Science.gov

Sample records for high bootstrap current

  1. Progress Toward Steady State Tokamak Operation Exploiting the high bootstrap current fraction regime

    NASA Astrophysics Data System (ADS)

    Ren, Q.

    2015-11-01

    Recent DIII-D experiments have advanced the normalized fusion performance of the high bootstrap current fraction tokamak regime toward reactor-relevant steady state operation. The experiments, conducted by a joint team of researchers from the DIII-D and EAST tokamaks, developed a fully noninductive scenario that could be extended on EAST to a demonstration of long pulse steady-state tokamak operation. Fully noninductive plasmas with extremely high values of the poloidal beta, βp >= 4 , have been sustained at βT >= 2 % for long durations with excellent energy confinement quality (H98y,2 >= 1 . 5) and internal transport barriers (ITBs) generated at large minor radius (>= 0 . 6) in all channels (Te, Ti, ne, VTf). Large bootstrap fraction (fBS ~ 80 %) has been obtained with high βp. ITBs have been shown to be compatible with steady state operation. Because of the unusually large ITB radius, normalized pressure is not limited to low βN values by internal ITB-driven modes. βN up to ~4.3 has been obtained by optimizing the plasma-wall distance. The scenario is robust against several variations, including replacing some on-axis with off-axis neutral beam injection (NBI), adding electron cyclotron (EC) heating, and reducing the NBI torque by a factor of 2. This latter observation is particularly promising for extension of the scenario to EAST, where maximum power is obtained with balanced NBI injection, and to a reactor, expected to have low rotation. However, modeling of this regime has provided new challenges to state-of-the-art modeling capabilities: quasilinear models can dramatically underpredict the electron transport, and the Sauter bootstrap current can be insufficient. The analysis shows first-principle NEO is in good agreement with experiments for the bootstrap current calculation and ETG modes with a larger saturated amplitude or EM modes may provide the missing electron transport. Work supported in part by the US DOE under DE-FC02-04ER54698, DE-AC52-07NA

  2. Limitations of bootstrap current models

    NASA Astrophysics Data System (ADS)

    Belli, E. A.; Candy, J.; Meneghini, O.; Osborne, T. H.

    2014-04-01

    We assess the accuracy and limitations of two analytic models of the tokamak bootstrap current: (1) the well-known Sauter model (1999 Phys. Plasmas 6 2834, 2002 Phys. Plasmas 9 5140) and (2) a recent modification of the Sauter model by Koh et al (2012 Phys. Plasmas 19 072505). For this study, we use simulations from the first-principles kinetic code NEO as the baseline to which the models are compared. Tests are performed using both theoretical parameter scans as well as core-to-edge scans of real DIII-D and NSTX plasma profiles. The effects of extreme aspect ratio, large impurity fraction, energetic particles, and high collisionality are studied. In particular, the error in neglecting cross-species collisional coupling—an approximation inherent to both analytic models—is quantified. Furthermore, the implications of the corrections from kinetic NEO simulations on MHD equilibrium reconstructions is studied via integrated modeling with kinetic EFIT.

  3. Progress toward steady-state tokamak operation exploiting the high bootstrap current fraction regime

    NASA Astrophysics Data System (ADS)

    Ren, Q. L.; Garofalo, A. M.; Gong, X. Z.; Holcomb, C. T.; Lao, L. L.; McKee, G. R.; Meneghini, O.; Staebler, G. M.; Grierson, B. A.; Qian, J. P.; Solomon, W. M.; Turnbull, A. D.; Holland, C.; Guo, W. F.; Ding, S. Y.; Pan, C. K.; Xu, G. S.; Wan, B. N.

    2016-06-01

    Recent DIII-D experiments have increased the normalized fusion performance of the high bootstrap current fraction tokamak regime toward reactor-relevant steady state operation. The experiments, conducted by a joint team of researchers from the DIII-D and EAST tokamaks, developed a fully noninductive scenario that could be extended on EAST to a demonstration of long pulse steady-state tokamak operation. Improved understanding of scenario stability has led to the achievement of very high values of βp and βN , despite strong internal transport barriers. Good confinement has been achieved with reduced toroidal rotation. These high βp plasmas challenge the energy transport understanding, especially in the electron energy channel. A new turbulent transport model, named TGLF-SAT1, has been developed which improves the transport prediction. Experiments extending results to long pulse on EAST, based on the physics basis developed at DIII-D, have been conducted. More investigations will be carried out on EAST with more additional auxiliary power to come online in the near term.

  4. Bootstrapped tokamak with oscillating field current drive

    SciTech Connect

    Weening, R.H. )

    1993-07-01

    A magnetic helicity conserving mean-field Ohm's law is used to study bootstrapped tokamaks with oscillating field current drive. The Ohm's law leads to the conclusion that the tokamak bootstrap effect can convert the largely alternating current of oscillating field current drive into a direct toroidal plasma current. This plasma current rectification is due to the intrinsically nonlinear nature of the tokamak bootstrap effect, and suggests that it may be possible to maintain the toroidal current of a tokamak reactor by supplementing the bootstrap current with oscillating field current drive. Steady-state tokamak fusion reactors operating with oscillating field current drive could provide an alternative to tokamak reactors operating with external current drive.

  5. Optimization of the Internal Magnetic Configuration for High Bootstrap Current Fraction and High Beta for Steady-state

    NASA Astrophysics Data System (ADS)

    Ferron, J. E.; Luce, T. C.; Politzer, P. A.; Deboo, J. C.; Petrie, T. W.; Petty, C. C.; La Haye, R. J.; Holcomb, C. T.; White, A. E.; Turco, F.; Doyle, E. J.; Rhodes, T. L.; Zeng, L.

    2009-11-01

    A systematic scan of the safety factor (q) profile has been used to study the optimum for steady-state operation, which requires the maximum possible beta and bootstrap current fraction (fBS) and good alignment between the total current density and the bootstrap current density (JBS). The ne, Te, and Ti profiles at constant βN= 2.7 were measured in a scan of the minimum q (1.1current density. The maximum achieved βN was 3.1 at qmin>2, and 3.8 at qmin= 1.1. These opposite trends in βN and fBS, and the improved current profile alignment for qmin<2, point to intermediate qmin and q95 as optimal for steady-state operation.

  6. Control of bootstrap current in the pedestal region of tokamaks

    SciTech Connect

    Shaing, K. C.; Lai, A. L.

    2013-12-15

    The high confinement mode (H-mode) plasmas in the pedestal region of tokamaks are characterized by steep gradient of the radial electric field, and sonic poloidal U{sub p,m} flow that consists of poloidal components of the E×B flow and the plasma flow velocity that is parallel to the magnetic field B. Here, E is the electric field. The bootstrap current that is important for the equilibrium, and stability of the pedestal of H-mode plasmas is shown to have an expression different from that in the conventional theory. In the limit where ‖U{sub p,m}‖≫ 1, the bootstrap current is driven by the electron temperature gradient and inductive electric field fundamentally different from that in the conventional theory. The bootstrap current in the pedestal region can be controlled through manipulating U{sub p,m} and the gradient of the radial electric. This, in turn, can control plasma stability such as edge-localized modes. Quantitative evaluations of various coefficients are shown to illustrate that the bootstrap current remains finite when ‖U{sub p,m}‖ approaches infinite and to provide indications how to control the bootstrap current. Approximate analytic expressions for viscous coefficients that join results in the banana and plateau-Pfirsch-Schluter regimes are presented to facilitate bootstrap and neoclassical transport simulations in the pedestal region.

  7. Control of bootstrap current in the pedestal region of tokamaks

    NASA Astrophysics Data System (ADS)

    Shaing, K. C.; Lai, A. L.

    2013-12-01

    The high confinement mode (H-mode) plasmas in the pedestal region of tokamaks are characterized by steep gradient of the radial electric field, and sonic poloidal Up ,m flow that consists of poloidal components of the E ×B flow and the plasma flow velocity that is parallel to the magnetic field B. Here, E is the electric field. The bootstrap current that is important for the equilibrium, and stability of the pedestal of H-mode plasmas is shown to have an expression different from that in the conventional theory. In the limit where |Up ,m| ≫ 1, the bootstrap current is driven by the electron temperature gradient and inductive electric field fundamentally different from that in the conventional theory. The bootstrap current in the pedestal region can be controlled through manipulating Up ,m and the gradient of the radial electric. This, in turn, can control plasma stability such as edge-localized modes. Quantitative evaluations of various coefficients are shown to illustrate that the bootstrap current remains finite when |Up ,m| approaches infinite and to provide indications how to control the bootstrap current. Approximate analytic expressions for viscous coefficients that join results in the banana and plateau-Pfirsch-Schluter regimes are presented to facilitate bootstrap and neoclassical transport simulations in the pedestal region.

  8. ITER equilibrium with bootstrap currents, lower hybrid current drive and fast wave current drive

    SciTech Connect

    Ehst, D.A.

    1989-03-01

    A current drive system is proposed for the technology phase of ITER which relies on rf power and bootstrap currents. The rf/bootstrap system permits operation at high safety factor, and we consider the axial value to be q/sub a/ approx. = 1.9, which minimizes the need for seed current near the magnetic axis. Lower hybrid power (/approximately/30 MW) provides current density near the surface, ICRF (/approximately/65 MHz, /approximately/30 MW) fast waves generate current near the axis, and high frequency fast waves (/approximately/250 MHz, /approximately/74 MW) supply the remaining current density. The system is not yet optimized but appears to offer great flexibility (ion heating for ignition, current rampup, etc.) with relatively inexpensive and well developed technology. 29 refs., 16 figs., 1 tab.

  9. Magnetic island induced bootstrap current on island dynamics in tokamaks

    SciTech Connect

    Shaing, K.C.; Spong, D.A.

    2006-02-15

    When a magnetic island is embedded in toroidally symmetric tokamaks, the toroidal symmetry in |B| is broken [K. C. Shaing, Phys. Rev. Lett. 87, 245003 (2001)]. Here, B is the magnetic field. This broken symmetry induces an additional bootstrap current density in the vicinity of the island. It is illustrated that this island induced bootstrap current density modifies the island evolution equation and imposes a lower limit on the absolute value of the tearing mode stability parameter {delta}{sup '} for the island to be unstable. This lower limit depends on the local poloidal plasma beta {beta}{sub p}, the ratio of the plasma pressure to the poloidal magnetic field pressure. If {beta}{sub p} is high enough, the magnetic island is stable. This mechanism provides an alternative route to stabilize the island.

  10. Magnetic Island Induced Bootstrap Current on Island Dynamics in Tokamaks

    SciTech Connect

    Spong, Donald A; Shaing, K. C.

    2006-02-01

    When a magnetic island is embedded in toroidally symmetric tokamaks, the toroidal symmetry in |B| is broken [K. C. Shaing, Phys. Rev. Lett. 87, 245003 (2001)] . Here, B is the magnetic field. This broken symmetry induces an additional bootstrap current density in the vicinity of the island. It is illustrated that this island induced bootstrap current density modifies the island evolution equation and imposes a lower limit on the absolute value of the tearing mode stability parameter |{Delta}{prime}| for the island to be unstable. This lower limit depends on the local poloidal plasma beta {beta}{sub p}, the ratio of the plasma pressure to the poloidal magnetic field pressure. If {beta}{sub p} is high enough, the magnetic island is stable. This mechanism provides an alternative route to stabilize the island.

  11. Enhancement of the Bootstrap Current in a Tokamak Pedestal

    SciTech Connect

    Kagan, Grigory; Catto, Peter J.

    2010-07-23

    The strong radial electric field in a subsonic tokamak pedestal modifies the neoclassical ion parallel flow velocity, as well as the radial ion heat flux. Existing experimental evidence of the resulting alteration in the poloidal flow of a trace impurity is discussed. We then demonstrate that the modified parallel ion flow can noticeably enhance the pedestal bootstrap current when the background ions are in the banana regime. Only the coefficient of the ion temperature gradient drive term is affected. The revised expression for the pedestal bootstrap current is presented. The prescription for inserting the modification into any existing banana regime bootstrap current expression is given.

  12. An improved bootstrap current formula for edge pedestal plasma

    NASA Astrophysics Data System (ADS)

    Hager, Robert; Chang, C.-S.

    2014-10-01

    An improved version of a bootstrap current formula based on the results of the neoclassical guiding-center particle-in-cell code XGC0 is presented. The original formula improved the accuracy of the predicted bootstrap current in the edge pedestal, where the ion orbit width can be comparable to the pressure gradient scale length, the passing particle region is narrow, and the ions experience orbit loss. We improved two aspects of this formula. We corrected the asymptotic behavior of the bootstrap current coefficients at higher collisionality from what was inherited from the Sauter formula. We also improved the jumpy aspect-ratio dependence of the transition between an enhanced (NSTX) and reduced (DIII-D) bootstrap current regime found by Koh et al. In addition, we elucidate the physical origins of the improvement and of the difference from a local analysis that includes the importance of finite ion orbit excursion effects on the electron current in the edge pedestal.

  13. The bootstrap current in small rotating magnetic islands

    SciTech Connect

    Bergmann, A.; Poli, E.; Peeters, A. G.

    2009-09-15

    The bootstrap current in small magnetic islands of neoclassical tearing modes is studied with guiding center particle simulations including pitch angle scattering. A model for a rotating island and its electric field is used and a new approximation to the electric potential in small islands is derived. Islands with sizes of the order of the ion banana orbit width are studied by means of a two-step model, which allows to treat both ions and electrons kinetically. The bootstrap current in such small islands is found to depend strongly on the direction of rotation of the island. The bootstrap current in small islands rotating in the ion diamagnetic direction is strongly diminished, similarly to what happens in big islands. In small islands rotating in the electron diamagnetic direction, on the contrary, the bootstrap current is almost completely preserved, implying a reduced neoclassical drive of the island growth.

  14. Simulations of the bootstrap current in small rotating magnetic islands

    SciTech Connect

    Bergmann, A.; Poli, E.; Peeters, A. G.

    2008-11-01

    The bootstrap current in small magnetic islands of neoclassical tearing modes is studied in numerical simulations whith the guiding center particle code HAGIS. The contributions of both, electrons and ions, are included, as well as the island rotation and its electric field. The case of islands that are smaller than the ion banana orbit width is studied. We find that the size of the bootstrap current in small islands depends strongly on the rotation frequency of the island.

  15. Bootstrap current close to magnetic axis in tokamaks

    SciTech Connect

    Shaing, K.C.; Hazeltine, R.D.

    1996-12-01

    It is shown that the bootstrap current density close to the magnetic axis in tokamaks does not vanish in simple electron-ion plasmas because the fraction of the trapped particles is finite. The magnitude of the current density could be comparable to that in the outer core region. This may reduce or even eliminate the need of the seed current.

  16. ELM phenomenon as an interaction between bootstrap-current driven peeling modes and pressure-driven ballooning modes

    NASA Astrophysics Data System (ADS)

    Saarelma, S.; Günter, S.; Kurki-Suonio, T.; Zehrfeld, H.-P.

    2000-05-01

    An ELMy ASDEX Upgrade plasma equilibrium is reconstructed taking into account the bootstrap current. The peeling mode stability of the equilibrium is numerically analysed using the GATO [1] code, and it is found that the bootstrap current can drive the plasma peeling mode unstable. A high-n ballooning mode stability analysis of the equilibria revealed that, while destabilizing the peeling modes, the bootstrap current has a stabilizing effect on the ballooning modes. A combination of these two instabilities is a possible explanation for the type I ELM phenomenon. A triangularity scan showed that increasing triangularity stabilizes the peeling modes and can produce ELM-free periods observed in the experiments.

  17. MHD stability of ITER H-mode confinement with pedestal bootstrap current effects taken into account

    NASA Astrophysics Data System (ADS)

    Zheng, L. J.; Kotschenreuther, M. T.; Valanju, P.; Mahajan, S. M.; Hatch, D.; Liu, X.

    2015-11-01

    We have shown that the bootstrap current can have significant effects both on tokamak equilibrium and stability (Nucl. Fusion 53, 063009 (2013)). For ITER H-mode discharges pedestal density is low and consequently bootstrap current is large. We reconstruct numerically ITER equilibria with bootstrap current taken into account. Especially, we have considered a more realistic scenario in which density and temperature profiles can be different. The direct consequence of bootstrap current effects on equilibrium is the modification of local safety factor profile at pedestal. This results in a dramatic change of MHD mode behavior. The stability of ITER numerical equilibria is investigated with AEGIS code. Both low-n and peeling-ballooning modes are investigated. Note that pressure gradient at pedestal is steep. High resolution computation is needed. Since AEGIS code is an adaptive code, it can well handle this problem. Also, the analytical continuation technique based on the Cauchy-Riemann condition of dispersion relation is applied, so that the marginal stability conditions can be determined. Both numerical scheme and results will be presented. The effects of different density and temperature profiles on ITER H-mode discharges will be discussed. This research is supported by U. S. Department of Energy, Office of Fusion Energy Science: Grant No. DE-FG02-04ER-54742.

  18. EBW-Bootstrap Current Synergy in the National Spherical Torus Experiment (NSTX)

    SciTech Connect

    R.W. Harvey; G. Taylor

    2005-02-02

    Current driven by electron Bernstein waves (EBW) and by the electron bootstrap effect are calculated separately and concurrently with a kinetic code, to determine the degree of synergy between them. A target {beta} = 40% NSTX plasma is examined. A simple bootstrap model in the CQL3D Fokker-Planck code is used in these studies: the transiting electron distributions are connected in velocity-space at the trapped-passing boundary to trapped-electron distributions which are displaced radially by a half-banana width outwards/inwards for the co-/counter-passing regions. This model agrees well with standard bootstrap current calculations, over the outer 60% of the plasma radius. Relatively small synergy net bootstrap current is obtained for EBW power up to 4 MW. Locally, bootstrap current density increases in proportion to increased plasma pressure, and this effect can significantly affect the radial profile of driven current.

  19. Computation of lower hybrid, neutral beam and bootstrap currents in consistent MHD equilibria

    SciTech Connect

    Devoto, R.S.; Blackfield, D.T.; Fenstermacher, M.E.; Bonoli, P.T.; Porkolab, M.

    1989-02-01

    A possible scenario for steady state current drive in large, high- temperature tokamaks includes current driven by lower hybrid (LH) waves in the outer region with high-energy neutral beams (NB) used for current drive in the core. In addition, provided the poloidal beta is sufficiently high, there can be substantial bootstrap (BS) current, as observed in the TFTR and JET experiments. In work reported previously, a computer code, ACCOME, was written to obtain a solution to the MHD equations which is consistent with current driven by neutral beams, electric fields, and neoclassical (bootstrap) effects. For the computation of the solution to the Grad-Shafranov equation, the SELENE code is used. Iteration is necessary between SELENE and the current-drive computations to obtain a consistent solution. In this paper we describe modifications to ACCOME to enable the computation of LH current in addition to the NB, BS, and OH currents. The next section describes the models used and then the final section presents an application to ITER. 4 refs., 4 figs.

  20. Bootstrap current for the edge pedestal plasma in a diverted tokamak geometry

    SciTech Connect

    Koh, S.; Choe, W.; Chang, C. S.; Ku, S.; Menard, J. E.; Weitzner, H.

    2012-07-15

    The edge bootstrap current plays a critical role in the equilibrium and stability of the steep edge pedestal plasma. The pedestal plasma has an unconventional and difficult neoclassical property, as compared with the core plasma. It has a narrow passing particle region in velocity space that can be easily modified or destroyed by Coulomb collisions. At the same time, the edge pedestal plasma has steep pressure and electrostatic potential gradients whose scale-lengths are comparable with the ion banana width, and includes a magnetic separatrix surface, across which the topological properties of the magnetic field and particle orbits change abruptly. A drift-kinetic particle code XGC0, equipped with a mass-momentum-energy conserving collision operator, is used to study the edge bootstrap current in a realistic diverted magnetic field geometry with a self-consistent radial electric field. When the edge electrons are in the weakly collisional banana regime, surprisingly, the present kinetic simulation confirms that the existing analytic expressions [represented by O. Sauter et al., Phys. Plasmas 6, 2834 (1999)] are still valid in this unconventional region, except in a thin radial layer in contact with the magnetic separatrix. The agreement arises from the dominance of the electron contribution to the bootstrap current compared with ion contribution and from a reasonable separation of the trapped-passing dynamics without a strong collisional mixing. However, when the pedestal electrons are in plateau-collisional regime, there is significant deviation of numerical results from the existing analytic formulas, mainly due to large effective collisionality of the passing and the boundary layer trapped particles in edge region. In a conventional aspect ratio tokamak, the edge bootstrap current from kinetic simulation can be significantly less than that from the Sauter formula if the electron collisionality is high. On the other hand, when the aspect ratio is close to unity

  1. Bootstrap Current for the Edge Pedestal Plasma in a Diverted Tokamak Geometry

    SciTech Connect

    Koh, S.; Chang, C. S.; Ku, S.; Menard, J. E.; Weitzner, H.; Choe, W.

    2012-08-10

    The edge bootstrap current plays a critical role in the equilibrium and stability of the steep edge pedestal plasma. The pedestal plasma has an unconventional and difficult neoclassical property, as compared with the core plasma. It has a narrow passing particle region in velocity space that can be easily modified or destroyed by Coulomb collisions. At the same time, the edge pedestal plasma has steep pressure and electrostatic potential gradients whose scale-lengths are comparable with the ion banana width, and includes a magnetic separatrix surface, across which the topological properties of the magnetic field and particle orbits change abruptly. A driftkinetic particle code XGC0, equipped with a mass-momentum-energy conserving collision operator, is used to study the edge bootstrap current in a realistic diverted magnetic field geometry with a self-consistent radial electric field. When the edge electrons are in the weakly collisional banana regime, surprisingly, the present kinetic simulation confirms that the existing analytic expressions [represented by O. Sauter et al. , Phys. Plasmas 6 , 2834 (1999)] are still valid in this unconventional region, except in a thin radial layer in contact with the magnetic separatrix. The agreement arises from the dominance of the electron contribution to the bootstrap current compared with ion contribution and from a reasonable separation of the trapped-passing dynamics without a strong collisional mixing. However, when the pedestal electrons are in plateau-collisional regime, there is significant deviation of numerical results from the existing analytic formulas, mainly due to large effective collisionality of the passing and the boundary layer trapped particles in edge region. In a conventional aspect ratio tokamak, the edge bootstrap current from kinetic simulation can be significantly less than that from the Sauter formula if the electron collisionality is high. On the other hand, when the aspect ratio is close to unity

  2. Ion-Banana-Orbit-Width Effect on Bootstrap Current for Small Magnetic Islands

    NASA Astrophysics Data System (ADS)

    Qu, Hongpeng

    2013-09-01

    A simple and direct theoretical method has been proposed to investigate the so-called ion-banana-orbit-width (IBW) effect on the bootstrap current in the region of magnetic islands generated by the neoclassical tearing mode (NTM). The result shows that, when the IBW approaches the island width, the (ion) bootstrap current can be partly restored inside the island while the pressure profile is flattened. This can lead to the reduction of the bootstrap current drive on the NTM. The strength of the IBW effect on the NTM is related to the safety factor and the inverse aspect ratio on the rational surface.

  3. Island-induced bootstrap current on the saturation of a thin magnetic island in tokamaks

    SciTech Connect

    Shaing, K. C.

    2007-04-15

    It is shown that island-induced bootstrap current density, which results from the symmetry breaking of the vertical bar B vertical bar when an island is embedded in the equilibrium magnetic field B, modifies the evolution equation and the saturation level for a thin magnetic island in tokamaks. This modification is independent of the fraction of the equilibrium bootstrap current density. It is found that island-induced bootstrap current density increases the saturation level for modes with positive values of {delta}{sup '}. Here, {delta}{sup '} is the stability parameter for the linear tearing modes.

  4. Reduction of bootstrap current in the Modular Helias-like Heliac stellarator

    NASA Astrophysics Data System (ADS)

    Garabedian, P. R.; Gardner, H. J.

    1995-06-01

    A geometric estimate for the size of the bootstrap current has been implemented in a plasma equilibrium code and applied to the Modular Helias-like Heliac (MHH) stellarator [Nucl. Fusion 34, 881 (1994)]. The predicted change in the rotational transform of the MHH due to the bootstrap current has been brought down to an acceptable level, and this has resulted in one of the smallest stellarator reactor candidates to be discovered so far.

  5. On Current Drive and Wave Induced Bootstrap Current in Toroidal Plasmas

    SciTech Connect

    Hellsten, T.; Johnson, T.

    2008-11-01

    A comprehensive treatment of wave-particle interactions in toroidal plasmas including collisional relaxation, applicable to heating or anomalous wave induced transport, has been obtained by using Monte Carlo operators satisfying quasi-neutrality. This approach enables a self-consistent treatment of wave-particle interactions applicable to the banana regime in the neoclassical theory. It allows an extension into a regime with large temperature and density gradients, losses and transport of particles by wave-particle interactions making the method applicable to transport barriers. It is found that at large gradients the relationship between radial electric field, parallel velocity, temperature and density gradient in the neoclassical theory is modified such that coefficient in front of the logarithmic ion temperature gradient, which in the standard neoclassical theory is small and counteracts the electric field caused by the density gradient, now changes sign and contributes to the built up of the radial electric field. The possibility to drive current by absorbing the waves on trapped particles has been studied and how the wave-particle interactions affect the bootstrap current. Two new current drive mechanisms are studied: current drive by wave induced bootstrap current and selective detrapping into passing orbits by directed waves.

  6. Impurities in a non-axisymmetric plasma. Transport and effect on bootstrap current

    DOE PAGESBeta

    Mollén, A.; Landreman, M.; Smith, H. M.; Braun, S.; Helander, P.

    2015-11-20

    Impurities cause radiation losses and plasma dilution, and in stellarator plasmas the neoclassical ambipolar radial electric field is often unfavorable for avoiding strong impurity peaking. In this work we use a new continuum drift-kinetic solver, the SFINCS code (the Stellarator Fokker-Planck Iterative Neoclassical Conservative Solver) [M. Landreman et al., Phys. Plasmas 21 (2014) 042503] which employs the full linearized Fokker-Planck-Landau operator, to calculate neoclassical impurity transport coefficients for a Wendelstein 7-X (W7-X) magnetic configuration. We compare SFINCS calculations with theoretical asymptotes in the high collisionality limit. We observe and explain a 1/nu-scaling of the inter-species radial transport coefficient at lowmore » collisionality, arising due to the field term in the inter-species collision operator, and which is not found with simplified collision models even when momentum correction is applied. However, this type of scaling disappears if a radial electric field is present. We use SFINCS to analyze how the impurity content affects the neoclassical impurity dynamics and the bootstrap current. We show that a change in plasma effective charge Zeff of order unity can affect the bootstrap current enough to cause a deviation in the divertor strike point locations.« less

  7. Impurities in a non-axisymmetric plasma: Transport and effect on bootstrap current

    SciTech Connect

    Mollén, A.; Landreman, M.; Smith, H. M.; Helander, P.; Braun, S.

    2015-11-15

    Impurities cause radiation losses and plasma dilution, and in stellarator plasmas the neoclassical ambipolar radial electric field is often unfavorable for avoiding strong impurity peaking. In this work we use a new continuum drift-kinetic solver, the SFINCS code (the Stellarator Fokker-Planck Iterative Neoclassical Conservative Solver) [M. Landreman et al., Phys. Plasmas 21, 042503 (2014)] which employs the full linearized Fokker-Planck-Landau operator, to calculate neoclassical impurity transport coefficients for a Wendelstein 7-X (W7-X) magnetic configuration. We compare SFINCS calculations with theoretical asymptotes in the high collisionality limit. We observe and explain a 1/ν-scaling of the inter-species radial transport coefficient at low collisionality, arising due to the field term in the inter-species collision operator, and which is not found with simplified collision models even when momentum correction is applied. However, this type of scaling disappears if a radial electric field is present. We also use SFINCS to analyze how the impurity content affects the neoclassical impurity dynamics and the bootstrap current. We show that a change in plasma effective charge Z{sub eff} of order unity can affect the bootstrap current enough to cause a deviation in the divertor strike point locations.

  8. Impurities in a non-axisymmetric plasma. Transport and effect on bootstrap current

    SciTech Connect

    Mollén, A.; Landreman, M.; Smith, H. M.; Braun, S.; Helander, P.

    2015-11-20

    Impurities cause radiation losses and plasma dilution, and in stellarator plasmas the neoclassical ambipolar radial electric field is often unfavorable for avoiding strong impurity peaking. In this work we use a new continuum drift-kinetic solver, the SFINCS code (the Stellarator Fokker-Planck Iterative Neoclassical Conservative Solver) [M. Landreman et al., Phys. Plasmas 21 (2014) 042503] which employs the full linearized Fokker-Planck-Landau operator, to calculate neoclassical impurity transport coefficients for a Wendelstein 7-X (W7-X) magnetic configuration. We compare SFINCS calculations with theoretical asymptotes in the high collisionality limit. We observe and explain a 1/nu-scaling of the inter-species radial transport coefficient at low collisionality, arising due to the field term in the inter-species collision operator, and which is not found with simplified collision models even when momentum correction is applied. However, this type of scaling disappears if a radial electric field is present. We use SFINCS to analyze how the impurity content affects the neoclassical impurity dynamics and the bootstrap current. We show that a change in plasma effective charge Zeff of order unity can affect the bootstrap current enough to cause a deviation in the divertor strike point locations.

  9. Electron Bernstein wave-bootstrap current synergy in the National Spherical Torus Experiment

    SciTech Connect

    Harvey, R.W.; Taylor, G.

    2005-05-15

    Current driven by electron Bernstein waves (EBW) and by the electron bootstrap effect are calculated separately and concurrently with a kinetic code to determine the degree of synergy between them. A target {beta}=40% NSTX [M. Ono, S. Kaye, M. Peng et al., Proceedings of the 17th IAEA Fusion Energy Conference, edited by M. Spak (IAEA, Vienna, Austria, 1999), Vol. 3, p. 1135] plasma is examined. A simple bootstrap model in the collisional-quasilinear CQL3D Fokker-Planck code (National Technical Information Service document No. DE93002962) is used in these studies: the transiting electron distributions are connected in velocity space at the trapped-passing boundary to trapped-electron distributions that are displaced radially by a half-banana-width outwards/inwards for the co-passing/counter-passing regions. This model agrees well with standard bootstrap current calculations over the outer 60% of the plasma radius. Relatively small synergy net bootstrap current is obtained for EBW power up to 4 MW. Locally, bootstrap current density increases in proportion to increased plasma pressure, and this effect can significantly affect the radial profile of driven current.

  10. Magnetohydrodynamic Stability of Free-Boundary Quasi-Axisymmetric Stellarator Equilibria with Finite Bootstrap Current

    SciTech Connect

    Coope, Wilfred Anthony; Ferrando i Margalet, Sergi; Allfrey, Simon J.; Kisslinger, Johann; Wobig, Horst F.G.; Narushima, Yoshiro; Okamura, Shoichi; Suzuki, Chihiro; Watanabe, Kiyomasa Y.; Yamazaki, Kozo; Isaev, Maxim Yu

    2004-09-15

    The impact of the bootstrap current is investigated on the equilibrium properties of a two-period quasi-axisymmetric stellarator reactor with free boundary and on the corresponding ideal magnetohydrodynamic stability properties. Although the magnetic field strength B spectrum is dominated by a m/n = 1/0 component, the discrete filamentary coils trigger some small-amplitude symmetry-breaking components that can disturb the quasi-symmetry of B. Finite {beta} causes the plasma column to shift outward in the absence of bootstrap current. With a self-consistent bootstrap current in the 1/{nu} regime, the plasma becomes more elongated and more distorted in the horizontally elongated up-down symmetric cross section. At {beta} (approximately equal to) 3.25%, the plasma can be restored to its near-vacuum shape with the application of a vertical field with coil currents 20% of those of the modular coils, but at the expense of a significant mirror component in the B-field spectrum. The bootstrap current causes the rotational transform {iota} profile to increase above the critical resonant value ({iota}{sub c} = 1/2 for {beta} {>=}1.1%) and combines with the Pfirsch-Schlueter current to destabilize a m/n = 2/1 external kink mode for {beta} {>=}1.8%.

  11. Effects of orbit squeezing on poloidal mass flow and bootstrap current in tokamak plasmas

    SciTech Connect

    Shaing, K.C. ); Hsu, C.T. ); Hazeltine, R.D. )

    1994-10-01

    It is shown, by solving the drift kinetic equation, that the asymptotic values of the poloidal mass flow and the bootstrap current in the banana regime of large-aspect-ratio tokamak plasmas are not affected by orbit squeezing. However, because the definition of ion collisionality [upsilon][sub *[ital i

  12. Dependence of Bootstrap Current, Stability, and Transport on the Safety Factor Profile in DIII-D Steady-state Scenario Discharges

    NASA Astrophysics Data System (ADS)

    Holcomb, C. T.; Ferron, J. R.; Luce, T. C.; Politzer, P. A.; Deboo, J. C.; Petrie, T. W.; Petty, C. C.; La Haye, R. J.; White, A. E.; Turco, F.; Doyle, E. J.; Rhodes, T. L.; Zeng, L.

    2009-11-01

    A high beta, high gain steady state tokamak scenario with large bootstrap current fraction will have strong coupling between the current density and the pressure gradient through turbulent transport and the bootstrap current. To address this coupling experimentally, a scan of the safety factor minimum (qmin, from 1.1 to over 2) and edge value (q95, from 4.5 to 6.5) was performed. The bootstrap current fraction increases with qmin and q95 by virtue of increasing density gradients. Compared to lower qmin, qmin>2 has lower n=1 stability limits, enhanced drift wave growth rates, higher low-k density fluctuations, and lower confinement. At qmin>2 and q95=4.5 the unsustainable condition JBS> JTotal occurs near the axis. These considerations suggest intermediate q is the optimal operating point.

  13. Modeling, measurement, and 3-D equilibrium reconstruction of the bootstrap current in the Helically Symmetric Experiment

    SciTech Connect

    Schmitt, J. C.; Talmadge, J. N.; Anderson, D. T.; Hanson, J. D.

    2014-09-15

    The bootstrap current for three electron cyclotron resonance heated plasma scenarios in a quasihelically symmetric stellarator (the Helically Symmetric Experiment) are analyzed and compared to a neoclassical transport code PENTA. The three conditions correspond to 50 kW input power with a resonance that is off-axis, 50 kW on-axis heating and 100 kW on-axis heating. When the heating location was moved from off-axis to on-axis with 50 kW heating power, the stored energy and the extrapolated steady-state current were both observed to increase. When the on-axis heating power was increased from 50 kW to 100 kW, the stored energy continued to increase while the bootstrap current slightly decreased. This trend is qualitatively in agreement with the calculations which indicate that a large positive electric field for the 100 kW case was driving the current negative in a small region close to the magnetic axis and accounting for the decrease in the total integrated current. This trend in the calculations is only observed to occur when momentum conservation between particle species is included. Without momentum conservation, the calculated bootstrap current increases monotonically. We show that the magnitude of the bootstrap current as calculated by PENTA agrees better with the experiment when momentum conservation between plasma species is included in the calculation. The total current was observed in all cases to flow in a direction to unwind the transform, unlike in a tokamak in which the bootstrap current adds to the transform. The 3-D inductive response of the plasma is simulated to predict the evolution of the current profile during the discharge. The 3-D equilibrium reconstruction code V3FIT is used to reconstruct profiles of the plasma pressure and current constrained by measurements with a set of magnetic diagnostics. The reconstructed profiles are consistent with the measured plasma pressure profile and the simulated current profile when the

  14. Simulation of bootstrap current in 2D and 3D ideal magnetic fields in tokamaks

    NASA Astrophysics Data System (ADS)

    Raghunathan, M.; Graves, J. P.; Cooper, W. A.; Pedro, M.; Sauter, O.

    2016-09-01

    We aim to simulate the bootstrap current for a MAST-like spherical tokamak using two approaches for magnetic equilibria including externally caused 3D effects such as resonant magnetic perturbations (RMPs), the effect of toroidal ripple, and intrinsic 3D effects such as non-resonant internal kink modes. The first approach relies on known neoclassical coefficients in ideal MHD equilibria, using the Sauter (Sauter et al 1999 Phys. Plasmas 6 2834) expression valid for all collisionalities in axisymmetry, and the second approach being the quasi-analytic Shaing–Callen (Shaing and Callen 1983 Phys. Fluids 26 3315) model in the collisionless regime for 3D. Using the ideal free-boundary magnetohydrodynamic code VMEC, we compute the flux-surface averaged bootstrap current density, with the Sauter and Shaing–Callen expressions for 2D and 3D ideal MHD equilibria including an edge pressure barrier with the application of resonant magnetic perturbations, and equilibria possessing a saturated non-resonant 1/1 internal kink mode with a weak internal pressure barrier. We compare the applicability of the self-consistent iterative model on the 3D applications and discuss the limitations and advantages of each bootstrap current model for each type of equilibrium.

  15. High beta, Long Pulse, Bootstrap Sustained Scenarios on the National Spherical Torus Experiment (NSTX)

    SciTech Connect

    D.A. Gates, for the NSTX National Research Team

    2003-02-26

    Long-pulse, high-beta scenarios have been established on the National Spherical Torus Experiment (NSTX). Beta(sub)t(always equal to 2{mu}(sub)0{center_dot}

    /B{sup 2}(sub)t0) {approx} 35% has been achieved during transient discharges. The machine improvements that lead to these results, including error field reduction and high-temperature bakeout of plasma-facing components are described. The highest Beta(sub)t plasmas have high triangularity (delta = 0.8) and elongation (k = 2.0) at low-aspect ratio A always equal to R/a = 1.4. The strong shaping permits large values of normalized current, I(sub)N(always equal to I(sub)p /(aB(sub)t0)) approximately equal to 6 while maintaining moderate values of q(sub)95 = 4. Long-pulse discharges up to 1 sec in duration have been achieved with substantial bootstrap current. The total noninductive current drive can be as high as 60%, comprised of 50% bootstrap current and {approx}10% neutral-beam current drive. The confinement enhancement factor H89P is in excess of 2.7. Beta(sub)N * H(sub)89P approximately or greater than 15 has been maintained for 8 * tau(sub)E {approx} 1.6 * tau(sub)CR, where tau(sub)CR is the relaxation time of the first radial moment of the toroidal current density. The ion temperature for these plasmas is significantly higher than that predicted by neoclassical theory.

  16. Bootstrap unloader

    NASA Technical Reports Server (NTRS)

    Pfiffner, H. J.

    1969-01-01

    Circuit can sample a number of transducers in sequence without drawing from them. This bootstrap unloader uses a differential amplifier with one input connected to a circuit which is the equivalent of the circuit to be unloaded, and the other input delivering the proper unloading currents.

  17. Quality assessment of High Angular Resolution Diffusion Imaging data using bootstrap on Q-ball reconstruction

    PubMed Central

    Cohen-Adad, J.; Descoteaux, M.; Wald, L.L.

    2011-01-01

    Purpose To develop a bootstrap method to assess the quality of High Angular Resolution Diffusion Imaging (HARDI) data using Q-Ball imaging (QBI) reconstruction. Materials and Methods HARDI data were re-shuffled using regular bootstrap with jackknife sampling. For each bootstrap dataset, the diffusion orientation distribution function (ODF) was estimated voxel-wise using QBI reconstruction based on spherical harmonics functions. The reproducibility of the ODF was assessed using the Jensen-Shannon divergence (JSD) and the angular confidence interval was derived for the first and the second ODF maxima. The sensitivity of the bootstrap method was evaluated on a human subject by adding synthetic noise to the data, by acquiring a map of image signal-to-noise ratio (SNR) and by varying the echo time and the b-value. Results The JSD was directly linked to the image SNR. The impact of echo times and b-values was reflected by both the JSD and the angular confidence interval, proving the usefulness of the bootstrap method to evaluate specific features of HARDI data. Conclusion The bootstrap method can effectively assess the quality of HARDI data and can be used to evaluate new hardware and pulse sequences, perform multi-fiber probabilistic tractography, and provide reliability metrics to support clinical studies. PMID:21509879

  18. Observation of non-classical radial current diffusion in a fully bootstrap current driven tokamak

    SciTech Connect

    Hwang, Y.S.; Forest, C.B.; Ono, M.

    1996-02-01

    Reconstruction and modeling of the plasma current profiles in a fully pressure-driven tokamak have been performed in the Current Drive Experiment-Upgrade (CDX-U). The reconstructed experimental current profile has a significant deviation from that of the calculated neoclassical currents. Satisfactory agreement between the measured and calculated model profiles was obtained by including a helicity conserving current diffusion term in the modeling which created the required self-generated `seed` current.

  19. Gyrokinetic neoclassical study of the bootstrap current in the tokamak edge pedestal with fully non-linear Coulomb collisions

    NASA Astrophysics Data System (ADS)

    Hager, Robert; Chang, C. S.

    2016-04-01

    As a follow-up on the drift-kinetic study of the non-local bootstrap current in the steep edge pedestal of tokamak plasma by Koh et al. [Phys. Plasmas 19, 072505 (2012)], a gyrokinetic neoclassical study is performed with gyrokinetic ions and drift-kinetic electrons. Besides the gyrokinetic improvement of ion physics from the drift-kinetic treatment, a fully non-linear Fokker-Planck collision operator—that conserves mass, momentum, and energy—is used instead of Koh et al.'s linearized collision operator in consideration of the possibility that the ion distribution function is non-Maxwellian in the steep pedestal. An inaccuracy in Koh et al.'s result is found in the steep edge pedestal that originated from a small error in the collisional momentum conservation. The present study concludes that (1) the bootstrap current in the steep edge pedestal is generally smaller than what has been predicted from the small banana-width (local) approximation [e.g., Sauter et al., Phys. Plasmas 6, 2834 (1999) and Belli et al., Plasma Phys. Controlled Fusion 50, 095010 (2008)], (2) the plasma flow evaluated from the local approximation can significantly deviate from the non-local results, and (3) the bootstrap current in the edge pedestal, where the passing particle region is small, can be dominantly carried by the trapped particles in a broad trapped boundary layer. A new analytic formula based on numerous gyrokinetic simulations using various magnetic equilibria and plasma profiles with self-consistent Grad-Shafranov solutions is constructed.

  20. Gyrokinetic neoclassical study of the bootstrap current in the tokamak edge pedestal with fully non-linear Coulomb collisions

    DOE PAGESBeta

    Hager, Robert; Chang, C. S.

    2016-04-08

    As a follow-up on the drift-kinetic study of the non-local bootstrap current in the steep edge pedestal of tokamak plasma by Koh et al. [Phys. Plasmas 19, 072505 (2012)], a gyrokinetic neoclassical study is performed with gyrokinetic ions and drift-kinetic electrons. Besides the gyrokinetic improvement of ion physics from the drift-kinetic treatment, a fully non-linear Fokker-Planck collision operator—that conserves mass, momentum, and energy—is used instead of Koh et al.'s linearized collision operator in consideration of the possibility that the ion distribution function is non-Maxwellian in the steep pedestal. An inaccuracy in Koh et al.'s result is found in the steepmore » edge pedestal that originated from a small error in the collisional momentum conservation. The present study concludes that (1) the bootstrap current in the steep edge pedestal is generally smaller than what has been predicted from the small banana-width (local) approximation [e.g., Sauter et al., Phys. Plasmas 6, 2834 (1999) and Belli et al., Plasma Phys. Controlled Fusion 50, 095010 (2008)], (2) the plasma flow evaluated from the local approximation can significantly deviate from the non-local results, and (3) the bootstrap current in the edge pedestal, where the passing particle region is small, can be dominantly carried by the trapped particles in a broad trapped boundary layer. In conclusion, a new analytic formula based on numerous gyrokinetic simulations using various magnetic equilibria and plasma profiles with self-consistent Grad-Shafranov solutions is constructed.« less

  1. The Bootstrap Fraction in TFTR

    SciTech Connect

    Hoang, G. T.

    1997-04-15

    The TRANSP plasma analysis code is used to calculate the bootstrap current generated during neutral-beam injection and ion cyclotron resonance frequency heating for a wide variety of TFTR discharges. An empirical scaling relation is given for the bootstrap current fraction using the ratio of the peakedness of the thermal pressure and the total current density.

  2. A bootstrapped, low-noise, and high-gain photodetector for shot noise measurement

    SciTech Connect

    Zhou, Haijun; Yang, Wenhai; Li, Zhixiu; Li, Xuefeng; Zheng, Yaohui

    2014-01-15

    We presented a low-noise, high-gain photodetector based on the bootstrap structure and the L-C (inductance and capacitance) combination. Electronic characteristics of the photodetector, including electronic noise, gain and frequency response, and dynamic range, were verified through a single-frequency Nd:YVO{sub 4} laser at 1064 nm with coherent output. The measured shot noise of 50 μW laser was 13 dB above the electronic noise at the analysis frequency of 2 MHz, and 10 dB at 3 MHz. And a maximum clearance of 28 dB at 2 MHz was achieved when 1.52 mW laser was illuminated. In addition, the photodetector showed excellent linearities for both DC and AC amplifications in the laser power range between 12.5 μW and 1.52 mW.

  3. Temperature Corrected Bootstrap Algorithm

    NASA Technical Reports Server (NTRS)

    Comiso, Joey C.; Zwally, H. Jay

    1997-01-01

    A temperature corrected Bootstrap Algorithm has been developed using Nimbus-7 Scanning Multichannel Microwave Radiometer data in preparation to the upcoming AMSR instrument aboard ADEOS and EOS-PM. The procedure first calculates the effective surface emissivity using emissivities of ice and water at 6 GHz and a mixing formulation that utilizes ice concentrations derived using the current Bootstrap algorithm but using brightness temperatures from 6 GHz and 37 GHz channels. These effective emissivities are then used to calculate surface ice which in turn are used to convert the 18 GHz and 37 GHz brightness temperatures to emissivities. Ice concentrations are then derived using the same technique as with the Bootstrap algorithm but using emissivities instead of brightness temperatures. The results show significant improvement in the area where ice temperature is expected to vary considerably such as near the continental areas in the Antarctic, where the ice temperature is colder than average, and in marginal ice zones.

  4. Completely bootstrapped tokamak

    SciTech Connect

    Weening, R.H. ); Boozer, A.H. )

    1992-01-01

    Numerical simulations of the evolution of large-scale magnetic fields have been developed using a mean-field Ohm's law. The Ohm's law is coupled to a {Delta}{prime} stabilty analysis and a magnetic island growth equation in order to simulate the behavior of tokamak plasmas that are subject to tearing modes. In one set of calculations, the magnetohydrodynamic (MHD)-stable regime of the tokamak is examined via the construction of an {ital l}{sub {ital i}} -{ital q}{sub {ital a}} diagram. The results confirm previous calculations that show that tearing modes introduce a stability boundary into the {ital l}{sub {ital i}} -{ital q}{sub {ital a}} space. In another series of simulations, the interaction between tearing modes and the bootstrap current is investigated. The results indicate that a completely bootstrapped tokamak may be possible, even in the absence of any externally applied loop voltage or current drive.

  5. High PRF high current switch

    DOEpatents

    Moran, Stuart L.; Hutcherson, R. Kenneth

    1990-03-27

    A triggerable, high voltage, high current, spark gap switch for use in pu power systems. The device comprises a pair of electrodes in a high pressure hydrogen environment that is triggered by introducing an arc between one electrode and a trigger pin. Unusually high repetition rates may be obtained by undervolting the switch, i.e., operating the trigger at voltages much below the self-breakdown voltage of the device.

  6. Bootstrapping structured page segmentation

    NASA Astrophysics Data System (ADS)

    Ma, Huanfeng; Doermann, David S.

    2003-01-01

    In this paper, we present an approach to the bootstrap learning of a page segmentation model. The idea evolves from attempts to segment dictionaries that often have a consistent page structure, and is extended to the segmentation of more general structured documents. In cases of highly regular structure, the layout can be learned from examples of only a few pages. The system is first trained using a small number of samples, and a larger test set is processed based on the training result. After making corrections to a selected subset of the test set, these corrected samples are combined with the original training samples to generate bootstrap samples. The newly created samples are used to retrain the system, refine the learned features and resegment the test samples. This procedure is applied iteratively until the learned parameters are stable. Using this approach, we do not need to initially provide a large set of training samples. We have applied this segmentation to many structured documents such as dictionaries, phone books, spoken language transcripts, and obtained satisfying segmentation performance.

  7. Compatibility of internal transport barrier with steady-state operation in the high bootstrap fraction regime on DIII-D

    NASA Astrophysics Data System (ADS)

    Garofalo, A. M.; Gong, X.; Grierson, B. A.; Ren, Q.; Solomon, W. M.; Strait, E. J.; Van Zeeland, M. A.; Holcomb, C. T.; Meneghini, O.; Smith, S. P.; Staebler, G. M.; Wan, B.; Bravenec, R.; Budny, R. V.; Ding, S.; Hanson, J. M.; Heidbrink, W. W.; Lao, L. L.; Li, G.; Pan, C.; Petty, C. C.; Qian, J.; Paz-Soldan, C.; Xu, G.

    2015-11-01

    Recent EAST/DIII-D joint experiments on the high poloidal beta tokamak regime in DIII-D have demonstrated fully noninductive operation with an internal transport barrier (ITB) at large minor radius, at normalized fusion performance increased by  ⩾30% relative to earlier work (Politzer et al 2005 Nucl. Fusion 45 417). The advancement was enabled by improved understanding of the ‘relaxation oscillations’, previously attributed to repetitive ITB collapses, and of the fast ion behavior in this regime. It was found that the ‘relaxation oscillations’ are coupled core-edge modes amenable to wall-stabilization, and that fast ion losses which previously dictated a large plasma-wall separation to avoid wall over-heating, can be reduced to classical levels with sufficient plasma density. By using optimized waveforms of the plasma-wall separation and plasma density, fully noninductive plasmas have been sustained for long durations with excellent energy confinement quality, bootstrap fraction  ⩾80%, {β\\text{N}}≤slant 4 , {β\\text{P}}≥slant 3 , and {β\\text{T}}≥slant 2% . These results bolster the applicability of the high poloidal beta tokamak regime toward the realization of a steady-state fusion reactor.

  8. High temperature current mirror amplifier

    DOEpatents

    Patterson, III, Raymond B.

    1984-05-22

    A high temperature current mirror amplifier having biasing means in the transdiode connection of the input transistor for producing a voltage to maintain the base-collector junction reversed-biased and a current means for maintaining a current through the biasing means at high temperatures so that the base-collector junction of the input transistor remained reversed-biased. For accuracy, a second current mirror is provided with a biasing means and current means on the input leg.

  9. Interpretation of bootstrap values in phylogenetic analysis.

    PubMed

    Wiesemüller, Bernhard; Rothe, Hartmut

    2006-06-01

    Bootstrap Analysis is a common tool in cladistics, and consequently many authors tend to believe that it could be close to a test of monophyly. In fact, it is only a procedure to calculate the redundancy of a certain character pattern among taxa. To demonstrate this, we set up a study with questionable data: Four skulls of great apes and humans were digitally photographed, and the pixels' brightness values were simply transformed to a one-zero-matrix, which was then used to calculate a Wagner tree with PHYLIP. As a rule, the higher the resolution of the photos is, the higher are the bootstrap values of supported taxa (and the lower are the bootstrap values of non-supported data). Redundancy of intertaxic information might indeed be an indicator of phylogenetic relationship, but can also be due to other reasons, like functional-adaptive needs in morphology, or semantic needs in a DNA-code. As a result, we tend to believe that high bootstrap values are actually less important than low ones. It is safer, based on a low bootstrap value, to claim that a certain taxon is not well supported by certain data. Therefore, we recommend discussions of low bootstrap values in future publications. PMID:16850767

  10. Scalar-vector bootstrap

    NASA Astrophysics Data System (ADS)

    Rejon-Barrera, Fernando; Robbins, Daniel

    2016-01-01

    We work out all of the details required for implementation of the conformal bootstrap program applied to the four-point function of two scalars and two vectors in an abstract conformal field theory in arbitrary dimension. This includes a review of which tensor structures make appearances, a construction of the projectors onto the required mixed symmetry representations, and a computation of the conformal blocks for all possible operators which can be exchanged. These blocks are presented as differential operators acting upon the previously known scalar conformal blocks. Finally, we set up the bootstrap equations which implement crossing symmetry. Special attention is given to the case of conserved vectors, where several simplifications occur.

  11. Bootstrapping the O( N) archipelago

    NASA Astrophysics Data System (ADS)

    Kos, Filip; Poland, David; Simmons-Duffin, David; Vichi, Alessandro

    2015-11-01

    We study 3d CFTs with an O( N) global symmetry using the conformal bootstrap for a system of mixed correlators. Specifically, we consider all nonvanishing scalar four-point functions containing the lowest dimension O( N) vector ϕ i and the lowest dimension O( N) singlet s, assumed to be the only relevant operators in their symmetry representations. The constraints of crossing symmetry and unitarity for these four-point functions force the scaling dimensions (Δ ϕ , Δ s ) to lie inside small islands. We also make rigorous determinations of current two-point functions in the O(2) and O(3) models, with applications to transport in condensed matter systems.

  12. High temperature current mirror amplifier

    DOEpatents

    Patterson, R.B. III.

    1984-05-22

    Disclosed is a high temperature current mirror amplifier having biasing means in the transdiode connection of the input transistor for producing a voltage to maintain the base-collector junction reversed-biased and a current means for maintaining a current through the biasing means at high temperatures so that the base-collector junction of the input transistor remained reversed-biased. For accuracy, a second current mirror is provided with a biasing means and current means on the input leg. 2 figs.

  13. Milestone report: Status report on high {beta}p experiments at high plasma current

    SciTech Connect

    Casper, T.A.; James, R.A.; Rice, B.W.; Stallard, B.W.

    1995-07-01

    This report summarizes LLNL`s involvement in recent high {beta}{sub p} experiments on the DIII-D tokamak at General Atomics. These experiments were done in collaboration with several members of the DIII-D physics staff from GA and from other collaborating institutions and could not have succeeded without this joint effort. In this report, the authors summary a specific, limited set of experiments to extend high {beta}{sub p} operation with enhanced core confinement to higher plasma currents. The interest in these experiments stems from the non-inductive current drive requirement for steady-state advanced tokamak regimes which can most reasonably be met by operation with a high bootstrap current fraction.

  14. The conformal bootstrap

    NASA Astrophysics Data System (ADS)

    Poland, David; Simmons-Duffin, David

    2016-06-01

    The conformal bootstrap was proposed in the 1970s as a strategy for calculating the properties of second-order phase transitions. After spectacular success elucidating two-dimensional systems, little progress was made on systems in higher dimensions until a recent renaissance beginning in 2008. We report on some of the main results and ideas from this renaissance, focusing on new determinations of critical exponents and correlation functions in the three-dimensional Ising and O(N) models.

  15. High current, high bandwidth laser diode current driver

    NASA Technical Reports Server (NTRS)

    Copeland, David J.; Zimmerman, Robert K., Jr.

    1991-01-01

    A laser diode current driver has been developed for free space laser communications. The driver provides 300 mA peak modulation current and exhibits an optical risetime of less than 400 ps. The current and optical pulses are well behaved and show minimal ringing. The driver is well suited for QPPM modulation at data rates up to 440 Mbit/s. Much previous work has championed current steering circuits; in contrast, the present driver is a single-ended on/off switch. This results in twice the power efficiency as a current steering driver. The driver electrical efficiency for QPPM data is 34 percent. The high speed switch is realized with a Ku-band GaAsFET transistor, with a suitable pre-drive circuit, on a hybrid microcircuit adjacent to the laser diode.

  16. Modification of the current profile in high-performance plasmas using off-axis electron-cyclotron-current drive in DIII-D.

    PubMed

    Murakami, M; Wade, M R; Greenfield, C M; Luce, T C; Makowski, M A; Petty, C C; DeBoo, J C; Ferron, J R; Jayakumar, R J; Lao, L L; Lohr, J; Politzer, P A; Prater, R; St John, H E

    2003-06-27

    Recent DIII-D experiments using off-axis electron cyclotron current drive (ECCD) have demonstrated the ability to modify the current profile in a plasma with toroidal beta near 3%. The resulting plasma simultaneously sustains the key elements required for Advanced Tokamak operation: high bootstrap current fraction, high beta, and good confinement. More than 85% of the plasma current is driven by noninductive means. ECCD is observed to produce strong negative central magnetic shear, which in turn acts to trigger confinement improvements in all transport channels in the plasma core. PMID:12857139

  17. Bootstrapping 3D fermions

    NASA Astrophysics Data System (ADS)

    Iliesiu, Luca; Kos, Filip; Poland, David; Pufu, Silviu S.; Simmons-Duffin, David; Yacoby, Ran

    2016-03-01

    We study the conformal bootstrap for a 4-point function of fermions < ψψψψ> in 3D. We first introduce an embedding formalism for 3D spinors and compute the conformal blocks appearing in fermion 4-point functions. Using these results, we find general bounds on the dimensions of operators appearing in the ψ × ψ OPE, and also on the central charge C T . We observe features in our bounds that coincide with scaling dimensions in the GrossNeveu models at large N . We also speculate that other features could coincide with a fermionic CFT containing no relevant scalar operators.

  18. Towards bootstrapping QED3

    NASA Astrophysics Data System (ADS)

    Chester, Shai M.; Pufu, Silviu S.

    2016-08-01

    We initiate the conformal bootstrap study of Quantum Electrodynamics in 2+1 space-time dimensions (QED3) with N flavors of charged fermions by focusing on the 4-point function of four monopole operators with the lowest unit of topological charge. We obtain upper bounds on the scaling dimension of the doubly-charged monopole operator, with and without assuming other gaps in the operator spectrum. Intriguingly, we find a (gap-dependent) kink in these bounds that comes reasonably close to the large N extrapolation of the scaling dimensions of the singly-charged and doubly-charged monopole operators down to N = 4 and N = 6.

  19. The N=2 superconformal bootstrap

    NASA Astrophysics Data System (ADS)

    Beem, Christopher; Lemos, Madalena; Liendo, Pedro; Rastelli, Leonardo; van Rees, Balt C.

    2016-03-01

    In this work we initiate the conformal bootstrap program for N=2 super-conformal field theories in four dimensions. We promote an abstract operator-algebraic viewpoint in order to unify the description of Lagrangian and non-Lagrangian theories, and formulate various conjectures concerning the landscape of theories. We analyze in detail the four-point functions of flavor symmetry current multiplets and of N=2 chiral operators. For both correlation functions we review the solution of the superconformal Ward identities and describe their superconformal block decompositions. This provides the foundation for an extensive numerical analysis discussed in the second half of the paper. We find a large number of constraints for operator dimensions, OPE coefficients, and central charges that must hold for any N=2 superconformal field theory.

  20. Lower hybrid current drive in experiments for transport barriers at high {beta}{sub N} of JET (Joint European Torus)

    SciTech Connect

    Cesario, R. C.; Castaldo, C.; De Angelis, R.; Smeulders, P.; Calabro, G.; Pericoli, V.; Ravera, G.

    2007-09-28

    LHCD has been used in JET experiments aimed at producing internal transport barriers (ITBs) in highly triangular plasmas ({delta}{approx_equal}0.4) at high {beta}{sub N} (up to 3) for steady-state application. The LHCD is a potentially valuable tool for (i) modifying the target q-profile, which can help avoid deleterious MHD modes and favour the formation of ITBs, and (ii) contributing to the non-inductive current drive required to prolong such plasma regimes. The q-profile evolution has been simulated during the current ramp-up phase for such a discharge (B{sub 0} = 2.3 T, I{sub P} = 1.5 MA) where 2 MW of LHCD has been coupled. The JETTO code was used taking measured plasma profiles, and the LHCD profile modeled by the LHstar code. The results are in agreement with MSE measurements and indicate the importance of the elevated electron temperature due to LHCD, as well as the driven current. During main heating with 18 MW of NBI and 3 MW of ICRH the bootstrap current density at the edge also becomes large, consistently with the observed reduction of the local turbulence and of the MHD activity. JETTO modelling suggests that the bootstrap current can reduce the magnetic shear (sh) at large radius, potentially affecting the MHD stability and turbulence behaviour in this region. Keywords: lower hybrid current drive (LHCD), bootstrap current, q (safety factor) and shear (sh) profile evolutions.

