Science.gov

Sample records for high charge effects

  1. Charged-particle mutagenesis II. Mutagenic effects of high energy charged particles in normal human fibroblasts

    NASA Astrophysics Data System (ADS)

    Chen, D. J.; Tsuboi, K.; Nguyen, T.; Yang, T. C.

    1994-10-01

    The biological effects of high LET charged particles are a subject of great concern with regard to the prediction of radiation risk in space. In this report, mutagenic effects of high LET charged particles are quantitatively measured using primary cultures of human skin fibroblasts, and the spectrum of induced mutations are analyzed. The LET of the charged particles ranged from 25 KeV/μm to 975 KeV/gmm with particle energy (on the cells) between 94 - 603 MeV/u. The X-chromosome linked hypoxanthine guanine phosphoribosyl transferase (hprt) locus was used as the target gene. Exposure to these high LET charged particles resulted in exponential survival curves; whereas, mutation induction was fitted by a linear model. The Relative Biological Effect (RBE) for cell-killing ranged from 3.73 to 1.25, while that for mutant induction ranged from 5.74 to 0.48. Maximum RBE values were obtained at the LET of 150 keV/μm. The inactivation cross-section (αi) and the action-section for mutant induction (αm) ranged from 2.2 to 92.0 μm2 and 0.09 to 5.56 × 10-3 μm2, respectively. The maximum values were obtained by 56Fe with an LET of 200 keV/μm. The mutagenicity (αm/αi) ranged from 2.05 to 7.99 × 10-5 with the maximum value at 150 keV/μm. Furthermore, molecular analysis of mutants induced by charged particles indicates that higher LET beams are more likely to cause larger deletions in the hprt locus.

  2. Charged-particle mutagenesis II. Mutagenic effects of high energy charged particles in normal human fibroblasts

    NASA Technical Reports Server (NTRS)

    Chen, D. J.; Tsuboi, K.; Nguyen, T.; Yang, T. C.

    1994-01-01

    The biological effects of high LET charged particles are a subject of great concern with regard to the prediction of radiation risk in space. In this report, mutagenic effects of high LET charged particles are quantitatively measured using primary cultures of human skin fibroblasts, and the spectrum of induced mutations are analyzed. The LET of the charged particles ranged from 25 KeV/micrometer to 975 KeV/micrometer with particle energy (on the cells) between 94-603 MeV/u. The X-chromosome linked hypoxanthine guanine phosphoribosyl transferase (hprt) locus was used as the target gene. Exposure to these high LET charged particles resulted in exponential survival curves; whereas, mutation induction was fitted by a linear model. The Relative Biological Effect (RBE) for cell-killing ranged from 3.73 to 1.25, while that for mutant induction ranged from 5.74 to 0.48. Maximum RBE values were obtained at the LET of 150 keV/micrometer. The inactivation cross-section (alpha i) and the action cross-section for mutant induction (alpha m) ranged from 2.2 to 92.0 micrometer2 and 0.09 to 5.56 x 10(-3) micrometer2, respectively. The maximum values were obtained by 56Fe with an LET of 200 keV/micrometer. The mutagenicity (alpha m/alpha i) ranged from 2.05 to 7.99 x 10(-5) with the maximum value at 150 keV/micrometer. Furthermore, molecular analysis of mutants induced by charged particles indicates that higher LET beams are more likely to cause larger deletions in the hprt locus.

  3. Charged-particle mutagenesis 2. Mutagenic effects of high energy charged particles in normal human fibroblasts

    NASA Technical Reports Server (NTRS)

    Chen, D. J.; Tsuboi, K.; Nguyen, T.; Yang, T. C.

    1994-01-01

    The biological effects of high Linear Energy Transfer (LET) charged particles are a subject of great concern with regard to the prediction of radiation risk in space. In this report, mutagenic effects of high LET charged particles are quantitatively measured using primary cultures of human skin fibroblasts, and the spectrum of induced mutations are analyzed. The LET of the charged particles ranged from 25 KeV/micrometer to 975 KeV/micrometer with particle energy (on the cells) between 94-603 MeV/u. The X-chromosome linked hypoxanthine guanine phosphoribosyl transferase (hprt) locus was used as the target gene. Exposure to these high LET charged particles resulted in exponential survival curves; whereas, mutation induction was fitted by a linear model. The Relative Biological Effect (RBE) for cell-killing ranged from 3.73 to 1.25, while that for mutant induction ranged from 5.74 to 0.48. Maximum RBE values were obtained at the LET of 150 keV/micrometer. The inactivation cross-section (alpha i) and the action cross-section for mutant induction (alpha m) ranged from 2.2 to 92.0 sq micrometer and 0.09 to 5.56 x 10(exp -3) sq micrometer respectively. The maximum values were obtained by Fe-56 with an LET of 200 keV/micrometer. The mutagenicity (alpha m/alpha i) ranged from 2.05 to 7.99 x 10(exp -5) with the maximum value at 150 keV/micrometer. Furthermore, molecular analysis of mutants induced by charged particles indicates that higher LET beams are more likely to cause larger deletions in the hprt locus.

  4. High-Resolution Field Effect Sensing of Ferroelectric Charges

    SciTech Connect

    Ko, Hyoungsoo; Ryu, Kyunghee; Park, Hongsik; Park, Chulmin; Jeon, Daeyoung; Kim, Yong Kwan; Jung, Juhwan; Min, Dong-Ki; Kim, Yunseok; Lee, Ho Nyung; Park, Yoondong; Shin, Hyunjung; Hong, Seungbum

    2011-01-01

    Nanoscale manipulation of surface charges and their imaging are essential for understanding local electronic behaviors of polar materials and advanced electronic devices. Electrostatic force microscopy and Kelvin probe force microscopy have been extensively used to probe and image local surface charges responsible for electrodynamics and transport phenomena. However, they rely on the weak electric force modulation of cantilever that limits both spatial and temporal resolutions. Here we present a field effect transistor embedded probe that can directly image surface charges on a length scale of 25 nm and a time scale of less than 125 {micro}s. On the basis of the calculation of net surface charges in a 25 nm diameter ferroelectric domain, we could estimate the charge density resolution to be as low as 0.08 {micro}C/cm{sup 2}, which is equivalent to 1/20 electron per nanometer square at room temperature.

  5. High resolution field effect sensing of ferroelectric charges.

    SciTech Connect

    Ko, H.; Ryu, K.; Park, H.; Park, C.; Jeon, D.; Kim, Y. K.; Jung, J.; Min, D.-K.; Kim, Y.; Lee, H. N.; Park, Y.; Shin, H.; Hong, S.

    2011-03-04

    Nanoscale manipulation of surface charges and their imaging are essential for understanding local electronic behaviors of polar materials and advanced electronic devices. Electrostatic force microscopy and Kelvin probe force microscopy have been extensively used to probe and image local surface charges responsible for electrodynamics and transport phenomena. However, they rely on the weak electric force modulation of cantilever that limits both spatial and temporal resolutions. Here we present a field effect transistor embedded probe that can directly image surface charges on a length scale of 25 nm and a time scale of less than 125 {micro}s. On the basis of the calculation of net surface charges in a 25 nm diameter ferroelectric domain, we could estimate the charge density resolution to be as low as 0.08 {micro}C/cm{sup 2}, which is equivalent to 1/20 electron per nanometer square at room temperature.

  6. High-resolution field effect sensing of ferroelectric charges.

    PubMed

    Ko, Hyoungsoo; Ryu, Kyunghee; Park, Hongsik; Park, Chulmin; Jeon, Daeyoung; Kim, Yong Kwan; Jung, Juhwan; Min, Dong-Ki; Kim, Yunseok; Lee, Ho Nyung; Park, Yoondong; Shin, Hyunjung; Hong, Seungbum

    2011-04-13

    Nanoscale manipulation of surface charges and their imaging are essential for understanding local electronic behaviors of polar materials and advanced electronic devices. Electrostatic force microscopy and Kelvin probe force microscopy have been extensively used to probe and image local surface charges responsible for electrodynamics and transport phenomena. However, they rely on the weak electric force modulation of cantilever that limits both spatial and temporal resolutions. Here we present a field effect transistor embedded probe that can directly image surface charges on a length scale of 25 nm and a time scale of less than 125 μs. On the basis of the calculation of net surface charges in a 25 nm diameter ferroelectric domain, we could estimate the charge density resolution to be as low as 0.08 μC/cm(2), which is equivalent to 1/20 electron per nanometer square at room temperature. PMID:21375284

  7. HIGH CHARGE EFFECTS IN SILICON DRIFT DETECTORS WITH LATERAL CONFINEMENT OF ELECTRONS.

    SciTech Connect

    CASTOLDI,A.; REHAK,P.

    1995-10-21

    A new drift detector prototype which provides suppression of the lateral diffusion of electrons has been tested as a function of the signal charge up to high charge levels, when electrostatic repulsion is not negligible. The lateral diffusion of the electron cloud has been measured for injected charges up to 2 {center_dot} 10{sup 5} electrons. The maximum number of electrons for which the suppression of the lateral spread is effective is obtained.

  8. Non-targeted effects induced by high LET charged particles

    NASA Astrophysics Data System (ADS)

    Hei, Tom K.; Chai, Yunfei; Hamada, Nobuyuki; Kakinuma, Shizuko; Uchihori, Yukio

    Radiation-induced non-targeted response represents a paradigm shift in our understanding of the radiobiological effects of ionizing radiation in that extranuclear and extracellular effects may also contribute to the final biological consequences of exposure to low doses of radiation. Using the gpt delta transgenic mouse model, there is evidence that irradiation of a small area (1 cm by 1 cm) of the lower abdominal area of animals with a 5 Gy dose of X-rays induced cyclooxygenase-2 as well as deletion mutations in the out-of-field lung tissues of the animals. The mutation correlated with an increase in prostaglandin levels in the bystander lung tissues and with an increase in the level of 8-hydroxydeoxyguanosine (8-OHdG), an oxidative DNA damage marker. An increase in COX-2 level was also detected in the out-of-field lung tissues of animals similarly exposed to high LET argon and carbon ions accelerated at the Heavy Ion Medical Accelerator in Chiba (HIMAC) at the National Institute of Radiological Sciences in Japan. These results provide the first evidence that the COX-2 -related pathway, which is essential in mediating cellular inflammatory response, is the critical signaling link for the non-targeted, bystander phenomenon. A better understanding of the cellular and molecular mechanisms of the non-targeted, out of field phenomenon together with evidence of their occurrence in vivo will allow us to formulate a more accurate assessment of radiation risk.

  9. Lattice and charge effects in high-temperature superconductors

    NASA Astrophysics Data System (ADS)

    Egami, T.; McQueeney, R. J.; Chung, J.-H.; Yethiraj, M.; Mook, H. A.; Arai, M.; Inamura, Y.; Endoh, Y.; Tajima, S.; Frost, C.; Dogan, F.

    We present the results of inelastic neutron-scattering measurements of a twinned crystal of YBa2Cu3O6.95 using the MAPS spectrometer of the ISIS facility of the Rutherford-Appleton Laboratory as well as the HFIR of the Oak Ridge National Laboratory. The dispersion of the Cu-O bond-stretching modes indicates a strong dielectric anisotropy within the plane and associated electronic anisotropy, supporting the dynamic stripe model. The results suggest a possibility that phonons play a major role in the mechanism of high-temperature superconductivity.

  10. Space-charge perturbation effects in photonic tubes under high irradiation

    SciTech Connect

    Kalibjian, R.; Peterson, G.G.

    1982-06-01

    Potential perturbation effects at the cathode region of a photonic tube can occur at high intensity due to space-charge. Using appropriate photoelectron energy distribution functions, the electric field at the cathode is calculated and its effect upon the spatial/temporal resolution is examined.

  11. Adsorption and stabilizing effects of highly-charged latex nanoparticles in dispersions of weakly-charged silica colloids.

    PubMed

    Herman, David; Walz, John Y

    2015-07-01

    An experimental study was undertaken to determine the effectiveness of using highly-charged nanoparticles as stabilizers for colloidal dispersions. The specific systems used here involved cationic (amidine) and anionic (sulfate) polystyrene latex nanoparticles with an approximate diameter of 20 nm and silica microparticles of diameter 1.0 μm, and experiments were conducted at the isoelectric point of the silica. It was found that while both types of nanoparticles adsorbed to the silica microparticles and increased the zeta potential to values where stability was expected, long term stability was not achieved, even at bulk nanoparticle concentrations as high as 0.5 vol.%. It is theorized that the incomplete coverage of the microparticles by the nanoparticles (i.e., surface coverage never exceeded 50%) allowed either direct contact between bare patches of the underlying microparticles or, alternatively, for nanoparticles adsorbed on one microparticle to bridge to bare spots on a neighboring microparticle. PMID:25498877

  12. Relativistic calculations of the nuclear recoil effect in highly charged Li-like ions

    NASA Astrophysics Data System (ADS)

    Zubova, N. A.; Shabaev, V. M.; Tupitsyn, I. I.; Plunien, G.

    2013-09-01

    Relativistic theory of the nuclear recoil effect in highly charged Li-like ions is considered within the Breit approximation. The normal mass shift (NMS) and the relativistic NMS (RNMS) are calculated by perturbation theory to zeroth and first orders in the parameter 1/Z. The calculations are performed using the dual kinetic balance method with the basis functions constructed from B-splines. The results of the calculations are compared with the theoretical values obtained by other methods.

  13. Multi-frequency inversion-charge pumping for charge separation and mobility analysis in high-k/InGaAs metal-oxide-semiconductor field-effect transistors

    SciTech Connect

    Djara, V.; Cherkaoui, K.; Negara, M. A.; Hurley, P. K.

    2015-11-28

    An alternative multi-frequency inversion-charge pumping (MFICP) technique was developed to directly separate the inversion charge density (N{sub inv}) from the trapped charge density in high-k/InGaAs metal-oxide-semiconductor field-effect transistors (MOSFETs). This approach relies on the fitting of the frequency response of border traps, obtained from inversion-charge pumping measurements performed over a wide range of frequencies at room temperature on a single MOSFET, using a modified charge trapping model. The obtained model yielded the capture time constant and density of border traps located at energy levels aligned with the InGaAs conduction band. Moreover, the combination of MFICP and pulsed I{sub d}-V{sub g} measurements enabled an accurate effective mobility vs N{sub inv} extraction and analysis. The data obtained using the MFICP approach are consistent with the most recent reports on high-k/InGaAs.

  14. Effects of Slow Highly Charged Ion Impact Upon Highly Oriented Pyrolytic Graphite

    NASA Astrophysics Data System (ADS)

    Meguro, Takashi

    Nanoscale modification of electronic states of highly oriented pyrotytic graphite (HOPG) surfaces induced by the impact of slow highly charged ion (HCI) is reviewed. The high potential energy of slow Ar8+ induces multiple emission of electrons from the surface, which strongly modifies the electronic states of the local area of HOPG surfaces. The size of created protrusions created by the Ar8+-impact with 400 eV of the kinetic energy was about 1 nm in diameter, and the subsequent surface treatment by electron injection from a scanning tunneling microscope (STM) induced a localized transition from sp2 to sp3 hybridization at the center of the protrusion, which considered to result in the formation of nano-diamond-like structures.

  15. Taming Highly Charged Radioisotopes

    NASA Astrophysics Data System (ADS)

    Chowdhury, Usman; Eberhardt, Benjamin; Jang, Fuluni; Schultz, Brad; Simon, Vanessa; Delheij, Paul; Dilling, Jens; Gwinner, Gerald

    2012-10-01

    The precise and accurate mass of short-lived radioisotopes is a very important parameter in physics. Contribution to the improvement of nuclear models, metrological standard fixing and tests of the unitarity of the Caibbibo-Kobayashi-Maskawa (CKM) matrix are a few examples where the mass value plays a major role. TRIUMF's ion trap for atomic and nuclear physics (TITAN) is a unique facility of three online ion traps that enables the mass measurement of short-lived isotopes with high precision (˜10-8). At present TITAN's electron beam ion trap (EBIT) increases the charge state to increase the precision, but there is no facility to significantly reduce the energy spread introduced by the charge breeding process. The precision of the measured mass of radioisotopes is linearly dependent on the charge state while the energy spread of the charged radioisotopes affects the precision adversely. To boost the precision level of mass measurement at TITAN without loosing too many ions, a cooler Penning trap (CPET) is being developed. CPET is designed to use either positively (proton) or negatively (electron) charged particles to reduce the energy spread via sympathetic cooling. Off-line setup of CPET is complete. Details of the working principles and updates are presented

  16. Opposite counter-ion effects on condensed bundles of highly charged supramolecular nanotubes in water.

    PubMed

    Wei, Shenghui; Chen, Mingming; Wei, Chengsha; Huang, Ningdong; Li, Liangbin

    2016-07-20

    Although ion specificity in aqueous solutions is well known, its manifestation in unconventional strong electrostatic interactions remains implicit. Herein, the ionic effects in dense packing of highly charged polyelectrolytes are investigated in supramolecular nanotube prototypes. Distinctive behaviors of the orthorhombic arrays composed of supramolecular nanotubes in various aqueous solutions were observed by Small Angle X-ray Scattering (SAXS), depending on the counter-ions' size and affiliation to the surface -COO(-) groups. Bigger tetra-alkyl ammonium (TAA(+)) cations weakly bonding to -COO(-) will compress the orthorhombic arrays, while expansion is induced by smaller alkaline metal (M(+)) ions with strong affiliation to -COO(-). Careful analysis of the changes in the SAXS peaks with different counter/co-ion combinations indicates dissimilar mechanisms underlying the two explicit types of ionic effects. The pH measurements are in line with the ion specificity by SAXS and reveal the strong electrostatic character of the system. It is proposed that the small distances between the charged surfaces, in addition to the selective adsorption of counter-ions by the surface charge, bring out the observed distinctive ionic effects. Our results manifest the diverse mechanisms and critical roles of counter-ion effects in strong electrostatic interactions. PMID:27373802

  17. Testing the relevance of effective interaction potentials between highly-charged colloids in suspension

    NASA Astrophysics Data System (ADS)

    Dobnikar, J.; Castañeda-Priego, R.; von Grünberg, H. H.; Trizac, E.

    2006-11-01

    Combining cell and Jellium model mean-field approaches, Monte Carlo together with integral equation techniques, and finally more demanding many-colloid mean-field computations, we investigate the thermodynamic behaviour, pressure and compressibility of highly-charged colloidal dispersions, and at a more microscopic level, the force distribution acting on the colloids. The Kirkwood Buff identity provides a useful probe to challenge the self-consistency of an approximate effective screened Coulomb (Yukawa) potential between colloids. Two effective parameter models are put to the test: cell against renormalized Jellium models.

  18. Adsorption of highly charged Gaussian polyelectrolytes onto oppositely charged surfaces

    NASA Astrophysics Data System (ADS)

    Dutta, Sandipan; Jho, Y. S.

    2016-03-01

    In many biological processes highly charged biopolymers are adsorbed onto oppositely charged surfaces of macroions and membranes. They form strongly correlated structures close to the surface which cannot be explained by the conventional Poisson-Boltzmann theory. In this work strong coupling theory is used to study the adsorption of highly charged Gaussian polyelectrolytes. Two cases of adsorptions are considered, when the Gaussian polyelectrolytes are confined (a) by one charged wall, and (b) between two charged walls. The effects of salt and the geometry of the polymers on their adsorption-depletion transitions in the strong coupling regime are discussed.

  19. Nonlinear Delta-f Particle Simulations of Collective Effects in High Intensity Charged Particle Beams

    NASA Astrophysics Data System (ADS)

    Qin, Hong; Davidson, Ronald C.; Startsev, Edward A.

    2004-11-01

    A wide range of collective effects in high intensity charged particle beams have been numerically studied using the nonlinear delta-f particle simulation method implemented in the Beam Equilibrium Stability and Transport (BEST) code. For the electron-ion two-stream instability in high intensity accelerators and storage rings, the secondary electron yield effects are self-consistently studied by coupling the secondary electron yield library CMEE with the instability simulations. Progress has also been made in applying the delta-f particle simulation method to bunched beams, and a three-dimensional equilibrium solver has been implemented. With the help of recently developed parallel diagnostic techniques, we are able to characterize the chaotic particle dynamics under the influences of collective instabilities as well as three-dimensional equilibrium fields. To further extend the application areas of the delta-f particle simulation method, 2D domain decomposition is being developed using the Message Passing Interface, and three-dimensional equilibria with anisotropic temperature in the transverse and longitudinal directions are being investigated. References: [1] R. C. Davidson and H. Qin, An Introduction to the Physics of Intense Charged Particle Beams in High Energy Accelerators, World Scientific (2001). [2] H. Qin, Physics of Plasmas 10, 2078 (2003). [3] H. Qin, E. A. Startsev, and R. C. Davidson, Physical Review Special Topics on Accelerators and Beams 6, 014401 (2003).

  20. High temperature thermocline TES - effect of system pre-charging on thermal stratification

    NASA Astrophysics Data System (ADS)

    Zavattoni, Simone A.; Barbato, Maurizio C.; Zanganeh, Giw; Pedretti, Andrea

    2016-05-01

    The purpose of this study is to evaluate, by means of a computational fluid dynamics approach, the effect of performing an initial charging, or pre-charging, on thermal stratification of an industrial-scale thermocline TES unit, based on a packed bed of river pebbles. The 1 GWhth TES unit under investigation is exploited to fulfill the energy requirement of a reference 80 MWe concentrating solar power plant which uses air as heat transfer fluid. Three different scenarios, characterized by 4 h, 6 h and 8 h of pre-charging, were compared with the reference case of TES system operating without pre-charging. For each of these four scenarios, a total of 30 consecutive charge/discharge cycles, of 12 h each, were simulated and the effect of TES pre-charging on thermal stratification was qualitatively evaluated, by means of a stratification efficiency, based on the second-law of thermodynamics. On the basis of the simulations results obtained, the effect of pre-charging, more pronounced during the first cycles, is not only relevant in reducing the time required by the TES to achieve a stable thermal stratification into the packed bed but also to improve the performance at startup when the system is charged for the first time.

  1. ACTIVE CATHODES FOR SUPER-HIGH POWER DENSITY SOLID OXIDE FUEL CELLS THROUGH SPACE CHARGE EFFECTS

    SciTech Connect

    Anil V. Virkar

    2004-05-17

    This report summarizes the work done during the sixth quarter of the project. Effort was directed in three areas: (1) Further development of the model on the role of connectivity on ionic conductivity of porous bodies, including the role of grain boundaries and space charge region. (2) Calculation of the effect of space charge and morphology of porous bodies on the effective charge transfer resistance of porous composite cathodes. (3) The investigation of the three electrode system for the measurement of cathodic polarization using amperometric sensors.

  2. ACTIVE CATHODES FOR SUPER-HIGH POWER DENSITY SOLID OXIDE FUEL CELLS THROUGH SPACE CHARGE EFFECTS

    SciTech Connect

    Anil V. Virkar

    2003-12-12

    This report summarizes the work done during the fourth quarter of the project. Effort was directed in two areas, namely, continued further development of the model on the role of connectivity on ionic conductivity of porous bodies, including the role of grain boundaries and space charge, and its relationship to cathode polarization; and fabrication of samaria-doped ceria porous (SDC). The work on the model development involves calculation of the effect of space charge on transport through porous bodies. Three specific cases have been examined: (1) Space charge resistivity greater than the grain resistivity, (2) Space charge resistivity equal to the grain resistivity, and (3) Space charge resistivity lower than the grain resistivity. The model accounts for transport through three regions: the bulk of the grain, the space charge region, and the structural part of the grain boundary. The effect of neck size has been explicitly incorporated. In future work, the effective resistivity will be incorporated into the effective cathode polarization resistance. The results will then be compared with experiments.

  3. Atomistic and molecular effects in electric double layers at high surface charges

    SciTech Connect

    Templeton, Jeremy Alan; Lee, Jonathan; Mani, Ali

    2015-06-16

    Here, the Poisson–Boltzmann theory for electrolytes near a charged surface is known to be invalid due to unaccounted physics associated with high ion concentration regimes. In order to investigate this regime, fluids density functional theory (f-DFT) and molecular dynamics (MD) simulations were used to determine electric surface potential as a function of surface charge. Based on these detailed computations, for electrolytes with nonpolar solvent, the surface potential is shown to depend quadratically on the surface charge in the high charge limit. We demonstrate that modified Poisson–Boltzmann theories can model this limit if they are augmented with atomic packing densities provided by MD. However, when the solvent is a highly polar molecule water an intermediate regime is identified in which a constant capacitance is realized. Simulation results demonstrate the mechanism underlying this regime, and for the salt water system studied here, it persists throughout the range of physically realistic surface charge densities so the potential’s quadratic surface charge dependence is not obtained.

  4. Atomistic and molecular effects in electric double layers at high surface charges

    DOE PAGESBeta

    Templeton, Jeremy Alan; Lee, Jonathan; Mani, Ali

    2015-06-16

    Here, the Poisson–Boltzmann theory for electrolytes near a charged surface is known to be invalid due to unaccounted physics associated with high ion concentration regimes. In order to investigate this regime, fluids density functional theory (f-DFT) and molecular dynamics (MD) simulations were used to determine electric surface potential as a function of surface charge. Based on these detailed computations, for electrolytes with nonpolar solvent, the surface potential is shown to depend quadratically on the surface charge in the high charge limit. We demonstrate that modified Poisson–Boltzmann theories can model this limit if they are augmented with atomic packing densities providedmore » by MD. However, when the solvent is a highly polar molecule water an intermediate regime is identified in which a constant capacitance is realized. Simulation results demonstrate the mechanism underlying this regime, and for the salt water system studied here, it persists throughout the range of physically realistic surface charge densities so the potential’s quadratic surface charge dependence is not obtained.« less

  5. Atomistic and Molecular Effects in Electric Double Layers at High Surface Charges

    SciTech Connect

    Templeton, Jeremy Alan; Lee, Jonathan; Mani, Ali

    2015-06-16

    The Poisson–Boltzmann theory for electrolytes near a charged surface is known to be invalid due to unaccounted physics associated with high ion concentration regimes. In order to investigate this regime, fluids density functional theory (f-DFT) and molecular dynamics (MD) simulations were used to determine electric surface potential as a function of surface charge. Based on these detailed computations, for electrolytes with nonpolar solvent, the surface potential is shown to depend quadratically on the surface charge in the high charge limit. We demonstrate that modified Poisson–Boltzmann theories can model this limit if they are augmented with atomic packing densities provided by MD. However, when the solvent is a highly polar molecule water an intermediate regime is identified in which a constant capacitance is realized. Simulation results demonstrate the mechanism underlying this regime, and for the salt water system studied here, it persists throughout the range of physically realistic surface charge densities so the potential’s quadratic surface charge dependence is not obtained.

  6. High-frequency, 'quantum' and electromechanical effects in quasi-one-dimensional charge density wave conductors

    NASA Astrophysics Data System (ADS)

    Pokrovskii, Vadim Ya; Zybtsev, Sergey G.; Nikitin, Maksim V.; Gorlova, Irina G.; Nasretdinova, Venera F.; Zaitsev-Zotov, Sergei V.

    2013-01-01

    Recent results (some previously unpublished) on the physics of charge density waves (CDWs) are reviewed. The synthesis conditions and unique properties of the quasi-one-dimensional compound {NbS_3}, with highly coherent room temperature CDWs, are described. A peculiar type of 'quantization' is discussed, which is observed in micro- and nanosamples of {K_{0.3}MoO_3} and {NbSe_3} due to the discrete nature of CDW wave vector values. The electric-field-induced torsional strain (TS) in quasi-one-dimensional conductors is considered. Research results on the TS of a noise character induced by sliding CDWs are presented, along with those on the inverse effect, the modulation of the voltage induced by externally driven TS. Results on the nonlinear conduction of {TiS_3}, a quasi-one-dimensional compound not belonging to the family of classical Peierls conductors, are also described.

  7. Self-Assembling of Tetradecylammonium Chain on Swelling High Charge Micas (Na-Mica-3 and Na-Mica-2): Effect of Alkylammonium Concentration and Mica Layer Charge.

    PubMed

    Pazos, M Carolina; Cota, Agustín; Osuna, Francisco J; Pavón, Esperanza; Alba, María D

    2015-04-21

    A family of tetradecylammonium micas is synthesized using synthetic swelling micas with high layer charge (Na(n)Si(8-n)Al(n)Mg6F4O20·XH2O, where n = 2 and 3) exchanged with tetradecylammonium cations. The molecular arrangement of the surfactant is elucidated on the basis of XRD patterns and DTA. The ordering conformation of the surfactant molecules into the interlayer space of micas is investigated by IR/FT, (13)C, (27)Al, and (29)Si MAS NMR. The structural arrangement of the tetradecylammonium cation in the interlayer space of high-charge micas is more sensitive to the effect of the mica layer charge at high concentration. The surfactant arrangement is found to follow the bilayer-paraffin model for all values of layer charge and surfactant concentration. However, at initial concentration below the mica CEC, a lateral monolayer is also observed. The amount of ordered conformation all-trans is directly proportional to the layer charge and surfactant concentration. PMID:25822908

  8. Effects of atamp-charging coke making on strength and high temperature thermal properties of coke.

    PubMed

    Zhang, Yaru; Bai, Jinfeng; Xu, Jun; Zhong, Xiangyun; Zhao, Zhenning; Liu, Hongchun

    2013-12-01

    The stamp-charging coke making process has some advantages of improving the operation environment, decreasing fugitive emission, higher gas collection efficiency as well as less environmental pollution. This article describes the different structure strength and high temperature thermal properties of 4 different types of coke manufactured using a conventional coking process and the stamp-charging coke making process. The 4 kinds of cokes were prepared from the mixture of five feed coals blended by the petrography blending method. The results showed that the structure strength indices of coke prepared using the stamp-charging coke method increase sharply. In contrast with conventional coking process, the stamp-charging process improved the coke strength after reaction but had little impact on the coke reactivity index. PMID:25078828

  9. Effects of structural properties of the Stern layer on the electrophoretic migration of a highly charged spherical macroion.

    PubMed

    Rezaei, Majid; Azimian, Ahmad Reza

    2015-12-01

    The electrophoretic migration of a highly charged spherical macroion suspended in an aqueous solution of NaCl is studied using the molecular dynamic method. The objective is to examine the effects of the colloidal surface charge density on the electrophoretic mobility (μ) of the spherical macroion. The bare charge and the size of the macroion are varied separately to induce changes in the colloidal surface charge density. Our results indicate that μ depends on colloidal surface charge density in a nonmonotonic manner, but that this relationship is independent of the way the surface charge density is varied. It is found that an increase in colloidal surface charge density may lead to the formation of new sublayers in the Stern layer. The μ profile is also found to have a local maximum for a bare charge at which a new sublayer is formed in the Stern layer, and a local minimum for a bare charge at which the outer sublayer becomes relatively dense. Finally, the electrophoretic flow caused by the migration of the spherical macroion is studied to find that one decisive factor causing the electrophoretic flow is the ability of the macroion to carry anions in the electrolyte solution. PMID:26456026

  10. Highly Charged Clusters of Fullerenes: Charge Mobility and Appearance Sizes

    NASA Astrophysics Data System (ADS)

    Manil, B.; Maunoury, L.; Huber, B. A.; Jensen, J.; Schmidt, H. T.; Zettergren, H.; Cederquist, H.; Tomita, S.; Hvelplund, P.

    2003-11-01

    Clusters of fullerenes (C60,C70)n are produced in a gas aggregation source and are multiply ionized in collisions with highly charged Xe20+,30+ ions. Their stabilities and decay processes are analyzed with high-resolution time-of-flight mass spectrometry. Fullerene clusters in charge states up to q=5 have been observed and appearance sizes are found to be as small as napp=5, 10, 21, and 33 for q=2, 3, 4, and 5, respectively. The analysis of the multicoincident fragmentation spectra indicates a high charge mobility. This is in contrast to charge localization effects which have been reported for Arq+n rare gas clusters. Clusters of fullerenes are found to be conducting when multiply charged.

  11. Highly charged clusters of fullerenes: charge mobility and appearance sizes.

    PubMed

    Manil, B; Maunoury, L; Huber, B A; Jensen, J; Schmidt, H T; Zettergren, H; Cederquist, H; Tomita, S; Hvelplund, P

    2003-11-21

    Clusters of fullerenes (C60,C70)(n) are produced in a gas aggregation source and are multiply ionized in collisions with highly charged Xe(20+,30+) ions. Their stabilities and decay processes are analyzed with high-resolution time-of-flight mass spectrometry. Fullerene clusters in charge states up to q=5 have been observed and appearance sizes are found to be as small as n(app)=5, 10, 21, and 33 for q=2, 3, 4, and 5, respectively. The analysis of the multicoincident fragmentation spectra indicates a high charge mobility. This is in contrast to charge localization effects which have been reported for Ar(q+)(n) rare gas clusters. Clusters of fullerenes are found to be conducting when multiply charged. PMID:14683315

  12. Dielectric Interface Effects on Surface Charge Accumulation and Collection towards High-Efficiency Organic Solar Cells

    NASA Astrophysics Data System (ADS)

    Hsiao, Yu-Che; Zang, Huidong; Ivanov, Ilia; Xu, Tao; Lu, Luyao; Yu, Luping; Hu, Bin

    2014-04-01

    This paper reports the experimental studies on the effects of dielectric thin-film on surface-charge accumulation and collection by using capacitance-voltage (C-V) measurements under photoexcitation. The dielectric thin-films with different surface polarizations are used with inverted device architecture based on the common photovoltaic PTB7:PC71BM film. In the C-V measurements, the peak-voltage shift with light intensity, namely, Vpeak shift, is particularly used to determine the surface-charge accumulation. We find that the Vpeak shows a smaller shift with light intensity when a higher surface polarization of dielectric thin-film is used. This means that a higher surface polarization of dielectric thin-film can decrease the surface-charge accumulation at electrode interface. However, a lower surface polarization of dielectric thin-film leads to a larger shift with light intensity. This implies that a lower surface polarization of dielectric thin-film corresponds to a larger surface-charge accumulation. This experimental finding indicates that dielectric thin-film plays an important role in the surface-charge accumulation and collection in the generation of photocurrent in organic solar cells. We demonstrate that the device performance can reach the power conversion efficiency of 8.7% when a higher dielectric PFN is used to enhance the surface-charge collection based on the inverted design of ITO/PFN/PTB7:PC71BM/MoO3/Ag.

  13. TOPICAL REVIEW: Highly charged ions

    NASA Astrophysics Data System (ADS)

    Gillaspy, J. D.

    2001-10-01

    This paper reviews some of the fundamental properties of highly charged ions, the methods of producing them (with particular emphasis on table-top devices), and their use as a tool for both basic science and applied technology. Topics discussed include: charge dependence and scaling laws along isoelectronic or isonuclear sequences (for wavefunction size or Bohr radius, ionization energy, dipole transition energy, relativistic fine structure, hyperfine structure, Zeeman effect, Stark effect, line intensities, linewidths, strength of parity violation, etc), changes in angular momentum coupling schemes, selection rules, interactions with surfaces, electron-impact ionization, the electron beam ion trap (EBIT), ion accelerators, atomic reference data, cosmic chronometers, laboratory x-ray astrophysics, vacuum polarization, solar flares, ion implantation, ion lithography, ion microprobes (SIMS and x-ray microscope), nuclear fusion diagnostics, nanotechnology, quantum computing, cancer therapy and biotechnology.

  14. Strongly enhanced effects of Lorentz symmetry violation in highly charged ions

    NASA Astrophysics Data System (ADS)

    Safronova, Marianna; Dzuba, V. A.; Flambaum, V. V.; Porsev, S. G.; Pruttivarasin, T.; Hohensee, M. A.; Häffner, H.

    2016-05-01

    It has been suggested that Lorentz symmetry may be violated in theories aiming at unifying gravity with other fundamental interactions. While the energy scale of such strongly Lorentz symmetry-violating physics is much higher than that currently attainable by particle accelerators, the observable, but extremely small, Lorentz-violating effects may appear in low-energy experiments carried out with very high precision. In the atomic experiments testing local Lorentz invariance (LLI) of the electron motion in Coulomb potential of a nucleus, one searches for variations of the atomic energy levels when the orientation of the electronic wave function is rotated with respect to the standard reference frame. We carried out a systematic theoretical investigation of the sensitivity of a wide range of atomic systems to LLI violation. We find large sensitivities to LLI violating physics in Yb+ and a number of highly charged ions that should allow improvements of LLI tests in the electron-photon sector by several orders of magnitude.

  15. Charge-distribution effect of imaging molecular structure by high-order above-threshold ionization

    SciTech Connect

    Wang Bingbing; Fu Panming; Guo Yingchun; Zhang Bin; Zhao Zengxiu; Yan Zongchao

    2010-10-15

    Using a triatomic molecular model, we show that the interference pattern in the high-order above-threshold ionization (HATI) spectrum depends dramatically on the charge distribution of the molecular ion. Therefore the charge distribution can be considered a crucial factor for imaging a molecular geometric structure. Based on this study, a general destructive interference formula for each above-threshold ionization channel is obtained for a polyatomic molecule concerning the positions and charge values of each nuclei. Comparisons are made for the HATI spectra of CO{sub 2}, O{sub 2}, NO{sub 2}, and N{sub 2}. These results may shed light on imaging complex molecular structure by the HATI spectrum.

  16. Calculation of dose, dose equivalent, and relative biological effectiveness for high charge and energy ion beams

    NASA Technical Reports Server (NTRS)

    Wilson, J. W.; Chun, S. Y.; Reginatto, M.; Hajnal, F.

    1995-01-01

    The Green's function for the transport of ions of high charge and energy is utilized with a nuclear fragmentation database to evaluate dose, dose equivalent, and RBE for C3H10T1/2 cell survival and neo-plastic transformation as function of depth in soft tissue. Such evaluations are useful to estimates of biological risk for high altitude aircraft, space operations, accelerator operations, and biomedical application.

  17. ACTIVE CATHODES FOR SUPER-HIGH POWER DENSITY SOLID OXIDE FUEL CELLS THROUGH SPACE CHARGE EFFECTS

    SciTech Connect

    Anil V. Virkar

    2004-03-08

    This report summarizes the work done during the fifth quarter of the project. Effort was directed in two areas: (1) Further development of the model on the role of connectivity on ionic conductivity of porous bodies, including the role of grain boundaries and space charge region. (2) Fabrication of porous samaria-doped ceria (SDC) and investigation of the effect of thermal treatment on its conductivity. The model developed accounts for transport through three regions: (a) Transport through the bulk of the grain, RI, which includes parallel transport through space charge region. (b) Transport through the space charge region adjacent to the neck (grain boundary), RII. (c) Transport through the structural part of the neck (grain boundary), RIII. The work on the model development involves calculation RI, RII, RIII, and the sum of these three terms, which is the total resistance, as a function of the grain radius ranging between 0.5 and 5 microns and as a function of the relative neck size, described in terms of the angle theta, ranging between 5 and 45{sup o}. Three values of resistivity of the space charge region were chosen; space charge resistivity greater than grain resistivity, equal to grain resistivity, and lower than grain resistivity. Experimental work was conducted on samaria (Sm{sub 2}O{sub 3})-doped ceria (SDC) samples of differing porosity levels, before and after thermal treatment at 1200 C. The conductivity in the annealed samples was lower, consistent with enhanced Debye length. This shows the important role of space charge on ionic transport, and its implications concerning cathode polarization.

