Science.gov

Sample records for high blood ethanol

  1. Ethanol Extract of Persimmon Tree Leaves Improves Blood Circulation and Lipid Metabolism in Rats Fed a High-Fat Diet.

    PubMed

    Ryu, Ri; Kim, Hye-Jin; Moon, Byeongseok; Jung, Un Ju; Lee, Mi-Kyung; Lee, Dong Gun; Ryoo, ZaeYoung; Park, Yong Bok; Choi, Myung-Sook

    2015-07-01

    The leaves of the persimmon tree (PL) are known to have beneficial effects on hyperglycemia, dyslipidemia, and nonalcoholic fatty liver disease. We recently demonstrated that PL had antithrombotic properties in vitro. However, little is known about the antiplatelet and anticoagulant properties of PL in vivo. Omega-3 fatty acid (n-3 FA)-containing fish oil has been widely prescribed to improve blood circulation. This study compared the effects of dietary supplementation with an ethanol extract of PL or n-3 FA on blood coagulation, platelet activation, and lipid levels in vivo. Sprague-Dawley rats were fed a high-fat diet with either PL ethanol extract (0.5% w/w) or n-3 FA (2.5% w/w) for 9 weeks. Coagulation was examined by monitoring the activated partial thromboplastin time (aPTT) and prothrombin time. We examined plasma thromboxane B2 (TXB2), serotonin, and soluble P-selectin (sP-selectin) levels. The aPTT was significantly prolonged in the PL and n-3 FA supplement groups. PL also attenuated the TXB2 level and lowered arterial serotonin transporter mRNA expression, although it did not alter plasma serotonin or sP-selectin levels. C-reactive protein and leptin levels were significantly reduced by PL and n-3 FA supplementation. In addition, PL decreased plasma total- and low-density lipoprotein-cholesterol levels, as did n-3 FA treatment. These results indicated that the PL ethanol extract may have the potential to improve circulation by inhibiting blood coagulation and platelet activation and by reducing plasma cholesterol levels. PMID:26061228

  2. Ethanol and blood pressure in rats

    SciTech Connect

    Hatton, D.C.; Edgar, S.; McCarron, D.A. )

    1989-02-09

    Epidemiologists have identified alcohol as a risk factor in hypertension. Attempts to increase blood pressure in rats with chronic alcohol ingestion have met with mixed results. Some investigators have reported increases in blood pressure while others have reported decreases. Most investigators have given alcohol in the drinking water which produced differences in food intake across groups. To control for food intake, Wister rats were simultaneously pair fed a liquid diet with either ethanol as 35% of calories or a control diet using ARF/Israel pair-feeding devices. At 5 weeks of age, animals on ethanol diets had lower systolic blood pressure than control animals (145 (n-19) vs. 121 (n-19) mmHg). There was no difference in weight between ethanol and control animals. The same pattern of results was apparent at 7 weeks (143 (n-13) vs. 119 (n-13) mmHg) and 9 weeks (147 (n-7) vs. 124 (n-7)). The data indicate that ethanol produces hypotension in rats when food intake is controlled.

  3. Regional cerebral blood flow changes associated with ethanol intoxication

    SciTech Connect

    Mathew, R.J.; Wilson, W.H.

    1986-11-01

    Regional cerebral blood flow (CBF) was measured via the 133Xenon inhalation technique in 26 healthy volunteers before and 60 minutes after the oral administration of ethyl alcohol or placebo on a double-blind basis. The cerebral blood flow values, corrected for test-retest differences in carbon dioxide showed a significant bilateral increase after ethanol administration. Blood levels of ethanol, estimated with a breath analyser, did not correlate with the CBF changes.

  4. Effects of ethanol on red blood cell rheological behavior.

    PubMed

    Rabai, M; Detterich, J A; Wenby, R B; Toth, K; Meiselman, H J

    2014-01-01

    Consumption of red wine is associated with a decreased risk of several cardiovascular diseases (e.g., coronary artery disease, stroke), but unfortunately literature reports regarding ethanol's effects on hemorheological parameters are not concordant. In the present study, red blood cell (RBC) deformability was tested via laser ektacytometry (LORCA, 0.3-30 Pa) using two approaches: 1) addition of ethanol to whole blood at 0.25%-2% followed by incubation and testing in ethanol-free LORCA medium; 2) addition of ethanol to the LORCA medium at 0.25%-6% then testing untreated native RBC in these media. The effects of ethanol on deformability for oxidatively stressed RBC were investigated as were changes of RBC aggregation (Myrenne Aggregometer) for cells in autologous plasma or 3% 70 kDa dextran. Significant dose-related increases of RBC deformability were observed at 0.25% (p < 0.05) and higher concentrations only if ethanol was in the LORCA medium; no changes occurred for cells previously incubated with ethanol then tested in ethanol-free medium. The impaired deformability of cells pre-exposed to oxidative stress was improved only if ethanol was in the LORCA medium. RBC aggregation decreased with concentration at 0.25% and higher for cells in both autologous plasma and dextran 70. Our results indicate that ethanol reversibly improves erythrocyte deformability and irreversibly decreases erythrocyte aggregation; the relevance of these results to the health benefits of moderate wine consumption require further investigation. PMID:23089886

  5. Blood and liver acetaldehyde concentration in rats following acetaldehyde inhalation and intravenous and intragastric ethanol administration

    SciTech Connect

    Watanabe, A.; Hobara, N.; Nagashima, H.

    1986-10-01

    Ethanol is metabolized to acetaldehyde, a highly reactive product of ethanol oxidation. Ethanol might be blended with gasoline and used as a fuel in the future; biohazard of acetaldehyde inhalation must be discussed. Recent improvements in our ability to measure acetaldehyde levels in blood and various tissues have made the assessment of acetaldehyde's role in alcoholic organ intoxication possible. Blood and liver acetaldehyde concentrations in rats were reported as being linearly correlated following intragastric ethanol administration. Acetaldehyde was administered by inhalation to study its toxicity. However, liver concentrations following the inhalation was not investigated. The present communication describes the relationship between blood and liver acetaldehyde concentrations in rats following acetaldehyde inhalation and different routes of ethanol administration.

  6. Enabling High Efficiency Ethanol Engines

    SciTech Connect

    Szybist, J.; Confer, K.

    2011-03-01

    Delphi Automotive Systems and ORNL established this CRADA to explore the potential to improve the energy efficiency of spark-ignited engines operating on ethanol-gasoline blends. By taking advantage of the fuel properties of ethanol, such as high compression ratio and high latent heat of vaporization, it is possible to increase efficiency with ethanol blends. Increasing the efficiency with ethanol-containing blends aims to remove a market barrier of reduced fuel economy with E85 fuel blends, which is currently about 30% lower than with petroleum-derived gasoline. The same or higher engine efficiency is achieved with E85, and the reduction in fuel economy is due to the lower energy density of E85. By making ethanol-blends more efficient, the fuel economy gap between gasoline and E85 can be reduced. In the partnership between Delphi and ORNL, each organization brought a unique and complementary set of skills to the project. Delphi has extensive knowledge and experience in powertrain components and subsystems as well as overcoming real-world implementation barriers. ORNL has extensive knowledge and expertise in non-traditional fuels and improving engine system efficiency for the next generation of internal combustion engines. Partnering to combine these knowledge bases was essential towards making progress to reducing the fuel economy gap between gasoline and E85. ORNL and Delphi maintained strong collaboration throughout the project. Meetings were held regularly, usually on a bi-weekly basis, with additional reports, presentations, and meetings as necessary to maintain progress. Delphi provided substantial hardware support to the project by providing components for the single-cylinder engine experiments, engineering support for hardware modifications, guidance for operational strategies on engine research, and hardware support by providing a flexible multi-cylinder engine to be used for optimizing engine efficiency with ethanol-containing fuels.

  7. High blood pressure - infants

    MedlinePlus

    Hypertension - infants ... and blood vessels The health of the kidneys High blood pressure in infants may be due to kidney or ... Bronchopulmonary dysplasia Renal artery stenosis In newborn babies, high blood pressure is often caused by a blood clot in ...

  8. High Blood Pressure

    MedlinePlus

    ... version of this page please turn Javascript on. High Blood Pressure What Is High Blood Pressure? High blood pressure is a common disease in ... the heart, kidneys, brain, and eyes. Types of High Blood Pressure There are two main types of high blood ...

  9. High blood pressure medicines

    MedlinePlus

    Hypertension - medicines ... blood vessel diseases. You may need to take medicines to lower your blood pressure if lifestyle changes ... blood pressure to the target level. WHEN ARE MEDICINES FOR HIGH BLOOD PRESSURE USED Most of the ...

  10. High Blood Pressure

    MedlinePlus

    ... normal blood pressure 140/90 or higher is high blood pressure Between 120 and 139 for the top number, ... prehypertension. Prehypertension means you may end up with high blood pressure, unless you take steps to prevent it. High ...

  11. High Blood Pressure

    MedlinePlus

    ... What should my blood pressure be? What lifestyle changes do I need to make to help lower my blood pressure? Is ... National Committee on Prevention, Detection, Evaluation, and Treatment of High Blood Pressure. Accessed ...

  12. Treating High Blood Pressure

    MedlinePlus

    About High Blood Pressure Many people in the United States die from high blood pressure. This condition usually does not cause symptoms. Most ... until it is too late. A person has high blood pressure when the blood pushes against Visit your doctor ...

  13. High Blood Pressure in Pregnancy

    MedlinePlus

    ... The Health Information Center High Blood Pressure in Pregnancy What Is High Blood Pressure? Blood pressure is ... Are the Effects of High Blood Pressure in Pregnancy? Although many pregnant women with high blood pressure ...

  14. High Blood Pressure (Hypertension)

    MedlinePlus

    ... For Consumers Consumer Information by Audience For Women High Blood Pressure (Hypertension) Share Tweet Linkedin Pin it More sharing options ... En Español Who is at risk? How is high blood pressure treated? Understanding your blood pressure: What do the ...

  15. Hypertension (High Blood Pressure)

    MedlinePlus

    ... pressure to live. Without it, blood can't flow through our bodies and carry oxygen to our vital organs. But when blood pressure gets too high — a condition called hypertension — it can lead to ...

  16. High ethanol tolerance yeast for production of ethanol

    SciTech Connect

    Krishnan, M.S.; Tsao, G.T.; Kasthurikrishnan, N.

    1995-12-01

    The subject of ethanol tolerance in yeasts has been receiving considerable attention as result of renewed interest in ethanol as a fuel source. Fermentation of sugars to ethanol is being studied in our laboratory using a genetically engineered yeast strain 1400. Results are described.

  17. The determination of ethanol in blood and urine by mass fragmentography

    NASA Technical Reports Server (NTRS)

    Pereira, W. E.; Summons, R. E.; Rindfleisch, T. C.; Duffield, A. M.

    1974-01-01

    A mass fragmentographic technique for a rapid, specific and sensitive determination of ethanol in blood and urine is described. A Varian gas chromatograph coupled through an all-glass membrane separator to a Finnigan quadripole mass spectrometer and interfaced to a computer system is used for ethanol determination in blood and urine samples. A procedure for plotting calibration curves for ethanol quantitation is also described. Quantitation is achieved by plotting the peak area ratios of undeuterated-to-deuterated ethanol fragment ions against the amount of ethanol added. Representative results obtained by this technique are included.

  18. High Speed/ Low Effluent Process for Ethanol

    SciTech Connect

    M. Clark Dale

    2006-10-30

    n this project, BPI demonstrated a new ethanol fermentation technology, termed the High Speed/ Low Effluent (HS/LE) process on both lab and large pilot scale as it would apply to wet mill and/or dry mill corn ethanol production. The HS/LE process allows very rapid fermentations, with 18 to 22% sugar syrups converted to 9 to 11% ethanol ‘beers’ in 6 to 12 hours using either a ‘consecutive batch’ or ‘continuous cascade’ implementation. This represents a 5 to 8X increase in fermentation speeds over conventional 72 hour batch fermentations which are the norm in the fuel ethanol industry today. The ‘consecutive batch’ technology was demonstrated on a large pilot scale (4,800 L) in a dry mill corn ethanol plant near Cedar Rapids, IA (Xethanol Biofuels). The pilot demonstrated that 12 hour fermentations can be accomplished on an industrial scale in a non-sterile industrial environment. Other objectives met in this project included development of a Low Energy (LE) Distillation process which reduces the energy requirements for distillation from about 14,000 BTU/gal steam ($0.126/gal with natural gas @ $9.00 MCF) to as low as 0.40 KW/gal electrical requirements ($0.022/gal with electricity @ $0.055/KWH). BPI also worked on the development of processes that would allow application of the HS/LE fermentation process to dry mill ethanol plants. A High-Value Corn ethanol plant concept was developed to produce 1) corn germ/oil, 2) corn bran, 3) ethanol, 4) zein protein, and 5) nutritional protein, giving multiple higher value products from the incoming corn stream.

  19. High Blood Calcium (Hypercalcemia)

    MedlinePlus

    ... hyperthyroidism) • A genetic condition called familial hypocalciuric hypercalcemia • Kidney failure Other infrequent causes of high blood calcium include • Some medicines, such as lithium (to treat psychiatric illness) or, ...

  20. High Blood Pressure

    MedlinePlus

    ... Division of Geriatrics and Clinical Gerontology Division of Neuroscience FAQs Funding Opportunities Intramural Research Program Office of ... to major health problems. Make a point of learning what blood pressure should be. And, remember: High ...

  1. Effect of ethanol of heart rate and blood pressure in nonstressed and stressed rats

    SciTech Connect

    Sparrow, M.G.; Roggendorf, H.; Vogel, W.H.

    1987-06-29

    The effect of ethanol on the cardiovascular system (ECG, heart rate, blood pressure) was studied in anesthetized, nonstressed or stressed rats. In anesthetized rats, ethanol showed no effect on heart rate or ECG. In nonstressed rats, ethanol sedated the animals but increased heart rate significantly. This ethanol induced tachycardia seemed the result of a direct stimulation of the sympathetic nerves to the heart. Blood pressure was not significantly affected by ethanol in these nonstressed rats. In stressed rats, marked behavioral excitation and significant increases in heart rate and blood pressure were noted. Ethanol pretreatment calmed the animals considerably during restraint. Ethanol did reduce slightly the stress-induced tachycardia but markedly reduced or antagonized stress-induced blood pressure increases. No major changes in the ECG were noted during these studies with the exception of a few individual animals which showed pathologic ECG responses to ethanol. These data show that ethanol affects cardiovascular functions differently in anesthetized, non stressed or stressed rats, and that ethanol can significantly reduce or antagonize stress-induced behavioral excitation, tachycardia and hypertension. 32 references, 4 tables.

  2. High Blood Pressure and Women

    MedlinePlus

    ... Pressure High Blood Pressure Tools & Resources Stroke More High Blood Pressure and Women Updated:Aug 13,2014 Many people ... content was last reviewed on 08/04/14. High Blood Pressure • Home • About High Blood Pressure (HBP) • Why HBP ...

  3. HIGH ETHANOL DOSE DURING EARLY ADOLESCENCE INDUCES LOCOMOTOR ACTIVATION AND INCREASES SUBSEQUENT ETHANOL INTAKE DURING LATE ADOLESCENCE

    PubMed Central

    Acevedo, María Belén; Molina, Juan Carlos; Nizhnikov, Michael E.; Spear, Norman E.; Pautassi, Ricardo Marcos

    2011-01-01

    Adolescent initiation of ethanol consumption is associated with subsequent heightened probability of ethanol-use disorders. The present study examined the relationship between motivational sensitivity to ethanol initiation in adolescent rats and later ethanol intake. Experiment 1 determined that ethanol induces locomotor activation shortly after administration but not if tested at a later post-administration interval. In Experiment 2, adolescents were assessed for ethanol-induced locomotor activation on postnatal day 28. These animals were then evaluated for ethanol-mediated conditioned taste aversion and underwent a 16-day-long ethanol intake protocol. Ethanol-mediated aversive effects were unrelated to ethanol locomotor stimulation or subsequent ethanol consumption patterns. Ethanol intake during late adolescence was greatest in animals initiated to ethanol earliest at postnatal day 28. Females that were more sensitive to ethanol’s locomotor-activating effects showed a transient increase in ethanol self-administration. Blood ethanol concentrations during initiation were not related to ethanol-induced locomotor activation. Adolescent rats appeared sensitive to the locomotor-stimulatory effects of ethanol. Even brief ethanol exposure during adolescence may promote later ethanol intake. PMID:20373327

  4. Myths about High Blood Pressure

    MedlinePlus

    ... Blood Pressure Tools & Resources Stroke More Myths About High Blood Pressure Updated:Aug 12,2014 You CAN manage your ... content was last reviewed on 08/04/2014. High Blood Pressure • Home • About High Blood Pressure (HBP) Introduction What ...

  5. High Blood Pressure Fact Sheet

    MedlinePlus

    ... this? Submit What's this? Submit Button Related CDC Web Sites Heart Disease Stroke High Blood Pressure Salt ... Prevent and Control Chronic Diseases Million Hearts® WISEWOMAN Web Sites with More Information About High Blood Pressure ...

  6. High Blood Pressure in Pregnancy

    MedlinePlus

    ... of the baby. Controlling your blood pressure during pregnancy and getting regular prenatal care are important for ... your baby. Treatments for high blood pressure in pregnancy may include close monitoring of the baby, lifestyle ...

  7. High blood pressure and diet

    MedlinePlus

    Hypertension - diet ... diet is a proven way to help control high blood pressure . These changes can also help you lose weight ... DIET The low-salt Dietary Approaches to Stop Hypertension (DASH) diet is proven to help lower blood ...

  8. Oral ethanol self-administration in inbred Roman high- and low-avoidance rats: gradual versus abrupt ethanol presentation.

    PubMed

    Manzo, Lidia; Gómez, M José; Callejas-Aguilera, José E; Fernández-Teruel, Alberto; Papini, Mauricio R; Torres, Carmen

    2012-12-25

    Outbred Roman high-avoidance rats are known to consume more ethanol than inbred Roman low-avoidance rats. To determine whether ethanol consumption in inbred strains could be modulated by experiential factors, preference for a target 10% ethanol concentration was tested after either the gradual introduction of ethanol in increasing concentrations or the abrupt introduction of the target concentration. Whereas high-avoidance rats consumed more ethanol at lower concentrations, consumption and preference for ethanol over water were not differential across strains and administration procedure (gradual vs. abrupt). At the 4% concentration, ethanol was preferred over water by Roman high-avoidance rats, but water was preferred over ethanol by Roman low-avoidance rats. Ethanol consumption and preference for a 10% concentration appear to be immune to modification by either the gradual or abrupt ethanol presentation. PMID:22820388

  9. High ethanol producing derivatives of Thermoanaerobacter ethanolicus

    DOEpatents

    Ljungdahl, L.G.; Carriera, L.H.

    1983-05-24

    Derivatives of the newly discovered microorganism Thermoanaerobacter ethanolicus which under anaerobic and thermophilic conditions continuously ferment substrates such as starch, cellobiose, glucose, xylose and other sugars to produce recoverable amounts of ethanol solving the problem of fermentations yielding low concentrations of ethanol using the parent strain of the microorganism Thermoanaerobacter ethanolicus are disclosed. These new derivatives are ethanol tolerant up to 10% (v/v) ethanol during fermentation. The process includes the use of an aqueous fermentation medium, containing the substrate at a substrate concentration greater than 1% (w/v).

  10. High ethanol producing derivatives of Thermoanaerobacter ethanolicus

    DOEpatents

    Ljungdahl, Lars G.; Carriera, Laura H.

    1983-01-01

    Derivatives of the newly discovered microorganism Thermoanaerobacter ethanolicus which under anaerobic and thermophilic conditions continuously ferment substrates such as starch, cellobiose, glucose, xylose and other sugars to produce recoverable amounts of ethanol solving the problem of fermentations yielding low concentrations of ethanol using the parent strain of the microorganism Thermoanaerobacter ethanolicus are disclosed. These new derivatives are ethanol tolerant up to 10% (v/v) ethanol during fermentation. The process includes the use of an aqueous fermentation medium, containing the substrate at a substrate concentration greater than 1% (w/v).

  11. High Blood Pressure (Hypertension)

    MedlinePlus

    ... Foot Complications DKA (Ketoacidosis) & Ketones Kidney Disease (Nephropathy) Gastroparesis Mental Health Step On Up Treatment & Care Blood ... Pressure (Hypertension) Stroke Hyperosmolar Hyperglycemic Nonketotic Syndrome (HHNS) Gastroparesis Heart Disease Mental Health Pregnancy Related Conditions donate ...

  12. Hypertension (High Blood Pressure)

    MedlinePlus

    ... substantial improvement over the comparable figures (51 percent, 31 percent, and 10 percent, respectively) for 1976-1980. ... vegetables, and low fat dairy products, and reducing sodium intake as effective methods to help lower blood ...

  13. Stability of ethanol in postmortem blood and vitreous humor in long-term refrigerated storage.

    PubMed

    Olsen, Theresa; Hearn, W Lee

    2003-10-01

    Ethanol concentrations in postmortem blood and vitreous humor samples collected at the Miami-Dade Medical Examiner Department over 5-6 years ago were reexamined to assess whether vitreous humor is a more reliable specimen for the analysis of ethanol in samples stored long term. The average change in 50-mL polypropylene tubes containing blood was 0.06 gm/dL (35% loss). On the other hand, vitreous humor samples collected in 10-mL gray-top Vacutainer tubes yielded an average change of 0.01 gm/dL (6.1% loss). This study demonstrates that vitreous humor may be a reliable matrix for ethanol analysis following prolonged refrigerated storage of the samples. PMID:14607009

  14. Controlling your high blood pressure

    MedlinePlus

    Controlling hypertension ... when you wake up. For people with very high blood pressure, this is when they are most at risk ... 2014 evidence-based guideline for the management of high blood pressure in adults: report from the panel members appointed ...

  15. Microarray characterization of gene expression changes in blood during acute ethanol exposure

    PubMed Central

    2013-01-01

    Background As part of the civil aviation safety program to define the adverse effects of ethanol on flying performance, we performed a DNA microarray analysis of human whole blood samples from a five-time point study of subjects administered ethanol orally, followed by breathalyzer analysis, to monitor blood alcohol concentration (BAC) to discover significant gene expression changes in response to the ethanol exposure. Methods Subjects were administered either orange juice or orange juice with ethanol. Blood samples were taken based on BAC and total RNA was isolated from PaxGene™ blood tubes. The amplified cDNA was used in microarray and quantitative real-time polymerase chain reaction (RT-qPCR) analyses to evaluate differential gene expression. Microarray data was analyzed in a pipeline fashion to summarize and normalize and the results evaluated for relative expression across time points with multiple methods. Candidate genes showing distinctive expression patterns in response to ethanol were clustered by pattern and further analyzed for related function, pathway membership and common transcription factor binding within and across clusters. RT-qPCR was used with representative genes to confirm relative transcript levels across time to those detected in microarrays. Results Microarray analysis of samples representing 0%, 0.04%, 0.08%, return to 0.04%, and 0.02% wt/vol BAC showed that changes in gene expression could be detected across the time course. The expression changes were verified by qRT-PCR. The candidate genes of interest (GOI) identified from the microarray analysis and clustered by expression pattern across the five BAC points showed seven coordinately expressed groups. Analysis showed function-based networks, shared transcription factor binding sites and signaling pathways for members of the clusters. These include hematological functions, innate immunity and inflammation functions, metabolic functions expected of ethanol metabolism, and pancreatic and hepatic function. Five of the seven clusters showed links to the p38 MAPK pathway. Conclusions The results of this study provide a first look at changing gene expression patterns in human blood during an acute rise in blood ethanol concentration and its depletion because of metabolism and excretion, and demonstrate that it is possible to detect changes in gene expression using total RNA isolated from whole blood. The analysis approach for this study serves as a workflow to investigate the biology linked to expression changes across a time course and from these changes, to identify target genes that could serve as biomarkers linked to pilot performance. PMID:23883607

  16. Adaptation to High Ethanol Reveals Complex Evolutionary Pathways.

    PubMed

    Voordeckers, Karin; Kominek, Jacek; Das, Anupam; Espinosa-Cantú, Adriana; De Maeyer, Dries; Arslan, Ahmed; Van Pee, Michiel; van der Zande, Elisa; Meert, Wim; Yang, Yudi; Zhu, Bo; Marchal, Kathleen; DeLuna, Alexander; Van Noort, Vera; Jelier, Rob; Verstrepen, Kevin J

    2015-11-01

    Tolerance to high levels of ethanol is an ecologically and industrially relevant phenotype of microbes, but the molecular mechanisms underlying this complex trait remain largely unknown. Here, we use long-term experimental evolution of isogenic yeast populations of different initial ploidy to study adaptation to increasing levels of ethanol. Whole-genome sequencing of more than 30 evolved populations and over 100 adapted clones isolated throughout this two-year evolution experiment revealed how a complex interplay of de novo single nucleotide mutations, copy number variation, ploidy changes, mutator phenotypes, and clonal interference led to a significant increase in ethanol tolerance. Although the specific mutations differ between different evolved lineages, application of a novel computational pipeline, PheNetic, revealed that many mutations target functional modules involved in stress response, cell cycle regulation, DNA repair and respiration. Measuring the fitness effects of selected mutations introduced in non-evolved ethanol-sensitive cells revealed several adaptive mutations that had previously not been implicated in ethanol tolerance, including mutations in PRT1, VPS70 and MEX67. Interestingly, variation in VPS70 was recently identified as a QTL for ethanol tolerance in an industrial bio-ethanol strain. Taken together, our results show how, in contrast to adaptation to some other stresses, adaptation to a continuous complex and severe stress involves interplay of different evolutionary mechanisms. In addition, our study reveals functional modules involved in ethanol resistance and identifies several mutations that could help to improve the ethanol tolerance of industrial yeasts. PMID:26545090

  17. Adaptation to High Ethanol Reveals Complex Evolutionary Pathways

    PubMed Central

    Das, Anupam; Espinosa-Cantú, Adriana; De Maeyer, Dries; Arslan, Ahmed; Van Pee, Michiel; van der Zande, Elisa; Meert, Wim; Yang, Yudi; Zhu, Bo; Marchal, Kathleen; DeLuna, Alexander; Van Noort, Vera; Jelier, Rob; Verstrepen, Kevin J.

    2015-01-01

    Tolerance to high levels of ethanol is an ecologically and industrially relevant phenotype of microbes, but the molecular mechanisms underlying this complex trait remain largely unknown. Here, we use long-term experimental evolution of isogenic yeast populations of different initial ploidy to study adaptation to increasing levels of ethanol. Whole-genome sequencing of more than 30 evolved populations and over 100 adapted clones isolated throughout this two-year evolution experiment revealed how a complex interplay of de novo single nucleotide mutations, copy number variation, ploidy changes, mutator phenotypes, and clonal interference led to a significant increase in ethanol tolerance. Although the specific mutations differ between different evolved lineages, application of a novel computational pipeline, PheNetic, revealed that many mutations target functional modules involved in stress response, cell cycle regulation, DNA repair and respiration. Measuring the fitness effects of selected mutations introduced in non-evolved ethanol-sensitive cells revealed several adaptive mutations that had previously not been implicated in ethanol tolerance, including mutations in PRT1, VPS70 and MEX67. Interestingly, variation in VPS70 was recently identified as a QTL for ethanol tolerance in an industrial bio-ethanol strain. Taken together, our results show how, in contrast to adaptation to some other stresses, adaptation to a continuous complex and severe stress involves interplay of different evolutionary mechanisms. In addition, our study reveals functional modules involved in ethanol resistance and identifies several mutations that could help to improve the ethanol tolerance of industrial yeasts. PMID:26545090

  18. Comparison of spectroscopically measured finger and forearm tissue ethanol concentration to blood and breath ethanol measurements

    NASA Astrophysics Data System (ADS)

    Ridder, Trent D.; Hull, Edward L.; Ver Steeg, Benjamin J.; Laaksonen, Bentley D.

    2011-02-01

    Previous works investigated a spectroscopic technique that offered a promising alternative to blood and breath assays for determining in vivo alcohol concentration. Although these prior works measured the dorsal forearm, we report the results of a 26-subject clinical study designed to evaluate the spectroscopic technique at a finger measurement site through comparison to contemporaneous forearm spectroscopic, venous blood, and breath measurements. Through both Monte Carlo simulation and experimental data, it is shown that tissue optical probe design has a substantial impact on the effective path-length of photons through the skin and the signal-to-noise ratio of the spectroscopic measurements. Comparison of the breath, blood, and tissue assays demonstrated significant differences in alcohol concentration that are attributable to both assay accuracy and alcohol pharmacokinetics. Similar to past works, a first order kinetic model is used to estimate the fraction of concentration variance explained by alcohol pharmacokinetics (72.6-86.7%). A significant outcome of this work was significantly improved pharmacokinetic agreement with breath (arterial) alcohol of the finger measurement (mean kArt-Fin = 0.111 min-1) relative to the forearm measurement (mean kArt-For = 0.019 min-1) that is likely due to the increased blood perfusion of the finger.

  19. Comparison of ethanol concentrations in venous blood and end-expired breath during a controlled drinking study.

    PubMed

    Jones, A W; Andersson, L

    2003-03-12

    Concentration-time profiles of ethanol were determined for venous whole blood and end-expired breath during a controlled drinking experiment in which healthy men (n=9) and women (n=9) drank 0.40-0.65 g ethanol per kg body weight in 20-30 min. Specimens of blood and breath were obtained for analysis of ethanol starting at 50-60 min post-dosing and then every 30-60 min for 3-6 h. This protocol furnished 130 blood-breath pairs for statistical evaluation. Blood-ethanol concentration (BAC, mg/g) was determined by headspace gas chromatography and breath-ethanol concentration (BrAC, mg/2l) was determined with a quantitative infrared analyzer (Intoxilyzer 5000S), which is the instrument currently used in Sweden for legal purposes. In 18 instances the Intoxilyzer 5000S gave readings of 0.00 mg/2l whereas the actual BAC was 0.08 mg/g on average (range 0.04-0.15 mg/g). The remaining 112 blood- and breath-alcohol measurements were highly correlated (r=0.97) and the regression relationship was BAC=0.10+0.91BrAC and the residual standard deviation (S.D.) was 0.042 mg/g (8.4%). The slope (0.91+/-0.0217) differed significantly from unity being 9% low and the intercept (0.10+/-0.0101) deviated from zero (t=10.2, P<0.001), indicating the presence of both proportional and constant bias, respectively. The mean bias (BAC - BrAC) was 0.068 mg/g and the 95% limits of agreement were -0.021 and 0.156 mg/g. The average BAC/BrAC ratio was 2448+/-540 (+/-S.D.) with a median of 2351 and 2.5th and 97.5th percentiles of 1836 and 4082. We found no significant gender-related differences in BAC/BrAC ratios, being 2553+/-576 for men and 2417+/-494 for women (t=1.34, P>0.05). The mean rate of ethanol disappearance from blood was 0.157+/-0.021 mg/(g per hour), which was very close to the elimination rate from breath of 0.161+/-0.021 mg/(2l per hour) (P>0.05). Breath-test results obtained with Intoxilyzer 5000S (mg/2l) were generally less than the coexisting concentrations of ethanol in venous blood (mg/g), which gives an advantage to the suspect who provides breath compared with blood in cases close to a threshold alcohol limit. PMID:12689747

  20. Potassium and High Blood Pressure

    MedlinePlus

    ... High Blood Pressure (HBP) • Why HBP Matters • Your Risk for HBP • Symptoms, Diagnosis & Monitoring of HBP • ... Managing Prescriptions - Types of Medications Keeping HBP Under Control • ...

  1. Medications for High Blood Pressure

    MedlinePlus

    ... Consumers Home For Consumers Consumer Updates Medications for High Blood Pressure Share Tweet Linkedin Pin it More sharing options Linkedin Pin it Email Print Hypertension tends to worsen with age and you cannot ...

  2. Stroke and High Blood Pressure

    MedlinePlus

    ... only hurt your brain. It also hurts the brain's ability to think and control body functions. Strokes can affect language, memory and vision as well as cause paralysis and other health issues. How does high blood ...

  3. Ethanol enhances de novo synthesis of high density lipoprotein cholesterol

    SciTech Connect

    Cluette, J.E.; Mulligan, J.J.; Noring, R.; Doyle, K.; Hojnacki, J.

    1984-05-01

    Male squirrel monkeys fed ethanol at variable doses were used to assess whether alcohol enhances de novo synthesis of high density lipoprotein (HDL) cholesterol in vivo. Monkeys were divided into three groups: 1) controls fed isocaloric liquid diet; 2) low ethanol monkeys fed liquid diet with vodka substituted isocalorically for carbohydrate at 12% of calories; and 3) High Ethanol animals fed diet plus vodka at 24% of calories. High Ethanol primates had significantly higher levels of HDL nonesterified cholesterol than Control and Low Ethanol animals while serum glutamate oxaloacetate transaminase was similar for the three treatments. There were no significant differences between the groups in HDL cholesteryl ester mass or specific activity following intravenous injection of labeled mevalonolactone. By contrast, High Ethanol monkeys had significantly greater HDL nonesterified cholesterol specific activity with approximately 60% of the radioactivity distributed in the HDL/sub 3/ subfraction. This report provides the first experimental evidence that ethanol at 24% of calories induces elevations in HDL cholesterol in primates through enhanced de novo synthesis without adverse effects on liver function.

  4. Orexin-1 and orexin-2 receptor antagonists reduce ethanol self-administration in high-drinking rodent models

    PubMed Central

    Anderson, Rachel I.; Becker, Howard C.; Adams, Benjamin L.; Jesudason, Cynthia D.; Rorick-Kehn, Linda M.

    2014-01-01

    To examine the role of orexin-1 and orexin-2 receptor activity on ethanol self-administration, compounds that differentially target orexin (OX) receptor subtypes were assessed in various self-administration paradigms using high-drinking rodent models. Effects of the OX1 antagonist SB334867, the OX2 antagonist LSN2424100, and the mixed OX1/2 antagonist almorexant (ACT-078573) on home cage ethanol consumption were tested in ethanol-preferring (P) rats using a 2-bottle choice procedure. In separate experiments, effects of SB334867, LSN2424100, and almorexant on operant ethanol self-administration were assessed in P rats maintained on a progressive ratio operant schedule of reinforcement. In a third series of experiments, SB334867, LSN2424100, and almorexant were administered to ethanol-preferring C57BL/6J mice to examine effects of OX receptor blockade on ethanol intake in a binge-like drinking (drinking-in-the-dark) model. In P rats with chronic home cage free-choice ethanol access, SB334867 and almorexant significantly reduced ethanol intake, but almorexant also reduced water intake, suggesting non-specific effects on consummatory behavior. In the progressive ratio operant experiments, LSN2424100 and almorexant reduced breakpoints and ethanol consumption in P rats, whereas the almorexant inactive enantiomer and SB334867 did not significantly affect the motivation to consume ethanol. As expected, vehicle-injected mice exhibited binge-like drinking patterns in the drinking-in-the-dark model. All three OX antagonists reduced both ethanol intake and resulting blood ethanol concentrations relative to vehicle-injected controls, but SB334867 and LSN2424100 also reduced sucrose consumption in a different cohort of mice, suggesting non-specific effects. Collectively, these results contribute to a growing body of evidence indicating that OX1 and OX2 receptor activity influences ethanol self-administration, although the effects may not be selective for ethanol consumption. PMID:24616657

  5. Hyperglycemia (High Blood Glucose)

    MedlinePlus Videos and Cool Tools

    ... and Learning About Prediabetes Type 2 Diabetes Risk Test Lower Your Risk Healthy Eating Overweight Smoking High ... You at Risk? Diagnosis Lower Your Risk Risk Test Alert Day Prediabetes My Health Advisor Tools to ...

  6. The Effects of Ethanol on the Morphological and Biochemical Properties of Individual Human Red Blood Cells

    PubMed Central

    Lee, Sang Yun; Park, Hyun Joo; Best-Popescu, Catherine; Jang, Seongsoo; Park, Yong Keun

    2015-01-01

    Here, we report the results of a study on the effects of ethanol exposure on human red blood cells (RBCs) using quantitative phase imaging techniques at the level of individual cells. Three-dimensional refractive index tomograms and dynamic membrane fluctuations of RBCs were measured using common-path diffraction optical tomography, from which morphological (volume, surface area, and sphericity); biochemical (hemoglobin (Hb) concentration and Hb content); and biomechanical (membrane fluctuation) parameters were retrieved at various concentrations of ethanol. RBCs exposed to the ethanol concentration of 0.1 and 0.3% v/v exhibited cell sphericities higher than those of normal cells. However, mean surface area and sphericity of RBCs in a lethal alcoholic condition (0.5% v/v) are not statistically different with those of healthy RBCs. Meanwhile, significant decreases of Hb content and concentration in RBC cytoplasm at the lethal condition were observed. Furthermore, dynamic fluctuation of RBC membranes increased significantly upon ethanol treatments, indicating ethanol-induced membrane fluidization. PMID:26690915

  7. Operant self-administration of sweetened ethanol and time course of blood ethanol levels in adolescent and adult male Long-Evans rats

    PubMed Central

    Doherty, James M.; Gonzales, Rueben A.

    2014-01-01

    Background Little is known regarding mechanisms regulating ethanol self-administration during adolescence or if the mechanisms differ from adults. One of the best models of abuse liability is operant self-administration. Therefore, we characterized operant sweetened ethanol self-administration behavior in adolescent and adult rats. Methods Adolescent (36 days old at first ethanol exposure) and adult male Long-Evans rats were first trained to self-administer 10% sucrose (10S) in an appetitive/consummatory operant model for 1 week, and then the drinking solution was switched to 10% sucrose plus 10% ethanol (10S10E) for 2 weeks. Next, rats were switched to a fixed ratio 2 schedule, and this was followed by one session using a progressive ratio schedule of reinforcement. Lastly, rats were tested for cue-induced reinstatement of lever pressing behavior under extinction conditions after 13 days of abstinence. Blood ethanol concentration (BEC) of sweetened ethanol (self-administered or intragastric (IG) administration of 1 g/kg) was determined via gas chromatography. Control rats drank only 10S. Results Consumption of sweetened ethanol was not different between adolescents and adults under any schedule tested, reaching 1 g/kg in 20 min in the appetitive/consummatory model. Appetitive behavior directed at sweetened ethanol was less focused in adolescents vs. adults. No age differences were found in motivation for sweetened ethanol. Cue-induced reinstatement of ethanol-seeking behavior after abstinence also did not differ by age. In control groups, no age difference was found in appetitive behavior or the amount of sucrose consumed, although adults exhibited greater cue-induced reinstatement. BEC after self-administration or IG administration of sweetened ethanol was higher in adults than adolescents. Conclusions Consumption and motivation for sweetened ethanol is similar in adolescents and adults, although adolescents are more vulnerable to the effects of ethanol consumption on appetitive behavior. The IG results suggest larger volume of distribution and higher first pass metabolism of sweetened ethanol in adolescents vs. adults, which may limit the reinforcing effects of ethanol in some adolescents. Overall, we have begun to establish an operant sweetened ethanol self-administration model in adolescent rats. PMID:25702920

  8. High Blood Pressure: Medicines to Help You

    MedlinePlus

    ... For Consumers Consumer Information by Audience For Women High Blood Pressure--Medicines to Help You Share Tweet Linkedin Pin ... Click here for the Color Version (PDF 533KB) High blood pressure is a serious illness. High blood pressure is ...

  9. Avoid the Consequences of High Blood Pressure

    MedlinePlus

    ... Tools & Resources Stroke More Avoid the Consequences of High Blood Pressure Infographic Updated:Jun 19,2014 View a downloadable version of this infographic High Blood Pressure • Home • About High Blood Pressure (HBP) • Why HBP ...

  10. Ethanol.

    PubMed Central

    McIntire, Steven L

    2010-01-01

    Ethanol is a widely used drug whose mechanism of action, despite intensive study, remains uncertain. Biochemical and electrophysiological experiments have identified receptors and ion channels whose functions are altered at physiological concentrations of ethanol. Yet, the contribution of these potential targets to its intoxicating or behavioral effects is unclear. Unbiased forward genetic screens for resistant or hypersensitive mutants represent an attractive means of identifying the relevant molecular targets or biochemical pathways mediating the behavioral effects of neuroactive compounds. C. elegans has proven to be a particularly useful system for such studies. The behavioral effects of ethanol occur at equivalent tissue concentrations in mammals and in C. elegans, suggesting the existence of conserved drug targets in the nervous system. This chapter reviews the results of studies directed toward determining the mechanisms of action of ethanol. Studies of the neural adaptations that occur with prolonged drug exposure are also discussed. The methods used to characterize the actions of ethanol should be applicable to the characterizations of other compounds that affect the behavior of C. elegans. PMID:20432508

  11. Retrobulbar blood flow and visual field alterations after acute ethanol ingestion

    PubMed Central

    Weber, Anke; Remky, Andreas; Bienert, Marion; der Velden, Klaudia Huber-van; Kirschkamp, Thomas; Rennings, Corinna; Roessler, Gernot; Plange, Niklas

    2013-01-01

    Background The purpose of this study was to test the effect of ethyl alcohol on the koniocellular and magnocellular pathway of visual function and to investigate the relationship between such visual field changes and retrobulbar blood flow in healthy subjects. Methods In 12 healthy subjects (mean age 32 ± 4 years), color Doppler imaging, short-wavelength automated perimetry, and frequency doubling perimetry was performed before and 60 minutes after oral intake of 80 mL of 40 vol% ethanol. Mean and pattern standard deviations for short-wavelength automated and frequency doubling perimetry were assessed. End diastolic velocity (EDV) and peak systolic velocity (PSV) were measured in the central retinal and ophthalmic arteries using color Doppler imaging. Systemic blood pressure, heart rate, intraocular pressure, and blood alcohol concentration were determined. Results Mean PSV and EDV in the central retinal artery showed a significant increase after alcohol intake (P = 0.03 and P = 0.02, respectively). Similarly, we found a significant acceleration of blood flow velocity in the ophthalmic artery (P = 0.02 for PSV; P = 0.04 for EDV). Mean intraocular pressure decreased by 1.0 mmHg after alcohol ingestion (P = 0.01). Retinal sensitivity in short-wavelength automated perimetry did not alter, whereas in frequency doubling perimetry, the mean deviation decreased significantly. Systolic and diastolic blood pressure did not change significantly. Mean blood alcohol concentration was 0.38 ± 0.16 g/L. Conclusion Although ethanol is known to cause peripheral vasodilation, our subjects had no significant drop in systemic blood pressure. However, a significant increase of blood flow velocity was seen in the retrobulbar vessels. Regarding visual function, moderate alcohol consumption led to reduced performance in the magnocellular visual system tested by frequency doubling perimetry, but had no effect on short-wavelength automated perimetry. PMID:23990703

  12. Interaction of ethanol and microwaves on the blood-brain barrier of rats

    SciTech Connect

    Neilly, J.P.; Lin, J.C.

    1986-01-01

    The combined effects of ethanol and microwaves on the permeation of Evans blue dye through the mammalian blood-brain barrier was studied in male Wistar rats. Anesthetized rats were infused through a cannula in the left femoral vein with 0.1, 0.3, 0.5 or 0.7 grams of absolute ethanol per kilogram of body mass. A control group was given 0.7 g/kg of isotonic saline. The left hemisphere of the brain was irradiated by 3.15-GHz microwave energy at 3.0 W/cm2 rms for 15 min. The rat's rectal temperature was maintained at 37.0 degrees C. Immediately after irradiation, 2% Evans blue dye in saline (2.0 ml/kg body mass) was injected through the cannula. The results show that as the quantity of alcohol was increased, the degree of staining was decreased or eliminated. The temperature of the irradiated area of the brain increased for the first 4 to 5 minutes of irradiation and then stabilized for the remainder of the irradiation period. The steady-state temperature was highest in animals receiving saline or the smallest dose of alcohol. As the quantity of alcohol was increased, the steady-state temperature was reduced. These results indicate that ethanol inhibits microwave-induced permeation of the blood-brain barrier through reduced heating of the brain.

  13. Effects of cimetidine on gastric alcohol dehydrogenase activity and blood ethanol levels.

    PubMed

    Caballeria, J; Baraona, E; Rodamilans, M; Lieber, C S

    1989-02-01

    Chronic use of cimetidine and alcohol are commonly associated, but studies on their interactions are the subject of controversy. To investigate this question, a small ethanol dose (0.15 g/kg body wt) was randomly administered on 2 consecutive days either orally or intravenously to 6 normal volunteers, before and after 1 wk of oral administration of 400 mg of cimetidine twice daily. Although cimetidine did not change the areas under the curve of blood ethanol concentrations after intravenous administration, those after oral alcohol intake were twice as large with cimetidine than without. Similar effects were reproduced in rats after intravenous administration of cimetidine (50 mg/kg body wt). In vitro, cimetidine was a noncompetitive inhibitor of gastric alcohol dehydrogenase activity at concentrations as low as 0.01 mM, 100-fold lower than those needed to inhibit the hepatic dehydrogenase. These results indicate that gastric alcohol dehydrogenase activity governs, in part, the systemic bioavailability of ethanol. Consequently, systemic effects of alcohol may be exacerbated in patients receiving cimetidine. PMID:2910758

  14. Genetics of alcoholism: rapid development of a new high-ethanol-preferring (HEP) strain of female and male rats.

    PubMed

    Myers, R D; Robinson, D E; West, M W; Biggs, T A; McMillen, B A

    1998-11-01

    A genetically based animal model of alcoholism has been developed in a relatively short period of 3 years. The new strain is characterized by an intense preference for ethanol over water as well as unique behavioral, neurochemical and other attributes. This new strain, termed high-ethanol-preferring (HEP) rats, was derived initially from selective cross-breeding of a variant strain of female Harlan Sprague-Dawley (SD) rats with the outbred Wistar line of male ethanol-preferring (P) rats. In this study, drinking patterns of both genders were obtained over 10 days by presenting water and ethanol in concentrations ranging from 3% to 30%. To expedite the development of the new strain, only three to five female and male rats served as breeders, which were chosen from all litters on the basis of their maximum g/kg intake integrated with proportion of ethanol to total fluid values. Profiles of intake of preferred concentrations of ethanol were obtained over 24 h of unlimited access as well as during 2-h intervals of limited access to ethanol. Levels of blood ethanol were measured in both female and male HEP animals during bouts of ethanol drinking in the limited access paradigm. By the sixth generation of HEP rats, ethanol consumption of the females often exceeded that of any other rat genetically bred to drink ethanol (e.g., at a concentration of 15.7%, 10.3 g/kg per day). Seven additional characteristics are notable: 1) the HEP rats prefer ethanol in the presence of a nutritious chocolate drink or nonnutrient sweetened solution (aspartame); 2) high levels of blood ethanol are associated with their drinking; 3) females drink significantly greater g/kg amounts of ethanol than HEP males and prefer a higher percent concentration of ethanol; 4) the drinking of ethanol by the female HEP animals does not fluctuate during the estrous cycle; 5) neurochemical assays show differential profiles of 5-HT, dopamine, and their metabolites in different regions of the brain; 6) measures of activity using the elevated plus maze, open field, and cork gnawing reveal differences between genders of HEP rats and SD rats; and 7) the HEP animals are without phenotypically expressed abnormalities. Finally, one cardinal principle derived from this study revealed that the breeding strategy to develop high-ethanol-drinking rats centers on the use of multiple solutions of ethanol whereby the intakes of ethanol in concentration of 9% through 20% dictate the ultimate selection of breeding pairs over successive F generations. Further, it is concluded that because of an intense rise in ethanol drinking of the F1 generation of female HEP rats well above that of the parental SD female breeders, the complex genotypic characteristic of the male P rat is predominantly responsible for evoking ethanol drinking in female offspring. PMID:9818988

  15. 40 CFR 1065.725 - High-level ethanol-gasoline blends.

    Code of Federal Regulations, 2014 CFR

    2014-07-01

    ... on a high-level ethanol-gasoline blend, create a test fuel as follows: (a) Add ethanol to an E10 fuel meeting the specifications described in § 1065.710 until the ethanol content of the blended fuel is... if you can demonstrate that such a base fuel blended with the proper amount of ethanol would meet...

  16. Comparative polygenic analysis of maximal ethanol accumulation capacity and tolerance to high ethanol levels of cell proliferation in yeast.

    PubMed

    Pais, Thiago M; Foulquié-Moreno, María R; Hubmann, Georg; Duitama, Jorge; Swinnen, Steve; Goovaerts, Annelies; Yang, Yudi; Dumortier, Françoise; Thevelein, Johan M

    2013-06-01

    The yeast Saccharomyces cerevisiae is able to accumulate ≥17% ethanol (v/v) by fermentation in the absence of cell proliferation. The genetic basis of this unique capacity is unknown. Up to now, all research has focused on tolerance of yeast cell proliferation to high ethanol levels. Comparison of maximal ethanol accumulation capacity and ethanol tolerance of cell proliferation in 68 yeast strains showed a poor correlation, but higher ethanol tolerance of cell proliferation clearly increased the likelihood of superior maximal ethanol accumulation capacity. We have applied pooled-segregant whole-genome sequence analysis to identify the polygenic basis of these two complex traits using segregants from a cross of a haploid derivative of the sake strain CBS1585 and the lab strain BY. From a total of 301 segregants, 22 superior segregants accumulating ≥17% ethanol in small-scale fermentations and 32 superior segregants growing in the presence of 18% ethanol, were separately pooled and sequenced. Plotting SNP variant frequency against chromosomal position revealed eleven and eight Quantitative Trait Loci (QTLs) for the two traits, respectively, and showed that the genetic basis of the two traits is partially different. Fine-mapping and Reciprocal Hemizygosity Analysis identified ADE1, URA3, and KIN3, encoding a protein kinase involved in DNA damage repair, as specific causative genes for maximal ethanol accumulation capacity. These genes, as well as the previously identified MKT1 gene, were not linked in this genetic background to tolerance of cell proliferation to high ethanol levels. The superior KIN3 allele contained two SNPs, which are absent in all yeast strains sequenced up to now. This work provides the first insight in the genetic basis of maximal ethanol accumulation capacity in yeast and reveals for the first time the importance of DNA damage repair in yeast ethanol tolerance. PMID:23754966

  17. Comparative Polygenic Analysis of Maximal Ethanol Accumulation Capacity and Tolerance to High Ethanol Levels of Cell Proliferation in Yeast

    PubMed Central

    Pais, Thiago M.; Foulquié-Moreno, María R.; Hubmann, Georg; Duitama, Jorge; Swinnen, Steve; Goovaerts, Annelies; Yang, Yudi; Dumortier, Françoise; Thevelein, Johan M.

    2013-01-01

    The yeast Saccharomyces cerevisiae is able to accumulate ≥17% ethanol (v/v) by fermentation in the absence of cell proliferation. The genetic basis of this unique capacity is unknown. Up to now, all research has focused on tolerance of yeast cell proliferation to high ethanol levels. Comparison of maximal ethanol accumulation capacity and ethanol tolerance of cell proliferation in 68 yeast strains showed a poor correlation, but higher ethanol tolerance of cell proliferation clearly increased the likelihood of superior maximal ethanol accumulation capacity. We have applied pooled-segregant whole-genome sequence analysis to identify the polygenic basis of these two complex traits using segregants from a cross of a haploid derivative of the sake strain CBS1585 and the lab strain BY. From a total of 301 segregants, 22 superior segregants accumulating ≥17% ethanol in small-scale fermentations and 32 superior segregants growing in the presence of 18% ethanol, were separately pooled and sequenced. Plotting SNP variant frequency against chromosomal position revealed eleven and eight Quantitative Trait Loci (QTLs) for the two traits, respectively, and showed that the genetic basis of the two traits is partially different. Fine-mapping and Reciprocal Hemizygosity Analysis identified ADE1, URA3, and KIN3, encoding a protein kinase involved in DNA damage repair, as specific causative genes for maximal ethanol accumulation capacity. These genes, as well as the previously identified MKT1 gene, were not linked in this genetic background to tolerance of cell proliferation to high ethanol levels. The superior KIN3 allele contained two SNPs, which are absent in all yeast strains sequenced up to now. This work provides the first insight in the genetic basis of maximal ethanol accumulation capacity in yeast and reveals for the first time the importance of DNA damage repair in yeast ethanol tolerance. PMID:23754966

  18. Alanine with the Precipitate of Tomato Juice Administered to Rats Enhances the Reduction in Blood Ethanol Levels

    PubMed Central

    Oshima, Shunji; Shiiya, Sachie; Tokumaru, Yoshimi; Kanda, Tomomasa

    2015-01-01

    Delay in gastric emptying (GE) lowers the blood ethanol concentration (BEC) after alcohol administration. We previously demonstrated that water-insoluble fractions, mainly comprising dietary fiber derived from many types of botanical foods, possessed the ability to absorb ethanol-containing aqueous solutions. Furthermore, there was a significant correlation between the absorption of ethanol and lowering of BEC because of delay in GE. Here we identified dietary nutrients that synergize with the water-insoluble fraction of tomatoes to lower BEC in rats. Consequently, unlike tomato juice without alanine, tomato juice with 5.0% alanine decreased BEC depending on the delay in GE and mediated the ethanol-induced decrease in the spontaneous motor activity (an indicator of drunkenness). Our findings indicate that the synergism between tomato juice and alanine to reduce the absorption of ethanol was attributable to the effect of alanine on precipitates such as the water-insoluble fraction of tomatoes. PMID:26713162

  19. Ethanol and Acetaldehyde After Intraperitoneal Administration to Aldh2-Knockout Mice-Reflection in Blood and Brain Levels.

    PubMed

    Jamal, Mostofa; Ameno, Kiyoshi; Tanaka, Naoko; Ito, Asuka; Takakura, Ayaka; Kumihashi, Mitsuru; Kinoshita, Hiroshi

    2016-05-01

    This paper reports, for the first time, on the analysis of ethanol (EtOH) and acetaldehyde (AcH) concentrations in the blood and brains of Aldh2-knockout (Aldh2-KO) and C57B6/6J (WT) mice. Animals were administrated EtOH (1.0, 2.0 or 4.0 g/kg) or 4-methylpyrazole (4-MP, 82 mg/kg) plus AcH (50, 100 or 200 mg/kg) intraperitoneally. During the blood tests, samples from the orbital sinus of the eye were collected. During the brain tests, dialysates were collected every 5 min (equal to a 15 µl sample) from the striatum using in vivo brain microdialysis. Samples were collected at 5, 10, 15, 20, 25, 30 and 60 min intervals post-EtOH and -AcH injection, and then analyzed by head-space GC. In the EtOH groups, high AcH levels were found in the blood and brains of Aldh2-KO mice, while only small traces of AcH were seen in the blood and brains of WT mice. No significant differences in EtOH levels were observed between the WT and the Aldh2-KO mice for either the EtOH dose. EtOH concentrations in the brain were comparable to the EtOH concentrations in the blood, but the AcH concentrations in the brain were four to five times lower compared to the AcH concentrations in the blood. In the AcH groups, high AcH levels were found in both WT and Aldh2-KO mice. Levels reached a sharp peak at 5 min and then quickly declined for 60 min. Brain AcH concentrations were almost equal to the concentrations found in the blood, where the AcH concentrations were approximately two times higher in the Aldh2-KO mice than in the WT mice, both in the blood and the brain. Our results suggest that systemic EtOH and AcH administration can cause a greater increase in AcH accumulation in the blood and brains of Aldh2-KO mice, where EtOH concentrations in the Aldh2-KO mice were comparable to the EtOH concentrations in the WT mice. Furthermore, detection of EtOH and AcH in the blood and brain was found to be dose-dependent in both genotypes. PMID:26646001

  20. Performance of dairy cows fed high levels of acetic acid or ethanol.

    PubMed

    Daniel, J L P; Amaral, R C; Sá Neto, A; Cabezas-Garcia, E H; Bispo, A W; Zopollatto, M; Cardoso, T L; Spoto, M H F; Santos, F A P; Nussio, L G

    2013-01-01

    Ethanol and acetic acid are common end products from silages. The main objective of this study was to determine whether high concentrations of ethanol or acetic acid in total mixed ration would affect performance in dairy cows. Thirty mid-lactation Holstein cows were grouped in 10 blocks and fed one of the following diets for 7 wk: (1) control (33% Bermuda hay + 67% concentrates), (2) ethanol [control diet + 5% ethanol, dry matter (DM) basis], or (3) acetic acid (control diet + 5% acetic acid, DM basis). Ethanol and acetic acid were diluted in water (1:2) and sprayed onto total mixed rations twice daily before feeding. An equal amount of water was mixed with the control ration. To adapt animals to these treatments, cows were fed only half of the treatment dose during the first week of study. Cows fed ethanol yielded more milk (37.9 kg/d) than those fed the control (35.8 kg/d) or acetic acid (35.3 kg/d) diets, mainly due to the higher DM intake (DMI; 23.7, 22.2, and 21.6 kg/d, respectively). The significant diet × week interaction for DMI, mainly during wk 2 and 3 (when acetic acid reached the full dose), was related to the decrease in DMI observed for the acetic acid treatment. There was a diet × week interaction in excretion of milk energy per DMI during wk 2 and 3, due to cows fed acetic acid sustained milk yield despite lower DMI. Energy efficiency was similar across diets. Blood metabolites (glucose, insulin, nonesterified fatty acids, ethanol, and γ-glutamyl transferase activity) and sensory characteristics of milk were not affected by these treatments. Animal performance suggested similar energy value for the diet containing ethanol compared with other diets. Rumen conversion of ethanol to acetate and a concomitant increase in methane production might be a plausible explanation for the deviation of the predicted energy value based on the heat of combustion. Therefore, the loss of volatile compounds during the drying process in the laboratory should be considered when calculating energy content of fermented feedstuffs. PMID:23141834

  1. The highly selective orexin/hypocretin 1 receptor antagonist GSK1059865 potently reduces ethanol drinking in ethanol dependent mice.

    PubMed

    Lopez, Marcelo F; Moorman, David E; Aston-Jones, Gary; Becker, Howard C

    2016-04-01

    The orexin/hypocretin (ORX) system plays a major role in motivation for natural and drug rewards. In particular, a number of studies have shown that ORX signaling through the orexin 1 receptor (OX1R) regulates alcohol seeking and consumption. Despite the association between ORX signaling and motivation for alcohol, no study to date has investigated what role the ORX system plays in alcohol dependence, an understanding of which would have significant clinical relevance. This study was designed to evaluate the effect of the highly selective OX1R antagonist GSK1059865 on voluntary ethanol intake in ethanol-dependent and control non-dependent mice. Mice were subjected to a protocol in which they were evaluated for baseline ethanol intake and then exposed to intermittent ethanol or air exposure in inhalation chambers. Each cycle of chronic intermittent ethanol (CIE), or air, exposure was followed by a test of ethanol intake. Once the expected effect of increased voluntary ethanol intake was obtained in ethanol dependent mice, mice were tested for the effect of GSK1059865 on ethanol and sucrose intake. Treatment with GSK1059865 significantly decreased ethanol drinking in a dose-dependent manner in CIE-exposed mice. In contrast GSK1059865 decreased drinking in air-exposed mice only at the highest dose used. There was no effect of GSK1059865 on sucrose intake. Thus, ORX signaling through the OX1R, using a highly-selective antagonist, has a profound influence on high levels of alcohol drinking induced in a dependence paradigm, but limited or no influence on moderate alcohol drinking or sucrose drinking. These results indicate that the ORX system may be an important target system for treating disorders of compulsive reward seeking such as alcoholism and other addictions in which motivation is strongly elevated. PMID:26851547

  2. High blood pressure tests (image)

    MedlinePlus

    ... lab tests include urinalysis, blood cell count, blood chemistry (potassium, sodium, creatinine, fasting glucose, total cholesterol and HDL cholesterol), and an ECG (electrocardiogram). Additional tests may be recommended based on your condition.

  3. Breath ammonia and ethanol increase in response to a high protein challenge.

    PubMed

    Spacek, Lisa A; Mudalel, Matthew L; Lewicki, Rafal; Tittel, Frank K; Risby, Terence H; Stoltzfus, Jill; Munier, Joseph J; Solga, Steven F

    2015-03-01

    Quantifying changes in ammonia and ethanol in blood and body fluid assays in response to food is cumbersome. We used breath analysis of ammonia, ethanol, hydrogen (an accepted standard of gut transit) and acetone to investigate gastrointestinal physiology. In 30 healthy participants, we measured each metabolite serially over 6 h in control and high protein trials. Two-way repeated measures ANOVA compared treatment (control versus intervention), change from baseline to maximum and interaction of treatment and time change. Interaction was significant for ammonia (p < 0.0001) and hydrogen (p < 0.0001). We describe the dynamic measurement of multiple metabolites in response to an oral challenge. PMID:26043432

  4. Immobilization-induced increases of systolic blood pressure and dysregulation of electrolyte balance in ethanol-treated rats.

    PubMed

    Yasmin, Farzana; Haque, Zeba; Ikram, Huma; Haleem, Darakhshan Jabeen

    2015-07-01

    Clinical and experimental studies revealed that alcohol drinking and life event stresses are predisposing factors to hypertension. Intra and extra cellular levels of electrolytes may play important role in the pathogenesis and treatment of hypertension. Dietary intake of sodium, potassium, calcium and magnesium is suggested to have a role in the regulation of blood pressure. The present study was designed to monitor the effects of acute exposure to 2h immobilization stress and ethanol administration at a dose of 2.5 g/kg body weight (i.p.) and combined effect of acute administration of ethanol and immobilization stress on systolic blood pressure (SBP), intraerythrocyte, serum and tissue electrolytes in rats. Results showed that acute exposure to 2h immobilization increased SBP, intraerythrocyte sodium and decreased intraerythrocyte potassium in water as well as in ethanol injected rats. The concentration of Na⁺ and Ca²⁺ increased while that of K⁺ and Mg²⁺ decreased in the heart and kidney tissue. Ethanol administration also increased Na⁺ and Ca²⁺ levels and decreased K⁺ and Mg²⁺ levels in the heart and kidney tissue. Restraint stress decreased serum levels of Na⁺, K⁺, Ca²⁺, P, and Cl⁻ and increased serum Mg²⁺, glucose and haematocrit. Ethanol administration also decreased serum levels of Na⁺, K⁺, Ca²⁺, P, and Cl⁻ and increased serum Mg²⁺, glucose and haematocrit. The effects of ethanol and stress on the changes of blood and tissues electrolytes were additive and may be involved in the greater occurrence of hypertension in alcoholics. Our results suggested an important role of intra and extra cellular electrolytes in both stress and ethanol-induced hypertension. The findings may help to develop strategies for the treatment of hypertension in alcoholics. PMID:26142527

  5. Chronic ethanol consumption alters effects of ethanol in vitro on brain membrane structure of high alcohol sensitivity and low alcohol sensitivity rats.

    PubMed

    Avdulov, N A; Chochina, S V; Draski, L J; Deitrich, R A; Wood, W G

    1995-08-01

    In this study, we examined if differences in initial membrane sensitivity to ethanol were associated with development of membrane tolerance to ethanol. High Alcohol Sensitivity (HAS) and Low Alcohol Sensitivity (LAS) rats were administered a 15% ethanol solution in water as the sole source of fluid for 30 days. The amount of ethanol consumed per day did not significantly differ between the HAS and LAS rats. Development of membrane tolerance to in vitro effects of ethanol has been previously reported for bulk membrane fluidity and protein-lipid interaction. Our data expands the understanding of "membrane tolerance" phenomenon to protein distribution and bilayer interdigitation. We also introduce genotype-dependent and genotype-independent properties of the membrane tolerance to ethanol. ethanol treatment produced genotype-dependent and genotype-independent membrane tolerance to ethanol. The in vitro effects of ethanol on synaptic plasma membrane (SPM) protein distribution and lipid bilayer interdigitation were abolished or decreased in the SPM of chronic ethanol-treated HAS rats, as compared with the SPM of HAS control rats (genotype-dependent tolerance). Protein distribution and bilayer interdigitation were not affected by ethanol in vitro in either chronic ethanol-treated or control LAS rats. Genotype-independent tolerance to ethanol in vitro was observed for SPM annular and bulk bilayer fluidity in chronic ethanol-treated HAS and LAS rats. It is concluded that initial sensitivity to ethanol contributes to the development of membrane tolerance to ethanol in HAS and LAS rats. PMID:7485835

  6. Apoptosis of blood mononuclear cells in alcoholic liver cirrhosis. The influence of in vitro ethanol treatment and zinc supplementation.

    PubMed

    Szuster-Ciesielska, Agnieszka; Daniluk, Jadwiga; Bojarska-Junak, Agnieszka

    2005-09-01

    Ethanol consumption induces apoptosis in a variety of tissues, among others in liver and lymphoid tissue. Zinc has been shown to influence apoptosis of blood mononuclear cells by inhibiting the mitochondrial pathway of cell death. The aim of this study was to examine the influence of zinc on spontaneous and in vitro alcohol-induced apoptosis of peripheral blood mononuclear cells (PBMCs) of patients with alcoholic cirrhosis. PBMCs were isolated from the blood of 26 patients with cirrhosis and 20 healthy controls. PBMCs and among them CD4+ T helper cells of cirrhotic patients exhibited accelerated spontaneous (without treatment) apoptosis in vitro. When apoptosis was induced in vitro by treating cells with 80 mM ethanol, CD8+ T lymphocytes of a healthy control were more sensitive to ethanol treatment than those of cirrhotic patients. Thirty micromolar zinc supplementation inhibited both spontaneous and ethanol-induced apoptosis of immune cells derived from the blood of the healthy control and cirrhotic patients. In sera of patients with cirrhosis, an elevated level of IL-12, but also sFas (CD95) and sFas ligand (sFasL) was detected. Moreover, in vitro, PBMCs of cirrhotic patients spontaneously released more sFas and sFasL than control PBMCs. Ethanol treatment significantly increased sFas, but decreased sFasL release from PBMCs of cirrhotic patients, while it only slightly affected control cells. As zinc supplementation did not significantly influence sFas or sFasL release, it seems likely that it is rather the mitochondrial pathway of ethanol-related immune cell death that may be inhibited by zinc supplementation. PMID:15964121

  7. Influence of chronic nicotine intake and acute ethanol challenge on gastric mucus level and blood flow in rabbits.

    PubMed

    Luk, I S; Ho, J; Wong, W M; Yuen, S T; Luk, C T; Cho, C H

    1994-01-01

    The effects of nicotine pretreatment on ethanol-induced gastric mucosal lesions and changes of gastric mucosal mucus levels and blood flow (GBF) were studied in anaesthetized rabbits. Nicotine treatment 25 or 50 micrograms/ml drinking water did not affect the volume of water consumption during the 10-day experimental period. It did not produce gastric mucosal lesions or affect the superficial adherent mucus content. The length of mucus-containing cells and the basal GBF were also unaffected. Intragastric administration of absolute ethanol reduced GBF, this effect was not altered by nicotine. However, the alkaloid potentiated the ulcerogenic actions of ethanol both on lesion formation and mucus depletion evoked by graded oral doses of ethanol (50 or 100%, v/v). Ultrastructurally, the mucous cells were more degenerated in the animals co-treated with nicotine and ethanol. It is concluded that reductions of mucus-containing cells and adherent mucus on the gastric mucosa are likely to be the contributory factors involved in the aggravating action of nicotine on ethanol-induced gastric mucosal lesions in rabbits. PMID:7535712

  8. Mechanistic Study of Silver Nanoparticle's Synthesis by Dragon's Blood Resin Ethanol Extract and Antiradiation Activity.

    PubMed

    Hasan, Murtaza; Iqbal, Javed; Awan, Umer; Saeed, Yasmeen; Ranran, Yuan; Liang, Yanli; Dai, Rongji; Deng, Yulin

    2015-02-01

    Biological synthesis of nanoparticles is best way to avoid exposure of hazardous materials as compared to chemical manufacturing process which is a severe threat not only to biodiversity but also to environment. In present study, we reported a novel method of finding antiradiation compounds by bioreducing mechanism of silver nanoparticles formation using 50% ethanol extract of Dragons blood, a famous Chinese herbal plant. Color change during silver nanoparticles synthesis was observed and it was confirmed by ultra violet (UV) visible spectroscopy at wave length at 430 nm after 30 min of reaction at 60 °C. Well dispersed round shaped silver nanoparticles with approximate size (4 nm to 50 nm) were measured by TEM and particle size analyser. Capping of biomolecules on Ag nanoparticles was characterized by FTIR spectra. HPLC analysis was carried out to find active compounds in the extract. Furthermore, antiradiation activity of this extract was tested by MTT assay in vitro after incubating the SH-SY5Y cells for 24 h at 37 °C. The results indicate that presence of active compounds in plant extract not only involves in bioreduction process but also shows response against radiation. The dual role of plant extract as green synthesis of nanoparticles and exhibit activity against radiation which gives a new way of fishing out active compounds from complex herbal plants. PMID:26353649

  9. CHRONOBIOLOGY OF HIGH BLOOD PRESSURE

    PubMed Central

    Cornélissen, G.; Halberg, F.; Bakken, E. E.; Wang, Z.; Tarquini, R.; Perfetto, F.; Laffi, G.; Maggioni, C.; Kumagai, Y.; Homolka, P.; Havelková, A.; Dušek, J.; Svačinová, H.; Siegelová, J.; Fišer, B.

    2008-01-01

    BIOCOS, the project aimed at studying BIOlogical systems in their COSmos, has obtained a great deal of expertise in the fields of blood pressure (BP) and heart rate (HR) monitoring and of marker rhythmometry for the purposes of screening, diagnosis, treatment, and prognosis. Prolonging the monitoring reduces the uncertainty in the estimation of circadian parameters; the current recommendation of BIOCOS requires monitoring for at least 7 days. The BIOCOS approach consists of a parametric and a non-parametric analysis of the data, in which the results from the individual subject are being compared with gender- and age-specified reference values in health. Chronobiological designs can offer important new information regarding the optimization of treatment by timing its administration as a function of circadian and other rhythms. New technological developments are needed to close the loop between the monitoring of blood pressure and the administration of antihypertensive drugs. PMID:19122770

  10. ATP metabolism in rat liver chronically treated with ethanol and high fat

    SciTech Connect

    Miyamoto, K.; French, S.W.

    1986-03-01

    Five pairs of Wistar male rats weighing about 350 g were continuously infused with a liquid diet in which 25-35% of total calories was derived from fat, plus ethanol or isocaloric dextrose through gastrostomy cannulas for 3 wks to 3.5 mos. Mean ethanol intake was 12.9 +/- 0.7 g/kg B.W. (55% of total calories). High blood alcohol levels (BAL, 342 +/- 151 mg/dl) were maintained. The liver showed severe steatosis (4+) in all the ethanol-fed rats (ER). Two had mild focal mononuclear cell infiltration, one had mild fibrosis and one had spotty necrosis. Mild steatosis (1+) was seen in 4 out of 5 pair-fed control rats (CR). Serum ALT was significantly higher in ER (129 +/- 44 U) compared with Cr (59 +/- 30 U) or rats fed chow ad lib (NR) (48 +/- 26 U). Biopsied liver tissue was used to measure the concentration of adenine nucleotides by HPLC (6 pairs). There was a significant decrease of ATP in ER (1.7 +/- 0.3 ..mu..mol/g liver) as compared to CR (2.5 +/- 0.5 ..mu..mol/g) or NR (2.8 +/- 0.2 ..mu..mol/g, n = 6). There was no significant change in the ADP or AMP content, however. The total adenylate pool of the liver was also significantly reduced in ER when compared to that of CR or NR (3.2 +/- 0.4, 4.0 +/- 0.5 and 4.3 +/- 0.2 ..mu..mol/g liver, respectively). Adeynlate energy charge (E.C.) of the ER livers (0.71 +/- 0.05) was significantly reduced compared to NR (0.77 +/- 0.02) but not with CR (0.75 +/- 0.06). The results indicate that ethanol decreases the level of ATP as well as the biological mechanism to compensate for the lowered level.

  11. Preeclampsia and High Blood Pressure During Pregnancy

    MedlinePlus

    ... diabetes mellitus , thrombophilia , or lupus • are obese •had in vitro fertilization What are the risks for my baby if ... of red blood cells. Hypertension: High blood pressure. In Vitro Fertilization: A procedure in which an egg is removed ...

  12. High blood pressure and eye disease

    MedlinePlus

    ... to the retina from high blood pressure. The retina is the layer of tissue at the back part of the eye. It changes light and images that enter the eye into nerve signals that are sent to the brain.

  13. High Blood Pressure: Unique to Older Adults

    MedlinePlus

    ... can appear in your feet, lower legs or calves. They are caused by weaknesses in the calf ... life style, such as high blood pressure, heart disease, diabetes, excess alcohol consumption, lack of exercise and ...

  14. Booze, High Blood Pressure a Dangerous Mix

    MedlinePlus

    ... nih.gov/medlineplus/news/fullstory_158828.html Booze, High Blood Pressure a Dangerous Mix Study links moderate drinking to heart damage in people with hypertension To use the sharing features on this page, ...

  15. [Two cases of methanol poisoning with chronological measurements of blood concentrations of methanol, ethanol and formate].

    PubMed

    Sakuma, Ikki; Arakawa, Musashi; Hirose, Yasuo; Sekiguchi, Hiroshi; Takayama, Mariko; Fujisawa, Manami; Hori, Yasushi

    2010-09-01

    We report two cases of methanol poisoning and evaluate the kinetics of methanol, ethanol, and formate. The first case was a 48-year-old man (case 1). His initial methanol level was 56.4 mg/dL and serum ethanol level was 2.4 mg/dL. Serum formate was not detected, and ethanol administration was initiated. However, methanol was eliminated slowly, and serum formate increased. His methanol and formate levels decreased rapidly following hemodialysis. He was discharged without any sequelae. The second case was a 35-year-old man (case 2). His serum methanol level was 400 mg/dL, and serum ethanol was not detected. His serum formate level was 13.4 mg/dL, and ethanol and activated folate were administered. He underwent hemodialysis immediately after diagnosis. Methanol and formate decreased rapidly, and he was discharged without any sequelae. Methanol and formate are eliminated slowly if ethanol is administered alone. We suggest that hemodialysis should be considered immediately after ethanol administration. PMID:20865909

  16. Rise of inhaled toluene, ethyl benzene, m-xylene, or mesitylene in rat blood after treatment with ethanol

    SciTech Connect

    Roemer, K.G.; Federsel, R.J.; Freundt, K.J.

    1986-12-01

    Toluene, ethyl benzene, m-xylene, and mesitylene (1,3,5-methyl benzene) are widespread as solvents in industries and laboratories or in the manufacture and application of glues, paints, printing inks etc. These aromatics may be absorbed by employees during exposure at the workplace. Alcoholic beverages may be consumed during occupational inhalation or after shift's end at times. Toxicokinetic interactions between the aromatics and ethanol must be assumed because of the common pathway of biotransformation. The blood levels of toluene and m-xylene after inhalation increased significantly in volunteers dosed simultaneously with ethanol. In this view the present experiments in rats should elucidate whether the blood concentrations of inhaled ethyl benzene and mesitylene (both structurally related to toluene and m-xylene) can rise under the influence of ethanol, and whether quantitative differences of this effect due to the structure of these aromatics can occur. From the results informations important for the assessment of occupational health risk are to be expected.

  17. Combination of high solids loading pretreatment and ethanol fermentation of whole slurry of pretreated rice straw to obtain high ethanol titers and yields.

