-1) of integrated luminosity. Events consistent with the W-->lnu and H-->bb[over] signature are selected by triggering on a high-p(T) electron or muon candidate and tagging one or two of the jet candidates as having originated from b quarks. A neural network filter rejects a fraction of tagged charm and light-flavor jets, increasing the b-jet purity in the sample. We observe no excess lnubb[over] production beyond the background expectation, and we set 95% confidence level upper limits on the production cross section times branching fraction sigma(pp[over]-->WH)Br(H-->bb[over]) ranging from 3.9 to 1.3 pb, for specific Higgs boson mass hypotheses in the range 110 to 150 GeV/c2, respectively. PMID:18352260

  8. Search for a fermiophobic Higgs boson in pp collisions at sqrt {s} = 7 TeV

    NASA Astrophysics Data System (ADS)

    Chatrchyan, S.; Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Aguilo, E.; Bergauer, T.; Dragicevic, M.; Erö, J.; Fabjan, C.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hammer, J.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Knünz, V.; Krammer, M.; Liko, D.; Mikulec, I.; Pernicka, M.; Rahbaran, B.; Rohringer, C.; Rohringer, H.; Schöfbeck, R.; Strauss, J.; Taurok, A.; Wagner, P.; Waltenberger, W.; Walzel, G.; Widl, E.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Gonzalez, J. Suarez; Bansal, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Luyckx, S.; Mucibello, L.; Ochesanu, S.; Roland, B.; Rougny, R.; Selvaggi, M.; Staykova, Z.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Blekman, F.; Blyweert, S.; D'Hondt, J.; Suarez, R. Gonzalez; Kalogeropoulos, A.; Maes, M.; Olbrechts, A.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.; Clerbaux, B.; De Lentdecker, G.; Dero, V.; Gay, A. P. R.; Hreus, T.; Léonard, A.; Marage, P. E.; Reis, T.; Thomas, L.; Vander Velde, C.; Vanlaer, P.; Wang, J.; Adler, V.; Beernaert, K.; Cimmino, A.; Costantini, S.; Garcia, G.; Grunewald, M.; Klein, B.; Lellouch, J.; Marinov, A.; Mccartin, J.; Rios, A. A. Ocampo; Ryckbosch, D.; Strobbe, N.; Thyssen, F.; Tytgat, M.; Verwilligen, P.; Walsh, S.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Bruno, G.; Castello, R.; Ceard, L.; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Lemaitre, V.; Liao, J.; Militaru, O.; Nuttens, C.; Pagano, D.; Pin, A.; Piotrzkowski, K.; Schul, N.; Garcia, J. M. Vizan; Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.; Alves, G. A.; Martins, M. Correa; De Jesus Damiao, D.; Martins, T.; Pol, M. E.; Souza, M. H. G.; Aldá, W. L.; Carvalho, W.; Custódio, A.; Da Costa, E. M.; De Oliveira Martins, C.; De Souza, S. Fonseca; Figueiredo, D. Matos; Mundim, L.; Nogima, H.; Oguri, V.; Da Silva, W. L. Prado; Santoro, A.; Jorge, L. Soares; Sznajder, A.; Bernardes, C. A.; Dias, F. A.; Tomei, T. R. Fernandez Perez; Gregores, E. M.; Lagana, C.; Marinho, F.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.; Genchev, V.; Iaydjiev, P.; Piperov, S.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Tcholakov, V.; Trayanov, R.; Vutova, M.; Dimitrov, A.; Hadjiiska, R.; Kozhuharov, V.; Litov, L.; Pavlov, B.; Petkov, P.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Jiang, C. H.; Liang, D.; Liang, S.; Meng, X.; Tao, J.; Wang, J.; Wang, X.; Wang, Z.; Xiao, H.; Xu, M.; Zang, J.; Zhang, Z.; Asawatangtrakuldee, C.; Ban, Y.; Guo, S.; Guo, Y.; Li, W.; Liu, S.; Mao, Y.; Qian, S. J.; Teng, H.; Wang, D.; Zhang, L.; Zhu, B.; Zou, W.; Avila, C.; Gomez, J. P.; Gomez Moreno, B.; Osorio Oliveros, A. F.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Plestina, R.; Polic, D.; Puljak, I.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Duric, S.; Kadija, K.; Luetic, J.; Morovic, S.; Attikis, A.; Galanti, M.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Finger, M.; Finger, M.; Assran, Y.; Elgammal, S.; Kamel, A. Ellithi; Khalil, S.; Mahmoud, M. A.; Radi, A.; Kadastik, M.; Müntel, M.; Raidal, M.; Rebane, L.; Tiko, A.; Eerola, P.; Fedi, G.; Voutilainen, M.; Härkönen, J.; Heikkinen, A.; Karimäki, V.; Kinnunen, R.; Kortelainen, M. J.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Ungaro, D.; Wendland, L.; Banzuzi, K.; Karjalainen, A.; Korpela, A.; Tuuva, T.; Besancon, M.; Choudhury, S.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; de Monchenault, G. Hamel; Jarry, P.; Locci, E.; Malcles, J.; Millischer, L.; Nayak, A.; Rander, J.; Rosowsky, A.; Shreyber, I.; Titov, M.; Baffioni, S.; Beaudette, F.; Benhabib, L.; Bianchini, L.; Bluj, M.; Broutin, C.; Busson, P.; Charlot, C.; Daci, N.; Dahms, T.; Dobrzynski, L.; de Cassagnac, R. Granier; Haguenauer, M.; Miné, P.; Mironov, C.; Nguyen, M.; Ochando, C.; Paganini, P.; Sabes, D.; Salerno, R.; Sirois, Y.; Veelken, C.; Zabi, A.; Agram, J.-L.; Andrea, J.; Bloch, D.; Bodin, D.; Brom, J.-M.; Cardaci, M.; Chabert, E. C.; Collard, C.; Conte, E.; Drouhin, F.; Ferro, C.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Juillot, P.; Le Bihan, A.-C.; Van Hove, P.; Fassi, F.; Mercier, D.; Beauceron, S.; Beaupere, N.; Bondu, O.; Boudoul, G.; Chasserat, J.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Kurca, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Sordini, V.; Tosi, S.; Tschudi, Y.; Verdier, P.; Viret, S.; Tsamalaidze, Z.; Anagnostou, G.; Beranek, S.; Edelhoff, M.; Feld, L.; Heracleous, N.; Hindrichs, O.; Jussen, R.; Klein, K.; Merz, J.; Ostapchuk, A.; Perieanu, A.; Raupach, F.; Sammet, J.; Schael, S.; Sprenger, D.; Weber, H.; Wittmer, B.; Zhukov, V.; Ata, M.; Caudron, J.; Dietz-Laursonn, E.; Duchardt, D.; Erdmann, M.; Fischer, R.; Güth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Klingebiel, D.; Kreuzer, P.; Lingemann, J.; Magass, C.; Merschmeyer, M.; Meyer, A.; Olschewski, M.; Papacz, P.; Pieta, H.; Reithler, H.; Schmitz, S. A.; Sonnenschein, L.; Steggemann, J.; Teyssier, D.; Weber, M.; Bontenackels, M.; Cherepanov, V.; Flügge, G.; Geenen, H.; Geisler, M.; Ahmad, W. Haj; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Nowack, A.; Perchalla, L.; Pooth, O.; Rennefeld, J.; Sauerland, P.; Stahl, A.; Martin, M. Aldaya; Behr, J.; Behrenhoff, W.; Behrens, U.; Bergholz, M.; Bethani, A.; Borras, K.; Burgmeier, A.; Cakir, A.; Calligaris, L.; Campbell, A.; Castro, E.; Costanza, F.; Dammann, D.; Pardos, C. Diez; Eckerlin, G.; Eckstein, D.; Flucke, G.; Geiser, A.; Glushkov, I.; Gunnellini, P.; Habib, S.; Hauk, J.; Hellwig, G.; Jung, H.; Kasemann, M.; Katsas, P.; Kleinwort, C.; Kluge, H.; Knutsson, A.; Krämer, M.; Krücker, D.; Kuznetsova, E.; Lange, W.; Lohmann, W.; Lutz, B.; Mankel, R.; Marfin, I.; Marienfeld, M.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Olzem, J.; Perrey, H.; Petrukhin, A.; Pitzl, D.; Raspereza, A.; Cipriano, P. M. Ribeiro; Riedl, C.; Ron, E.; Rosin, M.; Salfeld-Nebgen, J.; Schmidt, R.; Schoerner-Sadenius, T.; Sen, N.; Spiridonov, A.; Stein, M.; Walsh, R.; Wissing, C.; Autermann, C.; Blobel, V.; Draeger, J.; Enderle, H.; Erfle, J.; Gebbert, U.; Görner, M.; Hermanns, T.; Höing, R. S.; Kaschube, K.; Kaussen, G.; Kirschenmann, H.; Klanner, R.; Lange, J.; Mura, B.; Nowak, F.; Peiffer, T.; Pietsch, N.; Rathjens, D.; Sander, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Schröder, M.; Schum, T.; Seidel, M.; Sola, V.; Stadie, H.; Steinbrück, G.; Thomsen, J.; Vanelderen, L.; Barth, C.; Berger, J.; Böser, C.; Chwalek, T.; De Boer, W.; Descroix, A.; Dierlamm, A.; Feindt, M.; Guthoff, M.; Hackstein, C.; Hartmann, F.; Hauth, T.; Heinrich, M.; Held, H.; Hoffmann, K. H.; Honc, S.; Katkov, I.; Komaragiri, J. R.; Pardo, P. Lobelle; Martschei, D.; Mueller, S.; Müller, Th.; Niegel, M.; Nürnberg, A.; Oberst, O.; Oehler, A.; Ott, J.; Quast, G.; Rabbertz, K.; Ratnikov, F.; Ratnikova, N.; Röcker, S.; Scheurer, A.; Schilling, F.-P.; Schott, G.; Simonis, H. J.; Stober, F. M.; Troendle, D.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weiler, T.; Zeise, M.; Daskalakis, G.; Geralis, T.; Kesisoglou, S.; Kyriakis, A.; Loukas, D.; Manolakos, I.; Markou, A.; Markou, C.; Mavrommatis, C.; Ntomari, E.; Gouskos, L.; Mertzimekis, T. J.; Panagiotou, A.; Saoulidou, N.; Evangelou, I.; Foudas, C.; Kokkas, P.; Manthos, N.; Papadopoulos, I.; Patras, V.; Bencze, G.; Hajdu, C.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Beni, N.; Czellar, S.; Molnar, J.; Palinkas, J.; Szillasi, Z.; Karancsi, J.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Beri, S. B.; Bhatnagar, V.; Dhingra, N.; Gupta, R.; Jindal, M.; Kaur, M.; Mehta, M. Z.; Nishu, N.; Saini, L. K.; Sharma, A.; Singh, J.; Kumar, Ashok; Kumar, Arun; Ahuja, S.; Bhardwaj, A.; Choudhary, B. C.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, V.; Shivpuri, R. K.; Banerjee, S.; Bhattacharya, S.; Dutta, S.; Gomber, B.; Jain, Sa.; Jain, Sh.; Khurana, R.; Sarkar, S.; Sharan, M.; Abdulsalam, A.; Choudhury, R. K.; Dutta, D.; Kailas, S.; Kumar, V.; Mehta, P.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Aziz, T.; Ganguly, S.; Guchait, M.; Maity, M.; Majumder, G.; Mazumdar, K.; Mohanty, G. B.; Parida, B.; Sudhakar, K.; Wickramage, N.; Banerjee, S.; Dugad, S.; Arfaei, H.; Bakhshiansohi, H.; Etesami, S. M.; Fahim, A.; Hashemi, M.; Hesari, H.; Jafari, A.; Khakzad, M.; Najafabadi, M. Mohammadi; Mehdiabadi, S. Paktinat; Safarzadeh, B.; Zeinali, M.; Abbrescia, M.; Barbone, L.; Calabria, C.; Chhibra, S. S.; Colaleo, A.; Creanza, D.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Lusito, L.; Maggi, G.; Maggi, M.; Marangelli, B.; My, S.; Nuzzo, S.; Pacifico, N.; Pompili, A.; Pugliese, G.; Selvaggi, G.; Silvestris, L.; Singh, G.; Venditti, R.; Zito, G.; Abbiendi, G.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Meneghelli, M.; Montanari, A.; Navarria, F. L.; Odorici, F.; Perrotta, A.; Primavera, F.; Rossi, A. M.; Rovelli, T.; Siroli, G.; Travaglini, R.; Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Frosali, S.; Gallo, E.; Gonzi, S.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.; Benussi, L.; Bianco, S.; Colafranceschi, S.; Fabbri, F.; Piccolo, D.; Fabbricatore, P.; Musenich, R.; Benaglia, A.; De Guio, F.; Di Matteo, L.; Fiorendi, S.; Gennai, S.; Ghezzi, A.; Malvezzi, S.; Manzoni, R. A.; Martelli, A.; Massironi, A.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; Sala, S.; de Fatis, T. Tabarelli; Buontempo, S.; Montoya, C. A. Carrillo; Cavallo, N.; De Cosa, A.; Dogangun, O.; Fabozzi, F.; Iorio, A. O. M.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.; Azzi, P.; Bacchetta, N.; Bisello, D.; Branca, A.; Carlin, R.; Checchia, P.; Dorigo, T.; Dosselli, U.; Gasparini, F.; Gasparini, U.; Gozzelino, A.; Kanishchev, K.; Lacaprara, S.; Lazzizzera, I.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Vanini, S.; Zotto, P.; Zumerle, G.; Gabusi, M.; Ratti, S. P.; Riccardi, C.; Torre, P.; Vitulo, P.; Biasini, M.; Bilei, G. M.; Fanò, L.; Lariccia, P.; Lucaroni, A.; Mantovani, G.; Menichelli, M.; Nappi, A.; Romeo, F.; Saha, A.; Santocchia, A.; Taroni, S.; Azzurri, P.; Bagliesi, G.; Boccali, T.; Broccolo, G.; Castaldi, R.; D'Agnolo, R. T.; Dell'Orso, R.; Fiori, F.; Foà, L.; Giassi, A.; Kraan, A.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Serban, A. T.; Spagnolo, P.; Squillacioti, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; Del Re, D.; Diemoz, M.; Grassi, M.; Longo, E.; Meridiani, P.; Micheli, F.; Nourbakhsh, S.; Organtini, G.; Paramatti, R.; Rahatlou, S.; Sigamani, M.; Soffi, L.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Biino, C.; Cartiglia, N.; Costa, M.; Demaria, N.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Musich, M.; Obertino, M. M.; Pastrone, N.; Pelliccioni, M.; Potenza, A.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Pereira, A. Vilela; Belforte, S.; Candelise, V.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; Marone, M.; Montanino, D.; Penzo, A.; Schizzi, A.; Heo, S. G.; Kim, T. Y.; Nam, S. K.; Chang, S.; Kim, D. H.; Kim, G. N.; Kong, D. J.; Park, H.; Ro, S. R.; Son, D. C.; Son, T.; Kim, J. Y.; Kim, Zero J.; Song, S.; Choi, S.; Gyun, D.; Hong, B.; Jo, M.; Kim, H.; Kim, T. J.; Lee, K. S.; Moon, D. H.; Park, S. K.; Choi, M.; Kim, J. H.; Park, C.; Park, I. C.; Park, S.; Ryu, G.; Cho, Y.; Choi, Y.; Choi, Y. K.; Goh, J.; Kim, M. S.; Kwon, E.; Lee, B.; Lee, J.; Lee, S.; Seo, H.; Yu, I.; Bilinskas, M. J.; Grigelionis, I.; Janulis, M.; Juodagalvis, A.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; La Cruz, I. Heredia-de; Lopez-Fernandez, R.; Villalba, R. Magaña; Martínez-Ortega, J.; Sánchez-Hernández, A.; Villasenor-Cendejas, L. M.; Moreno, S. Carrillo; Valencia, F. Vazquez; Ibarguen, H. A. Salazar; Linares, E. Casimiro; Pineda, A. Morelos; Reyes-Santos, M. A.; Krofcheck, D.; Bell, A. J.; Butler, P. H.; Doesburg, R.; Reucroft, S.; Silverwood, H.; Ahmad, M.; Asghar, M. I.; Hoorani, H. R.; Khalid, S.; Khan, W. A.; Khurshid, T.; Qazi, S.; Shah, M. A.; Shoaib, M.; Brona, G.; Bunkowski, K.; Cwiok, M.; Dominik, W.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Bialkowska, H.; Boimska, B.; Frueboes, T.; Gokieli, R.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Wrochna, G.; Zalewski, P.; Almeida, N.; Bargassa, P.; David, A.; Faccioli, P.; Parracho, P. G. Ferreira; Gallinaro, M.; Seixas, J.; Varela, J.; Vischia, P.; Bunin, P.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Konoplyanikov, V.; Kozlov, G.; Lanev, A.; Malakhov, A.; Moisenz, P.; Palichik, V.; Perelygin, V.; Savina, M.; Shmatov, S.; Smirnov, V.; Volodko, A.; Zarubin, A.; Evstyukhin, S.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Vorobyev, An.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Kirsanov, M.; Krasnikov, N.; Matveev, V.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Erofeeva, M.; Gavrilov, V.; Kossov, M.; Lychkovskaya, N.; Popov, V.; Safronov, G.; Semenov, S.; Stolin, V.; Vlasov, E.; Zhokin, A.; Belyaev, A.; Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Markina, A.; Obraztsov, S.; Perfilov, M.; Petrushanko, S.; Popov, A.; Sarycheva, L.; Savrin, V.; Snigirev, A.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Vinogradov, A.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Grishin, V.; Kachanov, V.; Konstantinov, D.; Korablev, A.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Djordjevic, M.; Ekmedzic, M.; Krpic, D.; Milosevic, J.; Aguilar-Benitez, M.; Alcaraz Maestre, J.; Arce, P.; Battilana, C.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Domínguez Vázquez, D.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Ferrando, A.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Lopez, S. Goy; Hernandez, J. M.; Josa, M. I.; Merino, G.; Pelayo, J. Puerta; Olmeda, A. Quintario; Redondo, I.; Romero, L.; Santaolalla, J.; Soares, M. S.; Willmott, C.; Albajar, C.; Codispoti, G.; de Trocóniz, J. F.; Brun, H.; Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Lloret Iglesias, L.; Piedra Gomez, J.; Cifuentes, J. A. Brochero; Cabrillo, I. J.; Calderon, A.; Chuang, S. H.; Campderros, J. Duarte; Felcini, M.; Fernandez, M.; Gomez, G.; Gonzalez Sanchez, J.; Graziano, A.; Jorda, C.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Munoz Sanchez, F. J.; Rodrigo, T.; Rodríguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Sanudo, M. Sobron; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Baillon, P.; Ball, A. H.; Barney, D.; Benitez, J. F.; Bernet, C.; Bianchi, G.; Bloch, P.; Bocci, A.; Bonato, A.; Botta, C.; Breuker, H.; Camporesi, T.; Cerminara, G.; Christiansen, T.; Perez, J. A. Coarasa; D'Enterria, D.; Dabrowski, A.; De Roeck, A.; Di Guida, S.; Dobson, M.; Dupont-Sagorin, N.; Elliott-Peisert, A.; Frisch, B.; Funk, W.; Georgiou, G.; Giffels, M.; Gigi, D.; Gill, K.; Giordano, D.; Giunta, M.; Glege, F.; Garrido, R. Gomez-Reino; Govoni, P.; Gowdy, S.; Guida, R.; Hansen, M.; Harris, P.; Hartl, C.; Harvey, J.; Hegner, B.; Hinzmann, A.; Innocente, V.; Janot, P.; Kaadze, K.; Karavakis, E.; Kousouris, K.; Lecoq, P.; Lee, Y.-J.; Lenzi, P.; Lourenço, C.; Mäki, T.; Malberti, M.; Malgeri, L.; Mannelli, M.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moser, R.; Mozer, M. U.; Mulders, M.; Musella, P.; Nesvold, E.; Orimoto, T.; Orsini, L.; Cortezon, E. Palencia; Perez, E.; Perrozzi, L.; Petrilli, A.; Pfeiffer, A.; Pierini, M.; Pimiä, M.; Piparo, D.; Polese, G.; Quertenmont, L.; Racz, A.; Reece, W.; Rodrigues Antunes, J.; Rolandi, G.; Rommerskirchen, T.; Rovelli, C.; Rovere, M.; Sakulin, H.; Santanastasio, F.; Schäfer, C.; Schwick, C.; Segoni, I.; Sekmen, S.; Sharma, A.; Siegrist, P.; Silva, P.; Simon, M.; Sphicas, P.; Spiga, D.; Tsirou, A.; Veres, G. I.; Vlimant, J. R.; Wöhri, H. K.; Worm, S. D.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Gabathuler, K.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; König, S.; Kotlinski, D.; Langenegger, U.; Meier, F.; Renker, D.; Rohe, T.; Sibille, J.; Bäni, L.; Bortignon, P.; Buchmann, M. A.; Casal, B.; Chanon, N.; Deisher, A.; Dissertori, G.; Dittmar, M.; Dünser, M.; Eugster, J.; Freudenreich, K.; Grab, C.; Hits, D.; Lecomte, P.; Lustermann, W.; Marini, A. C.; del Arbol, P. Martinez Ruiz; Mohr, N.; Moortgat, F.; Nägeli, C.; Nef, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pape, L.; Pauss, F.; Peruzzi, M.; Ronga, F. J.; Rossini, M.; Sala, L.; Sanchez, A. K.; Starodumov, A.; Stieger, B.; Takahashi, M.; Tauscher, L.; Thea, A.; Theofilatos, K.; Treille, D.; Urscheler, C.; Wallny, R.; Weber, H. A.; Wehrli, L.; Amsler, C.; Chiochia, V.; De Visscher, S.; Favaro, C.; Rikova, M. Ivova; Mejias, B. Millan; Otiougova, P.; Robmann, P.; Snoek, H.; Tupputi, S.; Verzetti, M.; Chang, Y. H.; Chen, K. H.; Kuo, C. M.; Li, S. W.; Lin, W.; Liu, Z. K.; Lu, Y. J.; Mekterovic, D.; Singh, A. P.; Volpe, R.; Yu, S. S.; Bartalini, P.; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Dietz, C.; Grundler, U.; Hou, W.-S.; Hsiung, Y.; Kao, K. Y.; Lei, Y. J.; Lu, R.-S.; Majumder, D.; Petrakou, E.; Shi, X.; Shiu, J. G.; Tzeng, Y. M.; Wan, X.; Wang, M.; Adiguzel, A.; Bakirci, M. N.; Cerci, S.; Dozen, C.; Dumanoglu, I.; Eskut, E.; Girgis, S.; Gokbulut, G.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Karaman, T.; Karapinar, G.; Topaksu, A. Kayis; Onengut, G.; Ozdemir, K.; Ozturk, S.; Polatoz, A.; Sogut, K.; Cerci, D. Sunar; Tali, B.; Topakli, H.; Vergili, L. N.; Vergili, M.; Akin, I. V.; Aliev, T.; Bilin, B.; Bilmis, S.; Deniz, M.; Gamsizkan, H.; Guler, A. M.; Ocalan, K.; Ozpineci, A.; Serin, M.; Sever, R.; Surat, U. E.; Yalvac, M.; Yildirim, E.; Zeyrek, M.; Gülmez, E.; Isildak, B.; Kaya, M.; Kaya, O.; Ozkorucuklu, S.; Sonmez, N.; Cankocak, K.; Levchuk, L.; Bostock, F.; Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Frazier, R.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Kreczko, L.; Metson, S.; Newbold, D. M.; Nirunpong, K.; Poll, A.; Senkin, S.; Smith, V. J.; Williams, T.; Basso, L.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Jackson, J.; Kennedy, B. W.; Olaiya, E.; Petyt, D.; RadburnSmith, B. C.; Shepherd-Themistocleous, C. H.; Tomalin, I. R.; Womersley, W. J.; Bainbridge, R.; Ball, G.; Beuselinck, R.; Buchmuller, O.; Colling, D.; Cripps, N.; Cutajar, M.; Dauncey, P.; Davies, G.; Della Negra, M.; Ferguson, W.; Fulcher, J.; Futyan, D.; Gilbert, A.; Bryer, A. Guneratne; Hall, G.; Hatherell, Z.; Hays, J.; Iles, G.; Jarvis, M.; Karapostoli, G.; Lyons, L.; Magnan, A.-M.; Marrouche, J.; Mathias, B.; Nandi, R.; Nash, J.; Nikitenko, A.; Papageorgiou, A.; Pela, J.; Pesaresi, M.; Petridis, K.; Pioppi, M.; Raymond, D. M.; Rogerson, S.; Rose, A.; Ryan, M. J.; Seez, C.; Sharp, P.; Sparrow, A.; Stoye, M.; Tapper, A.; Acosta, M. Vazquez; Virdee, T.; Wakefield, S.; Wardle, N.; Whyntie, T.; Chadwick, M.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leggat, D.; Leslie, D.; Martin, W.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Hatakeyama, K.; Liu, H.; Scarborough, T.; Charaf, O.; Henderson, C.; Rumerio, P.; Avetisyan, A.; Bose, T.; Fantasia, C.; Heister, A.; St. John, J.; Lawson, P.; Lazic, D.; Rohlf, J.; Sperka, D.; Sulak, L.; Alimena, J.; Bhattacharya, S.; Cutts, D.; Ferapontov, A.; Heintz, U.; Jabeen, S.; Kukartsev, G.; Laird, E.; Landsberg, G.; Luk, M.; Narain, M.; Nguyen, D.; Segala, M.; Sinthuprasith, T.; Speer, T.; Tsang, K. V.; Breedon, R.; Breto, G.; De La Barca Sanchez, M. Calderon; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Dolen, J.; Erbacher, R.; Gardner, M.; Houtz, R.; Ko, W.; Kopecky, A.; Lander, R.; Miceli, T.; Pellett, D.; Rutherford, B.; Searle, M.; Smith, J.; Squires, M.; Tripathi, M.; Sierra, R. Vasquez; Andreev, V.; Cline, D.; Cousins, R.; Duris, J.; Erhan, S.; Everaerts, P.; Farrell, C.; Hauser, J.; Ignatenko, M.; Jarvis, C.; Plager, C.; Rakness, G.; Schlein, P.; Tucker, J.; Valuev, V.; Weber, M.; Babb, J.; Clare, R.; Dinardo, M. E.; Ellison, J.; Gary, J. W.; Giordano, F.; Hanson, G.; Jeng, G. Y.; Liu, H.; Long, O. R.; Luthra, A.; Nguyen, H.; Paramesvaran, S.; Sturdy, J.; Sumowidagdo, S.; Wilken, R.; Wimpenny, S.; Andrews, W.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; Evans, D.; Golf, F.; Holzner, A.; Kelley, R.; Lebourgeois, M.; Letts, J.; Macneill, I.; Mangano, B.; Padhi, S.; Palmer, C.; Petrucciani, G.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Sudano, E.; Tadel, M.; Tu, Y.; Vartak, A.; Wasserbaech, S.; Würthwein, F.; Yagil, A.; Yoo, J.; Barge, D.; Bellan, R.; Campagnari, C.; D'Alfonso, M.; Danielson, T.; Flowers, K.; Geffert, P.; Incandela, J.; Justus, C.; Kalavase, P.; Koay, S. A.; Kovalskyi, D.; Krutelyov, V.; Lowette, S.; Mccoll, N.; Pavlunin, V.; Rebassoo, F.; Ribnik, J.; Richman, J.; Rossin, R.; Stuart, D.; To, W.; West, C.; Apresyan, A.; Bornheim, A.; Chen, Y.; Di Marco, E.; Duarte, J.; Gataullin, M.; Ma, Y.; Mott, A.; Newman, H. B.; Rogan, C.; Spiropulu, M.; Timciuc, V.; Traczyk, P.; Veverka, J.; Wilkinson, R.; Yang, Y.; Zhu, R. Y.; Akgun, B.; Azzolini, V.; Carroll, R.; Ferguson, T.; Iiyama, Y.; Jang, D. W.; Liu, Y. F.; Paulini, M.; Vogel, H.; Vorobiev, I.; Cumalat, J. P.; Drell, B. R.; Edelmaier, C. J.; Ford, W. T.; Gaz, A.; Heyburn, B.; Lopez, E. Luiggi; Smith, J. G.; Stenson, K.; Ulmer, K. A.; Wagner, S. R.; Alexander, J.; Chatterjee, A.; Eggert, N.; Gibbons, L. K.; Heltsley, B.; Khukhunaishvili, A.; Kreis, B.; Mirman, N.; Kaufman, G. Nicolas; Patterson, J. R.; Ryd, A.; Salvati, E.; Sun, W.; Teo, W. D.; Thom, J.; Thompson, J.; Vaughan, J.; Weng, Y.; Winstrom, L.; Wittich, P.; Winn, D.; Abdullin, S.; Albrow, M.; Anderson, J.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bloch, I.; Burkett, K.; Butler, J. N.; Chetluru, V.; Cheung, H. W. K.; Chlebana, F.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gao, Y.; Green, D.; Gutsche, O.; Hanlon, J.; Harris, R. M.; Hirschauer, J.; Hooberman, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Kilminster, B.; Klima, B.; Kunori, S.; Kwan, S.; Leonidopoulos, C.; Lincoln, D.; Lipton, R.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Maruyama, S.; Mason, D.; McBride, P.; Mishra, K.; Mrenna, S.; Musienko, Y.; Newman-Holmes, C.; O'Dell, V.; Prokofyev, O.; Sexton-Kennedy, E.; Sharma, S.; Spalding, W. J.; Spiegel, L.; Tan, P.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vidal, R.; Whitmore, J.; Wu, W.; Yang, F.; Yumiceva, F.; Yun, J. C.; Acosta, D.; Avery, P.; Bourilkov, D.; Chen, M.; Cheng, T.; Das, S.; De Gruttola, M.; Di Giovanni, G. P.; Dobur, D.; Drozdetskiy, A.; Field, R. D.; Fisher, M.; Fu, Y.; Furic, I. K.; Gartner, J.; Hugon, J.; Kim, B.; Konigsberg, J.; Korytov, A.; Kropivnitskaya, A.; Kypreos, T.; Low, J. F.; Matchev, K.; Milenovic, P.; Mitselmakher, G.; Muniz, L.; Remington, R.; Rinkevicius, A.; Sellers, P.; Skhirtladze, N.; Snowball, M.; Yelton, J.; Zakaria, M.; Gaultney, V.; Lebolo, L. M.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Adams, T.; Askew, A.; Bochenek, J.; Chen, J.; Diamond, B.; Gleyzer, S. V.; Haas, J.; Hagopian, S.; Hagopian, V.; Jenkins, M.; Johnson, K. F.; Prosper, H.; Veeraraghavan, V.; Weinberg, M.; Baarmand, M. M.; Dorney, B.; Hohlmann, M.; Kalakhety, H.; Vodopiyanov, I.; Adams, M. R.; Anghel, I. M.; Apanasevich, L.; Bai, Y.; Bazterra, V. E.; Betts, R. R.; Bucinskaite, I.; Callner, J.; Cavanaugh, R.; Dragoiu, C.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Khalatyan, S.; Lacroix, F.; Malek, M.; O'Brien, C.; Silkworth, C.; Strom, D.; Varelas, N.; Akgun, U.; Albayrak, E. A.; Bilki, B.; Clarida, W.; Duru, F.; Griffiths, S.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Newsom, C. R.; Norbeck, E.; Onel, Y.; Ozok, F.; Sen, S.; Tiras, E.; Wetzel, J.; Yetkin, T.; Yi, K.; Barnett, B. A.; Blumenfeld, B.; Bolognesi, S.; Fehling, D.; Giurgiu, G.; Gritsan, A. V.; Guo, Z. J.; Hu, G.; Maksimovic, P.; Rappoccio, S.; Swartz, M.; Whitbeck, A.; Baringer, P.; Bean, A.; Benelli, G.; Grachov, O.; Kenny, R. P., Iii; Murray, M.; Noonan, D.; Sanders, S.; Stringer, R.; Tinti, G.; Wood, J. S.; Zhukova, V.; Barfuss, A. F.; Bolton, T.; Chakaberia, I.; Ivanov, A.; Khalil, S.; Makouski, M.; Maravin, Y.; Shrestha, S.; Svintradze, I.; Gronberg, J.; Lange, D.; Wright, D.; Baden, A.; Boutemeur, M.; Calvert, B.; Eno, S. C.; Gomez, J. A.; Hadley, N. J.; Kellogg, R. G.; Kirn, M.; Kolberg, T.; Lu, Y.; Marionneau, M.; Mignerey, A. C.; Pedro, K.; Peterman, A.; Skuja, A.; Temple, J.; Tonjes, M. B.; Tonwar, S. C.; Twedt, E.; Apyan, A.; Bauer, G.; Bendavid, J.; Busza, W.; Butz, E.; Cali, I. A.; Chan, M.; Dutta, V.; Gomez Ceballos, G.; Goncharov, M.; Hahn, K. A.; Kim, Y.; Klute, M.; Krajczar, K.; Li, W.; Luckey, P. D.; Ma, T.; Nahn, S.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Rudolph, M.; Stephans, G. S. F.; Stöckli, F.; Sumorok, K.; Sung, K.; Velicanu, D.; Wenger, E. A.; Wolf, R.; Wyslouch, B.; Xie, S.; Yang, M.; Yilmaz, Y.; Yoon, A. S.; Zanetti, M.; Cooper, S. I.; Dahmes, B.; De Benedetti, A.; Franzoni, G.; Gude, A.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Mans, J.; Pastika, N.; Rusack, R.; Sasseville, M.; Singovsky, A.; Tambe, N.; Turkewitz, J.; Cremaldi, L. M.; Kroeger, R.; Perera, L.; Rahmat, R.; Sanders, D. A.; Avdeeva, E.; Bloom, K.; Bose, S.; Butt, J.; Claes, D. R.; Dominguez, A.; Eads, M.; Keller, J.; Kravchenko, I.; Lazo-Flores, J.; Malbouisson, H.; Malik, S.; Snow, G. R.; Baur, U.; Godshalk, A.; Iashvili, I.; Jain, S.; Kharchilava, A.; Kumar, A.; Shipkowski, S. P.; Smith, K.; Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Haley, J.; Nash, D.; Trocino, D.; Wood, D.; Zhang, J.; Anastassov, A.; Kubik, A.; Mucia, N.; Odell, N.; Ofierzynski, R. A.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Velasco, M.; Won, S.; Antonelli, L.; Berry, D.; Brinkerhoff, A.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kolb, J.; Lannon, K.; Luo, W.; Lynch, S.; Marinelli, N.; Morse, D. M.; Pearson, T.; Ruchti, R.; Slaunwhite, J.; Valls, N.; Wayne, M.; Wolf, M.; Bylsma, B.; Durkin, L. S.; Hill, C.; Hughes, R.; Kotov, K.; Ling, T. Y.; Puigh, D.; Rodenburg, M.; Vuosalo, C.; Williams, G.; Winer, B. L.; Adam, N.; Berry, E.; Elmer, P.; Gerbaudo, D.; Halyo, V.; Hebda, P.; Hegeman, J.; Hunt, A.; Jindal, P.; Pegna, D. Lopes; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Piroué, P.; Quan, X.; Raval, A.; Safdi, B.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zuranski, A.; Acosta, J. G.; Brownson, E.; Huang, X. T.; Lopez, A.; Mendez, H.; Oliveros, S.; Vargas, J. E. Ramirez; Zatserklyaniy, A.; Alagoz, E.; Barnes, V. E.; Benedetti, D.; Bolla, G.; Bortoletto, D.; De Mattia, M.; Everett, A.; Hu, Z.; Jones, M.; Koybasi, O.; Kress, M.; Laasanen, A. T.; Leonardo, N.; Maroussov, V.; Merkel, P.; Miller, D. H.; Neumeister, N.; Shipsey, I.; Silvers, D.; Svyatkovskiy, A.; Marono, M. Vidal; Yoo, H. D.; Zablocki, J.; Zheng, Y.; Guragain, S.; Parashar, N.; Adair, A.; Boulahouache, C.; Ecklund, K. M.; Geurts, F. J. M.; Padley, B. P.; Redjimi, R.; Roberts, J.; Zabel, J.; Betchart, B.; Bodek, A.; Chung, Y. S.; Covarelli, R.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Garcia-Bellido, A.; Goldenzweig, P.; Han, J.; Harel, A.; Miner, D. C.; Vishnevskiy, D.; Zielinski, M.; Bhatti, A.; Ciesielski, R.; Demortier, L.; Goulianos, K.; Lungu, G.; Malik, S.; Mesropian, C.; Arora, S.; Barker, A.; Chou, J. P.; Contreras-Campana, C.; Contreras-Campana, E.; Duggan, D.; Ferencek, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Lath, A.; Panwalkar, S.; Park, M.; Patel, R.; Rekovic, V.; Robles, J.; Rose, K.; Salur, S.; Schnetzer, S.; Seitz, C.; Somalwar, S.; Stone, R.; Thomas, S.; Cerizza, G.; Hollingsworth, M.; Spanier, S.; Yang, Z. C.; York, A.; Eusebi, R.; Flanagan, W.; Gilmore, J.; Kamon, T.; Khotilovich, V.; Montalvo, R.; Osipenkov, I.; Pakhotin, Y.; Perloff, A.; Roe, J.; Safonov, A.; Sakuma, T.; Sengupta, S.; Suarez, I.; Tatarinov, A.; Toback, D.; Akchurin, N.; Damgov, J.; Dudero, P. R.; Jeong, C.; Kovitanggoon, K.; Lee, S. W.; Libeiro, T.; Roh, Y.; Volobouev, I.; Appelt, E.; Florez, C.; Greene, S.; Gurrola, A.; Johns, W.; Johnston, C.; Kurt, P.; Maguire, C.; Melo, A.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.; Arenton, M. W.; Balazs, M.; Boutle, S.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Lin, C.; Neu, C.; Wood, J.; Yohay, R.; Gollapinni, S.; Harr, R.; Karchin, P. E.; Don, C. Kottachchi Kankanamge; Lamichhane, P.; Sakharov, A.; Anderson, M.; Bachtis, M.; Belknap, D.; Borrello, L.; Carlsmith, D.; Cepeda, M.; Dasu, S.; Gray, L.; Grogg, K. S.; Grothe, M.; Hall-Wilton, R.; Herndon, M.; Hervé, A.; Klabbers, P.; Klukas, J.; Lanaro, A.; Lazaridis, C.; Leonard, J.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Palmonari, F.; Pierro, G. A.; Ross, I.; Savin, A.; Smith, W. H.; Swanson, J.