  18. Beam manipulation techniques, nonlinear beam dynamics, and space charge effect in high energy high power accelerators

    SciTech Connect

    Lee, S. Y.

    2014-04-07

    We had carried out a design of an ultimate storage ring with beam emittance less than 10 picometer for the feasibility of coherent light source at X-ray wavelength. The accelerator has an inherent small dynamic aperture. We study method to improve the dynamic aperture and collective instability for an ultimate storage ring. Beam measurement and accelerator modeling are an integral part of accelerator physics. We develop the independent component analysis (ICA) and the orbit response matrix method for improving accelerator reliability and performance. In collaboration with scientists in National Laboratories, we also carry out experimental and theoretical studies on beam dynamics. Our proposed research topics are relevant to nuclear and particle physics using high brightness particle and photon beams.

  19. Effect of the polydispersion in the crystallization and micro-structure of the high charged colloids

    NASA Astrophysics Data System (ADS)

    Urrutia-Bañuelos, Efraín; Aranda-Espinosa, Helim; Chasvez-Paez, Martin

    2008-03-01

    In this work we investigate the effect of the polydipersion in the crystallization and micro-structure of the high charged colloids particles with tow and three different types and different concentrations of that types. This results were obtained by computer simulation, the particles interaction was modeled by a screened Coulomb potential. We used 4000 particles in our simulation cell to let them evolution from an initial random configuration, periodic boundary conditions was imposed to simulate the bulk. The temporal evolutions of the configuration show long-ranged self-ordering and a crystalline transition, the crystalline nucleation depend of the concentrations of different kinds as well as of types of particle. The common neighbor analysis (CNA) exhibit the competition of two micro-structures, icosahedral and bcc, in the equilibrium bcc crystalline order is dominant with relative abundance over the other micro-structures. 1.- U. Gasser, Eric R. Weeks et al, Science, 292 (258), 2001. 2.- Stefan Auer, Daan Frenkel, Letter of Nature, 409 (1020), 2001. 3.- J.P. Hoogenboom, et al , Phys. Rev. Leeters, 89 (256104), 2002. 4.- M. Ch'avez-P'aez, E. Urrutia-Bañuelos and M. Medina --Noyola, Phys. Rev. E, 58 (681),1998 5.- Andrew S. Clarke and Hannes J'onsson, Phys. Rev. E, 47 (3975), 1993.

  20. Effect of charge trapping on effective carrier lifetime in compound semiconductors: High resistivity CdZnTe

    SciTech Connect

    Kamieniecki, Emil

    2014-11-21

    The dominant problem limiting the energy resolution of compound semiconductor based radiation detectors is the trapping of charge carriers. The charge trapping affects energy resolution through the carrier lifetime more than through the mobility. Conventionally, the effective carrier lifetime is determined using a 2-step process based on measurement of the mobility-lifetime product (μτ) and determining drift mobility using time-of-flight measurements. This approach requires fabrication of contacts on the sample. A new RF-based pulse rise-time method, which replaces this 2-step process with a single non-contact direct measurement, is discussed. The application of the RF method is illustrated with high-resistivity detector-grade CdZnTe crystals. The carrier lifetime in the measured CdZnTe, depending on the quality of the crystals, was between about 5 μs and 8 μs. These values are in good agreement with the results obtained using conventional 2-step approach. While the effective carrier lifetime determined from the initial portion of the photoresponse transient combines both recombination and trapping in a manner similar to the conventional 2-step approach, both the conventional and the non-contact RF methods offer only indirect evaluation of the effect of charge trapping in the semiconductors used in radiation detectors. Since degradation of detector resolution is associated not with trapping but essentially with detrapping of carriers, and, in particular, detrapping of holes in n-type semiconductors, it is concluded that evaluation of recombination and detrapping during photoresponse decay is better suited for evaluation of compound semiconductors used in radiation detectors. Furthermore, based on previously reported data, it is concluded that photoresponse decay in high resistivity CdZnTe at room temperature is dominated by detrapping of carriers from the states associated with one type of point defect and by recombination of carriers at one type of

  1. ACTIVE CATHODES FOR SUPER-HIGH POWER DENSITY SOLID OXIDE FUEL CELLS THROUGH SPACE CHARGE EFFECTS

    SciTech Connect

    Anil V. Virkar

    2003-11-03

    This report summarizes the work done during the third quarter of the project. Effort was directed in two areas: (1) Further development of the model on the role of connectivity on ionic conductivity of porous bodies, including the role of grain boundaries, and its relationship to cathode polarization. Included indirectly through the grain boundary effect is the effect of space charge. (2) Synthesis of LSC + SDC composite cathode powders by combustion synthesis. (3) Fabrication and testing of anode-supported single cells made using synthesized LSC + ScDC composite cathodes.

  2. Effects of traps and polarization charges on device performance of AlGaN/GaN high electron mobility transistors

    NASA Astrophysics Data System (ADS)

    Hussein, A. SH.; Ghazai, Alaa J.; Salman, Emad A.; Hassan, Z.

    2013-11-01

    This paper presents the simulated electrical characteristics of AlGaN/GaN high electron mobility transistors (HEMTs) by using ISE TCAD software. The effects of interface traps, bulk traps and polarization charges are investigated. It was observed that the role and dynamic of traps affect the device performance which requires a precondition to calculate the DC characteristics that are in agreement with the experimental data. On the other hand, polarization charges lead to quantum confinement of the electrons in the channel and form two-dimensional electron gas. The electron quantization leads to increasing the drain current and shift in the threshold voltage. The device performance can be improved by optimizing the fixed interface charge and thus reducing the bulk traps to enhance the DC characteristics.

  3. Isoindigo-based polymer field-effect transistors: effects of selenophene-substitution on high charge carrier mobility.

    PubMed

    Park, Kwang Hun; Cheon, Kwang Hee; Lee, Yun-Ji; Chung, Dae Sung; Kwon, Soon-Ki; Kim, Yun-Hi

    2015-05-11

    We show that selenophene-substitution can be an efficient synthetic strategy toward high charge carrier mobility of isoindigo (IID)-based copolymers when their side chains are optimized. A high mobility of 5.8 cm(2) V(-1) s(-1) is demonstrated by a strategically designed IID-based polymer, with both side-chain adjustment and selenophene-substitution. PMID:25871952

  4. Charge versus Energy Transfer Effects in High-Performance Perylene Diimide Photovoltaic Blend Films.

    PubMed

    Singh, Ranbir; Shivanna, Ravichandran; Iosifidis, Agathaggelos; Butt, Hans-Jürgen; Floudas, George; Narayan, K S; Keivanidis, Panagiotis E

    2015-11-11

    Perylene diimide (PDI)-based organic photovoltaic devices can potentially deliver high power conversion efficiency values provided the photon energy absorbed is utilized efficiently in charge transfer (CT) reactions instead of being consumed in nonradiative energy transfer (ET) steps. Hitherto, it remains unclear whether ET or CT primarily drives the photoluminescence (PL) quenching of the PDI excimer state in PDI-based blend films. Here, we affirm the key role of the thermally assisted PDI excimer diffusion and subsequent CT reaction in the process of PDI excimer PL deactivation. For our study we perform PL quenching experiments in the model PDI-based composite made of poly[4,8-bis(5-(2-ethylhexyl)thiophen-2-yl)benzo[1,2-b;4,5-b']dithiophene-2,6-diyl-alt-(4-(2-ethylhexanoyl)-thieno[3,4-b]thiophene)-2-6-diyl] (PBDTTT-CT) polymeric donor mixed with the N,N'-bis(1-ethylpropyl)-perylene-3,4,9,10-tetracarboxylic diimide (PDI) acceptor. Despite the strong spectral overlap between the PDI excimer PL emission and UV-vis absorption of PBDTTT-CT, two main observations indicate that no significant ET component operates in the overall PL quenching: the PL intensity of the PDI excimer (i) increases with decreasing temperature and (ii) remains unaffected even in the presence of 10 wt % content of the PBDTTT-CT quencher. Temperature-dependent wide-angle X-ray scattering experiments further indicate that nonradiative resonance ET is highly improbable due to the large size of PDI domains. The dominance of the CT over the ET process is verified by the high performance of devices with an optimum composition of 30:70 PBDTTT-CT:PDI. By adding 0.4 vol % of 1,8-diiodooctane we verify the plasticization of the polymer side chains that balances the charge transport properties of the PBDTTT-CT:PDI composite and results in additional improvement in the device efficiency. The temperature-dependent spectral width of the PDI excimer PL band suggests the presence of energetic disorder in the

  5. Effect of dense plasmas on exchange-energy shifts in highly charged ions: An alternative approach for arbitrary perturbation potentials

    SciTech Connect

    Rosmej, F.; Bennadji, K.; Lisitsa, V. S.

    2011-09-15

    An alternative method of calculation of dense plasma effects on exchange-energy shifts {Delta}E{sub x} of highly charged ions is proposed which results in closed expressions for any plasma or perturbation potential. The method is based on a perturbation theory expansion for the inner atomic potential produced by charged plasma particles employing the Coulomb Green function method. This approach allows us to obtain analytic expressions and scaling laws with respect to the electron temperature T, density n{sub e}, and nuclear charge Z. To demonstrate the power of the present method, two specific models were considered in detail: the ion sphere model (ISM) and the Debye screening model (DSM). We demonstrate that analytical expressions can be obtained even for the finite temperature ISM. Calculations have been carried out for the singlet 1s2p{sup 1} P{sub 1} and triplet 1s2p{sup 3} P{sub 1} configurations of He-like ions with charge Z that can be observed in dense plasmas via the He-like resonance and intercombination lines. Finally we discuss recently available purely numerical calculations and experimental data.

  6. ACTIVE CATHODES FOR SUPER-HIGH POWER DENSITY SOLID OXIDE FUEL CELLS THROUGH SPACE CHARGE EFFECTS

    SciTech Connect

    Anil V. Virkar

    2003-10-11

    This report summarizes the work done during the second quarter of the project. Effort is directed in two areas: (1) The use of a novel method to achieve a given porosity level with high contiguity and thus conductivity. (2) Relate the measured conductivity to porosity and contiguity. The rationale for these experiments was to develop cathodes with high ionic conductivity, so that the effective polarization resistance will be concomitantly lowered.

  7. Space-charge effects in ultra-high current electron bunches generated by laser-plasma accelerators

    SciTech Connect

    Grinner, F. J.; Schroeder, C. B.; Maier, A. R.; Becker, S.; Mikhailova, J. M.

    2009-02-11

    Recent advances in laser-plasma accelerators, including the generation of GeV-scale electron bunches, enable applications such as driving a compact free-electron-laser (FEL). Significant reduction in size of the FEL is facilitated by the expected ultra-high peak beam currents (10-100 kA) generated in laser-plasma accelerators. At low electron energies such peak currents are expected to cause space-charge effects such as bunch expansion and induced energy variations along the bunch, potentially hindering the FEL process. In this paper we discuss a self-consistent approach to modeling space-charge effects for the regime of laser-plasma-accelerated ultra-compact electron bunches at low or moderate energies. Analytical treatments are considered as well as point-to-point particle simulations, including the beam transport from the laser-plasma accelerator through focusing devices and the undulator. In contradiction to non-self-consistent analyses (i.e., neglecting bunch evolution), which predict a linearly growing energy chirp, we have found the energy chirp reaches a maximum and decreases thereafter. The impact of the space-charge induced chirp on FEL performance is discussed and possible solutions are presented.

  8. Effect of high magnetic fields on the charge density wave properties of KMo 6O 17

    NASA Astrophysics Data System (ADS)

    Rötger, A.; Dumas, J.; Marcus, J.; Schlenker, C.; Ulmet, J. P.; Audouard, A.; Askenazy, S.

    1992-03-01

    The electrical resistivity of the purple bronze KMo 6O 17 has been studied between 2 and 88 K with pulsed magnetic fields up to 35 T. Several anomalies are found on the curves Δρ/ρ(B) at different temperatures. The low field results are compared with previous measurements of susceptibility and magnetization. A phase diagram which may show a field displaced charge density wave instability and field induced transitions is proposed.

  9. High-charge-state ion sources

    SciTech Connect

    Clark, D.J.

    1983-06-01

    Sources of high charge state positive ions have uses in a variety of research fields. For heavy ion particle accelerators higher charge state particles give greater acceleration per gap and greater bending strength in a magnet. Thus higher energies can be obtained from circular accelerators of a given size, and linear accelerators can be designed with higher energy gain per length using higher charge state ions. In atomic physics the many atomic transitions in highly charged ions supplies a wealth of spectroscopy data. High charge state ion beams are also used for charge exchange and crossed beam experiments. High charge state ion sources are reviewed. (WHK)

  10. A method to restrain the charging effect on an insulating substrate in high energy electron beam lithography

    NASA Astrophysics Data System (ADS)

    Mingyan, Yu; Shirui, Zhao; Yupeng, Jing; Yunbo, Shi; Baoqin, Chen

    2014-12-01

    Pattern distortions caused by the charging effect should be reduced while using the electron beam lithography process on an insulating substrate. We have developed a novel process by using the SX AR-PC 5000/90.1 solution as a spin-coated conductive layer, to help to fabricate nanoscale patterns of poly-methyl-methacrylate polymer resist on glass for phased array device application. This method can restrain the influence of the charging effect on the insulating substrate effectively. Experimental results show that the novel process can solve the problems of the distortion of resist patterns and electron beam main field stitching error, thus ensuring the accuracy of the stitching and overlay of the electron beam lithography system. The main characteristic of the novel process is that it is compatible to the multi-layer semiconductor process inside a clean room, and is a green process, quite simple, fast, and low cost. It can also provide a broad scope in the device development on insulating the substrate, such as high density biochips, flexible electronics and liquid crystal display screens.

  11. Charged polymers in high dimensions

    NASA Technical Reports Server (NTRS)

    Kantor, Yacov

    1990-01-01

    A Monte Carlo study of charged polymers with either homogeneously distributed frozen charges or with mobile charges has been performed in four and five space dimensions. The results are consistent with the renormalization-group predictions and contradict the predictions of Flory-type theory. Introduction of charge mobility does not modify the behavior of the polymers.

  12. Relativistic nuclear recoil, electron correlation and QED effects in highly charged Ar ions

    NASA Astrophysics Data System (ADS)

    Harman, Z.; Soria Orts, R.; Lapierre, A.; Crespo Lopez-Urrutia, J. R.; Artemyev, A. N.; Tupitsyn, I. I.; Jentschura, U. D.; Keitel, C. H.; Tawara, H.; Ullrich, J.; Shabaev, V. M.; Volotka, A. V.

    2007-06-01

    We have performed extensive theoretical studies on the 1s^22s^22p^2P3/2 -- ^2P1/2 M1 transition in Ar^13+ ions. Accurate radiative lifetimes are sensitive to QED corrections like the electron anomalous magnetic moment and to relativistic electron correlation effects. The lifetime of the P3/2 metastable state was determined to be 9.573(4)(5) ms (stat)(syst) [1] using the Heidelberg electron beam ion trap. Theoretical predictions cluster around a value that is significantly shorter than this high-precision experimental result. This discrepancy is presently unexplained. The wavelengths of the above transition in Ar^13+ and the 1s^22s2p ^3P1 -- ^3P2 M1 transition in Ar^14+ were compared for the isotopes ^36Ar and ^40Ar [2]. The observed mass shift has confirmed the relativistic theory of nuclear recoil effects in many-body systems. Our calculations, based on the fully relativistic recoil operator, are in excellent agreement with the measured results. [1] A. Lapierre, U.D. Jentschura, J.R. Crespo L'opez-Urrutia et al., Phys. Rev. Lett. 95, 183001 (2005); [2] R. Soria Orts, Z. Harman, J.R. Crespo L'opez-Urrutia et al., Phys. Rev. Lett. 97, 103002 (2006)

  13. Substituent and Solvent Effects on Excited State Charge Transfer Behavior of Highly Fluorescent Dyes Containing Thiophenylimidazole-Based Aldehydes

    NASA Technical Reports Server (NTRS)

    Santos, Javier; Bu, Xiu R.; Mintz, Eric A.

    2001-01-01

    The excited state charge transfer for a series of highly fluorescent dyes containing thiophenylimidazole moiety was investigated. These systems follow the Twisted Intramolecular Charge Transfer (TICT) model. Dual fluorescence was observed for each substituted dye. X-ray structures analysis reveals a twisted ground state geometry for the donor substituted aryl on the 4 and 5 position at the imidazole ring. The excited state charge transfer was modeled by a linear solvation energy relationship using Taft's pi and Dimroth's E(sub T)(30) as solvent parameters. There is linear relation between the energy of the fluorescence transition and solvent polarity. The degree of stabilization of the excited state charge transfer was found to be consistent with the intramolecular molecular charge transfer. Excited dipole moment was studied by utilizing the solvatochromic shift method.

  14. Surface charge compensation for a highly charged Ion emissionmicroscope

    SciTech Connect

    McDonald, J.W.; Hamza, A.V.; Newman, M.W.; Holder, J.P.; Schneider, D.H.G.; Schenkel, T.

    2003-04-01

    A surface charge compensation electron flood gun has been added to the Lawrence Livermore National Laboratory (LLNL) highly charged ion (HCI) emission microscope. HCI surface interaction results in a significant charge residue being left on the surface of insulators and semiconductors. This residual charge causes undesirable aberrations in the microscope images and a reduction of the Time-Of-Flight (TOF) mass resolution when studying the surfaces of insulators and semiconductors. The benefits and problems associated with HCI microscopy and recent results of the electron flood gun enhanced HCI microscope are discussed.

  15. Charge multiplication effect in thin diamond films

    NASA Astrophysics Data System (ADS)

    Skukan, N.; Grilj, V.; Sudić, I.; Pomorski, M.; Kada, W.; Makino, T.; Kambayashi, Y.; Andoh, Y.; Onoda, S.; Sato, S.; Ohshima, T.; Kamiya, T.; Jakšić, M.

    2016-07-01

    Herein, we report on the enhanced sensitivity for the detection of charged particles in single crystal chemical vapour deposition (scCVD) diamond radiation detectors. The experimental results demonstrate charge multiplication in thin planar diamond membrane detectors, upon impact of 18 MeV O ions, under high electric field conditions. Avalanche multiplication is widely exploited in devices such as avalanche photo diodes, but has never before been reproducibly observed in intrinsic CVD diamond. Because enhanced sensitivity for charged particle detection is obtained for short charge drift lengths without dark counts, this effect could be further exploited in the development of sensors based on avalanche multiplication and radiation detectors with extreme radiation hardness.

  16. Effect of collective response on electron capture and excitation in collisions of highly charged ions with fullerenes.

    PubMed

    Kadhane, U; Misra, D; Singh, Y P; Tribedi, Lokesh C

    2003-03-01

    Projectile deexcitation Lyman x-ray emission following electron capture and K excitation has been studied in collisions of bare and Li-like sulphur ions (of energy 110 MeV) with fullerenes (C(60)/C(70)) and different gaseous targets. The intensity ratios of different Lyman x-ray lines in collisions with fullerenes are found to be substantially lower than those for the gas targets, both for capture and excitation. This has been explained in terms of a model based on "solidlike" effect, namely, wakefield induced stark mixing of the excited states populated via electron capture or K excitation: a collective phenomenon of plasmon excitation in the fullerenes under the influence of heavy, highly charged ions. PMID:12689221

  17. High resolution printing of charge

    SciTech Connect

    Rogers, John; Park, Jang-Ung

    2015-06-16

    Provided are methods of printing a pattern of charge on a substrate surface, such as by electrohydrodynamic (e-jet) printing. The methods relate to providing a nozzle containing a printable fluid, providing a substrate having a substrate surface and generating from the nozzle an ejected printable fluid containing net charge. The ejected printable fluid containing net charge is directed to the substrate surface, wherein the net charge does not substantially degrade and the net charge retained on the substrate surface. Also provided are functional devices made by any of the disclosed methods.

  18. Intercellular Communication Amplifies Stressful Effects in High-Charge, High-Energy (HZE) Particle-Irradiated Human Cells

    PubMed Central

    AUTSAVAPROMPORN, Narongchai; DE TOLEDO, Sonia M.; BUONANNO, Manuela; JAY-GERIN, Jean-Paul; HARRIS, Andrew L.; AZZAM, Edouard I.

    2014-01-01

    Understanding the mechanisms that underlay the biological effects of particulate radiations is essential for space exploration and for radiotherapy. Here, we investigated the role of gap junction intercellular communication (GJIC) in modulating harmful effects induced in confluent cultures wherein most cells are traversed by one or more radiation tracks. We focused on the effect of radiation quality (linear energy transfer; LET) on junctional propagation of DNA damage and cell death among the irradiated cells. Confluent normal human fibroblasts were exposed to graded doses of 1 GeV protons (LET ~0.2 keV/μm) or 1 GeV/u iron ions (LET ~151 keV/μm) and were assayed for clonogenic survival and for micronucleus formation, a reflection of DNA damage, shortly after irradiation and following longer incubation periods. Iron ions were ~2.7 fold more effective than protons at killing 90% of the cells in the exposed cultures when assayed within 5–10 minutes after irradiation. When cells were held in the confluent state for several hours after irradiation, substantial repair of potentially lethal damage (PLDR), coupled with a reduction in micronucleus formation, occurred in cells exposed to protons, but not in those exposed to iron ions. In fact, such confluent holding after exposure to a similarly toxic dose of iron ions enhanced the induced toxic effect. However, following iron ion irradiation, inhibition of GJIC by 18-α-glycyrrhetinic acid eliminated the enhanced toxicity and reduced micronucleus formation to levels below those detected in cells assayed shortly after irradiation. The data show that low LET radiation induces strong PLDR within hours, but that high LET radiation with similar immediate toxicity does not induce PLDR and its toxicity increases with time following irradiation. The results also show that GJIC among irradiated cells amplifies stressful effects following exposure to high, but not LET radiation, and that GJIC has only minimal effect on cellular

  19. High dynamic range charge measurements

    DOEpatents

    De Geronimo, Gianluigi

    2012-09-04

    A charge amplifier for use in radiation sensing includes an amplifier, at least one switch, and at least one capacitor. The switch selectively couples the input of the switch to one of at least two voltages. The capacitor is electrically coupled in series between the input of the amplifier and the input of the switch. The capacitor is electrically coupled to the input of the amplifier without a switch coupled therebetween. A method of measuring charge in radiation sensing includes selectively diverting charge from an input of an amplifier to an input of at least one capacitor by selectively coupling an output of the at least one capacitor to one of at least two voltages. The input of the at least one capacitor is operatively coupled to the input of the amplifier without a switch coupled therebetween. The method also includes calculating a total charge based on a sum of the amplified charge and the diverted charge.

  20. Effects of Interfacial Fluorination on Performance Enhancement of High-k-Based Charge Trap Flash Memory

    NASA Astrophysics Data System (ADS)

    Wang, Chenjie; Huo, Zongliang; Liu, Ziyu; Liu, Yu; Cui, Yanxiang; Wang, Yumei; Li, Fanghua; Liu, Ming

    2013-07-01

    The effects of interfacial fluorination on the metal/Al2O3/HfO2/SiO2/Si (MAHOS) memory structure have been investigated. By comparing MAHOS memories with and without interfacial fluorination, it was identified that the deterioration of the performance and reliability of MAHOS memories is mainly due to the formation of an interfacial layer that generates excess oxygen vacancies at the interface. Interfacial fluorination suppresses the growth of the interfacial layer, which is confirmed by X-ray photoelectron spectroscopy depth profile analysis, increases enhanced program/erase efficiency, and improves data retention characteristics. Moreover, it was observed that fluorination at the SiO-HfO interface achieves a more effective performance enhancement than that at the HfO-AlO interface.

  1. The Effect of Interfacial Roughness on the Thin Film Morphology and Charge Transport of High-Performance Polythiophenes

    SciTech Connect

    Youngsuk,J.; Kline, J.; Fischer, D.; Lin, E.; Heeney, M.; McCulloch, I.; DeLongchamp, D.

    2008-01-01

    We control and vary the roughness of a dielectric upon which a high-performance polymer semiconductor, poly(2,5-bis(3-alkylthiophen-2-yl)thieno[3,2-b]thiophene) (pBTTT) is cast, to determine the effects of roughness on thin-film microstructure and the performance of organic field-effect transistors (OFETs). pBTTT forms large, well-oriented terraced domains with high carrier mobility after it is cast upon flat, low-surface-energy substrates and heated to a mesophase. Upon dielectrics with root-mean square (RMS) roughness greater than 0.5 nm, we find significant morphological changes in the pBTTT active layer and significant reductions in its charge carrier mobility. The pBTTT films on rough dielectrics exhibit significantly less order than those on smooth dielectrics through characterization with atomic force microscopy and X-ray diffraction. This critical RMS roughness implies that there exists a condition at which the pBTTT domains no longer conform to the local nanometer-scale curvature of the substrate.

  2. Space charge effect of the high intensity proton beam during the resonance extraction for the Mu2e experiment at Fermilab

    SciTech Connect

    Park, Chong Shik; Amundson, James; Johnstone, John; Michelotti, Leo; Nagaslaev, Vladimir; Werkema, Steve; /Fermilab

    2011-03-01

    The proposed Mu2e experiment to search for direct {mu} {yields} e conversion at Fermilab plans slow, resonant extraction of a beam with 3 x 10{sup 12} protons from the Debuncher ring. Space charge of this high intensity beam is a critical factor, since it induces significant betatron tune spread and consequently affects resonance extraction processes, such as spill uniformity and beam losses. This study shows the multi-particle simulation results in the early stages of resonance extraction and spill uniformity in the presence of 2D and 3D space charge effects. We have presented the results of the third-integer resonance extraction in early stage for the Mu2e experiment in the presence of space charge effects. In order to track particles and to calculate self-consistent space charge effects, Synergia2 was used, which is capable of parallel computing. The space charge tune shift was computed and was reasonable value compared with the analytical calculation. Locations of the septum and Lambertson were chosen so that particles are kicked and extracted efficiently. The spill rates for with and without space charge effects were uniform, but should be improved for the early stage after the sextupole field ramping.

  3. β-Lactoglobulin (BLG) binding to highly charged cationic polymer-grafted magnetic nanoparticles: effect of ionic strength.

    PubMed

    Qin, Li; Xu, Yisheng; Han, Haoya; Liu, Miaomiao; Chen, Kaimin; Wang, Siyi; Wang, Jie; Xu, Jun; Li, Li; Guo, Xuhong

    2015-12-15

    Poly(2-(methacryloyloxy)ethyltrimethyl ammonium chloride) (PMATAC) modified magnetic nanoparticles (NPs) with a high zeta potential of ca. 50mV were synthesized by atom transfer radical polymerization (ATRP). The prepared NPs consist of a magnetic core around 13nm and a PMATAC shell around 20nm attached on the surface of magnetic nanoparticles. Thermodynamic binding parameters between β-lactoglobulin and these polycationic NPs were investigated at different ionic strengths by high-resolution turbidimetry, dynamic light scattering (DLS), and isothermal titration calorimetry (ITC). Both turbidity and ITC show that binding affinities for BLG display a non-monotonic ionic strength dependence trend and a maximum appears at ionic strength of 50mM. Such observation should arise from the coeffects of protein charge anisotropy visualized by DelPhi electrostatic modeling and the strong electrostatic repulsion among highly charged NPs at a variety of ionic strengths. PMID:26322494

  4. Far infrared conductivity of charge density wave materials and the oxygen isotope effect in high-T sub c superconductors

    SciTech Connect

    Creager, W.N.

    1991-09-01

    The far infrared reflectance and conductivity of (Ta{sub 1-x}Nb{sub x}Se{sub 4}){sub 2}I and TaS{sub 3} have been measured to determine the origin of a huge infrared resonance that dominates the charge density wave (CDW) dynamics along with the pinned acoustic phason mode in the related materials (TaSe{sub 4}){sub 2}I and K{sub 0. 3}MoO{sub 3}. The measurements cover frequencies from 3 to 700cm{sup {minus}1} and the temperature range from 15K to 300K. In the niobium-doped alloys (Ta{sub 1-x}Nb{sub x}Se{sub 4}){sub 2}I, the size and frequency of the giant infrared mode remain nearly constant as the impurity concentration x is increased. For TaS{sub 3}, the pinned acoustic phason near 0.5cm{sup {minus}1} dominates {var epsilon}({omega}) and an additional small mode lies near 9cm{sup {minus}1}. The latter mode is much smaller than the infrared mode in other CDW materials. These results rule out several models of a generic infrared mode'' in CDW excitations. They are compared in detail to the predictions of a recent theory attributing the infrared mode to a bound collective mode localized at impurity sites within the crystal. The transmittance of K{sub 0.3}MoO{sub 3} has been measured at 1.2K with a strong dc electric field applied across the crystal. Under these conditions, the charge density wave depins abruptly and carries large currents with near-zero differential resistance. For some samples, the low-frequency transmittance is enhanced slightly when the CDW depins. The magnitude of the oxygen isotope effect in the high-{Tc} superconductor YBa{sub 2}Cu{sub 3}O{sub 7} has been determined by substitution of {sup 18}O for {sup 16}O. A series of cross-exchanges was performed on high-quality polycrystalline specimens to eliminate uncertainties due to sample heat treatments and sample inhomogeneities.

  5. Spectroscopy with trapped highly charged ions

    SciTech Connect

    Beiersdorfer, P

    2008-01-23

    We give an overview of atomic spectroscopy performed on electron beam ion traps at various locations throughout the world. Spectroscopy at these facilities contributes to various areas of science and engineering, including but not limited to basic atomic physics, astrophysics, extreme ultraviolet lithography, and the development of density and temperature diagnostics of fusion plasmas. These contributions are accomplished by generating, for example, spectral surveys, making precise radiative lifetime measurements, accounting for radiative power emitted in a given wavelength band, illucidating isotopic effects, and testing collisional-radiative models. While spectroscopy with electron beam ion traps had originally focused on the x-ray emission from highly charged ions interacting with the electron beam, the operating modes of such devices have expanded to study radiation in almost all wavelength bands from the visible to the hard x-ray region; and at several facilities the ions can be studied even in the absence of an electron beam. Photon emission after charge exchange or laser excitation has been observed, and the work is no longer restricted to highly charged ions. Much of the experimental capabilities are unique to electron beam ion traps, and the work performed with these devices cannot be undertaken elsewhere. However, in other areas the work on electron beam ion traps rivals the spectroscopy performed with conventional ion traps or heavy-ion storage rings. The examples we present highlight many of the capabilities of the existing electron beam ion traps and their contributions to physics.

  6. Beam charge and current neutralization of high-charge-state heavy ions

    SciTech Connect

    Logan, B.G.; Callahan, D.A.

    1997-10-29

    High-charge-state heavy-ions may reduce the accelerator voltage and cost of heavy-ion inertial fusion drivers, if ways can be found to neutralize the space charge of the highly charged beam ions as they are focused to a target in a fusion chamber. Using 2-D Particle-In- Cell simulations, we have evaluated the effectiveness of two different methods of beam neutralization: (1) by redistribution of beam charge in a larger diameter, preformed plasma in the chamber, and (2), by introducing a cold-electron-emitting source within the beam channel at the beam entrance into the chamber. We find the latter method to be much more effective for high-charge-state ions.

  7. Electrophoretic Mobility of a Dilute, Highly Charged "Soft" Spherical Particle in a Charged Hydrogel.

    PubMed

    Allison, Stuart; Li, Fei; Le, Melinda

    2016-08-25

    In this paper, numerical modeling studies are carried out on the electrophoretic mobility of a dilute, highly charged "soft" spherical particle in a hard hydrogel subjected to a weak, constant, external electric field. The particle contains a solid core with either a uniform charge density or "zeta" potential on its surface. Outside of this lies a charged gel layer of uniform thickness, composition, and charge density. The present work extends previous studies by accounting for the "relaxation effect", or distortion of the charge distribution in the vicinity of the model particle due to the imposition of an external electric and/or flow field. The particle gel layer and ambient hydrogel are modeled as porous Brinkman media. The (steady state) electrodynamic problem is solved at the level of the Poisson equation. Applications emphasize the influence of the relaxation effect and hydrogel charge density on the electrophoretic mobility. PMID:26815300

  8. Cross-linking high-k fluoropolymer gate dielectrics enhances the charge mobility in rubrene field effect transistors

    NASA Astrophysics Data System (ADS)

    Adhikari, Jwala; Gadinski, Matthew; Wang, Qing; Gomez, Enrique

    2015-03-01

    Polymer dielectrics are promising materials where the chemical flexibility enables gate insulators with desired properties. For example, polar groups can be introduced to enhance the dielectric constant, although fluctuations in chain conformations at the semiconductor-dielectric interface can introduce energetic disorder and limit charge mobilities in thin-film transistors. Here, we demonstrate a photopatternable high-K fluoropolymer, poly(vinylidene fluoride-bromotrifluoroethylene) P(VDF-BTFE), with a dielectric constant between 8 and 11. The bromotrifluoroethylene moiety enables photo-crosslinking and stabilization of gate insulator films while also significantly enhancing the population of trans torsional conformations of the chains. Using rubrene single crystals as the active layer, charge mobilities exceeding 10 cm2/Vs are achieved in thin film transistors with cross-linked P(VDF-BTFE) gate dielectrics. We hypothesize that crosslinking reduces energetic disorder at the dielectric-semiconductor interface by suppressing segmental motion and controlling chain conformations of P(VDF-BTFE), thereby leading to approximately a three-fold enhancement in the charge mobility of rubrene thin-film transistors over devices incorporating uncross-linked dielectrics or silicon oxide. Center for Flexible Electronic, Penn State; The Dow Chemical Company.

  9. Effective Topological Charge Cancelation Mechanism

    NASA Astrophysics Data System (ADS)

    Mesarec, Luka; Góźdź, Wojciech; Iglič, Aleš; Kralj, Samo

    2016-06-01

    Topological defects (TDs) appear almost unavoidably in continuous symmetry breaking phase transitions. The topological origin makes their key features independent of systems’ microscopic details; therefore TDs display many universalities. Because of their strong impact on numerous material properties and their significant role in several technological applications it is of strong interest to find simple and robust mechanisms controlling the positioning and local number of TDs. We present a numerical study of TDs within effectively two dimensional closed soft films exhibiting in-plane orientational ordering. Popular examples of such class of systems are liquid crystalline shells and various biological membranes. We introduce the Effective Topological Charge Cancellation mechanism controlling localised positional assembling tendency of TDs and the formation of pairs {defect, antidefect} on curved surfaces and/or presence of relevant “impurities” (e.g. nanoparticles). For this purpose, we define an effective topological charge Δmeff consisting of real, virtual and smeared curvature topological charges within a surface patch Δς identified by the typical spatially averaged local Gaussian curvature K. We demonstrate a strong tendency enforcing Δmeff → 0 on surfaces composed of Δς exhibiting significantly different values of spatially averaged K. For Δmeff ≠ 0 we estimate a critical depinning threshold to form pairs {defect, antidefect} using the electrostatic analogy.

  10. Effective Topological Charge Cancelation Mechanism

    PubMed Central

    Mesarec, Luka; Góźdź, Wojciech; Iglič, Aleš; Kralj, Samo

    2016-01-01

    Topological defects (TDs) appear almost unavoidably in continuous symmetry breaking phase transitions. The topological origin makes their key features independent of systems’ microscopic details; therefore TDs display many universalities. Because of their strong impact on numerous material properties and their significant role in several technological applications it is of strong interest to find simple and robust mechanisms controlling the positioning and local number of TDs. We present a numerical study of TDs within effectively two dimensional closed soft films exhibiting in-plane orientational ordering. Popular examples of such class of systems are liquid crystalline shells and various biological membranes. We introduce the Effective Topological Charge Cancellation mechanism controlling localised positional assembling tendency of TDs and the formation of pairs {defect, antidefect} on curved surfaces and/or presence of relevant “impurities” (e.g. nanoparticles). For this purpose, we define an effective topological charge Δmeff consisting of real, virtual and smeared curvature topological charges within a surface patch Δς identified by the typical spatially averaged local Gaussian curvature K. We demonstrate a strong tendency enforcing Δmeff → 0 on surfaces composed of Δς exhibiting significantly different values of spatially averaged K. For Δmeff ≠ 0 we estimate a critical depinning threshold to form pairs {defect, antidefect} using the electrostatic analogy. PMID:27250777

  11. Effective Topological Charge Cancelation Mechanism.

    PubMed

    Mesarec, Luka; Góźdź, Wojciech; Iglič, Aleš; Kralj, Samo

    2016-01-01

    Topological defects (TDs) appear almost unavoidably in continuous symmetry breaking phase transitions. The topological origin makes their key features independent of systems' microscopic details; therefore TDs display many universalities. Because of their strong impact on numerous material properties and their significant role in several technological applications it is of strong interest to find simple and robust mechanisms controlling the positioning and local number of TDs. We present a numerical study of TDs within effectively two dimensional closed soft films exhibiting in-plane orientational ordering. Popular examples of such class of systems are liquid crystalline shells and various biological membranes. We introduce the Effective Topological Charge Cancellation mechanism controlling localised positional assembling tendency of TDs and the formation of pairs {defect, antidefect} on curved surfaces and/or presence of relevant "impurities" (e.g. nanoparticles). For this purpose, we define an effective topological charge Δmeff consisting of real, virtual and smeared curvature topological charges within a surface patch Δς identified by the typical spatially averaged local Gaussian curvature K. We demonstrate a strong tendency enforcing Δmeff → 0 on surfaces composed of Δς exhibiting significantly different values of spatially averaged K. For Δmeff ≠ 0 we estimate a critical depinning threshold to form pairs {defect, antidefect} using the electrostatic analogy. PMID:27250777

  12. Configuration effects on satellite charging response

    NASA Technical Reports Server (NTRS)

    Purvis, C. K.

    1980-01-01

    The response of various spacecraft configurations to a charging environment in sunlight was studied using the NASA Charging Analyzer Program code. The configuration features geometry, type of stabilization, and overall size. Results indicate that sunlight charging response is dominated by differential charging effects. Shaded insulation charges negatively result in the formation of potential barriers which suppress photoelectron emission from sunlit surfaces. Sunlight charging occurs relatively slowly: with 30 minutes of charging simulations, in none of the configurations modeled did the most negative surface cell reach half its equilibrium potential in eclipse.