    PubMed

    Jung, Young Hoon; Park, Hyun Min; Kim, Dong Hyun; Park, Yong-Cheol; Seo, Jin-Ho; Kim, Kyoung Heon

    2015-12-01

    In cellulosic ethanol production using lignocellulose, an increase in biomass solids loading during the pretreatment process significantly affects the final ethanol titer and the production cost. In this study, pretreatment using rice straw at high solids loading (20% (w/v)) was evaluated, using maleic acid as a catalyst. After pretreatment at optimal conditions of 190°C, 20 min, and 0.2% or 5% (w/v) maleic acid, the highest enzymatic digestibility obtained was over 80%. Simultaneous saccharification and fermentation (SSF) of the whole slurry of pretreated rice straw in the presence of activated carbon to separate inhibitory compounds generated a high ethanol yield of 62.8%, based on the initial glucan in unpretreated rice straw. These findings suggest that high solids loading pretreatment using maleic acid and SSF of the whole slurry of pretreated rice straw can be combined to improve the process economics of ethanol production. PMID:26461793

  18. Highly efficient prion transmission by blood transfusion.

    PubMed

    Andréoletti, Olivier; Litaise, Claire; Simmons, Hugh; Corbière, Fabien; Lugan, Séverine; Costes, Pierrette; Schelcher, François; Vilette, Didier; Grassi, Jacques; Lacroux, Caroline

    2012-01-01

    It is now clearly established that the transfusion of blood from variant CJD (v-CJD) infected individuals can transmit the disease. Since the number of asymptomatic infected donors remains unresolved, inter-individual v-CJD transmission through blood and blood derived products is a major public health concern. Current risk assessments for transmission of v-CJD by blood and blood derived products by transfusion rely on infectious titers measured in rodent models of Transmissible Spongiform Encephalopathies (TSE) using intra-cerebral (IC) inoculation of blood components. To address the biological relevance of this approach, we compared the efficiency of TSE transmission by blood and blood components when administrated either through transfusion in sheep or by intra-cerebral inoculation (IC) in transgenic mice (tg338) over-expressing ovine PrP. Transfusion of 200 µL of blood from asymptomatic infected donor sheep transmitted prion disease with 100% efficiency thereby displaying greater virulence than the transfusion of 200 mL of normal blood spiked with brain homogenate material containing 10³ID₅₀ as measured by intracerebral inoculation of tg338 mice (ID₅₀ IC in tg338). This was consistent with a whole blood titer greater than 10³·⁶ID₅₀ IC in tg338 per mL. However, when the same blood samples were assayed by IC inoculation into tg338 the infectious titers were less than 32 ID per mL. Whereas the transfusion of crude plasma to sheep transmitted the disease with limited efficacy, White Blood Cells (WBC) displayed a similar ability to whole blood to infect recipients. Strikingly, fixation of WBC with paraformaldehyde did not affect the infectivity titer as measured in tg338 but dramatically impaired disease transmission by transfusion in sheep. These results demonstrate that TSE transmission by blood transfusion can be highly efficient and that this efficiency is more dependent on the viability of transfused cells than the level of infectivity measured by IC inoculation. PMID:22737075

  19. Identification of multiple interacting alleles conferring low glycerol and high ethanol yield in Saccharomyces cerevisiae ethanolic fermentation

    PubMed Central

    2013-01-01

    Background Genetic engineering of industrial microorganisms often suffers from undesirable side effects on essential functions. Reverse engineering is an alternative strategy to improve multifactorial traits like low glycerol/high ethanol yield in yeast fermentation. Previous rational engineering of this trait always affected essential functions like growth and stress tolerance. We have screened Saccharomyces cerevisiae biodiversity for specific alleles causing lower glycerol/higher ethanol yield, assuming higher compatibility with normal cellular functionality. Previous work identified ssk1E330NK356N as causative allele in strain CBS6412, which displayed the lowest glycerol/ethanol ratio. Results We have now identified a unique segregant, 26B, that shows similar low glycerol/high ethanol production as the superior parent, but lacks the ssk1E330NK356N allele. Using segregants from the backcross of 26B with the inferior parent strain, we applied pooled-segregant whole-genome sequence analysis and identified three minor quantitative trait loci (QTLs) linked to low glycerol/high ethanol production. Within these QTLs, we identified three novel alleles of known regulatory and structural genes of glycerol metabolism, smp1R110Q,P269Q, hot1P107S,H274Y and gpd1L164P as causative genes. All three genes separately caused a significant drop in the glycerol/ethanol production ratio, while gpd1L164P appeared to be epistatically suppressed by other alleles in the superior parent. The order of potency in reducing the glycerol/ethanol ratio of the three alleles was: gpd1L164P?>?hot1P107S,H274Y???smp1R110Q,P269Q. Conclusions Our results show that natural yeast strains harbor multiple specific alleles of genes controlling essential functions, that are apparently compatible with survival in the natural environment. These newly identified alleles can be used as gene tools for engineering industrial yeast strains with multiple subtle changes, minimizing the risk of negatively affecting other essential functions. The gene tools act at the transcriptional, regulatory or structural gene level, distributing the impact over multiple targets and thus further minimizing possible side-effects. In addition, the results suggest polygenic analysis of complex traits as a promising new avenue to identify novel components involved in cellular functions, including those important in industrial applications. PMID:23759206

  20. Ethanol preference, metabolism, blood pressure, and conditioned taste aversion in experimental cholestasis.

    PubMed

    Lane, J R; Starbuck, E M; Fitts, D A

    1997-08-01

    The effect of a ligation of the common bile duct (BDL) on the chronic free-selection intake of ethanol was investigated. Rats were given a choice between water and a solution of either 6% (v/v) ethanol, 0.06% (w/v) sodium saccharin, or a mixture of both ethanol and saccharin. In different experiments, solutions were first presented either 3 weeks before surgery, about the time of surgery, or 2 weeks after surgery. Reductions in ethanol or saccharin intake were observed in BDL rats whenever the solutions were first presented either 3 weeks before or shortly after the surgery. No differences attributable to BDL were seen when ethanol solutions were first presented 2 weeks after surgery. The contingent nature of the effect suggests that the reduction results from a conditioned taste aversion rather than from differences in ethanol metabolism, sensitivity, or neurohormones such as angiotensin. The findings urge caution in the monitoring of the dietary habits of patients with a rapidly developing biliary obstruction. PMID:9259003

  1. [High concentration ethanol continuous fermentation using yeast flocs].

    PubMed

    Liu, C; Bai, F; Shao, M; Xie, J; Li, N

    2001-06-01

    Continuous ethanol fermentation using yeast flocs was carried out in 4 air-lift suspended-bed bioreactors operated in series. Drafted by CO2, with complete recycle of ethanol distilled effluent broth and at the dilution rate of 0.2/h, the average ethanol concentration of the fermentation broth was 96.6 g/L, while the average concentration of residual total sugar was 4.1 g/L and residual reducing sugar was 1.2 g/L. PMID:12549094

  2. What about African Americans and High Blood Pressure?

    MedlinePlus

    ... Lifestyle + Risk Reduction High Blood Pressure What About African Americans and High Blood Pressure? The prevalence of high blood pressure in African Americans is among the highest in the world. It ...

  3. Wearable Monitor Helps Spot 'Masked' High Blood Pressure

    MedlinePlus

    ... fullstory_158860.html Wearable Monitor Helps Spot 'Masked' High Blood Pressure Black people with undetected problem twice as likely ... doctors spot black people with "masked," or undetected, high blood pressure, a new study suggests. "Masked" high blood pressure ...

  4. A novel non-invasive electrochemical biosensing device for in situ determination of the alcohol content in blood by monitoring ethanol in sweat.

    PubMed

    Gamella, M; Campuzano, S; Manso, J; González de Rivera, G; López-Colino, F; Reviejo, A J; Pingarrón, J M

    2014-01-01

    A non-invasive, passive and simple to use skin surface based sensing device for determining the blood's ethanol content (BAC) by monitoring transdermal alcohol concentration (TAC) is designed and developed. The proposed prototype is based on bienzyme amperometric composite biosensors that are sensitive to the variation of ethanol concentration. The prototype correlates, through previous calibration set-up, the amperometric signal generated from ethanol in sweat with its content in blood in a short period of time. The characteristics of this sensor device permit determination of the ethanol concentration in isolated and in continuous form, giving information of the BAC of a subject either in a given moment or its evolution during long periods of time (8h). Moreover, as the measurements are performed in a biological fluid, the evaluated individual is not able to alter the result of the analysis. The maximum limit of ethanol in blood allowed by legislation is included within the linear range of the device (0.0005-0.6 g L(-1)). Moreover, the device shows higher sensitivity than the breathalyzers marketed at the moment, allowing the monitoring of the ethanol content in blood to be obtained just 5 min after ingestion of the alcoholic drink. The comparison of the obtained results using the proposed device in the analysis of 40 volunteers with those provided by the gas chromatographic reference method for determination of BAC pointed out that there were no significant differences between both methods. PMID:24331037

  5. Ethanol production from food waste at high solid contents with vacuum recovery technology

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ethanol production from food wastes does not only solve the environmental issues but also provide renewable biofuel to partially substitute fossil fuels. This study investigated the feasibility of utilization of food wastes for producing ethanol at high solid contents (35%, w/w). Vacuum recovery sys...

  6. THERMOREGULATION AT A HIGH AMBIENT TEMPERATURE FOLLOWING THE ORAL ADMINISTRATION OF ETHANOL IN THE RAT

    EPA Science Inventory

    This study was designed to assess the thermoregulatory mechanisms responsible for the elevation in body temperature following ethanol administration when exposed to a high ambient temperature (Ta). ale rats of the Fischer 344 strain were gavaged with 20% ethanol at doses of 0, 2....

  7. Utilization of household food waste for the production of ethanol at high dry material content

    PubMed Central

    2014-01-01

    Background Environmental issues and shortage of fossil fuels have turned the public interest to the utilization of renewable, environmentally friendly fuels, such as ethanol. In order to minimize the competition between fuels and food production, researchers are focusing their efforts to the utilization of wastes and by-products as raw materials for the production of ethanol. household food wastes are being produced in great quantities in European Union and their handling can be a challenge. Moreover, their disposal can cause severe environmental issues (for example emission of greenhouse gasses). On the other hand, they contain significant amounts of sugars (both soluble and insoluble) and they can be used as raw material for the production of ethanol. Results Household food wastes were utilized as raw material for the production of ethanol at high dry material consistencies. A distinct liquefaction/saccharification step has been included to the process, which rapidly reduced the viscosity of the high solid content substrate, resulting in better mixing of the fermenting microorganism. This step had a positive effect in both ethanol production and productivity, leading to a significant increase in both values, which was up to 40.81% and 4.46 fold, respectively. Remaining solids (residue) after fermentation at 45% w/v dry material (which contained also the unhydrolyzed fraction of cellulose), were subjected to a hydrothermal pretreatment in order to be utilized as raw material for a subsequent ethanol fermentation. This led to an increase of 13.16% in the ethanol production levels achieving a final ethanol yield of 107.58 g/kg dry material. Conclusions In conclusion, the ability of utilizing household food waste for the production of ethanol at elevated dry material content has been demonstrated. A separate liquefaction/saccharification process can increase both ethanol production and productivity. Finally, subsequent fermentation of the remaining solids could lead to an increase of the overall ethanol production yield. PMID:24401142

  8. Ethanol production from food waste at high solids content with vacuum recovery technology.

    PubMed

    Huang, Haibo; Qureshi, Nasib; Chen, Ming-Hsu; Liu, Wei; Singh, Vijay

    2015-03-18

    Ethanol production from food wastes does not only solve environmental issues but also provides renewable biofuels. This study investigated the feasibility of producing ethanol from food wastes at high solids content (35%, w/w). A vacuum recovery system was developed and applied to remove ethanol from fermentation broth to reduce yeast ethanol inhibition. A high concentration of ethanol (144 g/L) was produced by the conventional fermentation of food waste without a vacuum recovery system. When the vacuum recovery is applied to the fermentation process, the ethanol concentration in the fermentation broth was controlled below 100 g/L, thus reducing yeast ethanol inhibition. At the end of the conventional fermentation, the residual glucose in the fermentation broth was 5.7 g/L, indicating incomplete utilization of glucose, while the vacuum fermentation allowed for complete utilization of glucose. The ethanol yield for the vacuum fermentation was found to be 358 g/kg of food waste (dry basis), higher than that for the conventional fermentation at 327 g/kg of food waste (dry basis). PMID:25706565

  9. “Jello® Shots” and Cocktails as Ethanol Vehicles: Parametric Studies with High- and Low-Saccharin-Consuming Rats

    PubMed Central

    Dess, Nancy K.; Madkins, Chardonnay D.; Geary, Bree A.; Chapman, Clinton D.

    2013-01-01

    Naïve humans and rats voluntarily consume little ethanol at concentrations above ~6% due to its aversive flavor. Developing procedures that boost intake of ethanol or ethanol-paired flavors facilitates research on neural mechanisms of ethanol-associated behaviors and helps identify variables that modulate ethanol intake outside of the lab. The present study explored the impact on consumption of ethanol and ethanol-paired flavors of nutritionally significant parametric variations: ethanol vehicle (gelatin or solution, with or without polycose); ethanol concentration (4% or 10%); and feeding status (chow deprived or ad lib.) during flavor conditioning and flavor preference testing. Individual differences were modeled by testing rats of lines selectively bred for high (HiS) or low (LoS) saccharin intake. A previously reported preference for ethanol-paired flavors was replicated when ethanol had been drunk during conditioning. However, indifference or aversion to ethanol-paired flavors generally obtained when ethanol had been eaten in gelatin during conditioning, regardless of ethanol concentration, feeding status, or caloric value of the vehicle. Modest sex and line variations occurred. Engaging different behavioral systems when eating gelatin, rather than drinking solution, may account for these findings. Implications for parameter selection in future neurobiological research and for understanding conditions that influence ethanol intake outside of the lab are discussed. PMID:24284614

  10. Behavioral interactions between ethanol and imidazodiazepines with high affinities for benzodiazepine receptors

    SciTech Connect

    Lister, R.G.

    1988-01-01

    The intrinsic effect of two imidazodiazepines RO 15-3505 and RO 17-1812 on the behavior of mice in a holeboard test were investigated. The interactions of these two drugs with ethanol were also studied. RO 15-3505 failed to significantly alter either exploratory head-dipping or locomotor activity when administered alone but doses of 0.75 and 1.5 mg/kg reversed the reduction in the number of head-dips caused by ethanol and partially reversed ethanol's locomotor stimulant action. In contrast, RO 17-1812 increased locomotor activity when administered alone, and enhanced the reduction in exploration caused by ethanol. Neither RO 15-3505 nor RO 17-1812 altered blood alcohol concentrations suggesting a pharmacodynamic basis for these interactions. The results suggest that in the holeboard test the interactions of imidazodiazepines with ethanol are related to the nature of their interaction with benzodiazepine receptors, inverse agonists antagonising and agonists enhancing ethanol's effects on exploration.

  11. High-throughput detection of ethanol-producing cyanobacteria in a microdroplet platform.

    PubMed

    Abalde-Cela, Sara; Gould, Anna; Liu, Xin; Kazamia, Elena; Smith, Alison G; Abell, Chris

    2015-05-01

    Ethanol production by microorganisms is an important renewable energy source. Most processes involve fermentation of sugars from plant feedstock, but there is increasing interest in direct ethanol production by photosynthetic organisms. To facilitate this, a high-throughput screening technique for the detection of ethanol is required. Here, a method for the quantitative detection of ethanol in a microdroplet-based platform is described that can be used for screening cyanobacterial strains to identify those with the highest ethanol productivity levels. The detection of ethanol by enzymatic assay was optimized both in bulk and in microdroplets. In parallel, the encapsulation of engineered ethanol-producing cyanobacteria in microdroplets and their growth dynamics in microdroplet reservoirs were demonstrated. The combination of modular microdroplet operations including droplet generation for cyanobacteria encapsulation, droplet re-injection and pico-injection, and laser-induced fluorescence, were used to create this new platform to screen genetically engineered strains of cyanobacteria with different levels of ethanol production. PMID:25878135

  12. High-throughput detection of ethanol-producing cyanobacteria in a microdroplet platform

    PubMed Central

    Abalde-Cela, Sara; Gould, Anna; Liu, Xin; Kazamia, Elena; Smith, Alison G.; Abell, Chris

    2015-01-01

    Ethanol production by microorganisms is an important renewable energy source. Most processes involve fermentation of sugars from plant feedstock, but there is increasing interest in direct ethanol production by photosynthetic organisms. To facilitate this, a high-throughput screening technique for the detection of ethanol is required. Here, a method for the quantitative detection of ethanol in a microdroplet-based platform is described that can be used for screening cyanobacterial strains to identify those with the highest ethanol productivity levels. The detection of ethanol by enzymatic assay was optimized both in bulk and in microdroplets. In parallel, the encapsulation of engineered ethanol-producing cyanobacteria in microdroplets and their growth dynamics in microdroplet reservoirs were demonstrated. The combination of modular microdroplet operations including droplet generation for cyanobacteria encapsulation, droplet re-injection and pico-injection, and laser-induced fluorescence, were used to create this new platform to screen genetically engineered strains of cyanobacteria with different levels of ethanol production. PMID:25878135

  13. Auxotrophic Mutations Reduce Tolerance of Saccharomyces cerevisiae to Very High Levels of Ethanol Stress.

    PubMed

    Swinnen, Steve; Goovaerts, Annelies; Schaerlaekens, Kristien; Dumortier, Françoise; Verdyck, Pieter; Souvereyns, Kris; Van Zeebroeck, Griet; Foulquié-Moreno, María R; Thevelein, Johan M

    2015-09-01

    Very high ethanol tolerance is a distinctive trait of the yeast Saccharomyces cerevisiae with notable ecological and industrial importance. Although many genes have been shown to be required for moderate ethanol tolerance (i.e., 6 to 12%) in laboratory strains, little is known of the much higher ethanol tolerance (i.e., 16 to 20%) in natural and industrial strains. We have analyzed the genetic basis of very high ethanol tolerance in a Brazilian bioethanol production strain by genetic mapping with laboratory strains containing artificially inserted oligonucleotide markers. The first locus contained the ura3Δ0 mutation of the laboratory strain as the causative mutation. Analysis of other auxotrophies also revealed significant linkage for LYS2, LEU2, HIS3, and MET15. Tolerance to only very high ethanol concentrations was reduced by auxotrophies, while the effect was reversed at lower concentrations. Evaluation of other stress conditions showed that the link with auxotrophy is dependent on the type of stress and the type of auxotrophy. When the concentration of the auxotrophic nutrient is close to that limiting growth, more stress factors can inhibit growth of an auxotrophic strain. We show that very high ethanol concentrations inhibit the uptake of leucine more than that of uracil, but the 500-fold-lower uracil uptake activity may explain the strong linkage between uracil auxotrophy and ethanol sensitivity compared to leucine auxotrophy. Since very high concentrations of ethanol inhibit the uptake of auxotrophic nutrients, the active uptake of scarce nutrients may be a major limiting factor for growth under conditions of ethanol stress. PMID:26116212

  14. Auxotrophic Mutations Reduce Tolerance of Saccharomyces cerevisiae to Very High Levels of Ethanol Stress

    PubMed Central

    Swinnen, Steve; Goovaerts, Annelies; Schaerlaekens, Kristien; Dumortier, Françoise; Verdyck, Pieter; Souvereyns, Kris; Van Zeebroeck, Griet; Foulquié-Moreno, María R.

    2015-01-01

    Very high ethanol tolerance is a distinctive trait of the yeast Saccharomyces cerevisiae with notable ecological and industrial importance. Although many genes have been shown to be required for moderate ethanol tolerance (i.e., 6 to 12%) in laboratory strains, little is known of the much higher ethanol tolerance (i.e., 16 to 20%) in natural and industrial strains. We have analyzed the genetic basis of very high ethanol tolerance in a Brazilian bioethanol production strain by genetic mapping with laboratory strains containing artificially inserted oligonucleotide markers. The first locus contained the ura3Δ0 mutation of the laboratory strain as the causative mutation. Analysis of other auxotrophies also revealed significant linkage for LYS2, LEU2, HIS3, and MET15. Tolerance to only very high ethanol concentrations was reduced by auxotrophies, while the effect was reversed at lower concentrations. Evaluation of other stress conditions showed that the link with auxotrophy is dependent on the type of stress and the type of auxotrophy. When the concentration of the auxotrophic nutrient is close to that limiting growth, more stress factors can inhibit growth of an auxotrophic strain. We show that very high ethanol concentrations inhibit the uptake of leucine more than that of uracil, but the 500-fold-lower uracil uptake activity may explain the strong linkage between uracil auxotrophy and ethanol sensitivity compared to leucine auxotrophy. Since very high concentrations of ethanol inhibit the uptake of auxotrophic nutrients, the active uptake of scarce nutrients may be a major limiting factor for growth under conditions of ethanol stress. PMID:26116212

  15. Catalytic conversion of methanol/ethanol to isobutanol - a highly selective route to an advanced biofuel.

    PubMed

    Wingad, Richard L; Bergström, Emilie J E; Everett, Matthew; Pellow, Katy J; Wass, Duncan F

    2016-04-14

    Catalysts based on ruthenium diphosphine complexes convert methanol/ethanol mixtures to the advanced biofuel isobutanol, with extremely high selectivity (>99%) at good (>75%) conversion via a Guerbet-type mechanism. PMID:26998669

  16. Talk with Your Health Care Provider about High Blood Pressure

    MedlinePlus

    ... Circulation Talk With Your Health Care Provider About High Blood Pressure Why is high blood pressure dangerous? Blood pressure is the force of blood ... and stays high over time, it is called hypertension (“Hi-pur-TEN-shun”). If it is not ...

  17. Protective Effect of Gymnema sylvestre Ethanol Extract on High Fat Diet-induced Obese Diabetic Wistar Rats

    PubMed Central

    Kumar, V.; Bhandari, Uma; Tripathi, C. D.; Khanna, Geetika

    2014-01-01

    Obesity is associated with numerous co-morbidities such as cardiovascular diseases, type 2 diabetes, hypertension and others. Therefore, the present study was planned to investigate the effect of water- soluble fraction of Gymnema sylvestre ethanol extract on biochemical and molecular alterations in obese diabetic rats. Diabetes was induced by single i.v. injection of streptozotocin (45 mg/kg) via tail vein. Obesity was induced by oral feeding of high fat diet for a period of 28 days in diabetic rats. Body weight gain, food intake, water intake, hemodynamic parameters (systolic, diastolic, mean arterial blood pressures and heart rate), serum biochemical parameters (leptin, insulin, lipid levels, apolipoprotein B and glucose), cardiomyocyte apoptosis (cardiac caspase-3, Na+/K+ ATPase activity and DNA fragmentation) organs and visceral fat pad weight and oxidative stress parameters were measured. Oral treatment with water soluble fraction of Gymnema sylvestre ethanol extracts (120 mg/kg/p.o.) for a period of 21 days, resulted in significant reduction in heart rate, mean arterial pressure, serum leptin, insulin, apolipoprotein B, lipids, glucose, cardiac caspase-3 levels, Na+/K+ ATPase activity and DNA laddering, visceral fat pad and organ's weight and improved the antioxidant enzymes levels in the high fat diet induced obesity in diabetic rats. The results of present study reveal that water soluble fraction of Gymnema sylvestre ethanol extract could be useful intervention in the treatment of obesity and type-2 diabetes mellitus. PMID:25284929

  18. Protective Effect of Gymnema sylvestre Ethanol Extract on High Fat Diet-induced Obese Diabetic Wistar Rats.

    PubMed

    Kumar, V; Bhandari, Uma; Tripathi, C D; Khanna, Geetika

    2014-07-01

    Obesity is associated with numerous co-morbidities such as cardiovascular diseases, type 2 diabetes, hypertension and others. Therefore, the present study was planned to investigate the effect of water- soluble fraction of Gymnema sylvestre ethanol extract on biochemical and molecular alterations in obese diabetic rats. Diabetes was induced by single i.v. injection of streptozotocin (45 mg/kg) via tail vein. Obesity was induced by oral feeding of high fat diet for a period of 28 days in diabetic rats. Body weight gain, food intake, water intake, hemodynamic parameters (systolic, diastolic, mean arterial blood pressures and heart rate), serum biochemical parameters (leptin, insulin, lipid levels, apolipoprotein B and glucose), cardiomyocyte apoptosis (cardiac caspase-3, Na(+)/K(+) ATPase activity and DNA fragmentation) organs and visceral fat pad weight and oxidative stress parameters were measured. Oral treatment with water soluble fraction of Gymnema sylvestre ethanol extracts (120 mg/kg/p.o.) for a period of 21 days, resulted in significant reduction in heart rate, mean arterial pressure, serum leptin, insulin, apolipoprotein B, lipids, glucose, cardiac caspase-3 levels, Na(+)/K(+) ATPase activity and DNA laddering, visceral fat pad and organ's weight and improved the antioxidant enzymes levels in the high fat diet induced obesity in diabetic rats. The results of present study reveal that water soluble fraction of Gymnema sylvestre ethanol extract could be useful intervention in the treatment of obesity and type-2 diabetes mellitus. PMID:25284929

  19. Different pituitary. beta. -endorphin and adrenal cortisol response to ethanol in individuals with high and low risk for future development of alcoholism

    SciTech Connect

    Gianoulakis, C.G.; Beliveau, D.; Angelogianni, P.; Meaney, M.; Thavundayil, J.; Tawar, V.; Dumas, M. )

    1989-01-01

    The purpose of the present studies was to investigate the activity of the adrenal gland and the pituitary {beta}-endorphin system in individuals from families with a 3 generation history of alcoholism, High Risk group, or from families without history of alcoholism, Low Risk group. On the day of testing, blood sample was taken at 9:00 a.m., then the subject drank a placebo drink or an ethanol solution. Additional blood samples were taken at 15, 45 and 120 minutes post-drink. Results indicated that individuals of the High Risk group had lower basal levels of {beta}-endorphin like immunoreactivity ({beta}-EPLIR) than individuals of the Low Risk group. The dose of 0.5 g ethanol/kg B.Wt. induced an induce an increase in the plasma content of {beta}-EPLIR of the High Risk group, but not of the Low Risk group. In the Low Risk group ethanol did not induce an increase above the 9:00 a.m. levels, however, it attenuated the {beta}-endorphin decrease overtime, observed following the placebo drink. Analysis of {beta}-endorphin-like peptides in the plasma of the High Risk group, with Sephadex G-75 chromatography indicated that the major component of the plasma {beta}-EPLIR was {beta}-lipotropin. Plasma cortisol levels, following ethanol intake, presented a small increase in the High Risk group but not in the Low Risk group.

  20. Experimental Study on Thermal Interaction of Ethanol Jets in High Temperature Fluorinert

    NASA Astrophysics Data System (ADS)

    Sa, Rongyuan; Takahashi, Minoru

    As a fundamental study for the direct contact heat exchange which was employed for in-vessel heat exchange in the Pb-Bi-cooled direct contact boiling water small fast reactor (PBWFR) and for the steam generator tube rupture (SGTR) accident in lead alloy-cooled fast reactor (LFR), ethanol jet was injected into high temperature fluorinert (FC-3283) as a simulation experiment in order to investigate the jet boiling phenomena just after volatile water contacting with the high temperature continuous lead alloy liquid. Two series of tests (no-boiling and boiling) were initiated to evaluate the ethanol vapor volume which generated around the ethanol jet. From synchronized temperature measurement around ethanol jet, the overview of the boiling behavior showed that jet boiling occurred at bottom part of jet first and developed to the upper part within very narrow area around jet.

  1. The preparation and ethanol fermentation of high-concentration sugars from steam-explosion corn stover.

    PubMed

    Xie, Hui; Wang, Fengqin; Yin, Shuangyao; Ren, Tianbao; Song, Andong

    2015-05-01

    In the field of biofuel ethanol, high-concentration- reducing sugars made from cellulosic materials lay the foundation for high-concentration ethanol fermentation. In this study, corn stover was pre-treated in a process combining chemical methods and steam explosion; the cellulosic hydrolyzed sugars obtained by fed-batch saccharification were then used as the carbon source for high-concentration ethanol fermentation. Saccharomyces cerevisiae 1308, Angel yeast, and Issatchenkia orientalis were shake-cultured with Pachysolen tannophilus P-01 for fermentation. Results implied that the ethanol yields from the three types of mixed strains were 4.85 g/100 mL, 4.57 g/100 mL, and 5.02 g/100 mL (separately) at yield rates of 91.6, 89.3, and 92.2%, respectively. Therefore, it was inferred that shock-fermentation using mixed strains achieved a higher ethanol yield at a greater rate in a shorter fermentation period. This study provided a theoretical basis and technical guidance for the fermentation of industrial high-concentrated cellulosic ethanol. PMID:25877397

  2. High blood pressure and visual sensitivity

    NASA Astrophysics Data System (ADS)

    Eisner, Alvin; Samples, John R.

    2003-09-01

    The study had two main purposes: (1) to determine whether the foveal visual sensitivities of people treated for high blood pressure (vascular hypertension) differ from the sensitivities of people who have not been diagnosed with high blood pressure and (2) to understand how visual adaptation is related to standard measures of systemic cardiovascular function. Two groups of middle-aged subjects-hypertensive and normotensive-were examined with a series of test/background stimulus combinations. All subjects met rigorous inclusion criteria for excellent ocular health. Although the visual sensitivities of the two subject groups overlapped extensively, the age-related rate of sensitivity loss was, for some measures, greater for the hypertensive subjects, possibly because of adaptation differences between the two groups. Overall, the degree of steady-state sensitivity loss resulting from an increase of background illuminance (for 580-nm backgrounds) was slightly less for the hypertensive subjects. Among normotensive subjects, the ability of a bright (3.8-log-td), long-wavelength (640-nm) adapting background to selectively suppress the flicker response of long-wavelength-sensitive (LWS) cones was related inversely to the ratio of mean arterial blood pressure to heart rate. The degree of selective suppression was also related to heart rate alone, and there was evidence that short-term changes of cardiovascular response were important. The results suggest that (1) vascular hypertension, or possibly its treatment, subtly affects visual function even in the absence of eye disease and (2) changes in blood flow affect retinal light-adaptation processes involved in the selective suppression of the flicker response from LWS cones caused by bright, long-wavelength backgrounds.

  3. Aeration strategy: a need for very high ethanol performance in Saccharomyces cerevisiae fed-batch process.

    PubMed

    Alfenore, S; Cameleyre, X; Benbadis, L; Bideaux, C; Uribelarrea, J-L; Goma, G; Molina-Jouve, C; Guillouet, S E

    2004-02-01

    In order to identify an optimal aeration strategy for intensifying bio-fuel ethanol production in fermentation processes where growth and production have to be managed simultaneously, we quantified the effect of aeration conditions--oxygen limited vs non limited culture (micro-aerobic vs aerobic culture)--on the dynamic behaviour of Saccharomyces cerevisiae cultivated in very high ethanol performance fed-batch cultures. Fermentation parameters and kinetics were established within a range of ethanol concentrations (up to 147 g l(-1)), which very few studies have addressed. Higher ethanol titres (147 vs 131 g l(-1) in 45 h) and average productivity (3.3 vs 2.6 g l(-1) h(-1)) were obtained in cultures without oxygen limitation. Compared to micro-aerobic culture, full aeration led to a 23% increase in the viable cell mass as a result of the concomitant increase in growth rate and yield, with lower ethanol inhibition. The second beneficial effect of aeration was better management of by-product production, with production of glycerol, the main by-product, being strongly reduced from 12 to 4 g l(-1). We demonstrate that aeration strategy is as much a determining factor as vitamin feeding (Alfenore et al. 2002) in very high ethanol performance (147 g l(-1) in 45 h) in order to achieve a highly competitive dynamic process. PMID:12879304

  4. Ethanol-induced increase in portal blood flow: Role of acetate and A sub 1 - and A sub 2 -adenosine receptors

    SciTech Connect

    Carmichael, F.J.; Saldivia, V.; Varghese, G.A.; Israel, Y.; Orrego, H. Univ. of Toronto, Ontario )

    1988-10-01

    The increase in portal blood flow induced by ethanol appears to be adenosine mediated. Acetate, which is released by the liver during ethanol metabolism, is known to increase adenosine levels in tissues and in blood. The effects of acetate on portal blood flow were investigated in rats using the microsphere technique. The intravenous infusion of acetate resulted in vasodilation of the preportal vasculature and in a dose-dependent increase in portal blood flow. This acetate-induced increase in portal blood flow was suppressed by the adenosine receptor blocker, 8-phenyltheophylline. Using the A{sub 1}-adenosine receptor agonist N-6-cyclohexyl adenosine and the A{sub 2}-agonist 5{prime}-N-ethylcarboxamido adenosine, we demonstrate that the effect of adenosine on the preportal vasculature is mediated by the A{sub 2}-subtype of adenosine receptors. In conclusion, these data support the hypothesis that the increase in portal blood flow after ethanol administration results from a preportal vasodilatory effect of adenosine formed from acetate metabolism in extrahepatic tissues.

  5. Fermentation of high concentrations of lactose to ethanol by engineered flocculent Saccharomyces cerevisiae.

    PubMed

    Guimarães, Pedro M R; Teixeira, José A; Domingues, Lucília

    2008-11-01

    The development of microorganims that efficiently ferment lactose has a high biotechnological interest, particularly for cheese whey bioremediation processes with simultaneous bio-ethanol production. The lactose fermentation performance of a recombinant Saccharomyces cerevisiae flocculent strain was evaluated. The yeast consumed rapidly and completely lactose concentrations up to 150 g l(-1) in either well- or micro-aerated batch fermentations. The maximum ethanol titre was 8% (v/v) and the highest ethanol productivity was 1.5-2 g l(-1) h(-1), in micro-aerated fermentations. The results presented here emphasise that this strain is an interesting alternative for the production of ethanol from lactose-based feedstocks. PMID:18575804

  6. Performance enhancement of direct ethanol fuel cell using Nafion composites with high volume fraction of titania

    NASA Astrophysics Data System (ADS)

    Matos, B. R.; Isidoro, R. A.; Santiago, E. I.; Fonseca, F. C.

    2014-12-01

    The present study reports on the performance enhancement of direct ethanol fuel cell (DEFC) at 130 °C with Nafion-titania composite electrolytes prepared by sol-gel technique and containing high volume fractions of the ceramic phase. It is found that for high volume fractions of titania (>10 vol%) the ethanol uptake of composites is largely reduced while the proton conductivity at high-temperatures is weakly dependent on the titania content. Such tradeoff between alcohol uptake and conductivity resulted in a boost of DEFC performance at high temperatures using Nafion-titania composites with high fraction of the inorganic phase.

  7. A novel direct ethanol fuel cell with high power density

    NASA Astrophysics Data System (ADS)

    An, L.; Zhao, T. S.; Chen, R.; Wu, Q. X.

    2011-08-01

    A new type of direct ethanol fuel cell (DEFC) that is composed of an alkaline anode and an acid cathode separated with a charger conducting membrane is developed. Theoretically it is shown that the voltage of this novel fuel cell is 2.52 V, while, experimentally it has been demonstrated that this fuel cell can yield an open-circuit voltage (OCV) of 1.60 V and a peak power density of 240 mW cm-2 at 60 °C, which represent the highest performance of DEFCs that has so far been reported in the open literature.

  8. Retrograde Transvenous Ethanol Embolization of High-flow Peripheral Arteriovenous Malformations

    SciTech Connect

    Linden, Edwin van der; Baalen, Jary M. van; Pattynama, Peter M. T.

    2012-08-15

    Purpose: To report the clinical efficiency and complications in patients treated with retrograde transvenous ethanol embolization of high-flow peripheral arteriovenous malformations (AVMs). Retrograde transvenous ethanol embolization of high-flow AVMs is a technique that can be used to treat AVMs with a dominant outflow vein whenever conventional interventional procedures have proved insufficient. Methods: This is a retrospective study of the clinical effectiveness and complications of retrograde embolization in five patients who had previously undergone multiple arterial embolization procedures without clinical success. Results: Clinical outcomes were good in all patients but were achieved at the cost of serious, although transient, complications in three patients. Conclusion: Retrograde transvenous ethanol embolization is a highly effective therapy for high-flow AVMs. However, because of the high complication rate, it should be reserved as a last resort, to be used after conventional treatment options have failed.

  9. Determination of fatty acid ethyl esters in dried blood spots by LC-MS/MS as markers for ethanol intake: application in a drinking study.

    PubMed

    Luginbühl, Marc; Schröck, Alexandra; König, Stefan; Schürch, Stefan; Weinmann, Wolfgang

    2016-05-01

    The forensic utility of fatty acid ethyl esters (FAEEs) in dried blood spots (DBS) as short-term confirmatory markers for ethanol intake was examined. An LC-MS/MS method for the determination of FAEEs in DBS was developed and validated to investigate FAEE formation and elimination in a drinking study, whereby eight subjects ingested 0.66-0.84 g/kg alcohol to reach blood alcohol concentrations (BAC) of 0.8 g/kg. Blood was taken every 1.5-2 h, BAC was determined, and dried blood spots were prepared, with 50 μL of blood, for the determination of FAEEs. Lower limits of quantitation (LLOQ) were between 15 and 37 ng/mL for the four major FAEEs. Validation data are presented in detail. In the drinking study, ethyl palmitate and ethyl oleate proved to be the two most suitable markers for FAEE determination. Maximum FAEE concentrations were reached in samples taken 2 or 4 h after the start of drinking. The following mean peak concentrations (c̅ max) were reached: ethyl myristate 14 ± 4 ng/mL, ethyl palmitate 144 ± 35 ng/mL, ethyl oleate 125 ± 55 ng/mL, ethyl stearate 71 ± 21 ng/mL, total FAEEs 344 ± 91 ng/mL. Detectability of FAEEs was found to be on the same time scale as BAC. In liquid blood samples containing ethanol, FAEE concentrations increase post-sampling. This study shows that the use of DBS fixation prevents additional FAEE formation in blood samples containing ethanol. Positive FAEE results obtained by DBS analysis can be used as evidence for the presence of ethanol in the original blood sample. Graphical Abstract Time courses for fatty acid ethyl ester (FAEE) concentrations in DBS and ethanol concentrations for subject 1 over a period of 7 h. Ethanol ingestion occured during the first hour of the time course. PMID:26968564

  10. Heart and Artery Damage and High Blood Pressure

    MedlinePlus

    ... Pressure Tools & Resources Stroke More Heart and Artery Damage and High Blood Pressure Updated:Oct 22,2015 ... does high blood pressure hurt the arteries? HBP damages the walls of the arteries. If you have ...

  11. High blood pressure - what to ask your doctor

    MedlinePlus

    What to ask your doctor about high blood pressure; Hypertension - what to ask your doctor ... problems? What medicines am I taking to treat high blood pressure? Do they have any side effects? What should ...

  12. All High-Risk Patients Should Get Blood Pressure Meds

    MedlinePlus

    ... nlm.nih.gov/medlineplus/news/fullstory_156395.html All High-Risk Patients Should Get Blood Pressure Meds: ... blood pressure-lowering drugs should be offered to all patients at high risk of having a heart ...

  13. When Blood Sugar is Too High

    MedlinePlus

    ... Parents MORE ON THIS TOPIC Diabetes Center Diabetes Control: Why It's Important Eating Out When You Have Diabetes Keeping Track of Your Blood Sugar When Blood Sugar Is Too Low School and Diabetes Meal Plans: What Kids With Diabetes ...

  14. Construction of lactose-assimilating and high-ethanol-producing yeasts by protoplast fusion

    SciTech Connect

    Farahnak, F.; Seki, T.; Ryu, D.D.Y.; Ogrydziak, D.

    1986-02-01

    The availability of a yeast strain which is capable of fermenting lactose and at the same time is tolerant to high concentrations of ethanol would be useful for the production of ethanol from lactose. Kluyveromyces fragilis is capable of fermenting lactose, but it is not as tolerant as Saccharomyces cerevisiae to high concentrations of ethanol. In this study, the authors have used the protoplast fusion technique to construct hybrids between auxotrophic strains of S. cerevisiae having high ethanol tolerance and an auxotrophic strain of lactose-fermenting K. fragilis isolated by ethyl methanesulfonate mutagenesis. The fusants obtained were prototrophic and capable of assimilating lactose and producing ethanol in excess of 13% (vol/vol). The complementation frequency of fusion was about 0.7%. Formation of fusants was confirmed by the increased amount of chromosomal DNA per cell. Fusants contained 8 x 10/sup -9/ to 16 x 10/sup -8/ ..mu..g of DNA per cell as compared with about 4 x 10/sup -8/ ..mu..g of DNA per cell for the parental strains, suggesting that multiple fusions had taken place.

  15. Nitrogen Requirements for Ethanol Production from Sweet and Photoperiod Sensitive Sorghums in the Southern High Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Sorghum (Sorhum bicolor L.) has high water use efficiency, and is therefore widely cultivated in the Southern High Plains (SHP). Interest in sorghums for biofuel feedstock has increased recently as ethanol demand expands. Unlike grain sorghum, little data are available on N fertilizer requirements f...

  16. Tunable catalytic properties of bi-functional mixed oxides in ethanol conversion to high value compounds

    DOE PAGESBeta

    Ramasamy, Karthikeyan K.; Gray, Michel; Job, Heather; Smith, Colin; Wang, Yong

    2016-02-03

    Here, a highly versatile ethanol conversion process to selectively generate high value compounds is presented here. By changing the reaction temperature, ethanol can be selectively converted to >C2 alcohols/oxygenates or phenolic compounds over hydrotalcite derived bi-functional MgO–Al2O3 catalyst via complex cascade mechanism. Reaction temperature plays a role in whether aldol condensation or the acetone formation is the path taken in changing the product composition. This article contains the catalytic activity comparison between the mono-functional and physical mixture counterpart to the hydrotalcite derived mixed oxides and the detailed discussion on the reaction mechanisms.

  17. Continuous Ethanol Production with a Membrane Bioreactor at High Acetic Acid Concentrations

    PubMed Central

    Ylitervo, Päivi; Franzén, Carl Johan; Taherzadeh, Mohammad J.

    2014-01-01

    The release of inhibitory concentrations of acetic acid from lignocellulosic raw materials during hydrolysis is one of the main concerns for 2nd generation ethanol production. The undissociated form of acetic acid can enter the cell by diffusion through the plasma membrane and trigger several toxic effects, such as uncoupling and lowered intracellular pH. The effect of acetic acid on the ethanol production was investigated in continuous cultivations by adding medium containing 2.5 to 20.0 g·L−1 acetic acid at pH 5.0, at a dilution rate of 0.5 h−1. The cultivations were performed at both high (~25 g·L−1) and very high (100–200 g·L−1) yeast concentration by retaining the yeast cells inside the reactor by a cross-flow membrane in a membrane bioreactor. The yeast was able to steadily produce ethanol from 25 g·L−1 sucrose, at volumetric rates of 5–6 g·L−1·h−1 at acetic acid concentrations up to 15.0 g·L−1. However, the yeast continued to produce ethanol also at a concentration of 20 g·L−1 acetic acid but at a declining rate. The study thereby demonstrates the great potential of the membrane bioreactor for improving the robustness of the ethanol production based on lignocellulosic raw materials. PMID:25028956

  18. Let's Talk about High Blood Pressure and Stroke

    MedlinePlus

    ... blood flow to brain cells. This is an ischemic stroke . High blood pressure causes damage to the inner ... Vascular Disease? Stroke, Recovery and Caregiving Hemorrhagic Stroke Ischemic Stroke Stroke, TIA and Warning Signs What Are the ...

  19. High Blood Cholesterol: What You Need to Know

    MedlinePlus

    ... Audiences Contact The Health Information Center High Blood Cholesterol: What You Need To Know Table of Contents ... Lifestyle Changes (TLC) Drug Treatment Resources Why Is Cholesterol Important? Your blood cholesterol level has a lot ...

  20. Extraction of high-quality DNA from ethanol-preserved tropical plant tissues

    PubMed Central

    2014-01-01

    Background Proper conservation of plant samples, especially during remote field collection, is essential to assure quality of extracted DNA. Tropical plant species contain considerable amounts of secondary compounds, such as polysaccharides, phenols, and latex, which affect DNA quality during extraction. The suitability of ethanol (96% v/v) as a preservative solution prior to DNA extraction was evaluated using leaves of Jatropha curcas and other tropical species. Results Total DNA extracted from leaf samples stored in liquid nitrogen or ethanol from J. curcas and other tropical species (Theobroma cacao, Coffea arabica, Ricinus communis, Saccharum spp., and Solanum lycopersicon) was similar in quality, with high-molecular-weight DNA visualized by gel electrophoresis. DNA quality was confirmed by digestion with EcoRI or HindIII and by amplification of the ribosomal gene internal transcribed spacer region. Leaf tissue of J. curcas was analyzed by light and transmission electron microscopy before and after exposure to ethanol. Our results indicate that leaf samples can be successfully preserved in ethanol for long periods (30 days) as a viable method for fixation and conservation of DNA from leaves. The success of this technique is likely due to reduction or inactivation of secondary metabolites that could contaminate or degrade genomic DNA. Conclusions Tissue conservation in 96% ethanol represents an attractive low-cost alternative to commonly used methods for preservation of samples for DNA extraction. This technique yields DNA of equivalent quality to that obtained from fresh or frozen tissue. PMID:24761774

  1. Ethanol production from wheat straw by recombinant Escherichia coli strain FBR5 at high solid loading

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Ethanol production by a recombinant bacterium from wheat straw (WS) at high solid loading by separate hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF) was studied. The yield of total sugars from dilute acid pretreated WS (150 g/L) after enzymatic saccharific...

  2. ETHANOL, ACETIC ACID, AND WATER ADSORPTION FROM BINARY AND TERNARY LIQUID MIXTURES ON HIGH-SILICA ZEOLITES

    EPA Science Inventory

    Adsorption isotherms were measured for ethanol, acetic acid, and water adsorbed on high-silica ZSM-5 zeolite powder from binary and ternary liquid mixtures at room temperature. Ethanol and water adsorption on two high-silica ZSM-5 zeolites with different aluminum contents and a h...

  3. Integration options for high energy efficiency and improved economics in a wood-to-ethanol process

    PubMed Central

    Sassner, Per; Zacchi, Guido

    2008-01-01

    Background There is currently a steady increase in the use of wood-based fuels for heat and power production in Sweden. A major proportion of these fuels could serve as feedstock for ethanol production. In this study various options for the utilization of the solid residue formed during ethanol production from spruce, such as the production of pellets, electricity and heat for district heating, were compared in terms of overall energy efficiency and production cost. The effects of changes in the process performance, such as variations in the ethanol yield and/or the energy demand, were also studied. The process was based on SO2-catalysed steam pretreatment, which was followed by simultaneous saccharification and fermentation. A model including all the major process steps was implemented in the commercial flow-sheeting program Aspen Plus, the model input was based on data recently obtained on lab scale or in a process development unit. Results For the five base case scenarios presented in the paper the overall energy efficiency ranged from 53 to 92%, based on the lower heating values, and a minimum ethanol selling price from 3.87 to 4.73 Swedish kronor per litre (0.41–0.50 EUR/L); however, ethanol production was performed in essentially the same way in each base case scenario. (Highly realistic) improvements in the ethanol yield and reductions in the energy demand resulted in significantly lower production costs for all scenarios. Conclusion Although ethanol was shown to be the main product, i.e. yielding the major part of the income, the co-product revenue had a considerable effect on the process economics and the importance of good utilization of the entire feedstock was clearly shown. With the assumed prices of the co-products, utilization of the excess solid residue for heat and power production was highly economically favourable. The study also showed that improvements in the ethanol yield and reductions in the energy demand resulted in significant production cost reductions almost independently of each other. PMID:18471311

  4. Porous single-crystalline palladium nanoflowers with enriched {100} facets for highly enhanced ethanol oxidation.

    PubMed

    Qi, Kun; Wang, Qiyu; Zheng, Weitao; Zhang, Wei; Cui, Xiaoqiang

    2014-12-21

    Palladium porous single-crystalline nanoflowers (PSNFs) with enriched high catalytic activity {100} facets were synthesized using a mild and controllable seed mediated growth method. The growth mechanism of the Pd PSNFs was investigated using time dependent morphology evolution through TEM imaging. Due to the specific structure, Pd PSNFs show highly enhanced ethanol oxidation reaction (EOR) activity, high EOR anti-poisoning and stability, much better than Pd nanocubes, {111} facets dominated dendritic urchin-like Pd nanoparticles and Pd black. PMID:25370157

  5. High Blood Pressure (Hypertension) (For Parents)

    MedlinePlus

    ... pumps blood into the arteries and through the circulatory system, and the other is from the arteries as ... with the kidneys (most commonly), lungs, heart, or circulatory system. These problems can include bronchopulmonary dysplasia , an immaturity ...

  6. When Blood Sugar Is Too High

    MedlinePlus

    ... symptoms are not due to DKA. Follow your diabetes management plan about when to check your urine for ... the test is positive. In some cases, your diabetes management team may also have you use special blood ...

  7. High Blood Pressure and Kidney Disease

    MedlinePlus

    ... 1 to 2 quarts of urine, composed of wastes and extra fluid. The urine flows from the ... two-step process. The glomerulus lets fluid and waste products pass through it; however, it prevents blood ...

  8. High-temperature ethanol fermentation by immobilized coculture of Kluyveromyces marxianus and Saccharomyces cerevisiae.

    PubMed

    Eiadpum, Akekasit; Limtong, Savitree; Phisalaphong, Muenduen

    2012-09-01

    Suspended and immobilized cocultures of the thermotolerant yeast, Kluyveromyces marxianus DMKU 3-1042 and the mesophilic flocculent yeast, Saccharomyces cerevisiae M30 were studied for their abilities to improve production and stability of ethanol fermentation. Sugarcane juice and blackstrap molasses, at initial sugar concentrations of 220 g/L, were used as carbon sources. The results indicated that the coculture system could improve ethanol production from both sugarcane juice and blackstrap molasses when the operating temperature ranged between 33 C and 45 C. High temperature tolerances were achieved when the coculture was immobilized. The immobilized coculture was more effective in high-temperature ethanol fermentation than the suspended cultures. The coculture immobilized on thin-shell silk cocoon and fermented at 37 C and 40 C generated maximal ethanol concentrations of 81.4 and 77.3 g/L, respectively, which were 5.9-8.7% and 16.8-39.0% higher than those of the suspended cultures, respectively. PMID:22608995

  9. Ethanol Production from Extruded Thermoplastic Maize Meal by High Gravity Fermentation with Zymomonas mobilis.

    PubMed

    Peralta-Contreras, Mayeli; Aguilar-Zamarripa, Edna; Pérez-Carrillo, Esther; Escamilla-García, Erandi; Serna-Saldívar, Sergio Othon

    2014-01-01

    A comparative study of extruded and ground maize meals as raw materials for the production of regular (12°P) and high gravity (20°P) worts was devised. Extruded water solubility index (WSI) was higher (9.8 percentage units) and crude fat was lower (2.64 percentage units) compared to ground maize. Free-amino nitrogen compounds (FAN), pH, and glucose were evaluated in regular and high gravity worts produced from ground or extruded maize. Extrusion improved glucose content and ethanol yield. In 20°P mashes, extrusion is enhanced by 2.14% initial glucose compared with regular ground mashes. The 12°P and 20°P extruded treatments averaged 12.2% and 8.4% higher ethanol, respectively, compared to the uncooked counterpart. The 20°P worts fermented with Zymomonas mobilis produced 9.56% more ethanol than the 12°P counterpart. The results show that the combination of extrusion and fermentation of 20°P worts improved ethanol yield per kg flour until 20.93%. This pretreatment stimulates Z. mobilis fermentation efficiency. PMID:25530885

  10. Ethanol Production from Extruded Thermoplastic Maize Meal by High Gravity Fermentation with Zymomonas mobilis

    PubMed Central

    Peralta-Contreras, Mayeli; Aguilar-Zamarripa, Edna; Pérez-Carrillo, Esther; Escamilla-García, Erandi; Serna-Saldívar, Sergio Othon

    2014-01-01

    A comparative study of extruded and ground maize meals as raw materials for the production of regular (12°P) and high gravity (20°P) worts was devised. Extruded water solubility index (WSI) was higher (9.8 percentage units) and crude fat was lower (2.64 percentage units) compared to ground maize. Free-amino nitrogen compounds (FAN), pH, and glucose were evaluated in regular and high gravity worts produced from ground or extruded maize. Extrusion improved glucose content and ethanol yield. In 20°P mashes, extrusion is enhanced by 2.14% initial glucose compared with regular ground mashes. The 12°P and 20°P extruded treatments averaged 12.2% and 8.4% higher ethanol, respectively, compared to the uncooked counterpart. The 20°P worts fermented with Zymomonas mobilis produced 9.56% more ethanol than the 12°P counterpart. The results show that the combination of extrusion and fermentation of 20°P worts improved ethanol yield per kg flour until 20.93%. This pretreatment stimulates Z. mobilis fermentation efficiency. PMID:25530885

  11. Determination of free acetaldehyde in blood as the dinitrophenylhydrazone derivative by high-performance liquid chromatography.

    PubMed

    Lucas, D; Ménez, J F; Berthou, F; Pennec, Y; Floch, H H

    1986-10-31

    A simple and sensitive method is proposed for the measurement of acetaldehyde in human blood. Venous blood samples were collected in EDTA Vacutainer tubes, and treated immediately with 0.6 M ice-cold perchloric acid in saline. After centrifugation at 4 degrees C, the supernatants were treated with dinitrophenylhydrazine reagent. After addition of the internal standard (crotonaldehyde dinitrophenylhydrazone) and 3 M sodium acetate, the derivatives were extracted and analysed by high-performance liquid chromatography (HPLC) using an Ultrasphere ODS column. The compounds were separated using acetonitrile--water as the mobile phase and detected at 356 nm. A blank determination was carried out for each analysis and subtracted from the results. The specificity of the method was tested by UV and mass spectrometry and the purity of the derivatives by capillary gas chromatography. The recovery of blood acetaldehyde was 98%. Interference from ethanol was minimized by using the tripotassium salt of EDTA as an anticoagulant. The sensitivity of the method can be increased dramatically using microbore HPLC. The level of acetaldehyde was found to be 0.41 +/- 0.13 microM (mean +/- S.D.) for eight fasting controls and 0.91 +/- 0.73 microM for fourteen alcoholics (p less than 0.05). At 30 min after oral administration of ethanol (0.8 g/kg), the ethanol levels were 16.3 +/- 2.8 and 17.7 +/- 2.5 mM and the acetaldehyde levels were 1.67 +/- 0.35 and 3.13 +/- 2.43 microM (p less than 0.05) for the controls and alcoholics, respectively. PMID:3782415

  12. Chronic effects of maternal ethanol and low-protein intake on growth and blood measurements of beagle pups

    SciTech Connect

    Switzer, B.R.; Anderson, J.J.B.; Pick, J.R.

    1986-05-01

    Pups used in this study were born to nulliparous, purebred female beagles fed either 17% control (CP) or 8.5% low protein (LP) diets and were given twice daily either 1.8 g/kg ethanol (E) or an equivalent isocaloric dose of sucrose (S) throughout pregnancy. After parturition, all mothers were fed the CP diet and no E or S. On day 1 and each week up to 4 weeks, the weight (WT), crown-rump length (LT) and head circumference (HC) of the pups were measured. These measurements were taken for a post-weaning subset at 6, 8 and 10 weeks. Blood samples were collected each week. At birth, mean WT, LT and HC were significantly lower in pups from E-mothers as compared to S-mothers with either CP or LP diets. The birth WT, LT and HC were significantly lower when mothers were fed LP as compared to the CP diet with either S or E. The prenatal effects of E and LP were significantly associated with lower pup WT, HT and hematocrit values, but not HC up to 4 weeks. At 10 weeks, the growth measurements and hematocrits were significantly lower with prenatal E exposure but not with LP. Pup red cell levels of folate were significantly lower with prenatal E during the first 4 weeks, whereas the effect of prenatal LP but not E was significant at 10 weeks. These data suggest that growth parameters and hematocrit values of pups prenatally exposed to E do not catch up to those of pups from S-mothers fed either diet.

  13. Second-generation ethanol production from elephant grass at high total solids.

    PubMed

    Menegol, Daiane; Fontana, Roselei Claudete; Dillon, Aldo José Pinheiro; Camassola, Marli

    2016-07-01

    The enzymatic hydrolysis of Pennisetum purpureum (elephant grass) was evaluated at high total solid levels (from 4% to 20% (w/v)) in a concomitant ball milling treatment in a rotating hydrolysis reactor (RHR). The greatest glucose yield was 20.17% when 4% (w/v) untreated biomass was employed. When sugars obtained from enzymatic hydrolysis were submitted to fermentation with Saccharomyces cerevisiae, the greatest ethanol yield was 22.61% when 4% (w/v) untreated biomass was employed; however, the highest glucose concentration (12.47g/L) was obtaining using 20% (w/v) solids and highest ethanol concentration (6.1g/L) was obtained using 16% (w/v) solids. When elephant grass was hydrolyzed in the rotating hydrolysis reactor, ethanol production was about double that was produced when the biomass was hydrolyzed in a static reactor (SR). These data indicate that it is possible to produce ethanol from elephant grass when milling treatment and enzymatic hydrolysis are performed at the same time. PMID:27023383

  14. High efficiency steam reforming of ethanol by cobalt-based catalysts

    NASA Astrophysics Data System (ADS)

    Batista, Marcelo S.; Santos, Rudye K. S.; Assaf, Elisabete M.; Assaf, José M.; Ticianelli, Edson A.

    The steam reforming of ethanol was studied at 400 °C on Co/Al 2O 3 and Co/SiO 2 catalysts with a cobalt content of 8 and 18% (w/w), respectively. Catalysts were prepared by the impregnation method and characterized by atomic absorption spectroscopy, Raman spectroscopy, and temperature-programmed reduction with hydrogen. The results indicated the presence of Co 3O 4 as the main phase of cobalt and CoO x species interactions with alumina. The catalysts showed average conversion higher than 70% for the steam reforming of ethanol at 400 °C. The increase of ethanol conversion and reduction of the amount of liquid products were observed for the catalysts with higher cobalt contents. The CO concentration in the gaseous mixture is reduced to 800 ppm levels for the Co/Al 2O 3 catalyst with 18% of cobalt. During ethanol reformation, the CO produced can react with water (water gas shift, WGS) or hydrogen (methanation, without water) on Co sites. Both reactions, WGS and methanation, allows high conversion on the Co/Al 2O 3 and Co/SiO 2 catalysts, but Co/Al 2O 3 shows better CO removal.

  15. Impact of reformulated ethanol-gasoline blends on high-emitting vehicles.

    PubMed

    Schifter, I; Díaz, L; González, Uriel

    2013-01-01

    In-use vehicles which are high emitters (HEVs) make a large contribution to the emissions inventory. It is not known, however, whether HEVs share common emissions characteristics, and particularly the effect of ethanol blends. We study this by first examining laboratory measurements of exhaust and evaporative emissions on ethanol blends containing 21%, 26% and 30% aromatics, and a reference fuel formulated with methyl-tertiary butyl ether (MTBE). Switching from MTBE to ethanol fuels on HEVs shows no effect on the total emissions of regulated pollutants, but 1,3-butadiene emissions would increased substantially while the emissions of total carbonyls would not be affected except in the case of acetaldehyde, which would increase with EtOH. The ozone-forming potential of exhaust and evaporative emissions would be less using the EtOH blends and specific reactivity will not be incremented. Lowering the vapour pressure of the gasoline and increasing the proportions of alkylate and isomerate in the composition produces an ethanol-blended fuel with lower environmental impact both in normal vehicles and HEVs. PMID:23837342

  16. Alcoholic fatty liver in rats: Role of fat and ethanol intake

    SciTech Connect

    Sankaran, H.; Deveney, C.W. ); Larkin, E.C.; Rao, G.A. )

    1991-03-11

    The claim that high intake of both ethanol and fat is essential to induce fatty liver and high blood alcohol levels (BAL) was tested. Two groups of rats were fed liquid diets containing 26% and 36% of calories as ethanol respectively. After 4 weeks, all rats were bled for BAL and some were sacrificed to obtain liver morphology. Remaining rats in Group 1 (26% ethanol) were switched to 36% ethanol diet and Group 2 (36% ethanol) to 26% ethanol diet. All rats were sacrificed after 4 weeks to obtain blood for BAL and liver morphology. The results indicate that high ethanol intake and high fat ingestion is not the criterion for induction of fatty liver. Inadequate ingestion of macronutrients plays a major role in alcoholic fatty liver and BAL.

  17. Metabolic engineering of a thermophilic bacterium to produce ethanol at high yield

    PubMed Central

    Shaw, A. Joe; Podkaminer, Kara K.; Desai, Sunil G.; Bardsley, John S.; Rogers, Stephen R.; Thorne, Philip G.; Hogsett, David A.; Lynd, Lee R.

    2008-01-01

    We report engineering Thermoanaerobacterium saccharolyticum, a thermophilic anaerobic bacterium that ferments xylan and biomass-derived sugars, to produce ethanol at high yield. Knockout of genes involved in organic acid formation (acetate kinase, phosphate acetyltransferase, and L-lactate dehydrogenase) resulted in a strain able to produce ethanol as the only detectable organic product and substantial changes in electron flow relative to the wild type. Ethanol formation in the engineered strain (ALK2) utilizes pyruvate:ferredoxin oxidoreductase with electrons transferred from ferredoxin to NAD(P), a pathway different from that in previously described microbes with a homoethanol fermentation. The homoethanologenic phenotype was stable for >150 generations in continuous culture. The growth rate of strain ALK2 was similar to the wild-type strain, with a reduction in cell yield proportional to the decreased ATP availability resulting from acetate kinase inactivation. Glucose and xylose are co-utilized and utilization of mannose and arabinose commences before glucose and xylose are exhausted. Using strain ALK2 in simultaneous hydrolysis and fermentation experiments at 50°C allows a 2.5-fold reduction in cellulase loading compared with using Saccharomyces cerevisiae at 37°C. The maximum ethanol titer produced by strain ALK2, 37 g/liter, is the highest reported thus far for a thermophilic anaerobe, although further improvements are desired and likely possible. Our results extend the frontier of metabolic engineering in thermophilic hosts, have the potential to significantly lower the cost of cellulosic ethanol production, and support the feasibility of further cost reductions through engineering a diversity of host organisms. PMID:18779592

  18. Ru-assisted synthesis of Pd/Ru nanodendrites with high activity for ethanol electrooxidation

    NASA Astrophysics Data System (ADS)

    Zhang, Ke; Bin, Duan; Yang, Beibei; Wang, Caiqin; Ren, Fangfang; Du, Yukou

    2015-07-01

    Due to the specific physical and chemical properties of a highly branched noble metal, the controllable synthesis has attracted much attention. This article reports the synthesis of Pd/Ru nanodendrites by a facile method using an oil bath in the presence of polyvinyl pyrrolidone, potassium bromide and ascorbic acid. The morphology, structure, and composition of the as-prepared catalysts were characterized by means of X-ray diffraction, X-ray photoelectron spectroscopy and transmission electron microscopy. In the electrochemical measurement, the as-prepared Pd7/Ru1 bimetallic nanodendrites provide a large electrochemically active surface area and exhibit high peak current density in the forward scan toward ethanol electrooxidation, which is nearly four times higher than those of a pure Pd catalyst. The as-prepared Pd7/Ru1 catalysts also exhibit significantly enhanced cycling stability toward ethanol oxidation in alkaline medium, which are mainly ascribed to the synergetic effect between Pd and Ru. This indicates that the Pd7/Ru1 catalysts should have great potential applications in direct ethanol fuel cells.Due to the specific physical and chemical properties of a highly branched noble metal, the controllable synthesis has attracted much attention. This article reports the synthesis of Pd/Ru nanodendrites by a facile method using an oil bath in the presence of polyvinyl pyrrolidone, potassium bromide and ascorbic acid. The morphology, structure, and composition of the as-prepared catalysts were characterized by means of X-ray diffraction, X-ray photoelectron spectroscopy and transmission electron microscopy. In the electrochemical measurement, the as-prepared Pd7/Ru1 bimetallic nanodendrites provide a large electrochemically active surface area and exhibit high peak current density in the forward scan toward ethanol electrooxidation, which is nearly four times higher than those of a pure Pd catalyst. The as-prepared Pd7/Ru1 catalysts also exhibit significantly enhanced cycling stability toward ethanol oxidation in alkaline medium, which are mainly ascribed to the synergetic effect between Pd and Ru. This indicates that the Pd7/Ru1 catalysts should have great potential applications in direct ethanol fuel cells. Electronic supplementary information (ESI) available. See DOI: 10.1039/c5nr02713f

  19. High Blood Pressure - Multiple Languages: MedlinePlus

    MedlinePlus

    ... ارتفاع ضغط الدم - العربية Bilingual PDF Health Information Translations Bosnian (Bosanski) High Blood Pressure Visoki krvni tlak - Bosanski (Bosnian) Bilingual PDF Health Information Translations Chinese - Simplified (简体中文) High Blood Pressure 高血压 - 简体中文 ( ...

  20. Untreated High Blood Pressure Greatly Raises Risk of 'Bleeding' Stroke

    MedlinePlus

    ... nih.gov/medlineplus/news/fullstory_157337.html Untreated High Blood Pressure Greatly Raises Risk of 'Bleeding' Stroke Threat is ... Feb. 18, 2016 (HealthDay News) -- People with untreated high blood pressure face a much greater risk of a bleeding ...

  1. Blood

    MedlinePlus

    ... a mixture of blood cells and plasma. continue Red Blood Cells Red blood cells (RBCs, and also ... conditions involving the blood include: Diseases of the Red Blood Cells The most common condition affecting the ...

  2. THE EFFECTS OF PREGNANCY ON ETHANOL CLEARANCE

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We have studied the effects of pregnancy on ethanol clearance rates and on blood and urine ethanol concentrations (BECs and UECs) in adult Sprague–Dawley rats infused with ethanol intragastrically. Pregnant rats had greater ethanol clearance following an intragastric or intravenous ethanol bolus (3 ...

  3. Stabilized Alumina/Ethanol Colloidal Dispersion for Seeding High Temperature Air Flows

    NASA Technical Reports Server (NTRS)

    Wernet, Judith H.; Wernet, Mark P.

    1994-01-01

    Seeding air flows with particles to enable measurements of gas velocities via laser anemometry and/or particle image velocimetry techniques can be quite exasperating. The seeding requirements are compounded when high temperature environments are encountered and special care must be used in selecting a refractory seed material. The pH stabilization techniques commonly employed in ceramic processing are used to obtain stable dispersions for generating aerosols of refractory seed material. By adding submicron alumina particles to a preadjusted pH solution of ethanol, a stable dispersion is obtained which when atomized produces a high quality aerosol. Commercial grade alumina powder is used with a moderate size distribution. The technique is not limited to alumina/ethanol and is also demonstrated with an alumina/H2O system. Other ceramic powders in various polar solvents could also be used once the point of zero charge (pH(sub pzc)) of the powder in the solvent has been determined.

  4. Ethanol fermentation from molasses at high temperature by thermotolerant yeast Kluyveromyces sp. IIPE453 and energy assessment for recovery.

    PubMed

    Dasgupta, Diptarka; Ghosh, Prasenjit; Ghosh, Debashish; Suman, Sunil Kumar; Khan, Rashmi; Agrawal, Deepti; Adhikari, Dilip K

    2014-10-01

    High temperature ethanol fermentation from sugarcane molasses B using thermophilic Crabtree-positive yeast Kluyveromyces sp. IIPE453 was carried out in batch bioreactor system. Strain was found to have a maximum specific ethanol productivity of 0.688 g/g/h with 92 % theoretical ethanol yield. Aeration and initial sugar concentration were tuning parameters to regulate metabolic pathways of the strain for either cell mass or higher ethanol production during growth with an optimum sugar to cell ratio 33:1 requisite for fermentation. An assessment of ethanol recovery from fermentation broth via simulation study illustrated that distillation-based conventional recovery was significantly better in terms of energy efficiency and overall mass recovery in comparison to coupled solvent extraction-azeotropic distillation technique for the same. PMID:24682264

  5. Combined process for ethanol fermentation at high-solids loading and biogas digestion from unwashed steam-exploded corn stover.

    PubMed

    Wang, Zhen; Lv, Zhe; Du, Jiliang; Mo, Chunling; Yang, Xiushan; Tian, Shen

    2014-08-01

    A combined process was designed for the co-production of ethanol and methane from unwashed steam-exploded corn stover. A terminal ethanol titer of 69.8 g/kg mass weight (72.5%) was achieved when the fed-batch mode was performed at a final solids loading of 35.5% (w/w) dry matter (DM) content. The whole stillage from high-solids ethanol fermentation was directly transferred in a 3-L anaerobic digester. During 52-day single-stage digester operation, the methane productivity was 320 mL CH₄/g volatile solids (VS) with a maximum VS reduction efficiency of 55.3%. The calculated overall product yield was 197 g ethanol + 96 g methane/kg corn stover. This indicated that the combined process was able to improve overall content utilization and extract a greater yield of lignocellulosic biomass compared to ethanol fermentation alone. PMID:24926600

  6. Ethanol-Induced ADH Activity in Zebrafish: Differential Concentration-Dependent Effects on High- Versus Low-Affinity ADH Enzymes.

    PubMed

    Tran, Steven; Nowicki, Magda; Facciol, Amanda; Chatterjee, Diptendu; Gerlai, Robert

    2016-04-01

    Zebrafish express enzymes that metabolize ethanol in a manner comparable to that of mammals, including humans. We previously demonstrated that acute ethanol exposure increases alcohol dehydrogenase (ADH) activity in an inverted U-shaped dose-dependent manner. It was hypothesized that the biphasic dose-response was due to the increased activity of a high-affinity ADH isoform following exposure to low concentrations of ethanol and increased activity of a low-affinity ADH isoform following exposure to higher concentrations of ethanol. To test this hypothesis, we exposed zebrafish to different concentrations of ethanol (0%, 0.25%, 0.5%, and 1.0% v/v) for 30 min and measured the total ADH activity in the zebrafish liver. However, we also repeated this enzyme activity assay using a low concentration of the substrate (ethanol) to determine the activity of high-affinity ADH isoforms. We found that total ADH activity in response to ethanol induces an inverted U-shaped dose-response similar to our previous study. Using a lower substrate level in our enzyme assay targeting high-affinity isozymes, we found a similar dose-response. However, the difference in activity between the high and low substrate assays (high substrate activity - low substrate activity), which provide an index of activity for low-affinity ADH isoforms, revealed no significant effect of ethanol exposure. Our results suggest that the inverted U-shaped dose-response for total ADH activity in response to ethanol is driven primarily by high-affinity isoforms of ADH. PMID:26741829

  7. Chain elongation of acetate and ethanol in an upflow anaerobic filter for high rate MCFA production.

    PubMed

    Grootscholten, T I M; Steinbusch, K J J; Hamelers, H V M; Buisman, C J N

    2013-05-01

    Recently, interest has regained for medium chain fatty acids (MCFAs) as a low cost feedstock for bio-based chemical and fuel production processes. To become cost-effective, the volumetric MCFA production rate by chain elongation should increase to comparable rates of other fermentation processes. We investigate the MCFA production process at a hydraulic retention time of 17 h in an upflow anaerobic filter to improve the volumetric MCFA production rate. This approach resulted in a MCFA production with a volumetric production rate of 16.6 g l(-1) d(-1), which is more than seven times higher than the current production rate. Moreover the rate is now in the range of other fermentation processes like methane, butanol and ethanol production. Increasing the ethanol load lead to higher volumetric production rates and a high MCFA selectivity of 91%. During operation, methane percentages lower than 0.1% were detected in the headspace of reactor. PMID:23228455

  8. A highly sensitive ethanol sensor based on mesoporous ZnO–SnO2 nanofibers

    PubMed Central

    Song, Xiaofeng; Wang, Zhaojie; Liu, Yongben; Wang, Ce; Li, Lijuan

    2009-01-01

    A facile and versatile method for the large-scale synthesis of sensitive mesoporous ZnO–SnO2 (m-Z–S) nanofibers through a combination of surfactant-directed assembly and an electrospinning approach is reported. The morphology and the structure were investigated by scanning electron microscopy (SEM), transmission electron microscopy (TEM), x-ray diffraction (XRD), and nitrogen adsorption–desorption isotherm analysis. The results showed that the diameters of fibers ranged from 100 to 150 nm with mixed structures of wurtzite (ZnO) and rutile (SnO2), and a mesoporous structure was observed in the m-Z–S nanofibers. The sensor performance of the prepared m-Z–S nanofibers was measured for ethanol. It is found that the mesoporous fiber film obtained exhibited excellent ethanol sensing properties, such as high sensitivity, quick response and recovery, good reproducibility, and linearity in the range 3–500 ppm. PMID:19417420

  9. Simulation of Homogeneous Condensation of Ethanol in High Pressure Supersonic Nozzle Flows using BGK Condensation Model

    NASA Astrophysics Data System (ADS)

    Kumar, Rakesh; Levin, D. A.

    2011-05-01

    In the present work, we have simulated the homogeneous condensation flow of ethanol using the Bhatnagar-Gross-Krook (BGK) based condensation model for the experimental conditions of Wegener et al. [1]. In an earlier work carried out by Gallagher-Rogers et al. [2], it was found not possible to simulate the experimental conditions using the direct simulation Monte-Carlo (DSMC) based condensation model. In this work we use a statistical-BGK approach to model condensation and compare our simulated predictions of the point of condensation onset and the distribution of mass fraction along the nozzle centerline with experiments. The experiments provide data for different cases corresponding to varying amounts of ethanol concentration, compared to air, for total mixture pressures which remains mostly constant for all cases. Our numerical results show good agreement with the experiments, thus validating our BGK based condensation model for high pressure flow applications.