    2012-09-01

    Combined results are reported from searches for a fermiophobic Higgs boson in the γγ, WW, and ZZ decay modes in proton-proton collisions at sqrt {s} = 7 TeV. The explored Higgs boson mass range is 110-300 GeV. The data sample corresponds to an integrated luminosity of 4.9-5.1 fb-1. A fermiophobic Higgs boson is excluded at 95% confidence level in the mass range 110-194 GeV, and at 99% confidence level in the mass ranges 110-124.5 GeV, 127-147.5 GeV, and 155-180 GeV.

  9. Higgs boson production via gluon fusion: Soft-gluon resummation including mass effects

    NASA Astrophysics Data System (ADS)

    Schmidt, Timo; Spira, Michael

    2016-01-01

    We analyze soft and collinear gluon resummation effects at the N3LL level for Standard Model Higgs boson production via gluon fusion g g →H and the neutral scalar and pseudoscalar Higgs bosons of the minimal supersymmetric extension at the next-to-next-to-next-to-leading-log (N3LL ) and next-to-next-to-leading-log (NNLL) level, respectively. We introduce refinements in the treatment of quark mass effects and subleading collinear gluon effects within the resummation. Soft and collinear gluon resummation effects amount to up to about 5% beyond the fixed-order results for scalar and pseudoscalar Higgs boson production.

  10. Interference effects for Higgs boson mediated Z-pair plus jet production

    SciTech Connect

    Campbell, John M.; Ellis, R. Keith; Furlan, Elisabetta; Rontsch, Raoul

    2014-11-25

    Here, we study interference effects in the production channel ZZ + jet, in particular focusing on the role of the Higgs boson. This production channel receives contributions both from Higgs boson mediated diagrams via the decay H → ZZ (signal diagrams), as well as from diagrams where the Z bosons couple directly to a quark loop (background diagrams). We consider the partonic processes gggZZ and gq$\\bar{q}$ZZ in which interference between signal and background diagrams first occurs. Since interference is primarily an off-resonant effect for the Higgs boson, we treat the Z bosons as on shell. Thus our analysis is limited to the region above threshold, where the invariant mass of the Z-pair mZZ satisfies the condition mZZ>2mZ. In the region mZZ > 300 GeV we find that the interference in the ZZ + jet channel is qualitatively similar to interference in the inclusive ZZ channel. Moreover, the rates are sufficient to study these effects at the LHC once jet-binned data become available.

  11. Effective gauge-Higgs operators analysis of new physics associated with the Higgs boson

    NASA Astrophysics Data System (ADS)

    Chang, We-Fu; Pan, Wei-Ping; Xu, Fanrong

    2013-08-01

    We study the new physics related to the recently discovered 125 GeV Higgs by employing an important subset of the standard model (SM) gauge-invariant dimension-6 operators constructed by the SM Higgs and gauge fields. Explicitly, we perform a model-independent study on the production and decays of the Higgs, the electric dipole moments (EDMs) of the neutron and the electron, and we take into account the anomalous magnetic dipole moments of the muon and electron as well. We find that, even if all Higgs decay channels agree with the SM predictions, the SM theoretical uncertainties provide a lot of room to host new phyiscs associated with the 125 GeV boson. A linear relation is revealed in our numerical study that μZZ≃μWW and 0.6≲μZZ,WW≲1.4 at 95% C.L. with or without the EDM constraints. The neutron and electron EDMs severely constrain the relevant Wilson coefficients. Therefore the CP-violating components in the h→WW, ZZ channels are too small, ˜O(10-5), to be detected at the LHC. However, we point out that, even though the parity of the 125 GeV boson has been largely determined to be even in the h→ZZ channel, one should pay special attention to the potentially large CP violation in the h→γγ and h→γZ channels. This should be seriously checked in the future spin correlation experiments.

  12. Combined upper limit on Standard Model Higgs boson production at CDF

    SciTech Connect

    Adrian, Buzatu; /McGill U.

    2012-02-01

    The Higgs boson is the only elementary particle predicted by the Standard Model (SM) that has neither been confirmed nor refuted. The CDF collaboration has performed SM Higgs searches in many channels using p{bar p} collisions at a centre-of-mass energy {radical}s = 1.96 TeV. We present the latest combined Higgs boson search at CDF. Since the previous year's combination, the sensitivity is increased through the addition of new channels, the improvement of existing channels and the addition of new data samples. We also use the latest parton distribution functions and gg {yields} H theoretical cross sections when modelling the signal event yields. Using integrated luminosities of up to 8.2 fb{sup -1}, we observe a good agreement between data and the background prediction. Since we do not see a Higgs boson excess, we set 95% CL upper limits on the Higgs boson cross section in the range between 100 and 200 GeV/c{sup 2}, with 5 GeV/c{sup 2} increments. The observed (expected) limits for a 115 and a 165 GeV/c{sup 2} Higgs boson are 1.55 (1.49) and 0.75 (0.79) x SM, respectively. Since last year, the Higgs boson excluded range by CDF is extended to 156.5 - 173.7 and 100 - 104.5 GeV/c{sup 2}.

  13. On the origins and the historical roots of the Higgs boson research from a bibliometric perspective

    NASA Astrophysics Data System (ADS)

    Barth, A.; Marx, W.; Bornmann, L.; Mutz, R.

    2014-06-01

    The subject of our present paper is the analysis of the origins or historical roots of the Higgs boson research from a bibliometric perspective, using a segmented regression analysis in combination with a method named reference publication year spectroscopy (RPYS). Our analysis is based on the references cited in the Higgs boson publications published since 1974. The objective of our analysis consists of identifying specific individual publications in the Higgs boson research context to which the scientific community frequently had referred to. We are interested in seminal works which contributed to a high extent to the discovery of the Higgs boson. Our results show that researchers in the Higgs boson field preferably refer to more recently published papers —particularly papers published since the beginning of the sixties. For example, our analysis reveals seven major contributions which appeared within the sixties: Englert and Brout (1964), Higgs (1964, 2 papers), and Guralnik et al. (1964) on the Higgs mechanism as well as Glashow (1961), Weinberg (1967), and Salam (1968) on the unification of weak and electromagnetic interaction. Even if the Nobel Prize award highlights the outstanding importance of the work of Peter Higgs and Francois Englert, bibliometrics offer the additional possibility of getting hints to other publications in this research field (especially to historical publications), which are of vital importance from the expert point of view.

  14. Charged Higgs and neutral Higgs pair production of the weak gauge boson fusion process in electron-positron collisions

    NASA Astrophysics Data System (ADS)

    Morozumi, Takuya; Tamai, Kotaro

    2013-09-01

    Pair production of the neutral and charged Higgs bosons is a unique process that is a signature of the two-Higgs-doublet model. In this paper, we study the pair production and decays of the Higgses in the neutrinophilic two-Higgs-doublet model. The pair production occurs through the W and Z gauge boson fusion process. In the neutrinophilic model, the vacuum expectation value (VEV) of the second Higgs doublet is small and is proportional to the neutrino mass. The smallness of VEV is associated with the approximate global U(1) symmetry, which is slightly broken. Therefore, there is a suppression factor for the U(1) charge breaking process. The second Higgs doublet has U(1) charge; its single production from gauge boson fusion violates the U(1) charge conservation and is strongly suppressed. In contrast to the single production, the pair production of the Higgses conserves U(1) charge and the approximate symmetry does not forbid it. To search for the pair productions in a collider experiment, we study the production cross section of a pair of charged Higgs and neutral Higgs bosons in e^+ e^- collisions with a center of energy from 600 GeV to 2000 GeV. The total cross section varies from 10^{-4} fb to 10^{-3} fb for the degenerate (200 GeV) charged and neutral Higgs mass case. The background process to the signal is the gauge boson pair W^+ + Z production and their decays. We show that the signal over background ratio is about 2-3% by combining the cross section ratio with ratios of branching fractions.

  15. Precision measurements of Higgs-chargino couplings in chargino pair production at a muon collider

    NASA Astrophysics Data System (ADS)

    Fraas, H.; Franke, F.; Moortgat-Pick, G.; von der Pahlen, F.; Wagner, A.

    2003-08-01

    We study chargino pair production on the heavy Higgs resonances at a muon collider in the MSSM. At sqrt{s} ≈ 350 GeV cross sections up to 2 pb are reached depending on the supersymmetric scenario and the beam energy spread. The resonances of the scalar and pseudoscalar Higgs bosons may be separated for tanβ < 8. Our aim is to determine the ratio of the chargino couplings to the heavy scalar and pseudoscalar Higgs boson independently of the specific chargino decay characteristics. The precision of the measurement depends on the energy resolution of the muon collider and on the error in the measurement of the cross sections of the non-Higgs channels including an irreducible standard model background. With a high energy resolution the systematic error can be reduced to the order of a few percent.

  16. Gamma-ray constraints on dark-matter annihilation to electroweak gauge and Higgs bosons

    SciTech Connect

    Fedderke, Michael A.; Kolb, Edward W.; Lin, Tongyan; Wang, Lian-Tao E-mail: Rocky.Kolb@uchicago.edu E-mail: liantaow@uchicago.edu

    2014-01-01

    Dark-matter annihilation into electroweak gauge and Higgs bosons results in γ-ray emission. We use observational upper limits on the fluxes of both line and continuum γ-rays from the Milky Way Galactic Center and from Milky Way dwarf companion galaxies to set exclusion limits on allowed dark-matter masses. (Generally, Galactic Center γ-ray line search limits from the Fermi-LAT and the H.E.S.S. experiments are most restrictive.) Our limits apply under the following assumptions: a) the dark matter species is a cold thermal relic with present mass density equal to the measured dark-matter density of the universe; b) dark-matter annihilation to standard-model particles is described in the non-relativistic limit by a single effective operator O∝J{sub DM}⋅J{sub SM}, where J{sub DM} is a standard-model singlet current consisting of dark-matter fields (Dirac fermions or complex scalars), and J{sub SM} is a standard-model singlet current consisting of electroweak gauge and Higgs bosons; and c) the dark-matter mass is in the range 5 GeV to 20 TeV. We consider, in turn, the 34 possible operators with mass dimension 8 or lower with non-zero s-wave annihilation channels satisfying the above assumptions. Our limits are presented in a large number of figures, one for each of the 34 possible operators; these limits can be grouped into 13 classes determined by the field content and structure of the operators. We also identify three classes of operators (coupling to the Higgs and SU(2){sub L} gauge bosons) that can supply a 130 GeV line with the desired strength to fit the putative line signal in the Fermi-LAT data, while saturating the relic density and satisfying all other indirect constraints we consider.

  17. Search for a Higgs boson in the mass range from 145 to 1000 GeV decaying to a pair of W or Z bosons

    NASA Astrophysics Data System (ADS)

    Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Asilar, E.; Bergauer, T.; Brandstetter, J.; Brondolin, E.; Dragicevic, M.; Erö, J.; Flechl, M.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Knünz, V.; König, A.; Krammer, M.; Krätschmer, I.; Liko, D.; Matsushita, T.; Mikulec, I.; Rabady, D.; Rahbaran, B.; Rohringer, H.; Schieck, J.; Schöfbeck, R.; Strauss, J.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Suarez Gonzalez, J.; Alderweireldt, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Knutsson, A.; Lauwers, J.; Luyckx, S.; Ochesanu, S.; Rougny, R.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Abu Zeid, S.; Blekman, F.; D'Hondt, J.; Daci, N.; De Bruyn, I.; Deroover, K.; Heracleous, N.; Keaveney, J.; Lowette, S.; Moreels, L.; Olbrechts, A.; Python, Q.; Strom, D.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Van Parijs, I.; Barria, P.; Caillol, C.; Clerbaux, B.; De Lentdecker, G.; Delannoy, H.; Dobur, D.; Fasanella, G.; Favart, L.; Gay, A. P. R.; Grebenyuk, A.; Léonard, A.; Mohammadi, A.; Perniè, L.; Randleconde, A.; Reis, T.; Seva, T.; Thomas, L.; Vander Velde, C.; Vanlaer, P.; Wang, J.; Zenoni, F.; Zhang, F.; Beernaert, K.; Benucci, L.; Cimmino, A.; Crucy, S.; Fagot, A.; Garcia, G.; Gul, M.; Mccartin, J.; Ocampo Rios, A. A.; Poyraz, D.; Ryckbosch, D.; Salva Diblen, S.; Sigamani, M.; Strobbe, N.; Tytgat, M.; Van Driessche, W.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Beluffi, C.; Bondu, O.; Bruno, G.; Castello, R.; Caudron, A.; Ceard, L.; Da Silveira, G. G.; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Jafari, A.; Jez, P.; Komm, M.; Lemaitre, V.; Mertens, A.; Nuttens, C.; Perrini, L.; Pin, A.; Piotrzkowski, K.; Popov, A.; Quertenmont, L.; Selvaggi, M.; Vidal Marono, M.; Beliy, N.; Caebergs, T.; Hammad, G. H.; Aldá Júnior, W. L.; Alves, G. A.; Brito, L.; Correa Martins Junior, M.; Dos Reis Martins, T.; Hensel, C.; Mora Herrera, C.; Moraes, A.; Pol, M. E.; Rebello Teles, P.; Belchior Batista Das Chagas, E.; Carvalho, W.; Chinellato, J.; Custódio, A.; Da Costa, E. M.; De Jesus Damiao, D.; De Oliveira Martins, C.; Fonseca De Souza, S.; Huertas Guativa, L. M.; Malbouisson, H.; Matos Figueiredo, D.; Mundim, L.; Nogima, H.; Prado Da Silva, W. L.; Santaolalla, J.; Santoro, A.; Sznajder, A.; Tonelli Manganote, E. J.; Vilela Pereira, A.; Ahuja, S.; Bernardes, C. A.; Dogra, S.; Fernandez Perez Tomei, T. R.; Gregores, E. M.; Mercadante, P. G.; Moon, C. S.; Novaes, S. F.; Padula, Sandra S.; Romero Abad, D.; Ruiz Vargas, J. C.; Aleksandrov, A.; Genchev, V.; Hadjiiska, R.; Iaydjiev, P.; Marinov, A.; Piperov, S.; Rodozov, M.; Stoykova, S.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Litov, L.; Pavlov, B.; Petkov, P.; Ahmad, M.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Cheng, T.; Du, R.; Jiang, C. H.; Plestina, R.; Romeo, F.; Shaheen, S. M.; Tao, J.; Wang, C.; Wang, Z.; Zhang, H.; Asawatangtrakuldee, C.; Ban, Y.; Li, Q.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Xu, Z.; Zou, W.; Avila, C.; Cabrera, A.; Chaparro Sierra, L. F.; Florez, C.; Gomez, J. P.; Gomez Moreno, B.; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Polic, D.; Puljak, I.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Kadija, K.; Luetic, J.; Sudic, L.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Rykaczewski, H.; Bodlak, M.; Finger, M.; Finger, M.; Ali, A.; Aly, R.; Aly, S.; Assran, Y.; Ellithi Kamel, A.; Lotfy, A.; Mahmoud, M. A.; Masod, R.; Radi, A.; Calpas, B.; Kadastik, M.; Murumaa, M.; Raidal, M.; Tiko, A.; Veelken, C.; Eerola, P.; Voutilainen, M.; Härkönen, J.; Karimäki, V.; Kinnunen, R.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Pekkanen, J.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Talvitie, J.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; Hamel de Monchenault, G.; Jarry, P.; Locci, E.; Machet, M.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Zghiche, A.; Baffioni, S.; Beaudette, F.; Busson, P.; Cadamuro, L.; Chapon, E.; Charlot, C.; Dahms, T.; Davignon, O.; Filipovic, N.; Florent, A.; Granier de Cassagnac, R.; Lisniak, S.; Mastrolorenzo, L.; Miné, P.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Ortona, G.; Paganini, P.; Regnard, S.; Salerno, R.; Sauvan, J. B.; Sirois, Y.; Strebler, T.; Yilmaz, Y.; Zabi, A.; Agram, J.-L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J.-M.; Buttignol, M.; Chabert, E. C.; Chanon, N.; Collard, C.; Conte, E.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Goetzmann, C.; Le Bihan, A.-C.; Merlin, J. A.; Skovpen, K.; Van Hove, P.; Gadrat, S.; Beauceron, S.; Beaupere, N.; Bernet, C.; Boudoul, G.; Bouvier, E.; Brochet, S.; Carrillo Montoya, C. A.; Chasserat, J.; Chierici, R.; Contardo, D.; Courbon, B.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Laktineh, I. B.; Lethuillier, M.; Mirabito, L.; Pequegnot, A. L.; Perries, S.; Ruiz Alvarez, J. D.; Sabes, D.; Sgandurra, L.; Sordini, V.; Vander Donckt, M.; Verdier, P.; Viret, S.; Xiao, H.; Tsamalaidze, Z.; Autermann, C.; Beranek, S.; Edelhoff, M.; Feld, L.; Heister, A.; Kiesel, M. K.; Klein, K.; Lipinski, M.; Ostapchuk, A.; Preuten, M.; Raupach, F.; Sammet, J.; Schael, S.; Schulte, J. F.; Verlage, T.; Weber, H.; Wittmer, B.; Zhukov, V.; Ata, M.; Brodski, M.; Dietz-Laursonn, E.; Duchardt, D.; Endres, M.; Erdmann, M.; Erdweg, S.; Esch, T.; Fischer, R.; Güth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Klingebiel, D.; Knutzen, S.; Kreuzer, P.; Merschmeyer, M.; Meyer, A.; Millet, P.; Olschewski, M.; Padeken, K.; Papacz, P.; Pook, T.; Radziej, M.; Reithler, H.; Rieger, M.; Scheuch, F.; Sonnenschein, L.; Teyssier, D.; Thüer, S.; Cherepanov, V.; Erdogan, Y.; Flügge, G.; Geenen, H.; Geisler, M.; Haj Ahmad, W.; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Künsken, A.; Lingemann, J.; Nehrkorn, A.; Nowack, A.; Nugent, I. M.; Pistone, C.; Pooth, O.; Stahl, A.; Aldaya Martin, M.; Asin, I.; Bartosik, N.; Behnke, O.; Behrens, U.; Bell, A. J.; Borras, K.; Burgmeier, A.; Cakir, A.; Calligaris, L.; Campbell, A.; Choudhury, S.; Costanza, F.; Diez Pardos, C.; Dolinska, G.; Dooling, S.; Dorland, T.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Flucke, G.; Gallo, E.; Garay Garcia, J.; Geiser, A.; Gizhko, A.; Gunnellini, P.; Hauk, J.; Hempel, M.; Jung, H.; Kalogeropoulos, A.; Karacheban, O.; Kasemann, M.; Katsas, P.; Kieseler, J.; Kleinwort, C.; Korol, I.; Lange, W.; Leonard, J.; Lipka, K.; Lobanov, A.; Lohmann, W.; Mankel, R.; Marfin, I.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mittag, G.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Nayak, A.; Ntomari, E.; Perrey, H.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Ribeiro Cipriano, P. M.; Roland, B.; Sahin, M. Ö.; Salfeld-Nebgen, J.; Saxena, P.; Schoerner-Sadenius, T.; Schröder, M.; Seitz, C.; Spannagel, S.; Trippkewitz, K. D.; Wissing, C.; Blobel, V.; Centis Vignali, M.; Draeger, A. R.; Erfle, J.; Garutti, E.; Goebel, K.; Gonzalez, D.; Görner, M.; Haller, J.; Hoffmann, M.; Höing, R. S.; Junkes, A.; Klanner, R.; Kogler, R.; Lapsien, T.; Lenz, T.; Marchesini, I.; Marconi, D.; Nowatschin, D.; Ott, J.; Pantaleo, F.; Peiffer, T.; Perieanu, A.; Pietsch, N.; Poehlsen, J.; Rathjens, D.; Sander, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Seidel, M.; Sola, V.; Stadie, H.; Steinbrück, G.; Tholen, H.; Troendle, D.; Usai, E.; Vanelderen, L.; Vanhoefer, A.; Akbiyik, M.; Barth, C.; Baus, C.; Berger, J.; Böser, C.; Butz, E.; Chwalek, T.; Colombo, F.; De Boer, W.; Descroix, A.; Dierlamm, A.; Feindt, M.; Frensch, F.; Giffels, M.; Gilbert, A.; Hartmann, F.; Husemann, U.; Kassel, F.; Katkov, I.; Kornmayer, A.; Lobelle Pardo, P.; Mozer, M. U.; Müller, T.; Müller, Th.; Plagge, M.; Quast, G.; Rabbertz, K.; Röcker, S.; Roscher, F.; Simonis, H. J.; Stober, F. M.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weiler, T.; Wöhrmann, C.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Markou, A.; Psallidas, A.; Topsis-Giotis, I.; Agapitos, A.; Kesisoglou, S.; Panagiotou, A.; Saoulidou, N.; Tziaferi, E.; Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Loukas, N.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Strologas, J.; Bencze, G.; Hajdu, C.; Hazi, A.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.; Beni, N.; Czellar, S.; Karancsi, J.; Molnar, J.; Szillasi, Z.; Bartók, M.; Makovec, A.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Mal, P.; Mandal, K.; Sahoo, N.; Swain, S. K.; Bansal, S.; Beri, S. B.; Bhatnagar, V.; Chawla, R.; Gupta, R.; Bhawandeep, U.; Kalsi, A. K.; Kaur, A.; Kaur, M.; Kumar, R.; Mehta, A.; Mittal, M.; Nishu, N.; Singh, J. B.; Walia, G.; Kumar, Ashok; Kumar, Arun; Bhardwaj, A.; Choudhary, B. C.; Garg, R. B.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, R.; Sharma, V.; Banerjee, S.; Bhattacharya, S.; Chatterjee, K.; Dey, S.; Dutta, S.; Jain, Sa.; Jain, Sh.; Khurana, R.; Majumdar, N.; Modak, A.; Mondal, K.; Mukherjee, S.; Mukhopadhyay, S.; Roy, A.; Roy, D.; Roy Chowdhury, S.; Sarkar, S.; Sharan, M.; Abdulsalam, A.; Chudasama, R.; Dutta, D.; Jha, V.; Kumar, V.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Banerjee, S.; Bhowmik, S.; Chatterjee, R. M.; Dewanjee, R. K.; Dugad, S.; Ganguly, S.; Ghosh, S.; Guchait, M.; Gurtu, A.; Kole, G.; Kumar, S.; Mahakud, B.; Maity, M.; Majumder, G.; Mazumdar, K.; Mitra, S.; Mohanty, G. B.; Parida, B.; Sarkar, T.; Sudhakar, K.; Sur, N.; Sutar, B.; Wickramage, N.; Sharma, S.; Bakhshiansohi, H.; Behnamian, H.; Etesami, S. M.; Fahim, A.; Goldouzian, R.; Khakzad, M.; Mohammadi Najafabadi, M.; Naseri, M.; Paktinat Mehdiabadi, S.; Rezaei Hosseinabadi, F.; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Calabria, C.; Caputo, C.; Chhibra, S. S.; Colaleo, A.; Creanza, D.; Cristella, L.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; Miniello, G.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Ranieri, A.; Selvaggi, G.; Sharma, A.; Silvestris, L.; Venditti, R.; Verwilligen, P.; Abbiendi, G.; Battilana, C.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.; Cappello, G.; Chiorboli, M.; Costa, S.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Gonzi, S.; Gori, V.; Lenzi, P.; Meschini, M.; Paoletti, S.; Puggelli, A.; Sguazzoni, G.; Tropiano, A.; Viliani, L.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Calvelli, V.; Ferro, F.; Lo Vetere, M.; Robutti, E.; Tosi, S.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Gerosa, R.; Ghezzi, A.; Govoni, P.; Malvezzi, S.; Manzoni, R. A.; Marzocchi, B.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; Tabarelli de Fatis, T.; Buontempo, S.; Cavallo, N.; Di Guida, S.; Esposito, M.; Fabozzi, F.; Iorio, A. O. M.; Lanza, G.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.; Sciacca, C.; Thyssen, F.; Azzi, P.; Bacchetta, N.; Bisello, D.; Carlin, R.; Carvalho Antunes De Oliveira, A.; Checchia, P.; Dall'Osso, M.; Dorigo, T.; Dosselli, U.; Gasparini, F.; Gasparini, U.; Gonella, F.; Gozzelino, A.; Lacaprara, S.; Margoni, M.; Meneguzzo, A. T.; Michelotto, M.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Zanetti, M.; Zotto, P.; Zucchetta, A.; Zumerle, G.; Braghieri, A.; Gabusi, M.; Magnani, A.; Ratti, S. P.; Re, V.; Riccardi, C.; Salvini, P.; Vai, I.; Vitulo, P.; Alunni Solestizi, L.; Biasini, M.; Bilei, G. M.; Ciangottini, D.; Fanò, L.; Lariccia, P.; Mantovani, G.; Menichelli, M.; Saha, A.; Santocchia, A.; Spiezia, A.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Broccolo, G.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fedi, G.; Foà, L.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Serban, A. T.; Spagnolo, P.; Squillacioti, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Barone, L.; Cavallari, F.; D'imperio, G.; Del Re, D.; Diemoz, M.; Gelli, S.; Jorda, C.; Longo, E.; Margaroli, F.; Meridiani, P.; Micheli, F.; Organtini, G.; Paramatti, R.; Preiato, F.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Soffi, L.; Traczyk, P.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bellan, R.; Biino, C.; Cartiglia, N.; Casasso, S.; Costa, M.; Covarelli, R.; Degano, A.; Demaria, N.; Finco, L.; Kiani, B.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Musich, M.; Obertino, M. M.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Pinna Angioni, G. L.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Tamponi, U.; Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Della Ricca, G.; Gobbo, B.; La Licata, C.; Marone, M.; Schizzi, A.; Umer, T.; Zanetti, A.; Chang, S.; Kropivnitskaya, A.; Nam, S. K.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Kong, D. J.; Lee, S.; Oh, Y. D.; Sakharov, A.; Son, D. C.; Kim, H.; Kim, T. J.; Ryu, M. S.; Song, S.; Choi, S.; Go, Y.; Gyun, D.; Hong, B.; Jo, M.; Kim, H.; Kim, Y.; Lee, B.; Lee, K.; Lee, K. S.; Lee, S.; Park, S. K.; Roh, Y.; Yoo, H. D.; Choi, M.; Kim, J. H.; Lee, J. S. H.; Park, I. C.; Ryu, G.; Choi, Y.; Choi, Y. K.; Goh, J.; Kim, D.; Kwon, E.; Lee, J.; Yu, I.; Juodagalvis, A.; Vaitkus, J.; Ibrahim, Z. A.; Komaragiri, J. R.; Md Ali, M. A. B.; Mohamad Idris, F.; Wan Abdullah, W. A. T.; Casimiro Linares, E.; Castilla-Valdez, H.; De La Cruz-Burelo, E.; Heredia-de La Cruz, I.; Hernandez-Almada, A.; Lopez-Fernandez, R.; Ramirez Sanchez, G.; Sanchez-Hernandez, A.; Carrillo Moreno, S.; Vazquez Valencia, F.; Carpinteyro, S.; Pedraza, I.; Salazar Ibarguen, H. A.; Morelos Pineda, A.; Krofcheck, D.; Butler, P. H.; Reucroft, S.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Khan, W. A.; Khurshid, T.; Shoaib, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Zalewski, P.; Brona, G.; Bunkowski, K.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Walczak, M.; Bargassa, P.; Beirão Da Cruz E Silva, C.; Di Francesco, A.; Faccioli, P.; Ferreira Parracho, P. G.; Gallinaro, M.; Lloret Iglesias, L.; Nguyen, F.; Rodrigues Antunes, J.; Seixas, J.; Toldaiev, O.; Vadruccio, D.; Varela, J.; Vischia, P.; Afanasiev, S.; Bunin, P.; Gavrilenko, M.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Konoplyanikov, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Moisenz, P.; Palichik, V.; Perelygin, V.; Shmatov, S.; Shulha, S.; Skatchkov, N.; Smirnov, V.; Toriashvili, T.; Zarubin, A.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Kuznetsova, E.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Karneyeu, A.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Pozdnyakov, I.; Safronov, G.; Spiridonov, A.; Vlasov, E.; Zhokin, A.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Vinogradov, A.; Baskakov, A.; Belyaev, A.; Boos, E.; Dubinin, M.; Dudko, L.; Ershov, A.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Myagkov, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Ekmedzic, M.; Milosevic, J.; Rekovic, V.; Alcaraz Maestre, J.; Calvo, E.; Cerrada, M.; Chamizo Llatas, M.; Colino, N.; De La Cruz, B.; Delgado Peris, A.; Domínguez Vázquez, D.; Escalante Del Valle, A.; Fernandez Bedoya, C.; Fernández Ramos, J. P.; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Gonzalez Lopez, O.; Goy Lopez, S.; Hernandez, J. M.; Josa, M. I.; Navarro De Martino, E.; Pérez-Calero Yzquierdo, A.; Puerta Pelayo, J.; Quintario Olmeda, A.; Redondo, I.; Romero, L.; Soares, M. S.; Albajar, C.; de Trocóniz, J. F.; Missiroli, M.; Moran, D.; Brun, H.; Cuevas, J.; Fernandez Menendez, J.; Folgueras, S.; Gonzalez Caballero, I.; Palencia Cortezon, E.; Vizan Garcia, J. M.; Brochero Cifuentes, J. A.; Cabrillo, I. J.; Calderon, A.; Castiñeiras De Saa, J. R.; Duarte Campderros, J.; Fernandez, M.; Gomez, G.; Graziano, A.; Lopez Virto, A.; Marco, J.; Marco, R.; Martinez Rivero, C.; Matorras, F.; Munoz Sanchez, F. J.; Piedra Gomez, J.; Rodrigo, T.; Rodríguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Vila, I.; Vilar Cortabitarte, R.; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Benaglia, A.; Bendavid, J.; Benhabib, L.; Benitez, J. F.; Berruti, G. M.; Bloch, P.; Bocci, A.; Bonato, A.; Botta, C.; Breuker, H.; Camporesi, T.; Cerminara, G.; Colafranceschi, S.; D'Alfonso, M.; d'Enterria, D.; Dabrowski, A.; Daponte, V.; David, A.; De Gruttola, M.; De Guio, F.; De Roeck, A.; De Visscher, S.; Di Marco, E.; Dobson, M.; Dordevic, M.; Dupont-Sagorin, N.; Elliott-Peisert, A.; Franzoni, G.; Funk, W.; Gigi, D.; Gill, K.; Giordano, D.; Girone, M.; Glege, F.; Guida, R.; Gundacker, S.; Guthoff, M.; Hammer, J.; Hansen, M.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Kirschenmann, H.; Kortelainen, M. J.; Kousouris, K.; Krajczar, K.; Lecoq, P.; Lourenço, C.; Lucchini, M. T.; Magini, N.; Malgeri, L.; Mannelli, M.; Marrouche, J.; Martelli, A.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moortgat, F.; Morovic, S.; Mulders, M.; Nemallapudi, M. V.; Neugebauer, H.; Orfanelli, S.; Orsini, L.; Pape, L.; Perez, E.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Piparo, D.; Racz, A.; Rolandi, G.; Rovere, M.; Ruan, M.; Sakulin, H.; Schäfer, C.; Schwick, C.; Sharma, A.; Silva, P.; Simon, M.; Sphicas, P.; Spiga, D.; Steggemann, J.; Stieger, B.; Stoye, M.; Takahashi, Y.; Treille, D.; Tsirou, A.; Veres, G. I.; Wardle, N.; Wöhri, H. K.; Zagozdzinska, A.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Rohe, T.; Bachmair, F.; Bäni, L.; Bianchini, L.; Buchmann, M. A.; Casal, B.; Dissertori, G.; Dittmar, M.; Donegà, M.; Dünser, M.; Eller, P.; Grab, C.; Heidegger, C.; Hits, D.; Hoss, J.; Kasieczka, G.; Lustermann, W.; Mangano, B.; Marini, A. C.; Marionneau, M.; Martinez Ruiz del Arbol, P.; Masciovecchio, M.; Meister, D.; Mohr, N.; Musella, P.; Nessi-Tedaldi, F.; Pandolfi, F.; Pata, J.; Pauss, F.; Perrozzi, L.; Peruzzi, M.; Quittnat, M.; Rossini, M.; Starodumov, A.; Takahashi, M.; Tavolaro, V. R.; Theofilatos, K.; Wallny, R.; Weber, H. A.; Aarrestad, T. K.; Amsler, C.; Canelli, M. F.; Chiochia, V.; De Cosa, A.; Galloni, C.; Hinzmann, A.; Hreus, T.; Kilminster, B.; Lange, C.; Ngadiuba, J.; Pinna, D.; Robmann, P.; Ronga, F. J.; Salerno, D.; Taroni, S.; Yang, Y.; Cardaci, M.; Chen, K. H.; Doan, T. H.; Ferro, C.; Konyushikhin, M.; Kuo, C. M.; Lin, W.; Lu, Y. J.; Volpe, R.; Yu, S. S.; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Chen, P. H.; Dietz, C.; Fiori, F.; Grundler, U.; Hou, W.-S.; Hsiung, Y.; Liu, Y. F.; Lu, R.-S.; Miñano Moya, M.; Petrakou, E.; Tsai, J. f.; Tzeng, Y. M.; Wilken, R.; Asavapibhop, B.; Kovitanggoon, K.; Singh, G.; Srimanobhas, N.; Suwonjandee, N.; Adiguzel, A.; Bakirci, M. N.; Dozen, C.; Dumanoglu, I.; Eskut, E.; Girgis, S.; Gokbulut, G.; Guler, Y.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Onengut, G.; Ozdemir, K.; Polatoz, A.; Sunar Cerci, D.; Vergili, M.; Zorbilmez, C.; Akin, I. V.; Bilin, B.; Bilmis, S.; Isildak, B.; Karapinar, G.; Surat, U. E.; Yalvac, M.; Zeyrek, M.; Albayrak, E. A.; Gülmez, E.; Kaya, M.; Kaya, O.; Yetkin, T.; Cankocak, K.; Günaydin, Y. O.; Vardarlı, F. I.; Grynyov, B.; Levchuk, L.; Sorokin, P.; Aggleton, R.; Ball, F.; Beck, L.; Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Meng, Z.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Sakuma, T.; Seif El Nasr-storey, S.; Senkin, S.; Smith, D.; Smith, V. J.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Williams, T.; Womersley, W. J.; Worm, S. D.; Baber, M.; Bainbridge, R.; Buchmuller, O.; Bundock, A.; Burton, D.; Citron, M.; Colling, D.; Corpe, L.; Cripps, N.; Dauncey, P.; Davies, G.; De Wit, A.; Della Negra, M.; Dunne, P.; Elwood, A.; Ferguson, W.; Fulcher, J.; Futyan, D.; Hall, G.; Iles, G.; Karapostoli, G.; Kenzie, M.; Lane, R.; Lucas, R.; Lyons, L.; Magnan, A.-M.; Malik, S.; Nash, J.; Nikitenko, A.; Pela, J.; Pesaresi, M.; Petridis, K.; Raymond, D. M.; Richards, A.; Rose, A.; Seez, C.; Sharp, P.; Tapper, A.; Uchida, K.; Vazquez Acosta, M.; Virdee, T.; Zenz, S. C.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leggat, D.; Leslie, D.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Borzou, A.; Dittmann, J.; Hatakeyama, K.; Kasmi, A.; Liu, H.; Pastika, N.; Scarborough, T.; Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.; Avetisyan, A.; Bose, T.; Fantasia, C.; Gastler, D.; Lawson, P.; Rankin, D.; Richardson, C.; Rohlf, J.; St. John, J.; Sulak, L.; Zou, D.; Alimena, J.; Berry, E.; Bhattacharya, S.; Cutts, D.; Demiragli, Z.; Dhingra, N.; Ferapontov, A.; Garabedian, A.; Heintz, U.; Laird, E.; Landsberg, G.; Mao, Z.; Narain, M.; Sagir, S.; Sinthuprasith, T.; Breedon, R.; Breto, G.; Calderon De La Barca Sanchez, M.; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Gardner, M.; Ko, W.; Lander, R.; Mulhearn, M.; Pellett, D.; Pilot, J.; Ricci-Tam, F.; Shalhout, S.; Smith, J.; Squires, M.; Stolp, D.; Tripathi, M.; Wilbur, S.; Yohay, R.; Cousins, R.; Everaerts, P.; Farrell, C.; Hauser, J.; Ignatenko, M.; Rakness, G.; Saltzberg, D.; Takasugi, E.; Valuev, V.; Weber, M.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Hanson, G.; Heilman, J.; Ivova Rikova, M.; Jandir, P.; Kennedy, E.; Lacroix, F.; Long, O. R.; Luthra, A.; Malberti, M.; Olmedo Negrete, M.; Shrinivas, A.; Sumowidagdo, S.; Wei, H.; Wimpenny, S.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; D'Agnolo, R. T.; Holzner, A.; Kelley, R.; Klein, D.; Kovalskyi, D.; Letts, J.; Macneill, I.; Olivito, D.; Padhi, S.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Tadel, M.; Tu, Y.; Vartak, A.; Wasserbaech, S.; Welke, C.; Würthwein, F.; Yagil, A.; Zevi Della Porta, G.; Barge, D.; Bradmiller-Feld, J.; Campagnari, C.; Dishaw, A.; Dutta, V.; Flowers, K.; Franco Sevilla, M.; Geffert, P.; George, C.; Golf, F.; Gouskos, L.; Gran, J.; Incandela, J.; Justus, C.; Mccoll, N.; Mullin, S. D.; Richman, J.; Stuart, D.; To, W.; West, C.; Yoo, J.; Anderson, D.; Apresyan, A.; Bornheim, A.; Bunn, J.; Chen, Y.; Duarte, J.; Mott, A.; Newman, H. B.; Pena, C.; Pierini, M.; Spiropulu, M.; Vlimant, J. R.; Xie, S.; Zhu, R. Y.; Azzolini, V.; Calamba, A.; Carlson, B.; Ferguson, T.; Iiyama, Y.; Paulini, M.; Russ, J.; Sun, M.; Vogel, H.; Vorobiev, I.; Cumalat, J. P.; Ford, W. T.; Gaz, A.; Jensen, F.; Johnson, A.; Krohn, M.; Mulholland, T.; Nauenberg, U.; Smith, J. G.; Stenson, K.; Wagner, S. R.; Alexander, J.; Chatterjee, A.; Chaves, J.; Chu, J.; Dittmer, S.; Eggert, N.; Mirman, N.; Nicolas Kaufman, G.; Patterson, J. R.; Rinkevicius, A.; Ryd, A.; Skinnari, L.; Sun, W.; Tan, S. M.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Weng, Y.; Wittich, P.; Abdullin, S.; Albrow, M.; Anderson, J.; Apollinari, G.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Bolla, G.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Hanlon, J.; Hare, D.; Harris, R. M.; Hirschauer, J.; Hooberman, B.; Hu, Z.; Jindariani, S.; Johnson, M.; Joshi, U.; Jung, A. W.; Klima, B.; Kreis, B.; Kwan, S.; Lammel, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, T.; Lopes De Sá, R.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Martinez Outschoorn, V. I.; Maruyama, S.; Mason, D.; McBride, P.; Merkel, P.; Mishra, K.; Mrenna, S.; Nahn, S.; Newman-Holmes, C.; O'Dell, V.; Prokofyev, O.; Sexton-Kennedy, E.; Soha, A.; Spalding, W. J.; Spiegel, L.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vernieri, C.; Verzocchi, M.; Vidal, R.; Whitbeck, A.; Yang, F.; Yin, H.; Acosta, D.; Avery, P.; Bortignon, P.; Bourilkov, D.; Carnes, A.; Carver, M.; Curry, D.; Das, S.; Di Giovanni, G. P.; Field, R. D.; Fisher, M.; Furic, I. K.; Hugon, J.; Konigsberg, J.; Korytov, A.; Kypreos, T.; Low, J. F.; Ma, P.; Matchev, K.; Mei, H.; Milenovic, P.; Mitselmakher, G.; Muniz, L.; Rank, D.; Shchutska, L.; Snowball, M.; Sperka, D.; Wang, S. J.; Yelton, J.; Hewamanage, S.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Ackert, A.; Adams, J. R.; Adams, T.; Askew, A.; Bochenek, J.; Diamond, B.; Haas, J.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Khatiwada, A.; Prosper, H.; Veeraraghavan, V.; Weinberg, M.; Bhopatkar, V.; Hohlmann, M.; Kalakhety, H.; Mareskas-palcek, D.; Roy, T.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Berry, D.; Betts, R. R.; Bucinskaite, I.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Kurt, P.; O'Brien, C.; Sandoval Gonzalez, I. D.; Silkworth, C.; Turner, P.; Varelas, N.; Wu, Z.; Zakaria, M.; Bilki, B.; Clarida, W.; Dilsiz, K.; Durgut, S.; Gandrajula, R. P.; Haytmyradov, M.; Khristenko, V.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Sen, S.; Snyder, C.; Tan, P.; Tiras, E.; Wetzel, J.; Yi, K.; Anderson, I.; Barnett, B. A.; Blumenfeld, B.; Bolognesi, S.; Fehling, D.; Feng, L.; Gritsan, A. V.; Maksimovic, P.; Martin, C.; Nash, K.; Osherson, M.; Swartz, M.; Xiao, M.; Xin, Y.; Baringer, P.; Bean, A.; Benelli, G.; Bruner, C.; Gray, J.; Kenny, R. P.; Majumder, D.; Malek, M.; Murray, M.; Noonan, D.; Sanders, S.; Stringer, R.; Wang, Q.; Wood, J. S.; Chakaberia, I.; Ivanov, A.; Kaadze, K.; Khalil, S.; Makouski, M.; Maravin, Y.; Saini, L. K.; Skhirtladze, N.; Svintradze, I.; Lange, D.; Rebassoo, F.; Wright, D.; Anelli, C.; Baden, A.; Baron, O.; Belloni, A.; Calvert, B.; Eno, S. C.; Ferraioli, C.; Gomez, J. A.; Hadley, N. J.; Jabeen, S.; Kellogg, R. G.; Kolberg, T.; Kunkle, J.; Lu, Y.; Mignerey, A. C.; Pedro, K.; Shin, Y. H.; Skuja, A.; Tonjes, M. B.; Tonwar, S. C.; Apyan, A.; Barbieri, R.; Baty, A.; Bierwagen, K.; Brandt, S.; Busza, W.; Cali, I. A.; Di Matteo, L.; Gomez Ceballos, G.; Goncharov, M.; Gulhan, D.; Klute, M.; Lai, Y. S.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; Mcginn, C.; Niu, X.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Stephans, G. S. F.; Sumorok, K.; Varma, M.; Velicanu, D.; Veverka, J.; Wang, J.; Wang, T. W.; Wyslouch, B.; Yang, M.; Zhukova, V.; Dahmes, B.; Finkel, A.; Gude, A.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Mans, J.; Nourbakhsh, S.; Rusack, R.; Tambe, N.; Turkewitz, J.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Fangmeier, C.; Gonzalez Suarez, R.; Kamalieddin, R.; Keller, J.; Knowlton, D.; Kravchenko, I.; Lazo-Flores, J.; Meier, F.; Monroy, J.; Ratnikov, F.; Siado, J. E.; Snow, G. R.; Alyari, M.; Dolen, J.; George, J.; Godshalk, A.; Iashvili, I.; Kaisen, J.; Kharchilava, A.; Kumar, A.; Rappoccio, S.; Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Hortiangtham, A.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; Teixeira De Lima, R.; Trocino, D.; Wang, R.-J.; Wood, D.; Zhang, J.; Hahn, K. A.; Kubik, A.; Mucia, N.; Odell, N.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Sung, K.; Trovato, M.; Velasco, M.; Won, S.; Brinkerhoff, A.; Dev, N.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Lynch, S.; Marinelli, N.; Meng, F.; Mueller, C.; Musienko, Y.; Pearson, T.; Planer, M.; Ruchti, R.; Smith, G.; Valls, N.; Wayne, M.; Wolf, M.; Woodard, A.; Antonelli, L.; Brinson, J.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Hart, A.; Hill, C.; Hughes, R.; Kotov, K.; Ling, T. Y.; Liu, B.; Luo, W.; Puigh, D.; Rodenburg, M.; Winer, B. L.; Wulsin, H. W.; Driga, O.; Elmer, P.; Hardenbrook, J.; Hebda, P.; Koay, S. A.; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Palmer, C.; Piroué, P.; Quan, X.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zuranski, A.; Barnes, V. E.; Benedetti, D.; Bortoletto, D.; Gutay, L.; Jha, M. K.; Jones, M.; Jung, K.; Kress, M.; Leonardo, N.; Miller, D. H.; Neumeister, N.; Primavera, F.; Radburn-Smith, B. C.; Shi, X.; Shipsey, I.; Silvers, D.; Sun, J.; Svyatkovskiy, A.; Wang, F.; Xie, W.; Xu, L.; Zablocki, J.; Parashar, N.; Stupak, J.; Adair, A.; Akgun, B.; Chen, Z.; Ecklund, K. M.; Geurts, F. J. M.; Guilbaud, M.; Li, W.; Michlin, B.; Northup, M.; Padley, B. P.; Redjimi, R.; Roberts, J.; Rorie, J.; Tu, Z.; Zabel, J.; Betchart, B.; Bodek, A.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Ferbel, T.; Galanti, M.; Garcia-Bellido, A.; Goldenzweig, P.; Han, J.; Harel, A.; Hindrichs, O.; Khukhunaishvili, A.; Petrillo, G.; Verzetti, M.; Vishnevskiy, D.; Demortier, L.; Arora, S.; Barker, A.; Chou, J. P.; Contreras-Campana, C.; Contreras-Campana, E.; Duggan, D.; Ferencek, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Hughes, E.; Kaplan, S.; Kunnawalkam Elayavalli, R.; Lath, A.; Panwalkar, S.; Park, M.; Salur, S.; Schnetzer, S.; Sheffield, D.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Foerster, M.; Riley, G.; Rose, K.; Spanier, S.; York, A.; Bouhali, O.; Castaneda Hernandez, A.; Dalchenko, M.; De Mattia, M.; Delgado, A.; Dildick, S.; Eusebi, R.; Flanagan, W.; Gilmore, J.; Kamon, T.; Krutelyov, V.; Montalvo, R.; Mueller, R.; Osipenkov, I.; Pakhotin, Y.; Patel, R.; Perloff, A.; Roe, J.; Rose, A.; Safonov, A.; Suarez, I.; Tatarinov, A.; Ulmer, K. A.; Akchurin, N.; Cowden, C.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Kunori, S.; Lamichhane, K.; Lee, S. W.; Libeiro, T.; Undleeb, S.; Volobouev, I.; Appelt, E.; Delannoy, A. G.; Greene, S.; Gurrola, A.; Janjam, R.; Johns, W.; Maguire, C.; Mao, Y.; Melo, A.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.; Xu, Q.; Arenton, M. W.; Boutle, S.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Li, H.; Lin, C.; Neu, C.; Wolfe, E.; Wood, J.; Xia, F.; Clarke, C.; Harr, R.; Karchin, P. E.; Kottachchi Kankanamge Don, C.; Lamichhane, P.; Sturdy, J.; Belknap, D. A.; Carlsmith, D.; Cepeda, M.; Christian, A.; Dasu, S.; Dodd, L.; Duric, S.; Friis, E.; Gomber, B.; Hall-Wilton, R.; Herndon, M.; Hervé, A.; Klabbers, P.; Lanaro, A.; Levine, A.; Long, K.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Perry, T.; Pierro, G. A.; Polese, G.; Ross, I.; Ruggles, T.; Sarangi, T.; Savin, A.; Smith, N.; Smith, W. H.; Taylor, D.; Woods, N.

    2015-10-01

    A search for a heavy Higgs boson in the H → WW and H → ZZ decay channels is reported. The search is based upon proton-proton collision data samples corresponding to an integrated luminosity of up to 5.1 fb-1 at √{s}=7 TeV and up to 19.7fb-1 at √{s}=8 TeV, recorded by the CMS experiment at the CERN LHC. Several final states of the H → WW and H → ZZ decays are analyzed. The combined upper limit at the 95% confidence level on the product of the cross section and branching fraction exclude a Higgs boson with standard model-like couplings and decays in the range 145 < m H < 1000 GeV. We also interpret the results in the context of an electroweak singlet extension of the standard model. [Figure not available: see fulltext.

  18. Search for a Higgs boson in the mass range from 145 to 1000 GeV decaying to a pair of W or Z bosons

    SciTech Connect

    Khachatryan, Vardan

    2015-10-22

    A search for a heavy Higgs boson in the H → WW and H → ZZ decay channels is reported. The search is based upon proton-proton collision data samples corresponding to an integrated luminosity of up to 5.1 fb–1 at √s = 7 TeV and up to 19.7fb–1 at √s = 8 TeV, recorded by the CMS experiment at the CERN LHC. Several final states of the H → WW and H → ZZ decays are analyzed. The combined upper limit at the 95% confidence level on the product of the cross section and branching fraction exclude a Higgs boson with standard model-like couplings and decays in the range 145 < mH < 1000 GeV. In addition, we interpret the results in the context of an electroweak singlet extension of the standard model.

  19. Higgs boson production in the U(1)B‑L model at the ILC

    NASA Astrophysics Data System (ADS)

    Han, Jinzhong; Yang, Bingfang; Liu, Ning; Li, Jitao

    2016-06-01

    In the framework of the minimal U(1)B‑L extension of the Standard Model, we investigate the Higgs boson production processes e+e‑→ ZH, e+e‑→ ν eν¯eH, e+e‑→ tt¯H, e+e‑→ ZHH and e+e‑→ ν eν¯eHH at the International Linear Collider (ILC). We present the production cross-sections, the relative corrections and compare our results with the expected experimental accuracies for Higgs decay channel H → bb¯. In the allowed parameter space, we find that the effects of the three single Higgs boson production processes might approach the observable threshold of the ILC. But the Higgs signal strengths μbb¯ of the two double Higgs boson production processes are all out of the observable threshold so that these effects will be difficult to be observed at the ILC.

  20. Search for the minimal standard model Higgs boson in e +e - collisions at LEP

    NASA Astrophysics Data System (ADS)

    Akrawy, M. Z.; Alexander, G.; Allison, J.; Allport, P. P.; Anderson, K. J.; Armitage, J. C.; Arnison, G. T. J.; Ashton, P.; Azuelos, G.; Baines, J. T. M.; Ball, A. H.; Banks, J.; Barker, G. J.; Barlow, R. J.; Batley, J. R.; Beck, A.; Becker, J.; Behnke, T.; Bell, K. W.; Bella, G.; Bethke, S.; Biebel, O.; Binder, U.; Bloodworth, I. J.; Bock, P.; Breuker, H.; Brown, R. M.; Brun, R.; Buijs, A.; Burckhart, H. J.; Capiluppi, P.; Carnegie, R. K.; Carter, A. A.; Carter, J. R.; Chang, C. Y.; Charlton, D. G.; Chrin, J. T. M.; Clarke, P. E. L.; Cohen, I.; Collins, W. J.; Conboy, J. E.; Couch, M.; Coupland, M.; Cuffiani, M.; Dado, S.; Dallavalle, G. M.; Debu, P.; Deninno, M. M.; Dieckman, A.; Dittmar, M.; Dixit, M. S.; Duchovni, E.; Duerdoth, I. P.; Dumas, D. J. P.; Elcombe, P. A.; Estabrooks, P. G.; Etzion, E.; Fabbri, F.; Farthouat, P.; Fischer, H. M.; Fong, D. G.; French, M. T.; Fukunaga, C.; Gaidot, A.; Ganel, O.; Gary, J. W.; Gascon, J.; Geddes, N. I.; Gee, C. N. P.; Geich-Gimbel, C.; Gensler, S. W.; Gentit, F. X.; Giacomelli, G.; Gibson, V.; Gibson, W. R.; Gillies, J. D.; Goldberg, J.; Goodrick, M. J.; Gorn, W.; Granite, D.; Gross, E.; Grunhaus, J.; Hagedorn, H.; Hagemann, J.; Hansroul, M.; Hargrove, C. K.; Harrus, I.; Hart, J.; Hattersley, P. M.; Hauschild, M.; Hawkes, C. M.; Heflin, E.; Hemingway, R. J.; Heuer, R. D.; Hill, J. C.; Hillier, S. J.; Ho, C.; Hobbs, J. D.; Hobson, P. R.; Hochman, D.; Holl, B.; Homer, R. J.; Hou, S. R.; Howarth, C. P.; Hughes-Jones, R. E.; Humbert, R.; Igo-Kemenes, P.; Ihssen, H.; Imrie, D. C.; Janissen, L.; Jawahery, A.; Jeffreys, P. W.; Jeremie, H.; Jimack, M.; Jobes, M.; Jones, R. W. L.; Jovanovic, P.; Karlen, D.; Kawagoe, K.; Kawamoto, T.; Kellogg, R. G.; Kennedy, B. W.; Kleinwort, C.; Klem, D. E.; Knop, G.; Kobayashi, T.; Kokott, T. P.; Köpke, L.; Kowalewski, R.; Kreutzmann, H.; Kroll, J.; Kuwano, M.; Kyberd, P.; Lafferty, G. D.; Lamarche, F.; Larson, W. J.; Layter, J. G.; Le Du, P.; Leblanc, P.; Lee, A. M.; Lehto, M. H.; Lellouch, D.; Lennert, P.; Lessard, L.; Levinson, L.; Lloyd, S. L.; Loebinger, F. K.; Lorah, J. M.; Lorazo, B.; Losty, M. J.; Ludwig, J.; Ma, J.; Macbeth, A. A.; Mannelli, M.; Marcellini, S.; Maringer, G.; Martin, A. J.; Martin, J. P.; Mashimo, T.; Mättig, P.; Maur, U.; McMahon, T. J.; McNutt, J. R.; Meijers, F.; Menszner, D.; Merritt, F. S.; Mes, H.; Michelini, A.; Middleton, R. P.; Mikenberg, G.; Mildenberger, J.; Miller, D. J.; Milstene, C.; Minowa, M.; Mohr, W.; Montanari, A.; Mori, T.; Moss, M. W.; Murphy, P. G.; Murray, W. J.; Nellen, B.; Nguyen, H. H.; Nozaki, M.; O'Dowd, A. J. P.; O'Neale, S. W.; O'Neill, B. P.; Oakham, F. G.; Odorici, F.; Ogg, M.; Oh, H.; Oreglia, M. J.; Orito, S.; Pansart, J. P.; Patrick, G. N.; Pawley, S. J.; Pfister, P.; Pilcher, J. E.; Pinfold, J. L.; Plane, D. E.; Poli, B.; Pouladdej, A.; Prebys, E.; Pritchard, T. W.; Quast, G.; Raab, J.; Redmond, M. W.; Rees, D. L.; Regimbald, M.; Riles, K.; Roach, C. M.; Robins, S. A.; Rollnik, A.; Roney, J. M.; Rossberg, S.; Rossi, A. M.; Routenburg, P.; Runge, K.; Runolfsson, O.; Sanghera, S.; Sansum, R. A.; Sasaki, M.; Saunders, B. J.; Schaile, A. D.; Schaile, O.; Schappert, W.; Scharff-Hansen, P.; Schreiber, S.; Schwarz, J.; Shapira, A.; Shen, B. C.; Sherwood, P.; Simon, A.; Singh, P.; Siroli, G. P.; Skuja, A.; Smith, A. M.; Smith, T. J.; Snow, G. A.; Springer, R. W.; Sproston, M.; Stephens, K.; Stier, H. E.; Stroehmer, R.; Strom, D.; Takeda, H.; Takeshita, T.; Taras, P.; Thackray, N. J.; Tsukamoto, T.; Turner, M. F.; Tysarczyk-Niemeyer, G.; Van den plas, D.; VanDalen, G. J.; Van Kooten, R.; Vasseur, G.; Virtue, C. J.; von der Schmitt, H.; von Krogh, J.; Wagner, A.; Wahl, C.; Walker, J. P.; Ward, C. P.; Ward, D. R.; Watkins, P. M.; Watson, A. T.; Watson, N. K.; Weber, M.; Weisz, S.; Wells, P. S.; Wermes, N.; Weymann, M.; Wilson, G. W.; Wilson, J. A.; Wingerter, I.; Winterer, V.-H.; Wood, N. C.; Wotton, S.; Wuensch, B.; Wyatt, T. R.; Yaari, R.; Yang, Y.; Yekutieli, G.; Yoshida, T.; Zeuner, W.; Zorn, G. T.; OPAL Collaboration

    1991-01-01

    A search for the minimal standard model Higgs boson (H 0) has been performed with data from e +e - collisions in the OPAL detector at LEP. The analysis is based on approximately 8 pb -1 of data taken at centre-of-mass energies between 88.2 and 95.0 GeV. The search concentrated on the reaction e+e-→( e+e-, μ +μ -, voverlinevor τ +τ -) H0, H0→( qoverlineqor τ +τ -) for Higgs boson masses above 25 GeV/ c2. No Higgs boson candidates have been observed. The present study, combined with previous OPAL publications, excludes the existence of a standard model Higgs boson with mass in the range 3< mH 0<44GeV/ c2 at the 95% confidence level.