  1. Explorations in Statistics: the Bootstrap

    ERIC Educational Resources Information Center

    Curran-Everett, Douglas

    2009-01-01

    Learning about statistics is a lot like learning about science: the learning is more meaningful if you can actively explore. This fourth installment of Explorations in Statistics explores the bootstrap. The bootstrap gives us an empirical approach to estimate the theoretical variability among possible values of a sample statistic such as the…

  2. HIGH VOLTAGE, HIGH CURRENT SPARK GAP SWITCH

    DOEpatents

    Dike, R.S.; Lier, D.W.; Schofield, A.E.; Tuck, J.L.

    1962-04-17

    A high voltage and current spark gap switch comprising two main electrodes insulatingly supported in opposed spaced relationship and a middle electrode supported medially between the main electrodes and symmetrically about the median line of the main electrodes is described. The middle electrode has a perforation aligned with the median line and an irradiation electrode insulatingly supported in the body of the middle electrode normal to the median line and protruding into the perforation. (AEC)

  3. High-current, high-frequency capacitors

    NASA Technical Reports Server (NTRS)

    Renz, D. D.

    1983-01-01

    The NASA Lewis high-current, high-frequency capacitor development program was conducted under a contract with Maxwell Laboratories, Inc., San Diego, California. The program was started to develop power components for space power systems. One of the components lacking was a high-power, high-frequency capacitor. Some of the technology developed in this program may be directly usable in an all-electric airplane. The materials used in the capacitor included the following: the film is polypropylene, the impregnant is monoisopropyl biphenyl, the conductive epoxy is Emerson and Cuming Stycast 2850 KT, the foil is aluminum, the case is stainless steel (304), and the electrode is a modified copper-ceramic.

  4. High current high accuracy IGBT pulse generator

    SciTech Connect

    Nesterov, V.V.; Donaldson, A.R.

    1995-05-01

    A solid state pulse generator capable of delivering high current triangular or trapezoidal pulses into an inductive load has been developed at SLAC. Energy stored in a capacitor bank of the pulse generator is switched to the load through a pair of insulated gate bipolar transistors (IGBT). The circuit can then recover the remaining energy and transfer it back to the capacitor bank without reversing the capacitor voltage. A third IGBT device is employed to control the initial charge to the capacitor bank, a command charging technique, and to compensate for pulse to pulse power losses. The rack mounted pulse generator contains a 525 {mu}F capacitor bank. It can deliver 500 A at 900V into inductive loads up to 3 mH. The current amplitude and discharge time are controlled to 0.02% accuracy by a precision controller through the SLAC central computer system. This pulse generator drives a series pair of extraction dipoles.

  5. High current capacity electrical connector

    DOEpatents

    Bettis, Edward S.; Watts, Harry L.

    1976-01-13

    An electrical connector is provided for coupling high current capacity electrical conductors such as copper busses or the like. The connector is arranged in a "sandwiched" configuration in which a conductor plate contacts the busses along major surfaces thereof clamped between two stainless steel backing plates. The conductor plate is provided with a plurality of contact buttons affixed therein in a spaced array such that the caps of the buttons extend above the conductor plate surface to contact the busses. When clamping bolts provided through openings in the sandwiched arrangement are tightened, Belleville springs provided under the rim of each button cap are compressed and resiliently force the caps into contact with the busses' contacting surfaces to maintain a predetermined electrical contact area provided by the button cap tops. The contact area does not change with changing thermal or mechanical stresses applied to the coupled conductors.

  6. HIGH CURRENT COAXIAL PHOTOMULTIPLIER TUBE

    DOEpatents

    Glass, N.W.

    1960-01-19

    A medium-gain photomultiplier tube having high current output, fast rise- time, and matched output impedance was developed. The photomultiplier tube comprises an elongated cylindrical envelope, a cylindrical anode supported at the axis of the envelope, a plurality of elongated spaced opaque areas on the envelope, and a plurality of light admitting windows. A photo-cathode is supported adjacent to each of the windows, and a plurality of secondary emissive dynodes are arranged in two types of radial arrays which are alternately positioned to fill the annular space between the anode and the envelope. The dynodes are in an array being radially staggered with respect to the dynodes in the adjacent array, the dynodes each having a portion arranged at an angle with respect to the electron path, such that electrons emitted by each cathode undergo multiplication upon impingement on a dynode and redirected flight to the next adjacent dynode.

  7. Confidence Intervals for the Mean: To Bootstrap or Not to Bootstrap

    ERIC Educational Resources Information Center

    Calzada, Maria E.; Gardner, Holly

    2011-01-01

    The results of a simulation conducted by a research team involving undergraduate and high school students indicate that when data is symmetric the student's "t" confidence interval for a mean is superior to the studied non-parametric bootstrap confidence intervals. When data is skewed and for sample sizes n greater than or equal to 10, the results…

  8. Bootstrapping Time Dilation Decoherence

    NASA Astrophysics Data System (ADS)

    Gooding, Cisco; Unruh, William G.

    2015-10-01

    We present a general relativistic model of a spherical shell of matter with a perfect fluid on its surface coupled to an internal oscillator, which generalizes a model recently introduced by the authors to construct a self-gravitating interferometer (Gooding and Unruh in Phys Rev D 90:044071, 2014). The internal oscillator evolution is defined with respect to the local proper time of the shell, allowing the oscillator to serve as a local clock that ticks differently depending on the shell's position and momentum. A Hamiltonian reduction is performed on the system, and an approximate quantum description is given to the reduced phase space. If we focus only on the external dynamics, we must trace out the clock degree of freedom, and this results in a form of intrinsic decoherence that shares some features with a proposed "universal" decoherence mechanism attributed to gravitational time dilation (Pikovski et al in Nat Phys, 2015). We note that the proposed decoherence remains present in the (gravity-free) limit of flat spacetime, emphasizing that the effect can be attributed entirely to proper time differences, and thus is not necessarily related to gravity. Whereas the effect described in (Pikovski et al in Nat Phys, 2015) vanishes in the absence of an external gravitational field, our approach bootstraps the gravitational contribution to the time dilation decoherence by including self-interaction, yielding a fundamentally gravitational intrinsic decoherence effect.

  9. Balancing Current Drive and Heating in DIII-D High Noninductive Current Fraction Discharges Through Choice of the Toroidal Field

    SciTech Connect

    Ferron, J.R.; Holcomb, C T; Luce, T.C.; Politzer, P. A.; Turco, F.; DeBoo, J. C.; Doyle, E. J.; In, Y.; La Haye, R.; Murakami, Masanori; Okabayashi, M.; Park, J. M.; Petrie, T W; Petty, C C.; Reimerdes, H.

    2011-01-01

    In order to maintain stationary values of the stored energy and the plasma current in a tokamak discharge with all of the current driven noninductively, the sum of the alpha-heating power and the power required to provide externally driven current must be equal to the power required to maintain the pressure against transport losses. In a study of high noninductive current fraction discharges in the DIII-D tokamak, it is shown that in the case of present-day tokamaks with no alpha-heating, adjustment of the toroidal field strength (B(T)) is a tool to obtain this balance between the required current drive and heating powers with other easily modifiable discharge parameters (beta(N), q(95), discharge shape, n(e)) fixed at values chosen to satisfy specific constraints. With all of the external power sources providing both heating and current drive, and beta(N) and q(95) fixed, the fraction of externally driven current scales with B(T) with little change in the bootstrap current fraction, thus allowing the noninductive current fraction to be adjusted.

  10. Bootstrapping a time series model

    SciTech Connect

    Son, M.S.

    1984-01-01

    The bootstrap is a methodology for estimating standard errors. The idea is to use a Monte Carlo simulation experiment based on a nonparametric estimate of the error distribution. The main objective of this dissertation was to demonstrate the use of the bootstrap to attach standard errors to coefficient estimates and multi-period forecasts in a second-order autoregressive model fitted by least squares and maximum likelihood estimation. A secondary objective of this article was to present the bootstrap in the context of two econometric equations describing the unemployment rate and individual income tax in the state of Oklahoma. As it turns out, the conventional asymptotic formulae (both the least squares and maximum likelihood estimates) for estimating standard errors appear to overestimate the true standard errors. But there are two problems: 1) the first two observations y/sub 1/ and y/sub 2/ have been fixed, and 2) the residuals have not been inflated. After these two factors are considered in the trial and bootstrap experiment, both the conventional maximum likelihood and bootstrap estimates of the standard errors appear to be performing quite well. At present, there does not seem to be a good rule of thumb for deciding when the conventional asymptotic formulae will give acceptable results.

  11. Optimization of the safety factor profile for high noninductive current fraction discharges in DIII-D

    NASA Astrophysics Data System (ADS)

    Ferron, J. R.; Holcomb, C. T.; Luce, T. C.; Politzer, P. A.; Turco, F.; White, A. E.; DeBoo, J. C.; Doyle, E. J.; Hyatt, A. W.; La Haye, R. J.; Murakami, M.; Petrie, T. W.; Petty, C. C.; Rhodes, T. L.; Zeng, L.

    2011-06-01

    In order to assess the optimum q profile for discharges in DIII-D with 100% of the current driven noninductively (fNI = 1), the self-consistent response of the plasma profiles to changes in the q profile was studied in high fNI, high βN discharges through a scan of qmin and q95 at two values of βN. As expected, both the bootstrap current fraction, fBS, and fNI increased with q95. The temperature and density profiles were found to broaden as either qmin or βN is increased. A consequence is that fBS does not continue to increase at the highest values of qmin. A scaling function that depends on qmin, q95, and the peaking factor for the thermal pressure was found to represent well the fBS/βN inferred from the experimental profiles. The changes in the shapes of the density and temperature profiles as βN is increased modify the bootstrap current density (JBS) profile from peaked close to the axis to relatively flat in the region between the axis and the H-mode pedestal. Therefore, significant externally driven current density in the region inside the H-mode pedestal is required in addition to JBS in order to match the profiles of the noninductive current density (JNI) to the desired total current density (J). In this experiment, the additional current density was provided mostly by neutral beam current drive with the neutral-beam-driven current fraction 40-90% of fBS. The profiles of JNI and J were most similar at qmin ≈ 1.35-1.65, q95 ≈ 6.8, where fBS is also maximum, establishing this q profile as the optimal choice for fNI = 1 operation in DIII-D with the existing set of external current drive sources.

  12. High current gain transistor laser.

    PubMed

    Liang, Song; Qiao, Lijun; Zhu, Hongliang; Wang, Wei

    2016-01-01

    A transistor laser (TL), having the structure of a transistor with multi-quantum wells near its base region, bridges the functionality gap between lasers and transistors. However, light emission is produced at the expense of current gain for all the TLs reported up to now, leading to a very low current gain. We propose a novel design of TLs, which have an n-doped InP layer inserted in the emitter ridge. Numerical studies show that a current flow aperture for only holes can be formed in the center of the emitter ridge. As a result, the common emitter current gain can be as large as 143.3, which is over 15 times larger than that of a TL without the aperture. Besides, the effects of nonradiative recombination defects can be reduced greatly because the flow of holes is confined in the center region of the emitter ridge. PMID:27282466

  13. High current gain transistor laser

    NASA Astrophysics Data System (ADS)

    Liang, Song; Qiao, Lijun; Zhu, Hongliang; Wang, Wei

    2016-06-01

    A transistor laser (TL), having the structure of a transistor with multi-quantum wells near its base region, bridges the functionality gap between lasers and transistors. However, light emission is produced at the expense of current gain for all the TLs reported up to now, leading to a very low current gain. We propose a novel design of TLs, which have an n-doped InP layer inserted in the emitter ridge. Numerical studies show that a current flow aperture for only holes can be formed in the center of the emitter ridge. As a result, the common emitter current gain can be as large as 143.3, which is over 15 times larger than that of a TL without the aperture. Besides, the effects of nonradiative recombination defects can be reduced greatly because the flow of holes is confined in the center region of the emitter ridge.

  14. High current gain transistor laser

    PubMed Central

    Liang, Song; Qiao, Lijun; Zhu, Hongliang; Wang, Wei

    2016-01-01

    A transistor laser (TL), having the structure of a transistor with multi-quantum wells near its base region, bridges the functionality gap between lasers and transistors. However, light emission is produced at the expense of current gain for all the TLs reported up to now, leading to a very low current gain. We propose a novel design of TLs, which have an n-doped InP layer inserted in the emitter ridge. Numerical studies show that a current flow aperture for only holes can be formed in the center of the emitter ridge. As a result, the common emitter current gain can be as large as 143.3, which is over 15 times larger than that of a TL without the aperture. Besides, the effects of nonradiative recombination defects can be reduced greatly because the flow of holes is confined in the center region of the emitter ridge. PMID:27282466

  15. High critical current superconducting tapes

    DOEpatents

    Holesinger, Terry G.; Jia, Quanxi; Foltyn, Stephen R.

    2003-09-23

    Improvements in critical current capacity for superconducting film structures are disclosed and include the use of a superconducting RE-BCO layer including a mixture of rare earth metals, e.g., yttrium and europium, where the ratio of yttrium to europium in the RE-BCO layer ranges from about 3 to 1 to from about 1.5 to 1.

  16. ELECTROMIGRATION ISSUES IN HIGH CURRENT HORN.

    SciTech Connect

    ZHANG, S.Y.; BELLAVIA, S.; SANDBERG, J.; ET AL.

    2005-05-16

    The secondary particle focusing horn for the AGS neutrino experiment proposal is a high current and high current density device. The peak current of horn is 300 kA. At the smallest area of horn, the current density is near 8 kA/mm{sup 2}. At very high current density, a few kA/mm{sup 2}, the electromigration phenomena will occur. Momentum transfer between electrons and metal atoms at high current density causes electromigration. The reliability and lifetime of focusing horn can be severely reduced by electromigration. In this paper, we discuss issues such as device reliability model, incubation time of electromigration, and lifetime of horn.

  17. Coefficient Omega Bootstrap Confidence Intervals: Nonnormal Distributions

    ERIC Educational Resources Information Center

    Padilla, Miguel A.; Divers, Jasmin

    2013-01-01

    The performance of the normal theory bootstrap (NTB), the percentile bootstrap (PB), and the bias-corrected and accelerated (BCa) bootstrap confidence intervals (CIs) for coefficient omega was assessed through a Monte Carlo simulation under conditions not previously investigated. Of particular interests were nonnormal Likert-type and binary items.…

  18. High temperature superconductor current leads

    DOEpatents

    Hull, J.R.; Poeppel, R.B.

    1995-06-20

    An electrical lead is disclosed having one end for connection to an apparatus in a cryogenic environment and the other end for connection to an apparatus outside the cryogenic environment. The electrical lead includes a high temperature superconductor wire and an electrically conductive material distributed therein, where the conductive material is present at the one end of the lead at a concentration in the range of from 0 to about 3% by volume, and at the other end of the lead at a concentration of less than about 20% by volume. Various embodiments are shown for groups of high temperature superconductor wires and sheaths. 9 figs.

  19. High temperature superconductor current leads

    DOEpatents

    Hull, John R.; Poeppel, Roger B.

    1995-01-01

    An electrical lead having one end for connection to an apparatus in a cryogenic environment and the other end for connection to an apparatus outside the cryogenic environment. The electrical lead includes a high temperature superconductor wire and an electrically conductive material distributed therein, where the conductive material is present at the one end of the lead at a concentration in the range of from 0 to about 3% by volume, and at the other end of the lead at a concentration of less than about 20% by volume. Various embodiments are shown for groups of high temperature superconductor wires and sheaths.

  20. High temperature superconducting fault current limiter

    DOEpatents

    Hull, J.R.

    1997-02-04

    A fault current limiter for an electrical circuit is disclosed. The fault current limiter includes a high temperature superconductor in the electrical circuit. The high temperature superconductor is cooled below its critical temperature to maintain the superconducting electrical properties during operation as the fault current limiter. 15 figs.

  1. High temperature superconducting fault current limiter

    DOEpatents

    Hull, John R.

    1997-01-01

    A fault current limiter (10) for an electrical circuit (14). The fault current limiter (10) includes a high temperature superconductor (12) in the electrical circuit (14). The high temperature superconductor (12) is cooled below its critical temperature to maintain the superconducting electrical properties during operation as the fault current limiter (10).

  2. Multi-baseline bootstrapping at the Navy precision optical interferometer

    NASA Astrophysics Data System (ADS)

    Armstrong, J. T.; Schmitt, H. R.; Mozurkewich, D.; Jorgensen, A. M.; Muterspaugh, M. W.; Baines, E. K.; Benson, J. A.; Zavala, Robert T.; Hutter, D. J.

    2014-07-01

    The Navy Precision Optical Interferometer (NPOI) was designed from the beginning to support baseline boot- strapping with equally-spaced array elements. The motivation was the desire to image the surfaces of resolved stars with the maximum resolution possible with a six-element array. Bootstrapping two baselines together to track fringes on a third baseline has been used at the NPOI for many years, but the capabilities of the fringe tracking software did not permit us to bootstrap three or more baselines together. Recently, both a new backend (VISION; Tennessee State Univ.) and new hardware and firmware (AZ Embedded Systems and New Mexico Tech, respectively) for the current hybrid backend have made multi-baseline bootstrapping possible.

  3. Apparatus for measuring high frequency currents

    NASA Technical Reports Server (NTRS)

    Hagmann, Mark J. (Inventor); Sutton, John F. (Inventor)

    2003-01-01

    An apparatus for measuring high frequency currents includes a non-ferrous core current probe that is coupled to a wide-band transimpedance amplifier. The current probe has a secondary winding with a winding resistance that is substantially smaller than the reactance of the winding. The sensitivity of the current probe is substantially flat over a wide band of frequencies. The apparatus is particularly useful for measuring exposure of humans to radio frequency currents.

  4. Bootstrapping N=2 chiral correlators

    NASA Astrophysics Data System (ADS)

    Lemos, Madalena; Liendo, Pedro

    2016-01-01

    We apply the numerical bootstrap program to chiral operators in four-dimensional N=2 SCFTs. In the first part of this work we study four-point functions in which all fields have the same conformal dimension. We give special emphasis to bootstrapping a specific theory: the simplest Argyres-Douglas fixed point with no flavor symmetry. In the second part we generalize our setup and consider correlators of fields with unequal dimension. This is an example of a mixed correlator and allows us to probe new regions in the parameter space of N=2 SCFTs. In particular, our results put constraints on relations in the Coulomb branch chiral ring and on the curvature of the Zamolodchikov metric.

  5. Quarks in the Bootstrap Era

    NASA Astrophysics Data System (ADS)

    Horn, D.

    2015-03-01

    The quark model emerged from the Gell-Mann-Ne'eman flavor SU(3) symmetry. Its development, in the context of strong interactions, took place in a heuristic theoretical framework, referred to as the Bootstrap Era. Setting the background for the dominant ideas in strong interaction of the early 1960s, we outline some aspects of the constituent quark model. An independent theoretical development was the emergence of hadron duality in 1967, leading to a realization of the Bootstrap idea by relating hadron resonances (in the s-channel) with Regge pole trajectories (in t- and u-channels). The synthesis of duality with the quark-model has been achieved by duality diagrams, serving as a conceptual framework for discussing many aspects of hadron dynamics toward the end of the 1960s.

  6. Quarks in the bootstrap era

    NASA Astrophysics Data System (ADS)

    Horn, D.

    2014-12-01

    The quark model emerged from the Gell-Mann-Ne'eman flavor SU(3) symmetry. Its development, in the context of strong interactions, took place in a heuristic theoretical framework, referred to as the Bootstrap Era. Setting the background for the dominant ideas in strong interaction of the early 1960s, we outline some aspects of the constituent quark model. An independent theoretical development was the emergence of hadron duality in 1967, leading to a realization of the Bootstrap idea by relating hadron resonances (in the s-channel) with Regge pole trajectories (in t- and u-channels). The synthesis of duality with the quark-model has been achieved by duality diagrams, serving as a conceptual framework for discussing many aspects of hadron dynamics toward the end of the 1960s.

  7. Conformal bootstrap in embedding space

    NASA Astrophysics Data System (ADS)

    Fortin, Jean-François; Skiba, Witold

    2016-05-01

    It is shown how to obtain conformal blocks from embedding space with the help of the operator product expansion. The minimal conformal block originates from scalar exchange in a four-point correlation function of four scalars. All remaining conformal blocks are simple derivatives of the minimal conformal block. With the help of the orthogonality properties of the conformal blocks, the analytic conformal bootstrap can be implemented directly in embedding space, leading to a Jacobi-like definition of conformal field theories.

  8. Modified Bootstrap Sensitometry In Radiography

    NASA Astrophysics Data System (ADS)

    Bednarek, Daniel R.; Rudin, Stephen

    1981-04-01

    A new modified bootstrap approach to sensitometry is presented which provides H and D curves that show almost exact agreement with those obtained using conventional methods. Two bootstrap techniques are described; both involve a combination of inverse-square and stepped-wedge modulation of the radiation field and provide intensity-scale sensitometric curves as appropriate for medical radiography. H and D curves obtained with these modified techniques are compared with those obtained for screen-film combinations using inverse-square sensitometry as well as with those obtained for direct x-ray film using time-scale sensitometry. The stepped wedge of the Wisconsin X-Ray Test Cassette was used in the bootstrap approach since it provides sufficient exposure latitude to encompass the useful density range of medical x-ray film. This approach makes radiographic sensitometry quick and convenient, allowing accurate characteristic curves to be obtained for any screen-film cassette using standard diagnostic x-ray equipment.

  9. Investigations of dipole localization accuracy in MEG using the bootstrap.

    PubMed

    Darvas, F; Rautiainen, M; Pantazis, D; Baillet, S; Benali, H; Mosher, J C; Garnero, L; Leahy, R M

    2005-04-01

    We describe the use of the nonparametric bootstrap to investigate the accuracy of current dipole localization from magnetoencephalography (MEG) studies of event-related neural activity. The bootstrap is well suited to the analysis of event-related MEG data since the experiments are repeated tens or even hundreds of times and averaged to achieve acceptable signal-to-noise ratios (SNRs). The set of repetitions or epochs can be viewed as a set of independent realizations of the brain's response to the experiment. Bootstrap resamples can be generated by sampling with replacement from these epochs and averaging. In this study, we applied the bootstrap resampling technique to MEG data from somatotopic experimental and simulated data. Four fingers of the right and left hand of a healthy subject were electrically stimulated, and about 400 trials per stimulation were recorded and averaged in order to measure the somatotopic mapping of the fingers in the S1 area of the brain. Based on single-trial recordings for each finger we performed 5000 bootstrap resamples. We reconstructed dipoles from these resampled averages using the Recursively Applied and Projected (RAP)-MUSIC source localization algorithm. We also performed a simulation for two dipolar sources with overlapping time courses embedded in realistic background brain activity generated using the prestimulus segments of the somatotopic data. To find correspondences between multiple sources in each bootstrap, sample dipoles with similar time series and forward fields were assumed to represent the same source. These dipoles were then clustered by a Gaussian Mixture Model (GMM) clustering algorithm using their combined normalized time series and topographies as feature vectors. The mean and standard deviation of the dipole position and the dipole time series in each cluster were computed to provide estimates of the accuracy of the reconstructed source locations and time series. PMID:15784414

  10. Hybrid high direct current circuit interrupter

    DOEpatents

    Rockot, Joseph H.; Mikesell, Harvey E.; Jha, Kamal N.

    1998-01-01

    A device and a method for interrupting very high direct currents (greater than 100,000 amperes) and simultaneously blocking high voltages (greater than 600 volts). The device utilizes a mechanical switch to carry very high currents continuously with low loss and a silicon controlled rectifier (SCR) to bypass the current around the mechanical switch while its contacts are separating. A commutation circuit, connected in parallel with the SCR, turns off the SCR by utilizing a resonant circuit to divert the SCR current after the switch opens.

  11. Hybrid high direct current circuit interrupter

    DOEpatents

    Rockot, J.H.; Mikesell, H.E.; Jha, K.N.

    1998-08-11

    A device and a method are disclosed for interrupting very high direct currents (greater than 100,000 amperes) and simultaneously blocking high voltages (greater than 600 volts). The device utilizes a mechanical switch to carry very high currents continuously with low loss and a silicon controlled rectifier (SCR) to bypass the current around the mechanical switch while its contacts are separating. A commutation circuit, connected in parallel with the SCR, turns off the SCR by utilizing a resonant circuit to divert the SCR current after the switch opens. 7 figs.

  12. High Non-inductive Fraction H-mode Discharges Generated by High-harmonic Fast Wave Heating and Current Drive in the National Spherical Torus Experiment

    SciTech Connect

    Taylor, G.; Hosea, J.; Kessel, C. E.; LeBlanc, B; Mueller, D.; Phillips, C. K.; Valeo, E. J.; Wilson, J. R.; Ryan, Philip Michael; Bonoli, P.; Harvey, R. W.

    2012-01-01

    A deuterium H-mode discharge with a plasma current of 300 kA, an axial toroidal magnetic field of 0.55 T, and a calculated non-inductive plasma current fraction of 0.7 1 has been generated in the National Spherical Torus Experiment by 1.4MW of 30MHz high-harmonic fast wave (HHFW) heating and current drive. Seventy-five percent of the non-inductive current was generated inside an internal transport barrier that formed at a normalized minor radius 0.4. Three quarters of the non-inductive current was bootstrap current, and the remaining non-inductive current was generated directly by HHFW power inside a normalized minor radius 0.2. VC 2012 American Institute of Physics.

  13. A neural network based reputation bootstrapping approach for service selection

    NASA Astrophysics Data System (ADS)

    Wu, Quanwang; Zhu, Qingsheng; Li, Peng

    2015-10-01

    With the concept of service-oriented computing becoming widely accepted in enterprise application integration, more and more computing resources are encapsulated as services and published online. Reputation mechanism has been studied to establish trust on prior unknown services. One of the limitations of current reputation mechanisms is that they cannot assess the reputation of newly deployed services as no record of their previous behaviours exists. Most of the current bootstrapping approaches merely assign default reputation values to newcomers. However, by this kind of methods, either newcomers or existing services will be favoured. In this paper, we present a novel reputation bootstrapping approach, where correlations between features and performance of existing services are learned through an artificial neural network (ANN) and they are then generalised to establish a tentative reputation when evaluating new and unknown services. Reputations of services published previously by the same provider are also incorporated for reputation bootstrapping if available. The proposed reputation bootstrapping approach is seamlessly embedded into an existing reputation model and implemented in the extended service-oriented architecture. Empirical studies of the proposed approach are shown at last.

  14. High current ion beam transport using solenoids

    SciTech Connect

    Hollinger, R.; Spaedtke, P.

    2008-02-15

    In the framework of the future project FAIR several upgrade programs and construction of new facilities are in progress such as the U{sup 4+} upgrade for the existing high current injector and the new 70 MeV proton injector. For both injectors solenoids in the low energy beam transport section are foreseen to inject the beam into the following rf accelerator. The paper presents beam quality measurements of high current ion beams behind a solenoid using a slit-grid emittance measurement device, viewing targets, and a pepper pot measurement device at the high current test bench at GSI.

  15. High pressure, high current, low inductance, high reliability sealed terminals

    DOEpatents

    Hsu, John S [Oak Ridge, TN; McKeever, John W [Oak Ridge, TN

    2010-03-23

    The invention is a terminal assembly having a casing with at least one delivery tapered-cone conductor and at least one return tapered-cone conductor routed there-through. The delivery and return tapered-cone conductors are electrically isolated from each other and positioned in the annuluses of ordered concentric cones at an off-normal angle. The tapered cone conductor service can be AC phase conductors and DC link conductors. The center core has at least one service conduit of gate signal leads, diagnostic signal wires, and refrigerant tubing routed there-through. A seal material is in direct contact with the casing inner surface, the tapered-cone conductors, and the service conduits thereby hermetically filling the interstitial space in the casing interior core and center core. The assembly provides simultaneous high-current, high-pressure, low-inductance, and high-reliability service.

  16. Generation Of High Non-inductive Plasma Current Fraction H-mode Discharges By High-harmonic Last Wave Heating In The National Spherical Torus Experiment

    SciTech Connect

    Taylor, G; Kessel, C E; LeBlanc, B P; Mueller, D; Phillips, D K; Valeo, E J; Wilson, J R; Ryan, P M; Bonoli, P T; Wright, J C

    2012-02-13

    1.4 MW of 30 MHz high-harmonic fast wave (HHFW) heating, with current drive antenna phasing, has generated a Ip = 300kA, BT (0) = 0.55T deuterium H-mode plasma in the National Spherical Torus Experiment that has a non-inductive plasma current fraction, fNI = 0.7-1. Seventy-five percent of the non-inductive current was generated inside an internal transport barrier that formed at a normalized minor radius, r/a {approx} 0.4 . Three quarters of the non-inductive current was bootstrap current and the remaining non-inductive current was generated directly by HHFW power inside r/a {approx} 0.2.

  17. Bootstrap percolation on spatial networks

    NASA Astrophysics Data System (ADS)

    Gao, Jian; Zhou, Tao; Hu, Yanqing

    2015-10-01

    Bootstrap percolation is a general representation of some networked activation process, which has found applications in explaining many important social phenomena, such as the propagation of information. Inspired by some recent findings on spatial structure of online social networks, here we study bootstrap percolation on undirected spatial networks, with the probability density function of long-range links’ lengths being a power law with tunable exponent. Setting the size of the giant active component as the order parameter, we find a parameter-dependent critical value for the power-law exponent, above which there is a double phase transition, mixed of a second-order phase transition and a hybrid phase transition with two varying critical points, otherwise there is only a second-order phase transition. We further find a parameter-independent critical value around -1, about which the two critical points for the double phase transition are almost constant. To our surprise, this critical value -1 is just equal or very close to the values of many real online social networks, including LiveJournal, HP Labs email network, Belgian mobile phone network, etc. This work helps us in better understanding the self-organization of spatial structure of online social networks, in terms of the effective function for information spreading.

  18. The (2, 0) superconformal bootstrap

    NASA Astrophysics Data System (ADS)

    Beem, Christopher; Lemos, Madalena; Rastelli, Leonardo; van Rees, Balt C.

    2016-01-01

    We develop the conformal bootstrap program for six-dimensional conformal field theories with (2, 0) supersymmetry, focusing on the universal four-point function of stress tensor multiplets. We review the solution of the superconformal Ward identities and describe the superconformal block decomposition of this correlator. We apply numerical bootstrap techniques to derive bounds on operator product expansion (OPE) coefficients and scaling dimensions from the constraints of crossing symmetry and unitarity. We also derive analytic results for the large spin spectrum using the light cone expansion of the crossing equation. Our principal result is strong evidence that the A1 theory realizes the minimal allowed central charge (c =25 ) for any interacting (2, 0) theory. This implies that the full stress tensor four-point function of the A1 theory is the unique unitary solution to the crossing symmetry equation at c =25 . For this theory, we estimate the scaling dimensions of the lightest unprotected operators appearing in the stress tensor operator product expansion. We also find rigorous upper bounds for dimensions and OPE coefficients for a general interacting (2, 0) theory of central charge c . For large c , our bounds appear to be saturated by the holographic predictions obtained from eleven-dimensional supergravity.

  19. Bootstrap percolation on spatial networks

    PubMed Central

    Gao, Jian; Zhou, Tao; Hu, Yanqing

    2015-01-01

    Bootstrap percolation is a general representation of some networked activation process, which has found applications in explaining many important social phenomena, such as the propagation of information. Inspired by some recent findings on spatial structure of online social networks, here we study bootstrap percolation on undirected spatial networks, with the probability density function of long-range links’ lengths being a power law with tunable exponent. Setting the size of the giant active component as the order parameter, we find a parameter-dependent critical value for the power-law exponent, above which there is a double phase transition, mixed of a second-order phase transition and a hybrid phase transition with two varying critical points, otherwise there is only a second-order phase transition. We further find a parameter-independent critical value around −1, about which the two critical points for the double phase transition are almost constant. To our surprise, this critical value −1 is just equal or very close to the values of many real online social networks, including LiveJournal, HP Labs email network, Belgian mobile phone network, etc. This work helps us in better understanding the self-organization of spatial structure of online social networks, in terms of the effective function for information spreading. PMID:26423347

  20. Coefficient Alpha Bootstrap Confidence Interval under Nonnormality

    ERIC Educational Resources Information Center

    Padilla, Miguel A.; Divers, Jasmin; Newton, Matthew

    2012-01-01

    Three different bootstrap methods for estimating confidence intervals (CIs) for coefficient alpha were investigated. In addition, the bootstrap methods were compared with the most promising coefficient alpha CI estimation methods reported in the literature. The CI methods were assessed through a Monte Carlo simulation utilizing conditions…

  1. Evaluating the Invariance of Cognitive Profile Patterns Derived from Profile Analysis via Multidimensional Scaling (PAMS): A Bootstrapping Approach

    ERIC Educational Resources Information Center

    Kim, Se-Kang

    2010-01-01

    The aim of the current study is to validate the invariance of major profile patterns derived from multidimensional scaling (MDS) by bootstrapping. Profile Analysis via Multidimensional Scaling (PAMS) was employed to obtain profiles and bootstrapping was used to construct the sampling distributions of the profile coordinates and the empirical…

  2. Analytic bootstrap at large spin

    NASA Astrophysics Data System (ADS)

    Kaviraj, Apratim; Sen, Kallol; Sinha, Aninda

    2015-11-01

    We use analytic conformal bootstrap methods to determine the anomalous dimensions and OPE coefficients for large spin operators in general conformal field theories in four dimensions containing a scalar operator of conformal dimension Δ ϕ . It is known that such theories will contain an infinite sequence of large spin operators with twists approaching 2Δ ϕ + 2 n for each integer n. By considering the case where such operators are separated by a twist gap from other operators at large spin, we analytically determine the n, Δ ϕ dependence of the anomalous dimensions. We find that for all n, the anomalous dimensions are negative for Δ ϕ satisfying the unitarity bound. We further compute the first subleading correction at large spin and show that it becomes universal for large twist. In the limit when n is large, we find exact agreement with the AdS/CFT prediction corresponding to the Eikonal limit of a 2-2 scattering with dominant graviton exchange.

  3. A New High-Current Proton Accelerator

    SciTech Connect

    Cleland, M. R.; Galloway, R. A.; DeSanto, L.; Jongen, Y.

    2009-03-10

    A high-current (>20 mA) dc proton accelerator is being developed for applications such as boron neutron capture therapy (BNCT) and the detection of explosive materials by nuclear resonance absorption (NRA) of gamma radiation. The high-voltage dc accelerator (adjustable between 1.4 and 2.8 MeV) will be a single-ended industrial Dynamitron registered system equipped with a compact high-current, microwave-driven proton source. A magnetic mass analyzer inserted between the ion source and the acceleration tube will select the protons and reject heavier ions. A sorption pump near the ion source will minimize the flow of neutral hydrogen gas into the acceleration tube. For BNCT, a lithium target for generating epithermal neutrons is being developed that will be capable of dissipating the high power (>40 kW) of the proton beam. For NRA, special targets will be used to generate gamma rays with suitable energies for exciting nuclides typically present in explosive materials. Proton accelerators with such high-current and high-power capabilities in this energy range have not been developed previously.

  4. A New High-Current Proton Accelerator

    NASA Astrophysics Data System (ADS)

    Cleland, M. R.; Galloway, R. A.; DeSanto, L.; Jongen, Y.

    2009-03-01

    A high-current (>20 mA) dc proton accelerator is being developed for applications such as boron neutron capture therapy (BNCT) and the detection of explosive materials by nuclear resonance absorption (NRA) of gamma radiation. The high-voltage dc accelerator (adjustable between 1.4 and 2.8 MeV) will be a single-ended industrial Dynamitron® system equipped with a compact high-current, microwave-driven proton source. A magnetic mass analyzer inserted between the ion source and the acceleration tube will select the protons and reject heavier ions. A sorption pump near the ion source will minimize the flow of neutral hydrogen gas into the acceleration tube. For BNCT, a lithium target for generating epithermal neutrons is being developed that will be capable of dissipating the high power (>40 kW) of the proton beam. For NRA, special targets will be used to generate gamma rays with suitable energies for exciting nuclides typically present in explosive materials. Proton accelerators with such high-current and high-power capabilities in this energy range have not been developed previously.

  5. Conformal collider physics from the lightcone bootstrap

    NASA Astrophysics Data System (ADS)

    Li, Daliang; Meltzer, David; Poland, David

    2016-02-01

    We analytically study the lightcone limit of the conformal bootstrap equations for 4-point functions containing global symmetry currents and the stress tensor in 3d CFTs. We show that the contribution of the stress tensor to the anomalous dimensions of large spin double-twist states is negative if and only if the conformal collider physics bounds are satisfied. In the context of AdS/CFT these results indicate a relation between the attractiveness of AdS gravity and positivity of the CFT energy flux. We also study the contribution of non-Abelian conserved currents to the anomalous dimensions of double- twist operators, corresponding to the gauge binding energy of 2-particle states in AdS. We show that the representation of the double-twist state determines the sign of the gauge binding energy if and only if the coefficients appearing in the current 3-point function satisfies a similar bound, which is equivalent to an upper bound on the charge flux asymmetry of the CFT.

  6. Ring current development during high speed streams

    NASA Astrophysics Data System (ADS)

    Jordanova, V. K.; Matsui, H.; Puhl-Quinn, P. A.; Thomsen, M. F.; Mursula, K.; Holappa, L.

    2009-07-01

    Episodes of southward (Bz<0) interplanetary magnetic field (IMF) which lead to disturbed geomagnetic conditions are associated either with coronal mass ejections (CMEs) and possess long and continuous negative IMF Bz excursions, or with high speed solar wind streams (HSS) whose geoeffectiveness is due to IMF Bz profiles fluctuating about zero with various amplitudes and duration. We simulate ring current evolution during a HSS-driven storm that occurred during 24-26 October 2002 and compare its dynamics with a CME-driven storm of similar strength during 22-23 April 2001. We use our kinetic ring current-atmosphere interactions model (RAM), and investigate the mechanisms responsible for trapping particles and for causing their loss. Ring current evolution depends on the interplay of time-dependent inflow of plasma from the magnetotail, particle acceleration and loss (mainly due to charge exchange) along adiabatic drift paths, and outflow of plasma from the dayside magnetopause; all of these processes are incorporated in our model. We compare results from simulations using a newly developed, Cluster data based, University of New Hampshire inner magnetospheric electric field (UNH-IMEF) convection model with simulations using a Volland-Stern (V-S) type convection model. We find that, first, periods of increased magnetospheric convection coinciding with enhancements of plasma sheet density are needed for strong ring current buildup. Second, during the HSS-driven storm the convection potential from UNH-IMEF model is highly variable and causes sporadic shallow injections resulting in a weak ring current. The long period of enhanced convection during the CME-driven storm causes a continuous ion injection penetrating to lower L shells and stronger ring current buildup. V-S model predicts larger ring current injection during both storms. Third, the RAM driven by either convection model underestimates the total ring current energy during the recovery phase of the HSS storm

  7. COMPILATION OF CURRENT HIGH ENERGY PHYSICS EXPERIMENTS

    SciTech Connect

    Wohl, C.G.; Kelly, R.L.; Armstrong, F.E.; Horne, C.P.; Hutchinson, M.S.; Rittenberg, A.; Trippe, T.G.; Yost, G.P.; Addis, L.; Ward, C.E.W.; Baggett, N.; Goldschmidt-Clermong, Y.; Joos, P.; Gelfand, N.; Oyanagi, Y.; Grudtsin, S.N.; Ryabov, Yu.G.

    1981-05-01

    This is the fourth edition of our compilation of current high energy physics experiments. It is a collaborative effort of the Berkeley Particle Data Group, the SLAC library, and nine participating laboratories: Argonne (ANL), Brookhaven (BNL), CERN, DESY, Fermilab (FNAL), the Institute for Nuclear Study, Tokyo (INS), KEK, Serpukhov (SERP), and SLAC. The compilation includes summaries of all high energy physics experiments at the above laboratories that (1) were approved (and not subsequently withdrawn) before about April 1981, and (2) had not completed taking of data by 1 January 1977. We emphasize that only approved experiments are included.

  8. Extremely High Current, High-Brightness Energy Recovery Linac

    SciTech Connect

    I. Ben-Zvi; D.S. Barton; D.B. Beavis; M. Blaskiewicz; J.M. Brennan; A. Burrill; R. Calaga; P. Cameron; X.Y. Chang; R. Connolly; D.M. Gassner; J.G. Grimes; H. Hahn; A. Hershcovitch; H.-C. Hseuh; P.D.J. Johnson; D. Kayran; J. Kewisch; R.F. Lambiase; V. Litvinenko; G.T. McIntyre; W. Meng; T.C.N. Nehring; T. Nicoletti; B. Oerter; D. Pate; J. Rank; T. Rao; T. Roser; T. Russo; J. Scaduto; Z. Segalov; K. Smith; N.W.W. Williams; K.-C. Wu; V. Yakimenko; K. Yip; A. Zaltsman; Y. Zhao; H. Bluem; A. Burger; M.D. Cole; A.J. Favale; D. Holmes; J. Rathke; T. Schultheiss; A.M.M. Todd; J.R. Delayen; L. W. Funk; P. Kneisel; H.L. Phillips; J.P. Preble

    2005-05-16

    Next generation ERL light-sources, high-energy electron coolers, high-power Free-Electron Lasers, powerful Compton X-ray sources and many other accelerators were made possible by the emerging technology of high-power, high-brightness electron beams. In order to get the anticipated performance level of ampere-class currents, many technological barriers are yet to be broken. BNL's Collider-Accelerator Department is pursuing some of these technologies for its electron cooling of RHIC application, as well as a possible future electron-hadron collider. We will describe work on CW, high-current and high-brightness electron beams. This will include a description of a superconducting, laser-photocathode RF gun and an accelerator cavity capable of producing low emittance (about 1 micron rms normalized) one nano-Coulomb bunches at currents of the order of one ampere average.

  9. Impact of edge current density and pressure gradient on the stability of DIII-D high performance discharges

    SciTech Connect

    Lao, L.L.; Ferron, J.R.; Strait, E.J.

    1997-06-01

    One of the major goals of advanced tokamak research is to develop plasma configurations with good confinement and improved stability at high {beta}. In DIII-D, various high performance configurations with H- and VH-mode edges have been produced. These include discharges with poloidal cross sections in the forms of dee and crecent shapes, single- and double-null divertors, and with various central magnetic shear profiles and current profile peakedness. All these discharges exhibit confinement in the outer plasma region which leads to a large edge pressure gradient and a large edge bootstrap current driven by this steep pressure gradient. These edge conditions often drive an instability near the edge region which can severely degrade the discharge performance. An understanding of this edge instability is essential to sustain an enhance discharge performance.

  10. Improving Microarray Sample Size Using Bootstrap Data Combination

    PubMed Central

    Phan, John H.; Moffitt, Richard A.; Barrett, Andrea B.; Wang, May D.

    2016-01-01

    Microarray technology has enabled us to simultaneously measure the expression of thousands of genes. Using this high-throughput technology, we can examine subtle genetic changes between biological samples and build predictive models for clinical applications. Although microarrays have dramatically increased the rate of data collection, sample size is still a major issue when selecting features. Previous methods show that combining multiple microarray datasets improves feature selection using simple methods such as fold change. We propose a wrapper-based gene selection technique that combines bootstrap estimated classification errors for individual genes across multiple datasets and reduces the contribution of datasets with high variance. We use the bootstrap because it is an unbiased estimator of classification error that is also effective for small sample data. Coupled with data combination across multiple datasets, we show that our meta-analytic approach improves the biological relevance of gene selection using prostate and renal cancer microarray data. PMID:19164001

  11. A Robust High Current Density Electron Gun

    NASA Astrophysics Data System (ADS)

    Mako, F.; Peter, W.; Shiloh, J.; Len, L. K.

    1996-11-01

    Proof-of-principle experiments are proposed to validate a new concept for a robust, high-current density Pierce electron gun (RPG) for use in klystrons and high brightness electron sources for accelerators. This rugged, long-life electron gun avoids the difficulties associated with plasma cathodes, thermionic emitters, and field emission cathodes. The RPG concept employs the emission of secondary electrons in a transmission mode as opposed to the conventional mode of reflection, i.e., electrons exit from the back face of a thin negative electron affinity (NEA) material, and in the same direction as the incident beam. Current amplification through one stage of a NEA material could be over 50 times. The amplification is accomplished in one or more stages consisting of one primary emitter and one or more secondary emitters. The primary emitter is a low current density robust emitter (e.g., thoriated tungsten). The secondary emitters are thin NEA electrodes which emit secondary electrons in the same direction as the incident beam. Specific application is targeted for a klystron gun to be used by SLAC with a cold cathode at 30-40 amps/cm^2 output from the secondary emission stage, a ~2 μs pulse length, and ~200 pulses/second.

  12. Versatile high current metal ion implantation facility

    SciTech Connect

    Brown, I.G.; Dickinson, M.R.; Galvin, J.E.; Godechot, X.; MacGill, R.A.

    1991-06-01

    A metal ion implantation facility has been developed with which high current beams of practically all the solid metals of the periodic table can be produced. A multi-cathode, broad beam, metal vapor vacuum arc ion source is used to produce repetitively pulsed metal ion beams at an extraction voltage of up to 100 kV, corresponding to an ion energy of up to several hundred keV because of the ion-charge state multiplicity, and with a beam current of up to several amperes peak pulsed and several tens of mA time averaged delivered onto a downstream target. Implantation is done in a broad-beam mode, with a direct line-of-sight from ion source to target. Here we summarize some of the features of the ion source and the implantation facility that has been built up around it. 28 refs., 5 figs.

  13. Fast high-temperature superconductor switch for high current applications

    NASA Astrophysics Data System (ADS)

    Solovyov, Vyacheslav F.; Li, Qiang

    2013-07-01

    Reversible operation of a high current superconductor switch based on the quench of high-resistance second generation high temperature superconducting wire is demonstrated. The quench is induced by a burst of an ac field generated by an inductively coupled radio-frequency coil. The switch makes a superconducting-to-normal transition within 5 ms and also has a rapid recovery to the superconducting state. The device has potential applications as an active current limiter or as a storage switch for superconducting magnetic energy storage systems. Operation in a full flux penetration/flow regime can effectively minimize the detrimental effects of the intrinsic conductor non-uniformity.

  14. HIGH CURRENT RADIO FREQUENCY ION SOURCE

    DOEpatents

    Abdelaziz, M.E.

    1963-04-01

    This patent relates to a high current radio frequency ion source. A cylindrical plasma container has a coil disposed around the exterior surface thereof along the longitudinal axis. Means are provided for the injection of an unionized gas into the container and for applying a radio frequency signal to the coil whereby a radio frequency field is generated within the container parallel to the longitudinal axis thereof to ionize the injected gas. Cathode and anode means are provided for extracting transverse to the radio frequency field from an area midway between the ends of the container along the longitudinal axis thereof the ions created by said radio frequency field. (AEC)

  15. High-current SRF cavity design

    NASA Astrophysics Data System (ADS)

    Meidlinger, D.; Grimm, T. L.; Hartung, W.

    2006-07-01

    For high current applications, it is desirable for the cavity shape to have a low longitudinal loss factor and to have a high beam-breakup threshold current. This paper briefly describes three different cavities designed for this purpose: a six-cell elliptical cavity for particles traveling at the speed of light, a two-cell elliptical cavity for subluminal particle speeds, and a single cell cavity which uses the TM012 mode for acceleration. SUPERFISH simulations predict the peak fields in both of the elliptical cavities will not exceed the TeSLA values by more than 10% but both will have 28.7% larger apertures. The elliptical designs assume the bunch frequency equals the accelerating mode frequency. The beam pipe radius is chosen so that the cutoff frequency is less than twice that of the accelerating mode. Hence all of the monopole and dipole higher-order modes (HOMs) that can be driven by the beam have low loaded Q values. This simplifies the problem of HOM damping. The TM012 cavity is predicted to have much higher peak fields than a π-mode elliptical cavity, but offers potential advantages from its simplified shape; it is essentially a circular waveguide with curved end plates. This basic shape results in easier fabrication and simplified tuning.

  16. Robust, Scalable, and Fast Bootstrap Method for Analyzing Large Scale Data

    NASA Astrophysics Data System (ADS)

    Basiri, Shahab; Ollila, Esa; Koivunen, Visa

    2016-02-01

    In this paper we address the problem of performing statistical inference for large scale data sets i.e., Big Data. The volume and dimensionality of the data may be so high that it cannot be processed or stored in a single computing node. We propose a scalable, statistically robust and computationally efficient bootstrap method, compatible with distributed processing and storage systems. Bootstrap resamples are constructed with smaller number of distinct data points on multiple disjoint subsets of data, similarly to the bag of little bootstrap method (BLB) [1]. Then significant savings in computation is achieved by avoiding the re-computation of the estimator for each bootstrap sample. Instead, a computationally efficient fixed-point estimation equation is analytically solved via a smart approximation following the Fast and Robust Bootstrap method (FRB) [2]. Our proposed bootstrap method facilitates the use of highly robust statistical methods in analyzing large scale data sets. The favorable statistical properties of the method are established analytically. Numerical examples demonstrate scalability, low complexity and robust statistical performance of the method in analyzing large data sets.

  17. High Current Energy Recovery Linac at BNL

    SciTech Connect

    Vladimir N. Litvinenko; Donald Barton; D. Beavis; Ilan Ben-Zvi; Michael Blaskiewicz; J.M. Brennan; A. Burrill; R. Calaga; P. Cameron; X. Chang; Roger Connolly; D. Gassner; H. Hahn; A. Hershcovitch; H.C. Hseuh; P. Johnson; D. Kayran; J. Kewisch; R. Lambiase; G. McIntyre; W. Meng; T. C. Nehring; A. Nicoletti; D. Pate; J. Rank; T. Roser; T. Russo; J. Scaduto; K. Smith; T. Srinivasan-Rao; N. Williams; K.-C. Wu; Vitaly Yakimenko; K. Yip; A. Zaltsman; Y. Zhao; H. Bluem; A. Burger; Mike Cole; A. Favale; D. Holmes; John Rathke; Tom Schultheiss; A. Todd; J. Delayen; W. Funk; L. Phillips; Joe Preble

    2004-08-01

    We present the design, the parameters of a small test Energy Recovery Linac (ERL) facility, which is under construction at Collider-Accelerator Department, BNL. This R&D facility has goals to demonstrate CW operation of ERL with average beam current in the range of 0.1 - 1 ampere, combined with very high efficiency of energy recovery. A possibility for future up-grade to a two-pass ERL is considered. The heart of the facility is a 5-cell 700 MHz super-conducting RF linac with HOM damping. Flexible lattice of ERL provides a test-bed for testing issues of transverse and longitudinal instabilities and diagnostics of intense CW e-beam. ERL is also perfectly suited for a far-IR FEL. We present the status and our plans for construction and commissioning of this facility.

  18. HIGH CURRENT ENERGY RECOVERY LINAC AT BNL.

    SciTech Connect

    LITVINENKO,V.N.; BEN-ZVI,I.; BARTON,D.S.; ET AL.

    2005-05-16

    We present the design and parameters of an energy recovery linac (ERL) facility, which is under construction in the Collider-Accelerator Department at BNL. This R&D facility has the goal of demonstrating CW operation of an ERL with an average beam current in the range of 0.1-1 ampere and with very high efficiency of energy recovery. The possibility of a future upgrade to a two-pass ERL is also being considered. The heart of the facility is a 5-cell 703.75 MHz super-conducting RF linac with strong Higher Order Mode (HOM) damping. The flexible lattice of the ERL provides a test-bed for exploring issues of transverse and longitudinal instabilities and diagnostics of intense CW electron beams. This ERL is also perfectly suited for a far-IR FEL. We present the status and plans for construction and commissioning of this facility.

  19. The non-local bootstrap--estimation of uncertainty in diffusion MRI.

    PubMed

    Yap, Pew-Thian; An, Hongyu; Chen, Yasheng; Shen, Dinggang

    2013-01-01

    Diffusion MRI is a noninvasive imaging modality that allows for the estimation and visualization of white matter connectivity patterns in the human brain. However, due to the low signal-to-noise ratio (SNR) nature of diffusion data, deriving useful statistics from the data is adversely affected by different sources of measurement noise. This is aggravated by the fact that the sampling distribution of the statistic of interest is often complex and unknown. In situations as such, the bootstrap, due to its distribution-independent nature, is an appealing tool for the estimation of the variability of almost any statistic, without relying on complicated theoretical calculations, but purely on computer simulation. In this work, we present new bootstrap strategies for variability estimation of diffusion statistics in association with noise. In contrast to the residual bootstrap, which relies on a predetermined data model, or the repetition bootstrap, which requires repeated signal measurements, our approach, called the non-local bootstrap (NLB), is non-parametric and obviates the need for time-consuming multiple acquisitions. The key assumption of NLB is that local image structures recur in the image. We exploit this self-similarity via a multivariate non-parametric kernel regression framework for bootstrap estimation of uncertainty. Evaluation of NLB using a set of high-resolution diffusion-weighted images, with lower than usual SNR due to the small voxel size, indicates that NLB is markedly more robust to noise and results in more accurate inferences. PMID:24683985

  20. The high current experiment: First results

    SciTech Connect

    Seidl, Peter A.; Baca, D.; Bieniosek, F.M.; Faltens, A.; Lund, S.M.; Molvik, A.W.; Prost, L.R.; Waldron, W.L.

    2002-05-26

    The High Current Experiment (HCX) is being assembled at Lawrence Berkeley National Laboratory as part of the US program to explore heavy-ion beam transport at a scale representative of the low-energy end of an induction linac driver for fusion energy production. The primary mission of this experiment is to investigate aperture fill factors acceptable for the transport of space-charge dominated heavy-ion beams at high spacecharge intensity (line-charge density {approx} 0.2 {micro}C/m) over long pulse durations (>4 {micro}s). This machine will test transport issues at a driver-relevant scale resulting from nonlinear space-charge effects and collective modes, beam centroid alignment and beam steering, matching, image charges, halo, lost-particle induced electron effects, and longitudinal bunch control. We present the first experimental results carried out with the coasting K{sup +} ion beam transported through the first 10 electrostatic transport quadrupoles and associated diagnostics. Later phases of the experiment will include more electrostatic lattice periods to allow more sensitive tests of emittance growth, and also magnetic quadrupoles to explore similar issues in magnetic channels with a full driver scale beam.

  1. The high current experiment: First results

    NASA Astrophysics Data System (ADS)

    Seidl, P. A.; Baca, D.; Bieniosek, F. M.; Faltens, A.; Lund, S. M.; Molvik, A. W.; Prost, L. R.; Waldron, W. L.

    2002-07-01

    The High Current Experiment (HCX) is being assembled at Lawrence Berkeley National Laboratory as part of the U.S. program to explore heavy ion beam transport at a scale representative of the low-energy end of an induction linac driver for fusion energy production. The primary mission of this experiment is to investigate aperture fill factors acceptable for the transport of space-charge dominated heavy ion beams at high space-charge intensity (line-charge density [similar] 0.2 [mu]C/m) over long pulse durations (>4 [mu]s). This machine will test transport issues at a driver-relevant scale resulting from nonlinear space-charge effects and collective modes, beam centroid alignment and beam steering, matching, image charges, halo, lost-particle induced electron effects, and longitudinal bunch control. We present the first experimental results carried out with the coasting K+ ion beam transported through the first 10 electrostatic transport quadrupoles and associated diagnostics. Later phases of the experiment will include more electrostatic lattice periods to allow more sensitive tests of emittance growth, and also magnetic quadrupoles to explore similar issues in magnetic channels with a full driver scale beam.

  2. The Index of Biological Integrity and the bootstrap revisited: an example from Minnesota streams

    USGS Publications Warehouse

    Dolph, Christine L.; Sheshukov, Aleksey Y.; Chizinski, Christopher J.; Vondracek, Bruce C.; Wilson, Bruce

    2010-01-01

    Multimetric indices, such as the Index of Biological Integrity (IBI), are increasingly used by management agencies to determine whether surface water quality is impaired. However, important questions about the variability of these indices have not been thoroughly addressed in the scientific literature. In this study, we used a bootstrap approach to quantify variability associated with fish IBIs developed for streams in two Minnesota river basins. We further placed this variability into a management context by comparing it to impairment thresholds currently used in water quality determinations for Minnesota streams. We found that 95% confidence intervals ranged as high as 40 points for IBIs scored on a 0–100 point scale. However, on average, 90% of IBI scores calculated from bootstrap replicate samples for a given stream site yielded the same impairment status as the original IBI score. We suggest that sampling variability in IBI scores is related to both the number of fish and the number of rare taxa in a field collection. A comparison of the effects of different scoring methods on IBI variability indicates that a continuous scoring method may reduce the amount of bias in IBI scores.

  3. High voltage compliance constant current ballast

    NASA Technical Reports Server (NTRS)

    Rosenthal, L. A.

    1976-01-01

    A ballast circuit employing a constant current diode and a vacuum tube that can provide a constant current over a voltage range of 1000 volts. The simple circuit can prove useful in studying voltage breakdown characteristics.

  4. Bootstrapped models for intrinsic random functions

    SciTech Connect

    Campbell, K.

    1987-01-01

    The use of intrinsic random function stochastic models as a basis for estimation in geostatistical work requires the identification of the generalized covariance function of the underlying process, and the fact that this function has to be estimated from the data introduces an additional source of error into predictions based on the model. This paper develops the sample reuse procedure called the ''bootstrap'' in the context of intrinsic random functions to obtain realistic estimates of these errors. Simulation results support the conclusion that bootstrap distributions of functionals of the process, as well as of their ''kriging variance,'' provide a reasonable picture of the variability introduced by imperfect estimation of the generalized covariance function.

  5. Bootstrapped models for intrinsic random functions

    SciTech Connect

    Campbell, K.

    1988-08-01

    Use of intrinsic random function stochastic models as a basis for estimation in geostatistical work requires the identification of the generalized covariance function of the underlying process. The fact that this function has to be estimated from data introduces an additional source of error into predictions based on the model. This paper develops the sample reuse procedure called the bootstrap in the context of intrinsic random functions to obtain realistic estimates of these errors. Simulation results support the conclusion that bootstrap distributions of functionals of the process, as well as their kriging variance, provide a reasonable picture of variability introduced by imperfect estimation of the generalized covariance function.

  6. High Current Hollow Cathode Plasma Plume Measurements

    NASA Technical Reports Server (NTRS)

    Thomas, Robert E.; Kamhawi, Hani; Williams, George J., Jr.

    2014-01-01

    Plasma plume measurements are reported for a hollow cathode assembly (HCA) operated at discharge currents of 50, 70, and 100 A at xenon flow rates between 19 - 46 standard cubic centimeter per minute. The HCA was centrally mounted in the NASA-300MS Hall Thruster and was operated in the "spot" and "plume" modes with additional data taken with an applied magnetic field. Langmuir probes, retarding potential analyzers, and optical emission spectroscopy were employed to measure plasma properties near the orifice of the HCA and to assess the charge state of the near-field plasma. Electron temperatures (2-6 electron volt) and plasma potentials are consistent with probe-measured values in previous investigations. Operation with an applied-field yields higher discharge voltages, increased Xe III production, and increased signals from the 833.5 nm C I line. While operating in plume mode and with an applied field, ion energy distribution measurements yield ions with energies significantly exceeding the applied discharge voltage. These findings are correlated with high-frequency oscillations associated with each mode.