  10. Redox potential driven aeration during very-high-gravity ethanol fermentation by using flocculating yeast

    PubMed Central

    Liu, Chen-Guang; Hao, Xue-Mi; Lin, Yen-Han; Bai, Feng-Wu

    2016-01-01

    Ethanol fermentation requires oxygen to maintain high biomass and cell viability, especially under very-high-gravity (VHG) condition. In this work, fermentation redox potential (ORP) was applied to drive the aeration process at low dissolved oxygen (DO) levels, which is infeasible to be regulated by a DO sensor. The performance and characteristics of flocculating yeast grown under 300 and 260 g glucose/L conditions were subjected to various aeration strategies including: no aeration; controlled aeration at −150, −100 and −50 mV levels; and constant aeration at 0.05 and 0.2 vvm. The results showed that anaerobic fermentation produced the least ethanol and had the highest residual glucose after 72 h of fermentation. Controlled aerations, depending on the real-time oxygen demand, led to higher cell viability than the no-aeration counterpart. Constant aeration triggered a quick biomass formation, and fast glucose utilization. However, over aeration at 0.2 vvm caused a reduction of final ethanol concentration. The controlled aeration driven by ORP under VHG conditions resulted in the best fermentation performance. Moreover, the controlled aeration could enhance yeast flocculating activity, promote an increase of flocs size, and accelerate yeast separation near the end of fermentation. PMID:27161047

  11. Highly Sensitive and Selective Ethanol Sensor Fabricated with In-Doped 3DOM ZnO.

    PubMed

    Wang, Zhihua; Tian, Ziwei; Han, Dongmei; Gu, Fubo

    2016-03-01

    ZnO is an important n-type semiconductor sensing material. Currently, much attention has been attracted to finding an effective method to prepare ZnO nanomaterials with high sensing sensitivity and excellent selectivity. A three-dimensionally ordered macroporous (3DOM) ZnO nanostructure with a large surface area is beneficial to gas and electron transfer, which can enhance the gas sensitivity of ZnO. Indium (In) doping is an effective way to improve the sensing properties of ZnO. In this paper, In-doped 3DOM ZnO with enhanced sensitivity and selectivity has been synthesized by using a colloidal crystal templating method. The 3DOM ZnO with 5 at. % of In-doping exhibits the highest sensitivity (∼88) to 100 ppm ethanol at 250 °C, which is approximately 3 times higher than that of pure 3DOM ZnO. The huge improvement to the sensitivity to ethanol was attributed to the increase in the surface area and the electron carrier concentration. The doping by In introduces more electrons into the matrix, which is helpful for increasing the amount of adsorbed oxygen, leading to high sensitivity. The In-doped 3DOM ZnO is a promising material for a new type of ethanol sensor. PMID:26844815

  12. Ru-assisted synthesis of Pd/Ru nanodendrites with high activity for ethanol electrooxidation.

    PubMed

    Zhang, Ke; Bin, Duan; Yang, Beibei; Wang, Caiqin; Ren, Fangfang; Du, Yukou

    2015-08-01

    Due to the specific physical and chemical properties of a highly branched noble metal, the controllable synthesis has attracted much attention. This article reports the synthesis of Pd/Ru nanodendrites by a facile method using an oil bath in the presence of polyvinyl pyrrolidone, potassium bromide and ascorbic acid. The morphology, structure, and composition of the as-prepared catalysts were characterized by means of X-ray diffraction, X-ray photoelectron spectroscopy and transmission electron microscopy. In the electrochemical measurement, the as-prepared Pd7/Ru1 bimetallic nanodendrites provide a large electrochemically active surface area and exhibit high peak current density in the forward scan toward ethanol electrooxidation, which is nearly four times higher than those of a pure Pd catalyst. The as-prepared Pd7/Ru1 catalysts also exhibit significantly enhanced cycling stability toward ethanol oxidation in alkaline medium, which are mainly ascribed to the synergetic effect between Pd and Ru. This indicates that the Pd7/Ru1 catalysts should have great potential applications in direct ethanol fuel cells. PMID:26135381

  13. Redox potential driven aeration during very-high-gravity ethanol fermentation by using flocculating yeast.

    PubMed

    Liu, Chen-Guang; Hao, Xue-Mi; Lin, Yen-Han; Bai, Feng-Wu

    2016-01-01

    Ethanol fermentation requires oxygen to maintain high biomass and cell viability, especially under very-high-gravity (VHG) condition. In this work, fermentation redox potential (ORP) was applied to drive the aeration process at low dissolved oxygen (DO) levels, which is infeasible to be regulated by a DO sensor. The performance and characteristics of flocculating yeast grown under 300 and 260 g glucose/L conditions were subjected to various aeration strategies including: no aeration; controlled aeration at -150, -100 and -50 mV levels; and constant aeration at 0.05 and 0.2 vvm. The results showed that anaerobic fermentation produced the least ethanol and had the highest residual glucose after 72 h of fermentation. Controlled aerations, depending on the real-time oxygen demand, led to higher cell viability than the no-aeration counterpart. Constant aeration triggered a quick biomass formation, and fast glucose utilization. However, over aeration at 0.2 vvm caused a reduction of final ethanol concentration. The controlled aeration driven by ORP under VHG conditions resulted in the best fermentation performance. Moreover, the controlled aeration could enhance yeast flocculating activity, promote an increase of flocs size, and accelerate yeast separation near the end of fermentation. PMID:27161047

  14. Direct ethanol production from cellulosic materials at high temperature using the thermotolerant yeast Kluyveromyces marxianus displaying cellulolytic enzymes.

    PubMed

    Yanase, Shuhei; Hasunuma, Tomohisa; Yamada, Ryosuke; Tanaka, Tsutomu; Ogino, Chiaki; Fukuda, Hideki; Kondo, Akihiko

    2010-09-01

    To exploit cellulosic materials for fuel ethanol production, a microorganism capable of high temperature and simultaneous saccharification-fermentation has been required. However, a major drawback is the optimum temperature for the saccharification and fermentation. Most ethanol-fermenting microbes have an optimum temperature for ethanol fermentation ranging between 28 degrees C and 37 degrees C, while the activity of cellulolytic enzymes is highest at around 50 degrees C and significantly decreases with a decrease in temperature. Therefore, in the present study, a thermotolerant yeast, Kluyveromyces marxianus, which has high growth and fermentation at elevated temperatures, was used as a producer of ethanol from cellulose. The strain was genetically engineered to display Trichoderma reesei endoglucanase and Aspergillus aculeatus beta-glucosidase on the cell surface, which successfully converts a cellulosic beta-glucan to ethanol directly at 48 degrees C with a yield of 4.24 g/l from 10 g/l within 12 h. The yield (in grams of ethanol produced per gram of beta-glucan consumed) was 0.47 g/g, which corresponds to 92.2% of the theoretical yield. This indicates that high-temperature cellulose fermentation to ethanol can be efficiently accomplished using a recombinant K. marxianus strain displaying thermostable cellulolytic enzymes on the cell surface. PMID:20676628

  15. Insights from the Fungus Fusarium oxysporum Point to High Affinity Glucose Transporters as Targets for Enhancing Ethanol Production from Lignocellulose

    PubMed Central

    Ali, Shahin S.; Nugent, Brian; Mullins, Ewen; Doohan, Fiona M.

    2013-01-01

    Ethanol is the most-widely used biofuel in the world today. Lignocellulosic plant biomass derived from agricultural residue can be converted to ethanol via microbial bioprocessing. Fungi such as Fusarium oxysporum can simultaneously saccharify straw to sugars and ferment sugars to ethanol. But there are many bottlenecks that need to be overcome to increase the efficacy of microbial production of ethanol from straw, not least enhancement of the rate of fermentation of both hexose and pentose sugars. This research tested the hypothesis that the rate of sugar uptake by F. oxysporum would enhance the ethanol yields from lignocellulosic straw and that high affinity glucose transporters can enhance ethanol yields from this substrate. We characterized a novel hexose transporter (Hxt) from this fungus. The F. oxysporum Hxt represents a novel transporter with homology to yeast glucose signaling/transporter proteins Rgt2 and Snf3, but it lacks their C-terminal domain which is necessary for glucose signalling. Its expression level decreased with increasing glucose concentration in the medium and in a glucose uptake study the Km(glucose) was 0.9 mM, which indicated that the protein is a high affinity glucose transporter. Post-translational gene silencing or over expression of the Hxt in F. oxysporum directly affected the glucose and xylose transport capacity and ethanol yielded by F. oxysporum from straw, glucose and xylose. Thus we conclude that this Hxt has the capacity to transport both C5 and C6 sugars and to enhance ethanol yields from lignocellulosic material. This study has confirmed that high affinity glucose transporters are ideal candidates for improving ethanol yields from lignocellulose because their activity and level of expression is high in low glucose concentrations, which is very common during the process of consolidated processing. PMID:23382943

  16. Prenatal ethanol increases sucrose reinforcement, an effect strengthened by postnatal association of ethanol and sucrose.

    PubMed

    Culleré, Marcela Elena; Spear, Norman E; Molina, Juan Carlos

    2014-02-01

    Late prenatal exposure to ethanol recruits sensory processing of the drug and of its motivational properties, an experience that leads to heightened ethanol affinity. Recent studies indicate common sensory and neurobiological substrates between this drug and sweet tastants. Using a recently developed operant conditioning technique for infant rats, we examined the effects of prenatal ethanol history upon sucrose self-administration (postnatal days, PDs 14-17). Prior to the last conditioning session, a low (0.5 g/kg) or a high (2.5 g/kg) ethanol dose were paired with sucrose. The intention was to determine if ethanol would inflate or devalue the reinforcing capability of the tastant and if these effects are dependent upon prenatal ethanol history. Male and female pups prenatally exposed to ethanol (2.0 g/kg) responded more when reinforced with sucrose than pups lacking this antenatal experience. Independently of prenatal status, a low ethanol dose (0.5 g/kg) enhanced the reinforcing capability of sucrose while the highest dose (2.5 g/kg) seemed to ameliorate the motivational properties of the tastant. During extinction (PD 18), two factors were critical in determining persistence of responding despite reinforcement omission. Pups prenatally exposed to ethanol that subsequently experienced the low ethanol dose paired with sucrose, showed higher resistance to extinction. The effects here reported were not associated with differential blood alcohol levels across prenatal treatments. These results indicate that fetal ethanol experience promotes affinity for a natural sweet reinforcer and that low doses of ethanol are also capable of enhancing the positive motivational consequences of sucrose when ethanol and sucrose are paired during infancy. PMID:24398347

  17. Cellulases without carbohydrate-binding modules in high consistency ethanol production process

    PubMed Central

    2014-01-01

    Background Enzymes still comprise a major part of ethanol production costs from lignocellulose raw materials. Irreversible binding of enzymes to the residual substrate prevents their reuse and no efficient methods for recycling of enzymes have so far been presented. Cellulases without a carbohydrate-binding module (CBM) have been found to act efficiently at high substrate consistencies and to remain non-bound after the hydrolysis. Results High hydrolysis yields could be obtained with thermostable enzymes of Thermoascus aurantiacus containing only two main cellulases: cellobiohydrolase I (CBH I), Cel7A and endoglucanase II (EG II), Cel5A. The yields were decreased by only about 10% when using these cellulases without CBM. A major part of enzymes lacking CBM was non-bound during the most active stage of hydrolysis and in spite of this, produced high sugar yields. Complementation of the two cellulases lacking CBM with CBH II (CtCel6A) improved the hydrolysis. Cellulases without CBM were more sensitive during exposure to high ethanol concentration than the enzymes containing CBM. Enzymes lacking CBM could be efficiently reused leading to a sugar yield of 90% of that with fresh enzymes. The applicability of cellulases without CBM was confirmed under industrial ethanol production conditions at high (25% dry matter (DM)) consistency. Conclusions The results clearly show that cellulases without CBM can be successfully used in the hydrolysis of lignocellulose at high consistency, and that this approach could provide new means for better recyclability of enzymes. This paper provides new insight into the efficient action of CBM-lacking cellulases. The relationship of binding and action of cellulases without CBM at high DM consistency should, however, be studied in more detail. PMID:24559384

  18. Do new cellulolytic enzyme preparations affect the industrial strategies for high solids lignocellulosic ethanol production?

    PubMed

    Cannella, David; Jørgensen, Henning

    2014-01-01

    Production of ethanol from lignocellulosic materials has a promising market potential, but the process is still only at pilot/demonstration scale due to the technical and economical difficulties of the process. Operating the process at very high solids concentrations (above 20% dry matter-DM) has proven essential for economic feasibility at industrial scale. Historically, simultaneous saccharification and fermentation (SSF) was found to give better ethanol yields compared to separate hydrolysis and fermentation (SHF), but data in literature are typically based on operating the process at low dry matter conditions. In this work the impact of selected enzyme preparation and processing strategy (SHF, presaccharification and simultaneous saccharification and fermentation-PSSF, and SSF) on final ethanol yield and overall performance was investigated with pretreated wheat straw up to 30% DM. The experiments revealed that an SSF strategy was indeed better than SHF when applying an older generation enzyme cocktail (Celluclast-Novozym 188). In case of the newer product Cellic CTec 2, SHF resulted in 20% higher final ethanol yield compared to SSF. It was possible to close the mass balance around cellulose to around 94%, revealing that the most relevant products could be accounted for. One observation was the presence of oxidized sugar (gluconic acid) upon enzymatic hydrolysis with the latest enzyme preparation. Experiments showed gluconic acid formation by recently discovered enzymatic class of lytic polysaccharides monoxygenases (LPMO's) to be depending on the processing strategy. The lowest concentration was achieved in SSF, which could be correlated with less available oxygen due to simultaneous oxygen consumption by the yeast. Quantity of glycerol and cell mass was also depending on the selected processing strategy. PMID:24022674

  19. Treatment of high ethanol concentration wastewater by biological sand filters: enhanced COD removal and bacterial community dynamics.

    PubMed

    Rodriguez-Caballero, A; Ramond, J-B; Welz, P J; Cowan, D A; Odlare, M; Burton, S G

    2012-10-30

    Winery wastewater is characterized by its high chemical oxygen demand (COD), seasonal occurrence and variable composition, including periodic high ethanol concentrations. In addition, winery wastewater may contain insufficient inorganic nutrients for optimal biodegradation of organic constituents. Two pilot-scale biological sand filters (BSFs) were used to treat artificial wastewater: the first was amended with ethanol and the second with ethanol, inorganic nitrogen (N) and phosphorus (P). A number of biochemical parameters involved in the removal of pollutants through BSF systems were monitored, including effluent chemistry and bacterial community structures. The nutrient supplemented BSF showed efficient COD, N and P removal. Comparison of the COD removal efficiencies of the two BSFs showed that N and P addition enhanced COD removal efficiency by up to 16%. Molecular fingerprinting of BSF sediment samples using denaturing gradient gel electrophoresis (DGGE) showed that amendment with high concentrations of ethanol destabilized the microbial community structure, but that nutrient supplementation countered this effect. PMID:22683841

  20. Highly Selective Formation of n-Butanol from Ethanol through the Guerbet Process: A Tandem Catalytic Approach.

    PubMed

    Chakraborty, Sumit; Piszel, Paige E; Hayes, Cassandra E; Baker, R Tom; Jones, William D

    2015-11-18

    A highly selective (>99%) tandem catalytic system for the conversion of ethanol (up to 37%) to n-butanol, through the Guerbet process, has been developed using a bifunctional iridium catalyst coupled with bulky nickel or copper hydroxides. These sterically crowded nickel and copper hydroxides catalyze the key aldol coupling reaction of acetaldehyde to exclusively yield the C4 coupling product, crotonaldehyde. Iridium-mediated dehydrogenation of ethanol to acetaldehyde has led to the development of an ethanol-to-butanol process operated at a lower temperature. PMID:26526779

  1. Contribution of the stomach to ethanol oxidation in the rat

    SciTech Connect

    Caballeria, J.; Baraona, E.; Lieber, C.S.

    1987-08-24

    To estimate the amount of ethanol that can be oxidized in the stomach, steady-state conditions were created in a group of fed rats by giving a loading dose of ethanol (2 g/kg body wt I.V.) followed by continuous infusion either intravenously or intragastrically. The rate of ethanol oxidation was calculated from the rate of infusion required to maintain steady blood levels of approximately 30 mM for at least 3 hours. Gastrointestinal ethanol concentrations and total contents also remained steady. The rate of ethanol oxidation was 19.3% faster during intragastric than during intravenous infusion (p<0.01). When measured at the prevailing luminal ethanol concentration (145 mM) and expressed per body weight, the gastric ADH activity represented 14% of the hepatic activity at 30 mM ethanol, suggesting that gastric ADH activity could account for most of the increased rate of oxidation when ethanol is given intragastrically. Thus, gastric ethanol oxidation by a high Km ADH in the rat represents a significant fraction of the total rate of ethanol oxidation and it is therefore one of the factors which determines the bioavailability of orally administered ethanol. 22 references, 1 figure, 2 tables.

  2. Porous single-crystalline palladium nanoflowers with enriched {100} facets for highly enhanced ethanol oxidation

    NASA Astrophysics Data System (ADS)

    Qi, Kun; Wang, Qiyu; Zheng, Weitao; Zhang, Wei; Cui, Xiaoqiang

    2014-11-01

    Palladium porous single-crystalline nanoflowers (PSNFs) with enriched high catalytic activity {100} facets were synthesized using a mild and controllable seed mediated growth method. The growth mechanism of the Pd PSNFs was investigated using time dependent morphology evolution through TEM imaging. Due to the specific structure, Pd PSNFs show highly enhanced ethanol oxidation reaction (EOR) activity, high EOR anti-poisoning and stability, much better than Pd nanocubes, {111} facets dominated dendritic urchin-like Pd nanoparticles and Pd black.Palladium porous single-crystalline nanoflowers (PSNFs) with enriched high catalytic activity {100} facets were synthesized using a mild and controllable seed mediated growth method. The growth mechanism of the Pd PSNFs was investigated using time dependent morphology evolution through TEM imaging. Due to the specific structure, Pd PSNFs show highly enhanced ethanol oxidation reaction (EOR) activity, high EOR anti-poisoning and stability, much better than Pd nanocubes, {111} facets dominated dendritic urchin-like Pd nanoparticles and Pd black. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr05761a

  3. Production of fuel ethanol at high temperature from sugar cane juice by a newly isolated Kluyveromyces marxianus.

    PubMed

    Limtong, Savitree; Sringiew, Chutima; Yongmanitchai, Wichien

    2007-12-01

    Kluyveromyces marxianus DMKU 3-1042, isolated by an enrichment technique in a sugar cane juice medium supplemented with 4% (w/v) ethanol at 35 degrees C, produced high concentrations of ethanol at both 40 and 45 degrees C. Ethanol production by this strain in shaking flask cultivation in sugar cane juice media at 37 degrees C was highest in a medium containing 22% total sugars, 0.05% (NH(4))(2)SO(4), 0.05% KH(2)PO(4), and 0.15% MgSO(4).7H(2)O and having a pH of 5.0; the ethanol concentration reached 8.7% (w/v), productivity 1.45 g/l/h and yield 77.5% of theoretical yield. At 40 degrees C, a maximal ethanol concentration of 6.78% (w/v), a productivity of 1.13 and a yield 60.4% of theoretical yield were obtained from the same medium, except that the pH was adjusted to 5.5. In a study on ethanol production in a 5l jar fermenter with an agitation speed of 300 rpm and an aeration rate of 0.2 vvm throughout the fermentation, K. marxianus DMKU 3-1042 yielded a final ethanol concentration of 6.43% (w/v), a productivity of 1.3g/l/h and a yield of 57.1% of theoretical yield. PMID:17537627

  4. Changes in lymphocyte subsets and macrophage functions from high, short-term dietary ethanol in C57/BL6 mice

    SciTech Connect

    Watson, R.R.; Prabhala, R.H.; Abril, E.; Smith, T.L.

    1988-01-01

    Chronic administration of a diet containing 7% ethanol (36% of total calories) for 8 days to male C57/BL6 mice resulted in significant changes in functioning of macrophages. Peritoneal exudate macrophages from the ethanol-fed mice released more tumor cell cytotoxic materials upon culturing in vitro than cells from controls. However, peritoneal exudate cells continued to respond to exogenous beta carotene in vitro to produce additional cytotoxic materials. Phagocytosis of sheep red blood cells in vitro was suppressed in cells from ethanol treated mice. The number of splenic lymphocytes of various subsets was significantly changed by the ethanol exposure. Total T cells and T suppressor cells were lower, with a significant decrease in B cells containing IgM on their surface. The percentage of spleen cells showing markers for macrophage functions and their activation were significantly reduced. It is concluded that short-term chronic consumption of dietary ethanol, which was sufficient to produce physical dependence, results in significant alterations in lymphocyte subtypes and suppression of some macrophage functions.

  5. Rat muscle blood flows during high-speed locomotion

    SciTech Connect

    Armstrong, R.B.; Laughlin, M.H.

    1985-10-01

    We previously studied blood flow distribution within and among rat muscles as a function of speed from walking (15 m/min) through galloping (75 m/min) on a motor-driven treadmill. The results showed that muscle blood flows continued to increase as a function of speed through 75 m/min. The purpose of the present study was to have rats run up to maximal treadmill speeds to determine if blood flows in the muscles reach a plateau as a function of running speed over the animals normal range of locomotory speeds. Muscle blood flows were measured with radiolabeled microspheres at 1 min of running at 75, 90, and 105 m/min in male Sprague-Dawley rats. The data indicate that even at these relatively high treadmill speeds there was still no clear evidence of a plateau in blood flow in most of the hindlimb muscles. Flows in most muscles continued to increase as a function of speed. These observed patterns of blood flow vs. running speed may have resulted from the rigorous selection of rats that were capable of performing the high-intensity exercise and thus only be representative of a highly specific population of animals. On the other hand, the data could be interpreted to indicate that the cardiovascular potential during exercise is considerably higher in laboratory rats than has normally been assumed and that inadequate blood flow delivery to the muscles does not serve as a major limitation to their locomotory performance.

  6. Robust, high-throughput solution for blood group genotyping.

    PubMed

    Le Goff, Gaelle C; Brès, Jean-Charles; Rigal, Dominique; Blum, Loïc J; Marquette, Christophe A

    2010-07-15

    With the concomitant increase of blood transfusions and safety rules, there is a growing need to integrate high-throughput and multiparametric assays within blood qualification centers. Using a robust and automated solution, we describe a new method for extended blood group genotyping (HiFi-Blood 96) bringing together the throughput possibilities of complete automation and the microarray multiplexed analysis potential. Our approach provides a useful resource for upgrading blood qualification center facilities. A set of six single-nucleotide polymorphisms (SNPs) associated with clinically important blood group antigens (Kell, Kidd, Duffy, and MNS systems) were selected and the corresponding genotyping assays developed. A panel of 293 blood samples was used to validate the approach. The resulting genotypes were compared to phenotypes previously determined by standard serologic techniques, and excellent correlations were found for five SNPs out of six. For the Kell, Kidd, Duffy, and MNS3/MNS4 systems, high matching percentages of 100%, 98.9%, 97.7%, and 97.4% were obtained, respectively, whereas a concordance percentage of 83.3% only was attained for the MNS1/MNS2 polymorphism. PMID:20560530

  7. Hierarchical Pd-Sn Alloy Nanosheet Dendrites: An Economical and Highly Active Catalyst for Ethanol Electrooxidation

    PubMed Central

    Ding, Liang-Xin; Wang, An-Liang; Ou, Yan-Nan; Li, Qi; Guo, Rui; Zhao, Wen-Xia; Tong, Ye-Xiang; Li, Gao-Ren

    2013-01-01

    Hierarchical alloy nanosheet dendrites (ANSDs) are highly favorable for superior catalytic performance and efficient utilization of catalyst because of the special characteristics of alloys, nanosheets, and dendritic nanostructures. In this paper, we demonstrate for the first time a facile and efficient electrodeposition approach for the controllable synthesis of Pd-Sn ANSDs with high surface area. These synthesized Pd-Sn ANSDs exhibit high electrocatalytic activity and superior long-term cycle stability toward ethanol oxidation in alkaline media. The enhanced electrocataytic activity of Pd-Sn ANSDs may be attributed to Pd-Sn alloys, nanosheet dendrite induced promotional effect, large number of active sites on dendrite surface, large surface area, and good electrical contact with the base electrode. Because of the simple implement and high flexibility, the proposed approach can be considered as a general and powerful strategy to synthesize the alloy electrocatalysts with high surface areas and open dendritic nanostructures. PMID:23383368

  8. Hierarchical Pd-Sn alloy nanosheet dendrites: an economical and highly active catalyst for ethanol electrooxidation.

    PubMed

    Ding, Liang-Xin; Wang, An-Liang; Ou, Yan-Nan; Li, Qi; Guo, Rui; Zhao, Wen-Xia; Tong, Ye-Xiang; Li, Gao-Ren

    2013-01-01

    Hierarchical alloy nanosheet dendrites (ANSDs) are highly favorable for superior catalytic performance and efficient utilization of catalyst because of the special characteristics of alloys, nanosheets, and dendritic nanostructures. In this paper, we demonstrate for the first time a facile and efficient electrodeposition approach for the controllable synthesis of Pd-Sn ANSDs with high surface area. These synthesized Pd-Sn ANSDs exhibit high electrocatalytic activity and superior long-term cycle stability toward ethanol oxidation in alkaline media. The enhanced electrocataytic activity of Pd-Sn ANSDs may be attributed to Pd-Sn alloys, nanosheet dendrite induced promotional effect, large number of active sites on dendrite surface, large surface area, and good electrical contact with the base electrode. Because of the simple implement and high flexibility, the proposed approach can be considered as a general and powerful strategy to synthesize the alloy electrocatalysts with high surface areas and open dendritic nanostructures. PMID:23383368

  9. Blood

    MedlinePlus

    ... which measure the number, size, and shape of cells and platelets in the blood. Problems with your blood may include bleeding disorders, excessive clotting and platelet disorders. If you lose too much blood, you may need a transfusion.

  10. Highly loaded Ni-based catalysts for low temperature ethanol steam reforming.

    PubMed

    Wang, Tuo; Ma, Hongyan; Zeng, Liang; Li, Di; Tian, Hao; Xiao, Shengning; Gong, Jinlong

    2016-05-21

    This paper describes the design of high-loading Ni/Al2O3 catalysts (78 wt% Ni) for low temperature ethanol steam reforming. The catalysts were synthesized via both co-precipitation (COP) and impregnation (IMP) methods. All the catalysts were measured by N2 adsorption-desorption, XRD, H2-TPR, and H2 pulse chemisorption. The characterization results demonstrated that the preparation method and the loading significantly affected the nickel particle size, active nickel surface area and catalytic performance. Over COP catalysts, large nickel particles were presented in nickel aluminum mixed oxides. In comparison, IMP catalysts gained more "free" NiO particles with weak interaction with the aluminum oxide. Consequently, COP catalysts yielded smaller nickel particles and larger active nickel surface areas than those of IMP catalysts. High loading is beneficial for obtaining sufficient active nickel sites when nickel particles are dispersed via COP, whereas excessive nickel content is not desired for catalysts prepared by IMP. Specifically, the 78 wt% nickel loaded catalyst synthesized by COP possessed small nickel particles (∼6.0 nm) and an abundant active nickel area (35.1 m(2) gcat(-1)). Consequently, COP-78 achieved superior stability with 92% ethanol conversion and ∼35% H2 selectivity at 673 K for 30 h despite the presence of a considerable amount of coke. PMID:27122228

  11. Synergistic ablation of liver tissue and liver cancer cells with high-intensity focused ultrasound and ethanol.

    PubMed

    Hoang, Nguyen H; Murad, Hakm Y; Ratnayaka, Sithira H; Chen, Chong; Khismatullin, Damir B

    2014-08-01

    We investigated the combined effect of ethanol and high-intensity focused ultrasound (HIFU), first, on heating and cavitation bubble activity in tissue-mimicking phantoms and porcine liver tissues and, second, on the viability of HepG2 liver cancer cells. Phantoms or porcine tissues were injected with ethanol and then subjected to HIFU at acoustic power ranging from 1.2 to 20.5 W (HIFU levels 1-7). Cavitation events and the temperature around the focal zone were measured with a passive cavitation detector and embedded type K thermocouples, respectively. HepG2 cells were subjected to 4% ethanol solution in growth medium (v/v) just before the cells were exposed to HIFU at 2.7, 8.7 or 12.0 W for 30 s. Cell viability was measured 2, 24 and 72 h post-treatment. The results indicate that ethanol and HIFU have a synergistic effect on liver cancer ablation as manifested by greater temperature rise and lesion volume in liver tissues and reduced viability of liver cancer cells. This effect is likely caused by reduction of the cavitation threshold in the presence of ethanol and the increased rate of ethanol diffusion through the cell membrane caused by HIFU-induced streaming, sonoporation and heating. PMID:24798386

  12. High stable suspension of magnetite nanoparticles in ethanol by using sono-synthesized nanomagnetite in polyol medium

    SciTech Connect

    Bastami, Tahereh Rohani; Entezari, Mohammad H.

    2013-09-01

    Graphical abstract: - Highlights: • The sonochemical synthesis of magnetite nanoparticles was carried out in EG without any surfactant. • The nanoparticles with sizes ∼24 nm were composed of small building blocks with sizes ∼2 nm. • The hydrophilic magnetite nanoparticles were stable in ethanol even after 8 months. • Ultrasonic intensity showed a crucial role on the obtained high stable magnetite nanoparticles in ethanol. - Abstract: The sonochemical synthesis of magnetite nanoparticles was carried out at relatively low temperature (80 °C) in ethylene glycol (EG) as a polyol solvent. The particle size was determined by transmission electron microscopy (TEM). The magnetite nanoparticles with an average size of 24 nm were composed of small building blocks with an average size of 2–3 nm and the particles exhibited nearly spherical shape. The surface characterization was investigated by using Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), and thermogravimetric analysis (TGA). The stability of magnetite nanoparticles was studied in ethanol as a polar solvent. The nanoparticles showed an enhanced stability in ethanol which is due to the hydrophilic surface of the particles. The colloidal stability of magnetite nanoparticles in ethanol was monitored by UV–visible spectrophotometer. According to the results, the nanoparticles synthesized in 30 min of sonication with intensity of 35 W/cm{sup 2} (50%) led to a maximum stability in ethanol as a polar solvent with respect to the other applied intensities. The obtained magnetite nanoparticles were stable for more than12 months.

  13. High blood pressure, oxygen radicals and antioxidants: etiological relationships.

    PubMed

    Romero-Alvira, D; Roche, E

    1996-04-01

    This hypothesis proposes that high blood pressure is a pathological state associated with a loss of the balance between pro-oxidation and antioxidation, energy depletion, and accelerated aging in the target organs, such as heart, kidney and brain. Different nutritional, environmental, pharmacological factors and/or associated pathologies (diabetes, arteriosclerosis, cancer, alcoholism, etc.) and/or genetic components, can induce high blood pressure by breaking the redox equilibrium in the affected organs. Additional evidence, such as increase of oxidative damage, fibrogenesis, inhibition of the cardiocytic sodium-potassium pump, and heart hypertrophy, supports this hypothesis. These facts are analysed in the present paper, showing that they could contribute to the development of high blood pressure and associated pathologies by oxidative mechanisms. PMID:8733174

  14. High-resolution ultrasound imaging and noninvasive optoacoustic monitoring of blood variables in peripheral blood vessels

    NASA Astrophysics Data System (ADS)

    Petrov, Irene Y.; Petrov, Yuriy; Prough, Donald S.; Esenaliev, Rinat O.

    2011-03-01

    Ultrasound imaging is being widely used in clinics to obtain diagnostic information non-invasively and in real time. A high-resolution ultrasound imaging platform, Vevo (VisualSonics, Inc.) provides in vivo, real-time images with exceptional resolution (up to 30 microns) using high-frequency transducers (up to 80 MHz). Recently, we built optoacoustic systems for probing radial artery and peripheral veins that can be used for noninvasive monitoring of total hemoglobin concentration, oxyhemoglobin saturation, and concentration of important endogenous and exogenous chromophores (such as ICG). In this work we used the high-resolution ultrasound imaging system Vevo 770 for visualization of the radial artery and peripheral veins and acquired corresponding optoacoustic signals from them using the optoacoustic systems. Analysis of the optoacoustic data with a specially developed algorithm allowed for measurement of blood oxygenation in the blood vessels as well as for continuous, real-time monitoring of arterial and venous blood oxygenation. Our results indicate that: 1) the optoacoustic technique (unlike pure optical approaches and other noninvasive techniques) is capable of accurate peripheral venous oxygenation measurement; and 2) peripheral venous oxygenation is dependent on skin temperature and local hemodynamics. Moreover, we performed for the first time (to the best of our knowledge) a comparative study of optoacoustic arterial oximetry and a standard pulse oximeter in humans and demonstrated superior performance of the optoacoustic arterial oximeter, in particular at low blood flow.

  15. Effects of High Octane Ethanol Blends on Four Legacy Flex-Fuel Vehicles, and a Turbocharged GDI Vehicle

    SciTech Connect

    Thomas, John F; West, Brian H; Huff, Shean P

    2015-03-01

    The U.S. Department of Energy (DOE) is supporting engine and vehicle research to investigate the potential of high-octane fuels to improve fuel economy. Ethanol has very high research octane number (RON) and heat of vaporization (HoV), properties that make it an excellent spark ignition engine fuel. The prospects of increasing both the ethanol content and the octane number of the gasoline pool has the potential to enable improved fuel economy in future vehicles with downsized, downsped engines. This report describes a small study to explore the potential performance benefits of high octane ethanol blends in the legacy fleet. There are over 17 million flex-fuel vehicles (FFVs) on the road today in the United States, vehicles capable of using any fuel from E0 to E85. If a future high-octane blend for dedicated vehicles is on the horizon, the nation is faced with the classic chicken-and-egg dilemma. If today’s FFVs can see a performance advantage with a high octane ethanol blend such as E25 or E30, then perhaps consumer demand for this fuel can serve as a bridge to future dedicated vehicles. Experiments were performed with four FFVs using a 10% ethanol fuel (E10) with 88 pump octane, and a market gasoline blended with ethanol to make a 30% by volume ethanol fuel (E30) with 94 pump octane. The research octane numbers were 92.4 for the E10 fuel and 100.7 for the E30 fuel. Two vehicles had gasoline direct injected (GDI) engines, and two featured port fuel injection (PFI). Significant wide open throttle (WOT) performance improvements were measured for three of the four FFVs, with one vehicle showing no change. Additionally, a conventional (non-FFV) vehicle with a small turbocharged direct-injected engine was tested with a regular grade of gasoline with no ethanol (E0) and a splash blend of this same fuel with 15% ethanol by volume (E15). RON was increased from 90.7 for the E0 to 97.8 for the E15 blend. Significant wide open throttle and thermal efficiency performance improvement was measured for this vehicle, which achieved near volumetric fuel economy parity on the aggressive US06 drive cycle, demonstrating the potential for improved fuel economy in forthcoming downsized, downsped engines with high-octane fuels.

  16. Saccharomyces cerevisiae KNU5377 Stress Response during High-Temperature Ethanol Fermentation

    PubMed Central

    Kim, Il-Sup; Kim, Young-Saeng; Kim, Hyun; Jin, Ingnyol; Yoon, Ho-Sung

    2013-01-01

    Fuel ethanol production is far more costly to produce than fossil fuels. There are a number of approaches to cost-effective fuel ethanol production from biomass. We characterized stress response of thermotolerant Saccharomyces cerevisiae KNU5377 during glucose-based batch fermentation at high temperature (40°C). S. cerevisiae KNU5377 (KNU5377) transcription factors (Hsf1, Msn2/4, and Yap1), metabolic enzymes (hexokinase, glyceraldehyde-3-phosphate dehydrogenase, glucose-6-phosphate dehydrogenase, isocitrate dehydrogenase, and alcohol dehydrogenase), antioxidant enzymes (thioredoxin 3, thioredoxin reductase, and porin), and molecular chaperones and its cofactors (Hsp104, Hsp82, Hsp60, Hsp42, Hsp30, Hsp26, Cpr1, Sti1, and Zpr1) are upregulated during fermentation, in comparison to S. cerevisiae S288C (S288C). Expression of glyceraldehyde-3-phosphate dehydrogenase increased significantly in KNU5377 cells. In addition, cellular hydroperoxide and protein oxidation, particularly lipid peroxidation of triosephosphate isomerase, was lower in KNU5377 than in S288C. Thus, KNU5377 activates various cell rescue proteins through transcription activators, improving tolerance and increasing alcohol yield by rapidly responding to fermentation stress through redox homeostasis and proteostasis. PMID:23512334

  17. Demonstration of a stabilized alumina/ethanol colloidal dispersion technique for seeding high temperature air flows

    NASA Technical Reports Server (NTRS)

    Wernet, Mark P.; Skoch, Gary J.; Wernet, Judith H.

    1995-01-01

    Laser anemometry enables the measurement of complex flow fields via the light scattered from small particles entrained in the flow. In the study of turbomachinery, refractory seed materials are required for seeding the flow due to the high temperatures encountered. In this work we present a pH stabilization technique commonly employed in ceramic processing to obtain stable dispersions for generating aerosols of refractory seed material. By adding submicron alumina particles to a preadjusted pH solution of ethanol, a stable dispersion is obtained which when atomized, produces a high quality aerosol. Commercial grade alumina powder is used with a moderate size distribution. Other metal oxide powders in various polar solvents could also be used once the point of zero charge (pH(pzc)) of the powder in the solvent has been determined. Laser anemometry measurements obtained using the new seeding technique are compared to measurements obtained using Polystyrene Latex (PSL) spheres as the seed material.

  18. Effect of some drugs on ethanol-induced changes in blood brain barrier permeability for /sup 14/C-tyrosine

    SciTech Connect

    Borisenko, S.A.; Burov, Yu.V.

    1987-06-01

    This investigation seeks to compare the effects of membrane stabilizers chlorpromazine and alpha-tocopherol, and also the dopaminergic antagonist haloperidol, in changes in permeability of the blood-brain barrier for carbon 14-labelled tyrosine.

  19. Toxicology findings in suicides: concentrations of ethanol and other drugs in femoral blood in victims of hanging and poisoning in relation to age and gender of the deceased.

    PubMed

    Jones, Alan Wayne; Holmgren, Anita; Ahlner, Johan

    2013-10-01

    Over-consumption of alcohol and/or abuse of other drugs are closely linked to attempted or completed suicides. In this retrospective 10-year study (2001-2010), we compared the toxicology findings in hanging suicides (n = 4551) with drug poisoning (intoxication) suicides (n = 2468). The mean age of hanging deaths was 49 ± 19 y (±SD) and 80% were male, compared with a mean age of 52 ± 17 y and 47% males for the intoxication deaths. Poly-drug use was more common in poisoning suicides with an average of 3.6 drugs/case compared with 1.8 drugs/case in hangings. Moreover, 31% of hangings were negative for alcohol and/or drugs. Alcohol was detected (>0.20 g/L) in femoral blood in 30% of hanging suicides (mean 1.39 g/L) and 36% of drug poisonings (mean 1.39 g/L). The median BACs did not depend on the person's age or gender (p > 0.05). Ethanol, paracetamol, citalopram, diazepam, propiomazine, alimemazine and zopiclone were amongst the top-ten drugs detected in both methods of suicide. With the exception of ethanol, the concentrations of drugs in blood were considerably higher in the poisoning deaths, as might be expected. Regardless of the method of suicide, antidepressants and/or antipsychotics were common findings, which could implicate mental health as a significant suicide risk factor. PMID:24112333

  20. Relative Fluid Novelty Differentially Alters the Time Course of Limited-Access Ethanol and Water Intake in Selectively Bred High Alcohol Preferring Mice

    PubMed Central

    Linsenbardt, David N.; Boehm, Stephen L.

    2015-01-01

    Background The influence of previous alcohol (ethanol) drinking experience on increasing the rate and amount of future ethanol consumption might be a genetically-regulated phenomenon critical to the development and maintenance of repeated excessive ethanol abuse. We have recently found evidence supporting this view, wherein inbred C57BL/6J (B6) mice develop progressive increases in the rate of binge-ethanol consumption over repeated Drinking-in-the-Dark (DID) ethanol access sessions (i.e. ‘front-loading’). The primary goal of the present study was to evaluate identical parameters in High Alcohol Preferring (HAP) mice to determine if similar temporal alterations in limited-access ethanol drinking develop in a population selected for high ethanol preference/intake under continuous (24hr) access conditions. Methods Using specialized volumetric drinking devices, HAP mice received 14 daily 2 hour DID ethanol or water access sessions. A subset of these mice was then given one day access to the opposite assigned fluid on day 15. Home cage locomotor activity was recorded concomitantly on each day of these studies. The possibility of behavioral/metabolic tolerance was evaluated on day 16 using experimenter administered ethanol. Results The amount of ethanol consumed within the first 15 minutes of access increased markedly over days. However, in contrast to previous observations in B6 mice, ethanol front-loading was also observed on day 15 in mice that only had previous DID experience with water. Furthermore, a decrease in the amount of water consumed within the first 15 minutes of access compared to animals given repeated water access was observed on day 15 in mice with 14 previous days of ethanol access. Conclusions These data further illustrate the complexity and importance of the temporal aspects of limited-access ethanol consumption, and suggest that previous procedural/fluid experience in HAP mice selectively alters the time course of ethanol and water consumption. PMID:25833024

  1. Production of fuel ethanol and methane from garbage by high-efficiency two-stage fermentation process.

    PubMed

    Koike, Yoji; An, Ming-Zhe; Tang, Yue-Qin; Syo, Tomohiro; Osaka, Noriko; Morimura, Shigeru; Kida, Kenji

    2009-12-01

    A two-stage fermentation process, consisting of a simultaneous saccharification and fermentation (SSF) stage and a dry methane fermentation stage, was developed to utilize garbage for the production of fuel ethanol and methane. Garbage from families, canteens and concessionaires was used for the study. Saccharification method was studied and the results indicated that the liquefaction pretreatment and the combination of cellulase and glucoamylase was effective for polysaccharide hydrolysis of family garbage with a high content of holocellulose and that SSF was suitable for ethanol fermentation of garbage. Ethanol productivity could be markedly increased from 1.7 to 7.0 g/l/h by repeated-batch SSF of family garbage. A high ethanol productivity of 17.7 g/l/h was achieved when canteen garbage was used. The stillage after distillation was treated by dry methane fermentation and the results indicated that the stillage was almost fully digested and that about 850 ml of biogas was recovered from 1 g of volatile total solid (VTS). Approximately 85% of the energy of the garbage was converted to fuels, ethanol and methane by this process. PMID:19914584

  2. Enhanced ethanol catabolism in orphan nuclear receptor SHP-null mice.

    PubMed

    Park, Jung Eun; Lee, Mikang; Mifflin, Ryan; Lee, Yoon Kwang

    2016-05-15

    Deficiency of the orphan nuclear hormone receptor small heterodimer partner (SHP, NR0B2) protects mice from diet-induced hepatic steatosis, in part, via repression of peroxisome proliferator-activated receptor (PPAR)-γ2 (Pparg2) gene expression. Alcoholic fatty liver diseases (AFLD) share many common pathophysiological features with non-AFLD. To study the role of SHP and PPARγ2 in AFLD, we used a strategy of chronic ethanol feeding plus a single binge ethanol feeding to challenge wild-type (WT) and SHP-null (SHP(-/-)) mice with ethanol. The ethanol feeding induced liver fat accumulation and mRNA expression of hepatic Pparg2 in WT mice, which suggests that a high level of PPARγ2 is a common driving force for fat accumulation induced by ethanol or a high-fat diet. Interestingly, ethanol-fed SHP(-/-) mice displayed hepatic fat accumulation similar to that of ethanol-fed WT mice, even though their Pparg2 expression level remained lower. Mortality of SHP(-/-) mice after ethanol binge feeding was significantly reduced and their acetaldehyde dehydrogenase (Aldh2) mRNA level was higher than that of their WT counterparts. After an intoxicating dose of ethanol, SHP(-/-) mice exhibited faster blood ethanol clearance and earlier wake-up time than WT mice. Higher blood acetate, the end product of ethanol metabolism, and lower acetaldehyde levels were evident in the ethanol-challenged SHP(-/-) than WT mice. Ethanol-induced inflammatory responses and lipid peroxidation were also lower in SHP(-/-) mice. The current data show faster ethanol catabolism and extra fat storage through conversion of acetate to acetyl-CoA before its release into the circulation in this ethanol-feeding model in SHP(-/-) mice. PMID:26968209

  3. Effects of the pretreatment method on high solids enzymatic hydrolysis and ethanol fermentation of the cellulosic fraction of sugarcane bagasse.

    PubMed

    Martins, Luiza Helena da Silva; Rabelo, Sarita Cândida; da Costa, Aline Carvalho

    2015-09-01

    This work evaluated ethanol production from sugarcane bagasse at high solids loadings in the pretreatment (20-40% w/v) and hydrolysis (10-20% w/v) stages. The best conditions for diluted sulfuric acid, AHP and Ox-B pretreatments were determined and mass balances including pretreatment, hydrolysis and fermentation were calculated. From a technical point of view, the best pretreatment was AHP, which enabled the production of glucose concentrations near 8% with high productivity (3.27 g/Lh), as well as ethanol production from 100.9 to 135.4 kg ethanol/ton raw bagasse. However, reagent consumption for acid pretreatment was much lower. Furthermore, for processes that use pentoses and hexoses separately, this pretreatment produces the most desirable pentoses liquor, with higher xylose concentration in the monomeric form. PMID:26004382

  4. A Nutrition Curriculum for Families with High Blood Pressure.

    ERIC Educational Resources Information Center

    Farris, Rosanne P.; And Others

    1985-01-01

    A nutrition curriculum for elementary and secondary school students with high blood pressure was implemented as part of a Dietary/Exercise Alteration Program trial. Reduced sodium and energy intake and increased potassium intake were promoted. Materials and methods of the program are described. (Author/DF)

  5. National High Blood Pressure 12-Month Kit. May 1988.

    ERIC Educational Resources Information Center

    National Heart and Lung Inst. (DHHS/NIH), Bethesda, MD. National High Blood Pressure Education Program.

    Part I of this kit provides information for program planners and health professionals on ways to overcome barriers to health care among the medically underserved, promote high blood pressure control through the media and other community channels, and improve adherence to treatment among hypertensive patients. It lists additional resources for…

  6. Total body water and lean body mass estimated by ethanol dilution

    NASA Technical Reports Server (NTRS)

    Loeppky, J. A.; Myhre, L. G.; Venters, M. D.; Luft, U. C.

    1977-01-01

    A method for estimating total body water (TBW) using breath analyses of blood ethanol content is described. Regression analysis of ethanol concentration curves permits determination of a theoretical concentration that would have existed if complete equilibration had taken place immediately upon ingestion of the ethanol; the water fraction of normal blood may then be used to calculate TBW. The ethanol dilution method is applied to 35 subjects, and comparison with a tritium dilution method of determining TBW indicates that the correlation between the two procedures is highly significant. Lean body mass and fat fraction were determined by hydrostatic weighing, and these data also prove compatible with results obtained from the ethanol dilution method. In contrast to the radioactive tritium dilution method, the ethanol dilution method can be repeated daily with its applicability ranging from diseased individuals to individuals subjected to thermal stress, strenuous exercise, water immersion, or the weightless conditions of space flights.

  7. High-speed imaging of blood splatter patterns

    SciTech Connect

    McDonald, T.E.; Albright, K.A.; King, N.S.P.; Yates, G.J.; Levine, G.F.

    1993-05-01

    The interpretation of blood splatter patterns is an important element in reconstructing the events and circumstances of an accident or crime scene. Unfortunately, the interpretation of patterns and stains formed by blood droplets is not necessarily intuitive and study and analysis are required to arrive at a correct conclusion. A very useful tool in the study of blood splatter patterns is high-speed photography. Scientists at the Los Alamos National Laboratory, Department of Energy (DOE), and Bureau of Forensic Services, State of California, have assembled a high-speed imaging system designed to image blood splatter patterns. The camera employs technology developed by Los Alamos for the underground nuclear testing program and has also been used in a military mine detection program. The camera uses a solid-state CCD sensor operating at approximately 650 frames per second (75 MPixels per second) with a microchannel plate image intensifier that can provide shuttering as short as 5 ns. The images are captured with a laboratory high-speed digitizer and transferred to an IBM compatible PC for display and hard copy output for analysis. The imaging system is described in this paper.

  8. Alterations in Ethanol Seeking and Self-Administration Following Yohimbine in Selectively Bred Alcohol-Preferring (P) and High Alcohol Drinking (HAD-2) Rats

    PubMed Central

    Bertholomey, Megan L.; Verplaetse, Terril L.; Czachowski, Cristine L.

    2012-01-01

    Evidence suggests that stress increases alcohol drinking and promotes relapse in humans. Animal models that assess related behaviors include the sipper tube ethanol self-administration and the stress-induced reinstatement paradigms. While selectively bred for the same high-ethanol-drinking behavior, alcohol-preferring P rats appear to show greater sensitivity to ethanol reinforcement than high-alcohol-drinking HAD rats. The present experiment tested the effects of the pharmacological stressor, yohimbine, on the motivation to seek and consume ethanol implementing a combined sipper tube/reinstatement model using male P and HAD-2 rats. Following training to self-administer ethanol using the sipper tube procedure, rats were tested for the effects of yohimbine (0.625-2.5 mg/kg) on ethanol drinking. Subsequently, rats were tested for the effects of 1.25 mg/kg yohimbine on reinstatement of ethanol seeking. Yohimbine (0.625 and 1.25 mg/kg) increased ethanol self-administration, and the latter dose also decreased latency to complete the response requirement. Yohimbine elicited reinstatement of ethanol seeking in both lines. HAD-2 rats drank more ethanol, but showed similar responding on the ethanol-associated lever compared to P rats. These findings extend both the reinstatement and sipper tube models and justify further exploration of this unique combined paradigm. Despite prior evidence suggesting that P rats are more motivated to seek and consume ethanol, differences in these behaviors between P and HAD-2 rats were not systematic in the present experiment. Further investigation may elucidate whether either selected line may be more sensitive than other selectively bred or outbred rats to stress-related changes in ethanol's reinforcing effects. PMID:23103404

  9. Novel technologies for enhanced production of ethanol: impact of high productivity on process economics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    In these studies Saccharomyces cerevisiae NRRL Y-566 was used to produce ethanol from a concentrated glucose (250-300 gL-1) solution. When fermentation media were supplemented with CaCO3 and CaCl2, ethanol concentrations, yield, and productivities were improved significantly. In control batch fermen...

  10. HIGH PERMEABILITY MEMBRANES FOR THE DEHYDRATION OF LOW WATER CONTENT ETHANOL BY PERVAPORATION

    EPA Science Inventory

    Energy efficient dehydration of low water content ethanol is a challenge for the sustainable production of fuel-grade ethanol. Pervaporative membrane dehydration using a recently developed hydrophilic polymer membrane formulation consisting of a cross-linked mixture of poly(allyl...

  11. Continuous High-solids corn liquefaction and fermentation with stripping of ethanol

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Removal of ethanol from the fermentor during fermentation can increase productivity and reduce the costs for dewatering the product and coproduct. One approach is to recycle the fermentor contents through a stripping column, where a non-condensable gas removes ethanol to a condenser. Previous resear...

  12. High-efficiency ethanol production from lignocellulosic residues pretreated with alkaline H/sub 2/O/sub 2/

    SciTech Connect

    Gould, J.M.; Freer, S.N.

    1984-06-01

    Pretreatment should be economic and should not utilize toxic reagents. In this study locally obtained residues were used - wheat straw, cornstalks, corn husks and kenaf -as substrates. The high efficiency of glucose production from alkaline H/sub 2/O/sub 2/ pretreated lignocellulosic residues made these materials excellent substrates for ethanol production by Saccharomyces cerevisiae in combined saccharification/fermentation experiments. Results showed that overall efficiency of ethanol formation was 90% for pretreated corn cobs, stalks and husks compared to 50% for untreated materials. Yields from kenaf and oak were also enhanced although below the theoretical maximum. The lignin containing supernatant does not appear to be inhibitory to Saccharomyces cerevisiae growth or ethanol production. The improvement in conversion efficiency is apparently the result of the removal of about one half of the lignin along with an apparent reduction in the degree of crystallinity within the cellulose structure itself. 16 references.

  13. Impact of osmotic stress and ethanol inhibition in yeast cells on process oscillation associated with continuous very-high-gravity ethanol fermentation

    PubMed Central

    2013-01-01

    Background VHG fermentation is a promising process engineering strategy aiming at improving ethanol titer, and thus saving energy consumption for ethanol distillation and distillage treatment. However, sustained process oscillation was observed during continuous VHG ethanol fermentation, which significantly affected ethanol fermentation performance of the system. Results Sustained process oscillation was investigated in continuous VHG ethanol fermentation, and stresses exerted on yeast cells by osmotic pressure from unfermented sugars and ethanol inhibition developed within the fermentation system were postulated to be major factors triggering this phenomenon. In this article, steady state was established for continuous ethanol fermentation with LG medium containing 120 g/L glucose, and then 160 g/L non-fermentable xylose was supplemented into the LG medium to simulate the osmotic stress on yeast cells under the VHG fermentation condition, but the fermentation process was still at steady state, indicating that the impact of osmotic stress on yeast cells was not the main reason for the process oscillation. However, when 30 g/L ethanol was supplemented into the LG medium to simulate the ethanol inhibition in yeast cells under the VHG fermentation condition, process oscillation was triggered, which was augmented with extended oscillation period and exaggerated oscillation amplitude as ethanol supplementation was increased to 50 g/L, but the process oscillation was gradually attenuated when the ethanol supplementations were stopped, and the steady state was restored. Furthermore, gas stripping was incorporated into the continuous VHG fermentation system to in situ remove ethanol produced by Saccharomyces cerevisiae, and the process oscillation was also attenuated, but restored after the gas stripping was interrupted. Conclusions Experimental results indicated that ethanol inhibition rather than osmotic stress on yeast cells is one of the main factors triggering the process oscillation under the VHG fermentation condition, and in the meantime gas stripping was validated to be an effective strategy for attenuating the process oscillation. PMID:24041271

  14. Rapid Fatty Acid Ethyl Ester Synthesis by Porcine Myocardium Upon Ethanol Infusion into the Left Anterior Descending Coronary Artery

    PubMed Central

    Yoerger, Danita M.; Best, Catherine A.; McQuillan, Brendan M.; Supple, Gregory E.; Guererro, J. Luis; Cluette-Brown, Joanne E.; Hasaba, Ali; Picard, Michael H.; Stone, James R.; Laposata, Michael

    2006-01-01

    Fatty acid ethyl esters (FAEEs), nonoxidative metabolites of ethanol, have been implicated in ethanol-induced heart injury. To assess the in vivo production of FAEEs by myocardial tissue, we used a modified ethanol ablation procedure in pigs. A controlled 60-minute ethanol infusion was administered into the distal left anterior descending coronary artery in seven swine; serial blood sampling of the coronary sinus and peripheral vein before, during, and after infusion allowed measurement of FAEE production and ethanol levels in the coronary sinus and the peripheral circulation. In a single animal, FAEEs were also quantified from nine different sites within the myocardium. FAEEs were produced by the heart within 5 minutes of exposure to ethanol, with very high concentrations of FAEEs detected in coronary sinus blood. Significant variability in amounts of FAEEs was detected in different regions of the heart tissue. A strong correlation was found between coronary sinus FAEEs and ethanol concentration (r = 0.9241, P < 0.00001). FAEE production by the heart after delivery of ethanol into the left anterior descending coronary artery was rapid, reaching levels in the coronary sinus blood 4 to 10 times greater than that found in peripheral blood after ethanol intake. These data demonstrate that FAEEs may be mediators of ethanol-induced cardiotoxicity. PMID:16651611

  15. A comparative study of ethanol absorption in the canine jejunum after pretreatment with cyanamide or pyrazole.

    PubMed

    Shinohara, T; Ijiri, I; Ameno, S; Fuke, C; Ameno, K

    1993-07-01

    This report describes the retardation of ethanol absorption from the intestinal tract and reduction of portal blood flow by high acetaldehyde concentrations in dogs using a jejunal segment with the vascular supply intact. The cyanamide-pretreatment group (CY), in which an extremely high acetaldehyde concentration developed, in comparison with the control and pyrazole-pretreated (PY) groups, showed a gradual increase of portal blood ethanol, a 25% reduction in the amount of absorbed ethanol, and an 85% smaller absorption rate constant value (Ka). These facts indicate that the presence of a high acetaldehyde concentration in the blood results in a reduction of ethanol absorption and retardation of ethanol reaching the systemic circulation. The rapid reduction of portal blood flow and the lower ethanol level in the portal vein observed in the CY group, in comparison with the other two groups, also indicate that the reduction of ethanol permeability through the absorption site to the blood is an important retarding factor induced by acetaldehyde. PMID:8397524

  16. High abundant protein removal from rodent blood for biomarker discovery

    PubMed Central

    Haudenschild, Dominik R.; Eldridge, Angela; Lein, Pamela J.; Chromy, Brett A.

    2014-01-01

    In order to realize the goal of stratified and/or personalized medicine in the clinic, significant advances in the field of biomarker discovery are necessary. Adding to the abundance of nucleic acid biomarkers being characterized, additional protein biomarkers will be needed to satisfy diverse clinical needs. An appropriate source for finding these biomarkers is within blood, as it contains tissue leakage factors as well as additional proteins that reside in blood that can be linked to the presence of disease. Unfortunately, high abundant proteins and complexity of the blood proteome present significant challenges for the discovery of protein biomarkers from blood. Animal models often enable the discovery of biomarkers that can later be translated to humans. Therefore, determining appropriate sample preparation of proteomic samples in rodent models is an important research goal. Here, we examined both mouse and rat blood samples (including both serum and plasma), for appropriate high abundant protein removal techniques for subsequent gel-based proteomic experiments. We assessed four methods of albumin removal: antibody-based affinity chromatography (MARS), Cibacron® Blue-based affinity depletion (SwellGel® Blue Albumin Removal Kit), protein-based affinity depletion (ProteaPrep Albumin Depletion Kit) and TCA/acetone precipitation. Albumin removal was quantified for each method and SDS-PAGE and 2-DE gels were used to quantify the number of protein spots obtained following albumin removal. Our results suggest that while all four approaches can effectively remove high abundant proteins, antibody-based affinity chromatography is superior to the other three methods. PMID:25445603

  17. Effect of high altitude on blood glucose meter performance.

    PubMed

    Fink, Kenneth S; Christensen, Dale B; Ellsworth, Allan

    2002-01-01

    Participation in high-altitude wilderness activities may expose persons to extreme environmental conditions, and for those with diabetes mellitus, euglycemia is important to ensure safe travel. We conducted a field assessment of the precision and accuracy of seven commonly used blood glucose meters while mountaineering on Mount Rainier, located in Washington State (elevation 14,410 ft). At various elevations each climber-subject used the randomly assigned device to measure the glucose level of capillary blood and three different concentrations of standardized control solutions, and a venous sample was also collected for later glucose analysis. Ordinary least squares regression was used to assess the effect of elevation and of other environmental potential covariates on the precision and accuracy of blood glucose meters. Elevation affects glucometer precision (p = 0.08), but becomes less significant (p = 0.21) when adjusted for temperature and relative humidity. The overall effect of elevation was to underestimate glucose levels by approximately 1-2% (unadjusted) for each 1,000 ft gain in elevation. Blood glucose meter accuracy was affected by elevation (p = 0.03), temperature (p < 0.01), and relative humidity (p = 0.04) after adjustment for the other variables. The interaction between elevation and relative humidity had a meaningful but not statistically significant effect on accuracy (p = 0.07). Thus, elevation, temperature, and relative humidity affect blood glucose meter performance, and elevated glucose levels are more greatly underestimated at higher elevations. Further research will help to identify which blood glucose meters are best suited for specific environments. PMID:12450444

  18. Thermal conductivity of methanol-ethanol mixture and silicone oil at high pressures

    NASA Astrophysics Data System (ADS)

    Hsieh, Wen-Pin

    2015-06-01

    4:1 methanol-ethanol (ME) mixture and silicone oil are common, important pressure transmitting media used in high pressure diamond anvil cell (DAC) experiments. Their thermal conductivities and elastic properties are critical for modeling heat conduction in the DAC experiments and for determining thermal conductivity of measurement samples under extreme conditions. We used time-domain thermoreflectance and picosecond interferometry combined with the DAC to study the thermal conductivities and elastic constants C11 of the ME mixture and silicone oil at room temperature and to pressures as high as ≈23 GPa. We found that pressure dependence of the thermal conductivity of ME and silicone oil are both well described by the prediction of the minimum thermal conductivity model, confirming the diffusion of thermal energy between nonpropagating molecular vibrational modes is the dominant heat transport mechanism in a liquid and amorphous polymer. Our results not only provide new insights into the physics of thermal transport in these common pressure media for high pressure thermal measurements, but will also significantly extend the feasibility of using silicone fluid medium to much higher pressure and moderately high temperature conditions with higher measurement accuracy than other pressure media.

  19. Concentration-Dependent Protection by Ethanol Extract of Propolis against γ-Ray-Induced Chromosome Damage in Human Blood Lymphocytes

    PubMed Central

    Montoro, A.; Barquinero, J. F.; Almonacid, M.; Montoro, A.; Sebastià, N.; Verdú, G.; Sahuquillo, V.; Serrano, J.; Saiz, M.; Villaescusa, J. I.; Soriano, J. M.

    2011-01-01

    Radioprotection with natural products may be relevant to the mitigation of ionizing radiation-induced damage in mammalian systems; in this sense, propolis extracts have shown effects such as antioxidant, antitumoral, anti-inflammatory, and immunostimulant. We report for the first time a cytogenetic study to evaluate the radioprotective effect, in vitro, of propolis against radiation-induced chromosomal damage. Lymphocytes were cultured with increasing concentrations of ethanol extract of propolis (EEP), including 20, 40, 120, 250, 500, 750, 1000, and 2000 μg mL−1 and then exposed to 2 Gy γ-rays. A significant and concentration-dependent decrease is observed in the frequency of chromosome aberrations in samples treated with EEP. The protection against the formation of dicentrics was concentration-dependent, with a maximum protection at 120 μg mL−1 of EEP. The observed frequency of dicentrics is described as negative exponential function, indicating that the maximum protectible fraction of dicentrics is approximately 44%. Free radical scavenging and antioxidant activities are the mechanisms that these substances use to protect cells from ionizing radiation. PMID:20981159

  20. Step by Step: Eating To Lower Your High Blood Cholesterol. Revised.

    ERIC Educational Resources Information Center

    National Heart, Lung, and Blood Inst. (DHHS/NIH), Bethesda, MD.

    This booklet offers advice for adults who want to lower their blood cholesterol level. The first section, "What You Need To Know about High Blood Cholesterol," discusses blood cholesterol and why it matters, what cholesterol numbers mean, and what affects blood cholesterol levels. Section 2, "What You Need To Do To Lower Blood Cholesterol,"…

  1. Step by Step: Eating To Lower Your High Blood Cholesterol. Revised.

    ERIC Educational Resources Information Center

    National Heart, Lung, and Blood Inst. (DHHS/NIH), Bethesda, MD.

    This booklet offers advice for adults who want to lower their blood cholesterol level. The first section, "What You Need To Know about High Blood Cholesterol," discusses blood cholesterol and why it matters, what cholesterol numbers mean, and what affects blood cholesterol levels. Section 2, "What You Need To Do To Lower Blood Cholesterol,"

  2. Chronic ethanol increases systemic TLR3 agonist-induced neuroinflammation and neurodegeneration

    PubMed Central

    2012-01-01

    Background Increasing evidence links systemic inflammation to neuroinflammation and neurodegeneration. We previously found that systemic endotoxin, a TLR4 agonist or TNFα, increased blood TNFα that entered the brain activating microglia and persistent neuroinflammation. Further, we found that models of ethanol binge drinking sensitized blood and brain proinflammatory responses. We hypothesized that blood cytokines contribute to the magnitude of neuroinflammation and that ethanol primes proinflammatory responses. Here, we investigate the effects of chronic ethanol on neuroinflammation and neurodegeneration triggered by toll-like receptor 3 (TLR3) agonist poly I:C. Methods Polyinosine-polycytidylic acid (poly I:C) was used to induce inflammatory responses when sensitized with D-galactosamine (D-GalN). Male C57BL/6 mice were treated with water or ethanol (5 g/kg/day, i.g., 10 days) or poly I:C (250 μg/kg, i.p.) alone or sequentially 24 hours after ethanol exposure. Cytokines, chemokines, microglial morphology, NADPH oxidase (NOX), reactive oxygen species (ROS), high-mobility group box 1 (HMGB1), TLR3 and cell death markers were examined using real-time PCR, ELISA, immunohistochemistry and hydroethidine histochemistry. Results Poly I:C increased blood and brain TNFα that peaked at three hours. Blood levels returned within one day, whereas brain levels remained elevated for at least three days. Escalating blood and brain proinflammatory responses were found with ethanol, poly I:C, and ethanol-poly I:C treatment. Ethanol pretreatment potentiated poly I:C-induced brain TNFα (345%), IL-1β (331%), IL-6 (255%), and MCP-1(190%). Increased levels of brain cytokines coincided with increased microglial activation, NOX gp91phox, superoxide and markers of neurodegeneration (activated caspase-3 and Fluoro-Jade B). Ethanol potentiation of poly I:C was associated with ethanol-increased expression of TLR3 and endogenous agonist HMGB1 in the brain. Minocycline and naltrexone blocked microglial activation and neurodegeneration. Conclusions Chronic ethanol potentiates poly I:C blood and brain proinflammatory responses. Poly I:C neuroinflammation persists after systemic responses subside. Increases in blood TNFα, IL-1β, IL-6, and MCP-1 parallel brain responses consistent with blood cytokines contributing to the magnitude of neuroinflammation. Ethanol potentiation of TLR3 agonist responses is consistent with priming microglia-monocytes and increased NOX, ROS, HMGB1-TLR3 and markers of neurodegeneration. These studies indicate that TLR3 agonists increase blood cytokines that contribute to neurodegeneration and that ethanol binge drinking potentiates these responses. PMID:22709825

  3. Evolved strains of Scheffersomyces stipitis achieving high ethanol productivity on acid- and base-pretreated biomass hydrolyzate at high solids loading

    DOE PAGESBeta

    Slininger, Patricia J.; Shea-Andersh, Maureen A.; Thompson, Stephanie R.; Dien, Bruce S.; Kurtzman, Cletus P.; Balan, Venkatesh; da Costa Sousa, Leonardo; Uppugundla, Nirmal; Dale, Bruce E; Cotta, Michael A

    2015-04-09

    Lignocellulosic biomass is an abundant, renewable feedstock useful for the production of fuel-grade ethanol via the processing steps of pretreatment, enzyme hydrolysis, and microbial fermentation. Traditional industrial yeasts do not ferment xylose and are not able to grow, survive, or ferment in concentrated hydrolyzates that contain enough sugar to support economical ethanol recovery since they are laden with toxic byproducts generated during pretreatment. Repetitive culturing in two types of concentrated hydrolyzates was applied along with ethanol challenged xylose-fed continuous culture to force targeted evolution of the native pentose fermenting yeast Scheffersomyces (Pichia) stipitis strain NRRL Y-7124 maintained in the ARSmore » Culture Collection, Peoria, IL. Isolates collected from various enriched populations were screened and ranked based on relative xylose uptake rate and ethanol yield. Ranking on hydrolyzates with and without nutritional supplementation was used to identify those isolates with best performance across diverse conditions. Robust S. stipitis strains adapted to perform very well in enzyme hydrolyzates of high solids loading ammonia fiber expansion-pretreated corn stover (18% weight per volume solids) and dilute sulfuric acid-pretreated switchgrass (20% w/v solids) were obtained. Improved features include reduced initial lag phase preceding growth, significantly enhanced fermentation rates, improved ethanol tolerance and yield, reduced diauxic lag during glucose-xylose transition, and ability to accumulate >40 g/L ethanol in <167 h when fermenting hydrolyzate at low initial cell density of 0.5 absorbance units and pH 5 to 6.« less

  4. Blood coagulation using High Intensity Focused Ultrasound (HIFU)

    NASA Astrophysics Data System (ADS)

    Nguyen, Phuc V.; Oh, Junghwan; Kang, Hyun Wook

    2014-03-01

    High Intensity Focused Ultrasound (HIFU) technology provides a feasible method of achieving thermal coagulation during surgical procedures. One of the potential clinical benefits of HIFU can induce immediate hemostasis without suturing. The objective of this study was to investigate the efficiency of a HIFU system for blood coagulation on severe vascular injury. ngHIFU treatment was implemented immediately after bleeding in artery. The ultrasound probe was made of piezoelectric material, generating a central frequency of 2.0 MHz as well as an ellipsoidal focal spot of 2 mm in lateral dimension and 10 mm in axial dimension. Acoustic coagulation was employed on a perfused chicken artery model in vitro. A surgical incision (1 to 2 mm long) was made with a scapel on the arterial wall, and heparinized autologous blood was made to leak out from the incision with a syringe pump. A total of 5 femoral artery incisions was treated with the HIFU beam. The intensity of 4500 W/cm2 at the focus was applied for all treatments. Complete hemostasis was achieved in all treatments, along with the treatment times of 25 to 50 seconds. The estimated intraoperative blood loss was from 2 to 5 mL. The proposed HIFU system may provide an effective method for immediate blood coagulation for arteries and veins in clinical applications.

  5. Urease expression in a Thermoanaerobacterium saccharolyticum ethanologen allows high titer ethanol production.

    PubMed

    Shaw, A Joe; Covalla, Sean F; Miller, Bethany B; Firliet, Brian T; Hogsett, David A; Herring, Christopher D

    2012-09-01

    Genes encoding the enzyme urease were integrated in a Thermoanaerobacterium saccharolyticum ethanologen. The engineered strain hydrolyzed urea, as evidenced by increased cellular growth and elevated final pH in urea minimal medium and urease activity in cell free extracts. Interestingly, replacement of ammonium salts with urea resulted in production of 54 g/L ethanol, one of the highest titers reported for Thermoanaerobacterium. The observed increase in ethanol titer may result from reduced pH, salt, and osmolality stresses during fermentation. Urea utilization is attractive for industrial scale fermentation, where pH control is technically challenging and increased ethanol titer is desirable. PMID:22781282

  6. High Blood Pressure in Pregnancy - Multiple Languages: MedlinePlus

    MedlinePlus

    ... of All Topics All High Blood Pressure in Pregnancy - Multiple Languages To use the sharing features on this page, please enable JavaScript. Arabic (العربية) Bosnian (Bosanski) Chinese - Simplified (简体中文) ... (Arabic) ارتفاع ضغط الدم أثناء الحمل - العربية Bilingual ...

  7. Sex-specific increase in susceptibility to metabolic syndrome in adult offspring after prenatal ethanol exposure with post-weaning high-fat diet

    PubMed Central

    He, Zheng; Li, Jing; Luo, Hanwen; Zhang, Li; Ma, Lu; Chen, Liaobin; Wang, Hui

    2015-01-01

    Prenatal ethanol exposure (PEE) is an established risk factor for intrauterine growth retardation. The present study was designed to determine whether PEE can increase the susceptibility of high-fat diet (HFD)-induced metabolic syndrome (MS) in adult offspring in a sex-specific manner, based on a generalized linear model analysis. Pregnant Wistar rats were administered ethanol (4 g/kg.d) from gestational day 11 until term delivery. All offspring were fed either a normal diet or a HFD after weaning and were sacrificed at postnatal week 20, and blood samples were collected. Results showed that PEE reduced serum adrenocorticotropic hormone (ACTH) and corticosterone levels but enhanced serum glucose, insulin, insulin resistant index (IRI), triglyceride and total cholesterol (TC) concentrations. Moreover, the analysis showed interactions among PEE, HFD and sex. In the PEE offspring, HFD aggravated the decrease in ACTH and corticosterone levels and further increased serum glucose, insulin, triglyceride and TC levels. The changes of serum ACTH, glucose and IRI levels in the female HFD rats were greater than those in the male HFD rats. Our findings suggest that PEE enhances the susceptibility to MS induced by HFD in a sex-specific manner, which might be primarily associated with the neuroendocrine metabolic programming by PEE. PMID:26631430

  8. Sex-specific increase in susceptibility to metabolic syndrome in adult offspring after prenatal ethanol exposure with post-weaning high-fat diet.

    PubMed

    He, Zheng; Li, Jing; Luo, Hanwen; Zhang, Li; Ma, Lu; Chen, Liaobin; Wang, Hui

    2015-01-01

    Prenatal ethanol exposure (PEE) is an established risk factor for intrauterine growth retardation. The present study was designed to determine whether PEE can increase the susceptibility of high-fat diet (HFD)-induced metabolic syndrome (MS) in adult offspring in a sex-specific manner, based on a generalized linear model analysis. Pregnant Wistar rats were administered ethanol (4 g/kg.d) from gestational day 11 until term delivery. All offspring were fed either a normal diet or a HFD after weaning and were sacrificed at postnatal week 20, and blood samples were collected. Results showed that PEE reduced serum adrenocorticotropic hormone (ACTH) and corticosterone levels but enhanced serum glucose, insulin, insulin resistant index (IRI), triglyceride and total cholesterol (TC) concentrations. Moreover, the analysis showed interactions among PEE, HFD and sex. In the PEE offspring, HFD aggravated the decrease in ACTH and corticosterone levels and further increased serum glucose, insulin, triglyceride and TC levels. The changes of serum ACTH, glucose and IRI levels in the female HFD rats were greater than those in the male HFD rats. Our findings suggest that PEE enhances the susceptibility to MS induced by HFD in a sex-specific manner, which might be primarily associated with the neuroendocrine metabolic programming by PEE. PMID:26631430

  9. Binge ethanol exposure in late gestation induces ethanol aversion in the dam but enhances ethanol intake in the offspring and affects their postnatal learning about ethanol

    PubMed Central

    Chotro, M. Gabriela; Arias, Carlos; Spear, Norman E.

    2009-01-01

    Previous studies show that exposure to 1 or 2 g/kg ethanol during the last days of gestation increases ethanol acceptance in infant rats. We tested whether prenatal exposure to 3 g/kg, a relatively high ethanol dose, generates an aversion to ethanol in both the dam and offspring, and whether this prenatal experience affects the expression of learning derived from ethanol exposure postnatally. The answer was uncertain, since postnatal administration of a 3 g/kg ethanol dose induces an aversion to ethanol after postnatal day 10 but increases ethanol acceptance when administered during the first postnatal week. In the present study pregnant rats received intragastric administrations of water or ethanol (3 g/kg) on gestation days 17-20. On postnatal days 7-8 or 10-11 the offspring were administered water or ethanol (3 g/kg). Intake of ethanol and water, locomotor activity in an open-field and ethanol odor preference were evaluated in the pups, while the mothers were evaluated in terms of ethanol intake. Results indicated an aversion to ethanol in dams that had been administered ethanol during gestation, despite a general increase in ethanol intake observed in their pups relative to controls. The prenatal ethanol exposure also potentiated the increase in ethanol intake observed after intoxication on postnatal days 7-8. Ethanol intoxication on postnatal days 10-11 reduced ethanol consumption; this ethanol aversion was still evident in infant rats exposed prenatally to ethanol despite their general increase in ethanol intake. No effects of prenatal ethanol exposure were observed in terms of motor activity or odor preference. It is concluded that prenatal exposure to ethanol, even in a dose that induces ethanol aversion in the gestating dam, increases ethanol intake in infant rats and that this experience modulates age-related differences in subsequent postnatal learning about ethanol. PMID:19801275

  10. Identification of novel causative genes determining the complex trait of high ethanol tolerance in yeast using pooled-segregant whole-genome sequence analysis

    PubMed Central

    Swinnen, Steve; Schaerlaekens, Kristien; Pais, Thiago; Claesen, Jürgen; Hubmann, Georg; Yang, Yudi; Demeke, Mekonnen; Foulquié-Moreno, María R.; Goovaerts, Annelies; Souvereyns, Kris; Clement, Lieven; Dumortier, Françoise; Thevelein, Johan M.

    2012-01-01

    High ethanol tolerance is an exquisite characteristic of the yeast Saccharomyces cerevisiae, which enables this microorganism to dominate in natural and industrial fermentations. Up to now, ethanol tolerance has only been analyzed in laboratory yeast strains with moderate ethanol tolerance. The genetic basis of the much higher ethanol tolerance in natural and industrial yeast strains is unknown. We have applied pooled-segregant whole-genome sequence analysis to map all quantitative trait loci (QTL) determining high ethanol tolerance. We crossed a highly ethanol-tolerant segregant of a Brazilian bioethanol production strain with a laboratory strain with moderate ethanol tolerance. Out of 5974 segregants, we pooled 136 segregants tolerant to at least 16% ethanol and 31 segregants tolerant to at least 17%. Scoring of SNPs using whole-genome sequence analysis of DNA from the two pools and parents revealed three major loci and additional minor loci. The latter were more pronounced or only present in the 17% pool compared to the 16% pool. In the locus with the strongest linkage, we identified three closely located genes affecting ethanol tolerance: MKT1, SWS2, and APJ1, with SWS2 being a negative allele located in between two positive alleles. SWS2 and APJ1 probably contained significant polymorphisms only outside the ORF, and lower expression of APJ1 may be linked to higher ethanol tolerance. This work has identified the first causative genes involved in high ethanol tolerance of yeast. It also reveals the strong potential of pooled-segregant sequence analysis using relatively small numbers of selected segregants for identifying QTL on a genome-wide scale. PMID:22399573

  11. Identification of novel causative genes determining the complex trait of high ethanol tolerance in yeast using pooled-segregant whole-genome sequence analysis.