  1. Search for the associated production of the Higgs boson with a top-quark pair

    DOE PAGESBeta

    Khachatryan, Vardan

    2014-10-14

    Our search for the standard model Higgs boson produced in association with a top-quark pair (ttH) is presented, using data samples corresponding to integrated luminosities of up to 5.1 fb-1 and 19.7 fb-1 collected in pp collisions at center-of-mass energies of 7 TeV and 8 TeV respectively. The search is based on the following signatures of the Higgs boson decay: H → hadrons, H → photons, and H → leptons. These results are characterized by an observed ttH signal strength relative to the standard model cross section, µ = σ/σSM, under the assumption that the Higgs boson decays as expectedmore » in the standard model. The best fit value is µ = 2.8 ± 1.0 for a Higgs boson mass of 125.6 GeV« less

  2. Production and decays of supersymmetric Higgs bosons in spontaneously broken R parity

    SciTech Connect

    Hirsch, M.; Valle, J.W.F.; Villanova del Moral, A.

    2006-03-01

    We study the mass spectra, production, and decay properties of the lightest supersymmetric CP-even and CP-odd Higgs bosons in models with spontaneously broken R parity. We compare the resulting mass spectra with expectations of the minimal supersymmetric standard model (MSSM), stressing that the model obeys the upper bound on the lightest CP-even Higgs boson mass. We discuss how the presence of the additional scalar singlet states affects the Higgs production cross sections, both for the Bjorken process and the ''associated production.'' The main phenomenological novelty with respect to the MSSM comes from the fact that the spontaneous breaking of lepton number leads to the existence of the majoron, denoted J, which opens new decay channels for supersymmetric Higgs bosons. We find that the invisible decays of CP-even Higgses can be dominant, while those of the CP-odd bosons may also be sizable.

  3. Search for the associated production of the Higgs boson with a top-quark pair

    SciTech Connect

    Khachatryan, Vardan

    2014-10-14

    Our search for the standard model Higgs boson produced in association with a top-quark pair (ttH) is presented, using data samples corresponding to integrated luminosities of up to 5.1 fb-1 and 19.7 fb-1 collected in pp collisions at center-of-mass energies of 7 TeV and 8 TeV respectively. The search is based on the following signatures of the Higgs boson decay: H → hadrons, H → photons, and H → leptons. These results are characterized by an observed ttH signal strength relative to the standard model cross section, µ = σ/σSM, under the assumption that the Higgs boson decays as expected in the standard model. The best fit value is µ = 2.8 ± 1.0 for a Higgs boson mass of 125.6 GeV

  4. Search for the associated production of the Higgs boson with a top-quark pair

    NASA Astrophysics Data System (ADS)

    Khachatryan, V.; Sirunyan, A. M.; Tumasyan, A.; Adam, W.; Bergauer, T.; Dragicevic, M.; Erö, J.; Fabjan, C.; Friedl, M.; Frühwirth, R.; Ghete, V. M.; Hartl, C.; Hörmann, N.; Hrubec, J.; Jeitler, M.; Kiesenhofer, W.; Knünz, V.; Krammer, M.; Krätschmer, I.; Liko, D.; Mikulec, I.; Rabady, D.; Rahbaran, B.; Rohringer, H.; Schöfbeck, R.; Strauss, J.; Taurok, A.; Treberer-Treberspurg, W.; Waltenberger, W.; Wulz, C.-E.; Mossolov, V.; Shumeiko, N.; Gonzalez, J. Suarez; Alderweireldt, S.; Bansal, M.; Bansal, S.; Cornelis, T.; De Wolf, E. A.; Janssen, X.; Knutsson, A.; Luyckx, S.; Ochesanu, S.; Roland, B.; Rougny, R.; Van De Klundert, M.; Van Haevermaet, H.; Van Mechelen, P.; Van Remortel, N.; Van Spilbeeck, A.; Blekman, F.; Blyweert, S.; D'Hondt, J.; Daci, N.; Heracleous, N.; Keaveney, J.; Lowette, S.; Maes, M.; Olbrechts, A.; Python, Q.; Strom, D.; Tavernier, S.; Van Doninck, W.; Van Mulders, P.; Van Onsem, G. P.; Villella, I.; Caillol, C.; Clerbaux, B.; De Lentdecker, G.; Dobur, D.; Favart, L.; Gay, A. P. R.; Grebenyuk, A.; Léonard, A.; Mohammadi, A.; Perniè, L.; Reis, T.; Seva, T.; Thomas, L.; Velde, C. Vander; Vanlaer, P.; Wang, J.; Adler, V.; Beernaert, K.; Benucci, L.; Cimmino, A.; Costantini, S.; Crucy, S.; Dildick, S.; Fagot, A.; Garcia, G.; Mccartin, J.; Rios, A. A. Ocampo; Ryckbosch, D.; Diblen, S. Salva; Sigamani, M.; Strobbe, N.; Thyssen, F.; Tytgat, M.; Yazgan, E.; Zaganidis, N.; Basegmez, S.; Beluffi, C.; Bruno, G.; Castello, R.; Caudron, A.; Ceard, L.; Da Silveira, G. G.; Delaere, C.; du Pree, T.; Favart, D.; Forthomme, L.; Giammanco, A.; Hollar, J.; Jez, P.; Komm, M.; Lemaitre, V.; Nuttens, C.; Pagano, D.; Perrini, L.; Pin, A.; Piotrzkowski, K.; Popov, A.; Quertenmont, L.; Selvaggi, M.; Marono, M. Vidal; Garcia, J. M. Vizan; Beliy, N.; Caebergs, T.; Daubie, E.; Hammad, G. H.; Aldá, W. L.; Alves, G. A.; Brito, L.; Martins, M. Correa; Martins, T. Dos Reis; Pol, M. E.; Carvalho, W.; Chinellato, J.; Custódio, A.; Da Costa, E. M.; De Jesus Damiao, D.; De Oliveira Martins, C.; De Souza, S. Fonseca; Malbouisson, H.; Figueiredo, D. Matos; Mundim, L.; Nogima, H.; Da Silva, W. L. Prado; Santaolalla, J.; Santoro, A.; Sznajder, A.; Manganote, E. J. Tonelli; Pereira, A. Vilela; Bernardes, C. A.; Tomei, T. R. Fernandez Perez; Gregores, E. M.; Mercadante, P. G.; Novaes, S. F.; Padula, Sandra S.; Aleksandrov, A.; Genchev, V.; Iaydjiev, P.; Marinov, A.; Piperov, S.; Rodozov, M.; Sultanov, G.; Vutova, M.; Dimitrov, A.; Glushkov, I.; Hadjiiska, R.; Kozhuharov, V.; Litov, L.; Pavlov, B.; Petkov, P.; Bian, J. G.; Chen, G. M.; Chen, H. S.; Chen, M.; Du, R.; Jiang, C. H.; Liang, D.; Liang, S.; Plestina, R.; Tao, J.; Wang, X.; Wang, Z.; Asawatangtrakuldee, C.; Ban, Y.; Guo, Y.; Li, Q.; Li, W.; Liu, S.; Mao, Y.; Qian, S. J.; Wang, D.; Zhang, L.; Zou, W.; Avila, C.; Sierra, L. F. Chaparro; Florez, C.; Gomez, J. P.; Moreno, B. Gomez; Sanabria, J. C.; Godinovic, N.; Lelas, D.; Polic, D.; Puljak, I.; Antunovic, Z.; Kovac, M.; Brigljevic, V.; Kadija, K.; Luetic, J.; Mekterovic, D.; Sudic, L.; Attikis, A.; Mavromanolakis, G.; Mousa, J.; Nicolaou, C.; Ptochos, F.; Razis, P. A.; Bodlak, M.; Finger, M.; Finger, M.; Assran, Y.; Kamel, A. Ellithi; Mahmoud, M. A.; Radi, A.; Kadastik, M.; Murumaa, M.; Raidal, M.; Tiko, A.; Eerola, P.; Fedi, G.; Voutilainen, M.; Härkönen, J.; Karimäki, V.; Kinnunen, R.; Kortelainen, M. J.; Lampén, T.; Lassila-Perini, K.; Lehti, S.; Lindén, T.; Luukka, P.; Mäenpää, T.; Peltola, T.; Tuominen, E.; Tuominiemi, J.; Tuovinen, E.; Wendland, L.; Tuuva, T.; Besancon, M.; Couderc, F.; Dejardin, M.; Denegri, D.; Fabbro, B.; Faure, J. L.; Favaro, C.; Ferri, F.; Ganjour, S.; Givernaud, A.; Gras, P.; de Monchenault, G. Hamel; Jarry, P.; Locci, E.; Malcles, J.; Rander, J.; Rosowsky, A.; Titov, M.; Baffioni, S.; Beaudette, F.; Busson, P.; Charlot, C.; Dahms, T.; Dalchenko, M.; Dobrzynski, L.; Filipovic, N.; Florent, A.; de Cassagnac, R. Granier; Mastrolorenzo, L.; Miné, P.; Mironov, C.; Naranjo, I. N.; Nguyen, M.; Ochando, C.; Paganini, P.; Salerno, R.; Sauvan, J. b.; Sirois, Y.; Veelken, C.; Yilmaz, Y.; Zabi, A.; Agram, J.-L.; Andrea, J.; Aubin, A.; Bloch, D.; Brom, J.-M.; Chabert, E. C.; Collard, C.; Conte, E.; Fontaine, J.-C.; Gelé, D.; Goerlach, U.; Goetzmann, C.; Le Bihan, A.-C.; Van Hove, P.; Gadrat, S.; Beauceron, S.; Beaupere, N.; Boudoul, G.; Bouvier, E.; Brochet, S.; Montoya, C. A. Carrillo; Chasserat, J.; Chierici, R.; Contardo, D.; Depasse, P.; El Mamouni, H.; Fan, J.; Fay, J.; Gascon, S.; Gouzevitch, M.; Ille, B.; Kurca, T.; Lethuillier, M.; Mirabito, L.; Perries, S.; Alvarez, J. D. Ruiz; Sabes, D.; Sgandurra, L.; Sordini, V.; Donckt, M. Vander; Verdier, P.; Viret, S.; Xiao, H.; Tsamalaidze, Z.; Autermann, C.; Beranek, S.; Bontenackels, M.; Edelhoff, M.; Feld, L.; Hindrichs, O.; Klein, K.; Ostapchuk, A.; Perieanu, A.; Raupach, F.; Sammet, J.; Schael, S.; Weber, H.; Wittmer, B.; Zhukov, V.; Ata, M.; Dietz-Laursonn, E.; Duchardt, D.; Erdmann, M.; Fischer, R.; Güth, A.; Hebbeker, T.; Heidemann, C.; Hoepfner, K.; Klingebiel, D.; Knutzen, S.; Kreuzer, P.; Merschmeyer, M.; Meyer, A.; Millet, P.; Olschewski, M.; Padeken, K.; Papacz, P.; Reithler, H.; Schmitz, S. A.; Sonnenschein, L.; Teyssier, D.; Thüer, S.; Weber, M.; Cherepanov, V.; Erdogan, Y.; Flügge, G.; Geenen, H.; Geisler, M.; Ahmad, W. Haj; Hoehle, F.; Kargoll, B.; Kress, T.; Kuessel, Y.; Lingemann, J.; Nowack, A.; Nugent, I. M.; Perchalla, L.; Pooth, O.; Stahl, A.; Asin, I.; Bartosik, N.; Behr, J.; Behrenhoff, W.; Behrens, U.; Bell, A. J.; Bergholz, M.; Bethani, A.; Borras, K.; Burgmeier, A.; Cakir, A.; Calligaris, L.; Campbell, A.; Choudhury, S.; Costanza, F.; Pardos, C. Diez; Dooling, S.; Dorland, T.; Eckerlin, G.; Eckstein, D.; Eichhorn, T.; Flucke, G.; Garcia, J. Garay; Geiser, A.; Gunnellini, P.; Hauk, J.; Hellwig, G.; Hempel, M.; Horton, D.; Jung, H.; Kalogeropoulos, A.; Kasemann, M.; Katsas, P.; Kieseler, J.; Kleinwort, C.; Krücker, D.; Lange, W.; Leonard, J.; Lipka, K.; Lobanov, A.; Lohmann, W.; Lutz, B.; Mankel, R.; Marfin, I.; Melzer-Pellmann, I.-A.; Meyer, A. B.; Mnich, J.; Mussgiller, A.; Naumann-Emme, S.; Nayak, A.; Novgorodova, O.; Nowak, F.; Ntomari, E.; Perrey, H.; Pitzl, D.; Placakyte, R.; Raspereza, A.; Cipriano, P. M. Ribeiro; Ron, E.; Sahin, M. Ö.; Salfeld-Nebgen, J.; Saxena, P.; Schmidt, R.; Schoerner-Sadenius, T.; Schröder, M.; Seitz, C.; Spannagel, S.; Trevino, A. D. R. Vargas; Walsh, R.; Wissing, C.; Martin, M. Aldaya; Blobel, V.; Vignali, M. Centis; Draeger, A. r.; Erfle, J.; Garutti, E.; Goebel, K.; Görner, M.; Haller, J.; Hoffmann, M.; Höing, R. S.; Kirschenmann, H.; Klanner, R.; Kogler, R.; Lange, J.; Lapsien, T.; Lenz, T.; Marchesini, I.; Ott, J.; Peiffer, T.; Pietsch, N.; Pöhlsen, T.; Rathjens, D.; Sander, C.; Schettler, H.; Schleper, P.; Schlieckau, E.; Schmidt, A.; Seidel, M.; Sibille, J.; Sola, V.; Stadie, H.; Steinbrück, G.; Troendle, D.; Usai, E.; Vanelderen, L.; Barth, C.; Baus, C.; Berger, J.; Böser, C.; Butz, E.; Chwalek, T.; De Boer, W.; Descroix, A.; Dierlamm, A.; Feindt, M.; Frensch, F.; Giffels, M.; Hartmann, F.; Hauth, T.; Husemann, U.; Katkov, I.; Kornmayer, A.; Kuznetsova, E.; Pardo, P. Lobelle; Mozer, M. U.; Müller, Th.; Nürnberg, A.; Quast, G.; Rabbertz, K.; Ratnikov, F.; Röcker, S.; Simonis, H. J.; Stober, F. M.; Ulrich, R.; Wagner-Kuhr, J.; Wayand, S.; Weiler, T.; Wolf, R.; Anagnostou, G.; Daskalakis, G.; Geralis, T.; Giakoumopoulou, V. A.; Kyriakis, A.; Loukas, D.; Markou, A.; Markou, C.; Psallidas, A.; Topsis-Giotis, I.; Panagiotou, A.; Saoulidou, N.; Stiliaris, E.; Aslanoglou, X.; Evangelou, I.; Flouris, G.; Foudas, C.; Kokkas, P.; Manthos, N.; Papadopoulos, I.; Paradas, E.; Bencze, G.; Hajdu, C.; Hidas, P.; Horvath, D.; Sikler, F.; Veszpremi, V.; Vesztergombi, G.; Zsigmond, A. J.; Beni, N.; Czellar, S.; Karancsi, J.; Molnar, J.; Palinkas, J.; Szillasi, Z.; Raics, P.; Trocsanyi, Z. L.; Ujvari, B.; Swain, S. K.; Beri, S. B.; Bhatnagar, V.; Dhingra, N.; Gupta, R.; Bhawandeep, U.; Kalsi, A. K.; Kaur, M.; Mittal, M.; Nishu, N.; Singh, J. B.; Kumar, Ashok; Kumar, Arun; Ahuja, S.; Bhardwaj, A.; Choudhary, B. C.; Kumar, A.; Malhotra, S.; Naimuddin, M.; Ranjan, K.; Sharma, V.; Banerjee, S.; Bhattacharya, S.; Chatterjee, K.; Dutta, S.; Gomber, B.; Jain, Sa.; Jain, Sh.; Khurana, R.; Modak, A.; Mukherjee, S.; Roy, D.; Sarkar, S.; Sharan, M.; Abdulsalam, A.; Dutta, D.; Kailas, S.; Kumar, V.; Mohanty, A. K.; Pant, L. M.; Shukla, P.; Topkar, A.; Aziz, T.; Banerjee, S.; Bhowmik, S.; Chatterjee, R. M.; Dewanjee, R. K.; Dugad, S.; Ganguly, S.; Ghosh, S.; Guchait, M.; Gurtu, A.; Kole, G.; Kumar, S.; Maity, M.; Majumder, G.; Mazumdar, K.; Mohanty, G. B.; Parida, B.; Sudhakar, K.; Wickramage, N.; Bakhshiansohi, H.; Behnamian, H.; Etesami, S. M.; Fahim, A.; Goldouzian, R.; Jafari, A.; Khakzad, M.; Najafabadi, M. Mohammadi; Naseri, M.; Mehdiabadi, S. Paktinat; Safarzadeh, B.; Zeinali, M.; Felcini, M.; Grunewald, M.; Abbrescia, M.; Barbone, L.; Calabria, C.; Chhibra, S. S.; Colaleo, A.; Creanza, D.; De Filippis, N.; De Palma, M.; Fiore, L.; Iaselli, G.; Maggi, G.; Maggi, M.; My, S.; Nuzzo, S.; Pompili, A.; Pugliese, G.; Radogna, R.; Selvaggi, G.; Silvestris, L.; Singh, G.; Venditti, R.; Verwilligen, P.; Zito, G.; Abbiendi, G.; Benvenuti, A. C.; Bonacorsi, D.; Braibant-Giacomelli, S.; Brigliadori, L.; Campanini, R.; Capiluppi, P.; Castro, A.; Cavallo, F. R.; Codispoti, G.; Cuffiani, M.; Dallavalle, G. M.; Fabbri, F.; Fanfani, A.; Fasanella, D.; Giacomelli, P.; Grandi, C.; Guiducci, L.; Marcellini, S.; Masetti, G.; Montanari, A.; Navarria, F. L.; Perrotta, A.; Primavera, F.; Rossi, A. M.; Rovelli, T.; Siroli, G. P.; Tosi, N.; Travaglini, R.; Albergo, S.; Cappello, G.; Chiorboli, M.; Costa, S.; Giordano, F.; Potenza, R.; Tricomi, A.; Tuve, C.; Barbagli, G.; Ciulli, V.; Civinini, C.; D'Alessandro, R.; Focardi, E.; Gallo, E.; Gonzi, S.; Gori, V.; Lenzi, P.; Meschini, M.; Paoletti, S.; Sguazzoni, G.; Tropiano, A.; Benussi, L.; Bianco, S.; Fabbri, F.; Piccolo, D.; Ferro, F.; Vetere, M. Lo; Robutti, E.; Tosi, S.; Dinardo, M. E.; Fiorendi, S.; Gennai, S.; Gerosa, R.; Ghezzi, A.; Govoni, P.; Lucchini, M. T.; Malvezzi, S.; Manzoni, R. A.; Martelli, A.; Marzocchi, B.; Menasce, D.; Moroni, L.; Paganoni, M.; Pedrini, D.; Ragazzi, S.; Redaelli, N.; de Fatis, T. Tabarelli; Buontempo, S.; Cavallo, N.; Di Guida, S.; Fabozzi, F.; Iorio, A. O. M.; Lista, L.; Meola, S.; Merola, M.; Paolucci, P.; Azzi, P.; Bacchetta, N.; Bisello, D.; Branca, A.; Carlin, R.; Checchia, P.; Dall'Osso, M.; Dorigo, T.; Dosselli, U.; Galanti, M.; Gasparini, F.; Gasparini, U.; Gozzelino, A.; Kanishchev, K.; Lacaprara, S.; Margoni, M.; Meneguzzo, A. T.; Pazzini, J.; Pozzobon, N.; Ronchese, P.; Simonetto, F.; Torassa, E.; Tosi, M.; Ventura, S.; Zotto, P.; Zucchetta, A.; Zumerle, G.; Gabusi, M.; Ratti, S. P.; Riccardi, C.; Salvini, P.; Vitulo, P.; Biasini, M.; Bilei, G. M.; Ciangottini, D.; Fanò, L.; Lariccia, P.; Mantovani, G.; Menichelli, M.; Romeo, F.; Saha, A.; Santocchia, A.; Spiezia, A.; Androsov, K.; Azzurri, P.; Bagliesi, G.; Bernardini, J.; Boccali, T.; Broccolo, G.; Castaldi, R.; Ciocci, M. A.; Dell'Orso, R.; Donato, S.; Fiori, F.; Foà, L.; Giassi, A.; Grippo, M. T.; Ligabue, F.; Lomtadze, T.; Martini, L.; Messineo, A.; Moon, C. S.; Palla, F.; Rizzi, A.; Savoy-Navarro, A.; Serban, A. T.; Spagnolo, P.; Squillacioti, P.; Tenchini, R.; Tonelli, G.; Venturi, A.; Verdini, P. G.; Vernieri, C.; Barone, L.; Cavallari, F.; D'imperio, G.; Del Re, D.; Diemoz, M.; Grassi, M.; Jorda, C.; Longo, E.; Margaroli, F.; Meridiani, P.; Micheli, F.; Nourbakhsh, S.; Organtini, G.; Paramatti, R.; Rahatlou, S.; Rovelli, C.; Santanastasio, F.; Soffi, L.; Traczyk, P.; Amapane, N.; Arcidiacono, R.; Argiro, S.; Arneodo, M.; Bellan, R.; Biino, C.; Cartiglia, N.; Casasso, S.; Costa, M.; Degano, A.; Demaria, N.; Finco, L.; Mariotti, C.; Maselli, S.; Migliore, E.; Monaco, V.; Musich, M.; Obertino, M. M.; Ortona, G.; Pacher, L.; Pastrone, N.; Pelliccioni, M.; Angioni, G. L. Pinna; Potenza, A.; Romero, A.; Ruspa, M.; Sacchi, R.; Solano, A.; Staiano, A.; Tamponi, U.; Belforte, S.; Candelise, V.; Casarsa, M.; Cossutti, F.; Ricca, G. Della; Gobbo, B.; La Licata, C.; Marone, M.; Montanino, D.; Schizzi, A.; Umer, T.; Zanetti, A.; Chang, S.; Kropivnitskaya, A.; Nam, S. K.; Kim, D. H.; Kim, G. N.; Kim, M. S.; Kong, D. J.; Lee, S.; Oh, Y. D.; Park, H.; Sakharov, A.; Son, D. C.; Kim, T. J.; Kim, J. Y.; Song, S.; Choi, S.; Gyun, D.; Hong, B.; Jo, M.; Kim, H.; Kim, Y.; Lee, B.; Lee, K. S.; Park, S. K.; Roh, Y.; Choi, M.; Kim, J. H.; Park, I. C.; Park, S.; Ryu, G.; Ryu, M. S.; Choi, Y.; Choi, Y. K.; Goh, J.; Kim, D.; Kwon, E.; Lee, J.; Seo, H.; Yu, I.; Juodagalvis, A.; Komaragiri, J. R.; Ali, M. A. B. Md; Castilla-Valdez, H.; De La Cruz-Burelo, E.; La Cruz, I. Heredia-de; Lopez-Fernandez, R.; Sanchez-Hernandez, A.; Moreno, S. Carrillo; Valencia, F. Vazquez; Pedraza, I.; Ibarguen, H. A. Salazar; Linares, E. Casimiro; Pineda, A. Morelos; Krofcheck, D.; Butler, P. H.; Reucroft, S.; Ahmad, A.; Ahmad, M.; Hassan, Q.; Hoorani, H. R.; Khalid, S.; Khan, W. A.; Khurshid, T.; Shah, M. A.; Shoaib, M.; Bialkowska, H.; Bluj, M.; Boimska, B.; Frueboes, T.; Górski, M.; Kazana, M.; Nawrocki, K.; Romanowska-Rybinska, K.; Szleper, M.; Zalewski, P.; Brona, G.; Bunkowski, K.; Cwiok, M.; Dominik, W.; Doroba, K.; Kalinowski, A.; Konecki, M.; Krolikowski, J.; Misiura, M.; Olszewski, M.; Wolszczak, W.; Bargassa, P.; Da Cruz E Silva, C. Beirão; Faccioli, P.; Parracho, P. G. Ferreira; Gallinaro, M.; Nguyen, F.; Antunes, J. Rodrigues; Seixas, J.; Varela, J.; Vischia, P.; Bunin, P.; Golutvin, I.; Gorbunov, I.; Kamenev, A.; Karjavin, V.; Konoplyanikov, V.; Lanev, A.; Malakhov, A.; Matveev, V.; Moisenz, P.; Palichik, V.; Perelygin, V.; Savina, M.; Shmatov, S.; Shulha, S.; Skatchkov, N.; Smirnov, V.; Zarubin, A.; Golovtsov, V.; Ivanov, Y.; Kim, V.; Levchenko, P.; Murzin, V.; Oreshkin, V.; Smirnov, I.; Sulimov, V.; Uvarov, L.; Vavilov, S.; Vorobyev, A.; Vorobyev, An.; Andreev, Yu.; Dermenev, A.; Gninenko, S.; Golubev, N.; Kirsanov, M.; Krasnikov, N.; Pashenkov, A.; Tlisov, D.; Toropin, A.; Epshteyn, V.; Gavrilov, V.; Lychkovskaya, N.; Popov, V.; Safronov, G.; Semenov, S.; Spiridonov, A.; Stolin, V.; Vlasov, E.; Zhokin, A.; Andreev, V.; Azarkin, M.; Dremin, I.; Kirakosyan, M.; Leonidov, A.; Mesyats, G.; Rusakov, S. V.; Vinogradov, A.; Belyaev, A.; Boos, E.; Bunichev, V.; Dubinin, M.; Dudko, L.; Gribushin, A.; Klyukhin, V.; Kodolova, O.; Lokhtin, I.; Obraztsov, S.; Petrushanko, S.; Savrin, V.; Snigirev, A.; Azhgirey, I.; Bayshev, I.; Bitioukov, S.; Kachanov, V.; Kalinin, A.; Konstantinov, D.; Krychkine, V.; Petrov, V.; Ryutin, R.; Sobol, A.; Tourtchanovitch, L.; Troshin, S.; Tyurin, N.; Uzunian, A.; Volkov, A.; Adzic, P.; Ekmedzic, M.; Milosevic, J.; Rekovic, V.; Maestre, J. Alcaraz; Battilana, C.; Calvo, E.; Cerrada, M.; Llatas, M. Chamizo; Colino, N.; De La Cruz, B.; Peris, A. Delgado; Vázquez, D. D´ınguez; Del Valle, A. Escalante; Bedoya, C. Fernandez; Ramos, J. P. Fernández; Flix, J.; Fouz, M. C.; Garcia-Abia, P.; Lopez, O. Gonzalez; Lopez, S. Goy; Hernandez, J. M.; Josa, M. I.; Merino, G.; De Martino, E. Navarro; Yzquierdo, A. Pérez-Calero; Pelayo, J. Puerta; Olmeda, A. Quintario; Redondo, I.; Romero, L.; Soares, M. S.; Albajar, C.; de Trocóniz, J. F.; Missiroli, M.; Moran, D.; Brun, H.; Cuevas, J.; Menendez, J. Fernandez; Folgueras, S.; Caballero, I. Gonzalez; Iglesias, L. Lloret; Cifuentes, J. A. Brochero; Cabrillo, I. J.; Calderon, A.; Campderros, J. Duarte; Fernandez, M.; Gomez, G.; Graziano, A.; Virto, A. Lopez; Marco, J.; Marco, R.; Rivero, C. Martinez; Matorras, F.; Sanchez, F. J. Munoz; Gomez, J. Piedra; Rodrigo, T.; Rodríguez-Marrero, A. Y.; Ruiz-Jimeno, A.; Scodellaro, L.; Vila, I.; Cortabitarte, R. Vilar; Abbaneo, D.; Auffray, E.; Auzinger, G.; Bachtis, M.; Baillon, P.; Ball, A. H.; Barney, D.; Benaglia, A.; Bendavid, J.; Benhabib, L.; Benitez, J. F.; Bernet, C.; Bianchi, G.; Bloch, P.; Bocci, A.; Bonato, A.; Bondu, O.; Botta, C.; Breuker, H.; Camporesi, T.; Cerminara, G.; Colafranceschi, S.; D'Alfonso, M.; d'Enterria, D.; Dabrowski, A.; David, A.; De Guio, F.; De Roeck, A.; De Visscher, S.; Dobson, M.; Dordevic, M.; Dupont-Sagorin, N.; Elliott-Peisert, A.; Eugster, J.; Franzoni, G.; Funk, W.; Gigi, D.; Gill, K.; Giordano, D.; Girone, M.; Glege, F.; Guida, R.; Gundacker, S.; Guthoff, M.; Hammer, J.; Hansen, M.; Harris, P.; Hegeman, J.; Innocente, V.; Janot, P.; Kousouris, K.; Krajczar, K.; Lecoq, P.; Lourenço, C.; Magini, N.; Malgeri, L.; Mannelli, M.; Marrouche, J.; Masetti, L.; Meijers, F.; Mersi, S.; Meschi, E.; Moortgat, F.; Morovic, S.; Mulders, M.; Musella, P.; Orsini, L.; Pape, L.; Perez, E.; Perrozzi, L.; Petrilli, A.; Petrucciani, G.; Pfeiffer, A.; Pierini, M.; Pimiä, M.; Piparo, D.; Plagge, M.; Racz, A.; Rolandi, G.; Rovere, M.; Sakulin, H.; Schäfer, C.; Schwick, C.; Sharma, A.; Siegrist, P.; Silva, P.; Simon, M.; Sphicas, P.; Spiga, D.; Steggemann, J.; Stieger, B.; Stoye, M.; Treille, D.; Tsirou, A.; Veres, G. I.; Vlimant, J. R.; Wardle, N.; Wöhri, H. K.; Wollny, H.; Zeuner, W. D.; Bertl, W.; Deiters, K.; Erdmann, W.; Horisberger, R.; Ingram, Q.; Kaestli, H. C.; Kotlinski, D.; Langenegger, U.; Renker, D.; Rohe, T.; Bachmair, F.; Bäni, L.; Bianchini, L.; Bortignon, P.; Buchmann, M. A.; Casal, B.; Chanon, N.; Deisher, A.; Dissertori, G.; Dittmar, M.; Donegà, M.; Dünser, M.; Eller, P.; Grab, C.; Hits, D.; Lustermann, W.; Mangano, B.; Marini, A. C.; del Arbol, P. Martinez Ruiz; Meister, D.; Mohr, N.; Nägeli, C.; Nessi-Tedaldi, F.; Pandolfi, F.; Pauss, F.; Peruzzi, M.; Quittnat, M.; Rebane, L.; Rossini, M.; Starodumov, A.; Takahashi, M.; Theofilatos, K.; Wallny, R.; Weber, H. A.; Amsler, C.; Canelli, M. F.; Chiochia, V.; De Cosa, A.; Hinzmann, A.; Hreus, T.; Kilminster, B.; Lange, C.; Mejias, B. Millan; Ngadiuba, J.; Robmann, P.; Ronga, F. J.; Taroni, S.; Verzetti, M.; Yang, Y.; Cardaci, M.; Chen, K. H.; Ferro, C.; Kuo, C. M.; Lin, W.; Lu, Y. J.; Volpe, R.; Yu, S. S.; Chang, P.; Chang, Y. H.; Chang, Y. W.; Chao, Y.; Chen, K. F.; Chen, P. H.; Dietz, C.; Grundler, U.; Hou, W.-S.; Kao, K. Y.; Lei, Y. J.; Liu, Y. F.; Lu, R.-S.; Majumder, D.; Petrakou, E.; Tzeng, Y. M.; Wilken, R.; Asavapibhop, B.; Srimanobhas, N.; Suwonjandee, N.; Adiguzel, A.; Bakirci, M. N.; Cerci, S.; Dozen, C.; Dumanoglu, I.; Eskut, E.; Girgis, S.; Gokbulut, G.; Gurpinar, E.; Hos, I.; Kangal, E. E.; Topaksu, A. Kayis; Onengut, G.; Ozdemir, K.; Ozturk, S.; Polatoz, A.; Sogut, K.; Cerci, D. Sunar; Tali, B.; Topakli, H.; Vergili, M.; Akin, I. V.; Bilin, B.; Bilmis, S.; Gamsizkan, H.; Karapinar, G.; Ocalan, K.; Sekmen, S.; Surat, U. E.; Yalvac, M.; Zeyrek, M.; Gülmez, E.; Isildak, B.; Kaya, M.; Kaya, O.; Bahtiyar, H.; Barlas, E.; Cankocak, K.; Vardarlı, F. I.; Yücel, M.; Levchuk, L.; Sorokin, P.; Brooke, J. J.; Clement, E.; Cussans, D.; Flacher, H.; Frazier, R.; Goldstein, J.; Grimes, M.; Heath, G. P.; Heath, H. F.; Jacob, J.; Kreczko, L.; Lucas, C.; Meng, Z.; Newbold, D. M.; Paramesvaran, S.; Poll, A.; Senkin, S.; Smith, V. J.; Williams, T.; Bell, K. W.; Belyaev, A.; Brew, C.; Brown, R. M.; Cockerill, D. J. A.; Coughlan, J. A.; Harder, K.; Harper, S.; Olaiya, E.; Petyt, D.; Shepherd-Themistocleous, C. H.; Thea, A.; Tomalin, I. R.; Womersley, W. J.; Worm, S. D.; Baber, M.; Bainbridge, R.; Buchmuller, O.; Burton, D.; Colling, D.; Cripps, N.; Cutajar, M.; Dauncey, P.; Davies, G.; Negra, M. Della; Dunne, P.; Ferguson, W.; Fulcher, J.; Futyan, D.; Gilbert, A.; Hall, G.; Iles, G.; Jarvis, M.; Karapostoli, G.; Kenzie, M.; Lane, R.; Lucas, R.; Lyons, L.; Magnan, A.-M.; Malik, S.; Mathias, B.; Nash, J.; Nikitenko, A.; Pela, J.; Pesaresi, M.; Petridis, K.; Raymond, D. M.; Rogerson, S.; Rose, A.; Seez, C.; Sharp, P.; Tapper, A.; Acosta, M. Vazquez; Virdee, T.; Cole, J. E.; Hobson, P. R.; Khan, A.; Kyberd, P.; Leggat, D.; Leslie, D.; Martin, W.; Reid, I. D.; Symonds, P.; Teodorescu, L.; Turner, M.; Dittmann, J.; Hatakeyama, K.; Kasmi, A.; Liu, H.; Scarborough, T.; Charaf, O.; Cooper, S. I.; Henderson, C.; Rumerio, P.; Avetisyan, A.; Bose, T.; Fantasia, C.; Heister, A.; Lawson, P.; Richardson, C.; Rohlf, J.; Sperka, D.; John, J. St.; Sulak, L.; Alimena, J.; Berry, E.; Bhattacharya, S.; Christopher, G.; Cutts, D.; Demiragli, Z.; Ferapontov, A.; Garabedian, A.; Heintz, U.; Kukartsev, G.; Laird, E.; Landsberg, G.; Luk, M.; Narain, M.; Segala, M.; Sinthuprasith, T.; Speer, T.; Swanson, J.; Breedon, R.; Breto, G.; De La Barca Sanchez, M. Calderon; Chauhan, S.; Chertok, M.; Conway, J.; Conway, R.; Cox, P. T.; Erbacher, R.; Gardner, M.; Ko, W.; Lander, R.; Miceli, T.; Mulhearn, M.; Pellett, D.; Pilot, J.; Ricci-Tam, F.; Searle, M.; Shalhout, S.; Smith, J.; Squires, M.; Stolp, D.; Tripathi, M.; Wilbur, S.; Yohay, R.; Cousins, R.; Everaerts, P.; Farrell, C.; Hauser, J.; Ignatenko, M.; Rakness, G.; Takasugi, E.; Valuev, V.; Weber, M.; Babb, J.; Burt, K.; Clare, R.; Ellison, J.; Gary, J. W.; Hanson, G.; Heilman, J.; Rikova, M. Ivova; Jandir, P.; Kennedy, E.; Lacroix, F.; Liu, H.; Long, O. R.; Luthra, A.; Malberti, M.; Nguyen, H.; Negrete, M. Olmedo; Shrinivas, A.; Sumowidagdo, S.; Wimpenny, S.; Andrews, W.; Branson, J. G.; Cerati, G. B.; Cittolin, S.; D'Agnolo, R. T.; Evans, D.; Holzner, A.; Kelley, R.; Klein, D.; Kovalskyi, D.; Lebourgeois, M.; Letts, J.; Macneill, I.; Olivito, D.; Padhi, S.; Palmer, C.; Pieri, M.; Sani, M.; Sharma, V.; Simon, S.; Sudano, E.; Tu, Y.; Vartak, A.; Welke, C.; Würthwein, F.; Yagil, A.; Yoo, J.; Barge, D.; Bradmiller-Feld, J.; Campagnari, C.; Danielson, T.; Dishaw, A.; Flowers, K.; Sevilla, M. Franco; Geffert, P.; George, C.; Golf, F.; Gouskos, L.; Incandela, J.; Justus, C.; Mccoll, N.; Richman, J.; Stuart, D.; To, W.; West, C.; Apresyan, A.; Bornheim, A.; Bunn, J.; Chen, Y.; Di Marco, E.; Duarte, J.; Mott, A.; Newman, H. B.; Pena, C.; Rogan, C.; Spiropulu, M.; Timciuc, V.; Wilkinson, R.; Xie, S.; Zhu, R. Y.; Azzolini, V.; Calamba, A.; Ferguson, T.; Iiyama, Y.; Paulini, M.; Russ, J.; Vogel, H.; Vorobiev, I.; Cumalat, J. P.; Ford, W. T.; Gaz, A.; Lopez, E. Luiggi; Nauenberg, U.; Smith, J. G.; Stenson, K.; Ulmer, K. A.; Wagner, S. R.; Alexander, J.; Chatterjee, A.; Chu, J.; Dittmer, S.; Eggert, N.; Mcdermott, K.; Mirman, N.; Kaufman, G. Nicolas; Patterson, J. R.; Ryd, A.; Salvati, E.; Skinnari, L.; Sun, W.; Teo, W. D.; Thom, J.; Thompson, J.; Tucker, J.; Weng, Y.; Winstrom, L.; Wittich, P.; Winn, D.; Abdullin, S.; Albrow, M.; Anderson, J.; Apollinari, G.; Bauerdick, L. A. T.; Beretvas, A.; Berryhill, J.; Bhat, P. C.; Burkett, K.; Butler, J. N.; Cheung, H. W. K.; Chlebana, F.; Cihangir, S.; Elvira, V. D.; Fisk, I.; Freeman, J.; Gao, Y.; Gottschalk, E.; Gray, L.; Green, D.; Grünendahl, S.; Gutsche, O.; Hanlon, J.; Hare, D.; Harris, R. M.; Hirschauer, J.; Hooberman, B.; Jindariani, S.; Johnson, M.; Joshi, U.; Kaadze, K.; Klima, B.; Kreis, B.; Kwan, S.; Linacre, J.; Lincoln, D.; Lipton, R.; Liu, T.; Lykken, J.; Maeshima, K.; Marraffino, J. M.; Outschoorn, V. I. Martinez; Maruyama, S.; Mason, D.; McBride, P.; Mishra, K.; Mrenna, S.; Musienko, Y.; Nahn, S.; Newman-Holmes, C.; O'Dell, V.; Prokofyev, O.; Sexton-Kennedy, E.; Sharma, S.; Soha, A.; Spalding, W. J.; Spiegel, L.; Taylor, L.; Tkaczyk, S.; Tran, N. V.; Uplegger, L.; Vaandering, E. W.; Vidal, R.; Whitbeck, A.; Whitmore, J.; Yang, F.; Acosta, D.; Avery, P.; Bourilkov, D.; Carver, M.; Cheng, T.; Curry, D.; Das, S.; De Gruttola, M.; Di Giovanni, G. P.; Field, R. D.; Fisher, M.; Furic, I. K.; Hugon, J.; Konigsberg, J.; Korytov, A.; Kypreos, T.; Low, J. F.; Matchev, K.; Milenovic, P.; Mitselmakher, G.; Muniz, L.; Rinkevicius, A.; Shchutska, L.; Skhirtladze, N.; Snowball, M.; Yelton, J.; Zakaria, M.; Hewamanage, S.; Linn, S.; Markowitz, P.; Martinez, G.; Rodriguez, J. L.; Adams, T.; Askew, A.; Bochenek, J.; Diamond, B.; Haas, J.; Hagopian, S.; Hagopian, V.; Johnson, K. F.; Prosper, H.; Veeraraghavan, V.; Weinberg, M.; Baarmand, M. M.; Hohlmann, M.; Kalakhety, H.; Yumiceva, F.; Adams, M. R.; Apanasevich, L.; Bazterra, V. E.; Berry, D.; Betts, R. R.; Bucinskaite, I.; Cavanaugh, R.; Evdokimov, O.; Gauthier, L.; Gerber, C. E.; Hofman, D. J.; Khalatyan, S.; Kurt, P.; Moon, D. H.; O'Brien, C.; Silkworth, C.; Turner, P.; Varelas, N.; Albayrak, E. A.; Bilki, B.; Clarida, W.; Dilsiz, K.; Duru, F.; Haytmyradov, M.; Merlo, J.-P.; Mermerkaya, H.; Mestvirishvili, A.; Moeller, A.; Nachtman, J.; Ogul, H.; Onel, Y.; Ozok, F.; Penzo, A.; Rahmat, R.; Sen, S.; Tan, P.; Tiras, E.; Wetzel, J.; Yetkin, T.; Yi, K.; Barnett, B. A.; Blumenfeld, B.; Bolognesi, S.; Fehling, D.; Gritsan, A. V.; Maksimovic, P.; Martin, C.; Swartz, M.; Baringer, P.; Bean, A.; Benelli, G.; Bruner, C.; Gray, J.; Kenny, R. P.; Malek, M.; Murray, M.; Noonan, D.; Sanders, S.; Sekaric, J.; Stringer, R.; Wang, Q.; Wood, J. S.; Barfuss, A. F.; Chakaberia, I.; Ivanov, A.; Khalil, S.; Makouski, M.; Maravin, Y.; Saini, L. K.; Shrestha, S.; Svintradze, I.; Gronberg, J.; Lange, D.; Rebassoo, F.; Wright, D.; Baden, A.; Belloni, A.; Calvert, B.; Eno, S. C.; Gomez, J. A.; Hadley, N. J.; Kellogg, R. G.; Kolberg, T.; Lu, Y.; Marionneau, M.; Mignerey, A. C.; Pedro, K.; Skuja, A.; Tonjes, M. B.; Tonwar, S. C.; Apyan, A.; Barbieri, R.; Bauer, G.; Busza, W.; Cali, I. A.; Chan, M.; Di Matteo, L.; Dutta, V.; Ceballos, G. Gomez; Goncharov, M.; Gulhan, D.; Klute, M.; Lai, Y. S.; Lee, Y.-J.; Levin, A.; Luckey, P. D.; Ma, T.; Paus, C.; Ralph, D.; Roland, C.; Roland, G.; Stephans, G. S. F.; Stöckli, F.; Sumorok, K.; Velicanu, D.; Veverka, J.; Wyslouch, B.; Yang, M.; Zanetti, M.; Zhukova, V.; Dahmes, B.; Gude, A.; Kao, S. C.; Klapoetke, K.; Kubota, Y.; Mans, J.; Pastika, N.; Rusack, R.; Singovsky, A.; Tambe, N.; Turkewitz, J.; Acosta, J. G.; Oliveros, S.; Avdeeva, E.; Bloom, K.; Bose, S.; Claes, D. R.; Dominguez, A.; Suarez, R. Gonzalez; Keller, J.; Knowlton, D.; Kravchenko, I.; Lazo-Flores, J.; Malik, S.; Meier, F.; Snow, G. R.; Dolen, J.; Godshalk, A.; Iashvili, I.; Kharchilava, A.; Kumar, A.; Rappoccio, S.; Alverson, G.; Barberis, E.; Baumgartel, D.; Chasco, M.; Haley, J.; Massironi, A.; Morse, D. M.; Nash, D.; Orimoto, T.; Trocino, D.; Wang, R. j.; Wood, D.; Zhang, J.; Hahn, K. A.; Kubik, A.; Mucia, N.; Odell, N.; Pollack, B.; Pozdnyakov, A.; Schmitt, M.; Stoynev, S.; Sung, K.; Velasco, M.; Won, S.; Brinkerhoff, A.; Chan, K. M.; Drozdetskiy, A.; Hildreth, M.; Jessop, C.; Karmgard, D. J.; Kellams, N.; Lannon, K.; Luo, W.; Lynch, S.; Marinelli, N.; Pearson, T.; Planer, M.; Ruchti, R.; Valls, N.; Wayne, M.; Wolf, M.; Woodard, A.; Antonelli, L.; Brinson, J.; Bylsma, B.; Durkin, L. S.; Flowers, S.; Hill, C.; Hughes, R.; Kotov, K.; Ling, T. Y.; Puigh, D.; Rodenburg, M.; Smith, G.; Winer, B. L.; Wolfe, H.; Wulsin, H. W.; Driga, O.; Elmer, P.; Hebda, P.; Hunt, A.; Koay, S. A.; Lujan, P.; Marlow, D.; Medvedeva, T.; Mooney, M.; Olsen, J.; Piroué, P.; Quan, X.; Saka, H.; Stickland, D.; Tully, C.; Werner, J. S.; Zenz, S. C.; Zuranski, A.; Brownson, E.; Mendez, H.; Vargas, J. E. Ramirez; Alagoz, E.; Barnes, V. E.; Benedetti, D.; Bolla, G.; Bortoletto, D.; De Mattia, M.; Hu, Z.; Jha, M. K.; Jones, M.; Jung, K.; Kress, M.; Leonardo, N.; Pegna, D. Lopes; Maroussov, V.; Merkel, P.; Miller, D. H.; Neumeister, N.; Radburn-Smith, B. C.; Shi, X.; Shipsey, I.; Silvers, D.; Svyatkovskiy, A.; Wang, F.; Xie, W.; Xu, L.; Yoo, H. D.; Zablocki, J.; Zheng, Y.; Parashar, N.; Stupak, J.; Adair, A.; Akgun, B.; Ecklund, K. M.; Geurts, F. J. M.; Li, W.; Michlin, B.; Padley, B. P.; Redjimi, R.; Roberts, J.; Zabel, J.; Betchart, B.; Bodek, A.; Covarelli, R.; de Barbaro, P.; Demina, R.; Eshaq, Y.; Ferbel, T.; Garcia-Bellido, A.; Goldenzweig, P.; Han, J.; Harel, A.; Khukhunaishvili, A.; Petrillo, G.; Vishnevskiy, D.; Ciesielski, R.; Demortier, L.; Goulianos, K.; Lungu, G.; Mesropian, C.; Arora, S.; Barker, A.; Chou, J. P.; Contreras-Campana, C.; Contreras-Campana, E.; Duggan, D.; Ferencek, D.; Gershtein, Y.; Gray, R.; Halkiadakis, E.; Hidas, D.; Lath, A.; Panwalkar, S.; Park, M.; Patel, R.; Salur, S.; Schnetzer, S.; Somalwar, S.; Stone, R.; Thomas, S.; Thomassen, P.; Walker, M.; Rose, K.; Spanier, S.; York, A.; Bouhali, O.; Eusebi, R.; Flanagan, W.; Gilmore, J.; Kamon, T.; Khotilovich, V.; Krutelyov, V.; Montalvo, R.; Osipenkov, I.; Pakhotin, Y.; Perloff, A.; Roe, J.; Rose, A.; Safonov, A.; Sakuma, T.; Suarez, I.; Tatarinov, A.; Akchurin, N.; Cowden, C.; Damgov, J.; Dragoiu, C.; Dudero, P. R.; Faulkner, J.; Kovitanggoon, K.; Kunori, S.; Lee, S. W.; Libeiro, T.; Volobouev, I.; Appelt, E.; Delannoy, A. G.; Greene, S.; Gurrola, A.; Johns, W.; Maguire, C.; Mao, Y.; Melo, A.; Sharma, M.; Sheldon, P.; Snook, B.; Tuo, S.; Velkovska, J.; Arenton, M. W.; Boutle, S.; Cox, B.; Francis, B.; Goodell, J.; Hirosky, R.; Ledovskoy, A.; Li, H.; Lin, C.; Neu, C.; Wood, J.; Harr, R.; Karchin, P. E.; Don, C. Kottachchi Kankanamge; Lamichhane, P.; Sturdy, J.; Belknap, D. A.; Carlsmith, D.; Cepeda, M.; Dasu, S.; Duric, S.; Friis, E.; Hall-Wilton, R.; Herndon, M.; Hervé, A.; Klabbers, P.; Lanaro, A.; Lazaridis, C.; Levine, A.; Loveless, R.; Mohapatra, A.; Ojalvo, I.; Perry, T.; Pierro, G. A.; Polese, G.; Ross, I.; Sarangi, T.; Savin, A.; Smith, W. H.; Vuosalo, C.; Woods, N.