  13. A threshold effect for spacecraft charging

    NASA Technical Reports Server (NTRS)

    Olsen, R. C.

    1983-01-01

    The borderline case between no charging and large (kV) negative potentials for eclipse charging events on geosynchronous satellites is investigated, and the dependence of this transition on a threshold energy in the ambient plasma is examined. Data from the Applied Technology Satellite 6 and P78-2 (SCATHA) show that plasma sheet fluxes must extend above 10 keV for these satellites to charge in eclipse. The threshold effect is a result of the shape of the normal secondary yield curve, in particular the high energy crossover, where the secondary yield drops below 1. It is found that a large portion of the ambient electron flux must exceed this energy for a negative current to exist.

  14. Effective Charge Carrier Utilization in Photocatalytic Conversions.

    PubMed

    Zhang, Peng; Wang, Tuo; Chang, Xiaoxia; Gong, Jinlong

    2016-05-17

    Continuous efforts have been devoted to searching for sustainable energy resources to alleviate the upcoming energy crises. Among various types of new energy resources, solar energy has been considered as one of the most promising choices, since it is clean, sustainable, and safe. Moreover, solar energy is the most abundant renewable energy, with a total power of 173 000 terawatts striking Earth continuously. Conversion of solar energy into chemical energy, which could potentially provide continuous and flexible energy supplies, has been investigated extensively. However, the conversion efficiency is still relatively low since complicated physical, electrical, and chemical processes are involved. Therefore, carefully designed photocatalysts with a wide absorption range of solar illumination, a high conductivity for charge carriers, a small number of recombination centers, and fast surface reaction kinetics are required to achieve a high activity. This Account describes our recent efforts to enhance the utilization of charge carriers for semiconductor photocatalysts toward efficient solar-to-chemical energy conversion. During photocatalytic reactions, photogenerated electrons and holes are involved in complex processes to convert solar energy into chemical energy. The initial step is the generation of charge carriers in semiconductor photocatalysts, which could be enhanced by extending the light absorption range. Integration of plasmonic materials and introduction of self-dopants have been proved to be effective methods to improve the light absorption ability of photocatalysts to produce larger amounts of photogenerated charge carriers. Subsequently, the photogenerated electrons and holes migrate to the surface. Therefore, acceleration of the transport process can result in enhanced solar energy conversion efficiency. Different strategies such as morphology control and conductivity improvement have been demonstrated to achieve this goal. Fine-tuning of the

  15. Highly charged ion secondary ion mass spectroscopy

    DOEpatents

    Hamza, Alex V.; Schenkel, Thomas; Barnes, Alan V.; Schneider, Dieter H.

    2001-01-01

    A secondary ion mass spectrometer using slow, highly charged ions produced in an electron beam ion trap permits ultra-sensitive surface analysis and high spatial resolution simultaneously. The spectrometer comprises an ion source producing a primary ion beam of highly charged ions that are directed at a target surface, a mass analyzer, and a microchannel plate detector of secondary ions that are sputtered from the target surface after interaction with the primary beam. The unusually high secondary ion yield permits the use of coincidence counting, in which the secondary ion stops are detected in coincidence with a particular secondary ion. The association of specific molecular species can be correlated. The unique multiple secondary nature of the highly charged ion interaction enables this new analytical technique.

  16. Effects Of Environmental Electrical Charges On Spacecraft

    NASA Technical Reports Server (NTRS)

    Robinson, Paul A., Jr.

    1993-01-01

    Handbook presents information on three kinds of disruptive effects of environmental electrical charges upon operations of electronic circuits and other sensitive equipment in spacecraft. Addresses surface and internal charging and discharging, single-event upsets, and related design issues.

  17. Validation: A highly charged concept.

    PubMed

    Koëter, H B

    1995-12-01

    In order that a proposal for an alternative to an animal test be developed as an internationally accepted guideline, there needs to be consensus on the validity of the method proposed. Over the years, considerable attempts have been made to 'validate' promising alternatives. Probably without exception, these validation programmes demanded considerable budgets whereas the high expectations as to the output, which would justify the costs involved, were hardly ever met. What went wrong? Obviously, as for each new animal test, each new alternative to an animal test should be subjected to a critical appraisal procedure involving its scientific justification, its sensitivity and its reproducibility, before it could be internationally acceptable. Although there may be differences of opinion on the extent of this exercise, there is considerable agreement that validation in one way or another is essential. None the less, validation programmes so far have not resulted in the broad acceptance of any alternative test method. There may be two reasons for this failure. First, the results of the validation studies may have been unsatisfactory, which could mean that either the method subjected to validation failed to show the desired relevance and reliability, or the validation study as such yielded inconclusive results. Secondly, despite clear-cut (supporting) results from the validation exercise, toxicologists/regulators appear reluctant actually to use the data provided for hazard and risk assessment procedures because of a lack of confidence with the (types of) endpoints of the new test. The latter in particular can be considered a major hurdle in the process of acceptance of alternative tests. Therefore, an independent and objective review of any new test, with a view to its usefulness as a contribution to the set of data essential for hazard characterization and risk assessment, should be considered the first step of any comprehensive validation project. Further, the

  18. Nontargeted Stressful Effects in Normal Human Fibroblast Cultures Exposed to Low Fluences of High Charge, High Energy (HZE) Particles: Kinetics of Biologic Responses and Significance of Secondary Radiations

    PubMed Central

    Gonon, Géraldine; Groetz, Jean-Emmanuel; de Toledo, Sonia M.; Howell, Roger W.; Fromm, Michel; Azzam, Edouard I.

    2014-01-01

    The induction of nontargeted stressful effects in cell populations exposed to low fluences of high charge (Z) and high energy (E) particles is relevant to estimates of the health risks of space radiation. We investigated the up-regulation of stress markers in confluent normal human fibroblast cultures exposed to 1,000 MeV/u iron ions [linear energy transfer (LET) ~151 keV/μm] or 600 MeV/u silicon ions (LET ~50 keV/μm) at mean absorbed doses as low as 0.2 cGy, wherein 1–3% of the cells were targeted through the nucleus by a primary particle. Within 24 h postirradiation, significant increases in the levels of phospho-TP53 (serine 15), p21Waf1 (CDKN1A), HDM2, phospho-ERK1/2, protein carbonylation and lipid peroxidation were detected, which suggested participation in the stress response of cells not targeted by primary particles. This was supported by in situ studies that indicated greater increases in 53BP1 foci formation, a marker of DNA damage. than expected from the number of primary particle traversals. The effect was expressed as early as 15 min after exposure, peaked at 1 h and decreased by 24 h. A similar tendency occurred after exposure of the cell cultures to 0.2 cGy of 3.7 MeV α particles (LET ~109 keV/μm) that targets ~1.6% of nuclei, but not after 0.2 cGy from 290 MeV/u carbon ions (LET ~13 keV/μm) by which, on average, ~13% of the nuclei were hit, which highlights the importance of radiation quality in the induced effect. Simulations with the FLUKA multi-particle transport code revealed that fragmentation products, other than electrons, in cell cultures exposed to HZE particles comprise <1% of the absorbed dose. Further, the radial spread of dose due to secondary heavy ion fragments is confined to approximately 10–20 μm. Thus, the latter are unlikely to significantly contribute to stressful effects in cells not targeted by primary HZE particles. PMID:23465079

  19. Effects of induced charge in the kinestatic charge detector.

    PubMed

    Wagenaar, D J; Terwilliger, R A

    1995-05-01

    The principle of the kinestatic charge detector (KCD) for digital radiography depends on the synchronization of the scan velocity of a parallel plate drift chamber with the cation drift velocity. Compared with line-beam scanners, this motion-compensated imaging technique makes better use of the x-ray tube output. A Frisch grid traditionally has been used within the KCD to minimize unwanted signal contributions from both cations and negative charge carriers during irradiation. In this work the charge induction process in a parallel plate geometry was investigated for the special case of the KCD. In the limit of infinite plates, the cathode charge density due to both cations and negative charge carriers increases quadratically in time for a kinestatically scanned narrow slit. In the KCD the cathode is segmented into an array of narrow electrodes, each aligned with the incident x-ray beam. Our conformal mapping computation determined that the shape of the induced charge signal depends critically on delta x/w, the ratio of electrode width to drift gap. Our conclusion introduces the possibility of eliminating the Frisch grid from the KCD design because the value of delta x/w required for transverse sampling in the KCD is sufficiently low as to allow "self-gridding" to take effect. PMID:7643803

  20. LMO dielectronic resonances in highly charged bismuth

    NASA Astrophysics Data System (ADS)

    Smiga, Joseph; Gillaspy, John; Podpaly, Yuri; Ralchenko, Yuri

    2016-05-01

    Dielectronic resonances from high-Z elements are important for the analysis of high temperature plasmas. Thus, the extreme ultraviolet spectra of highly charged bismuth were measured using the NIST electron beam ion trap (EBIT) at beam energies ranging from 8.7 keV to 9.2 keV. The measured intensity ratios between forbidden magnetic-dipole lines in Bi64+ and Bi63+ show strong resonance features. The experimental data were compared to theoretical predictions from a large-scale collisional-radiative model with the code NOMAD, and good agreement was found that allowed the identification of observed resonance features as the LMO inner-shell dielectronic resonances. It is common practice in EBIT experiments that ions are periodically dumped from the trap and replaced. However, in this particular experiment, the contents of the trap were not dumped for the duration of each 10 minute sampling. The effects of trap stability were studied and a small but noticeable shift in beam energy over time was observed. Potential explanations for this are considered.

  1. Electronic Structure Calculations of Highly Charged Ions

    NASA Astrophysics Data System (ADS)

    Bromley, Steve; Ziolkowski, Marcin; Marler, Joan

    2016-05-01

    Exotic systems like Highly Charged Ions (HCIs) are attracting more attention based on their properties and possible interactions. Abundance of HCIs in the solar wind and their interaction with the upper atmosphere puts them in the attention of astro- and atmospheric physicists. Also, their unique properties originating in the high charge make them an excellent candidate for precision measurements and the next generation of atomic clocks. For a better understanding of the dynamics of processes involving HCIs a combined theoretical and experimental effort is needed to study their basic properties and interactions. Both theory and experiment need to be combined due to the extreme nature of these systems. We present preliminary insight into electronic structure of light HCIs, their interactions with neutral atoms and dynamics of charge transfer processes.

  2. Atomic physics with highly charged ions

    NASA Astrophysics Data System (ADS)

    Richard, P.

    1993-10-01

    The past year has been a busy one for all three accelerators: the LINAC, EBIS, and the tandem. The EBIS continues to deliver beams of highly charged ions around the clock for the study of low energy collisions with gases and surfaces. The electron beam energy was upgraded to 10 keV, and intensities of highly charged species such as Xe(44+) were greatly increased. The tandem, the traditional source of highly charged binary encounter electron production at zero degrees were studied for medium Z (Si,Cl,Cu) projectiles. Recoil momentum spectroscopy has been used to separate the contributions to collisional ionization of one-electron ions (C(5+), O(7+), F(8+)) from the nucleus and the electrons of a He target. Marked structure in the binary encounter electron spectra for Cu(sup q+) on H2 targets was measured for moderate velocity projectiles. Electron capture by slow multiply charged (EBIS) projectiles from laser excited targets has been carried out. Cross sections for capture from Na(3s) and Na*(3p) were measured for velocities between 0.1 and 1 au. The extension of these experiments to laser excited Rydberg targets is proceeding. Electron capture cross sections and average Q values for Ar(16+) on He at velocities between 0.23 and 1.67 au were measured. The charge state distribution of the He recoils following large angle scattering of C(4+) and C(6+) ions at 7.5 keV/u has been measured. Cross sections have been measured for up to sextuple capture from C60 (buckminsterfullerene) by highly charged slow projectiles. Coupled channel calculations for double capture from He by slow multicharge ions were carried out.

  3. Design and simulation of high-breakdown-voltage GaN-based vertical field-effect transistor with interfacial charge engineering

    NASA Astrophysics Data System (ADS)

    Du, Jiangfeng; Liu, Dong; Bai, Zhiyuan; Luo, Qian; Yu, Qi

    2016-05-01

    A high-breakdown-voltage GaN-based vertical field-effect transistor with negative fixed interfacial charge engineering (GaN ICE-VHFET) is proposed in this work. The negative charge inverts an n-GaN buffer layer along the oxide/GaN interface, inducing a vertical hole layer. Thus, the entire buffer layer consists of a p+-hole inversion layer and an n-pillar buffer layer, and the p-pillar laterally depletes the n-GaN buffer layer, and the electric field distribution becomes more uniform. Simulation results show that the breakdown voltage of the GaN ICE-VHFET increases by 193% and the on-resistance of such a device is still very low when compared with those of conventional vertical FETs. Its figure of merit even exceeds the GaN one-dimensional limit.

  4. Understanding the effect of space charge on instabilities

    SciTech Connect

    Blaskiewicz, M.; Chao, A.; Chin, Y. H.

    2015-05-03

    The combined effect of space charge and wall impedance on transverse instabilities is an important consideration in the design and operation of high intensity hadron machines as well as an intrinsic academic interest. This study explores the combined effects of space charge and wall impedance using various simplified models in an attempt to produce a better understanding of their interplay.

  5. Charged dust in planetary magnetospheres: Hamiltonian dynamics and numerical simulations for highly charged grains

    NASA Technical Reports Server (NTRS)

    Schaffer, L.; Burns, J. A.

    1994-01-01

    We use a combination of analytical and numerical methods to investigate the dynamics of charged dust grains in planetary magnetospheres. Our emphasis is on obtaining results valid for particles that are not necessarily dominated either by gravitational or electromagnetic forces. A Hamiltonian formulation of the problem yields exact results, for all values of charge-to-mass ratio, when we introduce two constraints: particles remain in the equatorial plane and the magnetic field is taken as axially symmetric. In particular, we obtain locations of equilibrium points, the frequencies of stable periodic orbits, the topology of separatrices in phase space, and the rate of longitudinal drift. These results are significant for specific applications: motion in the nearly aligned dipolar field of Saturn, and the trajectories of arbitrarily charged particles in complex magnetic fields for limited periods of time after ejection from parent bodies. Since the model is restrictive, we also use numerical integrations of the full three-dimensional equations of motion and illustrate under what conditions the constrained problem yields reasonable results. We show that a large fraction of the intermediately charged and highly charged (gyrating) particles will always be lost to a planet's atmosphere within a few hundred hours, for motion through tilted-dipole magnetic fields. We find that grains must have a very high charge-to-mass ratio in order to be mirrored back to the ring plane. Thus, except perhaps at Saturn where the dipole tilt is very small, the likely inhabitants of the dusty ring systems are those particles that are either nearly Keplerian (weakly charged) grains or grains whose charges place them in the lower end of the intermediate charge zone. Fianlly, we demonstrate the effect of plasma drag on the orbits of gyrating particles to be a rapid decrease in gyroradius followed by a slow radial evolution of the guiding center.

  6. Quark mass effect on axial charge dynamics

    NASA Astrophysics Data System (ADS)

    Guo, Er-dong; Lin, Shu

    2016-05-01

    We studied the effect of finite quark mass on the dynamics of the axial charge using the D3/D7 model in holography. The mass term in the axial anomaly equation affects both the fluctuation (generation) and dissipation of the axial charge. We studied the dependence of the effect on quark mass and an external magnetic field. For axial charge generation, we calculated the mass diffusion rate, which characterizes the helicity flipping rate. The rate is a nonmonotonous function of mass and can be significantly enhanced by the magnetic field. The diffusive behavior is also related to a divergent susceptibility of the axial charge. For axial charge dissipation, we found that in the long time limit, the mass term dissipates all the charge effectively generated by parallel electric and magnetic fields. The result is consistent with a relaxation time approximation. The rate of dissipation through mass term is a monotonous increasing function of both quark mass and a magnetic field.

  7. Frequency metrology using highly charged ions

    NASA Astrophysics Data System (ADS)

    Crespo López-Urrutia, J. R.

    2016-06-01

    Due to the scaling laws of relativistic fine structure splitting, many forbidden optical transitions appear within the ground state configurations of highly charged ions (HCI). In some hydrogen-like ions, even the hyperfine splitting of the 1s ground state gives rise to optical transitions. Given the very low polarizability of HCI, such laser-accessible transitions are extremely impervious to external perturbations and systematics that limit optical clock performance and arise from AC and DC Stark effects, such as black-body radiation and light shifts. Moreover, AC and DC Zeeman splitting are symmetric due to the much larger relativistic spin-orbit coupling and corresponding fine-structure splitting. Appropriate choice of states or magnetic sub-states with suitable total angular momentum and magnetic quantum numbers can lead to a cancellation of residual quadrupolar shifts. All these properties are very advantageous for the proposed use of HCI forbidden lines as optical frequency standards. Extremely magnified relativistic, quantum electrodynamic, and nuclear size contributions to the binding energies of the optically active electrons make HCI ideal tools for fundamental research, as in proposed studies of a possible time variation of the fine structure constant. Beyond this, HCI that cannot be photoionized by vacuum-ultraviolet photons could also provide frequency standards for future lasers operating in that range.

  8. Morphology Effects on Space Charge Characteristics of Low Density Polyethylene

    NASA Astrophysics Data System (ADS)

    Zhou; Yuanxiang; Wang; Yunshan; Zahn, Markus; Wang; Ninghua; Sun; Qinghua; Liang; Xidong; Guan; Zhichen

    2011-01-01

    Low density polyethylene (LDPE) film samples with different morphology were prepared by three kinds of annealing methods which were different in cooling rates in this study. A pulsed electro-acoustic (PEA) space charge measurement system was improved to solve the surface discharge problems for small samples applied with a high voltage. Negative direct current (DC) fields from 50 to above 220 kV/mm were applied to the samples. The influences of morphologies on space charge and space charge packet characteristics were measured by the improved high voltage withstand (HVW) PEA system. Mobility and trap depth of released charges were calculated by space charge decay. It was found that there is a different probability of space charge packet initiation under applied field from -60 to -100 kV/mm. Average velocity and mobility of the space charge packets were calculated by space charge packet dynamics. It was found that the lower cooling rate samples have higher crystallinity, more homo-charge accumulation, lower mobility and deeper trap depth. The mechanism of morphological effects on space charge phenomena have been presumed to give a plausible explanation for their inherent relationships. The morphology in the metal-dielectric interface and in the bulk is convincingly suggested to be responsible for the injection and propagation processes of space charge. A model of positive space charge initiation in LDPE samples was also suggested and analyzed. The mechanism of morphological effects and the charge injection model are well fit with the injection and propagation processes of space charge. The different effects of morphology in the metal-dielectric interface and in the bulk of polymers are stressed.

  9. High-LET charged particle radiotherapy

    SciTech Connect

    Castro, J.R. . Research Medicine and Radiation Biophysics Div. California Univ., San Francisco, CA . Dept. of Radiation Oncology)

    1991-07-01

    The Department of Radiation Oncology at UCSF Medical Center and the Radiation Oncology Department at UC Lawrence Berkeley Laboratory have been evaluating the use of high LET charged particle radiotherapy in a Phase 1--2 research trial ongoing since 1979. In this clinical trail, 239 patients have received at least 10 Gy (physical) minimum tumor dose with neon ions, meaning that at least one-half of their total treatment was given with high-LET charged particle therapy. Ninety-one patients received all of their therapy with neon ions. Of the 239 patients irradiated, target sites included lesions in the skin, subcutaneous tissues, head and neck such as paranasal sinuses, nasopharynx and salivary glands (major and minor), skull base and juxtaspinal area, GI tract including esophagus, pancreas and biliary tract, prostate, lung, soft tissue and bone. Analysis of these patients has been carried out with a minimum followup period of 2 years.

  10. High gradient lens for charged particle beam

    SciTech Connect

    Chen, Yu-Jiuan

    2014-04-29

    Methods and devices enable shaping of a charged particle beam. A dynamically adjustable electric lens includes a series of alternating a series of alternating layers of insulators and conductors with a hollow center. The series of alternating layers when stacked together form a high gradient insulator (HGI) tube to allow propagation of the charged particle beam through the hollow center of the HGI tube. A plurality of transmission lines are connected to a plurality of sections of the HGI tube, and one or more voltage sources are provided to supply an adjustable voltage value to each transmission line of the plurality of transmission lines. By changing the voltage values supplied to each section of the HGI tube, any desired electric field can be established across the HGI tube. This way various functionalities including focusing, defocusing, acceleration, deceleration, intensity modulation and others can be effectuated on a time varying basis.

  11. EXTRACTOR FOR HIGH ENERGY CHARGED PARTICLES

    DOEpatents

    Lambertson, G.R.

    1964-04-01

    A particle-extracting apparatus for use with a beam of high-energy charged particles such as travel in an evacuated chamber along a circular equilibrium axis is described. A magnetized target is impacted relatively against the beam whereby the beam particles are deflected from the beam by the magnetic induction in the target. To this end the target may be moved into the beam or the beam may coast into the target and achieve high angular particle deflection and slow extraction. A deflecting septum magnet may additionally be used for deflection at even sharper angles. (AEC)

  12. Droplet Charging Effects in the Space Environment

    SciTech Connect

    Joslyn, Thomas B.; Ketsdever, Andrew D.

    2011-05-20

    Several applications exist for transiting liquid droplets through the near-Earth space environment. Numerical results are presented for the charging of liquid droplets of trimethyl pentaphenyl siloxane (DC705) in three different plasma environments: ionosphere, auroral, and geosynchronous Earth orbit (GEO). Nominal and high geomagnetic activity cases are investigated. In general, high levels of droplet charging (>100 V) exist only in GEO during periods of high geomagnetic or solar activity. An experiment was conducted to assess the charging of silicon-oil droplets due to photoemission. The photoemission yield in the 120-200 nm wavelength range was found to be approximately 0.06.

  13. Achieving highly effective non-biofouling performance for polypropylene membranes modified by UV-induced surface graft polymerization of two oppositely charged monomers.

    PubMed

    Zhao, Yong-Hong; Zhu, Xiao-Ying; Wee, Kin-Ho; Bai, Renbi

    2010-02-25

    A major problem in membrane technology for applications such as wastewater treatment or desalination is often the loss of membrane permeability due to biofouling initiated from protein adsorption and biofilm formation on the membrane surface. In this study, we developed a relatively simple and yet versatile approach to prepare polypropylene (PP) membrane with highly effective non-biofouling performance. Copolymer brushes were grafted to the surface of PP membrane through UV-induced polymerization of two oppositely charged monomers, i.e., [2-(methacryloyloxy)ethyl]trimethylammonium chloride (TM) and 3-sulfopropyl methacrylate potassium salt (SA), with varying TM:SA molar ratios. Surface analysis with scanning electron microscope (SEM) clearly showed the grafted copolymer brushes on the membrane surfaces and that with X-ray photoelectron spectroscope (XPS) revealed a similar TM:SA ratio of the grafted copolymer brushes to that of the monomer solution used for the polymerization. Water contact angle measurements indicated that the hydrophilicity of the membrane surfaces was remarkably improved by the grafting of the TM/SA copolymer brushes, with the lowest water contact angle of 27 degrees being achieved at the TM:SA ratio of around 1:1. Experiments for antiprotein adsorption with bovine serum album (BSA) and lysozyme (LYZ) and antibiofilm formation with Escherichia coli (E. coli) demonstrated a great dependence of the membrane performance on the TM:SA ratios of the grafted copolymer brushes. It was found that the characteristics of the surface charges of the membrane surfaces played a very important role in the non-biofouling performance, and the membrane surface with balanced positive and negative charges showed the best non-biofouling performance for the proteins and bacteria tested in this study. PMID:20121056

  14. High reliable and stable organic field-effect transistor nonvolatile memory with a poly(4-vinyl phenol) charge trapping layer based on a pn-heterojunction active layer

    NASA Astrophysics Data System (ADS)

    Xiang, Lanyi; Ying, Jun; Han, Jinhua; Zhang, Letian; Wang, Wei

    2016-04-01

    In this letter, we demonstrate a high reliable and stable organic field-effect transistor (OFET) based nonvolatile memory (NVM) with a polymer poly(4-vinyl phenol) (PVP) as the charge trapping layer. In the unipolar OFETs, the inreversible shifts of the turn-on voltage (Von) and severe degradation of the memory window (ΔVon) at programming (P) and erasing (E) voltages, respectively, block their application in NVMs. The obstacle is overcome by using a pn-heterojunction as the active layer in the OFET memory, which supplied a holes and electrons accumulating channel at the supplied P and E voltages, respectively. Both holes and electrons transferring from the channels to PVP layer and overwriting the trapped charges with an opposite polarity result in the reliable bidirectional shifts of Von at P and E voltages, respectively. The heterojunction OFET exhibits excellent nonvolatile memory characteristics, with a large ΔVon of 8.5 V, desired reading (R) voltage at 0 V, reliable P/R/E/R dynamic endurance over 100 cycles and a long retention time over 10 years.

  15. Molecular Dynamics Simulations of Highly Charged Green Fluorescent Proteins

    SciTech Connect

    Lau, E Y; Phillips, J L; Colvin, M E

    2009-03-26

    A recent experimental study showed that green fluorescent protein (GFP) that has been mutated to have ultra-high positive or negative net charges, retain their native structure and fluorescent properties while gaining resistance to aggregation under denaturing conditions. These proteins also provide an ideal test case for studying the effects of surface charge on protein structure and dynamics. They have performed classical molecular dynamics (MD) simulations on the near-neutral wildtype GFP and mutants with net charges of -29 and +35. They analyzed the resulting trajectories to quantify differences in structure and dynamics between the three GFPs. This analyses shows that all three proteins are stable over the MD trajectory, with the near-neutral wild type GFP exhibiting somewhat more flexibility than the positive or negative GFP mutants, as measured by the order parameter and changes in phi-psi angles. There are more dramatic differences in the properties of the water and counter ions surrounding the proteins. The water diffusion constant near the protein surface is closer to the value for bulk water in the positively charged GFP than in the other two proteins. Additionally, the positively charged GFP shows a much greater clustering of the counter ions (CL-) near its surface than corresponding counter ions (Na+) near the negatively charged mutant.

  16. Magnetic hyperfine structure of the ground-state doublet in highly charged ions 89+,87+229Th and the Bohr-Weisskopf effect

    NASA Astrophysics Data System (ADS)

    Tkalya, E. V.; Nikolaev, A. V.

    2016-07-01

    Background: The search for new opportunities to investigate the low-energy level in the 229Th nucleus, which is nowadays intensively studied experimentally, has motivated us to theoretical studies of the magnetic hyperfine (MHF) structure of the 5 /2+ (0.0 eV) ground state and the low-lying 3 /2+ (7.8 eV) isomeric state in highly charged 89+229Th and 87+229Th ions. Purpose: The aim is to calculate, with the maximal precision presently achievable, the energy of levels of the hyperfine structure of the 229Th ground-state doublet in highly charged ions and the probability of radiative transitions between these levels. Methods: The distribution of the nuclear magnetization (the Bohr-Weisskopf effect) is accounted for in the framework of the collective nuclear model with Nilsson model wave functions for the unpaired neutron. Numerical calculations using precise atomic density functional theory methods, with full account of the electron self-consistent field, have been performed for the electron structure inside and outside the nuclear region. Results: The deviations of the MHF structure for the ground and isomeric states from their values in a model of a pointlike nuclear magnetic dipole are calculated. The influence of the mixing of the states with the same quantum number F on the energy of sublevels is studied. Taking into account the mixing of states, the probabilities of the transitions between the components of the MHF structure are calculated. Conclusions: Our findings are relevant for experiments with highly ionized 229Th ions in a storage ring at an accelerator facility.

  17. Coulomb crystallization of highly charged ions

    NASA Astrophysics Data System (ADS)

    Schmöger, L.; Versolato, O. O.; Schwarz, M.; Kohnen, M.; Windberger, A.; Piest, B.; Feuchtenbeiner, S.; Pedregosa-Gutierrez, J.; Leopold, T.; Micke, P.; Hansen, A. K.; Baumann, T. M.; Drewsen, M.; Ullrich, J.; Schmidt, P. O.; López-Urrutia, J. R. Crespo

    2015-03-01

    Control over the motional degrees of freedom of atoms, ions, and molecules in a field-free environment enables unrivalled measurement accuracies but has yet to be applied to highly charged ions (HCIs), which are of particular interest to future atomic clock designs and searches for physics beyond the Standard Model. Here, we report on the Coulomb crystallization of HCIs (specifically 40Ar13+) produced in an electron beam ion trap and retrapped in a cryogenic linear radiofrequency trap by means of sympathetic motional cooling through Coulomb interaction with a directly laser-cooled ensemble of Be+ ions. We also demonstrate cooling of a single Ar13+ ion by a single Be+ ion—the prerequisite for quantum logic spectroscopy with a potential 10-19 accuracy level. Achieving a seven-orders-of-magnitude decrease in HCI temperature starting at megakelvin down to the millikelvin range removes the major obstacle for HCI investigation with high-precision laser spectroscopy.

  18. Radioactive decays of highly-charged ions

    NASA Astrophysics Data System (ADS)

    Gao, B. S.; Najafi, M. A.; Atanasov, D. R.; Blaum, K.; Bosch, F.; Brandau, C.; Chen, X. C.; Dillmann, I.; Dimopoulou, Ch.; Faestermann, Th.; Geissel, H.; Gernhäuser, R.; Hillenbrand, P.-M.; Kovalenko, O.; Kozhuharov, C.; Litvinov, S. A.; Litvinov, Yu. A.; Maier, L.; Nolden, F.; Piotrowski, J.; Sanjari, M. S.; Scheidenberger, C.; Spillmann, U.; Steck, M.; Stöhlker, Th.; Trageser, Ch.; Tu, X. L.; Weick, H.; Winckler, N.; Xu, H. S.; Yamaguchi, T.; Yan, X. L.; Zhang, Y. H.; Zhou, X. H.

    2015-05-01

    Access to stored and cooled highly-charged radionuclides offers unprecedented opportunities to perform high-precision investigations of their decays. Since the few-electron ions, e.g. hydrogen- or helium-like ions, are quantum mechanical systems with clear electronic ground state configurations, the decay studies of such ions are performed under well-defined conditions and allow for addressing fundamental aspects of the decay process. Presented here is a compact review of the relevant experiments conducted at the Experimental Storage Ring ESR of GSI. A particular emphasis is given to the investigations of the two-body beta decay, namely the bound-state β-decay and its time-mirrored counterpart, orbital electron-capture.

  19. Transfer ionization in collisions with a fast highly charged ion.

    PubMed

    Voitkiv, A B

    2013-07-26

    Transfer ionization in fast collisions between a bare ion and an atom, in which one of the atomic electrons is captured by the ion whereas another one is emitted, crucially depends on dynamic electron-electron correlations. We show that in collisions with a highly charged ion a strong field of the ion has a very profound effect on the correlated channels of transfer ionization. In particular, this field weakens (strongly suppresses) electron emission into the direction opposite (perpendicular) to the motion of the ion. Instead, electron emission is redirected into those parts of the momentum space which are very weakly populated in fast collisions with low charged ions. PMID:23931364

  20. Interaction of highly charged ions with carbon nano membranes

    NASA Astrophysics Data System (ADS)

    Gruber, Elisabeth; Wilhelm, Richard A.; Smejkal, Valerie; Heller, René; Facsko, Stefan; Aumayr, Friedrich

    2015-09-01

    Charge state and energy loss measurements of slow highly charged ions (HCIs) after transmission through nanometer and sub-nanometer thin membranes are presented. Direct transmission measurements through carbon nano membranes (CNMs) show an unexpected bimodal exit charge state distribution, accompanied by charge exchange dependent energy loss. The energy loss of ions in CNMs with large charge loss shows a quadratic dependency on the incident charge state, indicating charge state dependent stopping force values. Another access to the exit charge state distribution is given by irradiating stacks of CNMs and investigating each layer of the stack with high resolution imaging techniques like transmission electron microscopy (TEM) and helium ion microscopy (HIM) independently. The observation of pores created in all of the layers confirms the assumption derived from the transmission measurements that the two separated charge state distributions reflect two different impact parameter regimes, i.e. close collision with large charge exchange and distant collisions with weak ion-target interaction.

  1. HIGH-INTENSITY, HIGH CHARGE-STATE HEAVY ION SOURCES

    SciTech Connect

    ALESSI,J.G.

    2004-08-16

    There are many accelerator applications for high intensity heavy ion sources, with recent needs including dc beams for RIA, and pulsed beams for injection into synchrotrons such as RHIC and LHC. The present status of sources producing high currents of high charge state heavy ions is reviewed. These sources include ECR, EBIS, and Laser ion sources. Benefits and limitations for these type sources are described. Possible future improvements in these sources are also mentioned.

  2. Space charge effect in isochronous rings

    SciTech Connect

    Pozdeyev,E.; Rodriguez, J.A.; Marti, F.; York, R.

    2008-08-25

    Cyclotrons, rings for precise nuclear mass spectrometry, and some light sources with extremely short bunches are operated or planned to be operated in the isochronous or almost isochronous regime. Also, many hadron synchrotrons run in the isochronous regime for a short period of time during transition crossing. The longitudinal motion is frozen in the isochronous regime that leads to accumulation of the integral of the longitudinal space charge force. In low-gamma hadron machines, this can cause a fast growth of the beam energy spread even at modest beam intensities. Additionally, the transverse component of the space charge effectively modifies the dispersion function and the slip factor shifting the isochronous (transition) point. In this paper, we discuss space charge effects in the isochronous regime and present experimental results obtained in the Small Isochronous Ring, developed at Michigan State University specifically for studies of space charge in the isochronous regime.

  3. Precision mass measurements of highly charged ions

    NASA Astrophysics Data System (ADS)

    Kwiatkowski, A. A.; Bale, J. C.; Brunner, T.; Chaudhuri, A.; Chowdhury, U.; Ettenauer, S.; Frekers, D.; Gallant, A. T.; Grossheim, A.; Lennarz, A.; Mane, E.; MacDonald, T. D.; Schultz, B. E.; Simon, M. C.; Simon, V. V.; Dilling, J.

    2012-10-01

    The reputation of Penning trap mass spectrometry for accuracy and precision was established with singly charged ions (SCI); however, the achievable precision and resolving power can be extended by using highly charged ions (HCI). The TITAN facility has demonstrated these enhancements for long-lived (T1/2>=50 ms) isobars and low-lying isomers, including ^71Ge^21+, ^74Rb^8+, ^78Rb^8+, and ^98Rb^15+. The Q-value of ^71Ge enters into the neutrino cross section, and the use of HCI reduced the resolving power required to distinguish the isobars from 3 x 10^5 to 20. The precision achieved in the measurement of ^74Rb^8+, a superallowed β-emitter and candidate to test the CVC hypothesis, rivaled earlier measurements with SCI in a fraction of the time. The 111.19(22) keV isomeric state in ^78Rb was resolved from the ground state. Mass measurements of neutron-rich Rb and Sr isotopes near A = 100 aid in determining the r-process pathway. Advanced ion manipulation techniques and recent results will be presented.

  4. Space charge templates for high-current beam modeling

    SciTech Connect

    Vorobiev, Leonid G.; /Fermilab

    2008-07-01

    A computational method to evaluate space charge potential and gradients of charged particle beam in the presence of conducting boundaries, has been introduced. The three-dimensional (3D) field of the beam can be derived as a convolution of macro Green's functions (template fields), satisfying the same boundary conditions, as the original beam. Numerical experiments gave a confidence that space charge effects can be modeled by templates with enough accuracy and generality within dramatically faster computational times than standard combination: a grid density + Poisson solvers, realized in the most of Particle in Cell codes. The achieved rapidity may significantly broaden the high-current beam design space, making the optimization in automatic mode possible, which so far was only feasible for simplest self-field formulations such as rms envelope equations. The template technique may be used as a standalone program, or as an optional field solver in existing beam dynamics codes both in one-passage structures and in rings.

  5. Revisiting the ultra-high dose rate effect: implications for charged particle radiotherapy using protons and light ions

    PubMed Central

    Wilson, P; Jones, B; Yokoi, T; Hill, M; Vojnovic, B

    2012-01-01

    Objective To reinvestigate ultra-high dose rate radiation (UHDRR) radiobiology and consider potential implications for hadrontherapy. Methods A literature search of cellular UHDRR exposures was performed. Standard oxygen diffusion equations were used to estimate the time taken to replace UHDRR-related oxygen depletion. Dose rates from conventional and novel methods of hadrontherapy accelerators were considered, including spot scanning beam delivery, which intensifies dose rate. Results The literature findings were that, for X-ray and electron dose rates of around 109 Gy s–1, 5–10 Gy depletes cellular oxygen, significantly changing the radiosensitivity of cells already in low oxygen tension (around 3 mmHg or 0.4 kPa). The time taken to reverse the oxygen depletion of such cells is estimated to be over 20–30 s at distances of over 100 μm from a tumour blood vessel. In this time window, tumours have a higher hypoxic fraction (capable of reducing tumour control), so the next application of radiation within the same fraction should be at a time that exceeds these estimates in the case of scanned beams or with ultra-fast laser-generated particles. Conclusion This study has potential implications for particle therapy, including laser-generated particles, where dose rate is greatly increased. Conventional accelerators probably do not achieve the critical UHDRR conditions. However, specific UHDRR oxygen depletion experiments using proton and ion beams are indicated. PMID:22496068

  6. Single-electron charging effects

    SciTech Connect

    Ruggiero, S.T.

    1991-12-15

    The status of our project on single-electron tunneling is, again, excellent. As outlined in our original proposal, a key goal for this project has been the development of a scanning tunneling instrument for the purpose of imaging individual particles and tunneling into these particles at high magnetic fields. Further progress is discussed in this report.

  7. L X-ray emission from fast highly charged Cu ions in collisions with gaseous targets: Saturation effect in excitation and transfer

    NASA Astrophysics Data System (ADS)

    Kumar, Ajay; Misra, D.; Kadhane, U.; Kelkar, A. H.; Dhal, B. B.; Tribedi, L. C.

    2006-11-01

    We have measured L X-ray production cross sections for highly charged 156 MeV Be-like Cu ions in collisions with gaseous targets of H 2, Ne, Ar, Kr and Xe. In the present collision systems, measured projectile L X-ray intensity is contributed by the excitation as well as electron transfer processes. The projectile L X-ray production cross sections are found to increase initially and then saturate with increasing target atomic number. The charge state dependence of projectile L X-ray production cross sections have been measured with Kr target.

  8. A Pixel Readout Chip in 40 nm CMOS Process for High Count Rate Imaging Systems with Minimization of Charge Sharing Effects

    SciTech Connect

    Maj, Piotr; Grybos, P.; Szczgiel, R.; Kmon, P.; Drozd, A.; Deptuch, G.