    PubMed

    Swinnen, Steve; Schaerlaekens, Kristien; Pais, Thiago; Claesen, Jürgen; Hubmann, Georg; Yang, Yudi; Demeke, Mekonnen; Foulquié-Moreno, María R; Goovaerts, Annelies; Souvereyns, Kris; Clement, Lieven; Dumortier, Françoise; Thevelein, Johan M

    2012-05-01

    High ethanol tolerance is an exquisite characteristic of the yeast Saccharomyces cerevisiae, which enables this microorganism to dominate in natural and industrial fermentations. Up to now, ethanol tolerance has only been analyzed in laboratory yeast strains with moderate ethanol tolerance. The genetic basis of the much higher ethanol tolerance in natural and industrial yeast strains is unknown. We have applied pooled-segregant whole-genome sequence analysis to map all quantitative trait loci (QTL) determining high ethanol tolerance. We crossed a highly ethanol-tolerant segregant of a Brazilian bioethanol production strain with a laboratory strain with moderate ethanol tolerance. Out of 5974 segregants, we pooled 136 segregants tolerant to at least 16% ethanol and 31 segregants tolerant to at least 17%. Scoring of SNPs using whole-genome sequence analysis of DNA from the two pools and parents revealed three major loci and additional minor loci. The latter were more pronounced or only present in the 17% pool compared to the 16% pool. In the locus with the strongest linkage, we identified three closely located genes affecting ethanol tolerance: MKT1, SWS2, and APJ1, with SWS2 being a negative allele located in between two positive alleles. SWS2 and APJ1 probably contained significant polymorphisms only outside the ORF, and lower expression of APJ1 may be linked to higher ethanol tolerance. This work has identified the first causative genes involved in high ethanol tolerance of yeast. It also reveals the strong potential of pooled-segregant sequence analysis using relatively small numbers of selected segregants for identifying QTL on a genome-wide scale. PMID:22399573

  12. Fermentation method producing ethanol

    DOEpatents

    Wang, Daniel I. C.; Dalal, Rajen

    1986-01-01

    Ethanol is the major end product of an anaerobic, thermophilic fermentation process using a mutant strain of bacterium Clostridium thermosaccharolyticum. This organism is capable of converting hexose and pentose carbohydrates to ethanol, acetic and lactic acids. Mutants of Clostridium thermosaccharolyticum are capable of converting these substrates to ethanol in exceptionally high yield and with increased productivity. Both the mutant organism and the technique for its isolation are provided.

  13. Highly Concentrated Ethanol Solutions: Good Solvents for DNA as Revealed by Single‐Molecule Observation

    PubMed Central

    Oda, Yuki; Sadakane, Koichiro; Yoshikawa, Yuko; Imanaka, Tadayuki; Takiguchi, Kingo; Hayashi, Masahito; Kenmotsu, Takahiro

    2016-01-01

    Abstract We observed single DNA molecules at different ethanol concentrations by using fluorescence microscopy. Large single DNA molecules undergo reentrant conformational transitions from elongated coil into folded globule and then into elongated coil state, accompanied by the increase of the concentration of ethanol in a low‐salt aqueous environment. The second transition from globule into the coil state occurs at around 70 % (v/v) ethanol. From circular dichroism (CD) measurements, it is confirmed that the reentrant transition of the higher order structure proceeds together with the transitions of the secondary structure from B to C and, then, from C to A in a cooperative manner. The determined mechanism of the reentrant transition is discussed in relation to the unique characteristics of solutions with higher ethanol content, for which clathrate‐like nanostructures of alcohol molecules are generated in the surrounding water. PMID:26891092

  14. Towards high water permeability in triazine-framework-based microporous membranes for dehydration of ethanol.

    PubMed

    Tang, Yu Pan; Wang, Huan; Chung, Tai Shung

    2015-01-01

    The microstructural evolution of a series of triazine framework-based microporous (TFM) membranes under different conditions has been explored in this work. The pristine TFM membrane is in situ fabricated in the course of polymer synthesis via a facile Brønsted-acid-catalyzed cyclotrimerizaiton reaction. The as-synthesized polymer exhibits a microporous network with high thermal stability. The free volume size of the TFM membranes gradually evolved from a unimodal distribution to a bimodal distribution under annealing, as analyzed by positron annihilation lifetime spectroscopy (PALS). The emergence of the bimodal distribution is probably ascribed to the synergetic effect of quenching and thermal cyclization reaction. In addition, the fractional free volume (FFV) of the membranes presents a concave trend with increasing annealing temperature. Vapor sorption tests reveal that the mass transport properties are closely associated with the free volume evolution, which provides an optimal condition for dehydration of biofuels. A promising separation performance with extremely high water permeability has been attained for dehydration of an 85 wt % ethanol aqueous solution at 45 °C. The study on the free volume evolution of the TFM membranes may provide useful insights about the microstructure and mass transport behavior of the microporous polymeric materials. PMID:25394279

  15. Ethanol Inhibits High-Affinity Immunoglobulin E Receptor (FcεRI) Signaling in Mast Cells by Suppressing the Function of FcεRI-Cholesterol Signalosome

    PubMed Central

    Draberova, Lubica; Paulenda, Tomas; Halova, Ivana; Potuckova, Lucie; Bugajev, Viktor; Bambouskova, Monika; Tumova, Magda; Draber, Petr

    2015-01-01

    Ethanol has multiple effects on biochemical events in a variety of cell types, including the high-affinity immunoglobulin E receptor (FcεRI) signaling in antigen-activated mast cells. However, the underlying molecular mechanism remains unknown. To get better understanding of the effect of ethanol on FcεRI-mediated signaling we examined the effect of short-term treatment with non-toxic concentrations of ethanol on FcεRI signaling events in mouse bone marrow-derived mast cells. We found that 15 min exposure to ethanol inhibited antigen-induced degranulation, calcium mobilization, expression of proinflammatory cytokine genes (tumor necrosis factor-α, interleukin-6, and interleukin-13), and formation of reactive oxygen species in a dose-dependent manner. Removal of cellular cholesterol with methyl-β-cyclodextrin had a similar effect and potentiated some of the inhibitory effects of ethanol. In contrast, exposure of the cells to cholesterol-saturated methyl-β-cyclodextrin abolished in part the inhibitory effect of ethanol on calcium response and production of reactive oxygen species, supporting lipid-centric theories of ethanol action on the earliest stages of mast cell signaling. Further studies showed that exposure to ethanol and/or removal of cholesterol inhibited early FcεRI activation events, including tyrosine phosphorylation of the FcεRI β and γ subunits, SYK kinases, LAT adaptor protein, phospholipase Cγ, STAT5, and AKT and internalization of aggregated FcεRI. Interestingly, ethanol alone, and particularly in combination with methyl-β-cyclodextrin, enhanced phosphorylation of negative regulatory tyrosine 507 of LYN kinase. Finally, we found that ethanol reduced passive cutaneous anaphylactic reaction in mice, suggesting that ethanol also inhibits FcεRI signaling under in vivo conditions. The combined data indicate that ethanol interferes with early antigen-induced signaling events in mast cells by suppressing the function of FcεRI-cholesterol signalosomes at the plasma membrane. PMID:26658290

  16. Toward highly-effective and sustainable hydrogen production: bio-ethanol oxidative steam reforming coupled with water splitting in a thin tubular membrane reactor.

    PubMed

    Zhu, Na; Dong, Xueliang; Liu, Zhengkun; Zhang, Guangru; Jin, Wanqin; Xu, Nanping

    2012-07-21

    Highly-effective sustainable hydrogen production from ethanol and water was achieved in a tubular dense mixed-conducting oxygen permeable membrane reactor, in which water splitting took place at the tube side of the membrane and oxidative steam reforming of ethanol occurred at the shell side simultaneously. PMID:22428158

  17. A Selective Ultrahigh Responding High Temperature Ethanol Sensor Using TiO2 Nanoparticles

    PubMed Central

    Arafat, M. M.; Haseeb, A. S. M. A.; Akbar, Sheikh A.

    2014-01-01

    In this research work, the sensitivity of TiO2 nanoparticles towards C2H5OH, H2 and CH4 gases was investigated. The morphology and phase content of the particles was preserved during sensing tests by prior heat treatment of the samples at temperatures as high as 750 °C and 1000 °C. Field emission scanning electron microscopy (FESEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD) analysis were employed to characterize the size, morphology and phase content of the particles. For sensor fabrication, a film of TiO2 was printed on a Au interdigitated alumina substrate. The sensing temperature was varied from 450 °C to 650 °C with varying concentrations of target gases. Results show that the sensor has ultrahigh response towards ethanol (C2H5OH) compared to hydrogen (H2) and methane (CH4). The optimum sensing temperature was found to be 600 °C. The response and recovery times of the sensor are 3 min and 15 min, respectively, for 20 ppm C2H5OH at the optimum operating temperature of 600 °C. It is proposed that the catalytic action of TiO2 with C2H5OH is the reason for the ultrahigh response of the sensor. PMID:25072346

  18. Dynamic high pressure microfluidization treatment of zein in aqueous ethanol solution.

    PubMed

    Sun, Cuixia; Dai, Lei; Liu, Fuguo; Gao, Yanxiang

    2016-11-01

    Dynamic high pressure microfluidization (DHPM) treatment at the pressures of 25, 50, 75, 100, 125 and 150MPa was performed to explore its effects on the characteristics of zein in aqueous ethanol solution. The results showed that after DHPM treatment at 125MPa, the volume percentage of zein nanoparticles (d<100nm) was increased from 68.8% to 94.7%, and the fluorescence intensity approached to the maximum. DHPM treatment at the pressure of 25MPa led to the increase of α-helix and β-sheet of zein from 57.1% to 59.4% and from 16.8% to 17.9%, respectively. The partial denaturation of zein was induced after DHPM process at pressures from 50 to 150MPa. The morphology of zein was modified from nanosphere to the needle-like shapes after DHPM treatment at 75MPa, and the deduction was proposed that the morphological change at 75MPa was ascribed to the existence of the intermediate transition state. PMID:27211662

  19. Nicotinic receptor ligands reduce ethanol intake by high alcohol-drinking HAD-2 rats

    PubMed Central

    Bell, Richard L.; Eiler, Bill J. A.; Cook, Jason B.; Rahman, Shafiqur

    2010-01-01

    Neuronal nicotinic acetylcholine receptors (nAChRs) are implicated in the reinforcing effects of many drugs of abuse, including ethanol. The present study examined the efficacy of cytisine, a nAChR partial agonist, and lobeline, a putative nAChR antagonist, on the maintenance of ethanol drinking by HAD-2 rats. Adult male HAD-2 rats were given access to ethanol (15% and 30%, with ad lib water and food) 22 hr per day for 12 weeks, beginning at 60 days old, after which cytisine (0.0, 0.5 and 1.5 mg/kg) was tested for 3 consecutive days. The rats were given an 18 day wash-out period, and were then tested with lobeline (0.0, 1.0 and 5.0 mg/kg) for 3 consecutive days. Ethanol intake was measured at 1, 4 and 22 hours post-injection. Rats were injected i.p. just prior to lights out (1200 h). There was a significant main effect of cytisine treatment on the 2nd test day, with the 1.5 mg/kg dose significantly reducing ethanol intake at the 1 hr and 4 hr time-points, relative to saline, and the 0.5 mg/kg dose inducing a significant reduction at the 4 hr time-point. Conversely, lobeline treatment resulted in significant main effects of treatment for all 3 time points, within each test day, with the 5.0 mg/kg dose significantly reducing ethanol intake, relative to saline, at each time-point within each test day. These findings provide further evidence that activity at the nAChR influences ethanol intake and is a promising target for pharmacotherapy development for the treatment of alcohol dependence and relapse. PMID:20004336

  20. Accuracy of blood pressure monitors available in high street pharmacies.

    PubMed

    Ware, Adam; Stevens, Richard; Selwood, Mary; Fleming, Susannah

    2016-02-01

    The aim of this study was to assess the accuracy of automated blood pressure monitors on sale to the UK general public. We conducted static pressure accuracy testing on all compatible (19 out of 22 available) blood pressure monitors available for sale in pharmacies within the city of Oxford, UK, and tested two devices for accuracy in measurement of systolic and diastolic blood pressures in 21 adults. The devices showed good accuracy when measuring static pressure in laboratory bench testing, with the median error per device ranging from -2.2 to +1.2 mmHg; however, the two devices tested performed worse in vivo than in laboratory tests, with median errors as high as 6 mmHg. The monitors showed good accuracy in static pressure testing, with a lack of correlation between monitor price and accuracy. However, higher error rates seen during in-vivo testing of a subset of monitors may indicate that static testing may not be appropriate for routine accuracy assessment of these monitors. PMID:26427055

  1. High altitude hypoxia and blood pressure dysregulation in adult chickens.

    PubMed

    Herrera, E A; Salinas, C E; Blanco, C E; Villena, M; Giussani, D A

    2013-02-01

    Although it is accepted that impaired placental perfusion in complicated pregnancy can slow fetal growth and programme an increased risk of cardiovascular dysfunction at adulthood, the relative contribution of reductions in fetal nutrition and in fetal oxygenation as the triggering stimulus remains unclear. By combining high altitude (HA) with the chick embryo model, we have previously isolated the direct effects of HA hypoxia on embryonic growth and cardiovascular development before hatching. This study isolated the effects of developmental hypoxia on cardiovascular function measured in vivo in conscious adult male and female chickens. Chick embryos were incubated, hatched and raised at sea level (SL, nine males and nine females) or incubated, hatched and raised at HA (seven males and seven females). At 6 months of age, vascular catheters were inserted under general anaesthesia. Five days later, basal blood gas status, basal cardiovascular function and cardiac baroreflex responses were investigated. HA chickens had significantly lower basal arterial PO2 and haemoglobin saturation, and significantly higher haematocrit than SL chickens, independent of the sex of the animal. HA chickens had significantly lower arterial blood pressure than SL chickens, independent of the sex of the animal. Although the gain of the arterial baroreflex was decreased in HA relative to SL male chickens, it was increased in HA relative to SL female chickens. We show that development at HA lowers basal arterial blood pressure and alters baroreflex sensitivity in a sex-dependent manner at adulthood. PMID:25080183

  2. A nutrition curriculum for families with high blood pressure.

    PubMed

    Farris, R P; Frank, G C; Webber, L S; Berenson, G S

    1985-03-01

    A nutrition curriculum for 48 students age eight-18 years with high blood pressure was implemented in Franklinton, La., as part of A Dietary/Exercise Alteration Program Trial (ADAPT), a model promoting reduced sodium (Na+) and energy intake and increased potassium (K+) intake. A teacher guide listed basic concepts, teacher and student activities, materials, behavioral outcomes, and evaluation for 12 lessons at three age levels. Games were used to present new information and increase student involvement. Taste-tests promoted attitude change regarding acceptable snacks. Decision-making and assertiveness topics facilitated independent food choices and coping with peers. Self-monitoring of intakes encouraged personal responsibility for eating behavior. Results of paired t-tests showed knowledge increased 8.7% in the spring (p less than 0.01), 4.9% in the summer (N.S.), and 7.3% in the fall (p less than 0.0001). No significant differences in increase in posttest scores by age were found. Comparisons of curriculum compliance with medication use and blood pressure change showed no relationship. A multiple regression analysis of sodium-creatinine (Na+/Cr) ratios on class attendance and posttest scores showed that children with the highest test scores had lower Na+/Cr ratios. This program increased information and skills for those motivated to change lifestyle to control obesity and blood pressure. PMID:3845257

  3. Prevalence of self-reported high blood pressure awareness, advice received from health professionals, and actions taken to reduce high blood pressure among US adults--Healthstyles 2002.

    PubMed

    Ayala, Carma; Neff, Linda J; Croft, Janet B; Keenan, Nora L; Malarcher, Ann M; Hyduk, Alexandra; Bansil, Pooja; Mensah, George A

    2005-09-01

    High blood pressure awareness, advice received from health care providers, and adoption of heart-healthy behaviors were assessed using the Healthstyles 2002 survey. About 20% of respondents reported that they had high blood pressure, and 53% of these were currently taking medications to lower blood pressure. Black men had the highest adjusted prevalence of high blood pressure (32%). Medication use among persons with high blood pressure was lower among Hispanics (45%) than among blacks (54%) and whites (54%). Persons reporting having high blood pressure were five times more likely to report having received advice from a health care professional to go on a diet or change eating habits (p<0.05) and reduce salt or sodium in their diet (p<0.05), but five times less likely to have received advice to exercise (p<0.05) than those reporting not having high blood pressure, after adjustment for differences in sex, race/ethnicity, and age. Persons with self-reported high blood pressure were also more likely to be making these modifications (p<0.05). Among people with high blood pressure, current medication use was associated with both receiving and following advice for diet change and salt reduction (p<0.05). Future initiatives are needed to improve the proportion of Hispanics and blacks taking prescribed medications to improve high blood pressure control and reduce risk for serious sequelae such as heart disease and stroke. PMID:16227770

  4. Binge Drinking Experience in Adolescent Mice Shows Sex Differences and Elevated Ethanol Intake In Adulthood

    PubMed Central

    Strong, Moriah N.; Yoneyama, Naomi; Fretwell, Andrea M.; Snelling, Chris; Tanchuck, Michelle A.; Finn, Deborah A.

    2009-01-01

    Binge drinking, defined as achieving blood ethanol concentrations (BEC) of 80 mg%, has been increasing in adolescents and was reported to predispose later physical dependence. The present experiments utilized an animal model of binge drinking to compare the effect of ethanol binge experience during adolescence or adulthood on subsequent ethanol intake in male and female C57BL/6 mice. Adolescent and adult mice were initially exposed to the scheduled high alcohol consumption procedure, which produces BECs that exceed the levels for binge drinking following a 30 min ethanol session every third day. Ethanol intake and BECs were significantly higher in the adolescent (?3 g/kg, 199 mg%) versus adult (?2 g/kg, 135 mg%) mice during the first three ethanol sessions, but were more equivalent during the final two ethanol sessions (1.85-2.0 g/kg, 129-143 mg%). Then, separate groups of the ethanol experienced mice were tested with ethanol nave adolescent and adult mice for 2-hr limited access (10 and 20% solutions) or 24-hr (5, 10 and 20% solutions) ethanol preference drinking. Limited access ethanol intake was significantly higher in female versus male mice, but was not altered by age or ethanol experience. In contrast, 24-hr ethanol intake was significantly higher in the adolescent versus adult mice and in female versus male mice. Furthermore, binge drinking experience in the adolescent mice significantly increased subsequent ethanol intake, primarily due to intake in female mice. Thus, adolescent binge drinking significantly increased unlimited ethanol intake during adulthood, with female mice more susceptible to this effect. PMID:19854195

  5. Heavy in utero ethanol exposure is associated with the use of other drugs of abuse in a high-risk population.

    PubMed

    Shor, Sarit; Nulman, Irena; Kulaga, Vivian; Koren, Gideon

    2010-01-01

    Many ethanol dependent women also use other drugs of abuse that may affect pregnancy outcome and long-term child neurodevelopment. This study investigated the association between drugs of abuse and concurrent use of ethanol in pregnancy. A study cohort of neonates with FAEE levels above 2 nmol per gram meconium, indicative of heavy in utero ethanol exposure, was identified (n=114). Meconium and hair analyses for the presence of other drugs of abuse were obtained for some of these neonates and the rates of drug exposure were compared with the rates in a cohort of neonates who were tested negative (FAEE below 2 nmol per gram meconium) for ethanol exposure (n=622). Odds ratios (ORs) for various drugs were calculated with ethanol exposure. A 15.5% positive rate for intrauterine ethanol exposure was detected. A high rate of in utero drug exposure was detected in neonates with and without in utero ethanol exposure, 60.5% versus 62.7% respectively. Neonates with heavy in utero ethanol exposure were almost twice as likely to be exposed to narcotic opiates (OR=1.90; 95% confidence interval [CI]: 1.13-3.20) and 3.3 times as likely to be exposed to amphetamine (OR=3.30; 95% CI 1.06-10.27) when compared to neonates with no ethanol exposure. Exposure to cannabinoids predicted less likely exposure to ethanol (OR=0.61; 95% CI: 0.38-0.98) and no significant difference was noted in the exposure to cocaine (OR=1.24, 95% CI: 0.81-1.91). Neonates suspected of heavy in utero ethanol exposure should be tested for other drugs of abuse and vice versa. Early detection of drug exposures can facilitate early intervention to both the neonate and the mother, thus decreasing the risk of long-term neurodevelopmental outcomes for the child, including secondary disabilities associated with fetal alcohol spectrum disorder. PMID:20031369

  6. Facile synthesis of a platinum-lead oxide nanocomposite catalyst with high activity and durability for ethanol electrooxidation.

    PubMed

    Yang, Wei-Hua; Wang, Hong-Hui; Chen, De-Hao; Zhou, Zhi-You; Sun, Shi-Gang

    2012-12-21

    Aimed at searching for highly active and stable nano-scale Pt-based catalysts that can improve significantly the energy conversion efficiency of direct ethanol fuel cells (DEFCs), a novel Pt-PbO(x) nanocomposite (Pt-PbO(x) NC) catalyst with a mean size of 3.23 nm was synthesized through a simple wet chemistry method without using a surfactant, organometallic precursors and high temperature. Electrocatalytic tests demonstrated that the as-prepared Pt-PbO(x) NC catalyst possesses a much higher catalytic activity and a longer durability than Pt nanoparticles (nm-Pt) and commercial Pt black catalysts for ethanol electrooxidation. For instance, Pt-PbO(x) NC showed an onset potential that was 30 mV and 44 mV less positive, together with a peak current density 1.7 and 2.6 times higher than those observed for nm-Pt and Pt black catalysts in the cyclic voltammogram tests. The ratio of current densities per unit Pt mass on Pt-PbO(x) NC, nm-Pt and Pt black catalysts is 27.3 : 3.4 : 1 for the long-term (2 hours) chronoamperometric experiments measured at -0.4 V (vs. SCE). In situ FTIR spectroscopic studies revealed that the activity of breaking C-C bonds of ethanol of the Pt-PbO(x) NC is as high as 5.17 times that of the nm-Pt, which illustrates a high efficiency of ethanol oxidation to CO(2) on the as-prepared Pt-PbO(x) NC catalyst. PMID:23133838

  7. Ethanol Production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    This book chapter reviews the current process technologies for fuel ethanol production. In the US, almost all commercial fuel ethanol is produced from corn whereas cane sugar is used almost exclusively in Brazil. In Europe, two major types of feedstock considered for fuel ethanol production are be...

  8. Ethanol Basics

    SciTech Connect

    2015-01-30

    Ethanol is a widely-used, domestically-produced renewable fuel made from corn and other plant materials. More than 96% of gasoline sold in the United States contains ethanol. Learn more about this alternative fuel in the Ethanol Basics Fact Sheet, produced by the U.S. Department of Energy's Clean Cities program.

  9. [Rapid tolerance to ethanol and high voluntary alcohol consumption in mice selected for brain weight].

    PubMed

    Salimov, R M; Markina, N V; Perepelkina, O V; Maĭskiĭ, A I; Poletaeva, I I

    2003-01-01

    Mice of two strains selected for small and large brain weight (SB and LB, respectively) had free access to 10% alcohol and water within three months. At the end of this period, they consumed alcohol in daily dose of 6.9 +/- 0.9 and 7.5 +/- 0.8 g/kg, respectively. After a period of imposed three-day abstinence, the alcohol consumption by the mice of these strains increased by 68.6 and 49.3%, respectively. Exploratory behavior of independent groups of mice from these strains was studied in the closed cross-maze. The animals were injected with ethanol (2.4 g/kg, i.p.) or vehicle twice with a weekly interval. In SB mice, the first ethanol administration increased the total time of maze exploration and the number of stereotyped visits. The second ethanol administration did not increase the time of exploration but increased the number of stereotyped visits even to the greater extent. The latter indicates the development of rapid tolerance and sensitization of these behaviors to the drug, respectively. The ethanol administration inhibited exploratory patrolling behavior and defecations. In LB mice, both the first and second ethanol administrations increased the number of stereotyped visits and decreased the exploration time and the number of defecations. The results do not support the psychomotor stimulant hypothesis of alcohol addiction. It is proposed that SB and LB mice may serve as models for Cloninger's types 1 and 2 alcoholics and may be useful for investigation of neuropharmacological mechanisms of stimulatory and inhibitory effects of ethanol. PMID:12669510

  10. Managing Hyperglycemia (High Blood Sugar) in the Hospital: a Patient's Guide

    MedlinePlus

    Managing Hyperglycemia (High Blood Sugar) in the Hospital A Patient’s Guide Hyperglycemia is the medical term for ... society.org/guidelines/index.cfm). www.hormone.org Managing Hyperglycemia (High Blood Sugar) in the Hospital Patient ...

  11. Out-Of-Shape Teens May Face High Blood Pressure Later

    MedlinePlus

    ... 156777.html Out-of-Shape Teens May Face High Blood Pressure Later Even thin kids are at risk, study ... fitness levels face a heightened risk of developing high blood pressure by middle age, a large new study finds. ...

  12. Highly Sensitive Ethanol Sensor Based on Au-Decorated SnO2 Nanoparticles Synthesized Through Precipitation and Microwave Irradiation

    NASA Astrophysics Data System (ADS)

    Li, Yan; Zhao, Fang-Xian; Lian, Xiao-Xue; Zou, Yun-Ling; Wang, Qiong; Zhou, Qing-Jun

    2016-06-01

    Gold (Au)-decorated SnO2 nanoparticles (NPs) were synthesized through a precipitation and microwave irradiation process. The as-prepared products were characterized by x-ray diffraction and scanning electron microscopy. The results indicated that the as-prepared products consisted of nanometer-scale tetragonal crystalline SnO2 and face-centered cubic gold metal NPs. The gas sensing measurements showed that the sensor based on Au-decorated SnO2 NPs exhibited an extremely high response (239.5) toward 500-ppm ethanol at a relatively low working temperature (220°C). In addition, the response and recovery times of this sensor to ethanol were 1 s and 31 s, respectively. The excellent gas sensing performance of the synthesized NPs in terms of high response, fast response-recovery, superior selectivity, and good stability was attributed to the small nanometer size of the particles, Schottky barrier, and Au NP catalysis. Finally, we demonstrated that our Au-decorated SnO2 NPs could be a potential candidate for use in highly sensitive and selective gas sensors for ethanol.

  13. Highly Sensitive Ethanol Sensor Based on Au-Decorated SnO2 Nanoparticles Synthesized Through Precipitation and Microwave Irradiation

    NASA Astrophysics Data System (ADS)

    Li, Yan; Zhao, Fang-Xian; Lian, Xiao-Xue; Zou, Yun-Ling; Wang, Qiong; Zhou, Qing-Jun

    2016-03-01

    Gold (Au)-decorated SnO2 nanoparticles (NPs) were synthesized through a precipitation and microwave irradiation process. The as-prepared products were characterized by x-ray diffraction and scanning electron microscopy. The results indicated that the as-prepared products consisted of nanometer-scale tetragonal crystalline SnO2 and face-centered cubic gold metal NPs. The gas sensing measurements showed that the sensor based on Au-decorated SnO2 NPs exhibited an extremely high response (239.5) toward 500-ppm ethanol at a relatively low working temperature (220°C). In addition, the response and recovery times of this sensor to ethanol were 1 s and 31 s, respectively. The excellent gas sensing performance of the synthesized NPs in terms of high response, fast response-recovery, superior selectivity, and good stability was attributed to the small nanometer size of the particles, Schottky barrier, and Au NP catalysis. Finally, we demonstrated that our Au-decorated SnO2 NPs could be a potential candidate for use in highly sensitive and selective gas sensors for ethanol.

  14. [Process strategy for ethanol production from lignocellulose feedstock under extremely low water usage and high solids loading conditions].

    PubMed

    Zhang, Jian; Chu, Deqiang; Yu, Zhanchun; Zhang, Xiaoxi; Deng, Hongbo; Wang, Xiusheng; Zhu, Zhinan; Zhang, Huaiqing; Dai, Gance; Bao, Jie

    2010-07-01

    The massive water and steam are consumed in the production of cellulose ethanol, which correspondingly results in the significant increase of energy cost, waster water discharge and production cost as well. In this study, the process strategy under extremely low water usage and high solids loading of corn stover was investigated experimentally and computationally. The novel pretreatment technology with zero waste water discharge was developed; in which a unique biodetoxification method using a kerosene fungus strain Amorphotheca resinae ZN1 to degrade the lignocellulose derived inhibitors was applied. With high solids loading of pretreated corn stover, high ethanol titer was achieved in the simultaneous saccharification and fermentation process, and the scale-up principles were studied. Furthermore, the flowsheet simulation of the whole process was carried out with the Aspen plus based physical database, and the integrated process developed was tested in the biorefinery mini-plant. Finally, the core technologies were applied in the cellulose ethanol demonstration plant, which paved a way for the establishment of an energy saving and environment friendly technology of lignocellulose biotransformation with industry application potential. PMID:20954396

  15. Quantitative evaluation of yeast's requirement for glycerol formation in very high ethanol performance fed-batch process

    PubMed Central

    2010-01-01

    Background Glycerol is the major by-product accounting for up to 5% of the carbon in Saccharomyces cerevisiae ethanolic fermentation. Decreasing glycerol formation may redirect part of the carbon toward ethanol production. However, abolishment of glycerol formation strongly affects yeast's robustness towards different types of stress occurring in an industrial process. In order to assess whether glycerol production can be reduced to a certain extent without jeopardising growth and stress tolerance, the yeast's capacity to synthesize glycerol was adjusted by fine-tuning the activity of the rate-controlling enzyme glycerol 3-phosphate dehydrogenase (GPDH). Two engineered strains whose specific GPDH activity was significantly reduced by two different degrees were comprehensively characterized in a previously developed Very High Ethanol Performance (VHEP) fed-batch process. Results The prototrophic strain CEN.PK113-7D was chosen for decreasing glycerol formation capacity. The fine-tuned reduction of specific GPDH activity was achieved by replacing the native GPD1 promoter in the yeast genome by previously generated well-characterized TEF promoter mutant versions in a gpd2Δ background. Two TEF promoter mutant versions were selected for this study, resulting in a residual GPDH activity of 55 and 6%, respectively. The corresponding strains were referred to here as TEFmut7 and TEFmut2. The genetic modifications were accompanied to a strong reduction in glycerol yield on glucose; the level of reduction compared to the wild-type was 61% in TEFmut7 and 88% in TEFmut2. The overall ethanol production yield on glucose was improved from 0.43 g g-1 in the wild type to 0.44 g g-1 measured in TEFmut7 and 0.45 g g-1 in TEFmut2. Although maximal growth rate in the engineered strains was reduced by 20 and 30%, for TEFmut7 and TEFmut2 respectively, strains' ethanol stress robustness was hardly affected; i.e. values for final ethanol concentration (117 ± 4 g L-1), growth-inhibiting ethanol concentration (87 ± 3 g L-1) and volumetric ethanol productivity (2.1 ± 0.15 g l-1 h-1) measured in wild-type remained virtually unchanged in the engineered strains. Conclusions This work demonstrates the power of fine-tuned pathway engineering, particularly when a compromise has to be found between high product yield on one hand and acceptable growth, productivity and stress resistance on the other hand. Under the conditions used in this study (VHEP fed-batch), the two strains with "fine-tuned" GPD1 expression in a gpd2Δ background showed slightly better ethanol yield improvement than previously achieved with the single deletion strains gpd1Δ or gpd2Δ. Although glycerol reduction is known to be even higher in a gpd1Δ gpd2Δ double deletion strain, our strains could much better cope with process stress as reflected by better growth and viability. PMID:20492645

  16. Telemonitoring in the management of high blood pressure.

    PubMed

    Mc Kinstry, Brian; Hanley, Janet; Lewis, Steff

    2015-01-01

    High blood pressure (BP) is an important risk factor for stroke and ischaemic heart disease. Yet, despite the availability of effective drugs, it is generally poorly controlled. Partly this is because some patients do not adhere to treatment regimens and partly because clinicians either measure BP insufficiently frequently or are not rigorous in applying treatment guidelines. Additionally individual surgery measurements of BP provide a poor prediction of cardiovascular risk. Methods using multiple BP measures provide more accurate estimates of risk and response to treatment. Self-monitoring of blood pressure at home overcomes this problem, but alone has not been conclusively shown to lower BP. There is now strong evidence from several randomised controlled trials that using telemetry to communicate home BP measures to healthcare providers (telemonitoring) is associated with highly statistically and clinically significant reductions in BP. However the studies have been of relatively short duration and it is not known if these reductions would be sustained in the long term, nor have any of the studies been at large scale. While there are challenges to implementing telemonitoring at scale there is a need for large implementation trials over relatively prolonged periods to establish the efficacy of such an approach in routine care. PMID:25341853

  17. Amyloid Spells and High Blood Pressure: Imminent Danger?

    PubMed Central

    Caetano, Andre; Pinto, Miguel; Calado, Sofia; Viana-Baptista, Miguel

    2015-01-01

    We present the case of a 71-year-old male, admitted after a generalized tonic-clonic seizure, with a history of recurrent left arm and face paresthesias, associated with sulcal cortical subarachnoid hemorrhages. During the next 48 h, he remained agitated with a high blood pressure profile; he also suffered a cardiac arrest in relation to a severe left fronto-parietal and a smaller right parietal parenchymal hemorrhage that developed over the subarachnoid hemorrhage locations. There were no intracranial vascular abnormalities. Three months later, an MRI revealed disseminated superficial siderosis. He was discharged with a modified Rankin scale of 4. He died 1 month later of unknown cause. A diagnosis of probable cerebral amyloid angiopathy was assumed. Patients with pathologically proven cerebral amyloid angiopathy that present with transient focal neurological symptoms in relation to cortical bleeds, the so-called ‘myloid spells’ seem to be at an increased risk of future parenchymal hemorrhages. Avoiding antiplatelet agents in these cases has been proposed. Our case suggests that these patients should be monitored closely in the hyperacute phase, and tight blood pressure control should be considered as the immediate risk of bleeding may be high, even without a definitive diagnosis of cerebral amyloid angiopathy. PMID:25892987

  18. Ethanolic extract of seabuckthorn (Hippophae rhamnoides L) prevents high-fat diet-induced obesity in mice through down-regulation of adipogenic and lipogenic gene expression.

    PubMed

    Pichiah, P B Tirupathi; Moon, Hye-Jung; Park, Jeong-Eun; Moon, Yeon-Jeong; Cha, Youn-Soo

    2012-11-01

    Phenolic compounds and flavonoids ameliorate bodyweight, blood glucose, and serum lipid profile. Since seabuckthorn (Hippophae rhamnoides L.) is known as a rich source of isoflavones and flavonoids, we hypothesized that ethanolic extract of seabuckthorn leaves (SL) may have anti-obesity and hypoglycemic effects. To investigate the effect of ethanolic extract of SL, 32 C57BL/6J mice were randomly divided into 4 dietary groups, containing 8 mice in each group: normal diet group; high-fat diet (HD) control group; high-fat diet with SL extract, 500 mg/kg body weight (BW) (SL1) group; and high-fat diet with SL extract, 1000 mg/kg BW (SL2) group. After 13 weeks, it was observed that oral administration of SL extract significantly reduced the energy intake; BW gain; epididymal fat pad weight; hepatic triglyceride, hepatic, and serum total cholesterol levels; and serum leptin levels in the SL groups compared to the HD group. However, differences in serum triglyceride and insulin levels in the SL groups were not significant in comparison to the HD group. The hepatic mRNA expression of peroxisome proliferator-activated receptor (PPAR) α and carnitine palmitoyltransferase 1 along with PPAR-γ were significantly increased in SL groups, whereas the level of acetyl-CoA carboxylase was significantly reduced in SL groups compared to HD group. Our results indicated that SL is effective in preventing BW gain and fat accumulation in the liver; it also reduced adipose tissue mass, hepatic lipid profile, and serum leptin level in the mouse. Together, these observations suggest that SL is a potential agent to study in the management of obesity and related disorders. PMID:23176796

  19. Localized brain differences in Arc expression between mice showing low vs. high propensity to ethanol sensitization.

    PubMed

    Nona, Christina N; Lam, Marcus; Nobrega, José N

    2016-03-01

    Behavioral sensitization to ethanol (EtOH) manifests as a progressive and enduring increase in locomotor activity with repeated drug exposure. However, not all mice sensitize to EtOH and the neuronal mechanisms mediating vulnerability and resistance to EtOH sensitization remain unclear. We examined regional brain expression of the immediate early gene activity-regulated cytoskeleton-associated protein (Arc) in order to identify brain areas in which neuroplastic changes may contribute to the development and expression of EtOH sensitization. Male DBA/2J mice received 5 biweekly injections of EtOH (2.2g/kg, i.p.) or saline (SAL). They were categorized as high- (HS) or low-sensitized (LS) on the basis of final locomotor activity scores. In both LS and HS mice sacrificed after the last sensitization injection, Arc expression was decreased throughout the brain in comparison to SAL animals. A similar pattern was seen in mice sacrificed after an EtOH challenge two weeks after the last sensitization injection. However in this cohort, Arc expression was significantly increased in the central amygdala (CeA) in LS mice and in SAL mice receiving EtOH for the first time. No significant increases in Arc expression were seen in brains of sensitized (HS) animals. These results indicate an acute EtOH challenge results in different patterns of Arc expression in brains of LS, HS, and SAL mice. The dramatic increases in Arc expression in the CeA in LS and SAL mice showing little or no behavioral activation suggests that neural activity in this region may serve to inhibit the stimulant effects of EtOH. The observation that HS mice do not show increases in Arc expression with an EtOH challenge suggests the possibility that increased tolerance to the Arc-inducing effects of EtOH may be a factor in behavioral sensitization. PMID:26708208

  20. Using a combined hydrolysis factor to optimize high titer ethanol production from sulfite-pretreated poplar without detoxification.

    PubMed

    Zhang, Jingzhi; Gu, Feng; Zhu, J Y; Zalesny, Ronald S

    2015-06-01

    Sulfite pretreatment to overcome the recalcitrance of lignocelluloses (SPORL) was applied to poplar NE222 chips in a range of chemical loadings, temperatures, and times. The combined hydrolysis factor (CHF) as a pretreatment severity accurately predicted xylan dissolution by SPORL. Good correlations between CHF and pretreated solids enzymatic digestibility, sugar yield, and the formations of furfural and acetic acid were obtained. Therefore, CHF was used to balance sugar yield with the formation of fermentation inhibitors for high titer ethanol production without detoxification. The results indicated that optimal sugar yield can be achieved at CHF=3.1, however, fermentation using un-detoxified whole slurries of NE222 pretreated at different severities by SPORL indicated CHF≈2 produced best results. An ethanol titer of 41 g/L was achieved at total solids of approximately 20 wt% without detoxification with a low cellulase loading of 15 FPU/g glucan (27 mL/kg untreated wood). PMID:25817033

  1. Facile synthesis of highly active PdAu nanowire networks as self-supported electrocatalyst for ethanol electrooxidation.

    PubMed

    Hong, Wei; Wang, Jin; Wang, Erkang

    2014-06-25

    In recent years, direct ethanol fuel cells (DEFCs) are attracting increasing attention owing to their wide applications. However, a significant challenge in the development of DEFC technology is the urgent need for highly active anode catalysts for the ethanol oxidation reaction. In this work, a facile and reproducible method for the high-yield synthesis of PdAu nanowire networks is demonstrated. The whole synthetic process is very simple, just mixing Na2PdCl4, HAuCl4, and KBr in an aqueous solution and using polyvinylpyrrolidone as a protective reagent while sodium borohydride as a reductant. The whole synthetic process can be simply performed at room temperature and completed in 30 min, which can greatly simplify the synthetic process and lower the preparation cost. Electrochemical catalytic measurement results prove that the as-prepared catalysts exhibit dramatically enhanced electrocatalytic activity for ethanol electrooxidation in alkaline solution. The facile synthetic process and excellent catalytic performance of the as-prepared catalysts demonstrate that they can be used as a promising catalyst for DEFCs. PMID:24773338

  2. High concentrations of cellulosic ethanol achieved by fed batch semi simultaneous saccharification and fermentation of waste-paper

    PubMed Central

    Elliston, Adam; Collins, Samuel R.A.; Wilson, David R.; Roberts, Ian N.; Waldron, Keith W.

    2013-01-01

    A fundamental goal of second generation ethanol production is to increase the ethanol concentration to 10% (v/v) or more to optimise distillation costs. Semi simultaneous saccharification and fermentations (SSSF) were conducted at small pilot scale (5 L) utilising fed-batch additions of solid shredded copier paper substrate. Early addition of Accellerase® 1500 at 16 FPU/g substrate and 30 U/g β-glucosidase followed by substrate only batch addition allowed low final equivalent enzyme concentrations to be achieved (3.7 FPU/g substrate) whilst maintaining digestion. Batch addition resulted in a cumulative substrate concentration equivalent to 65% (w/v). This in turn resulted in the production of high concentrations of ethanol (11.6% v/v). The success of this strategy relied on the capacity of the bioreactor to perform high shear mixing as required. Further research into the timing and number of substrate additions could lead to further improvement in overall yields from the 65.5% attained. PMID:23500568

  3. Production of an acetone-butanol-ethanol mixture from Clostridium acetobutylicum and its conversion to high-value biofuels.

    PubMed

    Sreekumar, Sanil; Baer, Zachary C; Pazhamalai, Anbarasan; Gunbas, Gorkem; Grippo, Adam; Blanch, Harvey W; Clark, Douglas S; Toste, F Dean

    2015-03-01

    Clostridium acetobutylicum is a bacterial species that ferments sugar to a mixture of organic solvents (acetone, butanol and ethanol). This protocol delineates a methodology to combine solventogenic clostridial fermentation and chemical catalysis via extractive fermentation for the production of biofuel blendstocks. Extractive fermentation of C. acetobutylicum is operated in fed-batch mode with a concentrated feed solution (500 grams per liter glucose and 50 grams per liter yeast extract) for 60 h, producing in excess of 40 g of solvents (acetone, butanol and ethanol) between the completely immiscible extractant and aqueous phases of the bioreactor. After distillation of the extractant phase, the acetone, butanol and ethanol mixture is upgraded to long-chain ketones over a palladium-hydrotalcite (Pd-HT) catalyst. This reaction is generally carried out in batch with a high-pressure Q-tube for 20 h at 250 °C. Following this protocol enables the production of ∼0.5 g of high-value biofuel precursors from a 1.7-g portion of fermentation solvents. PMID:25719271

  4. High-response of amorphous ZnSnO sensors for ultraviolet and ethanol detections

    NASA Astrophysics Data System (ADS)

    Jiang, Qingjun; Wu, Chuanjia; Feng, Lisha; Gong, Li; Ye, Zhizhen; Lu, Jianguo

    2015-12-01

    Amorphous zinc-tin oxide (a-ZTO) films are fabricated using a combustion solution process. Utilization of a-ZTO films as the novel active layers, ultraviolet (UV) and ethanol sensors are prepared for the first time. The sensor performances are strongly related to the film resistance, which is determinated by the surface O2- formed by O2 + e = O2- during UV and ethanol detections. During UV exposure, the resistivity of a-ZTO films decreases from 6.50 × 105 Ω cm to 56.85 Ω cm, which are very sensitive towards UV (365 nm) light and the photodetectors own a sensitivity value of 650 from 0 to 30 V. While for ethanol gas, the detection regions can be in a wide range from 20 ppm to 500 ppm. The gas response can achieve a value of 31.18 at 500 ppm ethanol and good response/recovery speed (6 s and 3 s), which can be comparable with that of the common used nanomaterials. The novel a-ZTO film based UV and gas sensors are very promising researches for future UV and gas sensor applications.

  5. High temperature dilute phosphoric acid pretreatment of corn stover for furfural and ethanol production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Furfural was produced from corn stover by one stage pretreatment process using dilute H3PO4 and solid residues following furfural production were used for ethanol production by Saccharomyces cerevisiae NRRL- Y2034. A series of experiments were conducted at varied temperatures (140-200 oC) and acid ...

  6. High Intrinsic Aerobic Capacity Protects against Ethanol-Induced Hepatic Injury and Metabolic Dysfunction: Study Using High Capacity Runner Rat Model

    PubMed Central

    Szary, Nicholas; Rector, R. Scott; Uptergrove, Grace M.; Ridenhour, Suzanne E.; Shukla, Shivendra D.; Thyfault, John P.; Koch, Lauren G.; Britton, Steven L.; Ibdah, Jamal A.

    2015-01-01

    Rats artificially selected over several generations for high intrinsic endurance/aerobic capacity resulting in high capacity runners (HCR) has been developed to study the links between high aerobic fitness and protection from metabolic diseases (Wisloff et al., Science, 2005). We have previously shown that the HCR strain have elevated hepatic mitochondrial content and oxidative capacity. In this study, we tested if the elevated hepatic mitochondrial content in the HCR rat would provide “metabolic protection” from chronic ethanol-induced hepatic steatosis and injury. The Leiber-Decarli liquid diet with ethanol (7% v/v; HCR-E) and without (HCR-C) was given to HCR rats (n = 8 per group) from 14 to 20 weeks of age that were weight matched and pair-fed to assure isocaloric intake. Hepatic triglyceride (TG) content and macro- and microvesicular steatosis were significantly greater in HCR-E compared with HCR-C (p < 0.05). In addition, hepatic superoxide dismutase activity and glutathione levels were significantly (p < 0.05) reduced in the HCR-E rats. This hepatic phenotype also was associated with reduced total hepatic fatty acid oxidation (p = 0.03) and β-hydroxyacyl-CoA dehydrogenase activity (p = 0.01), and reductions in microsomal triglyceride transfer protein and apoB-100 protein content (p = 0.01) in HCR-E animals. However, despite these documented hepatic alterations, ethanol ingestion failed to induce significant hepatic liver injury, including no changes in hepatic inflammation, or serum alanine amino transferase (ALTs), free fatty acids (FFAs), triglycerides (TGs), insulin, or glucose. High intrinsic aerobic fitness did not reduce ethanol-induced hepatic steatosis, but protected against ethanol-induced hepatic injury and systemic metabolic dysfunction in a high aerobic capacity rat model. PMID:26610588

  7. High Intrinsic Aerobic Capacity Protects against Ethanol-Induced Hepatic Injury and Metabolic Dysfunction: Study Using High Capacity Runner Rat Model.

    PubMed

    Szary, Nicholas; Rector, R Scott; Uptergrove, Grace M; Ridenhour, Suzanne E; Shukla, Shivendra D; Thyfault, John P; Koch, Lauren G; Britton, Steven L; Ibdah, Jamal A

    2015-01-01

    Rats artificially selected over several generations for high intrinsic endurance/aerobic capacity resulting in high capacity runners (HCR) has been developed to study the links between high aerobic fitness and protection from metabolic diseases (Wisloff et al., Science, 2005). We have previously shown that the HCR strain have elevated hepatic mitochondrial content and oxidative capacity. In this study, we tested if the elevated hepatic mitochondrial content in the HCR rat would provide "metabolic protection" from chronic ethanol-induced hepatic steatosis and injury. The Leiber-Decarli liquid diet with ethanol (7% v/v; HCR-E) and without (HCR-C) was given to HCR rats (n = 8 per group) from 14 to 20 weeks of age that were weight matched and pair-fed to assure isocaloric intake. Hepatic triglyceride (TG) content and macro- and microvesicular steatosis were significantly greater in HCR-E compared with HCR-C (p < 0.05). In addition, hepatic superoxide dismutase activity and glutathione levels were significantly (p < 0.05) reduced in the HCR-E rats. This hepatic phenotype also was associated with reduced total hepatic fatty acid oxidation (p = 0.03) and ?-hydroxyacyl-CoA dehydrogenase activity (p = 0.01), and reductions in microsomal triglyceride transfer protein and apoB-100 protein content (p = 0.01) in HCR-E animals. However, despite these documented hepatic alterations, ethanol ingestion failed to induce significant hepatic liver injury, including no changes in hepatic inflammation, or serum alanine amino transferase (ALTs), free fatty acids (FFAs), triglycerides (TGs), insulin, or glucose. High intrinsic aerobic fitness did not reduce ethanol-induced hepatic steatosis, but protected against ethanol-induced hepatic injury and systemic metabolic dysfunction in a high aerobic capacity rat model. PMID:26610588

  8. Evolved strains of Scheffersomyces stipitis achieving high ethanol productivity on acid- and base-pretreated biomass hydrolyzate at high solids loading

    SciTech Connect

    Slininger, Patricia J.; Shea-Andersh, Maureen A.; Thompson, Stephanie R.; Dien, Bruce S.; Kurtzman, Cletus P.; Balan, Venkatesh; da Costa Sousa, Leonardo; Uppugundla, Nirmal; Dale, Bruce E; Cotta, Michael A

    2015-04-09

    Lignocellulosic biomass is an abundant, renewable feedstock useful for the production of fuel-grade ethanol via the processing steps of pretreatment, enzyme hydrolysis, and microbial fermentation. Traditional industrial yeasts do not ferment xylose and are not able to grow, survive, or ferment in concentrated hydrolyzates that contain enough sugar to support economical ethanol recovery since they are laden with toxic byproducts generated during pretreatment. Repetitive culturing in two types of concentrated hydrolyzates was applied along with ethanol challenged xylose-fed continuous culture to force targeted evolution of the native pentose fermenting yeast Scheffersomyces (Pichia) stipitis strain NRRL Y-7124 maintained in the ARS Culture Collection, Peoria, IL. Isolates collected from various enriched populations were screened and ranked based on relative xylose uptake rate and ethanol yield. Ranking on hydrolyzates with and without nutritional supplementation was used to identify those isolates with best performance across diverse conditions. Robust S. stipitis strains adapted to perform very well in enzyme hydrolyzates of high solids loading ammonia fiber expansion-pretreated corn stover (18% weight per volume solids) and dilute sulfuric acid-pretreated switchgrass (20% w/v solids) were obtained. Improved features include reduced initial lag phase preceding growth, significantly enhanced fermentation rates, improved ethanol tolerance and yield, reduced diauxic lag during glucose-xylose transition, and ability to accumulate >40 g/L ethanol in <167 h when fermenting hydrolyzate at low initial cell density of 0.5 absorbance units and pH 5 to 6.

  9. Electrophysiological Evidence that Ethanol Alters Function of Medial Septal Area Without Affecting Lateral Septal Function1

    PubMed Central

    GIVENS, BENNET S.; BREESE, GEORGE R.

    2010-01-01

    Evidence is provided in this manuscript that ethanol acts directly on neurons in the medial septal area (MSA). Initially, the electrophysiological characteristics of MSA neurons in freely moving rats were characterized and found similar to that observed in rats anesthetized with urethane, but not chloral hydrate. Therefore, urethane was used to evaluate the effects of ethanol in anesthetized rats. The conclusion that ethanol influences neural function in the MSA is based on electrophysiological data that ethanol (0.75–3.0 g/kg i.p.) suppresses neural firing of medial septal cells in urethane-anesthetized as well as in unanesthetized rats in a dose-related fashion. Concurrent with the suppression of firing rate, the rhythmic bursting pattern of activity of MSA neurons is disrupted by ethanol. The changes observed in the MSA could not be attributed to an indirect action of ethanol on afferents from the lateral septum to the MSA, because ethanol did not alter neural activity of cells in the lateral septum. These data indicate that ethanol does not have a common action on all neurons. Neural activity in the MSA recovered from the acute action of ethanol at a time when blood ethanol levels were near maximal, indicating an acute tolerance to this effect of ethanol. The time course of change in neural activity in the MSA was highly correlated with the time course of a measure of behavioral sedation, but not the hypothermia produced by ethanol. Thus, the work in this manuscript supports the view that ethanol has selective actions on MSA neurons in the rat septal area and that these actions may influence the behavioral sedation induced by ethanol. PMID:2329526

  10. Application of low-cost algal nitrogen source feeding in fuel ethanol production using high gravity sweet potato medium.

    PubMed

    Shen, Yu; Guo, Jin-Song; Chen, You-Peng; Zhang, Hai-Dong; Zheng, Xu-Xu; Zhang, Xian-Ming; Bai, Feng-Wu

    2012-08-31

    Protein-rich bloom algae biomass was employed as nitrogen source in fuel ethanol fermentation using high gravity sweet potato medium containing 210.0 g l(-1) glucose. In batch mode, the fermentation could not accomplish even in 120 h without any feeding of nitrogen source. While, the feeding of acid-hydrolyzed bloom algae powder (AHBAP) notably promoted fermentation process but untreated bloom algae powder (UBAP) was less effective than AHBAP. The fermentation times were reduced to 96, 72, and 72 h if 5.0, 10.0, and 20.0 g l(-1) AHBAP were added into medium, respectively, and the ethanol yields and productivities increased with increasing amount of feeding AHBAP. The continuous fermentations were performed in a three-stage reactor system. Final concentrations of ethanol up to 103.2 and 104.3 g l(-1) with 4.4 and 5.3 g l(-1) residual glucose were obtained using the previously mentioned medium feeding with 20.0 and 30.0 g l(-1) AHBAP, at dilution rate of 0.02 h(-1). Notably, only 78.5 g l(-1) ethanol and 41.6 g l(-1) residual glucose were obtained in the comparative test without any nitrogen source feeding. Amino acids analysis showed that approximately 67% of the protein in the algal biomass was hydrolyzed and released into the medium, serving as the available nitrogen nutrition for yeast growth and metabolism. Both batch and continuous fermentations showed similar fermentation parameters when 20.0 and 30.0 g l(-1) AHBAP were fed, indicating that the level of available nitrogen in the medium should be limited, and an algal nitrogen source feeding amount higher than 20.0 g l(-1) did not further improve the fermentation performance. PMID:22387426

  11. Early maternal separation affects ethanol-induced conditioning in a nor-BNI insensitive manner, but does not alter ethanol-induced locomotor activity.

    PubMed

    Pautassi, Ricardo Marcos; Nizhnikov, Michael E; Fabio, Ma Carolina; Spear, Norman E

    2012-01-01

    Early environmental stress significantly affects the development of offspring. This stress has been modeled in rats through the maternal separation (MS) paradigm, which alters the functioning of the HPA axis and can enhance ethanol intake at adulthood. Infant rats are sensitive to ethanol's reinforcing effects, which modulate ethanol seeking and intake. Little is known about the impact of MS on sensitivity to ethanol's appetitive and aversive effects during infancy. The present study assessed ethanol-induced conditioned place preference established through second-order conditioning (SOC), spontaneous or ethanol-induced locomotor activity and ethanol intake in preweanling rats that experienced normal animal facility rearing (AFR) or daily episodes of maternal separation (MS) during postnatal days 1-13 (PDs 1-13). Low-ethanol dose (0.5 g/kg) induced appetitive conditioned place preference (via SOC) in control rats given conventional rearing but not in rats given maternal separation in early infancy, whereas 2.0 g/kg ethanol induced aversive conditioned place preference in the former but not the latter. The administration of a kappa antagonist at PD 1 or immediately before testing did not alter ethanol-induced reinforcement. High (i.e., 2.5 and 2.0 g/kg) but not low (i.e., 0.5 g/kg) ethanol dose induced reliable motor stimulation, which was independent of early maternal separation. Ethanol intake and blood alcohol levels during conditioning were unaffected by rearing conditions. Pups given early maternal separation had lower body weights than controls and showed an altered pattern of exploration when placed in an open field. These results indicate that, when assessed in infant rats, earlier maternal separation alters the balance between the appetitive and aversive motivational effects of ethanol but has no effect on the motor activating effects of the drug. PMID:22108648

  12. Acute Ethanol Effects on Brain Activation in Low- and High-Level Responders to Alcohol

    PubMed Central

    Trim, Ryan S.; Simmons, Alan N.; Tolentino, Neil J.; Hall, Shana A.; Matthews, Scott C.; Robinson, Shannon K.; Smith, Tom L.; Padula, Claudia B.; Paulus, Martin P.; Tapert, Susan F.; Schuckit, Marc A.

    2013-01-01

    Background A low level of response (LR) to alcohol is an important endophenotype associated with an increased risk for alcoholism. However, little is known about how neural functioning may differ between individuals with low and high LRs to alcohol. This study examined whether LR group effects on neural activity varied as a function of acute alcohol consumption. Methods 30 matched high- and low-LR pairs (N=60 healthy young adults) were recruited from the University of California, San Diego and administered a structured diagnostic interview and laboratory alcohol challenge followed by two fMRI sessions under placebo and alcohol conditions, in randomized order. Task performance and BOLD response contrast to high relative to low working memory load in an event-related visual working memory (VWM) task was examined across 120 fMRI sessions. Results Both LR groups performed similarly on the VWM task across conditions. A significant LR group by condition interaction effect was observed in inferior frontal and cingulate regions, such that alcohol attenuated the LR group differences found under placebo (p<.05). The LR group by condition effect remained even after controlling for cerebral blood flow, age, and typical drinking quantity. Conclusions Alcohol had differential effects on brain activation for low and high LR individuals within frontal and cingulate regions. These findings represent an additional step in the search for physiological correlates of a low LR, and identify brain regions that may be associated with the low LR response. PMID:20477775

  13. Ethanol metabolism in the gastrointestinal tract and its possible consequences.

    PubMed

    Seitz, H K; Gärtner, U; Egerer, G; Simanowski, U A

    1994-01-01

    Ethanol is oxidised not only in the liver, but also in the gastrointestinal tract. Although this ethanol metabolism is less than that of the liver, it has some important relevance with respect to the first pass metabolism of alcohol and to ethanol induced tissue toxicity. In the gastrointestinal tract, ethanol can be metabolised not only in the mucosal cell via alcohol dehydrogenase (ADH) and microsomal ethanol oxidising system (MEOS), but also in a great variety of bacteria. Depending on the gastrointestinal location, one or the other metabolic pathway of alcohol may be predominant. The metabolism of ethanol by gastric ADH, the so called first pass metabolism, influences ethanol blood concentrations not only in the portal vein and thus in the liver, but also in the systemic circulation. As gastric ADH activity is decreased in younger women, in the elderly, in the alcoholic, during fasting and after treatment with certain H-2-receptor antagonists, increased blood ethanol concentrations may occur in these situations after oral intake of ethanol. However, this first pass metabolism of alcohol is influenced not only by ADH activity but also by the speed of gastric emptying (e.g. slow gastric emptying leads to increased first pass metabolism). Finally, gastric morphology also determines first pass metabolism. Chronic atrophic gastritis and Helicobacter pylori associated gastric injury lead to a decrease of gastric ADH activity, and thus possibly to a decreased first pass metabolism of alcohol. In addition, the local production of acetaldehyde from ethanol in the oesophagus, where significantly more sigma-ADH is present, may contribute to tissue injury and this may lead to the well known ethanol associated oesophageal cancer development. Various isoenzymes of ADH exist in the colorectum and they are also capable of producing acetaldehyde in amounts sufficient to injure the mucosa. Besides ADH, the MEOS, a mixed function oxidase, also metabolises ethanol. This system is inducible by chronic alcohol consumption and is involved in the metabolism of various xenobiotics including drugs and procarcinogens. Thus, an increased activation of dietary procarcinogens by this enzyme system may also contribute to carcinogenesis in the alcoholic. Finally, a great variety of gastrointestinal bacteria are capable of metabolising ethanol to acetaldehyde. This is possibly of major importance in the colorectum where faecal bacteria, especially anaerobes in the rectum, can produce high amounts of acetaldehyde, and this correlates with mucosal hyperregeneration suggesting an acetaldehyde mediated mucosal damage. PMID:8974330

  14. Ethanol tolerance in bacteria.

    PubMed

    Ingram, L O

    1990-01-01

    The adverse effects of ethanol on bacterial growth, viability, and metabolism are caused primarily by ethanol-induced leakage of the plasma membrane. This increase in membrane leakage is consistent with known biophysical properties of membranes and ethanolic solutions. The primary actions of ethanol result from colligative effects of the high molar concentrations rather than from specific interactions with receptors. The ethanol tolerance of growth in different microorganisms appears to result in large part from adaptive and evolutionary changes in cell membrane composition. Different cellular activities vary in their tolerance to ethanol. Therefore, it is essential that the aspect of cellular function under study be specifically defined and that comparisons of ethanol tolerance among systems share this common definition. Growth is typically one of the most sensitive cellular activities to inhibition by ethanol, followed by survival, or loss of reproductive ability. Glycolysis is the most resistant of these three activities. Since glycolysis is an exergonic process, a cell need not be able to grow or remain viable for glycolysis to occur. PMID:2178781

  15. Nursing Education in High Blood Pressure Control. Report of the Task Force on the Role of Nursing in High Blood Pressure Control.

    ERIC Educational Resources Information Center

    National Institutes of Health (DHEW), Bethesda, MD. High Blood Pressure Information Center.

    This curriculum guide on high blood pressure (hypertension) for nursing educators has five sections: (1) Introduction and Objectives provides information regarding the establishment and objectives of the National Task Force on the Role of Nursing in High Blood Pressure Control and briefly discusses nursing's role in hypertension control; (2) Goals

  16. Northern contaminant mixtures induced morphological and functional changes in human coronary artery endothelial cells under culture conditions typifying high fat/sugar diet and ethanol exposure.

    PubMed

    Florian, Maria; Yan, Jin; Ulhaq, Saad; Coughlan, Melanie; Laziyan, Mahemuti; Willmore, William; Jin, Xiaolei

    2013-11-16

    It has been reported that Northern populations are exposed to mixtures of various environmental contaminants unique to the Arctic (Northern contaminant mixtures - NCM) at a large range of concentrations, depending on their geological location, age, lifestyle and dietary habits. To determine if these contaminants may contribute to a cardiovascular health risk, especially when combined with a high fat and sugar diet and ethanol exposure, we treated human coronary artery endothelial cells (HCAEC) with two mixtures of 4 organic (NCM1) or 22 organic and inorganic (NCM2) chemicals detected in Northerners' blood during 2004-2005 in the presence or absence of low-density lipoprotein (1.5mg/ml), very-low-density lipoprotein (1.0mg/ml) and glucose (10mmol/L) (LVG), and in the absence or presence of 0.1% ethanol. After 24h of exposure, cell morphology and markers of cytotoxicity and endothelial function were examined. NCM1 treatment did not affect cell viability, but increased cell size, disrupted cell membrane integrity, and decreased cell density, uptake of small peptides, release of endothelin-1 (ET-1) and plasminogen activator inhibitor (PAI), while causing no changes in endothelial nitric oxide synthase (eNOS) protein expression and nitric oxide (NO) release. In contrast, NCM2 decreased cell viability, total protein yield, uptake of small peptides, eNOS protein expression, and NO release and caused membrane damage, but caused no changes in the secretion of ET-1, prostacyclin and PAI. The presence of LVG and/or alcohol did or did not influence the effects of NCM1 or NCM2 depending on the endpoint and the mixture examined. These results suggested that the effects of one or one group of contaminants may be altered by the presence of other contaminants, and that with or without the interaction of high fat and sugar diet and/or ethanol exposure, NCMs at the concentrations used caused endothelial dysfunction in vitro. It remains to be investigated if these effects of NCMs also occur in vivo. PMID:23384447

  17. Treating High Blood Pressure: Is an ACE Inhibitor Drug Right for You?

    MedlinePlus

    ... High Blood Pressure: Is an ACE Inhibitor Drug Right for You? What are ACE inhibitors? ACE inhibitors, ... talk with your doctor about which drugs are right for you. If your blood pressure is slightly ...

  18. Treating High Blood Pressure: Is a Beta-Blocker Drug Right for You?

    MedlinePlus

    ... High Blood Pressure: Is a Beta-blocker Drug Right for You? What are beta-blockers? Beta-blockers ... talk with your doctor about which drugs are right for you. If your blood pressure is slightly ...

  19. Acceleration of the rate of ethanol fermentation by addition of nitrogen in high tannin grain sorghum

    SciTech Connect

    Mullins, J.T.; NeSmith, C.C.

    1987-01-01

    In this communication, the authors show that accelerated rates of ethanol production, comparable to sorghum varieties containing low levels of tannins and to corn, can occur without the removal of the tannins. The basis of the inhibition appears to be a lack of sufficient nitrogen in the mash for protein synthesis required to support an accelerated fermentative metabolism in Saccharomyces. No inhibition of the enzymes used for starch hydrolysis was found.

  20. Respiratory Chain Analysis of Zymomonas mobilis Mutants Producing High Levels of Ethanol

    PubMed Central

    Kato, Tsuyoshi; Furukawa, Kensuke

    2012-01-01

    We previously isolated respiratory-deficient mutant (RDM) strains of Zymomonas mobilis, which exhibited greater growth and enhanced ethanol production under aerobic conditions. These RDM strains also acquired thermotolerance. Morphologically, the cells of all RDM strains were shorter compared to the wild-type strain. We investigated the respiratory chains of these RDM strains and found that some RDM strains lost NADH dehydrogenase activity, whereas others exhibited reduced cytochrome bd-type ubiquinol oxidase or ubiquinol peroxidase activities. Complementation experiments restored the wild-type phenotype. Some RDM strains seem to have certain mutations other than the corresponding respiratory chain components. RDM strains with deficient NADH dehydrogenase activity displayed the greatest amount of aerobic growth, enhanced ethanol production, and thermotolerance. Nucleotide sequence analysis revealed that all NADH dehydrogenase-deficient strains were mutated within the ndh gene, which includes insertion, deletion, or frameshift. These results suggested that the loss of NADH dehydrogenase activity permits the acquisition of higher aerobic growth, enhanced ethanol production, and thermotolerance in this industrially important strain. PMID:22660712

  1. Respiratory chain analysis of Zymomonas mobilis mutants producing high levels of ethanol.

    PubMed

    Hayashi, Takeshi; Kato, Tsuyoshi; Furukawa, Kensuke

    2012-08-01

    We previously isolated respiratory-deficient mutant (RDM) strains of Zymomonas mobilis, which exhibited greater growth and enhanced ethanol production under aerobic conditions. These RDM strains also acquired thermotolerance. Morphologically, the cells of all RDM strains were shorter compared to the wild-type strain. We investigated the respiratory chains of these RDM strains and found that some RDM strains lost NADH dehydrogenase activity, whereas others exhibited reduced cytochrome bd-type ubiquinol oxidase or ubiquinol peroxidase activities. Complementation experiments restored the wild-type phenotype. Some RDM strains seem to have certain mutations other than the corresponding respiratory chain components. RDM strains with deficient NADH dehydrogenase activity displayed the greatest amount of aerobic growth, enhanced ethanol production, and thermotolerance. Nucleotide sequence analysis revealed that all NADH dehydrogenase-deficient strains were mutated within the ndh gene, which includes insertion, deletion, or frameshift. These results suggested that the loss of NADH dehydrogenase activity permits the acquisition of higher aerobic growth, enhanced ethanol production, and thermotolerance in this industrially important strain. PMID:22660712

  2. Fuel ethanol

    SciTech Connect

    Not Available

    1989-02-01

    This report discusses the Omnibus Trade and Competitiveness Act of 1988 which requires GAO to examine fuel ethanol imports from Central America and the Caribbean and their impact on the U.S. fuel ethanol industry. Ethanol is the alcohol in beverages, such as beer, wine, and whiskey. It can also be used as a fuel by blending with gasoline. It can be made from renewable resources, such as corn, wheat, grapes, and sugarcane, through a process of fermentation. This report finds that, given current sugar and gasoline prices, it is not economically feasible for Caribbean ethanol producers to meet the current local feedstock requirement.

  3. Highly active iridium/iridium-tin/tin oxide heterogeneous nanoparticles as alternative electrocatalysts for the ethanol oxidation reaction.

    PubMed

    Du, Wenxin; Wang, Qi; Saxner, David; Deskins, N Aaron; Su, Dong; Krzanowski, James E; Frenkel, Anatoly I; Teng, Xiaowei

    2011-09-28

    Ethanol is a promising fuel for low-temperature direct fuel cell reactions due to its low toxicity, ease of storage and transportation, high-energy density, and availability from biomass. However, the implementation of ethanol fuel cell technology has been hindered by the lack of low-cost, highly active anode catalysts. In this paper, we have studied Iridium (Ir)-based binary catalysts as low-cost alternative electrocatalysts replacing platinum (Pt)-based catalysts for the direct ethanol fuel cell (DEFC) reaction. We report the synthesis of carbon supported Ir(71)Sn(29) catalysts with an average diameter of 2.7 ± 0.6 nm through a "surfactant-free" wet chemistry approach. The complementary characterization techniques, including aberration-corrected scanning transmission electron microscopy equipped with electron energy loss spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and X-ray absorption spectroscopy, are used to identify the "real" heterogeneous structure of Ir(71)Sn(29)/C particles as Ir/Ir-Sn/SnO(2), which consists of an Ir-rich core and an Ir-Sn alloy shell with SnO(2) present on the surface. The Ir(71)Sn(29)/C heterogeneous catalyst exhibited high electrochemical activity toward the ethanol oxidation reaction compared to the commercial Pt/C (ETEK), PtRu/C (Johnson Matthey) as well as PtSn/C catalysts. Electrochemical measurements and density functional theory calculations demonstrate that the superior electro-activity is directly related to the high degree of Ir-Sn alloy formation as well as the existence of nonalloyed SnO(2) on surface. Our cross-disciplinary work, from novel "surfactant-free" synthesis of Ir-Sn catalysts, theoretical simulations, and catalytic measurements to the characterizations of "real" heterogeneous nanostructures, will not only highlight the intriguing structure-property correlations in nanosized catalysts but also have a transformative impact on the commercialization of DEFC technology by replacing Pt with low-cost, highly active Ir-based catalysts. PMID:21812458

  4. Highly Active Iridium/Iridium Tin/Tin Oxide Heterogeneous Nanoparticles as Alternative Electrocatalysts for the Ethanol Oxidation Reaction

    SciTech Connect

    Du W.; Su D.; Wang Q.; Saxner D.; Deskins N.A.; Krzanowski J.E.; Frenkel A.I.; Teng X.

    2011-08-03

    Ethanol is a promising fuel for low-temperature direct fuel cell reactions due to its low toxicity, ease of storage and transportation, high-energy density, and availability from biomass. However, the implementation of ethanol fuel cell technology has been hindered by the lack of low-cost, highly active anode catalysts. In this paper, we have studied Iridium (Ir)-based binary catalysts as low-cost alternative electrocatalysts replacing platinum (Pt)-based catalysts for the direct ethanol fuel cell (DEFC) reaction. We report the synthesis of carbon supported Ir{sub 71}Sn{sub 29} catalysts with an average diameter of 2.7 {+-} 0.6 nm through a 'surfactant-free' wet chemistry approach. The complementary characterization techniques, including aberration-corrected scanning transmission electron microscopy equipped with electron energy loss spectroscopy, X-ray diffraction, X-ray photoelectron spectroscopy, and X-ray absorption spectroscopy, are used to identify the 'real' heterogeneous structure of Ir{sub 71}Sn{sub 29}/C particles as Ir/Ir-Sn/SnO{sub 2}, which consists of an Ir-rich core and an Ir-Sn alloy shell with SnO{sub 2} present on the surface. The Ir{sub 71}Sn{sub 29}/C heterogeneous catalyst exhibited high electrochemical activity toward the ethanol oxidation reaction compared to the commercial Pt/C (ETEK), PtRu/C (Johnson Matthey) as well as PtSn/C catalysts. Electrochemical measurements and density functional theory calculations demonstrate that the superior electro-activity is directly related to the high degree of Ir-Sn alloy formation as well as the existence of nonalloyed SnO{sub 2} on surface. Our cross-disciplinary work, from novel 'surfactant-free' synthesis of Ir-Sn catalysts, theoretical simulations, and catalytic measurements to the characterizations of 'real' heterogeneous nanostructures, will not only highlight the intriguing structure-property correlations in nanosized catalysts but also have a transformative impact on the commercialization of DEFC technology by replacing Pt with low-cost, highly active Ir-based catalysts.

  5. Probing Red Blood Cell Morphology Using High-Frequency Photoacoustics

    PubMed Central

    Strohm, Eric M.; Berndl, Elizabeth S.L.; Kolios, Michael C.

    2013-01-01

    A method that can rapidly quantify variations in the morphology of single red blood cells (RBCs) using light and sound is presented. When irradiated with a laser pulse, an RBC absorbs the optical energy and emits an ultrasonic pressure wave called a photoacoustic wave. The power spectrum of the resulting photoacoustic wave contains distinctive features that can be used to identify the RBC size and morphology. When particles 5–10 μm in diameter (such as RBCs) are probed with high-frequency photoacoustics, unique periodically varying minima and maxima occur throughout the photoacoustic signal power spectrum at frequencies >100 MHz. The location and distance between spectral minima scale with the size and morphology of the RBC; these shifts can be used to quantify small changes in the morphology of RBCs. Morphological deviations from the normal biconcave RBC shape are commonly associated with disease or infection. Using a single wide-bandwidth transducer sensitive to frequencies between 100 and 500 MHz, we were able to differentiate healthy RBCs from irregularly shaped RBCs (such as echinocytes, spherocytes, and swollen RBCs) with high confidence using a sample size of just 21 RBCs. As each measurement takes only seconds, these methods could eventually be translated to an automated device for rapid characterization of RBC morphology and deployed in a clinical setting to help diagnose RBC pathology. PMID:23823224

  6. Rewarding and aversive effects of ethanol in High Drinking in the Dark selectively bred mice.

    PubMed

    Barkley-Levenson, Amanda M; Cunningham, Christopher L; Smitasin, Phoebe J; Crabbe, John C

    2015-01-01

    Both rewarding and aversive effects contribute to alcohol consumption. Animals genetically predisposed to be high drinkers show reduced sensitivity to the aversive effects of alcohol, and in some instances, increased sensitivity to alcohol's rewarding effects. The present studies tested the high drinking in the dark (HDID) selected lines, a genetic model of drinking to intoxication, to determine whether intake in these mice was genetically related to sensitivity to alcohol aversion or reward. Male HDID mice from the first and second replicate lines (HDID-1 and HDID-2, respectively) and mice from the heterogeneous progenitor control population (HS/Npt, or HS) were conditioned for a taste aversion to a salt solution using two doses of alcohol, and lithium chloride (LiCl) and saline controls. In separate experiments, male and female HDID-1, HDID-2 and HS mice were conditioned for place preference using alcohol. HDID mice were found to have an attenuated sensitivity to alcohol at a moderate (2?g/kg) dose compared to HS mice, but did not differ on conditioned taste aversion to a high (4?g/kg) dose or LiCl or saline injections. HDID and HS mice showed comparable development of alcohol-induced conditioned place preference. These results indicate that high blood alcohol levels after drinking in the HDID mice is genetically related to attenuated aversion to alcohol, while sensitivity to alcohol reward is not altered in these mice. Thus, HDID mice may find a moderate dose of alcohol to be less aversive than control mice and consequently may drink more because of this reduced aversive sensitivity. PMID:23910826

  7. Identification of highly active flocculant proteins in bovine blood

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Bovine blood is an excellent flocculating agent, faster acting and as effective on a mass basis as polyacrylamide, the most widely utilized polymeric flocculant. To determine the molecular basis of flocculation activity, whole bovine blood (BB) and BB plasma were fractionated by size exclusion chro...