  7. MACHINE PROTECTION FOR HIGH AVERAGE CURRENT LINACS

    SciTech Connect

    Jordan, Kevin; Allison, Trent; Evans, Richard; Coleman, James; Grippo, Albert

    2003-05-01

    A fully integrated Machine Protection System (MPS) is critical to efficient commissioning and safe operation of all high current accelerators. The Jefferson Lab FEL [1,2] has multiple electron beam paths and many different types of diagnostic insertion devices. The MPS [3] needs to monitor both the status of these devices and the magnet settings which define the beam path. The matrix of these devices and beam paths are programmed into gate arrays, the output of the matrix is an allowable maximum average power limit. This power limit is enforced by the drive laser for the photocathode gun. The Beam Loss Monitors (BLMs), RF status, and laser safety system status are also inputs to the control matrix. There are 8 Machine Modes (electron path) and 8 Beam Modes (average power limits) that define the safe operating limits for the FEL. Combinations outside of this matrix are unsafe and the beam is inhibited. The power limits range from no beam to 2 megawatts of electron beam power.

  8. High Current Hollow Cathode Plasma Plume Measurements

    NASA Technical Reports Server (NTRS)

    Thomas, Robert E.; Kamhawi, Hani; Williams, George J., Jr.

    2013-01-01

    Plasma plume measurements are reported for a hollow cathode assembly (HCA) oper-ated at discharge currents of 50, 70, and 100 A at xenon ow rates between 19 - 46 sccm.The HCA was centrally mounted in the annulus of the NASA-300MS Hall Thruster andwas operated in the spot and plume modes with additional data taken with an appliedmagnetic eld. Langmuir probes, retarding potential analyzers, and optical emission spec-troscopy were employed to measure plasma properties near the orice of the HCA and toassess the charge state of the near-eld plasma. Electron temperatures (2-6 eV) and plasmapotentials are consistent with probe-measured values in previous investigations. Operationwith an applied-eld yields higher discharge voltages, increased Xe III production, andincreased signals from the 833.5 nm C I line. While operating in plume mode and with anapplied eld, ion energy distribution measurements yield ions with energies signicantlyexceeding the applied discharge voltage. These ndings are correlated with high-frequencyoscillations associated with each mode.

  9. Pass the Globe: Teaching Bootstrapping without Using a Computer

    ERIC Educational Resources Information Center

    Beaujean, A. Alexander; Cooper-Twamley, Susan

    2010-01-01

    While bootstrapping is a computationally intensive procedure, teaching about the concept does not necessarily require any more technology than a simple calculator. This article describes an interactive teaching approach for introducing bootstrapping without using a statistics program or a computer.

  10. A high-energy, high-current ion implantation system

    NASA Astrophysics Data System (ADS)

    Rose, Peter H.; Faretra, Ronald; Ryding, Geoffery

    1985-01-01

    High current (Pre-DepTM) ion implanters, operating at 80 keV, have met a need in the semiconductor industry. For certain processes, higher energies are required, either to penetrate a surface layer or to place the dopant ion at a greater depth. The Eaton/Nova Model NV10-160 Pre-DepTM Ion Implanter has been developed to meet those special needs. Beam currents as high as 10.0 mA are available at energies up to 160 keV for routine production applications. The system has also been qualified for low current, low dose operation (1011 ions cm-2) and this unique versatility provides the Process and Equipment Engineers with a powerful new tool. The Model NV10-160 also utilizes the Nova-designed, double disk interchange processing system to minimize inactive beam time so that wafer throughputs, up to 300 wafers/h, are achievable on a routine basis. DatalockTM, a computer driven implant monitoring system and AT-4, the Nova cassette-to-cassette wafer loader, are available as standard options. As a production machine, the Model NV10-160 with its high throughput capability, will reduce the implant cost per wafer significantly for doses above 10 × 1015 ions/cm2. Performance patterns are now emerging as some twenty-five systems have now been shipped. This paper summarizes the more important characteristics and reviews the major design features of the NV10-160.

  11. Bootstrapping Methods Applied for Simulating Laboratory Works

    ERIC Educational Resources Information Center

    Prodan, Augustin; Campean, Remus

    2005-01-01

    Purpose: The aim of this work is to implement bootstrapping methods into software tools, based on Java. Design/methodology/approach: This paper presents a category of software e-tools aimed at simulating laboratory works and experiments. Findings: Both students and teaching staff use traditional statistical methods to infer the truth from sample…

  12. Pulling Econometrics Students up by Their Bootstraps

    ERIC Educational Resources Information Center

    O'Hara, Michael E.

    2014-01-01

    Although the concept of the sampling distribution is at the core of much of what we do in econometrics, it is a concept that is often difficult for students to grasp. The thought process behind bootstrapping provides a way for students to conceptualize the sampling distribution in a way that is intuitive and visual. However, teaching students to…

  13. A Bootstrap Procedure of Propensity Score Estimation

    ERIC Educational Resources Information Center

    Bai, Haiyan

    2013-01-01

    Propensity score estimation plays a fundamental role in propensity score matching for reducing group selection bias in observational data. To increase the accuracy of propensity score estimation, the author developed a bootstrap propensity score. The commonly used propensity score matching methods: nearest neighbor matching, caliper matching, and…

  14. Automatic bootstrapping and tracking of object contours.

    PubMed

    Chiverton, John; Xie, Xianghua; Mirmehdi, Majid

    2012-03-01

    A new fully automatic object tracking and segmentation framework is proposed. The framework consists of a motion-based bootstrapping algorithm concurrent to a shape-based active contour. The shape-based active contour uses finite shape memory that is automatically and continuously built from both the bootstrap process and the active-contour object tracker. A scheme is proposed to ensure that the finite shape memory is continuously updated but forgets unnecessary information. Two new ways of automatically extracting shape information from image data given a region of interest are also proposed. Results demonstrate that the bootstrapping stage provides important motion and shape information to the object tracker. This information is found to be essential for good (fully automatic) initialization of the active contour. Further results also demonstrate convergence properties of the content of the finite shape memory and similar object tracking performance in comparison with an object tracker with unlimited shape memory. Tests with an active contour using a fixed-shape prior also demonstrate superior performance for the proposed bootstrapped finite-shape-memory framework and similar performance when compared with a recently proposed active contour that uses an alternative online learning model. PMID:21908256

  15. How to Bootstrap a Human Communication System

    ERIC Educational Resources Information Center

    Fay, Nicolas; Arbib, Michael; Garrod, Simon

    2013-01-01

    How might a human communication system be bootstrapped in the absence of conventional language? We argue that motivated signs play an important role (i.e., signs that are linked to meaning by structural resemblance or by natural association). An experimental study is then reported in which participants try to communicate a range of pre-specified…

  16. Characterization of high-current, high-temperature superconductor current lead elements

    SciTech Connect

    Niemann, R.C.; Evans, D.J.; Fisher, B.L.; Brockenborough, W.E.; Roberts, P.R.; Rodenbush, A.J.

    1996-08-01

    The refrigeration loads of current leads for superconducting magnets can be significantly reduced by using high-temperature superconductor (HTS) leads. An HTS conductor type that is well suited for this application is a laminated sintered stack of HTS powder-in-tube (PIT) tapes. The superconducting elements are normally characterized by their manufacturer by measuring critical currents at 77 K in self field. Additional characterization, which correlates electrical performance at 77 K and at lower temperatures with applied magnetic fields, provides the current lead designer and conductor element manufacturer with critical information. For HTS conductor elements comprising a laminated and sintered stack of Bi-2223 PIT tapes having an alloyed Ag sheath, this characterization uses variable applied fields and operating temperatures.

  17. Lightweight, High-Current Welding Gun

    NASA Technical Reports Server (NTRS)

    Starck, Thomas F.; Brennan, Andrew D.

    1989-01-01

    Lighweight resistance-welding, hand-held gun supplies alternating or direct current over range of 600 to 4,000 A and applies forces from 40 to 60 lb during welding. Used to weld metal sheets in multilayered stacks.

  18. Developing high brightness and high current beams for HIF injectors

    SciTech Connect

    Ahle, Larry; Grote, Dave; Kwan, Joe

    2002-05-24

    The US Heavy Ion Fusion Virtual National Laboratory is continuing research into ion sources and injectors that simultaneously provide high current (0.5-1.0 Amps) and high brightness (normalized emittance better than 1.0 {pi}-mm-mr). The central issue of focus is whether to continue pursuing the traditional approach of large surface ionization sources or to adopt a multiaperture approach that transports many smaller ''beamlets'' separately at low energies before allowing them to merge. For the large surface source concept, the recent commissioning of the 2-MeV injector for the High Current eXperiment has increased our understanding of the beam quality limitations for these sources. We have also improved our techniques for fabricating large diameter aluminosilicate sources to improve lifetime and emission uniformity. For the multiaperture approach, we are continuing to study the feasibility of small surface sources and a RF induced plasma source in preparation for beamlet merging experiments, while continuing to run computer simulations for better understanding of this alternate concept. Experiments into both architectures will be performed on a newly commissioned ion source test stand at LLNL called STS-500. This stand test provides a platform for testing a variety of ion sources and accelerating structures with 500 kV, 17-microsecond pulses. Recent progress in these areas will be discussed as well as plans for future experiments.

  19. A Bootstrap Approach to an Affordable Exploration Program

    NASA Technical Reports Server (NTRS)

    Oeftering, Richard C.

    2011-01-01

    This paper examines the potential to build an affordable sustainable exploration program by adopting an approach that requires investing in technologies that can be used to build a space infrastructure from very modest initial capabilities. Human exploration has had a history of flight programs that have high development and operational costs. Since Apollo, human exploration has had very constrained budgets and they are expected be constrained in the future. Due to their high operations costs it becomes necessary to consider retiring established space facilities in order to move on to the next exploration challenge. This practice may save cost in the near term but it does so by sacrificing part of the program s future architecture. Human exploration also has a history of sacrificing fully functional flight hardware to achieve mission objectives. An affordable exploration program cannot be built when it involves billions of dollars of discarded space flight hardware, instead, the program must emphasize preserving its high value space assets and building a suitable permanent infrastructure. Further this infrastructure must reduce operational and logistics cost. The paper examines the importance of achieving a high level of logistics independence by minimizing resource consumption, minimizing the dependency on external logistics, and maximizing the utility of resources available. The approach involves the development and deployment of a core suite of technologies that have minimum initial needs yet are able expand upon initial capability in an incremental bootstrap fashion. The bootstrap approach incrementally creates an infrastructure that grows and becomes self sustaining and eventually begins producing the energy, products and consumable propellants that support human exploration. The bootstrap technologies involve new methods of delivering and manipulating energy and materials. These technologies will exploit the space environment, minimize dependencies, and

  20. Modular High Current Test Facility at LLNL

    SciTech Connect

    Tully, L K; Goerz, D A; Speer, R D; Ferriera, T J

    2008-05-20

    This paper describes the 1 MA, 225 kJ test facility in operation at Lawrence Livermore National Laboratory (LLNL). The capacitor bank is constructed from three parallel 1.5 mF modules. The modules are capable of switching simultaneously or sequentially via solid dielectric puncture switches. The bank nominally operates up to 10 kV and reaches peak current with all three cabled modules in approximately 30 {micro}s. Parallel output plates from the bank allow for cable or busbar interfacing to the load. This versatile bank is currently in use for code validation experiments, railgun related activities, switch testing, and diagnostic development.

  1. Bootstrapping a change-point Cox model for survival data.

    PubMed

    Xu, Gongjun; Sen, Bodhisattva; Ying, Zhiliang

    2014-08-20

    This paper investigates the (in)-consistency of various bootstrap methods for making inference on a change-point in time in the Cox model with right censored survival data. A criterion is established for the consistency of any bootstrap method. It is shown that the usual nonparametric bootstrap is inconsistent for the maximum partial likelihood estimation of the change-point. A new model-based bootstrap approach is proposed and its consistency established. Simulation studies are carried out to assess the performance of various bootstrap schemes. PMID:25400719

  2. High-current ion-ring accelerator

    SciTech Connect

    Sudan, R.N. )

    1993-03-15

    An accelerator concept is outlined which enables 10[sup 15] to 10[sup 18] ions in the form of a charge neutralized ion ring to be accelerated to GeV energies. A repetition rate of 10 Hz will deliver an average current in the range of 0.1 A.

  3. A high performance current source inverter

    SciTech Connect

    Joos, G.; Moschopoulos, G.; Ziogas, P.D.

    1993-10-01

    A recent innovation in current source inverter (CSI) drives has been the introduction of pulsewidth modulation (PWM) for the purpose of improving the quality of the load currents and voltages. However, the typical six switch CSI circuit is not compatible with all standard PWM techniques thus limiting the number of schemes that can be used. The modified CSI circuit discussed in this paper removes most of the restrictions at the ``cost`` of an extra switch. Additional advantages include faster response times through modulation index control and higher efficiency. This paper includes a detailed steady-state analysis and design procedure. The feasibility and performance of the modified CSI are verified by simulation and experimental implementation on a 5 kVA converter.

  4. Insulator damage in high current discharges

    NASA Astrophysics Data System (ADS)

    Ranon, P. M.; Kristiansen, M.; Lehr, F. M.; Hatfield, L. L.

    1986-11-01

    The degradation of the hold-off voltage capability of several composite candidates for railgun insulators was studied experimentally. The materials examined were BN, alumina (Coor's ceramic), and two types of laminated fiberglass/epoxy (FGE I and FGE II). Sample 1 cm thick plates of the insulators were inserted into a surface discharge switch (SDS) with a gap of 1.6 in., i.e., an initial hold-off voltage of 40 kV. FGE I retained the hold-off voltage for more than 10,000 shots at a current of 1 kA maximum, but degraded significantly after 50 shots at currents over 200 kA. BN shattered when the repetition rate exceeded 1 pulse/sec.

  5. A compact submicrosecond, high current generator

    NASA Astrophysics Data System (ADS)

    Kovalchuk, B. M.; Kharlov, A. V.; Zorin, V. B.; Zherlitsyn, A. A.

    2009-08-01

    Pulsed current generator was developed for experiments with current carrying pulsed plasma. Main parts of the generator are capacitor bank, low inductive current driving lines, and central load part. Generator consists of four identical sections, connected in parallel to one load. Capacitor bank is assembled from 24 capacitor blocks (100 kV, 80 nF), connected in parallel. It stores 9.6 kJ at 100 kV charging voltage. Each capacitor block incorporates a multigap spark switch, which is able to commute by six parallel channels. Switches operate in dry air at atmospheric pressure. The generator was tested with an inductive load and a liner load. At 17.5 nH inductive load and 100 kV of charging voltage it provides 650 kA of current amplitude with 390 ns rise time with 0.6 Ω damping resistors in discharge circuit of each capacitor block. The net generator inductance without a load was optimized to be as low as 15 nH, which results in extremely low impedance of the generator (˜0.08 Ω). It ensures effective energy coupling with a low impedance load such as Z pinch. The generator operates reliably without any adjustments in 70-100 kV range of charging voltage. Jitter in delay between output pulse and triggering pulse is less than 5 ns at 70-100 kV charging voltage. Operation and handling are very simple, because no oil or purified gases are required for the generator. The generator has dimensions 5.24×1.2×0.18 m3 and total weight about 1400 kg, thus manifesting itself as simple, robust, and cost effective apparatus.

  6. Architecture for high critical current superconducting tapes

    DOEpatents

    Jia, Quanxi; Foltyn, Stephen R.

    2002-01-01

    Improvements in critical current capacity for superconducting film structures are disclosed and include the use of, e.g., multilayer YBCO structures where individual YBCO layers are separated by a layer of an insulating material such as CeO.sub.2 and the like, a layer of a conducting material such as strontium ruthenium oxide and the like or by a second superconducting material such as SmBCO and the like.

  7. High-current density coils for high-radiation environments

    SciTech Connect

    Harvey, A.

    1981-01-01

    This paper concentrates on the problems of providing normal (that is, nonsuperconducting) magnet coils for present and short-term-future requirements where significant radiation doses are involved. Projects such as 100-mA deuteron accelerators and bundle diverter coils for TOKAMAKS are typical of applications where conventional organic insulation limited to 10/sup 10/ rads makes epoxy-based systems unacceptable. Moreover, even in present-day accelerators, radiation levels can be high enough to give rise to problems with oxidation of copper conductors if water is used in direct contact with the copper. The radiolytic oxygen, being formed in situ, cannot be controlled by external deoxygenators. An acceptable insulation for such environments has been described previously, and is being employed where radiation is expected to be a problem. Being a compacted magnesium oxide powder, the insulation has advantages. Analysis of constraints on maximum current densities achievable in such a coil construction, using computer codes, leads to coil configurations that operate at higher current densities than are usually found in directly cooled coils. An example of the thermal analysis of one coil configuration is given. The problems are addressed here.

  8. High-current plasma contactor neutralizer system

    NASA Technical Reports Server (NTRS)

    Beattie, J. R.; Williamson, W. S.; Matossian, J. N.; Vourgourakis, E. J.; Burch, J. L.

    1989-01-01

    A plasma-contactor neutralizer system is described, for the stabilizing the Orbiter's potential during flights of the Atmospheric Laboratory for Applications and Science missions. The plasma contactor neutralizer will include a Xe plasma source that can provide steady-state ion-emission currents of up to 1.5 A. The Orbiter's potential will be maintained near that of the surrounding space plasma during electron-beam accelerator firings through a combination of ion emission from the Xe plasma source and electron collection from the ambient space plasma. Configuration diagrams and block diagrams are presented along with the performance characteristics of the system.

  9. MHD Stability Calculations of High-Beta Quasi-Axisymmetric Stellarators

    SciTech Connect

    C. Kessel; G.Y. Fu; L.P. Ku; M.H. Redi; N. Pomphrey; et al

    1999-09-01

    The MHD stability of quasi-axisymmetric compact stellarators is investigated. It is shown that bootstrap current driven external kink modes can be stabilized by a combination of edge magnetic shear and appropriate 3D plasma boundary shaping while maintaining good quasi-axisymmetry. The results demonstrate that there exists a new class of stellarators with quasi-axisymmetry, large bootstrap current, high MHD beta limit, and compact size.

  10. Clarification of the Bootstrap Percolation Paradox

    NASA Astrophysics Data System (ADS)

    de Gregorio, Paolo; Lawlor, Aonghus; Bradley, Phil; Dawson, Kenneth A.

    2004-07-01

    We study the onset of the bootstrap percolation transition as a model of generalized dynamical arrest. Our results apply to two dimensions, but there is no significant barrier to extending them to higher dimensionality. We develop a new importance-sampling procedure in simulation, based on rare events around “holes”, that enables us to access bootstrap lengths beyond those previously studied. By framing a new theory in terms of paths or processes that lead to emptying of the lattice we are able to develop systematic corrections to the existing theory and compare them to simulations. Thereby, for the first time in the literature, it is possible to obtain credible comparisons between theory and simulation in the accessible density range.

  11. Current Perspectives in High Energy Astrophysics

    NASA Technical Reports Server (NTRS)

    Ormes, Jonathan F. (Editor)

    1996-01-01

    High energy astrophysics is a space-age discipline that has taken a quantum leap forward in the 1990s. The observables are photons and particles that are unable to penetrate the atmosphere and can only be observed from space or very high altitude balloons. The lectures presented as chapters of this book are based on the results from the Compton Gamma-Ray Observatory (CGRO) and Advanced Satellite for Cosmology and Astrophysics (ASCA) missions to which the Laboratory for High Energy Astrophysics at NASA's Goddard Space Flight Center made significant hardware contributions. These missions study emissions from very hot plasmas, nuclear processes, and high energy particle interactions in space. Results to be discussed include gamma-ray beaming from active galactic nuclei (AGN), gamma-ray emission from pulsars, radioactive elements in the interstellar medium, X-ray emission from clusters of galaxies, and the progress being made to unravel the gamma-ray burst mystery. The recently launched X-ray Timing Explorer (XTE) and prospects for upcoming Astro-E and Advanced X-ray Astronomy Satellite (AXAF) missions are also discussed.

  12. Accidental symmetries and the conformal bootstrap

    NASA Astrophysics Data System (ADS)

    Chester, Shai M.; Giombi, Simone; Iliesiu, Luca V.; Klebanov, Igor R.; Pufu, Silviu S.; Yacoby, Ran

    2016-01-01

    We study an N=2 supersymmetric generalization of the three-dimensional critical O( N) vector model that is described by N + 1 chiral superfields with superpotential W = g 1 X∑ i Z 1 2 + g 2 X 3. By combining the tools of the conformal bootstrap with results obtained through supersymmetric localization, we argue that this model exhibits a symmetry enhancement at the infrared superconformal fixed point due to g 2 flowing to zero. This example is special in that the existence of an infrared fixed point with g 1 , g 2 ≠ 0, which does not exhibit symmetry enhancement, does not generally lead to any obvious unitarity violations or other inconsistencies. We do show, however, that the F-theorem excludes the models with g 1 , g 2 ≠ 0 for N > 5. The conformal bootstrap provides a stronger constraint and excludes such models for N > 2. We provide evidence that the g 2 = 0 models, which have the enhanced O( N) × U(1) symmetry, come close to saturating the bootstrap bounds. We extend our analysis to fractional dimensions where we can motivate the nonexistence of the g 1 , g 2 ≠ 0 models by studying them perturbatively in the 4 - ɛ expansion.

  13. High current density cathode for electrorefining in molten electrolyte

    DOEpatents

    Li, Shelly X.

    2010-06-29

    A high current density cathode for electrorefining in a molten electrolyte for the continuous production and collection of loose dendritic or powdery deposits. The high current density cathode eliminates the requirement for mechanical scraping and electrochemical stripping of the deposits from the cathode in an anode/cathode module. The high current density cathode comprises a perforated electrical insulated material coating such that the current density is up to 3 A/cm.sup.2.

  14. Bootstrap Enhanced Penalized Regression for Variable Selection with Neuroimaging Data.

    PubMed

    Abram, Samantha V; Helwig, Nathaniel E; Moodie, Craig A; DeYoung, Colin G; MacDonald, Angus W; Waller, Niels G

    2016-01-01

    Recent advances in fMRI research highlight the use of multivariate methods for examining whole-brain connectivity. Complementary data-driven methods are needed for determining the subset of predictors related to individual differences. Although commonly used for this purpose, ordinary least squares (OLS) regression may not be ideal due to multi-collinearity and over-fitting issues. Penalized regression is a promising and underutilized alternative to OLS regression. In this paper, we propose a nonparametric bootstrap quantile (QNT) approach for variable selection with neuroimaging data. We use real and simulated data, as well as annotated R code, to demonstrate the benefits of our proposed method. Our results illustrate the practical potential of our proposed bootstrap QNT approach. Our real data example demonstrates how our method can be used to relate individual differences in neural network connectivity with an externalizing personality measure. Also, our simulation results reveal that the QNT method is effective under a variety of data conditions. Penalized regression yields more stable estimates and sparser models than OLS regression in situations with large numbers of highly correlated neural predictors. Our results demonstrate that penalized regression is a promising method for examining associations between neural predictors and clinically relevant traits or behaviors. These findings have important implications for the growing field of functional connectivity research, where multivariate methods produce numerous, highly correlated brain networks. PMID:27516732

  15. Bootstrap Enhanced Penalized Regression for Variable Selection with Neuroimaging Data

    PubMed Central

    Abram, Samantha V.; Helwig, Nathaniel E.; Moodie, Craig A.; DeYoung, Colin G.; MacDonald, Angus W.; Waller, Niels G.

    2016-01-01

    Recent advances in fMRI research highlight the use of multivariate methods for examining whole-brain connectivity. Complementary data-driven methods are needed for determining the subset of predictors related to individual differences. Although commonly used for this purpose, ordinary least squares (OLS) regression may not be ideal due to multi-collinearity and over-fitting issues. Penalized regression is a promising and underutilized alternative to OLS regression. In this paper, we propose a nonparametric bootstrap quantile (QNT) approach for variable selection with neuroimaging data. We use real and simulated data, as well as annotated R code, to demonstrate the benefits of our proposed method. Our results illustrate the practical potential of our proposed bootstrap QNT approach. Our real data example demonstrates how our method can be used to relate individual differences in neural network connectivity with an externalizing personality measure. Also, our simulation results reveal that the QNT method is effective under a variety of data conditions. Penalized regression yields more stable estimates and sparser models than OLS regression in situations with large numbers of highly correlated neural predictors. Our results demonstrate that penalized regression is a promising method for examining associations between neural predictors and clinically relevant traits or behaviors. These findings have important implications for the growing field of functional connectivity research, where multivariate methods produce numerous, highly correlated brain networks. PMID:27516732

  16. Excitons in solids with time-dependent density-functional theory: the bootstrap kernel and beyond

    NASA Astrophysics Data System (ADS)

    Byun, Young-Moo; Yang, Zeng-Hui; Ullrich, Carsten

    Time-dependent density-functional theory (TDDFT) is an efficient method to describe the optical properties of solids. Lately, a series of bootstrap-type exchange-correlation (xc) kernels have been reported to produce accurate excitons in solids, but different bootstrap-type kernels exist in the literature, with mixed results. In this presentation, we reveal the origin of the confusion and show a new empirical TDDFT xc kernel to compute excitonic properties of semiconductors and insulators efficiently and accurately. Our method can be used for high-throughput screening calculations and large unit cell calculations. Work supported by NSF Grant DMR-1408904.

  17. HIGH DYNAMIC-RANGE HIGH SPEED LINAC CURRENT MEASUREMENTS

    SciTech Connect

    Deibele, Craig Edmond; Curry, Douglas E; Dickson, Richard W

    2012-01-01

    It is desired to measure the linac current of a charged particle beam with a consistent accuracy over a dynamic range of over 120 dB. Conventional current transformers suffer from droop, can be susceptible to electromagnetic interference (EMI), and can be bandwidth limited. A novel detector and electronics were designed to maximize dynamic range of about 120 dB and measure rise-times on the order of 10 nanoseconds.

  18. Modeling of high-current devices with explosive electron emission

    NASA Astrophysics Data System (ADS)

    Anishchenko, S. V.; Gurinovich, A. A.

    2014-01-01

    Based on a detailed analysis of explosive electron emission in high-current electronic devices, we formulate a system of equations that describes the expansion of cathode plasma and the generation of high-current electron beams. The system underlies the numerical algorithm for the hybrid code which enables the simulation of the charged particles’ dynamics in high-current vircators with open resonators. Using the Gabor-Morlet transform, we perform a time-frequency analysis of vircator radiation.

  19. Stable superconducting magnet. [high current levels below critical temperature

    NASA Technical Reports Server (NTRS)

    Boom, R. W. (Inventor)

    1967-01-01

    Operation of a superconducting magnet is considered. A method is described for; (1) obtaining a relatively high current in a superconducting magnet positioned in a bath of a gas refrigerant; (2) operating a superconducting magnet at a relatively high current level without training; and (3) operating a superconducting magnet containing a plurality of turns of a niobium zirconium wire at a relatively high current level without training.

  20. Concept Innateness, Concept Continuity, and Bootstrapping

    PubMed Central

    Carey, Susan

    2011-01-01

    The commentators raised issues relevant to all three important theses of The Origin of Concepts (TOOC). Some questioned the very existence of innate representational primitives, and others questioned my claims about their richness and whether they should be thought of as concepts. Some questioned the existence of conceptual discontinuity in the course of knowledge acquisition and others argued that discontinuity is much more common than portrayed in TOOC. Some raised issues with my characterization of Quinian bootstrapping, and others questioned the dual factor theory of concepts motivated by my picture of conceptual development. PMID:23264705

  1. A bootstrap approach to bump hunting

    NASA Technical Reports Server (NTRS)

    Silverman, B. W.

    1982-01-01

    An important question in cluster analysis and pattern recognition is the determination of the number of clusters into which a given population should be divided. Frequently, particularly when certain specific clustering methods are being used, the number of clusters is taken to be equal to the number of modes, or local maxima, in the probability density function underlying the given data set. The use of kernal density estimates in mode estimation is discussed. The test statistic to be used is defined and a bootstrap technique for assessing significance is given. An illustrative application is followed by an examination of the asymptotic behavior of the test statistic.

  2. Bootstrap position analysis for forecasting low flow frequency

    USGS Publications Warehouse

    Tasker, Gary D.; Dunne, P.

    1997-01-01

    A method of random resampling of residuals from stochastic models is used to generate a large number of 12-month-long traces of natural monthly runoff to be used in a position analysis model for a water-supply storage and delivery system. Position analysis uses the traces to forecast the likelihood of specified outcomes such as reservoir levels falling below a specified level or streamflows falling below statutory passing flows conditioned on the current reservoir levels and streamflows. The advantages of this resampling scheme, called bootstrap position analysis, are that it does not rely on the unverifiable assumption of normality, fewer parameters need to be estimated directly from the data, and accounting for parameter uncertainty is easily done. For a given set of operating rules and water-use requirements for a system, water managers can use such a model as a decision-making tool to evaluate different operating rules. ?? ASCE,.

  3. Multipulse current source offers low power losses and high reliability

    NASA Technical Reports Server (NTRS)

    1967-01-01

    Pulse current source uses low loss, high reliability, LC circuits to provide the necessary high impedance for magnetic memory cores, frequently used in digital computational equipment. Square-loop reactors replace the semiconductor switches previously used.

  4. Effects of high frequency current in welding aluminum alloy 6061

    NASA Technical Reports Server (NTRS)

    Fish, R. E.

    1968-01-01

    Uncontrolled high frequency current causes cracking in the heat-affected zone of aluminum alloy 6061 weldments during tungsten inert gas ac welding. Cracking developed when an improperly adjusted superimposed high frequency current was agitating the semimolten metal in the areas of grain boundary.

  5. Dynamics of laser-guided alternating current high voltage discharges

    NASA Astrophysics Data System (ADS)

    Daigle, J.-F.; Théberge, F.; Lassonde, P.; Kieffer, J.-C.; Fujii, T.; Fortin, J.; Châteauneuf, M.; Dubois, J.

    2013-10-01

    The dynamics of laser-guided alternating current high voltage discharges are characterized using a streak camera. Laser filaments were used to trigger and guide the discharges produced by a commercial Tesla coil. The streaking images revealed that the dynamics of the guided alternating current high voltage corona are different from that of a direct current source. The measured effective corona velocity and the absence of leader streamers confirmed that it evolves in a pure leader regime.

  6. Confidence Intervals in Qtl Mapping by Bootstrapping

    PubMed Central

    Visscher, P. M.; Thompson, R.; Haley, C. S.

    1996-01-01

    The determination of empirical confidence intervals for the location of quantitative trait loci (QTLs) was investigated using simulation. Empirical confidence intervals were calculated using a bootstrap resampling method for a backcross population derived from inbred lines. Sample sizes were either 200 or 500 individuals, and the QTL explained 1, 5, or 10% of the phenotypic variance. The method worked well in that the proportion of empirical confidence intervals that contained the simulated QTL was close to expectation. In general, the confidence intervals were slightly conservatively biased. Correlations between the test statistic and the width of the confidence interval were strongly negative, so that the stronger the evidence for a QTL segregating, the smaller the empirical confidence interval for its location. The size of the average confidence interval depended heavily on the population size and the effect of the QTL. Marker spacing had only a small effect on the average empirical confidence interval. The LOD drop-off method to calculate empirical support intervals gave confidence intervals that generally were too small, in particular if confidence intervals were calculated only for samples above a certain significance threshold. The bootstrap method is easy to implement and is useful in the analysis of experimental data. PMID:8725246

  7. Efficient online bootstrapping of sensory representations.

    PubMed

    Gepperth, Alexander

    2013-05-01

    This is a simulation-based contribution exploring a novel approach to the open-ended formation of multimodal representations in autonomous agents. In particular, we address the issue of transferring ("bootstrapping") feature selectivities between two modalities, from a previously learned or innate reference representation to a new induced representation. We demonstrate the potential of this algorithm by several experiments with synthetic inputs modeled after a robotics scenario where multimodal object representations are "bootstrapped" from a (reference) representation of object affordances. We focus on typical challenges in autonomous agents: absence of human supervision, changing environment statistics and limited computing power. We propose an autonomous and local neural learning algorithm termed PROPRE (projection-prediction) that updates induced representations based on predictability: competitive advantages are given to those feature-sensitive elements that are inferable from activities in the reference representation. PROPRE implements a bi-directional interaction of clustering ("projection") and inference ("prediction"), the key ingredient being an efficient online measure of predictability controlling learning in the projection step. We show that the proposed method is computationally efficient and stable, and that the multimodal transfer of feature selectivity is successful and robust under resource constraints. Furthermore, we successfully demonstrate robustness to noisy reference representations, non-stationary input statistics and uninformative inputs. PMID:23266481

  8. A Superconducting transformer system for high current cable testing

    SciTech Connect

    Godeke, A.; Dietderich, D. R.; Joseph, J. M.; Lizarazo, J.; Prestemon, S. O.; Miller, G.; Weijers, H. W.

    2010-02-15

    This article describes the development of a direct-current (dc) superconducting transformer system for the high current test of superconducting cables. The transformer consists of a core-free 10 464 turn primary solenoid which is enclosed by a 6.5 turn secondary. The transformer is designed to deliver a 50 kA dc secondary current at a dc primary current of about 50 A. The secondary current is measured inductively using two toroidal-wound Rogowski coils. The Rogowski coil signal is digitally integrated, resulting in a voltage signal that is proportional to the secondary current. This voltage signal is used to control the secondary current using a feedback loop which automatically compensates for resistive losses in the splices to the superconducting cable samples that are connected to the secondary. The system has been commissioned up to 28 kA secondary current. The reproducibility in the secondary current measurement is better than 0.05% for the relevant current range up to 25 kA. The drift in the secondary current, which results from drift in the digital integrator, is estimated to be below 0.5 A/min. The system's performance is further demonstrated through a voltage-current measurement on a superconducting cable sample at 11 T background magnetic field. The superconducting transformer system enables fast, high resolution, economic, and safe tests of the critical current of superconducting cable samples.

  9. A superconducting transformer system for high current cable testing.

    PubMed

    Godeke, A; Dietderich, D R; Joseph, J M; Lizarazo, J; Prestemon, S O; Miller, G; Weijers, H W

    2010-03-01

    This article describes the development of a direct-current (dc) superconducting transformer system for the high current test of superconducting cables. The transformer consists of a core-free 10,464 turn primary solenoid which is enclosed by a 6.5 turn secondary. The transformer is designed to deliver a 50 kA dc secondary current at a dc primary current of about 50 A. The secondary current is measured inductively using two toroidal-wound Rogowski coils. The Rogowski coil signal is digitally integrated, resulting in a voltage signal that is proportional to the secondary current. This voltage signal is used to control the secondary current using a feedback loop which automatically compensates for resistive losses in the splices to the superconducting cable samples that are connected to the secondary. The system has been commissioned up to 28 kA secondary current. The reproducibility in the secondary current measurement is better than 0.05% for the relevant current range up to 25 kA. The drift in the secondary current, which results from drift in the digital integrator, is estimated to be below 0.5 A/min. The system's performance is further demonstrated through a voltage-current measurement on a superconducting cable sample at 11 T background magnetic field. The superconducting transformer system enables fast, high resolution, economic, and safe tests of the critical current of superconducting cable samples. PMID:20370213

  10. Unbiased Estimates of Variance Components with Bootstrap Procedures

    ERIC Educational Resources Information Center

    Brennan, Robert L.

    2007-01-01

    This article provides general procedures for obtaining unbiased estimates of variance components for any random-model balanced design under any bootstrap sampling plan, with the focus on designs of the type typically used in generalizability theory. The results reported here are particularly helpful when the bootstrap is used to estimate standard…

  11. Bootstrapping Confidence Intervals for Robust Measures of Association.

    ERIC Educational Resources Information Center

    King, Jason E.

    A Monte Carlo simulation study was conducted to determine the bootstrap correction formula yielding the most accurate confidence intervals for robust measures of association. Confidence intervals were generated via the percentile, adjusted, BC, and BC(a) bootstrap procedures and applied to the Winsorized, percentage bend, and Pearson correlation…

  12. Using Commonly Available Software for Conducting Bootstrap Analyses.

    ERIC Educational Resources Information Center

    Fan, Xitao

    Bootstrap analysis, both for nonparametric statistical inference and for describing sample results stability and replicability, has been gaining prominence among quantitative researchers in educational and psychological research. Procedurally, however, it is often quite a challenge for quantitative researchers to implement bootstrap analysis in…

  13. Bootstrap Estimates of Standard Errors in Generalizability Theory

    ERIC Educational Resources Information Center

    Tong, Ye; Brennan, Robert L.

    2007-01-01

    Estimating standard errors of estimated variance components has long been a challenging task in generalizability theory. Researchers have speculated about the potential applicability of the bootstrap for obtaining such estimates, but they have identified problems (especially bias) in using the bootstrap. Using Brennan's bias-correcting procedures…

  14. Problems with Multivariate Normality: Can the Multivariate Bootstrap Help?

    ERIC Educational Resources Information Center

    Thompson, Bruce

    Multivariate normality is required for some statistical tests. This paper explores the implications of violating the assumption of multivariate normality and illustrates a graphical procedure for evaluating multivariate normality. The logic for using the multivariate bootstrap is presented. The multivariate bootstrap can be used when distribution…

  15. Efficient circuit triggers high-current, high-voltage pulses

    NASA Technical Reports Server (NTRS)

    Green, E. D.

    1964-01-01

    Modified circuit uses diodes to effectively disconnect the charging resistors from the circuit during the discharge cycle. Result is an efficient parallel charging, high voltage pulse modulator with low voltage rating of components.

  16. Performance of Bootstrap MCEWMA: Study case of Sukuk Musyarakah data

    NASA Astrophysics Data System (ADS)

    Safiih, L. Muhamad; Hila, Z. Nurul

    2014-07-01

    Sukuk Musyarakah is one of several instruments of Islamic bond investment in Malaysia, where the form of this sukuk is actually based on restructuring the conventional bond to become a Syariah compliant bond. The Syariah compliant is based on prohibition of any influence of usury, benefit or fixed return. Despite of prohibition, daily returns of sukuk are non-fixed return and in statistic, the data of sukuk returns are said to be a time series data which is dependent and autocorrelation distributed. This kind of data is a crucial problem whether in statistical and financing field. Returns of sukuk can be statistically viewed by its volatility, whether it has high volatility that describing the dramatically change of price and categorized it as risky bond or else. However, this crucial problem doesn't get serious attention among researcher compared to conventional bond. In this study, MCEWMA chart in Statistical Process Control (SPC) is mainly used to monitor autocorrelated data and its application on daily returns of securities investment data has gained widespread attention among statistician. However, this chart has always been influence by inaccurate estimation, whether on base model or its limit, due to produce large error and high of probability of signalling out-of-control process for false alarm study. To overcome this problem, a bootstrap approach used in this study, by hybridise it on MCEWMA base model to construct a new chart, i.e. Bootstrap MCEWMA (BMCEWMA) chart. The hybrid model, BMCEWMA, will be applied to daily returns of sukuk Musyarakah for Rantau Abang Capital Bhd. The performance of BMCEWMA base model showed that its more effective compare to real model, MCEWMA based on smaller error estimation, shorter the confidence interval and smaller false alarm. In other word, hybrid chart reduce the variability which shown by smaller error and false alarm. It concludes that the application of BMCEWMA is better than MCEWMA.

  17. Development of Large Current High Precision Pulse Power Supply

    NASA Astrophysics Data System (ADS)

    Takayanagi, Tomohiro; Koseki, Shoichiro; Kubo, Hiroshi; Katoh, Shuji; Ogawa, Shinichi

    JAEA and KEK are jointly constructing a high intensity proton accelerator project J-PARC. Its main accelerator is 3GeV synchrotron. Its injection bump magnets, especially horizontal paint bump magnets, are excited by large pulse currents. Their rated currents are over 10kA and pulse widths are about 1ms. Tracking errors are required to be less than 1%. Multiple connected two-quadrant IGBT choppers are adopted for their power supplies. Their output currents are controlled by feedback control with minor loop voltage control (m-AVR). When output current of a chopper intermits at small current, its output voltage rises up and current control becomes difficult. In this paper response of m-AVR and output voltage characteristics at current intermittent region are studied and an improved control scheme is proposed. The performance is confirmed by a test.

  18. Conformal bootstrap, universality and gravitational scattering

    NASA Astrophysics Data System (ADS)

    Jackson, Steven; McGough, Lauren; Verlinde, Herman

    2015-12-01

    We use the conformal bootstrap equations to study the non-perturbative gravitational scattering between infalling and outgoing particles in the vicinity of a black hole horizon in AdS. We focus on irrational 2D CFTs with large c and only Virasoro symmetry. The scattering process is described by the matrix element of two light operators (particles) between two heavy states (BTZ black holes). We find that the operator algebra in this regime is (i) universal and identical to that of Liouville CFT, and (ii) takes the form of an exchange algebra, specified by an R-matrix that exactly matches the scattering amplitude of 2 + 1 gravity. The R-matrix is given by a quantum 6j-symbol and the scattering phase by the volume of a hyperbolic tetrahedron. We comment on the relevance of our results to scrambling and the holographic reconstruction of the bulk physics near black hole horizons.

  19. Infant speech perception bootstraps word learning.

    PubMed

    Werker, Janet F; Yeung, H Henny

    2005-11-01

    By their first birthday, infants can understand many spoken words. Research in cognitive development has long focused on the conceptual changes that accompany word learning, but learning new words also entails perceptual sophistication. Several developmental steps are required as infants learn to segment, identify and represent the phonetic forms of spoken words, and map those word forms to different concepts. We review recent research on how infants' perceptual systems unfold in the service of word learning, from initial sensitivity for speech to the learning of language-specific sound patterns. Building on a recent theoretical framework and emerging new methodologies, we show how speech perception is crucial for word learning, and suggest that it bootstraps the development of a separate but parallel phonological system that links sound to meaning. PMID:16202639

  20. A 'bootstrapped' Teaching/Learning Procedure

    NASA Astrophysics Data System (ADS)

    Odusina Odusote, Olusogo

    1998-04-01

    Erasing preconceived antiphysics ideas by nonscience/nonmajor physics students have elicited diverse teaching methods. Introductory general physics courses at college level have been taught by a 'bootstrap' approach. A concise treatment of the syllabus by the teacher in about 1/2 of the course duration, with brief exercises and examples. Students are then introduced to real life situations - toys, home appliances, sports, disasters, etc, and the embedded physics concepts discussed. Usually this generates a feeling of deja vu, which elicits desire for more. Each application usually encompasses topics in a broad range of the syllabus. The other half of the course is used by students to work individually/groups on assigned and graded home-works and essays, with guidance from the lecture notes and the teacher/supervisor. An end of course examination shows increase in the success rate.

  1. Bootstrap performance profiles in stochastic algorithms assessment

    SciTech Connect

    Costa, Lino; Espírito Santo, Isabel A.C.P.; Oliveira, Pedro

    2015-03-10

    Optimization with stochastic algorithms has become a relevant research field. Due to its stochastic nature, its assessment is not straightforward and involves integrating accuracy and precision. Performance profiles for the mean do not show the trade-off between accuracy and precision, and parametric stochastic profiles require strong distributional assumptions and are limited to the mean performance for a large number of runs. In this work, bootstrap performance profiles are used to compare stochastic algorithms for different statistics. This technique allows the estimation of the sampling distribution of almost any statistic even with small samples. Multiple comparison profiles are presented for more than two algorithms. The advantages and drawbacks of each assessment methodology are discussed.

  2. Laser diagnostic for high current H{sup {minus}} beams

    SciTech Connect

    Shafer, R.E.

    1998-01-01

    Laser photodetachment can be used on high current, high energy H{sup {minus}} beams to carry out a wide variety of beam diagnostic measurements parasitically during normal operation, without having to operate the facility at either reduced current or duty cycle. Suitable Q-switched laser systems are small, inexpensive, and can be mounted on or near the beamline. Most of the proposed laser-based diagnostics techniques have already been demonstrated.

  3. New Pulsed Power Technology for High Current Accelerators

    SciTech Connect

    Caporaso, G J

    2002-06-27

    Recent advances in solid-state modulators now permit the design of a new class of high current accelerators. These new accelerators will be able to operate in burst mode at frequencies of several MHz with unprecedented flexibility and precision in pulse format. These new modulators can drive accelerators to high average powers that far exceed those of any other technology and can be used to enable precision beam manipulations. New insulator technology combined with novel pulse forming lines and switching may enable the construction of a new type of high gradient, high current accelerator. Recent developments in these areas will be reviewed.

  4. Motor monitoring method and apparatus using high frequency current components

    DOEpatents

    Casada, Donald A.

    1996-01-01

    A motor current analysis method and apparatus for monitoring electrical-motor-driven devices. The method and apparatus utilize high frequency portions of the motor current spectra to evaluate the condition of the electric motor and the device driven by the electric motor. The motor current signal produced as a result of an electric motor is monitored and the low frequency components of the signal are removed by a high-pass filter. The signal is then analyzed to determine the condition of the electrical motor and the driven device.

  5. Motor monitoring method and apparatus using high frequency current components

    DOEpatents

    Casada, D.A.

    1996-05-21

    A motor current analysis method and apparatus for monitoring electrical-motor-driven devices are disclosed. The method and apparatus utilize high frequency portions of the motor current spectra to evaluate the condition of the electric motor and the device driven by the electric motor. The motor current signal produced as a result of an electric motor is monitored and the low frequency components of the signal are removed by a high-pass filter. The signal is then analyzed to determine the condition of the electrical motor and the driven device. 16 figs.

  6. A high-current calibration system based on indirect comparison of current transformer and Rogowski coil

    NASA Astrophysics Data System (ADS)

    Luo, Pandian; Li, Zhenhua; Li, Hongbin; Li, Hongfeng

    2013-12-01

    The calibration of the protective current transformer (CT) is of particular importance, since its accuracy at high currents is crucial to the correct operation of the subsequent relay protection devices. Conventional calibration methods have been using an electromagnetic CT which contains an iron core as the standard CT. The iron core is big and difficult to manufacture for high-current measurement, and the serious residual magnetism of the iron core at high currents can lead to excessive measurement errors. This paper proposes a calibration system based on indirect comparison of CT and Rogowski coil, i.e. using an iron-core CT to correct the error of the Rogowski coil at low currents, which may be caused by the position of the current-carrying conductor and so on, and then using the calibrated Rogowski coil as the standard transformer at high currents for its good linearity and wide dynamic range, and there is no magnetic saturation. Since the output of the Rogowski coil needs to be integrated, an improved digital integrator based on direct current (dc) negative feedback is adopted, which can effectively eliminate the influences of temperature drift, time drift and dc offset caused by the analogue circuit. The measurement errors of each part of the calibration system have also been discussed, and the test results show that the accuracy of the system can reach up to the 0.05S Class and the uncertainties are 0.038% for ratio and 0.68‧ for phase in the range 500 A to 50 kA.

  7. Non-abelian binding energies from the lightcone bootstrap

    NASA Astrophysics Data System (ADS)

    Li, Daliang; Meltzer, David; Poland, David

    2016-02-01

    We analytically study the lightcone limit of the conformal bootstrap for 4-point functions containing scalars charged under global symmetries. We show the existence of large spin double-twist operators in various representations of the global symmetry group. We then compute their anomalous dimensions in terms of the central charge C T , current central charge C J , and the OPE coefficients of low dimension scalars. In AdS, these results correspond to the binding energy of two-particle states arising from the exchange of gravitons, gauge bosons, and light scalar fields. Using unitarity and crossing symmetry, we show that gravity is universal and attractive among different types of two-particle states, while the gauge binding energy can have either sign as determined by the representation of the two-particle state, with universal ratios fixed by the symmetry group. We apply our results to 4D {N}=1 SQCD and the 3D O( N) vector models. We also show that in a unitary CFT, if the current central charge C J stays finite when the global symmetry group becomes infinitely large, such as the N → ∞ limit of the O( N) vector model, then the theory must contain an infinite number of higher spin currents.

  8. Integrated compact optical current sensors with high sensitivity

    NASA Astrophysics Data System (ADS)

    Huang, Duanni; Pintus, Paolo; Srinivasan, Sudharsanan; Bowers, John E.

    2016-02-01

    We demonstrate a Sagnac based fiber optic current sensor using only 10cm of terbium doped fiber with a high Verdet constant of 15.5 rad/Tm at a wavelength of 1300nm. Measurements of the fiber inside a solenoid show over 40dB of open loop dynamic range as well as a minimum detectable current of 0.1mA. In order to decrease size while increasing sensitivity even further, we consider integrated magneto-optic waveguides as the sensing element. Using silicon waveguides alongside magneto-optic material such as cerium doped yttrium iron garnet (Ce:YiG), we model the Verdet constant to be as high as 10,000 rad/Tm. This improvement by three orders of magnitude shows potential for magnetooptic waveguides to be used in ultra-high sensitivity optical magnetometers and current sensors. Finally, we propose a fully integrated optical current sensor using heterogeneous integration for silicon photonics.

  9. High-accuracy current sensing circuit with current compensation technique for buck-boost converter

    NASA Astrophysics Data System (ADS)

    Rao, Yuan; Deng, Wan-Ling; Huang, Jun-Kai

    2015-03-01

    A novel on-chip current sensing circuit with current compensation technique suitable for buck-boost converter is presented in this article. The proposed technique can sense the full-range inductor current with high accuracy and high speed. It is mainly based on matched current mirror and does not require a large proportion of aspect ratio between the powerFET and the senseFET, thus it reduces the complexity of circuit design and the layout mismatch issue without decreasing the power efficiency. The circuit is fabricated with TSMC 0.25 µm 2P5M mixed-signal process. Simulation results show that the buck-boost converter can be operated at 200 kHz to 4 MHz switching frequency with an input voltage from 2.8 to 4.7 V. The output voltage is 3.6 V, and the maximum accuracy for both high and low side sensing current reaches 99% within the load current ranging from 200 to 600 mA.

  10. High frequency eddy current device for near surface material characterizations

    NASA Astrophysics Data System (ADS)

    Hillmann, S.; Heuer, H.; Meyendorf, N.

    2009-03-01

    For near surface characterization a new high frequency eddy current device was been developed. By using a measurement frequency up to 100 MHz information of near surface areas can be acquired. Depending on the investigated material high resolution depth profiles can be derived. The obtained data with the new device were compared to those obtained with a high precision impedance analyser. It could be demonstrated that the new device measures the eddy current conductivity signal in the high frequencies much better than the impedance analyser. By sweeping the frequency from 100 kHz up to 100 MHz the technique delivers a depth profile of the electrical conductivity of the material. This kind of high frequency eddy current technique can be used for quality assurance, surface contamination control or near surface material characterization e.g. microstructure and cold work influences. It can be a powerful tool to obtain information for process control or a good / bad decision in mass production processes like for example rolling, coating, and surface treatments. The big advantage of the high frequency eddy current method is that it is fast und precise. This paper presents results with a new developed prototype Eddy-Current-Device for measurement frequencies up to 100 MHz which is first time suitable in rough industrial environment and makes expensive lab network analysers unnecessary for this kind of investigations.

  11. Current Student Assessment Practices of High School Band Directors

    ERIC Educational Resources Information Center

    LaCognata, John P.

    2010-01-01

    Measurement and assessment are becoming increasingly important to all music educators. The purpose of this study was to investigate the following questions: 1) in what specific ways are current high school band directors assessing students in their ensemble classes; 2) what are high school band directors' attitudes toward the assessment process;…

  12. Lattice Effects Due to High Currents in PEP-II

    SciTech Connect

    Decker, F.-J.; Smith, H.; Turner, J.L.; /SLAC

    2005-05-09

    The very high beam currents in the PEP-II B-Factory have caused many expected and unexpected effects: Synchrotron light fans move the beam pipe and cause dispersion; higher order modes cause excessive heating, e-clouds around the positron beam blow up its beam size. Here we describe an effect where the measured dispersion of the beam in the Low Energy Ring (LER) is different at high and at low beam currents. The dispersion was iteratively lowered by making anti-symmetric orbit bumps in many sextupole duplets, checking each time with a dispersion measurement where a dispersive kick is generated. This can be done parasitically during collisions. It was a surprise when checking the low current characterization data that there is a change. Subsequent high and low current measurements confirmed the effect. One source was believed to be located far away from any synchrotron radiation in the middle of a straight (PR12), away from sextupoles and skew quadrupoles and created a dispersion wave of about 70 mm at high current while at low current it is negligible.

  13. Compact Tb doped fiber optic current sensor with high sensitivity.

    PubMed

    Huang, Duanni; Srinivasan, Sudharsanan; Bowers, John E

    2015-11-16

    A highly sensitive fiber optic current sensor using terbium doped fiber is presented. The Verdet constant of the terbium doped fiber at 1300nm is found to be 19.5μrad/A using both a polarimetric and interferometric type sensor. Measurements on a Sagnac-loop sensor using 10cm of terbium doped fiber placed inside a solenoid show over 40dB of open loop dynamic range as well as a minimum detectable current of 0.1mA. Extrapolations of our measurements show that in a practical setup with Tb fiber wrapped around a current carrying wire, the optimal configuration is a 0.5m piece of Tb fiber with a noise limit of 22mA/√Hz. This sensor is promising for current sensing applications that require high sensitivity and small size, weight, and power. PMID:26698480

  14. Electrical measurement techniques for pulsed high current electron beams

    SciTech Connect

    Struve, K.W.

    1986-04-01

    The advent of high current (1 to 100 kA), moderate energy (>10 MeV), short pulse (1 to 100 ns) electron accelerators used for charged particle beam research has motivated a need to complement standard diagnostics with development of new diagnostic techniques to measure electron beam parameters. A brief survey is given of the diagnostics for measuring beam current, position, size, energy, and emittance. While a broad scope of diagnostics will be discussed, this survey will emphasize diagnostics used on the Experimental Test Accelerator (ETA) and Advanced Test Accelerator (ATA). Focus is placed on diagnostics measuring beam current, position and size. Among the diagnostics discussed are resistive wall current monitors, B/sub theta/ loops, Rogowski coils, Faraday cups, and x-ray wire diagnostics. Operation at higher current levels also increases radiation and electromagnetic pulse interference. These difficulties and methods for circumventing them are also discussed.

  15. A resonant series counterpulse technique for high current opening switches

    SciTech Connect

    Dijk, E. van; Gelder, P. van

    1995-01-01

    A counterpulse technique for the controlled interruption of very high currents in inductive storage pulsed power systems is described and analyzed, and some simulation results of its performance are presented. The accompanying circuit comprises a pre-charged capacitor bank, connected in series with the inductive load, which has to be provided with a current pulse. Upon actuation, a resonant counterpulse current is created in the opening switch, connected in parallel with the current source and the load. In this way, the opening switch is opened at low current. A separate closing switch prevents closing of the opening switch at high voltage. Operation of the opening switch, often a mechanical switch, at low current and low voltage prevents arc erosion of the contacts. The advantage of this circuit compared to other counterpulse circuits is that the capacitor bank does not experience a voltage reversal. Electrolytic capacitors, which have a high energy density, are applied. The remaining energy of the capacitor bank after opening the opening switch, is transferred to the load. The required initial voltage of the capacitor bank is only a few hundred volts, whereas it may be above a kilovolt in other circuits. Another advantage of the method described here is that the load does not experience a pre-current, causing unwanted preheating of the load, before the resonant current is activated. At the moment, work is being performed at the Pulse Physics Laboratory to develop the resonant series counterpulse circuit for use with rail accelerators, which must be supplied with current pulses in the millisecond range up to the mega-ampere level.

  16. High temperature superconducting current leads for fusion magnet systems

    NASA Astrophysics Data System (ADS)

    Wu, J. L.; Dederer, J. T.; Singh, S. K.; Hull, J. R.

    Superconducting magnets for fusion applications typically have very high operating currents. These currents are transmitted from the room temperature power supplies to the low temperature superconducting coils by way of helium-vapor-cooled current leads. Because of the high current magnitude and the resistive characteristics associated with the normal metallic lead conductors, a substantial amount of power is dissipated in the lead. To maintain a stable operation, a high rate of helium vapor flow, generated by the boil-off of liquid helium, is required to cool the lead conductors. This helium boil-off substantially increases both the installation capacity and the operating cost of the helium refrigerator/liquefier. The boil-off of liquid helium can be significantly reduced by employing ceramic high temperature superconductors, such as Y-Ba-Cu-O, in the low temperature part of the lead conductor structure. This concept utilizes the superconducting, as well as the low thermal conductivity properties of the superconductor materials in eliminating power dissipation in part of the current lead and in inhibiting heat conduction into the liquid helium pool, resulting in reduced helium boil-off. This design concept has been conclusively demonstrated by a 2-kA current lead test model using Y-Ba-Cu-O (123) material which, although not optimized in design, has significantly reduced the rate of helium boil-off in comparison to optimized conventional leads. There appear to be no major technological barriers for scaling up this design to higher current levels for applications in fusion magnet systems or in fusion related testing activities. The theoretical basis of the current lead concept, as well as the important design and technology issues are addressed. The potential cost saving derived from employing these leads in fusion magnets is also discussed. In addition, a design concept for a 10-kA lead is presented.

  17. High-current, fast-switching transistor development

    NASA Technical Reports Server (NTRS)

    Hower, P. L.

    1981-01-01

    The design, wafer-processing techniques, and various measurements which include forward safe operating area, dc characteristics, and switching times are described for a larger-diameter (33) transistor. An improved base contact for equalizing the base-emitter voltage at high currents was developed along with an improved emitter contact preform which increases the silicon area available for current conduction. The electrical performance achieved is consistent with the proposed optimum design.

  18. High current density pulsed cathode experiments at SLAC

    SciTech Connect

    Koontz, R.; Fant, K.; Vlieks, A.

    1990-06-01

    A 1.9 microperveance beam diode has been constructed to test high current density cathodes for use in klystrons. Several standard and specially coated dispenser cathodes are being tested. Results of tests to date show average cathode current densities in excess of 25 amps/cm, and maximum electric field gradients of more than 450 kV/cm for pulses of the order of 1{mu}sec. 3 refs., 11 figs.

  19. Microstructures and critical currents in high-{Tc} superconductors

    SciTech Connect

    Suenaga, Masaki

    1998-11-01

    Microstructural defects are the primary determining factors for the values of critical-current densities in a high {Tc} superconductor after the electronic anisotropy along the a-b plane and the c-direction. A review is made to assess firstly what would be the maximum achievable critical-current density in YBa{sub 2}Cu{sub 3}O{sub 7} if nearly ideal pinning sites were introduced and secondly what types of pinning defects are currently introduced or exist in YBa{sub 2}Cu{sub 3}O{sub 7} and how effective are these in pinning vortices.

  20. Discharge current modes of high power impulse magnetron sputtering

    SciTech Connect

    Wu, Zhongzhen Xiao, Shu; Ma, Zhengyong; Cui, Suihan; Ji, Shunping; Pan, Feng; Tian, Xiubo; Fu, Ricky K. Y.; Chu, Paul K.

    2015-09-15

    Based on the production and disappearance of ions and electrons in the high power impulse magnetron sputtering plasma near the target, the expression of the discharge current is derived. Depending on the slope, six possible modes are deduced for the discharge current and the feasibility of each mode is discussed. The discharge parameters and target properties are simplified into the discharge voltage, sputtering yield, and ionization energy which mainly affect the discharge plasma. The relationship between these factors and the discharge current modes is also investigated.

  1. High current DyBCO-ROEBEL Assembled Coated Conductor (RACC)

    NASA Astrophysics Data System (ADS)

    Goldacker, W.; Nast, R.; Kotzyba, G.; Schlachter, S. I.; Frank, A.; Ringsdorf, B.; Schmidt, C.; Komarek, P.

    2006-06-01

    Low AC loss high transport current HTS cables (>1 kA) are required for application in transformers, generators and are considered for future generations of fusion reactors coils. 2G coated conductors are suitable candidates for high field application at quite high operation temperatures of 50-77 K, which is crucial precondition for economical cooling costs. As a feasibility study we present the first ROEBEL bar cable of approx. 35 cm length made from industrial DyBCO coated conductor (THEVA GmbH, Germany). Meander shaped ROEBEL strands of 4 mm width with a twist pitch of 180 mm were cut from 10 mm wide CC tapes using a specially designed tool. The strands carried in average 157 Amps/cm-width DC and were assembled to a subcable with 5 strands and a final cable with 16 strands. The 5 strand cable was tested and carried a transport current of >300 Amps DC at 77 K, equivalent to the sum of the individual strand transport critical currents. The 16 strand cable carried 500 A limited through heating effects and non sufficient stabilisation and current sharing. A pulse current load indicated a current carrying potential of >1 kA for the 16 strand cable.