    2013-11-07

    We present a prototype chip in 40 nm CMOS technology for readout of hybrid pixel detector. The prototype chip has a matrix of 18x24 pixels with a pixel pitch of 100 m. It can operate both in single photon counting (SPC) mode and in C8P1 mode. In SPC the measured ENC is 84 e rms (for the peaking time of 48 ns), while the effective offset spread is below 2 mV rms. In the C8P1 mode the chip reconstructs full charge deposited in the detector, even in the case of charge sharing, and it identifies a pixel with the largest charge deposition. The chip architecture and preliminary measurements are reported.

  9. Electron-ion plasma dynamics in the presence of highly charged dust-clusters

    SciTech Connect

    Djebli, Mourad Benkhelifa, El-Amine

    2015-05-15

    Electron-ion plasma expansion is studied in the presence of positively (negatively) highly charged uniformly distributed dust particles, considered as impurities. For that purpose, a multi-fluid model is used, where the charged impurities characteristics are included in Poisson's equation. We found that ion acceleration is enhanced by the presence of positively charged dust. The latter leads to spiky structures in the ion front which have a higher amplitude as the charge increases. The charged impurities have a significant effect when the combination of their charge and density is greater than a critical value which depends on ion to electron temperature ratio.

  10. Blocking of an ion channel by a highly charged drug: Modeling the effects of applied voltage, electrolyte concentration, and drug concentration

    NASA Astrophysics Data System (ADS)

    Aguilella-Arzo, Marcel; Cervera, Javier; Ramírez, Patricio; Mafé, Salvador

    2006-04-01

    We present a simple physical model to estimate the blocked pore probability of an ion channel that can be blocked by a highly charged drug in solution. The model is inspired by recent experimental work on the blocking of the PA63 channel, involved in the anthrax toxin infection, by a highly charged drug [Karginov PNAS 102, 15075 (2005)]. The drug binding to the pore is highly specific but the strong dependence of blocking on the applied voltage and electrolyte concentration suggests that long range electrostatic interactions are important. Since basic electrostatic concepts rather than detailed molecular models are considered, the microscopic details of the channel blocking are ignored, although the model captures most of the qualitative characteristics of the problem.

  11. High temperature charge amplifier for geothermal applications

    DOEpatents

    Lindblom, Scott C.; Maldonado, Frank J.; Henfling, Joseph A.

    2015-12-08

    An amplifier circuit in a multi-chip module includes a charge to voltage converter circuit, a voltage amplifier a low pass filter and a voltage to current converter. The charge to voltage converter receives a signal representing an electrical charge and generates a voltage signal proportional to the input signal. The voltage amplifier receives the voltage signal from the charge to voltage converter, then amplifies the voltage signal by the gain factor to output an amplified voltage signal. The lowpass filter passes low frequency components of the amplified voltage signal and attenuates frequency components greater than a cutoff frequency. The voltage to current converter receives the output signal of the lowpass filter and converts the output signal to a current output signal; wherein an amplifier circuit output is selectable between the output signal of the lowpass filter and the current output signal.

  12. Highly charged ions as a basis of optical atomic clockwork of exceptional accuracy.

    PubMed

    Derevianko, Andrei; Dzuba, V A; Flambaum, V V

    2012-11-01

    We propose a novel class of atomic clocks based on highly charged ions. We consider highly forbidden laser-accessible transitions within the 4f(12) ground-state configurations of highly charged ions. Our evaluation of systematic effects demonstrates that these transitions may be used for building exceptionally accurate atomic clocks which may compete in accuracy with recently proposed nuclear clocks. PMID:23215265

  13. High-speed electret charging using vacuum UV photoionization

    SciTech Connect

    Honzumi, Makoto; Suzuki, Yuji; Hagiwara, Kei; Iguchi, Yoshinori

    2011-01-31

    We propose a high-speed charging method of electrets using vacuum ultraviolet irradiation. Due to a large amount of the ionization current at reduced pressure, it takes only a few seconds to charge 15-{mu}m-thick polymer electret film to the surface potential of -900 V. This charging rate is two orders of magnitudes larger than corona/soft-x-ray charging methods. The purity of N{sub 2} gas depends on the charging rate since the O{sub 2} quenching mechanisms of exited N{sub 2} molecule would exist. No charge decay is observed for 3000 h, which indicates charged electrets are as stable as those by other charging methods.

  14. Effective dynamics of a classical point charge

    SciTech Connect

    Polonyi, Janos

    2014-03-15

    The effective Lagrangian of a point charge is derived by eliminating the electromagnetic field within the framework of the classical closed time path formalism. The short distance singularity of the electromagnetic field is regulated by an UV cutoff. The Abraham–Lorentz force is recovered and its similarity to quantum anomalies is underlined. The full cutoff-dependent linearized equation of motion is obtained, no runaway trajectories are found but the effective dynamics shows acausality if the cutoff is beyond the classical charge radius. The strength of the radiation reaction force displays a pole in its cutoff-dependence in a manner reminiscent of the Landau-pole of perturbative QED. Similarity between the dynamical breakdown of the time reversal invariance and dynamical symmetry breaking is pointed out. -- Highlights: •Extension of the classical action principle for dissipative systems. •New derivation of the Abraham–Lorentz force for a point charge. •Absence of a runaway solution of the Abraham–Lorentz force. •Acausality in classical electrodynamics. •Renormalization of classical electrodynamics of point charges.

  15. Design of low energy bunch compressors with space charge effects

    NASA Astrophysics Data System (ADS)

    He, A.; Willeke, F.; Yu, L. H.; Yang, L.; Shaftan, T.; Wang, G.; Li, Y.; Hidaka, Y.; Qiang, J.

    2015-01-01

    In this paper, we explore a method to manipulate low energy electron bunches in a space charge dominated regime, and we use this method to design low energy linac bunch compressors to compress electron bunches in a space charge dominated regime. In the method, we use the space charge effects instead of avoiding them; i.e., we use the space charge forces to generate the required energy chirp instead of the ordinary method which uses the rf accelerating system to generate the chirp. We redefine the concepts of the dispersion function and beta functions in a space charge dominated regime to guide the optimization. Using this method, we study the low energy (5-22 MeV) linac bunch compressor design to produce short (˜150 fs ) and small size (˜30 μ m ) bunches for the electron beam slicing project. The low energy linac bunch compressors work in a space charge dominated regime, and the bunches at the downstream of the gun have a negative energy chirp due to the space charge effects. To provide compression for the negative energy chirped bunch, we design a positive R56 dispersive section using a four-dipole chicane with several quadrupole magnets. We have designed low energy linac bunch compressors with different photocathode rf guns. For example, one linac bunch compressor with the BNL photocathode electron rf gun has achieved a low energy bunch with the 166 fs rms bunch length, 28 and 31 μ m rms beam size in the vertical and horizontal directions, respectively, at 5 MeV with 50 pC charge. Another example with LBNL's very-high frequency gun has achieved a low energy bunch with the 128 fs rms bunch length, 42 and 25 μ m rms beam size in the vertical and horizontal directions, respectively, at 22 MeV with 200 pC charge.

  16. High energy implantation with high-charge-state ions in a vacuum arc ion implanter

    SciTech Connect

    Oks, E.M. |; Anders, A.; Brown, I.G.; Dickinson, M.R.; MacGill, R.A.

    1996-08-01

    Ion implantation energy can in principal be increased by increasing the charge states of the ions produced by the ion source rather than by increasing the implanter operating voltage, providing an important savings in cost and size of the implanter. In some recent work the authors have shown that the charge states of metal ions produced in a vacuum arc ion source can be elevated by a strong magnetic field. In general, the effect of both high arc current and high magnetic field is to push the distribution to higher charge states--the mean ion charge state is increased and new high charge states are formed. The effect is significant for implantation application--the mean ion energy can be about doubled without change in extraction voltage. Here they describe the ion source modifications, the results of time-of-flight measurements of ion charge state distributions, and discuss the use and implications of this technique as a means for doing metal iron implantation in the multi-hundreds of keV ion energy range.

  17. Saturation effect in projectile- and target- x-ray production in collisions between 2.5 MeV/u highly charged Cu ions and gaseous targets

    NASA Astrophysics Data System (ADS)

    Kumar, Ajay; Misra, D.; Kelkar, A. H.; Kadhane, U.; Singh, Y. P.; Lapicki, G.; Gulyas, L.; Tribedi, L. C.

    2006-01-01

    L x-ray production cross sections have been measured for highly charged 2.5 MeV/u Cuq+ (q = 20-26) ions colliding with H2, Ne, Ar, Kr and Xe target atoms. The observed Cu L x-rays are due to the excitation and electron-transfer processes. The charge state dependence of the projectile L x-rays has been studied with Ar and Kr targets. We have derived the subshell resolved K-L1, K-L2 and K-L3 electron-transfer cross sections from the measured Ar K x-ray yields as a function of L vacancies in Cu ion. The measured projectile L x-ray production cross sections arising from the excitation and electron capture are found to saturate as target atomic number Zt increases. Similarly, a saturation has also been found in the Ar K-shell ionization cross sections as a function of Zp.

  18. Study of the effect of the space charge using SYNCH

    SciTech Connect

    Haffmans, A.F.; Maletic, D.; Ruggiero, A.G.

    1994-04-25

    The interparticle repulsion, or space charge, limits the density of charged-particle beams that can be obtained in storage rings. In this report the authors study the effect of increasing the space charge, with an exact computation of the lattice parameters using SYNCH. Systematically increasing the ion density by decreasing the emittance with cooling techniques lowers the betatron tune, until the lower half-integral stopband resonance -- also induced by the beam -- is reached. In the simple model described in the report, the amount of ``cooling`` is limited by the encountered stopband of the lattice. Therefore, machines with a higher tune and larger periodicity are better suited to store beams with high space charge.

  19. Space charge effects in ultrafast electron diffraction and imaging

    SciTech Connect

    Tao Zhensheng; Zhang He; Duxbury, P. M.; Berz, Martin; Ruan, Chong-Yu

    2012-02-15

    Understanding space charge effects is central for the development of high-brightness ultrafast electron diffraction and microscopy techniques for imaging material transformation with atomic scale detail at the fs to ps timescales. We present methods and results for direct ultrafast photoelectron beam characterization employing a shadow projection imaging technique to investigate the generation of ultrafast, non-uniform, intense photoelectron pulses in a dc photo-gun geometry. Combined with N-particle simulations and an analytical Gaussian model, we elucidate three essential space-charge-led features: the pulse lengthening following a power-law scaling, the broadening of the initial energy distribution, and the virtual cathode threshold. The impacts of these space charge effects on the performance of the next generation high-brightness ultrafast electron diffraction and imaging systems are evaluated.

  20. Magnetic field effect on charged Brownian swimmers

    NASA Astrophysics Data System (ADS)

    Sandoval, M.; Velasco, R. M.; Jiménez-Aquino, J. I.

    2016-01-01

    We calculate the effective diffusion of a spherical self-propelled charged particle swimming at low Reynolds number, and subject to a time-dependent magnetic field and thermal agitation. We find that the presence of an external magnetic field may reduce or enhance (depending on the type of swimming and magnetic field applied) the swimmer's effective diffusion, hence we get another possible strategy to control its displacement. For swimmers performing reciprocal motion, and under an oscillating time-dependent magnetic field, mechanical resonance appears when the swimmer and magnetic frequencies coincide, thus enhancing the particle's effective diffusion. Our analytical results are compared with Brownian Dynamics simulations and we obtain excellent agreement.

  1. Effects of ionizing radiation on charge-coupled imagers

    NASA Technical Reports Server (NTRS)

    Killiany, J. M.; Baker, W. D.; Saks, N. S.; Barbe, D. F.

    1975-01-01

    The effects of ionizing radiation on three different charge coupled imagers have been investigated. Device performance was evaluated as a function of total gamma ray dose. The principal failure mechanisms have been identified for each particular device structure. The clock and bias voltages required for high total dose operation of the devices are presented.

  2. Complexation behavior of oppositely charged polyelectrolytes: Effect of charge distribution

    SciTech Connect

    Zhao, Mingtian; Li, Baohui E-mail: baohui@nankai.edu.cn; Zhou, Jihan; Su, Cuicui; Niu, Lin; Liang, Dehai E-mail: baohui@nankai.edu.cn

    2015-05-28

    Complexation behavior of oppositely charged polyelectrolytes in a solution is investigated using a combination of computer simulations and experiments, focusing on the influence of polyelectrolyte charge distributions along the chains on the structure of the polyelectrolyte complexes. The simulations are performed using Monte Carlo with the replica-exchange algorithm for three model systems where each system is composed of a mixture of two types of oppositely charged model polyelectrolyte chains (EGEG){sub 5}/(KGKG){sub 5}, (EEGG){sub 5}/(KKGG){sub 5}, and (EEGG){sub 5}/(KGKG){sub 5}, in a solution including explicit solvent molecules. Among the three model systems, only the charge distributions along the chains are not identical. Thermodynamic quantities are calculated as a function of temperature (or ionic strength), and the microscopic structures of complexes are examined. It is found that the three systems have different transition temperatures, and form complexes with different sizes, structures, and densities at a given temperature. Complex microscopic structures with an alternating arrangement of one monolayer of E/K monomers and one monolayer of G monomers, with one bilayer of E and K monomers and one bilayer of G monomers, and with a mixture of monolayer and bilayer of E/K monomers in a box shape and a trilayer of G monomers inside the box are obtained for the three mixture systems, respectively. The experiments are carried out for three systems where each is composed of a mixture of two types of oppositely charged peptide chains. Each peptide chain is composed of Lysine (K) and glycine (G) or glutamate (E) and G, in solution, and the chain length and amino acid sequences, and hence the charge distribution, are precisely controlled, and all of them are identical with those for the corresponding model chain. The complexation behavior and complex structures are characterized through laser light scattering and atomic force microscopy measurements. The order

  3. Complexation behavior of oppositely charged polyelectrolytes: Effect of charge distribution

    NASA Astrophysics Data System (ADS)

    Zhao, Mingtian; Zhou, Jihan; Su, Cuicui; Niu, Lin; Liang, Dehai; Li, Baohui

    2015-05-01

    Complexation behavior of oppositely charged polyelectrolytes in a solution is investigated using a combination of computer simulations and experiments, focusing on the influence of polyelectrolyte charge distributions along the chains on the structure of the polyelectrolyte complexes. The simulations are performed using Monte Carlo with the replica-exchange algorithm for three model systems where each system is composed of a mixture of two types of oppositely charged model polyelectrolyte chains (EGEG)5/(KGKG)5, (EEGG)5/(KKGG)5, and (EEGG)5/(KGKG)5, in a solution including explicit solvent molecules. Among the three model systems, only the charge distributions along the chains are not identical. Thermodynamic quantities are calculated as a function of temperature (or ionic strength), and the microscopic structures of complexes are examined. It is found that the three systems have different transition temperatures, and form complexes with different sizes, structures, and densities at a given temperature. Complex microscopic structures with an alternating arrangement of one monolayer of E/K monomers and one monolayer of G monomers, with one bilayer of E and K monomers and one bilayer of G monomers, and with a mixture of monolayer and bilayer of E/K monomers in a box shape and a trilayer of G monomers inside the box are obtained for the three mixture systems, respectively. The experiments are carried out for three systems where each is composed of a mixture of two types of oppositely charged peptide chains. Each peptide chain is composed of Lysine (K) and glycine (G) or glutamate (E) and G, in solution, and the chain length and amino acid sequences, and hence the charge distribution, are precisely controlled, and all of them are identical with those for the corresponding model chain. The complexation behavior and complex structures are characterized through laser light scattering and atomic force microscopy measurements. The order of the apparent weight-averaged molar

  4. Stability of highly-charged Reissner-Nordström black holes to charged scalar perturbations

    NASA Astrophysics Data System (ADS)

    Hod, Shahar

    2015-02-01

    The stability of Reissner-Nordström black holes under the influence of neutral perturbation fields was proved by Moncrief four decades ago. However, the superradiant scattering phenomenon, which characterizes the dynamics of charged bosonic fields in these charged black-hole spacetimes, imposes a greater and nontrivial threat on their stability. According to this well-known phenomenon, integer-spin charged fields interacting with a Reissner-Nordström black hole can be amplified (gain energy) by extracting some of the black-hole Coulomb energy. If, in addition to being electrically charged, the incident bosonic fields also possess nonzero rest masses, then the mutual gravitational attraction between the central black hole and the fields may prevent the extracted energy and electric charge from escaping to infinity. One may suspect that the physical mechanism of superradiant amplification of charged bosonic fields in the charged Reissner-Nordström black-hole spacetime, when combined with the confinement mechanism provided by the mutual gravitational attraction between the black hole and the massive fields, may lead to a superradiant instability of the Reissner-Nordström black-hole spacetime. (This suspicion is mainly based on our experience with rotating Kerr black holes, which are known to be characterized by an analogous superradiant instability when coupled to massive bosonic fields.) However, in this paper we show that, for highly-charged Reissner-Nordström black holes in the charge interval 8 /9 <(Q/M ) 2<1 , the two physical mechanisms which are required in order to trigger the superradiant instability phenomenon in the black-hole spacetime [namely: (1) the superradiant amplification of incident charged scalar fields by the charged black hole, and (2) the existence of a binding potential well in the black-hole exterior region which prevents the extracted energy and electric charge from escaping to infinity] cannot operate simultaneously. In particular, we

  5. Effective charges and virial pressure of concentrated macroion solutions

    PubMed Central

    Boon, Niels; Guerrero-García, Guillermo Ivan; van Roij, René; Olvera de la Cruz, Monica

    2015-01-01

    The stability of colloidal suspensions is crucial in a wide variety of processes, including the fabrication of photonic materials and scaffolds for biological assemblies. The ionic strength of the electrolyte that suspends charged colloids is widely used to control the physical properties of colloidal suspensions. The extensively used two-body Derjaguin−Landau−Verwey−Overbeek (DLVO) approach allows for a quantitative analysis of the effective electrostatic forces between colloidal particles. DLVO relates the ionic double layers, which enclose the particles, to their effective electrostatic repulsion. Nevertheless, the double layer is distorted at high macroion volume fractions. Therefore, DLVO cannot describe the many-body effects that arise in concentrated suspensions. We show that this problem can be largely resolved by identifying effective point charges for the macroions using cell theory. This extrapolated point charge (EPC) method assigns effective point charges in a consistent way, taking into account the excluded volume of highly charged macroions at any concentration, and thereby naturally accounting for high volume fractions in both salt-free and added-salt conditions. We provide an analytical expression for the effective pair potential and validate the EPC method by comparing molecular dynamics simulations of macroions and monovalent microions that interact via Coulombic potentials to simulations of macroions interacting via the derived EPC effective potential. The simulations reproduce the macroion−macroion spatial correlation and the virial pressure obtained with the EPC model. Our findings provide a route to relate the physical properties such as pressure in systems of screened Coulomb particles to experimental measurements. PMID:26170315

  6. Cooling of highly charged ions in a Penning trap

    SciTech Connect

    Gruber, L

    2000-03-31

    Highly charged ions are extracted from an electron beam ion trap and guided to Retrap, a cryogenic Penning trap, where they are merged with laser cooled Be{sup +} ions. The Be{sup +} ions act as a coolant for the hot highly charged ions and their temperature is dropped by about 8 orders of magnitude in a few seconds. Such cold highly charged ions form a strongly coupled nonneutral plasma exhibiting, under such conditions, the aggregation of clusters and crystals. Given the right mixture, these plasmas can be studied as analogues of high density plasmas like white dwarf interiors, and potentially can lead to the development of cold highly charged ion beams for applications in nanotechnology. Due to the virtually non existent Doppler broadening, spectroscopy on highly charged ions can be performed to an unprecedented precision. The density and the temperature of the Be{sup +} plasma were measured and highly charged ions were sympathetically cooled to similar temperatures. Molecular dynamics simulations confirmed the shape, temperature and density of the highly charged ions. Ordered structures were observed in the simulations.

  7. Collision phenomena involving highly-charged ions in astronomical objects

    NASA Technical Reports Server (NTRS)

    Chutjian, A.

    2001-01-01

    A description of the role of highly charged ions in various astronomical objects; includes the use of critical quantities such as cross sections for excitation, charge-exchange, X-ray emission, radiative recombination (RR) and dielectronic recombination (DR); and lifetimes, branching ratios, and A-values.

  8. High lying N* studies in electromagnetic double charged pion production

    SciTech Connect

    V. I. Mokeev; M. Ripani; M. Anghinolfi; M. Battaglieri; R. De Vita; G. V. Fedotov; E. N. Golovach; B. S. Ishkhanov; M. V. Osipenko; G. Ricco; V. Sapunenko; M. Taiuti

    2002-06-07

    A phenomenological model for double charged pion production is presented, aimed to exact N* electromagnetic form factors from measured observables (differential cross-sections, asymmetries). The preliminary results of CLAS data analysis on double charged pion production by virtual photons are discussed, focusing on high lying N* electromagnetic excitation and signals from possible ''missing'' baryon states.

  9. Secondary Electron Emission from Dust and Its Effect on Charging

    SciTech Connect

    Saikia, B. K.; Kakati, B.; Kausik, S. S.; Bandyopadhyay, M.

    2011-11-29

    Hydrogen plasma is produced in a plasma chamber by striking discharge between incandescent tungsten filaments and the permanent magnetic cage [1], which is grounded. The magnetic cage has a full line cusped magnetic field geometry used to confine the plasma elements. A cylindrical Langmuir probe is used to study the plasma parameters in various discharge conditions. The charge accumulated on the dust particles is calculated using the capacitance model and the dust current is measured by the combination of a Faraday cup and an electrometer at different discharge conditions. It is found Secondary electron emission from dust having low emission yield effects the charging of dust particles in presence of high energetic electrons.

  10. Longitudinal emittance growth due to nonlinear space charge effect

    NASA Astrophysics Data System (ADS)

    Lau, Y. Y.; Yu, Simon S.; Barnard, John J.; Seidl, Peter A.

    2012-03-01

    Emittance posts limits on the key requirements of final pulse length and spot size on target in heavy ion fusion drivers. In this paper, we show studies on the effect of nonlinear space charge on longitudinal emittance growth in the drift compression section. We perform simulations, using the 3D PIC code WARP, for a high current beam under conditions of bends and longitudinal compression. The linear growth rate for longitudinal emittance turns out to depend only on the peak line charge density, and is independent of pulse length, velocity tilt, and/or the pipe and beam size. This surprisingly simple result is confirmed by simulations and analytic calculations.

  11. Comparison of effective rate coefficients for high energy charge-exchange with measurements of the Rydberg series of Ar16+ at the tokamak TEXTOR

    NASA Astrophysics Data System (ADS)

    Schlummer, T.; Marchuk, O.; Schultz, D. R.; Bertschinger, G.; Biel, W.; Reiter, D.; the TEXTOR-Team

    2015-07-01

    The charge-exchange (CX) rate coefficients for highly ionized impurity ions play a crucial role in fusion plasma diagnostics. However, till today a substantial difference exists in data for the nl-resolved cross-sections based on the different approximations underlying the classical trajectory Monte Carlo (CTMC) calculations either based on the standard initial momentum distribution of target electron orbits (pCTMC, as in the CX data provided by Whyte et al (1998 Phys. Plasmas 5 3694) and Schultz et al (2010 J. Phys. B: At. Mol. Opt. Phys. 43 144002) or based on the alternate initial radial distribution of orbits (rCTMC, as in the calculations of Errea et al (2006 J. Phys. B: At. Mol. Opt. Phys. 39 L91). In this paper, results of new pCTMC and rCTMC calculations for CX in 16.7, 25, and 50 keV/u Ar17+ + H(1s), H(2s), and H(2p) are compared against X-ray line measurements performed at the tokamak TEXTOR. The Rydberg series (1snp-1s2) and the Kα-spectrum (1s2l-1s2) of He-like argon were measured directly in the beam-line of a 16.7-50 keV/u hydrogen injector. The intensities of the spectral lines are compared to the effective CX rate coefficients utilizing both sets of cross sections. While both data sets show good agreement with respect to the observed impact on the Kα transition, only the pCTMC data allow a consistent description of the CX ‘resonance’ observed on the Rydberg lines around n ≈ 8, 9. Similar to the case of low energy ion-atom interactions reported from different tokamaks, the observed influence of CX is separable into contributions from beam particles in the ground and excited states, respectively. It is shown, that the number of beam excited states nh contributing to the CX signal, where nh is the principal quantum number, is limited to nh ≲ 10, confirming the results of recent collisional-radiative models of beam atoms in parabolic states.

  12. Effect of charge memory in organic composites

    NASA Astrophysics Data System (ADS)

    Belogorokhov, I. A.; Kotova, M. S.; Donskov, A. A.; Dronov, M. A.; Belogorokhova, L. I.

    2016-07-01

    The effect of charge memory in composites based on polymer molecules has been investigated. Resistive switchings in sandwich samples prepared by lamination from commercially available polymers (polystyrene and poly(2,3-dihydrothieno-1,4-dioxine)-poly(styrene sulphonate) are analyzed. It is shown that the characteristic switching times in the composite samples reach several nanoseconds and the number of switchings exceeds 106. Switchings are observed in electric fields much below the breakdown threshold, which indicates the absence of destructive processes in the polymer.

  13. Diffusion of highly charged cations in olivine

    NASA Astrophysics Data System (ADS)

    Cherniak, D. J.; Watson, E. B.; Liang, Y.

    2012-12-01

    Diffusion of tungsten, titanium and phosphorus have been measured in natural iron-bearing olivine (~Fo90) and synthetic forsterite. Experiments were run under buffered conditions (with iron-wustite or Ni-NiO buffers) in 1-atm furnaces. The sources of diffusant for experiments were MgWO4 for tungsten diffusion, Mg2TiO4 for Ti diffusion, and AlPO4 for P diffusion; in all cases these compounds were pre-reacted at high temperature with Mg2SiO4 or Fe-bearing olivine prior to diffusion anneals. Samples were placed with the source materials in noble metal or silica capsules, which were sealed under vacuum in silica glass ampoules with solid buffers. Rutherford backscattering spectrometry (RBS) was used to measure depth profiles for all sets of experiments; measurements of P were also made with Nuclear Reaction Analysis using the 31P(α,p)34S reaction. These new data suggest marked differences among diffusivities of these cations, with titanium diffusion faster than diffusion of tungsten, but slower than diffusion of phosphorus over the conditions investigated. Diffusivities of all of these elements appear significantly slower than those of divalent cations in olivine. These results will be discussed in context with extant diffusion data for major, trace and minor elements in olivine. The effects of oxygen fugacity and olivine composition on diffusion, and potential implications for diffusion mechanisms will also be considered.

  14. Studying and applying channeling at extremely high bunch charges

    SciTech Connect

    Carrigan, R.A.; /Fermilab

    2005-01-01

    The potentially high plasma densities possible in solids might produce extremely high acceleration gradients. However solid-state plasmas could pose daunting challenges. Crystal channeling has been suggested as a mechanism to ameliorate these problems. A high-density plasma in a crystal lattice could quench the channeling process. There is no experimental or theoretical guidance on channeling for intense charged particle beams. An experiment has been carried out at the Fermilab A0 photoinjector to observe electron channeling radiation at high bunch charges. An electron beam with up to 8 nC per electron bunch was used to investigate the electron-crystal interaction. No evidence was found of quenching of channeling at charge densities two orders of magnitude larger than in earlier experiments. Possible new channeling experiments are discussed for the much higher bunch charge densities and shorter times required to probe channeling breakdown and plasma behavior.

  15. Surface erosion and modification by highly charged ions.

    SciTech Connect

    Insepov, Z.; Terasawa, M.; Takayama, K.; Mathematics and Computer Science; KEK, Japan; Univ. of Hyogo

    2008-06-01

    Analyses were conducted of various models and mechanisms of highly charged ion (HCI) and swift-heavy ion energy transfer into a solid target, such as hollow atom formation, charge screening, neutralization, shock wave generation, crater formation, and sputtering. A plasma model of space charge neutralization based on impact ionization of semiconductors at high electric fields was developed and applied to analyze HCI impacts on Si and W. Surface erosions of semiconductor and metal surfaces caused by HCI bombardments were studied by using a molecular dynamics simulation method, and the results were compared with experimental sputtering data.

  16. Designing of electrode for high energy charged particle acceleration

    NASA Astrophysics Data System (ADS)

    Das, Basanta Kumar; Shyam, A.

    2010-02-01

    Vacuum insulation plays an important role in charged particle acceleration. We are making one compact size neutron generator in our lab. For this purpose the deuterium ions are formed in a penning ion source and extracted along the axis of the electrode arrangement. For neutron generation from D-T reaction, the deuterium ions are to be accelerated up to ~ 100KeV to the tritium target. After extraction of the ions from the ion source, the ions pass through the acceleration electrode. For high acceleration voltage, selecting the shape of the electrode is important. The plane geometry leads to high electric field at the edge whereas a curved geometry reduces this effect. The study of the physical processes at the electrode surface due to ion interaction is crucial. In this presentation, we will present the designing of the electrode for our purpose and discuss the issues related to the physical process at the surface of the electrode

  17. Charge effect in point projection images of carbon fibres

    PubMed

    Prigent; Morin

    2000-09-01

    Nanometre-sized carbon fibres across holes have been observed in a lensless point projection field-emission microscope operating between 100 and 300 eV. At sufficiently high magnification fringe patterns appear; with the help of simulations we show that they are strongly dependent on the charge density of the fibres. These patterns are characterized by an odd number of fringes with a central fringe that becomes very bright as the charge increases. Average diameter and linear charge density have been obtained with remarkable precision from analysis of fringes. Charge distribution from the middle to the edge of fibres has been investigated as well as narrowings at localized places on the fringe pattern. From these two examples, the limits of the models used for the simulations and those of the data acquisition system are discussed. Finally, this work emphasizes the fact that the fringe pattern masks the actual form of the fibre and that it is necessary to take account of the charge effect to interpret this diffraction pattern. PMID:10971800

  18. Highly charged ion based time of flight emission microscope

    DOEpatents

    Barnes, Alan V.; Schenkel, Thomas; Hamza, Alex V.; Schneider, Dieter H.; Doyle, Barney

    2001-01-01

    A highly charged ion based time-of-flight emission microscope has been designed, which improves the surface sensitivity of static SIMS measurements because of the higher ionization probability of highly charged ions. Slow, highly charged ions are produced in an electron beam ion trap and are directed to the sample surface. The sputtered secondary ions and electrons pass through a specially designed objective lens to a microchannel plate detector. This new instrument permits high surface sensitivity (10.sup.10 atoms/cm.sup.2), high spatial resolution (100 nm), and chemical structural information due to the high molecular ion yields. The high secondary ion yield permits coincidence counting, which can be used to enhance determination of chemical and topological structure and to correlate specific molecular species.

  19. Highly charged hollow latex particles prepared via seeded emulsion polymerization.

    PubMed

    Nuasaen, Sukanya; Tangboriboonrat, Pramuan

    2013-04-15

    The carboxylated hollow latex (HL) particles possessing high surface charge density were conveniently prepared by using poly(styrene-co-acrylic acid) (P(St/AA)) as seed particles and methyl methacrylate (MMA)/divinylbenzene (DVB)/AA as monomers. Without seed removal, the hollow structure was simply tuned by adjusting the monomer/seed ratio and the monomer content. The monodisperse, spherical, and non-collapsed HL particles with double shell having the void of 280 nm were obtained from P(St/AA) seeds of 300 nm. The conductimetric back titration, SEM, TEM, and dynamic light scattering measurement revealed that the surface charge density, surface roughness, and size of HL particles significantly increased when applying the stepwise charging monomers/initiator. The highly charged HL particles would be well dispersed in coating film providing good optical properties, for example, opacity and whiteness. PMID:23428072

  20. Atomic structure of highly-charged ions. Final report

    SciTech Connect

    Livingston, A. Eugene

    2002-05-23

    Atomic properties of multiply charged ions have been investigated using excitation of energetic heavy ion beams. Spectroscopy of excited atomic transitions has been applied from the visible to the extreme ultraviolet wavelength regions to provide accurate atomic structure and transition rate data in selected highly ionized atoms. High-resolution position-sensitive photon detection has been introduced for measurements in the ultraviolet region. The detailed structures of Rydberg states in highly charged beryllium-like ions have been measured as a test of long-range electron-ion interactions. The measurements are supported by multiconfiguration Dirac-Fock calculations and by many-body perturbation theory. The high-angular-momentum Rydberg transitions may be used to establish reference wavelengths and improve the accuracy of ionization energies in highly charged systems. Precision wavelength measurements in highly charged few-electron ions have been performed to test the most accurate relativistic atomic structure calculations for prominent low-lying excited states. Lifetime measurements for allowed and forbidden transitions in highly charged few-electron ions have been made to test theoretical transition matrix elements for simple atomic systems. Precision lifetime measurements in laser-excited alkali atoms have been initiated to establish the accuracy of relativistic atomic many-body theory in many-electron systems.

  1. Atomic physics with highly charged ions

    SciTech Connect

    Richard, P.

    1991-08-01

    This report discusses: One electron outer shell processes in fast ion-atom collisions; role of electron-electron interaction in two-electron processes; multi-electron processes at low energy; multi-electron processes at high energy; inner shell processes; molecular fragmentation studies; theory; and, JRM laboratory operations.

  2. Special issue on the spectroscopy of highly-charged ions

    NASA Astrophysics Data System (ADS)

    Nakamura, Nobuyuki; Ralchenko, Yuri; Stöhlker, Thomas

    2014-07-01

    Journal of Physics B: Atomic, Molecular and Optical Physics is delighted to announce a forthcoming special issue on the spectroscopy of highly-charged ions, to appear in the early summer of 2015, and invites you to submit a paper. From fusion to astrophysics to EUV lithography, highly-charged ions (HCI) are used to diagnose plasma properties, create new powerful sources of light and even verify the most fundamental theories. Since the mere creation of such multiply-stripped atoms requires extreme temperature or energies, their radiation is frequently the only physical data available to researchers. Even so, the HCI spectra provide a variety of rich and detailed information on ion properties and environment conditions. Over the last couple of decades, spectroscopy of HCI has been given a strong impetus through the development of both compact (e.g. electron beam ion traps) and large-scale (e.g. tokamaks, stellarators, storage rings) machines capable of efficiently producing atoms that are ionized fifty, sixty, or even ninety times. This, in turn, triggered the development of new experimental and theoretical techniques to measure and analyze HCI spectra and to use this radiation for plasma diagnostics. The purpose of this special issue will be to provide an extensive account of the state of the art in this thriving area of atomic physics. The covered topics, in particular, will include (but not be limited to): New experimental methods for the production and recording of HCI spectra Identification of HCI spectra Measurement of transition lifetimes Relativistic, QED and nuclear effects in HCI spectra Polarization and angular distribution of radiation Effects of external fields on HCI spectra Tests of fundamental theories Plasma spectroscopy and spectra modeling with HCI Please submit your article by 1 December 2014 using our website http://mc04.manuscriptcentral.com/jphysb-iop. Submissions received after this date will be considered for the journal, but may not be

  3. Charge collection and charge pulse formation in highly irradiated silicon planar detectors

    SciTech Connect

    Dezillie, B.; Li, Z.; Eremin, V.

    1998-06-01

    The interpretation of experimental data and predictions for future experiments for high-energy physics have been based on conventional methods like capacitance versus voltage (C-V) measurements. Experiments carried out on highly irradiated detectors show that the kinetics of the charge collection and the dependence of the charge pulse amplitude on the applied bias are deviated too far from those predicted by the conventional methods. The described results show that in highly irradiated detectors, at a bias lower than the real full depletion voltage (V{sub fd}), the kinetics of the charge collection (Q) contains a fast and a slow component. At V = V{sub fd}*, which is the full depletion voltage traditionally determined by the extrapolation of the fast comopnent amplitude of q versus bias to the maximum value or from the standard C-V measurements, the pulse has a slow component with significant amplitude. This slow component can only be eliminated by applying additional bias that amounts to the real full depletion voltage (V{sub fd}) or more. The above mentioned regularities are explained in this paper in terms of a model of an irradiated detector with multiple regions. This model allows one to use C-V, in a modified way, as well as TChT (transient charge technique) measurements to determine the V{sub fd} for highly irradiated detectors.

  4. Design guidelines for assessing and controlling spacecraft charging effects

    NASA Technical Reports Server (NTRS)

    Purvis, C. K.; Garrett, H. B.; Whittlesey, A. C.; Stevens, N. J.

    1984-01-01

    The need for uniform criteria, or guidelines, to be used in all phases of spacecraft design is discussed. Guidelines were developed for the control of absolute and differential charging of spacecraft surfaces by the lower energy space charged particle environment. Interior charging due to higher energy particles is not considered. A guide to good design practices for assessing and controlling charging effects is presented. Uniform design practices for all space vehicles are outlined.

  5. High energy charged particle optics computer programs

    SciTech Connect

    Carey, D.C.

    1980-09-01

    The computer programs TRANSPORT and TURTLE are described, with special emphasis on recent developments. TRANSPORT is a general matrix evaluation and fitting program. First and second-order transfer matrix elements, including those contributing to time-of-flight differences can be evaluated. Matrix elements of both orders can be fit, separately or simultaneously. Floor coordinates of the beam line may be calculated and included in any fits. Tables of results of misalignments, including effects of bilinear terms can be produced. Fringe fields and pole face rotation angles of bending magnets may be included and also adjusted automatically during the fitting process to produce rectangular magnets. A great variety of output options are available. TURTLE is a Monte Carlo program used to simulate beam line performance. It includes second-order terms and aperture constraints. Replacable subroutines allow an unliminated variety of input beam distributions, scattering algorithms, variables which can be histogrammed, and aperture shapes. Histograms of beam loss can also be produced. Rectangular zero-gradient bending magnets with proper circular trajectories, sagitta offsets, pole face rotation angles, and aperture constraints can be included. The effect of multiple components of quadrupoles up to 40 poles can be evaluated.

  6. The effects of cage design on airborne allergens and endotoxin in animal rooms: high-volume measurements with an ion-charging device.