  8. Blood donation behaviour and beliefs among a sample of high school students in Mmabatho.

    PubMed

    Mwaba, K; Keikelame, M J

    1995-08-01

    This study was aimed at establishing the extent of blood donation and beliefs about donating blood among high school students in Mmabatho. A random sample of 40 Standard 10 students (20 males, 20 females; mean age = 20.8 years) was selected to participate in the study. A structured questionnaire was used to determined blood donation behaviour and accompanying beliefs. The results showed that although 80 percent of the participants believed that donating blood was important only 17.5 percent had actually ever donated blood. The data also showed that donating blood was a health risk or were uncertain if donating blood was safe. It is recommended that public appeals for blood donors should include information to dispel myths about dangers of donating blood. PMID:8697521

  9. Identification of crucial yeast inhibitors in bio-ethanol and improvement of fermentation at high pH and high total solids.

    PubMed

    Huang, Hongzhi; Guo, Xinyan; Li, Dongmin; Liu, Mengmeng; Wu, Jiafang; Ren, Haiyu

    2011-08-01

    Compounds inhibitory to enzymatic hydrolysis and fermentation are generated from neutral steam exploded corn stover in the process of producing bio-ethanol. In this study, weak acids were identified as main yeast inhibitors, while phenols and aldehyde contribute to the inhibition to a lower degree. Main weak acids in hydrolysates are acetic acid and formic acid, for which critical levels for yeast inhibition are 6 and 4g/L, respectively. The inhibitory effect of these compounds can be greatly overcome by increasing pH of hydrolysates to 6.0-9.0, but there is a risk of bacterial contamination when fermenting at high pH. The relationship of pH, total solids of hydrolysates, fermentation and contamination was studied in detail. Results indicate that the contamination by bacteria when fermenting at high pH can be prevented effectively using hydrolysates with total solids of more than 20%. Meanwhile, ethanol yield is improved significantly. PMID:21624827

  10. Ethanol plant

    SciTech Connect

    Not Available

    1981-06-17

    It is reported that Alcogas' 400,000 gal/year ethanol plant at Ordway, Colorado has been put onstream. The plant can produce 190 proof ethanol from corn, milo, and watermelon which will then be refined to 200 proof and sold to petroleum distributors for use in gasohol.

  11. Red Blood Cell Dysfunction Induced by High-Fat Diet

    PubMed Central

    Unruh, Dusten; Srinivasan, Ramprasad; Benson, Tyler; Haigh, Stephen; Coyle, Danielle; Batra, Neil; Keil, Ryan; Sturm, Robert; Blanco, Victor; Palascak, Mary; Franco, Robert S.; Tong, Wilson; Chatterjee, Tapan; Hui, David Y.; Davidson, W. Sean; Aronow, Bruce J.; Kalfa, Theodosia; Manka, David; Peairs, Abigail; Blomkalns, Andra; Fulton, David J.; Brittain, Julia E.; Weintraub, Neal L.; Bogdanov, Vladimir Y.

    2015-01-01

    Background High-fat diet (HFD) promotes endothelial dysfunction and proinflammatory monocyte activation, which contribute to atherosclerosis in obesity. We investigated whether HFD also induces the dysfunction of red blood cells (RBCs), which serve as a reservoir for chemokines via binding to Duffy antigen receptor for chemokines (DARC). Methods and Results A 60% HFD for 12 weeks, which produced only minor changes in lipid profile in C57/BL6 mice, markedly augmented the levels of monocyte chemoattractant protein-1 bound to RBCs, which in turn stimulated macrophage migration through an endothelial monolayer. Levels of RBC-bound KC were also increased by HFD. These effects of HFD were abolished in DARC−/− mice. In RBCs from HFD-fed wild-type and DARC−/− mice, levels of membrane cholesterol and phosphatidylserine externalization were increased, fostering RBC-macrophage inflammatory interactions and promoting macrophage phagocytosis in vitro. When labeled ex vivo and injected into wild-type mice, RBCs from HFD-fed mice exhibited ≈3-fold increase in splenic uptake. Finally, RBCs from HFD-fed mice induced increased macrophage adhesion to the endothelium when they were incubated with isolated aortic segments, indicating endothelial activation. Conclusions RBC dysfunction, analogous to endothelial dysfunction, occurs early during diet-induced obesity and may serve as a mediator of atherosclerosis. These findings may have implications for the pathogenesis of atherosclerosis in obesity, a worldwide epidemic. PMID:26467254

  12. Dehydrate ethanol without distillation

    SciTech Connect

    Not Available

    1993-10-01

    Usina da Pedra (Serrana, state of Sao Paulo, Brazil) produces 60 million gal/yr of ethanol in 180 operating days. Until this year, the plant made 96 vol.% ethanol that is used as automotive fuel, and absolute ethanol (99.5 vol. %), which is blended with gasoline. Water is the remainder in both products. The ethanol is produced from the fermentation of sugar cane, and distilled with benzene. Benzene lowers the boiling point of the ethanol-water mixture and ties up the water. In May, Usina da Pedra installed a process that dehydrates ethanol by adsorption, not distillation. A vapor-phase process containing molecular sieves, handles throughputs as high as 160,000 acfh and has a maximum capacity of 70 million gal/yr. In addition to generating safer products, the energy savings gained by switching from distillation to adsorption are significant. The adsorptive system requires input of only 2,900 Btu per gallon of ethanol; one-third the energy consumed by distillation systems that employ benzene or cyclohexane.

  13. Ethanol production by engineered thermophiles.

    PubMed

    Olson, Daniel G; Sparling, Richard; Lynd, Lee R

    2015-06-01

    We compare a number of different strategies that have been pursued to engineer thermophilic microorganisms for increased ethanol production. Ethanol production from pyruvate can proceed via one of four pathways, which are named by the key pyruvate dissimilating enzyme: pyruvate decarboxylase (PDC), pyruvate dehydrogenase (PDH), pyruvate formate lyase (PFL), and pyruvate ferredoxin oxidoreductase (PFOR). For each of these pathways except PFL, we see examples where ethanol production has been engineered with a yield of >90% of the theoretical maximum. In each of these cases, this engineering was achieved mainly by modulating expression of native genes. We have not found an example where a thermophilic ethanol production pathway has been transferred to a non-ethanol-producing organism to produce ethanol at high yield. A key reason for the lack of transferability of ethanol production pathways is the current lack of understanding of the enzymes involved. PMID:25745810

  14. Bioinformatics Analyses Reveals Age-Specific Neuroimmune Modulation as a Target for Treatment of High Ethanol Drinking

    PubMed Central

    Agrawal, Rajiv G.; Owen, Julie A.; Levin, Patricia S.; Hewetson, Aveline; Berman, Ari. E.; Franklin, Scott R.; Hogue, Ryan J.; Chen, Yukun; Walz, Chris; Colvard, Benjamin D.; Nguyen, Jonathan; Velasquez, Oscar; Al-Hasan, Yazan; Blednov, Yuri A.; Fowler, Anna-Kate; Syapin, Peter J.; Bergeson, Susan E.

    2013-01-01

    Background Use of in silico bioinformatics analyses has led to important leads in the complex nature of alcoholism at the genomic, epigenomic, and proteomic level, but has not previously been successfully translated to the development of effective pharmacotherapies. In this study, a bioinformatics approach led to the discovery of neuroimmune pathways as an age-specific druggable target. Minocycline, a neuroimmune modulator, reduced high ethanol drinking in adult, but not adolescent, mice as predicted a priori. Methods Age and sex-divergent effects in alcohol consumption were quantified in FVB/NJ × C57BL/6J F1 mice given access to 20% alcohol using a 4 hr/day, 4-day Drinking-In-Dark (DID) paradigm. In silico bioinformatics pathway over-representation analysis for age-specific effects of alcohol in brain was performed using gene expression data collected in control and DID-treated, adolescent and adult, male mice. Minocycline (50 mg/kg i.p., once daily) or saline alone was tested for an effect on ethanol intake in the F1 and C57BL/6J (B6) mice across both age and gender groups. Effects of minocycline on the pharmacokinetic properties of alcohol were evaluated by comparing the rates of ethanol elimination between the saline and minocycline treated F1 and B6 mice. Results Age and gender differences in DID consumption were identified. Only males showed a clear developmental increase difference in drinking over time. In silico analyses revealed neuroimmune-related pathways as significantly over-represented in adult, but not adolescent, male mice. As predicted, minocycline treatment reduced drinking in adult, but not adolescent, mice. The age effect was present for both genders, and in both the F1 and B6 mice. Minocycline had no effect on the pharmacokinetic elimination of ethanol. Conclusions Our results are a proof of concept that bioinformatics analysis of brain gene expression can lead to the generation of new hypotheses and a positive translational outcome for individualized pharmacotherapeutic treatment of high alcohol consumption. PMID:24125126

  15. Ethanol injection is highly effective for hepatocellular carcinoma smaller than 2 cm

    PubMed Central

    Pompili, Maurizio; Nicolardi, Erica; Abbate, Valeria; Miele, Luca; Riccardi, Laura; Covino, Marcello; Matthaeis, Nicoletta De; Grieco, Antonio; Landolfi, Raffaele; Rapaccini, Gian Ludovico

    2011-01-01

    AIM: To analyze the long-term prognosis in a cohort of western cirrhotic patients with single hepatocellular carcinoma treated with ethanol injection. METHODS: One-hundred forty-eight patients with solitary hepatocellular carcinoma were enrolled. The tumor diameter was lower than 2 cm in 47 patients but larger in the remaining 101 patients. The impact of some pre-treatment clinical and laboratory parameters and of tumor recurrence on patients’ survival was assessed. RESULTS: Among the pre-treatment parameters, only a tumor diameter of less than 2 cm was an independent prognostic factor of survival. The occurrence of new nodules in other liver segments and the neoplastic portal invasion were linked to a poorer prognosis at univariate analysis. Patients with a single hepatocellular carcinoma smaller than 2 cm showed a better 5-year cumulative survival (73.0% vs 47.9%) (P = 0.009), 3-year local recurrence rate (29.1% vs 51.5%) (P = 0.011), and 5-year distant intrahepatic recurrence rate (52.9% vs 62.8%) (P = 0.054) compared to patients with a larger tumor. CONCLUSION: The 5-year survival rate of patients with single hepatocellular carcinoma < 2 cm undergoing ethanol injection is excellent and comparable to that achieved using radiofrequency ablation. PMID:21912455

  16. Modification of Corn Starch Ethanol Refinery to Efficiently Accept Various High-Impact Cellulosic Feedstocks

    SciTech Connect

    Derr, Dan

    2013-12-30

    The goal of the Corn-to-Cellulosic Migration (CCM) pilot facility was to demonstrate the implementation of advanced technologies and methods for conversion of non-food, cellulosic feedstocks into ethanol, assess the economics of the facility and evaluate potential environmental benefits for biomass to fuels conversion. The CCM project was comprised of design, build, and operate phases for the CCM pilot facility as well as research & development, and modeling components. The CCM pilot facility was designed to process 1 tonne per day of non-food biomass and biologically convert that biomass to ethanol at a rate of 70 gallons per tonne. The plant demonstrated throughputs in excess of 1 tonne per day for an extended run of 1400 hours. Although target yields were not fully achieved, the continuous operation validated the design and operability of the plant. These designs will permit the design of larger scale operations at existing corn milling operations or for greenfield plants. EdeniQ, a partner in the project and the owner of the pilot plant, continues to operate and evaluate other feedstocks.

  17. [How urgent is it to decrease high blood pressure?].

    PubMed

    Ardigo, S; Rutschmann, O; Waeber, B; Pechère-Bertschi, A

    2008-04-16

    Severe hypertension represents a frequent problem for the general practitioner. One has to decide if the blood pressure needs to be decreased immediately (hypertensive emergency), or if the blood pressure maybe progressively decreased in a few hours and normalized in a few days (hypertensive crisis). Thus it is crucial to identify on the basis of the clinical history and a careful physical examination, the patients for whom the arterial blood pressure elevation represents an acute danger for organ damage or a vital threat in the absence of immediate blood pressure control. In the case of hypertensive crisis, oral medication is usually sufficient (slow release or GITS nifedipine, nitroglycerin, labetalol, captopril). The hypertensive emergency sometimes requires an oral medication before the admission to the emergency room, then followed by intravenous drug administration (sodium nitroprussiate, nitroglycerin, labetalol). PMID:18551913

  18. High Blood Sugar May Increase Heart Attack Complications

    MedlinePlus

    ... organs," Richard Rainbow, a lecturer in cardiovascular cell physiology, said in a university news release. "This was ... experimental models we used in this study, including human blood vessels, increasing glucose to the levels that ...

  19. The body composition and lipid metabolic effects of long-term ethanol feeding during a high omega 6 polyunsaturated fatty acid diet in micropigs.

    PubMed

    Nakamura, M T; Tang, A B; Villanueva, J; Halsted, C H; Phinney, S D

    1993-10-01

    Our previous research with miniature pigs has shown that long-term ethanol feeding with a low-fat diet decreases arachidonic acid (20:4 omega 6) levels in multiple tissues, but we did not find significant liver pathology. In this study, we investigated the effect of ethanol feeding with high dietary linoleic acid (18:2 omega 6) on tissue fatty acid (FA) profiles and body composition. Five Yucatan micropigs were fed 370 kJ (89 kcal)/kg body weight of a diet containing ethanol and fat as 40% and 34% of energy, respectively; five control pigs were pair-fed corn starch in place of ethanol. Corn oil, 61% 18:2 omega 6, supplied most of the dietary fat. Liver biopsies were performed at baseline (n = 2 per group) and at three other time points (n = 5 per group). Phospholipid (PL) FA levels were measured by thin-layer and gas chromatography. Body composition was analyzed by underwater weighing of carcasses. Body composition analysis demonstrated a marked reduction of carcass fat in the ethanol group, but no significant reduction of carcass lean weight after 12 months. In liver PLs, the ethanol group showed decreased 20:4 omega 6 and docosahexaenoic acid (22:6 omega 3) after 1 month. While the decreased 20:4 omega 6 remained constant after 1 month, 22:6 omega 3 showed a progressive decrease up to 12-months, resulting in a continuous decrease of the omega 3/omega 6 FA ratio. This slowly progressive decrease in the omega 3/omega 6 ratio in liver PLs with ethanol feeding may have enhanced the inflammatory response in the liver, contributing to liver pathology. Body composition results indicate marked wasting of energy in the ethanol group. PMID:8412749

  20. Effect of dietary supplementation with unprocessed and ethanol-extracted apple pomaces on caecal fermentation, antioxidant and blood biomarkers in rats.

    PubMed

    Juśkiewicz, Jerzy; Zary-Sikorska, Ewa; Zduńczyk, Zenon; Król, Bogusław; Jarosławska, Julia; Jurgoński, Adam

    2012-04-01

    The present 4-week study on growing Wistar rats was aimed at assessing the potential advantages of dietary supplementation with apple pomace containing both fibre and polyphenols, which enables nutritional exploitation of the physiological traits of both compounds. A total of twenty-four rats, assigned to the control (C), group fed with a diet supplemented with 14% of processed apple pomace (A) and group fed with a diet supplemented with 15% unprocessed apple pomace (AP) groups, were fed the following iso-fibrous diets: control, ethanol-extracted and unprocessed apple pomaces (low and high level of dietary polyphenols, i.e. 0·002 and 0·018%, respectively). To measure the animal response, parameters describing the caecal fermentation, antioxidative status and lipoprotein profile of rats were assessed. Both dietary apple pomaces were found to significantly (P≤0·05) decrease caecal pH and ammonia concentration, microbial β-glucuronidase activity as well as to increase caecal SCFA concentration in comparison to the control diet. The unprocessed pomace did not suppress caecal fermentation. Unlike the extracted one, the dietary apple pomace rich in polyphenols significantly (P≤0·05 v. C group) increased erythrocyte superoxide dismutase activity and serum antioxidant capacity of lipid-soluble substances and significantly (P≤0·05 v. C group) decreased amounts of thiobarbituric acid-reactive substances in liver tissue. Moreover, the 4-week administration of the AP diet to rats evoked a significant decrease in serum glucose concentration (P≤0·05 v. C and A groups). In conclusion, the results demonstrated that the polyphenol-rich fibre complexes from apple pomace exerted positive effects on gastrointestinal physiology and antioxidant status of rats. PMID:21867578

  1. Process for producing ethanol

    SciTech Connect

    Lantero, O.J.; Fish, J.J.

    1993-07-27

    A process is described for producing ethanol from raw materials containing a high dry solid mash level having fermentable sugars or constituents which can be converted into sugars, comprising the steps of: (a) liquefaction of the raw materials in the presence of an alpha amylase to obtain liquefied mash; (b) saccharification of the liquefied mash in the presence of a glucoamylase to obtain hydrolysed starch and sugars; (c) fermentation of the hydrolysed starch and sugars by yeast to obtain ethanol; and (d) recovering the obtained ethanol, wherein an acid fungal protease is introduced to the liquefied mash during the saccharification and/or to the hydrolysed starch and sugars during the fermentation, thereby increasing the rate of production of ethanol as compared to a substantially similar process conducted without the introduction of the protease.

  2. Ethanol production from Jerusalem artichoke tubers at high temperature by newly isolated thermotolerant inulin-utilizing yeast Kluyveromyces marxianus using consolidated bioprocessing.

    PubMed

    Charoensopharat, Kanlayani; Thanonkeo, Pornthap; Thanonkeo, Sudarat; Yamada, Mamoru

    2015-07-01

    Thermotolerant inulin-utilizing yeast strains were successfully isolated in this study. Among the isolated strains, Kluyveromyces marxianus DBKKU Y-102 was found to be the most effective strain for direct ethanol fermentation at high temperature from fresh Jerusalem artichoke (JA) tubers without inulin hydrolysis under consolidated bioprocessing (CBP). The maximum ethanol concentrations produced by this strain under the optimum culture conditions were 104.83 and 97.46 g L(-1) at 37 and 40 °C, respectively. Data from this study clearly demonstrated that the use of thermotolerant inulin-utilizing yeast K. marxianus for ethanol production from fresh JA tubers in the CBP process not only provided high levels of ethanol, but also could eliminate the addition of external enzyme for inulin hydrolysis, which might lead to the reduction of operating costs. The expression of genes involved in carbohydrate metabolism in K. marxianus DBKKU Y-102 during ethanol fermentation was investigated by real-time RT-PCR, and the results revealed that expression levels were distinctive depending on the growth phase and growth conditions. However, among the genes tested, adh4 and tdh2 were highly expressed under high temperature conditions in both exponential- and stationary-growth phases, suggesting that these genes might play a crucial role in acquiring thermotolerance ability in this organism under stress conditions. PMID:25980834

  3. Amorphous CoSn alloys decorated by Pt as high efficiency electrocatalysts for ethanol oxidation

    NASA Astrophysics Data System (ADS)

    Wang, Hui; Zhang, Xiangtai; Wang, Rongfang; Ji, Shan; Wang, Wei; Wang, Qizhao; Lei, Ziqiang

    2011-10-01

    This study examines the electro-catalytic behaviour of Pt decorating amorphous alloys in the electro-oxidation of ethanol. Pt decorated CoSn nanoparticles on carbon (denoted as Pt-CoSn/C) are prepared using a two-stage chemical synthesis (sol-gel preparation and Steady-state replacement method). The structure of Pt-CoSn/C nanoparticles is confirmed by the transmission electron microscopy (TEM) and X-ray diffraction (XRD). Under the same quantity of platinum, the Pt-CoSn/C nanoparticles have higher activity in alcohol oxidation than the Pt/C, PtRu/C and PtSn/C nanoparticles in cyclic voltammetry tests. The structure of Pt decorating amorphous CoSn alloys notably decreases the usage of Pt and enhances its catalytic activity at the same time.

  4. [Effects of dilution rates on the oscillatory behaviors of a very high gravity continuous ethanol fermentation system].

    PubMed

    Luo, Xin-Peng; Chen, Li-Jie; Wang, Fang; Bai, Feng-Wu

    2005-07-01

    Continuous ethanol fermentation using very high gravity medium containing 280 g/L glucose, 5 g/L yeast extract and 3 g/L peptone was run at the dilute rates of 0.006 h(-1), 0.012 h(-1), 0.017 h(-1), 0.024 h(-1) and 0.032 h(-1) (based on the total working volume) in a combined bioreactor system composed of a stirred tank and three-stage tubular bioreactors in series. Oscillations marked by big fluctuations of residual glucose, ethanol and biomass were observed at the dilution rate of 0.012 h(-1). The Hopf Bifurcation theory was used to analyze and predict the occurring of these oscillations and the dilution rates that incited oscillations. Theoretical analysis revealed that oscillations can occur at designated specific growth rates and was validated by experimental results. The benefits of oscillations for the fermentation system were also discussed by comparing the fermentation results with those without oscillations. PMID:16176100

  5. DMR (deacetylation and mechanical refining) processing of corn stover achieves high monomeric sugar concentrations (230 g L-1) during enzymatic hydrolysis and high ethanol concentrations (>10% v/v) during fermentation without hydrolysate purification or concentration

    DOE PAGESBeta

    Chen, Xiaowen; Kuhn, Erik; Jennings, Edward W.; Nelson, Robert; Tao, Ling; Zhang, Min; Tucker, Melvin P.

    2016-04-01

    Distilling and purifying ethanol and other products from second generation lignocellulosic biorefineries adds significant capital and operating costs to biofuel production. The energy usage associated with distillation negatively affects plant gate costs and causes environmental and life-cycle impacts, and the lower titers in fermentation caused by lower sugar concentrations from pretreatment and enzymatic hydrolysis increase energy and water usage and ethanol production costs. In addition, lower ethanol titers increase the volumes required for enzymatic hydrolysis and fermentation vessels increase capital expenditure (CAPEX). Therefore, increasing biofuel titers has been a research focus in renewable biofuel production for several decades. In thismore » work, we achieved approximately 230 g L-1 of monomeric sugars after high solid enzymatic hydrolysis using deacetylation and mechanical refining (DMR) processed corn stover substrates produced at the 100 kg per day scale. The high sugar concentrations and low chemical inhibitor concentrations achieved by the DMR process allowed fermentation to ethanol with titers as high as 86 g L-1, which translates into approximately 10.9% v/v ethanol. To our knowledge, this is the first time that titers greater than 10% v/v ethanol in fermentations derived from corn stover without any sugar concentration or purification steps have been reported. As a result, the potential cost savings from high sugar and ethanol titers achieved by the DMR process are also reported using TEA analysis.« less

  6. Influence of fiber degradation and concentration of fermentable sugars on simultaneous saccharification and fermentation of high-solids spruce slurry to ethanol

    PubMed Central

    2013-01-01

    Background Saccharification and fermentation of pretreated lignocellulosic materials, such as spruce, should be performed at high solids contents in order to reduce the cost of the produced bioethanol. However, this has been shown to result in reduced ethanol yields or a complete lack of ethanol production. Previous studies have shown inconsistent results when prehydrolysis is performed at a higher temperature prior to the simultaneous saccharification and fermentation (SSF) of steam-pretreated lignocellulosic materials. In some cases, a significant increase in overall ethanol yield was reported, while in others, a slight decrease in ethanol yield was observed. In order to investigate the influence of prehydrolysis on high-solids SSF of steam-pretreated spruce slurry, in the present study, the presence of fibers and inhibitors, degree of fiber degradation and initial fermentable sugar concentration has been studied. Results SSF of whole steam-pretreated spruce slurry at a solids content of 13.7% water-insoluble solids (WIS) resulted in a very low overall ethanol yield, mostly due to poor fermentation. The yeast was, however, able to ferment the washed slurry and the liquid fraction of the pretreated slurry. Performing prehydrolysis at 48°C for 22 hours prior to SSF of the whole pretreated slurry increased the overall ethanol yield from 3.9 to 62.1%. The initial concentration of fermentable sugars in SSF could not explain the increase in ethanol yield in SSF with prehydrolysis. Although the viscosity of the material did not appear to decrease significantly during prehydrolysis, the degradation of the fibers prior to the addition of the yeast had a positive effect on ethanol yield when using whole steam-pretreated spruce slurry. Conclusions The results of the present study suggest that the increase in ethanol yield from SSF when performing prehydrolysis is a result of fiber degradation rather than a decrease in viscosity. The increased concentration of fermentable sugars at the beginning of the fermentation phase in SSF following prehydrolysis did not affect the overall ethanol yield in the present study. PMID:24103097

  7. Intermittent ethanol access schedule in rats as a preclinical model of alcohol abuse

    PubMed Central

    Carnicella, Sebastien; Ron, Dorit; Barak, Segev

    2014-01-01

    One of the major challenges in preclinical studies of alcohol abuse and dependence remains the development of paradigms that will elicit high ethanol intake and mimic the progressive transition from low or moderate social drinking to excessive alcohol consumption. Exposure of outbred rats to repeated cycles of free-choice ethanol intake and withdrawal with the use of intermittent access to 20% ethanol in a 2-bottle choice procedure (IA2BC) has been shown to induce a gradual escalation of voluntary ethanol intake and preference, eventually reaching ethanol consumption levels of 5–6 g/kg/24 h, and inducing pharmacologically relevant blood ethanol concentrations (BECs). This procedure has recently been gaining popularity due to its simplicity, high validity, and reliable outcomes. Here we review experimental and methodological data related to IA2BC, and discuss the usefulness and advantages of this procedure as a valuable pre-training method for initiating operant ethanol self-administration of high ethanol intake, as well as conditioned place preference (CPP). Despite some limitations, we provide evidence that IA2BC and related operant procedures provide the possibility to operationalize multiple aspects of alcohol abuse and addiction in a rat model, including transition from social-like drinking to excessive alcohol consumption, binge drinking, alcohol seeking, relapse, and neuroadaptations related to excessive alcohol intake. Hence, IA2BC appears to be a useful and relevant procedure for preclinical evaluation of potential therapeutic approaches against alcohol abuse disorders. PMID:24721195

  8. Upregulation of cardiac NOS due to endotoxemia and vagal overactivity contributes to the hypotensive effect of chronic ethanol in female rats.

    PubMed

    El-Mas, Mahmoud M; Fan, Ming; Abdel-Rahman, Abdel A

    2011-01-10

    We previously reported that chronic ethanol lowers blood pressure in female rats. In this study, hemodynamic, biochemical, and immunoblot analyses were performed to investigate: (i) the roles of cardiac contractility and autonomic activity in the hypotensive action of ethanol, and (ii) whether endotoxemia-induced upregulation of cardiac and/or vascular nitric oxide synthase (NOS) isoforms underlies the hypotensive and cardiac effects of ethanol. Telemetric monitoring of blood pressure, heart rate, and myocardial contractility (dP/dt(max)) was performed in female rats receiving liquid diet with or without ethanol (5% w/v, 13weeks). Autonomic control was assessed by frequency domain analysis of interbeat intervals (IBI) and systolic blood pressure (SBP). Compared with pair-fed controls, ethanol caused sustained reductions in blood pressure, heart rate, and+dP/dt(max). Ethanol feeding increased the spectral power of high-frequency band (IBI(HF), 0.75-3Hz) and decreased the low-frequency band (IBI(LF), 0.25-0.75Hz) and IBI(LF/HF) ratio, suggesting increased cardiac parasympathetic dominance. In contrast, vascular tone was not affected by ethanol because SBP spectral bands and plasma norepinephrine remained unchanged. Myocardial expressions of eNOS and its upstream regulators, phosphatidylinositol 3-kinase (PI3K) and Akt, and plasma endotoxin and nitrite/nitrate were increased by ethanol. Myocardial iNOS was also increased by ethanol whereas nNOS remained unchanged and aortic levels of all NOS isoforms were not altered by ethanol. These findings suggest that facilitation of myocardial PI3K/Akt/eNOS and iNOS pathways, due possibly to ethanol-induced endotoxemia and/or increased cardiac parasympathetic dominance, might constitute a cellular mechanism for the reduced myocardial contractility and hypotension caused by ethanol in female rats. PMID:20970417

  9. Upregulation of cardiac NOS due to endotoxemia and vagal overactivity contribute to the hypotensive effect of chronic ethanol in female rats

    PubMed Central

    El-Mas, Mahmoud M.; Fan, Ming; Abdel-Rahman, Abdel A.

    2010-01-01

    We previously reported that chronic ethanol lowers blood pressure in female rats. In this study, hemodynamic, biochemical, and immunoblot analyses were performed to investigate: (i) the roles of cardiac contractility and autonomic activity in the hypotensive action of ethanol, and (ii) whether endotoxemia-induced upregulation of cardiac and/or vascular nitric oxide synthase (NOS) isoforms underlies the hypotensive and cardiac effects of ethanol. Telemetric monitoring of blood pressure, heart rate, and myocardial contractility (dP/dtmax) was performed in female rats receiving liquid diet with or without ethanol (5% w/v, 13 weeks). Autonomic control was assessed by frequency domain analysis of interbeat intervals (IBI) and systolic blood pressure (SBP). Compared with pair-fed controls, ethanol caused sustained reductions in blood pressure, heart rate, and +dP/dtmax. Ethanol feeding increased the spectral power of high-frequency band (IBIHF, 0.75–3 Hz) and decreased the low-frequency band (IBILF, 0.25–0.75 Hz) and IBILF/HF ratio, suggesting increased cardiac parasympathetic dominance. In contrast, vascular tone was not affected by ethanol because SBP spectral bands and plasma norepinephrine remained unchanged. Myocardial expressions of eNOS and its upstream regulators, phosphatidylinositol 3-kinase(PI3K) and Akt, and plasma endotoxin and nitrite/nitrate were increased by ethanol. Myocardial iNOS was also increased by ethanol whereas nNOS remained unchanged and aortic levels of all NOS isoforms were not altered by ethanol. These findings suggest that facilitation of myocardial PI3K/Akt/eNOS and iNOS pathways, due possibly to ethanol-induced endotoxemia and/or increased cardiac parasympathetic dominance, might constitute a cellular mechanism for the reduced myocardial contractility and hypotension caused by ethanol in female rats. PMID:20970417

  10. High resolution of honey bee (Apis mellifera) venom peptides by propionic acid/urea polyacrylamide gel electrophoresis after ethanol precipitation.

    PubMed

    Chettibi, S; Lawrence, A

    1989-01-01

    A new and simple gel electrophoretic method is described which enables the protein and polypeptide components of bee venom to be resolved on a single gel. The electrophoretic method allows octapeptides to be resolved and species as small as decapeptides can be detected at high sensitivity using the Coomassie blue staining method without prior fixation. This has been achieved by replacing acetic acid by propionic acid in acid/urea polyacrylamide gels and by controlling the amount of TEMED catalyst for the polymerisation of high concentration gels in order to obtain a low effective pore size. We demonstrated the value of ethanol precipitation as a rapid and efficient desalting the fractionation technique and propose that it could be used in combination with gel filtration to purify many of the peptides to homogeneity. PMID:2781578

  11. A Mixture of Ethanol Extracts of Persimmon Leaf and Citrus junos Sieb Improves Blood Coagulation Parameters and Ameliorates Lipid Metabolism Disturbances Caused by Diet-Induced Obesity in C57BL/6J Mice.

    PubMed

    Kim, Ae Hyang; Kim, Hye Jin; Ryu, Ri; Han, Hye Jin; Han, Young Ji; Lee, Mi-Kyung; Choi, Myung-Sook; Park, Yong Bok

    2016-02-28

    This study investigated the effects of a flavonoid-rich ethanol extract of persimmon leaf (PL), an ethanol extract of Citrus junos Sieb (CJS), and a PL-CJS mixture (MPC) on mice fed a highfat diet (HFD). We sought to elucidate the mechanisms of biological activity of these substances using measurements of blood coagulation indices and lipid metabolism parameters. C57BL/6J mice were fed a HFD with PL (0.5% (w/w)), CJS (0.1% (w/w)), or MPC (PL 0.5%, CJS 0.1% (w/w)) for 10 weeks. In comparison with data obtained for mice in the untreated HFD group, consumption of MPC remarkably prolonged the activated partial thromboplastin time (aPTT) and prothrombin time (PT), whereas exposure to PL prolonged aPTT only. Lower levels of plasma total cholesterol, hepatic cholesterol, and erythrocyte thiobarbituric acid-reactive substances, hepatic HMG-CoA reductase, and decreased SREBP-1c gene expression were observed in mice that received PL and MPC supplements compared with the respective values detected in the untreated HFD animals. Our results indicate that PL and MPC may have beneficial effects on blood circulation and lipid metabolism in obese mice. PMID:26699754

  12. High blood pressure--current state of play.

    PubMed

    Shaw, J

    1993-05-01

    Blood pressure is well recognised and well treated in Australia; nevertheless, a number of problem areas still exist. The author looks at the management of hypertension in the elderly, factors affecting choice of drug and the place of cost-benefit analysis in choosing a drug for treatment of hypertension. PMID:8517812

  13. Ethanol induced modification of m-xylene toxicokinetics in humans.

    PubMed Central

    Tardif, R; Sato, A; Laparé, S; Brodeur, J

    1994-01-01

    This study was undertaken to determine whether previous subacute treatment with ethanol could modify the kinetics of m-xylene in humans. A group of six volunteers was exposed twice to either 100 or 400 ppm of m-xylene during two hours (between 0800 and 1000). Ethanol was given orally in the early evening on each of two consecutive days before exposures (total ethanol intake of 137 g). Such ethanol pretreatment affected the kinetics of m-xylene but only at the high exposure (400 ppm). The modifications were: (1) decreased concentration of m-xylene in blood and alveolar air during and after exposure; (2) increased urinary excretion of m-methylhippuric acid at the end of exposure. Ethanol treatment also enhanced the elimination of antipyrine in saliva. Overall, this study showed that the effect of enzyme induction on the metabolism of m-xylene, after ethanol ingestion, depends on the exposure concentration and is not likely to occur as long as the exposure concentrations remain under the current maximum allowable concentration (100 ppm) in the workplace. PMID:8130847

  14. High-Resolution Crystal Structures Elucidate the Molecular Basis of Cholera Blood Group Dependence

    PubMed Central

    Heggelund, Julie Elisabeth; Burschowsky, Daniel; Bjørnestad, Victoria Ariel; Hodnik, Vesna; Anderluh, Gregor; Krengel, Ute

    2016-01-01

    Cholera is the prime example of blood-group-dependent diseases, with individuals of blood group O experiencing the most severe symptoms. The cholera toxin is the main suspect to cause this relationship. We report the high-resolution crystal structures (1.1–1.6 Å) of the native cholera toxin B-pentamer for both classical and El Tor biotypes, in complexes with relevant blood group determinants and a fragment of its primary receptor, the GM1 ganglioside. The blood group A determinant binds in the opposite orientation compared to previously published structures of the cholera toxin, whereas the blood group H determinant, characteristic of blood group O, binds in both orientations. H-determinants bind with higher affinity than A-determinants, as shown by surface plasmon resonance. Together, these findings suggest why blood group O is a risk factor for severe cholera. PMID:27082955

  15. Identification of RCN1 and RSA3 as ethanol-tolerant genes in Saccharomyces cerevisiae using a high copy barcoded library.

    PubMed

    Anderson, Michael J; Barker, Sarah L; Boone, Charlie; Measday, Vivien

    2012-02-01

    Saccharomyces cerevisiae (S.cerevisiae) encounters a multitude of stresses during industrial processes such as wine fermentation including ethanol toxicity. High levels of ethanol reduce the viability of yeast and may prevent completion of fermentation. The identification of ethanol-tolerant genes is important for creating stress-resistant industrial yeast, and S.cerevisiae genomic resources have been utilized for this purpose. We have employed a molecular barcoded yeast open reading frame (MoBY-ORF) high copy plasmid library to identify ethanol-tolerant genes in both the S.cerevisiae S288C laboratory and M2 wine strains. We find that increased dosage of either RCN1 or RSA3 improves tolerance of S288C and M2 to toxic levels of ethanol. RCN1 is a regulator of calcineurin, whereas RSA3 has a role in ribosome maturation. Additional fitness advantages conferred upon overproduction of RCN1 and RSA3 include increased resistance to cell wall degradation, heat, osmotic and oxidative stress. We find that the M2 wine yeast strain is generally more tolerant of stress than S288C with the exception of translation inhibition, which affects M2 growth more severely than S288C. We conclude that regulation of ribosome biogenesis and ultimately translation is a critical factor for S.cerevisiae survival during industrial-related environmental stress. PMID:22093065

  16. Effects of Saccharomyces cerevisiae cell wall extract and poplar propolis ethanol extract supplementation on growth performance, digestibility, blood profile, fecal microbiota and fecal noxious gas emissions in growing pigs.

    PubMed

    Li, Jian; Kim, In H

    2014-06-01

    A total of 105 growing pigs (24.91 ± 1.06 kg) were used in a 6-week trial to investigate the effects of including Saccharomyces cerevisiae cell wall extract and poplar propolis ethanol extract (SPE) in the diet on growth performance, digestibility, blood profiles, fecal microbiota and fecal noxious gas emissions. Pigs were randomly allocated to one of three dietary treatments (seven pens/treatment, five pigs/pen) according to initial body weight and sex (two gilts and three barrows). Treatments consisted of a corn soybean meal basal diet supplemented with 0, 0.05 or 0.10% SPE. There was a significant linear improvement (P < 0.05) in average daily gain, gain/feed, the apparent total tract digestibility of dry matter, nitrogen, and gross energy, blood lymphocyte percentage, immunoglobulin G concentration, fecal Escherichia coli and Lactobacillus counts as well as fecal NH3 and H2 S emissions associated with the inclusion of SPE in the diet. Average daily feed intake, red blood cells and white blood cells concentration were not significantly (P > 0.05) affected by SPE supplementation in the diets. In conclusion, results indicate that dietary SPE supplementation can improve growth performance, digestibility and fecal microbiota, and decrease fecal gas emissions in growing pigs. PMID:24725201

  17. Relation between ethanol induced changes in plasma catecholines during stress and voluntary ethanol preference

    SciTech Connect

    Pashko, S.

    1986-03-01

    N/NIH rats (N = 10) were implanted with venous catheters to permit stressless chronic, repeated blood withdrawal. Following surgical recovery, the rats were restrained to a lab counter top for 30 min after injection with saline or low dose (0.5 g/kg) ethanol. Blood was repeatedly withdrawn to determine AUC production of NE and E to assess the effect that low dose ethanol has on stress responsiveness. Between saline injection restraint and ethanol injection restraint conditions no differences in NE or E AUC were apparent. A 2- bottle preference test for ethanol was then performed over 21 days. Multiple regression analyses of NE saline restraint and ethanol restraint could predict ethanol consumption to the p = .02 level with R/sup 2/ = .681. Multiple regressions of E saline restraint and E ethanol restraint could predict ethanol consumption to the p = .01 level with R/sup 2/ = .746. These data suggest that ethanol induced increases in plasma NE and E during stress can predict later voluntary ethanol consumption between the ranges of .13 and 1.05 g ethanol/kg/day. This data seems to be more in line with an arousal or withdrawal relationship between ethanol consumption and stress than by a simple tension reduction formulation based on plasma NE or E.

  18. [Selenium determination in blood plasma samples of high performance athletes].

    PubMed

    Logemann, E; Krützfeldt, B; Rokitzki, L

    1989-01-01

    Cooperating with the department "Sport- und Leistungsmedizin" of the university hospital of Freiburg/Brsg. we investigated the problem whether endurance stress leads to a significant change in the selenium blood concentration of athletes. We took blood samples of 13 test persons (11 men, 2 women) before, immediately after and 2 hours following a marathon course. The analyses of the concentration of selenium in plasma were performed by atomic absorption spectrometry AAS (molybdenum-coated graphite tube technique with L'vov platform as well as matrix modification with nickel nitrate in order to thermally stabilize the selenium). The selenium level of the plasma samples ranged between 41 and 153 micrograms/L. Our experiments have shown that running a marathon course does not lead to significant changes in the standard selenium plasma concentrations of the athletes. PMID:2818554

  19. Direct evidence of induction of interdigitated gel structure in large unilamellar vesicles of dipalmitoylphosphatidylcholine by ethanol: studies by excimer method and high-resolution electron cryomicroscopy.

    PubMed Central

    Yamazaki, M.; Miyazu, M.; Asano, T.; Yuba, A.; Kume, N.

    1994-01-01

    Interaction of large unilamellar vesicle (LUV) of dipalmitoylphosphatidylcholine (DPPC) with ethanol was investigated by the excimer method developed by Yamazaki et al. (Yamazaki, M., M. Miyazu, and T. Asano. 1992. Biochim. Biophys. Acta. 1106:94-98) and the high-resolution electron cryomicroscope with a new cryostage (top-entry superfluid stage) (HiRECM) developed by Fujiyoshi, Y. et al. (Fujiyoshi, Y., T. Mizusaki, K. Morikawa, H. Aoki, H. Kihara, and Y. Harada. 1991. Ultramicroscopy. 38:241-251). The excimer method is based on the fact that the ratio of excimer to monomer fluorescence intensity (E/M) of pyrene PC is lowered in the membrane in the interdigitated gel structure (L beta I), because structural restriction of L beta I structure largely decreases collisions of pyrene rings of the pyrene PCs in the membrane. E/M of pyrene PC in DPPC LUV decreased largely at high concentrations of ethanol, which indicated the induction of L beta I structures in DPPC LUV. Frozen-hydrated DPPC LUVs in a vitreous ice were observed at 4K with HiRECM, and these images were characterized by a pair of concentric circles. The membrane thickness of DPPC LUV which was estimated from the distance between the two concentric lines decreased largely at high concentration of ethanol. The mean value of membrane thickness of the LUV in the absence of ethanol was 3.8 nm, while at 15% (w/v) ethanol was 3.0 nm. These values were almost same as those obtained from the electron density profile of DPPC MLV by the x-ray diffraction analysis in each structures, L beta' and L beta I structures, respectively. These results indicated directly the induction of L beta 1 structure in DPPC LUV at high concentration of ethanol. Images FIGURE 2 PMID:8011904

  20. False-high blood salicylate levels in neonates with hyperbilirubinemia.

    PubMed

    Berkovitch, M; Uziel, Y; Greenberg, R; Chen-Levy, Z; Arcusin, M; Marcus, O; Pinto, O; Evans, S; Matias, A; Lahat, E

    2000-12-01

    Drug assays may yield false-positive results caused by cross-reacting compounds. After finding a serum salicylate concentration of 81 microg/mL by using Trinder's colorimetric method, in a comatose child admitted to the authors' pediatric intensive care unit, in the absence of reported salicylate intake, the authors aimed to compare this situation with the phenomenon involving endogenous digoxin-like substances, which cross-react with the routine assay of digoxin. None of the participants in the study had been exposed to salicylate. Salicylate concentration was measured in all patients using Trinder's colorimetric method and in the second stage of the study also by AxSYM salicylate assay. Salicylate concentration using Trinder's method was 18 +/- 25 (4-81) microg/mL among nine seriously ill children in the pediatric intensive care unit, of whom two children with extensive burns had salicylate levels of 30 and 81 microg/mL, respectively. Salicylate concentrations were 107 +/- 24 (45-143) microg/mL and 60 +/- 25 (28-92) microg/mL, among 18 premature newborns and 18 term newborns, with hyperbilirubinemia, respectively. In the second stage, which involved 22 jaundiced term newborns and cord blood from 21 pregnant women, Trinder's method yielded elevated salicylate blood levels among the hyperbilirubinemic infants: 82 +/- 5 (73-89) microg/mL; however, the AxSYM assay yielded significantly lower blood levels: 2.5 +/- 3.4 (0-10.9) microg/mL (P < 0.0001). Among the pregnant women, salicylate cord blood levels were found to be low-within the limit error of the assay with both assay methods. In conclusion, when salicylate intoxication is suspected, particularly during the neonatal period, it is advisable to measure salicylate levels by immunoassay technology. PMID:11128247

  1. Effect of natural and synthetic polyamines on ethanol intake in UChB drinker rats.

    PubMed

    Bilbeny, Norberto; Contreras, Selfa; Font, María; Paeile, Carlos; García, Hernán

    2005-07-01

    Because of the important glutamatergic mediation of the behavioral effects of ethanol, glutamatergic agents have attracted attention for the treatment of ethanol abuse and dependence in preclinical and clinical studies. In the present study, we investigated the effect of pharmacological doses of the natural polyamines putrescine, spermine, and spermidine and the synthetic polyamine N,N'-bis-(3-aminopropyl)cyclohexane-1,4-diamine (DCD) on alcohol consumption in a free-choice paradigm carried out in genetically high-ethanol-consumer UChB rats. Short 3-day treatment with either polyamine, administered p.o., significantly reduced ethanol intake without modifying water and food intakes. Neither polyamine was able to increase markedly blood acetaldehyde in rats submitted to a standard challenge dose of ethanol, to rule out a disulfiram-like effect. Besides, blood ethanol disappearance after a test dose of ethanol was not affected by the synthetic polyamine DCD. Long-term treatment with DCD dose-dependently reduced ethanol intake in UChB rats without producing any observable effect on overt behavior, food consumption, and total fluid intake. The present results indicate that pharmacological doses of polyamines can reduce ethanol consumption in genetically drinking rats without producing significant side effects, suggesting that modulation of brain N-methyl-d-aspartate receptors by polyamines could represent a suitable strategy to reduce appetite for ethanol. However, caution must be exercised in interpreting the results because polyamines can also affect neuronal excitability by acting at other receptor targets, such as AMPA and kainate receptors, as well as at some voltage-dependent ion channels. PMID:16377458

  2. Ethanol-metabolizing pathways in deermice. Estimation of flux calculated from isotope effects

    SciTech Connect

    Alderman, J.; Takagi, T.; Lieber, C.S.

    1987-06-05

    The apparent deuterium isotope effects on Vmax/Km (D(V/K) of ethanol oxidation in two deermouse strains (one having and one lacking hepatic alcohol dehydrogenase (ADH) were used to calculate flux through the ADH, microsomal ethanol-oxidizing system (MEOS), and catalase pathways. In vitro, D(V/K) values were 3.22 for ADH, 1.13 for MEOS, and 1.83 for catalase under physiological conditions of pH, temperature, and ionic strength. In vivo, in deermice lacking ADH (ADH-), D(V/K) was 1.20 +/- 0.09 (mean +/- S.E.) at 7.0 +/- 0.5 mM blood ethanol and 1.08 +/- 0.10 at 57.8 +/- 10.2 mM blood ethanol, consistent with ethanol oxidation principally by MEOS. Pretreatment of ADH- animals with the catalase inhibitor 3-amino-1,2,4-triazole did not significantly change D(V/K). ADH+ deermice exhibited D(V/K) values of 1.87 +/- 0.06 (untreated), 1.71 +/- 0.13 (pretreated with 3-amino-1,2,4-triazole), and 1.24 +/- 0.13 (after the ADH inhibitor, 4-methylpyrazole) at 5-7 mM blood ethanol levels. At elevated blood ethanol concentrations (58.1 +/- 2.4 mM), a D(V/K) of 1.37 +/- 0.21 was measured in the ADH+ strain. For measured D(V/K) values to accurately reflect pathway contributions, initial reaction conditions are essential. These were shown to exist by the following criteria: negligible fractional conversion of substrate to product and no measurable back reaction in deermice having a reversible enzyme (ADH). Thus, calculations from D(V/K) indicate that, even when ADH is present, non-ADH pathways (mostly MEOS) participate significantly in ethanol metabolism at all concentrations tested and play a major role at high levels.

  3. Ethanol induces second-order aversive conditioning in adolescent and adult rats

    PubMed Central

    Pautassi, Ricardo Marcos; Myers, Mallory; Spear, Linda Patia; Molina, Juan Carlos; Spear, Norman E.

    2011-01-01

    Alcohol abuse and dependence is considered a developmental disorder with etiological onset during late childhood and adolescence, and understanding age-related differences in ethanol sensitivity is important. Low to moderate ethanol doses (0.5 and 2.0 g/kg, i.g.) induce single-trial, appetitive second-order place conditioning (SOC) in adolescent, but not adult, rats. Recent studies have demonstrated that adolescents may be less sensitive than adults to the aversive properties of ethanol, reflected by conditioned taste aversion. The present study assessed the aversive motivational effects of high-dose ethanol (3.0 and 3.25 g/kg, i.g., for adolescent and adults, respectively) using SOC. These doses were derived from Experiment 1, which found similar blood and brain ethanol levels in adolescent and adult rats given 3.0 and 3.25 g/kg ethanol, respectively. In Experiment 2, animals received ethanol or vehicle paired with intraoral pulses of sucrose (conditioned stimulus 1 [CS1]). After one, two, or three conditioning trials, rats were presented with the CS1 while in a distinctive chamber (CS2). When tested for CS2 preference, ethanol-treated animals exhibited reduced preference for the CS2 compared with controls. This result, indicative of ethanol-mediated aversive place conditioning, was similar for adolescents and adults, for females and males, and after one, two, or three training trials. One finding, however, suggested that adolescents were less sensitive than adults to ethanol’s aversive effects at the intermediate level of training. In conjunction with previous results, the present study showed that in adolescent rats subjected to SOC, ethanol’s hedonic effects vary from appetitive to aversive as the ethanol dose increases. Adolescent and adult animals appear to perceive the post-ingestive effects of high-dose ethanol as similarly aversive when assessed by SOC. PMID:21187242

  4. Mechanisms of Ethanol Tolerance in Saccharomyces cerevisiae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Saccharomyces cerevisiae is a superb ethanol producer, yet is also sensitive to higher ethanol concentrations especially under high gravity or very high gravity fermentation conditions. Ethanol tolerance is associated with interplay of complex networks at the genome level. Although significant eff...

  5. Automated High Throughput GMAX-L Strains of Saccharomyces Cereviciae for Profitable Cellulosic Ethanol Production from Industrial Hydrosylates

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Current ethanol dry grind and wet mill processes for fuel ethanol production from starch, yield substantial amounts of corn oil as one of the byproducts. This crude corn oil is a suitable feedstock for the production of fatty acid ethyl esters for use as biodiesel, which could be produced on-site. ...

  6. Exposure of rats to a high but not low dose of ethanol during early postnatal life increases the rate of loss of optic nerve axons and decreases the rate of myelination

    PubMed Central

    HARRIS, SIMON J.; WILCE, PETER; BEDI, KULDIP S.

    2000-01-01

    Visual system abnormalities are commonly encountered in the fetal alcohol syndrome although the level of exposure at which they become manifest is uncertain. In this study we have examined the effects of either low (ETLD) or high dose (ETHD) ethanol, given between postnatal days 4–9, on the axons of the rat optic nerve. Rats were exposed to ethanol vapour in a special chamber for a period of 3 h per day during the treatment period. The blood alcohol concentration in the ETLD animals averaged ∼ 171 mg/dl and in the ETHD animals ∼ 430 mg/dl at the end of the treatment on any given day. Groups of 10 and 30-d-old mother-reared control (MRC), separation control (SC), ETLD and ETHD rats were anaesthetised with an intraperitoneal injection of ketamine and xylazine, and killed by intracardiac perfusion with phosphate-buffered glutaraldehyde. In the 10-d-old rat optic nerves there was a total of ∼ 145000–165000 axons in MRC, SC and ETLD animals. About 4% of these fibres were myelinated. The differences between these groups were not statistically significant. However, the 10-d-old ETHD animals had only about 75000 optic nerve axons (P < 0.05) of which about 2.8% were myelinated. By 30 d of age there was a total of between 75000–90000 optic nerve axons, irrespective of the group examined. The proportion of axons which were myelinated at this age was still significantly lower (P < 0.001) in the ETHD animals (∼ 77%) than in the other groups (about 98%). It is concluded that the normal stages of development and maturation of the rat optic nerve axons, as assessed in this study, can be severely compromised by exposure to a relatively high (but not low) dose of ethanol between postnatal d 4 and 9. PMID:11117631

  7. Comparation of Hypolipidemic and Antioxidant Effects of Aqueous and Ethanol Extracts of Crataegus pinnatifida Fruit in High-Fat Emulsion-Induced Hyperlipidemia Rats

    PubMed Central

    Shao, Feng; Gu, Lifei; Chen, Huijuan; Liu, Ronghua; Huang, Huilian; Ren, Gang

    2016-01-01

    Background: Hawthorn (Crataegus pinnatifida) is a Chinese medicinal plant traditionally used in the treatment of hyperlipidemia. Recently, studies indicated free radical scavenging was one of the major pathways to alleviate hyperlipidemia. Moreover, hawthorn fruit is a rich source of phenols, which quench free radical and attenuate hyperlipidemia. However, the phenols vary with processing methods, especially solvent type. Objective: Our aim was to compare hypolipidemic and antioxidant effects of aqueous and ethanol extracts of hawthorn fruit in hyperlipidemia rats. Materials and Methods: After a 4-week treatment of high-fat emulsion, lipid profile levels and antioxidant levels of two extracts were determined using commercial analysis. Total phenols content in the extract of hawthorn fruit was determined colorimetrically by the Folin–Ciocalteu method. Results: Both ethanol and aqueous extracts of hawthorn fruit possessed hypolipidemic and antioxidant activities. Simultaneously, stronger activities were observed in ethanol extract. Besides, total phenols content in ethanol extract from the same quality of hawthorn fruit was 3.9 times more than that in aqueous extract. Conclusion: The obvious difference of hypolipidemic and antioxidant effects between ethanol extract and aqueous extract of hawthorn fruit was probably due to the presence of total phenols content, under the influence of extraction solvent. SUMMARY Ethanol extract of hawthorn fruit exhibited more favorable hypolipidemic and antioxidant effects than aqueous extract. The higher effects could be due to the higher content of total phenols that varies with extraction solvent. Abbreviations used: TC: Total cholesterol, TG: Triglyceride, LDL-C: Low-density lipoprotein cholesterol, HDL-C: High-density lipoprotein cholesterol, GSH-Px: Glutathione peroxidase, SOD: Superoxide dismutase, MDA: Malondialdehyde, CAT: Catalase, NO: Nitric oxide, NOS: Nitric oxide synthase, SR-BI: Scavenger receptor Class B Type I PMID:27019563

  8. Use of sugarcane molasses "B" as an alternative for ethanol production with wild-type yeast Saccharomyces cerevisiae ITV-01 at high sugar concentrations.

    PubMed

    Fernández-López, C L; Torrestiana-Sánchez, B; Salgado-Cervantes, M A; García, P G Mendoza; Aguilar-Uscanga, M G

    2012-05-01

    Molasses "B" is a rich co-product of the sugarcane process. It is obtained from the second step of crystallization and is richer in fermentable sugars (50-65%) than the final molasses, with a lower non-sugar solid content (18-33%); this co-product also contains good vitamin and mineral levels. The use of molasses "B" for ethanol production could be a good option for the sugarcane industry when cane sugar prices diminish in the market. In a complex medium like molasses, osmotolerance is a desirable characteristic for ethanol producing strains. The aim of this work was to evaluate the use of molasses "B" for ethanol production using Saccharomyces cerevisiae ITV-01 (a wild-type yeast isolated from sugarcane molasses) using different initial sugar concentrations (70-291 g L(-1)), two inoculum sizes and the addition of nutrients such as yeast extract, urea, and ammonium sulphate to the culture medium. The results obtained showed that the strain was able to grow at 291 g L(-1) total sugars in molasses "B" medium; the addition of nutrients to the culture medium did not produce a statistically significant difference. This yeast exhibits high osmotolerance in this medium, producing high ethanol yields (0.41 g g(-1)). The best conditions for ethanol production were 220 g L(-1) initial total sugars in molasses "B" medium, pH 5.5, using an inoculum size of 6 × 10(6) cell mL(-1); ethanol production was 85 g L(-1), productivity 3.8 g L(-1 )h(-1) with 90% preserved cell viability. PMID:21971607

  9. Effects of enzyme feeding strategy on ethanol yield in fed-batch simultaneous saccharification and fermentation of spruce at high dry matter

    PubMed Central

    2010-01-01

    Background To make lignocellulosic fuel ethanol economically competitive with fossil fuels, it is necessary to reduce the production cost. One way to achieve this is by increasing the substrate concentration in the production process, and thus reduce the energy demand in the final distillation of the fermentation broth. However, increased substrate concentration in simultaneous saccharification and fermentation (SSF) processes has been shown to result in reduced ethanol yields and severe stirring problems. Because the SSF medium is being continuously hydrolyzed, running the process in fed-batch mode could potentially reduce the stirring problems and lead to increased ethanol yields in high-solids SSF. Different enzyme feeding strategies, with the enzymes either present in the reactor from start-up or fed into the reactor together with the substrate, have been studied, along with the influence of the enzyme feeding strategy on the final ethanol yield and productivity. Results In the present study, SSF was run successfully with 10% and 14% water-insoluble solids (WIS) in batch and fed-batch mode. The mixing of the material in the reactor was significantly better in fed-batch than batch mode, and similarly high or higher ethanol yields were achieved in fed-batch mode compared with batch SSF in some cases. No general trend in the dependence of ethanol yield on enzyme feeding strategy was found. Conclusions The optimum enzyme feeding strategy appears to depend on the conditions during SSF, such as the WIS concentration and the concentration of inhibitory compounds in the SSF medium. PMID:20579340

  10. Effects of growth, diving history, and high altitude on blood oxygen capacity in harbor seals

    NASA Technical Reports Server (NTRS)

    Kodama, A. M.; Elsner, R.; Pace, N.

    1977-01-01

    Blood volume and body composition for diving and nondiving harbor seals were measured at six-week intervals during a 10-month period of captitivity. Whole body hematocrit, red cell volume per kg of lean body mass, and total circulating hemoglobin per kg lean body mass were significantly higher in the diving group, but relatively large blood volumes expressed in terms of body weight (11-12%) were found in both groups. A pair of harbor seals exposed to high altitude for about three months registered significant increases in red cell volume, blood hemoglobin levels, and blood volume expressed in terms of body weight; results of alveolar gas analyses indicate that hyperventilation also occurred. These typical mammalian responses to hypoxia suggest that the harbor seal's large blood volume and high hemoglobin content are an expression of phylogenetic control, and that in spite of its adaptability to apnea during its diving life, the animal cannot be considered preacclimatized to high altitude.

  11. Enzymatic Hydrolysis and Ethanol Fermentation of High Dry Matter Wet-Exploded Wheat Straw at Low Enzyme Loading

    NASA Astrophysics Data System (ADS)

    Georgieva, Tania I.; Hou, Xiaoru; Hilstrøm, Troels; Ahring, Birgitte K.

    Wheat straw was pretreated by wet explosion using three different oxidizing agents (H2O2, O2, and air). The effect of the pretreatment was evaluated based on glucose and xylose liberated during enzymatic hydrolysis. The results showed that pretreatment with the use of O2 as oxidizing agent was the most efficient in enhancing overall convertibility of the raw material to sugars and minimizing generation of furfural as a by-product. For scale-up of the process, high dry matter (DM) concentrations of 15-20% will be necessary. However, high DM hydrolysis and fermentation are limited by high viscosity of the material, higher inhibition of the enzymes, and fermenting microorganism. The wet-explosion pretreatment method enabled relatively high yields from both enzymatic hydrolysis and simultaneous saccharification and fermentation (SSF) to be obtained when performed on unwashed slurry with 14% DM and a low enzyme loading of 10 FPU/g cellulose in an industrial acceptable time frame of 96 h. Cellulose and hemicellulose conversion from enzymatic hydrolysis were 70 and 68%, respectively, and an overall ethanol yield from SSF was 68%.

  12. Highly Ordered Periodic Au/TiO2 Hetero-Nanostructures for Plasmon-Induced Enhancement of the Activity and Stability for Ethanol Electro-oxidation.

    PubMed

    Jin, Zhao; Wang, Qiyu; Zheng, Weitao; Cui, Xiaoqiang

    2016-03-01

    The catalytic electro-oxidation of ethanol is the essential technique for direct alcohol fuel cells (DAFCs) in the area of alternative energy for the ability of converting the chemical energy of alcohol into the electric energy directly. Developing highly efficient and stable electrode materials with antipoisoning ability for ethanol electro-oxidation remains a challenge. A highly ordered periodic Au-nanoparticle (NP)-decorated bilayer TiO2 nanotube (BTNT) heteronanostructure was fabricated by a two-step anodic oxidation of Ti foil and the subsequent photoreduction of HAuCl4. The plasmon-induced charge separation on the heterointerface of Au/TiO2 electrode enhances the electrocatalytic activity and stability for the ethanol oxidation under visible light irradiation. The highly ordered periodic heterostructure on the electrode surface enhanced the light harvesting and led to the greater performance of ethanol electro-oxidation under irradiation compared with the ordinary Au NPs-decorated monolayer TiO2 nanotube (MTNT). This novel Au/TiO2 electrode also performed a self-cleaning property under visible light attributed to the enhanced electro-oxidation of the adsorbed intermediates. This light-driven enhancement of the electrochemical performances provides a development strategy for the design and construction of DAFCs. PMID:26863505

  13. Locally-brewed Nigerian lager beers and high blood pressure

    SciTech Connect

    Adeniyi, F.A.A.

    1986-01-01

    Volunteers who consumed 88g alcohol/day (= 2.48L of lager beer) had elevated levels of systolic and mean arterial Blood Pressure. The association between consumption of locally brewed Nigerian lager beer with arterial hypertension was independent of age and weight. The true mechanism for the development of hypertension in these alcohol-users is at present not clear. All brands of lager beer investigated contain as much as five times the sodium content of potable water. It is desirable to evaluate the consequences of ingesting such quantities of sodium in lager beers. The effect of alcohol on other monovalent and divalent cations may shed some light onto the true mechanism for the pathogenesis of alcohol-induced hypertension. 15 references, 3 tables.

  14. The origin of high activity but low CO(2) selectivity on binary PtSn in the direct ethanol fuel cell.

    PubMed

    Jin, Jia-Mei; Sheng, Tian; Lin, Xiao; Kavanagh, Richard; Hamer, Philip; Hu, Peijun; Hardacre, Christopher; Martinez-Bonastre, Alex; Sharman, Jonathan; Thompsett, David; Lin, Wen-Feng

    2014-05-28

    The most active binary PtSn catalyst for direct ethanol fuel cell applications has been studied at 20 C and 60 C, using variable temperature electrochemical in situ FTIR. In comparison with Pt, binary PtSn inhibits ethanol dissociation to CO(a), but promotes partial oxidation to acetaldehyde and acetic acid. Increasing the temperature from 20 C to 60 C facilitates both ethanol dissociation to CO(a) and then further oxidation to CO2, leading to an increased selectivity towards CO2; however, acetaldehyde and acetic acid are still the main products. Potential-dependent phase diagrams for surface oxidants of OH(a) formation on Pt(111), Pt(211) and Sn modified Pt(111) and Pt(211) surfaces have been determined using density functional theory (DFT) calculations. It is shown that Sn promotes the formation of OH(a) with a lower onset potential on the Pt(111) surface, whereas an increase in the onset potential is found upon modification of the (211) surface. In addition, Sn inhibits the Pt(211) step edge with respect to ethanol C-C bond breaking compared with that found on the pure Pt, which reduces the formation of CO(a). Sn was also found to facilitate ethanol dehydrogenation and partial oxidation to acetaldehyde and acetic acid which, combined with the more facile OH(a) formation on the Pt(111) surface, gives us a clear understanding of the experimentally determined results. This combined electrochemical in situ FTIR and DFT study provides, for the first time, an insight into the long-term puzzling features of the high activity but low CO2 production found on binary PtSn ethanol fuel cell catalysts. PMID:24722871

  15. Ethanol Demand in United States Gasoline Production

    SciTech Connect

    Hadder, G.R.

    1998-11-24

    The Oak Ridge National Laboratory (OWL) Refinery Yield Model (RYM) has been used to estimate the demand for ethanol in U.S. gasoline production in year 2010. Study cases examine ethanol demand with variations in world oil price, cost of competing oxygenate, ethanol value, and gasoline specifications. For combined-regions outside California summer ethanol demand is dominated by conventional gasoline (CG) because the premised share of reformulated gasoline (RFG) production is relatively low and because CG offers greater flexibility for blending high vapor pressure components like ethanol. Vapor pressure advantages disappear for winter CG, but total ethanol used in winter RFG remains low because of the low RFG production share. In California, relatively less ethanol is used in CG because the RFG production share is very high. During the winter in California, there is a significant increase in use of ethanol in RFG, as ethanol displaces lower-vapor-pressure ethers. Estimated U.S. ethanol demand is a function of the refiner value of ethanol. For example, ethanol demand for reference conditions in year 2010 is 2 billion gallons per year (BGY) at a refiner value of $1.00 per gallon (1996 dollars), and 9 BGY at a refiner value of $0.60 per gallon. Ethanol demand could be increased with higher oil prices, or by changes in gasoline specifications for oxygen content, sulfur content, emissions of volatile organic compounds (VOCS), and octane numbers.

  16. Co-solvent pretreatment reduces costly enzyme requirements for high sugar and ethanol yields from lignocellulosic biomass.

    PubMed

    Nguyen, Thanh Yen; Cai, Charles M; Kumar, Rajeev; Wyman, Charles E

    2015-05-22

    We introduce a new pretreatment called co-solvent-enhanced lignocellulosic fractionation (CELF) to reduce enzyme costs dramatically for high sugar yields from hemicellulose and cellulose, which is essential for the low-cost conversion of biomass to fuels. CELF employs THF miscible with aqueous dilute acid to obtain up to 95 % theoretical yield of glucose, xylose, and arabinose from corn stover even if coupled with enzymatic hydrolysis at only 2 mgenzyme  gglucan (-1) . The unusually high saccharification with such low enzyme loadings can be attributed to a very high lignin removal, which is supported by compositional analysis, fractal kinetic modeling, and SEM imaging. Subsequently, nearly pure lignin product can be precipitated by the evaporation of volatile THF for recovery and recycling. Simultaneous saccharification and fermentation of CELF-pretreated solids with low enzyme loadings and Saccharomyces cerevisiae produced twice as much ethanol as that from dilute-acid-pretreated solids if both were optimized for corn stover. PMID:25677100

  17. The contribution of arterial blood gases in cerebral blood flow regulation and fuel utilization in man at high altitude.

    PubMed

    Willie, Christopher K; MacLeod, David B; Smith, Kurt J; Lewis, Nia C; Foster, Glen E; Ikeda, Keita; Hoiland, Ryan L; Ainslie, Philip N

    2015-05-01

    The effects of partial acclimatization to high altitude (HA; 5,050 m) on cerebral metabolism and cerebrovascular function have not been characterized. We hypothesized (1) increased cerebrovascular reactivity (CVR) at HA; and (2) that CO2 would affect cerebral metabolism more than hypoxia. PaO2 and PaCO2 were manipulated at sea level (SL) to simulate HA exposure, and at HA, SL blood gases were simulated; CVR was assessed at both altitudes. Arterial-jugular venous differences were measured to calculate cerebral metabolic rates and cerebral blood flow (CBF). We observed that (1) partial acclimatization yields a steeper CO2-H(+) relation in both arterial and jugular venous blood; yet (2) CVR did not change, despite (3) mean arterial pressure (MAP)-CO2 reactivity being doubled at HA, thus indicating effective cerebral autoregulation. (4) At SL hypoxia increased CBF, and restoration of oxygen at HA reduced CBF, but neither had any effect on cerebral metabolism. Acclimatization resets the cerebrovasculature to chronic hypocapnia. PMID:25690474

  18. Short Communication: Is Ethanol-Based Hand Sanitizer Involved in Acute Pancreatitis after Excessive Disinfection?—An Evaluation with the Use of PBPK Model

    PubMed Central

    Huynh-Delerme, Céline; Artigou, Catherine; Bodin, Laurent; Tardif, Robert; Charest-Tardif, Ginette; Verdier, Cécile; Sater, Nessryne; Ould-Elhkim, Mostafa; Desmares, Catherine

    2012-01-01

    An occupational physician reported to the French Health Products Safety Agency (Afssaps) a case of adverse effect of acute pancreatitis (AP) in a teaching nurse, after multiple demonstrations with ethanol-based hand sanitizers (EBHSs) used in a classroom with defective mechanical ventilation. It was suggested by the occupational physician that the exposure to ethanol may have produced a significant blood ethanol concentration and subsequently the AP. In order to verify if the confinement situation due to defective mechanical ventilation could increase the systemic exposure to ethanol via inhalation route, a physiologically based pharmacokinetic (PBPK) modeling was used to predict ethanol blood levels. Under the worst case scenario, the simulation by PBPK modeling showed that the maximum blood ethanol concentration which can be predicted of 5.9 mg/l is of the same order of magnitude to endogenous ethanol concentration (mean = 1.1 mg/L; median = 0.4 mg/L; range = 0–35 mg/L) in nondrinker humans (Al-Awadhi et al., 2004). The present study does not support the likelihood that EBHS leads to an increase in systemic ethanol concentration high enough to provoke an acute pancreatitis. PMID:22577377

  19. Short Communication: Is Ethanol-Based Hand Sanitizer Involved in Acute Pancreatitis after Excessive Disinfection?-An Evaluation with the Use of PBPK Model.

    PubMed

    Huynh-Delerme, Céline; Artigou, Catherine; Bodin, Laurent; Tardif, Robert; Charest-Tardif, Ginette; Verdier, Cécile; Sater, Nessryne; Ould-Elhkim, Mostafa; Desmares, Catherine

    2012-01-01

    An occupational physician reported to the French Health Products Safety Agency (Afssaps) a case of adverse effect of acute pancreatitis (AP) in a teaching nurse, after multiple demonstrations with ethanol-based hand sanitizers (EBHSs) used in a classroom with defective mechanical ventilation. It was suggested by the occupational physician that the exposure to ethanol may have produced a significant blood ethanol concentration and subsequently the AP. In order to verify if the confinement situation due to defective mechanical ventilation could increase the systemic exposure to ethanol via inhalation route, a physiologically based pharmacokinetic (PBPK) modeling was used to predict ethanol blood levels. Under the worst case scenario, the simulation by PBPK modeling showed that the maximum blood ethanol concentration which can be predicted of 5.9 mg/l is of the same order of magnitude to endogenous ethanol concentration (mean = 1.1 mg/L; median = 0.4 mg/L; range = 0-35 mg/L) in nondrinker humans (Al-Awadhi et al., 2004). The present study does not support the likelihood that EBHS leads to an increase in systemic ethanol concentration high enough to provoke an acute pancreatitis. PMID:22577377

  20. Effect on blood volume of maintaining a high central venous pressure after major aortic valve surgery

    PubMed Central

    Fluck, David C.; Bescos, L. Lopez; Gilkes, R.

    1973-01-01

    Fluck, D. C., Lopez Bescos, L., and Gilkes, R. (1973).Thorax,28, 762-767. Effect on blood volume of maintaining a high central venous pressure after major aortic valve surgery. Serial blood volume measurements were made in 15 patients undergoing major aortic valve surgery requiring cardiopulmonary bypass. In all patients the plasma volume was measured by iodine-125 (125I) labelled albumin and in 10 the red cell mass was measured by chromium-51 (51Cr) labelled red cells. Close correlation was found between the blood volume derived from the plasma volume and central venous haematocrits and the blood volume derived by addition of the plasma volume and red cell mass. Postoperatively blood was given to maintain the right atrial pressure at between 10 and 15 cm H2O. Before operation the red cell mass, and plasma and blood volumes related to body weight were within the normal range. In the postoperative phase the first measurement two hours after the end of the operation showed a significant decrease in mean blood volume, red cell mass, and plasma volume as compared with the preoperative level. By the second postoperative measurement six hours after the end of operation the mean blood volume had risen to the preoperative level. Subsequently, over postoperative days 1 to 6 the mean blood volume remained steady, although the red cell mass tended to fall. After blood transfusion had ceased the red cell mass usually showed a progressive fall. It was considered that although there was little relationship between the right atrial pressure and the blood volume there was little or no clinical value in performing serial postoperative measurements of blood volume in addition to venous pressure monitoring in these patients. Images PMID:4787988

  1. Ethanol-Induced TLR4/NLRP3 Neuroinflammatory Response in Microglial Cells Promotes Leukocyte Infiltration Across the BBB.

    PubMed

    Alfonso-Loeches, Silvia; Ureña-Peralta, Juan; Morillo-Bargues, M José; Gómez-Pinedo, Ulises; Guerri, Consuelo

    2016-02-01

    We reported that the ethanol-induced innate immune response by activating TLR4 signaling triggers gliosis and neuroinflammation. Ethanol also activates other immune receptors, such as NOD-like-receptors, and specifically NLRP3-inflammasome in astroglial cells, to stimulate caspase-1 cleavage and IL-1β and IL-18 cytokines production. Yet, whether microglia NLRs are also sensitive to the ethanol effects that contribute to neuroinflammation is uncertain. Using cerebral cortexes of the chronic alcohol-fed WT and TLR4(-/-) mice, we demonstrated that chronic ethanol treatment enhanced TLR4 mediated-NLRP3/Caspase-1 complex activation, and up-regulated pro-inflammatory cytokines and chemokines levels. Ethanol-induced NLRP3-inflammasome activation and mitochondria-ROS generation were also observed in cultured microglial cells. The up-regulation of CD45(high)/CD11b(+) cell populations and matrix metalloproteinase-9 levels was also noted in the cortexes of the ethanol-treated WT mice. Notably, elimination of the TLR4 function abolished most ethanol-induced neuroinflammatory effects. Thus, our results demonstrate that ethanol triggers TLR4-mediated NLRP3-inflammasome activation in glial cells, and suggest that microglia stimulation may compromise the permeability of blood-brain barrier events to contribute to ethanol-induced neuroinflammation and brain damage. PMID:26555554

  2. A microfluidics approach towards high-throughput pathogen removal from blood using margination.

    PubMed

    Wei Hou, Han; Gan, Hiong Yap; Bhagat, Ali Asgar S; Li, Leon D; Lim, Chwee Teck; Han, Jongyoon

    2012-06-01

    Sepsis is an adverse systemic inflammatory response caused by microbial infection in blood. This paper reports a simple microfluidic approach for intrinsic, non-specific removal of both microbes and inflammatory cellular components (platelets and leukocytes) from whole blood, inspired by the invivo phenomenon of leukocyte margination. As blood flows through a narrow microchannel (20 × 20 µm), deformable red blood cells (RBCs) migrate axially to the channel centre, resulting in margination of other cell types (bacteria, platelets, and leukocytes) towards the channel sides. By using a simple cascaded channel design, the blood samples undergo a 2-stage bacteria removal in a single pass through the device, thereby allowing higher bacterial removal efficiency. As an application for sepsis treatment, we demonstrated separation of Escherichia coli and Saccharomyces cerevisiae spiked into whole blood, achieving high removal efficiencies of ∼80% and ∼90%, respectively. Inflammatory cellular components were also depleted by >80% in the filtered blood samples which could help to modulate the host inflammatory response and potentially serve as a blood cleansing method for sepsis treatment. The developed technique offers significant advantages including high throughput (∼1 ml/h per channel) and label-free separation which allows non-specific removal of any blood-borne pathogens (bacteria and fungi). The continuous processing and collection mode could potentially enable the return of filtered blood back to the patient directly, similar to a simple and complete dialysis circuit setup. Lastly, we designed and tested a larger filtration device consisting of 6 channels in parallel (∼6 ml/h) and obtained similar filtration performances. Further multiplexing is possible by increasing channel parallelization or device stacking to achieve higher throughput comparable to convectional blood dialysis systems used in clinical settings. PMID:22655023

  3. A microfluidics approach towards high-throughput pathogen removal from blood using margination

    PubMed Central

    Wei Hou, Han; Gan, Hiong Yap; Bhagat, Ali Asgar S.; Li, Leon D.; Lim, Chwee Teck; Han, Jongyoon

    2012-01-01

    Sepsis is an adverse systemic inflammatory response caused by microbial infection in blood. This paper reports a simple microfluidic approach for intrinsic, non-specific removal of both microbes and inflammatory cellular components (platelets and leukocytes) from whole blood, inspired by the invivo phenomenon of leukocyte margination. As blood flows through a narrow microchannel (20 × 20 µm), deformable red blood cells (RBCs) migrate axially to the channel centre, resulting in margination of other cell types (bacteria, platelets, and leukocytes) towards the channel sides. By using a simple cascaded channel design, the blood samples undergo a 2-stage bacteria removal in a single pass through the device, thereby allowing higher bacterial removal efficiency. As an application for sepsis treatment, we demonstrated separation of Escherichia coli and Saccharomyces cerevisiae spiked into whole blood, achieving high removal efficiencies of ∼80% and ∼90%, respectively. Inflammatory cellular components were also depleted by >80% in the filtered blood samples which could help to modulate the host inflammatory response and potentially serve as a blood cleansing method for sepsis treatment. The developed technique offers significant advantages including high throughput (∼1 ml/h per channel) and label-free separation which allows non-specific removal of any blood-borne pathogens (bacteria and fungi). The continuous processing and collection mode could potentially enable the return of filtered blood back to the patient directly, similar to a simple and complete dialysis circuit setup. Lastly, we designed and tested a larger filtration device consisting of 6 channels in parallel (∼6 ml/h) and obtained similar filtration performances. Further multiplexing is possible by increasing channel parallelization or device stacking to achieve higher throughput comparable to convectional blood dialysis systems used in clinical settings. PMID:22655023

  4. High-efficiency carbohydrate fermentation to ethanol at temperatures above 40/sup 0/C by Kluyveromyces marxianus var. marxianus isolated from sugar mills

    SciTech Connect

    Anderson, P.J.; NcNeil, K.; Watson, K.