  2. 'Bootstrap' Configuration for Multistage Pulse-Tube Coolers

    NASA Technical Reports Server (NTRS)

    Nguyen, Bich; Nguyen, Lauren

    2008-01-01

    A bootstrap configuration has been proposed for multistage pulse-tube coolers that, for instance, provide final-stage cooling to temperatures as low as 20 K. The bootstrap configuration supplants the conventional configuration, in which customarily the warm heat exchangers of all stages reject heat at ambient temperature. In the bootstrap configuration, the warm heat exchanger, the inertance tube, and the reservoir of each stage would be thermally anchored to the cold heat exchanger of the next warmer stage. The bootstrapped configuration is superior to the conventional setup, in some cases increasing the 20 K cooler's coefficient of performance two-fold over that of an otherwise equivalent conventional layout. The increased efficiency could translate into less power consumption, less cooler mass, and/or lower cost for a given amount of cooling.

  3. Characteristics of current filamentation in high gain photoconductive semiconductor switching

    SciTech Connect

    Zutavern, F J; Loubriel, G M; O'Malley, M W; Helgeson, W D; McLaughlin, D L; Denison, G J

    1992-01-01

    Characteristics of current filamentation are reported for high gain photoconductive semiconductor switches (PCSS). Infrared photoluminescence is used to monitor carrier recombination radiation during fast initiation of high gain switching in large (1.5 cm gap) lateral GaAs PCSS. Spatial modulation of the optical trigger, a 200--300 ps pulse width laser, is examined. Effects on the location and number of current filaments, rise time, and delay to high gain switching, minimum trigger energy, and degradation of switch contacts are presented. Implications of these measurements for the theoretical understanding and practical development of these switches are discussed. Efforts to increase current density and reduce switch size and optical trigger energy requirements are described. Results from contact development and device lifetime testing are presented and the impact of these results on practical device applications is discussed.

  4. Thyratron-choke switch for high-current nanosecond pulses

    SciTech Connect

    Vizir, V.A.; Chervyakov, V.V.; Laier, A.V.; Shubkin, N.G.

    1986-06-01

    Electric-discharge excimer lasers and high-current nanosecond accelerators, i.e., linear induction accelerators, require highcurrent nanosecond pulse (HCNP) generators with high repetition frequencies. This paper describes a design and some formulas for a thyratron-choke assembly for switching high-current nanosecond pulses, which consists of a thyratron and a single turn nonlinear choke connected in series with it; these are enclosed in a coaxial shield. The operation of a thyratronchoke assembly with a TGI1-1000/25 thyratron in switching pulses of up to 10kA with a duration of 250 nsec is studied. The current rise rate is 200 kA/usec, the pulse repetition frequency is 200 Hz, and the average switched power is 5kW.

  5. FEL POTENTIAL OF THE HIGH CURRENT ERLs AT BNL.

    SciTech Connect

    KAYRAN,D.; BEN-ZVI, I.; LITVINENKO, V.; POZDEYEV, E.; MATVEENKO, A.; SHEVCHENKO, O.; VINOKUROV, N.

    2007-08-26

    An ampere class 20 MeV superconducting Energy Recovery Linac (ERL) is under construction at Brookhaven National Laboratory (BNL) for testing concepts for high-energy electron cooling and electron-ion colliders. This ERL prototype will be used as a test bed to study issues relevant for very high current ERLs. High average current and high performance of electron beam with some additional components make this ERL an excellent driver for high power far infrared Free Electron Laser (FEL). A possibility for future up-grade to a two-pass ERL is considered. We present the status and our plans for construction and commissioning of the ERL. We discus a FEL potential based on electron beam provided by BNL ERL.

  6. Fast thermonuclear ignition with two nested high current lower voltage - high voltage lower current magnetically insulated transmission lines

    NASA Astrophysics Data System (ADS)

    Winterberg, F.

    2003-11-01

    Fast thermonuclear ignition with a high gain seems possible with two Marx generators feeding two nested magnetically insulated transmission lines, one delivering a high current lower voltage pulse for compression and confinement, and one delivering a high voltage lower current pulse for fast ignition. With an input energy conceivably as small as 100 kJ the gain can be as large as 10 3. The concept not only would be by orders of magnitude less expensive than laser compression and fast ignition schemes, but because of the large gain with a small yield also be more suitable for a thermonuclear reactor.

  7. High Current Ion Sources and Injectors for Heavy Ion Fusion

    SciTech Connect

    Kwan, Joe W.

    2005-02-15

    Heavy ion beam driven inertial fusion requires short ion beam pulses with high current and high brightness. Depending on the beam current and the number of beams in the driver system, the injector can use a large diameter surface ionization source or merge an array of small beamlets from a plasma source. In this paper, we review the scaling laws that govern the injector design and the various ion source options including the contact ionizer, the aluminosilicate source, the multicusp plasma source, and the MEVVA source.

  8. Bootstrap inference longitudinal semiparametric regression model

    NASA Astrophysics Data System (ADS)

    Pane, Rahmawati; Otok, Bambang Widjanarko; Zain, Ismaini; Budiantara, I. Nyoman

    2016-02-01

    Semiparametric regression contains two components, i.e. parametric and nonparametric component. Semiparametric regression model is represented by yt i=μ (x˜'ti,zt i)+εt i where μ (x˜'ti,zt i)=x˜'tiβ ˜+g (zt i) and yti is response variable. It is assumed to have a linear relationship with the predictor variables x˜'ti=(x1 i 1,x2 i 2,…,xT i r) . Random error εti, i = 1, …, n, t = 1, …, T is normally distributed with zero mean and variance σ2 and g(zti) is a nonparametric component. The results of this study showed that the PLS approach on longitudinal semiparametric regression models obtain estimators β˜^t=[X'H(λ)X]-1X'H(λ )y ˜ and g˜^λ(z )=M (λ )y ˜ . The result also show that bootstrap was valid on longitudinal semiparametric regression model with g^λ(b )(z ) as nonparametric component estimator.

  9. RF Input Power Couplers for High Current SRF Applications

    SciTech Connect

    Khan, V. F.; Anders, W.; Burrill, Andrew; Knobloch, Jens; Kugeler, Oliver; Neumann, Axel; Wang, Haipeng

    2014-12-01

    High current SRF technology is being explored in present day accelerator science. The bERLinPro project is presently being built at HZB to address the challenges involved in high current SRF machines with the goal of generating and accelerating a 100 mA electron beam to 50 MeV in continuous wave (cw) mode at 1.3 GHz. One of the main challenges in this project is that of handling the high input RF power required for the photo-injector as well as booster cavities where there is no energy recovery process. A high power co-axial input power coupler is being developed to be used for the photo-injector and booster cavities at the nominal beam current. The coupler is based on the KEK–cERL design and has been modified to minimise the penetration of the coupler tip in the beam pipe without compromising on beam-power coupling (Qext ~105). Herein we report on the RF design of the high power (115 kW per coupler, dual couplers per cavity) bERLinPro (BP) coupler along with initial results on thermal calculations. We summarise the RF conditioning of the TTF-III couplers (modified for cw operation) performed in the past at BESSY/HZB. A similar conditioning is envisaged in the near future for the low current SRF photo-injector and the bERLinPro main linac cryomodule.

  10. HIGH-CURRENT ERL-BASED ELECTRON COOLING FOR RHIC.

    SciTech Connect

    BEN-ZVI, I.

    2005-09-18

    The design of an electron cooler must take into account both electron beam dynamics issues as well as the electron cooling physics. Research towards high-energy electron cooling of RHIC is in its 3rd year at Brookhaven National Laboratory. The luminosity upgrade of RHIC calls for electron cooling of various stored ion beams, such as 100 GeV/A gold ions at collision energies. The necessary electron energy of 54 MeV is clearly out of reach for DC accelerator system of any kind. The high energy also necessitates a bunched beam, with a high electron bunch charge, low emittance and small energy spread. The Collider-Accelerator Department adopted the Energy Recovery Linac (ERL) for generating the high-current, high-energy and high-quality electron beam. The RHIC electron cooler ERL will use four Superconducting RF (SRF) 5-cell cavities, designed to operate at ampere-class average currents with high bunch charges. The electron source will be a superconducting, 705.75 MHz laser-photocathode RF gun, followed up by a superconducting Energy Recovery Linac (ERL). An R&D ERL is under construction to demonstrate the ERL at the unprecedented average current of 0.5 amperes. Beam dynamics performance and luminosity enhancement are described for the case of magnetized and non-magnetized electron cooling of RHIC.

  11. Structure of High Latitude Currents in Magnetosphere-Ionosphere Models

    NASA Astrophysics Data System (ADS)

    Wiltberger, M.; Rigler, E. J.; Merkin, V.; Lyon, J. G.

    2016-07-01

    Using three resolutions of the Lyon-Fedder-Mobarry global magnetosphere-ionosphere model (LFM) and the Weimer 2005 empirical model we examine the structure of the high latitude field-aligned current patterns. Each resolution was run for the entire Whole Heliosphere Interval which contained two high speed solar wind streams and modest interplanetary magnetic field strengths. Average states of the field-aligned current (FAC) patterns for 8 interplanetary magnetic field clock angle directions are computed using data from these runs. Generally speaking the patterns obtained agree well with results obtained from the Weimer 2005 computing using the solar wind and IMF conditions that correspond to each bin. As the simulation resolution increases the currents become more intense and narrow. A machine learning analysis of the FAC patterns shows that the ratio of Region 1 (R1) to Region 2 (R2) currents decreases as the simulation resolution increases. This brings the simulation results into better agreement with observational predictions and the Weimer 2005 model results. The increase in R2 current strengths also results in the cross polar cap potential (CPCP) pattern being concentrated in higher latitudes. Current-voltage relationships between the R1 and CPCP are quite similar at the higher resolution indicating the simulation is converging on a common solution. We conclude that LFM simulations are capable of reproducing the statistical features of FAC patterns.

  12. High dislocation density of tin induced by electric current

    SciTech Connect

    Liao, Yi-Han; Liang, Chien-Lung; Lin, Kwang-Lung; Wu, Albert T.

    2015-12-15

    A dislocation density of as high as 10{sup 17} /m{sup 2} in a tin strip, as revealed by high resolution transmission electron microscope, was induced by current stressing at 6.5 x 10{sup 3} A/ cm{sup 2}. The dislocations exist in terms of dislocation line, dislocation loop, and dislocation aggregates. Electron Backscattered Diffraction images reflect that the high dislocation density induced the formation of low deflection angle subgrains, high deflection angle Widmanstätten grains, and recrystallization. The recrystallization gave rise to grain refining.

  13. A new high-precision current supply for magnets

    SciTech Connect

    Wisnivesky, D. |; Lira, A.C.

    1995-08-01

    A new, high-precision, low-ripple current power supply (CPS) for magnets, based on a combination of an SCR converter and a single transistor switched mode power supply (SMPS) is described. The load power is primarily supplied by the SCR converter. The SMPS handles only a small fraction of the load power, and also, what is more significant, a very small part of the load current. In this paper, the topology and operating principle of the new power supply is discussed. A CPS, rated at 200 A at 45 V, was constructed and tested. The power supply energizes a family of quadrupole magnets at the Brazilian Synchrotron Light Source--LNLS. Making use of the current limit modulation (CLM) control method, magnetic field variations at full current are 5 ppm, with only 8 A passing through the switching transistor. The design and performance of the power supply under different operating conditions ar described. Variations of the proposed topology, suitable for high-current and high-voltage loads, are also discussed.

  14. High latitude equivalent current systems during extremely quiet times

    NASA Technical Reports Server (NTRS)

    Rostoker, G.; Chen, A. J.; Yasuhara, F.; Akasofu, S.-I.; Kawasaki, K.

    1974-01-01

    The magnetic perturbation patterns in the polar cap and auroral zone regions are obtained for extremely quiet days using two different techniques. It is shown that the form of the equivalent current flow pattern is extremely sensitive to the level of quietness, and that even so-called quiet days are at times disturbed by substorm activity. Certain characteristic equivalent flow not typically observed during substorms is noted in the polar cap, and this flow appears to be associated with effects of polar cap perturbations discussed by Svalgaard (1973). A region of equatorward flow at high latitudes near the dawn meridian, appears to be Hall current driven by an eastward electric field. The dayside sub-auroral zone is dominated by the Sq-current system, while the nightside shows no significant current flow in the absence of substorm activity.

  15. Rf Gun with High-Current Density Field Emission Cathode

    SciTech Connect

    Jay L. Hirshfield

    2005-12-19

    High current-density field emission from an array of carbon nanotubes, with field-emission-transistor control, and with secondary electron channel multiplication in a ceramic facing structure, have been combined in a cold cathode for rf guns and diode guns. Electrodynamic and space-charge flow simulations were conducted to specify the cathode configuration and range of emission current density from the field emission cold cathode. Design of this cathode has been made for installation and testing in an existing S-band 2-1/2 cell rf gun. With emission control and modulation, and with current density in the range of 0.1-1 kA/cm2, this cathode could provide performance and long-life not enjoyed by other currently-available cathodes

  16. Design considerations for high-current superconducting ion linacs

    SciTech Connect

    Delayen, J.R.; Bohn, C.L.; Micklich, B.J.; Roche, C.T.; Sagalovsky, L.

    1993-08-01

    Superconducting linacs may be a viable option for high-current applications such as fusion materials irradiation testing, spallation neutron source, transmutation of radioactive waste, tritium production, and energy production. These linacs must run reliably for many years and allow easy routine maintenance. Superconducting cavities operate efficiently with high cw gradients, properties which help to reduce operating and capital costs, respectively. However, cost-effectiveness is not the sole consideration in these applications. For example, beam impingement must be essentially eliminated to prevent unsafe radioactivation of the accelerating structures, and thus large apertures are needed through which to pass the beam. Because of their high efficiency, superconducting cavities can be designed with very large bore apertures, thereby reducing the effect of beam impingement. Key aspects of high-current cw superconducting linac designs are explored in this context.

  17. Focusing of high-current laser-driven ion beams

    NASA Astrophysics Data System (ADS)

    Badziak, J.; Jabłoński, S.

    2007-04-01

    Using a two-dimensional relativistic hydrodynamic code, it is shown that a dense high-current ion beam driven by a short-pulse laser can be effectively focused by curving the target front surface. The focused beam parameters essentially depend on the density gradient scale length of the preplasma Ln and the surface curvature radius RT. When Ln⩽0.5λL (λL is the laser wavelength) and RT is comparable with the laser beam aperture dL, a significant fraction of the accelerated ions is focused on a spot much smaller than dL, which results in a considerable increase in the ion fluence and current density. Using high-contrast multipetawatt picosecond laser pulses of relativistic intensity (˜1020W/cm2), focused ion (proton) current densities approaching those required for fast ignition of DT fuel seem to be feasible.

  18. High-quality lossy compression: current and future trends

    NASA Astrophysics Data System (ADS)

    McLaughlin, Steven W.

    1995-01-01

    This paper is concerned with current and future trends in the lossy compression of real sources such as imagery, video, speech and music. We put all lossy compression schemes into common framework where each can be characterized in terms of three well-defined advantages: cell shape, region shape and memory advantages. We concentrate on image compression and discuss how new entropy constrained trellis-based compressors achieve cell- shape, region-shape and memory gain resulting in high fidelity and high compression.

  19. A design approach for superconducting high-current ion linacs

    SciTech Connect

    Garnett, R.W.; Wangler, T.P.

    1996-09-01

    An approach for designing superconducting high-current ion linacs is described. This approach takes advantage of the large velocity acceptance of high-gradient cavities with a small number of cells. It is well known that this feature leads to a linac design with great operational flexibility. Algorithms which have been incorporated into a design code and a beam dynamics code are discussed. Simulation results using these algorithms are also presented.

  20. 59. View of high voltage (4160 volts alternating current) electric ...

    Library of Congress Historic Buildings Survey, Historic Engineering Record, Historic Landscapes Survey

    59. View of high voltage (4160 volts alternating current) electric load center and motor control center at mezzanine level in transmitter building no. 102. - Clear Air Force Station, Ballistic Missile Early Warning System Site II, One mile west of mile marker 293.5 on Parks Highway, 5 miles southwest of Anderson, Anderson, Denali Borough, AK

  1. Current isolating epitaxial buffer layers for high voltage photodiode array

    DOEpatents

    Morse, Jeffrey D.; Cooper, Gregory A.

    2002-01-01

    An array of photodiodes in series on a common semi-insulating substrate has a non-conductive buffer layer between the photodiodes and the semi-insulating substrate. The buffer layer reduces current injection leakage between the photodiodes of the array and allows optical energy to be converted to high voltage electrical energy.

  2. A review of high beam current RFQ accelerators and funnels

    SciTech Connect

    Schneider, J.D.

    1998-12-01

    The authors review the design features of several high-current (> 20-mA) and high-power (> 1-mA average) proton or H{sup {minus}} injectors, RFQs, and funnels. They include a summary of observed performance and will mention a sampling of new designs, including the proposed incorporation of beam choppers. Different programs and organizations have chosen to build the RFQ in diverse configurations. Although the majority of RFQs are either low-current or very low duty-factor, several versions have included high-current and/or high-power designs for either protons or H{sup {minus}} ions. The challenges of cooling, handling high space-charge forces, and coupling with injectors and subsequent accelerators are significant. In all instances, beam tests were a valuable learning experience, because not always did these as-built structures perform exactly as predicted by the earlier design codes. They summarize the key operational parameters, indicate what was achieved, and highlight what was learned in these tests. Based on this generally good performance and high promise, even more challenging designs are being considered for new applications that include even higher powers, beam funnels and choppers.

  3. Simultaneous radio and satellite optical measurements of high-altitude sprite current and lightning continuing current

    NASA Astrophysics Data System (ADS)

    Cummer, Steven A.; Frey, Harald U.; Mende, Stephen B.; Hsu, Rue-Ron; Su, Han-Tzong; Chen, Alfred B.; Fukunishi, Hiroshi; Takahashi, Yukihiro

    2006-10-01

    We report coordinated measurements of lightning and resulting sprites using ground-level magnetic field sensors (<0.1 Hz to 30 kHz bandwidth) and the ISUAL instrument on the FORMOSAT-2 satellite. These measurements demonstrate two distinct elements of the connection between the radio and optical emissions. First, the quasi-static magnetic field signature is tightly correlated with the low-altitude optical emissions from the lightning flash, indicating that this radio signature is produced by continuing lightning current. Second, in two events with strong postreturn stroke extremely low frequency (ELF) magnetic pulses, the optical emissions demonstrate that there are no observable intensifications of low-altitude optical emissions associated with those pulses. If they were produced by a lightning process, such as an M-component, the connection between optical emissions and current seen in the return stroke and the continuing current suggests they should be visible. However, as has been observed previously, the bright, high-altitude optical emissions associated with the sprite are simultaneous with the ELF pulse. This is strong evidence that these ELF pulses originate in high-altitude electric current in the sprite itself and are not produced by a low-altitude lightning process.

  4. Current halo structures in high-current plasma experiments: {theta}-pinch

    SciTech Connect

    Matveev, Yu. V.

    2007-03-15

    Experimental data elucidating mechanisms for halo formation in {theta}-pinch discharges are presented and discussed. The experiments were performed with different gases (H{sub 2}, D{sub 2}, He, and Ar) in a theta-pinch device with a porcelain vacuum chamber and an excitation coil 15 cm in diameter and 30 cm in length. The stored energy, the current in the excitation coil, and the current half-period were W = 10 kJ, I = 400 kA, and T/2 = 14 {mu}s, respectively. It is found that the plasma rings (halos) surrounding the pinch core arise as a result of coaxial pinch stratification due to both the excitation of closed currents (inductons) inside the pinch and the radial convergence of the plasma current sheaths produced after the explosion of T-layers formed near the wall in the initial stage of the discharge. It is concluded that halo structures observed in pinches, tokamaks, and other high-current devices used in controlled fusion research have the same nature.

  5. Status of high transport current ROEBEL assembled coated conductor cables

    NASA Astrophysics Data System (ADS)

    Goldacker, Wilfried; Frank, Antje; Kudymow, Andrej; Heller, Reinhard; Kling, Andrea; Terzieva, Stanimira; Schmidt, Curt

    2009-03-01

    Assembling coated conductors (CC) into flat ROEBEL bars (RACC cable) was introduced in 2005 by the authors as a practicable method of reaching high transport currents in a low AC loss cable, which is a cable design suited for application in windings. The transport current of 1.02 kA in self-field at 77 K achieved so far, however, is still too low for several applications in electrical machinery such as larger transformers and generators/motors. A new cable concept for further increased currents was presented just recently. The goal of the new design was primarily to demonstrate the possibility of strongly increased transport currents without changing the important cable features for low AC losses. such as, for example, the transposition length of the strands. We present detailed investigations of the properties of this progressed cable design, which has threefold layered strands, an unchanged transposition pitch of 18.8 cm and finally the application of 45 coated conductors in the cable. A 1.1 m long sample (equivalent to six transposition lengths) was prepared from commercial Cu stabilized coated conductors purchased from Superpower. The measured new record DC transport current of the cable was 2628 A at 77 K in self-field (5 µV cm-1 criterion). The use of three slightly different current carrying batches of strand material (± 10%) was a special feature of the cable, which allowed for interesting investigations of current redistribution effects in the cable, by monitoring a representative strand of each batch during the critical current measurement. Although current redistribution effects showed a complex situation, the behaviour of the cable was found to be absolutely stable under all operational conditions, even above the critical current. The high self-field degradation of the critical current reached the order of 60% at 77 K, and could be modelled satisfactory with calculations based on a proven Biot-Savart-law approach, adapted to the specific boundary

  6. Fiber optic current monitor for high-voltage applications

    DOEpatents

    Renda, G.F.

    1992-04-21

    A current monitor which derives its power from the conductor being measured for bidirectionally measuring the magnitude of current (from DC to above 50 khz) flowing through a conductor across which a relatively high level DC voltage is applied, includes a pair of identical transmitter modules connected in opposite polarity to one another in series with the conductor being monitored, for producing from one module a first light signal having an intensity directly proportional to the magnitude of current flowing in one direction through the conductor during one period of time, and from the other module a second light signal having an intensity directly proportional to the magnitude of current flowing in the opposite direction through the conductor during another period of time, and a receiver located in a safe area remote from the high voltage area for receiving the first and second light signals, and converting the same to first and second voltage signals having levels indicative of the magnitude of current being measured at a given time. 6 figs.

  7. Fiber optic current monitor for high-voltage applications

    DOEpatents

    Renda, George F.

    1992-01-01

    A current monitor which derives its power from the conductor being measured for bidirectionally measuring the magnitude of current (from DC to above 50 khz) flowing through a conductor across which a relatively high level DC voltage is applied, includes a pair of identical transmitter modules connected in opposite polarity to one another in series with the conductor being monitored, for producing from one module a first light signal having an intensity directly proportional to the magnitude of current flowing in one direction through the conductor during one period of time, and from the other module a second light signal having an intensity directly proportional to the magnitude of current flowing in the opposite direction through the conductor during another period of time, and a receiver located in a safe area remote from the high voltage area for receiving the first and second light signals, and converting the same to first and second voltage signals having levels indicative of the magnitude of current being measured at a given time.

  8. Transient analysis and burnout of high temperature superconducting current leads

    NASA Astrophysics Data System (ADS)

    Seol, S. Y.; Hull, J. R.

    The transient behaviour of high-temperature superconductor (HTS) current leads operated between liquid helium and liquid nitrogen temperatures is analysed for burnout conditions upon transition of the HTS into the normal state. Leads composed of HTS only and of HTS sheathed by pure silver or silver alloy are investigated numerically for temperature-dependent properties and analytically for temperature-independent properties. For lower values of shape factor (current density times length), the lead can be operated indefinitely without burnout. At higher values of shape factor, the lead reaches burnout in a finite time. With high current densities, the leads heat adiabatically. For a fixed shape factor, low current densities are desired to achieve long burnout times. To achieve a low helium boil-off rate in the superconducting state without danger of burnout, there is a preferred temperature dependence for thermal conductivity, and silver alloy sheaths are preferred to pure silver sheaths. However, for a given current density, pure silver sheaths take longer to burn out.

  9. Bootstrapping least-squares estimates in biochemical reaction networks.

    PubMed

    Linder, Daniel F; Rempała, Grzegorz A

    2015-01-01

    The paper proposes new computational methods of computing confidence bounds for the least-squares estimates (LSEs) of rate constants in mass action biochemical reaction network and stochastic epidemic models. Such LSEs are obtained by fitting the set of deterministic ordinary differential equations (ODEs), corresponding to the large-volume limit of a reaction network, to network's partially observed trajectory treated as a continuous-time, pure jump Markov process. In the large-volume limit the LSEs are asymptotically Gaussian, but their limiting covariance structure is complicated since it is described by a set of nonlinear ODEs which are often ill-conditioned and numerically unstable. The current paper considers two bootstrap Monte-Carlo procedures, based on the diffusion and linear noise approximations for pure jump processes, which allow one to avoid solving the limiting covariance ODEs. The results are illustrated with both in-silico and real data examples from the LINE 1 gene retrotranscription model and compared with those obtained using other methods. PMID:25898769

  10. Bootstrapping Least Squares Estimates in Biochemical Reaction Networks

    PubMed Central

    Linder, Daniel F.

    2015-01-01

    The paper proposes new computational methods of computing confidence bounds for the least squares estimates (LSEs) of rate constants in mass-action biochemical reaction network and stochastic epidemic models. Such LSEs are obtained by fitting the set of deterministic ordinary differential equations (ODEs), corresponding to the large volume limit of a reaction network, to network’s partially observed trajectory treated as a continuous-time, pure jump Markov process. In the large volume limit the LSEs are asymptotically Gaussian, but their limiting covariance structure is complicated since it is described by a set of nonlinear ODEs which are often ill-conditioned and numerically unstable. The current paper considers two bootstrap Monte-Carlo procedures, based on the diffusion and linear noise approximations for pure jump processes, which allow one to avoid solving the limiting covariance ODEs. The results are illustrated with both in-silico and real data examples from the LINE 1 gene retrotranscription model and compared with those obtained using other methods. PMID:25898769

  11. More on analytic bootstrap for O( N) models

    NASA Astrophysics Data System (ADS)

    Dey, Parijat; Kaviraj, Apratim; Sen, Kallol

    2016-06-01

    This note is an extension of a recent work on the analytical bootstrapping of O( N) models. An additonal feature of the O( N) model is that the OPE contains trace and antisymmetric operators apart from the symmetric-traceless objects appearing in the OPE of the singlet sector. This in addition to the stress tensor ( T μν ) and the ϕ i ϕ i scalar, we also have other minimal twist operators as the spin-1 current J μ and the symmetric-traceless scalar in the case of O( N). We determine the effect of these additional objects on the anomalous dimensions of the corresponding trace, symmetric-traceless and antisymmetric operators in the large spin sector of the O( N) model, in the limit when the spin is much larger than the twist. As an observation, we also verified that the leading order results for the large spin sector from the ɛ-expansion are an exact match with our n = 0 case. A plausible holographic setup for the special case when N = 2 is also mentioned which mimics the calculation in the CFT.

  12. Magnetohydrodynamic transport equations for high current propagation in overdense plasmas

    NASA Astrophysics Data System (ADS)

    Zha, Xuejun; Wang, Yan; Han, Shensheng

    2008-10-01

    In this paper, it is presented that the full set of magnetohydrodynamic (MHD) equations which may be used to study the transport mechanism for the high current relativistic electron beams (current intensity 100˜1000 MA, electron energy ˜ MeV) by the laser in background overdense plasma (1022-1026cm). The transport of intense relativistic electron beams (REB) has two basic characteristics: the first is that the forward current is a giga-ampere and the forward current density is about 10 14 A/cm 2 which exceeds the Alfven current limit [M. Tabak et al., Phys. Plasmas 12, 057305 (2005)]; the second is the propagation of the intense forward current in the presence of a background overdense plasma which may have very strong MHD instability. The transport problem can be solved by MHD equations that describe the dynamic, self consistent collisional and electromagnetic interaction of REB with overdense hydrogenic plasmas or arbitrary atomic-number plasmas. The full set of equations consists of the REB transport equations which are coupled to Maxwell's equations through the electromagnetic-field terms and two-fluid plasma dynamical equations for the background overdense plasma through the collision term.

  13. Neutral current neutrino-nucleus interactions at high energies

    SciTech Connect

    Gay Ducati, M. B.; Machado, M. M.; Machado, M. V. T.

    2009-04-01

    We present a QCD analysis of the neutral current (NC) neutrino-nucleus interaction at the small-x region using the color dipole formalism. This phenomenological approach is quite successful in describing experimental results in deep inelastic ep scattering and charged current neutrino-nucleus interactions at high energies. We present theoretical predictions for the relevant structure functions and the corresponding implications for the total NC neutrino cross section. It is shown that at small x, the NC boson-nucleon cross section should exhibit the geometric scaling property that has important consequences for ultrahigh energy neutrino phenomenology.

  14. A Bootstrap Approach to Martian Manufacturing

    NASA Technical Reports Server (NTRS)

    Dorais, Gregory A.

    2004-01-01

    In-Situ Resource Utilization (ISRU) is an essential element of any affordable strategy for a sustained human presence on Mars. Ideally, Martian habitats would be extremely massive to allow plenty of room to comfortably live and work, as well as to protect the occupants from the environment. Moreover, transportation and power generation systems would also require significant mass if affordable. For our approach to ISRU, we use the industrialization of the U.S. as a metaphor. The 19th century started with small blacksmith shops and ended with massive steel mills primarily accomplished by blacksmiths increasing their production capacity and product size to create larger shops, which produced small mills, which produced the large steel mills that industrialized the country. Most of the mass of a steel mill is comprised of steel in simple shapes, which are produced and repaired with few pieces of equipment also mostly made of steel in basic shapes. Due to this simplicity, we expect that the 19th century manufacturing growth can be repeated on Mars in the 21st century using robots as the primary labor force. We suggest a "bootstrap" approach to manufacturing on Mars that uses a "seed" manufacturing system that uses regolith to create major structural components and spare parts. The regolith would be melted, foamed, and sintered as needed to fabricate parts using casting and solid freeform fabrication techniques. Complex components, such as electronics, would be brought from Earth and integrated as needed. These parts would be assembled to create additional manufacturing systems, which can be both more capable and higher capacity. These subsequent manufacturing systems could refine vast amounts of raw materials to create large components, as well as assemble equipment, habitats, pressure vessels, cranes, pipelines, railways, trains, power generation stations, and other facilities needed to economically maintain a sustained human presence on Mars.

  15. Assessment of bootstrap resampling performance for PET data.

    PubMed

    Markiewicz, P J; Reader, A J; Matthews, J C

    2015-01-01

    Bootstrap resampling has been successfully used for estimation of statistical uncertainty of parameters such as tissue metabolism, blood flow or displacement fields for image registration. The performance of bootstrap resampling as applied to PET list-mode data of the human brain and dedicated phantoms is assessed in a novel and systematic way such that: (1) the assessment is carried out in two resampling stages: the 'real world' stage where multiple reference datasets of varying statistical level are generated and the 'bootstrap world' stage where corresponding bootstrap replicates are generated from the reference datasets. (2) All resampled datasets were reconstructed yielding images from which multiple voxel and regions of interest (ROI) values were extracted to form corresponding distributions between the two stages. (3) The difference between the distributions from both stages was quantified using the Jensen-Shannon divergence and the first four moments. It was found that the bootstrap distributions are consistently different to the real world distributions across the statistical levels. The difference was explained by a shift in the mean (up to 33% for voxels and 14% for ROIs) being proportional to the inverse square root of the statistical level (number of counts). Other moments were well replicated by the bootstrap although for very low statistical levels the estimation of the variance was poor. Therefore, the bootstrap method should be used with care when estimating systematic errors (bias) and variance when very low statistical levels are present such as in early time frames of dynamic acquisitions, when the underlying population may not be sufficiently represented. PMID:25490178

  16. Bootstrap-based intercomparison of regional flood estimation procedures

    SciTech Connect

    Ouarda, T.B.M.J.; Ashkar, F.

    1995-12-31

    The present paper describes a methodology, based on the regional bootstrap procedure, for the intercomparison of some of the most frequently used regional flood frequency estimation models. The results of the application of this methodology, with Canadian flood data, for comparing the different regional estimation models are also presented. A regional model C{sub ij} = [DRH]{sub i} x [MER]{sub j} (i=1,...,L ; j=1,...,M) is obtained by combining a methodology for the delineation of homogeneous regions [DRH]{sub i} and a regional estimation method [MER]{sub j}. These regional models are compared with respect to their ability to provide reliable estimates of certain flood quantiles (floods with return periods of 10 and 100 years). Two types of bootstrapping have been applied within the framework of this project: the classical scalar bootstrap used in at-site estimation, and the vector (or regional) bootstrap procedure applied in the intercomparison between the different regional models. This last technique is illustrated with an example, and all the details of the procedure are presented. The performance indices that were employed for the purpose of the intercomparison are also detailed. One important feature of regional bootstrapping is that it preserves the regional dependence structure between annual flood values at the different sites of an {open_quote}homogeneous{close_quote} region. Three versions of the regional bootstrap algorithm are presented and applied to the three cases of estimation-regional estimation for ungauged sites, regional estimation for gauged sites with a short record, and at-site estimation. It will be shown how at-site estimates can be used as basis for the intercomparison between the regional models. Results of the application of the bootstrap procedure, with flood data from the Provinces of Quebec and Ontario, are presented in the final section of the paper.

  17. Assessment of bootstrap resampling performance for PET data

    NASA Astrophysics Data System (ADS)

    Markiewicz, P. J.; Reader, A. J.; Matthews, J. C.

    2015-01-01

    Bootstrap resampling has been successfully used for estimation of statistical uncertainty of parameters such as tissue metabolism, blood flow or displacement fields for image registration. The performance of bootstrap resampling as applied to PET list-mode data of the human brain and dedicated phantoms is assessed in a novel and systematic way such that: (1) the assessment is carried out in two resampling stages: the ‘real world’ stage where multiple reference datasets of varying statistical level are generated and the ‘bootstrap world’ stage where corresponding bootstrap replicates are generated from the reference datasets. (2) All resampled datasets were reconstructed yielding images from which multiple voxel and regions of interest (ROI) values were extracted to form corresponding distributions between the two stages. (3) The difference between the distributions from both stages was quantified using the Jensen-Shannon divergence and the first four moments. It was found that the bootstrap distributions are consistently different to the real world distributions across the statistical levels. The difference was explained by a shift in the mean (up to 33% for voxels and 14% for ROIs) being proportional to the inverse square root of the statistical level (number of counts). Other moments were well replicated by the bootstrap although for very low statistical levels the estimation of the variance was poor. Therefore, the bootstrap method should be used with care when estimating systematic errors (bias) and variance when very low statistical levels are present such as in early time frames of dynamic acquisitions, when the underlying population may not be sufficiently represented.

  18. High-Current Energy-Recovering Electron Linacs

    SciTech Connect

    Nikolitsa Merminga; David Douglas; Geoffrey Krafft

    2003-12-01

    The use of energy recovery provides a potentially powerful new paradigm for generation of the charged particle beams used in synchrotron radiation sources, high-energy electron cooling devices, electron-ion colliders, and other applications in photon science and nuclear and high-energy physics. Energy-recovering electron linear accelerators (called energy-recovering linacs, or ERLs) share many characteristics with ordinary linacs, as their six-dimensional beam phase space is largely determined by electron source properties. However, in common with classic storage rings, ERLs possess a high average-current-carrying capability enabled by the energy recovery process, and thus promise similar efficiencies. The authors discuss the concept of energy recovery and its technical challenges and describe the Jefferson Lab (JLab) Infrared Demonstration Free-Electron Laser (IR Demo FEL), originally driven by a 3548-MeV, 5-mA superconducting radiofrequency (srf) ERL, which provided the most substantial demonstration of energy recovery to date: a beam of 250 kW average power. They present an overview of envisioned ERL applications and a development path to achieving the required performance. They use experimental data obtained at the JLab IR Demo FEL and recent experimental results from CEBAF-ERL GeV-scale, comparatively low-current energy-recovery demonstration at JLab to evaluate the feasibility of the new applications of high-current ERLs, as well as ERLs' limitations and ultimate performance.

  19. Drift distance survey in DPIS for high current beam production

    SciTech Connect

    Kanesue,T.; Okamura, M.; Kondo, K.; Tamura, J.; Kashiwagi, H.; Zhang, Z.

    2009-09-20

    In a laser ion source, plasma drift distance is one of the most important design parameters. Ion current density and beam pulse width are defined by plasma drift distance between laser target and beam extraction position. In direct plasma injection scheme (DPIS), which uses a laser ion source and Radio Frequency Quadrupole (RFQ) linac, we can apply relatively higher electric field at the beam extraction due to the unique shape of a positively biased electrode. However, when we aim at very high current acceleration like several tens of mA, we observed mismatched beam extraction conditions. We tested three different ion current at ion extraction region by changing plasma drift distance to study better extraction condition. In this experiment, C{sup 6+} beam was accelerated. We confirmed that the matching condition can be improved by controlling plasma drift distance.

  20. TOPICAL REVIEW: Current status of high-Tc wire

    NASA Astrophysics Data System (ADS)

    Vase, Per; Flükiger, René; Leghissa, Martino; Glowacki, Bartek

    2000-07-01

    This paper is the result of the work of a SCENET (The European Network for Superconductivity) material working group's efforts on giving values for present and future expected performance of high-temperature superconducting (HTS) wires and tapes. The purpose of the work is to give input to the design of HTS applications like power cables, motors, current leads, magnets, transformers and generators. The current status performance values are supposed to be used in the design of today's prototypes and the future values for the design of fully commercial HTS applications of the future. We focus on what is expected to be the relevant parameters for HTS application design. The most successful technique by far for making HTS tapes has been on the (Bi, Pb)2Sr2Ca2Cu3Ox (Bi-2223) material by the powder-in-tube (PIT) technique and this paper therefore focuses on giving the current status and expected future performance for Bi-2223 tapes.

  1. High current density, cryogenically cooled sliding electrical joint development

    SciTech Connect

    Murray, H.

    1986-09-01

    In the past two years, conceptual designs for fusion energy research devices have focussed on compact, high magnetic field configurations. The concept of sliding electrical joints in the large magnets allows a number of technical advantages including enhanced mechanical integrity, remote maintainability, and reduced project cost. The rationale for sliding electrical joints is presented. The conceptual configuration for this generation of experimental devices is highlghted by an approx. 20 T toroidal field magnet with a flat top conductor current of approx. 300 kA and a sliding electrical joint with a gross current density of approx. 0.6 kA/cm/sup 2/. A numerical model was used to map the conductor current distribution as a function of time and position in the conductor. A series of electrical joint arrangements were produced against the system code envelope constraints for a specific version of the Ignition Studies Project (ISP) which is designated as 1025.

  2. MHD Modeling of Conductors at Ultra-High Current Density

    SciTech Connect

    ROSENTHAL,STEPHEN E.; DESJARLAIS,MICHAEL P.; SPIELMAN,RICK B.; STYGAR,WILLIAM A.; ASAY,JAMES R.; DOUGLAS,M.R.; HALL,C.A.; FRESE,M.H.; MORSE,R.L.; REISMAN,D.B.

    2000-08-29

    In conjunction with ongoing high-current experiments on Sandia National Laboratories' Z accelerator, the authors have revisited a problem first described in detail by Heinz Knoepfel. Unlike the 1-Tesla MITLs of pulsed power accelerators used to produce intense particle beams, Z's disc transmission line (downstream of the current addition) is in a 100--1,200 Tesla regime, so its conductors cannot be modeled simply as static infinite conductivity boundaries. Using the MHD code MACH2 they have been investigating the conductor hydrodynamics, characterizing the joule heating, magnetic field diffusion, and material deformation, pressure, and velocity over a range of current densities, current rise-times, and conductor materials. Three purposes of this work are (1) to quantify power flow losses owing to ultra-high magnetic fields, (2) to model the response of VISAR diagnostic samples in various configurations on Z, and (3) to incorporate the most appropriate equation of state and conductivity models into the MHD computations. Certain features are strongly dependent on the details of the conductivity model.

  3. High current pulse testing for ground rod integrity

    NASA Technical Reports Server (NTRS)

    Walko, Lawrence C.

    1991-01-01

    A test technique was developed to assess various grounding system concepts used for mobile facilities. The test technique involves applying a high current pulse to the grounding system with the proper waveshape and magnitude to simulate a lightning return stroke. Of concern were the step voltages present along the ground near the point of lightning strike. Step voltage is equated to how fast the current pulse is dissipated by the grounding system. The applied current pulse was produced by a high current capacitor bank with a total energy content of 80 kilojoules. A series of pulse tests were performed on two types of mobile facility grounding systems. One system consisted of an array of four 10 foot copper clad steel ground rods connected by 1/0 gauge wire. The other system was an array of 10 inch long tapered ground rods, strung on stainless steel cable. The focus here is on the pulse test technique used and its relevance to actual lightning strike conditions.

  4. Current collection by high voltage anodes in near ionospheric conditions

    NASA Technical Reports Server (NTRS)

    Antoniades, John A.; Greaves, Rod G.; Boyd, D. A.; Ellis, R.

    1990-01-01

    The authors experimentally identified three distinct regimes with large differences in current collection in the presence of neutrals and weak magnetic fields. In magnetic field/anode voltage space the three regions are separated by very sharp transition boundaries. The authors performed a series of laboratory experiments to study the dependence of the region boundaries on several parameters, such as the ambient neutral density, plasma density, magnetic field strength, applied anode voltage, voltage pulsewidth, chamber material, chamber size and anode radius. The three observed regimes are: classical magnetic field limited collection; stable medium current toroidal discharge; and large scale, high current space glow discharge. There is as much as several orders of magnitude of difference in the amount of collected current upon any boundary crossing, particularly if one enters the space glow regime. They measured some of the properties of the plasma generated by the breakdown that is present in regimes II and III in the vicinity of the anode including the sheath modified electrostatic potential, I-V characteristics at high voltage as well as the local plasma density.

  5. Testing of full size high current superconductors in SULTAN III

    SciTech Connect

    Blau, B.; Rohleder, I.; Vecsey, G.

    1994-07-01

    The high field test facility SULTAN III in operation at PSI/Switzerland tests full size industrial prototype superconductors for fusion applications such as ITER. The facility provides a background field of up to 11 T over a length of 58 cm. A 50 kA superconducting transformer works as a very low noise current source which allows a criterion of 0.1 {mu}V/cm to determine the superconducting to normal transition. Three 3.6 m long cable-in-conduit conductors based on both NbTi and Nb{sub 3}Sn, developed by different manufacturers, suitable for the central solenoid and toroidal field coils of ITER, have been tested so far. This paper presents the results of extensive measurements of critical current and current sharing temperature of the Nb{sub 3}Sn conductors in the 8--11 T range for temperatures between 4.5 K and 11 K Voltage versus current curves have been analyzed with respect to the n value. The manufacturing of a high quality joint between two Nb{sub 3}Sn conductors after heat treatment is reported, together with some measurements of the joint resistance.

  6. Dynamics of a high-current relativistic electron beam

    SciTech Connect

    Strelkov, P. S.; Tarakanov, V. P.; Ivanov, I. E. Shumeiko, D. V.

    2015-06-15

    The dynamics of a high-current relativistic electron beam is studied experimentally and by numerical simulation. The beam is formed in a magnetically insulated diode with a transverse-blade explosive-emission cathode. It is found experimentally that the radius of a 500-keV beam with a current of 2 kA and duration of 500 ns decreases with time during the beam current pulse. The same effect was observed in numerical simulations. This effect is explained by a change in the shape of the cathode plasma during the current pulse, which, according to calculations, leads to a change in the beam parameters, such as the electron pitch angle and the spread over the longitudinal electron momentum. These parameters are hard to measure experimentally; however, the time evolution of the radial profile of the beam current density, which can be measured reliably, coincides with the simulation results. This allows one to expect that the behavior of the other beam parameters also agrees with numerical simulations.

  7. Characterization of a High Current, Long Life Hollow Cathode

    NASA Technical Reports Server (NTRS)

    VanNoord, Jonathan L.; Kamhawi, Hani; McEwen, Heather K.

    2006-01-01

    The advent of higher power spacecraft makes it desirable to use higher power electric propulsion thrusters such as ion thrusters or Hall thrusters. Higher power thrusters require cathodes that are capable of producing higher currents. One application of these higher power spacecraft is deep-space missions that require tens of thousands of hours of operation. This paper presents the approach used to design a high current, long life hollow cathode assembly for that application, along with test results from the corresponding hollow cathode. The design approach used for the candidate hollow cathode was to reduce the temperature gradient in the insert, yielding a lower peak temperature and allowing current to be produced more uniformly along the insert. The lower temperatures result in a hollow cathode with increased life. The hollow cathode designed was successfully operated at currents from 10 to 60 A with flow rates of 5 to 19 sccm with a maximum orifice temperature measured of 1100 C. Data including discharge voltage, keeper voltage, discharge current, flow rates, and orifice plate temperatures are presented.

  8. Electron beam current in high power cylindrical diode

    SciTech Connect

    Roy, Amitava; Menon, R.; Mitra, S.; Sharma, Vishnu; Singh, S. K.; Nagesh, K. V.; Chakravarthy, D. P.

    2010-01-15

    Intense electron beam generation studies were carried out in high power cylindrical diode to investigate the effect of the accelerating gap and diode voltage on the electron beam current. The diode voltage has been varied from 130 to 356 kV, whereas the current density has been varied from 87 to 391 A/cm{sup 2} with 100 ns pulse duration. The experimentally obtained electron beam current in the cylindrical diode has been compared with the Langmuir-Blodgett law. It was found that the diode current can be explained by a model of anode and cathode plasma expanding toward each other. However, the diode voltage and current do not follow the bipolar space-charge limited flow model. It was also found that initially only a part of the cathode take part in the emission process. The plasma expands at 4.2 cm/mus for 1.7 cm anode-cathode gap and the plasma velocity decreases for smaller gaps. The electrode plasma expansion velocity of the cylindrical diode is much smaller as compared with the planar diode for the same accelerating gap and diode voltage. Therefore, much higher voltage can be obtained for the cylindrical diodes as compared with the planar diodes for the same accelerating gap.

  9. New HOM coupler design for high current SRF cavity

    SciTech Connect

    Xu, W.; Ben-Zvi, I.; Belomestnykh, S.; Hahn, H.; Johnson, E.

    2011-03-28

    Damping higher order modes (HOMs) significantly to avoid beam instability is a challenge for the high current Energy Recovery Linac-based eRHIC at BNL. To avoid the overheating effect and high tuning sensitivity, current, a new band-stop HOM coupler is being designed at BNL. The new HOM coupler has a bandwidth of tens of MHz to reject the fundamental mode, which will avoid overheating due to fundamental frequency shifting because of cooling down. In addition, the S21 parameter of the band-pass filter is nearly flat from first higher order mode to 5 times the fundamental frequency. The simulation results showed that the new couplers effectively damp HOMs for the eRHIC cavity with enlarged beam tube diameter and 2 120{sup o} HOM couplers at each side of cavity. This paper presents the design of HOM coupler, HOM damping capacity for eRHIC cavity and prototype test results.

  10. ULTRA-LOW-ENERGY HIGH-CURRENT ION SOURCE

    SciTech Connect

    Anders, Andre; Yushkov, Georgy Yu.; Baldwin, David A.

    2009-11-20

    The technical objective of the project was to develop an ultra-low-energy, high-intensity ion source (ULEHIIS) for materials processing in high-technology fields including semiconductors, micro-magnetics and optics/opto-electronics. In its primary application, this ion source can be incorporated into the 4Wave thin-film deposition technique called biased target ion-beam deposition (BTIBD), which is a deposition technique based on sputtering (without magnetic field, i.e., not the typical magnetron sputtering). It is a technological challenge because the laws of space charge limited current (Child-Langmuir) set strict limits of how much current can be extracted from a reservoir of ions, such as a suitable discharge plasma. The solution to the problem was an innovative dual-discharge system without the use of extraction grids.

  11. An accurate continuous calibration system for high voltage current transformer

    SciTech Connect

    Tong Yue; Li Binhong

    2011-02-15

    A continuous calibration system for high voltage current transformers is presented in this paper. The sensor of this system is based on a kind of electronic instrument current transformer, which is a clamp-shape air core coil. This system uses an optical fiber transmission system for its signal transmission and power supply. Finally the digital integrator and fourth-order convolution window algorithm as error calculation methods are realized by the virtual instrument with a personal computer. It is found that this system can calibrate a high voltage current transformer while energized, which means avoiding a long calibrating period in the power system and the loss of power metering expense. At the same time, it has a wide dynamic range and frequency band, and it can achieve a high accuracy measurement in a complex electromagnetic field environment. The experimental results and the on-site operation results presented in the last part of the paper, prove that it can reach the 0.05 accuracy class and is easy to operate on site.

  12. An accurate continuous calibration system for high voltage current transformer.

    PubMed

    Tong, Yue; Li, Bin Hong

    2011-02-01

    A continuous calibration system for high voltage current transformers is presented in this paper. The sensor of this system is based on a kind of electronic instrument current transformer, which is a clamp-shape air core coil. This system uses an optical fiber transmission system for its signal transmission and power supply. Finally the digital integrator and fourth-order convolution window algorithm as error calculation methods are realized by the virtual instrument with a personal computer. It is found that this system can calibrate a high voltage current transformer while energized, which means avoiding a long calibrating period in the power system and the loss of power metering expense. At the same time, it has a wide dynamic range and frequency band, and it can achieve a high accuracy measurement in a complex electromagnetic field environment. The experimental results and the on-site operation results presented in the last part of the paper, prove that it can reach the 0.05 accuracy class and is easy to operate on site. PMID:21361633

  13. Compilation of current high-energy physics experiments

    SciTech Connect

    Wohl, C.G.; Kelly, R.L.; Armstrong, F.E.

    1981-05-01

    This is the fourth edition of the compilation of current high energy physics experiments. It is a collaborative effort of the Berkeley Particle Data Group, the SLAC library, and nine participating laboratories: Argonne (ANL), Brookhaven (BNL), CERN, DESY, Fermilab (FNAL), the Institute for Nuclear Study, Tokyo (INS), KEK, Serpukhov (SERP), and SLAC. The compilation includes summaries of all high energy physics experiments at the above laboratories that (1) were approved (and not subsequently withdrawn) before about April 1981, and (2) had not completed taking of data by 1 January 1977. Only approved experiments are included.

  14. Compilation of current high-energy-physics experiments

    SciTech Connect

    Wohl, C.G.; Kelly, R.L.; Armstrong, F.E.

    1980-04-01

    This is the third edition of a compilation of current high energy physics experiments. It is a collaborative effort of the Berkeley Particle Data Group, the SLAC library, and ten participating laboratories: Argonne (ANL), Brookhaven (BNL), CERN, DESY, Fermilab (FNAL), the Institute for Nuclear Study, Tokyo (INS), KEK, Rutherford (RHEL), Serpukhov (SERP), and SLAC. The compilation includes summaries of all high energy physics experiments at the above laboratories that (1) were approved (and not subsequently withdrawn) before about January 1980, and (2) had not completed taking of data by 1 January 1976.

  15. SOME PHYSICAL AND ENGINEERING ASPECTS OF HIGH CURRENT EBIS.

    SciTech Connect

    PIKIN,A.

    1999-05-10

    Some applications of an Electron Beam Ion Source (EBIS) require intensities of highly charged ions significantly greater than those which have been achieved in present EBIS sources. For example, the ion source for the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL) must be capable of generating 3x10{sup 9} ions of Au{sup 35+} or 2 x 10{sup 9} ions of U{sup 45+} per pulse [1]. In this case, if the fraction of ions of interest is 20% of the total ion space charge, the total extracted charge is {approx}{approx} 5 x 10{sup 11}. It is also desirable to extract these ions in a 10 ps pulse to allow single turn injection into the first synchrotron. Requirements for an EBIS which could meet the needs of the LHC at CERN are similar ({approx} 1.5 x 10{sup 9} ions of Pb{sup 54+} in 5.5 {micro}s). This charge yield is about an order of magnitude greater than that achieved in existing EBIS sources, and is what is meant here by ''high current''. This also implies, then, an EBIS with a high electron beam current. The scope of problems in a high current EBIS is broad, and includes generating a sufficient total charge of electrons in the volume of the ion trap, achieving a stable electron beam (without high frequency oscillations), preventing ions in the trap from acquiring too much energy (which can lead to a high rate of ion loss and increase in the emittance of the extracted ion beam), injection of metal ions into the ion trap, and achieving the appropriate vacuum in the ionization region. Development of the Electron Beam Test Stand (EBTS) at BNL addresses these problems, and is an attempt to develop the technologies relevant to a high current EBIS. The final goal of this development is to build an EBIS for RHIC. The general description of this project is published in [2]. In this chapter the discussion is limited to the handling of a high perveance electron beam and to vacuum issues.

  16. Study on metal foil explosion using high current

    NASA Astrophysics Data System (ADS)

    Mihara, Takayuki; Matsuo, N.; Otsuka, M.; Itoh, S.

    2009-12-01

    In the high energy processing using explosive, there are variety of application examples which is explosion welding of differential metallic plate and powder compaction of diamond. However a rule legal to explosives is severe and needs many efforts for handling qualification acquisition, maintenance, and security. In this research, the metallic foil explosion using high current is paid my attention to the method to obtain linear or planate explosive initiation easily, and the main evaluation of metallic foil explosion was conducted. The explosion power was evaluated by observing optically the underwater shock wave generated from the metallic foil explosion.

  17. Study on metal foil explosion using high current

    NASA Astrophysics Data System (ADS)

    Mihara, Takayuki; Matsuo, N.; Otsuka, M.; Itoh, S.

    2010-03-01

    In the high energy processing using explosive, there are variety of application examples which is explosion welding of differential metallic plate and powder compaction of diamond. However a rule legal to explosives is severe and needs many efforts for handling qualification acquisition, maintenance, and security. In this research, the metallic foil explosion using high current is paid my attention to the method to obtain linear or planate explosive initiation easily, and the main evaluation of metallic foil explosion was conducted. The explosion power was evaluated by observing optically the underwater shock wave generated from the metallic foil explosion.

  18. Recent Progress on High-Current SRF Cavities at Jlab

    SciTech Connect

    Robert Rimmer, William Clemens, James Henry, Peter Kneisel, Kurt Macha, Frank Marhauser, Larry Turlington, Haipeng Wang, Daniel Forehand

    2010-05-01

    JLab has designed and fabricated several prototype SRF cavities with cell shapes optimized for high current beams and with strong damping of unwanted higher order modes. We report on the latest test results of these cavities and on developments of concepts for new variants optimized for particular applications such as light sources and high-power proton accelerators, including betas less than one. We also report on progress towards a first beam test of this design in the recirculation loop of the JLab ERL based FEL. With growing interest worldwide in applications of SRF for high-average power electron and hadron machines, a practical test of these concepts is highly desirable. We plan to package two prototype cavities in a de-mountable cryomodule for temporary installation into the JLab FEL for testing with RF and beam. This will allow verification of all critical design and operational parameters paving the way to a full-scale prototype cryomodule.

  19. A bootstrap estimation scheme for chemical compositional data with nondetects

    USGS Publications Warehouse

    Palarea-Albaladejo, J; Martín-Fernández, J.A; Olea, Ricardo A.

    2014-01-01

    The bootstrap method is commonly used to estimate the distribution of estimators and their associated uncertainty when explicit analytic expressions are not available or are difficult to obtain. It has been widely applied in environmental and geochemical studies, where the data generated often represent parts of whole, typically chemical concentrations. This kind of constrained data is generically called compositional data, and they require specialised statistical methods to properly account for their particular covariance structure. On the other hand, it is not unusual in practice that those data contain labels denoting nondetects, that is, concentrations falling below detection limits. Nondetects impede the implementation of the bootstrap and represent an additional source of uncertainty that must be taken into account. In this work, a bootstrap scheme is devised that handles nondetects by adding an imputation step within the resampling process and conveniently propagates their associated uncertainly. In doing so, it considers the constrained relationships between chemical concentrations originated from their compositional nature. Bootstrap estimates using a range of imputation methods, including new stochastic proposals, are compared across scenarios of increasing difficulty. They are formulated to meet compositional principles following the log-ratio approach, and an adjustment is introduced in the multivariate case to deal with nonclosed samples. Results suggest that nondetect bootstrap based on model-based imputation is generally preferable. A robust approach based on isometric log-ratio transformations appears to be particularly suited in this context. Computer routines in the R statistical programming language are provided. 

  20. Measuring Efficiency of Tunisian Schools in the Presence of Quasi-Fixed Inputs: A Bootstrap Data Envelopment Analysis Approach

    ERIC Educational Resources Information Center

    Essid, Hedi; Ouellette, Pierre; Vigeant, Stephane

    2010-01-01

    The objective of this paper is to measure the efficiency of high schools in Tunisia. We use a statistical data envelopment analysis (DEA)-bootstrap approach with quasi-fixed inputs to estimate the precision of our measure. To do so, we developed a statistical model serving as the foundation of the data generation process (DGP). The DGP is…

  1. Fast Wave Current Drive in JET ITB-Plasma

    SciTech Connect

    Hellsten, T.; Laxaaback, M.; Bergkvist, T.; Johnson, T.; Brzozowski, J.; Rachlew, E.; Tennfors, E.; Mantsinen, M.; Matthews, G.; Tala, T.; Meo, F.; Nguyen, F.; Eriksson, L.-G.; Joffrin, E.; Noterdaeme, J.-M.; Petty, C.C.; Eester, D. van

    2005-09-26

    Fast wave current drive has been performed in JET plasmas with internal transport barriers, ITBs, and strongly reversed magnetic shear. Although the current drive efficiency of the power absorbed on the electrons is fairly high, only small effects are seen in the central current density. The main reasons are the parasitic absorption of RF power, the strongly inductive nature of the plasma and the interplay between the fast wave driven current and bootstrap current. The direct electron heating in the FWCD experiments is found to be strongly degraded compared to that with the dipole phasing.

  2. High frequency fast wave current drive for DEMO

    SciTech Connect

    Koch, R.; Lerche, E.; Van Eester, D.

    2011-12-23

    A steady-state tokamak reactor (SSTR) requires a high efficiency current drive system, from plug to driven mega-amps. RF systems working in the ion-cyclotron range of frequencies (ICRF) have high efficiency from plug to antenna but a limited current drive (CD) efficiency and centrally peaked CD profiles. The latter feature is not adequate for a SSTR where the current should be sufficiently broad to keep the central safety factor (possibly significantly) above 1. In addition, the fact that the fast wave (FW) is evanescent at the edge limits coupling, requiring high voltage operation, which makes the system dependent on plasma edge properties and prone to arcing, reducing its reliability. A possible way to overcome these weaknesses is to operate at higher frequency (10 times or more the cyclotron frequency). The advantages are: (1) The coupling can be much better (waves propagate in vacuum) if the parallel refractive index n{sub ||} is kept below one, (2) The FW group velocity tends to align to the magnetic field, so the power circumnavigates the magnetic axis and can drive off-axis current, (3) Due to the latter property, n{sub ||} can be upshifted along the wave propagation path, allowing low n{sub ||} launch (hence good coupling, large CD efficiency) with ultimately good electron absorption (which requires higher n{sub ||}. Note however that the n{sub ||} upshift is a self-organized feature, that electron absorption is in competition with {alpha}-particle absorption and that uncoupling of the FW from the lower hybrid resonance at the edge requires n{sub ||} slightly above one. The latter possibly counterproductive features might complicate the picture. The different aspects of this potentially attractive off-axis FWCD scheme are discussed.

  3. Electrical and hydrodynamic characterization of a high current pulsed arc

    NASA Astrophysics Data System (ADS)

    Sousa Martins, R.; Chemartin, L.; Zaepffel, C.; Lalande, Ph; Soufiani, A.