    2014-09-01

    A search for the standard model Higgs boson produced in association with a top-quark pair is presented, using data samples corresponding to integrated luminosities of up to 5.1 fb-1 and 19.7 fb-1 collected in pp collisions at center-of-mass energies of 7 TeV and 8 TeV respectively. The search is based on the following signatures of the Higgs boson decay: H → hadrons, H → photons, and H → leptons. The results are characterized by an observed signal strength relative to the standard model cross section, μ= σ/σ SM,under the assumption that the Higgs boson decays as expected in the standard model. The best fit value is μ = 2.8 ± 1.0 for a Higgs boson mass of 125.6 GeV. [Figure not available: see fulltext.

  5. Search strategies for Higgs Bosons at high energy e/sup +/e/sup /minus// colliders

    SciTech Connect

    Alexander, J.; Burke, D.L.; Jung, C.K.; Komamiya, S.; Burchat, P.R.

    1989-01-01

    We have used detailed Monte Carlo simulations to study search strategies for Higgs bosons at high energy e/sup +/e/sup /minus// colliders. We extend an earlier study of the minimal single-Higgs-doublet model at a center-of-mass energy of 1 TeV to examine the effects of b-quark tagging and jet counting. It is found that these techniques can increase the signal-to-noise ratio substantially in the mass range around the W mass. In addition, we have studied this model at a center-of-mass energy of 400 GeV and found that an e/sup +/e/sup /minus// collider in this region would be sensitive to a Higgs boson with mass up to twice the Z/degree/ mass. We have also considered a nonminimal two-doublet model for the Higgs sector by extending a study of charged Higgs boson searches to include a mass very close to the mass of the W/sup +-/. We demonstrate that techniques which include b-quark tagging can be utilized to extract a significant signal. In addition, we have examined the prospects for detecting nonminimal neutral Higgs bosons at 1 TeV. We conclude that it would be possible to detect the CP-even and CP-odd neutral Higgs bosons when they are pair-produced in e/sup +/e/sup /minus// annihilation over a limited mass range. However, in some scenarios of supersymmetry, the charged Higgs boson constitutes a significant background to the CP-odd and the more massive CP-even neutral Higgs boson. 16 refs., 13 figs., 2 tabs.

  6. Higgs-like boson at 750 GeV and genesis of baryons

    NASA Astrophysics Data System (ADS)

    Davoudiasl, Hooman; Giardino, Pier Paolo; Zhang, Cen

    2016-07-01

    We propose that the diphoton excess at 750 GeV reported by ATLAS and CMS is due to the decay of an exo-Higgs scalar η associated with the breaking of a new S U (2 )e symmetry, dubbed exo-spin. New fermions, exo-quarks and exo-leptons, get TeV-scale masses through Yukawa couplings with η and generate its couplings to gluons and photons at one loop. The matter content of our model yields a B -L anomaly under S U (2 )e, whose breaking we assume entails a first-order phase transition. A nontrivial B -L asymmetry may therefore be generated in the early Universe, potentially providing a baryogenesis mechanism through the Standard Model (SM) sphaleron processes. The spontaneous breaking of S U (2 )e can, in principle, directly lead to electroweak symmetry breaking, thereby accounting for the proximity of the mass scales of the SM Higgs and the exo-Higgs. Our model can be distinguished from those comprising a singlet scalar and vector fermions by the discovery of TeV scale exo-vector bosons, corresponding to the broken S U (2 )e generators, at the LHC.

  7. Search for MSSM Heavy Higgs Bosons with Decays to 125 GeV Higgs Bosons with τ Final States in CMS

    NASA Astrophysics Data System (ADS)

    Dodd, Laura

    2015-04-01

    A search for heavy higgs bosons decaying to higgs bosons is presented in the context of the Two Higgs Doublet Model, which can be extended to the Minimal Supersymmetric extension to the Standard Model. Heavy scalar higgs H and pseudo-scalar A decays are examined with the final states H --> hh --> ττb b and A --> Zh --> llττ , with mh = 125 GeV and mH = 260 - 350 GeV and mA = 220 - 350 GeV. Hadronic τ decays and leptonic τ decays are considered. Limits are computed from mass distributions produced with data-driven background methods and kinematic fitting. The search includes 19 . 7 fb-1 of data taken with the CMS experiment at the LHC with center of mass energy √{ s} = 8 TeV. Compact Muon Solenoid.

  8. Constrained next-to-minimal supersymmetric standard model with a 126 GeV Higgs boson: A global analysis

    NASA Astrophysics Data System (ADS)

    Kowalska, Kamila; Munir, Shoaib; Roszkowski, Leszek; Sessolo, Enrico Maria; Trojanowski, Sebastian; Tsai, Yue-Lin Sming

    2013-06-01

    We present the first global analysis of the constrained next-to-minimal supersymmetric standard model that investigates the impact of the recent discovery of a 126 GeV Higgs-like boson, of the observation of a signal for branching ratio BR(Bs→μ+μ-), and of constraints on supersymmetry from ˜5/fb of data accumulated at the LHC, as well as of other relevant constraints from colliders, flavor physics and dark matter. We consider three possible cases, assuming in turn that the discovered Higgs boson is (i) the lightest Higgs boson of the model; (ii) the next-to-lightest Higgs boson; and (iii) a combination of both roughly degenerate in mass. The likelihood function for the Higgs signal uses signal rates in the γγ and ZZ→4l channels, while that for the Higgs exclusion limits assumes decay through the γγ, ττ, ZZ and W+W- channels. In all cases considered we identify the 68% and 95% credible posterior probability regions in a Bayesian approach. We find that, when the constraints are applied with their respective uncertainties, the first case shows strong CMSSM-like behavior, with the stau coannihilation region featuring highest posterior probability, the best-fit point, a correct mass of the lightest Higgs boson and the lighter top squark mass in the ballpark of 1 TeV. We also expose in this region a linear relationship between the trilinear couplings of the stau and the top squark, with both of them being strongly negative as enforced by the Higgs mass and the relic density, which outside of the stau coannihilation region show some tension. The second and the third case, on the other hand, while allowed are disfavored by the constraints from direct detection of dark matter and from BR(Bs→μ+μ-). Without the anomalous magnetic moment of the muon the fit improves considerably, especially for negative effective μ parameter. We discuss how the considered scenarios could be tested further at the LHC and in dark matter searches.

  9. Molasses or Crowds: Making Sense of the Higgs Boson with Two Popular Analogies

    ERIC Educational Resources Information Center

    Alsop, S.; Beale, S.

    2013-01-01

    The recent discovery of the Higgs boson at the Large Hadron Collider (LHC) has contributed to a surge of interest in particle physics and science education in general. Given the conceptual difficulty of the phenomenon in question, it is inevitable that teachers and science communicators rely on analogies to explain the Higgs physics and its…

  10. Fermionic extensions of the Standard Model in light of the Higgs couplings

    NASA Astrophysics Data System (ADS)

    Bizot, Nicolas; Frigerio, Michele

    2016-01-01

    As the Higgs boson properties settle, the constraints on the Standard Model extensions tighten. We consider all possible new fermions that can couple to the Higgs, inspecting sets of up to four chiral multiplets. We confront them with direct collider searches, electroweak precision tests, and current knowledge of the Higgs couplings. The focus is on scenarios that may depart from the decoupling limit of very large masses and vanishing mixing, as they offer the best prospects for detection. We identify exotic chiral families that may receive a mass from the Higgs only, still in agreement with the hγγ signal strength. A mixing θ between the Standard Model and non-chiral fermions induces order θ 2 deviations in the Higgs couplings. The mixing can be as large as θ ˜ 0 .5 in case of custodial protection of the Z couplings or accidental cancellation in the oblique parameters. We also notice some intriguing effects for much smaller values of θ, especially in the lepton sector. Our survey includes a number of unconventional pairs of vector-like and Majorana fermions coupled through the Higgs, that may induce order one corrections to the Higgs radiative couplings. We single out the regions of parameters where hγγ and hgg are unaffected, while the hγZ signal strength is significantly modified, turning a few times larger than in the Standard Model in two cases. The second run of the LHC will effectively test most of these scenarios.

  11. Electroweak and QCD corrections to Higgs production via vector-boson fusion at the CERN LHC

    SciTech Connect

    Ciccolini, M.; Denner, A.; Dittmaier, S.

    2008-01-01

    The radiative corrections of the strong and electroweak interactions are calculated at next-to-leading order for Higgs-boson production in the weak-boson-fusion channel at hadron colliders. Specifically, the calculation includes all weak-boson fusion and quark-antiquark annihilation diagrams to Higgs-boson production in association with two hard jets, including all corresponding interferences. The results on the QCD corrections confirm that previously made approximations of neglecting s-channel diagrams and interferences are well suited for predictions of Higgs production with dedicated vector-boson fusion cuts at the LHC. The electroweak corrections, which also include real corrections from incoming photons and leading heavy Higgs-boson effects at two-loop order, are of the same size as the QCD corrections, viz. typically at the level of 5%-10% for a Higgs-boson mass up to {approx}700 GeV. In general, both types of corrections do not simply rescale differential distributions, but induce distortions at the level of 10%. The discussed corrections have been implemented in a flexible Monte Carlo event generator.