    1986-06-01

    A number of yeast strains, isolated from sugar can mills and identified as strains of Kluyveromyces marxianus var. marxianus, were examined for their ability to ferment glucose and cane syrup to ethanol at high temperatures. Several strains were capable of rapid fermentation at temperatures up to 47/sup 0/C. At 43/sup 0/C, >6% (wt/vol) ethanol was produced after 12 to 14 h of fermentation, concurrent with retention of high cell viability (>80%). Although the type strain (CBS 712) of K. marxianus var. marxianus produced up to 6% (wt/vol) ethanol at 43/sup 0/C, cell viability was low, 30 to 50%, and the fermentation time was 24 to 30 h. On the basis of currently available strains, the authors suggest that it may be possible by genetic engineering to construct yeasts capable of fermenting carbohydrates at temperatures close to 50/sup 0/C to produce 10 to 15% (wt/vol) ethanol in 12 to 18 h with retention of cell viability.

  5. Percentage of Adults with High Blood Pressure Whose Hypertension Is Adequately Controlled

    MedlinePlus

    ... small sample sizes for NHANES data, 95% confidence intervals are provided, which are important for interpreting the ... with High Blood Pressure that is Controlled by Education Level ed2n-2538 Download these data » Explore these ...

  6. Choosing Medicines for High Blood Pressure: A Review of the Research on ACEs, ARBs, and DRIs

    MedlinePlus

    ... DRIs" /> Consumer Summary – Oct. 24, 2011 Choosing Medicines for High Blood Pressure: A Review of the ... ARBs. What are the side effects of these medicines? The most common side effects from these medicines ...

  7. More Young Adults at Risk for High Blood Pressure | NIH MedlinePlus the Magazine

    MedlinePlus

    ... revealed a higher percentage of high blood pressure readings than results from a previous major study, according to Steven Hirschfeld, Associate Director for Clinical Research for the NIH’s Eunice Kennedy Shriver National Institute ...

  8. High Blood Glucose: What It Means and How To Treat It

    MedlinePlus

    ... About Joslin Research Advocacy & Gov't Affairs History Managing Diabetes Childhood Diabetes Nutrition Exercise Online Diabetes Classes Discussion ... Support Our Donors Development Team Diabetes Information & Resources » Managing Diabetes » High Blood Glucose FOLLOW US Newly Diagnosed Managing ...

  9. Time to Talk: High Blood Cholesterol? 5 Things You Should Know

    MedlinePlus

    ... X Y Z 5 Tips: What You Should Know About High Blood Cholesterol Share: Approximately 13 percent ... cholesterol levels. Unfortunately, there is no way to know how much monacolin K is present in most ...

  10. Fermentation of an aqueous sugar solution to produce ethanol

    SciTech Connect

    Miller, F.D.; Muller, W.C.

    1980-12-30

    An apparatus for the continuous production of ethanol from fermentable sugar solutions is described. A series of stirred fermentation vessels is used, each successive vessel containing more ethanol and less sugar. At least 2 strains of yeast are used, one producing ethanol at a high rate in a high sugar concentration, and the other strain producing ethanol at high rate in a relatively high ethanol concentration and a relatively low sugar concentration. A diagram of the apparatus is given.

  11. Blood pressure

    MedlinePlus Videos and Cool Tools

    ... important for proper blood flow to the body’s organs and tissues. The force of the blood on ... left untreated, high blood pressure can damage important organs, such as the brain and kidneys, as well ...

  12. Evaluation Of Hemolysis Models Using A High Fidelity Blood Model

    NASA Astrophysics Data System (ADS)

    Ezzeldin, Hussein; de Tullio, Marco; Solares, Santiago; Balaras, Elias

    2012-11-01

    Red blood cell (RBC) hemolysis is a critical concern in the design of heart assisted devices, such as prosthetic heart valves (PHVs). To date a few analytical and numerical models have been proposed to relate either hydrodynamic stresses or RBC strains, resulting from the external hydrodynamic loading, to the expected degree of hemolysis as a function of time. Such models are based on either ``lumped'' descriptions of fluid stresses or an abstract analytical-numerical representation of the RBC relying on simple geometrical assumptions. We introduce two new approaches based on an existing coarse grained (CG) RBC structural model, which is utilized to explore the physics underlying each hemolysis model whereby applying a set of devised computational experiments. Then, all the models are subjected to pathlines calculated for a realistic PHVs to predict the level of RBC trauma. Our results highlight the strengths and weaknesses of each approach and identify the key gaps that should be addressed in the development of new models. Finally, a two-layer CG model, coupling the spectrin network and the lipid bilayer, which provides invaluable information pertaining to RBC local strains and hence hemolysis. We acknowledge the support of NSF OCI-0904920 and CMMI-0841840 grants. Computing time was provided by XSEDE.

  13. Inflammation in high blood pressure: a clinician perspective.

    PubMed

    Ghanem, Firas A; Movahed, Assad

    2007-01-01

    Hypertension is one of the most important contributors to atherosclerosis. A possible link between inflammation and elevated blood pressure has been suggested by several cross-sectional and longitudinal studies. Possible mechanisms include an imbalance between vasoconstrictors and vasodilators, amplified thrombogenesis and platelet activation, and perhaps a direct effect of inflammatory mediators. C-reactive protein (CRP), an inflammatory cytokine, may play an essential role in vascular inflammation and can directly decrease the production of nitric oxide, a vasocodilator. Angiotensin II (Ang II) up-regulates several inflammatory cytokines, leukocyte adhesion molecules, and chemokines through the activation of the nuclear factor-kappa B leading to a decrease in the bioavailability of vasodilators. The increase in oxidative stress and endothelin-1 production through Ang II may further contribute to vasoconstriction. Adipose tissue can add to the production of CRP and creates a prothrombotic state. The presence of low-grade inflammation, especially elevations of CRP, can help predict the risk of future cardiovascular events and is associated with target organ damage in hypertensive individuals. Angiotensin converting enzyme inhibitors, angiotensin receptor blockers, beta-adrenoreceptor antagonists, and, to a lesser degree calcium channel antagonists, have shown efficacy in reducing CRP. Lifestyle changes such as exercise, weight loss, and tobacco cessation have also shown a similar efficacy. Whether targeting inflammation in the treatment of uncomplicated hypertension can alter the natural history of the disease or lead to improved outcome has yet to be determined. PMID:20409841

  14. Microsomal ethanol-oxidizing system.

    PubMed

    Lieber, C S

    1987-01-01

    Advances in our knowledge of the microsomal metabolism of ethanol enable us to understand a number of complications that develop in the alcoholic. After chronic ethanol consumption, microsomal ethanol-oxidizing system (MEOS) activity increases with an associated rise in microsomal cytochrome P-450, including a form different from that induced by phenobarbital and methylcholanthrene and which has a high affinity for ethanol, as shown in reconstituted systems. The role of this MEOS in vivo and its increase after chronic ethanol consumption was most conclusively shown in alcohol dehydrogenase-negative deer mice. Microsomal induction is also associated with enhanced metabolism of other drugs, resulting in metabolic drug tolerance. Furthermore, there is increased conversion to toxic metabolites of known hepatotoxic agents (such as CCl4), which may explain the enhanced susceptibility of alcoholics to the toxicity of industrial solvents. Furthermore, the ethanol-induced form of cytochrome P-450 has a high capacity for the conversion to toxic metabolites of some commonly used drugs, such as acetaminophen, and also carcinogens, such as dimethylnitrosamine which is activated at concentrations much lower than those required for other microsomal inducers. Moreover, catabolism of retinol is accelerated through a newly discovered microsomal pathway, thereby contributing to hepatic vitamin A depletion and possibly vitamin A toxicity. There is also induction of microsomal enzymes involved in lipoprotein production, resulting in hyperlipemia. Contrasting with the chronic effects of ethanol consumption, acutely, ethanol inhibits the metabolism of other drugs through competition for an at least partially shared microsomal detoxification pathway. PMID:3106031

  15. [Alcohol and the liver: ethanol metabolism and the pathomechanism of alcoholic liver damage].

    PubMed

    Seitz, H K; Csomós, G

    1992-12-13

    Ethanol is oxidized in the liver by three different enzyme systems, namely by alcohol dehidrogenase (ADH), the microsomal ethanol oxidizing system and catalase. Alcohol also undergoes a first pass metabolism in the gastric mucosa due to alcohol dehydrogenase. This first pass metabolism of ethanol is decreased in the alcoholic, in the fasted state, in the elderly and during cimetidine therapy leading to elevated alcohol blood-concentrations. Ethanol toxicity is closely related to its metabolism in the liver. Ethanol oxidation by ADH generates reducing equivalents (NADH) and acetaldehyde (AA). The elevated NADH/NAD ratio results in alterations of the intermediary metabolism of lipids, carbohydrates, proteins, purines, hormones and porphyrins. Furthermore, NADH flavours free radical production. The ethanol-associated redox changes are pronounced in the perivenular zone, since this is the area of low oxygen tension and of high ADH activity. In addition to NADH, AA exerts striking toxic effects on the hepatocyte. AA binds to cellular proteins and membranes including the mitochondria, microtubules, glutathion and various enzymes. In addition, AA and lactate stimulate collagen production in fibroblasts. AA-adducts stimulate the production of antibodies against AA-epitopes and could thus aggravate the liver injury. Chronic ethanol consumption results also in the microsomal induction of a specific ethanol-inducible form of cytochrome P--450, the cytochrome P--450IIE1 with high affinity not only to ethanol but also to some drugs (acetaminophen), procarcinogens (nitrosamines) and industrial agents (carbon tetrachloride). The interaction between ethanol metabolism and the metabolism of these compounds including vitamin A may also contribute to hepatic toxicity, since the susceptibility of the alcoholic toward those compounds is enhanced. PMID:1461639

  16. Zymomonas ethanol fermentations

    SciTech Connect

    Rogers, P.L.; Goodman, A.E.; Heyes, R.E.

    1984-09-01

    Studies on various industrial raw materials indicate that a Zymomonas process has its greatest commercial potential in fermenting starch-based substrates. High yields, productivities and ethanol concentrations can be achieved. Genetic manipulation is now being used to extend the substrate range to lactose and other carbohydrates. 31 references.

  17. High activity enables life on a high-sugar diet: blood glucose regulation in nectar-feeding bats

    PubMed Central

    Kelm, Detlev H.; Simon, Ralph; Kuhlow, Doreen; Voigt, Christian C.; Ristow, Michael

    2011-01-01

    High blood glucose levels caused by excessive sugar consumption are detrimental to mammalian health and life expectancy. Despite consuming vast quantities of sugar-rich floral nectar, nectar-feeding bats are long-lived, provoking the question of how they regulate blood glucose. We investigated blood glucose levels in nectar-feeding bats (Glossophaga soricina) in experiments in which we varied the amount of dietary sugar or flight time. Blood glucose levels increased with the quantity of glucose ingested and exceeded 25 mmol l−1 blood in resting bats, which is among the highest values ever recorded in mammals fed sugar quantities similar to their natural diet. During normal feeding, blood glucose values decreased with increasing flight time, but only fell to expected values when bats spent 75 per cent of their time airborne. Either nectar-feeding bats have evolved mechanisms to avoid negative health effects of hyperglycaemia, or high activity is key to balancing blood glucose levels during foraging. We suggest that the coevolutionary specialization of bats towards a nectar diet was supported by the high activity and elevated metabolic rates of these bats. High activity may have conferred benefits to the bats in terms of behavioural interactions and foraging success, and is simultaneously likely to have increased their efficiency as plant pollinators. PMID:21490011

  18. High activity enables life on a high-sugar diet: blood glucose regulation in nectar-feeding bats.

    PubMed

    Kelm, Detlev H; Simon, Ralph; Kuhlow, Doreen; Voigt, Christian C; Ristow, Michael

    2011-12-01

    High blood glucose levels caused by excessive sugar consumption are detrimental to mammalian health and life expectancy. Despite consuming vast quantities of sugar-rich floral nectar, nectar-feeding bats are long-lived, provoking the question of how they regulate blood glucose. We investigated blood glucose levels in nectar-feeding bats (Glossophaga soricina) in experiments in which we varied the amount of dietary sugar or flight time. Blood glucose levels increased with the quantity of glucose ingested and exceeded 25 mmol l(-1) blood in resting bats, which is among the highest values ever recorded in mammals fed sugar quantities similar to their natural diet. During normal feeding, blood glucose values decreased with increasing flight time, but only fell to expected values when bats spent 75 per cent of their time airborne. Either nectar-feeding bats have evolved mechanisms to avoid negative health effects of hyperglycaemia, or high activity is key to balancing blood glucose levels during foraging. We suggest that the coevolutionary specialization of bats towards a nectar diet was supported by the high activity and elevated metabolic rates of these bats. High activity may have conferred benefits to the bats in terms of behavioural interactions and foraging success, and is simultaneously likely to have increased their efficiency as plant pollinators. PMID:21490011

  19. High intensity focused ultrasound (HIFU) and ethanol induced tissue ablation: Thermal lesion volume and temperature ex vivo

    NASA Astrophysics Data System (ADS)

    Hoang, Nguyen Hai

    HIFU is the upcoming technology for noninvasive or minimally invasive tumor ablation via the localized acoustic energy deposition at the focal region within the tumor target. The presence of cavitation bubbles had been shown to improve the therapeutic effect of HIFU. In this study, we have investigated the effect of HIFU on temperature rise and cavitation bubble activity in ethanol-treated porcine liver and kidney tissues. We have also explored changes in the viability and proliferation rate of HepG2, SW1376, and FB1 cancer cells with their exposure to ethanol and HIFU. Tissues were submerged in 95% ethanol for five hours and then exposed to HIFU generated by a 1.1 MHz transducer or injected into focal spot before HIFU exposure. Cavitation events were measured by a passive cavitation detection technique for a range of acoustic power from 1.17 W to 20.52 W. The temperature around the focal zone was measured by type K or type E thermocouples embedded in the samples. In experiments with cancer cells, 2.7 millions cells were treated with concentration of ethanol at concentration 2%, 4%, 10%, 25%, and 50% and the cell were exposed to HIFU with power of 2.73 W, 8.72 W, and 12.0 W for 30 seconds. Our data show that the treatment of tissues with ethanol reduces the threshold power for inertial cavitation and increases the temperature rise. The exposure of cancer cells to various HIFU power only showed a higher number of viable cells 24 to 72 hours after HIFU exposure. On the other hand, both the viability and proliferation rate were significantly decreased in cells treated with ethanol and then HIFU at 8.7 W and 12.0 W even at ethanol concentration of 2 and 4 percent. In conclusion, the results of our study indicate that percutaneous ethanol injection (PEI) and HIFU have a synergistic effect on cancer cells ablation.

  20. Assessing blood brain barrier dynamics or identifying or measuring selected substances, including ethanol or toxins, in a subject by analyzing Raman spectrum signals

    NASA Technical Reports Server (NTRS)

    Lambert, James L. (Inventor); Borchert, Mark S. (Inventor)

    2008-01-01

    A non-invasive method for analyzing the blood-brain barrier includes obtaining a Raman spectrum of a selected portion of the eye and monitoring the Raman spectrum to ascertain a change to the dynamics of the blood brain barrier.Also, non-invasive methods for determining the brain or blood level of an analyte of interest, such as glucose, drugs, alcohol, poisons, and the like, comprises: generating an excitation laser beam at a selected wavelength (e.g., at a wavelength of about 400 to 900 nanometers); focusing the excitation laser beam into the anterior chamber of an eye of the subject so that aqueous humor, vitreous humor, or one or more conjunctiva vessels in the eye is illuminated; detecting (preferably confocally detecting) a Raman spectrum from the illuminated portion of the eye; and then determining the blood level or brain level (intracranial or cerebral spinal fluid level) of an analyte of interest for the subject from the Raman spectrum. In certain embodiments, the detecting step may be followed by the step of subtracting a confounding fluorescence spectrum from the Raman spectrum to produce a difference spectrum; and determining the blood level and/or brain level of the analyte of interest for the subject from that difference spectrum, preferably using linear or nonlinear multivariate analysis such as partial least squares analysis. Apparatus for carrying out the foregoing methods are also disclosed.

  1. Overweight, physical activity and high blood pressure in children: a review of the literature.

    PubMed

    Torrance, Brian; McGuire, K Ashlee; Lewanczuk, Richard; McGavock, Jonathan

    2007-01-01

    Obesity is a growing problem in developed countries and is likely a major cause of the increased prevalence of high blood pressure in children. The aim of this review is to provide clinicians and clinical scientists with an overview of the current state of the literature describing the negative influence of obesity on blood pressure and it's determinants in children. In short, we discuss the array of vascular abnormalities seen in overweight children and adolescents, including endothelial dysfunction, arterial stiffening and insulin resistance. We also discuss the potential role of an increased activation of the sympathetic nervous system in the development of high blood pressure and vascular dysfunction associated with obesity. As there is little consensus regarding the methods to prevent or treat high blood pressure in children, we also provide a summary of the evidence supporting relationship between physical activity and blood pressure in children and adolescents. After reviewing a number of physical activity intervention studies performed in children, it appears as though 40 minutes of moderate to vigorous aerobic-based physical activity 3-5 days/week is required to improve vascular function and reduce blood pressure in obese children. Future studies should focus on describing the influence of physical activity on blood pressure control in overweight children. PMID:17583184

  2. High-resolution melting analysis for genotyping Duffy, Kidd and Diego blood group antigens.

    PubMed

    Tanaka, Mitsunobu; Takahahi, Junko; Hirayama, Fumiya; Tani, Yoshihiko

    2011-01-01

    High-resolution melting (HRM) analysis is a simpler genotyping method than allele-specific PCR, PCR-restriction fragment length polymorphism and multiplex PCR. Duffy, Kidd and Diego are clinically important blood group antigens. We used a novel method to genotype these three blood group antigens. Purified genomic DNA extracts of blood samples (354 Duffy, 347 Kidd and 457 Diego) were amplified using specific amplification primers. HRM curves were obtained by HRM analysis. Results were in complete concordance with those obtained for previous phenotypes and genotypes. Nucleotide substitutions for these blood group antigens were differentiated by the HRM curves. HRM analysis is a simple genotyping method and is an alternative to serological typing. Our results suggest that HRM analysis can also be used for genotyping blood group antigens whose allotype specificity is determined by single nucleotide substitutions. PMID:20864378

  3. Combining the effects of process design and pH for improved xylose conversion in high solid ethanol production from Arundo donax

    PubMed Central

    2014-01-01

    The impact of pH coupled to process design for the conversion of the energy crop Arundo donax to ethanol was assessed in the present study under industrially relevant solids loadings. Two main process strategies were investigated, i.e. the traditional simultaneous saccharification and co-fermentation (SSCF) and a HYBRID design, where a long high temperature enzymatic hydrolysis step was carried out prior to continued low temperature SSCF, keeping the same total reaction time. Since acetic acid was identified as the major inhibitor in the slurry, the scenarios were investigated under different fermentation pH in order to alleviate the inhibitory effect on, in particular, xylose conversion. The results show that, regardless of fermentation pH, a higher glucan conversion could be achieved with the HYBRID approach compared to SSCF. Furthermore, it was found that increasing the pH from 5.0 to 5.5 for the fermentation phase had a large positive effect on xylose consumption for both process designs, although the SSCF design was more favored. With the high sugar concentrations available at the start of fermentation during the HYBRID design, the ethanol yield was reduced in favor of cell growth and glycerol production. This finding was confirmed in shake flask fermentations where an increase in pH enhanced both glucose and xylose consumption, but also cell growth and cell yield with the overall effect being a reduced ethanol yield. In conclusion this resulted in similar overall ethanol yields at the different pH values for the HYBRID design, despite the improved xylose uptake, whereas a significant increase in overall ethanol yield was found with the SSCF design. PMID:24949274

  4. Effects of stress on serum triglycerides, nonsterified fatty acids, and total cholesterol levels in male rats after ethanol administration

    SciTech Connect

    Hershock, D.; Vogel, W.H. )

    1989-02-09

    Serum triglycerides, nonesterified fatty acids (NEFA), and total cholesterol were determined during one hour immobilization stress in adult male Sprague-Dawley rats after ethanol administration (2g/kg, i.p.). Stress and ethanol effects were evaluated in two experiments: (1) rats maintained on Purina Rodent Chow for six weeks and fasted for 24 hours; and (2) rats maintained on the same diet supplemented with 1% cholesterol and 10% peanut oil for six weeks and nonfasted prior to experimentation. Blood was obtained from indwelling jugular catheters. In each experiment, differences were seen in triglyceride and NEFA levels but not in total cholesterol. In the regular diet-fed rats (1), serum triglyceride levels were not affected by either stress or ethanol. However, NEFA levels did show differences in the response to ethanol and stress. A 63% decrease from baseline after 5{prime} of stress was partially abolished by ethanol; instead, a 24% increase was observed. Also, a stress-induced increase in NEFA which occurred after 15{prime} was not observed in the ethanol treated rats; rather, a decrease in NEFA was noted. Total cholesterol did not change in response to stress or ethanol. In the high cholesterol diet-fed rats (2), ethanol did not suppress a stress-induced increase in triglyceride levels. NEFA levels in ethanol-treated rats were higher during the first 15{prime} of stress as compared to stress alone. A decrease in NEFA was however seen in the ethanol-treated rats after 30{prime} of stress and these levels remained lower than the stress alone group. A diet-induced increase in total cholesterol levels was observed; however, no changes were seen due to either or ethanol. Thus, ethanol administration prior to acute immobilization stress did affect serum triglyceride and NEFA levels but did not change total cholesterol.

  5. Antiobesity Effects of the Ethanol Extract of Laminaria japonica Areshoung in High-Fat-Diet-Induced Obese Rat

    PubMed Central

    Jang, Woong Sun; Choung, Se Young

    2013-01-01

    Laminaria japonica Areshoung, a widely consumed marine vegetable, has traditionally been used in Korean maternal health. The present study investigated the antiobesity effects of Laminaria japonica Areshoung ethanol extract (LE) and its molecular mechanism in high-fat-diet-induced obese rats. Six-week-old Sprague-Dawley male rats were separately fed a normal diet or a high-calorie high-fat diet for 6 weeks; then they were treated with LE or tea catechin for another 6 weeks. LE administration significantly decreased the body weight gain, fat-pad weights, and serum and hepatic lipid levels in HD-induced obese rats. The histological analysis revealed that LE-treated group showed a significantly decreased number of lipid droplets and size of adipocytes compared to the HD group. To elucidate the mechanism of action of LE, the levels of genes and proteins involved in obesity were measured in the liver and skeletal muscle. LE treatment resulted in an increased expression of fatty acid oxidation and thermogenesis-related genes in obese rats. Conversely, the expression of the fat intake-related gene (ACC2) and lipogenesis-related genes was reduced by LE treatment. Additionally, LE treatment increased the phosphorylation of AMP-activated protein kinase and its direct downstream protein, acetyl coenzyme A carboxylase, which is one of the rate-limiting enzymes in fatty acid synthesis pathway. These findings demonstrate that LE treatment has a protective effect against a high-fat-diet-induced obesity in rats through regulation of expression of genes and proteins involved in lipolysis and lipogenesis. PMID:23365609

  6. High hydrostatic pressure activates gene expression that leads to ethanol production enhancement in a Saccharomyces cerevisiae distillery strain

    PubMed Central

    Bravim, Fernanda; Lippman, Soyeon I.; da Silva, Lucas F.; Souza, Diego T.; Fernandes, A. Alberto R.; Masuda, Claudio A.; Broach, James R.

    2016-01-01

    High hydrostatic pressure (HHP) is a stress that exerts broad effects on microorganisms with characteristics similar to those of common environmental stresses. In this study, we aimed to identify genetic mechanisms that can enhance alcoholic fermentation of wild Saccharomyces cerevisiae isolated from Brazilian spirit fermentation vats. Accordingly, we performed a time course microarray analysis on a S. cerevisiae strain submitted to mild sublethal pressure treatment of 50 MPa for 30 min at room temperature, followed by incubation for 5, 10 and 15 min without pressure treatment. The obtained transcriptional profiles demonstrate the importance of post-pressurisation period on the activation of several genes related to cell recovery and stress tolerance. Based on these results, we over-expressed genes strongly induced by HHP in the same wild yeast strain and identified genes, particularly SYM1, whose over-expression results in enhanced ethanol production and stress tolerance upon fermentation. The present study validates the use of HHP as a biotechnological tool for the fermentative industries. PMID:22915193

  7. High Performance Nanocatalysts Supported on Micro/Nano Carbon Structures Using Ethanol Immersion Pretreatment for Micro DMFCs

    NASA Astrophysics Data System (ADS)

    Lin, Liang-You; Wu, Yi-Shiuan; Chang, Chaun; Tseng, Fan-Gang

    2013-12-01

    In this paper, highly dense platinum (Pt) nanocatalysts were successfully deposited on the hydrophilically-treated nano/micro carbon supports with an ethanol (EtOH) immersion pretreatment and an acidic treatment for the performance improvement of methanol oxidation reaction (MOR). In order to thoroughly immerse the three-dimensional, interwoven structures of the carbon cloth fibers with a 6 M sulfuric acid surface modification, which increasing more oxygen-containing functional groups on the surfaces of the carbon supports, the EtOH immersion pretreatment of the carbon supports was utilized prior to the sulfuric acid treatment. Subsequently, Pt catalysts were reduced on the modified carbon supports by a homemade open-loop reduction system (OLRS) [1] For comparisons, carbon cloth (CC) and carbon nanotube on CC (CNT/CC) supports were employed with and without EtOH immersion pretreatments before Pt catalyst reduction. In the cyclic voltammetry (CV) curves, the electrosorption charges of hydrogen ion (QH) and the peak current density (IP) of the fabricated Pt/CC and Pt/CNT/CC electrodes with the EtOH immersion pretreatments can efficiently be enhanced due to more active Pt sites for electrocatalytic reactions.

  8. Evolution of structure and magnetic properties in PrCo5 magnet for high energy ball milling in ethanol

    NASA Astrophysics Data System (ADS)

    Li, Zhu-Bai; Lan, Jian-Ting; Zhang, Xue-Feng; Liu, Yan-Li; Li, Yong-Feng

    2015-08-01

    High energy ball milling (HEBM) is employed to produce nano-sized grains and particles. In this paper, the structure and magnetic properties are investigated in PrCo5 alloy for HEBM in an ethanol milling medium. With the increase of milling time, the grain size reduces and the coercivity increases. For a milling time of less than 30 min, the hysteresis loop of the aligned sample is very different from that of the un-aligned sample and it does not show a large decrease in magnetization slope, indicating a relatively good alignment of easy axes in particles due to the fact that the texture is nearly well preserved. However, when the milling time is further prolonged, the textured structure deteriorates in the powders. Even though exchange coupling exists between grains within the particle, the magnetic properties are exchange-decoupled between particles and the dipolar interaction results in a negative value of δ m in the whole range of the magnetic field. Project supported by the National Natural Science Foundation of China (Grant No. 51461033).

  9. The Antiobesity Effect of Polygonum aviculare L. Ethanol Extract in High-Fat Diet-Induced Obese Mice

    PubMed Central

    Sung, Yoon-Young; Yoon, Taesook; Yang, Won-Kyung; Kim, Seung Ju; Kim, Dong-Seon; Kim, Ho Kyoung

    2013-01-01

    The antiobesity effects of a P. aviculare ethanol extract (PAE) in high-fat diet- (HFD-) induced obese mice were investigated. The mice were fed an HFD or an HFD supplemented with PAE (400 mg/kg/day) for 6.5 weeks. The increased body weights, adipose tissue weight, and adipocyte area as well as serum total triglyceride, leptin, and malondialdehyde concentrations were decreased in PAE-treated HFD-induced obese mice relative to the same measurements in untreated obese mice. Furthermore, PAE significantly suppressed the elevated mRNA expression levels of sterol regulatory element-binding protein-1c, peroxisome proliferator-activated receptor γ, fatty acid synthase, and adipocyte protein 2 in the white adipose tissue of obese mice. In addition, PAE treatment of 3T3-L1 cells inhibited adipocyte differentiation and fat accumulation in a dose-dependent manner. These results suggest that PAE exerts antiobesity effects in HFD-induced obese mice through the suppression of lipogenesis in adipose tissue and increased antioxidant activity. PMID:23431342

  10. Regulation of lipid disorders by ethanol extracts from Zingiber zerumbet in high-fat diet-induced rats.

    PubMed

    Chang, Chia Ju; Tzeng, Thing-Fong; Liou, Shorong-Shii; Chang, Yuan-Shiun; Liu, I-Min

    2012-05-01

    The aim of this study was to investigate the antihyperlipidaemic effects of the ethanol extract of Zingiber zerumbet (L) Smith (EEZZ). After being fed a high-fat diet (HFD) for 2weeks, rats were dosed orally with EEZZ (100, 200 or 300mg/kg) or fenofibrate (100mg/kg) once daily for 8weeks. EEZZ (300mg/kg/day) produced effects similar to fenofibrate in reducing body weight gain, visceral fat-pad weights and plasma lipid levels. EEZZ caused reductions in hepatic triglyceride and cholesterol content, and lowered hepatic lipid droplet accumulation and the size of epididymal adipocytes. HFD-induced reductions in the hepatic proteins of peroxisome proliferator-activated receptor (PPAR) α, acyl-CoA oxidase (ACO) and cytochrome P450 isoform 4A1 (CYP4A1) were reversed by EEZZ. These results suggest that EEZZ reduced the accumulation of visceral fat and improved hyperlipidaemia in HFD-fed rats by increasing fatty acid oxidation, an effect which is likely to be mediated via up-regulation of hepatic PPARα. PMID:26434316

  11. Development of xylose-fermenting yeasts for ethanol production at high acetic acid concentrations

    SciTech Connect

    Mohandas, D.V.; Whelan, D.R.; Panchal, C.J.

    1995-12-31

    Mutants resistant to comparatively high levels of acetic acid were isolated from the xylose-fermenting yeasts Candida shehatae and Pichia Stipitis by adapting these cultures to increasing concentrations of acetic acid grown in shake-flask cultures. These mutants were tested for their ability to ferment xylose in presence of high acetic acid concentrations, in acid hydrolysates of wood, and in hardwood spent sulfite liquor, and compared with their wild-type counterparts and between themselves. The P. stipitis mutant exhibited faster fermentation times, better tolerance to acid hydrolysates, and tolerance to lower pH.

  12. High Fibrinogen in Peripheral Blood Correlates with Poorer Hearing Recovery in Idiopathic Sudden Sensorineural Hearing Loss

    PubMed Central

    Kanzaki, Sho; Sakagami, Masafumi; Hosoi, Hiroshi; Murakami, Shingo; Ogawa, Kaoru

    2014-01-01

    Objectives We used hearing tests and peripheral blood sample analyses to characterize the pathology of idiopathic sudden sensorineural hearing loss (ISSNHL) and to identify possible prognostic factors for predicting recovery of hearing loss. Study Design A retrospective, multicenter trial was conducted. Methods Two hundred three patients examined within 7 days after the onset of ISSNHL received prednisone with lipo-prostaglandin E1. Pure-tone auditory tests were performed before and after treatment with these drugs. Blood tests were performed on blood samples collected during the patients’ initial visit to our clinic. Results In all patients, elevated white blood cell (WBC) counts, fasting blood sugar levels, HgbA1c, and erythrocyte sedimentation rate (ESR) significantly correlated with high hearing threshold measurements obtained on the initial visit. High fibrinogen levels, WBC counts, ESR, and low concentrations of fibrinogen degradation products (FDP) were associated with lower hearing recovery rates. Additionally, different audiogram shapes correlated with different blood test factors, indicating that different pathologies were involved. Conclusions High fibrinogen levels measured within seven days after ISSNHL onset correlated with poorer hearing recovery. This may be a consequence of ischemia or infections in the inner ear. The high WBC counts also observed may therefore reflect an immune response to inner ear damage induced by ischemic changes or infections. Our data indicate that therapeutic strategies should be selected based on the timing of initial treatment relative to ISSNHL onset. PMID:25166620

  13. [Ethanol content of Kefir water].

    PubMed

    Rabl, W; Liniger, B; Sutter, K; Sigrist, T

    1994-03-01

    The question of the influence of kefir on blood-alcohol-level has been asked in a legal proceeding. The questioned recipe consisted of 21 water, 6 soup-spoons of kefir granules (about 120 g), 150 g sugar, 2 figs and one lemon. The consumption took place after two days of fermentation. Experimentally we found, that one liter of this kefir product may contain up to 38 g/l ethanol after 7 to 10 days. On the second day we measured up to 16 g/l ethanol. Our results may be import for expert appraisements concerning unability of driving. PMID:8204224

  14. Effects of High-Intensity Blood Flow Restriction Exercise on Muscle Fatigue

    PubMed Central

    Neto, Gabriel R.; Santos, Heleodório H.; Sousa, Juliana B. C.; Júnior, Adenilson T. A.; Araújo, Joamira P.; Aniceto, Rodrigo R.; Sousa, Maria S. C.

    2014-01-01

    Strength training combined with blood flow restriction (BFR) have been used to improve the levels of muscle adaptation. The aim of this paper was to investigate the acute effect of high intensity squats with and without blood flow restriction on muscular fatigue levels. Twelve athletes (aged 25.95 ± 0.84 years) were randomized into two groups: without Blood Flow Restriction (NFR, n = 6) and With Blood Flow Restriction (WFR, n = 6) that performed a series of free weight squats with 80% 1-RM until concentric failure. The strength of the quadriceps extensors was assessed in a maximum voluntary isometric contraction integrated to signals from the surface electromyogram. The average frequency showed significant reductions in the WFR group for the vastus lateralis and vastus medialis muscles, and intergroup only for the vastus medialis. In conclusion, a set of squats at high intensity with BFR could compromise muscle strength immediately after exercise, however, differences were not significant between groups. PMID:25114743

  15. Ethanol and High-Value Terpene Co-Production from Lignocellulosic Biomass of Cymbopogon flexuosus and Cymbopogon martinii

    SciTech Connect

    Joyce, Blake L.; Zheljazkov, Valtcho D.; Sykes, Robert; Cantrell, Charles L.; Hamilton, Choo; Mann, David G. J.; Rodriguez, Miguel; Mielenz, Jonathan R.; Astatkie, Tess; C. Neal Stewart Jr.

    2015-10-05

    Cymbopogon flexuosus, lemongrass, and C. martinii, palmarosa, are perennial grasses grown to produce essential oils for the fragrance industry. The objectives of this study were (1) to evaluate biomass and oil yields as a function of nitrogen and sulfur fertilization, and (2) to characterize their utility for lignocellulosic ethanol compared to Panicum virgatum (switchgrass). Mean biomass yields were 12.83 Mg lemongrass ha-1 and 15.11 Mg palmarosa ha-1 during the second harvest year resulting in theoretical biofuel yields of 2541 and 2569 L ethanol ha-1 respectively compared to reported 1749–3691 L ethanol ha-1 for switchgrass. Pretreated lemongrass yielded 198 mL ethanol (g biomass) -1 and pretreated palmarosa yielded 170 mL ethanol (g biomass) -1. Additionally, lemongrass yielded 85.7 kg essential oil ha-1 and palmarosa yielded 67.0 kg ha-1 with an estimated value of USD $857 and $1005 ha-1. These data suggest that dual-use crops such as lemongrass and palmarosa may increase the economic viability of lignocellulosic biofuels.

  16. Ethanol and High-Value Terpene Co-Production from Lignocellulosic Biomass of Cymbopogon flexuosus and Cymbopogon martinii

    PubMed Central

    Joyce, Blake L.; Zheljazkov, Valtcho D.; Sykes, Robert; Cantrell, Charles L.; Hamilton, Choo; Mann, David G. J.; Rodriguez, Miguel; Mielenz, Jonathan R.; Astatkie, Tess; Stewart, C. Neal

    2015-01-01

    Cymbopogon flexuosus, lemongrass, and C. martinii, palmarosa, are perennial grasses grown to produce essential oils for the fragrance industry. The objectives of this study were (1) to evaluate biomass and oil yields as a function of nitrogen and sulfur fertilization, and (2) to characterize their utility for lignocellulosic ethanol compared to Panicum virgatum (switchgrass). Mean biomass yields were 12.83 Mg lemongrass ha-1 and 15.11 Mg palmarosa ha-1 during the second harvest year resulting in theoretical biofuel yields of 2541 and 2569 L ethanol ha-1 respectively compared to reported 1749–3691 L ethanol ha-1 for switchgrass. Pretreated lemongrass yielded 198 mL ethanol (g biomass)-1 and pretreated palmarosa yielded 170 mL ethanol (g biomass)-1. Additionally, lemongrass yielded 85.7 kg essential oil ha-1 and palmarosa yielded 67.0 kg ha-1 with an estimated value of USD $857 and $1005 ha-1. These data suggest that dual-use crops such as lemongrass and palmarosa may increase the economic viability of lignocellulosic biofuels. PMID:26437026

  17. Ethanol and High-Value Terpene Co-Production from Lignocellulosic Biomass of Cymbopogon flexuosus and Cymbopogon martinii.

    PubMed

    Joyce, Blake L; Zheljazkov, Valtcho D; Sykes, Robert; Cantrell, Charles L; Hamilton, Choo; Mann, David G J; Rodriguez, Miguel; Mielenz, Jonathan R; Astatkie, Tess; Stewart, C Neal

    2015-01-01

    Cymbopogon flexuosus, lemongrass, and C. martinii, palmarosa, are perennial grasses grown to produce essential oils for the fragrance industry. The objectives of this study were (1) to evaluate biomass and oil yields as a function of nitrogen and sulfur fertilization, and (2) to characterize their utility for lignocellulosic ethanol compared to Panicum virgatum (switchgrass). Mean biomass yields were 12.83 Mg lemongrass ha-1 and 15.11 Mg palmarosa ha-1 during the second harvest year resulting in theoretical biofuel yields of 2541 and 2569 L ethanol ha-1 respectively compared to reported 1749-3691 L ethanol ha-1 for switchgrass. Pretreated lemongrass yielded 198 mL ethanol (g biomass)-1 and pretreated palmarosa yielded 170 mL ethanol (g biomass)-1. Additionally, lemongrass yielded 85.7 kg essential oil ha-1 and palmarosa yielded 67.0 kg ha-1 with an estimated value of USD $857 and $1005 ha-1. These data suggest that dual-use crops such as lemongrass and palmarosa may increase the economic viability of lignocellulosic biofuels. PMID:26437026

  18. Blood Group A Antigen Expression on Cardiac Endothelium is Highly Individualized: Possible Implications for Transplantation

    PubMed Central

    Gehrie, Eric A.; Cates, Justin M.; Nian, Hui; Olson, Sandy J.; Young, Pampee P.

    2016-01-01

    Background Outcomes in cases of adult accidental ABO incompatible cardiac transplantation are highly variable, with some patients suffering nearly immediate catastrophic antibody-mediated rejection while others (~37% – 45%) survive. We hypothesize that these disparate outcomes could be influenced by variations in blood group antigen expression on allograft endothelium. Methodology Immunohistochemical stains for blood group A antigen were performed on cardiac tissue from 18 blood type A cadavers. Staining was evaluated by two distinct modalities: semi-quantitative light microscopy, which measured the intensity of antigen expression on endothelium, and quantitative digital analysis, which determined the percent of the total tissue section area staining positive for blood group A antigen. These data were used to compute a Comprehensive Expression Index (CEI) of blood group A antigen expression for each specimen. Results Semi-quantitative light microscopic examination determined that endothelium stained with low intensity in 4 (22%) myocardial samples, intermediate intensity in 5 (28%) samples, and high intensity in 9 (50%) samples. Quantitative digital analysis revealed a range in the percent of total cross sectional area composed of blood group A-positive signal (median 2.69%; interquartile range 1.68% – 2.94%). Increased percent of total cross sectional area composed of blood group A-positive signal was positively associated with patient age (p=.0037). The CEI showed a broad range, with a median of 5.27 and an interquartile range of 2.92 – 8.22. Conclusions There are little data available regarding inter-individual differences in blood group A antigen expression in cardiac endothelium. Here, we report inter-individual variation in endothelial expression of blood group A antigen in 18 specimens. These variations may help to explain disparate outcomes in cases of accidental ABO incompatible cardiac transplantation in adults. PMID:23290353

  19. True color blood flow imaging using a high-speed laser photography system

    NASA Astrophysics Data System (ADS)

    Liu, Chien-Sheng; Lin, Cheng-Hsien; Sun, Yung-Nien; Ho, Chung-Liang; Hsu, Chung-Chi

    2012-10-01

    Physiological changes in the retinal vasculature are commonly indicative of such disorders as diabetic retinopathy, glaucoma, and age-related macular degeneration. Thus, various methods have been developed for noninvasive clinical evaluation of ocular hemodynamics. However, to the best of our knowledge, current ophthalmic instruments do not provide a true color blood flow imaging capability. Accordingly, we propose a new method for the true color imaging of blood flow using a high-speed pulsed laser photography system. In the proposed approach, monochromatic images of the blood flow are acquired using a system of three cameras and three color lasers (red, green, and blue). A high-quality true color image of the blood flow is obtained by assembling the monochromatic images by means of image realignment and color calibration processes. The effectiveness of the proposed approach is demonstrated by imaging the flow of mouse blood within a microfluidic channel device. The experimental results confirm the proposed system provides a high-quality true color blood flow imaging capability, and therefore has potential for noninvasive clinical evaluation of ocular hemodynamics.

  20. Longitudinal Hierarchy Co3O4 Mesocrystals with High-dense Exposure Facets and Anisotropic Interfaces for Direct-Ethanol Fuel Cells

    NASA Astrophysics Data System (ADS)

    Hassen, Diab; El-Safty, Sherif A.; Tsuchiya, Koichi; Chatterjee, Abhijit; Elmarakbi, Ahmed; Shenashen, Mohamed. A.; Sakai, Masaru

    2016-04-01

    Novel electrodes are needed for direct ethanol fuel cells with improved quality. Hierarchical engineering can produce catalysts composed of mesocrystals with many exposed active planes and multi-diffused voids. Here we report a simple, one-pot, hydrothermal method for fabricating Co3O4/carbon/substrate electrodes that provides control over the catalyst mesocrystal morphology (i.e., corn tubercle pellets or banana clusters oriented along nanotube domains, or layered lamina or multiple cantilevered sheets). These morphologies afforded catalysts with a high density of exposed active facets, a diverse range of mesopores in the cage interior, a window architecture, and vertical alignment to the substrate, which improved efficiency in an ethanol electrooxidation reaction compared with a conventional platinum/carbon electrode. On the atomic scale, the longitudinally aligned architecture of the Co3O4 mesocrystals resulted in exposed low- and high-index single and interface surfaces that had improved electron transport and diffusion compared with currently used electrodes.

  1. Antidiabetic and antihyperlipidaemic activity of ethanol extract of Melastoma malabathricum Linn. leaf in alloxan induced diabetic rats

    PubMed Central

    Balamurugan, Karuppasamy; Nishanthini, Antony; Mohan, Veerabahu Ramasamy

    2014-01-01

    Objective To evaluate the antidiabetic and antihyperlipidaemic effect of ethanol extract of Melastoma malabathricum (M. malabathricum) Linn. leaf in alloxan induced diabetic rats. Methods Diabetes was induced in albino rats by administration of alloxan monohydrate (150 mg/kg i.p). the ethanol extracts of M. malabathricum at a dose of 150 and 300 mg/kg of body weight were administrated at a single dose per day to diabetes induced rats for a period of 14 d. The effect of ethanol extract of M. malabathricum leaf extract on blood glucose, plasma insulin, creatinine, glycosylated haemoglobin, urea serum lipid profile [total cholesterol, triglycerides, low density lipoprotein-cholesterol, very low density lipoprotein-cholesterol, high density lipoprotein-cholesterol and phospholipid, serum protein, albumin, globulin, serum enzymes (serum glutamate pyruvate transaminases), serum glutamate oxaloacetate transaminases, and alkaline phosphatase] were measured in the diabetic rats. Results In the acute toxicity study, ethanol extract of M. malabathricum leaf was non-toxic at 2 000 mg/kg in rats. The increased body weight, decreased blood glucose, glycosylated haemoglobin and other biochemical parameters level were observed in diabetic rats treated with both doses of ethanol extract of M. malabathricum leaf compared to diabetic control rats. In diabetic rats, ethanol extract of M. malabathricum leaf administration, altered lipid profiles were reversed to near normal than diabetic control rats. Conclusions Ethanol extract of M. malabathricum leaf possesses significant antidiabetic and antihyperlipidaemic activity in diabetic rats. PMID:25183126

  2. Improved linkage analysis of Quantitative Trait Loci using bulk segregants unveils a novel determinant of high ethanol tolerance in yeast

    PubMed Central

    2014-01-01

    Background Bulk segregant analysis (BSA) coupled to high throughput sequencing is a powerful method to map genomic regions related with phenotypes of interest. It relies on crossing two parents, one inferior and one superior for a trait of interest. Segregants displaying the trait of the superior parent are pooled, the DNA extracted and sequenced. Genomic regions linked to the trait of interest are identified by searching the pool for overrepresented alleles that normally originate from the superior parent. BSA data analysis is non-trivial due to sequencing, alignment and screening errors. Results To increase the power of the BSA technology and obtain a better distinction between spuriously and truly linked regions, we developed EXPLoRA (EXtraction of over-rePresented aLleles in BSA), an algorithm for BSA data analysis that explicitly models the dependency between neighboring marker sites by exploiting the properties of linkage disequilibrium through a Hidden Markov Model (HMM). Reanalyzing a BSA dataset for high ethanol tolerance in yeast allowed reliably identifying QTLs linked to this phenotype that could not be identified with statistical significance in the original study. Experimental validation of one of the least pronounced linked regions, by identifying its causative gene VPS70, confirmed the potential of our method. Conclusions EXPLoRA has a performance at least as good as the state-of-the-art and it is robust even at low signal to noise ratio’s i.e. when the true linkage signal is diluted by sampling, screening errors or when few segregants are available. PMID:24640961

  3. Adaptation of yeast cell membranes to ethanol

    SciTech Connect

    Jimenez, J.; Benitez, T.

    1987-05-01

    A highly ethanol-tolerant Saccharomyces wine strain is able, after growth in the presence of ethanol, to efficiently improve the ethanol tolerance of its membrane. A less-tolerant Saccharomyces laboratory strain, however, is unable to adapt its membrane to ethanol. Furthermore, after growth in the presence of ethanol, the membrane of the latter strain becomes increasingly sensitive, although this is a reversible process. Reversion to a higher tolerance occurs only after the addition of an energy source and does not take place in the presence of cycloheximide.

  4. High-speed shaking of frozen blood clots for extraction of human and malaria parasite DNA

    PubMed Central

    2011-01-01

    Background Frozen blood clots remaining after serum collection is an often disregarded source of host and pathogen DNA due to troublesome handling and suboptimal outcome. Methods High-speed shaking of clot samples in a cell disruptor manufactured for homogenization of tissue and faecal specimens was evaluated for processing frozen blood clots for DNA extraction. The method was compared to two commercial clot protocols based on a chemical kit and centrifugation through a plastic sieve, followed by the same DNA extraction protocol. Blood clots with different levels of parasitaemia (1-1,000 p/μl) were prepared from parasite cultures to assess sensitivity of PCR detection. In addition, clots retrieved from serum samples collected within two epidemiological studies in Kenya (n = 630) were processed by high speed shaking and analysed by PCR for detection of malaria parasites and the human α-thalassaemia gene. Results High speed shaking succeeded in fully dispersing the clots and the method generated the highest DNA yield. The level of PCR detection of P. falciparum parasites and the human thalassaemia gene was the same as samples optimally collected with an anticoagulant. The commercial clot protocol and centrifugation through a sieve failed to fully dissolve the clots and resulted in lower sensitivity of PCR detection. Conclusions High speed shaking was a simple and efficacious method for homogenizing frozen blood clots before DNA purification and resulted in PCR templates of high quality both from humans and malaria parasites. This novel method enables genetic studies from stored blood clots. PMID:21824391

  5. Blood lead levels among children in high-risk areas--California, 1987-1990

    SciTech Connect

    Not Available

    1992-05-01

    In the United States, elevated blood lead levels (BLLs) are a major health risk for children; this risk is totally preventable (1). To better characterize lead poisoning among children at high risk for lead exposure in California, the California Department of Health Services (CDHS) conducted lead-screening surveys that measured lead levels in children's blood, household paint, and soil in three selected high-risk areas in northern, southern, and central California. This report summarizes the survey findings and describes CDHS's efforts to reduce lead exposure among children in California, especially among those in high-risk areas.

  6. Small-sized PdCu nanocapsules on 3D graphene for high-performance ethanol oxidation.

    PubMed

    Hu, Chuangang; Zhai, Xiangquan; Zhao, Yang; Bian, Ke; Zhang, Jing; Qu, Liangti; Zhang, Huimin; Luo, Hongxia

    2014-03-01

    A one-pot solvothermal process has been developed for direct preparation of PdCu nanocapsules (with a size of ca. 10 nm) on three-dimensional (3D) graphene. Due to the 3D pore-rich network of graphene and the unique hollow structure of PdCu nanocapsules with a wall thickness of ca. 3 nm, the newly-prepared PdCu/3D graphene hybrids activated electrochemically have great electrocatalytic activity towards ethanol oxidation in alkaline media, much better than single-phase Pd and commercial E-TEK 20% Pt/C catalysts promising for application in direct ethanol fuel cells. PMID:24463536

  7. Correlation between high blood IL-6 level, hyperglycemia, and glucose control in septic patients

    PubMed Central

    2012-01-01

    Introduction The aim of the present study was to investigate the relationship between the blood IL-6 level, the blood glucose level, and glucose control in septic patients. Methods This retrospective observational study in a general ICU of a university hospital included a total of 153 patients with sepsis, severe sepsis, or septic shock who were admitted to the ICU between 2005 and 2010, stayed in the ICU for 7 days or longer, and did not receive steroid therapy prior to or after ICU admission. The severity of stress hyperglycemia, status of glucose control, and correlation between those two factors in these patients were investigated using the blood IL-6 level as an index of hypercytokinemia. Results A significant positive correlation between blood IL-6 level and blood glucose level on ICU admission was observed in the overall study population (n = 153; r = 0.24, P = 0.01), and was stronger in the nondiabetic subgroup (n = 112; r = 0.42, P < 0.01). The rate of successful glucose control (blood glucose level < 150 mg/dl maintained for 6 days or longer) decreased with increase in blood IL-6 level on ICU admission (P < 0.01). The blood IL-6 level after ICU admission remained significantly higher and the 60-day survival rate was significantly lower in the failed glucose control group than in the successful glucose control group (P < 0.01 and P < 0.01, respectively). Conclusions High blood IL-6 level was correlated with hyperglycemia and with difficulties in glucose control in septic patients. These results suggest the possibility that hypercytokinemia might be involved in the development of hyperglycemia in sepsis, and thereby might affect the success of glucose control. PMID:22494810

  8. Safe practice: using high-fidelity simulation to teach blood transfusion reactions.

    PubMed

    Prentice, Dawn; Oʼrourke, Tammy

    2013-01-01

    High-fidelity simulation can play an important role in educating novice nurses for a challenging health care environment by fostering their confidence levels in recognizing high-risk, low-incident events. This paper reports on a quality improvement project to increase student nurses' knowledge and skills in caring for clients receiving blood transfusions. PMID:23558920

  9. Ethanol poisoning

    MedlinePlus

    ... measure and monitor the person's vital signs, including temperature, pulse, breathing rate, and blood pressure. The person may receive: Airway support, including oxygen, breathing tube through the mouth (intubation),and ventilator ( ...

  10. [Clinically relevant aspects of ethanol metabolism].

    PubMed

    Kürzinger, R

    1981-08-15

    A general survey of the ethanol metabolism and the sequels resulting from this of different kind and intensiveness is given. The speed of the absorption of ethanol is determined according to the laws of diffusion above all by dose and concentration of the ethanol taken. The duration corresponding to the facts varies in broad limits between 10 and 180 min. Nearly simultaneously with the absorption the distribution of the ethanol into the tissues takes place. According to its overwhelming water solubility the ethanol content of the individual tissues is of different size when a distribution balance developed. Three enzyme systems independent of each other, the ADH, the MEOS and the katalase participate in the elimination of the ethanol, the maximum speed of degradation of which lies at the in every case different values of blood alcohol. These three enzyme systems further differ by various localisation, inhibitors, coferments, beginning of activity, optimum of activity and adaptive induction to ethanol. Demarcating for the first step of degradation and thus finally of the ethanol degradation in general might probably be the reoxydation rate, particularly of the NADH, and its repeated inclusion into the ethanol metabolism. Chronic intake of alcohol has multiple effects, among others due to the perhaps temporarily limited adaptive induction of MEOS it has altogether higher rates of degradation. These again have numerous negative sequels with sensitive disturbance of numerous physiologic processes of the intermediary metabolism, in which cases through functional processes finally result organic changes of different kind. PMID:7027648

  11. Fast blood flow visualization of high-resolution laser speckle imaging data using graphics processing unit.

    PubMed

    Liu, Shusen; Li, Pengcheng; Luo, Qingming

    2008-09-15

    Laser speckle contrast analysis (LASCA) is a non-invasive, full-field optical technique that produces two-dimensional map of blood flow in biological tissue by analyzing speckle images captured by CCD camera. Due to the heavy computation required for speckle contrast analysis, video frame rate visualization of blood flow which is essentially important for medical usage is hardly achieved for the high-resolution image data by using the CPU (Central Processing Unit) of an ordinary PC (Personal Computer). In this paper, we introduced GPU (Graphics Processing Unit) into our data processing framework of laser speckle contrast imaging to achieve fast and high-resolution blood flow visualization on PCs by exploiting the high floating-point processing power of commodity graphics hardware. By using GPU, a 12-60 fold performance enhancement is obtained in comparison to the optimized CPU implementations. PMID:18794967

  12. A two step method to synthesize palladium-copper nanoparticles on reduced graphene oxide and their extremely high electrocatalytic activity for the electrooxidation of methanol and ethanol

    NASA Astrophysics Data System (ADS)

    Na, HeYa; Zhang, Lei; Qiu, HaiXia; Wu, Tao; Chen, MingXi; Yang, Nian; Li, LingZhi; Xing, FuBao; Gao, JianPing

    2015-08-01

    Palladium-copper nanoparticles (Pd-Cu NPs) supported on reduced graphene oxide (RGO) with different Pd/Cu ratios (Pd-Cu/RGO) were prepared by a two step method. The Pd-Cu/RGO hybrids were characterized by transmission electron microscopy, X-ray photoelectron spectroscopy, X-ray diffraction and thermogravimetric analyses. Cyclic voltammetry and chronoamperometry were used to investigate the electrochemical activities and stabilities of the Pd-Cu/RGO catalysts for the electro-oxidation of methanol and ethanol in alkaline media. The Pd-Cu/RGO catalysts exhibited high catalytic activities and good stabilities. This is because the catalysts have a bimetallic structure consisting of a small Pd-Cu core surrounded by a thin Pd-rich shell which improves the catalytic activities of the Pd-Cu/RGO hybrids. Thus they should be useful in direct methanol and ethanol fuel cells.

  13. Green high-performance liquid chromatography enantioseparation of lansoprazole using a cellulose-based chiral stationary phase under ethanol/water mode.

    PubMed

    Ferretti, Rosella; Zanitti, Leo; Casulli, Adriano; Cirilli, Roberto

    2016-04-01

    A simple and environmentally friendly reversed-phase high-performance liquid chromatography method for the separation of the enantiomers of lansoprazole has been developed. The chromatographic resolution was carried out on the cellulose-based Chiralpak IC-3 chiral stationary phase using a green and low-toxicity ethanol-aqueous mode. The effects of water content in the mobile phase and column temperature on the retention of the enantiomers of lansoprazole and its chiral and achiral related substances have been carefully investigated. A mixed-mode hydrophilic interaction liquid chromatography and reversed-phase retention mechanism operating on the IC-3 chiral stationary phase allowed us to achieve simultaneous enantioselective and chemoselective separations in water-rich conditions. The enantiomers of lansoprazole were baseline resolved with a mobile phase consisting of ethanol/water 50:50 without any interference coming from chiral and achiral impurities within 10 min. PMID:26910378

  14. Developing high-sensitivity ethanol liquid sensors based on ZnO/porous Si nanostructure surfaces using an electrochemical impedance technique

    NASA Astrophysics Data System (ADS)

    Husairi, Mohd; Rouhi, Jalal; Alvin, Kevin; Atikah, Zainurul; Rusop, Muhammad; Abdullah, Saifollah

    2014-07-01

    ZnO nanostructures were synthesized on porous Si (PSi) substrates using the thermal catalytic-free immersion method. Crack-like ZnO nanostructures were formed on the bare, sponge-like PSi structures. An approach to fabricate chemical sensors based on the ZnO/PSi nanostructure arrays that uses an electrochemical impedance technique is reported. Sensor performance was evaluated for ethanol solutions by the morphology and defect structures of the ZnO nanostructure layer. Results indicate that the ZnO/PSi nanostructure chemical sensor exhibits rapid and high response to ethanol compared with a PSi nanostructure sensor because of its small particle size and an oxide layer acting as a capacitive layer on the PSi nanostructure surface.

  15. Sorghum to Ethanol Research

    SciTech Connect

    Dahlberg, Jeff; Wolfrum, Ed

    2010-06-30

    The development of a robust source of renewable transportation fuel will require a large amount of biomass feedstocks. It is generally accepted that in addition to agricultural and forestry residues, we will need crops grown specifically for subsequent conversion into fuels. There has been a lot of research on several of these so-called “dedicated bioenergy crops” including switchgrass, miscanthus, sugarcane, and poplar. It is likely that all of these crops will end up playing a role as feedstocks, depending on local environmental and market conditions. Many different types of sorghum have been grown to produce syrup, grain, and animal feed for many years. It has several features that may make it as compelling as other crops mentioned above as a renewable, sustainable biomass feedstock; however, very little work has been done to investigate sorghum as a dedicated bioenergy crop. The goal of this project was to investigate the feasibility of using sorghum biomass to produce ethanol. The work performed included a detailed examination of the agronomics and composition of a large number of sorghum varieties, laboratory experiments to convert sorghum to ethanol, and economic and life-cycle analyses of the sorghum-to-ethanol process. This work showed that sorghum has a very wide range of composition, which depended on the specific sorghum cultivar as well as the growing conditions. The results of laboratory- and pilot-scale experiments indicated that a typical high-biomass sorghum variety performed very similarly to corn stover during the multi-step process required to convert biomass feedstocks to ethanol; yields of ethanol for sorghum were very similar to the corn stover used as a control in these experiments. Based on multi-year agronomic data and theoretical ethanol production, sorghum can achieve more than 1,300 gallons of ethanol per acre given the correct genetics and environment. In summary, sorghum may be a compelling dedicated bioenergy crop that could help provide a major portion of the feedstocks required to produce renewable domestic transportation fuels.

  16. Sorghum to Ethanol Research

    SciTech Connect

    Jeff Dahlberg, Ph D; Ed Wolfrum, Ph D

    2010-06-30

    The development of a robust source of renewable transportation fuel will require a large amount of biomass feedstocks. It is generally accepted that in addition to agricultural and forestry residues, we will need crops grown specifically for subsequent conversion into fuels. There has been a lot of research on several of these so-called "dedicated bioenergy crops" including switchgrass, miscanthus, sugarcane, and poplar. It is likely that all of these crops will end up playing a role as feedstocks, depending on local environmental and market conditions. Many different types of sorghum have been grown to produce syrup, grain, and animal feed for many years. It has several features that may make it as compelling as other crops mentioned above as a renewable, sustainable biomass feedstock; however, very little work has been done to investigate sorghum as a dedicated bioenergy crop. The goal of this project was to investigate the feasibility of using sorghum biomass to produce ethanol. The work performed included a detailed examination of the agronomics and composition of a large number of sorghum varieties, laboratory experiments to convert sorghum to ethanol, and economic and life-cycle analyses of the sorghum-to-ethanol process. This work showed that sorghum has a very wide range of composition, which depended on the specific sorghum cultivar as well as the growing conditions. The results of laboratory- and pilot-scale experiments indicated that a typical high-biomass sorghum variety performed very similarly to corn stover during the multi-step process required to convert biomass feedstocks to ethanol; yields of ethanol for sorghum were very similar to the corn stover used as a control in these experiments. Based on multi-year agronomic data and theoretical ethanol production, sorghum can achieve more than 1,300 gallons of ethanol per acre given the correct genetics and environment. In summary, sorghum may be a compelling dedicated bioenergy crop that could help provide a major portion of the feedstocks required to produce renewable domestic transportation fuels.

  17. High blood oxygen affinity in the air-breathing swamp eel Monopterus albus.

    PubMed

    Damsgaard, Christian; Findorf, Inge; Helbo, Signe; Kocagoz, Yigit; Buchanan, Rasmus; Huong, Do Thi Thanh; Weber, Roy E; Fago, Angela; Bayley, Mark; Wang, Tobias

    2014-12-01

    The Asian swamp eel (Monopterus albus, Zuiew 1793) is a facultative air-breathing fish with reduced gills. Previous studies have shown that gas exchange seems to occur across the epithelium of the buccopharyngeal cavity, the esophagus and the integument, resulting in substantial diffusion limitations that must be compensated by adaptations in others steps of the O₂ transport system to secure adequate O₂ delivery to the respiring tissues. We therefore investigated O₂ binding properties of whole blood, stripped hemoglobin (Hb), two major isoHb components and the myoglobin (Mb) from M. albus. Whole blood was sampled using indwelling catheters for blood gas analysis and determination of O₂ equilibrium curves. Hb was purified to assess the effects of endogenous allosteric effectors, and Mb was isolated from heart and skeletal muscle to determine its O₂ binding properties. The blood of M. albus has a high O₂ carrying capacity [hematocrit (Hct) of 42.4±4.5%] and binds O₂ with an unusually high affinity (P₅₀=2.8±0.4mmHg at 27°C and pH7.7), correlating with insensitivity of the Hb to the anionic allosteric effectors that normally decrease Hb-O₂ affinity. In addition, Mb is present at high concentrations in both heart and muscle (5.16±0.99 and 1.08±0.19mg ∙ g wet tissue⁻¹, respectively). We suggest that the high Hct and high blood O₂ affinity serve to overcome the low diffusion capacity in the relatively inefficient respiratory surfaces, while high Hct and Mb concentration aid in increasing the O₂ flux from the blood to the muscles. PMID:25139401

  18. Enhanced ethanol production by fermentation of Gelidium amansii hydrolysate using a detoxification process and yeasts acclimated to high-salt concentration.

    PubMed

    Ra, Chae Hun; Jung, Jang Hyun; Sunwoo, In Yung; Jeong, Gwi-Taek; Kim, Sung-Koo

    2015-06-01

    A total monosaccharide concentration of 59.0 g/L, representing 80.1 % conversion of 73.6 g/L total fermentable sugars from 160 g dw/L G. amansii slurry was obtained by thermal acid hydrolysis and enzymatic hydrolysis. Subsequent adsorption treatment using 5 % activated carbon with an adsorption time of 2 min was used to prevent the inhibitory effect of 5-hydroxymethylfurfural (HMF) >5 g/L in the medium. Ethanol production decreased with increasing salt concentration using C. tropicalis KCTC 7212 non-acclimated or acclimated to a high concentration of salt. Salt concentration of 90 psu was the maximum concentration for cell growth and ethanol production. The levels of ethanol production by C. tropicalis non-acclimated or acclimated to 90 psu high-salt concentration were 13.8 g/L with a yield (YEtOH) of 0.23, and 26.7 g/L with YEtOH of 0.45, respectively. PMID:25627467

  19. High solid loading hydrolyzate-tolerant strains of Scheffersomyces (Pichia) stipitis exhibiting reduced diauxic lag and higher ethanol productivity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    During the fermentation of lignocellulosic hydrolyzates to ethanol by native pentose-fermenting yeasts such as Scheffersomyces (Pichia) stipitis NRRL Y-7124, the switch from glucose to xylose uptake results in a diauxic lag unless process strategies to prevent this are applied. Further investigation...

  20. Genetically engineered Escherichia coli FBR5: Part I. Comparison of high cell density bioreactors for enhanced ethanol production from xylose

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Five reactor systems (free cell batch, free cell continuous, entrapped cell immobilized, adsorbed cell packed bed, and cell recycle membrane reactors) were compared for ethanol production from xylose employing Escherichia coli FBR5. In the free cell batch and free cell continuous reactors (continuo...

  1. Ethanol and High-Value Terpene Co-Production from Lignocellulosic Biomass of Cymbopogon flexuosus and Cymbopogon martinii

    DOE PAGESBeta

    Joyce, Blake L.; Zheljazkov, Valtcho D.; Sykes, Robert; Cantrell, Charles L.; Hamilton, Choo; Mann, David G. J.; Rodriguez, Miguel; Mielenz, Jonathan R.; Astatkie, Tess; C. Neal Stewart Jr.

    2015-10-05

    Cymbopogon flexuosus, lemongrass, and C. martinii, palmarosa, are perennial grasses grown to produce essential oils for the fragrance industry. The objectives of this study were (1) to evaluate biomass and oil yields as a function of nitrogen and sulfur fertilization, and (2) to characterize their utility for lignocellulosic ethanol compared to Panicum virgatum (switchgrass). Mean biomass yields were 12.83 Mg lemongrass ha-1 and 15.11 Mg palmarosa ha-1 during the second harvest year resulting in theoretical biofuel yields of 2541 and 2569 L ethanol ha-1 respectively compared to reported 1749–3691 L ethanol ha-1 for switchgrass. Pretreated lemongrass yielded 198 mL ethanolmore » (g biomass) -1 and pretreated palmarosa yielded 170 mL ethanol (g biomass) -1. Additionally, lemongrass yielded 85.7 kg essential oil ha-1 and palmarosa yielded 67.0 kg ha-1 with an estimated value of USD $857 and $1005 ha-1. These data suggest that dual-use crops such as lemongrass and palmarosa may increase the economic viability of lignocellulosic biofuels.« less

  2. EFFECTS OF CARBOXYLIC ACIDS ON LIQUID-PHASE ADSORPTION OF ETHANOL AND WATER BY HIGH-SILICA ZSM-5

    EPA Science Inventory

    Adsorption isotherms were measured for each compound adsorbed on commercially available ZSM-5 (Si/Al = 140) powder from binary and ternary liquid mixtures of ethanol, carboxylic acids, and water at room temperature. The amounts adsorbed were measured using a recently developed t...

  3. High catalytic performance of Pt nanoparticles on plasma treated carbon nanotubes for electrooxidation of ethanol in a basic solution

    NASA Astrophysics Data System (ADS)

    Jiang, Zhongqing; Jiang, Zhong-jie; Meng, Yuedong

    2011-01-01

    Nanosized Pt particles deposited on plasma treated multi-walled carbon nanotubes have been used in electrocatalytic oxidation of ethanol in a basic solution. These Pt nanoparticles have very narrow size distribution and exhibit significant higher catalytic activities, higher Pt utilization efficiency (93.77%) and improved durability in comparison to the commercial available Johnson Matthey Pt/C catalyst.

  4. High Level Ethanol from Sugar Cane Molasses by a New Thermotolerant Saccharomyces cerevisiae Strain in Industrial Scale.

    PubMed

    Fadel, M; Keera, Abeer A; Mouafi, Foukia E; Kahil, Tarek

    2013-01-01

    A new local strain of S. cerevisiae F-514, for ethanol production during hot summer season, using Egyptian sugar cane molasses was applied in Egyptian distillery factory. The inouluum was propagated through 300?L, 3?m(3), and 12?m(3) fermenters charged with diluted sugar cane molasses containing 4%-5% sugars. The yeast was applied in fermentation vessels 65?m(3) working volume to study the varying concentrations of urea, DAP, orthophosphoric acid (OPA), and its combinations as well as magnesium sulfate and inoculum size. The fermenter was allowed to stay for a period of 20 hours to give time for maximum conversion of sugars into ethanol. S. cerevisiae F-514 at molasses sugar level of 18%?(w/v), inoculum size of 20%?(v/v) cell concentration of 3.0 10(8)/mL, and combinations of urea, diammonium phosphate (DAP), orthophosphoric acid (OPA), and magnesium sulfate at amounts of 20, 10, 5, and 10?kg/65?m(3) working volume fermenters, respectively, supported maximum ethanol production (9.8%, v/v), fermentation efficiency (FE) 88.1%, and remaining sugars (RS) 1.22%. The fermentation resulted 13.4?g dry yeast/L contained 34.6% crude protein and 8.2% ash. By selecting higher ethanol yielding yeast strain and optimizing, the fermentation parameters both yield and economics of the fermentation process can be improved. PMID:24363937

  5. Ethanol production in the Southern High Plains of Texas: Impacts on the economy and scarce water resources

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The establishment of new biorefineries in an effort to increase energy security in the United States has generated positive impacts by creating jobs and generating economic output. However, communities and local and state leaders are concerned about whether ethanol production is an effective use o...

  6. Improved ethanol tolerance of Saccharomyces cerevisiae in mixed cultures with Kluyveromyces lactis on high-sugar fermentation.

    PubMed

    Yamaoka, Chizuru; Kurita, Osamu; Kubo, Tomoko

    2014-12-01

    The influence of non-Saccharomyces yeast, Kluyveromyces lactis, on metabolite formation and the ethanol tolerance of Saccharomyces cerevisiae in mixed cultures was examined on synthetic minimal medium containing 20% glucose. In the late stage of fermentation after the complete death of K. lactis, S. cerevisiae in mixed cultures was more ethanol-tolerant than that in pure culture. The chronological life span of S. cerevisiae was shorter in pure culture than mixed cultures. The yeast cells of the late stationary phase both in pure and mixed cultures had a low buoyant density with no significant difference in the non-quiescence state between both cultures. In mixed cultures, the glycerol contents increased and the alanine contents decreased when compared with the pure culture of S. cerevisiae. The distinctive intracellular amino acid pool concerning its amino acid concentrations and its amino acid composition was observed in yeast cells with different ethanol tolerance in the death phase. Co-cultivation of K. lactis seems to prompt S. cerevisiae to be ethanol tolerant by forming opportune metabolites such as glycerol and alanine and/or changing the intracellular amino acid pool. PMID:24932883

  7. Small-sized PdCu nanocapsules on 3D graphene for high-performance ethanol oxidation

    NASA Astrophysics Data System (ADS)

    HuThese Authors Contributed Equally To This Work., Chuangang; Zhai, Xiangquan; Zhao, Yang; Bian, Ke; Zhang, Jing; Qu, Liangti; Zhang, Huimin; Luo, Hongxia

    2014-02-01

    A one-pot solvothermal process has been developed for direct preparation of PdCu nanocapsules (with a size of ca. 10 nm) on three-dimensional (3D) graphene. Due to the 3D pore-rich network of graphene and the unique hollow structure of PdCu nanocapsules with a wall thickness of ca. 3 nm, the newly-prepared PdCu/3D graphene hybrids activated electrochemically have great electrocatalytic activity towards ethanol oxidation in alkaline media, much better than single-phase Pd and commercial E-TEK 20% Pt/C catalysts promising for application in direct ethanol fuel cells.A one-pot solvothermal process has been developed for direct preparation of PdCu nanocapsules (with a size of ca. 10 nm) on three-dimensional (3D) graphene. Due to the 3D pore-rich network of graphene and the unique hollow structure of PdCu nanocapsules with a wall thickness of ca. 3 nm, the newly-prepared PdCu/3D graphene hybrids activated electrochemically have great electrocatalytic activity towards ethanol oxidation in alkaline media, much better than single-phase Pd and commercial E-TEK 20% Pt/C catalysts promising for application in direct ethanol fuel cells. Electronic supplementary information (ESI) available. See DOI: 10.1039/c3nr05722d

  8. HSP-4 endoplasmic reticulum (ER) stress pathway is not activated in a C. elegans model of ethanol intoxication and withdrawal.

    PubMed

    Ient, Ben; Edwards, Richard; Mould, Richard; Hannah, Matthew; Holden-Dye, Lindy; O'Connor, Vincent

    2012-12-01

    Acute and chronic exposure of Caenorhabditis elegans to concentrations of ethanol in the range 250-350 mM elicits distinct behaviours. Previous genetic analysis highlights specific neurobiological substrates for these effects. However, ethanol may also elicit cellular stress responses which may contribute to the repertoire of ethanol-induced behaviours. Here, we have studied the effect of ethanol on an important arm of the cellular stress pathways, which emanates from the endoplasmic reticulum (ER) in response to several conditions including heat shock and chemical or genetic perturbations that lead to protein misfolding. HSP-4 is a heat shock protein and homologue of mammalian BiP. It is a pivotal upstream component of the ER stress response. Therefore, we used a C. elegans heat shock protein mutant, hsp-4, and a strain carrying a transcriptional reporter, Phsp-4::gfp, to test the role of the ER following chronic ethanol conditioning. We found no evidence for an overt ER response during acute or prolonged exposure to concentrations of ethanol that lead to defined ethanol-induced behaviours. Furthermore, whilst hsp-4 was strongly induced by tunicamycin, pre-exposure of C. elegans to low doses of tunicamycin followed by ethanol was not sufficient to induce an additive ER stress response. Behavioural analysis of an hsp-4 mutant indicated no difference compared to wild type in susceptibility to ethanol intoxication and withdrawal. There is a clear precedent for a significance of ER stress pathways particularly in clinical conditions associated with toxic or pathological effects of high doses of alcohol consumption. The concentrations of ethanol used in this C. elegans study equate to the highest blood alcohol levels measured in patients with chronic alcohol dependency. Taken together, these observations imply that the classic ER stress pathway in C. elegans is relatively refractory to induction by ethanol. PMID:22661239

  9. Chemoenzymatic Synthesis of a Type 2 Blood Group A Tetrasaccharide and Development of High-throughput Assays Enables a Platform for Screening Blood Group Antigen-cleaving Enzymes.