    2016-05-01

    High current pulsed arcs are of significant industrial interest and, aiming to reduce time and cost, there is progressively more and more need for computation tools that describe and predict the behaviour of these arcs. These simulation codes need inputs and validations by experimental databases, but accurate data is missing for this category of electric discharges. The principal lack of understanding is with respect to the transient phase of the current, which can reach thousands of amperes in a few microseconds. In this paper, we present the work realized on an experimental setup that simulates in the laboratory an arc column subjected to five levels of high pulsed current, ranging from 10 kA to 100 kA, with the last one corresponding to the standard lightning current waveform used in aircraft certification processes. This device was instrumented by high speed video cameras to assess the characteristic sizes of the arc channel and to characterize the shock wave generated by the arc expansion. The arc channel radius was measured over time during the axisymmetric phase and reached 3.2 cm. The position and velocity of the shock wave was determined during the first 140 μs. The background-oriented schlieren method was used to study the shock wave and a model for the light deflection inside the shock wave was developed. The mass density profile of the shock wave was estimated and showed good agreement with Rankine–Hugoniot relations at the wave front. Electrical measurements were also used to estimate the time-dependent resistance and conductivity of the arc for times lasting up to 50 μs.

  4. OPTICS FOR HIGH BRIGHTNESS AND HIGH CURRENT ERL PROJECT AT BNL.

    SciTech Connect

    KAYRAN, D.; BEN-ZVI, I.; CALAGA, R.; CHANG, X.Y.; ET AL.

    2005-05-16

    An energy recovery linac (ERL), under development at Brookhaven National Laboratory [1,2], will push ERLs further towards high current and high brightness beams. This R&D ERL will operate in two modes: a high current mode and a high charge mode. In this paper we present a lattice of the machine and PARMELA simulations from the cathode to the beam dump. We discuss the design considerations and present main parameters for various modes of operation.

  5. Formation of fast ``notched'' current waveforms through a high inductance

    NASA Astrophysics Data System (ADS)

    Spanjers, G.; Nelson, B. A.; Ribe, F. L.

    1991-10-01

    A fast ``notch'' current has been produced on the (4 μH) hardcore central conductor [C. M. Greenfield, M. E. Koepke, and F. L. Ribe, Phys. Fluids B 2, 133 (1990)] of the high beta Q machine, a 2.6 m theta pinch [S. O. Knox, H. Meuth, E. Sevillano, and F. L. Ribe, 3rd IEEE International Pulsed Power Conf., 1981, IEEE Publ. 81 CH1662/6, paper 3.1]. With the notch circuitry, the current can be slowly (τ1/4 = 14 μs) brought to a crowbarred dc value (20 kA) and then quickly (τ1/4 = 1.3 μs) ``notched'' to a different value (typically either 0 kA or twice the dc value) and then quickly returned to the dc value. The use of a new inductively loaded spark gap switch eliminates extraneous ringing in the final crowbarred current waveform. As described here, by driving the hardcore circuit with two isolated capacitor banks, and a voltage stepup transformer, the notch current is created using spark gaps and ignitrons for switching, resulting in an inexpensive and technically simple circuit.

  6. High-current carbon-epoxy capillary cathode

    NASA Astrophysics Data System (ADS)

    Gleizer, J. Z.; Queller, T.; Bliokh, Yu.; Yatom, S.; Vekselman, V.; Krasik, Ya. E.; Bernshtam, V.

    2012-07-01

    The results of experiments on the reproducible generation of an electron beam having a high current density of up to 300 A/cm2 and a satisfactorily uniform cross-sectional distribution of current density in a ˜200 kV, ˜450 ns vacuum diode with a carbon-epoxy capillary cathode are presented. It was found that the source of the electrons is the plasma formed as a result of flashover inside the capillaries. It is shown that the plasma formation occurs at an electric field ≤15 kV/cm and that the cathode sustains thousands of pulses without degradation in its emission properties. Time- and space-resolved visible light observation and spectroscopy analyses were used to determine the cathode plasma's density, temperature, and expansion velocity. It was found that the density of the cathode plasma decreases rapidly in relation to the distance from the cathode. In addition, it was found that the main reason for the short-circuiting of the accelerating gap is the formation and expansion of the anode plasma. Finally, it was shown that when an external guiding magnetic field is present, the injection of the electron beam into the drift space with a current amplitude exceeding its critical value changes the radial distribution of the current density of the electron beam because the inner electrons are reflected from the virtual cathode.

  7. Laser diagnostic for high current H{sup {minus}} beams

    SciTech Connect

    Shafer, R.E.

    1998-05-05

    In the last 5 years, significant technology advances have been made in the performance, size, and cost of solid-state diode-pumped lasers. These developments enable the use of compact Q-switched Nd:YAG lasers as a beam diagnostic for high current H{sup {minus}} beams. Because the threshold for photodetachment is only 0.75 eV, and the maximum detachment cross section is 4 {times} 10{sup {minus}17} cm{sup 2} at 1.5 eV, a 50 mJ/pulse Q-switched Nd:YAG laser can neutralize a significant fraction of the beam in a single 10-ns wide pulse. The neutral beam maintains nearly identical parameters as the parent H{sup {minus}} beam, including size, divergence, energy, energy spread, and phase spread. A dipole magnet can separate the neutral beam from the H{sup {minus}} beam to allow diagnostics on the neutral beam without intercepting the high-current H{sup {minus}} beam. Such a laser system can also be used to extract a low current proton beam, or to induce fluorescence in partially stripped heavy ion beams. Possible beamline diagnostic systems will be reviewed, and the neutral beam yields will be calculated.

  8. Point Set Denoising Using Bootstrap-Based Radial Basis Function

    PubMed Central

    Ramli, Ahmad; Abd. Majid, Ahmad

    2016-01-01

    This paper examines the application of a bootstrap test error estimation of radial basis functions, specifically thin-plate spline fitting, in surface smoothing. The presence of noisy data is a common issue of the point set model that is generated from 3D scanning devices, and hence, point set denoising is one of the main concerns in point set modelling. Bootstrap test error estimation, which is applied when searching for the smoothing parameters of radial basis functions, is revisited. The main contribution of this paper is a smoothing algorithm that relies on a bootstrap-based radial basis function. The proposed method incorporates a k-nearest neighbour search and then projects the point set to the approximated thin-plate spline surface. Therefore, the denoising process is achieved, and the features are well preserved. A comparison of the proposed method with other smoothing methods is also carried out in this study. PMID:27315105

  9. Heavy-Ion Injector for the High Current Experiment

    NASA Astrophysics Data System (ADS)

    Bieniosek, F. M.; Henestroza, E.; Kwan, J. W.; Prost, L.; Seidl, P.

    2001-10-01

    We report on progress in development of the Heavy-Ion Injector at LBNL, which is being prepared for use as an injector for the High Current Experiment (HCX). It is composed of a 10-cm-diameter surface ionization source, an extraction diode, and an electrostatic quadrupole (ESQ) accelerator, with a typical operating current of 0.6 A of potassium ions at 1.8 MeV, and a beam pulse length of 4.5 microsecs. We have improved the Injector equipment and diagnostics, and have characterized the source emission and radial beam profiles at the diode and ESQ regions. We find improved agreement with EGUN predictions, and improved compatibility with the downstream matching section. Plans are to attach the matching section and the initial ESQ transport section of HCX. Results will be presented and compared with EGUN and WARP simulations.

  10. Large dynamic range diagnostics for high current electron LINACs

    SciTech Connect

    Evtushenko, P.

    2013-11-07

    The Jefferson Lab FEL driver accelerator - Energy Recovery Linac has provided a beam with average current of up to 9 mA and beam energy of 135 MeV. The high power beam operations have allowed developing and testing methods and approaches required to set up and tune such a facility simultaneously for the high beam power and high beam quality required for high performance FEL operations. In this contribution we briefly review this experience and outline problems that are specific to high current - high power non-equilibrium linac beams. While the original strategy for beam diagnostics and tuning have proven to be quite successful, some shortcomings and unresolved issues were also observed. The most important issues are the non-equilibrium (non-Gaussian) nature of the linac beam and the presence of small intensity - large amplitude fraction of the beam a.k.a. beam halo. Thus we also present a list of the possible beam halo sources and discuss possible mitigations means. We argue that for proper understanding and management of the beam halo large dynamic range (>10{sup 6}) transverse and longitudinal beam diagnostics can be used. We also present results of transverse beam profile measurements with the dynamic range approaching 10{sup 5} and demonstrate the effect the increased dynamic range has on the beam characterization, i.e., emittance and Twiss parameters measurements. We also discuss near future work planned in this field and where the JLab FEL facility will be used for beam tests of the developed of new diagnostics.

  11. Large dynamic range diagnostics for high current electron LINACs

    SciTech Connect

    Evtushenko, Pavel

    2013-11-01

    The Jefferson Lab FEL driver accelerator - Energy Recovery Linac has provided a beam with average current of up to 9 mA and beam energy of 135 MeV. The high power beam operations have allowed developing and testing methods and approaches required to set up and tune such a facility simultaneously for the high beam power and high beam quality required for high performance FEL operations. In this contribution we briefly review this experience and outline problems that are specific to high current - high power non-equilibrium linac beams. While the original strategy for beam diagnostics and tuning have proven to be quite successful, some shortcomings and unresolved issues were also observed. The most important issues are the non-equilibrium (non-Gaussian) nature of the linac beam and the presence of small intensity - large amplitude fraction of the beam a.k.a. beam halo. Thus we also present a list of the possible beam halo sources and discuss possible mitigations means. We argue that for proper understanding and management of the beam halo large dynamic range (>10{sup 6}) transverse and longitudinal beam diagnostics can be used. We also present results of transverse beam profile measurements with the dynamic range approaching 10{sup 5} and demonstrate the effect the increased dynamic range has on the beam characterization, i.e., emittance and Twiss parameters measurements. We also discuss near future work planned in this field and where the JLab FEL facility will be used for beam tests of the developed of new diagnostics.

  12. High beta multipoles

    SciTech Connect

    Prager, S C

    1982-05-01

    Multipoles are being employed as devices to study fusion issues and plasma phenomena at high values of beta (plasma pressure/magnetic pressure) in a controlled manner. Due to their large volume, low magnetic field (low synchrotron radiation) region, they are also under consideration as potential steady state advanced fuel (low neutron yield) reactors. Present experiments are investigating neoclassical (bootstrap and Pfirsch-Schlueter) currents and plasma stability at extremely high beta.

  13. Some Physical and Engineering Aspects of High Current EBIS

    SciTech Connect

    Pikin, A; Prelec, K.

    1999-05-21

    Some applications of an Electron Beam Ion Source (EBIS) require intensities of highly charged ions significantly greater than those which have been achieved in present EBIS sources. For example, the ion source for the Relativistic Heavy Ion Collider (RHIC) at Brookhaven National Laboratory (BNL) must be capable of generating 3 x 10{sup 9} ions of Au{sup 35+} or 2 x 10{sup 9} ions of U{sup 45+} per pulse. In this case, if the fraction of ions of interest is 20% of the total ion space charge, the total extracted charge is {approximately} 5 x 10{sup 11}. It is also desirable to extract these ions in a 10 {micro}s pulse to allow single turn injection into the first synchrotrons. Requirements for an EBIS which could meet the needs of the LHC at CERN are similar ({approximately} 1.5 x 10{sup 9} ions of Pb{sup 54+} in 5.5 {micro}s). This charge yield is about an order of magnitude greater than that achieved in existing EBIS sources, and is what is meant here by high current. This also implies, then, an EBIS with a high electron beam current.

  14. High-Voltage Pulsed Current Electrical Stimulation in Wound Treatment

    PubMed Central

    Polak, Anna; Franek, Andrzej; Taradaj, Jakub

    2014-01-01

    Significance: A range of studies point to the efficacy of electrical stimulation (ES) in wound treatment, but the methodology of its application has not been determined to date. This article provides a critical review of the results of clinical trials published by researchers using high-voltage pulsed current (HVPC) to treat chronic wounds. In describing the methodology of the trials, the article gives special attention to electric stimulus parameters, the frequency of procedures and total treatment duration. Recent Advances: HVPC is a monophasic pulsed electric current that consists of double-peaked impulses (5–200 μs), at very high peak-current amplitude (2–2.5 A), and high voltage (up to 500 V), at a frequency of 1–125 pulses per second. HVPC can activate “skin battery” and cellular galvanotaxis, and improves blood flow and capillary density. Critical Issues: HVPC efficacy was evaluated in conservatively treated patients with diabetic foot, venous leg and pressure ulcers (PUs), and in some patients with surgically treated venous insufficiency. Future Directions: The efficacy of HVPC as one of several biophysical energies promoting venous leg ulcer (VLU) and PU healing has been confirmed. Additional studies are needed to investigate its effect on the healing of other types of soft tissue defects. Other areas that require more research include the identification of the therapeutic effect of HVPC on infected wounds, the determination of the efficacy of cathodal versus anodal stimulation, and the minimal daily/weekly duration of HVPC required to ensure optimal promotion of wound healing. PMID:24761351

  15. High-Voltage Pulsed Current Electrical Stimulation in Wound Treatment.

    PubMed

    Polak, Anna; Franek, Andrzej; Taradaj, Jakub

    2014-02-01

    Significance: A range of studies point to the efficacy of electrical stimulation (ES) in wound treatment, but the methodology of its application has not been determined to date. This article provides a critical review of the results of clinical trials published by researchers using high-voltage pulsed current (HVPC) to treat chronic wounds. In describing the methodology of the trials, the article gives special attention to electric stimulus parameters, the frequency of procedures and total treatment duration. Recent Advances: HVPC is a monophasic pulsed electric current that consists of double-peaked impulses (5-200 μs), at very high peak-current amplitude (2-2.5 A), and high voltage (up to 500 V), at a frequency of 1-125 pulses per second. HVPC can activate "skin battery" and cellular galvanotaxis, and improves blood flow and capillary density. Critical Issues: HVPC efficacy was evaluated in conservatively treated patients with diabetic foot, venous leg and pressure ulcers (PUs), and in some patients with surgically treated venous insufficiency. Future Directions: The efficacy of HVPC as one of several biophysical energies promoting venous leg ulcer (VLU) and PU healing has been confirmed. Additional studies are needed to investigate its effect on the healing of other types of soft tissue defects. Other areas that require more research include the identification of the therapeutic effect of HVPC on infected wounds, the determination of the efficacy of cathodal versus anodal stimulation, and the minimal daily/weekly duration of HVPC required to ensure optimal promotion of wound healing. PMID:24761351

  16. New progress of high current gasdynamic ion source (invited)

    NASA Astrophysics Data System (ADS)

    Skalyga, V.; Izotov, I.; Golubev, S.; Sidorov, A.; Razin, S.; Vodopyanov, A.; Tarvainen, O.; Koivisto, H.; Kalvas, T.

    2016-02-01

    The experimental and theoretical research carried out at the Institute of Applied Physics resulted in development of a new type of electron cyclotron resonance ion sources (ECRISs)—the gasdynamic ECRIS. The gasdynamic ECRIS features a confinement mechanism in a magnetic trap that is different from Geller's ECRIS confinement, i.e., the quasi-gasdynamic one similar to that in fusion mirror traps. Experimental studies of gasdynamic ECRIS were performed at Simple Mirror Ion Source (SMIS) 37 facility. The plasma was created by 37.5 and 75 GHz gyrotron radiation with power up to 100 kW. High frequency microwaves allowed to create and sustain plasma with significant density (up to 8 × 1013 cm-3) and to maintain the main advantages of conventional ECRIS such as high ionization degree and low ion energy. Reaching such high plasma density relies on the fact that the critical density grows with the microwave frequency squared. High microwave power provided the average electron energy on a level of 50-300 eV enough for efficient ionization even at neutral gas pressure range of 10-4-10-3 mbar. Gasdynamic ECRIS has demonstrated a good performance producing high current (100-300 mA) multi-charged ion beams with moderate average charge (Z = 4-5 for argon). Gasdynamic ECRIS has appeared to be especially effective in low emittance hydrogen and deuterium beams formation. Proton beams with current up to 500 emA and RMS emittance below 0.07 π ṡ mm ṡ mrad have been demonstrated in recent experiments.

  17. New progress of high current gasdynamic ion source (invited).

    PubMed

    Skalyga, V; Izotov, I; Golubev, S; Sidorov, A; Razin, S; Vodopyanov, A; Tarvainen, O; Koivisto, H; Kalvas, T

    2016-02-01

    The experimental and theoretical research carried out at the Institute of Applied Physics resulted in development of a new type of electron cyclotron resonance ion sources (ECRISs)-the gasdynamic ECRIS. The gasdynamic ECRIS features a confinement mechanism in a magnetic trap that is different from Geller's ECRIS confinement, i.e., the quasi-gasdynamic one similar to that in fusion mirror traps. Experimental studies of gasdynamic ECRIS were performed at Simple Mirror Ion Source (SMIS) 37 facility. The plasma was created by 37.5 and 75 GHz gyrotron radiation with power up to 100 kW. High frequency microwaves allowed to create and sustain plasma with significant density (up to 8 × 10(13) cm(-3)) and to maintain the main advantages of conventional ECRIS such as high ionization degree and low ion energy. Reaching such high plasma density relies on the fact that the critical density grows with the microwave frequency squared. High microwave power provided the average electron energy on a level of 50-300 eV enough for efficient ionization even at neutral gas pressure range of 10(-4)-10(-3) mbar. Gasdynamic ECRIS has demonstrated a good performance producing high current (100-300 mA) multi-charged ion beams with moderate average charge (Z = 4-5 for argon). Gasdynamic ECRIS has appeared to be especially effective in low emittance hydrogen and deuterium beams formation. Proton beams with current up to 500 emA and RMS emittance below 0.07 π ⋅ mm ⋅ mrad have been demonstrated in recent experiments. PMID:26931934

  18. Generation of sheet currents by high frequency fast MHD waves

    NASA Astrophysics Data System (ADS)

    Núñez, Manuel

    2016-07-01

    The evolution of fast magnetosonic waves of high frequency propagating into an axisymmetric equilibrium plasma is studied. By using the methods of weakly nonlinear geometrical optics, it is shown that the perturbation travels in the equatorial plane while satisfying a transport equation which enables us to predict the time and location of formation of shock waves. For plasmas of large magnetic Prandtl number, this would result into the creation of sheet currents which may give rise to magnetic reconnection and destruction of the original equilibrium.

  19. Astro-E2 Magnesium Diboride High Current Leads

    NASA Technical Reports Server (NTRS)

    Panek, J. S.; Tuttle, J. G.; Riall, S.; Mustafi, S.; Gray, A.; Edmonds, R.; Marrero, V.

    2003-01-01

    The recent discovery of superconducting properties in MgB_2 and rapid development of small diameter steel-clad wires has opened up the possibility of enhancing the design of the baseline Astro-E2 high current lead assembly. Replacing YBCO filaments with MgB_2 wires and modifying the heat sink location can give much higher margins against quench from temperature oscillations of the 4 K heat sink, although wih some overall thermal penalty. The design and performance of a new lead assembly during flight qualification is discussed, with emphasis on thermal, structural, and electrical test results.

  20. High-current relativistic klystron research at Physics International

    SciTech Connect

    Levine, J.S.; Harteneck, B.D.; Lam, S.K.; Parks, C.W.

    1994-12-31

    The authors are developing an L-band (1.3 GHz) high-current relativistic klystron (5 kA, 500 kV) for repetitive (200 pps) pulsing. They have designed and tested an extraction cavity that removes energy from the modulated electron beam and radiates it into an anechoic chamber in the TM{sub 01} mode. Peak power in excess of 450 MW has been measured for a single shot and 275 MW for a sustained burst producing 3.3 kW of average power. This klystron is now being transitioned to a long pulse (> 500 ns), single shot facility.

  1. Beam-halo measurements in high-current proton beams

    SciTech Connect

    Allen, C.K.; Chan, K.C.D.; Colestock, P.L.; Crandall, K.R.; Garnett, R.W.; Gilpatrick, J.D.; Lysenko, W.; Qiang, J.; Schneider, J.D.; Schulze, M.E.; Sheffield, R.L.; Smith, H.V.; Wangler, T.P.

    2002-01-11

    We present results from an experimental study of the beam halo in a high-current 6.7-MeV proton beam propagating through a 52-quadrupole periodic-focusing channel. The gradients of the first four quadrupoles were independently adjusted to match or mismatch the injected beam. Emittances and beamwidths were obtained from measured profiles for comparisons with maximum emittance-growth predictions of a free-energy model and maximum halo-amplitude predictions of a particle-core model. The experimental results support both models and the present theoretical picture of halo formation.

  2. Low Impedance Bellows for High-current Beam Operations

    SciTech Connect

    Wu, G; Nassiri, A; Waldschmidt, G J; Yang, Y; Feingold, J J; Mammosser, J D; Rimmer, R A; Wang, H; Jang, J; Kim, S H

    2012-07-01

    In particle accelerators, bellows are commonly used to connect beamline components. Such bellows are traditionally shielded to lower the beam impedance. Excessive beam impedance can cause overheating in the bellows, especially in high beam current operation. For an SRF-based accelerator, the bellows must also be particulate free. Many designs of shielded bellows incorporate rf slides or fingers that prevent convolutions from being exposed to wakefields. Unfortunately these mechanical structures tend to generate particulates that, if left in the SRF accelerator, can migrate into superconducting cavities, the accelerator's critical components. In this paper, we describe a prototype unshielded bellows that has low beam impedance and no risk of particulate generation.

  3. Bootstrapping Critical Ising Model on Three Dimensional Real Projective Space.

    PubMed

    Nakayama, Yu

    2016-04-01

    Given conformal data on a flat Euclidean space, we use crosscap conformal bootstrap equations to numerically solve the Lee-Yang model as well as the critical Ising model on a three dimensional real projective space. We check the rapid convergence of our bootstrap program in two dimensions from the exact solutions available. Based on the comparison, we estimate that our systematic error on the numerically solved one-point functions of the critical Ising model on a three dimensional real projective space is less than 1%. Our method opens up a novel way to solve conformal field theories on nontrivial geometries. PMID:27104697

  4. Bootstrapping Critical Ising Model on Three Dimensional Real Projective Space

    NASA Astrophysics Data System (ADS)

    Nakayama, Yu

    2016-04-01

    Given conformal data on a flat Euclidean space, we use crosscap conformal bootstrap equations to numerically solve the Lee-Yang model as well as the critical Ising model on a three dimensional real projective space. We check the rapid convergence of our bootstrap program in two dimensions from the exact solutions available. Based on the comparison, we estimate that our systematic error on the numerically solved one-point functions of the critical Ising model on a three dimensional real projective space is less than 1%. Our method opens up a novel way to solve conformal field theories on nontrivial geometries.

  5. Online diagnoses of high current-density beams

    SciTech Connect

    Gilpatrick, J.D.

    1994-07-01

    Los Alamos National Laboratory has proposed several CW-proton-beam facilities for production of tritium or transmutation of nuclear waste with beam-current densities greater than 5 mA/mm{sup 2}. The primary beam-diagnostics-instrumentation requirement for these facilities is provision of sufficient beam information to understand and minimize beam-loss. To accomplish this task, the beam-diagnostics instrumentation must measure beam parameters such as the centroids and profiles, total integrated current, and particle loss. Noninterceptive techniques must be used for diagnosis of high-intensity CW beam at low energies due to the large quantity of power deposited in an interceptive diagnostic device by the beam. Transverse and longitudinal centroid measurements have been developed for bunched beams by measuring and processing image currents on the accelerator walls. Transverse beam-profile measurement-techniques have also been developed using the interaction of the particle beam with the background gases near the beam region. This paper will discuss these noninterceptive diagnostic Techniques.

  6. High current vacuum arc ion source for heavy ion fusion

    SciTech Connect

    Qi, N.; Schein, J.; Gensler, S.; Prasad, R.R.; Krishnan, M.; Brown, I.

    1999-07-01

    Heavy Ion fusion (HIF) is one of the approaches for the controlled thermonuclear power production. A source of heavy ions with charge states 1+ to 2+, in {approximately}0.5 A current beams with {approximately}20 {micro}s pulse widths and {approximately}10 Hz repetition rates are required. Thermionic sources have been the workhorse for the HIF program to date, but suffer from sloe turn-on, heating problems for large areas, are limited to low (contact) ionization potential elements and offer relatively low ion fluxes with a charge state limited to 1+. Gas injection sources suffer from partial ionization and deleterious neutral gas effects. The above shortcomings of the thermionic ion sources can be overcome by a vacuum arc ion source. The vacuum arc ion source is a good candidate for HIF applications. It is capable of providing ions of various elements and different charge states, in short and long pulse bursts, with low emittance and high beam currents. Under a Phase-I STTR from DOE, the feasibility of the vacuum arc ion source for the HIF applications is investigated. An existing ion source at LBNL was modified to produce {approximately}0.5 A, {approximately}60 keV Gd (A{approximately}158) ion beams. The experimental effort concentrated on beam noise reduction, pulse-to-pulse reproducibility and achieving low beam emittance at 0.5 A ion current level. Details of the source development will be reported.

  7. Energetic ion production in high current hollow cathodes

    NASA Astrophysics Data System (ADS)

    Foster, John; Kovach, Yao; Arthur, Neil; Viges, Eric; Davis, Chris

    2015-09-01

    High power Hall and gridded ion thrusters are being considered as a propulsion option supporting human operations (cargo or tug) to Mars. These engines utilize hollow cathodes for plasma production and beam neutralization. It has now been well documented that these cathodes produce energetic ions when operated at high current densities. Such ions are observed with peak energies approaching 100 eV. Because these ions can drive erosion of the cathode assembly, they represent a credible failure mode. An understanding of energetic ion production and approaches to mitigation is therefore desired. Presented here are data documenting the presence of energetic ions for both a barium oxide and a lanthanum hexaboride cathode as measured using a retarding potential analyzer. Also presented are energetic ion mitigation approaches, which are designed to eliminate the ion energy transfer mechanism. NASA SBIR Contract NNX15CP62P.

  8. Advanced electromagnetic design of cavities for high current accelerators

    SciTech Connect

    Krawczyk, F.L.

    1995-05-01

    For high-current accelerators such as those proposed for transmutation technologies or spallation sources, preconstruction numerical modeling has a high importance. Non axisymmetric cavities require a full 3-D modeling. A complex analysis of structures beyond tuning and the calculation of Q and shunt impedance is required and also the interaction with the mechanical properties of the structures has to be taken into account. This paper reports on recent work done at LANL for proposed beam funnels, a new normal-conducting medium-energy structure (CCDTL) and superconducting cavities for medium energy. The electromagnetic calculations have been done with MAFIA, Rel 3.2, the thermal and stress analysis results reported come from the ABAQUS engineering code.

  9. The Transition to High School: Current Knowledge, Future Directions

    PubMed Central

    2011-01-01

    In the American educational system, school transitions are frequent and predictable, but they can disrupt student functioning across developmental domains. How students experience school transitions has been a focus of research for some time, but the high school transition has received less attention, and the limited research often focuses on a particular developmental domain (e.g., academics and socioemotional well-being) to the exclusion of a more integrated model. This review relies on life course theory to establish an organizational framework for interpreting and connecting the diffuse and sometimes disparate findings on the high school transition, including adolescent developmental trajectories and the influence of social ties, changing sociocultural contexts, and stratification systems. Conclusions identify aspects for future inquiry suggested by current knowledge and the tenets of the life course perspective. PMID:21966178

  10. [Technological characteristics of endoscopic high frequency current and laser interventions].

    PubMed

    Reidenbach, H D

    1993-01-01

    High frequency current and laser radiation perform two possibilities to generate therapeutic and surgical heat. The integration of these two technologies into endoscopy resulted in important ancillary techniques in the hands of a surgeon. Starting from the principal methods for coagulation and dissection of tissue the respective technological aspects at the interaction of high frequency currents and intensive laser radiation with different wavelengths on biological tissue are illustrated. Mono- and bipolar HF-techniques as well as the light-guide assisted laser method in the contact and non-contact mode are explained. The special problems in endoscopy arising from the reduction in visibility by haemorrhages and the development of smoke at the thermally induced coagulation may be overcome successfully by the simultaneous instillation of a nearly isolating liquid during the HF-treatment. The so-called electrohydrothermosation (EHT) method is presented and several probes and instruments for endoscopic hemostasis and microsurgery are explained. For an increase in safety at the endoscopic application of HF-current the use of the bipolar technique is recommended and several technological developments used in this mode are pointed out. It is shown that the absorption of radiation through the water-content of the tissue is mainly responsible for the reactions which may be produced with laser-light. Furthermore it is mentioned that the range of lasers which might be used has a large spectrum of medical applications which had been even increased especially by the new erbium and holmium solid state lasers.(ABSTRACT TRUNCATED AT 250 WORDS) PMID:8147152

  11. Bootstrap Percolation in Power-Law Random Graphs

    NASA Astrophysics Data System (ADS)

    Amini, Hamed; Fountoulakis, Nikolaos

    2014-04-01

    A bootstrap percolation process on a graph is an "infection" process which evolves in rounds. Initially, there is a subset of infected nodes and in each subsequent round each uninfected node which has at least infected neighbours becomes infected and remains so forever. The parameter is fixed. Such processes have been used as models for the spread of ideas or trends within a network of individuals. We analyse this process in the case where the underlying graph is an inhomogeneous random graph, which exhibits a power-law degree distribution, and initially there are randomly infected nodes. The main focus of this paper is the number of vertices that will have been infected by the end of the process. The main result of this work is that if the degree sequence of the random graph follows a power law with exponent , where , then a sublinear number of initially infected vertices is enough to spread the infection over a linear fraction of the nodes of the random graph, with high probability. More specifically, we determine explicitly a critical function such that with the following property. Assuming that is the number of vertices of the underlying random graph, if , then the process does not evolve at all, with high probability as grows, whereas if , then there is a constant such that, with high probability, the final set of infected vertices has size at least . This behaviour is in sharp contrast with the case where the underlying graph is a random graph with . It follows from an observation of Balogh and Bollobás that in this case if the number of initially infected vertices is sublinear, then there is lack of evolution of the process. It turns out that when the maximum degree is , then depends also on . But when the maximum degree is , then.

  12. Isotopic germanium targets for high beam current applications at GAMMASPHERE.

    SciTech Connect

    Greene, J. P.; Lauritsen, T.

    2000-11-29

    The creation of a specific heavy ion residue via heavy ion fusion can usually be achieved through a number of beam and target combinations. Sometimes it is necessary to choose combinations with rare beams and/or difficult targets in order to achieve the physics goals of an experiment. A case in point was a recent experiment to produce {sup 152}Dy at very high spins and low excitation energy with detection of the residue in a recoil mass analyzer. Both to create the nucleus cold and with a small recoil-cone so that the efficiency of the mass analyzer would be high, it was necessary to use the {sup 80}Se on {sup 76}Ge reaction rather than the standard {sup 48}Ca on {sup 108}Pd reaction. Because the recoil velocity of the {sup 152}Dy residues was very high using this symmetric reaction (5% v/c), it was furthermore necessary to use a stack of two thin targets to reduce the Doppler broadening. Germanium targets are fragile and do not withstand high beam currents, therefore the {sup 76}Ge target stacks were mounted on a rotating target wheel. A description of the {sup 76}Ge target stack preparation will be presented and the target performance described.

  13. Using the Descriptive Bootstrap to Evaluate Result Replicability (Because Statistical Significance Doesn't)

    ERIC Educational Resources Information Center

    Spinella, Sarah

    2011-01-01

    As result replicability is essential to science and difficult to achieve through external replicability, the present paper notes the insufficiency of null hypothesis statistical significance testing (NHSST) and explains the bootstrap as a plausible alternative, with a heuristic example to illustrate the bootstrap method. The bootstrap relies on…

  14. Bootstrapping the Syntactic Bootstrapper: Probabilistic Labeling of Prosodic Phrases

    ERIC Educational Resources Information Center

    Gutman, Ariel; Dautriche, Isabelle; Crabbé, Benoît; Christophe, Anne

    2015-01-01

    The "syntactic bootstrapping" hypothesis proposes that syntactic structure provides children with cues for learning the meaning of novel words. In this article, we address the question of how children might start acquiring some aspects of syntax before they possess a sizeable lexicon. The study presents two models of early syntax…

  15. Bootstrap analysis of the single subject with event related potentials.

    PubMed

    Oruç, Ipek; Krigolson, Olav; Dalrymple, Kirsten; Nagamatsu, Lindsay S; Handy, Todd C; Barton, Jason J S

    2011-07-01

    Neural correlates of cognitive states in event-related potentials (ERPs) serve as markers for related cerebral processes. Although these are usually evaluated in subject groups, the ability to evaluate such markers statistically in single subjects is essential for case studies in neuropsychology. Here we investigated the use of a simple test based on nonparametric bootstrap confidence intervals for this purpose, by evaluating three different ERP phenomena: the face-selectivity of the N170, error-related negativity, and the P3 component in a Posner cueing paradigm. In each case, we compare single-subject analysis with statistical significance determined using bootstrap to conventional group analysis using analysis of variance (ANOVA). We found that the proportion of subjects who show a significant effect at the individual level based on bootstrap varied, being greatest for the N170 and least for the P3. Furthermore, it correlated with significance at the group level. We conclude that the bootstrap methodology can be a viable option for interpreting single-case ERP amplitude effects in the right setting, probably with well-defined stereotyped peaks that show robust differences at the group level, which may be more characteristic of early sensory components than late cognitive effects. PMID:22292858

  16. Generalized Bootstrap Method for Assessment of Uncertainty in Semivariogram Inference

    USGS Publications Warehouse

    Olea, R.A.; Pardo-Iguzquiza, E.

    2011-01-01

    The semivariogram and its related function, the covariance, play a central role in classical geostatistics for modeling the average continuity of spatially correlated attributes. Whereas all methods are formulated in terms of the true semivariogram, in practice what can be used are estimated semivariograms and models based on samples. A generalized form of the bootstrap method to properly model spatially correlated data is used to advance knowledge about the reliability of empirical semivariograms and semivariogram models based on a single sample. Among several methods available to generate spatially correlated resamples, we selected a method based on the LU decomposition and used several examples to illustrate the approach. The first one is a synthetic, isotropic, exhaustive sample following a normal distribution, the second example is also a synthetic but following a non-Gaussian random field, and a third empirical sample consists of actual raingauge measurements. Results show wider confidence intervals than those found previously by others with inadequate application of the bootstrap. Also, even for the Gaussian example, distributions for estimated semivariogram values and model parameters are positively skewed. In this sense, bootstrap percentile confidence intervals, which are not centered around the empirical semivariogram and do not require distributional assumptions for its construction, provide an achieved coverage similar to the nominal coverage. The latter cannot be achieved by symmetrical confidence intervals based on the standard error, regardless if the standard error is estimated from a parametric equation or from bootstrap. ?? 2010 International Association for Mathematical Geosciences.

  17. Bootstrapping Student Understanding of What Is Going on in Econometrics.

    ERIC Educational Resources Information Center

    Kennedy, Peter E.

    2001-01-01

    Explains that econometrics is an intellectual game played by rules based on the sampling distribution concept. Contains explanations for why many students are uncomfortable with econometrics. Encourages instructors to use explain-how-to-bootstrap exercises to promote student understanding. (RLH)

  18. Introducing Statistical Inference to Biology Students through Bootstrapping and Randomization

    ERIC Educational Resources Information Center

    Lock, Robin H.; Lock, Patti Frazer

    2008-01-01

    Bootstrap methods and randomization tests are increasingly being used as alternatives to standard statistical procedures in biology. They also serve as an effective introduction to the key ideas of statistical inference in introductory courses for biology students. We discuss the use of such simulation based procedures in an integrated curriculum…

  19. Bootstraps: A Chronicle of a Real Community School.

    ERIC Educational Resources Information Center

    Harris, Lewis, E.; Harris, Rae

    This book describes how the authors and other progressive-minded citizens in Floodwood, Minnesota, started a community school which literally lifted the community "by its bootstraps" from poverty and economic deprivation into one which became economically self-supporting and culturally enriched. A strong case is presented for community-based…

  20. Flood frequency analysis: Confidence interval estimation by test inversion bootstrapping

    NASA Astrophysics Data System (ADS)

    Schendel, Thomas; Thongwichian, Rossukon

    2015-09-01

    A common approach to estimate extreme flood events is the annual block maxima approach, where for each year the peak streamflow is determined and a distribution (usually the generalized extreme value distribution (GEV)) is fitted to this series of maxima. Eventually this distribution is used to estimate the return level for a defined return period. However, due to the finite sample size, the estimated return levels are associated with a range of uncertainity, usually expressed via confidence intervals. Previous publications have shown that existing bootstrapping methods for estimating the confidence intervals of the GEV yield too narrow estimates of these uncertainty ranges. Therefore, we present in this article a novel approach based on the less known test inversion bootstrapping, which we adapted especially for complex quantities like the return level. The reliability of this approach is studied and its performance is compared to other bootstrapping methods as well as the Profile Likelihood technique. It is shown that the new approach improves significantly the coverage of confidence intervals compared to other bootstrapping methods and for small sample sizes should even be favoured over the Profile Likelihood.

  1. Think Twice and Then: Combining or Choosing in Dialectical Bootstrapping?

    ERIC Educational Resources Information Center

    Herzog, Stefan M.; Hertwig, Ralph

    2014-01-01

    Individuals can partly recreate the "wisdom of crowds" within their own minds by combining nonredundant estimates they themselves have generated. Herzog and Hertwig (2009) showed that this accuracy gain could be boosted by urging people to actively think differently when generating a 2nd estimate ("dialectical bootstrapping").…

  2. Bootstrap confidence intervals in multi-level simultaneous component analysis.

    PubMed

    Timmerman, Marieke E; Kiers, Henk A L; Smilde, Age K; Ceulemans, Eva; Stouten, Jeroen

    2009-05-01

    Multi-level simultaneous component analysis (MLSCA) was designed for the exploratory analysis of hierarchically ordered data. MLSCA specifies a component model for each level in the data, where appropriate constraints express possible similarities between groups of objects at a certain level, yielding four MLSCA variants. The present paper discusses different bootstrap strategies for estimating confidence intervals (CIs) on the individual parameters. In selecting a proper strategy, the main issues to address are the resampling scheme and the non-uniqueness of the parameters. The resampling scheme depends on which level(s) in the hierarchy are considered random, and which fixed. The degree of non-uniqueness depends on the MLSCA variant, and, in two variants, the extent to which the user exploits the transformational freedom. A comparative simulation study examines the quality of bootstrap CIs of different MLSCA parameters. Generally, the quality of bootstrap CIs appears to be good, provided the sample sizes are sufficient at each level that is considered to be random. The latter implies that if more than a single level is considered random, the total number of observations necessary to obtain reliable inferential information increases dramatically. An empirical example illustrates the use of bootstrap CIs in MLSCA. PMID:18086338

  3. Current Status of the Advanced High Temperature Reactor

    SciTech Connect

    Holcomb, David Eugene; Ilas, Dan; Qualls, A L; Peretz, Fred J; Varma, Venugopal Koikal; Bradley, Eric Craig; Cisneros, Anselmo T.

    2012-01-01

    The Advanced High Temperature Reactor (AHTR) is a design concept for a central station type [1500 MW(e)] Fluoride salt-cooled High-temperature Reactor (FHR) that is currently under development by Oak Ridge National Laboratory for the U. S. Department of Energy, Office of Nuclear Energy's Advanced Reactor Concepts program. FHRs, by definition, feature low-pressure liquid fluoride salt cooling, coated-particle fuel, a high-temperature power cycle, and fully passive decay heat rejection. The overall goal of the AHTR development program is to demonstrate the technical feasibility of FHRs as low-cost, large-size power producers while maintaining full passive safety. The AHTR design option exploration is a multidisciplinary design effort that combines core neutronic and fuel configuration evaluation with structural, thermal, and hydraulic analysis to produce a reactor and vessel concept and place it within a power generation station. The AHTR design remains at the notional level of maturity, as key technologies require further development and a logically complete integrated design has not been finalized. The present design space exploration, however, indicates that reasonable options exist for the AHTR core, primary heat transport path, and fuel cycle provided that materials and systems technologies develop as anticipated.

  4. Current status of the advanced high temperature reactor

    SciTech Connect

    Holcomb, D. E.; Iias, D.; Quails, A. L.; Peretz, F. J.; Varma, V. K.; Bradley, E. C.; Cisneros, A. T.

    2012-07-01

    The Advanced High Temperature Reactor (AHTR) is a design concept for a central station type [1500 MW(e)] Fluoride salt-cooled High-temperature Reactor (FHR) that is currently under development by Oak Ridge National Laboratory for the U. S. Dept. of Energy, Office of Nuclear Energy's Advanced Reactor Concepts program. FHRs, by definition, feature low-pressure liquid fluoride salt cooling, coated-particle fuel, a high-temperature power cycle, and fully passive decay heat rejection. The overall goal of the AHTR development program is to demonstrate the technical feasibility of FHRs as low-cost, large-size power producers while maintaining full passive safety. The AHTR design option exploration is a multidisciplinary design effort that combines core neutronic and fuel configuration evaluation with structural, thermal, and hydraulic analysis to produce a reactor and vessel concept and place it within a power generation station. The AHTR design remains at the notional level of maturity, as key technologies require further development and a logically complete integrated design has not been finalized. The present design space exploration, however, indicates that reasonable options exist for the AHTR core, primary heat transport path, and fuel cycle provided that materials and systems technologies develop as anticipated. (authors)

  5. Mevva development for the new GSI high-current injector

    SciTech Connect

    Wolf, B.H.; Emig, H.; Spaedtke, P.

    1996-08-01

    To increase the intensity of the heavy ion synchrotron SIS for heavy elements by a factor of {approximately}50, a new prestripper accelerator is planned for Unilac and the heavy ion synchrotron SIS. It is designed to accept ions with mass/charge {le} 65 and an injection energy of 2.2 keV/u. A vacuum arc ion source with a strong axial magnetic field will deliver 15 mA of U{sup 4+} as heaviest element at a repetition rate of 1 Hz and a pulse length of 300 {mu}s. The investigation of the Mevva ion source with pulsed magnetic field of several kGauss have shown that ion currents of 8 mA U{sup 4+} can be measured at the authors test bench after 5m of transport and charge analysis (transmission at the test bench 25% only). The noise on the extracted ion beam was already {le}25%, a value similar to the Pig ion source in the sputter mode, but efficient high current beam transport probably requests further improvements.

  6. Current-matched high-efficiency, multijunction monolithic solar cells

    SciTech Connect

    Olson, J.M.; Kurtz, S.R.

    1993-06-29

    A high-efficiency multijunction photovoltaic solar cell is described, consisting essentially of: a top semiconductor cell fabricated from Ga[sub x]In[sub l[minus]x]P wherein x is (0 < x < 0.5) a light-sensitive n/p homojunction therein for absorbing higher energy photons; a bottom semiconductor cell fabricated from GaAs with a light sensitive n/p homojunction therein for absorbing lower energy photons; and wherein the top cell thickness is optimized by thinning to from 0.5 to 1.7 microns and less than the bottom cell thickness in order to provide current matching between the top cell and the bottom cell in order to obtain improved conversion efficiency, a low-resistance attachment between the top cell and the bottom cell, wherein the top cell is lattice matched to the bottom cell; and electrical contact means attached to opposite sides of the solar cell to conduct current away from and into the solar cell.

  7. Space charge templates for high-current beam modeling

    SciTech Connect

    Vorobiev, Leonid G.; /Fermilab

    2008-07-01

    A computational method to evaluate space charge potential and gradients of charged particle beam in the presence of conducting boundaries, has been introduced. The three-dimensional (3D) field of the beam can be derived as a convolution of macro Green's functions (template fields), satisfying the same boundary conditions, as the original beam. Numerical experiments gave a confidence that space charge effects can be modeled by templates with enough accuracy and generality within dramatically faster computational times than standard combination: a grid density + Poisson solvers, realized in the most of Particle in Cell codes. The achieved rapidity may significantly broaden the high-current beam design space, making the optimization in automatic mode possible, which so far was only feasible for simplest self-field formulations such as rms envelope equations. The template technique may be used as a standalone program, or as an optional field solver in existing beam dynamics codes both in one-passage structures and in rings.

  8. High Accuracy Temperature Measurements Using RTDs with Current Loop Conditioning

    NASA Technical Reports Server (NTRS)

    Hill, Gerald M.

    1997-01-01

    To measure temperatures with a greater degree of accuracy than is possible with thermocouples, RTDs (Resistive Temperature Detectors) are typically used. Calibration standards use specialized high precision RTD probes with accuracies approaching 0.001 F. These are extremely delicate devices, and far too costly to be used in test facility instrumentation. Less costly sensors which are designed for aeronautical wind tunnel testing are available and can be readily adapted to probes, rakes, and test rigs. With proper signal conditioning of the sensor, temperature accuracies of 0.1 F is obtainable. For reasons that will be explored in this paper, the Anderson current loop is the preferred method used for signal conditioning. This scheme has been used in NASA Lewis Research Center's 9 x 15 Low Speed Wind Tunnel, and is detailed.

  9. Design of a proof of principle high current transport experiment

    SciTech Connect

    Lund, S.M.; Bangerter, R.O.; Barnard, J.J.; Celata, C.M.; Faltens, A.; Friedman, A.; Kwan, J.W.; Lee, E.P.; Seidl, P.A.

    2000-01-15

    Preliminary designs of an intense heavy-ion beam transport experiment to test issues for Heavy Ion Fusion (HIF) are presented. This transport channel will represent a single high current density beam at full driver scale and will evaluate practical issues such as aperture filling factors, electrons, halo, imperfect vacuum, etc., that cannot be fully tested using scaled experiments. Various machine configurations are evaluated in the context of the range of physics and technology issues that can be explored in a manner relevant to a full scale driver. it is anticipated that results from this experiment will allow confident construction of next generation ''Integrated Research Experiments'' leading to a full scale driver for energy production.

  10. Ultra-high current density thin-film Si diode

    DOEpatents

    Wang, Qi

    2008-04-22

    A combination of a thin-film .mu.c-Si and a-Si:H containing diode structure characterized by an ultra-high current density that exceeds 1000 A/cm.sup.2, comprising: a substrate; a bottom metal layer disposed on the substrate; an n-layer of .mu.c-Si deposited the bottom metal layer; an i-layer of .mu.c-Si deposited on the n-layer; a buffer layer of a-Si:H deposited on the i-layer, a p-layer of .mu.c-Si deposited on the buffer layer; and a top metal layer deposited on the p-layer.

  11. High-vibration detection using motor current signature analysis

    SciTech Connect

    Castleberry, K.N.

    1996-08-01

    Motor current signature analysis (CSA) has been used for several years as a diagnostic tool for electrical problems in ac, induction motors. Personnel at Oak Ridge National Laboratory have found that CSA can also provide information about system vibrations and imbalances similar to the information provided by an accelerometer. As a result, CSA techniques for monitoring the status of the equipment, such as pumps and compressors, driven by induction motors have been developed and used in dedicated monitoring systems. In this work, researchers have found that CSA responds proportionately to imbalances in rotating equipment and can be used to detect the In high-vibration conditions that can result. This report describes how vibration monitoring with CSA can be implemented and presents test data to support that use.

  12. The high current transport experiment for heavy ion inertial fusion

    SciTech Connect

    Prost, L.R.; Baca, D.; Bieniosek, F.M.; Celata, C.M.; Faltens, A.; Henestroza, E.; Kwan, J.W.; Leitner, M.; Seidl, P.A.; Waldron, W.L.; Cohen, R.; Friedman, A.; Grote, D.; Lund, S.M.; Molvik, A.W.; Morse, E.

    2004-05-01

    The High Current Experiment (HCX) at Lawrence Berkeley National Laboratory is part of the US program to explore heavy-ion beam transport at a scale representative of the low-energy end of an induction linac driver for fusion energy production. The primary mission of this experiment is to investigate aperture fill factors acceptable for the transport of space-charge-dominated heavy-ion beams at high intensity (line charge density {approx} 0.2 {micro}C/m) over long pulse durations (4 {micro}s) in alternating gradient focusing lattices of electrostatic or magnetic quadrupoles. This experiment is testing transport issues resulting from nonlinear space-charge effects and collective modes, beam centroid alignment and steering, envelope matching, image charges and focusing field nonlinearities, halo and, electron and gas cloud effects. We present the results for a coasting 1 MeV K{sup +} ion beam transported through ten electrostatic quadrupoles. The measurements cover two different fill factor studies (60% and 80% of the clear aperture radius) for which the transverse phase-space of the beam was characterized in detail, along with beam energy measurements and the first halo measurements. Electrostatic quadrupole transport at high beam fill factor ({approx}80%) is achieved with acceptable emittance growth and beam loss, even though the initial beam distribution is not ideal (but the emittance is low) nor in thermal equilibrium. We achieved good envelope control, and rematching may only be needed every ten lattice periods (at 80% fill factor) in a longer lattice of similar design. We also show that understanding and controlling the time dependence of the envelope parameters is critical to achieving high fill factors, notably because of the injector and matching section dynamics.

  13. Chaos Expansion Based Bootstrap Filter To Calibrate CO2 Injection Models

    NASA Astrophysics Data System (ADS)

    Oladyshkin, Sergey; Schröder, Patrick; Class, Holger; Nowak, Wolfgang

    2013-04-01

    Carbon dioxide (CO2) storage in geological formations is currently being discussed intensively as an interims technology with a high potential for mitigating CO2 emissions. Predicting underground CO2 storage represents a challenging problem in a complex dynamic system. Any large-scale application of CO2 storage requires a thorough risk analysis. Due to lacking information about distributed systems properties (such as porosity, permeability, etc.), quantification of uncertainties may become the dominant question in the risk assessment. Calibration on past production data from pilot scale test injection (called history matching) can improve the predictive power of the involved geological, flow and transport models. However, history matching is a very challenging task. Usually, brute-force optimization approaches for calibration are not feasible, especially for large-scale simulations. The current work deals with an advanced framework for history matching based on the polynomial chaos expansion (PCE). We will combine drastic but adequate stochastic model reduction with a brute-force but fully accurate Bayesian updating mechanism. Thus, we obtain a method for history matching that is both accurate and efficient, and allows a rigorous quantification of calibrated model uncertainty. The framework consists of two main steps. In step one, the original model is projected onto a response surface via a very recent PCE technique, called the arbitrary polynomial chaos (aPC). This projection is totally non-intrusive, i.e., is black-box compatible with commercial or open-source simulation codes. The aPC has the advantage that it can handle arbitrary distribution shapes of uncertain parameters. The distributions may change their shapes between updating steps, and may be incompletely known a priori. In our work, we set up a DuMuX-based model for a well-known pilot site operated in Europe. We parameterized geological uncertainty through permeability multipliers, and capture the

  14. Computer simulation of transport driven current in tokamaks

    NASA Astrophysics Data System (ADS)

    Nunan, W. J.; Dawson, J. M.

    1994-09-01

    We have investigated transport driven current in tokamaks via 2+1/2 dimensional, electromagnetic, particle-in-cell simulations. These have demonstrated a steady increase of toroidal current in centrally fueled plasmas. Neoclassical theory predicts that the bootstrap current vanishes at large aspect ratio, but we see equal or greater current growth in straight cylindrical plasmas. These results indicate that a centrally fueled and heated tokamak may sustain its toroidal current, even without the ``seed current'' which the neoclassical bootstrap theory requires.

  15. Heavy quark currents in ultra-high energy neutrino interactions

    NASA Astrophysics Data System (ADS)

    Fiore, R.; Zoller, V. R.

    2012-03-01

    We discuss heavy quark contributions to the neutrino-nucleon total cross section at very high energies, well above the real top production threshold. The top-bottom weak current is found to generate strong left-right asymmetry of neutrino-nucleon interactions. We separate contributions of different helicity states and make use of the κ-factorization to derive simple and practically useful formulas for the left-handed ( F L ) and right-handed ( F R ) components of the conventional structure function 2 xF 3 = F L - F R in terms of the integrated gluon density. We show that F L ≫ F R and, consequently, xF 3 ≈ F T , where F T is the transverse structure function. The conventional structure function F 2 = F S + F T at Q 2 ≪ m {/t 2} appears to be dominated by its scalar (also known as longitudinal) component F S and the hierarchy F S ≫ F L ≫ F R arises naturally. We evaluate the total neutrino-nucleon cross section at ultra-high energies within the color dipole BFKL-formalism.

  16. A high current, short pulse electron source for wakefield accelerators

    SciTech Connect

    Ho, Ching-Hung.

    1992-01-01

    Design studies for the generation of a high current, short pulse electron source for the Argonne Wakefield Accelerator are presented. An L-band laser photocathode rf gun cavity is designed using the computer code URMEL to maximize the electric field on the cathode surface for fixed frequency and rf input power. A new technique using a curved incoming laser wavefront to minimize the space charge effect near the photocathode is studied. A preaccelerator with large iris to minimize wakefield effects is used to boost the drive beam to a useful energy of around 20 MeV for wakefield acceleration experiments. Focusing in the photocathode gun and the preaccelerator is accomplished with solenoids. Beam dynamics simulations throughout the preaccelerator are performed using particle simulation codes TBCI-SF and PARMELA. An example providing a useful set of operation parameters for the Argonne Wakefield Accelerator is given. The effects of the sagitta of the curved beam and laser amplitude and timing jitter effects are discussed. Measurement results of low rf power level bench tests and a high power test for the gun cavity are presented and discussed.

  17. A high current, short pulse electron source for wakefield accelerators

    SciTech Connect

    Ho, Ching-Hung

    1992-12-31

    Design studies for the generation of a high current, short pulse electron source for the Argonne Wakefield Accelerator are presented. An L-band laser photocathode rf gun cavity is designed using the computer code URMEL to maximize the electric field on the cathode surface for fixed frequency and rf input power. A new technique using a curved incoming laser wavefront to minimize the space charge effect near the photocathode is studied. A preaccelerator with large iris to minimize wakefield effects is used to boost the drive beam to a useful energy of around 20 MeV for wakefield acceleration experiments. Focusing in the photocathode gun and the preaccelerator is accomplished with solenoids. Beam dynamics simulations throughout the preaccelerator are performed using particle simulation codes TBCI-SF and PARMELA. An example providing a useful set of operation parameters for the Argonne Wakefield Accelerator is given. The effects of the sagitta of the curved beam and laser amplitude and timing jitter effects are discussed. Measurement results of low rf power level bench tests and a high power test for the gun cavity are presented and discussed.

  18. Using the bootstrap to establish statistical significance for relative validity comparisons among patient-reported outcome measures

    PubMed Central

    2013-01-01

    Background Relative validity (RV), a ratio of ANOVA F-statistics, is often used to compare the validity of patient-reported outcome (PRO) measures. We used the bootstrap to establish the statistical significance of the RV and to identify key factors affecting its significance. Methods Based on responses from 453 chronic kidney disease (CKD) patients to 16 CKD-specific and generic PRO measures, RVs were computed to determine how well each measure discriminated across clinically-defined groups of patients compared to the most discriminating (reference) measure. Statistical significance of RV was quantified by the 95% bootstrap confidence interval. Simulations examined the effects of sample size, denominator F-statistic, correlation between comparator and reference measures, and number of bootstrap replicates. Results The statistical significance of the RV increased as the magnitude of denominator F-statistic increased or as the correlation between comparator and reference measures increased. A denominator F-statistic of 57 conveyed sufficient power (80%) to detect an RV of 0.6 for two measures correlated at r = 0.7. Larger denominator F-statistics or higher correlations provided greater power. Larger sample size with a fixed denominator F-statistic or more bootstrap replicates (beyond 500) had minimal impact. Conclusions The bootstrap is valuable for establishing the statistical significance of RV estimates. A reasonably large denominator F-statistic (F > 57) is required for adequate power when using the RV to compare the validity of measures with small or moderate correlations (r < 0.7). Substantially greater power can be achieved when comparing measures of a very high correlation (r > 0.9). PMID:23721463

  19. Compact submicrosecond, high current generator for wire explosion experiments

    NASA Astrophysics Data System (ADS)

    Aranchuk, L. E.; Chuvatin, A. S.; Larour, J.

    2004-01-01

    The PIAF generator was designed for low total energy and high energy density experiments with liners, X-pinch or fiber Z-pinch loads. These studies are of interest for such applications as surface and material science, microscopy of biological specimens, lithography of x-ray sensitive resists, and x-ray backlighting of pulsed-power plasmas. The generator is based on an RLC circuit that includes six NWL 180 nF-50 kV capacitors that store up to 1.3 kJ. The capacitors are connected in parallel to a single multispark switch designed to operate at atmospheric pressure. The switch allows reaching a time delay between the trigger pulse and the current pulse of less than 80 ns and has jitter of 6 ns. The total inductance without a load compartment was optimized to be as low as 16 nH, which leads to extremely low impedance of ˜0.12 Ω. A 40 kV initial voltage provides 250 kA maximum current in a 6 nH inductive load with a 180 ns current rise time. PIAF has dimensions of 660×660×490 mm and weight of less than 100 kg, thus manifesting itself as robust, simple to operate, and cost effective. A description of the PIAF generator and the initial experimental results on PIAF with an X-pinch type load are reported. The generator was demonstrated to operate successfully with an X-pinch type load. The experiments first started with investigation of the previously unexplored X-pinch conduction time range, 100 ns-1 μs. A single short radiation pulse was obtained that came from a small, point-like plasma. The following x-ray source characteristics were achieved: typical hot spot size of 50-100 μm, radiation pulse duration of 1.5-2 ns, and radiation yield of about 250-500 mJ in the softer spectral range (hν⩾700 eV) and 50-100 mJ in the harder one (hν⩾1 keV). These results provide the potential for further application of this source, such as use as a backlight diagnostic tool.

  20. Current State of the Art in High Brightness LEDs

    NASA Astrophysics Data System (ADS)

    Craford, George

    2007-03-01

    LED's have been commercially available since the 1960's. For many years they were used primarily for indicator applications. The remarkable increase in materials technology and efficiency that has been achieved since the early 1990's for AlInGaP red and amber LEDs, and InGaN green and blue LEDs, has enabled the penetration of markets such as outdoor display, signaling, and automotive brake light and turn signal applications. White LEDs, which are either blue LEDs combined with a phosphor, or a combination of red, green, and blue LEDs, are being used in emerging applications such as cell phone flash, television backlights, projection, and automotive headlights. In addition, to efficiency improvements these applications have required the development of higher power packages and, in some of these applications which are etendue limited, higher luminance devices. High power devices are commercially available which are capable of 140 lumens output and have an efficacy of around 70 lm/W for white emission. New package and chip technologies have been demonstrated which have a luminance of 38 mega nits (Mcd/m^2), approximately 50% more luminance than that of an automotive headlamp halogen bulb (˜25 mega nits). The recent progress in materials technology, packaging, and chip technology makes it clear that LED's will become important for general illumination applications. The rate of LED penetration of this market will depend upon continued increases in performance and lower costs as well as better control of the white spectral emission. Efficiency, current density, and costs are closely linked because the cost in dollars/lumen is inversely proportional to how many lumens can be realized from each unit of device area for a given device type. Performance as high as 138 lm/W, and over 40% wall plug efficiency, has been reported for low power research devices and over 90 lm/W for high power research devices. It is clear that high power commercial products with performance in

  1. Production of highly ionized species in high-current pulsed cathodic arcs

    SciTech Connect

    Sangines, R.; Israel, A. M.; Falconer, I. S.; McKenzie, D. R.; Bilek, M. M. M.

    2010-05-31

    Time resolved optical diagnostic techniques were used to study the production of highly ionized species in aluminum plasma produced by a centered-triggered high-current pulsed cathodic arc. Controlling the spacing between cathode spots enabled a correlation between a reduction in the mean charge state and an increase in the spacing of cathode spots to be observed. As the cathode current was increased, the distances between spots were reduced and these charge states were produced for longer times. Strong cathode spot coupling is proposed as a mechanism for the production of high charge states.

  2. Compact high current generator for x-ray radiography

    NASA Astrophysics Data System (ADS)

    Kharlov, A. V.; Kovalchuk, B. M.; Zorin, V. B.