    PubMed

    Platts-Mills, James; Custis, Natalie; Kenney, Alice; Tsay, Amy; Chapman, Martin; Feldman, Sanford; Platts-Mills, Thomas

    2005-03-01

    Respiratory symptoms related to both endotoxins and animal allergens continue to be an important cause of occupational disease for animal technicians and scientists working with rodents. Better sampling methods for airborne allergens and endotoxin are needed to help standardize compliance with federal occupational health regulations. Using an ion-charging device, we sampled 20 mouse rooms and four rat rooms at the University of Virginia, along with 43 domestic living rooms in houses in the Charlottesville area with at least one cat or dog. The use of filter tops on cages corresponds to a 50-fold reduction in mean levels of both airborne allergens (P < 0.001) and endotoxin (P < 0.001). The use of vented cages with filtered exhaust ports was associated with additional reductions. However, the mean airborne endotoxin level in all rooms using filter tops without a filtered exhaust port on the cages was significantly lower (P = 0.003) than the level in domestic living rooms. Our results for maximum airborne allergens or endotoxin are comparable with previous reports. However, the sensitivity of the technique allows an accurate assessment of low-level exposure, which makes it possible to evaluate the effect of cage designs. In addition, this approach allows direct comparison with results for airborne allergen and endotoxin in domestic homes. The results could allow a more consistent approach to the application of occupational health guidelines. PMID:15773770

  7. Beneficial effects of activated carbon additives on the performance of negative lead-acid battery electrode for high-rate partial-state-of-charge operation

    NASA Astrophysics Data System (ADS)

    Xiang, Jiayuan; Ding, Ping; Zhang, Hao; Wu, Xianzhang; Chen, Jian; Yang, Yusheng

    2013-11-01

    Experiments are made with negative electrode of 2 V cell and 12 V lead-acid battery doped with typical activated carbon additives. It turns out that the negative electrode containing tens-of-micron-sized carbon particles in NAM exhibits markedly increased HRPSoC cycle life than the one containing carbon particles with much smaller size of several microns or the one containing no activated carbon. The improved performance is mainly attributed to the optimized NAM microstructure and the enhanced electrode reaction kinetics by introducing appropriate activated carbon. The beneficial effects can be briefly summarized from three aspects. First, activated carbon acts as new porous-skeleton builder to increase the porosity and active surface of NAM, and thus facilitates the electrolyte diffusion from surface to inner and provides more sites for crystallization/dissolution of lead sulfate; second, activated carbon plays the role of electrolyte supplier to provide sufficient H2SO4 in the inner of plate when the diffusion of H2SO4 from plate surface cannot keep pace of the electrode reaction; Third, activated carbon acts as capacitive buffer to absorb excess charge current which would otherwise lead to insufficient NAM conversion and hydrogen evolution.

  8. Transport of intense beams of highly charged ions

    NASA Astrophysics Data System (ADS)

    Winkler, M.; Gammino, S.; Ciavola, G.; Celona, L.; Spadtke, P.; Tinschert, K.

    2005-10-01

    The new generation of ion sources delivers beams with intensities of several mA. This requires a careful design of the analysing system and the low-energy beam transport (LEBT) from the source to the subsequent systems. At INFN-LNS, high intensity proton sources (TRIPS [L. Celona, G. Ciavola, S. Gammino et al ., Rev. Sci. Instrum. 75(5) 1423 (2004)], PM-TRIPS [G. Ciavola, L. Celona, S. Gammino et al ., Rev. Sci. Instrum. 75(5) 1453 (2004)]) as well as ECR ion sources for the production of highly charged high-intensity heavy ion beams are developed (SERSE [S. Gammino, G. Ciavola, L. Celona et al ., Rev. Sci. Instrum. 72(11) 4090 (2001), and references therein], GyroSERSE [S. Gammino et al ., Rev. Sci. Instrum. 75(5) 1637 (2004)], MS-ECRIS [G. Ciavola et al ., (2005), 11th Int. Conf. on Ion Sources, Caen, (in press)]). In this paper, we present ion-optical design studies of various LEBT systems for ion-sources devoted to the production of intense beams. Calculations were performed using the computer codes GIOS [H. Wollnik, J. Brezina and M. Berz, NIM A 258 (1987)], GICO [M. Berz, H.C. Hoffmann, and H. Wollnik, NIM A 258 (1987)], and TRANSPORT [K.L. Brown, F. Rothacker and D.C. Carey, SLAC-R-95-462, Fermilab-Pub-95/069, UC-414 (1995)]. Simulations take into account the expected phase space growth of the beam emittance due to space-charge effects and image aberrations introduced by the magnetic elements.

  9. Influence of expander components on the processes at the negative plates of lead-acid cells on high-rate partial-state-of-charge cycling. Part I: Effect of lignosulfonates and BaSO 4 on the processes of charge and discharge of negative plates

    NASA Astrophysics Data System (ADS)

    Pavlov, D.; Nikolov, P.; Rogachev, T.

    This study investigates the influence of the organic expander component (Vanisperse A) and of BaSO 4 on the performance of negative lead-acid battery plates on high-rate partial-state-of-charge (HRPSoC) cycling. Batteries operating in the HRPSoC mode should be classified as a separate type of lead-acid batteries. Hence, the additives to the negative plates should differ from the conventional expander composition. It has been established that lignosulfonates are adsorbed onto the lead surface and thus impede the charge processes, which results in impaired reversibility of the charge-discharge processes and hence shorter cycle life on HRPSoC operation, limited by sulfation of the negative plates. BaSO 4 exerts the opposite effect: it improves the reversibility of the processes in the HRPSoC mode and hence prolongs the cycle life of the cells. The most pronounced effect of BaSO 4 has been registered when it is added in concentration of 1.0 wt.% versus the leady oxide (LO) used for paste preparation. It has also been established that BaSO 4 lowers the overpotential of PbSO 4 nucleation. The results of the present investigation indicate that BaSO 4 affects also the crystallization process of Pb during cell charging. Thus, BaSO 4 eventually improves the performance characteristics of lead-acid cells on HRPSoC cycling.

  10. Charged particle beam scanning using deformed high gradient insulator

    SciTech Connect

    Chen, Yu -Jiuan

    2015-10-06

    Devices and methods are provided to allow rapid deflection of a charged particle beam. The disclosed devices can, for example, be used as part of a hadron therapy system to allow scanning of a target area within a patient's body. The disclosed charged particle beam deflectors include a dielectric wall accelerator (DWA) with a hollow center and a dielectric wall that is substantially parallel to a z-axis that runs through the hollow center. The dielectric wall includes one or more deformed high gradient insulators (HGIs) that are configured to produce an electric field with an component in a direction perpendicular to the z-axis. A control component is also provided to establish the electric field component in the direction perpendicular to the z-axis and to control deflection of a charged particle beam in the direction perpendicular to the z-axis as the charged particle beam travels through the hollow center of the DWA.

  11. Charged fullerenes as high-capacity hydrogen storage media.

    PubMed

    Yoon, Mina; Yang, Shenyuan; Wang, Enge; Zhang, Zhenyu

    2007-09-01

    Using first-principles calculations within density functional theory, we explore systematically the capacity of charged carbon fullerenes Cn (20 charged fullerenes can be dramatically enhanced to 0.18-0.32 eV, a desirable range for potential room-temperature, near ambient applications. The enhanced binding is delocalized in nature, surrounding the whole surface of a charged fullerene, and is attributed to the polarization of the hydrogen molecules by the high electric field generated near the surface of the charged fullerene. At full hydrogen coverage, these charged fullerenes can gain storage capacities of up to approximately 8.0 wt %. We also find that, contrary to intuitive expectation, fullerenes containing encapsulated metal atoms only exhibit negligible enhancement in the hydrogen binding strength, because the charge donated by the metal atoms is primarily confined inside the fullerene cages. These predictions may prove to be instrumental in searching for a new class of high-capacity hydrogen storage media. PMID:17718530

  12. Charged Fullerenes as High Capacity Hydrogen Storage Media

    SciTech Connect

    Yoon, Mina; Yang, Shenyuan; Wang, Enge; Zhang, Zhenyu

    2007-01-01

    Using first-principles calculations within density functional theory, we explore systematically the capacity of charged carbon fullerenes Cn (20≤n≤84) as hydrogen storage media. We find that the binding strength of molecular hydrogen on either positively or negatively charged fullerenes can be dramatically enhanced to 0.18-0.32 eV, a desirable range for potential room-temperature, near ambient applications. The enhanced binding is delocalized in nature, surrounding the whole surface of a charged fullerene, and is attributed to the polarization of the hydrogen molecules by the high electric field generated near the surface of the charged fullerene. At full hydrogen coverage, these charged fullerenes can gain storage capacities of up to ~8.0wt%. We also find that, contrary to intuitive expectation, fullerenes containing intercalated metal atoms only exhibit negligible enhancement in the hydrogen binding strength, because the charge donated by the metal atoms is primarily confined inside the fullerene cages. These predictions may prove to be instrumental in searching for a new class of high capacity hydrogen storage media.

  13. Solar Wind Charge Exchange Studies Of Highly Charged Ions On Atomic Hydrogen

    NASA Astrophysics Data System (ADS)

    Draganić, I. N.; Seely, D. G.; McCammon, D.; Havener, C. C.

    2011-06-01

    Accurate studies of low-energy charge exchange (CX) are critical to understanding underlying soft X-ray radiation processes in the interaction of highly charged ions from the solar wind with the neutral atoms and molecules in the heliosphere, cometary comas, planetary atmospheres, interstellar winds, etc.. Particularly important are the CX cross sections for bare, H-like, and He-like ions of C, N, O and Ne, which are the dominant charge states for these heavier elements in the solar wind. Absolute total cross sections for single electron capture by H-like ions of C, N, O and fully-stripped O ions from atomic hydrogen have been measured in an expanded range of relative collision energies (5 eV/u-20 keV/u) and compared to previous H-oven measurements. The present measurements are performed using a merged-beams technique with intense highly charged ion beams extracted from a 14.5 GHz ECR ion source installed on a high voltage platform at the Oak Ridge National Laboratory. For the collision energy range of 0.3 keV/u-3.3 keV/u, which corresponds to typical ion velocities in the solar wind, the new measurements are in good agreement with previous H-oven measurements. The experimental results are discussed in detail and compared with theoretical calculations where available.

  14. Solar Wind Charge Exchange Studies of Highly Charged Ions on Atomic Hydrogen

    SciTech Connect

    Draganic, Ilija N; Seely, D. G.; McCammon, D; Havener, Charles C

    2011-01-01

    Accurate studies of low energy charge exchange (CX) are critical to understanding underlying soft X ray radiation processes in the interaction of highly charged ions from the solar wind with the neutral atoms and molecules in the heliosphere, cometary comas, planetary atmospheres, interstellar winds, etc.. Particularly important are the CX cross sections for bare, H like, and He like ions of C, N, O and Ne, which are the dominant charge states for these heavier elements in the solar wind. Absolute total cross sections for single electron capture by H like ions of C, N, O and fully stripped O ions from atomic hydrogen have been measured in an expanded range of relative collision energies (5 eV u 20 keV u) and compared to previous H oven measurements. The present measurements are performed using a merged beams technique with intense highly charged ion beams extracted from a 14.5 GHz ECR ion source installed on a high voltage platform at the Oak Ridge National Laboratory. For the collision energy range of 0.3 keV u 3.3 keV u, which corresponds to typical ion velocities in the solar wind, the new measurements are in good agreement with previous H oven measurements. The experimental results are discussed in detail and compared with theoretical calculations where available.

  15. Production of Highly Charged Pharmaceutical Aerosols Using a New Aerosol Induction Charger

    PubMed Central

    Golshahi, Laleh; Longest, P. Worth; Holbrook, Landon; Snead, Jessica; Hindle, Michael

    2015-01-01

    Purpose Properly charged particles can be used for effective lung targeting of pharmaceutical aerosols. The objective of this study was to characterize the performance of a new induction charger that operates with a mesh nebulizer for the production of highly charged submicrometer aerosols to bypass the mouth-throat and deliver clinically relevant doses of medications to the lungs. Methods Variables of interest included combinations of model drug (i.e. albuterol sulfate) and charging excipient (NaCl) as well as strength of the charging field (1–5 kV/cm). Aerosol charge and size were measured using a modified electrical low pressure impactor system combined with high performance liquid chromatography. Results At the approximate mass median aerodynamic diameter (MMAD) of the aerosol (~ 0.4 μm), the induction charge on the particles was an order of magnitude above the field and diffusion charge limit. The nebulization rate was 439.3 ± 42.9 μl/min, which with a 0.1 % w/v solution delivered 419.5 ± 34.2 μg of medication per minute. A new correlation was developed to predict particle charge produced by the induction charger. Conclusions The combination of the aerosol induction charger and predictive correlations will allow for the practical generation and control of charged submicrometer aerosols for targeting deposition within the lungs. PMID:25823649

  16. Boundary effects of electromagnetic vacuum fluctuations on charged particles

    SciTech Connect

    Hsiang, J.-T.; Wu, T.-H.; Leet, D.-S.

    2008-10-10

    The nature of electromagnetic vacuum fluctuations in the presence of the boundary is investigated from their effects on the dynamics of charged particles. These effects may be observable via the velocity fluctuations of the charge particles near the conducting plate, where the effects of vacuum fluctuations are found to be anisotrpoic. The corresponding stochastic equation of motion for the charged particle is also derived under the semiclassical approximation.

  17. Investigations on Cooling Mechanisms of Highly Charged Ions at HITRAP

    NASA Astrophysics Data System (ADS)

    Maero, Giancarlo; Herfurth, Frank; Kester, Oliver; Kluge, H.-Jürgen; Koszudowski, Stephen; Quint, Wolfgang; Schwarz, Stefan

    2009-03-01

    The upcoming facility HITRAP (Highly Charged Ion TRAP) at GSI will enable high-precision atomic-physics investigations on heavy, highly charged ions at extremely low energies. Species up to U92+ will be produced at the GSI accelerator complex by stripping of relativistic ions and injected into the Experimental Storage Ring (ESR) where they are electron-cooled and decelerated to 4 MeV/u. After ejection out of the ESR and further deceleration in a linear decelerator bunches of 105 ions will be injected into a Penning trap and cooled to 4 K via electron and resistive cooling. Simulations with a Particle-In-Cell (PIC) code have been carried out to study the dynamics of the ion cloud in the Cooler Trap with focus on resistive cooling in presence of space charge.

  18. Charge Effects on Mechanical Properties of Elastomeric Proteins

    NASA Astrophysics Data System (ADS)

    Kappiyoor, Ravi; Balasubramanian, Ganesh; Dudek, Daniel; Puri, Ishwar

    2012-02-01

    Several biological molecules of nanoscale dimensions, such as elastin and resilin, are capable of performing diverse tasks with minimal energy loss. These molecules are efficient in that the ratio of energy output to energy consumed is very close to unity. This is in stark contrast to some of the best synthetic materials that have been created. For example, it is known that resilin found in dragonflies has a hysteresis loss of only 0.8% of the energy input while the best synthetic rubber made to date, polybutadiene, has a loss of roughly 20%.We simulate tensile tests of naturally occurring motifs found in resilin (a highly hydrophilic protein), as well as similar simulations found in reduced-polarity counterparts (i.e. the same motif with the charge on each individual atom set to half the natural value, the same motif with the charge on each individual atom set to zero, and a motif in which all the polar amino acids have been replaced with nonpolar amino acids). The results show a strong correlation between charge and extensibility. In order to further understand the effect of properties such as charge on the system, we will run simulations of elastomeric proteins such as resilin in different solvents.

  19. Effects of granular charge on flow and mixing

    NASA Astrophysics Data System (ADS)

    Shinbrot, T.; Herrmann, H. J.

    2008-12-01

    Sandstorms in the desert have long been reported to produce sparks and other electrical disturbances - indeed as long ago as 1850, Faraday commented on the peculiarities of granular charging during desert sandstorms. Similarly, lightning strikes within volcanic dust plumes have been repeatedly reported for over half a century, but remain unexplained. The problem of granular charging has applied, as well as natural, implications, for charged particle clouds frequently generate spectacularly devastating dust explosions in granular processing plants, and sand becomes strongly electrified by helicopters traveling in desert environments. The issue even has implications for missions to the Moon and to Mars, where charged dust degrades solar cells viability and clings to spacesuits, limiting the lifetime of their joints. Despite the wide-ranging importance of granular charging, even the simplest aspects of its causes remain elusive. To take one example, sand grains in the desert manage to charge one another despite having only similar materials to rub against over expanses of many miles - thus existing theories of charging due to material differences fail entirely to account for the observed charging of desert sands. In this talk, we describe recent progress made in identifying underlying causes of granular charging, both in desert-like environments and in industrial applications, and we examine effects of granular charging on flow, mixing and separation of common granular materials. We find that charging of identical grains can occur under simple laboratory conditions, and we make new predictions for the effects of this charging on granular behaviours.

  20. Effective charge separation in the rutile TiO2 nanorod-coupled α-Fe2O3 with exceptionally high visible activities

    PubMed Central

    Luan, Peng; Xie, Mingzheng; Liu, Dening; Fu, Xuedong; Jing, Liqiang

    2014-01-01

    Herein, we have fabricated rutile TiO2 nanorod-coupled α-Fe2O3 by a wet-chemical process. It is demonstrated that the visible activities for photoelectrochemical water oxidation and for degrading pollutant of α-Fe2O3 are greatly enhanced after coupling a proper amount of rutile nanorods. The enhanced activity is attributed to the prolonged lifetime and improved separation of photogenerated charges mainly by the transient surface photovoltage responses. Interestingly, the observed EPR signals (with g⊥ = 1.963 and g|| = 1.948) of Ti3+ in the fabricated TiO2-Fe2O3 nanocomposite at ultra low temperature (1.8 k) after visible laser excitation, along with the electrochemical impedance spectra and the normalized photocurrent action spectra, testify evidently that the spacial transfers of visible-excited high-energy electrons of α-Fe2O3 to TiO2 could happen. Moreover, it is confirmed that it is more favorable for the uncommon electron transfers of α-Fe2O3 to rutile than to anatase. This is responsible for the much obvious enhancement of visible activity of Fe2O3 after coupling with rutile TiO2, compared with anatase and phase-mixed P25 ones. This work would help us to deeply understand the uncommon photophysical processes, and also provide a feasible route to improve the photocatalytic performance of visible-response semiconductor photocatalyst for water splitting and pollutant degradation. PMID:25154460

  1. The effect of space charges on conduction current in polymer by modified PEA method

    SciTech Connect

    Hwangbo, S.; Yun, D.H.; Yi, D.Y.; Han, M.K.

    1996-12-31

    Direct measurement of space charge and conduction current was carried out on low-density polyethylene degraded by ultra-violet using a pulsed electro-acoustic (PEA) method. Dominant hetero-charges were formed near both electrodes by high voltage application and was found to be deeply trapped. In this paper, the effect of temperature and electric field reversal on the detrapping and trapping of space charges was investigated and the role of space charge in electrical conduction was discussed quantitatively. The main mechanism for detrapping and trapping of space charges was Poole-Frenkel model.

  2. Electrochemical cell with high discharge/charge rate capability

    DOEpatents

    Redey, Laszlo

    1988-01-01

    A fully charged positive electrode composition for an electrochemical cell includes FeS.sub.2 and NiS.sub.2 in about equal molar amounts along with about 2-20 mole percent of the reaction product Li.sub.2 S. Through selection of appropriate electrolyte compositions, high power output or low operating temperatures can be obtained. The cell includes a substantially constant electrode impedance through most of its charge and discharge range. Exceptionally high discharge rates and overcharge protection are obtainable through use of the inventive electrode composition.

  3. An acoustic charge transport imager for high definition television applications

    NASA Technical Reports Server (NTRS)

    Hunt, W. D.; Brennan, Kevin F.

    1994-01-01

    The primary goal of this research is to develop a solid-state high definition television (HDTV) imager chip operating at a frame rate of about 170 frames/sec at 2 Megapixels per frame. This imager offers an order of magnitude improvement in speed over CCD designs and will allow for monolithic imagers operating from the IR to the UV. The technical approach of the project focuses on the development of the three basic components of the imager and their integration. The imager chip can be divided into three distinct components: (1) image capture via an array of avalanche photodiodes (APD's), (2) charge collection, storage and overflow control via a charge transfer transistor device (CTD), and (3) charge readout via an array of acoustic charge transport (ACT) channels. The use of APD's allows for front end gain at low noise and low operating voltages while the ACT readout enables concomitant high speed and high charge transfer efficiency. Currently work is progressing towards the development of manufacturable designs for each of these component devices. In addition to the development of each of the three distinct components, work towards their integration is also progressing. The component designs are considered not only to meet individual specifications but to provide overall system level performance suitable for HDTV operation upon integration. The ultimate manufacturability and reliability of the chip constrains the design as well. The progress made during this period is described in detail in Sections 2-4.

  4. Space-charge compensation in high-intensity proton rings

    SciTech Connect

    A. Burov, G.W. Foster and V.D. Shiltsev

    2000-09-21

    Recently, it was proposed to use negatively charged electron beams for compensation of beam-beam effects due to protons in the Tevatron collider. The authors show that a similar compensation is possible in space-charge dominated low energy proton beams. The idea has a potential of several-fold increase of the FNAL Booster beam brightness. Best results will be obtained using three electron lenses around the machine circumference, using co-moving electron beam with time structure and profile approximately matched to the proton beam. This technique, if feasible, will be more cost effective than the straightforward alternative of increasing the energy of the injection linac.

  5. High Resolution Diagnostics of a Linear Shaped Charge Jet

    SciTech Connect

    Chase, J.B.; Kuklo, R.M.; Shaw, L.L.; Carter, D.L.; Baum, D.W.

    1999-08-10

    The linear shaped charge is designed to produce a knife blade-like flat jet, which will perforate and sever one side of a modestly hard target from the other. This charge is approximately plane wave initiated and used a water pipe quality circular copper liner. To establish the quality of this jet we report about an experiment using several of the Lawrence Livermore National Laboratory high-resolution diagnostics previously published in this meeting [1]. Image converter tube camera stereo image pairs were obtained early in the jet formation process. Individual IC images were taken just after the perforation of a thin steel plate. These pictures are augmented with 70 mm format rotating mirror framing images, orthogonal 450 KeV flash radiograph pairs, and arrival time switches (velocity traps) positioned along the length of the jet edge. We have confirmed that linear shaped charges are subject to the same need for high quality copper as any other metal jetting device.

  6. Photoionizing Trapped Highly Charged Ions with Synchrotron Radiation

    SciTech Connect

    Crespo, J R; Simon, M; Beilmann, C; Rudolph, J; Steinbruegge, R; Eberle, S; Schwarz, M; Baumann, T; Schmitt, B; Brunner, F; Ginzel, R; Klawitter, R; Kubicek, K; Epp, S; Mokler, P; Maeckel, V; Ullrich, J; Brown, G V; Graf, A; Leutenegger, M; Beiersdorfer, P; Behar, E; Follath, R; Reichardt, G; Schwarzkopf, O

    2011-09-12

    Photoabsorption by highly charged ions plays an essential role in astrophysical plasmas. Diagnostics of photoionized plasmas surrounding binary systems rely heavily on precise identification of absorption lines and on the knowledge of their cross sections and widths. Novel experiments using an electron beam ion trap, FLASH EBIT, in combination with monochromatic synchrotron radiation allow us to investigate ions in charge states hitherto out of reach. Trapped ions can be prepared in any charge state at target densities sufficient to measure absorption cross sections below 0.1 Mb. The results benchmark state-of-the-art predictions of the transitions wavelengths, widths, and absolute cross sections. Recent high resolution results on Fe{sup 14+}, Fe{sup 15+}, and Ar{sup 12+} at photon energies up to 1 keV are presented.

  7. Survival of charged ρ condensation at high temperature and density

    NASA Astrophysics Data System (ADS)

    Liu, Hao; Yu, Lang; Huang, Mei

    2016-02-01

    The charged vector ρ mesons in the presence of external magnetic fields at finite temperature T and chemical potential μ have been investigated in the framework of the Nambu-Jona-Lasinio model. We compute the masses of charged ρ mesons numerically as a function of the magnetic field for different values of temperature and chemical potential. The self-energy of the ρ meson contains the quark-loop contribution, i.e. the leading order contribution in 1/Nc expansion. The charged ρ meson mass decreases with the magnetic field and drops to zero at a critical magnetic field eBc, which indicates that the charged vector meson condensation, i.e. the electromagnetic superconductor can be induced above the critical magnetic field. Surprisingly, it is found that the charged ρ condensation can even survive at high temperature and density. At zero temperature, the critical magnetic field just increases slightly with the chemical potential, which indicates that charged ρ condensation might occur inside compact stars. At zero density, in the temperature range 0.2-0.5 GeV, the critical magnetic field for charged ρ condensation is in the range of 0.2-0.6 GeV2, which indicates that a high temperature electromagnetic superconductor might be created at LHC. Supported by the NSFC (11275213, 11261130311) (CRC 110 by DFG and NSFC), CAS Key Project (KJCX2-EW-N01), and Youth Innovation Promotion Association of CAS. L.Yu is Partially Supported by China Postdoctoral Science Foundation (2014M550841)

  8. An acoustic charge transport imager for high definition television applications

    NASA Technical Reports Server (NTRS)

    Hunt, W. D.; Brennan, K. F.; Summers, C. J.

    1994-01-01

    The primary goal of this research is to develop a solid-state television (HDTV) imager chip operating at a frame rate of about 170 frames/sec at 2 Megapixels/frame. This imager will offer an order of magnitude improvements in speed over CCD designs and will allow for monolithic imagers operating from the IR to UV. The technical approach of the project focuses on the development of the three basic components of the imager and their subsequent integration. The camera chip can be divided into three distinct functions: (1) image capture via an array of avalanche photodiodes (APD's); (2) charge collection, storage, and overflow control via a charge transfer transistor device (CTD); and (3) charge readout via an array of acoustic charge transport (ACT) channels. The use of APD's allows for front end gain at low noise and low operating voltages while the ACT readout enables concomitant high speed and high charge transfer efficiency. Currently work is progressing towards the optimization of each of these component devices. In addition to the development of each of the three distinct components, work towards their integration and manufacturability is also progressing. The component designs are considered not only to meet individual specifications but to provide overall system level performance suitable for HDTV operation upon integration. The ultimate manufacturability and reliability of the chip constrains the design as well. The progress made during this period is described in detail.

  9. Production of highly charged ion beams from ECR ion sources

    SciTech Connect

    Xie, Z.Q.

    1997-09-01

    Electron Cyclotron Resonance (ECR) ion source development has progressed with multiple-frequency plasma heating, higher mirror magnetic fields and better technique to provide extra cold electrons. Such techniques greatly enhance the production of highly charged ions from ECR ion sources. So far at cw mode operation, up to 300 e{mu}A of O{sup 7+} and 1.15 emA of O{sup 6+}, more than 100 e{mu}A of intermediate heavy ions for charge states up to Ar{sup 13+}, Ca{sup 13+}, Fe{sup 13+}, Co{sup 14+} and Kr{sup 18+}, and tens of e{mu}A of heavy ions with charge states to Kr{sup 26+}, Xe{sup 28+}, Au{sup 35+}, Bi{sup 34+} and U{sup 34+} have been produced from ECR ion sources. At an intensity of at least 1 e{mu}A, the maximum charge state available for the heavy ions are Xe{sup 36+}, Au{sup 46+}, Bi{sup 47+} and U{sup 48+}. An order of magnitude enhancement for fully stripped argon ions (I {ge} 60 enA) also has been achieved. This article will review the ECR ion source progress and discuss key requirement for ECR ion sources to produce the highly charged ion beams.

  10. Highly luminescent Sm(III) complexes with intraligand charge-transfer sensitization and the effect of solvent polarity on their luminescent properties.

    PubMed

    Lo, Wai-Sum; Zhang, Junhui; Wong, Wing-Tak; Law, Ga-Lai

    2015-04-20

    Samarium complexes with the highest quantum yields to date have been synthesized, and their luminescence properties were studied in 12 solvents. Sensitization via a nontriplet intraligand charge-transfer pathway was also successfully demonstrated in solution states with good quantum yields. PMID:25835302

  11. More Than Charged Base Loss — Revisiting the Fragmentation of Highly Charged Oligonucleotides

    NASA Astrophysics Data System (ADS)

    Nyakas, Adrien; Eberle, Rahel P.; Stucki, Silvan R.; Schürch, Stefan

    2014-07-01

    Tandem mass spectrometry is a well-established analytical tool for rapid and reliable characterization of oligonucleotides (ONs) and their gas-phase dissociation channels. The fragmentation mechanisms of native and modified nucleic acids upon different mass spectrometric activation techniques have been studied extensively, resulting in a comprehensive catalogue of backbone fragments. In this study, the fragmentation behavior of highly charged oligodeoxynucleotides (ODNs) comprising up to 15 nucleobases was investigated. It was found that ODNs exhibiting a charge level (ratio of the actual to the total possible charge) of 100% follow significantly altered dissociation pathways compared with low or medium charge levels if a terminal pyrimidine base (3' or 5') is present. The corresponding product ion spectra gave evidence for the extensive loss of a cyanate anion (NCO-), which frequently coincided with the abstraction of water from the 3'- and 5'-end in the presence of a 3'- and 5'-terminal pyrimidine nucleobase, respectively. Subsequent fragmentation of the M-NCO- ion by MS3 revealed a so far unreported consecutive excision of a metaphosphate (PO3 -)-ion for the investigated sequences. Introduction of a phosphorothioate group allowed pinpointing of PO3 - loss to the ultimate phosphate group. Several dissociation mechanisms for the release of NCO- and a metaphosphate ion were proposed and the validity of each mechanism was evaluated by the analysis of backbone- or sugar-modified ONs.

  12. Highly-correlated Charges in Block Copolyelectrolytes: Charge as a Tool for Morphology Manipulation

    NASA Astrophysics Data System (ADS)

    Sing, Charles; Zwanikken, Jos; Olvera de La Cruz, Monica

    2014-03-01

    Block copolymers that include at least one charged block have been of great technological interest due to their use in materials for battery membranes. These materials are difficult to understand theoretically, however, due to the disparate length scale effects of charge correlation and chain conformation driving the microphase separation of these systems. Using a new theoretical approach that can account for both of these effects that is based of hybrid liquid state integral equation-self consistent field theory (LS-SCFT) calculations, we elucidate the fundamental physics underpinning the thermodynamics of these materials. In particular, we demonstrate four main effects that drive the phase behavior of block copolyelectrolytes: Coulombic cohesion, counterion entropy, excluded volume, and ion self energy effects. Tuning parameters such as charge fraction and dielectric constant can be used to explore different microphase-separated morphologies on an axis orthogonal to traditional routes of manipulating block copolymers (i.e. χ N and block fraction). This expands the palette of tools that can be used to tune this important class of polymeric materials.

  13. Charge Trapping Flash Memory With High-k Dielectrics

    NASA Astrophysics Data System (ADS)

    Eun, Dong Seog

    2011-12-01

    High capacity and affordable price of flash memory make portable electronic devices popular, which in turn stimulates the further scaling down effort of the flash memory cells. Indeed the flash memory cells have been scaling down aggressively and face several crucial challenges. As a result, the technology trend is shifting from the floating-gate cell to the charge-trap cell in order to overcome fatal interference problems between cells. There are critical problems in the charge-trap memory cell which will become main-stream in the near future. The first potential problem is related to the memory retention which is degraded by the charge leakage through thin tunnel dielectrics. The second is the reduction of charge-storage capacity in the scaled down SiN trapping layer. The third is the low operation-efficiency resulting from the methods used to solve the first two problems. Using high-k tunnel dielectrics can solve the first problem. The second problem can be overcome by adopting a high-k trapping dielectric. The dielectric constant of the blocking layer must be higher than those of the tunnel dielectric and the trapping dielectric in order to maintain operation efficiency. This dissertation study is focused on adopting high-k dielectrics in all three of the aforementioned layers for figure generations of flash memory technology. For the high-k tunnel dielectric, the MAD Si3N4 and the MAD Al2O3 are used to fabricate the MANNS structure and the MANAS structure. The MANNS structure has the advantage of reducing the erase voltage due to its low barrier height for holes. In addition, the retention characteristic of the MANAS structure is not sensitive to temperature. The reason is that the carrier transport in MAD Al2O3 is dominated by F-N tunneling, which is nearly independent of temperature. Adopting TiOx as the trapping dielectric forms the MATAS structure. Although the charge capacity of TiOx is not very high, the operating voltage can be reduced to less than 10V

  14. Electron channeling radiation experiments at very high electron bunch charges

    SciTech Connect

    Carrigan, R.A. Jr.; Freudenberger, J.; Fritzler, S.; Genz, H.; Richter, A.; Ushakov, A.; Zilges, A.; Sellschop, J.P.F.

    2003-12-01

    Plasmas offer the possibility of high acceleration gradients. An intriguing suggestion is to use the higher plasma densities possible in solids to get extremely high gradients. Although solid-state plasmas might produce high gradients they would pose daunting problems. Crystal channeling has been suggested as one mechanism to address these challenges. There is no experimental or theoretical guidance on channeling for intense electron beams. A high-density plasma in a crystal lattice could quench the channeling process. An experiment has been carried out at the Fermilab NICADD Photoinjector Laboratory to observe electron channeling radiation at high bunch charges. An electron beam with up to 8 nC per electron bunch was used to investigate the electron-crystal interaction. No evidence was found of quenching of channeling at charge densities two orders of magnitude larger than that in earlier experiments.

  15. X-Ray Diagnostics of CUEBIT Highly Charged Ion Plasma

    NASA Astrophysics Data System (ADS)

    Silwal, Roshani; Gall, Amy; Sosolik, Chad; Harriss, James; Takacs, Endre

    2015-05-01

    Clemson University Electron Beam Ion Trap (CUEBIT) is one of the few EBIT facilities around the globe that produces highly charged ions by successive electron impact ionization. Ions are confined in the machine by the space-charge of the electron beam, a 6 T magnetic field generated by a superconducting magnet, and the voltages applied to axial electrodes. The device is a small laboratory scale instrument for the study of the structure and emission of highly charged ions and the collisions of these ions with external targets. Along with the introduction of the facility including its structure and capabilities, we present an overview of various spectroscopic and imaging tools that allow the diagnosis of the high temperature ion cloud of the CUEBIT. Instruments include a crystal spectrometer, solid-state detectors, and pin-hole imaging setup equipped with an x-ray CCD camera. Measurements of x-ray radiation from CUEBIT are used to investigate the fundamental properties of the highly charged ions and their interaction with the energetic electron beam.

  16. Production of highly charged ion beams with SECRALa)

    NASA Astrophysics Data System (ADS)

    Sun, L. T.; Zhao, H. W.; Lu, W.; Zhang, X. Z.; Feng, Y. C.; Li, J. Y.; Cao, Y.; Guo, X. H.; Ma, H. Y.; Zhao, H. Y.; Shang, Y.; Ma, B. H.; Wang, H.; Li, X. X.; Jin, T.; Xie, D. Z.

    2010-02-01

    Superconducting electron cyclotron resonance ion source with advanced design in Lanzhou (SECRAL) is an all-superconducting-magnet electron cyclotron resonance ion source (ECRIS) for the production of intense highly charged ion beams to meet the requirements of the Heavy Ion Research Facility in Lanzhou (HIRFL). To further enhance the performance of SECRAL, an aluminum chamber has been installed inside a 1.5 mm thick Ta liner used for the reduction of x-ray irradiation at the high voltage insulator. With double-frequency (18+14.5 GHz) heating and at maximum total microwave power of 2.0 kW, SECRAL has successfully produced quite a few very highly charged Xe ion beams, such as 10 e μA of Xe37+, 1 e μA of Xe43+, and 0.16 e μA of Ne-like Xe44+. To further explore the capability of the SECRAL in the production of highly charged heavy metal ion beams, a first test run on bismuth has been carried out recently. The main goal is to produce an intense Bi31+ beam for HIRFL accelerator and to have a feel how well the SECRAL can do in the production of very highly charged Bi beams. During the test, though at microwave power less than 3 kW, more than 150 e μA of Bi31+, 22 e μA of Bi41+, and 1.5 e μA of Bi50+ have been produced. All of these results have again demonstrated the great capability of the SECRAL source. This article will present the detailed results and brief discussions to the production of highly charged ion beams with SECRAL.

  17. Production of highly charged ion beams with SECRAL.

    PubMed

    Sun, L T; Zhao, H W; Lu, W; Zhang, X Z; Feng, Y C; Li, J Y; Cao, Y; Guo, X H; Ma, H Y; Zhao, H Y; Shang, Y; Ma, B H; Wang, H; Li, X X; Jin, T; Xie, D Z

    2010-02-01

    Superconducting electron cyclotron resonance ion source with advanced design in Lanzhou (SECRAL) is an all-superconducting-magnet electron cyclotron resonance ion source (ECRIS) for the production of intense highly charged ion beams to meet the requirements of the Heavy Ion Research Facility in Lanzhou (HIRFL). To further enhance the performance of SECRAL, an aluminum chamber has been installed inside a 1.5 mm thick Ta liner used for the reduction of x-ray irradiation at the high voltage insulator. With double-frequency (18+14.5 GHz) heating and at maximum total microwave power of 2.0 kW, SECRAL has successfully produced quite a few very highly charged Xe ion beams, such as 10 e microA of Xe(37+), 1 e microA of Xe(43+), and 0.16 e microA of Ne-like Xe(44+). To further explore the capability of the SECRAL in the production of highly charged heavy metal ion beams, a first test run on bismuth has been carried out recently. The main goal is to produce an intense Bi(31+) beam for HIRFL accelerator and to have a feel how well the SECRAL can do in the production of very highly charged Bi beams. During the test, though at microwave power less than 3 kW, more than 150 e microA of Bi(31+), 22 e microA of Bi(41+), and 1.5 e microA of Bi(50+) have been produced. All of these results have again demonstrated the great capability of the SECRAL source. This article will present the detailed results and brief discussions to the production of highly charged ion beams with SECRAL. PMID:20192339

  18. Charge Transport in Hybrid Halide Perovskite Field-Effect Transistors

    NASA Astrophysics Data System (ADS)

    Jurchescu, Oana

    Hybrid organic-inorganic trihalide perovskite (HTP) materials exhibit a strong optical absorption, tunable band gap, long carrier lifetimes and fast charge carrier transport. These remarkable properties, coupled with their reduced complexity processing, make the HTPs promising contenders for large scale, low-cost thin film optoelectronic applications. But in spite of the remarkable demonstrations of high performance solar cells, light-emitting diodes and field-effect transistor devices, all of which took place in a very short time period, numerous questions related to the nature and dynamics of the charge carriers and their relation to device performance, stability and reliability still remain. This presentation describes the electrical properties of HTPs evaluated from field-effect transistor measurements. The electrostatic gating of provides an unique platform for the study of intrinsic charge transport in these materials, and, at the same time, expand the use of HTPs towards switching electronic devices, which have not been explored previously. We fabricated FETs on SiO2 and polymer dielectrics from spin coating, thermal evaporation and spray deposition and compare their properties. CH3NH3PbI3-xClx can reach balanced electron and hole mobilities of 10 cm2/Vs upon tuning the thin-film microstructure, injection and the defect density at the semiconductor/dielectric interface. The work was performed in collaboration with Yaochuan Mei (Wake Forest University), Chuang Zhang, and Z. Valy Vardeny (University of Utah). The work is supported by ONR Grant N00014-15-1-2943.

  19. High charge short electron bunches for wakefield accelerator structures development.

    SciTech Connect

    Conde, M. E.