    PubMed

    Kwan, David H; Ernst, Sabrina; Kötzler, Miriam P; Withers, Stephen G

    2015-08-01

    A facile enzymatic synthesis of the methylumbelliferyl β-glycoside of the type 2 A blood group tetrasaccharide in good yields is reported. Using this compound, we developed highly sensitive fluorescence-based high-throughput assays for both endo-β-galactosidase and α-N-acetylgalactosaminidase activity specific for the oligosaccharide structure of the blood group A antigen. We further demonstrate the potential to use this assay to screen the expressed gene products of metagenomic libraries in the search for efficient blood group antigen-cleaving enzymes. PMID:25964111

  10. The effect of chronic erythrocytic polycythemia and high altitude upon plasma and blood volumes.

    NASA Technical Reports Server (NTRS)

    Burton, R. R.; Smith, A. H.

    1972-01-01

    Comparison of two kinds of physiological chronic erythrocytic polycythemias in order to differentiate the specific effect of erythrocytic polycythemia from the general effects of high altitude upon the plasma volume. The two kinds were produced hormonally in female chickens, at sea level, or by protracted high-altitude exposures. It appears that the vascular system of the body may account for an increase in red blood cell mass either by reduction in plasma volume, or by no change in plasma volume, resulting in differential changes in total blood volumes.

  11. Psychopharmacological interactions between nicotine and ethanol.

    PubMed

    Rose, Jed E; Brauer, Lisa H; Behm, Frederique M; Cramblett, Matthew; Calkins, Kevin; Lawhon, Dawn

    2004-02-01

    Epidemiological, clinical, and laboratory evidence has shown a positive correlation between cigarette smoking and ethanol use, and previous studies suggest some commonality in the neural pathways mediating effects of nicotine and ethanol. In this study, the subjective and behavioral interactions among nicotine, ethanol, and the nicotinic antagonist mecamylamine were investigated. The main objectives were to determine how the rewarding effects of nicotine might be modified by ethanol, and to compare the effects of ethanol with those of a nicotinic antagonist (mecamylamine). A total of 48 smokers who regularly consumed alcoholic beverages participated in four laboratory sessions presenting a 2 (nicotine vs. denicotinized cigarette smoke)x2 (10 mg oral mecamylamine hydrochloride vs. placebo)x2 (ethanol.5 g/kg vs. placebo) design, with ethanol as a between-subjects factor. Dependent measures included blood alcohol concentration (BAC), as assessed by breath alcohol detector; subjective drug effects; and rate of ad lib smoking during a 2-hr period. Results showed that peak BAC averaged.03 g/dl in the ethanol condition. Ethanol potentiated some of the subjective rewarding effects of nicotine, including smoking satisfaction, stimulant as well as calming effects, and relief of craving for cigarettes. During the ad lib smoking period, mecamylamine decreased satisfaction associated with the nicotine-containing cigarettes; mecamylamine also induced smoking but only in the placebo ethanol condition. These results highlight the potent interaction between ethanol and nicotinic systems, and suggest that ethanol can potentiate the rewarding effects of nicotine as well as offset some of the effects of a nicotinic antagonist. PMID:14982697

  12. Fuel ethanol and high protein feed from corn and corn-whey mixtures in a farm-scale plant

    SciTech Connect

    Gibbons, W.R.; Westby, C.A.

    1983-09-01

    Distiller's wet grain (DWG) and 95% ethanol were produced from corn in a farm-scale process involving batch cooking-fermentation and continuous distillation-centrifugation. The energy balance was 2.26 and the cost was $1.86/gal (1981 cost). To improve the energy balance and reduce costs, various modifications were made in the plant. The first change, back-end (after liquefaction) serial recycling of stillage supernatant at 20 and 40% strengths, produced beers with 0.2 and 0.4% (v/v) more ethanol, respectively, than without recycling. This increased the energy balance by 0.22-0.43 units and reduced costs by $0.07-$0.10/gal. The DWGs from back-end recycling had increased fat. The second change, increasing the starch content from 17-19% to 27.5%, increased the ethanol in the beer from 10.5-14.9% at a cost savings of $0.41/gal. The energy balance increased by 1.08 units. No significant change was seen in DWG composition. The third change, using continuous cascade rather than batch fermentation, permitted batch-levels of ethanol (10%) in the beer but only at low dilution rates. Both the cost and energy balance were decreased slightly. The DWG composition remained constant. The last change, replacing part of the corn and all of the tap water in the mash with whole whey and using Kluyveromyces fragilis instead of Saccharomyces cerevisiae during fermentation, resulted in an energy balance increase of 0.16 units and a $0.27/gal cost reduction. Here, 10% ethanolic beers were produced and the DWGs showed increased protein and fat. Recommendations for farm-scale plants are provided. (Refs. 46).

  13. Record And Analysis Of High-Speed Photomicrography On Rheology Of Red Blood Cells In Vivo

    NASA Astrophysics Data System (ADS)

    Jian, Zhang; Yuju, Lin; Jizong, Wu; Qiang, Wang; Guishan, Li; Ni, Liang

    1989-06-01

    Microcirculation is the basic functional unit of blood circulation in human body. The oxygen needed and the carbon dioxide discharged in human body were accomplished in the case of flow and deformation of red blood cells (RBC) in capillaries. The rheology of RBC performs an important function for maintaining normal blood irrigation and nutritional metabolism. Obviously, for blood irrigation, dynamic mechanism of RBC, blood cell microrheology, law of mivrocirculation and cause of disease, it has very important significance to study quantitatively the rheology of RBC in the capillaries of live animal. In recent years, Tianjin University, cooperating with the Institute of Hematology, used the method of high speed photomicrography to record the flow states of RBC in the capillaries of the hamster cheek pouch and the frog web. Some systems were assembled through the study of luminous energy transmission, illumination system and optical match. These systems included the microhigh-speed camera system, the microhighspeed video recorder system and the microhighspeed camera system combining with an image enhancement tube. Some useful results were obtained by the photography of the flow states of RBC, film analysis and data processing. These results provided the beneficial data for the dynamic mechanism that RBC were deformed by the different blood flow field.

  14. High-Throughput Lens-Free Blood Analysis on a Chip

    PubMed Central

    Seo, Sungkyu; Isikman, Serhan O.; Sencan, Ikbal; Mudanyali, Onur; Su, Ting-Wei; Bishara, Waheb; Erlinger, Anthony; Ozcan, Aydogan

    2010-01-01

    We present a detailed investigation of the performance of lens-free holographic microscopy toward high-throughput on-chip blood analysis. Using a spatially incoherent source that is emanating from a large aperture, automated counting of red blood cells with minimal sample preparation steps at densities reaching up to ~0.4 × 106 cells/μL is presented. Using the same lens-free holographic microscopy platform, we also characterize the volume of the red blood cells at the single-cell level through recovery of the optical phase information of each cell. We further demonstrate the measurement of the hemoglobin concentration of whole blood samples as well as automated counting of white blood cells, also yielding spatial resolution at the subcellular level sufficient to differentiate granulocytes, monocytes, and lymphocytes from each other. These results uncover the prospects of lens-free holographic on-chip imaging to provide a useful tool for global health problems, especially by facilitating whole blood analysis in resource-poor environments. PMID:20450181

  15. Self-Administered Ethanol Enema Causing Accidental Death

    PubMed Central

    Peterson, Thomas; Rentmeester, Landen; Judge, Bryan S.; Cohle, Stephen D.; Jones, Jeffrey S.

    2014-01-01

    Excessive ethanol consumption is a leading preventable cause of death in the United States. Much of the harm from ethanol comes from those who engage in excessive or hazardous drinking. Rectal absorption of ethanol bypasses the first pass metabolic effect, allowing for a higher concentration of blood ethanol to occur for a given volume of solution and, consequently, greater potential for central nervous system depression. However, accidental death is extremely rare with rectal administration. This case report describes an individual with klismaphilia whose death resulted from acute ethanol intoxication by rectal absorption of a wine enema. PMID:25436159

  16. Highly active carbon supported ternary PdSnPtx (x=0.1-0.7) catalysts for ethanol electro-oxidation in alkaline and acid media.

    PubMed

    Wang, Xiaoguang; Zhu, Fuchun; He, Yongwei; Wang, Mei; Zhang, Zhonghua; Ma, Zizai; Li, Ruixue

    2016-04-15

    A series of trimetallic PdSnPtx (x=0.1-0.7)/C catalysts with varied Pt content have been synthesized by co-reduction method using NaBH4 as a reducing agent. These catalysts were characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), high resolution transmission electron microscopy (HRTEM), energy dispersive X-ray spectroscopy (EDX), X-ray photoelectron spectroscopy (XPS), cyclic voltammetry (CV) and chronoamperometry (CA). The electrochemical results show that, after adding a minor amount of Pt dopant, the resultant PdSnPtx/C demonstrated more superior catalytic performance toward ethanol oxidation as compared with that of mono-/bi-metallic Pd/C or PdSn/C in alkaline solution and the PdSnPt0.2/C with optimal molar ratio reached the best. In acid solution, the PdSnPt0.2/C also depicted a superior catalytic activity relative to the commercial Pt/C catalyst. The possible enhanced synergistic effect between Pd, Sn/Sn(O) and Pt in an alloyed state should be responsible for the as-revealed superior ethanol electro-oxidation performance based upon the beneficial electronic effect and bi-functional mechanism. It implies the trimetallic PdSnPt0.2/C with a low Pt content has a promising prospect as anodic electrocatalyst in fields of alkali- and acid-type direct ethanol fuel cells. PMID:26851453

  17. High thermal sensitivity of blood enhances oxygen delivery in the high-flying bar-headed goose.

    PubMed

    Meir, Jessica U; Milsom, William K

    2013-06-15

    The bar-headed goose (Anser indicus) crosses the Himalaya twice a year at altitudes where oxygen (O2) levels are less than half those at sea level and temperatures are below -20°C. Although it has been known for over three decades that the major hemoglobin (Hb) component of bar-headed geese has an increased affinity for O2, enhancing O2 uptake, the effects of temperature and interactions between temperature and pH on bar-headed goose Hb-O2 affinity have not previously been determined. An increase in breathing of the hypoxic and extremely cold air experienced by a bar-headed goose at altitude (due to the enhanced hypoxic ventilatory response in this species) could result in both reduced temperature and reduced levels of CO2 at the blood-gas interface in the lungs, enhancing O2 loading. In addition, given the strenuous nature of flapping flight, particularly in thin air, blood leaving the exercising muscle should be warm and acidotic, facilitating O2 unloading. To explore the possibility that features of blood biochemistry in this species could further enhance O2 delivery, we determined the P50 (the partial pressure of O2 at which Hb is 50% saturated) of whole blood from bar-headed geese under conditions of varying temperature and [CO2]. We found that blood-O2 affinity was highly temperature sensitive in bar-headed geese compared with other birds and mammals. Based on our analysis, temperature and pH effects acting on blood-O2 affinity (cold alkalotic lungs and warm acidotic muscle) could increase O2 delivery by twofold during sustained flapping flight at high altitudes compared with what would be delivered by blood at constant temperature and pH. PMID:23470665

  18. Using a Low-Sodium, High-Potassium Salt Substitute to Reduce Blood Pressure among Tibetans with High Blood Pressure: A Patient-Blinded Randomized Controlled Trial

    PubMed Central

    Zhao, Xingshan; Yin, Xuejun; Li, Xian; Yan, Lijing L.; Lam, Christopher T.; Li, Shenshen; He, Feng; Xie, Wuxiang; Sang, Ba; Luobu, Gesang; Ke, Liang; Wu, Yangfeng

    2014-01-01

    Objectives To evaluate the effects of a low-sodium and high-potassium salt-substitute on lowering blood pressure (BP) among Tibetans living at high altitude (4300 meters). Method The study was a patient-blinded randomized controlled trial conducted between February and May 2009 in Dangxiong County, Tibetan Autonomous Region, China. A total of 282 Tibetans aged 40 or older with known hypertension (systolic BP≥140 mmHg) were recruited and randomized to intervention (salt-substitute, 65% sodium chloride, 25% potassium chloride and 10% magnesium sulfate) or control (100% sodium chloride) in a 1: 1 allocation ratio with three months’ supply. Primary outcome was defined as the change in BP levels measured from baseline to followed-up with an automated sphygmomanometer. Per protocol (PP) and intention to treat (ITT) analyses were conducted. Results After the three months’ intervention period, the net reduction in SBP/DBP in the intervention group in comparison to the control group was −8.2/−3.4 mmHg (all p<0.05) in PP analysis, after adjusting for baseline BP and other variables. ITT analysis showed the net reduction in SBP/DBP at −7.6/−3.5 mmHg with multiple imputations (all p<0.05). Furthermore, the whole distribution of blood pressure showed an overall decline in SBP/DBP and the proportion of patients with BP under control (SBP/DBP<140 mmHg) was significantly higher in salt-substitute group in comparison to the regular salt group (19.2% vs. 8.8%, p = 0.027). Conclusion Low sodium high potassium salt-substitute is effective in lowering both systolic and diastolic blood pressure and offers a simple, low-cost approach for hypertension control among Tibetans in China. Trial Registration ClinicalTrials.gov NCT01429246 PMID:25338053

  19. Real-life Stories About High Blood Pressure | NIH MedlinePlus the Magazine

    MedlinePlus

    ... I’ve got to figure out some good options besides fast food.” Quotable quote: “You’re looking at a guy who’s getting back in control!” For more real-life stories about high blood pressure, visit www. ...

  20. High blood Pressure in children and its correlation with three definitions of obesity in childhood

    PubMed Central

    de Moraes, Leonardo Iezzi; Nicola, Thaís Coutinho; de Jesus, Julyanna Silva Araújo; Alves, Eduardo Roberty Badiani; Giovaninni, Nayara Paula Bernurdes; Marcato, Daniele Gasparini; Sampaio, Jéssica Dutra; Fuly, Jeanne Teixeira Bessa; Costalonga, Everlayny Fiorot

    2014-01-01

    Background Several authors have correlated the increase of cardiovascular risk with the nutritional status, however there are different criteria for the classification of overweight and obesity in children. Objectives To evaluate the performance of three nutritional classification criteria in children, as definers of the presence of obesity and predictors of high blood pressure in schoolchildren. Methods Eight hundred and seventeen children ranging 6 to 13 years old, enrolled in public schools in the municipality of Vila Velha (ES) were submitted to anthropometric evaluation and blood pressure measurement. The classification of the nutritional status was established by two international criteria (CDC/NCHS 2000 and IOTF 2000) and one Brazilian criterion (Conde e Monteiro 2006). Results The prevalence of overweight was higher when the criterion of Conde e Monteiro (27%) was used, and inferior by the IOTF (15%) criteria. High blood pressure was observed in 7.3% of children. It was identified a strong association between the presence of overweight and the occurrence of high blood pressure, regardless of the test used (p < 0.001). The test showing the highest sensitivity in predicting elevated BP was the Conde e Monteiro (44%), while the highest specificity (94%) and greater overall accuracy (63%), was the CDC criterion. Conclusions The prevalence of overweight in Brazilian children is higher when using the classification criterion of Conde e Monteiro, and lower when the criterion used is IOTF. The Brazilian classification criterion proved to be the most sensitive predictor of high BP risk in this sample. PMID:24676372

  1. Family History Fails to Detect the Majority of Children with High Capillary Blood Total Cholesterol.

    ERIC Educational Resources Information Center

    Davidson, Dennis M.; And Others

    1991-01-01

    To examine the predictive value of family history in detecting children with high blood cholesterol, finger-stick screening was done in children (n=1,118) ages 9-10 with parental and grandparental history of cardiovascular disease and risk factors. Findings showed that screening only children with positive family histories will leave most problems…

  2. High Blood Cholesterol in Adults. Report of the Expert Panel on Detection, Evaluation, and Treatment.

    ERIC Educational Resources Information Center

    National Heart, Lung, and Blood Inst. (DHHS/NIH), Bethesda, MD.

    This report offers a patient-based approach to lowering blood cholesterol levels which seeks to identify individuals at high risk who will benefit from intensive intervention efforts. The goal is to establish criteria that define the candidates for medical intervention and to provide guidelines on how to detect, set goals for, treat, and monitor…

  3. Alcohol-induced insulin resistance in liver: Potential roles in regulation of ADH expression; ethanol clearance and alcohol liver disease

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Using total enteral nutrition (TEN), we demonstrated that low carbohydrate, high alcohol-containing diets (10-12 g/kg/dO produced alcoholic liver disease (ALD) in adult male Sprague-Dawley rats (300 g). Intragastric infusion of this diet generates regular pulses of blood ethanol concentrations (BEC...

  4. [Cimetidine and ethanol].

    PubMed

    Papke, J; Borgmann, H; Dökert, B; Bartels, H; Krause, D

    1989-12-15

    Cimetidine inhibits hepatic drug metabolism, but its effect on ethanol elimination is less well established. The influence of cimetidine on the kinetics of ethanol is studied with three standardized drinking experiments. Cimetidine had no influence on the absorption or elimination of ethanol. There were significant differences in distribution of ethanol in consequence of inhibition of vascular histamine receptors after cimetidine application. PMID:2629368

  5. Hollow raspberry-like PdAg alloy nanospheres: High electrocatalytic activity for ethanol oxidation in alkaline media

    NASA Astrophysics Data System (ADS)

    Peng, Cheng; Hu, Yongli; Liu, Mingrui; Zheng, Yixiong

    2015-03-01

    Palladium-silver (PdAg) alloy nanospheres with unique structure were prepared using a one-pot procedure based on the galvanic replacement reaction. Their electrocatalytic activity for ethanol oxidation in alkaline media was evaluated. The morphology and crystal structure of the samples were characterized by scanning electron microscopy (SEM), transmission electron microscopy (TEM) and X-ray diffraction (XRD). Electrochemical characterization techniques, including cyclic voltammetry (CV) and chronoamperometry (CA) measurements were used to analyze the electrochemical performance of the PdAg alloy nanospheres. The SEM and TEM images showed that the PdAg alloy nanospheres exhibit a hierarchical nanostructure with hollow interiors and porous walls. Compared to the commercial Pd/C catalyst, the as-prepared PdAg alloy nanospheres exhibit superior electrocatalytic activity and stability towards ethanol electro-oxidation in alkaline media, showing its potential as a new non-Pt electro-catalyst for direct alcohol fuel cells (DAFCs).

  6. High Rates of Hepatitis B and C and HIV Infections among Blood Donors in Cameroon: A Proposed Blood Screening Algorithm for Blood Donors in Resource-Limited Settings

    PubMed Central

    Fouelifack Ymele, Florent; Keugoung, Basile; Fouedjio, Jeanne Hortense; Kouam, Nadege; Mendibi, Sandrine; Dongtsa Mabou, Jacqueline

    2012-01-01

    Background. Infections with human immunodeficiency virus (HIV), hepatitis B (HBV), and hepatitis C virus (HCV) are currently major public health problems. Methods. A retrospective study was conducted from January to June 2008 at the Blood Bank of the Central Hospital, Yaoundé (Cameroon). The objective was to study the prevalence of HIV, HBV, and HCV and their coinfections among blood donors. Results. A total of 4650 donors were identified, and the sex ratio (male/female) was 14/1. The median age of donors was 28 years (range: 16 to 69 years). Among blood donors, HBV, HIV, and HCV infection prevalences were 12.14%  (n = 565) , 4.44%  (n = 206), and 1.44%  (n = 67), respectively. Coinfection with HIV and HBV was observed among 0.77% donors, followed by hepatitis B and C co-infection (0.21%) and HIV and HCV coinfection (0.06%). Co-infection with HIV-HBV-HCV was encountered in 2 donors. The HIV, HBV, and HCV infections lead to a destruction of one out of six sets of blood collected. Conclusion. There is a need to review policies for blood collection from donors, by modifying the algorithm of blood donors testing. Pretesting potential donors using rapid tests could help to avoid collection and destruction of (infected) blood. PMID:24066258

  7. Xylose fermentation to ethanol

    SciTech Connect

    McMillan, J.D.

    1993-01-01

    The past several years have seen tremendous progress in the understanding of xylose metabolism and in the identification, characterization, and development of strains with improved xylose fermentation characteristics. A survey of the numerous microorganisms capable of directly fermenting xylose to ethanol indicates that wild-type yeast and recombinant bacteria offer the best overall performance in terms of high yield, final ethanol concentration, and volumetric productivity. The best performing bacteria, yeast, and fungi can achieve yields greater than 0.4 g/g and final ethanol concentrations approaching 5%. Productivities remain low for most yeast and particularly for fungi, but volumetric productivities exceeding 1.0 g/L-h have been reported for xylose-fermenting bacteria. In terms of wild-type microorganisms, strains of the yeast Pichia stipitis show the most promise in the short term for direct high-yield fermentation of xylose without byproduct formation. Of the recombinant xylose-fermenting microorganisms developed, recombinant E. coli ATTC 11303 (pLOI297) exhibits the most favorable performance characteristics reported to date.

  8. Blood donors at high risk of transmitting the acquired immune deficiency syndrome.

    PubMed

    Contreras, M; Hewitt, P E; Barbara, J A; Mochnaty, P Z

    1985-03-01

    The acquired immune deficiency syndrome (AIDS) occurs most commonly in homosexual men. This group carries the greatest risk of transmitting AIDS by blood transfusion. Both promiscuous and nonpromiscuous male homosexuals should refrain from giving blood. A leaflet stating this advice was prepared by the Department of Health and Social Security, United Kingdom. In July 1984 a questionnaire was given to all donors attending a blood donor clinic in the west end of London, England. 53% were male. Donors were given a leaflet on AIDS and a questionnaire to complete in private. Those who considered themselves to be in a high risk group were asked to designate their blood for research purposes only. Serum samples from donors who confirmed that they were in the high risk category were tested for antihepatitis B core antigen and anti-human T lymphotropic virus type III (anti-HTLV-III) in addition to the routine screening of donors for hepatitis B surface antigen and syphilis. All high risk donors were men. Homosexuality was the only high risk factor. Of 5000 questionnaires administered between July and October, 614 were not completed or had ambiguous answers. 38 donors who completed the questionnaire beonged to a high risk group. Of these, 7 were positive for antihepatitis B core antigen; none were positive for anti-HTLV-III, T pallidum hemagglatination, or hepatits B surface antigen. Although the homosexual donors had a much lower incidence of sexually transmitted disease than those attending special clinics, this should not encourage complacency. All possible measures must be taken to prevent homosexuals from donating blood. PMID:3918739

  9. Evaluation of a simple model of ethanol drinking to intoxication in C57BL/6J mice.

    PubMed

    Rhodes, Justin S; Best, Karyn; Belknap, John K; Finn, Deborah A; Crabbe, John C

    2005-01-31

    Because of intrinsic differences between humans and mice, no single mouse model can represent all features of a complex human trait such as alcoholism. It is therefore necessary to develop partial models. One important feature is drinking to the point where blood ethanol concentration (BEC) reaches levels that have measurable affects on physiology and/or behavior (>1.0 mg ethanol/ml blood). Most models currently in use examine relative oral self-administration from a bottle containing alcohol versus one containing water (two-bottle preference drinking), or oral operant self-administration. In these procedures, it is not clear when or if the animals drink to pharmacologically significant levels because the drinking is episodic and often occurs over a 24-h period. The aim of this study was to identify the optimal parameters and evaluate the reliability of a very simple procedure, taking advantage of a mouse genotype (C57BL/6J) that is known to drink large quantities of ethanol. We exchanged for the water bottle a solution containing ethanol in tap water for a limited period, early in the dark cycle, in the home cage. Mice regularly drank sufficient ethanol to achieve BEC>1.0 mg ethanol/ml blood. The concentration of ethanol offered (10%, 20% or 30%) did not affect consumption in g ethanol/kg body weight. The highest average BEC ( approximately 1.6 mg/ml) occurred when the water-to-ethanol switch occurred 3 h into the dark cycle, and when the ethanol was offered for 4 rather than 2 h. Ethanol consumption was consistent within individual mice, and reliably predicted BEC after the period of ethanol access. C57BL/6J mice from three sources provided equivalent data, while DBA/2J mice drank much less than C57BL/6J in this test. We discuss advantages of the model for high-throughput screening assays where the goal is to find other genotypes of mice that drink excessively, or to screen drugs for their efficacy in blocking excessive drinking. PMID:15642607

  10. High temperature induces apoptosis and oxidative stress in pufferfish (Takifugu obscurus) blood cells.

    PubMed

    Cheng, Chang-Hong; Yang, Fang-Fang; Liao, Shao-An; Miao, Yu-Tao; Ye, Chao-Xia; Wang, An-Li; Tan, Jia-Wen; Chen, Xiao-Yan

    2015-10-01

    Water temperature is an important environmental factor in aquaculture farming that affects the survival and growth of organisms. The change in culture water temperature may not only modify various chemical and biological processes but also affect the status of fish populations. In previous studies, high temperature induced apoptosis and oxidative stress. However, the precise mechanism and the pathways that are activated in fish are still unclear. In the present study, we investigated the effects of high temperature (34°C) on the induction of apoptosis and oxidative stress in pufferfish (Takifugu obscurus) blood cells. The data showed that high temperature exposure increased oxygen species (ROS), cytoplasmic free-Ca(2+) concentration and cell apoptosis. To test the apoptotic pathway, the expression pattern of some key apoptotic related genes including P53, Bax, caspase 9 and caspase 3 were examined. The results showed that acute high temperature stress induced up-regulation of these genes, suggesting that the p53-Bax pathway and the caspase-dependent apoptotic pathway could be involved in apoptosis induced by high temperature stress. Furthermore, the gene expression of antioxidant enzymes (Cu/Zn-SOD, Mn-SOD, CAT, GPx, and GR) and heat shock proteins (HSP90 and HSP70) in the blood cells were induced by high temperature stress. Taken together, our results showed that high temperature-induced oxidative stress may cause pufferfish blood cells apoptosis, and cooperatively activated p53-Bax and caspase-dependent apoptotic pathway. PMID:26590470

  11. Ethanol kinetics: extent of error in back extrapolation procedures.

    PubMed Central

    al-Lanqawi, Y; Moreland, T A; McEwen, J; Halliday, F; Durnin, C J; Stevenson, I H

    1992-01-01

    1. Plasma ethanol concentrations were measured in 24 male volunteers for 9 h after a single oral dose of 710 mg kg-1. 2. The rate of decline of the plasma ethanol concentration (k0; mean +/- s.d.), was 186 +/- 26 mg l-1 h-1. 3. In each individual, three elimination rates were used to back-extrapolate plasma ethanol concentrations over 3 and 5 h periods from observed values at 4 h and 6 h post-dosing assuming zero-order kinetics. The extrapolated values were then compared with the observed concentrations. 4. Using the mean k0 values for the subjects the mean error in back extrapolation was small but highly variable. The variability in the error increased with the length of the extrapolation period. 5. When a k0 value of 150 mg l-1 h-1 (a value often cited as a population mean) was used for back extrapolation this resulted in significant under-estimation of actual values whereas the use of a k0 value of 238 mg l-1 h-1 (the highest value observed in the present study) resulted in significant over-estimation of actual values. 6. These results indicate that because the kinetics of ethanol are associated with substantial inter-subject variability the use of a single slope value to back calculate blood concentrations can give rise to considerable error. PMID:1457265

  12. High barium levels in public drinking water and its association with elevated blood pressure.

    PubMed

    Brenniman, G R; Kojola, W H; Levy, P S; Carnow, B W; Namekata, T

    1981-01-01

    A maximum contaminant level for barium in drinking water has been set at 1. mg/L. This study examines for the first time, whether there are significant differences in mean blood pressure levels between a high and a low barium community. A total of approximately 2,400 Illinois residents in West Dundee, with a mean barium drinking water level of 7.3 mmg/L, and in McHenry, with a mean barium level of 0.1 mg/L, were studied. All other drinking water constituents were nearly identical between the two communities, with the major difference being the level of barium ingested. No significant differences (P greater than .05) were found in blood pressures between the high and low barium communities. Adjustment for duration of exposure, home water softeners, and high blood pressure medication did not alter the findings. The data from this study suggest that elevated levels of barium in drinking water do not significantly elevate blood pressure levels in adult males or females. It is recommended that the drinking water standard of 1. mg/L be re-examined for other possible health effects. PMID:7469488

  13. Hearing Impairment and High Blood Pressure among Bus Drivers in Puducherry

    PubMed Central

    Balaji, Rajeshwar; John, Nitin Ashok; Venkatappa, Umadevi Sajja

    2016-01-01

    Introduction Noise Induced Hearing Loss (NIHL), a major heath concern due to constant exposure to loud noise is on the rising trend in today’s world. The bus drivers are more vulnerable to the auditory and non-auditory ill effects of noise pollution. Aim The aim of this study was to assess and compare the hearing level, blood pressure and peak expiratory flow rate of bus drivers and individuals employed in office jobs. Materials and Methods Fifty male bus drivers aged 30-50 years and fifty males of the same group employed in office jobs were recruited as the test and control groups respectively. The hearing level of the individuals in both the groups was assessed using the Hearing Deterioration Index (HDI). The lung function and cardiovascular status of the study participants were assessed by measuring their Peak Expiratory Flow Rate (PEFR) and Blood Pressure (BP) respectively. The mean HDI, PEFR and BP values of both the groups were compared using the unpaired t-test and the extent of correlation between HDI, service years, exposure level, systolic blood pressure (SBP) and diastolic blood pressure (DBP) was determined using Pearson correlation coefficient test. Results HDI, SBP and DBP were significantly higher among the bus drivers when compared to the controls. However, there was no significant difference in the PEFR values between the test and the control groups. There was a highly significant positive correlation between HDI and service years and exposure level. Similarly, there was a significant positive correlation between exposure level and systolic and diastolic blood pressure. Conclusion Prolonged exposure to high intensity of sound results in deterioration of hearing capacity and increase in blood pressure among the bus drivers. PMID:27042452

  14. Exacerbation of myocardial dysfunction and autonomic imbalance contribute to the estrogen-dependent chronic hypotensive effect of ethanol in female rats

    PubMed Central

    El-Mas, Mahmoud M.; Abdel-Rahman, Abdel A.

    2012-01-01

    Our previous studies showed that the hypotensive effect of chronic ethanol in female rats is reduced by ovariectomy (OVX) rats and was restored after estrogen replacement (OVXE2). Further, in randomly cycling rats, chronic ethanol increased cardiac parasympathetic dominance and subsequently reduced myocardial contractility and blood pressure (BP). In this study, we tested the hypothesis that alterations in myocardial contractility and sympathovagal control account for the E2 exacerbation of the hemodynamic effects of ethanol. BP, myocardial contractility (+dP/dtmax), and spectral cardiovascular autonomic profiles were evaluated in radiotelemetered OVX, and OVXE2 rats receiving liquid diet with or without ethanol (5%, w/v) for 13 weeks. In OVX rats, ethanol caused modest hypotension along with significant increases in +dP/dtmax during weeks 2–5. The high-frequency (IBIHF, 0.75–3 Hz) and low-frequency (IBILF, 0.25–0.75 Hz) bands of interbeat intervals were briefly increased and decreased, respectively, by ethanol. Compared with its effects in OVX rats, chronic treatment of OVXE2 rats with ethanol elicited significantly greater and more sustained reductions in systolic (SBP) and diastolic (DBP) blood pressures and +dP/dtmax. Altered sympathovagal balance and parasympathetic overactivity were more evident in ethanol-treated OVXE2 rats as suggested by the sustained: (i) increases in high-frequency bands of interbeat intervals (IBIHF, 0.75–3 Hz), and (ii) decreases in low-frequency IBI bands (IBILF, 0.25–0.75 Hz), IBILF/HF ratio and +dP/dtmax. The plasma ethanol concentration was not affected by changes in the hormonal milieu. These findings suggest that estrogen exacerbates the ethanol-evoked reductions in myocardial contractility and BP and the associated parasympathetic overactivity in female rats. PMID:22305881

  15. Aerobic production of ethanol. Final report

    SciTech Connect

    Clesceri, L.S.; Bungay, H.R.

    1990-01-01

    A computer-controlled continuous culture of yeast converted glucose to ethanol at excellent rates on a per-cell basis. This highly unconventional aerobic bioprocess makes use of oxidoreductive metabolism induced by concentrations of glucose that overload respiratory capacity and dump glucose into the ethanol pathway. Unfortunately, this yeast strain lost this high productivity when ethanol approached the concentrations required by a commercially feasible process. These results point the way for a new method for making ethanol if an organism can be found that is less inhibited by its main product.

  16. Highly Effective DNA Extraction Method from Fresh, Frozen, Dried and Clotted Blood Samples

    PubMed Central

    Samadi Shams, Sara; Zununi Vahed, Sepideh; Soltanzad, Farzaneh; Kafil, Vala; Barzegari, Abolfazl; Atashpaz, Sina; Barar, Jaleh

    2011-01-01

    Introduction Today, with the tremendous potential of genomics and other recent advances in science, the role of science to improve reliable DNA extraction methods is more relevant than ever before. The ideal process for genomic DNA extraction demands high quantities of pure, integral and intact genomic DNA (gDNA) from the sample with minimal co-extraction of inhibitors of downstream processes. Here, we report the development of a very rapid, less-hazardous, and high throughput protocol for extracting of high quality DNA from blood samples. Methods Dried, clotted and ethylene diamine tetra-acetic acid (EDTA) treated fresh and frozen blood samples were extracted using this method in which the quality and integrity of the extracted DNA were corroborated by agarose gel electrophoresis, PCR reaction and DNA digestion using restricted enzyme. The UV spectrophotometric and gel electrophoresis analysis resulted in high A260/A280 ratio (>1.8) with high intactness of DNA. Results PCR and DNA digestion experiments indicated that the final solutions of extracted DNA contained no inhibitory substances, which confirms that the isolated DNA is of good quality. Conclusion The high quality and quantity of current method, no enzymatic processing and accordingly its low cost, make it appropriate for DNA extraction not only from human but also from animal blood samples in any molecular biology labs. PMID:23678425

  17. Mouse model of chronic and binge ethanol feeding (the NIAAA model)

    PubMed Central

    Bertola, Adeline; Mathews, Stephanie; Ki, Sung Hwan; Wang, Hua; Gao, Bin

    2013-01-01

    Chronic alcohol consumption is a leading cause of chronic liver disease worldwide, leading to cirrhosis and hepatocellular carcinoma. currently, the most widely used model for alcoholic liver injury is ad libitum feeding with the Lieber-DeCarli liquid diet containing ethanol for 46 weeks; however, this model, without the addition of a secondary insult, only induces mild steatosis, slight elevation of serum alanine transaminase (alt) and little or no inflammation. Here we describe a simple mouse model of alcoholic liver injury by chronic ethanol feeding (10-d ad libitum oral feeding with the Lieber-DeCarli ethanol liquid diet) plus a single binge ethanol feeding. this protocol for chronic-plus-single-binge ethanol feeding synergistically induces liver injury, inflammation and fatty liver, which mimics acute-on-chronic alcoholic liver injury in patients. this feeding protocol can also be extended to chronic feeding for longer periods of time up to 8 weeks plus single or multiple binges. chronic-binge ethanol feeding leads to high blood alcohol levels; thus, this simple model will be very useful for the study of alcoholic liver disease (ALD) and of other organs damaged by alcohol consumption. PMID:23449255

  18. Emotional reactivity to incentive downshift as a correlated response to selection of high and low alcohol preferring mice and an influencing factor on ethanol intake.

    PubMed

    Matson, Liana M; Grahame, Nicholas J

    2015-11-01

    Losing a job or significant other are examples of incentive loss that result in negative emotional reactions. The occurrence of negative life events is associated with increased drinking (Keyes, Hatzenbuehler, & Hasin, 2011). Further, certain genotypes are more likely to drink alcohol in response to stressful negative life events (Blomeyer et al., 2008; Covault et al., 2007). Shared genetic factors may contribute to alcohol drinking and emotional reactivity, but this relationship is not currently well understood. We used an incentive downshift paradigm to address whether emotional reactivity is elevated in mice predisposed to drink alcohol. We also investigated if ethanol drinking is influenced in High Alcohol Preferring mice that had been exposed to an incentive downshift. Incentive downshift procedures have been widely utilized to model emotional reactivity, and involve shifting a high reward group to a low reward and comparing the shifted group to a consistently rewarded control group. Here, we show that replicate lines of selectively bred High Alcohol Preferring mice exhibited larger successive negative contrast effects than their corresponding replicate Low Alcohol Preferring lines, providing strong evidence for a genetic association between alcohol drinking and susceptibility to the emotional effects of negative contrast. These mice can be used to study the shared neurological and genetic underpinnings of emotional reactivity and alcohol preference. Unexpectedly, an incentive downshift suppressed ethanol drinking immediately following an incentive downshift. This could be due to a specific effect of negative contrast on ethanol consumption or a suppressive effect on consummatory behavior in general. These data suggest that either alcohol intake does not provide the anticipated negative reinforcement, or that a single test was insufficient for animals to learn to drink following incentive downshift. However, the emotional intensity following incentive downshift provides initial evidence that this type of emotional reactivity may be a predisposing factor in alcoholism. PMID:26404495

  19. The role of blood vessels in high-resolution volume conductor head modeling of EEG.

    PubMed

    Fiederer, L D J; Vorwerk, J; Lucka, F; Dannhauer, M; Yang, S; Dümpelmann, M; Schulze-Bonhage, A; Aertsen, A; Speck, O; Wolters, C H; Ball, T

    2016-03-01

    Reconstruction of the electrical sources of human EEG activity at high spatio-temporal accuracy is an important aim in neuroscience and neurological diagnostics. Over the last decades, numerous studies have demonstrated that realistic modeling of head anatomy improves the accuracy of source reconstruction of EEG signals. For example, including a cerebro-spinal fluid compartment and the anisotropy of white matter electrical conductivity were both shown to significantly reduce modeling errors. Here, we for the first time quantify the role of detailed reconstructions of the cerebral blood vessels in volume conductor head modeling for EEG. To study the role of the highly arborized cerebral blood vessels, we created a submillimeter head model based on ultra-high-field-strength (7T) structural MRI datasets. Blood vessels (arteries and emissary/intraosseous veins) were segmented using Frangi multi-scale vesselness filtering. The final head model consisted of a geometry-adapted cubic mesh with over 17×10(6) nodes. We solved the forward model using a finite-element-method (FEM) transfer matrix approach, which allowed reducing computation times substantially and quantified the importance of the blood vessel compartment by computing forward and inverse errors resulting from ignoring the blood vessels. Our results show that ignoring emissary veins piercing the skull leads to focal localization errors of approx. 5 to 15mm. Large errors (>2cm) were observed due to the carotid arteries and the dense arterial vasculature in areas such as in the insula or in the medial temporal lobe. Thus, in such predisposed areas, errors caused by neglecting blood vessels can reach similar magnitudes as those previously reported for neglecting white matter anisotropy, the CSF or the dura - structures which are generally considered important components of realistic EEG head models. Our findings thus imply that including a realistic blood vessel compartment in EEG head models will be helpful to improve the accuracy of EEG source analyses particularly when high accuracies in brain areas with dense vasculature are required. PMID:26747748

  20. Carbonic anhydrase activity in the red blood cells of sea level and high altitude natives.

    PubMed

    Gamboa, J; Caceda, R; Gamboa, A; Monge-C, C

    2000-01-01

    Red blood cell carbonic anhydrase (CA) activity has not been studied in high altitude natives. Because CA is an intraerythocytic enzyme and high altitude natives are polycythemic, it is important to know if the activity of CA per red cell volume is different from that of their sea level counterparts. Blood was collected from healthy subjects living in Lima (150m) and from twelve subjects from Cerro de Pasco (4330m), and hematocrit and carbonic anhydrase activity were measured. As expected, the high altitude natives had significantly higher hematocrits than the sea level controls (p = 0.0002). No difference in the CA activity per milliliter of red cells was found between the two populations. There was no correlation between the hematocrit and CA activity. PMID:15696680

  1. High Peripheral Blood Th17 Percent Associated with Poor Lung Function in Cystic Fibrosis

    PubMed Central

    Mulcahy, Emily M.; Hudson, Jo B.; Beggs, Sean A.; Reid, David W.; Roddam, Louise F.; Cooley, Margaret A.

    2015-01-01

    People with cystic fibrosis (CF) have been reported to make lung T cell responses that are biased towards T helper (Th) 2 or Th17. We hypothesized that CF-related T cell regulatory defects could be detected by analyzing CD4+ lymphocyte subsets in peripheral blood. Peripheral blood mononuclear cells from 42 CF patients (6 months–53 years old) and 78 healthy controls (2–61 years old) were analyzed for Th1 (IFN-γ+), Th2 (IL-4+), Th17 (IL-17+), Treg (FOXP3+), IL-10+ and TGF-β+ CD4+ cells. We observed higher proportions of Treg, IL-10+ and TGF-β+ CD4+ cells in CF adults (≥ 18 years old), but not children/adolescents, compared with controls. Within the CF group, high TGF-β+% was associated with chronic Pseudomonas aeruginosa lung infection (p < 0.006). We observed no significant differences between control and CF groups in the proportions of Th1, Th2 or Th17 cells, and no association within the CF group of any subset with sex, CFTR genotype, or clinical exacerbation. However, high Th17% was strongly associated with poor lung function (FEV1 % predicted) (p = 0.0008), and this association was strongest when both lung function testing and blood sampling were performed within one week. Our results are consistent with reports of CF as a Th17 disease and suggest that peripheral blood Th17 levels may be a surrogate marker of lung function in CF. PMID:25803862

  2. Mesoporous Silica Nanoparticle-Stabilized and Manganese-Modified Rhodium Nanoparticles as Catalysts for Highly Selective Synthesis of Ethanol and Acetaldehyde from Syngas

    SciTech Connect

    Huang, Yulin; Deng, Weihua; Guo, Enruo; Chung, Po-Wen; Chen, Senniang; Trewyn, Brian; Brown, Robert; Lin, Victor

    2012-03-30

    Well-defined and monodispersed rhodium nanoparticles as small as approximately 2?nm were encapsulated in?situ and stabilized in a mesoporous silica nanoparticle (MSN) framework during the synthesis of the mesoporous material. Although both the activity and selectivity of MSN-encapsulated rhodium nanoparticles in CO hydrogenation could be improved by the addition of manganese oxide as expected, the carbon selectivity for C2 oxygenates (including ethanol and acetaldehyde) was unprecedentedly high at 74.5?% with a very small amount of methanol produced if rhodium nanoparticles were modified by manganese oxide with very close interaction.

  3. Unbiased Characterization of Anopheles Mosquito Blood Meals by Targeted High-Throughput Sequencing

    PubMed Central

    Logue, Kyle; Keven, John Bosco; Cannon, Matthew V.; Reimer, Lisa; Siba, Peter; Walker, Edward D.; Zimmerman, Peter A.; Serre, David

    2016-01-01

    Understanding mosquito host choice is important for assessing vector competence or identifying disease reservoirs. Unfortunately, the availability of an unbiased method for comprehensively evaluating the composition of insect blood meals is very limited, as most current molecular assays only test for the presence of a few pre-selected species. These approaches also have limited ability to identify the presence of multiple mammalian hosts in a single blood meal. Here, we describe a novel high-throughput sequencing method that enables analysis of 96 mosquitoes simultaneously and provides a comprehensive and quantitative perspective on the composition of each blood meal. We validated in silico that universal primers targeting the mammalian mitochondrial 16S ribosomal RNA genes (16S rRNA) should amplify more than 95% of the mammalian 16S rRNA sequences present in the NCBI nucleotide database. We applied this method to 442 female Anopheles punctulatus s. l. mosquitoes collected in Papua New Guinea (PNG). While human (52.9%), dog (15.8%) and pig (29.2%) were the most common hosts identified in our study, we also detected DNA from mice, one marsupial species and two bat species. Our analyses also revealed that 16.3% of the mosquitoes fed on more than one host. Analysis of the human mitochondrial hypervariable region I in 102 human blood meals showed that 5 (4.9%) of the mosquitoes unambiguously fed on more than one person. Overall, analysis of PNG mosquitoes illustrates the potential of this approach to identify unsuspected hosts and characterize mixed blood meals, and shows how this approach can be adapted to evaluate inter-individual variations among human blood meals. Furthermore, this approach can be applied to any disease-transmitting arthropod and can be easily customized to investigate non-mammalian host sources. PMID:26963245

  4. Unbiased Characterization of Anopheles Mosquito Blood Meals by Targeted High-Throughput Sequencing.

    PubMed

    Logue, Kyle; Keven, John Bosco; Cannon, Matthew V; Reimer, Lisa; Siba, Peter; Walker, Edward D; Zimmerman, Peter A; Serre, David

    2016-03-01

    Understanding mosquito host choice is important for assessing vector competence or identifying disease reservoirs. Unfortunately, the availability of an unbiased method for comprehensively evaluating the composition of insect blood meals is very limited, as most current molecular assays only test for the presence of a few pre-selected species. These approaches also have limited ability to identify the presence of multiple mammalian hosts in a single blood meal. Here, we describe a novel high-throughput sequencing method that enables analysis of 96 mosquitoes simultaneously and provides a comprehensive and quantitative perspective on the composition of each blood meal. We validated in silico that universal primers targeting the mammalian mitochondrial 16S ribosomal RNA genes (16S rRNA) should amplify more than 95% of the mammalian 16S rRNA sequences present in the NCBI nucleotide database. We applied this method to 442 female Anopheles punctulatus s. l. mosquitoes collected in Papua New Guinea (PNG). While human (52.9%), dog (15.8%) and pig (29.2%) were the most common hosts identified in our study, we also detected DNA from mice, one marsupial species and two bat species. Our analyses also revealed that 16.3% of the mosquitoes fed on more than one host. Analysis of the human mitochondrial hypervariable region I in 102 human blood meals showed that 5 (4.9%) of the mosquitoes unambiguously fed on more than one person. Overall, analysis of PNG mosquitoes illustrates the potential of this approach to identify unsuspected hosts and characterize mixed blood meals, and shows how this approach can be adapted to evaluate inter-individual variations among human blood meals. Furthermore, this approach can be applied to any disease-transmitting arthropod and can be easily customized to investigate non-mammalian host sources. PMID:26963245

  5. High Mortality among Patients with Positive Blood Cultures at a Children's Hospital in Tbilisi, Georgia

    PubMed Central

    Schaffner, Jami; Chochua, Sopio; Kourbatova, Ekaterina V.; Barragan, Maribel; Wang, Yun F; Blumberg, Henry M; Rio, Carlos del; Walker, H. Kenneth; Leonard, Michael K.

    2010-01-01

    Background The etiology and outcomes of blood stream infections (BSI) among pediatric patients is not well described in resource-limited countries including Georgia. Methods Patients with positive blood cultures at the largest pediatric hospital in the country of Georgia were identified by review of medical and laboratory records for patients who had blood cultures obtained between 01/2004-06/2006. Results Of 1,693 blood cultures obtained during the study period, 338 (20%) were positive; 299 were included in our analysis. The median age was 14 days (range 2 days -14 years) and 178 (60%) were male; 53% of patients with a positive culture were admitted to Neonatal Intensive Care Unit (NICU). Gram-negative bacilli (GNB) were representing 165 (55%) of 299 cultures. Further speciation of 135 (82%) of 165 GNR was not possible because of lack of laboratory capacity. Overall mortality was 30% (90 of 299). Among the 90 children who died, 80 (89%) were neonates and 68 (76%) had BSI caused by Gram-negative organism. In multivariate analysis, independent risk factors for in-hospital mortality included age <30 days (OR=4.00, 95% CI 1.89-8.46) and having a positive blood culture for a Gram-negative BSI (OR=2.38, 95% CI 1.32-4.29). Conclusions A high mortality was seen among children, particularly neonates, with positive blood cultures at the largest pediatric hospital in Georgia. Because of limited laboratory capacity microbiological identification of common organisms known to cause BSI in children was not possible and susceptibility testing was not performed. Improving the infrastructure of diagnostic microbiology laboratories in resource limited countries is critical in order to improve patient care and clinical outcomes and from a public health standpoint to improve surveillance activities. PMID:19759489

  6. High tolerance and physiological mechanism of Zymomonas mobilis to phenolic inhibitors in ethanol fermentation of corncob residue.

    PubMed

    Gu, Hanqi; Zhang, Jian; Bao, Jie

    2015-09-01

    Corncob residue as the lignocellulosic biomass accumulated phenolic compounds generated from xylitol production industry. For utilization of this biomass, Zymomonas mobilis ZM4 was tested as the ethanol fermenting strain and presented a better performance of cell growth (2.8 × 10(8)  CFU/mL) and ethanol fermentability (54.42 g/L) in the simultaneous saccharification and fermentation (SSF) than the typical robust strain Saccharomyces cerevisiae DQ1 (cell growth of 2.9 × 10(7)  CFU/mL, ethanol titer of 48.6 g/L). The physiological response of Z. mobilis ZM4 to the twelve typical phenolic compounds derived from lignocellulose was assayed and compared with that of S. cerevisiae DQ1. Z. mobilis ZM4 showed nearly the same tolerance to the phenolic aldehydes with S. cerevisiae DQ1, but the stronger tolerance to the phenolic acids existing in corncob residue (2-furoic acid, p-hydroxybenzoic acid, p-coumaric acid, vanillic acid, ferulic acid, and syringic acid). The tolerance mechanism of Z. mobilis was investigated in terms of inhibitor degradation, cell morphology and membrane permeability under the stress of phenolics using GC-MS, scanning and transmission electron microscopies (SEM and TEM), as well as fluorescent probes. The results reveal that Z. mobilis ZM4 has the capability for in situ detoxification of phenolic aldehydes, and the lipopolysaccharide aggregation on the cell outer membrane of Z. mobilis ZM4 provided the permeable barrier to the attack of phenolic acids. PMID:25851269

  7. Ethanol sensitivity in rats: effect of prenatal stress.

    PubMed

    DeTurck, K H; Pohorecky, L A

    1987-01-01

    The present study examined whether sensitivity to ethanol could be altered by prenatal stress exposure. Pregnant female rats were handled during the third week of gestation and the offspring were tested for ethanol sensitivity as adults. Compared to control offspring, the following characteristic responses to acute ethanol were significantly attenuated in prenatally stress-exposed rats: the decreases in body temperature, motor coordination and startle amplitude, and the increases in circulating corticosterone and free fatty acids. Ethanol-induced impairment of swim performance, in contrast, was potentiated in these animals. Since no differences were found in blood or breath ethanol levels, the rate of ethanol metabolism was probably not affected by prenatal stress. Rather, the altered responses appear to result from long-term changes in central nervous system sensitivity to ethanol. PMID:3659158

  8. Protective effect of zinc against ethanol toxicity in mice

    SciTech Connect

    Dar, M.S.; Townsend, Wooles, W.R.

    1986-01-01

    Protection against the lethal effects of ethanol at 4.5 g/kg administered acutely was maximal when zinc was administered 60 min prior to ethanol. The timing of ethanol administration corresponded with elevated plasma levels of absorbed zinc. Protection was inversely related to the dose of zinc employed, as 0.5 ..mu..mol provided greater protection than 1.0 ..mu..mol, which provided greater protection than 2.0 ..mu..mol. Protection against ethanol lethality was greater if zinc was administered 60 min prior to each injection of ethanol. Acute zinc pretreatment did not alter the activity of liver alcohol dehydrogenase (ADH), nor did it alter the blood clearance of ethanol. Chronic zinc administration as ZnCl/sub 2/, 100 ..mu..g/ml in the drinking water for 30 d, produced a 25% decrease in hepatic ADH activity, which was accompanied by a similar decrease in the intravascular clearance of ethanol.

  9. Production of the Anaerobic GMAX-L Yeast Using High-Throughput Mating and Transformation of Saccharomyces cerevisiae With Identified Genes For Simultaneous Cellulosic Ethanol and Biodiesel Production

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Tailored GMAX-L yeast engineering for strains capable of universal ethanol production industrially with coproduction of an expressed lipase catalyst for coproduction of ethyl esters from corn oil and ethanol from the modern dry grind ethanol facility: Production of the stable baseline glucose, mann...

  10. High-yield nanosized (Si)AlPO-41 using ethanol polarity equalization and co-templating synthesis approach

    NASA Astrophysics Data System (ADS)

    Majano, Gerardo; Raltchev, Kolio; Vicente, Aurelie; Mintova, Svetlana

    2015-03-01

    Control of the crystallite dimensions of the microporous aluminophosphate AlPO-41 (AFO-type framework structure), and the Si-containing analogue SAPO-41, was attained down to the nanometer scale under stable hydrothermal conditions. The combined application of a tetraalkylammonium co-template (tetrapentylammonium hydroxide) along with an amine structure directing agent (n-dipropylamine) stabilized through the use of ethanol in the initial suspension enables a crystallization medium, which remains homogeneous throughout the entire synthesis. As a direct consequence of the optimized homogeneity of the suspension, the AFO-type microporous nanocrystals (AlPO-41 and SAPO-41) with a size in the range of 30-500 nm with yields surpassing 50% are obtained. The feasibility to obtain nanosized AlPO-41 and SAPO-41 crystals using ethanol as a polarity equalizing agent, resulting in a scalable hydrothermal synthesis from non-colloidal starting mixtures without the use of other assisting methods, is presented.Control of the crystallite dimensions of the microporous aluminophosphate AlPO-41 (AFO-type framework structure), and the Si-containing analogue SAPO-41, was attained down to the nanometer scale under stable hydrothermal conditions. The combined application of a tetraalkylammonium co-template (tetrapentylammonium hydroxide) along with an amine structure directing agent (n-dipropylamine) stabilized through the use of ethanol in the initial suspension enables a crystallization medium, which remains homogeneous throughout the entire synthesis. As a direct consequence of the optimized homogeneity of the suspension, the AFO-type microporous nanocrystals (AlPO-41 and SAPO-41) with a size in the range of 30-500 nm with yields surpassing 50% are obtained. The feasibility to obtain nanosized AlPO-41 and SAPO-41 crystals using ethanol as a polarity equalizing agent, resulting in a scalable hydrothermal synthesis from non-colloidal starting mixtures without the use of other assisting methods, is presented. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr07272c

  11. Efficacy of a church-based lifestyle intervention programme to control high normal blood pressure and/or high normal blood glucose in church members: a randomized controlled trial in Pretoria, South Africa

    PubMed Central

    2014-01-01

    Background In persons 15 years and above in South Africa the prevalence of pre-diabetes and diabetes has been estimated at 9.1% and 9.6%, respectively, and the prevalence of systolic prehypertension and hypertension, 38.2% and 24.6%, respectively. Elevated blood glucose and elevated blood pressure are prototype of preventable chronic cardiovascular disease risk factors. Lifestyle interventions have been shown to control high normal blood pressure and/or high normal blood glucose. Methods/Design This study proposes to evaluate the efficacy of a community (church)-based lifestyle intervention programme to control high normal blood pressure and/or high normal blood glucose in church members in a randomized controlled trial in Gauteng, South Africa. The objectives are to: (1) measure non-communicable diseases profile, including hypertension and diabetes, health behaviours, weight management and psychological distress of church members; (2) measure the reduction of blood glucose and blood pressure levels after the intervention; (3) prevent the development of impaired glucose tolerance; (4) compare health behaviours, weight management and psychological distress, blood glucose and blood pressure levels between intervention and control groups, and within group during 6, 12, 24 and 36 months during and post intervention. The study will use a group-randomized design, recruiting 300 church members from 12 churches. Churches will be randomly assigned to experimental and control conditions. Discussion Lifestyle interventions may prevent from the development of high blood pressure and/or diabetes. The findings will impact public health and will enable the health ministry to formulate policy related to lifestyle interventions to control blood pressure and glucose. Trial registration number PACTR201105000297151 PMID:24906450

  12. In vivo roles of alcohol dehydrogenase (ADH), catalase and the microsomal ethanol oxidizing system (MEOS) in deermice

    SciTech Connect

    Takagi, T.; Alderman, J.; Lieber, C.S.

    1985-01-01

    The relative importance of ADH and MEOS for ethanol oxidation in the liver has yet to be elucidated. The discovery of a strain of deermice genetically lacking ADH (ADH-) which can consume ethanol at greater than 50% of the rates seen in deermice having ADH (ADH+) suggested a significant role for non-ADH pathways in vivo. To quantitate contributions of the various pathways, the authors examined first the ethanol oxidation rates with or without 4-methylpyrazole in isolated deermice hepatocytes. 4-Methylpyrazole significantly reduced the ethanol oxidation in both ADH+ and ADH- hepatocytes. The reduction seen in ADH- cells can be applied to correct for the effect of 4-methylpyrazole on non-ADH pathways of ADH+ deermouse hepatocytes. After correction, non-ADH pathways were found to contribute 28% of ethanol metabolism at 10 mM and 52% at 50 mM. When using a different approach namely measurement of the isotope effect, MEOS was calculated to account for 35% at low and about 70% at high blood ethanol concentrations. Thus, they found that two different complementary approaches yielded similar results, namely that non-ADH pathways play a significant role in ethanol oxidation even in the presence of ADH.

  13. Production of reactive oxygen species following acute ethanol or acetaldehyde and its reduction by acamprosate in chronically alcoholized rats.

    PubMed

    Dahchour, Abdelkader; Lallemand, Frédéric; Ward, Roberta J; De Witte, Philippe

    2005-09-27

    The salicylate trap method, combined with microdialysis, has been used to validate whether reactive oxygen species, particularly hydroxyl radicals, ((*)OH), are generated in the hippocampus of male Wistar rats after acute intraperitoneal administration of either ethanol, 2 and 3 g/kg, or acetaldehyde, 200 mg, or during the initial stages of ethanol withdrawal after chronic ethanol intoxication. Salicylate (5 mM) was infused into the hippocampus via the microdialysis probe and the products of its metabolism by hydroxyl radical, particularly 2,3-dihydroxybenzoic acid (2,3-DHBA) as well as 2,5-dihydroxybenzoic acid (2,5-DHBA) assayed by HPLC (High Pressure Liquid Chromatography). Acetaldehyde, 200 mg/kg, and the higher acute dose of ethanol, 3 g/kg, induced transitory increases in 2,3-DHBA and 2,5-DHBA microdialysate content. At the cessation of four weeks of chronic ethanol intoxication, (by the vapour inhalation method), the mean blood alcohol level was 1.90 g/l. Significant increases of microdialysate 2,3-DHBA and 2,5-DHBA levels were assayed 3 h after alcohol withdrawal which were sustained for a further 5 and 1 h 40 min respectively. Oral administration of Acamprosate, 400 mg/kg/day, during the chronic ethanol intoxication procedure prevented the increased formation of 2,3- and 2,5-DHBA by comparison to rats chronically ethanol intoxicated alone. PMID:16135364

  14. Ethanolic Extract of Acanthopanax koreanum Nakai Alleviates Alcoholic Liver Damage Combined with a High-Fat Diet in C57BL/6J Mice.

    PubMed

    Kim, Haein; Park, Minyoung; Shin, Jae-Ho; Kwon, Oran

    2016-01-01

    Alcoholic and nonalcoholic liver steatosis have an indistinguishable spectrum of histological features and liver enzyme elevations. In this study, we investigated the potential of the ethanolic extract of Acanthopanax koreanum Nakai (AK) to protect against experimental alcoholic liver disease in a mouse model that couples diet and daily ethanol bolus gavage. Fifty-six C57BL/6J mice were randomly divided into seven groups: normal control (NC), alcohol control (AC), alcohol/HFD control (AH), low-dose (1%) AK in alcohol group (ACL), high-dose (3%) AK in alcohol group (ACH), low-dose AK in alcohol/HFD group (AHL), and high-dose AK in alcohol/HFD group (AHH). The AH group showed more severe damage than the AC group in terms of biochemical and molecular data that were observed in this study. The administration of AK exerted remarkable effects in: plasma ALT (p < 0.0001), total lipid (p = 0.014), TG (p = 0.0037) levels; CPT-1α (p = 0.0197), TLR4 (p < 0.0001), CD14 (p = 0.0002), IL-6 (p = 0.0264) and MCP-1 (p = 0.0045) gene expressions; and ALDH (p < 0.0001) and CAT (p = 0.0076) activities. The data suggested that at least the high dose AK might confer protection against alcoholic liver damage combined with an HFD by accelerating lipid oxidation and alcohol metabolism and by suppressing the inflammatory response, including the TLR pathway. PMID:27231887

  15. High blood pressure, bone-mineral loss and insulin resistance in women.

    PubMed

    Gotoh, Mitsuhiro; Mizuno, Kenji; Ono, Yoshiaki; Takahashi, Michihiko

    2005-07-01

    Increasing evidence indicates that high blood pressure is associated with abnormalities in calcium metabolism. Sustained calcium loss may lead to increased bone-mineral loss in subjects with elevated blood pressure. Furthermore, recent findings indicate a possible linkage between abnormal calcium metabolism and insulin resistance. In the present study, we investigated the relationship(s) among bone-mineral density (BMD), blood pressure, calcium-related and bone metabolic parameters (plasma intact parathyroid hormone (I-PTH), 1,25-dihydroxyvitamin D [1,25(OH)2D], osteocalcin, and urinary deoxypyridinoline), and insulin resistance, as assessed by a conventional homeostasis model (HOMA-R). We compared non-diabetic women with essential hypertension (WHT, n=34) with age-, body mass index- and menopause (yes or no)-matched normotensive, non-diabetic women (WNT, n=34). The BMD for WHT was significantly lower than that for WNT (0.596+/-0.019 vs. 0.666+/-0.024 g/cm2, p<0.05). The BMD was correlated inversely with systolic blood pressure in all subjects examined (r=-0.385, p<0.05). The 24-h urinary calcium/sodium excretion ratio (Ux-Ca/Na) was significantly greater in WHT compared with WNT (p<0.01). In addition, a negative relationship was apparent between Ux-Ca/Na and BMD (r=-0.58, p<0.05). The plasma levels of PTH and 1,25(OH)2D, and HOMA-R were significantly higher in WHT compared with WNT (p<0.01, p<0.05, and p<0.05, respectively), whereas the serum ionized calcium was lower in WHT compared with WNT (p<0.05). There were no significant differences in serum total calcium, inorganic phosphorus, osteocalcin, or urinary deoxypyridinoline between the two groups. These results indicate that high blood pressure is associated with abnormalities in calcium metabolism and insulin resistance in WHT. PMID:16335884

  16. Unilateral bicep curl hemodynamics: Low-pressure continuous vs high-pressure intermittent blood flow restriction.

    PubMed

    Brandner, C R; Kidgell, D J; Warmington, S A

    2015-12-01

    Light-load exercise training with blood flow restriction (BFR) increases muscle strength and size. However, the hemodynamics of BFR exercise appear elevated compared with non-BFR exercise. This questions the suitability of BFR in special/clinical populations. Nevertheless, hemodynamics of standard prescription protocols for BFR and traditional heavy-load exercise have not been compared. We investigated the hemodynamics of two common BFR exercise methods and two traditional resistance exercises. Twelve young males completed four unilateral elbow flexion exercise trials in a balanced, randomized crossover design: (a) heavy load [HL; 80% one-repetition maximum (1-RM)]; (b) light load (LL; 20% 1-RM); and two other light-load trials with BFR applied (c) continuously at 80% resting systolic blood pressure (BFR-C) or (d) intermittently at 130% resting systolic blood pressure (BFR-I). Hemodynamics were measured at baseline, during exercise, and for 60-min post-exercise. Exercising heart rate, blood pressure, cardiac output, and rate-pressure product were significantly greater for HL and BFR-I compared with LL. The magnitude of hemodynamic stress for BFR-C was between that of HL and LL. These data show reduced hemodynamics for continuous low-pressure BFR exercise compared with intermittent high-pressure BFR in young healthy populations. BFR remains a potentially viable method to improve muscle mass and strength in special/clinical populations. PMID:25055880

  17. Metabolic Profiling of Human Blood by High Resolution Ion Mobility Mass Spectrometry (IM-MS)

    PubMed Central

    Dwivedi, Prabha; Schultz, Albert J.; Hill, Herbert H.

    2010-01-01

    A high resolution ion mobility time-of-flight mass spectrometer with electrospray ionization source (ESI-IM-MS) was evaluated as an analytical method for rapid analysis of complex biological samples such as human blood metabolome was investigated. The hybrid instrument (IM-MS) provided an average ion mobility resolving power of ~90 and a mass resolution of ~1500 (at m/z 100). A few µL of whole blood was extracted with methanol, centrifuged and infused into the IM-MS via an electrospray ionization source. Upon IM-MS profiling of the human blood metabolome approximately 1,100 metabolite ions were detected and 300 isomeric metabolites separated in short analyses time (30 minutes). Estimated concentration of the metabolites ranged from the low micromolar to the low nanomolar level. Various classes of metabolites (amino acids, organic acids, fatty acids, carbohydrates, purines and pyrimidines etc) were found to form characteristic mobility-mass correlation curves (MMCC) that aided in metabolite identification. Peaks corresponding to various sterol derivatives, estrogen derivatives, phosphocholines, prostaglandins, and cholesterol derivatives detected in the blood extract were found to occupy characteristic two dimensional IM-MS space. Low abundance metabolite peaks that can be lost in MS random noise were resolved from noise peaks by differentiation in mobility space. In addition, the peak capacity of MS increased six fold by coupling IMS prior to MS analysis. PMID:21113320

  18. Elevated nocturnal blood pressure assessed by ambulatory automatic monitoring during a stay at high altitude.

    PubMed

    Barthélémy, J C; Lacour, J R; Roche, F; Gosse, P; Cristol, C; Féasson, L; Minini, P; Geyssant, A

    1995-01-01

    The aim of this study was to explore, in healthy children, the arterial blood pressure response to a 3-week stay at high altitude (4200 m). An auscultatory automatic ambulatory pressuremeter was used to avoid undue environmental influence on the measurement. The blood pressure was monitored three times in a group of ten boys, aged 10.5 (CI 0.9 years): at sea level (control values), at an altitude of 2100 m after at least 24 h of acclimatization and after at least 24 h at 4200 m altitude. Each period of monitoring extended over 24 h with 10-min intervals between successive measurements. Arterial blood pressure was evaluated separately for the night and day periods. Nocturnal recordings revealed an increase with altitude in systolic as well as in the diastolic blood pressure. Because of the technique used to gather data, this is thought to have represented an independent effect of altitude without interference from the medical environment or diurnal activity. PMID:7607202

  19. Detailed chemical kinetic model for ethanol oxidation

    SciTech Connect

    Marinov, N.

    1997-04-01

    A detailed chemical kinetic model for ethanol oxidation has been developed and validated against a variety of experimental data sets. Laminar flame speed data obtained from a constant volume bomb, ignition delay data behind reflected shock waves, and ethanol oxidation product profiles from a turbulent flow reactor were used in this study. Very good agreement was found in modeling the data sets obtained from the three different experimental systems. The computational modeling results show that high temperature ethanol oxidation exhibits strong sensitivity to the fall-off kinetics of ethanol decomposition, branching ratio selection for c2h5oh+oh=products, and reactions involving the hydroperoxyl (HO2) radical.

  20. Impairment of the Intestinal Barrier by Ethanol Involves Enteric Microflora and Mast Cell Activation in Rodents

    PubMed Central

    Ferrier, Laurent; Bérard, Florian; Debrauwer, Laurent; Chabo, Chantal; Langella, Philippe; Buéno, Lionel; Fioramonti, Jean

    2006-01-01

    Alcohol hepatic toxicity in heavy drinkers is associated with high endotoxin blood levels and increased intestinal permeability. Because endotoxins can cross damaged mucosa, we investigated the mechanisms through which ethanol impairs the colonic epithelium of rats submitted to acute alcohol intake. Colonic permeability to 51Cr-ethylenediamintetraacetic acid was increased 24 hours after 3.0 g/kg ethanol intake (3.2 ± 0.2% versus 2.2 ± 0.2%) and was associated with significant endotoxemia. Antibiotics and doxantrazole (a mast cell membrane stabilizer) significantly inhibited the effect of ethanol. Two hours after intake, plasma concentrations of ethanol were twofold higher in antibiotic-treated rats than in controls (155.8 ± 9.3 mg/dl versus 75.7 ± 7.6 mg/dl, P < 0.001). Lumenal concentrations of acetaldehyde were markedly increased after ethanol intake (132.6 ± 31.6 μmol/L versus 20.8 ± 1.4 μmol/L, P < 0.05) and antibiotics diminished this increase (86.2 ± 10.9 μmol/L). In colonic samples mounted in Ussing chambers, acetaldehyde but not ethanol increased dextran flux across the mucosa by 54%. Doxantrazole inhibited the effect of acetaldehyde. This study demonstrates that an acute and moderate ethanol intake alters the epithelial barrier through ethanol oxidation into acetaldehyde by the colonic microflora and downstream mast cell activation. Such alterations that remain for longer periods could result in excessive endotoxin passage, which could explain the subsequent endotoxemia frequently observed in patients with alcoholic liver disease. PMID:16565490

  1. Decreased brain reward produced by ethanol withdrawal.

    PubMed Central

    Schulteis, G; Markou, A; Cole, M; Koob, G F

    1995-01-01

    Abstinence from chronic administration of various drugs of abuse such as ethanol, opiates, and psychostimulants results in withdrawal syndromes largely unique to each drug class. However, one symptom that appears common to these withdrawal syndromes in humans is a negative affective/motivational state. Prior work in rodents has shown that elevations in intracranial self-stimulation (ICSS) reward thresholds provide a quantitative index that serves as a model for the negative affective state during withdrawal from psychostimulants and opiates. The current study sought to determine whether ICSS threshold elevations also accompany abstinence from chronic ethanol exposure sufficient to induce physical dependence. Rats prepared with stimulating electrodes in the lateral hypothalamus were trained in a discrete-trial current-intensity ICSS threshold procedure; subsequently they were subjected to chronic ethanol administration in ethanol vapor chambers (average blood alcohol level of 197 mg/dl). A time-dependent elevation in ICSS thresholds was observed following removal from the ethanol, but not the control, chambers. Thresholds were significantly elevated for 48 hr after cessation of ethanol exposure, with peak elevations observed at 6-8 hr. Blood alcohol levels were directly correlated with the magnitude of peak threshold elevation. Ratings of traditional overt signs of withdrawal showed a similar time course of expression and resolution. The results suggest that decreased function of reward systems (elevations in reward thresholds) is a common element of withdrawal from chronic administration of several diverse classes of abused drugs. PMID:7597046

  2. [Pharmacokinetics, metabolism, and analytical methods of ethanol].

    PubMed

    Goull, J-P; Guerbet, M

    2015-09-01

    Alcohol is a licit substance whose significant consumption is responsible for a major public health problem. Every year, a large number of deaths are related to its consumption. It is also involved in various accidents, on the road, at work, as well as during acts of violence. Ethanol absorption and its fate are detailed. It is mainly absorbed in the small intestine. It accompanies the movements of the water, so it diffuses in all the tissues uniformly with the exception of bones and fat. The major route of ethanol detoxification is located into the liver. Detoxification is a saturable two-step oxidation. During the first stage ethanol is oxidized into acetaldehyde, under the action of alcohol dehydrogenase. During the second stage acetaldehyde is oxidized into acetate. Genetic factors or some drugs are able to disturb the absorption and the metabolism of ethanol. The analytical methods for the quantification of alcohol in man include analysis in exhaled air and in blood. The screening and quantification of ethanol for road safety are performed in exhaled air. In hospitals, blood ethanol determination is routinely performed by enzymatic method, but the rule for forensic samples is gas chromatography. PMID:25857743

  3. Molecular mechanisms of ethanol tolerance in Saccharomyces cerevisiae

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The yeast Saccharomyces cerevisiae is a superb ethanol producer, yet sensitive to ethanol at higher concentrations especially under high gravity or very high gravity fermentation conditions. Although significant efforts have been made to study ethanol-stress response in past decades, molecular mecha...

  4. The post-mortem relationship between beta-hydroxybutyrate (BHB), acetone and ethanol in ketoacidosis.

    PubMed

    Elliott, Simon; Smith, Christopher; Cassidy, Diane

    2010-05-20

    A reduced blood pH (ketoacidosis) from the production of beta-oxidative ketone bodies as a result of alcoholism (alcoholic ketoacidosis, AKA) or diabetes (diabetic ketoacidosis, DKA) can feature in many fatalities and analytical evidence can be used to support a pathological diagnosis, or provide a possible cause of death in the absence of other pathologically significant findings. Existing beliefs concerning the relationship of BHB concentrations, acetone and ethanol have been re-examined by analysis of BHB, acetone and ethanol in over 350 fatalities grouped into alcoholics, diabetics, alcoholic diabetics, coupled with speculative cases and those with an alternative cause of death. Uniquely, the concentrations of BHB were measured in post-mortem blood, urine and vitreous humour using selective GC-MS. The results showed that existing beliefs need to be re-evaluated. Ethanol is not always low (<10mg/dL) or absent in cases of AKA. Also, the absence of acetone precludes [corrected] a high BHB (>250mg/L), therefore acetone can be used as an initial marker pathologically significant ketoacidosis. For blood and urine BHB concentrations the following interpretative ranges can be used (in mg/L); normal (<50mg/L), raised (51-249mg/L), high and pathologically significant (>250mg/L). Initial data suggest vitreous humour BHB could be a useful alternative in the absence of blood (same interpretative ranges may also apply). Analytical recommendation for investigation of post-mortem ketoacidosis is also presented. PMID:19954904

  5. Effect of the high femoral osteotomy upon the vascularity and blood supply of the hip joint

    SciTech Connect

    Day, B.; Shim, S.S.; Leung, G.

    1984-05-01

    This investigation was done to study the effects of high femoral osteotomy upon the vascularity and blood supply of the hip and to further our knowledge of its physiologic basis. We have used established methods of study, including bone scans, microangiography, isotope clearance and perosseous venography, and based upon the results of these studies, we have reached certain conclusions. First, high femoral osteotomy increases the blood flow and vascularity in the hip joint, the femoral head and neck and the great trochanter. Second, bone scanning techniques using /sup 99m/Tc labeled diphosphonate have shown increased uptake in the femoral head and neck after high femoral osteotomy. The localization was done using a Digital Gamma III computer, and the activity on the osteotomy side at two weeks was 3.5 times as great as on the control side. By 16 weeks postoperatively, there was still two times as much activity on the osteotomy side. Third, microangiography showed increased vascularity both at the osteotomy site and in the femoral head and neck and the greater trochanter on that side. Such an increase in vascularity first became evident two weeks after osteotomy and persisted during the four month period studied. Fourth, the results of the /sup 99m/Tc diphosphonate clearance study showed a 25 per cent increase in femoral head blood flow on the operative side. Fifth, perosseous venography of the femoral head and neck showed a marked increase in venous drainage through the osteotomy site in the immediate postosteotomy stage.

  6. Hypertension`s lead connection: Does low-level exposure to lead cause high blood pressure?

    SciTech Connect

    Fackelmann, K.

    1996-06-15

    {open_quotes}Paying for the sins of the past.{close_quotes} is how researcher Howard Hu describes a proposed disease process in which lead stored for decades in the skeleton puts people at risk of high blood pressure. Previous research has linked this silvery white, poisonous metal to a host of ill effects in children, including learning disabilities, behavior problems, and brain damage. Now, Hu`s study indicates that past exposure may be causing today`s high blood pressure. If he`s right, the public health impact would be significant. {open_quotes}Tens of millions of Americans have been exposed over the years to lead,{close_quotes} says Philip J. Landrigan of Mount Sinai Medical Center in New York. {open_quotes}Adults today grew up at a time when we were still putting several hundred thousand tons of lead into gasoline each year.{close_quotes} Indeed, the men who developed high blood pressure during the recent study had in their bones lead concentrations, or lead burdens, that came from decades of everyday exposure. Such exposures resulted principally from breathing in fumes from leaded gasoline, drinking tap water from lead pipes or pipes soldered with lead, and inhaling or ingesting lead-laced paint dust or chips. This article goes on to discuss other studies and questions which still need to be answered.