    2006-12-01

    We report here a design of the portable high current generator, which can be used for a row of experiments and applications, including, but not limited to, X pinch, plasma focus, vacuum spark, etc. The X generator consists of the capacitor bank, multigap spark switch, load chamber, and built-in high voltage triggering generator. The capacitor bank consists of 12 General Atomics 35404 type capacitors (20nF, 25nH, 0.2Ω, 100kV). It stores ˜0.8kJ at 80kV charging voltage. Each three capacitors are commuted to a load by the multigap spark switch, which is able to commute by eight parallel channels. Switches operate in ambient air at atmospheric pressure. At 76kV charging voltage the generator provides ˜260kA with 120ns rise time and 5nH inductive load and ˜220kA with 145ns rise time and 10nH. Delay of output pulse relative to high voltage triggering pulse is ˜65ns with 5ns jitter. The dimensions of the generator are 1240×1240×225mm3 and the weight is ˜250kg, and only one high voltage power supply is required as additional equipment for the generator. The generator with a pumping system is placed on area about 0.5m2. Operation and handling are very simple, because no oil nor purified gases are required for the generator. The X generator has been successfully employed for experiments on the Ni X pinch load. X-ray pulse duration (full width at half maximum above 1keV) was about 5ns. Radiation yield Wr⩾500mJ was observed in the 1.2-1.5KeV range and Wr⩾20mJ in the 3-5keV energy range, which is comparable to results, obtained on the nanosecond accelerators. Clearly resolved images of 6μm wire indicate micron level size of hot spot. These results demonstrate possibility of this generator for application for x-ray backlighting.

  3. Ionization front in a high-current gas discharge

    NASA Astrophysics Data System (ADS)

    Choueiri, Edgar Y.; Randolph, Thomas M.

    2007-02-01

    Spectroscopic measurements of ion/neutral density ratio profiles are made inside the high-current, low-pressure discharge of a coaxial magnetoplasmadynamic thruster and show the existence of a thin ionization front, upstream in the discharge, that effectively ionizes the incoming gas to ionization levels above 50%. The measurements allow an estimate of the width of this ionization front to be on the order of a few millimeters. Due to the known existence of microturbulence in the plasma, which can produce suprathermal electrons, an explanation of the measurements based on the existence of a suprathermal tail in the electron energy distribution function is sought. A theoretical model for the width of the ionization front is combined with a multilevel excitation model for argon and shows that a Maxwellian electron distribution function cannot account for the small length scale of the ionization front, and that the latter is more consistent with an electron distribution function having a suprathermal population, the magnitude of which is estimated by comparing the model to the experiments.

  4. Ionization front in a high-current gas discharge

    SciTech Connect

    Choueiri, Edgar Y.; Randolph, Thomas M.

    2007-03-15

    Spectroscopic measurements of ion/neutral density ratio profiles are made inside the high-current, low-pressure discharge of a coaxial magnetoplasmadynamic thruster and show the existence of a thin ionization front, upstream in the discharge, that effectively ionizes the incoming gas to ionization levels above 50%. The measurements allow an estimate of the width of this ionization front to be on the order of a few millimeters. Due to the known existence of microturbulence in the plasma, which can produce suprathermal electrons, an explanation of the measurements based on the existence of a suprathermal tail in the electron energy distribution function is sought. A theoretical model for the width of the ionization front is combined with a multilevel excitation model for argon and shows that a Maxwellian electron distribution function cannot account for the small length scale of the ionization front, and that the latter is more consistent with an electron distribution function having a suprathermal population, the magnitude of which is estimated by comparing the model to the experiments.

  5. Ionization front in a high-current gas dischargea)

    NASA Astrophysics Data System (ADS)

    Choueiri, Edgar Y.; Randolph, Thomas M.

    2007-03-01

    Spectroscopic measurements of ion/neutral density ratio profiles are made inside the high-current, low-pressure discharge of a coaxial magnetoplasmadynamic thruster and show the existence of a thin ionization front, upstream in the discharge, that effectively ionizes the incoming gas to ionization levels above 50%. The measurements allow an estimate of the width of this ionization front to be on the order of a few millimeters. Due to the known existence of microturbulence in the plasma, which can produce suprathermal electrons, an explanation of the measurements based on the existence of a suprathermal tail in the electron energy distribution function is sought. A theoretical model for the width of the ionization front is combined with a multilevel excitation model for argon and shows that a Maxwellian electron distribution function cannot account for the small length scale of the ionization front, and that the latter is more consistent with an electron distribution function having a suprathermal population, the magnitude of which is estimated by comparing the model to the experiments.

  6. A neutron diagnostic for high current deuterium beams

    SciTech Connect

    Rebai, M.; Perelli Cippo, E.; Cavenago, M.; Dalla Palma, M.; Pasqualotto, R.; Tollin, M.; Croci, G.; Gervasini, G.; Ghezzi, F.; Grosso, G.; Tardocchi, M.; Murtas, F.; Gorini, G.

    2012-02-15

    A neutron diagnostic for high current deuterium beams is proposed for installation on the spectral shear interferometry for direct electric field reconstruction (SPIDER, Source for Production of Ion of Deuterium Extracted from RF plasma) test beam facility. The proposed detection system is called Close-contact Neutron Emission Surface Mapping (CNESM). The diagnostic aims at providing the map of the neutron emission on the beam dump surface by placing a detector in close contact, right behind the dump. CNESM uses gas electron multiplier detectors equipped with a cathode that also serves as neutron-proton converter foil. The cathode is made of a thin polythene film and an aluminium film; it is designed for detection of neutrons of energy >2.2 MeV with an incidence angle < 45 deg. CNESM was designed on the basis of simulations of the different steps from the deuteron beam interaction with the beam dump to the neutron detection in the nGEM. Neutron scattering was simulated with the MCNPX code. CNESM on SPIDER is a first step towards the application of this diagnostic technique to the MITICA beam test facility, where it will be used to resolve the horizontal profile of the beam intensity.

  7. A decaborane ion source for high current implantation

    NASA Astrophysics Data System (ADS)

    Perel, Alex S.; Loizides, William K.; Reynolds, William E.

    2002-02-01

    Progressive semiconductor device scaling in each technology node requires the formation of shallower junctions, and thus lower energy implants. The difficulties associated with extraction and transport of low energy beams often result in a loss in wafer throughput. Implantation of boron using the molecular compound decaborane has been found to allow for the shallow implantation of boron without a significant design change in the implanter. The decaborane molecule has 10 boron atoms and 14 hydrogen atoms. The implanted dose is ten times the electrical dose and the implanted depth is equivalent to the depth of a boron beam at 1/11th of the extraction energy. This advantage can only be exploited with an ion source that does not destroy the fragile molecule. We report on the design of an ion source capable of ionizing decaborane without significant fragmentation of the molecule. After it was shown that the decaborane molecule fragments above 350 °C an ion source was designed to prevent thermal dissociation of the molecule. Competitive boron dose rates were achieved using this source in a commercial high current implanter. In addition, evidence is shown that a decaborane dimer is formed in the ion source and can be implanted.

  8. High-density matter: current status and future challenges

    NASA Astrophysics Data System (ADS)

    Stone, J. R.

    2015-05-01

    There are many fascinating processes in the Universe which we observe in more and more in detail thanks to increasingly sophisticated technology. One of the most interesting phenomena is the life cycle of stars, their birth, evolution and death. If the stars are massive enough, they end their lives in the core-collapse supernova explosion, the one of the most violent events in the Universe. As the result, the densest objects in the Universe, neutron stars and/or black holes are created. Naturally, the physical basis of these events should be understood in line with observation. The current status of our knowledge of processes in the life of stars is far from adequate for their true understanding. We show that although many models have been constructed their detailed ability to describe observations is limited or non-existent. Furthermore the general failure of all models means that we cannot tell which are heading in the right direction. A possible way forward in modeling of high-density matter is outlined, exemplified by the quark-meson-coupling model (QMC). This model has a natural explanation for the saturation of nuclear forces and depends on very few adjustable parameters, strongly constrained by the underlying physics. Latest QMC results for compact objects and finite nuclei are presented.

  9. Double disordered YBCO coated conductors of industrial scale: high currents in high magnetic field

    NASA Astrophysics Data System (ADS)

    Abraimov, D.; Ballarino, A.; Barth, C.; Bottura, L.; Dietrich, R.; Francis, A.; Jaroszynski, J.; Majkic, G. S.; McCallister, J.; Polyanskii, A.; Rossi, L.; Rutt, A.; Santos, M.; Schlenga, K.; Selvamanickam, V.; Senatore, C.; Usoskin, A.; Viouchkov, Y. L.

    2015-11-01

    A significant increase of critical current in high magnetic field, up to 31 T, was recorded in long tapes manufactured by employing a double-disorder route. In a double-disordered high-temperature superconductor (HTS), a superimposing of intrinsic and extrinsic disorder takes place in a way that (i) the intrinsic disorder is caused by local stoichiometry deviations that lead to defects of crystallinity that serve as pining centers in the YBa2Cu3O x-δ matrix and (ii) the extrinsic disorder is introduced via embedded atoms or particles of foreign material (e.g. barium zirconate), which create a set of lattice defects. We analyzed possible technological reasons for this current gain. The properties of these tapes over a wider field-temperature range as well as field anisotropy were also studied. Record values of critical current as high as 309 A at 31 T, 500 A at 18 Tm and 1200 A at 5 T were found in 4 mm wide tape at 4.2 K and B perpendicular to tape surface. HTS layers were processed in medium-scale equipment that allows a maximum batch length of 250 m while 22 m long batches were provided for investigation. Abnormally high ratios (up to 10) of critical current density measured at 4.2 K, 19 T to critical current density measured at 77 K, self-field were observed in tapes with the highest in-field critical current. Anisotropy of the critical current as well as angular dependences of n and α values were investigated. The temperature dependence of critical current is presented for temperatures between 4.2 and 40 K. Prospects for the suppression of the dog-bone effect by Cu plating and upscale of processing chain to >500 m piece length are discussed.

  10. The Critical Current Density in High Critical Temperature Superconductors

    NASA Astrophysics Data System (ADS)

    Sengupta, Suvankar

    Critical current density, j_{ rm c}, is an important parameter for determining the usefulness. This work focuses on the understanding of various phenomena related to the j_{ rm c} in type II superconductor. Various methods to enhance j_{rm c} by introducing pinning are also considered. In particular, the effect of secondary phase addition and mechanical treatment on the microstructure and j _{rm c} of various high T _{rm c} superconducting system is investigated. Fine inclusions (<0.1 μm) can be introduced by secondary phase additions. An enhancement in j_{ rm c} is always observed associated with the presence of fine inclusions. These cavities are found to interact strongly with flux lines in a high T _{rm c} superconductor. However, the cavities are found ineffective to pin a large number of flux lines. Dislocations and other structural defects are introduced by consolidating Bi_2Sr _2CaCu_2O _{rm x} by hot isotatically pressing (HIP). Samples HIPed for 15 min. contained a high density of dislocations and showed a substantial higher j_{rm c} than the samples HIPed for 45 min. and 120 min., where most of the dislocations were annihilated during the recovery process. Various methods of determining the irreversibility line are also considered. Using the criterion of a constant j_{rm c}, the irreversibility line obtained from magnetic hysteresis measurements was found to improve with the enhancement of flux pinning and reduction of interlayer spacing. The results can be best explained by the model proposed by Kim et al (1) and Clem (2). Magnetic relaxation of various type II superconductors is also reported. The non-logarithmic of decay of magnetization can be understood by assuming a non-linear U-j relationship. A method to extract U-j relationship from magnetic relaxation experiments is also developed. The effect of flux pinning on the U-j relationship is also investigated. Melt-processed YBa_2Cu _3O_{rm x} samples with strong levitation force are also fabricated

  11. The impact of sunlight on high-latitude equivalent currents

    NASA Astrophysics Data System (ADS)

    Laundal, K. M.; Gjerloev, J. W.; Østgaard, N.; Reistad, J. P.; Haaland, S.; Snekvik, K.; Tenfjord, P.; Ohtani, S.; Milan, S. E.

    2016-03-01

    Ground magnetic field measurements can be mathematically related to an overhead ionospheric equivalent current. In this study we look in detail at how the global equivalent current, calculated using more than 30 years of SuperMAG magnetometer data, changes with sunlight conditions. The calculations are done using spherical harmonic analysis in quasi-dipole coordinates, a technique which leads to improved accuracy compared to previous studies. Sorting the data according to the location of the sunlight terminator and orientation of the interplanetary magnetic field (IMF), we find that the equivalent current resembles ionospheric convection patterns on the sunlit side of the terminator but not on the dark side. On the dark side, with southward IMF, the current is strongly dominated by a dawn cell and the current across the polar cap has a strong dawnward component. The contrast between the sunlit and dark side increases with increasing values of the F10.7 index, showing that increasing solar EUV flux changes not only the magnitude but also the morphology of the equivalent current system. The results are consistent with a recent study showing that Birkeland currents indirectly determine the equivalent current in darkness and that Hall currents dominate in sunlight. This has implication for the interpretation of ground magnetic field measurements and suggests that the magnetic disturbances at conjugate points will be asymmetrical when the solar illumination is different.

  12. A High-Gradient CW R Photo-Cathode Electron Gun for High Current Injectors

    SciTech Connect

    Robert Rimmer

    2005-05-01

    The paper describes the analysis and preliminary design of a high-gradient photo-cathode RF gun optimized for high current CW operation. The gun cell shape is optimized to provide maximum acceleration for the newly emitted beam while minimizing wall losses in the structure. The design is intended for use in future high-current high-power CW FELs but the shape optimization for low wall losses may be advantageous for other applications such as XFELs or Linear Colliders using high peak power low duty factor guns where pulse heating is a limitation. The concept allows for DC bias on the photocathode in order to repel ions and improve cathode lifetime.

  13. Switch contact device for interrupting high current, high voltage, AC and DC circuits

    DOEpatents

    Via, Lester C.; Witherspoon, F. Douglas; Ryan, John M.

    2005-01-04

    A high voltage switch contact structure capable of interrupting high voltage, high current AC and DC circuits. The contact structure confines the arc created when contacts open to the thin area between two insulating surfaces in intimate contact. This forces the arc into the shape of a thin sheet which loses heat energy far more rapidly than an arc column having a circular cross-section. These high heat losses require a dramatic increase in the voltage required to maintain the arc, thus extinguishing it when the required voltage exceeds the available voltage. The arc extinguishing process with this invention is not dependent on the occurrence of a current zero crossing and, consequently, is capable of rapidly interrupting both AC and DC circuits. The contact structure achieves its high performance without the use of sulfur hexafluoride.

  14. High-temperature strain measurement techniques: Current developments and challenges

    NASA Technical Reports Server (NTRS)

    Lemcoe, M. M.

    1992-01-01

    Since 1987, a very substantial amount of R&D has been conducted in an attempt to develop reliable strain sensors for the measurements of structural strains during ground testing and hypersonic flight, at temperatures up to at least 2000 deg F. Much of the effort has been focused on requirements of the NASP Program. This presentation is limited to the current sensor development work and characterization studies carried out within that program. It is basically an assessment as to where we are now and what remains to be done in the way of technical accomplishments to meet the technical challenges posed by the requirements and constraints established for the NASP Program. The approach for meeting those requirements and constraints has been multi-disciplinary in nature. It was recognized early on that no one sensor could meet all these requirements and constraints, largely because of the large temperature range (cryogenic to at least 2000 deg F) and many other factors, including the most challenging requirement that the sensor system be capable of obtaining valid 'first cycle data'. Present candidate alloys for resistance-type strain gages include Fe-Cr-Al and Pd-Cr. Although they have superior properties regarding withstanding very high temperatures, they exhibit large apparent strains that must either be accounted for or cancelled out by various techniques, including the use of a dual-element, half-bridge dummy gage, or electrical compensation networks. A significant effort is being devoted to developing, refining, and evaluating the effectiveness of those techniques over a broad range in temperature and time. In the quest to obtain first-cycle data, ways must be found to eliminate the need to prestabilize or precondition the strain gage, before it is attached to the test article. It should be noted that present NASP constraints do not permit prestabilization of the sensor, in situ. Gages are currently being 'heat treated' during manufacture in both the wire- and foil

  15. High-temperature strain measurement techniques: Current developments and challenges

    NASA Astrophysics Data System (ADS)

    Lemcoe, M. M.

    1992-09-01

    Since 1987, a very substantial amount of R&D has been conducted in an attempt to develop reliable strain sensors for the measurements of structural strains during ground testing and hypersonic flight, at temperatures up to at least 2000 deg F. Much of the effort has been focused on requirements of the NASP Program. This presentation is limited to the current sensor development work and characterization studies carried out within that program. It is basically an assessment as to where we are now and what remains to be done in the way of technical accomplishments to meet the technical challenges posed by the requirements and constraints established for the NASP Program. The approach for meeting those requirements and constraints has been multi-disciplinary in nature. It was recognized early on that no one sensor could meet all these requirements and constraints, largely because of the large temperature range (cryogenic to at least 2000 deg F) and many other factors, including the most challenging requirement that the sensor system be capable of obtaining valid 'first cycle data'. Present candidate alloys for resistance-type strain gages include Fe-Cr-Al and Pd-Cr. Although they have superior properties regarding withstanding very high temperatures, they exhibit large apparent strains that must either be accounted for or cancelled out by various techniques, including the use of a dual-element, half-bridge dummy gage, or electrical compensation networks. A significant effort is being devoted to developing, refining, and evaluating the effectiveness of those techniques over a broad range in temperature and time. In the quest to obtain first-cycle data, ways must be found to eliminate the need to prestabilize or precondition the strain gage, before it is attached to the test article. It should be noted that present NASP constraints do not permit prestabilization of the sensor, in situ. Gages are currently being 'heat treated' during manufacture in both the wire- and foil

  16. On transport-driven currents

    SciTech Connect

    Ma, S.; Dawson, J.M. )

    1994-08-01

    An empirical electron viscosity is incorporated into Ohm's law to examine the effect of current diffusion on bootstrap currents. It is shown that for sufficiently large viscosity, no seed current is needed for steady state operation of tokamaks. This is expressed by the scaling law [Gamma][ital R][sup 2][sub [ital m

  17. Improvements of a Beam Current Monitor by using a High Tc Current Sensor and SQUID at the RIBF

    NASA Astrophysics Data System (ADS)

    Watanabe, T.; Fukunishi, N.; Kase, M.; Kamigaito, O.; Inamori, S.; Kon, K.

    2014-05-01

    To measure a beam current non-destructively, a conventional DC current transformer (DCCT) has been used at accelerator facilities. However, the current resolution of the DCCT is worse than 1μA. This current resolution is sufficient for electron and proton accelerators in which the beam intensity is high, but it is not sufficient for lower intensity heavy-ion beams. Thus, superconducting technology has been applied to the precise measurement of the beam current. In particular, to measure the DC current of high-energy heavy-ion beams non-destructively at high resolution, a high critical temperature (HTc) superconducting quantum interference device (SQUID) beam current monitor (HTc SQUID monitor) has been developed for use in the radioactive isotope beam factory (RIBF) at RIKEN in Japan. Beginning this year, the magnetic shielding system has been greatly reinforced. The measurement resolution is determined by the signal to noise ratio, that is improved by attenuating the external magnetic noise and is mainly produced by the distribution and transmission lines from the high current power supplies. The new strong magnetic shielding system can attenuate the external magnetic noise to 10-10.

  18. Bootstrap bound for conformal multi-flavor QCD on lattice

    NASA Astrophysics Data System (ADS)

    Nakayama, Yu

    2016-07-01

    The recent work by Iha et al. shows an upper bound on mass anomalous dimension γ m of multi-flavor massless QCD at the renormalization group fixed point from the conformal bootstrap in SU( N F ) V symmetric conformal field theories under the assumption that the fixed point is realizable with the lattice regularization based on staggered fermions. We show that the almost identical but slightly stronger bound applies to the regularization based on Wilson fermions (or domain wall fermions) by studying the conformal bootstrap in SU( N f ) L × SU( N f ) R symmetric conformal field theories. For N f = 8, our bound implies γ m < 1 .31 to avoid dangerously irrelevant operators that are not compatible with the lattice symmetry.

  19. A bootstrap lunar base: Preliminary design review 2

    NASA Technical Reports Server (NTRS)

    1987-01-01

    A bootstrap lunar base is the gateway to manned solar system exploration and requires new ideas and new designs on the cutting edge of technology. A preliminary design for a Bootstrap Lunar Base, the second provided by this contractor, is presented. An overview of the work completed is discussed as well as the technical, management, and cost strategies to complete the program requirements. The lunar base design stresses the transforming capabilities of its lander vehicles to aid in base construction. The design also emphasizes modularity and expandability in the base configuration to support the long-term goals of scientific research and profitable lunar resource exploitation. To successfully construct, develop, and inhabit a permanent lunar base, however, several technological advancements must first be realized. Some of these technological advancements are also discussed.

  20. A DEMO relevant fast wave current drive high harmonic antenna exploiting the high impedance technique

    NASA Astrophysics Data System (ADS)

    Milanesio, D.; Maggiora, R.

    2015-12-01

    Ion Cyclotron (IC) antennas are routinely adopted in most of the existing nuclear fusion experiments, even though their main goal, i.e. to couple high power to the plasma (MW), is often limited by rather severe drawbacks due to high fields on the antenna itself and on the unmatched part of the feeding lines. In addition to the well exploited auxiliary ion heating during the start-up phase, some non-ohmic current drive (CD) at the IC range of frequencies may be explored in view of the DEMO reactor. In this work, we suggest and describe a compact high frequency DEMO relevant antenna, based on the high impedance surfaces concept. High-impedance surfaces are periodic metallic structures (patches) usually displaced on top of a dielectric substrate and grounded by means of vertical posts embedded inside the dielectric, in a mushroom-like shape. These structures present a high impedance, within a given frequency band, such that the image currents are in-phase with the currents of the antenna itself, thus determining a significant efficiency increase. After a general introduction on the properties of high impedance surfaces, we analyze, by means of numerical codes, a dielectric based and a full metal solution optimized to be tested and benchmarked on the FTU experiment fed with generators at 433MHz.

  1. A DEMO relevant fast wave current drive high harmonic antenna exploiting the high impedance technique

    SciTech Connect

    Milanesio, D. Maggiora, R.

    2015-12-10

    Ion Cyclotron (IC) antennas are routinely adopted in most of the existing nuclear fusion experiments, even though their main goal, i.e. to couple high power to the plasma (MW), is often limited by rather severe drawbacks due to high fields on the antenna itself and on the unmatched part of the feeding lines. In addition to the well exploited auxiliary ion heating during the start-up phase, some non-ohmic current drive (CD) at the IC range of frequencies may be explored in view of the DEMO reactor. In this work, we suggest and describe a compact high frequency DEMO relevant antenna, based on the high impedance surfaces concept. High-impedance surfaces are periodic metallic structures (patches) usually displaced on top of a dielectric substrate and grounded by means of vertical posts embedded inside the dielectric, in a mushroom-like shape. These structures present a high impedance, within a given frequency band, such that the image currents are in-phase with the currents of the antenna itself, thus determining a significant efficiency increase. After a general introduction on the properties of high impedance surfaces, we analyze, by means of numerical codes, a dielectric based and a full metal solution optimized to be tested and benchmarked on the FTU experiment fed with generators at 433MHz.

  2. The Long Way to the Statistical Bootstrap Model: 1994

    NASA Astrophysics Data System (ADS)

    Hagedorn, Rolf

    I describe the long way from the first theoretical ideas about multiple particle production up to the situation in which constructing of a statistical model of strong interactions seemed natural. I begin in 1936, and argue that the statistical method came to be from a large network of observations and theoretical ideas. I shall pick up only a few primary lines, chosen for their common end point: the statistical bootstrap model of 1964/65.

  3. 'Bootstrap' charging of surfaces composed of multiple materials

    NASA Technical Reports Server (NTRS)

    Stannard, P. R.; Katz, I.; Parks, D. E.

    1981-01-01

    The paper examines the charging of a checkerboard array of two materials, only one of which tends to acquire a negative potential alone, using the NASA Charging Analyzer Program (NASCAP). The influence of the charging material's field causes the otherwise 'non-charging' material to acquire a negative potential due to the suppression of its secondary emission ('bootstrap' charging). The NASCAP predictions for the equilibrium potential difference between the two materials are compared to results based on an analytical model.

  4. POBO, transcription factor binding site verification with bootstrapping

    PubMed Central

    Kankainen, Matti; Holm, Liisa

    2004-01-01

    Transcription factors can either activate or repress target genes by binding onto short nucleotide sequence motifs in the promoter regions of these genes. Here, we present POBO, a promoter bootstrapping program, for gene expression data. POBO can be used to detect, compare and verify predetermined transcription factor binding site motifs in the promoters of one or two clusters of co-regulated genes. The program calculates the frequencies of the motif in the input promoter sets. A bootstrap analysis detects significantly over- or underrepresented motifs. The output of the program presents bootstrapped results in picture and text formats. The program was tested with published data from transgenic WRKY70 microarray experiments. Intriguingly, motifs recognized by the WRKY transcription factors of plant defense pathways are similarly enriched in both up- and downregulated clusters. POBO analysis suggests slightly modified hypothetical motifs that discriminate between up- and downregulated clusters. In conclusion, POBO allows easy, fast and accurate verification of putative regulatory motifs. The statistical tests implemented in POBO can be useful in eliminating false positives from the results of pattern discovery programs and increasing the reliability of true positives. POBO is freely available from http://ekhidna.biocenter.helsinki.fi:9801/pobo. PMID:15215385

  5. Comparison Of Modified Bootstrap And Conventional Sensitometry In Medical Radiography

    NASA Astrophysics Data System (ADS)

    Bednarek, Daniel R.; Rudin, Stephen

    1980-08-01

    A new modified bootstrap approach to sensitometry is presented which provides H and D curves that show almost exact agreement with those obtained using conventional methods. Two bootstrap techniques are described; both involve a combination of inverse-square and step-ped wedge modulation of the radiation field and provide intensity-scale sensitometric curves as appropriate for medical radiography. H and D curves obtained with these modified techniques are compared with those obtained for screen-film combinations using inverse-square sensitometry as well as with those obtained for direct x-ray film using time-scale sensitometry. The stepped-wedge of the Wisconsin X-Ray Test Cassette was used in the boot-strap approach since it provides sufficient exposure latitude to encompass the useful den-sity range of medical x-ray film. This approach makes radiographic sensitometry quick and convenient, allowing accurate characteristic curves to be obtained for any screen-film cassette using standard diagnostic equipment.

  6. Quantitative evaluation of PET image using event information bootstrap

    NASA Astrophysics Data System (ADS)

    Song, Hankyeol; Kwak, Shin Hye; Kim, Kyeong Min; Kang, Joo Hyun; Chung, Yong Hyun; Woo, Sang-Keun

    2016-04-01

    The purpose of this study was to enhance the effect in the PET image quality according to event bootstrap of small animal PET data. In order to investigate the time difference condition, realigned sinograms were generated from randomly sampled data set using bootstrap. List-mode data was obtained from small animal PET scanner for Ge-68 30 sec, Y-90 20 min and Y-90 60 min. PET image was reconstructed by Ordered Subset Expectation Maximization(OSEM) 2D with the list-mode format. Image analysis was investigated by Signal to Noise Ratio(SNR) of Ge-68 and Y-90 image. Non-parametric resampled PET image SNR percent change for the Ge-68 30 sec, Y-90 60 min, and Y-90 20 min was 1.69 %, 7.03 %, and 4.78 %, respectively. SNR percent change of non-parametric resampled PET image with time difference condition was 1.08 % for the Ge-68 30 sec, 6.74 % for the Y-90 60 min and 10.94 % for the Y-90 29 min. The result indicated that the bootstrap with time difference condition had a potential to improve a noisy Y-90 PET image quality. This method should be expected to reduce Y-90 PET measurement time and to enhance its accuracy.

  7. Application of the Bootstrap Statistical Method in Deriving Vibroacoustic Specifications

    NASA Technical Reports Server (NTRS)

    Hughes, William O.; Paez, Thomas L.

    2006-01-01

    This paper discusses the Bootstrap Method for specification of vibroacoustic test specifications. Vibroacoustic test specifications are necessary to properly accept or qualify a spacecraft and its components for the expected acoustic, random vibration and shock environments seen on an expendable launch vehicle. Traditionally, NASA and the U.S. Air Force have employed methods of Normal Tolerance Limits to derive these test levels based upon the amount of data available, and the probability and confidence levels desired. The Normal Tolerance Limit method contains inherent assumptions about the distribution of the data. The Bootstrap is a distribution-free statistical subsampling method which uses the measured data themselves to establish estimates of statistical measures of random sources. This is achieved through the computation of large numbers of Bootstrap replicates of a data measure of interest and the use of these replicates to derive test levels consistent with the probability and confidence desired. The comparison of the results of these two methods is illustrated via an example utilizing actual spacecraft vibroacoustic data.

  8. An SAS Macro for Implementing the Modified Bollen-Stine Bootstrap for Missing Data: Implementing the Bootstrap Using Existing Structural Equation Modeling Software

    ERIC Educational Resources Information Center

    Enders, Craig K.

    2005-01-01

    The Bollen-Stine bootstrap can be used to correct for standard error and fit statistic bias that occurs in structural equation modeling (SEM) applications due to nonnormal data. The purpose of this article is to demonstrate the use of a custom SAS macro program that can be used to implement the Bollen-Stine bootstrap with existing SEM software.…

  9. Conversion of high explosive chemical energy into energy of powerful nanosecond high-current pulses

    NASA Astrophysics Data System (ADS)

    Gorbachev, K. V.; Mikhaylov, V. M.; Nesterov, E. V.; Stroganov, V. A.; Chernykh, E. V.

    2015-01-01

    This study is a contribution into the development of physicotechnical foundations for generation of powerful nanosecond high-current pulses on the basis of explosively driven magnetic flux compression generators. This problem is solved by using inductive storage of energy for matching comparatively low-voltage explosively driven magnetic flux compression generators and high-impedance loads; short forming lines and vacuum diodes. Experimental data of charging of forming lines are given.

  10. Development and Testing of High Current Hollow Cathodes for High Power Hall Thrusters

    NASA Technical Reports Server (NTRS)

    Kamhawi, Hani; Van Noord, Jonathan

    2012-01-01

    NASA's Office of the Chief Technologist In-Space Propulsion project is sponsoring the testing and development of high power Hall thrusters for implementation in NASA missions. As part of the project, NASA Glenn Research Center is developing and testing new high current hollow cathode assemblies that can meet and exceed the required discharge current and life-time requirements of high power Hall thrusters. This paper presents test results of three high current hollow cathode configurations. Test results indicated that two novel emitter configurations were able to attain lower peak emitter temperatures compared to state-of-the-art emitter configurations. One hollow cathode configuration attained a cathode orifice plate tip temperature of 1132 degC at a discharge current of 100 A. More specifically, test and analysis results indicated that a novel emitter configuration had minimal temperature gradient along its length. Future work will include cathode wear tests, and internal emitter temperature and plasma properties measurements along with detailed physics based modeling.

  11. High-power Čerenkov microwave oscillators utilizing High-Current nanosecond Electron beams

    NASA Astrophysics Data System (ADS)

    Korovin, S. D.; Polevin, S. D.; Rostov, V. V.

    1996-12-01

    A short review is given of results obtained at the Institute of High-Current Electronics of the Siberian Branch of the Russian Academy of Sciences on generating high-power microwave radiation. Most of the research was devoted to a study of stimulated Čerenkov radiation from relativistic electron beams. It is shown that the efficiency of a relativistic 3-cm backward wave tube with a nonuniform coupling resistance can reach 35%. High-frequency radiation was discovered in the emission spectrum of the Čerenkov oscillators and it was shown that the nature of the radiation was associated with the stimulated scattering of low-frequency radiation by the relativistic electrons. Radiation with a power of 500 MW was obtained in the 8-mm wavelength range using a two-beam Čerenkov oscillator. High-current pulse-periodic nanosecond accelerators with a charging device utilizing a Tesla transformer were used in the experiments. The possibility was demonstrated of generating high-power microwave radiation with a pulse-repetition frequency of up to 100 Hz. An average power of ˜500 W was achieved from the relativistic oscillators. A relativistic backward wave tube with a high-current electron beam was used to make a prototype nanosecond radar device. Some of the results presented were obtained jointly with the Russian Academy of Sciences Institute of Applied Physics. Questions concerning multiwave Čerenkov interaction are not considered in this paper.

  12. High School Feedback: An Analysis of States' Current Efforts

    ERIC Educational Resources Information Center

    Data Quality Campaign, 2011

    2011-01-01

    There is increased demand from multiple stakeholders for information about K-12 students' success after high school. When this information is provided back to high schools, it is often referred to as "high school feedback" information. This working document captures knowledge about states' capacity to and progress in providing high school feedback…

  13. High Speed High Resolution Current Comparator and its Application to Analog to Digital Converter

    NASA Astrophysics Data System (ADS)

    Sridhar, Ranjana; Pandey, Neeta; Bhattacharyya, Asok; Bhatia, Veepsa

    2016-06-01

    This paper introduces a high speed high resolution current comparator which includes the current differencing stage and employs non linear feedback in the gain stage. The usefulness of the proposed comparator is demonstrated by implementing a 3-bit current mode flash analog-to-digital converter (ADC). Simulation program with integrated circuit emphasis (SPICE) simulations have been carried out to verify theoretical proposition and performance parameters of both comparator and ADC are obtained using TSMC 0.18 µm CMOS technology parameters. The current comparator shows a resolution of ±5 nA and a delay of 0.86 ns for current difference of ±1 µA. The impact of process variation on proposed comparator propagation delay has been studied through Monte Carlo simulation and it is found that percentage change in propagation delay in best case is 1.3 % only and in worst case is 9 % only. The ADC exhibits an offset, gain error, differential nonlinearity (DNL) and integral nonlinearity (INL) of 0.102 µA, 0.99, -0.34 LSB and 0.0267 LSB, respectively. The impact of process variation on ADC has also been studied at different process corners.

  14. High Speed High Resolution Current Comparator and its Application to Analog to Digital Converter

    NASA Astrophysics Data System (ADS)

    Sridhar, Ranjana; Pandey, Neeta; Bhattacharyya, Asok; Bhatia, Veepsa

    2015-04-01

    This paper introduces a high speed high resolution current comparator which includes the current differencing stage and employs non linear feedback in the gain stage. The usefulness of the proposed comparator is demonstrated by implementing a 3-bit current mode flash analog-to-digital converter (ADC). Simulation program with integrated circuit emphasis (SPICE) simulations have been carried out to verify theoretical proposition and performance parameters of both comparator and ADC are obtained using TSMC 0.18 µm CMOS technology parameters. The current comparator shows a resolution of ±5 nA and a delay of 0.86 ns for current difference of ±1 µA. The impact of process variation on proposed comparator propagation delay has been studied through Monte Carlo simulation and it is found that percentage change in propagation delay in best case is 1.3 % only and in worst case is 9 % only. The ADC exhibits an offset, gain error, differential nonlinearity (DNL) and integral nonlinearity (INL) of 0.102 µA, 0.99, -0.34 LSB and 0.0267 LSB, respectively. The impact of process variation on ADC has also been studied at different process corners.

  15. Bootstrap-based differential gene expression analysis for RNA-Seq data with and without replicates

    PubMed Central

    2014-01-01

    A major application of RNA-Seq is to perform differential gene expression analysis. Many tools exist to analyze differentially expressed genes in the presence of biological replicates. Frequently, however, RNA-Seq experiments have no or very few biological replicates and development of methods for detecting differentially expressed genes in these scenarios is still an active research area. In this paper we introduce a novel method, called IsoDE, for differential gene expression analysis based on bootstrapping. We compared IsoDE against four existing methods (Fisher's exact test, GFOLD, edgeR and Cuffdiff) on RNA-Seq datasets generated using three different sequencing technologies, both with and without replicates. Experiments on MAQC RNA-Seq datasets without replicates show that IsoDE has consistently high accuracy as defined by the qPCR ground truth, frequently higher than that of the compared methods, particularly for low coverage data and at lower fold change thresholds. In experiments on RNA-Seq datasets with up to 7 replicates, IsoDE has also achieved high accuracy. Furthermore, unlike GFOLD and edgeR, IsoDE accuracy varies smoothly with the number of replicates, and is relatively uniform across the entire range of gene expression levels. The proposed non-parametric method based on bootstrapping has practical running time, and achieves robust performance over a broad range of technologies, number of replicates, sequencing depths, and minimum fold change thresholds. PMID:25435284

  16. Operation Bootstrap: Adult Education Program Responsibility.

    ERIC Educational Resources Information Center

    Johnston, Ella M.

    Adult educators need to ask themselves two basic questions: What are the problems which adults face today? What are the services which adult education can deliver to help adults individually, and collectively, resolve their problems? For many low-income adults, the problems of high death and unemployment rates, low life expectancy rates, limited…

  17. Ultrastable low-noise current amplifier: A novel device for measuring small electric currents with high accuracy

    SciTech Connect

    Drung, D.; Krause, C.; Becker, U.; Scherer, H.; Ahlers, F. J.

    2015-02-15

    An ultrastable low-noise current amplifier (ULCA) is presented. The ULCA is a non-cryogenic instrument based on specially designed operational amplifiers and resistor networks. It involves two stages, the first providing a 1000-fold current gain and the second performing a current-to-voltage conversion via an internal 1 MΩ reference resistor or, optionally, an external standard resistor. The ULCA’s transfer coefficient is highly stable versus time, temperature, and current amplitude within the full dynamic range of ±5 nA. The low noise level of 2.4 fA/√Hz helps to keep averaging times short at small input currents. A cryogenic current comparator is used to calibrate both input current gain and output transresistance, providing traceability to the quantum Hall effect. Within one week after calibration, the uncertainty contribution from short-term fluctuations and drift of the transresistance is about 0.1 parts per million (ppm). The long-term drift is typically 5 ppm/yr. A high-accuracy variant is available that shows improved stability of the input gain at the expense of a higher noise level of 7.5 fA/√Hz. The ULCA also allows the traceable generation of small electric currents or the calibration of high-ohmic resistors.

  18. Ultrastable low-noise current amplifier: a novel device for measuring small electric currents with high accuracy.

    PubMed

    Drung, D; Krause, C; Becker, U; Scherer, H; Ahlers, F J

    2015-02-01

    An ultrastable low-noise current amplifier (ULCA) is presented. The ULCA is a non-cryogenic instrument based on specially designed operational amplifiers and resistor networks. It involves two stages, the first providing a 1000-fold current gain and the second performing a current-to-voltage conversion via an internal 1 MΩ reference resistor or, optionally, an external standard resistor. The ULCA's transfer coefficient is highly stable versus time, temperature, and current amplitude within the full dynamic range of ±5 nA. The low noise level of 2.4 fA/√Hz helps to keep averaging times short at small input currents. A cryogenic current comparator is used to calibrate both input current gain and output transresistance, providing traceability to the quantum Hall effect. Within one week after calibration, the uncertainty contribution from short-term fluctuations and drift of the transresistance is about 0.1 parts per million (ppm). The long-term drift is typically 5 ppm/yr. A high-accuracy variant is available that shows improved stability of the input gain at the expense of a higher noise level of 7.5 fA/√Hz. The ULCA also allows the traceable generation of small electric currents or the calibration of high-ohmic resistors. PMID:25725866

  19. Ultrastable low-noise current amplifier: A novel device for measuring small electric currents with high accuracy

    NASA Astrophysics Data System (ADS)

    Drung, D.; Krause, C.; Becker, U.; Scherer, H.; Ahlers, F. J.

    2015-02-01

    An ultrastable low-noise current amplifier (ULCA) is presented. The ULCA is a non-cryogenic instrument based on specially designed operational amplifiers and resistor networks. It involves two stages, the first providing a 1000-fold current gain and the second performing a current-to-voltage conversion via an internal 1 MΩ reference resistor or, optionally, an external standard resistor. The ULCA's transfer coefficient is highly stable versus time, temperature, and current amplitude within the full dynamic range of ±5 nA. The low noise level of 2.4 fA/√Hz helps to keep averaging times short at small input currents. A cryogenic current comparator is used to calibrate both input current gain and output transresistance, providing traceability to the quantum Hall effect. Within one week after calibration, the uncertainty contribution from short-term fluctuations and drift of the transresistance is about 0.1 parts per million (ppm). The long-term drift is typically 5 ppm/yr. A high-accuracy variant is available that shows improved stability of the input gain at the expense of a higher noise level of 7.5 fA/√Hz. The ULCA also allows the traceable generation of small electric currents or the calibration of high-ohmic resistors.

  20. Performance of an SOI Boot-Strapped Full-Bridge MOSFET Driver, Type CHT-FBDR, under Extreme Temperatures

    NASA Technical Reports Server (NTRS)

    Patterson, Richard; Hammoud, Ahmad

    2009-01-01

    Electronic systems designed for use in deep space and planetary exploration missions are expected to encounter extreme temperatures and wide thermal swings. Silicon-based devices are limited in their wide-temperature capability and usually require extra measures, such as cooling or heating mechanisms, to provide adequate ambient temperature for proper operation. Silicon-On-Insulator (SOI) technology, on the other hand, lately has been gaining wide spread use in applications where high temperatures are encountered. Due to their inherent design, SOI-based integrated circuit chips are able to operate at temperatures higher than those of the silicon devices by virtue of reducing leakage currents, eliminating parasitic junctions, and limiting internal heating. In addition, SOI devices provide faster switching, consume less power, and offer improved radiation-tolerance. Very little data, however, exist on the performance of such devices and circuits under cryogenic temperatures. In this work, the performance of an SOI bootstrapped, full-bridge driver integrated circuit was evaluated under extreme temperatures and thermal cycling. The investigations were carried out to establish a baseline on the functionality and to determine suitability of this device for use in space exploration missions under extreme temperature conditions.

  1. Record high-average current from a high-brightness photoinjector

    SciTech Connect

    Dunham, Bruce; Barley, John; Bartnik, Adam; Bazarov, Ivan; Cultrera, Luca; Dobbins, John; Hoffstaetter, Georg; Johnson, Brent; Kaplan, Roger; Karkare, Siddharth; Kostroun, Vaclav; Li Yulin; Liepe, Matthias; Liu Xianghong; Loehl, Florian; Maxson, Jared; Quigley, Peter; Reilly, John; Rice, David; Sabol, Daniel; and others

    2013-01-21

    High-power, high-brightness electron beams are of interest for many applications, especially as drivers for free electron lasers and energy recovery linac light sources. For these particular applications, photoemission injectors are used in most cases, and the initial beam brightness from the injector sets a limit on the quality of the light generated at the end of the accelerator. At Cornell University, we have built such a high-power injector using a DC photoemission gun followed by a superconducting accelerating module. Recent results will be presented demonstrating record setting performance up to 65 mA average current with beam energies of 4-5 MeV.

  2. Experiments and simulation of high current operation at CEBAF

    SciTech Connect

    Merminga, L.; Crawford, K.; Delayen, J.R.; Doolittle, L.; Hovater, C.; Kazimi, R.; Krafft, G.; Reece, C.; Simrock, S.; Tiefenback, M.; Wang, D.X.

    1996-07-01

    The superconducting rf, cw electron accelerator at CEBAF has achieved the design energy of 4 GeV using 5-pass recirculation through a pair of 400 MeV linacs. Stable beam current of 35 {mu}A has been delivered to the Experimental Hall C. The total beam current that has been recirculated so far is 248 {mu}A. Measurements of the performance of the rf control system have been made in both pulsed and cw mode, and a numerical model has been developed which describes the beam-cavity interaction, includes a realistic representation of low level controls, klystron characteristics and microphonic noise. Experimental data and simulation results on transient beam loading, klystron saturation, a new technique for cavity phasing, and heavy beam loading tests are described; in conclusion, an outlook on full current operation is presented.

  3. High-current density, high-brightness electron beams from large-area lanthanum hexaboride cathodes

    NASA Astrophysics Data System (ADS)

    Loschialpo, P.; Kapetanakos, C. A.

    1987-12-01

    Large (approx. 5 cm) diameter lanthanum hexaboride (LaB6) cathodes operated at 10 kV have produced 1 to 5 micro electron pulses with current density between 10 and 20 A/sq cm. Normalized beam brightness, has been consistently measured. To obtain this high current density, the LaB6 cathodes have been heated to temperatures between approximately 1600 to 1800 C. Very uniform temperature profiles are obtained by applying a carefully tailored electron bombardment heating power distribution. These measurements have been made between pressure .000001 to .00001 Torr, i.e., under much less demanding vacuum conditions than that required by conventional dispenser type cathodes.

  4. High-current, low-forward-drop JBS power rectifiers

    NASA Astrophysics Data System (ADS)

    Chang, H.-R.; Baliga, B. J.

    1986-03-01

    The junction- barrier-controlled Schottky (JBS) rectifier is a Schottky rectifier with a p- n junction grid structure integrated into the device structure to improve its reverse blocking characteristics. This paper reports the development of large area (0.5 cm 2), 30 V, JBS rectifiers capable of handling over 25 A of forward current while operating at up to 125°C with good reverse blocking characteristics. Trade-off curves between forward voltage drop and reverse leakage current are introduced to allow optimization of these devices.

  5. High-current beam dynamics and transport, theory and experiment

    SciTech Connect

    Reiser, M.

    1986-01-01

    Recent progress in the understanding of beam physics and technology factors determining the current and brightness of ion and electron beams in linear accelerators will be reviewed. Topics to be discussed including phase-space density constraints of particle sources, low-energy beam transport include charge neutralization, emittance growth due to mismatch, energy exchange, instabilities, nonlinear effects, and longitudinal bunching.

  6. High current DC negative ion source for cyclotron

    NASA Astrophysics Data System (ADS)

    Etoh, H.; Onai, M.; Aoki, Y.; Mitsubori, H.; Arakawa, Y.; Sakuraba, J.; Kato, T.; Mitsumoto, T.; Hiasa, T.; Yajima, S.; Shibata, T.; Hatayama, A.; Okumura, Y.

    2016-02-01

    A filament driven multi-cusp negative ion source has been developed for proton cyclotrons in medical applications. In Cs-free operation, continuous H- beam of 10 mA and D- beam of 3.3 mA were obtained stably at an arc-discharge power of 3 kW and 2.4 kW, respectively. In Cs-seeded operation, H- beam current reached 22 mA at a lower arc power of 2.6 kW with less co-extracted electron current. The optimum gas flow rate, which gives the highest H- current, was 15 sccm in the Cs-free operation, while it decreased to 4 sccm in the Cs-seeded operation. The relationship between H- production and the design/operating parameters has been also investigated by a numerical study with KEIO-MARC code, which gives a reasonable explanation to the experimental results of the H- current dependence on the arc power.

  7. Pulse-width-modulated high-current power supply

    NASA Technical Reports Server (NTRS)

    Messano, E. A.; Moore, H. E.

    1977-01-01

    Power supply achieves efficiency rating of approximately 80 percent at rated maximum output current. Protection circuitry prevents logic/memory loads from losing stored data if supply protection circuit initiates power shut down; prevents damage caused by overtemperature condition; protects logic/memory load from undervoltage to overvoltage conditions. Warning signal indicates power shutdown.

  8. High voltage fault current limiter having immersed phase coils

    SciTech Connect

    Darmann, Francis Anthony

    2014-04-22

    A fault current limiter including: a ferromagnetic circuit formed from a ferromagnetic material and including at least a first limb, and a second limb; a saturation mechanism surrounding a limb for magnetically saturating the ferromagnetic material; a phase coil wound around a second limb; a dielectric fluid surrounding the phase coil; a gaseous atmosphere surrounding the saturation mechanism.

  9. DEVELOPMENT OF A HIGH CURRENT OILBOOM/SKIMMER

    EPA Science Inventory

    A low drag oil spill recovery device has been developed to retain and recover floating oil slicks in currents up to 3.0 m/sec (6 knots) and low wave conditions typically encountered in small lakes and harbors, smooth flowing streams and other inland waterways. The streamlined oil...

  10. A RIGID, PERFORATED PLATE OIL BOOM FOR HIGH CURRENTS

    EPA Science Inventory

    A boom capable of diverting oil spills toward shore in a 3-knot (1.5 m/s) river or tidal current has been developed. Loss of No. 2 and No. 4 Fuel Oil at this velocity is typically less than 15 percent when the angle of the boom is 45 degrees to the shoreline. In contrast, convent...

  11. High current DC negative ion source for cyclotron.

    PubMed

    Etoh, H; Onai, M; Aoki, Y; Mitsubori, H; Arakawa, Y; Sakuraba, J; Kato, T; Mitsumoto, T; Hiasa, T; Yajima, S; Shibata, T; Hatayama, A; Okumura, Y

    2016-02-01

    A filament driven multi-cusp negative ion source has been developed for proton cyclotrons in medical applications. In Cs-free operation, continuous H(-) beam of 10 mA and D(-) beam of 3.3 mA were obtained stably at an arc-discharge power of 3 kW and 2.4 kW, respectively. In Cs-seeded operation, H(-) beam current reached 22 mA at a lower arc power of 2.6 kW with less co-extracted electron current. The optimum gas flow rate, which gives the highest H(-) current, was 15 sccm in the Cs-free operation, while it decreased to 4 sccm in the Cs-seeded operation. The relationship between H(-) production and the design/operating parameters has been also investigated by a numerical study with KEIO-MARC code, which gives a reasonable explanation to the experimental results of the H(-) current dependence on the arc power. PMID:26932017

  12. Non-Inductive Current Drive Modeling Extending Advanced Tokamak Operation to Steady State

    SciTech Connect

    Casper, T.A.; Lodestro, L.L.; Pearlstein, L.D.; Porter, G.D.; Murakami, M.; Lao, L.L.; Lin-Lui, Y.R.; St. John, H.E.

    2000-06-06

    A critical issue for sustaining high performance, negative central shear (NCS) discharges is the ability to maintain current distributions that are maximum off axis. Sustaining such hollow current profiles in steady state requires the use of non-inductively driven current sources. On the DIII-D experiment, a combination of neutral beam current drive (NBCD) and bootstrap current have been used to create transient NCS discharges. The electron cyclotron heating (ECH) and current drive (ECCD) system is currently being upgraded from three gyrotrons to six to provide more than 3MW of absorbed power in long-pulse operation to help sustain the required off-axis current drive. This upgrade SuPporrs the long range goal of DIII-D to sustain high performance discharges with high values of normalized {beta}, {beta}{sub n} = {beta}/(I{sub p}/aB{sub T}), confinement enhancement factor, H, and neutron production rates while utilizing bootstrap current fraction, f{sub bs}, in excess of 50%. At these high performance levels, the likelihood of onset of MHD modes that spoil confinement indicates the need to control plasma profiles if we are to extend this operation to long pulse or steady state. To investigate the effectiveness of the EC system and to explore operating scenarios to sustain these discharges, we use time-dependent simulations of the equilibrium, transport and stability. We explore methods to directly alter the safety factor profile, q, through direct current drive or by localized electron heating to modify the bootstrap current profile. Time dependent simulations using both experimentally determined [1] and theory-based [2] energy transport models have been done. Here, we report on simulations exploring parametric dependencies of the heating, current drive, and profiles that affect our ability to sustain stable discharges.

  13. High efficiency off-axis current drive by high frequency fast waves

    SciTech Connect

    Prater, R.; Pinsker, R. I.; Moeller, C. P.; Porkolab, M.; Vdovin, V.

    2014-02-12

    Modeling work shows that current drive can be done off-axis with high efficiency, as required for FNSF and DEMO, by using very high harmonic fast waves (“helicons” or “whistlers”). The modeling indicates that plasmas with high electron beta are needed in order for the current drive to take place off-axis, making DIII-D a highly suitable test vehicle for this process. The calculations show that the driven current is not very sensitive to the launched value of n{sub ∥}, a result that can be understood from examination of the evolution of n{sub ∥} as the waves propagate in the plasma. Because of this insensitivity, relatively large values (∼3) of n{sub ∥} can be launched, thereby avoiding some of the problems with mode conversion in the boundary found in some previous experiments. Use of a traveling wave antenna provides a very narrow n{sub ∥} spectrum, which also helps avoid mode conversion.

  14. High voltage and high current density vertical GaN power diodes

    SciTech Connect

    Fischer, A. J.; Dickerson, J. R.; Armstrong, A. M.; Moseley, M. W.; Crawford, M. H.; King, M. P.; Allerman, A. A.; Kaplar, R. J.; van Heukelom, M. S.; Wierer, J. J.

    2016-01-01

    We report on the realization of a GaN high voltage vertical p-n diode operating at > 3.9 kV breakdown with a specific on-resistance < 0.9 mΩ.cm2. Diodes achieved a forward current of 1 A for on-wafer, DC measurements, corresponding to a current density > 1.4 kA/cm2. An effective critical electric field of 3.9 MV/cm was estimated for the devices from analysis of the forward and reverse current-voltage characteristics. Furthermore this suggests that the fundamental limit to the GaN critical electric field is significantly greater than previously believed.

  15. High voltage and high current density vertical GaN power diodes

    DOE PAGESBeta

    Fischer, A. J.; Dickerson, J. R.; Armstrong, A. M.; Moseley, M. W.; Crawford, M. H.; King, M. P.; Allerman, A. A.; Kaplar, R. J.; van Heukelom, M. S.; Wierer, J. J.

    2016-01-01

    We report on the realization of a GaN high voltage vertical p-n diode operating at > 3.9 kV breakdown with a specific on-resistance < 0.9 mΩ.cm2. Diodes achieved a forward current of 1 A for on-wafer, DC measurements, corresponding to a current density > 1.4 kA/cm2. An effective critical electric field of 3.9 MV/cm was estimated for the devices from analysis of the forward and reverse current-voltage characteristics. Furthermore this suggests that the fundamental limit to the GaN critical electric field is significantly greater than previously believed.

  16. Beam extraction and high stability operation of high current electron cyclotron resonance proton ion source

    SciTech Connect

    Roychowdhury, P. Mishra, L.; Kewlani, H.; Mittal, K. C.; Patil, D. S.

    2014-03-15

    A high current electron cyclotron resonance proton ion source is designed and developed for the low energy high intensity proton accelerator at Bhabha Atomic Research Centre. The plasma discharge in the ion source is stabilized by minimizing the reflected microwave power using four stub auto tuner and magnetic field. The optimization of extraction geometry is performed using PBGUNS code by varying the aperture, shape, accelerating gap, and the potential on the electrodes. While operating the source, it was found that the two layered microwave window (6 mm quartz plate and 2 mm boron nitride plate) was damaged (a fine hole was drilled) by the back-streaming electrons after continuous operation of the source for 3 h at beam current of 20–40 mA. The microwave window was then shifted from the line of sight of the back-streaming electrons and located after the water-cooled H-plane bend. In this configuration the stable operation of the high current ion source for several hours is achieved. The ion beam is extracted from the source by biasing plasma electrode, puller electrode, and ground electrode to +10 to +50 kV, −2 to −4 kV, and 0 kV, respectively. The total ion beam current of 30–40 mA is recorded on Faraday cup at 40 keV of beam energy at 600–1000 W of microwave power, 800–1000 G axial magnetic field and (1.2–3.9) × 10{sup −3} mbar of neutral hydrogen gas pressure in the plasma chamber. The dependence of beam current on extraction voltage, microwave power, and gas pressure is investigated in the range of operation of the ion source.

  17. High-frequency Probing Diagnostic for Hall Current Plasma Thrusters

    SciTech Connect

    A.A. Litvak; Y. Raitses; N.J. Fisch

    2001-10-25

    High-frequency oscillations (1-100 MHz) in Hall thrusters have apparently eluded significant experimental scrutiny. A diagnostic setup, consisting of a single Langmuir probe, a special shielded probe connector-positioner, and an electronic impedance-matching circuit, was successfully built and calibrated. Through simultaneous high-frequency probing of the Hall thruster plasma at multiple locations, high-frequency plasma waves have been identified and characterized for various thruster operating conditions.

  18. High current liquid metal ion source using porous tungsten multiemitters.

    PubMed

    Tajmar, M; Vasiljevich, I; Grienauer, W

    2010-12-01

    We recently developed an indium Liquid-Metal-Ion-Source that can emit currents from sub-μA up to several mA. It is based on a porous tungsten crown structure with 28 individual emitters, which is manufactured using Micro-Powder Injection Molding (μPIM) and electrochemical etching. The emitter combines the advantages of internal capillary feeding with excellent emission properties due to micron-size tips. Significant progress was made on the homogeneity of the emission over its current-voltage characteristic as well as on investigating its long-term stability. This LMIS seems very suitable for space propulsion as well as for micro/nano manufacturing applications with greatly increased milling/drilling speeds. This paper summarizes the latest developments on our porous multiemitters with respect to manufacturing, emission properties and long-term testing. PMID:21111260

  19. Fueling Requirements for Steady State high butane current fraction discharges

    SciTech Connect

    R.Raman

    2003-10-08

    The CT injector originally used for injecting CTs into 1T toroidal field discharges in the TdeV tokamak was shipped PPPL from the Affiliated Customs Brokers storage facility in Montreal during November 2002. All components were transported safely, without damage, and are currently in storage at PPPL, waiting for further funding in order to begin advanced fueling experiments on NSTX. The components are currently insured through the University of Washington. Several technical presentations were made to investigate the feasibility of the CT injector installation on NSTX. These technical presentations, attached to this document, were: (1) Motivation for Compact Toroida Injection in NSTX; (2) Assessment of the Engineering Feasibility of Installing CTF-II on NSTX; (3) Assessment of the Cost for CT Installation on NSTX--A Peer Review; and (4) CT Fueling for NSTX FY 04-08 steady-state operation needs.

  20. Commissioning plan for a high-current proton linac

    SciTech Connect

    Chan, K.C.D.; Barber, R.L.; Garnett, R.W.

    1997-09-01

    High-power proton linacs (E>500 MeV) are potentially useful for transmutation applications, such as the production of tritium. In production applications, high availability is essential. Achieving high availability requires an accelerator design that simplifies maintenance and accommodates commissioning procedures designed to minimize tune-up time. These are worthwhile goals for any accelerator, but the very high beam powers (170 MW) and heavy beam loading of the Accelerator Production of Tritium (APT) linac introduce significant new challenges. This paper will describe the commissioning plan, as developed to date.

  1. Large Scale High-Latitude Ionospheric Electrodynamic Fields and Currents

    NASA Astrophysics Data System (ADS)

    Lu, Gang

    2016-07-01

    This paper provides an overview as well as the application of the Assimilative Mapping of Ionospheric Electrodynamics (AMIE) procedure. AMIE synthesizes observations from various ground-based and space-born instruments to derive global patterns of ionospheric conductance, electric fields, ionospheric equivalent current, horizontal currents, field-aligned currents, and other related electrodynamic fields simultaneously. Examples are presented to illustrate the effects of the different data inputs on the AMIE outputs. The AMIE patterns derived from ground magnetometer data are generally similar to those derived from satellite magnetometer data. But ground magnetometer data yield a cross-polar potential drop that is about 15-45 % smaller than that derived from satellite magnetometer data. Ground magnetometers also grossly underestimate the magnetic perturbations in space when compared with the in situ satellite magnetometer data. However, when satellite magnetometer data are employed, AMIE is able to replicate the observed magnetic perturbations along the satellite tracks with a mean root-mean-square (RMS) error of 17-21 %. In addition to derive snapshots of ionospheric electrodynamic fields, the utility of AMIE can be easily expanded to obtain the average distributions of these fields along with their associated variability. Such information should be valuable to the analysis and interpretation of the Swarm observations.