    1998-09-25

    The Argonne Wakefield Accelerator group develops accelerating structures based on dielectric loaded waveguides. We use high charge short electron bunches to excite wakefields in dielectric loaded structures, and a second (low charge) beam to probe the wakefields left behind by the drive beam. We report measurements of beam parameters and also initial results of the dielectric loaded accelerating structures. We have studied acceleration of the probe beam in these structures and we have also made measurements on the RF pulses that are generated by the drive beam. Single drive bunches, as well as multiple bunches separated by an integer number of RF periods have been used to generate the accelerating wakefields.

  20. Measurement of Metastable Lifetimes of Highly-Charged Ions

    NASA Technical Reports Server (NTRS)

    Smith, Steven J.; Chutjian, A.; Lozano, J.

    2002-01-01

    The present work is part of a series of measurements of metastable lifetimes of highly-charged ions (HCIs) which contribute to optical absorption, emission and energy balance in the Interstellar Medium (ISM), stellar atmospheres, etc. Measurements were carried out using the 14-GHz electron cyclotron resonance ion source (ECRIS) at the JPL HCI facility. The ECR provides useful currents of charge states such as C(sup(1-6)+), Mg(sup(1-6)+) and Fe(sup(1-17)+). In this work the HCI beam is focused into a Kingdon electrostatic ion trap for measuring lifetimes via optical decays.

  1. Vortices and charge order in high-Tc superconductors

    NASA Astrophysics Data System (ADS)

    Einenkel, Matthias; Meier, Hendrik; Pépin, Catherine; Efetov, Konstantin B.

    2015-03-01

    We theoretically investigate the vortex state of the cuprate high-temperature superconductors in the presence of magnetic fields. Assuming the recently derived nonlinear σ-model for fluctuations in the pseudogap phase, we find that the vortex cores consist of two crossed regions of elliptic shape, in which a static charge order emerges. Charge density wave order manifests itself as satellites to the ordinary Bragg peaks directed along the axes of the reciprocal copper lattice. Quadrupole density wave (bond order) satellites, if seen, are predicted to be along the diagonals. The intensity of the satellites should grow linearly with the magnetic field, in agreement with the result of recent experiments.

  2. Vortices and charge order in high-Tc superconductors

    NASA Astrophysics Data System (ADS)

    Einenkel, M.; Meier, H.; Pépin, C.; Efetov, K. B.

    2014-08-01

    We theoretically investigate the vortex state of the cuprate high-temperature superconductors in the presence of magnetic fields. Assuming the recently derived nonlinear σ-model for fluctuations in the pseudogap phase, we find that the vortex cores consist of two crossed regions of elliptic shape, in which a static charge order emerges. Charge density wave order manifests itself as satellites to the ordinary Bragg peaks directed along the axes of the reciprocal copper lattice. Quadrupole density wave (bond order) satellites, if seen, are predicted to be along the diagonals. The intensity of the satellites should grow linearly with the magnetic field, in agreement with the result of recent experiments.

  3. High sensitivity charge amplifier for ion beam uniformity monitor

    DOEpatents

    Johnson, Gary W.

    2001-01-01

    An ion beam uniformity monitor for very low beam currents using a high-sensitivity charge amplifier with bias compensation. The ion beam monitor is used to assess the uniformity of a raster-scanned ion beam, such as used in an ion implanter, and utilizes four Faraday cups placed in the geometric corners of the target area. Current from each cup is integrated with respect to time, thus measuring accumulated dose, or charge, in Coulombs. By comparing the dose at each corner, a qualitative assessment of ion beam uniformity is made possible. With knowledge of the relative area of the Faraday cups, the ion flux and areal dose can also be obtained.

  4. Physics of high-intensity nanosecond electron source: Charge limit phenomenon in GaAs photocathodes

    SciTech Connect

    Herrera-Gomez, A. |; Vergara, G.; Spicer, W.E.

    1996-05-01

    GaAs negative electron affinity cathodes are used as high-intensity, short-time electron source at the Stanford Linear Accelerator Center. When the cathodes are illuminated with high-intensity laser pulses draw peak currents that are extremely high, typically of tens of Amperes. Because of the high currents, some nonlinear effects are present. Very noticeable is the so-called charge limit (CL) effect, which consists of a limit on the total charge in each pulse; that is, the total bunch charge stops increasing as the light pulse intensity increases. The CL effect is directly related to a photovoltage built up in the surface as a consequence of the photoelectrons coming from the bulk. We discuss possible ways to minimize the formation of the surface photovoltage. {copyright} {ital 1996 American Institute of Physics.}

  5. Polyimide Nanocomposites Prepared from High-Temperature, Reduced Charge Organoclays

    NASA Technical Reports Server (NTRS)

    Delozier, D. M.; Orwoll, R. A.; Cahoon, J. F.; Ladislaw, J. S.; Smith, J. G., Jr.; Connell, J. W.

    2003-01-01

    Montmorillonite clays modified with the dihydrochloride salt of 1,3-bis(3-aminophenoxy)benzene (APB) were used in the preparation of polyimide/organoclay hybrid films. Organoclays with varying surface charge based upon APB were prepared and examined for their dispersion behavior in the polymer matrix. High molecular weight poly(amide acid) solutions were prepared in the presence of the organoclays. Films were cast and subsequently heated to 300C to cause imidization. The resulting nanocomposite films, containing 3 wt% of organoclay, were characterized by transmission electron microscopy and X-ray diffraction. The clay's cation exchange capacity (CEC) played a key role in determining the extent of dispersion in the polyimide matrix. Considerable dispersion was observed in some of the nanocomposite films. The most effective organoclay was found to have a CEC of 0.70 meq/g. Nanocomposite films prepared with 3-8 wt% of this organoclay were characterized by transmission electron microscopy (TEM), X-ray diffraction (XRD), and thin-film tensile testing. High levels of clay dispersion could be achieved even at the higher clay loadings. Results from mechanical testing revealed that while the moduli of the nanocomposites increased with increasing clay loadings, both strength and elongation decreased.

  6. Genesis of charge orders in high temperature superconductors

    NASA Astrophysics Data System (ADS)

    Tu, Wei-Lin; Lee, Ting-Kuo

    2016-01-01

    One of the most puzzling facts about cuprate high-temperature superconductors in the lightly doped regime is the coexistence of uniform superconductivity and/or antiferromagnetism with many low-energy charge-ordered states in a unidirectional charge density wave or a bidirectional checkerboard structure. Recent experiments have discovered that these charge density waves exhibit different symmetries in their intra-unit-cell form factors for different cuprate families. Using a renormalized mean-field theory for a well-known, strongly correlated model of cuprates, we obtain a number of charge-ordered states with nearly degenerate energies without invoking special features of the Fermi surface. All of these self-consistent solutions have a pair density wave intertwined with a charge density wave and sometimes a spin density wave. Most of these states vanish in the underdoped regime, except for one with a large d-form factor that vanishes at approximately 19% doping of the holes, as reported by experiments. Furthermore, these states could be modified to have a global superconducting order, with a nodal-like density of states at low energy.

  7. Genesis of charge orders in high temperature superconductors

    PubMed Central

    Tu, Wei-Lin; Lee, Ting-Kuo

    2016-01-01

    One of the most puzzling facts about cuprate high-temperature superconductors in the lightly doped regime is the coexistence of uniform superconductivity and/or antiferromagnetism with many low-energy charge-ordered states in a unidirectional charge density wave or a bidirectional checkerboard structure. Recent experiments have discovered that these charge density waves exhibit different symmetries in their intra-unit-cell form factors for different cuprate families. Using a renormalized mean-field theory for a well-known, strongly correlated model of cuprates, we obtain a number of charge-ordered states with nearly degenerate energies without invoking special features of the Fermi surface. All of these self-consistent solutions have a pair density wave intertwined with a charge density wave and sometimes a spin density wave. Most of these states vanish in the underdoped regime, except for one with a large d-form factor that vanishes at approximately 19% doping of the holes, as reported by experiments. Furthermore, these states could be modified to have a global superconducting order, with a nodal-like density of states at low energy. PMID:26732076

  8. Depth profile of halide anions under highly charged biological membrane

    NASA Astrophysics Data System (ADS)

    Sung, Woongmo; Wang, Wenjie; Lee, Jonggwan; Vaknin, David; Kim, Doseok

    2015-03-01

    Halide ion (Cl- and I-) distribution under a cationic Langmuir monolayer consisting of 1,2-dipalmitoyl-3 trimethylammonium-propane (DPTAP) molecules was investigated by vibrational sum-frequency generation (VSFG) and X-ray spectroscopy. From VSFG spectra, it was observed that large halide anions (I-) screen surface charge more efficiently so that interfacial water alignment becomes more randomized. On the other hand, number density of ions directly measured by X-ray fluorescence spectroscopy at grazing incidence angle reveals that the ion densities within 6 ~ 8 nm are the same for both I- and Cl-. Since the observed ion densities in both cases are almost equal to the charge density of the DPTAP monolayer, we propose that larger halide anions are attracted closer to the surface making direct binding with the charged headgroups of the molecules in the monolayer, accomplishing charge neutrality in short distance. This direct adsorption of anions also disturbs the monolayer structure both in terms of the conformation of alkyl chains and the vertical configuration of the monolayer, with iodine having the stronger effect. Our study shows that the length scale that ions neutralize a charged interface varies significantly and specifically even between monovalent ions.

  9. Charge Strippers of Heavy Ions for High Intensity Accelerators

    NASA Astrophysics Data System (ADS)

    Nolen, Jerry A.; Marti, Felix

    2014-02-01

    Charge strippers play a critical role in many high intensity heavy ion accelerators. Here we present some history of recent stripper technology development and indicate the capabilities and limitations of the various approaches. The properties of solid, gaseous, and liquid strippers are covered. In particular, the limitations of solid strippers for high intensity, high atomic number heavy ions and the unique features of helium gas and liquid lithium for high intensity applications are covered. The need for high quality simulation of stripper performance as important input for system optimization is explained and examples of the current simulation codes are given.

  10. Cost-effective electric vehicle charging infrastructure siting for Delhi

    NASA Astrophysics Data System (ADS)

    Sheppard, Colin J. R.; Gopal, Anand R.; Harris, Andrew; Jacobson, Arne

    2016-06-01

    Plug-in electric vehicles (PEVs) represent a substantial opportunity for governments to reduce emissions of both air pollutants and greenhouse gases. The Government of India has set a goal of deploying 6–7 million hybrid and PEVs on Indian roads by the year 2020. The uptake of PEVs will depend on, among other factors like high cost, how effectively range anxiety is mitigated through the deployment of adequate electric vehicle charging stations (EVCS) throughout a region. The Indian Government therefore views EVCS deployment as a central part of their electric mobility mission. The plug-in electric vehicle infrastructure (PEVI) model—an agent-based simulation modeling platform—was used to explore the cost-effective siting of EVCS throughout the National Capital Territory (NCT) of Delhi, India. At 1% penetration in the passenger car fleet, or ∼10 000 battery electric vehicles (BEVs), charging services can be provided to drivers for an investment of 4.4 M (or 440/BEV) by siting 2764 chargers throughout the NCT of Delhi with an emphasis on the more densely populated and frequented regions of the city. The majority of chargers sited by this analysis were low power, Level 1 chargers, which have the added benefit of being simpler to deploy than higher power alternatives. The amount of public infrastructure needed depends on the access that drivers have to EVCS at home, with 83% more charging capacity required to provide the same level of service to a population of drivers without home chargers compared to a scenario with home chargers. Results also depend on the battery capacity of the BEVs adopted, with approximately 60% more charging capacity needed to achieve the same level of service when vehicles are assumed to have 57 km versus 96 km of range.

  11. Studies of space-charge effects in ultrashort electron bunches

    SciTech Connect

    Fubiani, Gwenael; Leemans, Wim; Esarey, Eric

    2000-06-01

    Laser-driven plasma-based accelerators are capable of producing ultrashort electron bunches in which the longitudinal size is much smaller than the transverse size. We present theoretical studies of the transport of such electron bunches in vacuum. Space charge forces acting on the bunch are calculated using an ellipsoidal bunch shape model. The effects of space charge forces and energy spread on longitudinal and transverse bunch properties are evaluated for various bunch lengths energies and amount of charge.

  12. Comparison of charged nanoparticle concentrations near busy roads and overhead high-voltage power lines.

    PubMed

    Jayaratne, E R; Ling, X; Morawska, L

    2015-09-01

    Overhead high-voltage power lines are known sources of corona ions. These ions rapidly attach to aerosols to form charged particles in the environment. Although the effect of ions and charged particles on human health is largely unknown, much attention has focused on the increasing exposure as a result of the expanding power network in urban residential areas. However, it is not widely known that a large number of charged particles in urban environments originate from motor vehicle emissions. In this study, for the first time, we compare the concentrations of charged nanoparticles near busy roads and overhead power lines. We show that large concentrations of both positive and negative charged nanoparticles are present near busy roadways and that these concentrations commonly exceed those under high-voltage power lines. We estimate that the concentration of charged nanoparticles found near two freeways carrying around 120 vehicles per minute exceeded the corresponding maximum concentrations under two corona-emitting overhead power lines by as much as a factor of 5. The difference was most pronounced when a significant fraction of traffic consisted of heavy-duty diesel vehicles which typically have high particle and charge emission rates. PMID:25917858

  13. Compressibility effects in shaped charge jet penetration

    NASA Astrophysics Data System (ADS)

    Haugstad, B. S.

    1981-03-01

    Among other hypotheses, the classical theory of high-speed penetration assumes the incompressibility of both the projectile and target. Employing a simple Murnaghan equation of state, we show here that direct compressibility effects (pv-work) on penetration depth are at most on the order of 10-15% for projectile speeds as high as 104 ms-1. Our results agree closely with similar results by Coombs (private communication, Royal Air Force Research Establishment, 1978), who used a more complex five-parameter equation of state. This indicates that rather simple equations of state may adequately represent essential thermodynamic features of high-speed penetration phenomena. The equation of state employed here furthermore allows approximate analytical results to be derived for both small and large projectile velocities.

  14. Electron impact ionization of highly charged lithiumlike ions

    SciTech Connect

    Wong, K L

    1992-10-01

    Electron impact ionization cross sections can provide valuable information about the charge-state and power balance of highly charged ions in laboratory and astrophysical plasmas. In the present work, a novel technique based on x-ray measurements has been used to infer the ionization cross section of highly charged lithiumlike ions on the Livermore electron beam ion trap. In particular, a correspondence is established between an observed x ray and an ionization event. The measurements are made at one energy corresponding to approximately 2.3 times the threshold energy for ionization of lithiumlike ions. The technique is applied to the transition metals between Z=22 (titanium, Ti[sup 19+]) and Z=26 (iron, Fe[sup 23+]) and to Z=56 (barium, Ba[sup 53+]). The results for the transition metals, which have an estimated 17-33% uncertainty, are in good overall agreement with a relativistic distorted-wave calculation. However, less good agreement is found for barium, which has a larger uncertainty. Methods for properly accounting for the polarization in the x-ray intensities and for inferring the charge-state abundances from x-ray observations, which were developed for the ionization measurements, as well as an x-ray model that assists in the proper interpretation of the data are also presented.

  15. Effects of Charged Particles on Human Tumor Cells

    PubMed Central

    Held, Kathryn D.; Kawamura, Hidemasa; Kaminuma, Takuya; Paz, Athena Evalour S.; Yoshida, Yukari; Liu, Qi; Willers, Henning; Takahashi, Akihisa

    2016-01-01

    The use of charged particle therapy in cancer treatment is growing rapidly, in large part because the exquisite dose localization of charged particles allows for higher radiation doses to be given to tumor tissue while normal tissues are exposed to lower doses and decreased volumes of normal tissues are irradiated. In addition, charged particles heavier than protons have substantial potential clinical advantages because of their additional biological effects, including greater cell killing effectiveness, decreased radiation resistance of hypoxic cells in tumors, and reduced cell cycle dependence of radiation response. These biological advantages depend on many factors, such as endpoint, cell or tissue type, dose, dose rate or fractionation, charged particle type and energy, and oxygen concentration. This review summarizes the unique biological advantages of charged particle therapy and highlights recent research and areas of particular research needs, such as quantification of relative biological effectiveness (RBE) for various tumor types and radiation qualities, role of genetic background of tumor cells in determining response to charged particles, sensitivity of cancer stem-like cells to charged particles, role of charged particles in tumors with hypoxic fractions, and importance of fractionation, including use of hypofractionation, with charged particles. PMID:26904502

  16. Highly Charged Proteins: The Achilles' Heel of Aging Proteomes.

    PubMed

    de Graff, Adam M R; Hazoglou, Michael J; Dill, Ken A

    2016-02-01

    As cells and organisms age, their proteins sustain increasing amounts of oxidative damage. It is estimated that half of all proteins are damaged in old organisms, yet the dominant mechanisms by which damage affects proteins and cellular phenotypes are not known. Here, we show that random modification of side chain charge induced by oxidative damage is likely to be a dominant source of protein stability loss in aging cells. Using an established model of protein electrostatics, we find that short, highly charged proteins are particularly susceptible to large destabilization from even a single side chain oxidation event. This mechanism identifies 20 proteins previously established to be important in aging that are at particularly high risk for oxidative destabilization, including transcription factors, histone and histone-modifying proteins, ribosomal and telomeric proteins, and proteins essential for homeostasis. Cellular processes enriched in high-risk proteins are shown to be particularly abundant in the aggregates of old organisms. PMID:26724998

  17. Free charge localization and effective dielectric permittivity in oxides

    NASA Astrophysics Data System (ADS)

    Maglione, Mario

    2016-06-01

    This review will deal with several types of free charge localization in oxides and their consequences on the effective dielectric spectra of such materials. The first one is the polaronic localization at the unit cell scale on residual impurities in ferroelectric networks. The second one is the collective localization of free charge at macroscopic interfaces like surfaces, electrodes and grain boundaries in ceramics. Polarons have been observed in many oxide perovskites mostly when cations having several stable electronic configurations are present. In manganites, the density of such polarons is so high as to drive a net lattice of interacting polarons. On the other hand, in ferroelectric materials like BaTiO3 and LiNbO3, the density of polarons is usually very small but they can influence strongly the macroscopic conductivity. The contribution of such polarons to the dielectric spectra of ferroelectric materials is described. Even residual impurities as for example Iron can induce well-defined anomalies at very low temperatures. This is mostly resulting from the interaction between localized polarons and the highly polarizable ferroelectric network in which they are embedded. The case of such residual polarons in SrTiO3 will be described in more detail, emphasizing the quantum polaron state at liquid helium temperatures. Recently, several nonferroelectric oxides have been shown to display giant effective dielectric permittivity. It is first shown that the frequency/temperature behavior of such parameters is very similar in very different compounds (donor-doped BaTiO3, CaCu3Ti4O12, LuFe2O4, Li-doped NiO, etc.). This similarity calls for a common origin of the giant dielectric permittivity in these compounds. A space charge localization at macroscopic interfaces can be the key for such extremely high dielectric permittivity.

  18. Evidence for a discrete charge effect within lipid bilayer membranes.

    PubMed Central

    Wang, C C; Bruner, L J

    1978-01-01

    A high amplitude voltage step technique has been used to meausre the surface density of dipicrylamine anions adsorbed at the surfaces of lipid bilayer membranes. Accompanying low amplitude measurements have determined the relaxation time for transient current flow across the membranes, a parameter governed by the height of the central energy barrier which dipicrylamine anions must cross in moving from one membrane surface to the other. Measured relaxation times and surface charge densities have been related by a quasi-continuum model of the discrete charge effect, which predicts that the membrane central barrier height will increase with increasing density of adsorbed surface charge. The experimentally determined relationship is in satisfactory agreement with the predictions of the model. The model does not provide a complete description of the membrane/solution interface, however, because it cannot be applied to the description of previously measured isotherms for the adsorption of dipicrylamine anions onto bilayer membranes surfaces. Possible reasons for this discrepancy are discussed. PMID:737286

  19. The Effect of Charge Reactive Metal Cases on Air Blast

    NASA Astrophysics Data System (ADS)

    Zhang, Fan; Wilson, William H.

    2009-12-01

    Experiments were conducted in a 23 m3 closed chamber using a charge encased in a cylindrical reactive metal case to study the effect on air blast from the case fragments. Parameters varied included case/charge mass ratio, charge diameter and charge type (i.e., detonation energy and pressure). The pressure histories measured on the chamber wall showed a double-shock front structure with an accelerating precursor shock followed by the primary shock, suggesting the early-time reaction of small case fragments. During the early reflections on the chamber wall, significant pressure rises versus the steel-cased and bare charges indicated combustion of a large amount of small case particles generated by secondary fragmentation. The analysis of explosion pressures and recovered fragments and solid products gave an expression for burnt casing mass as a function of Gurney velocity and charge diameter. The equivalent bare charge mass that yields the same explosion pressure as the cased charge increased with case/charge mass ratio and reached 2.5 times charge mass at the ratio of 1.75.

  20. The effect of the first dynode's geometry on the detection efficiency of a 119EM electron multiplier used as a highly charged ion detector

    NASA Astrophysics Data System (ADS)

    Krása, J.; Pfeifer, M.; Stöckli, M. P.; Lehnert, U.; Fry, D.

    1999-05-01

    The ion counting as well as the current gain of an electron multiplier type 119EM with BeCu dynodes having a Venetian blind structure was measured in terms of the dependence on the position where ions impact the surface of the first dynode. The dependence of the 119EM's detection efficiency on the impact position exhibited large variations across the Venetian blind of the first dynode. The highest detection efficiency was localized at the first dynode's surface near its output area into the second dynode region. The lowest one was measured at the input area of the first dynode region that is far from the second dynode. The measurements also show that the 119EM is not very reliable for ion counting. The analog particle gain derived from the mean current gain measured across a single slat increases with increasing charge state as well as with ion energy for Co q+(10⩽ q⩽26) and Ta q+(14⩽ q⩽34) ions with kinetic energy per charge from 33 keV/ q to 163 keV/ q. The gains were derived from comparison with the Faraday cup measurements.

  1. High pressure effect on the twisted intromolecular charge transfer fluorescence and absorption of p-N,N-dimethylaminobenzylidinemalononitrile (DMABMN) in polymeric matrices

    NASA Astrophysics Data System (ADS)

    Dreger, Z. A.; Lang, J. M.; Drickamer, H. G.

    1992-10-01

    The pressure effect on the luminescence of p-N,N-dimethylaminobenzylidenemabolonitrile (DMABMN) in several solid polymer matrices has been studied. An increase of fluroescence intensity by a factor of 35 to 200 has been observed, in different polymers, within 100 kbar. Two general regions of pressure behavior are distinguished. In the first, "low pressure" region (0-25) kbar the amplification of luminescence intensity is explained by a retardation of motion (twist) in the excited state by increasing pressure. The generalized volume change "Δ V" for this process has been obtained as a function of pressure and could be predicted from the kinetic model proposed. The polarity and free volume effects are discussed. The free volume concept is found not to provide a satisfactory quantitative description for the pressure dependence of the rearrangement. In the "high pressure" region (×50 kbar) where intensity decreases to a different degree in different polymers the contribution of the nonradiative rate from the originally excited state is considered.

  2. Longitudinal space charge effects near transition

    SciTech Connect

    Pozdeyev,E.; Rodriguez, J.A.; Marti, F.; York, R.C.

    2009-05-04

    Experimental and numerical studies of the longitudinal beam dynamics in the Small Isochronous Ring (SIR) at Michigan State University revealed a fast, space-charge driven instability that did not fit the model of the negative mass instability. This paper proposes a simple analytical model explaining these results. Also, the paper compares the model to result s of experimental and numerical studies of the longitudinal beam dynamics in SIR.

  3. [Galactic heavy charged particles damaging effect on biological structures].

    PubMed

    Grigor'ev, A I; Krasavin, E A; Ostrovskiĭ, M A

    2013-03-01

    A concept of the radiation risk of the manned interplanetary flights is proposed and substantiated. Heavy charged particles that are a component of the galactic cosmic rays (GCR) have a high damaging effect on the biological structures as great amount of energy is deposited in heavy particle tracks. The high biological effectiveness of heavy ions is observed in their action on cell genetic structures and the whole organism, including the brain structures. The hippocampus is the part of the central nervous system that is the most sensitive to radiation--first of all, to heavy charged particles. Irradiation of animals with accelerated iron ions at doses corresponding to the real fluxes of GCR heavy nuclei, to which Mars mission crews can be exposed, leads to marked behavioral function disorders in the post-irradiation period. To evaluate the radiation risk for the interplanetary flight crews, the concept of successful mission accomplishment is introduced. In these conditions, the central nervous system structures can be the critical target of GCR heavy nuclei. Their damage can modify the higher integrative functions of the brain and cause disorders in the crew members' operator performances. PMID:23789432

  4. Effects of polarization-charge shielding in microwave heating

    SciTech Connect

    Lin, M. S.; Lin, S. M.; Chiang, W. Y.; Barnett, L. R.; Chu, K. R.

    2015-08-15

    Heating of dielectric objects by radio frequency (RF) and microwaves has long been a method widely employed in scientific research and industrial applications. However, RF and microwave heating are often susceptible to an excessive temperature spread due to uneven energy deposition. The current study elucidates an important physical reason for this difficulty and proposes an effective remedy. Non-spherical samples are placed in an anechoic chamber, where it is irradiated by a traveling microwave wave with 99% intensity uniformity. Polarization charges induced on the samples tend to partially cancel the incident electric field and hence reduce the heating rate. The polarization-charge shielded heating rate is shown to be highly dependent on the sample's shape and its orientation relative to the wave electric field. For samples with a relatively high permittivity, the resultant uneven heating can become a major cause for the excessive temperature spread. It is also demonstrated that a circularly polarized wave, with its rapidly rotating electric field, can effectively even out the heating rate and hence the temperature spread.

  5. To what extent can highly charged ions keep captured electrons

    SciTech Connect

    Morgenstern, R. )

    1993-06-05

    In collisions between highly charged ions and atomic or molecular targets three phases can be distinguished: an initial capture into nonstationary states, a rearrangement of the captured electrons, and finally a decay by means of photon or electron emission. To understand the final result of such collisions one has to understand the processes in each phase. Several examples of recent investigations are discussed which shed light on the processes during these phases.

  6. Effect of electrical charges and fields on injury and viability of airborne bacteria.

    PubMed

    Mainelis, Gediminas; Górny, Rafał L; Reponen, Tiina; Trunov, Mikhaylo; Grinshpun, Sergey A; Baron, Paul; Yadav, Jagjit; Willeke, Klaus

    2002-07-20

    In this study, the effects of the electric charges and fields on the viability of airborne microorganisms were investigated. The electric charges of different magnitude and polarity were imparted on airborne microbial cells by a means of induction charging. The airborne microorganisms carrying different electric charge levels were then extracted by an electric mobility analyzer and collected using a microbial sampler. It was found that the viability of Pseudomonas fluorescens bacteria, used as a model for sensitive bacteria, carrying a net charge from 4100 negative to 30 positive elementary charges ranged between 40% and 60%; the viability of the cells carrying >2700 positive charges was below 1.5%. In contrast, the viability of the stress-resistant spores of Bacillus subtilis var. niger (used as simulant of anthrax-causing Bacillus anthracis spores when testing bioaerosol sensors in various studies), was not affected by the amount of electric charges on the spores. Because bacterial cells depend on their membrane potential for basic metabolic activities, drastic changes occurring in the membrane potential during aerosolization and the local electric fields induced by the imposed charges appeared to affect the sensitive cells' viability. These findings facilitate applications of electric charging for environmental control purposes involving sterilization of bacterial cells by imposing high electric charges on them. The findings from this study can also be used in the development of new bioaerosol sampling methods based on electrostatic principles. PMID:12115440

  7. Parton Charge Symmetry Violation: Electromagnetic Effects and W Production Asymmetries

    SciTech Connect

    J.T. Londergan; D.P. Murdock; A.W. Thomas

    2006-04-14

    Recent phenomenological work has examined two different ways of including charge symmetry violation in parton distribution functions. First, a global phenomenological fit to high energy data has included charge symmetry breaking terms, leading to limits on the magnitude of parton charge symmetry breaking. In a second approach, two groups have included the coupling of partons to photons in the QCD evolution equations. One possible experiment that could search for isospin violation in parton distributions is a measurement of the asymmetry in W production at a collider. In this work we include both of the postulated sources of parton charge symmetry violation. We show that, given charge symmetry violation of a magnitude consistent with existing high energy data, the expected W production asymmetries would be quite small, generally less than one percent.

  8. Precision Experiments With Stored And Cooled Highly Charged Ions

    NASA Astrophysics Data System (ADS)

    Kluge, H.-Jürgen

    2006-11-01

    Accumulation, storing and cooling techniques play an increasingly important role in many areas of science. These procedures can be applied in Penning traps and storage rings to ions. In this way, quantum electrodynamics can be tested in extreme electromagnetic fields by measuring hyperfine structure splittings. Lamb shifts, or g-factors in hydrogen-like heavy systems such as U91+ or Pb81+. In addition, fundamental constants or nuclear properties like the atomic mass can be determined. In the case of a radioactive ion, the fate of an individual ion, undergoing a nuclear decay, can be studied in detail by observing the disappearance of the signal of the mother and the appearance of that of the daughter isotope. Presently, the Highly-charged Ion TRAP (HITRAP) facility is being built up at GSI. Stable or radioactive highly charged ions are produced by colliding relativistic ions with a target. After electron cooling and deceleration in the storage ring ESR at GSI, these ions are ejected, decelerated further, and injected into a Penning trap where cooling to 4 K takes place. From there, the cooled highly charged ions such as hydrogen-like uranium are transferred at low energy to different experimental set-ups which are being built up by the international HITRAP Collaboration.

  9. Anisotropic charge Kondo effect in a triple quantum dot.

    PubMed

    Yoo, Gwangsu; Park, Jinhong; Lee, S-S B; Sim, H-S

    2014-12-01

    We predict that an anisotropic charge Kondo effect appears in a triple quantum dot, when the system has twofold degenerate ground states of (1,1,0) and (0,0,1) charge configurations. Using bosonization and refermionization methods, we find that at low temperature the system has the two different phases of massive charge fluctuations between the two charge configurations and vanishing fluctuations, which are equivalent with the Kondo-screened and ferromagnetic phases of the anisotropic Kondo model, respectively. The phase transition is identifiable by electron conductance measurement, offering the possibility of experimentally exploring the anisotropic Kondo model. Our charge Kondo effect has a similar origin to that in a negative-U Anderson impurity. PMID:25526143

  10. Anisotropic Charge Kondo Effect in a Triple Quantum Dot

    NASA Astrophysics Data System (ADS)

    Yoo, Gwangsu; Park, Jinhong; Lee, S.-S. B.; Sim, H.-S.

    2014-12-01

    We predict that an anisotropic charge Kondo effect appears in a triple quantum dot, when the system has twofold degenerate ground states of (1,1,0) and (0,0,1) charge configurations. Using bosonization and refermionization methods, we find that at low temperature the system has the two different phases of massive charge fluctuations between the two charge configurations and vanishing fluctuations, which are equivalent with the Kondo-screened and ferromagnetic phases of the anisotropic Kondo model, respectively. The phase transition is identifiable by electron conductance measurement, offering the possibility of experimentally exploring the anisotropic Kondo model. Our charge Kondo effect has a similar origin to that in a negative-U Anderson impurity.

  11. Status of Charge Exchange Cross Section Measurements for Highly Charged Ions on Atomic Hydrogen

    NASA Astrophysics Data System (ADS)

    Draganic, I. N.; Havener, C. C.; Schultz, D. R.; Seely, D. G.; Schultz, P. C.

    2011-05-01

    Total cross sections of charge exchange (CX) for C5+, N6+, and O7+ ions on ground state atomic hydrogen are measured in an extended collision energy range of 1 - 20,000 eV/u. Absolute CX measurements are performed using an improved merged-beams technique with intense highly charged ion beams extracted from a 14.5 GHz ECR ion source mounted on a high voltage platform. In order to improve the problematic H+ signal collection for these exoergic CX collisions at low relative energies, a new double focusing electrostatic analyzer was installed. Experimental CX data are in good agreement with all previous H-oven relative measurements at higher collision energies. We compare our results with the most recent molecular orbital close-coupling (MOCC) and atomic orbital close-coupling (AOCC) theoretical calculations. Work supported by the NASA Solar & Heliospheric Physics Program NNH07ZDA001N, the Office of Fusion Energy Sciences and the Division of Chemical Sciences, Geosciences, and Biosciences, and the Office of Basic Energy Sciences of the U.S. DoE.

  12. Supercharging with m-nitrobenzyl alcohol and propylene carbonate: forming highly charged ions with extended, near-linear conformations.

    PubMed

    Going, Catherine C; Williams, Evan R

    2015-04-01

    The effectiveness of the supercharging reagents m-nitrobenzyl alcohol (m-NBA) and propylene carbonate at producing highly charged protein ions in electrospray ionization is compared. Addition of 5% m-NBA or 15% propylene carbonate increases the average charge of three proteins by ∼21% or ∼23%, respectively, when these ions are formed from denaturing solutions (water/methanol/acetic acid). These results indicate that both reagents are nearly equally effective at supercharging when used at their optimum concentrations. A narrowing of the charge state distribution occurs with both reagents, although this effect is greater for propylene carbonate. Focusing the ion signal into fewer charge states has the advantage of improving sensitivity. The maximum charge state of ubiquitin formed with propylene carbonate is 21+, four charges higher than previously reported. Up to nearly 30% of all residues in a protein can be charged, and the collisional cross sections of the most highly charged ions of both ubiquitin and cytochrome c formed with these supercharging reagents were measured for the first time and found to be similar to those calculated for theoretical highly extended, linear or near-linear conformations. Under native supercharging conditions, m-NBA is significantly more effective at producing high charge states than propylene carbonate. PMID:25719488

  13. Electron impact collision strengths for excitation of highly charged ions

    SciTech Connect

    Sampson, D.H. . Dept. of Astronomy and Astrophysics)

    1990-08-20

    The principle task given us by the Lawrence Livermore National Laboratory (LLNL) to perform under Subcontract 6181405 was to develop a method and corresponding computer programs to make very rapid, yet accurate, fully relativistic and quasirelativistic calculations of cross sections or collision strengths for electron impact excitation of highly charged ions with any value for the nuclear charge number Z. Also while this major code development was being done we were asked to calculate cross sections of interest using our previous rapid, more approximate codes, which used hydrogenic basis functions and screening constants with both the electron-electron Coulomb interaction and relativistic interactions included by perturbation theory. We were also asked to determine the branching ratio for ionization to various final states in complex cases, where two or more states corresponding to the final configuration of the ion were possible.

  14. Effect of thermal fluctuations on a charged dilatonic black Saturn

    NASA Astrophysics Data System (ADS)

    Pourhassan, Behnam; Faizal, Mir

    2016-04-01

    In this paper, we will analyze the effect of thermal fluctuations on the thermodynamics of a charged dilatonic black Saturn. These thermal fluctuations will correct the thermodynamics of the charged dilatonic black Saturn. We will analyze the corrections to the thermodynamics of this system by first relating the fluctuations in the entropy to the fluctuations in the energy. Then, we will use the relation between entropy and a conformal field theory to analyze the fluctuations in the entropy. We will demonstrate that similar physical results are obtained from both these approaches. We will also study the effect of thermal fluctuations on the phase transition in this charged dilatonic black Saturn.

  15. Ionization of highly charged iodine ions near the Bohr velocity

    NASA Astrophysics Data System (ADS)

    Zhou, Xianming; Cheng, Rui; Lei, Yu; Sun, Yuanbo; Ren, Jieru; Liu, Shidong; Deng, Jiachuan; Zhao, Yongtao; Xiao, Guoqing

    2015-01-01

    We have measured the L-shell X-rays of iodine from the collisions of 3 MeV Iq+(q=15,20,22,25,26) ions with an iron target. It is found that the X-ray yield decreases with the increasing initial charge state. The energy of the subshell X-ray has a blue shift, which is independent of the projectile charge state. In addition, the relative intensity ratios of Lβ1,3,4 and Lβ2,15 to Lα1,2 X-ray are obtained and compared with the theoretical calculations. That they are larger than for a singly ionized atom can be understood by the multiple ionization effect of the outer-shell electrons.

  16. Space-Charge Effects in a Gas Detector

    SciTech Connect

    Ryutov, D.D.

    2010-12-03

    Discussion of space-charge effects in a photoluminescence cell that will be used as a nondisruptive total energy monitor at the LCLS facility is presented. Regimes where primary photoelectrons will be confined within the X-ray beam aperture are identified. Effects of the space-charge on the further evolution of the electron and ion populations are discussed. Parameters of the afterglow plasma are evaluated. Conditions under which the detector output will be proportional to the pulse energy are defined.

  17. Electric field and space charge distribution measurement in transformer oil struck by impulsive high voltage

    NASA Astrophysics Data System (ADS)

    Sima, Wenxia; Guo, Hongda; Yang, Qing; Song, He; Yang, Ming; Yu, Fei

    2015-08-01

    Transformer oil is widely used in power systems because of its excellent insulation properties. The accurate measurement of electric field and space charge distribution in transformer oil under high voltage impulse has important theoretical and practical significance, but still remains challenging to date because of its low Kerr constant. In this study, the continuous electric field and space charge distribution over time between parallel-plate electrodes in high-voltage pulsed transformer oil based on the Kerr effect is directly measured using a linear array photoelectrical detector. Experimental results demonstrate the applicability and reliability of this method. This study provides a feasible approach to further study the space charge effects and breakdown mechanisms in transformer oil.

  18. Quantum gravity effects on charged microblack holes thermodynamics

    NASA Astrophysics Data System (ADS)

    Abbasvandi, Niloofar; Soleimani, M. J.; Radiman, Shahidan; Wan Abdullah, W. A. T.

    2016-08-01

    The charged black hole thermodynamics is corrected in terms of the quantum gravity effects. Most of the quantum gravity theories support the idea that near the Planck scale, the standard Heisenberg uncertainty principle should be reformulated by the so-called Generalized Uncertainty Principle (GUP) which provides a perturbation framework to perform required modifications of the black hole quantities. In this paper, we consider the effects of the minimal length and maximal momentum as GUP type I and the minimal length, minimal momentum and maximal momentum as GUP type II on thermo dynamics of the charged TeV-scale black holes. We also generalized our study to the universe with the extra dimensions based on the ADD model. In this framework, the effect of the electrical charge on thermodynamics of the black hole and existence of the charged black hole remnants as a potential candidate for the dark matter particles are discussed.