  12. Scalar-tensor gravity with a non-minimally coupled Higgs field and accelerating universe

    NASA Astrophysics Data System (ADS)

    Sim, Jonghyun; Lee, Tae Hoon

    2016-03-01

    We consider general couplings, including non-minimal derivative coupling, of a Higgs boson field to scalar-tensor gravity and calculate their contributions to the energy density and pressure in Friedmann-Robertson-Walker spacetime. In a special case where the kinetic term of the Higgs field is non-minimally coupled to the Einstein tensor, we seek de Sitter solutions for the cosmic scale factor and discuss the possibility that the late-time acceleration and the inflationary era of our universe can be described by means of scalar fields with self-interactions and the Yukawa potential.

  13. Determination of the CP properties of the Higgs boson from data on tau-lepton-decay products in the process e{sup +}e{sup -} {sup {yields}} {tau}{sup +}{tau}{sup -}{nu}{nu}-bar

    SciTech Connect

    Likhoded, A. A.

    2008-03-15

    The process e{sup +}e{sup -} {sup {yields}} {tau}{sup +}{tau}{sup -}v{nu}-bar, which is highly sensitive to anomalous H{tau}{tau} interaction, is investigated within a model involving a new pseudoscalar Higgs boson. It is shown that the problem of separating the contributions of the scalar and pseudoscalar states of the Higgs boson can be solved via taking into account the polarizations of final-state particles. The inclusion of cascade tau-lepton decays makes it possible to determine reliably the CP state of the Higgs boson and to pinpoint the magnitude and sign of respective coupling constants.

  14. A Search for the Higgs Boson in the $ZH$ Dilepton Decay Channel at CDF II

    SciTech Connect

    Shekhar, Ravi; /Duke U.

    2009-07-01

    This dissertation describes a search for the Standard Model Higgs boson produced in association with the Z boson via Higgs-strahlung at the CDF II detector at the Tevatron. At a Higgs boson mass between 100 GeV/c{sup 2} and 135 GeV/c{sup 2}, the primary Higgs decay mode is to a pair of b quarks. The associated Z boson can decay to a pair of electrons or muons, allowing detection of a final event signature of two visible leptons and two b quarks. This final state allows reduction of large QCD backgrounds compared to a hadronic Z boson decay, leading to a more sensitive search. To increase sensitivity, standard model matrix element probabilities for ZH signal and the dominant backgrounds are used as components to a likelihood fit in signal fraction. In 2.7 fb{sup -1} of CDF II data, we see no evidence of production of a Higgs boson with a mass between 100 GeV c{sup 2} and 150 GeV/c{sup 2}. Using the Feldman-Cousins technique to set a limit, at 95% coverage and a Higgs boson mass of 115 GeV/c{sup 2}, the median expected limit was 12.1 x {sigma}{sub SM} and a limit of 8.2 x {sigma}{sub SM} was observed, where {sigma}{sub SM} is the NNLO theoretical cross section of p{bar p} {yields}ZH {yields} l +l -b{bar b} at {radical}s=1.96 TeV . Cross section limits are computed at a range of Higgs boson mass values between 100 GeV/c {sup 2} and 150 GeV/c{sup 2}.

  15. Hadronic production of a Higgs boson and two jets at next-to-leading order

    SciTech Connect

    Campbell, John M.; Ellis, R.Keith; Williams, Ciaran

    2010-01-01

    We perform an update of the next-to-leading order calculation of the rate for Higgs boson production in association with two jets. Our new calculation incorporates the full analytic result for the one-loop virtual amplitude. This new theoretical information allows us to construct a code including the decay of the Higgs boson without incurring a prohibitive penalty in computer running time. Results are presented for the Tevatron, where implications for the Higgs search are sketched, and also for a range of scenarios at the LHC.

  16. Molasses or crowds: making sense of the Higgs boson with two popular analogies

    NASA Astrophysics Data System (ADS)

    Alsop, S.; Beale, S.

    2013-09-01

    The recent discovery of the Higgs boson at the Large Hadron Collider (LHC) has contributed to a surge of interest in particle physics and science education in general. Given the conceptual difficulty of the phenomenon in question, it is inevitable that teachers and science communicators rely on analogies to explain the Higgs physics and its meaning. Here, we review two popular analogies for explaining the Higgs boson, field and mechanism and their complex relationships. We discuss the strengths and weaknesses of these analogies and their pedagogical implications.

  17. Search for CP Violating Neutral Higgs Bosons in the MSSM at LEP

    SciTech Connect

    Bechtle, Philip; /SLAC

    2006-03-13

    The LEP collaborations ALEPH, DELPHI, L3 and OPAL have searched for the neutral Higgs bosons which are predicted within the framework of the Minimal Supersymmetric Standard Model (MSSM). The data of the four collaborations are statistically combined and show no significant excess of events which would indicate the production of Higgs bosons. The search results are thus used to set upper bounds on the cross sections of various Higgs-like event topologies and limits on MSSM benchmark models, including CP-conserving and CP-violating scenarios. Here, the limits on the model parameters of the CP-violating benchmark scenario CPX and derivates of this scenario are shown.

  18. Probe of new light Higgs bosons from bottomonium χb 0 decay

    NASA Astrophysics Data System (ADS)

    Godfrey, Stephen; Logan, Heather E.

    2016-03-01

    We calculate the branching ratios of χb 0→τ+τ- via an s -channel Higgs boson and estimate the sensitivity to this process from ϒ →γ χb 0→γ τ+τ- . We show that future running at the ϒ (3 S ) at a very high luminosity super B factory can put significant constraints on the type-II two-Higgs-doublet model when the discovered 125 GeV Higgs boson is the heavier of the two charge parity (C P )-even scalars.

  19. Limits on the production of the standard model Higgs boson in pp collisions at sqrt{s} = 7 TeV with the ATLAS detector

    NASA Astrophysics Data System (ADS)