  7. High orientation of long chain branched poly (lactic acid) with enhanced blood compatibility and bionic structure.

    PubMed

    Li, Zhengqiu; Ye, Lin; Zhao, Xiaowen; Coates, Phil; Caton-Rose, Fin; Martyn, Michasel

    2016-05-01

    Highly oriented poly (lactic acid) (PLA) with bionic microgrooves was fabricated through solid hot drawing technology for further improving the mechanical properties and blood biocompatibility of PLA. In order to enhance the melt strength and thus obtain high orientation degree, long chain branched PLA was prepared at first through a two-step ring-opening reaction during processing. Linear viscoelasticity combined with branch-on-branch model was used to predict probable compositions and chain topologies of the products, and it was found that the molecular weight of PLA increased and topological structures with star like chain with three arms and tree-like chain with two generations formed during reactive processing, and consequently draw ratio as high as1200% can be achieved during the subsequent hot stretching. With the increase of draw ratio, the tensile strength and orientation degree of PLA increased dramatically. Long chain branching and orientation could significantly enhance the blood compatibility of PLA by prolonging clotting time and decreasing platelet activation. Microgrooves can be observed on the surface of the oriented PLA which were similar to the intimal layer of blood vessel, and such bionic structure resulted from the formation of the oriented shish kebab-like crystals along the draw direction. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part A: 104A: 1082-1089, 2016. PMID:26743130

  8. Ethanolic Extract of Butea monosperma Leaves Elevate Blood Insulin Level in Type 2 Diabetic Rats, Stimulate Insulin Secretion in Isolated Rat Islets, and Enhance Hepatic Glycogen Formation

    PubMed Central

    Samad, Mehdi Bin; Kabir, Ashraf Ul; Ahmed, Arif; Jahan, Mohammad Rajib; Hannan, J. M. A.

    2014-01-01

    We measured a vast range of parameters, in an attempt to further elucidate previously claimed antihyperglycemic activity of Butea monosperma. Our study clearly negates the possibility of antidiabetic activity by inhibited gastrointestinal enzyme action or by reduced glucose absorption. Reduction of fasting and postprandial glucose level was reconfirmed (P < 0.05). Improved serum lipid profile via reduced low density lipoprotein (LDL), cholesterol, triglycerides (TG), and increased high density lipoprotein (HDL) was also reestablished (P < 0.05). Significant insulin secretagogue activity of B. monosperma was found in serum insulin assay of B. monosperma treated type 2 diabetic rats (P < 0.01). This was further ascertained by our study on insulin secretion on isolated rat islets (P < 0.05). Improved sensitivity of glucose was shown by the significant increase in hepatic glycogen deposition (P < 0.05). Hence, we concluded that antihyperglycemic activity of B. monosperma was mediated by enhanced insulin secretion and enhanced glycogen formation in the liver. PMID:24860609

  9. High performance ethanol sensing films fabricated from ZnO and In2O3 nanofibers with a double-layer structure

    NASA Astrophysics Data System (ADS)

    Zhang, Xiao-Juan; Qiao, Guan-Jun

    2012-06-01

    ZnO and In2O3 nanofibers are synthesized via electrospinning methods, and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscope (TEM), infrared (IR) spectroscopy, and X-ray photoelectron spectroscopy (XPS). The nanofibers are deposited on ceramic substrates to form sensing films with various structures (ZnO nanofiber films, ZnO-In2O3 nanofiber films, and ZnO-In2O3-ZnO nanofiber films), and their sensing properties are investigated at different temperatures. Compared with ZnO nanofiber films and ZnO-In2O3-ZnO nanofiber films, the obtained ZnO-In2O3 nanofiber films exhibit improved and excellent sensing properties to ethanol. The highest sensitivity (the ratio of sensor resistance in air to that in target ambience) of 25 is obtained when the ZnO-In2O3 films are exposed to 100 ppm ethanol at 210 °C, while the corresponding values are only 8 for ZnO nanofiber films at 300 °C and 17 for ZnO-In2O3-ZnO nanofiber films at 210 °C. Rapid sensing reactions are also obtained as the response and recovery times of ZnO-In2O3 nanofiber films to 100 ppm ethanol are only about 2 and 1 s, respectively. These high sensing performances are explained by referring the heterocontacts formed by the double-layer structure.

  10. Longitudinal Hierarchy Co3O4 Mesocrystals with High-dense Exposure Facets and Anisotropic Interfaces for Direct-Ethanol Fuel Cells

    PubMed Central

    Hassen, Diab; El-Safty, Sherif A.; Tsuchiya, Koichi; Chatterjee, Abhijit; Elmarakbi, Ahmed; Shenashen, Mohamed. A.; Sakai, Masaru

    2016-01-01

    Novel electrodes are needed for direct ethanol fuel cells with improved quality. Hierarchical engineering can produce catalysts composed of mesocrystals with many exposed active planes and multi-diffused voids. Here we report a simple, one-pot, hydrothermal method for fabricating Co3O4/carbon/substrate electrodes that provides control over the catalyst mesocrystal morphology (i.e., corn tubercle pellets or banana clusters oriented along nanotube domains, or layered lamina or multiple cantilevered sheets). These morphologies afforded catalysts with a high density of exposed active facets, a diverse range of mesopores in the cage interior, a window architecture, and vertical alignment to the substrate, which improved efficiency in an ethanol electrooxidation reaction compared with a conventional platinum/carbon electrode. On the atomic scale, the longitudinally aligned architecture of the Co3O4 mesocrystals resulted in exposed low- and high-index single and interface surfaces that had improved electron transport and diffusion compared with currently used electrodes. PMID:27075551

  11. Longitudinal Hierarchy Co3O4 Mesocrystals with High-dense Exposure Facets and Anisotropic Interfaces for Direct-Ethanol Fuel Cells.

    PubMed

    Hassen, Diab; El-Safty, Sherif A; Tsuchiya, Koichi; Chatterjee, Abhijit; Elmarakbi, Ahmed; Shenashen, Mohamed A; Sakai, Masaru

    2016-01-01

    Novel electrodes are needed for direct ethanol fuel cells with improved quality. Hierarchical engineering can produce catalysts composed of mesocrystals with many exposed active planes and multi-diffused voids. Here we report a simple, one-pot, hydrothermal method for fabricating Co3O4/carbon/substrate electrodes that provides control over the catalyst mesocrystal morphology (i.e., corn tubercle pellets or banana clusters oriented along nanotube domains, or layered lamina or multiple cantilevered sheets). These morphologies afforded catalysts with a high density of exposed active facets, a diverse range of mesopores in the cage interior, a window architecture, and vertical alignment to the substrate, which improved efficiency in an ethanol electrooxidation reaction compared with a conventional platinum/carbon electrode. On the atomic scale, the longitudinally aligned architecture of the Co3O4 mesocrystals resulted in exposed low- and high-index single and interface surfaces that had improved electron transport and diffusion compared with currently used electrodes. PMID:27075551

  12. Cholesterol efflux to high-density lipoproteins and apolipoprotein A-I phosphatidylcholine complexes is inhibited by ethanol: role of apolipoprotein structure and cooperative interaction of phosphatidylcholine and cholesterol.

    PubMed

    Avdulov, N A; Chochina, S V; Igbavboa, U; Wood, W G

    2000-08-29

    There is a substantial body of evidence showing that moderate alcohol consumption is associated with a reduced risk of cardiovascular morbidity and mortality. One of the factors thought to contribute to this reduction in risk is an increase in the level of high-density lipoproteins (HDL) correlated with alcohol consumption. However, HDL levels are elevated in heavy drinkers, but their risk of vascular disease is greater compared with that of moderate drinkers. Ethanol at concentrations observed in heavy drinkers and alcoholics may directly act on HDL and apolipoproteins and in turn modify cholesterol efflux. In this paper, we show that ethanol significantly inhibited cholesterol efflux from fibroblasts to HDL and to apolipoprotein A-I (apoA-I) complexed with phosphatidylcholine (PC). Ethanol significantly inhibited binding of PC to apoA-I, inhibited incorporation of cholesterol only when apoA-I contained PC, and did not alter incorporation of cholesterol into HDL. ApoA-I structure was altered by ethanol as monitored by steady-state fluorescence polarization of tryptophan residues. The absence of ethanol effects on incorporation of cholesterol into HDL versus inhibition of cholesterol incorporation into the apoA-I-PC complex suggests that the effects of ethanol on cholesterol efflux mediated by HDL involve interaction with the cell surface and that efflux mediated by the apoA-I-PC complex is a combination of aqueous diffusion and contact with the cell surface. In addition, effects of ethanol on apoA-I suggest that pre-beta-HDL or lipid-free apoA-I may be more perturbed by ethanol than mature HDL, and such effects may be pathophysiological with respect to the process of reverse cholesterol transport in heavy drinkers and alcoholics. PMID:10956052

  13. Applications of schedule-induced polydipsia in rodents for the study of an excessive ethanol intake phenotype

    PubMed Central

    Ford, Matthew M.

    2014-01-01

    Schedule-induced polydipsia (SIP) is generated by subjecting a highly motivated animal to a sub-optimal rate of food reinforcement while also providing access to a fluid. SIP is one of several adjunctive (or displacement) behaviors that are expressed in an exaggerated form that is deemed ‘excessive’. This feature makes SIP an attractive model for studying an excessive ethanol drinking phenotype in rodents. Multiple experimental variables are crucial for the full manifestation of adjunctive drinking, including the degree of food deprivation, the inter-pellet interval selected, and the size of the food reward offered. Although these variables were extensively studied and optimized for water polydipsia in rats, a similarly customized approach to ethanol SIP and application of the procedure in mice have largely been curtailed in favor of the default variable values historically used for water SIP in rats. Further, ethanol SIP also requires careful consideration of variables such as taste and ethanol concentration. Investigation of the stress axis and neurochemical systems such as dopamine and serotonin in mediating adjunctive drinking stemmed from two leading hypotheses regarding the underlying mechanisms of SIP generation: 1) SIP as a coping strategy to mitigate stress associated with the aversive environmental condition, and 2) SIP as a displacement of reward in a highly motivated animal. Ethanol SIP is a powerful model of excessive intake because it can generate an ethanol-dependent state and sustain frequent and intoxicating levels of blood ethanol with voluntary oral consumption. The required food deprivation and the loss of the excessive drinking phenotype following removal of the generator schedule are the two main limitations of the model. Future utility of ethanol SIP will be enhanced by more fully dissecting the underlying hormonal and neurochemical mechanisms and optimizing experimental variables for ethanol SIP on a per species and strain basis. PMID:24680665

  14. High-throughput automated molecular biology platform for production of fuel ethanol yeast capable of expressing high-value heterologous proteins

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The majority of fuel ethanol currently produced in the United States is made from corn starch. Projections indicate that corn supplies will not be able to meet the increasing demand for biofuels. Lignocellulosic biomass, an abundant and renewable carbon source, has the potential to supplement star...

  15. A high-throughput assay of NK cell activity in whole blood and its clinical application

    SciTech Connect

    Lee, Saet-byul; Cha, Junhoe; Kim, Im-kyung; Yoon, Joo Chun; Lee, Hyo Joon; Park, Sang Woo; Cho, Sunjung; Youn, Dong-Ye; Lee, Heyja; Lee, Choong Hwan; Lee, Jae Myun; Lee, Kang Young; Kim, Jongsun

    2014-03-14

    Graphical abstract: - Highlights: • We demonstrated a simple assay of NK cell activity from whole blood. • The measurement of secreted IFN-γ from NK cell enables high-throughput screening. • The NKA assay was validated by clinical results of colorectal cancer patients. - Abstract: Natural killer (NK) cells are lymphocytes of the innate immune system and have the ability to kill tumor cells and virus-infected cells without prior sensitization. Malignant tumors and viruses have developed, however, strategies to suppress NK cells to escape from their responses. Thus, the evaluation of NK cell activity (NKA) could be invaluable to estimate the status and the outcome of cancers, viral infections, and immune-mediated diseases. Established methods that measure NKA, such as {sup 51}Cr release assay and CD107a degranulation assay, may be used to determine NK cell function, but they are complicated and time-consuming because they require isolation of peripheral blood mononuclear cells (PBMC) or NK cells. In some cases these assays require hazardous material such as radioactive isotopes. To overcome these difficulties, we developed a simple assay that uses whole blood instead of PBMC or isolated NK cells. This novel assay is suitable for high-throughput screening and the monitoring of diseases, because it employs serum of ex vivo stimulated whole blood to detect interferon (IFN)-γ secreted from NK cells as an indicator of NKA. After the stimulation of NK cells, the determination of IFNγ concentration in serum samples by enzyme-linked immunosorbent assay (ELISA) provided a swift, uncomplicated, and high-throughput assay of NKA ex vivo. The NKA results microsatellite stable (MSS) colorectal cancer patients was showed significantly lower NKA, 263.6 ± 54.5 pg/mL compared with healthy subjects, 867.5 ± 50.2 pg/mL (p value <0.0001). Therefore, the NKA could be utilized as a supportive diagnostic marker for microsatellite stable (MSS) colorectal cancer.

  16. High-throughput and clogging-free microfluidic filtration platform for on-chip cell separation from undiluted whole blood.

    PubMed

    Cheng, Yinuo; Ye, Xiongying; Ma, Zengshuai; Xie, Shuai; Wang, Wenhui

    2016-01-01

    Rapid separation of white blood cells from whole blood sample is often required for their subsequent analyses of functions and phenotypes, and many advances have been made in this field. However, most current microfiltration-based cell separation microfluidic chips still suffer from low-throughput and membrane clogging. This paper reports on a high-throughput and clogging-free microfluidic filtration platform, which features with an integrated bidirectional micropump and commercially available polycarbonate microporous membranes. The integrated bidirectional micropump enables the fluid to flush micropores back and forth, effectively avoiding membrane clogging. The microporous membrane allows red blood cells passing through high-density pores in a cross-flow mixed with dead-end filtration mode. All the separation processes, including blood and buffer loading, separation, and sample collection, are automatically controlled for easy operation and high throughput. Both microbead mixture and undiluted whole blood sample are separated by the platform effectively. In particular, for white blood cell separation, the chip recovered 72.1% white blood cells with an over 232-fold enrichment ratio at a throughput as high as 37.5 μl/min. This high-throughput, clogging-free, and highly integrated platform holds great promise for point-of-care blood pretreatment, analysis, and diagnosis applications. PMID:26909124

  17. High blood pressure during pregnancy is associated with future cardiovascular disease: an observational cohort study

    PubMed Central

    Tooher, Jane; Chiu, Christine L; Yeung, Kristen; Lupton, Samantha J; Thornton, Charlene; Makris, Angela; O'Loughlin, Aiden; Hennessy, Annemarie; Lind, Joanne M

    2013-01-01

    Objectives The study aimed to determine if having a hypertensive disorder of pregnancy (HDP) is a risk factor for future cardiovascular disease (CVD), independent of age and body mass index (BMI). Design Data were sourced from the baseline questionnaire of the 45 and Up Study, Australia, an observational cohort study. Setting Participants were randomly selected from the Australian Medicare Database within New South Wales. Participants A total of 84?619 women were eligible for this study, of which 71?819 were included. These women had given birth between the ages of 18 and 45?years, had an intact uterus and ovaries, and had not been diagnosed with high blood pressure prior to their first pregnancy. Results HDP was associated with higher odds of having high blood pressure (<58?years: adjusted OR 3.79, 99% CI 3.38 to 4.24; p<0.001 and ?58?years: 2.83, 2.58 to 3.12; p<0.001) and stroke (<58?years: 1.69, 1.02 to 2.82; p=0.008 and ?58?years: 1.46, 1.13 to 1.88; p<0.001) in later life. Women with HDP had a younger age of onset of high blood pressure (45.6 vs 54.8?years, p<0.001) and stroke (58 vs 62.5?years, p<0.001). Women who had HDP and whose present day BMI was <25 had significantly higher odds of having high blood pressure, compared with women who were normotensive during pregnancy (<58?years: 4.55, 3.63 to 5.71; p<0.001 and ?58?years, 2.94, 2.49 to 3.47; p<0.001). Women who had HDP and a present day BMI?25 had significantly increased odds of high blood pressure (<58?years: 12.48, 10.63 to 14.66; p<0.001 and ?58?years, 5.16, 4.54 to 5.86; p<0.001), compared with healthy weight women with a normotensive pregnancy. Conclusions HDP is an independent risk factor for future CVD, and this risk is further exacerbated by the presence of overweight or obesity in later life. PMID:23883883

  18. Fuel ethanol from black locust

    SciTech Connect

    Kamdem, P.D.

    1993-12-31

    Black locust (Robinia psudoacacia) chips from single clone at different ages (1 to 20 years) were analyzed in terms of lignin, extractives, and carbohydrate content. Samples with high carbohydrate content were chosen for liquid ethanol conversion, by using a simultaneous saccharification fermentation process. To achieve efficient fermentation, samples were extracted with benzene and ethanol, and then treated with a 1% sulfuric acid solution for 10 minutes at 130{degrees}C. Celluclast 1.5L and Novozym 188 were used to reduce cellulose into glucose and yeasts such as B. clausenii and/or S. cerevisiae to ferment available sugars. Preliminary results indicate a negative influence of extractives present in black locust. Those extractives are mainly flavonoids (Robinetin an dihydrorobinetin) which are relatively toxic to some wood destroying organisms. Older trees give low ethanol yield and high ash content.

  19. Distinct molecular targets including SLO-1 and gap junctions are engaged across a continuum of ethanol concentrations in Caenorhabditis elegans.

    PubMed

    Dillon, James; Andrianakis, Ioannis; Mould, Richard; Ient, Ben; Liu, Wei; James, Christopher; O'Connor, Vincent; Holden-Dye, Lindy

    2013-10-01

    Ethanol (alcohol) interacts with diverse molecular effectors across a range of concentrations in the brain, eliciting intoxication through to sedation. Invertebrate models including the nematode worm Caenorhabditis elegans have been deployed for molecular genetic studies to inform on key components of these alcohol signaling pathways. C. elegans studies have typically employed external dosing with high (>250 mM) ethanol concentrations: A careful analysis of responses to low concentrations is lacking. Using the C. elegans pharyngeal system as a paradigm, we report a previously uncharacterized continuum of cellular and behavioral responses to ethanol from low (10 mM) to high (300 mM) concentrations. The complexity of these responses indicates that the pleiotropic action of ethanol observed in mammalian brain is conserved in this invertebrate model. We investigated two candidate ethanol effectors, the calcium-activated K(+) channel SLO-1 and gap junctions, and show that they contribute to, but are not sole determinants of, the low- and high-concentration effects, respectively. Notably, this study shows cellular and whole organismal behavioral responses to ethanol in C. elegans that directly equate to intoxicating through to supralethal blood alcohol concentrations in humans and provides an important benchmark for interpretation of paradigms that seek to inform on human alcohol use disorders. PMID:23882127

  20. Benzyl alcohol increases voluntary ethanol drinking in rats.

    PubMed

    Etelälahti, T J; Eriksson, C J P

    2014-09-01

    The anabolic steroid nandrolone decanoate has been reported to increase voluntary ethanol intake in Wistar rats. In recent experiments we received opposite results, with decreased voluntary ethanol intake in both high drinking AA and low drinking Wistar rats after nandrolone treatment. The difference between the two studies was that we used pure nandrolone decanoate in oil, whereas in the previous study the nandrolone product Deca-Durabolin containing benzyl alcohol (BA) was used. The aims of the present study were to clarify whether the BA treatment could promote ethanol drinking and to assess the role of the hypothalamic-pituitary-adrenal-gonadal axes (HPAGA) in the potential BA effect. Male AA and Wistar rats received subcutaneously BA or vehicle oil for 14 days. Hereafter followed a 1-week washout and consecutively a 3-week voluntary alcohol consumption period. The median (± median absolute deviation) voluntary ethanol consumption during the drinking period was higher in BA-treated than in control rats (4.94 ± 1.31 g/kg/day vs. 4.17 ± 0.31 g/kg/day, p = 0.07 and 1.01 ± 0.26 g/kg/day vs. 0.38 ± 0.27 g/kg/day, p = 0.05, for AA and Wistar rats, respectively; combined effect p < 0.01). The present results can explain the previous discrepancy between the two nandrolone studies. No significant BA effects on basal and ethanol-mediated serum testosterone and corticosterone levels were observed in blood samples taken at days 1, 8 and 22. However, 2h after ethanol administration significantly (p = 0.02) higher frequency of testosterone elevations was detected in high drinking AA rats compared to low drinking Wistars, which supports our previous hypotheses of a role of testosterone elevation in promoting ethanol drinking. Skin irritation and dermatitis were shown exclusively in the BA-treated animals. Altogether, the present results indicate that earlier findings obtained with Deca-Durabolin containing BA need to be re-evaluated. PMID:24871566

  1. High Definition Oscillometry: Non-invasive Blood Pressure Measurement and Pulse Wave Analysis.

    PubMed

    Egner, Beate

    2015-01-01

    Non-invasive monitoring of blood pressure has become increasingly important in research. High-Definition Oscillometry (HDO) delivers not only accurate, reproducible and thus reliable blood pressure but also visualises the pulse waves on screen. This allows for on-screen feedback in real time on data validity but even more on additional parameters like systemic vascular resistance (SVR), stroke volume (SV), stroke volume variances (SVV), rhythm and dysrhythmia. Since complex information on drug effects are delivered within a short period of time, almost stress-free and visible in real time, it makes HDO a valuable technology in safety pharmacology and toxicology within a variety of fields like but not limited to cardiovascular, renal or metabolic research. PMID:26091643

  2. Ethanol from sugar crops: a critical review

    SciTech Connect

    Lipinsky, E.S.; Allen, B.R.; Bose, A.; Kresovich, S.

    1981-01-01

    Due to the hardships resulting from rising oil prices and periodic production shortfalls, many developing countries, especially those with warm humid climates, have explored ethanol production from sugar crops. This critical review offers information on ethanol production for development planners. Two sugar crop-based ethanol systems, raw sugar facility retrofit and conventional juice extraction, are first examined. The agronomy of sugar crops (cane, beet, sorghum) is then described, as are the steps in crop processing (extraction, fermentation, distillation, stillage disposal). The costs of producing ethanol from a typical sugarcane processing plant and from a state-of-the-art molasses processing facility are presented, and the trade-offs between producing ethanol or raw sugar from sugarcane weighed. Finally, the properties of ethanol in automotive fuels are outlined, along with important storage, handling, and safety considerations. Three major problems are cited in ethanol production from sugar crops: adverse environmental effects (10 gallons of waste to 1 gallon of ethanol); the high cost of conventional milling equipment; and the loss of potential revenue from raw sugar sales. A future possibility of producing ethanol from fibrous residues (bagasse) is noted. Included are a 64-item bibliography (1936-1980) and 31 tables.

  3. High blood cadmium levels are not associated with consumption of traditional food among the Inuit of Nunavik

    SciTech Connect

    Rey, M.; Turcotte, F.; Lapointe, C.

    1997-09-01

    High levels of cadmium in the liver and kidneys of caribous and sea mammals of the Canadian Arctic have led to recommendations to remove such offal from the traditional diet. Blood cadmium levels have been found to be very high in samples of Inuit volunteers, hence the hypothesis that the Inuit might be exposed to cadmium through their diet. This survey of a population-based random sample of Nunavik residents (n = 518) confirms that blood cadmium of Inuit is indeed very high by comparison to published reports. Blood cadmium levels are closely associated with the current smoking status and are independent of dietary patterns among nonsmokers. Plasma omega-3 fatty acids concentrations have been used to assess the reliability of the dietary information collected by questionnaires and to test for any association of blood cadmium with the consumption of sea mammals. Blood cadmium levels are not related to the reported consumption of sea mammals. Blood cadmium levels are very high among smokers and are associated with levels of exposure to tobacco. Among nonsmoking Inuit, blood cadmium levels are comparable with those reported in nonsmokers elsewhere in the world. In reference to international standards, blood cadmium concentrations are high enough among the Inuit to warrant energetic public health interventions. 28 refs., 5 tabs.

  4. High-cocoa polyphenol-rich chocolate improves blood pressure in patients with diabetes and hypertension

    PubMed Central

    Rostami, Ali; Khalili, Mohammad; Haghighat, Neda; Eghtesadi, Shahryar; Shidfar, Farzad; Heidari, Iraj; Ebrahimpour-Koujan, Soraiya; Eghtesadi, Maryam

    2015-01-01

    BACKGROUND The aim was to examine the effects of high-cocoa polyphenol-rich chocolate on lipid profiles, weight, blood pressure, glycemic control, and inflammation in individuals with Type 2 diabetes and hypertension. METHODS Sixty individuals [32 in dark chocolate group (DCG) and 28 in white chocolate group (WCG)] with Type 2 diabetes on stable medication were enrolled in a randomized, placebo-controlled double-blind study. Subjects were randomized to consume 25 g DCG or WCG for 8 weeks. Changes in weight, blood pressure, glycemic control, lipid profile, and high sensitive C-reactive protein (hsCRP) were measured at the beginning and end of the intervention. This clinical trial was registered at the Iranian registry of clinical trials. RESULTS In DCC group, compared with baseline, serum levels of Apo A-1 (P = 0.045) was increased and fasting blood sugar (FBS) (P = 0.027), hemoglobin A1c (HbA1c) (P = 0.025), Apo B (P = 0.012) and Log of hsCRP (P = 0.043) levels were decreased at the end of study. No changes were seen within the WCG in studied parameters. High polyphenol chocolate consumption compared to white chocolate resulted in significant decrease in of systolic (−5.93 ± 6.25 vs. −1.07 ± 7.97 mmHg, P = 0.004) and diastolic blood pressure (−6.4 ± 6.25 vs. 0.17 ± 7.9 mmHg, P = 0.002), FBS (−7.84 ± 19.15 vs. 4.00 ± 20.58 mg/dl, P = 0.019) over the course of 8 weeks of daily chocolate consumption neither weight nor body mass index and TG levels altered from baseline. CONCLUSION High polyphenol chocolate is effective in improving TG levels in hypertensive patients with diabetes and decreasing blood pressure and FBS without affecting weight, inflammatory markers, insulin resistance or glycemic control. PMID:26089927

  5. Ethanol Basics (Fact Sheet)

    SciTech Connect

    Not Available

    2015-01-01

    Ethanol is a widely-used, domestically-produced renewable fuel made from corn and other plant materials. More than 96% of gasoline sold in the United States contains ethanol. Learn more about this alternative fuel in the Ethanol Basics Fact Sheet, produced by the U.S. Department of Energy's Clean Cities program.

  6. Phytase supplementation improves blood zinc in rats fed with high phytate Iranian bread

    PubMed Central

    Shockravi, Soodeh; Mohammad-Shirazi, Minoo; Abadi, Alireza; Seyedain, Mahdi; Kimiagar, Masoud

    2012-01-01

    Background: More than one third of energy intake in Iran is provided from bread. Therefore, improving bread mineral bioavailability through dephytinization can play an important role in decreasing the prevalence of many mineral deficiencies. In this study, effect of phytase supplementation on zinc, iron and calcium status in growing rats fed with a diet containing high phytate Iranian bread (Sangak) was assessed. Methods: Thirty weanling Wistar male rats were assigned to phytase (Aspergillus niger) or control group for 6 weeks. The diet was designed based on Iranian's food pattern and 34.2% of the energy was supplied from Sangak bread. Food intake, body and organ weight and body height were measured. Zinc was measured in blood, liver and femur. Iron was assessed in blood and liver and calcium was titrated from femur bone. Statistical analyses were performed using SPSS software. Paired sample t-test, Wilcoxon signed-rank test and repeated measurement ANOVA were used for proper analysis of data. Results: Although weekly weight gain was not different between groups, final weight was in favor of control group. Food intakes, liver and femur bone weight did not differ between the two groups. However, the blood zinc was higher in the phytase group (26.2 7.4 vs. 19.2 5.2, P = 0.03). Thus positive effects of phytase supplementation on zinc, independent of growth was found. Other variables did not show any differences between groups. Conclusion: Addition of phytase to diet containing high phytate Iranian bread can improve blood zinc status in growing rats. PMID:23267398

  7. High-Energy Faceted SnO?-Coated TiO? Nanobelt Heterostructure for Near-Ambient Temperature-Responsive Ethanol Sensor.

    PubMed

    Chen, Guohui; Ji, Shaozheng; Li, Haidong; Kang, Xueliang; Chang, Sujie; Wang, Yana; Yu, Guangwei; Lu, Jianren; Claverie, Jerome; Sang, Yuanhua; Liu, Hong

    2015-11-11

    A SnO2 gas sensor was prepared by a two-step oxidation process whereby a Sn(II) precursor was partially oxidized by a hydrothermal process and the resulting Sn3O4 nanoplates were thermally oxidized to yield SnO2 nanoplates. The SnO2 sensor was selective and responsive toward ethanol at a temperature as low as 43 C. This low sensing temperature stems from the rapid charge transport within SnO2 and from the presence of high-energy (001) facets available for oxygen chemisorption. SnO2/TiO2 nanobelt heterostructures were fabricated by a similar two-step process in which TiO2 nanobelts acted as support for the epitaxial growth of intermediate Sn3O4. At temperatures ranging from 43 to 276 C, the response of these branched nanobelts is more than double the response of SnO2 for ethanol detection. Our observations demonstrate the potential of low-cost SnO2-based sensors with controlled morphology and reactive facets for detecting gases around room temperature. PMID:26484799

  8. Six new loci associated with blood low-density lipoprotein cholesterol, high-density lipoprotein cholesterol or triglycerides in humans

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Low-density lipoprotein (LDL) and high-density lipoprotein (HDL) cholesterol are risk factors for cardiovascular disease and blood triglycerides reflect key metabolic processes including sensitivity to insulin. Blood lipoprotein and lipid concentrations are heritable. To date, the identification o...

  9. Simultaneous high-resolution pH and spectrophotometric recordings of oxygen binding in blood microvolumes.

    PubMed

    Oellermann, Michael; Pörtner, Hans-O; Mark, Felix C

    2014-05-01

    Oxygen equilibrium curves have been widely used to understand oxygen transport in numerous organisms. A major challenge has been to monitor oxygen binding characteristics and concomitant pH changes as they occur in vivo, in limited sample volumes. Here we report a technique allowing highly resolved and simultaneous monitoring of pH and blood pigment saturation in minute blood volumes. We equipped a gas diffusion chamber with a broad-range fibre-optic spectrophotometer and a micro-pH optode and recorded changes of pigment oxygenation along oxygen partial pressure (PO2) and pH gradients to test the setup. Oxygen binding parameters derived from measurements in only 15 μl of haemolymph from the cephalopod Octopus vulgaris showed low instrumental error (0.93%) and good agreement with published data. Broad-range spectra, each resolving 2048 data points, provided detailed insight into the complex absorbance characteristics of diverse blood types. After consideration of photobleaching and intrinsic fluorescence, pH optodes yielded accurate recordings and resolved a sigmoidal shift of 0.03 pH units in response to changing PO2 from 0 to 21 kPa. Highly resolved continuous recordings along pH gradients conformed to stepwise measurements at low rates of pH changes. In this study we showed that a diffusion chamber upgraded with a broad-range spectrophotometer and an optical pH sensor accurately characterizes oxygen binding with minimal sample consumption and manipulation. We conclude that the modified diffusion chamber is highly suitable for experimental biologists who demand high flexibility, detailed insight into oxygen binding as well as experimental and biological accuracy combined in a single setup. PMID:24436387

  10. Differential modulation by vascular nitric oxide synthases of the ethanol-evoked hypotension and autonomic dysfunction in female rats

    PubMed Central

    El-Mas, Mahmoud M.; Fan, Ming; Abdel-Rahman, Abdel A.

    2012-01-01

    We recently reported that chronic exposure to ethanol lowers blood pressure (BP) via altering cardiac contractility and autonomic control in female rats. In this investigation we conducted pharmacological and molecular studies to elucidate the role of constitutive and inducible nitric oxide synthase (NOS) in these hemodynamic effects of ethanol. Changes caused by selective inhibition of eNOS [N5-(1-iminoethyl)-L-ornithine; L-NIO], nNOS (Nω-propyl-L-arginine; NPLA), or iNOS (1400W) in BP, heart rate (HR), myocardial contractility index (dP/dtmax), and power spectral indices of hemodynamic variability were evaluated in telemetered female rats receiving ethanol (5%, w/v) or control liquid diet for 8 weeks. Ethanol increased plasma nitrite/nitrate (NOx) and enhanced the phosphorylation of eNOS and nNOS, but not iNOS, in the tail artery. Ethanol also reduced BP, +dP/dtmax, low-frequency bands of interbeat intervals (IBILF, 0.25–0.75 Hz) and IBILF/HF ratio while high-frequency bands (IBIHF, 0.75–3 Hz) were increased, suggesting parasympathetic overactivity. L-NIO (20 mg/kg i.p.) caused greater increases in BP in control than in ethanol-fed rats but elicited similar reductions in IBILF/HF and +dP/dtmax both groups. NPLA (1 mg/kg i.p.) caused minimal effects in control rats but exacerbated the reductions in BP, +dP/dtmax, and IBILF/HF in ethanol-fed rats. No hemodynamic modifications were caused by 1400W (5 mg/kg i.p.) in either rat group. Together, these findings suggest that nNOS acts tonically to offset the detrimental cardiovascular actions of ethanol in female rats, and the enhanced vascular NO bioavailability may explain the blunted L-NIO evoked pressor response in ethanol-fed rats. PMID:23046587

  11. Concomitant stress potentiates the preference for, and consumption of, ethanol induced by chronic pre-exposure to ethanol

    PubMed Central

    Morais-Silva, G.; Fernandes-Santos, J.; Moreira-Silva, D.; Marin, M.T.

    2015-01-01

    Ethanol abuse is linked to several acute and chronic injuries that can lead to health problems. Ethanol addiction is one of the most severe diseases linked to the abuse of this drug. Symptoms of ethanol addiction include compulsive substance intake and withdrawal syndrome. Stress exposure has an important role in addictive behavior for many drugs of abuse (including ethanol), but the consequences of stress and ethanol in the organism when these factors are concomitant results in a complex interaction. We investigated the effects of concomitant, chronic administration of ethanol and stress exposure on the withdrawal and consumption of, as well as the preference for, ethanol in mice. Male Swiss mice (30–35 g, 8-10 per group) were exposed to an ethanol liquid diet as the only source of food for 15 days. In the final 5 days, they were exposed to forced swimming stress. Twelve hours after removal of the ethanol liquid diet, animals were evaluated for ethanol withdrawal by measuring anxiety-related behaviors and locomotor activity. Twenty-four hours after evaluation of ethanol withdrawal, they were evaluated for voluntary consumption of ethanol in a “three-bottle choice” paradigm. Mice exposed to chronic consumption of ethanol had decreased locomotor activity during withdrawal. Contrary to our expectations, a concomitant forced swimming stress did not aggravate ethanol withdrawal. Nevertheless, simultaneous ethanol administration and stress exposure increased voluntary consumption of ethanol, mainly solutions containing high concentrations of ethanol. These results showed that stressful situations during ethanol intake may aggravate specific addiction-related behaviors. PMID:26628398

  12. Concomitant stress potentiates the preference for, and consumption of, ethanol induced by chronic pre-exposure to ethanol.

    PubMed

    Morais-Silva, G; Fernandes-Santos, J; Moreira-Silva, D; Marin, M T

    2016-01-01

    Ethanol abuse is linked to several acute and chronic injuries that can lead to health problems. Ethanol addiction is one of the most severe diseases linked to the abuse of this drug. Symptoms of ethanol addiction include compulsive substance intake and withdrawal syndrome. Stress exposure has an important role in addictive behavior for many drugs of abuse (including ethanol), but the consequences of stress and ethanol in the organism when these factors are concomitant results in a complex interaction. We investigated the effects of concomitant, chronic administration of ethanol and stress exposure on the withdrawal and consumption of, as well as the preference for, ethanol in mice. Male Swiss mice (30-35 g, 8-10 per group) were exposed to an ethanol liquid diet as the only source of food for 15 days. In the final 5 days, they were exposed to forced swimming stress. Twelve hours after removal of the ethanol liquid diet, animals were evaluated for ethanol withdrawal by measuring anxiety-related behaviors and locomotor activity. Twenty-four hours after evaluation of ethanol withdrawal, they were evaluated for voluntary consumption of ethanol in a "three-bottle choice" paradigm. Mice exposed to chronic consumption of ethanol had decreased locomotor activity during withdrawal. Contrary to our expectations, a concomitant forced swimming stress did not aggravate ethanol withdrawal. Nevertheless, simultaneous ethanol administration and stress exposure increased voluntary consumption of ethanol, mainly solutions containing high concentrations of ethanol. These results showed that stressful situations during ethanol intake may aggravate specific addiction-related behaviors. PMID:26628398

  13. PARENTAL AND SIBLING MIGRATION AND HIGH BLOOD PRESSURE AMONG RURAL CHILDREN IN CHINA.

    PubMed

    Wen, Ming; Li, Kelin

    2016-01-01

    This study examines the associations between parental and sibling rural-to-urban migration and blood pressure (BP) of rural left-behind children (LBC) in rural China. Analysis was based on the 2000, 2004, 2006 and 2009 waves of longitudinal data from the China Health and Nutrition Survey, which is an ongoing prospective survey covering nine provinces with an individual-level response rate of 88%. Blood pressure levels were measured by trained examiners at three consecutive times on the same visit and the means of three measurements were used as the final BP values. An ordinal BP measure was then created using a recently validated age-sex-specified distribution for Chinese children and adolescents, distinguishing normal BP, pre-hypertension and hypertension. Random effect modelling was performed. Different migration circumstances play different roles in LBC's BP with mother-only and both-parent migration being particularly detrimental and father-only and sibling-only migration either having no association or a negative association with LBC's BP levels or odds of high BP. In conclusion, the link between family migration and left-behind children's blood pressure is complex, and depends on who is the person out-migrating. PMID:25850441

  14. Interleukin 3 activates human blood basophils via high-affinity binding sites

    SciTech Connect

    Valent, P.; Besemer, J.; Muhm, M.; Majdic, O.; Lechner, K.; Bettelheim, P. )

    1989-07-01

    Pure populations of human basophilic granulocytes were obtained from chronic myeloid leukemia (CML) blood by negative selection using a mixture of monoclonal antibodies and complement. {sup 125}I-radiolabeled recombinant human interleukin 3 (rhIL-3) bound to purified basophils in a specific manner. Quantitative binding studies and Scatchard plot analyses performed on samples from two donors revealed the presence of a single class of high-affinity IL-3 binding sites. Purified CML basophils maintained in suspension in the presence of rhIL-3 incorporated up to 12 times more ({sup 3}H)thymidine than basophils in control cultures. Furthermore, after preincubation in vitro with rhIL-3 for 30 min, normal blood basophils released 2- to 3-fold more histamine than basophils pretreated with control medium when exposed to various concentrations of an anti-IgE antibody. Together, these results show that rhIL-3 binds to a specific receptor on blood basophils and is a regulator of basophil function.

  15. Low and moderate prenatal ethanol exposures of mice during gastrulation or neurulation delays neurobehavioral development.

    PubMed

    Schambra, Uta B; Goldsmith, Jeff; Nunley, Kevin; Liu, Yali; Harirforoosh, Sam; Schambra, Heidi M

    2015-01-01

    Human and animal studies show significant delays in neurobehavioral development in offspring after prolonged prenatal exposure to moderate and high ethanol doses resulting in high blood alcohol concentration (BECs). However, none have investigated the effects of lower ethanol doses given acutely during specific developmental time periods. Here, we sought to create a mouse model for modest and circumscribed human drinking during the 3rd and 4th weeks of pregnancy. We acutely treated mice during embryo gastrulation on gestational day (GD) 7 or neurulation on GD8 with a low or moderate ethanol dose given via gavage that resulted in BECs of 107 and 177 mg/dl, respectively. We assessed neonatal physical development (pinnae unfolding, and eye opening); weight gain from postnatal day (PD) 3-65; and neurobehavioral maturation (pivoting, walking, cliff aversion, surface righting, vertical screen grasp, and rope balance) from PD3 to 17. We used a multiple linear regression model to determine the effects of dose, sex, day of treatment and birth in animals dosed during gastrulation or neurulation, relative to their vehicle controls. We found that ethanol exposure during both time points (GD7 and GD8) resulted in some delays of physical development and significant sensorimotor delays of pivoting, walking, and thick rope balance, as well as additional significant delays in cliff aversion and surface righting after GD8 treatment. We also found that treatment with the low ethanol dose more frequently affected neurobehavioral development of the surviving pups than treatment with the moderate ethanol dose, possibly due to a loss of severely affected offspring. Finally, mice born prematurely were delayed in their physical and sensorimotor development. Importantly, we showed that brief exposure to low dose ethanol, if administered during vulnerable periods of neuroanatomical development, results in significant neurobehavioral delays in neonatal mice. We thus expand concerns about alcohol consumption during the 3rd and 4th weeks of human pregnancy to include occasional light to moderate drinking. PMID:26171567

  16. Blood parameters in Swedish dairy herds with high or low incidence of displaced abomasum or ketosis.

    PubMed

    Stengärde, Lena; Holtenius, Kjell; Emanuelson, Ulf; Hultgren, Jan; Niskanen, Rauni; Tråvén, Madeleine

    2011-10-01

    Sixty dairy herds were studied to investigate the association between long-term incidence of displaced abomasum and clinical ketosis and body condition score and blood profiles, including parameters estimating energy metabolism and hepatic lipidosis in the periparturient period and early lactation. Blood samples were taken around parturition and in early lactation from cows without apparent clinical symptoms of metabolic disorders. A difference in metabolism between high and low incidence herds was shown post-partum by a lower metabolic index (the revised Quantitative Insulin Sensitivity Check Index, RQUICKI), and tendencies for higher concentrations of glucose, insulin and non-esterified fatty acids in the high incidence herds. High incidence herds had more cows and produced on average 1400kg energy-corrected milk per cow per year more than the low incidence herds. No differences were found in parameters reflecting liver cell damage. In the first 3weeks post-partum the RQUICKI was a more sensitive marker of herds with a high incidence of displaced abomasum and clinical ketosis than any of the individual parameters, but further research is needed before practical applications of the RQUICKI can be foreseen. PMID:21982532

  17. Ethanol from biomass - The quest for efficiency

    NASA Astrophysics Data System (ADS)

    Deyoung, H. G.

    1982-02-01

    Methods for the production of ethanol to be used as an energy source from readily renewable biomass, natural materials based largely on cellulose, are reviewed. Current procedures for ethanol production utilize energy-inefficient processes and costly materials, such as corn, and thus are highly impractical for the large-scale ethanol production which is envisioned as a partial solution for US energy needs. The use of cellulosic raw materials is at the center of present research efforts, but no reliable and high-yielding conversion technique has yet been demonstrated. Methods of ethanol production are discussed and attention is focused on new fermentation technologies which potentially could overcome the problems associated with the use of cellulosic raw materials. For example, a strain of yeast is being developed which has the capability to convert up to twice as much of our agricultural wastes to ethanol than was thought possible just a year ago

  18. Risk Factors Associated with High Blood Pressure in Two-to Five-Year-Old Children

    PubMed Central

    Crispim, Paula Azevedo Aranha; Peixoto, Maria do Rosário Gondim; Jardim, Paulo César Brandão Veiga

    2014-01-01

    Background Over recent decades, the prevalence of high blood pressure (BP) has increased among children. Several risk factors are involved in the genesis of high BP during childhood, and their early identification can prevent the development of that disease. Objectives To assess the prevalence of high BP and associated factors in children. Methods Cross-sectional, population-based study, carried out at the household. This study included 276 two- to five-year-old children in the city of Goiânia, state of Goiás, and assessed their BP, sociodemographic characteristics, birth weight, high BP family history, passive smoking, maternal breastfeeding, dietary habits, sedentary lifestyle and nutritional status. Poisson regression was used to assess the association between risk factors and high BP. Results Their mean age was 3.1 ± 0.79 years, and high BP and overweight were observed in 19.9% and 11.2% of the children, respectively. Direct association of high BP was identified with age [prevalence ratio (PR) = 2.3; 95%CI: 1.2 - 4.8; p = 0.017] and overweight (PR = 2.0; 95%CI: 1.2 - 3.6; p = 0.014). No other variable associated with high BP. Conclusions The prevalence of high BP in children was high. Overweight and younger children had greater prevalence of high BP. PMID:24263779

  19. Ethanol production method and system

    DOEpatents

    Chen, M.J.; Rathke, J.W.

    1983-05-26

    Ethanol is selectively produced from the reaction of methanol with carbon monoxide and hydrogen in the presence of a transition metal carbonyl catalyst. Methanol serves as a solvent and may be accompanied by a less volatile co-solvent. The solution includes the transition metal carbonyl catalysts and a basic metal salt such as an alkali metal or alkaline earth metal formate, carbonate or bicarbonate. A gas containing a high carbon monoxide to hydrogen ratio, as is present in a typical gasifer product, is contacted with the solution for the preferential production of ethanol with minimal water as a byproduct. Fractionation of the reaction solution provides substantially pure ethanol product and allows return of the catalysts for reuse.

  20. Autophagy and ethanol neurotoxicity

    PubMed Central

    Luo, Jia

    2015-01-01

    Excessive ethanol exposure is detrimental to the brain. The developing brain is particularly vulnerable to ethanol such that prenatal ethanol exposure causes fetal alcohol spectrum disorders (FASD). Neuronal loss in the brain is the most devastating consequence and is associated with mental retardation and other behavioral deficits observed in FASD. Since alcohol consumption during pregnancy has not declined, it is imperative to elucidate the underlying mechanisms and develop effective therapeutic strategies. One cellular mechanism that acts as a protective response for the central nervous system (CNS) is autophagy. Autophagy regulates lysosomal turnover of organelles and proteins within cells, and is involved in cell differentiation, survival, metabolism, and immunity. We have recently shown that ethanol activates autophagy in the developing brain. The autophagic preconditioning alleviates ethanol-induced neuron apoptosis, whereas inhibition of autophagy potentiates ethanol-stimulated reactive oxygen species (ROS) and exacerbates ethanol-induced neuroapoptosis. The expression of genes encoding proteins required for autophagy in the CNS is developmentally regulated; their levels are much lower during an ethanol-sensitive period than during an ethanol-resistant period. Ethanol may stimulate autophagy through multiple mechanisms; these include induction of oxidative stress and endoplasmic reticulum stress, modulation of MTOR and AMPK signaling, alterations in BCL2 family proteins, and disruption of intracellular calcium (Ca2+) homeostasis. This review discusses the most recent evidence regarding the involvement of autophagy in ethanol-mediated neurotoxicity as well as the potential therapeutic approach of targeting autophagic pathways. PMID:25484085

  1. Autophagy and ethanol neurotoxicity.

    PubMed

    Luo, Jia

    2014-01-01

    Excessive ethanol exposure is detrimental to the brain. The developing brain is particularly vulnerable to ethanol such that prenatal ethanol exposure causes fetal alcohol spectrum disorders (FASD). Neuronal loss in the brain is the most devastating consequence and is associated with mental retardation and other behavioral deficits observed in FASD. Since alcohol consumption during pregnancy has not declined, it is imperative to elucidate the underlying mechanisms and develop effective therapeutic strategies. One cellular mechanism that acts as a protective response for the central nervous system (CNS) is autophagy. Autophagy regulates lysosomal turnover of organelles and proteins within cells, and is involved in cell differentiation, survival, metabolism, and immunity. We have recently shown that ethanol activates autophagy in the developing brain. The autophagic preconditioning alleviates ethanol-induced neuron apoptosis, whereas inhibition of autophagy potentiates ethanol-stimulated reactive oxygen species (ROS) and exacerbates ethanol-induced neuroapoptosis. The expression of genes encoding proteins required for autophagy in the CNS is developmentally regulated; their levels are much lower during an ethanol-sensitive period than during an ethanol-resistant period. Ethanol may stimulate autophagy through multiple mechanisms; these include induction of oxidative stress and endoplasmic reticulum stress, modulation of MTOR and AMPK signaling, alterations in BCL2 family proteins, and disruption of intracellular calcium (Ca2+) homeostasis. This review discusses the most recent evidence regarding the involvement of autophagy in ethanol-mediated neurotoxicity as well as the potential therapeutic approach of targeting autophagic pathways. PMID:25484085

  2. Maternal ethanol ingestion: effect on maternal and neonatal glucose balance

    SciTech Connect

    Witek-Janusek, L.

    1986-08-01

    Liver glycogen availability in the newborn is of major importance for the maintenance of postnatal blood glucose levels. This study examined the effect of maternal ethanol ingestion on maternal and neonatal glucose balance in the rate. Female rats were placed on 1) the Lieber-DeCarli liquid ethanol diet, 2) an isocaloric liquid pair-diet, or 3) an ad libitum rat chow diet at 3 wk before mating and throughout gestation. Blood and livers were obtained from dams and rat pups on gestational days 21 and 22. The pups were studied up to 6 h in the fasted state and up to 24 h in the fed state. Maternal ethanol ingestion significantly decreased litter size, birth weight, and growth. A significantly higher mortality during the early postnatal period was seen in the prenatal ethanol exposed pups. Ethanol significantly decreased fed maternal liver glycogen stores but not maternal plasma glucose levels. The newborn rats from ethanol ingesting dams also had significantly decreased liver glycogen stores. Despite mobilizing their available glycogen, these prenatal ethanol exposed pups became hypoglycemic by 6 h postnatal. This was more marked in the fasted pups. Ethanol did not affect maternal nor neonatal plasma insulin levels. Thus maternal ethanol ingestion reduces maternal and neonatal liver glycogen stores and leads to postnatal hypoglycemia in the newborn rat.

  3. Obesity and high blood pressure of 12-hour night shift female clean-room workers.

    PubMed

    Chen, Jong-Dar; Lin, Yu-Cheng; Hsiao, Shu-Tin

    2010-01-01

    The 12 h shift schedule is widely used in clean rooms for electronic semiconductor production in Taiwan. This study investigated the associations of obesity and metabolic syndrome (MetS) components among women working in a semiconductor manufacturing factory in North Taiwan. Workers were divided into four groups according to their work schedules and duties (i.e., office workers, day workers, fixed 12 h day shift, and fixed 12 h night shiftworkers). The subjects comprised 1838 women who voluntarily attended a health examination between August 2006 and November 2006. Their mean (+/-SD) age was 33.6 (+/-7.1) yrs and their mean duration of work was 7.4 (+/-5.2) yrs. Each subject's health-related behaviors, body mass index, and MetS components were measured and analyzed using multivariate logistic regression. Obesity and MetS were defined according to World Health Organization criteria for Asian populations and the National Cholesterol Educational Program and Adult Treatment Panel III Guidelines, respectively. The results showed that women working in the clean room on fixed 12 h night shifts had significantly elevated odds ratios for obesity (OR, 2.7; 95% CI, 1.6-4.5), central obesity (OR, 2.9; 95% CI, 1.7-5.1), and high blood pressure (OR, 2.3; 95% CI, 1.2-4.4) compared to female office workers; these results persisted after adjusting for age, smoking, drinking, education, and duration of work. We did not find any significant differences in triglyceride and high-density lipoprotein cholesterol among women working different schedules. We conclude that working fixed 12 h night shifts was associated with an increased odds ratio for obesity, central obesity, and high blood pressure among clean-room women workers. Weight reduction and blood pressure control programs should be implemented in the workplace for women working fixed 12 h night shifts. PMID:20370473

  4. [Progress on engineered strains for ethanol production].

    PubMed

    Wang, Fan-qiang; Xu, Ping

    2006-08-01

    With the 21 century's coming, the era of cheap oil is coming to the end. There has been an increasing worldwide interest in fuel ethanol. In the last two decades, lots of work has been done to develop strains for ethanol producing. Research progress on metabolic engineering of strains for fuel ethanol production is summarized, including genetically engineered Saccharomyces cerevisiae to utilize starch, pentose and cellulose, Zymomonas mobilis to ferment arabinose and xylose, Escherichia coli and Klebsiella oxytoca to introduce heterogenous ethanol production pathway. The aim of engineering these strains is to obtain an ideal microorganism which can converse the available carbon sources to ethanol rapidly and efficiently with high tolerance to ethanol and to inhibitory components in the cheap materials such as lignocellulose hydrolysate. The importance of fuel ethanol will be a stimulus to develop engineered hardy strains to utilize cheap materials for high ethanol concentration production. Since both Saccharomyces cerevisiae and Zymomonas mobilis are generally regarded as safe (GRAS), genetically engineered Saccharomyces cerevisiae which can utilize raw starch directly and recombinant Zymomonas mobilis which can ferment glucose, arabinose and xylose in the lignocellulose hydrolysate have potential application to industry in the near future. PMID:17037078

  5. Advantage in Bright-blood and Black-blood Magnetic Resonance Imaging with High-resolution for Analysis of Carotid Atherosclerotic Plaques

    PubMed Central

    Li, Mei; Le, Wei-Jie; Tao, Xiao-Feng; Li, Ming-Hua; Li, Yue-Hua; Qu, Nan

    2015-01-01

    Background: About 50% of the cerebral ischemia events are induced by intracranial and extracranial atherosclerosis. This study aimed to evaluate the feasibility and accuracy for displaying atherosclerotic plaques in carotid arteries and analyzing their ingredients by using high-resolution new magnetic resonance imaging (MRI) techniques. Methods: Totally, 49 patients suspected of extracranial carotid artery stenosis were subjected to cranial MRI scan and magnetic resonance angiography (MRA) examination on carotid arteries, and high-resolution bright-blood and black-blood MRI analysis was carried out within 1 week. Digital subtraction angiography (DSA) examination was carried out for 16 patients within 1 month. Results: Totally, 103 plaques were detected in the 49 patients, which were characterized by localized or diffusive thickening of the vessel wall, with the intrusion of crescent-shaped abnormal signal into lumens. Fibrous cap was displayed as isointensity in T1-weighted image (T1WI) and hyperintensities in proton density weighted image (PDWI) and T2-weighted image (T2WI), lipid core was displayed as isointensity or slight hyperintensities in T1WI, isointensity, hyperintensities or hypointensity in PDWI, and hypointensity in T2WI. Calcification in plaques was detected in 11 patients. Eight patients were detected with irregular plaque surface or ulcerative plaques, which were characterized by irregular intravascular space surface in the black-blood sequences, black hypointensity band was not detected in three-dimensional time-of-flight, or the hypointensity band was not continuous, and intrusion of hyperintensities into plaques can be detected. Bright-blood and black-blood techniques were highly correlated with the diagnosis of contrast-enhanced MRA in angiostenosis degree, Rs = 0.97, P < 0.001. In comparison to DSA, the sensitivity, specificity, and accuracy of MRI diagnosis of stenosis for ≥50% were 88.9%, 100%, and 97.9%, respectively. Conclusions: High-resolution bright-blood and black-blood sequential MRI analysis can accurately analyze ingredients in atherosclerotic plaques. Determined by DSA, MRI diagnosis of stenosis can correctly evaluate the serious degree of arteriostenosis. PMID:26365966

  6. High Ethanol Fuel Endurance: A Study of the Effects of Running Gasoline with 15% Ethanol Concentration in Current Production Outboard Four-Stroke Engines and Conventional Two-Stroke Outboard Marine Engines

    SciTech Connect

    Hilbert, D.

    2011-10-01

    Three Mercury Marine outboard marine engines were evaluated for durability using E15 fuel -- gasoline blended with 15% ethanol. Direct comparison was made to operation on E0 (ethanol-free gasoline) to determine the effects of increased ethanol on engine durability. Testing was conducted using a 300-hour wide-open throttle (WOT) test protocol, a typical durability cycle used by the outboard marine industry. Use of E15 resulted in reduced CO emissions, as expected for open-loop, non-feedback control engines. HC emissions effects were variable. Exhaust gas and engine operating temperatures increased as a consequence of leaner operation. Each E15 test engine exhibited some deterioration that may have been related to the test fuel. The 9.9 HP, four-stroke E15 engine exhibited variable hydrocarbon emissions at 300 hours -- an indication of lean misfire. The 300HP, four-stroke, supercharged Verado engine and the 200HP, two-stroke legacy engine tested with E15 fuel failed to complete the durability test. The Verado engine failed three exhaust valves at 285 endurance hours while the 200HP legacy engine failed a main crank bearing at 256 endurance hours. All E0-dedicated engines completed the durability cycle without incident. Additional testing is necessary to link the observed engine failures to ethanol in the test fuel.

  7. Columnar deformation of human red blood cell by highly localized fiber optic Bessel beam stretcher

    PubMed Central

    Lee, Sungrae; Joo, Boram; Jeon, Pyo Jin; Im, Seongil; Oh, Kyunghwan

    2015-01-01

    A single human red blood cell was optically stretched along two counter-propagating fiber-optic Bessel-like beams in an integrated lab-on-a-chip structure. The beam enabled highly localized stretching of RBC, and it induced a nonlinear mechanical deformation to finally reach an irreversible columnar shape that has not been reported. We characterized and systematically quantified this optically induced mechanical deformation by the geometrical aspect ratio of stretched RBC and the irreversible stretching time. The proposed RBC mechanism can realize a versatile and compact opto-mechanical platform for optical diagnosis of biological substances in the single cell level. PMID:26601005

  8. Columnar deformation of human red blood cell by highly localized fiber optic Bessel beam stretcher.

    PubMed

    Lee, Sungrae; Joo, Boram; Jeon, Pyo Jin; Im, Seongil; Oh, Kyunghwan

    2015-11-01

    A single human red blood cell was optically stretched along two counter-propagating fiber-optic Bessel-like beams in an integrated lab-on-a-chip structure. The beam enabled highly localized stretching of RBC, and it induced a nonlinear mechanical deformation to finally reach an irreversible columnar shape that has not been reported. We characterized and systematically quantified this optically induced mechanical deformation by the geometrical aspect ratio of stretched RBC and the irreversible stretching time. The proposed RBC mechanism can realize a versatile and compact opto-mechanical platform for optical diagnosis of biological substances in the single cell level. PMID:26601005

  9. Mechanisms of naturally evolved ethanol resistance in Drosophila melanogaster

    PubMed Central

    Fry, James D.

    2014-01-01

    The decaying fruit in which Drosophila melanogaster feed and breed can contain ethanol in concentrations as high as 6–7%. In this cosmopolitan species, populations from temperate regions are consistently more resistant to ethanol poisoning than populations from the tropics, but little is known about the physiological basis of this difference. I show that when exposed to low levels of ethanol vapor, flies from a tropical African population accumulated 2–3 times more internal ethanol than flies from a European population, giving evidence that faster ethanol catabolism by European flies contributes to the resistance difference. Using lines differing only in the origin of their third chromosome, however, I show that faster ethanol elimination cannot fully explain the resistance difference, because relative to African third chromosomes, European third chromosomes confer substantially higher ethanol resistance, while having little effect on internal ethanol concentrations. European third chromosomes also confer higher resistance to acetic acid, a metabolic product of ethanol, than African third chromosomes, suggesting that the higher ethanol resistance conferred by the former might be due to increased resistance to deleterious effects of ethanol-derived acetic acid. In support of this hypothesis, when ethanol catabolism was blocked with an Alcohol dehydrogenase mutant, there was no difference in ethanol resistance between flies with European and African third chromosomes. PMID:25392459

  10. Implementing effective hypertensive management--review of the 2014 high blood pressure management guidelines.

    PubMed

    Li, Shenjing; Kelly, Shawn C; Petrasko, Marian

    2015-01-01

    The Joint National Committee (JNC 8) hypertension guidelines have modified the blood pressure goals across the spectrum of disease processes and patient characteristics. This article will elucidate these changes and help clinicians improve the clinical care of patients with hypertension. Patients are now conceptually categorized into two different patient populations: those who are at a low- or high-risk of developing atherosclerotic cardiovascular disease (ASCVD) or chronic kidney disease (CKD). A low-risk population comprises patients aged 60 or older who do not have disease processes that enhance ASCVD or CKD disease development. High-risk patients are those with CKD and/or diabetes, and patients less than 60 years of age who remain at risk of future development. The current recommendation for blood-pressure goals in the low- and high-risk population is 150/90 mmHg and 140/90 mmHg, respectively. In all patients considered for antihypertensive therapy, the first line antihypertensive pharmacotherapy should include either a thiazide-type diuretic, calcium channel blocker (CCB), angiotensin-converting enzyme inhibitor (ACEI), or an angiotensin receptor blocker (ARB). Beta blockers no longer have a role as standalone therapy. Thiazide- type diuretics and CCB continue to demonstrate benefit in the African American population and should continue to be considered as first line agents. CKD patients with concomitant hypertension should be treated with an ACE inhibitor or ARB. PMID:25985606

  11. Association of High Blood Pressure with Heart Rate Variability in Children

    PubMed Central

    Xie, Gui-Ling; Wang, Jing-hua; Zhou, Yan; Xu, Hui; Sun, Jing-Hui; Yang, Si-Rui

    2013-01-01

    Objective To determine the association between heart rate variability (HRV) and hypertension in Chinese children. Methods The study was conducted in First Hospital of Jilin University, China. A total of 101 children were recruited in this study. They were divided into a high systolic blood pressure (SBP) group (HS group) and normal SBP group (NS group) according to the SBP levels. In the second set of experiments, the children were divided into a high diastolic blood pressure (DBP) group (HD group) and normal DBP group (ND group) according to the DBP levels. HRV measurements were performed, and the time domain and power spectrum values were calculated. Findings The differences of low frequency (LF)/high frequency (HF) ratio, HF, and standard deviation of normal-to-normal RR intervals (SDNN) between daytime and nighttime were obviously abolished in HS and HD groups. The HS group displayed significantly lower values of HRV over a 24 h period compared to the NS group (SDNN, standard deviation of the averaged normal-to-normal RR intervals [SDANN], Triangle Index, root mean square successive difference [RMSSD], total power [TP], ultra-LF [ULF], and HF). Only the Triangle Index in the HD group was lower than that in ND group. Conclusion We provide evidence that HRV is reduced and the circadian rhythm of HRV is weakened in hypertensive children, and hypothesize that a reduced HRV is a potential pathophysiological mechanism linking childhood hypertension and adulthood cardiovascular diseases. PMID:23550151

  12. Tissue distribution of acetaldehyde in rats following acetaldehyde inhalation and intragastric ethanol administration

    SciTech Connect

    Hobara, N.; Watanabe, A.; Kobayashi, M.; Nakatsukasa, H.; Nagashima, H.; Fukuda, T.; Araki, Y.

    1985-09-01

    It is conceivable that ethanol will be blended with gasoline and used as a fuel in the future because of the depletion of petroleum resources. Ethanol is metabolized to acetaldehyde, which is more toxic than the parent compound. While acetaldehyde levels in blood and liver following ethanol ingestion have been reported in rats, little is known about tissue distributions of acetaldehyde following inhalation exposure. The present communication comparatively describes the tissue distributions of acetaldehyde following acetaldehyde inhalation and intragastric ethanol administration.

  13. "High in omega-3 fatty acids" bologna-type sausages stabilized with an aqueous-ethanol extract of Melissa officinalis.

    PubMed

    Berasategi, Izaskun; Legarra, Sheila; de Ciriano, Mikel García-Íñiguez; Rehecho, Sheyla; Calvo, Maria Isabel; Cavero, Rita Yolanda; Navarro-Blasco, Iñigo; Ansorena, Diana; Astiasarán, Iciar

    2011-08-01

    A new formulation of bologna-type sausage enriched in ω-3 polyunsaturated fatty acids (PUFA) (8.75% linseed oil) was developed, using a lyophilized aqueous-ethanolic extract of Melissa officinalis. A comparison with the effectiveness of butylhydroxy anisole (BHA) synthetic antioxidant to decrease the oxidation of PUFAs was performed. The formulation increased the ω-3 PUFAs content, especially α-linolenic acid, decreasing significantly the ω-6/ω-3 ratio from 17.3 to 1.9, and also the Atherogenic Index and Thrombogenic Index (0.38-0.31 and 1.03-0.54, respectively). Modified sausages with BHA and Melissa extract showed significantly lower peroxides value (2.62 and 6.11 meq O₂/kg) and thiobarbituric acid value (0.26 and 0.27 mg malondialdehyde/kg) and higher antioxidant capacity (hydrophilic fraction ABTS: 0.45 and 0.74 meq Trolox/g product; lipofilic fraction ABTS: 0.44 and 0.37 meq Trolox/g product) than those without these ingredients (16.49 meq O₂/kg, 2.08 mg malondialdehyde /kg, 0.26 and 0.27 meq Trolox/g product, respectively). Sensorial tests showed that acceptability of the new formulations was similar to control products. PMID:21439735

  14. Synthesis of single-walled carbon nanotubes from Pd catalysts by gas source method using ethanol in high vacuum

    NASA Astrophysics Data System (ADS)

    Kozawa, Akinari; Saida, Takahiro; Naritsuka, Shigeya; Maruyama, Takahiro

    2016-01-01

    We carried out single-walled carbon nanotube (SWCNT) growth at 600 °C using Pd catalysts by the alcohol gas source method. When Pd catalysts deposited on SiO2/Si substrates were used, the G band in the Raman spectra was broad and weak RBM peaks were observed at ethanol pressures between 1 × 10‑3 and 1 × 10‑1 Pa. On the other hand, using Al2Ox buffer layers, a sharp G band with a shoulder peak (G‑ peak) and several radial breathing mode (RBM) peaks were observed, which indicates the growth of SWCNTs. Scanning electron microscopy (SEM) observation showed that dense web like SWCNTs were formed, and the diameters of SWCNTs estimated from the wavenumbers of RBM peaks were 1.3–2.9 nm, which were larger than those from Pt catalysts. Transmission electron microscopy (TEM) observation showed that the larger migration distance of Pd caused an enlargement of catalyst particle sizes, resulting in the larger diameters of SWCNTs from Pd catalysts.

  15. A highly selective chemodosimeter for fast detection and intracellular imaging of Hg2+ ions based on a dithiocarbamate-isothiocyanate conversion in aqueous ethanol.

    PubMed

    Pal, Suman; Hatai, Joydev; Samanta, Mousumi; Shaurya, Alok; Bandyopadhyay, Subhajit

    2014-02-21

    A new naphthalene diimide-dithiocarbamate based fluorescence probe was synthesized and its fluorogenic behavior towards various metal ions was studied. Upon addition of various metal ions, the probe afforded an irreversible change only with Hg(2+) ions in aqueous-ethanol media (4 : 1 v/v) with a fourfold enhancement of the fluorescence (Φ = 0.03 → 0.11) along with a distinct 43 nm blue shift of the emission maxima. The mechanism of the chemodosimetric behavior of the probe has been attributed to a Hg(2+) induced transformation of a weakly fluorescent dithiocarbamate to a highly fluorescent isothiocyanate which has been characterized by a number of spectroscopic techniques and a crystal structure. Intracellular detection of Hg(2+) ions was achieved using the probe. PMID:24352205

  16. MRI phenotypes with high neurodegeneration are associated with peripheral blood B-cell changes.

    PubMed

    Comabella, Manuel; Cantó, Ester; Nurtdinov, Ramil; Río, Jordi; Villar, Luisa M; Picón, Carmen; Castilló, Joaquín; Fissolo, Nicolás; Aymerich, Xavier; Auger, Cristina; Rovira, Alex; Montalban, Xavier

    2016-01-15

    Little is known about the mechanisms leading to neurodegeneration in multiple sclerosis (MS) and the role of peripheral blood cells in this neurodegenerative component. We aimed to correlate brain radiological phenotypes defined by high and low neurodegeneration with gene expression profiling of peripheral blood mononuclear cells (PBMC) from MS patients. Magnetic resonance imaging (MRI) scans from 64 patients with relapsing-remitting MS (RRMS) were classified into radiological phenotypes characterized by low (N = 27) and high (N = 37) neurodegeneration according to the number of contrast-enhancing lesions, the relative volume of non-enhancing black holes on T1-weighted images, and the brain parenchymal fraction. Gene expression profiling was determined in PBMC using microarrays, and validation of selected genes was performed by polymerase chain reaction (PCR). B-cell immunophenotyping was conducted by flow cytometry. Microarray analysis revealed the B-cell specific genes FCRL1, FCRL2, FCRL5 (Fc receptor-like 1, 2 and 5 respectively), and CD22 as the top differentially expressed genes between patients with high and low neurodegeneration. Levels for these genes were significantly down-regulated in PBMC from patients with MRI phenotypes characterized by high neurodegeneration and microarray findings were validated by PCR. In patients with high neurodegeneration, immunophenotyping showed a significant increase in the expression of the B-cell activation markers CD80 in naïve B cells (CD45+/CD19+/CD27-/IgD+), unswitched memory B cells (CD45+/CD19+/CD27+/IgD+), and switched memory B cells (CD45+/CD19+/CD27+/IgD-), and CD86 in naïve and switched memory B cells. These results suggest that RRMS patients with radiological phenotypes showing high neurodegeneration have changes in B cells characterized by down-regulation of B-cell-specific genes and increased activation status. PMID:26604134

  17. Soft inertial microfluidics for high throughput separation of bacteria from human blood cells

    SciTech Connect

    Wu, Zhigang; Willing, Ben; Bjerketorp, Joakim; Jansson, Janet K.; Hjort, Klas

    2009-01-05

    We developed a new approach to separate bacteria from human blood cells based on soft inertial force induced migration with flow defined curved and focused sample flow inside a microfluidic device. This approach relies on a combination of an asymmetrical sheath flow and proper channel geometry to generate a soft inertial force on the sample fluid in the curved and focused sample flow segment to deflect larger particles away while the smaller ones are kept on or near the original flow streamline. The curved and focused sample flow and inertial effect were visualized and verified using a fluorescent dye primed in the device. First the particle behavior was studied in detail using 9.9 and 1.0 {micro}m particles with a polymer-based prototype. The prototype device is compact with an active size of 3 mm{sup 2}. The soft inertial effect and deflection distance were proportional to the fluid Reynolds number (Re) and particle Reynolds number (Re{sub p}), respectively. We successfully demonstrated separation of bacteria (Escherichia coli) from human red blood cells at high cell concentrations (above 10{sup 8}/mL), using a sample flow rate of up to 18 {micro}L/min. This resulted in at least a 300-fold enrichment of bacteria at a wide range of flow rates with a controlled flow spreading. The separated cells were proven to be viable. Proteins from fractions before and after cell separation were analyzed by gel electrophoresis and staining to verify the removal of red blood cell proteins from the bacterial cell fraction. This novel microfluidic process is robust, reproducible, simple to perform, and has a high throughput compared to other cell sorting systems. Microfluidic systems based on these principles could easily be manufactured for clinical laboratory and biomedical applications.

  18. High Blood Pressure in Panama: Prevalence, Sociodemographic and Biologic Profile, Treatment, and Control (STROBE)

    PubMed Central

    Mc Donald Posso, Anselmo J.; Motta Borrel, Jorge A.; Fontes, Flavia; Cruz Gonzalez, Clara E.; Pachón Burgos, Alvaro A.; Cumbrera Ortega, Alberto

    2014-01-01

    Abstract The objective of this study is to estimate the prevalence, treatment, and control of high blood pressure, hypertension (HBP) in Panama and assess its associations with sociodemographic and biologic factors. A cross-sectional, descriptive study was conducted in Panama by administering a survey on cardiovascular risk factors to 3590 adults and measuring their blood pressure 3 times. A single-stage, probabilistic, and randomized sampling strategy with a multivariate stratification was used. The average blood pressure, confidence intervals (CIs), odds ratio (OR), and a value of P ≤ 0.05 were used for the analysis. The estimated prevalence of HBP was 29.6% (95% CI, 28.0–31.1); it was more prevalent in men than in women, OR = 1.37 (95% CI, 1.17–1.61); it increased with age and was more frequent among Afro-Panamanians (33.8%). HBP was associated with a family history of HBP with being physically inactive and a body mass index ≥25.0 kg/m2 or a waist circumference >90 cm in men and >88 cm in women (P < 0.001). Of those found to have HBP, 65.6% were aware of having HBP and taking medications, and of these, 47.2% had achieved control (<140/90 mm ​​Hg). HBP is the most common cardiovascular risk factor among Panamanians and consequently an important public health problem in Panama. The health care system needs to give a high priority to HBP prevention programs and integrated care programs aimed at treating HBP, taking into consideration the changes in behavior that have been brought about by alterations in nutrition and sedentary lifestyles. PMID:25396327

  19. A high-throughput assay of NK cell activity in whole blood and its clinical application.

    PubMed

    Lee, Saet-byul; Cha, Junhoe; Kim, Im-kyung; Yoon, Joo Chun; Lee, Hyo Joon; Park, Sang Woo; Cho, Sunjung; Youn, Dong-ye; Lee, Heyja; Lee, Choong Hwan; Lee, Jae Myun; Lee, Kang Young; Kim, Jongsun

    2014-03-14

    Natural killer (NK) cells are lymphocytes of the innate immune system and have the ability to kill tumor cells and virus-infected cells without prior sensitization. Malignant tumors and viruses have developed, however, strategies to suppress NK cells to escape from their responses. Thus, the evaluation of NK cell activity (NKA) could be invaluable to estimate the status and the outcome of cancers, viral infections, and immune-mediated diseases. Established methods that measure NKA, such as (51)Cr release assay and CD107a degranulation assay, may be used to determine NK cell function, but they are complicated and time-consuming because they require isolation of peripheral blood mononuclear cells (PBMC) or NK cells. In some cases these assays require hazardous material such as radioactive isotopes. To overcome these difficulties, we developed a simple assay that uses whole blood instead of PBMC or isolated NK cells. This novel assay is suitable for high-throughput screening and the monitoring of diseases, because it employs serum of ex vivo stimulated whole blood to detect interferon (IFN)-γ secreted from NK cells as an indicator of NKA. After the stimulation of NK cells, the determination of IFNγ concentration in serum samples by enzyme-linked immunosorbent assay (ELISA) provided a swift, uncomplicated, and high-throughput assay of NKA ex vivo. The NKA results microsatellite stable (MSS) colorectal cancer patients was showed significantly lower NKA, 263.6 ± 54.5 pg/mL compared with healthy subjects, 867.5 ± 50.2 pg/mL (p value <0.0001). Therefore, the NKA could be utilized as a supportive diagnostic marker for microsatellite stable (MSS) colorectal cancer. PMID:24561245

  20. Effect of pronase on high-incidence blood group antigens and the prevalence of antibodies to pronase-treated erythrocytes.

    PubMed

    Reid, M E; Greeen, C A; Hoffer, J; Øyen, R

    1996-01-01

    Pronase is a useful and relatively nonspecific protease that cleaves many red blood cell (RBC) membrane proteins that carry blood group antigens. Unexpected findings in tests using pronase-treated RBCs during the investigation of a patient's blood sample led us to test which high-incidence blood group antigens were sensitive and which were resistant to pronase treatment, and to determine the prevalence of antipronase in the serum of blood donors. Our results show that antigens in the Cromer and Lutheran blood group systems and the JMH antigen were sensitive to pronase treatment of RBCs. Antigens in the Dombrock blood group system and Sc1 were either sensitive to or markedly weakened by pronase treatment of RBCs. The following high-incidence antigens were resistant to treatment of RBCs with pronase: AnWj, Ata, Coa, Co3, Dib, EnaFR, Era, Fy3, Jk3, Jra, k, Kpb, Jsb, K14, Lan, Oka, Rh17, U, Vel, and Wrb. Over half of the serum samples from normal blood donors contained antibodies to pronase-treated RBCs. When testing human serum against pronase-treated RBCs, it is essential either to use an autocontrol or to perform the testing with an eluate. PMID:15387724