  19. Electrostatic Charge Effects on Pharmaceutical Aerosol Deposition in Human Nasal–Laryngeal Airways

    PubMed Central

    Xi, Jinxiang; Si, Xiuhua; Longest, Worth

    2014-01-01

    Electrostatic charging occurs in most aerosol generation processes and can significantly influence subsequent particle deposition rates and patterns in the respiratory tract through the image and space forces. The behavior of inhaled aerosols with charge is expected to be most affected in the upper airways, where particles come in close proximity to the narrow turbinate surface, and before charge dissipation occurs as a result of high humidity. The objective of this study was to quantitatively evaluate the deposition of charged aerosols in an MRI-based nasal–laryngeal airway model. Particle sizes of 5 nm–30 µm and charge levels ranging from neutralized to ten times the saturation limit were considered. A well-validated low Reynolds number (LRN) k–ω turbulence model and a discrete Lagrangian tracking approach that accounted for electrostatic image force were employed to simulate the nasal airflow and aerosol dynamics. For ultrafine aerosols, electrostatic charge was observed to exert a discernible but insignificant effect. In contrast, remarkably enhanced depositions were observed for micrometer particles with charge, which could be one order of magnitude larger than no-charge depositions. The deposition hot spots shifted towards the anterior part of the upper airway as the charge level increased. Results of this study have important implications for evaluating nasal drug delivery devices and for assessing doses received from pollutants, which often carry a certain level of electric charges. PMID:24481172

  20. Generation and interferometric analysis of high charge optical vortices

    NASA Astrophysics Data System (ADS)

    Shen, Yong; Campbell, Geoff T.; Hage, Boris; Zou, Hongxin; Buchler, Benjamin C.; Lam, Ping Koy

    2013-04-01

    We report on the generation of optical vortex beams using spatial phase modulation with spiral phase mirrors. The spiral phase mirrors are manufactured by direct machining with an ultra-precision single point diamond turning lathe. The imperfection of the machined phase mirrors and its impact on the generated vortex beams are analyzed with interferometric measurements. Our phase mirror has a surface roughness of 3 nm and a maximum peak-valley deviation of λ/30. The vortex charges of our light beams are directly verified by counting the fringes of their corresponding interferograms. We directly observed the successful generation of an optical vortex beam with a charge as high as 5050. We study the Fourier images of the vortex beams to characterize the quality of the beams. We obtained a conversion efficiency of 92.8% from a TEM00 beam to a vortex beam with charge 1020. This technique of generating optical singularities can potentially be used to produce more complex optical wavefronts, such as optical knots.

  1. Charge-state-dependent energy loss of slow ions. I. Experimental results on the transmission of highly charged ions

    NASA Astrophysics Data System (ADS)

    Wilhelm, Richard A.; Gruber, Elisabeth; Smejkal, Valerie; Facsko, Stefan; Aumayr, Friedrich

    2016-05-01

    We report on energy loss measurements of slow (v ≪v0 ), highly charged (Q >10 ) ions upon transmission through a 1-nm-thick carbon nanomembrane. We emphasize here the scaling of the energy loss with the velocity and charge exchange or loss. We show that a weak linear velocity dependence exists, whereas charge exchange dominates the kinetic energy loss, especially in the case of a large charge capture. A universal scaling of the energy loss with the charge exchange and velocity is found and discussed in this paper. A model for charge-state-dependent energy loss for slow ions is presented in paper II in this series [R. A. Wilhelm and W. Möller, Phys. Rev. A 93, 052709 (2016), 10.1103/PhysRevA.93.052709].

  2. An Acoustic Charge Transport Imager for High Definition Television

    NASA Technical Reports Server (NTRS)

    Hunt, William D.; Brennan, Kevin; May, Gary; Glenn, William E.; Richardson, Mike; Solomon, Richard

    1999-01-01

    This project, over its term, included funding to a variety of companies and organizations. In addition to Georgia Tech these included Florida Atlantic University with Dr. William E. Glenn as the P.I., Kodak with Mr. Mike Richardson as the P.I. and M.I.T./Polaroid with Dr. Richard Solomon as the P.I. The focus of the work conducted by these organizations was the development of camera hardware for High Definition Television (HDTV). The focus of the research at Georgia Tech was the development of new semiconductor technology to achieve a next generation solid state imager chip that would operate at a high frame rate (I 70 frames per second), operate at low light levels (via the use of avalanche photodiodes as the detector element) and contain 2 million pixels. The actual cost required to create this new semiconductor technology was probably at least 5 or 6 times the investment made under this program and hence we fell short of achieving this rather grand goal. We did, however, produce a number of spin-off technologies as a result of our efforts. These include, among others, improved avalanche photodiode structures, significant advancement of the state of understanding of ZnO/GaAs structures and significant contributions to the analysis of general GaAs semiconductor devices and the design of Surface Acoustic Wave resonator filters for wireless communication. More of these will be described in the report. The work conducted at the partner sites resulted in the development of 4 prototype HDTV cameras. The HDTV camera developed by Kodak uses the Kodak KAI-2091M high- definition monochrome image sensor. This progressively-scanned charge-coupled device (CCD) can operate at video frame rates and has 9 gm square pixels. The photosensitive area has a 16:9 aspect ratio and is consistent with the "Common Image Format" (CIF). It features an active image area of 1928 horizontal by 1084 vertical pixels and has a 55% fill factor. The camera is designed to operate in continuous mode

  3. Theory of Bound-Electron g Factor in Highly Charged Ions

    SciTech Connect

    Shabaev, V. M.; Glazov, D. A.; Plunien, G.; Volotka, A. V.

    2015-09-15

    The paper presents the current status of the theory of bound-electron g factor in highly charged ions. The calculations of the relativistic, quantum electrodynamics (QED), nuclear recoil, nuclear structure, and interelectronic-interaction corrections to the g factor are reviewed. Special attention is paid to tests of QED effects at strong coupling regime and determinations of the fundamental constants.

  4. Ultrafast photoelectron spectroscopy of solutions: space-charge effect

    NASA Astrophysics Data System (ADS)

    Al-Obaidi, R.; Wilke, M.; Borgwardt, M.; Metje, J.; Moguilevski, A.; Engel, N.; Tolksdorf, D.; Raheem, A.; Kampen, T.; Mähl, S.; Kiyan, I. Yu; Aziz, E. F.

    2015-09-01

    The method of time-resolved XUV photoelectron spectroscopy is applied in a pump-probe experiment on a liquid micro-jet. We investigate how the XUV energy spectra of photoelectrons are influenced by the space charge created due to ionization of the liquid medium by the pump laser pulse. XUV light from high-order harmonic generation is used to probe the electron population of the valence shell of iron hexacyanide in water. By exposing the sample to a short UV pump pulse of 266 nm wavelength and ˜55 fs duration, we observe an energy shift of the spectral component associated with XUV ionization from the Fe 3d(t2g) orbital as well as a shift of the water spectrum. Depending on the sequence of the pump and probe pulses, the arising energy shift of photoelectrons acquires a positive or negative value. It exhibits a sharp positive peak at small time delays, which facilitates to determine the temporal overlap between pump and probe pulses. The negative spectral shift is due to positive charge accumulated in the liquid medium during ionization. Its dissipation is found to occur on a (sub)nanosecond time scale and has a biexponential character. A simple mean-field model is provided to interpret the observations. A comparison between the intensity dependencies of the spectral shift and the UV ionization yield shows that the space-charge effect can be significantly reduced when the pump intensity is attenuated below the saturation level of water ionization. For the given experimental conditions, the saturation intensity lies at 6× {10}10 W cm-2.

  5. Effect of volume and surface charges on discharge structure of glow dielectric barrier discharge

    SciTech Connect

    Xu, Shao-Wei; He, Feng; Wang, Yu; Li, Lulu; Ouyang, Ji-Ting

    2013-08-15

    The effect of volume and surface charges on the structure of glow dielectric barrier discharge (DBD) has been investigated numerically by using two-dimensional (2D) fluid modeling. The local increase of volume or surface charges induces a kind of activation-inhibition effect, which enhances the local volume discharge and inhibits the discharge in neighborhoods, resulting in non-uniform discharge. The activation-inhibition effect due to the non-uniform volume and/or surface charges depends on the non-uniformity itself and the applied voltage. The activation-inhibition of non-uniform charges has different effects on the volume charges and the accumulated surface charges. The distribution of remaining free charges (seed electrons) in volume at the beginning of voltage pulse plays a key role for the glow DBD structure, resulting in a patterned DBD, when the seed electrons are non-uniform at higher frequency and moderate voltage or uniform DBD, when the seed electrons are uniform at lower frequency or high voltage. The distribution of surface charges is not the determining factor but a result of the formed DBD structure.

  6. Optical Transitions in Highly Charged Californium Ions with High Sensitivity to Variation of the Fine-Structure Constant

    NASA Astrophysics Data System (ADS)

    Berengut, J. C.; Dzuba, V. A.; Flambaum, V. V.; Ong, A.

    2012-08-01

    We study electronic transitions in highly charged Cf ions that are within the frequency range of optical lasers and have very high sensitivity to potential variations in the fine-structure constant, α. The transitions are in the optical range despite the large ionization energies because they lie on the level crossing of the 5f and 6p valence orbitals in the thallium isoelectronic sequence. Cf16+ is a particularly rich ion, having several narrow lines with properties that minimize certain systematic effects. Cf16+ has very large nuclear charge and large ionization energy, resulting in the largest α sensitivity seen in atomic systems. The lines include positive and negative shifters.

  7. Energy dissipation of highly charged ions on Al oxide films.

    PubMed

    Lake, R E; Pomeroy, J M; Sosolik, C E

    2010-03-01

    Slow highly charged ions (HCIs) carry a large amount of potential energy that can be dissipated within femtoseconds upon interaction with a surface. HCI-insulator collisions result in high sputter yields and surface nanofeature creation due to strong coupling between the solid's electronic system and lattice. For HCIs interacting with Al oxide, combined experiments and theory indicate that defect mediated desorption can explain reasonably well preferential O atom removal and an observed threshold for sputtering due to potential energy. These studies have relied on measuring mass loss on the target substrate or probing craters left after desorption. Our approach is to extract highly charged ions onto the Al oxide barriers of metal-insulator-metal tunnel junctions and measure the increased conductance in a finished device after the irradiated interface is buried under the top metal layer. Such transport measurements constrain dynamic surface processes and provide large sets of statistics concerning the way individual HCI projectiles dissipate their potential energy. Results for Xe(q +) for q = 32, 40, 44 extracted onto Al oxide films are discussed in terms of postirradiation electrical device characteristics. Future work will elucidate the relationship between potential energy dissipation and tunneling phenomena through HCI modified oxides. PMID:21389384

  8. Atomic physics with highly charged ions. Progress report

    SciTech Connect

    Richard, P.

    1994-08-01

    The study of inelastic collision phenomena with highly charged projectile ions and the interpretation of spectral features resulting from these collisions remain as the major focal points in the atomic physics research at the J.R. Macdonald Laboratory, Kansas State University, Manhattan, Kansas. The title of the research project, ``Atomic Physics with Highly Charged Ions,`` speaks to these points. The experimental work in the past few years has divided into collisions at high velocity using the primary beams from the tandem and LINAC accelerators and collisions at low velocity using the CRYEBIS facility. Theoretical calculations have been performed to accurately describe inelastic scattering processes of the one-electron and many-electron type, and to accurately predict atomic transition energies and intensities for x rays and Auger electrons. Brief research summaries are given for the following: (1) electron production in ion-atom collisions; (2) role of electron-electron interactions in two-electron processes; (3) multi-electron processes; (4) collisions with excited, aligned, Rydberg targets; (5) ion-ion collisions; (6) ion-molecule collisions; (7) ion-atom collision theory; and (8) ion-surface interactions.

  9. Energy dissipation of highly charged ions on Al oxide films

    NASA Astrophysics Data System (ADS)

    Lake, R. E.; Pomeroy, J. M.; Sosolik, C. E.

    2010-03-01

    Slow highly charged ions (HCIs) carry a large amount of potential energy that can be dissipated within femtoseconds upon interaction with a surface. HCI-insulator collisions result in high sputter yields and surface nanofeature creation due to strong coupling between the solid's electronic system and lattice. For HCIs interacting with Al oxide, combined experiments and theory indicate that defect mediated desorption can explain reasonably well preferential O atom removal and an observed threshold for sputtering due to potential energy. These studies have relied on measuring mass loss on the target substrate or probing craters left after desorption. Our approach is to extract highly charged ions onto the Al oxide barriers of metal-insulator-metal tunnel junctions and measure the increased conductance in a finished device after the irradiated interface is buried under the top metal layer. Such transport measurements constrain dynamic surface processes and provide large sets of statistics concerning the way individual HCI projectiles dissipate their potential energy. Results for Xeq + for q = 32, 40, 44 extracted onto Al oxide films are discussed in terms of postirradiation electrical device characteristics. Future work will elucidate the relationship between potential energy dissipation and tunneling phenomena through HCI modified oxides.

  10. Numerical calculations of high-altitude differential charging: Preliminary results

    NASA Technical Reports Server (NTRS)

    Laframboise, J. G.; Godard, R.; Prokopenko, S. M. L.

    1979-01-01

    A two dimensional simulation program was constructed in order to obtain theoretical predictions of floating potential distributions on geostationary spacecraft. The geometry was infinite-cylindrical with angle dependence. Effects of finite spacecraft length on sheath potential profiles can be included in an approximate way. The program can treat either steady-state conditions or slowly time-varying situations, involving external time scales much larger than particle transit times. Approximate, locally dependent expressions were used to provide space charge, density profiles, but numerical orbit-following is used to calculate surface currents. Ambient velocity distributions were assumed to be isotropic, beam-like, or some superposition of these.

  11. High Efficiency, Low Emissions Homogeneous Charge Compression Ignition (HCCI) Engines

    SciTech Connect

    2011-01-31

    This is the final report of the High Efficiency Clean Combustion (HECC) Research Program for the U.S. Department of Energy. Work under this co-funded program began in August 2005 and finished in July 2010. The objective of this program was to develop and demonstrate a low emission, high thermal efficiency engine system that met 2010 EPA heavy-duty on-highway truck emissions requirements (0.2g/bhp-hr NOx, 0.14g/bhp-hr HC and 0.01g/bhp-hr PM) with a thermal efficiency of 46%. To achieve this goal, development of diesel homogenous charge compression ignition (HCCI) combustion was the chosen approach. This report summarizes the development of diesel HCCI combustion and associated enabling technologies that occurred during the HECC program between August 2005 and July 2010. This program showed that although diesel HCCI with conventional US diesel fuel was not a feasible means to achieve the program objectives, the HCCI load range could be increased with a higher volatility, lower cetane number fuel, such as gasoline, if the combustion rate could be moderated to avoid excessive cylinder pressure rise rates. Given the potential efficiency and emissions benefits, continued research of combustion with low cetane number fuels and the effects of fuel distillation are recommended. The operation of diesel HCCI was only feasible at part-load due to a limited fuel injection window. A 4% fuel consumption benefit versus conventional, low-temperature combustion was realized over the achievable operating range. Several enabling technologies were developed under this program that also benefited non-HCCI combustion. The development of a 300MPa fuel injector enabled the development of extended lifted flame combustion. A design methodology for minimizing the heat transfer to jacket water, known as precision cooling, will benefit conventional combustion engines, as well as HCCI engines. An advanced combustion control system based on cylinder pressure measurements was developed. A Well

  12. SCATHA survey of high-level spacecraft charging in sunlight

    NASA Technical Reports Server (NTRS)

    Mullen, E. G.; Gussenhoven, M. S.; Hardy, D. A.; Aggson, T. A.; Ledley, B. G.

    1986-01-01

    The statistical occurrence of spacecraft charging at near-geosynchronous orbit in daylight is studied with reference to results of an experiment conducted on the SCATHA satellite. In particular, it is found that: (1) the external current that creates high negative satellite frame potentials is the high-energy electron current from the electron population with energies greater than about 30 keV; (2) the electron current to the satellite from particles with energies less than about 30 keV neither drives the frame potential nor provides the current to balance the high-energy populations; and (3) the ion current provided from the entire range of measured ions is also not the primary source of the balancing current.

  13. Impact of charging efficiency variations on the effectiveness of variable-rate-based charging strategies for electric vehicles

    NASA Astrophysics Data System (ADS)

    Amoroso, Francesco A.; Cappuccino, Gregorio

    The huge energy demand coming from the increasing diffusion of plug-in electric vehicles (PEVs) poses a significant challenge to electricity utilities and vehicle manufacturers in developing smart charging systems interacting in real time with distribution grids. These systems will have to implement smart charging strategies for PEV batteries on the basis of negotiation phases between the user and the electric utility regarding information about battery chemistries, tariffs, required energy and time available for completing the charging. Strategies which adapt the charging current to grid load conditions are very attractive. Indeed, they allow full exploitation of the grid capacity, with a consequent greater final state of charge and higher utility financial profits with respect to approaches based on a fixed charging rate. The paper demonstrates that the charging current should be chosen also taking into account the effect that different charging rates may have on the charging efficiency. To this aim, the performances of two smart variable-rate-based charging strategies, taken as examples, are compared by considering possible realistic relationships between the charging efficiency and the charging rate. The analysis gives useful guidelines for the development of smart charging strategies for PEVs as well as for next-generation battery charging and smart grid management systems.

  14. A modified QM/MM Hamiltonian with the Self-Consistent-Charge Density-Functional-Tight-Binding Theory for highly charged QM regions

    PubMed Central

    Hou, Guanhua; Zhu, Xiao; Elstner, Marcus; Cui, Qiang

    2012-01-01

    To improve the description of electrostatic interaction between QM and MM atoms when the QM is SCC-DFTB, we adopt a Klopman-Ohno (KO) functional form which considers the finite size of the QM and MM charge distributions. Compared to the original implementation that used a simple Coulombic interaction between QM Mulliken and MM point charges, the KO based QM/MM scheme takes charge penetration effect into consideration and therefore significantly improves the description of QM/MM interaction at short range, especially when the QM region is highly charged. To be consistent with the third-order formulation of SCC-DFTB, the Hubbard parameter in the KO functional is dependent on the QM charge. As a result, the effective size of the QM charge distribution naturally adjusts as the QM region undergoes chemical transformations, making the KO based QM/MM scheme particularly attractive for describing chemical reactions in the condensed phase. Together with the van der Waals parameters for the QM atom, the KO based QM/MM model introduces four parameters for each element type. They are fitted here based on microsolvation models of small solutes, focusing on negatively charged molecular ions, for elements O, C, H and P with a specific version of SCC-DFTB (SCC-DFTBPR). Test calculations confirm that the KO based QM/MM scheme significantly improves the interactions between QM and MM atoms over the original point charge based model and it is transferable due to the small number of parameters. The new form of QM/MM Hamiltonian will greatly improve the applicability of SCC-DFTB based QM/MM methods to problems that involve highly charged QM regions, such as enzyme catalyzed phosphoryl transfers. PMID:23275762

  15. Effect of random charge fluctuation on strongly coupled dusty Plasma

    SciTech Connect

    Issaad, M.; Rouiguia, L.; Djebli, M.

    2008-09-07

    Modeling the interaction between particles is an open issue in dusty plasma. We dealt with strongly coupled dust particles in two dimensional confined system. For small number of clusters, we investigate the effect of random charge fluctuation on background configuration. The study is conducted for a short rang as well as a long rang potential interaction. Numerical simulation is performed using Monte-Carlo simulation in the presence of parabolic confinement and at low temperature. We have studied the background configurations for a dust particles with constant charge and in the presence of random charge fluctuation due to the discrete nature of charge carriers. The latter is studied for a positively charged dust when the dominant charging process is due to photo-emission from the dust surface. It is found, for small classical cluster consisting of small number of particles, short rang potential gives the same result as long rang one. It is also found that the random charge fluctuation affect the background configurations.

  16. Effect of the surface charge on ion transport through nanoslits

    NASA Astrophysics Data System (ADS)

    Schoch, Reto B.; van Lintel, Harald; Renaud, Philippe

    2005-10-01

    A description of ion transport through geometrically defined nanoslits is presented. It is characterized by the effective surface charge density and was obtained by impedance spectroscopy measurements of electrolytes with different physicochemical properties. The fluid channels were fabricated in a Pyrex-Pyrex field assisted bonding process with an intermediate layer of amorphous silicon. The height of the nanoslits was defined by the 50nm thickness of the amorphous silicon layer. Two microfluidic channels, containing electrodes for the characterization of the nanoslits, maintained fresh liquid on both sides of the nanoapertures. By changing the KCl concentration of the electrolyte, a conductance plateau (in log-log scale) was observed due to the dominance of the effective surface charge density, resulting in an excess of mobile counterions in the nanoslits at low salt concentrations. The effective surface charge density of the Pyrex nanoslits could be modified by changing the pH of the solution. It was verified that at higher pH values the nanoslit conductance increased. Field-effect experiments allowed changing the effective surface charge density as well. The polarity of the external voltage could be chosen such that the effective surface charge density was increased or decreased, resulting in a higher or lower nanoslit conductance. This regulation of ionic flow can be exploited for the fabrication of nanofluidic devices.

  17. Key elements of space charge compensation on a low energy high intensity beam injector

    SciTech Connect

    Peng Shixiang; Lu Pengnan; Ren Haitao; Zhao Jie; Chen Jia; Xu Yuan; Guo Zhiyu; Chen Jia'er; Zhao Hongwei; Sun Liangting

    2013-03-15

    Space charge effect (SCE) along the beam line will decrease beam quality. Space charge compensation (SCC) with extra gas injection is a high-efficiency method to reduce SCE. In this paper, we will report the experimental results on the beam profile, potential distribution, beam emittance, and beam transmission efficiency of a 35 keV/90 mA H{sup +} beam and a 40 keV/10 mA He{sup +} beam compensated by Ar/Kr. The influence of gas type, gas flow, and injection location will be discussed. Emphasis is laid on the consideration of SCC when designing and commissioning a high intensity ion beam injector. Based on measured data, a new definition of space charge compensation degree is proposed.

  18. Key elements of space charge compensation on a low energy high intensity beam injector.

    PubMed

    Peng, Shixiang; Lu, Pengnan; Ren, Haitao; Zhao, Jie; Chen, Jia; Xu, Yuan; Guo, Zhiyu; Chen, Jia'er; Zhao, Hongwei; Sun, Liangting

    2013-03-01

    Space charge effect (SCE) along the beam line will decrease beam quality. Space charge compensation (SCC) with extra gas injection is a high-efficiency method to reduce SCE. In this paper, we will report the experimental results on the beam profile, potential distribution, beam emittance, and beam transmission efficiency of a 35 keV∕90 mA H(+) beam and a 40 keV∕10 mA He(+) beam compensated by Ar∕Kr. The influence of gas type, gas flow, and injection location will be discussed. Emphasis is laid on the consideration of SCC when designing and commissioning a high intensity ion beam injector. Based on measured data, a new definition of space charge compensation degree is proposed. PMID:23556812

  19. Charging effects in passivated silicon detectors

    NASA Astrophysics Data System (ADS)

    Bracken, D. S.; Kwiatkowski, K.; Morley, K. B.; Renshaw Foxford, E.; Komisarcik, K.; Rader, A. J.; Viola, V. E.

    1995-02-01

    Ion-implanted passivated silicon detectors undergo a gradual, then rapid increase in leakage current when exposed to ionizing radiation in the presence of gas between 5-200 Torr. Conditions for generating this effect are discussed and a mechanism is proposed to explain this behavior. Methods for preventing this effect and for recovering detectors damaged in this way are presented.

  20. High-throughput charge exchange recombination spectroscopy system on MAST

    SciTech Connect

    Conway, N. J.; Carolan, P. G.; McCone, J.; Walsh, M. J.; Wisse, M.

    2006-10-15

    A major upgrade to the charge exchange recombination spectroscopy system on MAST has recently been implemented. The new system consists of a high-throughput spectrometer coupled to a total of 224 spatial channels, including toroidal and poloidal views of both neutral heating beams on MAST. Radial resolution is {approx}1 cm, comparable to the ion Larmor radius. The toroidal views are configured with 64 channels per beam, while the poloidal views have 32 channels per beam. Background channels for both poloidal and toroidal views are also provided. A large transmission grating is at the heart of the new spectrometer, with high quality single lens reflex lenses providing excellent imaging performance and permitting the full exploitation of the available etendue of the camera sensor. The charge-coupled device camera chosen has four-tap readout at a maximum aggregate speed of 8.8 MHz, and it is capable of reading out the full set of 224 channels in less than 4 ms. The system normally operates at 529 nm, viewing the C{sup 5+} emission line, but can operate at any wavelength in the range of 400-700 nm. Results from operating the system on MAST are shown, including impurity ion temperature and velocity profiles. The system's excellent spatial resolution is ideal for the study of transport barrier phenomena on MAST, an activity which has already been advanced significantly by data from the new diagnostic.

  1. A high efficiency all-PMOS charge pump for 3D NAND flash memory

    NASA Astrophysics Data System (ADS)

    Liyin, Fu; Yu, Wang; Qi, Wang; Zongliang, Huo

    2016-07-01

    For 3D vertical NAND flash memory, the charge pump output load is much larger than that of the planar NAND, resulting in the performance degradation of the conventional Dickson charge pump. Therefore, a novel all PMOS charge pump with high voltage boosting efficiency, large driving capability and high power efficiency for 3D V-NAND has been proposed. In this circuit, the Pelliconi structure is used to enhance the driving capability, two auxiliary substrate bias PMOS transistors are added to mitigate the body effect, and the degradation of the output voltage and boost efficiency caused by the threshold voltage drop is eliminated by dynamic gate control structure. Simulated results show that the proposed charge pump circuit can achieve the maximum boost efficiency of 86% and power efficiency of 50%. The output voltage of the proposed 9 stages charge pump can exceed 2 V under 2 MHz clock frequency in 2X nm 3D V-NAND technology. Our results provide guidance for the peripheral circuit design of high density 3D V-NAND integration.

  2. Ionic Behavior in Highly Concentrated Aqueous Solutions Nanoconfined between Discretely Charged Silicon Surfaces.

    PubMed

    Qiu, Yinghua; Ma, Jian; Chen, Yunfei

    2016-05-17

    Through molecular dynamics simulations considering thermal vibration of surface atoms, ionic behaviors in concentrated NaCl solutions confined between discretely charged silicon surfaces have been investigated. The electric double layer structure was found to be sensitive to the density and distribution of surface charges. Due to the discreteness of the surface charge, a slight charge inversion appeared which depended on the surface charge density, bulk concentration, and confinement. In the nanoconfined NaCl solutions concentrated from 0.2 to 4.0 M, the locations of accumulation layers for Na(+) and Cl(-) ions remained stable, but their peak values increased. The higher the concentration was, the more obvious the charge inversion appeared. In 4.0 M NaCl solution, Na(+) and Cl(-) ions show obvious alternating layered distributions which may correspond to the solidification found in experiments. By changing surface separation, the confinement had a large effect on the ionic distribution. As both surfaces approached each other, many ions and water molecules were squeezed out of the confined space. Two adjacent layers in ion or water distribution profiles can be forced closer to each other and merge together. From ionic hydration analysis, the coordination number of Na(+) ions in highly confined space was much lower than that in the bulk. PMID:27137990

  3. Solution-processed high-LUMO-level polymers in n-type organic field-effect transistors: a comparative study as a semiconducting layer, dielectric layer, or charge injection layer

    NASA Astrophysics Data System (ADS)

    Liu, Chuan; Xu, Yong; Liu, Xuying; Minari, Takeo; Sirringhaus, Henning; Noh, Yong-Young

    2015-04-01

    In solution-processed organic field-effect transistors (OFETs), the polymers with high level of lowest unoccupied molecular orbitals (LUMOs, > -3.5 eV) are especially susceptible to electron-trapping that causes low electron mobility and strong instability in successive operation. However, the role of high-LUMO-level polymers could be different depending on their locations relative to the semiconductor/insulator interface, or could even possibly benefit the device in some cases. We constructed unconventional polymer heterojunction n-type OFETs to control the location of the same polymer with a high LUMO level, to be in, under, or above the accumulation channel. We found that although the devices with the polymer in the channel suffer from dramatic instability, the same polymer causes much less instability when it acts as a dielectric modification layer or charge injection layer. Especially, it may even improve the device performance in the latter case. This result helps to improve our understanding of the electron-trapping and explore the value of these polymers in OFETs.

  4. Correlation effects on the fine-structure splitting within the 3d9 ground configuration in highly-charged Co-like ions

    NASA Astrophysics Data System (ADS)

    Xue-Ling, Guo; Min, Huang; Jun, Yan; Shuang, Li; Kai, Wang; Ran, Si; Chong-Yang, Chen

    2016-01-01

    A comprehensive theoretical study of correlation effects on the fine-structure splitting within the ground configuration 3d9 of the Co-like Hf45+, Ta46+, W47+, and Au52+ ions is performed by employing the multi-configuration Dirac-Hartree-Fock method in the active space approximation. It shows that the core-valence correlation with the inner-core 2p electron is more significant than with the outer 3p and 3s electrons, and the correlation with the 2s electron is also noticeable. The core-core correlation seems to be small and can be ignored. The calculated 2D3/2,5/2 splitting energies agree with the recent electron-beam ion-trap measurements [Phys. Rev. A 83 032517 (2011), Eur. Phys. J. D 66 286 (2012)] to within the experimental uncertainties. Project supported by the National Natural Science Foundation of China (Grant Nos. 11076009 and 11374062), the Chinese Association of Atomic and Molecular Data, the Chinese National Fusion Project for ITER (Grant No. 2015GB117000), and the Leading Academic Discipline Project of Shanghai City, China (Grant No. B107).

  5. High pressure study of charge transfer complexes and radical ion salts: A review

    NASA Astrophysics Data System (ADS)

    Singh, Yadunath

    2016-05-01

    High pressure is an important tool to study of material in respect of variation in interatomic distances, phase transitions and other physical properties. The pressure study of charge transfer complexes and radical ion salts provide us a better understanding about the effect of charge transfer forces, structural changes, formation of new ground states, suppression ofPeierls distortions occurs particularly at low temperatures and the intra-molecular overlapping etc. in these materials. The pressure plays a significant role in bringing superconducting transitions in the organic materials.

  6. X-ray emission from charge exchange of highly-charged ions in atoms and molecules

    NASA Technical Reports Server (NTRS)

    Greenwood, J. B.; Williams, I. D.; Smith, S. J.; Chutjian, A.

    2000-01-01

    Charge exchange followed by radiative stabilization are the main processes responsible for the recent observations of X-ray emission from comets in their approach to the Sun. A new apparatus was constructed to measure, in collisions of HCIs with atoms and molecules, (a) absolute cross sections for single and multiple charge exchange, and (b) normalized X-ray emission cross sections.

  7. Effects of kinematic cuts on net electric charge fluctuations

    NASA Astrophysics Data System (ADS)

    Karsch, Frithjof; Morita, Kenji; Redlich, Krzysztof

    2016-03-01

    The effects of kinematic cuts on electric charge fluctuations in a gas of charged particles are discussed. We consider a very transparent example of an ideal pion gas with quantum statistics, which can be viewed as a multicomponent gas of Boltzmann particles with different charges, masses, and degeneracies. Cumulants of net electric charge fluctuations χnQ are calculated in a static and expanding medium with flow parameters adjusted to the experimental data. We show that the transverse momentum cut, ptmin≤pt≤ptmax , weakens the effects of Bose statistics, i.e., contributions of effectively multicharged states to higher order moments. Consequently, cuts in pt modify the experimentally measured cumulants and their ratios. We discuss the influence of kinematic cuts on the ratio of mean and variance of electric charge fluctuations in a hadron resonance gas, in the light of recent data from the STAR and PHENIX Collaborations. We find that the different momentum cuts of ptmin=0.2GeV (STAR) and pt min=0.3 GeV (PHENIX) are responsible for more than 30% of the difference between these two data sets. We argue that the pt cuts imposed on charged particles will influence the normalized kurtosis κQσQ2=χ4Q/χ2Q of the electric charge fluctuations. In particular, the reduction of κQσQ2 with increasing pt min will lead to differences between PHENIX and STAR data of O (6 %) , which currently are buried under large statistical and systematic errors. We furthermore introduce the relation between momentum cutoff and finite volume effects, which is of relevance for the comparison between experimental data and lattice QCD calculations.

  8. Applied Electric Fields and the Aggregation of Highly Charged Proteins

    NASA Astrophysics Data System (ADS)

    Nemzer, Louis; Flanders, Bret; Sorensen, Christopher

    2011-03-01

    The abnormal aggregation of misfolded proteins is associated with the onset of Alzheimer's disease, along with other neurodegenerative disorders, and there is increasing evidence that prefibrillar clusters, rather than fully-formed amyloid plaques, are primarily responsible. Therefore, weakly invasive methods, such as dynamic light scattering, which can probe the size distribution and structure factor of early nuclei and proto-aggregate clusters, can serve an important role in understanding this process, and may lead to insights regarding future therapeutic interventions. Here we study a highly charged model protein, lysozyme, under the influence of applied AC and DC fields in an effort to evaluate general models of protein aggregation, including the coarse-grained ``patchy protein'' method of visualizing charge heterogeneity. This anisotropy in the interprotein interaction can lead to frustrated crystalline order, resulting in low density phases. Dynamic measurements of the size distribution and structure factor can reveal local ordering, hierarchical clustering, and fractal properties of the aggregates. Early results show that applied fields affect early cluster growth by modulating local protein and counterion concentrations, in addition to their influence on protein alignment.

  9. X-ray Measurements of Highly Charged Europium

    NASA Astrophysics Data System (ADS)

    Widmann, K.; Beiersdorfer, P.; Brown, G. V.; Hell, N.; Magee, E. W.; Träbert, E.

    2015-01-01

    We present spectroscopic measurements of the M-shell emission of highly charged europium performed at the Livermore SuperEBIT electron beam ion trap facility using the EBIT Calorimeter Spectrometer (ECS). There is significant blending among the emission lines from the different charge states but despite the complexity of the observed spectra we have successfully identified the ten brightest n = 4 → 3 transitions from sodium-like Eu52+ utilizing the Flexible Atomic Code (FAC). We find that the difference between the calculated and measured transition energies for these ten Eu52+ lines does not exceed 3 eV. In fact, for four of the identified lines we find agreement within the measured uncertainties. Additional comparison with semi-empirical transition-energy predictions for sodium-like ions from laser-generated plasmas is included and shows that overall the semi-empirical predicted values for the transition energies are slightly higher than the measured values, while the FAC values that didnt agree with the measured transition energies are almost 1 eV lower than the measured values.

  10. Highly Twisted Triarylamines for Photoinduced Intramoleculer ChargeTransfer

    SciTech Connect

    Chudomel, J. M.; Yang, B. Q.; Barnes, M. D.; Achermann, M.; Mague, J. T.; Lahti, P. M.

    2011-08-04

    9-(N,N-Dianisylamino)anthracene (9DAAA), 9-(N,N-dianisylamino)dinaphth([1,2-a:2'-1'-j]-anthracene (9DAAH), and 9,10-bis(N,N-dianisylamino)anthracene (910BAA) were synthesized as highly twisted triarylamines with potential for photoexcited internal charge transfer. Crystallography of 9DAAA shows its dianisylamino group to be twisted nearly perpendicular to its anthracene unit, similar to a report for 910BAA. The solution fluorescence spectra show strong bathochromic shifts for each of the three molecular systems with strongly decreased quantum efficiency in higher polarity solvents. Solution-phase (ensemble) time-resolved photoluminescence measurements show up to 4-fold decreases in fluorescence lifetime in acetonitrile compared to hexane. The combined results are consistent with photoinduced, transient intramolecular charge-transfer from the bis-anisylamine unit to the polycyclic aromatic unit. Computational modeling is in accord with intramolecular transfer of electron density from the bis-anisylamino unit to the anthracene, based on in comparisons of HOMO and LUMO.

  11. Resist charging effect correction function qualification for photomasks production

    NASA Astrophysics Data System (ADS)

    Sidorkin, Vadim; Finken, Michael; Wandel, Timo; Nakayamada, Noriaki; Cantrell, G. R.

    2014-10-01

    We quantitatively evaluate Nuflare's latest resist charging effect correction (CEC) model for advanced photomask production using e-beam lithography. Functionality of this CEC model includes the simulation of static and timedependent charging effects together with an improved calibration method. CEC model calibration is performed by polynomial fitting of image placement distortions induced by various beam scattering effects on a special test design with writing density variations. CEC model parameters can be fine tuned for different photomask blank materials facilitating resist charging compensation maps for different product layers. Application of this CEC model into production yields a significant reduction in photomask image placement (IP), as well as improving photomask overlay between critical neighbouring layers. The correlations between IP improvement facilitated by this CEC model and single mask parameters are presented and discussed. The layer design specifics, resist and blank materials, coupled with their required exposure parameters are observed to be the major influences on CEC model performance.

  12. Large Seebeck effect by charge-mobility engineering

    PubMed Central

    Sun, Peijie; Wei, Beipei; Zhang, Jiahao; Tomczak, Jan M.; Strydom, A.M.; Søndergaard, M.; Iversen, Bo B.; Steglich, Frank

    2015-01-01

    The Seebeck effect describes the generation of an electric potential in a conducting solid exposed to a temperature gradient. In most cases, it is dominated by an energy-dependent electronic density of states at the Fermi level, in line with the prevalent efforts towards superior thermoelectrics through the engineering of electronic structure. Here we demonstrate an alternative source for the Seebeck effect based on charge-carrier relaxation: a charge mobility that changes rapidly with temperature can result in a sizeable addition to the Seebeck coefficient. This new Seebeck source is demonstrated explicitly for Ni-doped CoSb3, where a marked mobility change occurs due to the crossover between two different charge-relaxation regimes. Our findings unveil the origin of pronounced features in the Seebeck coefficient of many other elusive materials characterized by a significant mobility mismatch. When utilized appropriately, this effect can also provide a novel route to the design of improved thermoelectric materials. PMID:26108283

  13. Proximity effects in cold gases of multiply charged atoms (Review)

    NASA Astrophysics Data System (ADS)

    Chikina, I.; Shikin, V.

    2016-07-01

    there are no electron fluxes through the outer boundary R3 ∝ n-1d of a Wigner-Seitz cell. Eproxi corresponds to the definition of the correlation energy in a gas of interacting particles. This review is written so as to enable comparison of the results of the TF formalism with the standard assumptions of the correlation theory for classical plasmas. The classic example from work on weak solutions (including charged solutions)—the use of semi-impermeable membranes for studies of osmotic pressure—is highly appropriate for problems involving Eproxi. Here we are speaking of one or more sharp boundaries formed by the ionic component of a many-particle problem. These may be a metal-vacuum boundary in a standard Casimir cell in a study of the vacuum properties in the 2l gap between conducting media of different kinds or different layered systems (quantum wells) in semiconductors, etc. As the mobile part of the equilibrium near a sharp boundary, electrons can (should) escape beyond the confines of the ion core into a gap 2l with a probability that depends, among other factors, on the properties of Eproxi for the electron cloud inside the conducting walls of the Casimir cell (quantum well). The analog of the Casimir sandwich in semiconductors is the widely used multilayer heterostructures referred to as quantum wells of width 2l with sides made of suitable doped materials, which ensure statistical equilibrium exchange of electrons between the layers of the multilayer structure. The thermal component of the proximity effects in semiconducting quantum wells provides an idea of many features of the dissociation process in doped semiconductors. In particular, a positive Eproxi > 0 (relative to the bottom of the conduction band) indicates that TF donors with a finite density nd ≠ 0 form a degenerate, semiconducting state in the semiconductor. At zero temperature, there is a finite density of free carriers which increases with a power-law dependence on T.