    Aad, G.; Abbott, B.; Abdallah, J.; Abdelalim, A. A.; Abdesselam, A.; Abdinov, O.; Abi, B.; Abolins, M.; Abramowicz, H.; Abreu, H.; Acerbi, E.; Acharya, B. S.; Adams, D. L.; Addy, T. N.; Adelman, J.; Aderholz, M.; Adomeit, S.; Adragna, P.; Adye, T.; Aefsky, S.; Aguilar-Saavedra, J. A.; Aharrouche, M.; Ahlen, S. P.; Ahles, F.; Ahmad, A.; Ahsan, M.; Aielli, G.; Akdogan, T.; Åkesson, T. P. A.; Akimoto, G.; Akimov, A. V.; Akiyama, A.; Alam, M. S.; Alam, M. A.; Albrand, S.; Aleksa, M.; Aleksandrov, I. N.; Alessandria, F.; Alexa, C.; Alexander, G.; Alexandre, G.; Alexopoulos, T.; Alhroob, M.; Aliev, M.; Alimonti, G.; Alison, J.; Aliyev, M.; Allport, P. P.; Allwood-Spiers, S. E.; Almond, J.; Aloisio, A.; Alon, R.; Alonso, A.; Alviggi, M. G.; Amako, K.; Amaral, P.; Amelung, C.; Ammosov, V. V.; Amorim, A.; Amorós, G.; Amram, N.; Anastopoulos, C.; Andari, N.; Andeen, T.; Anders, C. F.; Anderson, K. J.; Andreazza, A.; Andrei, V.; Andrieux, M.-L.; Anduaga, X. S.; Angerami, A.; Anghinolfi, F.; Anjos, N.; Annovi, A.; Antonaki, A.; Antonelli, M.; Antonov, A.; Antos, J.; Anulli, F.; Aoun, S.; Aperio Bella, L.; Apolle, R.; Arabidze, G.; Aracena, I.; Arai, Y.; Arce, A. T. H.; Archambault, J. P.; Arfaoui, S.; Arguin, J.-F.; Arik, E.; Arik, M.; Armbruster, A. J.; Arnaez, O.; Arnault, C.; Artamonov, A.; Artoni, G.; Arutinov, D.; Asai, S.; Asfandiyarov, R.; Ask, S.; Åsman, B.; Asquith, L.; Assamagan, K.; Astbury, A.; Astvatsatourov, A.; Atoian, G.; Aubert, B.; Auerbach, B.; Auge, E.; Augsten, K.; Aurousseau, M.; Austin, N.; Avramidou, R.; Axen, D.; Ay, C.; Azuelos, G.; Azuma, Y.; Baak, M. A.; Baccaglioni, G.; Bacci, C.; Bach, A. M.; Bachacou, H.; Bachas, K.; Bachy, G.; Backes, M.; Backhaus, M.; Badescu, E.; Bagnaia, P.; Bahinipati, S.; Bai, Y.; Bailey, D. C.; Bain, T.; Baines, J. T.; Baker, O. K.; Baker, M. D.; Baker, S.; Dos Santos Pedrosa, F. Baltasar; Banas, E.; Banerjee, P.; Banerjee, Sw.; Banfi, D.; Bangert, A.; Bansal, V.; Bansil, H. S.; Barak, L.; Baranov, S. P.; Barashkou, A.; Barbaro Galtieri, A.; Barber, T.; Barberio, E. L.; Barberis, D.; Barbero, M.; Bardin, D. Y.; Barillari, T.; Barisonzi, M.; Barklow, T.; Barlow, N.; Barnett, B. M.; Barnett, R. M.; Baroncelli, A.; Barr, A. J.; Barreiro, F.; Barreiro Guimarães da Costa, J.; Barrillon, P.; Bartoldus, R.; Barton, A. E.; Bartsch, D.; Bartsch, V.; Bates, R. L.; Batkova, L.; Batley, J. R.; Battaglia, A.; Battistin, M.; Battistoni, G.; Bauer, F.; Bawa, H. S.; Beare, B.; Beau, T.; Beauchemin, P. H.; Beccherle, R.; Bechtle, P.; Beck, H. P.; Beckingham, M.; Becks, K. H.; Beddall, A. J.; Beddall, A.; Bedikian, S.; Bednyakov, V. A.; Bee, C. P.; Begel, M.; Harpaz, S. Behar; Behera, P. K.; Beimforde, M.; Belanger-Champagne, C.; Bell, P. J.; Bell, W. H.; Bella, G.; Bellagamba, L.; Bellina, F.; Bellomo, M.; Belloni, A.; Beloborodova, O.; Belotskiy, K.; Beltramello, O.; Ami, S. Ben; Benary, O.; Benchekroun, D.; Benchouk, C.; Bendel, M.; Benedict, B. H.; Benekos, N.; Benhammou, Y.; Benjamin, D. P.; Benoit, M.; Bensinger, J. R.; Benslama, K.; Bentvelsen, S.; Berge, D.; Bergeaas Kuutmann, E.; Berger, N.; Berghaus, F.; Berglund, E.; Beringer, J.; Bernardet, K.; Bernat, P.; Bernhard, R.; Bernius, C.; Berry, T.; Bertin, A.; Bertinelli, F.; Bertolucci, F.; Besana, M. I.; Besson, N.; Bethke, S.; Bhimji, W.; Bianchi, R. M.; Bianco, M.; Biebel, O.; Bieniek, S. P.; Biesiada, J.; Biglietti, M.; Bilokon, H.; Bindi, M.; Binet, S.; Bingul, A.; Bini, C.; Biscarat, C.; Bitenc, U.; Black, K. M.; Blair, R. E.; Blanchard, J.-B.; Blanchot, G.; Blazek, T.; Blocker, C.; Blocki, J.; Blondel, A.; Blum, W.; Blumenschein, U.; Bobbink, G. J.; Bobrovnikov, V. B.; Bocchetta, S. S.; Bocci, A.; Boddy, C. R.; Boehler, M.; Boek, J.; Boelaert, N.; Böser, S.; Bogaerts, J. A.; Bogdanchikov, A.; Bogouch, A.; Bohm, C.; Boisvert, V.; Bold, T.; Boldea, V.; Bolnet, N. M.; Bona, M.; Bondarenko, V. G.; Boonekamp, M.; Boorman, G.; Booth, C. N.; Bordoni, S.; Borer, C.; Borisov, A.; Borissov, G.; Borjanovic, I.; Borroni, S.; Bos, K.; Boscherini, D.; Bosman, M.; Boterenbrood, H.; Botterill, D.; Bouchami, J.; Boudreau, J.; Bouhova-Thacker, E. V.; Boulahouache, C.; Bourdarios, C.; Bousson, N.; Boveia, A.; Boyd, J.; Boyko, I. R.; Bozhko, N. I.; Bozovic-Jelisavcic, I.; Bracinik, J.; Braem, A.; Branchini, P.; Brandenburg, G. W.; Brandt, A.; Brandt, G.; Brandt, O.; Bratzler, U.; Brau, B.; Brau, J. E.; Braun, H. M.; Brelier, B.; Bremer, J.; Brenner, R.; Bressler, S.; Breton, D.; Britton, D.; Brochu, F. M.; Brock, I.; Brock, R.; Brodbeck, T. J.; Brodet, E.; Broggi, F.; Bromberg, C.; Brooijmans, G.; Brooks, W. K.; Brown, G.; Brown, H.; Bruckman de Renstrom, P. A.; Bruncko, D.; Bruneliere, R.; Brunet, S.; Bruni, A.; Bruni, G.; Bruschi, M.; Buanes, T.; Bucci, F.; Buchanan, J.; Buchanan, N. J.; Buchholz, P.; Buckingham, R. M.; Buckley, A. G.; Buda, S. I.; Budagov, I. A.; Budick, B.; Büscher, V.; Bugge, L.; Buira-Clark, D.; Bulekov, O.; Bunse, M.; Buran, T.; Burckhart, H.; Burdin, S.; Burgess, T.; Burke, S.; Busato, E.; Bussey, P.; Buszello, C. P.; Butin, F.; Butler, B.; Butler, J. M.; Buttar, C. M.; Butterworth, J. M.; Buttinger, W.; Byatt, T.; Cabrera Urbán, S.; Caforio, D.; Cakir, O.; Calafiura, P.; Calderini, G.; Calfayan, P.; Calkins, R.; Caloba, L. P.; Caloi, R.; Calvet, D.; Calvet, S.; Camacho Toro, R.; Camarri, P.; Cambiaghi, M.; Cameron, D.; Campana, S.; Campanelli, M.; Canale, V.; Canelli, F.; Canepa, A.; Cantero, J.; Capasso, L.; Capeans Garrido, M. D. M.; Caprini, I.; Caprini, M.; Capriotti, D.; Capua, M.; Caputo, R.; Caramarcu, C.; Cardarelli, R.; Carli, T.; Carlino, G.; Carminati, L.; Caron, B.; Caron, S.; Carrillo Montoya, G. D.; Carter, A. A.; Carter, J. R.; Carvalho, J.; Casadei, D.; Casado, M. P.; Cascella, M.; Caso, C.; Castaneda Hernandez, A. M.; Castaneda-Miranda, E.; Castillo Gimenez, V.; Castro, N. F.; Cataldi, G.; Cataneo, F.; Catinaccio, A.; Catmore, J. R.; Cattai, A.; Cattani, G.; Caughron, S.; Cauz, D.; Cavalleri, P.; Cavalli, D.; Cavalli-Sforza, M.; Cavasinni, V.; Ceradini, F.; Cerqueira, A. S.; Cerri, A.; Cerrito, L.; Cerutti, F.; Cetin, S. A.; Cevenini, F.; Chafaq, A.; Chakraborty, D.; Chan, K.; Chapleau, B.; Chapman, J. D.; Chapman, J. W.; Chareyre, E.; Charlton, D. G.; Chavda, V.; Barajas, C. A. Chavez; Cheatham, S.; Chekanov, S.; Chekulaev, S. V.; Chelkov, G. A.; Chelstowska, M. A.; Chen, C.; Chen, H.; Chen, S.; Chen, T.; Chen, X.; Cheng, S.; Cheplakov, A.; Chepurnov, V. F.; Cherkaoui El Moursli, R.; Chernyatin, V.; Cheu, E.; Cheung, S. L.; Chevalier, L.; Chiefari, G.; Chikovani, L.; Childers, J. T.; Chilingarov, A.; Chiodini, G.; Chizhov, M. V.; Choudalakis, G.; Chouridou, S.; Christidi, I. A.; Christov, A.; Chromek-Burckhart, D.; Chu, M. L.; Chudoba, J.; Ciapetti, G.; Ciba, K.; Ciftci, A. K.; Ciftci, R.; Cinca, D.; Cindro, V.; Ciobotaru, M. D.; Ciocca, C.; Ciocio, A.; Cirilli, M.; Ciubancan, M.; Clark, A.; Clark, P. J.; Cleland, W.; Clemens, J. C.; Clement, B.; Clement, C.; Clifft, R. W.; Coadou, Y.; Cobal, M.; Coccaro, A.; Cochran, J.; Coe, P.; Cogan, J. G.; Coggeshall, J.; Cogneras, E.; Cojocaru, C. D.; Colas, J.; Colijn, A. P.; Collard, C.; Collins, N. J.; Collins-Tooth, C.; Collot, J.; Colon, G.; Conde Muiño, P.; Coniavitis, E.; Conidi, M. C.; Consonni, M.; Consorti, V.; Constantinescu, S.; Conta, C.; Conventi, F.; Cook, J.; Cooke, M.; Cooper, B. D.; Cooper-Sarkar, A. M.; Cooper-Smith, N. J.; Copic, K.; Cornelissen, T.; Corradi, M.; Corriveau, F.; Cortes-Gonzalez, A.; Cortiana, G.; Costa, G.; Costa, M. J.; Costanzo, D.; Costin, T.; Côté, D.; Coura Torres, R.; Courneyea, L.; Cowan, G.; Cowden, C.; Cox, B. E.; Cranmer, K.; Crescioli, F.; Cristinziani, M.; Crosetti, G.; Crupi, R.; Crépé-Renaudin, S.; Cuciuc, C.-M.; Almenar, C. Cuenca; Cuhadar Donszelmann, T.; Cuneo, S.; Curatolo, M.; Curtis, C. J.; Cwetanski, P.; Czirr, H.; Czyczula, Z.; D'Auria, S.; D'Onofrio, M.; D'Orazio, A.; Da Silva, P. V. M.; Da Via, C.; Dabrowski, W.; Dai, T.; Dallapiccola, C.; Dam, M.; Dameri, M.; Damiani, D. S.; Danielsson, H. O.; Dannheim, D.; Dao, V.; Darbo, G.; Darlea, G. L.; Daum, C.; Dauvergne, J. P.; Davey, W.; Davidek, T.; Davidson, N.; Davidson, R.; Davies, E.; Davies, M.; Davison, A. R.; Davygora, Y.; Dawe, E.; Dawson, I.; Dawson, J. W.; Daya, R. K.; De, K.; de Asmundis, R.; De Castro, S.; De Castro Faria Salgado, P. E.; De Cecco, S.; de Graat, J.; De Groot, N.; de Jong, P.; De La Taille, C.; De la Torre, H.; De Lotto, B.; De Mora, L.; De Nooij, L.; De Oliveira Branco, M.; De Pedis, D.; de Saintignon, P.; De Salvo, A.; De Sanctis, U.; De Santo, A.; De Vivie De Regie, J. B.; Dean, S.; Dedovich, D. V.; Degenhardt, J.; Dehchar, M.; Deile, M.; Del Papa, C.; Del Peso, J.; Del Prete, T.; Deliyergiyev, M.; Dell'Acqua, A.; Dell'Asta, L.; Della Pietra, M.; della Volpe, D.; Delmastro, M.; Delpierre, P.; Delruelle, N.; Delsart, P. A.; Deluca, C.; Demers, S.; Demichev, M.; Demirkoz, B.; Deng, J.; Denisov, S. P.; Derendarz, D.; Derkaoui, J. E.; Derue, F.; Dervan, P.; Desch, K.; Devetak, E.; Deviveiros, P. O.; Dewhurst, A.; DeWilde, B.; Dhaliwal, S.; Dhullipudi, R.; Di Ciaccio, A.; Di Ciaccio, L.; Di Girolamo, A.; Di Girolamo, B.; Di Luise, S.; Di Mattia, A.; Di Micco, B.; Di Nardo, R.; Di Simone, A.; Di Sipio, R.; Diaz, M. A.; Diblen, F.; Diehl, E. B.; Dietrich, J.; Dietzsch, T. A.; Diglio, S.; Dindar Yagci, K.; Dingfelder, J.; Dionisi, C.; Dita, P.; Dita, S.; Dittus, F.; Djama, F.; Djobava, T.; do Vale, M. A. B.; Do Valle Wemans, A.; Doan, T. K. O.; Dobbs, M.; Dobinson, R.; Dobos, D.; Dobson, E.; Dobson, M.; Dodd, J.; Doglioni, C.; Doherty, T.; Doi, Y.; Dolejsi, J.; Dolenc, I.; Dolezal, Z.; Dolgoshein, B. A.; Dohmae, T.; Donadelli, M.; Donega, M.; Donini, J.; Dopke, J.; Doria, A.; Dos Anjos, A.; Dosil, M.; Dotti, A.; Dova, M. T.; Dowell, J. D.; Doxiadis, A. D.; Doyle, A. T.; Drasal, Z.; Drees, J.; Dressnandt, N.; Drevermann, H.; Driouichi, C.; Dris, M.; Dubbert, J.; Dubbs, T.; Dube, S.; Duchovni, E.; Duckeck, G.; Dudarev, A.; Dudziak, F.; Dührssen, M.; Duerdoth, I. P.; Duflot, L.; Dufour, M.-A.; Dunford, M.; Yildiz, H. Duran; Duxfield, R.; Dwuznik, M.; Dydak, F.; Dzahini, D.; Düren, M.; Ebenstein, W. L.; Ebke, J.; Eckert, S.; Eckweiler, S.; Edmonds, K.; Edwards, C. A.; Edwards, N. C.; Ehrenfeld, W.; Ehrich, T.; Eifert, T.; Eigen, G.; Einsweiler, K.; Eisenhandler, E.; Ekelof, T.; El Kacimi, M.; Ellert, M.; Elles, S.; Ellinghaus, F.; Ellis, K.; Ellis, N.; Elmsheuser, J.; Elsing, M.; Ely, R.; Emeliyanov, D.; Engelmann, R.; Engl, A.; Epp, B.; Eppig, A.; Erdmann, J.; Ereditato, A.; Eriksson, D.; Ernst, J.; Ernst, M.; Ernwein, J.; Errede, D.; Errede, S.; Ertel, E.; Escalier, M.; Escobar, C.; Espinal Curull, X.; Esposito, B.; Etienne, F.; Etienvre, A. I.; Etzion, E.; Evangelakou, D.; Evans, H.; Fabbri, L.; Fabre, C.; Fakhrutdinov, R. M.; Falciano, S.; Falou, A. C.; Fang, Y.; Fanti, M.; Farbin, A.; Farilla, A.; Farley, J.; Farooque, T.; Farrington, S. M.; Farthouat, P.; Fassnacht, P.; Fassouliotis, D.; Fatholahzadeh, B.; Favareto, A.; Fayard, L.; Fazio, S.; Febbraro, R.; Federic, P.; Fedin, O. L.; Fedorko, W.; Fehling-Kaschek, M.; Feligioni, L.; Fellmann, D.; Felzmann, C. U.; Feng, C.; Feng, E. J.; Fenyuk, A. B.; Ferencei, J.; Ferland, J.; Fernando, W.; Ferrag, S.; Ferrando, J.; Ferrara, V.; Ferrari, A.; Ferrari, P.; Ferrari, R.; Ferrer, A.; Ferrer, M. L.; Ferrere, D.; Ferretti, C.; Ferretto Parodi, A.; Fiascaris, M.; Fiedler, F.; Filipčič, A.; Filippas, A.; Filthaut, F.; Fincke-Keeler, M.; Fiolhais, M. C. N.; Fiorini, L.; Firan, A.; Fischer, G.; Fischer, P.; Fisher, M. J.; Fisher, S. M.; Flechl, M.; Fleck, I.; Fleckner, J.; Fleischmann, P.; Fleischmann, S.; Flick, T.; Flores Castillo, L. R.; Flowerdew, M. J.; Föhlisch, F.; Fokitis, M.; Martin, T. Fonseca; Forbush, D. A.; Formica, A.; Forti, A.; Fortin, D.; Foster, J. M.; Fournier, D.; Foussat, A.; Fowler, A. J.; Fowler, K.; Fox, H.; Francavilla, P.; Franchino, S.; Francis, D.; Frank, T.; Franklin, M.; Franz, S.; Fraternali, M.; Fratina, S.; French, S. T.; Froeschl, R.; Froidevaux, D.; Frost, J. A.; Fukunaga, C.; Fullana Torregrosa, E.; Fuster, J.; Gabaldon, C.; Gabizon, O.; Gadfort, T.; Gadomski, S.; Gagliardi, G.; Gagnon, P.; Galea, C.; Gallas, E. J.; Gallas, M. V.; Gallo, V.; Gallop, B. J.; Gallus, P.; Galyaev, E.; Gan, K. K.; Gao, Y. S.; Gapienko, V. A.; Gaponenko, A.; Garberson, F.; Garcia-Sciveres, M.; García, C.; Navarro, J. E. García; Gardner, R. W.; Garelli, N.; Garitaonandia, H.; Garonne, V.; Garvey, J.; Gatti, C.; Gaudio, G.; Gaumer, O.; Gaur, B.; Gauthier, L.; Gavrilenko, I. L.; Gay, C.; Gaycken, G.; Gayde, J.-C.; Gazis, E. N.; Ge, P.; Gee, C. N. P.; Geerts, D. A. A.; Geich-Gimbel, Ch.; Gellerstedt, K.; Gemme, C.; Gemmell, A.; Genest, M. H.; Gentile, S.; George, M.; George, S.; Gerlach, P.; Gershon, A.; Geweniger, C.; Ghazlane, H.; Ghez, P.; Ghodbane, N.; Giacobbe, B.; Giagu, S.; Giakoumopoulou, V.; Giangiobbe, V.; Gianotti, F.; Gibbard, B.; Gibson, A.; Gibson, S. M.; Gilbert, L. M.; Gilchriese, M.; Gilewsky, V.; Gillberg, D.; Gillman, A. R.; Gingrich, D. M.; Ginzburg, J.; Giokaris, N.; Giordano, R.; Giorgi, F. M.; Giovannini, P.; Giraud, P. F.; Giugni, D.; Giunta, M.; Giusti, P.; Gjelsten, B. K.; Gladilin, L. K.; Glasman, C.; Glatzer, J.; Glazov, A.; Glitza, K. W.; Glonti, G. L.; Godfrey, J.; Godlewski, J.; Goebel, M.; Göpfert, T.; Goeringer, C.; Gössling, C.; Göttfert, T.; Goldfarb, S.; Goldin, D.; Golling, T.; Golovnia, S. N.; Gomes, A.; Fajardo, L. S. Gomez; Gonçalo, R.; Goncalves Pinto Firmino Da Costa, J.; Gonella, L.; Gonidec, A.; Gonzalez, S.; González de la Hoz, S.; Silva, M. L. Gonzalez; Gonzalez-Sevilla, S.; Goodson, J. J.; Goossens, L.; Gorbounov, P. A.; Gordon, H. A.; Gorelov, I.; Gorfine, G.; Gorini, B.; Gorini, E.; Gorišek, A.; Gornicki, E.; Gorokhov, S. A.; Goryachev, V. N.; Gosdzik, B.; Gosselink, M.; Gostkin, M. I.; Gouanère, M.; Eschrich, I. Gough; Gouighri, M.; Goujdami, D.; Goulette, M. P.; Goussiou, A. G.; Goy, C.; Grabowska-Bold, I.; Grabski, V.; Grafström, P.; Grah, C.; Grahn, K.-J.; Grancagnolo, F.; Grancagnolo, S.; Grassi, V.; Gratchev, V.; Grau, N.; Gray, H. M.; Gray, J. A.; Graziani, E.; Grebenyuk, O. G.; Greenfield, D.; Greenshaw, T.; Greenwood, Z. D.; Gregor, I. M.; Grenier, P.; Griffiths, J.; Grigalashvili, N.; Grillo, A. A.; Grinstein, S.; Grishkevich, Y. V.; Grivaz, J.-F.; Grognuz, J.; Groh, M.; Gross, E.; Grosse-Knetter, J.; Groth-Jensen, J.; Grybel, K.; Guarino, V. J.; Guest, D.; Guicheney, C.; Guida, A.; Guillemin, T.; Guindon, S.; Guler, H.; Gunther, J.; Guo, B.; Guo, J.; Gupta, A.; Gusakov, Y.; Gushchin, V. N.; Gutierrez, A.; Gutierrez, P.; Guttman, N.; Gutzwiller, O.; Guyot, C.; Gwenlan, C.; Gwilliam, C. B.; Haas, A.; Haas, S.; Haber, C.; Hackenburg, R.; Hadavand, H. K.; Hadley, D. R.; Haefner, P.; Hahn, F.; Haider, S.; Hajduk, Z.; Hakobyan, H.; Haller, J.; Hamacher, K.; Hamal, P.; Hamilton, A.; Hamilton, S.; Han, H.; Han, L.; Hanagaki, K.; Hance, M.; Handel, C.; Hanke, P.; Hansen, J. R.; Hansen, J. B.; Hansen, J. D.; Hansen, P. H.; Hansson, P.; Hara, K.; Hare, G. A.; Harenberg, T.; Harkusha, S.; Harper, D.; Harrington, R. D.; Harris, O. M.; Harrison, K.; Hartert, J.; Hartjes, F.; Haruyama, T.; Harvey, A.; Hasegawa, S.; Hasegawa, Y.; Hassani, S.; Hatch, M.; Hauff, D.; Haug, S.; Hauschild, M.; Hauser, R.; Havranek, M.; Hawes, B. M.; Hawkes, C. M.; Hawkings, R. J.; Hawkins, D.; Hayakawa, T.; Hayden, D.; Hayward, H. S.; Haywood, S. J.; Hazen, E.; He, M.; Head, S. J.; Hedberg, V.; Heelan, L.; Heim, S.; Heinemann, B.; Heisterkamp, S.; Helary, L.; Heller, M.; Hellman, S.; Helsens, C.; Henderson, R. C. W.; Henke, M.; Henrichs, A.; Correia, A. M. Henriques; Henrot-Versille, S.; Henry-Couannier, F.; Hensel, C.; Henß, T.; Hernandez, C. M.; Hernández Jiménez, Y.; Herrberg, R.; Hershenhorn, A. D.; Herten, G.; Hertenberger, R.; Hervas, L.; Hessey, N. P.; Hidvegi, A.; Higón-Rodriguez, E.; Hill, D.; Hill, J. C.; Hill, N.; Hiller, K. H.; Hillert, S.; Hillier, S. J.; Hinchliffe, I.; Hines, E.; Hirose, M.; Hirsch, F.; Hirschbuehl, D.; Hobbs, J.; Hod, N.; Hodgkinson, M. C.; Hodgson, P.; Hoecker, A.; Hoeferkamp, M. R.; Hoffman, J.; Hoffmann, D.; Hohlfeld, M.; Holder, M.; Holmes, A.; Holmgren, S. O.; Holy, T.; Holzbauer, J. L.; Homma, Y.; Hong, T. M.; Hooft van Huysduynen, L.; Horazdovsky, T.; Horn, C.; Horner, S.; Horton, K.; Hostachy, J.-Y.; Hou, S.; Houlden, M. A.; Hoummada, A.; Howarth, J.; Howell, D. F.; Hristova, I.; Hrivnac, J.; Hruska, I.; Hryn'ova, T.; Hsu, P. J.; Hsu, S.-C.; Huang, G. S.; Hubacek, Z.; Hubaut, F.; Huegging, F.; Huffman, T. B.; Hughes, E. W.; Hughes, G.; Hughes-Jones, R. E.; Huhtinen, M.; Hurst, P.; Hurwitz, M.; Husemann, U.; Huseynov, N.; Huston, J.; Huth, J.; Iacobucci, G.; Iakovidis, G.; Ibbotson, M.; Ibragimov, I.; Ichimiya, R.; Iconomidou-Fayard, L.; Idarraga, J.; Idzik, M.; Iengo, P.; Igonkina, O.; Ikegami, Y.; Ikeno, M.; Ilchenko, Y.; Iliadis, D.; Imbault, D.; Imhaeuser, M.; Imori, M.; Ince, T.; Inigo-Golfin, J.; Ioannou, P.; Iodice, M.; Ionescu, G.; Irles Quiles, A.; Ishii, K.; Ishikawa, A.; Ishino, M.; Ishmukhametov, R.; Issever, C.; Istin, S.; Itoh, Y.; Ivashin, A. V.; Iwanski, W.; Iwasaki, H.; Izen, J. M.; Izzo, V.; Jackson, B.; Jackson, J. N.; Jackson, P.; Jaekel, M. R.; Jain, V.; Jakobs, K.; Jakobsen, S.; Jakubek, J.; Jana, D. K.; Jankowski, E.; Jansen, E.; Jantsch, A.; Janus, M.; Jarlskog, G.; Jeanty, L.; Jelen, K.; Jen-La Plante, I.; Jenni, P.; Jeremie, A.; Jež, P.; Jézéquel, S.; Jha, M. K.; Ji, H.; Ji, W.; Jia, J.; Jiang, Y.; Belenguer, M. Jimenez; Jin, G.; Jin, S.; Jinnouchi, O.; Joergensen, M. D.; Joffe, D.; Johansen, L. G.; Johansen, M.; Johansson, K. E.; Johansson, P.; Johnert, S.; Johns, K. A.; Jon-And, K.; Jones, G.; Jones, R. W. L.; Jones, T. W.; Jones, T. J.; Jonsson, O.; Joram, C.; Jorge, P. M.; Joseph, J.; Jovin, T.; Ju, X.; Juranek, V.; Jussel, P.; Kabachenko, V. V.; Kabana, S.; Kaci, M.; Kaczmarska, A.; Kadlecik, P.; Kado, M.; Kagan, H.; Kagan, M.; Kaiser, S.; Kajomovitz, E.; Kalinin, S.; Kalinovskaya, L. V.; Kama, S.; Kanaya, N.; Kaneda, M.; Kanno, T.; Kantserov, V. A.; Kanzaki, J.; Kaplan, B.; Kapliy, A.; Kaplon, J.; Kar, D.; Karagoz, M.; Karnevskiy, M.; Karr, K.; Kartvelishvili, V.; Karyukhin, A. N.; Kashif, L.; Kasmi, A.; Kass, R. D.; Kastanas, A.; Kataoka, M.; Kataoka, Y.; Katsoufis, E.; Katzy, J.; Kaushik, V.; Kawagoe, K.; Kawamoto, T.; Kawamura, G.; Kayl, M. S.; Kazanin, V. A.; Kazarinov, M. Y.; Keates, J. R.; Keeler, R.; Kehoe, R.; Keil, M.; Kekelidze, G. D.; Kelly, M.; Kennedy, J.; Kenney, C. J.; Kenyon, M.; Kepka, O.; Kerschen, N.; Kerševan, B. P.; Kersten, S.; Kessoku, K.; Ketterer, C.; Keung, J.; Khakzad, M.; Khalil-zada, F.; Khandanyan, H.; Khanov, A.; Kharchenko, D.; Khodinov, A.; Kholodenko, A. G.; Khomich, A.; Khoo, T. J.; Khoriauli, G.; Khoroshilov, A.; Khovanskiy, N.; Khovanskiy, V.; Khramov, E.; Khubua, J.; Kim, H.; Kim, M. S.; Kim, P. C.; Kim, S. H.; Kimura, N.; Kind, O.; King, B. T.; King, M.; King, R. S. B.; Kirk, J.; Kirsch, G. P.; Kirsch, L. E.; Kiryunin, A. E.; Kisielewska, D.; Kittelmann, T.; Kiver, A. M.; Kiyamura, H.; Kladiva, E.; Klaiber-Lodewigs, J.; Klein, M.; Klein, U.; Kleinknecht, K.; Klemetti, M.; Klier, A.; Klimentov, A.; Klingenberg, R.; Klinkby, E. B.; Klioutchnikova, T.; Klok, P. F.; Klous, S.; Kluge, E.-E.; Kluge, T.; Kluit, P.; Kluth, S.; Kneringer, E.; Knobloch, J.; Knoops, E. B. F. G.; Knue, A.; Ko, B. R.; Kobayashi, T.; Kobel, M.; Kocian, M.; Kocnar, A.; Kodys, P.; Köneke, K.; König, A. C.; Koenig, S.; Köpke, L.; Koetsveld, F.; Koevesarki, P.; Koffas, T.; Koffeman, E.; Kohn, F.; Kohout, Z.; Kohriki, T.; Koi, T.; Kokott, T.; Kolachev, G. M.; Kolanoski, H.; Kolesnikov, V.; Koletsou, I.; Koll, J.; Kollar, D.; Kollefrath, M.; Kolya, S. D.; Komar, A. A.; Komaragiri, J. R.; Komori, Y.; Kondo, T.; Kono, T.; Kononov, A. I.; Konoplich, R.; Konstantinidis, N.; Kootz, A.; Koperny, S.; Kopikov, S. V.; Korcyl, K.; Kordas, K.; Koreshev, V.; Korn, A.; Korol, A.; Korolkov, I.; Korolkova, E. V.; Korotkov, V. A.; Kortner, O.; Kortner, S.; Kostyukhin, V. V.; Kotamäki, M. J.; Kotov, S.; Kotov, V. M.; Kotwal, A.; Kourkoumelis, C.; Kouskoura, V.; Koutsman, A.; Kowalewski, R.; Kowalski, T. Z.; Kozanecki, W.; Kozhin, A. S.; Kral, V.; Kramarenko, V. A.; Kramberger, G.; Krasel, O.; Krasny, M. W.; Krasznahorkay, A.; Kraus, J.; Kreisel, A.; Krejci, F.; Kretzschmar, J.; Krieger, N.; Krieger, P.; Kroeninger, K.; Kroha, H.; Kroll, J.; Kroseberg, J.; Krstic, J.; Kruchonak, U.; Krüger, H.; Kruker, T.; Krumshteyn, Z. V.; Kruth, A.; Kubota, T.; Kuehn, S.; Kugel, A.; Kuhl, T.; Kuhn, D.; Kukhtin, V.; Kulchitsky, Y.; Kuleshov, S.; Kummer, C.; Kuna, M.; Kundu, N.; Kunkle, J.; Kupco, A.; Kurashige, H.; Kurata, M.; Kurochkin, Y. A.; Kus, V.; Kuykendall, W.; Kuze, M.; Kuzhir, P.; Kvasnicka, O.; Kvita, J.; Kwee, R.; La Rosa, A.; La Rotonda, L.; Labarga, L.; Labbe, J.; Lablak, S.; Lacasta, C.; Lacava, F.; Lacker, H.; Lacour, D.; Lacuesta, V. R.; Ladygin, E.; Lafaye, R.; Laforge, B.; Lagouri, T.; Lai, S.; Laisne, E.; Lamanna, M.; Lampen, C. L.; Lampl, W.; Lancon, E.; Landgraf, U.; Landon, M. P. J.; Landsman, H.; Lane, J. L.; Lange, C.; Lankford, A. J.; Lanni, F.; Lantzsch, K.; Laplace, S.; Lapoire, C.; Laporte, J. F.; Lari, T.; Larionov, A. V.; Larner, A.; Lasseur, C.; Lassnig, M.; Lau, W.; Laurelli, P.; Lavorato, A.; Lavrijsen, W.; Laycock, P.; Lazarev, A. B.; Lazzaro, A.; Le Dortz, O.; Le Guirriec, E.; Le Maner, C.; Le Menedeu, E.; Lebel, C.; LeCompte, T.; Ledroit-Guillon, F.; Lee, H.; Lee, J. S. H.; Lee, S. C.; Lee, L.; Lefebvre, M.; Legendre, M.; Leger, A.; LeGeyt, B. C.; Legger, F.; Leggett, C.; Lehmacher, M.; Lehmann Miotto, G.; Lei, X.; Leite, M. A. L.; Leitner, R.; Lellouch, D.; Lellouch, J.; Leltchouk, M.; Lendermann, V.; Leney, K. J. C.; Lenz, T.; Lenzen, G.; Lenzi, B.; Leonhardt, K.; Leontsinis, S.; Leroy, C.; Lessard, J.-R.; Lesser, J.; Lester, C. G.; Leung Fook Cheong, A.; Levêque, J.; Levin, D.; Levinson, L. J.; Levitski, M. S.; Lewandowska, M.; Lewis, A.; Lewis, G. H.; Leyko, A. M.; Leyton, M.; Li, B.; Li, H.; Li, S.; Li, X.; Liang, Z.; Liang, Z.; Liberti, B.; Lichard, P.; Lichtnecker, M.; Lie, K.; Liebig, W.; Lifshitz, R.; Lilley, J. N.; Limbach, C.; Limosani, A.; Limper, M.; Lin, S. C.; Linde, F.; Linnemann, J. T.; Lipeles, E.; Lipinsky, L.; Lipniacka, A.; Liss, T. M.; Lissauer, D.; Lister, A.; Litke, A. M.; Liu, C.; Liu, D.; Liu, H.; Liu, J. B.; Liu, M.; Liu, S.; Liu, Y.; Livan, M.; Livermore, S. S. A.; Lleres, A.; Llorente Merino, J.; Lloyd, S. L.; Lobodzinska, E.; Loch, P.; Lockman, W. S.; Lockwitz, S.; Loddenkoetter, T.; Loebinger, F. K.; Loginov, A.; Loh, C. W.; Lohse, T.; Lohwasser, K.; Lokajicek, M.; Loken, J.; Lombardo, V. P.; Long, R. E.; Lopes, L.; Lopez Mateos, D.; Losada, M.; Loscutoff, P.; Sterzo, F. Lo; Losty, M. J.; Lou, X.; Lounis, A.; Loureiro, K. F.; Love, J.; Love, P. A.; Lowe, A. J.; Lu, F.; Lubatti, H. J.; Luci, C.; Lucotte, A.; Ludwig, A.; Ludwig, D.; Ludwig, I.; Ludwig, J.; Luehring, F.; Luijckx, G.; Lumb, D.; Luminari, L.; Lund, E.; Lund-Jensen, B.; Lundberg, B.; Lundberg, J.; Lundquist, J.; Lungwitz, M.; Lupi, A.; Lutz, G.; Lynn, D.; Lys, J.; Lytken, E.; Ma, H.; Ma, L. L.; Macana Goia, J. A.; Maccarrone, G.; Macchiolo, A.; Maček, B.; Miguens, J. Machado; Macina, D.; Mackeprang, R.; Madaras, R. J.; Mader, W. F.; Maenner, R.; Maeno, T.; Mättig, P.; Mättig, S.; Magalhaes Martins, P. J.; Magnoni, L.; Magradze, E.; Mahalalel, Y.; Mahboubi, K.; Mahout, G.; Maiani, C.; Maidantchik, C.; Maio, A.; Majewski, S.; Makida, Y.; Makovec, N.; Mal, P.; Malecki, Pa.; Malecki, P.; Maleev, V. P.; Malek, F.; Mallik, U.; Malon, D.; Maltezos, S.; Malyshev, V.; Malyukov, S.; Mameghani, R.; Mamuzic, J.; Manabe, A.; Mandelli, L.; Mandić, I.; Mandrysch, R.; Maneira, J.; Mangeard, P. S.; Manjavidze, I. D.; Mann, A.; Manning, P. M.; Manousakis-Katsikakis, A.; Mansoulie, B.; Manz, A.; Mapelli, A.; Mapelli, L.; March, L.; Marchand, J. F.; Marchese, F.; Marchiori, G.; Marcisovsky, M.; Marin, A.; Marino, C. P.; Marroquim, F.; Marshall, R.; Marshall, Z.; Martens, F. K.; Marti-Garcia, S.; Martin, A. J.; Martin, B.; Martin, B.; Martin, F. F.; Martin, J. P.; Martin, Ph.; Martin, T. A.; dit Latour, B. Martin; Martinez, M.; Outschoorn, V. Martinez; Martyniuk, A. C.; Marx, M.; Marzano, F.; Marzin, A.; Masetti, L.; Mashimo, T.; Mashinistov, R.; Masik, J.; Maslennikov, A. L.; Maß, M.; Massa, I.; Massaro, G.; Massol, N.; Mastrandrea, P.; Mastroberardino, A.; Masubuchi, T.; Mathes, M.; Matricon, P.; Matsumoto, H.; Matsunaga, H.; Matsushita, T.; Mattravers, C.; Maugain, J. M.; Maxfield, S. J.; Maximov, D. A.; May, E. N.; Mayne, A.; Mazini, R.; Mazur, M.; Mazzanti, M.; Mazzoni, E.; Mc Kee, S. P.; McCarn, A.; McCarthy, R. L.; McCarthy, T. G.; McCubbin, N. A.; McFarlane, K. W.; Mcfayden, J. A.; McGlone, H.; Mchedlidze, G.; McLaren, R. A.; Mclaughlan, T.; McMahon, S. J.; McPherson, R. A.; Meade, A.; Mechnich, J.; Mechtel, M.; Medinnis, M.; Meera-Lebbai, R.; Meguro, T.; Mehdiyev, R.; Mehlhase, S.; Mehta, A.; Meier, K.; Meinhardt, J.; Meirose, B.; Melachrinos, C.; Mellado Garcia, B. R.; Mendoza Navas, L.; Meng, Z.; Mengarelli, A.; Menke, S.; Menot, C.; Meoni, E.; Mercurio, K. M.; Mermod, P.; Merola, L.; Meroni, C.; Merritt, F. S.; Messina, A.; Metcalfe, J.; Mete, A. S.; Meuser, S.; Meyer, C.; Meyer, J.-P.; Meyer, J.; Meyer, J.; Meyer, T. C.; Meyer, W. T.; Miao, J.; Michal, S.; Micu, L.; Middleton, R. P.; Miele, P.; Migas, S.; Mijović, L.; Mikenberg, G.; Mikestikova, M.; Mikuž, M.; Miller, D. W.; Miller, R. J.; Mills, W. J.; Mills, C.; Milov, A.; Milstead, D. A.; Milstein, D.; Minaenko, A. A.; Miñano, M.; Minashvili, I. A.; Mincer, A. I.; Mindur, B.; Mineev, M.; Ming, Y.; Minot, A. S.; Mir, L. M.; Mirabelli, G.; Miralles Verge, L.; Misiejuk, A.; Mitrevski, J.; Mitrofanov, G. Y.; Mitsou, V. A.; Mitsui, S.; Miyagawa, P. S.; Miyazaki, K.; Mjörnmark, J. U.; Moa, T.; Mockett, P.; Moed, S.; Moeller, V.; Mönig, K.; Möser, N.; Mohapatra, S.; Mohn, B.; Mohr, W.; Mohrdieck-Möck, S.; Moisseev, A. M.; Moles-Valls, R.; Molina-Perez, J.; Monk, J.; Monnier, E.; Montesano, S.; Monticelli, F.; Monzani, S.; Moore, R. W.; Moorhead, G. F.; Herrera, C. Mora; Moraes, A.; Morais, A.; Morange, N.; Morel, J.; Morello, G.; Moreno, D.; Llácer, M. Moreno; Morettini, P.; Morii, M.; Morin, J.; Morita, Y.; Morley, A. K.; Mornacchi, G.; Morone, M.-C.; Morozov, S. V.; Morris, J. D.; Morvaj, L.; Moser, H. G.; Mosidze, M.; Moss, J.; Mount, R.; Mountricha, E.; Mouraviev, S. V.; Moyse, E. J. W.; Mudrinic, M.; Mueller, F.; Mueller, J.; Mueller, K.; Müller, T. A.; Muenstermann, D.; Muijs, A.; Muir, A.; Munwes, Y.; Murakami, K.; Murray, W. J.; Mussche, I.; Musto, E.; Myagkov, A. G.; Myska, M.; Nadal, J.; Nagai, K.; Nagano, K.; Nagasaka, Y.; Nairz, A. M.; Nakahama, Y.; Nakamura, K.; Nakano, I.; Nanava, G.; Napier, A.; Nash, M.; Nation, N. R.; Nattermann, T.; Naumann, T.; Navarro, G.; Neal, H. A.; Nebot, E.; Nechaeva, P. Yu.; Negri, A.; Negri, G.; Nektarijevic, S.; Nelson, A.; Nelson, S.; Nelson, T. K.; Nemecek, S.; Nemethy, P.; Nepomuceno, A. A.; Nessi, M.; Nesterov, S. Y.; Neubauer, M. S.; Neusiedl, A.; Neves, R. M.; Nevski, P.; Newman, P. R.; Nickerson, R. B.; Nicolaidou, R.; Nicolas, L.; Nicquevert, B.; Niedercorn, F.; Nielsen, J.; Niinikoski, T.; Nikiforov, A.; Nikolaenko, V.; Nikolaev, K.; Nikolic-Audit, I.; Nikolics, K.; Nikolopoulos, K.; Nilsen, H.; Nilsson, P.; Ninomiya, Y.; Nisati, A.; Nishiyama, T.; Nisius, R.; Nodulman, L.; Nomachi, M.; Nomidis, I.; Nordberg, M.; Nordkvist, B.; Norton, P. R.; Novakova, J.; Nozaki, M.; Nožička, M.; Nozka, L.; Nugent, I. M.; Nuncio-Quiroz, A.-E.; Nunes Hanninger, G.; Nunnemann, T.; Nurse, E.; Nyman, T.; O'Brien, B. J.; O'Neale, S. W.; O'Neil, D. C.; O'Shea, V.; Oakham, F. G.; Oberlack, H.; Ocariz, J.; Ochi, A.; Oda, S.; Odaka, S.; Odier, J.; Ogren, H.; Oh, A.; Oh, S. H.; Ohm, C. C.; Ohshima, T.; Ohshita, H.; Ohska, T. K.; Ohsugi, T.; Okada, S.; Okawa, H.; Okumura, Y.; Okuyama, T.; Olcese, M.; Olchevski, A. G.; Oliveira, M.; Damazio, D. Oliveira; Garcia, E. Oliver; Olivito, D.; Olszewski, A.; Olszowska, J.; Omachi, C.; Onofre, A.; Onyisi, P. U. E.; Oram, C. J.; Oreglia, M. J.; Oren, Y.; Orestano, D.; Orlov, I.; Oropeza Barrera, C.; Orr, R. S.; Osculati, B.; Ospanov, R.; Osuna, C.; y Garzon, G. Otero; Ottersbach, J. P.; Ouchrif, M.; Ould-Saada, F.; Ouraou, A.; Ouyang, Q.; Owen, M.; Owen, S.; Øye, O. K.; Ozcan, V. E.; Ozturk, N.; Pacheco Pages, A.; Padilla Aranda, C.; Paganis, E.; Paige, F.; Pajchel, K.; Palestini, S.; Pallin, D.; Palma, A.; Palmer, J. D.; Pan, Y. B.; Panagiotopoulou, E.; Panes, B.; Panikashvili, N.; Panitkin, S.; Pantea, D.; Panuskova, M.; Paolone, V.; Papadelis, A.; Papadopoulou, Th. D.; Paramonov, A.; Park, W.; Parker, M. A.; Parodi, F.; Parsons, J. A.; Parzefall, U.; Pasqualucci, E.; Passeri, A.; Pastore, F.; Pastore, Fr.; Pásztor, G.; Pataraia, S.; Patel, N.; Pater, J. R.; Patricelli, S.; Pauly, T.; Pecsy, M.; Pedraza Morales, M. I.; Peleganchuk, S. V.; Peng, H.; Pengo, R.; Penson, A.; Penwell, J.; Perantoni, M.; Perez, K.; Cavalcanti, T. Perez; Codina, E. Perez; Pérez García-Estañ, M. T.; Reale, V. Perez; Perini, L.; Pernegger, H.; Perrino, R.; Perrodo, P.; Persembe, S.; Peshekhonov, V. D.; Peters, O.; Petersen, B. A.; Petersen, J.; Petersen, T. C.; Petit, E.; Petridis, A.; Petridou, C.; Petrolo, E.; Petrucci, F.; Petschull, D.; Petteni, M.; Pezoa, R.; Phan, A.; Phillips, A. W.; Phillips, P. W.; Piacquadio, G.; Piccaro, E.; Piccinini, M.; Pickford, A.; Piec, S. M.; Piegaia, R.; Pilcher, J. E.; Pilkington, A. D.; Pina, J.; Pinamonti, M.; Pinder, A.; Pinfold, J. L.; Ping, J.; Pinto, B.; Pirotte, O.; Pizio, C.; Placakyte, R.; Plamondon, M.; Plano, W. G.; Pleier, M.-A.; Pleskach, A. V.; Poblaguev, A.; Poddar, S.; Podlyski, F.; Poggioli, L.; Poghosyan, T.; Pohl, M.; Polci, F.; Polesello, G.; Policicchio, A.; Polini, A.; Poll, J.; Polychronakos, V.; Pomarede, D. M.; Pomeroy, D.; Pommès, K.; Pontecorvo, L.; Pope, B. G.; Popeneciu, G. A.; Popovic, D. S.; Poppleton, A.; Portell Bueso, X.; Porter, R.; Posch, C.; Pospelov, G. E.; Pospisil, S.; Potrap, I. N.; Potter, C. J.; Potter, C. T.; Poulard, G.; Poveda, J.; Prabhu, R.; Pralavorio, P.; Prasad, S.; Pravahan, R.; Prell, S.; Pretzl, K.; Pribyl, L.; Price, D.; Price, L. E.; Price, M. J.; Prichard, P. M.; Prieur, D.; Primavera, M.; Prokofiev, K.; Prokoshin, F.; Protopopescu, S.; Proudfoot, J.; Prudent, X.; Przysiezniak, H.; Psoroulas, S.; Ptacek, E.; Purdham, J.; Purohit, M.; Puzo, P.; Pylypchenko, Y.; Qian, J.; Qian, Z.; Qin, Z.; Quadt, A.; Quarrie, D. R.; Quayle, W. B.; Quinonez, F.; Raas, M.; Radescu, V.; Radics, B.; Rador, T.; Ragusa, F.; Rahal, G.; Rahimi, A. M.; Rahm, D.; Rajagopalan, S.; Rammensee, M.; Rammes, M.; Ramstedt, M.; Randrianarivony, K.; Ratoff, P. N.; Rauscher, F.; Rauter, E.; Raymond, M.; Read, A. L.; Rebuzzi, D. M.; Redelbach, A.; Redlinger, G.; Reece, R.; Reeves, K.; Reichold, A.; Reinherz-Aronis, E.; Reinsch, A.; Reisinger, I.; Reljic, D.; Rembser, C.; Ren, Z. L.; Renaud, A.; Renkel, P.; Rescigno, M.; Resconi, S.; Resende, B.; Reznicek, P.; Rezvani, R.; Richards, A.; Richter, R.; Richter-Was, E.; Ridel, M.; Rieke, S.; Rijpstra, M.; Rijssenbeek, M.; Rimoldi, A.; Rinaldi, L.; Rios, R. R.; Riu, I.; Rivoltella, G.; Rizatdinova, F.; Rizvi, E.; Robertson, S. H.; Robichaud-Veronneau, A.; Robinson, D.; Robinson, J. E. M.; Robinson, M.; Robson, A.; Rocha de Lima, J. G.; Roda, C.; Dos Santos, D. Roda; Rodier, S.; Rodriguez, D.; Garcia, Y. Rodriguez; Roe, A.; Roe, S.; Røhne, O.; Rojo, V.; Rolli, S.; Romaniouk, A.; Romanov, V. M.; Romeo, G.; Romero Maltrana, D.; Roos, L.; Ros, E.; Rosati, S.; Rosbach, K.; Rose, M.; Rosenbaum, G. A.; Rosenberg, E. I.; Rosendahl, P. L.; Rosselet, L.; Rossetti, V.; Rossi, E.; Rossi, L. P.; Rossi, L.; Rotaru, M.; Roth, I.; Rothberg, J.; Rousseau, D.; Royon, C. R.; Rozanov, A.; Rozen, Y.; Ruan, X.; Rubinskiy, I.; Ruckert, B.; Ruckstuhl, N.; Rud, V. I.; Rudolph, C.; Rudolph, G.; Rühr, F.; Ruggieri, F.; Ruiz-Martinez, A.; Rulikowska-Zarebska, E.; Rumiantsev, V.; Rumyantsev, L.; Runge, K.; Runolfsson, O.; Rurikova, Z.; Rusakovich, N. A.; Rust, D. R.; Rutherfoord, J. P.; Ruwiedel, C.; Ruzicka, P.; Ryabov, Y. F.; Ryadovikov, V.; Ryan, P.; Rybar, M.; Rybkin, G.; Ryder, N. C.; Rzaeva, S.; Saavedra, A. F.; Sadeh, I.; Sadrozinski, H. F.-W.; Sadykov, R.; Safai Tehrani, F.; Sakamoto, H.; Salamanna, G.; Salamon, A.; Saleem, M.; Salihagic, D.; Salnikov, A.; Salt, J.; Salvachua Ferrando, B. M.; Salvatore, D.; Salvatore, F.; Salvucci, A.; Salzburger, A.; Sampsonidis, D.; Samset, B. H.; Sanchez, A.; Sandaker, H.; Sander, H. G.; Sanders, M. P.; Sandhoff, M.; Sandoval, T.; Sandstroem, R.; Sandvoss, S.; Sankey, D. P. C.; Sansoni, A.; Santamarina Rios, C.; Santoni, C.; Santonico, R.; Santos, H.; Saraiva, J. G.; Sarangi, T.; Sarkisyan-Grinbaum, E.; Sarri, F.; Sartisohn, G.; Sasaki, O.; Sasaki, T.; Sasao, N.; Satsounkevitch, I.; Sauvage, G.; Sauvan, E.; Sauvan, J. B.; Savard, P.; Savinov, V.; Savu, D. O.; Savva, P.; Sawyer, L.; Saxon, D. H.; Says, L. P.; Sbarra, C.; Sbrizzi, A.; Scallon, O.; Scannicchio, D. A.; Schaarschmidt, J.; Schacht, P.; Schäfer, U.; Schaepe, S.; Schaetzel, S.; Schaffer, A. C.; Schaile, D.; Schamberger, R. D.; Schamov, A. G.; Scharf, V.; Schegelsky, V. A.; Scheirich, D.; Scherzer, M. I.; Schiavi, C.; Schieck, J.; Schioppa, M.; Schlenker, S.; Schlereth, J. L.; Schmidt, E.; Schmieden, K.; Schmitt, C.; Schmitt, S.; Schmitz, M.; Schöning, A.; Schott, M.; Schouten, D.; Schovancova, J.; Schram, M.; Schroeder, C.; Schroer, N.; Schuh, S.; Schuler, G.; Schultes, J.; Schultz-Coulon, H.-C.; Schulz, H.; Schumacher, J. W.; Schumacher, M.; Schumm, B. A.; Schune, Ph.; Schwanenberger, C.; Schwartzman, A.; Schwemling, Ph.; Schwienhorst, R.; Schwierz, R.; Schwindling, J.; Scott, W. G.; Searcy, J.; Sedykh, E.; Segura, E.; Seidel, S. C.; Seiden, A.; Seifert, F.; Seixas, J. M.; Sekhniaidze, G.; Seliverstov, D. M.; Sellden, B.; Sellers, G.; Seman, M.; Semprini-Cesari, N.; Serfon, C.; Serin, L.; Seuster, R.; Severini, H.; Sevior, M. E.; Sfyrla, A.; Shabalina, E.; Shamim, M.; Shan, L. Y.; Shank, J. T.; Shao, Q. T.; Shapiro, M.; Shatalov, P. B.; Shaver, L.; Shaw, C.; Shaw, K.; Sherman, D.; Sherwood, P.; Shibata, A.; Shichi, H.; Shimizu, S.; Shimojima, M.; Shin, T.; Shmeleva, A.; Shochet, M. J.; Short, D.; Shupe, M. A.; Sicho, P.; Sidoti, A.; Siebel, A.; Siegert, F.; Siegrist, J.; Sijacki, Dj.; Silbert, O.; Silva, J.; Silver, Y.; Silverstein, D.; Silverstein, S. B.; Simak, V.; Simard, O.; Simic, Lj.; Simion, S.; Simmons, B.; Simonyan, M.; Sinervo, P.; Sinev, N. B.; Sipica, V.; Siragusa, G.; Sisakyan, A. N.; Sivoklokov, S. Yu.; Sjölin, J.; Sjursen, T. B.; Skinnari, L. A.; Skovpen, K.; Skubic, P.; Skvorodnev, N.; Slater, M.; Slavicek, T.; Sliwa, K.; Sloan, T. J.; Sloper, J.; Smakhtin, V.; Smirnov, S. Yu.; Smirnova, L. N.; Smirnova, O.; Smith, B. C.; Smith, D.; Smith, K. M.; Smizanska, M.; Smolek, K.; Snesarev, A. A.; Snow, S. W.; Snow, J.; Snuverink, J.; Snyder, S.; Soares, M.; Sobie, R.; Sodomka, J.; Soffer, A.; Solans, C. A.; Solar, M.; Solc, J.; Soldatov, E.; Soldevila, U.; Solfaroli Camillocci, E.; Solodkov, A. A.; Solovyanov, O. V.; Sondericker, J.; Soni, N.; Sopko, V.; Sopko, B.; Sorbi, M.; Sosebee, M.; Soukharev, A.; Spagnolo, S.; Spanò, F.; Spighi, R.; Spigo, G.; Spila, F.; Spiriti, E.; Spiwoks, R.; Spousta, M.; Spreitzer, T.; Spurlock, B.; Denis, R. D. St.; Stahl, T.; Stahlman, J.; Stamen, R.; Stanecka, E.; Stanek, R. W.; Stanescu, C.; Stapnes, S.; Starchenko, E. A.; Stark, J.; Staroba, P.; Starovoitov, P.; Staude, A.; Stavina, P.; Stavropoulos, G.; Steele, G.; Steinbach, P.; Steinberg, P.; Stekl, I.; Stelzer, B.; Stelzer, H. J.; Stelzer-Chilton, O.; Stenzel, H.; Stevenson, K.; Stewart, G. A.; Stillings, J. A.; Stockmanns, T.; Stockton, M. C.; Stoerig, K.; Stoicea, G.; Stonjek, S.; Strachota, P.; Stradling, A. R.; Straessner, A.; Strandberg, J.; Strandberg, S.; Strandlie, A.; Strang, M.; Strauss, E.; Strauss, M.; Strizenec, P.; Ströhmer, R.; Strom, D. M.; Strong, J. A.; Stroynowski, R.; Strube, J.; Stugu, B.; Stumer, I.; Stupak, J.; Sturm, P.; Soh, D. A.; Su, D.; Subramania, H. S.; Succurro, A.; Sugaya, Y.; Sugimoto, T.; Suhr, C.; Suita, K.; Suk, M.; Sulin, V. V.; Sultansoy, S.; Sumida, T.; Sun, X.; Sundermann, J. E.; Suruliz, K.; Sushkov, S.; Susinno, G.; Sutton, M. R.; Suzuki, Y.; Svatos, M.; Sviridov, Yu. M.; Swedish, S.; Sykora, I.; Sykora, T.; Szeless, B.; Sánchez, J.; Ta, D.; Tackmann, K.; Taffard, A.; Tafirout, R.; Taga, A.; Taiblum, N.; Takahashi, Y.; Takai, H.; Takashima, R.; Takeda, H.; Takeshita, T.; Talby, M.; Talyshev, A.; Tamsett, M. C.; Tanaka, J.; Tanaka, R.; Tanaka, S.; Tanaka, S.; Tanaka, Y.; Tani, K.; Tannoury, N.; Tappern, G. P.; Tapprogge, S.; Tardif, D.; Tarem, S.; Tarrade, F.; Tartarelli, G. F.; Tas, P.; Tasevsky, M.; Tassi, E.; Tatarkhanov, M.; Taylor, C.; Taylor, F. E.; Taylor, G. N.; Taylor, W.; Castanheira, M. Teixeira Dias; Teixeira-Dias, P.; Temming, K. K.; Ten Kate, H.; Teng, P. K.; Terada, S.; Terashi, K.; Terron, J.; Terwort, M.; Testa, M.; Teuscher, R. J.; Thadome, J.; Therhaag, J.; Theveneaux-Pelzer, T.; Thioye, M.; Thoma, S.; Thomas, J. P.; Thompson, E. N.; Thompson, P. D.; Thompson, P. D.; Thompson, A. S.; Thomson, E.; Thomson, M.; Thun, R. P.; Tic, T.; Tikhomirov, V. O.; Tikhonov, Y. A.; Timmermans, C. J. W. P.; Tipton, P.; Tique Aires Viegas, F. J.; Tisserant, S.; Tobias, J.; Toczek, B.; Todorov, T.; Todorova-Nova, S.; Toggerson, B.; Tojo, J.; Tokár, S.; Tokunaga, K.; Tokushuku, K.; Tollefson, K.; Tomoto, M.; Tompkins, L.; Toms, K.; Tong, G.; Tonoyan, A.; Topfel, C.; Topilin, N. D.; Torchiani, I.; Torrence, E.; Torres, H.; Torró Pastor, E.; Toth, J.; Touchard, F.; Tovey, D. R.; Traynor, D.; Trefzger, T.; Tremblet, L.; Tricoli, A.; Trigger, I. M.; Trincaz-Duvoid, S.; Trinh, T. N.; Tripiana, M. F.; Trischuk, W.; Trivedi, A.; Trocmé, B.; Troncon, C.; Trottier-McDonald, M.; Trzupek, A.; Tsarouchas, C.; Tseng, J. C.-L.; Tsiakiris, M.; Tsiareshka, P. V.; Tsionou, D.; Tsipolitis, G.; Tsiskaridze, V.; Tskhadadze, E. G.; Tsukerman, I. I.; Tsulaia, V.; Tsung, J.-W.; Tsuno, S.; Tsybychev, D.; Tua, A.; Tuggle, J. M.; Turala, M.; Turecek, D.; Turk Cakir, I.; Turlay, E.; Turra, R.; Tuts, P. M.; Tykhonov, A.; Tylmad, M.; Tyndel, M.; Tyrvainen, H.; Tzanakos, G.; Uchida, K.; Ueda, I.; Ueno, R.; Ugland, M.; Uhlenbrock, M.; Uhrmacher, M.; Ukegawa, F.; Unal, G.; Underwood, D. G.; Undrus, A.; Unel, G.; Unno, Y.; Urbaniec, D.; Urkovsky, E.; Urrejola, P.; Usai, G.; Uslenghi, M.; Vacavant, L.; Vacek, V.; Vachon, B.; Vahsen, S.; Valenta, J.; Valente, P.; Valentinetti, S.; Valkar, S.; Valladolid Gallego, E.; Vallecorsa, S.; Valls Ferrer, J. A.; van der Graaf, H.; van der Kraaij, E.; Van Der Leeuw, R.; van der Poel, E.; van der Ster, D.; Van Eijk, B.; van Eldik, N.; van Gemmeren, P.; van Kesteren, Z.; van Vulpen, I.; Vandelli, W.; Vandoni, G.; Vaniachine, A.; Vankov, P.; Vannucci, F.; Varela Rodriguez, F.; Vari, R.; Varnes, E. W.; Varouchas, D.; Vartapetian, A.; Varvell, K. E.; Vassilakopoulos, V. I.; Vazeille, F.; Vegni, G.; Veillet, J. J.; Vellidis, C.; Veloso, F.; Veness, R.; Veneziano, S.; Ventura, A.; Ventura, D.; Venturi, M.; Venturi, N.; Vercesi, V.; Verducci, M.; Verkerke, W.; Vermeulen, J. C.; Vest, A.; Vetterli, M. C.; Vichou, I.; Vickey, T.; Viehhauser, G. H. A.; Viel, S.; Villa, M.; Villaplana Perez, M.; Vilucchi, E.; Vincter, M. G.; Vinek, E.; Vinogradov, V. B.; Virchaux, M.; Virzi, J.; Vitells, O.; Viti, M.; Vivarelli, I.; Vives Vaque, F.; Vlachos, S.; Vlasak, M.; Vlasov, N.; Vogel, A.; Vokac, P.; Volpi, G.; Volpi, M.; Volpini, G.; von der Schmitt, H.; von Loeben, J.; von Radziewski, H.; von Toerne, E.; Vorobel, V.; Vorobiev, A. P.; Vorwerk, V.; Vos, M.; Voss, R.; Voss, T. T.; Vossebeld, J. H.; Vranjes, N.; Vranjes Milosavljevic, M.; Vrba, V.; Vreeswijk, M.; Anh, T. Vu; Vuillermet, R.; Vukotic, I.; Wagner, W.; Wagner, P.; Wahlen, H.; Wakabayashi, J.; Walbersloh, J.; Walch, S.; Walder, J.; Walker, R.; Walkowiak, W.; Wall, R.; Waller, P.; Wang, C.; Wang, H.; Wang, H.; Wang, J.; Wang, J.; Wang, J. C.; Wang, R.; Wang, S. M.; Warburton, A.; Ward, C. P.; Warsinsky, M.; Watkins, P. M.; Watson, A. T.; Watson, M. F.; Watts, G.; Watts, S.; Waugh, A. T.; Waugh, B. M.; Weber, J.; Weber, M.; Weber, M. S.; Weber, P.; Weidberg, A. R.; Weigell, P.; Weingarten, J.; Weiser, C.; Wellenstein, H.; Wells, P. S.; Wen, M.; Wenaus, T.; Wendler, S.; Weng, Z.; Wengler, T.; Wenig, S.; Wermes, N.; Werner, M.; Werner, P.; Werth, M.; Wessels, M.; Weydert, C.; Whalen, K.; Wheeler-Ellis, S. J.; Whitaker, S. P.; White, A.; White, M. J.; White, S.; Whitehead, S. R.; Whiteson, D.; Whittington, D.; Wicek, F.; Wicke, D.; Wickens, F. J.; Wiedenmann, W.; Wielers, M.; Wienemann, P.; Wiglesworth, C.; Wiik, L. A. M.; Wijeratne, P. A.; Wildauer, A.; Wildt, M. A.; Wilhelm, I.; Wilkens, H. G.; Will, J. Z.; Williams, E.; Williams, H. H.; Willis, W.; Willocq, S.; Wilson, J. A.; Wilson, M. G.; Wilson, A.; Wingerter-Seez, I.; Winkelmann, S.; Winklmeier, F.; Wittgen, M.; Wolter, M. W.; Wolters, H.; Wooden, G.; Wosiek, B. K.; Wotschack, J.; Woudstra, M. J.; Wraight, K.; Wright, C.; Wrona, B.; Wu, S. L.; Wu, X.; Wu, Y.; Wulf, E.; Wunstorf, R.; Wynne, B. M.; Xaplanteris, L.; Xella, S.; Xie, S.; Xie, Y.; Xu, C.; Xu, D.; Xu, G.; Yabsley, B.; Yamada, M.; Yamamoto, A.; Yamamoto, K.; Yamamoto, S.; Yamamura, T.; Yamaoka, J.; Yamazaki, T.; Yamazaki, Y.; Yan, Z.; Yang, H.; Yang, U. K.; Yang, Y.; Yang, Y.; Yang, Z.; Yanush, S.; Yao, W.-M.; Yao, Y.; Yasu, Y.; Ybeles Smit, G. V.; Ye, J.; Ye, S.; Yilmaz, M.; Yoosoofmiya, R.; Yorita, K.; Yoshida, R.; Young, C.; Youssef, S.; Yu, D.; Yu, J.; Yu, J.; Yuan, L.; Yurkewicz, A.; Zaets, V. G.; Zaidan, R.; Zaitsev, A. M.; Zajacova, Z.; Zalite, Yo. K.; Zanello, L.; Zarzhitsky, P.; Zaytsev, A.; Zeitnitz, C.; Zeller, M.; Zemla, A.; Zendler, C.; Zenin, A. V.; Zenin, O.; Ženiš, T.; Zenonos, Z.; Zenz, S.; Zerwas, D.; della Porta, G. Zevi; Zhan, Z.; Zhang, D.; Zhang, H.; Zhang, J.; Zhang, X.; Zhang, Z.; Zhao, L.; Zhao, T.; Zhao, Z.; Zhemchugov, A.; Zheng, S.; Zhong, J.; Zhou, B.; Zhou, N.; Zhou, Y.; Zhu, C. G.; Zhu, H.; Zhu, J.; Zhu, Y.; Zhuang, X.; Zhuravlov, V.; Zieminska, D.; Zimmermann, R.; Zimmermann, S.; Zimmermann, S.; Ziolkowski, M.; Zitoun, R.; Živković, L.; Zmouchko, V. V.; Zobernig, G.; Zoccoli, A.; Zolnierowski, Y.; Zsenei, A.; zur Nedden, M.; Zutshi, V.; Zwalinski, L.