  2. A bootstrapping soft shrinkage approach for variable selection in chemical modeling.

    PubMed

    Deng, Bai-Chuan; Yun, Yong-Huan; Cao, Dong-Sheng; Yin, Yu-Long; Wang, Wei-Ting; Lu, Hong-Mei; Luo, Qian-Yi; Liang, Yi-Zeng

    2016-02-18

    In this study, a new variable selection method called bootstrapping soft shrinkage (BOSS) method is developed. It is derived from the idea of weighted bootstrap sampling (WBS) and model population analysis (MPA). The weights of variables are determined based on the absolute values of regression coefficients. WBS is applied according to the weights to generate sub-models and MPA is used to analyze the sub-models to update weights for variables. The optimization procedure follows the rule of soft shrinkage, in which less important variables are not eliminated directly but are assigned smaller weights. The algorithm runs iteratively and terminates until the number of variables reaches one. The optimal variable set with the lowest root mean squared error of cross-validation (RMSECV) is selected. The method was tested on three groups of near infrared (NIR) spectroscopic datasets, i.e. corn datasets, diesel fuels datasets and soy datasets. Three high performing variable selection methods, i.e. Monte Carlo uninformative variable elimination (MCUVE), competitive adaptive reweighted sampling (CARS) and genetic algorithm partial least squares (GA-PLS) are used for comparison. The results show that BOSS is promising with improved prediction performance. The Matlab codes for implementing BOSS are freely available on the website: http://www.mathworks.com/matlabcentral/fileexchange/52770-boss. PMID:26826688

  3. High yield neutron generator based on a high-current gasdynamic electron cyclotron resonance ion source

    NASA Astrophysics Data System (ADS)

    Skalyga, V.; Izotov, I.; Golubev, S.; Sidorov, A.; Razin, S.; Strelkov, A.; Tarvainen, O.; Koivisto, H.; Kalvas, T.

    2015-09-01

    In present paper, an approach for high yield compact D-D neutron generator based on a high current gasdynamic electron cyclotron resonance ion source is suggested. Results on dense pulsed deuteron beam production with current up to 500 mA and current density up to 750 mA/cm2 are demonstrated. Neutron yield from D2O and TiD2 targets was measured in case of its bombardment by pulsed 300 mA D+ beam with 45 keV energy. Neutron yield density at target surface of 109 s-1 cm-2 was detected with a system of two 3He proportional counters. Estimations based on obtained experimental results show that neutron yield from a high quality TiD2 target bombarded by D+ beam demonstrated in present work accelerated to 100 keV could reach 6 × 1010 s-1 cm-2. It is discussed that compact neutron generator with such characteristics could be perspective for a number of applications like boron neutron capture therapy, security systems based on neutron scanning, and neutronography.

  4. High yield neutron generator based on a high-current gasdynamic electron cyclotron resonance ion source

    SciTech Connect

    Skalyga, V.; Sidorov, A.; Izotov, I.; Golubev, S.; Razin, S.; Strelkov, A.; Tarvainen, O.; Koivisto, H.; Kalvas, T.

    2015-09-07

    In present paper, an approach for high yield compact D-D neutron generator based on a high current gasdynamic electron cyclotron resonance ion source is suggested. Results on dense pulsed deuteron beam production with current up to 500 mA and current density up to 750 mA/cm{sup 2} are demonstrated. Neutron yield from D{sub 2}O and TiD{sub 2} targets was measured in case of its bombardment by pulsed 300 mA D{sup +} beam with 45 keV energy. Neutron yield density at target surface of 10{sup 9} s{sup −1} cm{sup −2} was detected with a system of two {sup 3}He proportional counters. Estimations based on obtained experimental results show that neutron yield from a high quality TiD{sub 2} target bombarded by D{sup +} beam demonstrated in present work accelerated to 100 keV could reach 6 × 10{sup 10} s{sup −1} cm{sup −2}. It is discussed that compact neutron generator with such characteristics could be perspective for a number of applications like boron neutron capture therapy, security systems based on neutron scanning, and neutronography.

  5. High current density electropolishing in the preparation of highly smooth substrate tapes for coated conductors

    SciTech Connect

    Kreiskott, Sascha; Matias, Vladimir; Arendt, Paul N.; Foltyn, Stephen R.; Bronisz, Lawrence E.

    2009-03-31

    A continuous process of forming a highly smooth surface on a metallic tape by passing a metallic tape having an initial roughness through an acid bath contained within a polishing section of an electropolishing unit over a pre-selected period of time, and, passing a mean surface current density of at least 0.18 amperes per square centimeter through the metallic tape during the period of time the metallic tape is in the acid bath whereby the roughness of the metallic tape is reduced. Such a highly smooth metallic tape can serve as a base substrate in subsequent formation of a superconductive coated conductor.

  6. Cesium telluride cathodes for the next generation of high-average current high-brightness photoinjectors

    SciTech Connect

    Filippetto, D. Qian, H.; Sannibale, F.

    2015-07-27

    We report on the performances of a Cs{sub 2}Te photocathode under extreme conditions of high peak time-dependent accelerating fields, continuous wave operations, and MHz pulse extraction with up to 0.3 mA average current. The measurements, performed in a normal conducting cavity, show extended lifetime and robustness, elucidate the main mechanisms for cathode degradation, and set the required system vacuum performance for compatibility with the operations of a high average power X-ray free electron laser user facility, opening the doors to the next generation of MHz-scale ultrafast scientific instruments.

  7. Beamline considerations for a compact, high current, high power linear RF electron accelerator

    SciTech Connect

    Marder, B.

    1987-06-01

    A design for a compact, high current, high power linear electron accelerator using an rf power source is investigated. It consists of adjacent cavities into which rf power is injected and through which electron pulses pass. The source is assumed to be capable of delivering sufficient rf power to the desired location at the proper phase. Beamline issues such as cavity loading, energy extraction, longitudinal and transverse pulse focusing, and beam breakup are considered. A device which, given the required source, can deliver beam parameters comparable to existing induction accelerators but which is more than an order of magnitude smaller appears feasible.

  8. High-field, high-current-density, stable superconducting magnets for fusion machines

    SciTech Connect

    Lue, J.W.; Dresner, L.; Lubell, M.S.

    1989-01-01

    Designs for large fusion machines require high-performance superconducting magnets to reduce cost or increase machine performance. By employing force-flow cooling, cable-in-conduit conductor configuration, and NbTi superconductor, it is now possible to design superconducting magnets that operate a high fields (8-12 T) with high current densities (5-15 kA/cm/sup 2/ over the winding pack) in a stable manner. High current density leads to smaller, lighter, and thus less expensive coils. The force-flow cooling provides confined helium, full conductor insulation, and a rigid winding pack for better load distribution. The cable-in-conduit conductor configuration ensures a high stability margin for the magnet. The NbTi superconductor has reached a good engineering material standard. Its strain-insensitive critical parameters are particularly suitable for complex coil windings of a stellarator machine. The optimization procedure for such a conductor design, developed over the past decade, is summarized here. If desired a magnet built on the principles outlines in this paper can be extended to a field higher than the design value without degrading its stability by simply lowering the operating temperature below 4.2 K. 11 refs., 3 figs.

  9. What Teachers Should Know About the Bootstrap: Resampling in the Undergraduate Statistics Curriculum

    PubMed Central

    Hesterberg, Tim C.

    2015-01-01

    Bootstrapping has enormous potential in statistics education and practice, but there are subtle issues and ways to go wrong. For example, the common combination of nonparametric bootstrapping and bootstrap percentile confidence intervals is less accurate than using t-intervals for small samples, though more accurate for larger samples. My goals in this article are to provide a deeper understanding of bootstrap methods—how they work, when they work or not, and which methods work better—and to highlight pedagogical issues. Supplementary materials for this article are available online. [Received December 2014. Revised August 2015] PMID:27019512

  10. Current-matched high-efficiency, multijunction monolithic solar cells

    DOEpatents

    Olson, Jerry M.; Kurtz, Sarah R.

    1993-01-01

    The efficiency of a two-junction (cascade) tandem photovoltaic device is improved by adjusting (decreasing) the top cell thickness to achieve current matching. An example of the invention was fabricated out of Ga.sub.0.52 In.sub.0.48 P and GaAs. Additional lattice-matched systems to which the invention pertains include Al.sub.x Ga.sub.1-x /GaAS (x= 0.3-0.4), GaAs/Ge and Ga.sub.y In.sub.l-y P/Ga.sub.y+0.5 In.sub.0.5-y As (0

  11. Development of a high current H(-) ion source for cyclotrons.

    PubMed

    Etoh, H; Aoki, Y; Mitsubori, H; Arakawa, Y; Mitsumoto, T; Yajima, S; Sakuraba, J; Kato, T; Okumura, Y

    2014-02-01

    A multi-cusp DC H(-) ion source has been designed and fabricated for medical applications of cyclotrons. Optimization of the ion source is in progress, such as the improvement of the filament configuration, magnetic filter strength, extraction electrode's shape, configuration of electron suppression magnets, and plasma electrode material. A small quantity of Cs has been introduced into the ion source to enhance the negative ion beam current. The ion source produced 16 mA of DC H(-) ion beam with the Cs-seeded operation at a low arc discharge power of 2.8 kW. PMID:24593547

  12. HIGH CURRENT D- PRODUCTION BY CHARGE EXCHANGE IN SODIUM

    SciTech Connect

    Hooper, E.B.; Poulsen, P.; Pincosy, P.A.

    1981-02-01

    A beam of D{sup -} ions has been produced at 7-13 keV, with currents up to 2.2 {angstrom}, using charge exchange in sodium vapor. The beam profile is bi-Gaussian with angular divergence 0.7{sup o} x 2.8{sup o} and peak current density 15 mA/cm{sup 2}. The characteristics of the beam are in excellent agreement with predictions based on atomic cross sections. The sodium vapor target is formed by a jet directed across the beam. The sodium density drops rapidly in the beamline downstream from the charge exchange region, decreasing three orders of magnitude in 15 cm. Measurement and analysis of the plasma accompanying the beam demonstrate that plasma densities nearly equal to the beam density are obtained 1 m from the charge exchange medium. The plasma produced in the sodium is thus well confined to the charge exchange region and does not propagate along the beam.

  13. High current density contacts for photoconductive semiconductor switches

    SciTech Connect

    Baca, A.G.; Hjalmarson, H.P.; Loubriel, G.M.; McLaughlin, D.L.; Zutavern, F.J.

    1993-08-01

    The current densities implied by current filaments in GaAs photoconductive semiconductor switches (PCSS) are in excess of 1 MA/cm{sup 2}. As the lateral switches are tested repeatedly, damage accumulates at the contacts until electrical breakdown occurs across the surface of the insulating region. In order to improve the switch lifetime, the incorporation of n- and p-type ohmic contacts in lateral switches as well as surface geometry modifications have been investigated. By using p-type AuBe ohmic contacts at the anode and n-type AuGe ohmic contacts at the cathode, contact lifetime improvements of 5--10x were observed compared to switches with n-type contacts at both anode and cathode. Failure analysis on samples operated for 1--1,000 shots show that extensive damage still exists for at least one contact on all switches observed and that temperatures approaching 500{degrees}C are can be reached. However, the n-type AuGe cathode is often found to have no damage observable by scanning electron microscopy (SEM). The observed patterns of contact degradation indicate directions for future contact improvements in lateral switches.

  14. SHUFFLE: A New Statistical Bootstrap Method: Applied to Cosmological Filaments

    NASA Astrophysics Data System (ADS)

    Bhavsar, Suketu P.; Bharadwaj, Somnath; Sheth, Jatush V.

    2003-05-01

    We introduce Shuffle, a powerful statistical procedure devised by Bhavsar and Ling [1] to determine the true physical extent of the filaments in the Las Campanas Redshift Survey [LCRS]. At its heart, Shuffle falls in the category of bootstrap like methods [2]. We find that the longest physical filamentary structures in 5 of the 6 LCRS slices are longer than 50 h-1 Mpc but not quite extending to 70 h-1 Mpc. The -3 degree slice contains filamentary structure longer than 70 h-1 Mpc.

  15. Jackknife and bootstrap inferential procedures for censored survival data

    NASA Astrophysics Data System (ADS)

    Fang, Loh Yue; Arasan, Jayanthi; Midi, Habshah; Bakar, Mohd Rizam Abu

    2015-10-01

    Confidence interval is an estimate of a certain parameter. Classical construction of confidence interval based on asymptotic normality (Wald) often produces misleading inferences when dealing with censored data especially in small samples. Alternative techniques allow us to construct the confidence interval estimation without relying on this assumption. In this paper, we compare the performances of the jackknife and several bootstraps confidence interval estimates for the parameters of a log logistic model with censored data and covariate. We investigate their performances at two nominal error probability levels and several levels of censoring proportion. Conclusions were then drawn based on the results of the coverage probability study.

  16. Highly sensitive vacuum ion pump current measurement system

    DOEpatents

    Hansknecht, John Christopher

    2006-02-21

    A vacuum system comprising: 1) an ion pump; 2) power supply; 3) a high voltage DC--DC converter drawing power from the power supply and powering the vacuum pump; 4) a feedback network comprising an ammeter circuit including an operational amplifier and a series of relay controlled scaling resistors of different resistance for detecting circuit feedback; 5) an optional power block section intermediate the power supply and the high voltage DC--DC converter; and 6) a microprocessor receiving feedback information from the feedback network, controlling which of the scaling resistors should be in the circuit and manipulating data from the feedback network to provide accurate vacuum measurement to an operator.

  17. Analytical Glycobiology at High Sensitivity: Current Approaches and Directions

    PubMed Central

    Novotny, Milos V.; Alley, William R.; Mann, Benjamin F.

    2013-01-01

    This review summarizes the analytical advances made during the last several years in the structural and quantitative determinations of glycoproteins in complex biological mixtures. The main analytical techniques used in the fields of glycomics and glycoproteomics involve different modes of mass spectrometry and their combinations with capillary separation methods such as microcolumn liquid chromatography and capillary electrophoresis. The needs for high-sensitivity measurements have been emphasized in the oligosaccharide profiling used in the field of biomarker discovery through MALDI mass spectrometry. High-sensitivity profiling of both glycans and glycopeptides from biological fluids and tissue extracts has been aided significantly through lectin preconcentration and the uses of affinity chromatography. PMID:22945852

  18. Forecasting drought risks for a water supply storage system using bootstrap position analysis

    USGS Publications Warehouse

    Tasker, Gary; Dunne, Paul

    1997-01-01

    Forecasting the likelihood of drought conditions is an integral part of managing a water supply storage and delivery system. Position analysis uses a large number of possible flow sequences as inputs to a simulation of a water supply storage and delivery system. For a given set of operating rules and water use requirements, water managers can use such a model to forecast the likelihood of specified outcomes such as reservoir levels falling below a specified level or streamflows falling below statutory passing flows a few months ahead conditioned on the current reservoir levels and streamflows. The large number of possible flow sequences are generated using a stochastic streamflow model with a random resampling of innovations. The advantages of this resampling scheme, called bootstrap position analysis, are that it does not rely on the unverifiable assumption of normality and it allows incorporation of long-range weather forecasts into the analysis.

  19. High Tibial Osteotomy: A Systematic Review and Current Concept

    PubMed Central

    Sabzevari, Soheil; Ebrahimpour, Adel; Roudi, Mostafa Khalilipour; Kachooei, Amir R.

    2016-01-01

    High tibia osteotomy is a common procedure in orthopedic surgery. A precise overview on indications, patients selection, pre-operative planning, surgical technique, methods of fixation, and complications have been presented. This paper focused on the points that should be considered to achieve good long-term outcomes. PMID:27517063

  20. The Transition to High School: Current Knowledge, Future Directions

    ERIC Educational Resources Information Center

    Benner, Aprile D.

    2011-01-01

    In the American educational system, school transitions are frequent and predictable, but they can disrupt student functioning across developmental domains. How students experience school transitions has been a focus of research for some time, but the high school transition has received less attention, and the limited research often focuses on a…

  1. High-current density, high-brightness electron beams from large-area lanthanum hexaboride cathodes

    NASA Astrophysics Data System (ADS)

    Loschialpo, P.; Kapetanakos, C. A.

    1988-04-01

    Large diameter lanthanum hexaboride (LaB6) cathodes operated at 10 kV have produced 1-5-microsec electron pulses with current density between 10 and 20 A/sq cm. Normalized beam brightness, approximately 300,000 A/sq cm sq rad has been consistently measured. To obtain this high-current density, the LaB6 cathodes have been heated to temperatures between about 1600 and 1800 C. Very uniform temperature profiles are obtained by applying a carefully tailored electron bombardment heating power distribution. These measurements have been made between pressure 10 to the -6th to -10 to the -5th Torr, i.e., under much less demanding vacuum conditions than that required by conventional dispenser-type cathodes.

  2. Development of a High-Brightness and High-Current Electron Gun for High-Flux γ-Ray Generation

    NASA Astrophysics Data System (ADS)

    Nishimori, N.; Nagai, R.; Matsuba, S.; Hajima, R.; Yamamoto, M.; Honda, Y.; Miyajima, T.; Uchiyama, T.; Kuriki, M.

    2015-10-01

    A high-flux mono-energetic γ-ray beam can be generated via Compton scattering of high-power laser by high-brightness electron beam. We have developed a high-brightness and high-current electron gun for generation of the high-flux γ-ray beam. Recently we demonstrated 500 keV electron beam generation, which meets the high-brightness requirement, from our DC photocathode gun at Japan Atomic Energy Agency. The gun was transported to High Energy Accelerator Research Organization (KEK) and connected to the following accelerator system. The gun operational status at KEK and our plan to develop a multialkali photocathode with a long lifetime are presented.

  3. Progress in Nanoengineered Microstructures for Tunable High-Current, High-Temperature Superconducting Wires

    SciTech Connect

    Holesinger, T. G.; Civale, L.; Maiorov, B.; Feldmann, D. M.; Coulter, Yates; Miller, D. J.; Maroni, Victor A.; Chen, Zhijun; Larbalestier, D. C.; Feenstra, Roeland; Li, Xiaoping; Huang, Y.; Kodenkandath, Thomas; Zhang, W.; Rupich, Marty; Malozemoff, Alex

    2008-01-01

    High critical current densities (J{sub c}) in thick films of the Y{sub 1}Ba{sub 2}Cu{sub 3}O{sub 7-{delta}} (YBCO, {Tc}{approx}92 K) superconductor directly depend upon the types of nanoscale defects and their densities within the films. A major challenge for developing a viable wire technology is to introduce nanoscale defect structures into the YBCO grains of the thick film suitable for flux pinning and the tailoring of the superconducting properties to specific, application-dependent, temperature and magnetic field conditions. Concurrently, the YBCO film needs to be integrated into a macroscopically defect-free conductor in which the grain-to-grain connectivity maintains levels of inter-grain J{sub c} that are comparable to the intra-grain J{sub c}. That is, high critical current (I{sub c}) YBCO coated conductors must contain engineered in homogeneities on the nanoscale, while being homogeneous on the macroscale. An analysis is presented of the advances in high-performance YBCO coated-conductors using chemical solution deposition (CSD) based on metal trifluoroacetates and the subsequent processing to nano-engineer the microstructure for tunable superconducting wires. Multi-scale structural, chemical, and electrical investigations of the CSD film processes, thick film development, key microstructural features, and wire properties are presented. Prospects for further development of much higher I{sub c} wires for large-scale, commercial application are discussed within the context of these recent advances.

  4. High-Current Cold Cathode Employing Diamond and Related Materials

    SciTech Connect

    Hirshfield, Jay L.

    2014-10-22

    The essence of this project was for diamond films to be deposited on cold cathodes to improve their emission properties. Films with varying morphology, composition, and size of the crystals were deposited and the emission properties of the cathodes that utilize such films were studied. The prototype cathodes fabricated by the methods developed during Phase I were tested and evaluated in an actual high-power RF device during Phase II. These high-power tests used the novel active RF pulse compression system and the X-band magnicon test facility at US Naval Research Laboratory. In earlier tests, plasma switches were employed, while tests under this project utilized electron-beam switching. The intense electron beams required in the switches were supplied from cold cathodes embodying diamond films with varying morphology, including uncoated molybdenum cathodes in the preliminary tests. Tests with uncoated molybdenum cathodes produced compressed X-band RF pulses with a peak power of 91 MW, and a maximum power gain of 16.5:1. Tests were also carried out with switches employing diamond coated cathodes. The pulse compressor was based on use of switches employing electron beam triggering to effect mode conversion. In experimental tests, the compressor produced 165 MW in a ~ 20 ns pulse at ~18× power gain and ~ 140 MW at ~ 16× power gain in a 16 ns pulse with a ~ 7 ns flat-top. In these tests, molybdenum blade cathodes with thin diamond coatings demonstrated good reproducible emission uniformity with a 100 kV, 100 ns high voltage pulse. The new compressor does not have the limitations of earlier types of active pulse compressors and can operate at significantly higher electric fields without breakdown.

  5. Steady State Tokamak Equilibria without Current Drive

    SciTech Connect

    Shaing, K.C.; Aydemir, A.Y.; Lin-Liu, Y.R.; Miller, R.L.

    1997-11-01

    Steady state tokamak equilibria without current drive are found. This is made possible by including the potato bootstrap current close to the magnetic axis. Tokamaks with this class of equilibria do not need seed current or current drive, and are intrinsically steady state. {copyright} {ital 1997} {ital The American Physical Society}

  6. Longitudinal emittance in high-current ion accelerators

    SciTech Connect

    Wangler, T.P.; Bhatia, T.S.; Neuschaefer, G.H.; Pabst, M.

    1989-01-01

    The control of longitudinal emittance in an ion linear accelerator is important for minimizing both chromatic aberrations and beam halo. The root-mean-square (rms) longitudinal emittance grouth can result from either the nonlinear rf focusing fields or the nonlinear space-charge fields. We will present conclusions based on numerical beam-dynamics studies for both the radio-frequency quadrupole (RFQ), and the drift-tube linac (DTL). We will discuss the scaling of longitudinal emittance produced during the adiabatic bunching in an RFQ and will show the benefits of ramped DTL accelerating field designs to maintain high longitudinal focusing strength with increasing particle energy. 15 refs., 8 figs.

  7. Modal analysis of multiterminal high voltage direct current transmission

    NASA Astrophysics Data System (ADS)

    Dagle, J. E.

    1993-12-01

    This report describes a first phase of effort in providing the Bonneville Power Administration (BPA) with comprehensive tools for model-based analysis of interactions between the Pacific HVDC Intertie (PDCI) and the alternating current (ac) system containing it. The work builds upon the transient stability model coded by Control Technologies, Inc. (CTI) for use in the Electric Power Research Institute (EPRI) Extended Transient-Midterm Stability Package (ETMSP). The general thrust of the effort is that CM's model be interfaced to and tested against all tools provided by EPRI's Power System Analysis Package (PSAPAC) and that these tools be used to investigate options for PDCI use in testing and control of western system dynamics. This will require refinements to the tools, the model, and western system case data. The PSAPAC tool for eigenanalysis is the Small Signal Stability Package (SSSP), useful for performing modal analysis of the multiterminal HVDC (MTDC) system. Such analyses are necessary to design and test an expanded role of the PDCI for power system control. This study focused on testing the application of the MTDC with SSSP. Modifications were made to enable SSSP to read the MTDC model. The PSAPAC and SSSP tools and the MTDC model were evaluated for accuracy and consistency using several modal analysis techniques, including Prony analysis on ETMSP-generated data. Although SSSP appears to be useful in analyzing the PDCI modes, inconsistencies limit the overall usefulness of that approach. The modal frequencies and damping identified by SSSP are inconsistent, indicating SSSP has difficulty analyzing the MTDC representation of the dc systems. The differences between the new and existing models can be used to identify the particular modeling issues associated with SSSP which are presently resulting in inconsistent results.

  8. High frequency alternating current chip nano calorimeter with laser heating

    SciTech Connect

    Shoifet, E.; Schick, C.; Chua, Y. Z.; Huth, H.

    2013-07-15

    Heat capacity spectroscopy at frequencies up to 100 kHz is commonly performed by thermal effusivity measurements applying the 3ω-technique. Here we show that AC-calorimetry using a thin film chip sensor allows for the measurement of frequency dependent heat capacity in the thin film limit up to about 1 MHz. Using films thinner than the thermal length of the thermal wave (∼1 μm) at such frequencies is advantageous because it provides heat capacity alone and not in combination with other quantities like thermal conductivity, at least on a qualitative basis. The used calorimetric sensor and the sample are each less than 1 μm thick. For high frequency AC-calorimetry, high cooling rates at very small temperature differences are required. This is realized by minimizing the heated spot to the size of the on chip thermocouple (3 × 6 μm{sup 2}). A modulated laser beam shaped and positioned by a glass fiber is used as the heat source. The device was used to measure the complex heat capacity in the vicinity of the dynamic glass transition (structural relaxation) of poly(methyl methacrylate). Combining different calorimeters finally provides data between 10{sup −3} Hz and 10{sup 6} Hz. In this frequency range the dynamic glass transition shifts about 120 K.

  9. Heavy ion linac as a high current proton beam injector

    NASA Astrophysics Data System (ADS)

    Barth, Winfried; Adonin, Aleksey; Appel, Sabrina; Gerhard, Peter; Heilmann, Manuel; Heymach, Frank; Hollinger, Ralph; Vinzenz, Wolfgang; Vormann, Hartmut; Yaramyshev, Stepan

    2015-05-01

    A significant part of the experimental program at Facility for Antiproton and Ion Research (FAIR) is dedicated to pbar physics requiring a high number of cooled pbars per hour. The primary proton beam has to be provided by a 70 MeV proton linac followed by two synchrotrons. The new FAIR proton linac will deliver a pulsed proton beam of up to 35 mA of 36 μ s duration at a repetition rate of 4 Hz (maximum). The GSI heavy ion linac (UNILAC) is able to deliver world record uranium beam intensities for injection into the synchrotrons, but it is not suitable for FAIR relevant proton beam operation. In an advanced machine investigation program it could be shown that the UNILAC is able to provide for sufficient high intensities of CH3 beam, cracked (and stripped) in a supersonic nitrogen gas jet into protons and carbon ions. This advanced operational approach will result in up to 3 mA of proton intensity at a maximum beam energy of 20 MeV, 1 0 0 μ s pulse duration and a repetition rate of up to 2.7 Hz delivered to the synchrotron SIS18. Recent linac beam measurements will be presented, showing that the UNILAC is able to serve as a proton FAIR injector for the first time, while the performance is limited to 25% of the FAIR requirements.

  10. Multi-site, multivariate weather generator using maximum entropy bootstrap

    NASA Astrophysics Data System (ADS)

    Srivastav, Roshan K.; Simonovic, Slobodan P.

    2014-05-01

    Weather generators are increasingly becoming viable alternate models to assess the effects of future climate change scenarios on water resources systems. In this study, a new multisite, multivariate maximum entropy bootstrap weather generator (MEBWG) is proposed for generating daily weather variables, which has the ability to mimic both, spatial and temporal dependence structure in addition to other historical statistics. The maximum entropy bootstrap (MEB) involves two main steps: (1) random sampling from the empirical cumulative distribution function with endpoints selected to allow limited extrapolation and (2) reordering of the random series to respect the rank ordering of the original time series (temporal dependence structure). To capture the multi-collinear structure between the weather variables and between the sites, we combine orthogonal linear transformation with MEB. Daily weather data, which include precipitation, maximum temperature and minimum temperature from 27 years of record from the Upper Thames River Basin in Ontario, Canada, are used to analyze the ability of MEBWG based weather generator. Results indicate that the statistics from the synthetic replicates were not significantly different from the observed data and the model is able to preserve the 27 CLIMDEX indices very well. The MEBWG model shows better performance in terms of extrapolation and computational efficiency when compared to multisite, multivariate K-nearest neighbour model.

  11. Bootstrapping Dip Test for PIV Outlier Identification and Correction

    NASA Astrophysics Data System (ADS)

    Susanto, Andree; Pun, Chan-Seng; Dabiri, Dana

    2007-11-01

    A PIV outlier detection and correction method is proposed that does not directly rely on local statistics. A bootstrapping method uses interpolation to generate a distribution of points for each vector component. Statistics are obtained by applying the Hartigan's dip test for bimodality on the distribution points to estimate the mode for each vector component. Significant difference between the estimated modes and outliers is observed; non-spurious vector components are close to the estimated modes. The bootstrapping dip test outlier detection scheme is then repeated until no more vector components are rejected. Two approaches to replace the detected vector components are considered. First, the corresponding mode values are replaced with the detected components, second the remaining vector components are used to re-interpolate the field. Validation includes parametric studies based on the number of undetections and overdetections on simulated fields to determine the optimal sets of parameters. Applications of the optimum parameters to a turbulent jet flow and a synthetic Rankine Vortex flow, both obtained from the PIV Challenge website are shown and details of this methodology is discussed.

  12. Bootstrapping Q Methodology to Improve the Understanding of Human Perspectives

    PubMed Central

    Zabala, Aiora; Pascual, Unai

    2016-01-01

    Q is a semi-qualitative methodology to identify typologies of perspectives. It is appropriate to address questions concerning diverse viewpoints, plurality of discourses, or participation processes across disciplines. Perspectives are interpreted based on rankings of a set of statements. These rankings are analysed using multivariate data reduction techniques in order to find similarities between respondents. Discussing the analytical process and looking for progress in Q methodology is becoming increasingly relevant. While its use is growing in social, health and environmental studies, the analytical process has received little attention in the last decades and it has not benefited from recent statistical and computational advances. Specifically, the standard procedure provides overall and arguably simplistic variability measures for perspectives and none of these measures are associated to individual statements, on which the interpretation is based. This paper presents an innovative approach of bootstrapping Q to obtain additional and more detailed measures of variability, which helps researchers understand better their data and the perspectives therein. This approach provides measures of variability that are specific to each statement and perspective, and additional measures that indicate the degree of certainty with which each respondent relates to each perspective. This supplementary information may add or subtract strength to particular arguments used to describe the perspectives. We illustrate and show the usefulness of this approach with an empirical example. The paper provides full details for other researchers to implement the bootstrap in Q studies with any data collection design. PMID:26845694

  13. Bootstrapping One-Loop QCD Amplitudeswith General Helicities

    SciTech Connect

    Berger, Carola F.; Bern, Zvi; Dixon, Lance J.; Forde, Darren; Kosower, David A.

    2006-04-25

    The recently developed on-shell bootstrap for computing one-loop amplitudes in non-supersymmetric theories such as QCD combines the unitarity method with loop-level on-shell recursion. For generic helicity configurations, the recursion relations may involve undetermined contributions from non-standard complex singularities or from large values of the shift parameter. Here we develop a strategy for sidestepping difficulties through use of pairs of recursion relations. To illustrate the strategy, we present sets of recursion relations needed for obtaining n-gluon amplitudes in QCD. We give a recursive solution for the one-loop n-gluon QCD amplitudes with three or four color-adjacent gluons of negative helicity and the remaining ones of positive helicity. We provide an explicit analytic formula for the QCD amplitude A{sub 6;1}(1{sup -}, 2{sup -}, 3{sup -}, 4{sup +}, 5{sup +}, 6{sup +}), as well as numerical results for A{sub 7;1}(1{sup -}, 2{sup -}, 3{sup -}, 4{sup +}, 5{sup +}, 6{sup +}, 7{sup +}), A{sub 8;1}(1{sup -}, 2{sup -}, 3{sup -}, 4{sup +}, 5{sup +}, 6{sup +}, 7{sup +}, 8{sup +}), and A{sub 8;1}(1{sup -}, 2{sup -}, 3{sup -}, 4{sup -}, 5{sup +}, 6{sup +}, 7{sup +}, 8{sup +}). We expect the on-shell bootstrap approach to have widespread applications to phenomenological studies at colliders.

  14. Bootstrapping of Life through Holonomy and Self-modification

    NASA Astrophysics Data System (ADS)

    Kazansky, Alexander B.

    2010-11-01

    Life on the Earth demonstrate not only adaptive, cognitive, particularly, anticipatory properties, but also active, transformative function to its local and global environment. As V. Vernadsky stated, life is a powerful geological force. Charles Darwin realized that too. In his last work [1] he proved, that earthworms through their vital activity in geological time scale are able to form and support contemporary structure of soil on the whole planet. Locally, through so-called process of niche construction [2] organisms virtually modifies abiotic and biotic factors of natural selection and thereby insert feedback loop in evolutionary process. Stigmergy [3] is one more form of indirect interaction of organisms via the environment by signs, left in local environment or just by performing working activity in swarms, leading to self-organization and coordination of actions in the process of refuges construction. In organization of life we can separate active, rigid, organism-like, autopoietic-like systems or less rigid, sympoietic, socio-biological type systems [4]. Nevertheless, all forms of life systems demonstrate so-called bootstrapping, or spontaneous process of self-organizing emergence. This process is feasible thanks to self-modification, and holonomy in their organization, or total reflexivity. Analysis of the role of indirect interactions in bootstrapping, made in this paper, is aimed at revealing relationships between concepts and making step to forming new systemic model of organization and evolution of special dual pair, biota and biosphere.

  15. Bootstrapped DEPICT for error estimation in PET functional imaging.

    PubMed

    Kukreja, Sunil L; Gunn, Roger N

    2004-03-01

    Basis pursuit denoising is a new approach for data-driven estimation of parametric images from dynamic positron emission tomography (PET) data. At present, this kinetic modeling technique does not allow for the estimation of the errors on the parameters. These estimates are useful when performing subsequent statistical analysis, such as, inference across a group of subjects or when applying partial volume correction algorithms. The difficulty with calculating the error estimates is a consequence of using an overcomplete dictionary of kinetic basis functions. In this paper, a bootstrap approach for the estimation of parameter errors from dynamic PET data is presented. This paper shows that the bootstrap can be used successfully to compute parameter errors on a region of interest or parametric image basis. Validation studies evaluate the methods performance on simulated and measured PET data ([(11)C]Diprenorphine-opiate receptor and [(11)C]Raclopride-dopamine D(2) receptor). The method is presented in the context of PET neuroreceptor binding studies, however, it has general applicability to a wide range of PET/SPET radiotracers in neurology, oncology and cardiology. PMID:15006677

  16. Improving Transitions to High School: A Review of Current Research and Practice

    ERIC Educational Resources Information Center

    Uvaas, Trina; McKevitt, Brian C.

    2013-01-01

    This article synthesizes the current research in the area of school transitions for all students from junior high to high school and the effect of the transitions on students. The authors discuss current common high school transition practices and make recommendations for high school transition programming. The authors present a case study…

  17. Compact High-Current Heavy-Ion Injector

    SciTech Connect

    Westenskow, G.A.; Grote, D.P.; Kwan, J.W.; Bieniosek, F.

    2005-10-05

    To provide a compact high-brightness heavy-ion beam source for Heavy Ion Fusion (HIF), we have been experimenting with merging multi-beamlets in an injector which uses an RF plasma source. An array of converging beamlets was used to produce a beam with the envelope radius, convergence, and ellipticity matched to an electrostatic quadrupole (ESQ) channel. Experimental results were in good quantitative agreement with simulation and have demonstrated the feasibility of this concept. The size of a driver-scale injector system using this approach will be several times smaller than one designed using traditional single large-aperture beams. The success of this experiment has possible significant economical and technical impacts on the architecture of HIF drivers.

  18. Compact High-Current Heavy-Ion Injector

    SciTech Connect

    Westenskow, G A; Grote, D P; Kwan, J W; Bieniosek, F

    2006-04-13

    To provide a compact high-brightness heavy-ion beam source for Heavy Ion Fusion (HIF), we have been experimenting with merging multi-beamlets in an injector which uses an RF plasma source. An array of converging beamlets was use to produce a beam with the envelope radius, convergence, and ellipticity matched to an electrostatic quadrupole (ESQ) channel. Experimental results were in good quantitative agreement with simulation and have demonstrated the feasibility of this concept. The size of a driver-scale injector system using this approach will be several times smaller than one designed using traditional single large-aperture beams. The success of this experiment has possible significant economical and technical impacts on the architecture of HIF drivers.

  19. High current multicharged metal ion source using high power gyrotron heating of vacuum arc plasma.

    PubMed

    Vodopyanov, A V; Golubev, S V; Khizhnyak, V I; Mansfeld, D A; Nikolaev, A G; Oks, E M; Savkin, K P; Vizir, A V; Yushkov, G Yu

    2008-02-01

    A high current, multi charged, metal ion source using electron heating of vacuum arc plasma by high power gyrotron radiation has been developed. The plasma is confined in a simple mirror trap with peak magnetic field in the plug up to 2.5 T, mirror ratio of 3-5, and length variable from 15 to 20 cm. Plasma formed by a cathodic vacuum arc is injected into the trap either (i) axially using a compact vacuum arc plasma gun located on axis outside the mirror trap region or (ii) radially using four plasma guns surrounding the trap at midplane. Microwave heating of the mirror-confined, vacuum arc plasma is accomplished by gyrotron microwave radiation of frequency 75 GHz, power up to 200 kW, and pulse duration up to 150 micros, leading to additional stripping of metal ions by electron impact. Pulsed beams of platinum ions with charge state up to 10+, a mean charge state over 6+, and total (all charge states) beam current of a few hundred milliamperes have been formed. PMID:18315170

  20. High current multicharged metal ion source using high power gyrotron heating of vacuum arc plasma

    SciTech Connect

    Vodopyanov, A. V.; Golubev, S. V.; Khizhnyak, V. I.; Mansfeld, D. A.; Nikolaev, A. G.; Oks, E. M.; Savkin, K. P.; Vizir, A. V.; Yushkov, G. Yu.

    2008-02-15

    A high current, multi charged, metal ion source using electron heating of vacuum arc plasma by high power gyrotron radiation has been developed. The plasma is confined in a simple mirror trap with peak magnetic field in the plug up to 2.5 T, mirror ratio of 3-5, and length variable from 15 to 20 cm. Plasma formed by a cathodic vacuum arc is injected into the trap either (i) axially using a compact vacuum arc plasma gun located on axis outside the mirror trap region or (ii) radially using four plasma guns surrounding the trap at midplane. Microwave heating of the mirror-confined, vacuum arc plasma is accomplished by gyrotron microwave radiation of frequency 75 GHz, power up to 200 kW, and pulse duration up to 150 {mu}s, leading to additional stripping of metal ions by electron impact. Pulsed beams of platinum ions with charge state up to 10+, a mean charge state over 6+, and total (all charge states) beam current of a few hundred milliamperes have been formed.

  1. High-pressure freezing: current state and future prospects.

    PubMed

    Kaech, Andres; Ziegler, Urs

    2014-01-01

    In this chapter we discuss the latest developments in the field of high-pressure freezing (HPF). The Leica HPF machine EM HPM100 is discussed in detail due to significant changes compared to its predecessor model. Its centerpiece is a multipart polymer cartridge which holds the specimen carrier sandwich and guides it automatically through the freezing process until immersed in liquid nitrogen. The cartridge can be adapted to the specimen and carrier geometry to optimize the flow of liquid nitrogen and hence rapid cooling. Dedicated cartridges are available for a variety of different carriers, including carriers for samples of up to 5 mm in diameter. Cartridge-specific handling and carrier assemblies are described extensively for freezing samples in aluminum specimen carriers, cell cultures grown on Sapphire discs, suspensions for freeze-fracturing, and specimens for cryo-sectioning. Additionally, we include an advanced technique to freeze monolayer cell cultures on Sapphire discs with the Leica EM PACT2 HPF machine using a composite carrier. PMID:24357363

  2. A Bootstrap Generalization of Modified Parallel Analysis for IRT Dimensionality Assessment

    ERIC Educational Resources Information Center

    Finch, Holmes; Monahan, Patrick

    2008-01-01

    This article introduces a bootstrap generalization to the Modified Parallel Analysis (MPA) method of test dimensionality assessment using factor analysis. This methodology, based on the use of Marginal Maximum Likelihood nonlinear factor analysis, provides for the calculation of a test statistic based on a parametric bootstrap using the MPA…

  3. A Primer on Bootstrap Factor Analysis as Applied to Health Studies Research

    ERIC Educational Resources Information Center

    Lu, Wenhua; Miao, Jingang; McKyer, E. Lisako J.

    2014-01-01

    Objectives: To demonstrate how the bootstrap method could be conducted in exploratory factor analysis (EFA) with a syntax written in SPSS. Methods: The data obtained from the Texas Childhood Obesity Prevention Policy Evaluation project (T-COPPE project) were used for illustration. A 5-step procedure to conduct bootstrap factor analysis (BFA) was…

  4. Using Commonly Available Software for Bootstrapping in Both Substantive and Measurement Analyses.

    ERIC Educational Resources Information Center

    Fan, Xitao

    2003-01-01

    Uses a few heuristic examples to show how bootstrap analysis can be accomplished using some commonly available software programs. Until bootstrap analysis becomes an automated program option in standard statistical software, quantitative researchers may have to make do with these. (SLD)

  5. Bootstrapping to Test for Nonzero Population Correlation Coefficients Using Univariate Sampling

    ERIC Educational Resources Information Center

    Beasley, William Howard; DeShea, Lise; Toothaker, Larry E.; Mendoza, Jorge L.; Bard, David E.; Rodgers, Joseph Lee

    2007-01-01

    This article proposes 2 new approaches to test a nonzero population correlation ([rho]): the hypothesis-imposed univariate sampling bootstrap (HI) and the observed-imposed univariate sampling bootstrap (OI). The authors simulated correlated populations with various combinations of normal and skewed variates. With [alpha[subscript "set"

  6. Comparison of Parametric and Nonparametric Bootstrap Methods for Estimating Random Error in Equipercentile Equating

    ERIC Educational Resources Information Center

    Cui, Zhongmin; Kolen, Michael J.

    2008-01-01

    This article considers two methods of estimating standard errors of equipercentile equating: the parametric bootstrap method and the nonparametric bootstrap method. Using a simulation study, these two methods are compared under three sample sizes (300, 1,000, and 3,000), for two test content areas (the Iowa Tests of Basic Skills Maps and Diagrams…

  7. The Success of Linear Bootstrapping Models: Decision Domain-, Expertise-, and Criterion-Specific Meta-Analysis

    PubMed Central

    Kaufmann, Esther; Wittmann, Werner W.

    2016-01-01

    The success of bootstrapping or replacing a human judge with a model (e.g., an equation) has been demonstrated in Paul Meehl’s (1954) seminal work and bolstered by the results of several meta-analyses. To date, however, analyses considering different types of meta-analyses as well as the potential dependence of bootstrapping success on the decision domain, the level of expertise of the human judge, and the criterion for what constitutes an accurate decision have been missing from the literature. In this study, we addressed these research gaps by conducting a meta-analysis of lens model studies. We compared the results of a traditional (bare-bones) meta-analysis with findings of a meta-analysis of the success of bootstrap models corrected for various methodological artifacts. In line with previous studies, we found that bootstrapping was more successful than human judgment. Furthermore, bootstrapping was more successful in studies with an objective decision criterion than in studies with subjective or test score criteria. We did not find clear evidence that the success of bootstrapping depended on the decision domain (e.g., education or medicine) or on the judge’s level of expertise (novice or expert). Correction of methodological artifacts increased the estimated success of bootstrapping, suggesting that previous analyses without artifact correction (i.e., traditional meta-analyses) may have underestimated the value of bootstrapping models. PMID:27327085

  8. Replication of Major Profile Patterns in Structural Equation Modeling: Effect of Bootstrapping in a Small Sample.

    ERIC Educational Resources Information Center

    Kim, Se-Kang

    The effect of bootstrapping was studied by examining whether major profile patterns were replicated when sample sizes were reduced. Profile patterns estimated from the original sample (n=645) of the Wechsler Preschool and Primary Scale of IntelligenceThird Edition (WPPSI-III) Standardization Data were considered major profiles. For bootstrapping,…

  9. Nonlinear dynamics of filamentation instability and current filament merging in a high density current-driven plasma

    NASA Astrophysics Data System (ADS)

    Khorashadizadeh, S. M.; Taghadosi, M. R.; Niknam, A. R.

    2015-12-01

    The magnetic field generation due to the filamentation instability (FI) of a high density current-driven plasma is studied through a new nonlinear diffusion equation. This equation is obtained on the basis of quantum hydrodynamic model and numerically solved by applying the Crank-Nicolson method. The spatiotemporal evolution of the magnetic field and the electron density distribution exhibits the current filament merging as a nonlinear phase of the FI which is responsible for the strong magnetic fields in the current-driven plasmas. It is found that the general behaviour of the FI is the same as that of the classical case but the instability growth rate, its magnitude, and the saturation time are affected by the quantum effects. It is eventually concluded that the quantum effects can play a stabilizing role in such situation.

  10. A linearly controlled direct-current power source for high-current inductive loads in a magnetic suspension wind tunnel

    NASA Technical Reports Server (NTRS)

    Tripp, John S.; Daniels, Taumi S.

    1990-01-01

    The NASA Langley 6 inch magnetic suspension and balance system (MSBS) requires an independently controlled bidirectional DC power source for each of six positioning electromagnets. These electromagnets provide five-degree-of-freedom control over a suspended aerodynamic test model. Existing power equipment, which employs resistance coupled thyratron controlled rectifiers as well as AC to DC motor generator converters, is obsolete, inefficient, and unreliable. A replacement six phase bidirectional controlled bridge rectifier is proposed, which employs power MOSFET switches sequenced by hybrid analog/digital circuits. Full load efficiency is 80 percent compared to 25 percent for the resistance coupled thyratron system. Current feedback provides high control linearity, adjustable current limiting, and current overload protection. A quenching circuit suppresses inductive voltage impulses. It is shown that 20 kHz interference from positioning magnet power into MSBS electromagnetic model position sensors results predominantly from capacitively coupled electric fields. Hence, proper shielding and grounding techniques are necessary. Inductively coupled magnetic interference is negligible.

  11. Magnetic field generated by shielding current in high Tc superconducting coils for NMR magnets

    NASA Astrophysics Data System (ADS)

    Amemiya, Naoyuki; Akachi, Ken

    2008-09-01

    Numerical electromagnetic field analyses of high Tc superconducting tape in coils were carried out to calculate the magnetic field generated by the shielding (magnetization) current in superconducting tape. The numerical model employs the power law electric field-current density characteristic and the thin strip approximation, in which the current component normal to the wide face of the tape is neglected. The shielding (magnetization) currents lead to non-uniform current distributions in the superconducting tape in the coils. The magnetic field generated by the shielding (magnetization) current can deteriorate the field quality and could be a concern in insert coils for NMR magnets using high Tc superconducting tape.

  12. High-Current Experiments for Accelerator-Based Neutron Capture Therapy Applications

    SciTech Connect

    Gierga, D.P.; Klinkowstein, R.E.; Hughey, B.H.; Shefer, R.E.; Yanch, J.C.; Blackburn, B.W.

    1999-06-06

    Several accelerator-based neutron capture therapy applications are under development. These applications include boron neutron capture therapy for glioblastoma multiform and boron neutron capture synovectomy (BNCS) for rheumatoid arthritis. These modalities use accelerator-based charged-particle reactions to create a suitable neutron source. Neutrons are produced using a high-current, 2-MV terminal tandem accelerator. For these applications to be feasible, high accelerator beam currents must be routinely achievable. An effort was undertaken to explore the operating regime of the accelerator in the milliampere range. In preparation for high-current operation of the accelerator, computer simulations of charged-particle beam optics were performed to establish high-current operating conditions. Herein we describe high beam current simulations and high beam current operation of the accelerator.

  13. Performance of Bootstrapping Approaches To Model Test Statistics and Parameter Standard Error Estimation in Structural Equation Modeling.

    ERIC Educational Resources Information Center

    Nevitt, Jonathan; Hancock, Gregory R.

    2001-01-01

    Evaluated the bootstrap method under varying conditions of nonnormality, sample size, model specification, and number of bootstrap samples drawn from the resampling space. Results for the bootstrap suggest the resampling-based method may be conservative in its control over model rejections, thus having an impact on the statistical power associated…

  14. Modeling of explosive electron emission and electron beam dynamics in high-current devices

    NASA Astrophysics Data System (ADS)

    Anishchenko, S. V.; Gurinovich, A. A.

    2014-03-01

    Based on a detailed analysis of explosive electron emission in high-current electronic devices, we formulate a system of equations that describes the expansion of the cathode plasma and the generation of high-current electron beams. The system underlies the numerical algorithm for the hybrid code which enables simulating the charged particles' dynamics in high-current vircators with open resonators. Using the Gabor-Morlet transform, we perform the time-frequency analysis of vircator radiation.

  15. High-current, high-brightness, and high-duty factor ion injectors. AIP conference proceedings No. 139

    SciTech Connect

    Gillespie, G.H.; Kuo, Yu-Yun; Keefe, D. Wangler, T.P.

    1986-01-01

    One of the important frontier areas in accelerator physics today is the search for ever better ways of simultaneously achieving higher beam currents with very low emittance, and preserving both properties throughout the acceleration process. This workshop focused on the basic and applied physics encountered with intense ion beams in the low velocity end of a linac. a primary objective of this workshop was to review in depth the different approaches to intense ion injectors, and the phenomena associated with high-current and high-brightness beams. A second objective was to provide a forum for discussion for those people active in this specialized field, and thereby stimulate suggestions and recommendations regarding future work in these areas. The subject material was grouped under five main headings: diagnostics, theory (including simulation), high-current beam transport, cw radio frequency quadrupole accelerators, and multiple beams (including funneling). Following introductory reviews by experts in each of these areas, participants divided themselves among five corresponding working groups. The review papers and the working group summaries and conclusions form the main body of this Proceedings. In addition, four contributed reports on new work presented at the workshop are also included. The workshop papers were cataloged separately.

  16. PROBABILISTIC FIBER TRACKING USING A MODIFIED LASSO BOOTSTRAP METHOD

    PubMed Central

    Ye, Chuyang; Glaister, Jeffrey; Prince, Jerry L.

    2016-01-01

    Diffusion MRI (dMRI) provides a noninvasive tool for investigating white matter tracts. Probabilistic fiber tracking has been proposed to represent the fiber structures as 3D streamlines while taking the uncertainty introduced by noise into account. In this paper, we propose a probabilistic fiber tracking method based on bootstrapping a multi-tensor model with a fixed tensor basis. The fiber orientation (FO) estimation is formulated as a Lasso problem. Then by resampling the residuals calculated using a modified Lasso estimator to create synthetic diffusion signals, a distribution of FOs is estimated. Probabilistic fiber tracking can then be performed by sampling from the FO distribution. Experiments were performed on a digital crossing phantom and brain dMRI for validation.

  17. Bootstrapping Security Policies for Wearable Apps Using Attributed Structural Graphs.

    PubMed

    González-Tablas, Ana I; Tapiador, Juan E

    2016-01-01

    We address the problem of bootstrapping security and privacy policies for newly-deployed apps in wireless body area networks (WBAN) composed of smartphones, sensors and other wearable devices. We introduce a framework to model such a WBAN as an undirected graph whose vertices correspond to devices, apps and app resources, while edges model structural relationships among them. This graph is then augmented with attributes capturing the features of each entity together with user-defined tags. We then adapt available graph-based similarity metrics to find the closest app to a new one to be deployed, with the aim of reusing, and possibly adapting, its security policy. We illustrate our approach through a detailed smartphone ecosystem case study. Our results suggest that the scheme can provide users with a reasonably good policy that is consistent with the user's security preferences implicitly captured by policies already in place. PMID:27187385

  18. Higgs critical exponents and conformal bootstrap in four dimensions

    NASA Astrophysics Data System (ADS)

    Antipin, Oleg; Mølgaard, Esben; Sannino, Francesco

    2015-06-01

    We investigate relevant properties of composite operators emerging in non-supersymmetric, four-dimensional gauge-Yukawa theories with interacting conformal fixed points within a precise framework. The theories investigated in this work are structurally similar to the standard model of particle interactions, but differ by developing perturbative interacting fixed points. We investigate the physical properties of the singlet and the adjoint composite operators quadratic in the Higgs field, and discover, via a direct computation, that the singlet anomalous dimension is substantially larger than the adjoint one. The numerical bootstrap results are, when possible, compared to our precise findings associated to the four dimensional conformal field theoretical results. To accomplish this, it was necessary to calculate explicitly the crossing symmetry relations for the global symmetry group SU( N ) × SU( N ).

  19. Bootstrapping Security Policies for Wearable Apps Using Attributed Structural Graphs

    PubMed Central

    González-Tablas, Ana I.; Tapiador, Juan E.

    2016-01-01

    We address the problem of bootstrapping security and privacy policies for newly-deployed apps in wireless body area networks (WBAN) composed of smartphones, sensors and other wearable devices. We introduce a framework to model such a WBAN as an undirected graph whose vertices correspond to devices, apps and app resources, while edges model structural relationships among them. This graph is then augmented with attributes capturing the features of each entity together with user-defined tags. We then adapt available graph-based similarity metrics to find the closest app to a new one to be deployed, with the aim of reusing, and possibly adapting, its security policy. We illustrate our approach through a detailed smartphone ecosystem case study. Our results suggest that the scheme can provide users with a reasonably good policy that is consistent with the user’s security preferences implicitly captured by policies already in place. PMID:27187385

  20. Bootstrap and second-order tests of risk difference.

    PubMed

    Lloyd, Chris J

    2010-09-01

    Clinical trials data often come in the form of low-dimensional tables of small counts. Standard approximate tests such as score and likelihood ratio tests are imperfect in several respects. First, they can give quite different answers from the same data. Second, the actual type-1 error can differ significantly from nominal, even for quite large sample sizes. Third, exact inferences based on these can be strongly nonmonotonic functions of the null parameter and lead to confidence sets that are discontiguous. There are two modern approaches to small sample inference. One is to use so-called higher order asymptotics (Reid, 2003, Annal of Statistics 31, 1695-1731) to provide an explicit adjustment to the likelihood ratio statistic. The theory for this is complex but the statistic is quick to compute. The second approach is to perform an exact calculation of significance assuming the nuisance parameters equal their null estimate (Lee and Young, 2005, Statistic and Probability Letters 71, 143-153), which is a kind of parametric bootstrap. The purpose of this article is to explain and evaluate these two methods, for testing whether a difference in probabilities p(2) - p(1) exceeds a prechosen noninferiority margin δ(0) . On the basis of an extensive numerical study, we recommend bootstrap P-values as superior to all other alternatives. First, they produce practically identical answers regardless of the basic test statistic chosen. Second, they have excellent size accuracy and higher power. Third, they vary much less erratically with the null parameter value δ(0) . PMID:19912176

  1. Characterization of the electrical resistance of high temperature superconductor coated conductors at high currents using ultra-fast regulated current pulses

    NASA Astrophysics Data System (ADS)

    Sirois, Frédéric; Coulombe, Jonathan; Roy, François; Dutoit, Bertrand

    2010-03-01

    This paper focuses on the experimental determination of the electrical resistance (R) of commercial high temperature superconductor (HTS) coated conductors (CCs) at currents well above the critical current. The major novelty of this work rests on the unique experimental capability of applying constant current pulses in the sample (up to 1000 A) for durations as short as 15 µs, which allows very precise control of the amount of energy dissipated in the sample (the Joule effect), as well as the resulting temperature rise. By varying the applied current and the duration of the pulses, we show that we can achieve a relatively accurate characterization of R(I, T) simply from the measured dynamical V-I characteristics of the CCs. The resistance model obtained in this way is very important, as R(I, T) is the most fundamental design parameter in many practical HTS applications, especially in fault current limiters.

  2. Normal conducting RF cavity of high current photoinjector for high power CW FEL.

    SciTech Connect

    Kurennoy, S.; Schrage, D. L.; Wood R. L.; Schultheiss, T.; Rathke, J.; Christina, V.; Young, L. M.

    2004-01-01

    An RF photoinjector capable of producing high continuous average current with low emittance and energy spread is a key enabling technology for high power CW FEL. The design of a 2.5-cell {pi}-mode 700-MHz normal-conducting RF photoinjector cavity with magnetic emittance compensation is completed. With the electric field gradients of 7, 7, and 5 MV/m in the three cells, the photoinjector will produce a 2.5-MeV electron beam with 3-nC charge per bunch and 7 mm-mrad transverse rms emittance. Electromagnetic modeling was used extensively to optimize ridge-loaded tapered waveguides and RF couplers, which led to a new improved coupler-iris design. The results, combined with a thermal/stress analysis, show that the challenging problem of cavity cooling can be successfully solved. A demo 100-mA (at 35-MHz bunch-repetition rate) photoinjector is being manufactured. The design is scalable to higher power levels by increasing the bunch repetition rate, and provides a path to a MW-class amplifier FEL. The cavity design and details of RF coupler modeling are presented.

  3. Normal-conducting RF cavity of high current photoinjector for high power CW FEL.

    SciTech Connect

    Kurennoy, S.; Schrage, D. L.; Wood R. L.; Schultheiss, T.; Rathke, J.; Young, L. M.

    2004-01-01

    An RF photoinjector capable of producing high continuous average current with low emittance and energy spread is a key enabling technology for high power CW FEL. The design of a 2.5-cell, {pi}-mode, 700-MHz normal-conducting RF photoinjector cavity with magnetic emittance compensation is completed. With the electric field gradients of 7.7, and 5 MV/m in the three cells, the photoinjector will produce a 2.5-MeV electron beam with 3-nC charge per bunch and the transverse rms emittance 7 mm-mrad. Electromagnetic modeling was used extensively to optimize ridge-loaded tapered waveguides and RF couplers, which led to a new, improved coupler iris design. The results, combined with a thermal and stress analysis, show that the challenging problem of cavity cooling can be successfully solved. The manufacturing of a demo 100-mA (at 35 MHz bunch repetition rate) photoinjector is underway. The design is scalable to higher power levels by increasing the electron bunch repetition rate, and provides a path to a MW-class amplifier FEL. This paper presents the cavity design and details of RF coupler modeling.

  4. High Current Density, Long Life Cathodes for High Power RF Sources

    SciTech Connect

    Ives, Robert Lawrence; Collins, George; Falce, Lou; Schwartzkopf, Steve; Busbaher, Daniel

    2014-01-22

    This program was tasked with improving the quality and expanding applications for Controlled Porosity Reservoir (CPR) cathodes. Calabazas Creek Research, Inc. (CCR) initially developed CPR cathodes on a DOE-funded SBIR program to improve cathodes for magnetron injection guns. Subsequent funding was received from the Defense Advanced Research Projects Agency. The program developed design requirements for implementation of the technology into high current density cathodes for high frequency applications. During Phase I of this program, CCR was awarded the prestigious 2011 R&D100 award for this technology. Subsequently, the technology was presented at numerous technical conferences. A patent was issued for the technology in 2009. These cathodes are now marketed by Semicon Associates, Inc. in Lexington, KY. They are the world’s largest producer of cathodes for vacuum electron devices. During this program, CCR teamed with Semicon Associates, Inc. and Ron Witherspoon, Inc. to improve the fabrication processes and expand applications for the cathodes. Specific fabrications issues included the quality of the wire winding that provides the basic structure and the sintering to bond the wires into a robust, cohesive structure. The program also developed improved techniques for integrating the resulting material into cathodes for electron guns.

  5. High brightness, high current injector design for the ATF upgrade at Brookhaven National Laboratory

    NASA Astrophysics Data System (ADS)

    Stratakis, Diktys

    2015-04-01

    Brookhaven National Accelerator Test Facility (BNL ATF) is in the process of moving to a new place and upgrading its major capabilities: The electron beam energy and CO2 laser power. Specifically, the maximum electron beam energy will be first projected to 100-150 MeV and then upgraded to 500 MeV while at the same time the laser power will increase 100 fold, thus making the new ATF a powerful tool in advanced accelerator concept research. The bright electron bunch produced by the new state-of-the-art photocathode rf gun will be accelerated and optionally delivered to multiple beamlines. The injector is a key element of this accelerator upgrade. It must deliver a high average current beam with very small transverse and longitudinal emittances, at a sufficiently high energy that space charge effects are under control. We review here the detailed injector design and present first results from beam dynamics simulations. We give emphasis in the production of compressed flat beams which have important applications in novel light-source concepts and could possibly alleviate the need for damping rings in lepton colliders. We present a theoretical model and with the aid of simulation examine the influence of space charge, bunch compression and suggest a operating regime with minimal phase space dilutions.