    2011-09-01

    A search for the Standard Model Higgs boson at the Large Hadron Collider (LHC) running at a centre-of-mass energy of 7 TeV is reported, based on a total integrated luminosity of up to 40 pb-1 collected by the ATLAS detector in 2010. Several Higgs boson decay channels: H→ γγ, H→ ZZ (∗)→ ℓℓℓℓ, H→ ZZ→ ℓℓνν, H→ ZZ→ ℓℓqq, H→ WW (∗)→ ℓνℓν and H→ WW→ ℓνqq ( ℓ is e, μ) are combined in a mass range from 110 GeV to 600 GeV. The highest sensitivity is achieved in the mass range between 160 GeV and 170 GeV, where the expected 95% CL exclusion sensitivity is at Higgs boson production cross sections 2.3 times the Standard Model prediction. Upper limits on the cross section for its production are determined. Models with a fourth generation of heavy leptons and quarks with Standard Model-like couplings to the Higgs boson are also investigated and are excluded at 95% CL for a Higgs boson mass in the range from 140 GeV to 185 GeV.

  20. Z{sub L} associated pair production of charged Higgs bosons in the littlest Higgs model at e{sup +}e{sup -} colliders

    SciTech Connect

    Cagil, A.; Zeyrek, M. T.

    2009-09-01

    The production of single and doubly charged Higgs bosons associated with standard model gauge boson Z{sub L} in e{sup +}e{sup -} colliders is examined. The sensitivity of these processes on the littlest Higgs model parameters in the range of compatibility with electroweak precision observables is analyzed. The possibility of detecting lepton flavor violation processes is also discussed.

  1. Production of a Higgs Boson Accompanied by Two Jets Via Gluon Fusion

    SciTech Connect

    Del Duca, V.; Kilgore, W.; Oleari, C.; Schmidt, C.; Zeppenfeld, D.

    2001-09-17

    Real-emission corrections to gg{yields}H , which lead to H+2 jet events, are calculated at order {alpha}{sup 4}{sub s} . Contributions include top-quark triangles, boxes, and pentagon diagrams and are evaluated analytically for arbitrary top mass m{sub t} . This new source of H+2 jet events is compared to the weak-boson fusion cross section for a range of Higgs boson masses. The heavy top-mass approximation appears to work well for intermediate Higgs-boson masses, provided that the transverse momenta of the final-state partons are smaller than the top-quark mass.

  2. Gluon distribution functions and Higgs boson production at moderate transverse momentum

    SciTech Connect

    Sun Peng; Xiao Bowen; Yuan Feng

    2011-11-01

    We investigate the gluon distribution functions and their contributions to the Higgs boson production in pp collisions in the transverse momentum-dependent factorization formalism. In addition to the usual azimuthal symmetric transverse momentum-dependent gluon distribution, we find that the azimuthal correlated gluon distribution also contributes to the Higgs boson production. This explains recent findings on the additional contribution in the transverse momentum resummation for the Higgs boson production as compared to that for electroweak boson production processes. We further examine the small-x naive k{sub t}-factorization in the dilute region and find that the azimuthal correlated gluon distribution contribution is consistently taken into account. The result agrees with the transverse momentum-dependent factorization formalism. We comment on the possible breakdown of the naive k{sub t}-factorization in the dense medium region, due to the unique behaviors for the gluon distributions.

  3. Gluon distribution functions and Higgs boson production at moderate transverse momentum

    SciTech Connect

    Sun P.; Yuan F.; Xiao, B.W.

    2011-11-04

    We investigate the gluon distribution functions and their contributions to the Higgs boson production in pp collisions in the transverse momentum-dependent factorization formalism. In addition to the usual azimuthal symmetric transverse momentum-dependent gluon distribution, we find that the azimuthal correlated gluon distribution also contributes to the Higgs boson production. This explains recent findings on the additional contribution in the transverse momentum resummation for the Higgs boson production as compared to that for electroweak boson production processes. We further examine the small-x naive kt-factorization in the dilute region and find that the azimuthal correlated gluon distribution contribution is consistently taken into account. The result agrees with the transverse momentum-dependent factorization formalism. We comment on the possible breakdown of the naive kt-factorization in the dense medium region, due to the unique behaviors for the gluon distributions.

  4. Higgs Boson Production via Gluon Fusion in the Standard Model with four Generations

    SciTech Connect

    Li Qiang; Spira, Michael; Gao, Jun; Li Chongsheng

    2011-05-01

    Higgs bosons can be produced copiously at the LHC via gluon fusion induced by top and bottom quark loops, and can be enhanced strongly if extra heavy quarks exist. We present results for Higgs+zero-, one- and two-jet production at the LHC operating at 7 and 14 TeV collision energy, in both the standard model and the 4th generation model, by evaluating the corresponding heavy quark triangle, box, and pentagon Feynman diagrams. We compare the results by using the effective Higgs-gluon interactions in the limit of heavy quarks with the cross sections including the full mass dependences. NLO effects on Higgs+zero-jet production rate with full mass dependence are presented for the first time consistently in the 4th generation model. Our results improve the theoretical basis for fourth generation effects on the Higgs boson search at the LHC.

  5. Associated production of Higgs boson and tt¯ at LHC

    NASA Astrophysics Data System (ADS)

    Li, Hong-Lei; Lu, Peng-Cheng; Si, Zong-Guo; Wang, Ying

    2016-06-01

    One of the future goals of the LHC is to precisely measure the properties of the Higgs boson. The associated production of a Higgs boson and top quark pair is a promising process to investigate the related Yukawa interaction and the properties of the Higgs. Compared with the pure scalar sector in the Standard Model, the Higgs sector contains both scalars and pseudoscalars in many new physics models, which makes the tt¯H interaction more complex and provides a variety of phenomena. To investigate the tt¯H interaction and the properties of the Higgs, we study the top quark spin correlation observables at the LHC. Supported by National Natural Science Foundation of China(11275114, 11325525 and 11305075) and Natural Science Foundation of Shandong Province (ZR2013AQ006)

  6. Higgs-boson and Z-boson flavor-changing neutral-current decays correlated with B-meson decays in the littlest Higgs model with T parity

    SciTech Connect

    Han Xiaofang; Wang Lei; Yang Jinmin

    2008-10-01

    In the littlest Higgs model with T-parity new flavor-changing interactions between mirror fermions and the standard model (SM) fermions can induce various flavor-changing neutral-current decays for B-mesons, the Z-boson, and the Higgs boson. Since all these decays induced in the littlest Higgs with T-parity model are correlated, in this work we perform a collective study for these decays, namely, the Z-boson decay Z{yields}bs, the Higgs-boson decay h{yields}bs, and the B-meson decays B{yields}X{sub s}{gamma}, B{sub s}{yields}{mu}{sup +}{mu}{sup -}, and B{yields}X{sub s}{mu}{sup +}{mu}{sup -}. We find that under the current experimental constraints from the B-decays, the branching ratios of both Z{yields}bs and h{yields}bs can still deviate from the SM predictions significantly. In the parameter space allowed by the B-decays, the branching ratio of Z{yields}bs can be enhanced up to 10{sup -7} (about one order above the SM prediction) while h{yields}bs can be much suppressed relative to the SM prediction (about one order below the SM prediction)

  7. Precision Higgs Coupling Measurements in H to WW* to lnulnu Final State with the ATLAS Detector at the LHC

    NASA Astrophysics Data System (ADS)

    Kim, Hee Yeun

    The Standard Model (SM) is a gauge theory that describes the fundamental particles of matter and the forces between these particles. It has been tested to a very high precision in the past several decades, except for observation of the Higgs particle, a ramification of the Higgs mechanism. After discovery of the Higgs particle in July 2012, at the Large Hadron Collider (LHC) at the European organization for Nuclear Research (CERN), subsequent studies have focused on confirming whether the newly discovered particle is consistent with the SM Higgs. In particular its spin and its couplings have been measured. In this thesis, the Higgs coupling properties are measured using H → WW* → ℓnuℓnu final state. The H → WW* → ℓnuℓnu channel has a large branching ratio, thus, it provides a large amount of Higgs signal and more precise Higgs property measurements. The overall significance is 6.1 sigma while the expected significance is 5.8sigma at the Higgs mass mH = 125.36 GeV. The overall signal strength is measured as mu = 1.09(+0.23/-0.21) while muggF = 1.02(+0.29/-0.26) and mu VBF = 1.02+0.53-0.45. The results of the signal strength are used mu to measure the Higgs coupling to fermions and to gauge bosons under the SM Higgs hypothesis. The measured Higgs coupling constant to fermions is kappa F = 0.93(+0.32/-0.23) and to boson is kappa V = 1.04 A+/-0.11. This study also measures the inclusive cross-sections for the gluon-gluon fusion (ggF) and the vector boson fusion (VBF) production modes as well as the fiducial cross-sections of a ggF signal region in H → WW* → ℓnuℓnu events.

  8. Search for the Higgs boson in lepton, tau, and jets final states

    SciTech Connect

    Abazov, V. M.; Abbott, B.; Acharya, B. S.; Adams, M.; Adams, T.; Alexeev, G. D.; Alkhazov, G.; Alton, A.; Askew, A.; Atkins, S.; Augsten, K.; Avila, C.; Badaud, F.; Bagby, L.; Baldin, B.; Bandurin, D. V.; Banerjee, S.; Barberis, E.; Baringer, P.; Bartlett, J. F.; Bassler, U.; Bazterra, V.; Bean, A.; Begalli, M.; Bellantoni, L.; Beri, S. B.; Bernardi, G.; Bernhard, R.; Bertram, I.; Besançon, M.; Beuselinck, R.; Bhat, P. C.; Bhatia, S.; Bhatnagar, V.; Blazey, G.; Blessing, S.; Bloom, K.; Boehnlein, A.; Boline, D.; Boos, E. E.; Borissov, G.; Brandt, A.; Brandt, O.; Brock, R.; Bross, A.; Brown, D.; Brown, J.; Bu, X. B.; Buehler, M.; Buescher, V.; Bunichev, V.; Burdin, S.; Buszello, C. P.; Camacho-Pérez, E.; Casey, B. C. K.; Castilla-Valdez, H.; Caughron, S.; Chakrabarti, S.; Chakraborty, D.; Chan, K. M.; Chandra, A.; Chapon, E.; Chen, G.; Cho, S. W.; Choi, S.; Choudhary, B.; Cihangir, S.; Claes, D.; Clutter, J.; Cooke, M.; Cooper, W. E.; Corcoran, M.; Couderc, F.; Cousinou, M. -C.; Cutts, D.; Das, A.; Davies, G.; de Jong, S. J.; De La Cruz-Burelo, E.; Déliot, F.; Demina, R.; Denisov, D.; Denisov, S. P.; Desai, S.; Deterre, C.; DeVaughan, K.; Diehl, H. T.; Diesburg, M.; Ding, P. F.; Dominguez, A.; Dubey, A.; Dudko, L. V.; Duggan, D.; Duperrin, A.; Dutt, S.; Dyshkant, A.; Eads, M.; Edmunds, D.; Ellison, J.; Elvira, V. D.; Enari, Y.; Evans, H.; Evdokimov, V. N.; Facini, G.; Feng, L.; Ferbel, T.; Fiedler, F.; Filthaut, F.; Fisher, W.; Fisk, H. E.; Fortner, M.; Fox, H.; Fuess, S.; Garcia-Bellido, A.; García-González, J. A.; García-Guerra, G. A.; Gavrilov, V.; Geng, W.; Gerber, C. E.; Gershtein, Y.; Ginther, G.; Golovanov, G.; Grannis, P. D.; Greder, S.; Greenlee, H.; Grenier, G.; Gris, Ph.; Grivaz, J. -F.; Grohsjean, A.; Grünendahl, S.; Grünewald, M. W.; Guillemin, T.; Gutierrez, G.; Gutierrez, P.; Haley, J.; Han, L.; Harder, K.; Harel, A.; Hauptman, J. M.; Hays, J.; Head, T.; Hebbeker, T.; Hedin, D.; Hegab, H.; Heinson, A. P.; Heintz, U.; Hensel, C.; Heredia-De La Cruz, I.; Herner, K.; Hesketh, G.; Hildreth, M. D.; Hirosky, R.; Hoang, T.; Hobbs, J. D.; Hoeneisen, B.; Hogan, J.; Hohlfeld, M.; Howley, I.; Hubacek, Z.; Hynek, V.; Iashvili, I.; Ilchenko, Y.; Illingworth, R.; Ito, A. S.; Jabeen, S.; Jaffré, M.; Jayasinghe, A.; Jeong, M. S.; Jesik, R.; Jiang, P.; Johns, K.; Johnson, E.; Johnson, M.; Jonckheere, A.; Jonsson, P.; Joshi, J.; Jung, A. W.; Juste, A.; Kajfasz, E.; Karmanov, D.; Kasper, P. A.; Katsanos, I.; Kehoe, R.; Kermiche, S.; Khalatyan, N.; Khanov, A.; Kharchilava, A.; Kharzheev, Y. N.; Kiselevich, I.; Kohli, J. M.; Kozelov, A. V.; Kraus, J.; Kumar, A.; Kupco, A.; Kurča, T.; Kuzmin, V. A.; Lammers, S.; Landsberg, G.; Lebrun, P.; Lee, H. S.; Lee, S. W.; Lee, W. M.; Lei, X.; Lellouch, J.; Li, D.; Li, H.; Li, L.; Li, Q. Z.; Lim, J. K.; Lincoln, D.; Linnemann, J.; Lipaev, V. V.; Lipton, R.; Liu, H.; Liu, Y.; Lobodenko, A.; Lokajicek, M.; Lopes de Sa, R.; Luna-Garcia, R.; Lyon, A. L.; Maciel, A. K. A.; Magaña-Villalba, R.; Malik, S.; Malyshev, V. L.; Maravin, Y.; Martínez-Ortega, J.; McCarthy, R.; McGivern, C. L.; Meijer, M. M.; Melnitchouk, A.; Menezes, D.; Mercadante, P. G.; Merkin, M.; Meyer, A.; Meyer, J.; Miconi, F.; Mondal, N. K.; Mulhearn, M.; Nagy, E.; Naimuddin, M.; Narain, M.; Nayyar, R.; Neal, H. A.; Negret, J. P.; Neustroev, P.; Nguyen, H. T.; Nunnemann, T.; Orduna, J.; Osman, N.; Osta, J.; Padilla, M.; Pal, A.; Parashar, N.; Parihar, V.; Park, S. K.; Partridge, R.; Parua, N.; Patwa, A.; Penning, B.; Perfilov, M.; Peters, Y.; Petridis, K.; Petrillo, G.; Pétroff, P.; Pleier, M. -A.; Podesta-Lerma, P. L. M.; Podstavkov, V. M.; Popov, A. V.; Prewitt, M.; Price, D.; Prokopenko, N.; Qian, J.; Quadt, A.; Quinn, B.; Rangel, M. S.; Ranjan, K.; Ratoff, P. N.; Razumov, I.; Renkel, P.; Ripp-Baudot, I.; Rizatdinova, F.; Rominsky, M.; Ross, A.; Royon, C.; Rubinov, P.; Ruchti, R.; Sajot, G.; Salcido, P.; Sánchez-Hernández, A.; Sanders, M. P.; Santos, A. S.; Savage, G.; Sawyer, L.; Scanlon, T.; Schamberger, R. D.; Scheglov, Y.; Schellman, H.; Schwanenberger, C.; Schwienhorst, R.; Sekaric, J.; Severini, H.; Shabalina, E.; Shary, V.; Shaw, S.; Shchukin, A. A.; Shivpuri, R. K.; Simak, V.; Skubic, P.; Slattery, P.; Smirnov, D.; Smith, K. J.; Snow, G. R.; Snow, J.; Snyder, S.; Söldner-Rembold, S.; Sonnenschein, L.; Soustruznik, K.; Stark, J.; Stoyanova, D. A.; Strauss, M.; Suter, L.; Svoisky, P.; Titov, M.; Tokmenin, V. V.; Tsai, Y. -T.; Tsybychev, D.; Tuchming, B.; Tully, C.; Uvarov, L.; Uvarov, S.; Uzunyan, S.; Van Kooten, R.; van Leeuwen, W. M.; Varelas, N.; Varnes, E. W.; Vasilyev, I. A.; Verdier, P.; Verkheev, A. Y.; Vertogradov, L. S.; Verzocchi, M.; Vesterinen, M.; Vilanova, D.; Vokac, P.; Wahl, H. D.; Wang, M. H. L. S.; Warchol, J.; Watts, G.; Wayne, M.; Weichert, J.; Welty-Rieger, L.

    2013-09-01

    We present a search for the standard model Higgs boson in final states with an electron or muon and a hadronically decaying tau lepton in association with two or more jets using 9.7 fb-1 of Run II Fermilab Tevatron Collider data collected with the D0 detector. The analysis is sensitive to Higgs boson production via gluon fusion, associated vector boson production, and vector boson fusion, followed by the Higgs boson decay to tau lepton pairs or to W boson pairs. The ratios of 95% C.L. upper limits on the cross section times branching ratio to those predicted by the standard model are obtained for orthogonal subsamples that are enriched in either H → τ τ decays or H → WW decays, and for the combination of these subsample limits. The observed and expected limit ratios for the combined subsamples at a Higgs boson mass of 125 GeV are 11.3 and 9.0 respectively.

  9. Measurement of Higgs boson production and properties in the WW decay channel with leptonic final states

    SciTech Connect

    Chatrchyan, Serguei

    2014-01-17

    A search for the standard model Higgs boson decaying to a W-boson pair at the LHC is reported. The event sample corresponds to an integrated luminosity of 4.9 and 19.4 inverse femtobarns collected with the CMS detector in pp collisions at √s = 7 and 8 TeV, respectively. The Higgs boson candidates are selected in events with two or three charged leptons. An excess of events above background is observed, consistent with the expectation from the standard model Higgs boson with a mass of around 125 GeV. The probability to observe an excess equal or larger than the one seen, under the background-only hypothesis, corresponds to a significance of 4.3 standard deviations for mH = 125.6 GeV. The observed signal cross section times the branching fraction to WW for mH = 125.6 GeV is 0.72+0.20-0.18 times the standard model expectation. The spin-parity JP=0+ hypothesis is favored against a narrow resonance with JP=2+ or JP=0 that decays to a W-boson pair. Lastly, this result provides strong evidence for a Higgs-like boson decaying to a W-boson pair.

  10. Measurement of Higgs boson production and properties in the WW decay channel with leptonic final states

    DOE PAGESBeta

    Chatrchyan, Serguei

    2014-01-17

    A search for the standard model Higgs boson decaying to a W-boson pair at the LHC is reported. The event sample corresponds to an integrated luminosity of 4.9 and 19.4 inverse femtobarns collected with the CMS detector in pp collisions at √s = 7 and 8 TeV, respectively. The Higgs boson candidates are selected in events with two or three charged leptons. An excess of events above background is observed, consistent with the expectation from the standard model Higgs boson with a mass of around 125 GeV. The probability to observe an excess equal or larger than the one seen,more » under the background-only hypothesis, corresponds to a significance of 4.3 standard deviations for mH = 125.6 GeV. The observed signal cross section times the branching fraction to WW for mH = 125.6 GeV is 0.72+0.20-0.18 times the standard model expectation. The spin-parity JP=0+ hypothesis is favored against a narrow resonance with JP=2+ or JP=0– that decays to a W-boson pair. Lastly, this result provides strong evidence for a Higgs-like boson decaying to a W-boson pair.« less

  11. Search for the Higgs boson in lepton, tau and jets final states

    SciTech Connect

    Abazov, V. M.

    2013-09-17

    We present a search for the standard model Hi