  6. Variation of the North Equatorial Current, Mindanao Current, and Kuroshio Current in a high-resolution data assimilation during 2008-2012

    NASA Astrophysics Data System (ADS)

    Zhai, Fangguo; Wang, Qingye; Wang, Fujun; Hu, Dunxin

    2014-11-01

    Outputs from a high-resolution data assimilation system, the global Hybrid Coordinate Ocean Model and Navy Coupled Ocean Data Assimilation (HYCOM+NCODA) 1/12° analysis, were analyzed for the period September 2008 to February 2012. The objectives were to evaluate the performance of the system in simulating ocean circulation in the tropical northwestern Pacific and to examine the seasonal to interannual variations of the western boundary currents. The HYCOM assimilation compares well with altimetry observations and mooring current measurements. The mean structures and standard deviations of velocities of the North Equatorial Current (NEC), Mindanao Current (MC) and Kuroshio Current (KC) also compare well with previous observations. Seasonal to interannual variations of the NEC transport volume are closely correlated with the MC transport volume, instead of that of the KC. The NEC and MC transport volumes mainly show well-defined annual cycles, with their maxima in spring and minima in fall, and are closely related to the circulation changes in the Mindanao Dome (MD) region. In seasons of transport maxima, the MD region experiences negative SSH anomalies and a cyclonic gyre anomaly, and in seasons of transport minima the situation is reversed. The sea surface NEC bifurcation latitude (NBL) in the HYCOM assimilation also agrees well with altimetry observations. In 2009, the NBL shows an annual cycle similar to previous studies, reaching its southernmost position in summer and its northernmost position in winter. In 2010 and 2011, the NBL variations are dominantly influenced by La Niña events. The dynamics responsible for the seasonal to interannual variations of the NEC-MC-KC current system are also discussed.

  7. Device for plasma confinement and heating by high currents and nonclassical plasma transport properties

    DOEpatents

    Coppi, B.; Montgomery, D.B.

    1973-12-11

    A toroidal plasma containment device having means for inducing high total plasma currents and current densities and at the same time emhanced plasma heating, strong magnetic confinement, high energy density containment, magnetic modulation, microwaveinduced heating, and diagnostic accessibility is described. (Official Gazette)

  8. Proposal of Current Control Method for High-Speed AC Motor System

    NASA Astrophysics Data System (ADS)

    Furutani, Shinichi; Satake, Akira

    In this paper, current control method for High-Speed AC Motor System is proposed. In High-Speed driving operation, Current controller tends to lose stability because of dead time caused by computational delay and Electromagnetic coupling included AC Motor Model. The Main purpose of the proposed method is reduction of dead time on current controller. Proposed method based model predictive control and optimizing of start timing. The Effectiveness of proposed method is confirmed by simulation results.

  9. Rotating magnetic field current drive of high-temperature field reversed configurations with high {zeta} scaling

    SciTech Connect

    Guo, H. Y.; Hoffman, A. L.; Milroy, R. D.

    2007-11-15

    Greatly reduced recycling and impurity ingestion in the Translation, Confinement, and Sustainment--Upgrade (TCSU) device has allowed much higher plasma temperatures to be achieved in the field reversed configurations (FRC) under rotating magnetic field (RMF) formation and sustainment. The hotter plasmas have higher magnetic fields and much higher diamagnetic electron rotation rates so that the important ratio of average electron rotation frequency to RMF frequency, called {zeta}, approaches unity, for the first time, in TCSU. A large fraction of the RMF power is absorbed by an as yet unexplained (anomalous) mechanism directly proportional to the square of the RMF magnitude. It becomes of relatively lesser significance as the FRC current increases, and simple resistive heating begins to dominate, but the anomalous absorption is useful for initial plasma heating. Measurements of total absorbed power, and comparisons of applied RMF torque to torque on the electrons due to electron-ion friction under high-{zeta} operation, over a range of temperatures and fields, have allowed the separation of the classical Ohmic and anomalous heating to be inferred, and cross-field plasma resistivities to be calculated.

  10. A High-Speed Adaptively-Biased Current-to-Current Front-End for SSPM Arrays

    NASA Astrophysics Data System (ADS)

    Zheng, Bob; Walder, Jean-Pierre; Lippe, Henrik vonder; Moses, William; Janecek, Martin

    Solid-state photomultiplier (SSPM) arrays are an interesting technology for use in PET detector modules due to their low cost, high compactness, insensitivity to magnetic fields, and sub-nanosecond timing resolution. However, the large intrinsic capacitance of SSPM arrays results in RC time constants that can severely degrade the response time, which leads to a trade-off between array size and speed. Instead, we propose a front-end that utilizes an adaptively biased current-to-current converter that minimizes the resistance seen by the SSPM array, thus preserving the timing resolution for both large and small arrays. This enables the use of large SSPM arrays with resistive networks, which creates position information and minimizes the number of outputs for compatibility with general PET multiplexing schemes. By tuning the bias of the feedback amplifier, the chip allows for precise control of the close-loop gain, ensuring stability and fast operation from loads as small as 50pF to loads as large as 1nF. The chip has 16 input channels, and 4 outputs capable of driving 100 n loads. The power consumption is 12mW per channel and 360mW for the entire chip. The chip has been designed and fabricated in an AMS 0.35um high-voltage technology, and demonstrates a fast rise-time response and low noise performances.

  11. High frequency radar measurements of tidal currents flowing through San Pablo Strait, San Francisco Bay

    USGS Publications Warehouse

    Maresca, Joseph W., Jr.; Padden, Robin R.; Cheng, Ralph T.; Seibel, Erwin

    1980-01-01

    High frequency (HF) radar measurements of the surface current averaged over the upper 0.5 m in San Pablo Strait were compared with current meter measurements of the subsurface current made at 9.4 m below mean lower low water (MLLW) over two 12.4-h tidal cycles. After averaging the radar and current meter data over two tidal cycles, a southerly (ebbing direction) surface current of 32 cm·s−1 was deduced from the radar measurements and a northerly (flooding direction) subsurface current of 7 cm·s−1 from the current meter measurements. This nontidal flow is maintained by freshwater discharge from the Sacramento–San Joaquin Rivers into Suisun and San Pablo Bays. The radar measurement technique provides quantitative estimates of the surface currents that previously were determined only from surface drifter studies.

  12. Bootstrap Prediction Intervals in Non-Parametric Regression with Applications to Anomaly Detection

    NASA Technical Reports Server (NTRS)

    Kumar, Sricharan; Srivistava, Ashok N.

    2012-01-01

    Prediction intervals provide a measure of the probable interval in which the outputs of a regression model can be expected to occur. Subsequently, these prediction intervals can be used to determine if the observed output is anomalous or not, conditioned on the input. In this paper, a procedure for determining prediction intervals for outputs of nonparametric regression models using bootstrap methods is proposed. Bootstrap methods allow for a non-parametric approach to computing prediction intervals with no specific assumptions about the sampling distribution of the noise or the data. The asymptotic fidelity of the proposed prediction intervals is theoretically proved. Subsequently, the validity of the bootstrap based prediction intervals is illustrated via simulations. Finally, the bootstrap prediction intervals are applied to the problem of anomaly detection on aviation data.

  13. Measurement of the critical current and transient characteristics of a high-temperature superconductor tube using a pulsed current supply.

    SciTech Connect

    Cha, Y. S.

    1998-08-27

    The transient response of a melt-cast-processed BSCCO-2212 superconductor tube is investigated by using a pulsed current source. It was found that (1) the maximum induced current and the excitation current at field penetration increase with the maximum excitation current, and (2) there is a time delay between peak excitation current and peak magnetic field inside the superconductor. These observations can be explained by the concept of magnetic diffusion. The ac steady-state critical current of the superconductor was found to depend on the magnitude of the current increment. The critical current determined by using the pulsed current system agrees fairly well with the ac steady-state critical current determined by using relatively large current increment.

  14. Improving the Altimeter Derived Geostrophic Currents Using High Resolution Sea Surface Temperature Images: A Feasibility Study

    NASA Astrophysics Data System (ADS)

    Rio, M.-H.; Santoleri, R.; Giffa, A.; Piterbarg, L.

    2015-12-01

    Accurate knowledge of spatial and temporal ocean surface currents at high resolution is essential for a variety of applications. The altimeter observing system, by providing global and repetitive measurements of the Sea Surface Height, has been by far the most exploited system to estimate ocean surface currents in the past 20 years. However it does not allow observing currents departing from the geostrophic equilibrium, nor is capable to resolve the shortest spatial scales of the currents. In order to go beyond these limits, we investigate how the high spatial and temporal resolution information from Sea Surface Temperature (SST) images can improve the altimeter currents by adapting a method first proposed by [1]. It consists in inverting the SST evolution equation for the velocity by prescribing the source and sink terms and by using the altimeter currents as background. The method feasibility is tested using simulated data based on the Mercator-Ocean system.

  15. In Situ Observation of Dark Current Emission in a High Gradient rf Photocathode Gun.

    PubMed

    Shao, Jiahang; Shi, Jiaru; Antipov, Sergey P; Baryshev, Sergey V; Chen, Huaibi; Conde, Manoel; Gai, Wei; Ha, Gwanghui; Jing, Chunguang; Wang, Faya; Wisniewski, Eric

    2016-08-19

    Undesirable electron field emission (also known as dark current) in high gradient rf photocathode guns deteriorates the quality of the photoemission current and limits the operational gradient. To improve the understanding of dark current emission, a high-resolution (∼100  μm) dark current imaging experiment has been performed in an L-band photocathode gun operating at ∼100  MV/m of surface gradient. Scattered strong emission areas with high current have been observed on the cathode. The field enhancement factor β of selected regions on the cathode has been measured. The postexaminations with scanning electron microscopy and white light interferometry reveal the origins of ∼75% strong emission areas overlap with the spots where rf breakdown has occurred. PMID:27588860

  16. In Situ Observation of Dark Current Emission in a High Gradient rf Photocathode Gun

    NASA Astrophysics Data System (ADS)

    Shao, Jiahang; Shi, Jiaru; Antipov, Sergey P.; Baryshev, Sergey V.; Chen, Huaibi; Conde, Manoel; Gai, Wei; Ha, Gwanghui; Jing, Chunguang; Wang, Faya; Wisniewski, Eric

    2016-08-01

    Undesirable electron field emission (also known as dark current) in high gradient rf photocathode guns deteriorates the quality of the photoemission current and limits the operational gradient. To improve the understanding of dark current emission, a high-resolution (˜100 μ m ) dark current imaging experiment has been performed in an L -band photocathode gun operating at ˜100 MV /m of surface gradient. Scattered strong emission areas with high current have been observed on the cathode. The field enhancement factor β of selected regions on the cathode has been measured. The postexaminations with scanning electron microscopy and white light interferometry reveal the origins of ˜75 % strong emission areas overlap with the spots where rf breakdown has occurred.

  17. Critical Current Measurements of High phTc Superconducting Cuprate Nanostructures.

    NASA Astrophysics Data System (ADS)

    Morales, P.; Diciano, M.; Mok, M.; Perovic, D. D.; Wei, J. Y. T.; Ananth, V.; Skocpol, W.; Mohanty, P.

    2004-03-01

    High phTc superconducting nanostructures were fabricated using a chemical-free technique. Pulsed current measurements of the resistivity, current-voltage characteristics, and critical current density of the superconducting nanostructures show characteristic behaviour not present in measurements done in bulk and thin film samples. Possible correlations between the observed electrical transport behavior and mesoscopic domain structures, coulomb blockade, phase slip centres (PSC) and stripe domains will be discussed.

  18. Observation of Lower-Hybrid Current Drive at High Densities in the Alcator C Tokamak

    NASA Astrophysics Data System (ADS)

    Porkolab, M.; Schuss, J. J.; Lloyd, B.; Takase, Y.; Texter, S.; Bonoli, P.; Fiore, C.; Gandy, R.; Gwinn, D.; Lipschultz, B.; Marmar, E.; Pappas, D.; Parker, R.; Pribyl, P.

    1984-07-01

    A quasi-steady-state lower-hybrid current-drive operation is demonstrated in the Alcator C tokamak at densities up to n―e~=1×1014 cm-3. The current-drive efficiency is measured experimentally over a wide range of densities and magnetic fields. The radial distribution of high-energy x rays indicates that the current-carrying electrons peak near the plasma axis.

  19. Stabilization of Neoclassical Tearing Modes in Tokamaks by Radio Frequency Current Drive

    SciTech Connect

    La Haye, R. J.

    2007-09-28

    Resistive neoclassical tearing modes (NTMs) will be the principal limit on stability and performance in the ITER standard scenario as the resulting islands break up the magnetic surfaces that confine the plasma. Drag from rotating island-induced eddy current in the resistive wall can also slow the plasma rotation, produce locking to the wall, and cause loss of high confinement H-mode and disruption. The NTMs are maintained by helical perturbations to the pressure-gradient driven 'bootstrap' current. Thus, this is a high beta instability even at the modest beta for ITER. A major line of research on NTM stabilization is the use of radio frequency (rf) current drive at the island rational surface. While large, broad current drive from lower hybrid waves has been shown to be stabilizing (COMPASS-D), most research is directed to small, narrow current drive from electron cyclotron waves (ECCD); ECCD stabilization and/or preemptive prevention is successful in ASDEX Upgrade, DIII-D and JT-60U, for example, with as little as a few percent of the total plasma current if the ECCD is kept sufficiently narrow so that the peak off-axis ECCD is comparable to the local bootstrap current.

  20. Bias Reversal Technique in SQUID Bootstrap Circuit (SBC) Scheme

    NASA Astrophysics Data System (ADS)

    Rong, Liangliang; Zhang, Yi; Zhang, Guofeng; Wu, Jun; Dong, Hui; Qiu, Longqing; Xie, Xiaoming; Offenhüusser, Andreas

    Recently, a SQUID direct readout scheme called voltage-biased SQUID Bootstrap Circuit (SBC) is introduced to reduce preamplifier noise contribution. In this paper, we describe a concept of SBC with bias reversal technique which can suppress SQUID intrinsic 1/f noise. When applying a symmetrically rectangular voltage across SBC, two I-Φ characteristics appear at the amplifier output. In order to return to one I - Φ curve, a demodulation technique is required. Because of the asymmetry of typical SBC I-Φ curve, the demodulation method is realized by using a flux compensation of one half Φ0 flux shift. The output signal is then filtered and returned to one I-Φ curve for ordinary FLL readout. It was found, the reversal frequency fR can be dramatically enhanced when using a preamplifier consisting of two operational amplifiers. A planar Nb SQUID magnetometer with a loop-inductance of 350 pH, fR =50 kHz and a second order low pass filter with 10 kHz cut off frequency was employed in our experiment. Results prove the feasibility of SBC bias reversal method. Comparative experiment on noise performance will be carried out in further studies.

  1. Bootstrapping Multi-Parton Loop Amplitudes in QCD

    SciTech Connect

    Bern, Zvi; Dixon, Lance J.; Kosower, David A.; /Saclay, SPhT

    2005-07-06

    The authors present a new method for computing complete one-loop amplitudes, including their rational parts, in non-supersymmetric gauge theory. This method merges the unitarity method with on-shell recursion relations. It systematizes a unitarity-factorization bootstrap approach previously applied by the authors to the one-loop amplitudes required for next-to-leading order QCD corrections to the processes e{sup +}e{sup -} {yields} Z, {gamma}* {yields} 4 jets and pp {yields} W + 2 jets. We illustrate the method by reproducing the one-loop color-ordered five-gluon helicity amplitudes in QCD that interfere with the tree amplitude, namely A{sub 5;1}(1{sup -}, 2{sup -}, 3{sup +}, 4{sup +}, 5{sup +}) and A{sub 5;1}(1{sup -}, 2{sup +}, 3{sup -}, 4{sup +}, 5{sup +}). Then we describe the construction of the six- and seven-gluon amplitudes with two adjacent negative-helicity gluons, A{sub 6;1}(1{sup -}, 2{sup -}, 3{sup +}, 4{sup +}, 5{sup +}, 6{sup +}) and A{sub 7;1}(1{sup -}, 2{sup -}, 3{sup +}, 4{sup +}, 5{sup +}, 6{sup +}, 7{sup +}), which uses the previously-computed logarithmic parts of the amplitudes as input. They present a compact expression for the six-gluon amplitude. No loop integrals are required to obtain the rational parts.

  2. Language bootstrapping: learning word meanings from perception-action association.

    PubMed

    Salvi, Giampiero; Montesano, Luis; Bernardino, Alexandre; Santos-Victor, José

    2012-06-01

    We address the problem of bootstrapping language acquisition for an artificial system similarly to what is observed in experiments with human infants. Our method works by associating meanings to words in manipulation tasks, as a robot interacts with objects and listens to verbal descriptions of the interactions. The model is based on an affordance network, i.e., a mapping between robot actions, robot perceptions, and the perceived effects of these actions upon objects. We extend the affordance model to incorporate spoken words, which allows us to ground the verbal symbols to the execution of actions and the perception of the environment. The model takes verbal descriptions of a task as the input and uses temporal co-occurrence to create links between speech utterances and the involved objects, actions, and effects. We show that the robot is able form useful word-to-meaning associations, even without considering grammatical structure in the learning process and in the presence of recognition errors. These word-to-meaning associations are embedded in the robot's own understanding of its actions. Thus, they can be directly used to instruct the robot to perform tasks and also allow to incorporate context in the speech recognition task. We believe that the encouraging results with our approach may afford robots with a capacity to acquire language descriptors in their operation's environment as well as to shed some light as to how this challenging process develops with human infants. PMID:22106152

  3. Effects of Neutral Density on Energetic Ions Produced Near High-Current Hollow Cathodes

    NASA Technical Reports Server (NTRS)

    Kameyama, Ikuya

    1997-01-01

    Energy distributions of ion current from high-current, xenon hollow cathodes, which are essential information to understand erosion phenomena observed in high-power ion thrusters, were obtained using an electrostatic energy analyzer (ESA). The effects of ambient pressure and external flow rate introduced immediately downstream of hollow cathode on ion currents with energies greater than that associated with the cathode-to-anode potential difference were investigated. The results were analyzed to determine the changes in the magnitudes of ion currents to the ESA at various energies. Either increasing the ambient pressure or adding external flow induces an increase in the distribution of ion currents with moderate energies (epsilon less than 25 to 35 eV) and a decrease in the distribution for high energies (epsilon greater than 25 to 35 eV). The magnitude of the current distribution increase in the moderate energy range is greater for a cathode equipped with a toroidal keeper than for one without a keeper, but the distribution in the high energy range does not seem to be affected by a keeper. An MHD model, which has been proposed to describe energetic-ion production mechanism in hollow cathode at high discharge currents, was developed to describe these effects. The results show, however, that this model involves no mechanism by which a significant increase of ion current could occur at any energy. It was found, on the other hand, that the potential-hill model of energetic ion production, which assumes existence of a local maximum of plasma potential, could explain combined increases in the currents of ions with moderate energies and decreases in high energy ions due to increased neutral atom density using a charge-exchange mechanism. The existing, simplified version of the potential-hill model, however, shows poor quantitative agreement with measured ion-current-energy-distribution changes induced by neutral density changes.

  4. A bootstrap based space-time surveillance model with an application to crime occurrences

    NASA Astrophysics Data System (ADS)

    Kim, Youngho; O'Kelly, Morton

    2008-06-01

    This study proposes a bootstrap-based space-time surveillance model. Designed to find emerging hotspots in near-real time, the bootstrap based model is characterized by its use of past occurrence information and bootstrap permutations. Many existing space-time surveillance methods, using population at risk data to generate expected values, have resulting hotspots bounded by administrative area units and are of limited use for near-real time applications because of the population data needed. However, this study generates expected values for local hotspots from past occurrences rather than population at risk. Also, bootstrap permutations of previous occurrences are used for significant tests. Consequently, the bootstrap-based model, without the requirement of population at risk data, (1) is free from administrative area restriction, (2) enables more frequent surveillance for continuously updated registry database, and (3) is readily applicable to criminology and epidemiology surveillance. The bootstrap-based model performs better for space-time surveillance than the space-time scan statistic. This is shown by means of simulations and an application to residential crime occurrences in Columbus, OH, year 2000.

  5. A Survey of Appalachian Middle & High School Teacher Perceptions of Controversial Current Events Instruction

    ERIC Educational Resources Information Center

    Sharp, Kimberlee A.

    2009-01-01

    This study examined the perspectives of a sample of Appalachian middle and high school social studies teachers regarding the teaching of controversial current events. Specifically, the survey ascertained the teachers' familiarity with school district administrative policies regarding the teaching of controversial current events, their perceptions…

  6. Growth and characterization of high current density, high-speed InAs/AlSb resonant tunneling diodes

    NASA Technical Reports Server (NTRS)

    Soderstrom, J. R.; Brown, E. R.; Parker, C. D.; Mahoney, L. J.; Yao, J. Y.

    1991-01-01

    InAs/AlSb double-barrier resonant tunneling diodes with peak current densities up to 370,000 A/sq cm and high peak-to-valley current ratios of 3.2 at room temperature have been fabricated. The peak current density is well-explained by a stationary-state transport model with the two-band envelope function approximation. The valley current density predicted by this model is less than the experimental value by a factor that is typical of the discrepancy found in other double-barrier structures. It is concluded that threading dislocations are largely inactive in the resonant tunneling process.

  7. Numerical Simulation of Non-Inductive Current Driven Scenario in EAST Using Neutral Beam Injection

    NASA Astrophysics Data System (ADS)

    Li, Hao; Wu, Bin; Wang, Jinfang; Wang, Ji; Hu, Chundong

    2015-01-01

    For achieving the scientific mission of long pulse and high performance operation, experimental advanced superconducting tokamak (EAST) applies fully superconducting magnet technology and is equiped with high power auxiliary heating system. Besides RF (Radio Frequency) wave heating, neutral beam injection (NBI) is an effective heating and current drive method in fusion research. NBCD (Neutral Beam Current Drive) as a viable non-inductive current drive source plays an important role in quasi-steady state operating scenario for tokamak. The non-inductive current driven scenario in EAST only by NBI is predicted using the TSC/NUBEAM code. At the condition of low plasma current and moderate plasma density, neutral beam injection heats the plasma effectively and NBCD plus bootstrap current accounts for a large proportion among the total plasma current for the flattop time.

  8. Speeding Up Non-Parametric Bootstrap Computations for Statistics Based on Sample Moments in Small/Moderate Sample Size Applications

    PubMed Central

    Chaibub Neto, Elias

    2015-01-01

    In this paper we propose a vectorized implementation of the non-parametric bootstrap for statistics based on sample moments. Basically, we adopt the multinomial sampling formulation of the non-parametric bootstrap, and compute bootstrap replications of sample moment statistics by simply weighting the observed data according to multinomial counts instead of evaluating the statistic on a resampled version of the observed data. Using this formulation we can generate a matrix of bootstrap weights and compute the entire vector of bootstrap replications with a few matrix multiplications. Vectorization is particularly important for matrix-oriented programming languages such as R, where matrix/vector calculations tend to be faster than scalar operations implemented in a loop. We illustrate the application of the vectorized implementation in real and simulated data sets, when bootstrapping Pearson’s sample correlation coefficient, and compared its performance against two state-of-the-art R implementations of the non-parametric bootstrap, as well as a straightforward one based on a for loop. Our investigations spanned varying sample sizes and number of bootstrap replications. The vectorized bootstrap compared favorably against the state-of-the-art implementations in all cases tested, and was remarkably/considerably faster for small/moderate sample sizes. The same results were observed in the comparison with the straightforward implementation, except for large sample sizes, where the vectorized bootstrap was slightly slower than the straightforward implementation due to increased time expenditures in the generation of weight matrices via multinomial sampling. PMID:26125965

  9. High-energy tritium beams as current drivers in tokamak reactors

    SciTech Connect

    Mikkelsen, D.R.; Grisham, L.R.

    1983-04-01

    The effect on neutral-beam design and reactor performance of using high-energy (approx. 3-10 MeV) tritium neutral beams to drive steady-state tokamak reactors is considered. The lower current of such beams leads to several advantages over lower-energy neutral beams. The major disadvantage is the reduction of the reactor output caused by the lower current-drive efficiency of the high-energy beams.

  10. Conductor of high electrical current at high temperature in oxygen and liquid metal environment

    DOEpatents

    Powell, IV, Adam Clayton; Pati, Soobhankar; Derezinski, Stephen Joseph; Lau, Garrett; Pal, Uday B.; Guan, Xiaofei; Gopalan, Srikanth

    2016-01-12

    In one aspect, the present invention is directed to apparatuses for and methods of conducting electrical current in an oxygen and liquid metal environment. In another aspect, the invention relates to methods for production of metals from their oxides comprising providing a cathode in electrical contact with a molten electrolyte, providing a liquid metal anode separated from the cathode and the molten electrolyte by a solid oxygen ion conducting membrane, providing a current collector at the anode, and establishing a potential between the cathode and the anode.

  11. High accuracy switched-current circuits using an improved dynamic mirror

    NASA Technical Reports Server (NTRS)

    Zweigle, G.; Fiez, T.

    1991-01-01

    The switched-current technique, a recently developed circuit approach to analog signal processing, has emerged as an alternative/compliment to the well established switched-capacitor circuit technique. High speed switched-current circuits offer potential cost and power savings over slower switched-capacitor circuits. Accuracy improvements are a primary concern at this stage in the development of the switched-current technique. Use of the dynamic current mirror has produced circuits that are insensitive to transistor matching errors. The dynamic current mirror has been limited by other sources of error including clock-feedthrough and voltage transient errors. In this paper we present an improved switched-current building block using the dynamic current mirror. Utilizing current feedback the errors due to current imbalance in the dynamic current mirror are reduced. Simulations indicate that this feedback can reduce total harmonic distortion by as much as 9 dB. Additionally, we have developed a clock-feedthrough reduction scheme for which simulations reveal a potential 10 dB total harmonic distortion improvement. The clock-feedthrough reduction scheme also significantly reduces offset errors and allows for cancellation with a constant current source. Experimental results confirm the simulated improvements.

  12. High Current Systems for HyperV and PLX Plasma Railguns

    NASA Astrophysics Data System (ADS)

    Brockington, S.; Case, A.; Messer, S.; Elton, R.; Witherspoon, F. D.

    2011-10-01

    HyperV is developing gas fed, pulsed, plasma railgun accelerators for PLX and other high momentum plasma applications. The present 2.5 cm square-bore plasma railgun forms plasma armatures from high density neutral gas (argon), preionizes it electrothermally, and accelerates the armature with 30 cm long parallel-plate railgun electrodes driven by a pulse forming network (PFN). Recent experiments have successfully formed and accelerated plasma armatures of ~4 mg at 40 km/s, with PFN currents of ~400 kA. In order to further increase railgun performance to the PLX design goal of 8 mg at 50 km/s, the PFN was upgraded to support currents of up to ~750 kA. A high voltage, high current linear array spark-gap switch and flexible, low-inductance transmission line were designed and constructed to handle the increased current load. We will describe these systems and present initial performance data from high current operation of the plasma rail gun from spectroscopy, interferometry, and imaging systems as well as pressure, magnetic field, and optical diagnostics. High current performance of railgun bore materials for electrodes and insulators will also be discussed as well as plans for upcoming experimentation with advanced materials. Supported by the U.S. DOE Joint Program in HEDLP.

  13. Voltage-induced recovery of dielectric breakdown (high current resistance switching) in HfO2

    NASA Astrophysics Data System (ADS)

    El Kamel, F.; Gonon, P.; Vallée, C.; Jousseaume, V.; Grampeix, H.

    2011-01-01

    Metal/HfO2/Pt stacks (where the metal is Au, Ag, Co, Ni, Cr, or In) are voltage stressed to induce a high-to-low resistive transition. No current compliance is applied during stressing (except the 100 mA limit of the voltage source). As a consequence very high conductance states are reached after switching, similar to a hard breakdown. Samples conductance after breakdown can reach up to 0.1 S, depending on the metal electrode. Despite the high postbreakdown conductance level, the samples are able to recover an insulating state by further voltage biasing ("high current resistance switching").

  14. Coherent Effects of High Current Beam in Project-X Linac

    SciTech Connect

    Sukhanov, A.; Lunin, A.; Yakovlev, V.; Gonin, I.; Khabiboulline, T.; Saini, A.; Solyak, N.; Yostrikov, A.

    2012-09-01

    Resonance excitation of longitudinal high order modes in superconducting RF structures of Project-X continuous wave linac is studied. We analyze regimes of operation of the linac with high beam current, which can be used to provide an intense muon source for the future Neutrino Factory or Muon Collider, and also important for the Accelerator-Driven Subcritical systems. We calculate power loss and associated heat load to the cryogenic system. Longitudinal emittance growth is estimated. We consider an alternative design of the elliptical cavity for the high energy part of the linac, which is more suitable for high current operation.

  15. Phylogeny of Eunicida (Annelida) and exploring data congruence using a partition addition bootstrap alteration (PABA) approach.

    PubMed

    Struck, Torsten H; Purschke, Günter; Halanych, Kenneth M

    2006-02-01

    Even though relationships within Annelida are poorly understood, Eunicida is one of only a few major annelid lineages well supported by morphology. The seven recognized eunicid families possess sclerotized jaws that include mandibles and a maxillary apparatus. The maxillary apparatuses vary in shape and number of elements, and three main types are recognized in extant taxa: ctenognath, labidognath, and prionognath. Ctenognath jaws are usually considered to represent the plesiomorphic state of Eunicida, whereas taxa with labidognath and prionognath are thought to form a derived monophyletic assemblage. However, this hypothesis has never been tested in a statistical framework even though it holds considerable importance for understanding annelid phylogeny and possibly lophotrochozoan evolution because Eunicida has the best annelid fossil record. Therefore, we used maximum likelihood and Bayesian inference approaches to reconstruct Eunicida phylogeny using sequence data from nuclear 18S and 28S rDNA genes and mitochondrial 16S rDNA and cytochrome c oxidase subunit I genes. Additionally, we conducted three different tests to investigate suitability of combining data sets. Incongruence length difference (ILD) and Shimodaira-Hasegawa (SH) test comparisons of resultant trees under different data partitions have been widely used previously but do not give a good indication as to which nodes may be causing the conflict. Thus, we developed a partition addition bootstrap alteration (PABA) approach that evaluates congruence or conflict for any given node by determining how bootstrap scores are altered when different data partitions are added. PABA shows the contribution of each partition to the phylogeny obtained in the combined analysis. Generally, the ILD test performed worse than the other approaches in detecting incongruence. Both PABA and the SH approach indicated the 28S and COI data sets add conflicting signal, but PABA is more informative for elucidating which data

  16. Propagation direction reversal of ionization zones in the transition between high and low current magnetron sputtering

    SciTech Connect

    School of Materials Science and Engineering, State Key Lab for Materials Processing and Die & Mold Technology, Huazhong University of Science and Technology, Wuhan 430074, China; Department of Physics, University of California Berkeley, Berkeley, California 94720, USA; Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, California 94720, USA; Yang, Yuchen; Liu, Jason; Liu, Lin; Anders, André

    2014-12-11

    Past research has revealed the propagation of dense, asymmetric ionization zones in both high and low current magnetron discharges. Here we report about the direction reversal of ionization zone propagation as observed with fast cameras. At high currents, zones move in the E B direction with velocities of 103 to 104 m/s. However at lower currents, ionization zones are observed to move in the opposite, the -E B direction, with velocities ~;; 103 m/s. It is proposed that the direction reversal is associated with the local balance of ionization and supply of neutrals in the ionization zone.

  17. Evaluation of plasma pressure of high current low inductance vacuum spark on cathode surface

    NASA Astrophysics Data System (ADS)

    Sarantsev, S. A.

    2016-01-01

    This paper presents evaluation of the plasma pressure in a high current, low inductance vacuum spark on the cathode surface (the electrode material is steel). Calculations are provided for the first half period of the discharge, wherein the cathode surface is subjected to the most severe impacts (micropinches are created resulting in high-energy plasma beams). The evaluations were made using the experimental data obtained on the Pion device. The data of electrical measurements of the discharge current, the average plasma flow values obtained with the multi-grid probe and the data from a cathode macrostructure study were used. The results are given for different values of the discharge current.

  18. Study of lower hybrid current drive towards long-pulse operation with high performance in EAST

    NASA Astrophysics Data System (ADS)

    Ding, B. J.; Li, M. H.; Li, Y. C.; Wang, M.; Shan, J. F.; Liu, F. K.; Wang, S. L.; Wei, W.; Xu, H. D.; Zhao, L. M.; Hu, H. C.; Jia, H.; Cheng, M.; Yang, Y.; Liu, L.; Xu, G. S.; Zang, Q.; Zhao, H. L.; Peysson, Y.; Decker, J.; Goniche, M.; Cesario, R.; Amicucci, L.; Tuccillo, A. A.; Baek, G. S.; Parker, R.; Bonoli, P. T.; Yang, C.; Zhao, Y. P.; Qian, J. P.; Gong, X. Z.; Hu, L. Q.; Li, J. G.; Wan, B. N.

    2015-12-01

    High density experiments with 2.45 GHz lower hybrid current drive (LHCD) in EAST are analyzed by means of simulation and modeling, showing that parametric instabilities (PI), collisional absorption and density fluctuations in the edge region could be responsible for the low CD efficiency at high density. In addition, recent LHCD results with 4.6 GHz are presented, showing that lower hybrid wave can be coupled to plasma with low reflection coefficient, drive plasma current and modify the current profile, and heat plasma effectively. The related results between two systems (2.45 GHz and 4.6 GHz) are also compared, including CD efficiency and PI behavior.

  19. High domain wall velocities via spin transfer torque using vertical current injection

    PubMed Central

    Metaxas, Peter J.; Sampaio, Joao; Chanthbouala, André; Matsumoto, Rie; Anane, Abdelmadjid; Fert, Albert; Zvezdin, Konstantin A.; Yakushiji, Kay; Kubota, Hitoshi; Fukushima, Akio; Yuasa, Shinji; Nishimura, Kazumasa; Nagamine, Yoshinori; Maehara, Hiroki; Tsunekawa, Koji; Cros, Vincent; Grollier, Julie

    2013-01-01

    Domain walls, nanoscale transition regions separating oppositely oriented ferromagnetic domains, have significant promise for use in spintronic devices for data storage and memristive applications. The state of these devices is related to the wall position and thus rapid operation will require a controllable onset of domain wall motion and high speed wall displacement. These processes are traditionally driven by spin transfer torque due to lateral injection of spin polarized current through a ferromagnetic nanostrip. However, this geometry is often hampered by low maximum wall velocities and/or a need for prohibitively high current densities. Here, using time-resolved magnetotransport measurements, we show that vertical injection of spin currents through a magnetic tunnel junction can drive domain walls over hundreds of nanometers at ~500 m/s using current densities on the order of 6 MA/cm2. Moreover, these measurements provide information about the stochastic and deterministic aspects of current driven domain wall mediated switching. PMID:23670402

  20. High domain wall velocities via spin transfer torque using vertical current injection.

    PubMed

    Metaxas, Peter J; Sampaio, Joao; Chanthbouala, André; Matsumoto, Rie; Anane, Abdelmadjid; Fert, Albert; Zvezdin, Konstantin A; Yakushiji, Kay; Kubota, Hitoshi; Fukushima, Akio; Yuasa, Shinji; Nishimura, Kazumasa; Nagamine, Yoshinori; Maehara, Hiroki; Tsunekawa, Koji; Cros, Vincent; Grollier, Julie

    2013-01-01

    Domain walls, nanoscale transition regions separating oppositely oriented ferromagnetic domains, have significant promise for use in spintronic devices for data storage and memristive applications. The state of these devices is related to the wall position and thus rapid operation will require a controllable onset of domain wall motion and high speed wall displacement. These processes are traditionally driven by spin transfer torque due to lateral injection of spin polarized current through a ferromagnetic nanostrip. However, this geometry is often hampered by low maximum wall velocities and/or a need for prohibitively high current densities. Here, using time-resolved magnetotransport measurements, we show that vertical injection of spin currents through a magnetic tunnel junction can drive domain walls over hundreds of nanometers at ~500 m/s using current densities on the order of 6 MA/cm(2). Moreover, these measurements provide information about the stochastic and deterministic aspects of current driven domain wall mediated switching. PMID:23670402

  1. High domain wall velocities via spin transfer torque using vertical current injection

    NASA Astrophysics Data System (ADS)

    Metaxas, Peter J.; Sampaio, Joao; Chanthbouala, André; Matsumoto, Rie; Anane, Abdelmadjid; Fert, Albert; Zvezdin, Konstantin A.; Yakushiji, Kay; Kubota, Hitoshi; Fukushima, Akio; Yuasa, Shinji; Nishimura, Kazumasa; Nagamine, Yoshinori; Maehara, Hiroki; Tsunekawa, Koji; Cros, Vincent; Grollier, Julie

    2013-05-01

    Domain walls, nanoscale transition regions separating oppositely oriented ferromagnetic domains, have significant promise for use in spintronic devices for data storage and memristive applications. The state of these devices is related to the wall position and thus rapid operation will require a controllable onset of domain wall motion and high speed wall displacement. These processes are traditionally driven by spin transfer torque due to lateral injection of spin polarized current through a ferromagnetic nanostrip. However, this geometry is often hampered by low maximum wall velocities and/or a need for prohibitively high current densities. Here, using time-resolved magnetotransport measurements, we show that vertical injection of spin currents through a magnetic tunnel junction can drive domain walls over hundreds of nanometers at ~500 m/s using current densities on the order of 6 MA/cm2. Moreover, these measurements provide information about the stochastic and deterministic aspects of current driven domain wall mediated switching.

  2. High-power CMOS current driver with accurate transconductance for electrical impedance tomography.

    PubMed

    Constantinou, Loucas; Triantis, Iasonas F; Bayford, Richard; Demosthenous, Andreas

    2014-08-01

    Current drivers are fundamental circuits in bioimpedance measurements including electrical impedance tomography (EIT). In the case of EIT, the current driver is required to have a large output impedance to guarantee high current accuracy over a wide range of load impedance values. This paper presents an integrated current driver which meets these requirements and is capable of delivering large sinusoidal currents to the load. The current driver employs a differential architecture and negative feedback, the latter allowing the output current to be accurately set by the ratio of the input voltage to a resistor value. The circuit was fabricated in a 0.6- μm high-voltage CMOS process technology and its core occupies a silicon area of 0.64 mm (2) . It operates from a ± 9 V power supply and can deliver output currents up to 5 mA p-p. The accuracy of the maximum output current is within 0.41% up to 500 kHz, reducing to 0.47% at 1 MHz with a total harmonic distortion of 0.69%. The output impedance is 665 k Ω at 100 kHz and 372 k Ω at 500 kHz. PMID:25073130

  3. Effects of diode current on high power microwave generation in a vircator

    NASA Astrophysics Data System (ADS)

    Liu, Guozhi; Huang, Wenhua; Shao, Hao; Qiu, Shi; Wang, Hongjun; Liu, Jingyue; Wang, Feng; Yang, Zhanfeng; Qiao, Yongzhi

    2009-12-01

    An experiment of a virtual cathode oscillator (vircator) built on the low impedance intense electron beam accelerator Flash II is reported. A novel spectrum diagnosis method—a circulating dispersion line—is proposed. A thin oil layer coated graphite cathode is introduced in the experiment to decrease the delay time of the explosive emission process and obtain a homogeneous electron beam emission for improving the high-power microwave (HPM) generation efficiency. The effect of diode current on HPM generation in the vircator system is discussed. The HPM pulse width has a strong connection with the diode current waveform. For most shots, corresponding to the time that microwave emission starts, there is an inflection point in the diode current pulse. Compared with the case that no microwave is generated, the diode current increases more slowly following the inflection point. HPM generation terminates when the beam current reaches the self-pinching critical current of the diode.

  4. Deposition of ultrahard Ti-Si-N coatings by pulsed high-current reactive magnetron sputtering

    NASA Astrophysics Data System (ADS)

    Oskomov, K. V.; Zakharov, A. N.; Rabotkin, S. V.; Solov'ev, A. A.

    2016-02-01

    We report on the results of investigation of properties of ultrahard Ti-Si-N coatings deposited by pulsed high-current magnetron reactive sputtering (discharge pulse voltage is 300-900 V, discharge pulse current is up to 200 A, pulse duration is 10-100 μs, and pulse repetition rate is 20-2000 Hz). It is shown that for a short sputtering pulse (25 μs) and a high discharge current (160 A), the films exhibit high hardness (66 GPa), wear resistance, better adhesion, and a lower sliding friction coefficient. The reason is an enhancement of ion bombardment of the growing coating due to higher plasma density in the substrate region (1013 cm-3) and a manifold increase in the degree of ionization of the plasma with increasing peak discharge current (mainly due to the material being sputtered).

  5. High Current Systems for HyperV and PLX Plasma Railguns

    NASA Astrophysics Data System (ADS)

    Brockington, Samuel; Case, Andrew; Messer, Sarah; Bomgardner, Richard; Wu, Linchun; Elton, Raymond; Witherspoon, F. Douglas

    2010-11-01

    HyperV has been developing coaxial pulsed, plasma railgun accelerators for PLX and other high momentum plasma experiments. The full scale HyperV coaxial gun accelerates plasma armatures using a contoured electrode gap designed to mitigate the blow-by instability. Previous experiments with the full scale gun successfully formed and accelerated annular plasma armatures, but were limited to currents of up to only ˜400 kA. In order to increase full scale gun performance to the design goal of 200 μg at 200 km/s, the pulse forming networks required upgrading to support currents up to ˜1 MA. A high voltage, high current field-effect sparkgap switch and low inductance transmission line were designed and constructed to handle the increased current pulse. We will describe these systems and present initial test data from high current operation of the full-scale coax gun along with plans for future testing. Similar high current accelerator banks, switches, and TM lines will also be required to power PLX railguns which are planned to operate at 8000 μg at 50 km/s. The design of that experiment may require the capacitor banks to be located as much as 10 feet from the gun. We discuss the available options for low inductance connections for these systems.

  6. BOOTSTRAPPING THE CORONAL MAGNETIC FIELD WITH STEREO: UNIPOLAR POTENTIAL FIELD MODELING

    SciTech Connect

    Aschwanden, Markus J.; Sandman, Anne W.

    2010-09-15

    We investigate the recently quantified misalignment of {alpha}{sub mis} {approx} 20{sup 0}-40{sup 0} between the three-dimensional geometry of stereoscopically triangulated coronal loops observed with STEREO/EUVI (in four active regions (ARs)) and theoretical (potential or nonlinear force-free) magnetic field models extrapolated from photospheric magnetograms. We develop an efficient method of bootstrapping the coronal magnetic field by forward fitting a parameterized potential field model to the STEREO-observed loops. The potential field model consists of a number of unipolar magnetic charges that are parameterized by decomposing a photospheric magnetogram from the Michelson Doppler Imager. The forward-fitting method yields a best-fit magnetic field model with a reduced misalignment of {alpha}{sub PF} {approx} 13{sup 0}-20{sup 0}. We also evaluate stereoscopic measurement errors and find a contribution of {alpha}{sub SE} {approx} 7{sup 0}-12{sup 0}, which constrains the residual misalignment to {alpha}{sub NP} {approx} 11{sup 0}-17{sup 0}, which is likely due to the nonpotentiality of the ARs. The residual misalignment angle, {alpha}{sub NP}, of the potential field due to nonpotentiality is found to correlate with the soft X-ray flux of the AR, which implies a relationship between electric currents and plasma heating.

  7. Service Mediation and Negotiation Bootstrapping as First Achievements Towards Self-adaptable Cloud Services

    NASA Astrophysics Data System (ADS)

    Brandic, Ivona; Music, Dejan; Dustdar, Schahram

    Nowadays, novel computing paradigms as for example Cloud Computing are gaining more and more on importance. In case of Cloud Computing users pay for the usage of the computing power provided as a service. Beforehand they can negotiate specific functional and non-functional requirements relevant for the application execution. However, providing computing power as a service bears different research challenges. On one hand dynamic, versatile, and adaptable services are required, which can cope with system failures and environmental changes. On the other hand, human interaction with the system should be minimized. In this chapter we present the first results in establishing adaptable, versatile, and dynamic services considering negotiation bootstrapping and service mediation achieved in context of the Foundations of Self-Governing ICT Infrastructures (FoSII) project. We discuss novel meta-negotiation and SLA mapping solutions for Cloud services bridging the gap between current QoS models and Cloud middleware and representing important prerequisites for the establishment of autonomic Cloud services.

  8. BoCluSt: Bootstrap Clustering Stability Algorithm for Community Detection

    PubMed Central

    Garcia, Carlos

    2016-01-01

    The identification of modules or communities in sets of related variables is a key step in the analysis and modeling of biological systems. Procedures for this identification are usually designed to allow fast analyses of very large datasets and may produce suboptimal results when these sets are of a small to moderate size. This article introduces BoCluSt, a new, somewhat more computationally intensive, community detection procedure that is based on combining a clustering algorithm with a measure of stability under bootstrap resampling. Both computer simulation and analyses of experimental data showed that BoCluSt can outperform current procedures in the identification of multiple modules in data sets with a moderate number of variables. In addition, the procedure provides users with a null distribution of results to evaluate the support for the existence of community structure in the data. BoCluSt takes individual measures for a set of variables as input, and may be a valuable and robust exploratory tool of network analysis, as it provides 1) an estimation of the best partition of variables into modules, 2) a measure of the support for the existence of modular structures, and 3) an overall description of the whole structure, which may reveal hierarchical modular situations, in which modules are composed of smaller sub-modules. PMID:27258041

  9. High power test results of the first SRRC/ANL high current L-band RF gun.

    SciTech Connect

    Ho, C. H.

    1998-09-11

    A joint program is underway between the SRRC (Synchrotrons Radiation Research Center, Taiwan) and ANL (Argonne National Laboratory, USA) for developing a high current L-band photocathode rf guns. We have constructed an L-Band (1.3 Ghz), single cell rf photocathode gun and conducted low power tests at SRRC. High power rf conditioning of the cavity has been completed at ANL. In this paper we report on the construction and high power test results. So far we have been able to achieve > 120 MV/m axial electric field with minimal dark current. This gun will be used to replace the AWA (Argonne Wakefield Accelerator)[l] high current gun.

  10. Bootstrapped Permutation Test for Multiresponse Inference on Brain Behavior Associations.

    PubMed

    Ng, Bernard; Poline, Jean Baptiste; Thirion, Bertrand; Greicius, Michael

    2015-01-01

    Despite that diagnosis of neurological disorders commonly involves a collection of behavioral assessments, most neuroimaging studies investigating the associations between brain and behavior largely analyze each behavioral measure in isolation. To jointly model multiple behavioral scores, sparse multiresponse regression (SMR) is often used. However, directly applying SMR without statistically controlling for false positives could result in many spurious findings. For models, such as SMR, where the distribution of the model parameters is unknown, permutation test and stability selection are typically used to control for false positives. In this paper, we present another technique for inferring statistically significant features from models with unknown parameter distribution. We refer to this technique as bootstrapped permutation test (BPT), which uses Studentized statistics to exploit the intuition that the variability in parameter estimates associated with relevant features would likely be higher with responses permuted. On synthetic data, we show that BPT provides higher sensitivity in identifying relevant features from the SMR model than permutation test and stability selection, while retaining strong control on the false positive rate. We further apply BPT to study the associations between brain connectivity estimated from pseudo-rest fMRI data of 1139 fourteen year olds and behavioral measures related to ADHD. Significant connections are found between brain networks known to be implicated in the behavioral tasks involved. Moreover, we validate the identified connections by fitting a regression model on pseudo-rest data with only those connections and applying this model on resting state fMRI data of 337 left out subjects to predict their behavioral scores. The predicted scores significantly correlate with the actual scores, hence verifying the behavioral relevance of the found connections. PMID:26221670

  11. A vacuum sealed high emission current and transmission efficiency carbon nanotube triode

    NASA Astrophysics Data System (ADS)

    Di, Yunsong; Wang, Qilong; Zhang, Xiaobing; Lei, Wei; Du, Xiaofei; Yu, Cairu

    2016-04-01

    A vacuum sealed carbon nanotubes (CNTs) triode with a concave and spoke-shaped Mo grid is presented. Due to the high aperture ratio of the grid, the emission current could be modulated at a relatively high electric field. Totally 75mA emission current has been obtained from the CNTs cathode with the average applied field by the grid shifting from 8 to 13 V/μm. Whilst with the electron transmission efficiency of the grid over 56%, a remarkable high modulated current electron beam over 42mA has been collected by the anode. Also contributed by the high aperture ration of the grid, desorbed gas molecules could flow away from the emission area rapidly when the triode has been operated at a relative high emission current, and finally collected by a vacion pump. The working pressure has been maintained at ˜1 × 10-7 Torr, seldom spark phenomena occurred. Nearly perfect I-V curve and corresponding Fowler-Nordheim (FN) plot confirmed the accuracy of the measured data, and the emission current was long term stable and reproducible. Thusly, this kind of triode would be used as a high-power electron source.

  12. High-Resolution SQUID imaging of Magnetic Fields Generated by Propagating Cardiac Action Currents

    NASA Astrophysics Data System (ADS)

    Holzer, Jenny R.; Sidorov, Veniamin; Fong, Luis; Peters, Nicholas; Baudenbacher, Petra; Baudenbacher, Franz

    2004-03-01

    The heart's magnetic field is exquisitely sensitive to anisotropy ratios in the cardiac bidomain model; Therefore, magnetic imaging of cardiac action currents is an ideally suited technique for testing the accuracy of cardiac models and elucidating the effects of anisotropy in the spread of stimulus and action currents. We mapped the magnetocardiogram (MCG) as a function of position over a 10mm x 10mm area of the left ventricle of a Langendorff perfused isolated rabbit heart using high-resolution scanning SQUID microscopy and epi-fluorescent imaging with a high speed CCD camera and the transmembrane voltage sensitive dye di-4-ANEPPS. The combination of these two methods allowed us to map the transmembrane potential, the magnetic field, and consequently the total current, over the same area. The MCGs were combined to produce a time series of 2D field maps that show a clear octupolar pattern during the cathodal current injection, a similar pattern with a reversal of currents immediately after terminating the stimulus, and the generation and propagation of an elliptical action current wave front. The observed patterns are in agreement with predictions using a bidomain model. Our high-resolution SQUID images have confirmed that unequal anisotropies in the intra- and extracellular spaces must be considered to explain the magnetic field associated with action current propagation However, a realistic cardiac bidomain model incorporating fiber rotation, cleavage planes, and tissue heterogeneities are required to reproduce the complete experimental observations.

  13. Leakage current and stability of acrylic elastomer subjected to high DC voltage

    NASA Astrophysics Data System (ADS)

    Hammami, S.; Jean-Mistral, C.; Jomni, F.; Gallot-Lavallée, O.; Rain, P.; Yangui, B.; Sylvestre, A.

    2015-04-01

    Dielectric elastomers such as 3M VHB4910 acrylate film have been widely used for electromechanical energy conversion such as actuators, sensors and generators, due to their lightweight, high efficiency, low cost and high energy density. Mechanical and electric properties of such materials have been deeply investigated according to various parameters (temperature, frequency, pre-stress, nature of the compliant electrodes…). Models integrating analytic laws deduced from experiments increase their accuracy. Nevertheless, leakage current and electrical breakdown reduce the efficiency and the lifetime of devices made with these polymers. These two major phenomena are not deeply investigated in the literature. Thus, this paper describes the current-voltage characteristics of acrylate 3M VHB4910 and investigates the stability of the current under high electric field (kV) for various temperatures (from 20°C to 80°C) and over short (300 s) and long (12h) periods. Experimental results show that, with gold electrodes at ambient temperature, the current decreases with time to a stable value corresponding to the conduction current. This decrease occurs during 6 hours, whereas in the literature values of current at short time (less than 1 hour) are generally reported. This decrease can be explained by relaxations mechanisms in the polymer. Schottky emission and Poole-Frenkel emission are both evaluated to explain the leakage current. It emerges from this study that the Schottky effect constitutes the main mechanism of electric current in the 3M VHB4910. For high temperatures, the steady state is reached quickly. To end, first results on the leakage current changes for pre-stretch VHB4910 complete this study.

  14. Observation of Dust Stream Formation Produced by Low Current, High Voltage Cathode Spots

    NASA Technical Reports Server (NTRS)

    Foster, John E.

    2004-01-01

    Macro-particle acceleration driven by low current, high voltage cathode spots has been investigated. The phenomenon was observed to occur when nanometer and micrometer-sized particles in the presence of a discharge plasma were exposed to a high voltage pulse. The negative voltage pulse initiates the formation of multiple, high voltage, low current cathode spots which provides the mechanism of actual acceleration of the charged dust particles. Dust streams generated by this process were detected using laser scattering techniques. The particle impact craters observed at the surface of downstream witness badges were documented using SEM and light microscopy.

  15. The long-pulse, high-current relativistic klystron at 500 MW and beyond

    SciTech Connect

    Fazio, M.V.; Haynes, W.B.; Carlsten, B.E.; Stringfield, R.M.

    1994-10-01

    This paper describes the development of an L-band annular beam, high-current relativistic klystron for producing a peak power of 1 GW at a pulse length of 1 {mu}s. The tube consists of three cavities: the input cavity driven by a 300 kW magnetron, an idler cavity, and an output cavity. The tube has produced 475 MW and an energy per pulse of 160 J. The microwave output pulse terminates prematurely, before the peak power in the electron beam pulse is reached. The pulse shortening is believed to be caused by too high a voltage across the gap of the output cavity. The result is electron reflection in the output gap leading to beam disruption and high voltage breakdown across the gap. Current experimental results are presented with an emphasis on the design of output cavities for coupling microwave power from high current, very low impedance modulated electron beams.

  16. A novel high-birefringence fiber loop mirror electric current sensor

    NASA Astrophysics Data System (ADS)

    Bo, Dong; Zhao, Qida; Liao, Liubo Tongqing; Li, Shuhong; Zeng, Xiangye; Miao, Yinping; Huang, Guiling

    2007-11-01

    A novel electric current sensor based on a high-birefringence fiber loop mirror(HBFLM) and a kind of magnetostrictive material rod(MMR) is demonstrated theoretically and experimentally. Part of the high-birefringence fiber(HBF) is pasted onto the MMR which is placed in the central part of a solenoid. The HBFLM is used as the sensor head and the linear filter simultaneously. Part of the high-birefringence fiber(HBF) is pasted onto the MMR which is placed in the central part of a solenoid. The rod will have elastic lengthening along the direction of the magnetic field when the uniform magnetic field changes, which will lead to a change of transmission intensity of the HBFLM filter, thus the variation of the electric current can be determined via the laser wavelength within the quasi-linear transmission range of the HBFLM filter. The sensitivity reaches 0.0153/100mA, the resolution reaches 10mA. Comparing with the previous fiber-optic electric current sensor, it has nothing with the linear birefringence based on Faraday effects in the previous fiber-optic electric current sensor. Comparing with the expensive and complex FBG electric current, the sensing signal can be directly detected by a photodiode(PD) and complicated demodulation devices are avoidable. The advantages of the electric current include optical power detection, simple and smart structure, high sensitivity, low cost, and good repeatability, etc.

  17. Bootstrapped neural nets versus regression kriging in the digital mapping of pedological attributes: the automatic and time-consuming perspectives

    NASA Astrophysics Data System (ADS)

    Langella, Giuliano; Basile, Angelo; Bonfante, Antonello; Manna, Piero; Terribile, Fabio

    2013-04-01

    Digital soil mapping procedures are widespread used to build two-dimensional continuous maps about several pedological attributes. Our work addressed a regression kriging (RK) technique and a bootstrapped artificial neural network approach in order to evaluate and compare (i) the accuracy of prediction, (ii) the susceptibility of being included in automatic engines (e.g. to constitute web processing services), and (iii) the time cost needed for calibrating models and for making predictions. Regression kriging is maybe the most widely used geostatistical technique in the digital soil mapping literature. Here we tried to apply the EBLUP regression kriging as it is deemed to be the most statistically sound RK flavor by pedometricians. An unusual multi-parametric and nonlinear machine learning approach was accomplished, called BAGAP (Bootstrap aggregating Artificial neural networks with Genetic Algorithms and Principal component regression). BAGAP combines a selected set of weighted neural nets having specified characteristics to yield an ensemble response. The purpose of applying these two particular models is to ascertain whether and how much a more cumbersome machine learning method could be much promising in making more accurate/precise predictions. Being aware of the difficulty to handle objects based on EBLUP-RK as well as BAGAP when they are embedded in environmental applications, we explore the susceptibility of them in being wrapped within Web Processing Services. Two further kinds of aspects are faced for an exhaustive evaluation and comparison: automaticity and time of calculation with/without high performance computing leverage.

  18. A high dynamic range current dosimeter for space ionization radiation measurement

    NASA Astrophysics Data System (ADS)

    Lei, Sheng-jie; Wei, Zhi-yong; Fang, Mei-hua; Chen, Guo-yun; Zhang, Zi-xia; Huang, San-bo

    2011-08-01

    A dosimeter for space ionization radiation field is developed, energy deposited in the sensitivity volume of ionization chamber induces an output current signal as weak as 10-14A, and the dynamic range of the signal is very high. Now, an ionization chamber is designed and a variable gain current feedback preamp module is designed for the weak output current amplification is connected to output of the ionization chamber anode. The amplifier module includes I-V converter with T shaped resistance net, zero correct circuit, low pass filter, voltage linear amplifier circuit, gain control circuit and voltage output circuit. A complete analysis of this current preamp with respect to its circuit structure, dynamic properties, its equivalent input noise and the temperature effect is given. The effects of stray impedances on the behavior of the current feedback preamp are taken into account and the techniques necessary to achieve an optimum stable electrometer, with respect to noise, Dc drift, leakage currents, are applied. Experiments show that the energy of dosimeter deposited in the sensitivity volume of ionization chamber induces an output current signal as weak as 10-14A, the current preamp can detect weak current effectively with the range from 100fA to 10μA through switchable gain.

  19. Seasonal Variation of Frequency of High Current Lightning Discharges Observed by JLDN

    NASA Astrophysics Data System (ADS)

    Saito, Mikihisa; Ishii, Masaru; Fujii, Fumiyuki; Matsui, Michihiro

    Seasonal variations of number of high current lightning discharges exceeding 100kA observed by JLDN (Japanese Lightning Detection Network) were analyzed. The months with averaged altitudes of -10°C level higher than 5.7km are classified as ordinary summer from the viewpoint of lightning activity. Meanwhile, on the coast of the Sea of Japan, more than 90% of negative high current lightning discharges were -GC (Ground to Cloud) strokes in the months when monthly averaged altitudes of -10°C level are lower than 2.7km. These months are classified as the winter lightning season when upward lightning flashes frequently occur. Months other than winter or summer are classified as spring or autumn. In these seasons, the proportions of positive high current lightning discharges are higher than those of negative discharges like winter. Thus, the charge structure in the thunderclouds of spring and autumn may be similar to that in winter, and high current lightning strokes tend to occur. Since this variation of seasons is different in each area of Japan, relation of seasons, areas, and densities of high current lightning discharges were analyzed.

  20. Study of surface leakage current of AlGaN/GaN high electron mobility transistors

    SciTech Connect

    Chen, YongHe; Zhang, Kai; Cao, MengYi; Zhao, ShengLei; Zhang, JinCheng; Hao, Yue; Ma, XiaoHua

    2014-04-14

    Temperature-dependent surface current measurements were performed to analyze the mechanism of surface conductance of AlGaN/GaN channel high-electron-mobility transistors by utilizing process-optimized double gate structures. Different temperatures and electric field dependence have been found in surface current measurements. At low electric field, the mechanism of surface conductance is considered to be two-dimensional variable range hopping. At elevated electric field, the Frenkel–Poole trap assisted emission governs the main surface electrons transportation. The extracted energy barrier height of electrons emitting from trapped state near Fermi energy level into a threading dislocations-related continuum state is 0.38 eV. SiN passivation reduces the surface leakage current by two order of magnitude and nearly 4 orders of magnitude at low and high electric fields, respectively. SiN also suppresses the Frenkel–Poole conductance at high temperature by improving the surface states of AlGaN/GaN. A surface treatment process has been introduced to further suppress the surface leakage current at high temperature and high field, which results in a decrease in surface current of almost 3 orders of magnitude at 476 K.