  14. Effect of water on the space charge formation in XLPE

    SciTech Connect

    Miyata, Hiroyuki; Yokoyama, Ayako; Takahashi, Tohru; Yamamaoto, Syuji

    1996-12-31

    In this paper, the authors describe the effect of water on the space charge in crosslinked polyethylene (XLPE). In order to study the effects of water and by-products of crosslinking, they prepared two types of samples. The water in the first one (Type A) is controlled by immersing in water after removing the by-products, and the water in the other type (Type B) of samples is controlled by the water from the decomposition of cumyl-alcohol by heating. The authors measured the space charge formation by pulsed electro-acoustic (PEA) method. A large difference was observed between Type A and Type B. In Type A samples (containing only water) the space charge distribution changes from homogeneous to heterogeneous as the water content increases, whereas in Type B (containing water and by-product) all samples exhibit heterogeneous space charge distribution. However, merely the effect of water for both types was almost the same, including peculiar space charge behavior near the water solubility limit.

  15. The secondary electron emission yield of muscovite mica: Charging kinetics and current density effects

    NASA Astrophysics Data System (ADS)

    Blaise, G.; Pesty, F.; Garoche, P.

    2009-02-01

    Using a dedicated scanning electron microscope, operating in the spot mode, the charging properties of muscovite mica have been studied in the energy range of 100-8000 eV. The intrinsic yield curve σ0(E), representing the variation of the yield of the uncharged material with the energy E, has been established: the maximum value of the yield is 3.92 at E =300 eV and the two crossovers corresponding to σ0(E)=1 are, respectively, at energies EI<100 eV and EII=4850 eV. At a given energy and under a low current density J ≤100 nA/cm2, the yield varies with the electron fluence from its intrinsic value σ0 up to the value corresponding to the self-regulated regime for which σ =1. This variation is independent of J. The fluence dependence of the yield σ(D ) is due to the internal field produced by the accumulation of charges that blocks the emission when the charging is positive and enhances it when it is negative. At room temperature, the relaxation time of stored charges is estimated to be of the order of 250 s for holes and 150 s for electrons. Three current density effects have been observed when J ≥400 nA/cm2. (i) The variation of σ(D ) with the fluence D depends on J. (ii) Negative charging is obtained at high current density in the energy range (EI, EII) where the material is normally positively charged at low current density. (iii) Electron exoemission (bursts of electrons) is produced at low energy when the net stored charge is positive. The interpretation of the current density effect on σ(D ) is based on the high rate of charging, the effect relative to negative charging is due to the expansion of the electron distribution, while the exoemission effect is due to the collective relaxation process of electrons.

  16. Space-Charge Effects in the Gas Detector

    SciTech Connect

    Ryutov, D; Hau-Riege, S; Bionta, R

    2007-09-24

    Discussion of space-charge effects in a photoluminescence cell that will be used as a non-disruptive total energy monitor at the LCLS facility is presented. Regimes where primary photoelectrons will be confined within the X-ray beam aperture are identified. Effects of the space-charge on the further evolution of the electron and ion populations are discussed. Parameters of the afterglow plasma are evaluated. Conditions under which the detector output will be proportional to the pulse energy are defined.

  17. Phonon Effects on Spin-Charge Separation in One Dimension

    NASA Astrophysics Data System (ADS)

    Ning, Wen-Qiang; Zhao, Hui; Wu, Chang-Qin; Lin, Hai-Qing

    2006-04-01

    Phonon effects on spin-charge separation in one dimension are investigated through the calculation of one-electron spectral functions in terms of the recently developed cluster perturbation theory together with an optimized phonon approach. It is found that the retardation effect due to the finiteness of phonon frequency suppresses the spin-charge separation and eventually makes it invisible in the spectral function. By comparing our results with experimental data of TTF-TCNQ, it is observed that the electron-phonon interaction must be taken into account when interpreting the angle-resolved photoemission spectroscopy data.

  18. Phonon effects on spin-charge separation in one dimension.

    PubMed

    Ning, Wen-Qiang; Zhao, Hui; Wu, Chang-Qin; Lin, Hai-Qing

    2006-04-21

    Phonon effects on spin-charge separation in one dimension are investigated through the calculation of one-electron spectral functions in terms of the recently developed cluster perturbation theory together with an optimized phonon approach. It is found that the retardation effect due to the finiteness of phonon frequency suppresses the spin-charge separation and eventually makes it invisible in the spectral function. By comparing our results with experimental data of TTF-TCNQ, it is observed that the electron-phonon interaction must be taken into account when interpreting the angle-resolved photoemission spectroscopy data. PMID:16712177

  19. Experimental investigation on the use of highly charged nanoparticles to improve the stability of weakly charged colloidal system.

    PubMed

    Zubir, Mohd Nashrul Mohd; Badarudin, A; Kazi, S N; Misran, Misni; Amiri, Ahmad; Sadri, Rad; Khalid, Solangi

    2015-09-15

    The present work highlighted on the implementation of a unique concept for stabilizing colloids at their incipiently low charge potential. A highly charged nanoparticle was introduced within a coagulated prone colloidal system, serving as stabilizer to resist otherwise rapid flocculation and sedimentation process. A low size asymmetry of nanoparticle/colloid serves as the new topic of investigation in addition to the well-established large size ratio nanoparticle/microparticle study. Highly charged Al2O3 nanoparticles were used within the present research context to stabilize TiO2 and Fe3O4 based colloids via the formation of composite structures. It was believed, based on the experimental evidence, that Al2O3 nanoparticle interact with the weakly charged TiO2 and Fe3O4 colloids within the binary system via absorption and/or haloing modes to increase the overall charge potential of the respective colloids, thus preventing further surface contact via van der Waal's attraction. Series of experimental results strongly suggest the presence of weakly charged colloids in the studied bimodal system where, in the absence of highly charged nanoparticle, experience rapid instability. Absorbance measurement indicated that the colloidal stability drops in accordance to the highly charged nanoparticle sedimentation rate, suggesting the dominant influence of nanoparticles to attain a well-dispersed binary system. Further, it was found that the level of colloidal stability was enhanced with increasing nanoparticle fraction within the mixture. Rheological observation revealed that each hybrid complexes demonstrated behavior reminiscence to water with negligible increase in viscosity which serves as highly favorable condition particularly in thermal transport applications. PMID:26048724

  20. Charge Transfer and Support Effects in Heterogeneous Catalysis

    SciTech Connect

    Hervier, Antoine

    2011-12-21

    the band bending at the interface, gives rise to a steady-state flow of hot holes to the surface. This leads to a decrease in turnover on the surface, an effect which is enhanced when a reverse bias is applied to the diode. Similar experiments were carried out for CO oxidation. On Pt/Si diodes, the reaction rate was found to increase when a forward bias was applied. When the diode was exposed to visible light and a reverse bias was applied, the rate was instead decreased. This implies that a flow of negative charges to the surface increases turnover, while positive charges decrease it. Charge flow in an oxide supported metal catalyst can be modified even without designing the catalyst as a solid state electronic device. This was done by doping stoichiometric and nonstoichiometric TiO2 films with F, and using the resulting oxides as supports for Pt films. In the case of stoichiometric TiO2, F was found to act as an n-type dopant, creating a population of filled electronic states just below the conduction band, and dramatically increasing the conductivity of the oxide film. The electrons in those states can transfer to surface O, activating it for reaction with CO, and leading to increased turnover for CO oxidation. This reinforces the hypothesis that CO oxidation is activated by a flow of negative charges to the surface. The same set of catalysts was used for methanol oxidation. The electronic properties of the TiO2 films again correlated with the turnover rates, but also with selectivity. With stoichiometric TiO2 as the support, F-doping caused an increase in selectivity toward the formation of partial oxidation products, formaldehyde and methyl formate, versus the total oxidation product, CO2. With non-stoichiometric TiO2, F-doping had the reverse effect. Ambient Pressure X-Ray Photoelectron Spectroscopy was used to investigate this F-doping effect in reaction conditions. In O2 alone, and in

  1. Relativity: X-ray and auger transitions of highly charged ions

    SciTech Connect

    Chen, Mau Hsiung

    1989-03-06

    Many-electron QED correction is one of the unsolved problems in relativistic atomic structure calculations for many-electron systems. The accuracy of the effective-charged screening approach frequently used in the MCDF model to estimate the many-electron QED corrections is examined. The effects of relativity and configuration interaction are simultaneously important in the treatment of highly-charged ions. These effects can sometimes change the transition rates by orders of magnitude; numerous irregularities present in Auger rates and oscillator strengths along the isoelectronic sequence due to the level crossings. The spin-orbit mixing and Breit interaction are responsible for the decay of most of the high-spin metastable autoionizing states. 29 refs., 8 figs.

  2. X-ray radiography with highly charged ions

    DOEpatents

    Marrs, Roscoe E.

    2000-01-01

    An extremely small (1-250 micron FWHM) beam of slow highly charged ions deexciting on an x-ray production target generates x-ray monochromatic radiation that is passed through a specimen and detected for imaging. The resolution of the x-ray radiograms is improved and such detection is achieved with relatively low dosages of radiation passing through the specimen. An apparatus containing an electron beam ion trap (and modifications thereof) equipped with a focusing column serves as a source of ions that generate radiation projected onto an image detector. Electronic and other detectors are able to detect an increased amount of radiation per pixel than achieved by previous methods and apparati.

  3. The HITRAP facility for slow highly charged ions

    NASA Astrophysics Data System (ADS)

    Herfurth, F.; Andelkovic, Z.; Barth, W.; Chen, W.; Dahl, L. A.; Fedotova, S.; Gerhard, P.; Kaiser, M.; Kester, O. K.; Kluge, H.-J.; Kotovskiy, N.; Maier, M.; Maaß, B.; Neidherr, D.; Quint, W.; Ratzinger, U.; Reiter, A.; Schempp, A.; Stöhlker, Th; Vormann, H.; Vorobjev, G.; Yaramyshev, S.; the HITRAP Collaboration

    2015-11-01

    At the GSI accelerator complex, behind the universal linear accelerator UNILAC and the synchrotron SIS, highly charged ions up to {{{U}}}73+ are produced at 400 MeV/nucleon. When this beam is sent through a copper foil all or nearly all remaining electrons are stripped. The HITRAP facility, a combination of a linear decelerator and a cryogenic Penning trap, is built to decelerate those ions to almost rest and to provide them for the experiments. In a number of commissioning beam times, the deceleration in the ESR, the extraction, bunching and, finally, deceleration to 6 keV/nucleon has been shown. The remaining steps, being capture and cooling in a cryogenic Penning trap, are presently tested off-line.

  4. Heavy ion charge-state distribution effects on energy loss in plasmas

    NASA Astrophysics Data System (ADS)

    Barriga-Carrasco, Manuel D.

    2013-10-01

    According to dielectric formalism, the energy loss of the heavy ion depends on its velocity and its charge density. Also, it depends on the target through its dielectric function; here the random phase approximation is used because it correctly describes fully ionized plasmas at any degeneracy. On the other hand, the Brandt-Kitagawa (BK) model is employed to depict the projectile charge space distribution, and the stripping criterion of Kreussler is used to determine its mean charge state . This latter criterion implies that the mean charge state depends on the electron density and temperature of the plasma. Also, the initial charge state of the heavy ion is crucial for calculating inside the plasma. Comparing our models and estimations with experimental data, a very good agreement is found. It is noticed that the energy loss in plasmas is higher than that in the same cold gas cases, confirming the well-known enhanced plasma stopping (EPS). In this case, EPS is only due to the increase in projectile effective charge Qeff, which is obtained as the ratio between the energy loss of each heavy ion and that of the proton in the same plasma conditions. The ratio between the effective charges in plasmas and in cold gases is higher than 1, but it is not as high as thought in the past. Finally, another significant issue is that the calculated effective charge in plasmas Qeff is greater than the mean charge state , which is due to the incorporation of the BK charge distribution. When estimations are performed without this distribution, they do not fit well with experimental data.

  5. Dynamic salt effect on intramolecular charge-transfer reactions

    SciTech Connect

    Zhu Jianjun; Ma Rong; Lu Yan; Stell, George

    2005-12-08

    The dynamic salt effect in charge-transfer reactions is investigated theoretically in this paper. Free-energy surfaces are derived based on a nonequilibrium free-energy functional. Reaction coordinates are clearly defined. The solution of the reaction-diffusion equation leads to a rate constant depending on the time correlation function of the reaction coordinates. The time correlation function of the ion-atmosphere coordinate is derived from the solution of the Debye-Falkenhagen equation. It is shown that the dynamic salt effect plays an important role in controlling the rate of charge-transfer reactions in the narrow-window limit but is balanced by the energetics and the dynamics of the polar-solvent coordinate. The simplest version of the theory is compared with an experiment, and the agreement is fairly good. The theory can also be extended to charge-transfer in the class of electrolytes that has come to be called 'ionic fluids'.

  6. Recent Excitation, Charge Exchange, and Lifetime Results in Highly Charged Ions Relevant to Stellar, Interstellar, Solar and Comet Phenomena

    NASA Technical Reports Server (NTRS)

    Chutjian, A.; Hossain, S.; Mawhorter, R. J.; Smith, S. J.

    2006-01-01

    Recent JPL absolute excitation and charge exchange cross sections, and measurements of lifetimes of metastable levels in highly-charged ions (HCIs) are reported. These data provide benchmark comparisons to results of theoretical calculations. Theoretical approaches can then be used to calculate the vast array of data which cannot be measured due to experimental constraints. Applications to the X-ray emission from comets are given.

  7. Spacecraft charging at high altitudes - The SCATHA satellite program

    NASA Technical Reports Server (NTRS)

    Mcpherson, D. A.; Cauffman, D. P.; Schober, W.

    1975-01-01

    Satellites at synchronous altitude exhibit unexplained behavior in the operation of electronic circuits and in the performance of thermal controls. A possible explanation for this behavior is the fact that satellites can be charged to large negative voltages by energetic electrons in the space environment. A space measurements program entitled SCATHA has been formulated to determine the characteristics of the charging process, to measure the response of the satellite when charging occurs, and to evaluate the utility of various corrective techniques which can minimize differential charging on the satellite. The instrumentation will measure charging levels and rates of twenty samples of satellite materials, some of which will be modified to prevent buildup of electrostatic charge. The electromagnetic interference background on the satellite will be measured for comparison with MIL STD 461, Electromagnetic Interference Characteristics Requirements for Equipment.

  8. Photoionization of Highly Charged Argon Ions and Their Diagnostic Lines

    NASA Astrophysics Data System (ADS)

    Nahar, Sultana N.

    2012-06-01

    %TEXT OF YOUR ABSTRACT Lines of highly charged He-like and Li-like ions in the ultraviolet and X-ray regions provide useful diagnostics for the physical and chemical conditions of the astrophysical as well as fusion plasmas. For example, Ar XVII lines in a Syfert galaxy have been measured by the X-ray space observatory Chandra. Results on photoionization of Ar XVI and Ar XVII obtained from relativistic Breit-Pauli R-matrix method and close-coupling approximation will be presented. Important features for level-specific photoionization for the diagnostic w, x, y, z lines of He-like Ar XVII in the ultraviolet region will be illustrated. Although monotonous decay dominates the low energy photoionization for these ions, strong resonances appear in the high energy region indicating higher recombination, inverse process of photoionization, at high temperature. The spectra of the well known 22 diagnostics dielectronic satellite lines of Li-like Ar XVI will be shown produced from the the KLL resonances in photoionization. Acknowledgement: Partially supported by DOE, NSF; Computational work was carried out at the Ohio Supercomputer Center

  9. Effect of charge on the ferroelectric field effect in strongly correlated oxides

    NASA Astrophysics Data System (ADS)

    Chen, Xuegang; Xiao, Zhiyong; Zhang, Xiaozhe; Zhang, Le; Zhao, Weiwei; Xu, Xiaoshan; Hong, Xia

    We present a systematic study of the effect of charge on the ferroelectric field effect modulation of various strongly correlated oxide materials. We have fabricated high quality epitaxial heterostructures composed of a ferroelectric Pb(Zr,Ti)O3 (PZT) gate and a correlated oxide channel, including Sm0.5Nd0.5NiO3 (SNNO), La0.7Sr0.3MnO3 (LSMO), SNNO/LSMO bilayers, and NiCo2O4 (NCO). The Hall effect measurements reveal a carrier density of ~4 holes/u.c. (0.4 cm2V-1s-1) for SNNO to ~2 holes/u.c. (27 cm2V-1s-1) for NCO. We find the magnitude of the field effect is closely related to both the intrinsic carrier density and carrier mobility of the channel material. For devices employing the SNNO/LSMO bilayer channel, we believe the charge transfer between the two correlated oxides play an important role in the observed resistance modulation. The screening capacitor of the channel materials and the interfacial defect states also have significant impact on the retention characteristics of the field effect. Our study reveals the critical role of charge in determining the interfacial coupling between ferroelectric and magnetic oxides, and has important implications in developing ferroelectric-controlled Mott memory devices.

  10. Apolipoprotein E expression and behavioral toxicity of high charge, high energy (HZE) particle radiation

    NASA Technical Reports Server (NTRS)

    Higuchi, Yoshinori; Nelson, Gregory A.; Vazquez, Marcelo; Laskowitz, Daniel T.; Slater, James M.; Pearlstein, Robert D.

    2002-01-01

    Apolipoprotein E (apoE) is a lipid binding protein that plays an important role in tissue repair following brain injury. In the present studies, we have investigated whether apoE affects the behavioral toxicity of high charge, high energy (HZE) particle radiation. METHODS: Sixteen male apoE knockout (KO) mice and sixteen genetically matched wild-type (WT) C57BL mice were used in this experiment. Half of the KO and half of the WT animals were irradiated with 600 MeV/amu iron particles (2 Gy whole body). The effect of irradiation on motor coordination and stamina (Rotarod test), exploratory behavior (open field test), and spatial working and reference memory (Morris water maze) was assessed. ROTAROD TEST: Performance was adversely affected by radiation exposure in both KO and WT groups at 30 d after irradiation. By 60 d after radiation, the radiation effect was lost in WT, but still apparent in irradiated KO mice. OPEN FIELD TEST: Radiation reduced open field exploratory activity 14, 28, 56, 84, and 168 d after irradiation of KO mice, but had no effect on WT mice. MORRIS WATER MAZE: Radiation adversely affected spatial working memory in the KO mice, but had no discernible effect in the WT mice as assessed 180 d after irradiation. In contrast, irradiated WT mice showed marked impairment of spatial reference memory in comparison to non-irradiated mice, while no effect of radiation was observed in KO mice. CONCLUSIONS: These studies show that apoE expression influences the behavioral toxicity of HZE particle radiation and suggest that apoE plays a role in the repair/recovery from radiation injury of the CNS. ApoE deficiency may exacerbate the previously reported effects of HZE particle radiation in accelerating the brain aging process.

  11. Effects of nanoparticle charging on streamer development in transformer oil-based nanofluids

    NASA Astrophysics Data System (ADS)

    Hwang, J. George; Zahn, Markus; O'Sullivan, Francis M.; Pettersson, Leif A. A.; Hjortstam, Olof; Liu, Rongsheng

    2010-01-01

    Transformer oil-based nanofluids with conductive nanoparticle suspensions defy conventional wisdom as past experimental work showed that such nanofluids have substantially higher positive voltage breakdown levels with slower positive streamer velocities than that of pure transformer oil. This paradoxical superior electrical breakdown performance compared to that of pure oil is due to the electron charging of the nanoparticles to convert fast electrons from field ionization to slow negatively charged nanoparticle charge carriers with effective mobility reduction by a factor of about 1×105. The charging dynamics of a nanoparticle in transformer oil with both infinite and finite conductivities shows that this electron trapping is the cause of the decrease in positive streamer velocity, resulting in higher electrical breakdown strength. Analysis derives the electric field in the vicinity of the nanoparticles, electron trajectories on electric field lines that charge nanoparticles, and expressions for the charging characteristics of the nanoparticles as a function of time and dielectric permittivity and conductivity of nanoparticles and the surrounding transformer oil. This charged nanoparticle model is used with a comprehensive electrodynamic analysis for the charge generation, recombination, and transport of positive and negative ions, electrons, and charged nanoparticles between a positive high voltage sharp needle electrode and a large spherical ground electrode. Case studies show that transformer oil molecular ionization without nanoparticles cause an electric field and space charge wave to propagate between electrodes, generating heat that can cause transformer oil to vaporize, creating the positive streamer. With nanoparticles as electron scavengers, the speed of the streamer is reduced, offering improved high voltage equipment performance and reliability.

  12. SPM observation of slow highly charged ion induced nanodots on highly orientated pyrolytic graphite

    NASA Astrophysics Data System (ADS)

    Mitsuda, Y.; Nakamura, B. E. O'Rourke1 N.; Kanai, Y.; Ohtani, S.; Yamazaki, Y.

    2007-03-01

    We have observed nanodots on a highly orientated pyrolytic graphite (HOPG) surface produced by highly charged ion impacts using a scanning tunneling microscope. Previous measurements have con.rmed the dominant role of the potential energy or the incident ion charge state on the size and height of the observed nanodots. The present results extend these previous measurements to much lower kinetic energy. It appears that there is no observable influence on the lateral size of the nanodots due to the incident ion kinetic energy down to approximately 200 eV. In contrast some slight reduction in the nanodot height was observed as the kinetic energy was reduced.

  13. Charge Separation and Recombination at Polymer-Fullerene Heterojunctions: Delocalization and Hybridization Effects.

    PubMed

    D'Avino, Gabriele; Muccioli, Luca; Olivier, Yoann; Beljonne, David

    2016-02-01

    We address charge separation and recombination in polymer/fullerene solar cells with a multiscale modeling built from accurate atomistic inputs and accounting for disorder, interface electrostatics and genuine quantum effects on equal footings. Our results show that bound localized charge transfer states at the interface coexist with a large majority of thermally accessible delocalized space-separated states that can be also reached by direct photoexcitation, thanks to their strong hybridization with singlet polymer excitons. These findings reconcile the recent experimental reports of ultrafast exciton separation ("hot" process) with the evidence that high quantum yields do not require excess electronic or vibrational energy ("cold" process), and show that delocalization, by shifting the density of charge transfer states toward larger effective electron-hole radii, may reduce energy losses through charge recombination. PMID:26785294

  14. Electron cloud and space charge effects in the Fermilab Booster

    SciTech Connect

    Ng, K.Y.; /Fermilab

    2007-06-01

    The stable region of the Fermilab Booster beam in the complex coherent-tune-shift plane appears to have been shifted far away from the origin by its intense space charge making Landau damping appear impossible. Simulations reveal a substantial buildup of electron cloud in the whole Booster ramping cycle, both inside the unshielded combined-function magnets and the beam pipes joining the magnets, whenever the secondary-emission yield (SEY) is larger than {approx}1.6. The implication of the electron-cloud effects on the space charge and collective instabilities of the beam is investigated.

  15. Space-charge effects in Penning ion traps

    NASA Astrophysics Data System (ADS)

    Porobić, T.; Beck, M.; Breitenfeldt, M.; Couratin, C.; Finlay, P.; Knecht, A.; Fabian, X.; Friedag, P.; Fléchard, X.; Liénard, E.; Ban, G.; Zákoucký, D.; Soti, G.; Van Gorp, S.; Weinheimer, Ch.; Wursten, E.; Severijns, N.

    2015-06-01

    The influence of space-charge on ion cyclotron resonances and magnetron eigenfrequency in a gas-filled Penning ion trap has been investigated. Off-line measurements with K39+ using the cooling trap of the WITCH retardation spectrometer-based setup at ISOLDE/CERN were performed. Experimental ion cyclotron resonances were compared with ab initio Coulomb simulations and found to be in agreement. As an important systematic effect of the WITCH experiment, the magnetron eigenfrequency of the ion cloud was studied under increasing space-charge conditions. Finally, the helium buffer gas pressure in the Penning trap was determined by comparing experimental cooling rates with simulations.

  16. Charge Kondo effect in a triple quantum dot

    NASA Astrophysics Data System (ADS)

    Yoo, Gwangsu; Park, Jinhong; Lee, S. S.-B.; Sim, H.-S.

    2014-03-01

    We predict that the charge Kondo effect appears in a triangular triple quantum dot. The system has two-fold degenerate ground-state charge configurations, interdot Coulomb interactions, lead-dot electron tunnelings, but no interdot electron tunneling. We show, using bosonization and refermionization, that the system is described by the anisotropic Kondo model. The anisotropy can be tuned by changing lead-dot electron tunneling strength, which allows one to experimentally explore the transition between the ferromagnetic non-Fermi liquid and antiferromagnetic Kondo phases in the Kondo phase diagram. Using numerical renormalization group method, we demonstrate that the transition is manifested in electron conductances through the dot.

  17. STUDIES OF X-RAY PRODUCTION FOLLOWING CHARGE EXCHANGE RECOMBINATION BETWEEN HIGHLY CHARGED IONS AND NEUTRAL ATOMS AND MOLECULES

    SciTech Connect

    Brown, G V; Beiersdorfer, P; Chen, H; Clementson, J; Frankel, M; Gu, M F; Kelley, R L; Kilbourne, C A; Porter, F S; Thorn, D B; Wargelin, B J

    2008-08-28

    We have used microcalorimeters built by the NASA/Goddard Space Flight Center and the Lawrence Livermore National Laboratory Electron Beam Ion Trap to measure X-ray emission produced by charge exchange reactions between highly charged ions colliding with neutral helium, hydrogen, and nitrogen gas. Our measurements show the spectral dependence on neutral species and also show the distinct differences between spectra produced by charge exchange reactions and those produced by direct impact excitation. These results are part of an ongoing experimental investigation at the LLNL EBIT facility of charge exchange spectral signatures and can be used to interpret X-ray spectra produced by a variety of laboratory and celestial sources including cometary and planetary atmospheres, the Earth's magnetosheath, the heliosphere, and tokamaks.

  18. Interstellar Dust Charging in Dense Molecular Clouds: Cosmic Ray Effects

    NASA Astrophysics Data System (ADS)

    Ivlev, A. V.; Padovani, M.; Galli, D.; Caselli, P.

    2015-10-01

    The local cosmic-ray (CR) spectra are calculated for typical characteristic regions of a cold, dense molecular cloud to investigate two mechanisms of dust charging that have, thus far, been neglected: the collection of suprathermal CR electrons and protons by grains and photoelectric emission from grains due to the UV radiation generated by CRs. These two mechanisms add to the conventional charging by ambient plasma, produced in the cloud by CRs. We show that the CR-induced photoemission can dramatically modify the charge distribution function for submicron grains. We demonstrate the importance of the obtained results for dust coagulation: while the charging by ambient plasma alone leads to a strong Coulomb repulsion between grains and inhibits their further coagulation, the combination with the photoemission provides optimum conditions for the growth of large dust aggregates in a certain region of the cloud, corresponding to the densities n({{{H}}}2) between ˜104 and ˜106 cm-3. The charging effect of CRs is of a generic nature, and is therefore expected to operate not only in dense molecular clouds but also in the upper layers and the outer parts of protoplanetary disks.

  19. Fractionally charged skyrmions in fractional quantum Hall effect.

    PubMed

    Balram, Ajit C; Wurstbauer, U; Wójs, A; Pinczuk, A; Jain, J K

    2015-01-01

    The fractional quantum Hall effect has inspired searches for exotic emergent topological particles, such as fractionally charged excitations, composite fermions, abelian and nonabelian anyons and Majorana fermions. Fractionally charged skyrmions, which support both topological charge and topological vortex-like spin structure, have also been predicted to occur in the vicinity of 1/3 filling of the lowest Landau level. The fractional skyrmions, however, are anticipated to be exceedingly fragile, suppressed by very small Zeeman energies. Here we show that, slightly away from 1/3 filling, the smallest manifestations of the fractional skyrmion exist in the excitation spectrum for a broad range of Zeeman energies, and appear in resonant inelastic light scattering experiments as well-defined resonances slightly below the long wavelength spin wave mode. The spectroscopy of these exotic bound states serves as a sensitive tool for investigating the residual interaction between composite fermions, responsible for delicate new fractional quantum Hall states in this filling factor region. PMID:26608906

  20. Fractionally charged skyrmions in fractional quantum Hall effect

    SciTech Connect

    Balram, Ajit C.; Wurstbauer, U.; Wójs, A.; Pinczuk, A.; Jain, J. K.

    2015-11-26

    The fractional quantum Hall effect has inspired searches for exotic emergent topological particles, such as fractionally charged excitations, composite fermions, abelian and nonabelian anyons and Majorana fermions. Fractionally charged skyrmions, which support both topological charge and topological vortex-like spin structure, have also been predicted to occur in the vicinity of 1/3 filling of the lowest Landau level. The fractional skyrmions, however, are anticipated to be exceedingly fragile, suppressed by very small Zeeman energies. Here we show that, slightly away from 1/3 filling, the smallest manifestations of the fractional skyrmion exist in the excitation spectrum for a broad range of Zeeman energies, and appear in resonant inelastic light scattering experiments as well-defined resonances slightly below the long wavelength spin wave mode. The spectroscopy of these exotic bound states serves as a sensitive tool for investigating the residual interaction between composite fermions, responsible for delicate new fractional quantum Hall states in this filling factor region.

  1. Fractionally charged skyrmions in fractional quantum Hall effect

    PubMed Central

    Balram, Ajit C.; Wurstbauer, U.; Wójs, A.; Pinczuk, A.; Jain, J. K.

    2015-01-01

    The fractional quantum Hall effect has inspired searches for exotic emergent topological particles, such as fractionally charged excitations, composite fermions, abelian and nonabelian anyons and Majorana fermions. Fractionally charged skyrmions, which support both topological charge and topological vortex-like spin structure, have also been predicted to occur in the vicinity of 1/3 filling of the lowest Landau level. The fractional skyrmions, however, are anticipated to be exceedingly fragile, suppressed by very small Zeeman energies. Here we show that, slightly away from 1/3 filling, the smallest manifestations of the fractional skyrmion exist in the excitation spectrum for a broad range of Zeeman energies, and appear in resonant inelastic light scattering experiments as well-defined resonances slightly below the long wavelength spin wave mode. The spectroscopy of these exotic bound states serves as a sensitive tool for investigating the residual interaction between composite fermions, responsible for delicate new fractional quantum Hall states in this filling factor region. PMID:26608906

  2. Fractionally charged skyrmions in fractional quantum Hall effect

    NASA Astrophysics Data System (ADS)

    Balram, Ajit C.; Wurstbauer, U.; Wójs, A.; Pinczuk, A.; Jain, J. K.

    2015-11-01

    The fractional quantum Hall effect has inspired searches for exotic emergent topological particles, such as fractionally charged excitations, composite fermions, abelian and nonabelian anyons and Majorana fermions. Fractionally charged skyrmions, which support both topological charge and topological vortex-like spin structure, have also been predicted to occur in the vicinity of 1/3 filling of the lowest Landau level. The fractional skyrmions, however, are anticipated to be exceedingly fragile, suppressed by very small Zeeman energies. Here we show that, slightly away from 1/3 filling, the smallest manifestations of the fractional skyrmion exist in the excitation spectrum for a broad range of Zeeman energies, and appear in resonant inelastic light scattering experiments as well-defined resonances slightly below the long wavelength spin wave mode. The spectroscopy of these exotic bound states serves as a sensitive tool for investigating the residual interaction between composite fermions, responsible for delicate new fractional quantum Hall states in this filling factor region.

  3. Effects of space charge on the acceptance of brightness measuring devices

    SciTech Connect

    Caporaso, G.J.

    1985-08-14

    Attempts to measure high electron beam brightness at low values of beam energy are plagued by the effects of space charge forces. These forces can substantially lower the phase space acceptance of various brightness measuring devices. This report considers several models for the effects of space charge upon the acceptance of both the field free, double aperture system and the magnetic ''emittance selector'' and compares them for some recent experiments on ATA and the High Brightness Test Stand. Reasonably conservative correction factors for the acceptances of these devices are derived.

  4. Charge Transfer and Triplet States in High Efficiency OPV Materials and Devices

    NASA Astrophysics Data System (ADS)

    Dyakonov, Vladimir

    2013-03-01

    The advantage of using polymers and molecules in electronic devices, such as light-emitting diodes (LED), field-effect transistors (FET) and, more recently, solar cells (SC) is justified by the unique combination of high device performance and processing of the semiconductors used. Power conversion efficiency of nanostructured polymer SC is in the range of 10% on lab scale, making them ready for up-scaling. Efficient charge carrier generation and recombination in SC are strongly related to dissociation of the primary singlet excitons. The dissociation (or charge transfer) process should be very efficient in photovoltaics. The mechanisms governing charge carrier generation, recombination and transport in SC based on the so-called bulk-heterojunctions, i.e. blends of two or more semiconductors with different electron affinities, appear to be very complex, as they imply the presence of the intermediate excited states, neutral and charged ones. Charge transfer states, or polaron pairs, are the intermediate states between free electrons/holes and strongly bound excitons. Interestingly, the mostly efficient OLEDs to date are based on the so-called triplet emitters, which utilize the triplet-triplet annihilation process. In SC, recent investigations indicated that on illumination of the device active layer, not only mobile charges but also triplet states were formed. With respect to triplets, it is unclear how these excited states are generated, via inter-system crossing or via back transfer of the electron from acceptor to donor. Triplet formation may be considered as charge carrier loss channel; however, the fusion of two triplets may lead to a formation of singlet excitons instead. In such case, a generation of charges by utilizing of the so far unused photons will be possible. The fundamental understanding of the processes involving the charge transfer and triplet states and their relation to nanoscale morphology and/or energetics of blends is essential for the

  5. Effect of gaseous void on bipolar charge transport in layered polymer film

    NASA Astrophysics Data System (ADS)

    Lean, Meng H.; Chu, Wei-Ping L.

    2014-02-01

    This paper describes a hybrid algorithm to study the effect of a gaseous void on bipolar charge transport in layered polymer film. This hybrid algorithm uses a source distribution technique based on an axisymmetric boundary integral equation method to solve the Poisson equation and a fourth order Runge-Kutta (RK4) method with an upwind scheme for time integration. Iterative stability is assured by satisfying the Courant-Friedrichs-Levy stability criterion. Dynamic charge mapping is achieved by allowing conducting and insulating boundaries and material interfaces to be represented by equivalent free and bound charge distributions that collectively satisfy all local and far-field conditions. This hybrid technique caters to bipolar charge injection, field-dependent mobility transport, recombination, and trapping/de-trapping in the bulk and at material and physical interfaces. The resulting charge map is the taxonomy of the different charge types and their abundance, and presents a dynamic view of the temporal and spatial distributions. The paper is motivated by images of breakdown experiments that point to the role of gaseous void in delamination growth. For the test configuration, the high field at the edge of the gaseous void act as a sink first for positive and then negative charge. The net effect is to increase delamination stress at the edge leading to further growth of the defect and increasing the potential for partial discharge within the void.

  6. High throughput on-chip analysis of high-energy charged particle tracks using lensfree imaging

    NASA Astrophysics Data System (ADS)

    Luo, Wei; Shabbir, Faizan; Gong, Chao; Gulec, Cagatay; Pigeon, Jeremy; Shaw, Jessica; Greenbaum, Alon; Tochitsky, Sergei; Joshi, Chandrashekhar; Ozcan, Aydogan

    2015-04-01

    We demonstrate a high-throughput charged particle analysis platform, which is based on lensfree on-chip microscopy for rapid ion track analysis using allyl diglycol carbonate, i.e., CR-39 plastic polymer as the sensing medium. By adopting a wide-area opto-electronic image sensor together with a source-shifting based pixel super-resolution technique, a large CR-39 sample volume (i.e., 4 cm × 4 cm × 0.1 cm) can be imaged in less than 1 min using a compact lensfree on-chip microscope, which detects partially coherent in-line holograms of the ion tracks recorded within the CR-39 detector. After the image capture, using highly parallelized reconstruction and ion track analysis algorithms running on graphics processing units, we reconstruct and analyze the entire volume of a CR-39 detector within ˜1.5 min. This significant reduction in the entire imaging and ion track analysis time not only increases our throughput but also allows us to perform time-resolved analysis of the etching process to monitor and optimize the growth of ion tracks during etching. This computational lensfree imaging platform can provide a much higher throughput and more cost-effective alternative to traditional lens-based scanning optical microscopes for ion track analysis using CR-39 and other passive high energy particle detectors.

  7. High throughput on-chip analysis of high-energy charged particle tracks using lensfree imaging

    SciTech Connect

    Luo, Wei; Shabbir, Faizan; Gong, Chao; Gulec, Cagatay; Pigeon, Jeremy; Shaw, Jessica; Greenbaum, Alon; Tochitsky, Sergei; Joshi, Chandrashekhar; Ozcan, Aydogan

    2015-04-13

    We demonstrate a high-throughput charged particle analysis platform, which is based on lensfree on-chip microscopy for rapid ion track analysis using allyl diglycol carbonate, i.e., CR-39 plastic polymer as the sensing medium. By adopting a wide-area opto-electronic image sensor together with a source-shifting based pixel super-resolution technique, a large CR-39 sample volume (i.e., 4 cm × 4 cm × 0.1 cm) can be imaged in less than 1 min using a compact lensfree on-chip microscope, which detects partially coherent in-line holograms of the ion tracks recorded within the CR-39 detector. After the image capture, using highly parallelized reconstruction and ion track analysis algorithms running on graphics processing units, we reconstruct and analyze the entire volume of a CR-39 detector within ∼1.5 min. This significant reduction in the entire imaging and ion track analysis time not only increases our throughput but also allows us to perform time-resolved analysis of the etching process to monitor and optimize the growth of ion tracks during etching. This computational lensfree imaging platform can provide a much higher throughput and more cost-effective alternative to traditional lens-based scanning optical microscopes for ion track analysis using CR-39 and other passive high energy particle detectors.

  8. In-situ Studies of Highly Charged Ions at the LLNL EBIT

    SciTech Connect

    Beiersdorfer, P

    2001-08-16

    The properties of highly charged ions and their interaction with electrons and atoms is being studied in-situ at the LLNL electron beam ion traps, EBIT-II and SuperEBIT. Spectroscopic measurements provide data on electron-ion and ion-atom interactions as well as accurate transition energies of lines relevant for understanding QED, nuclear magnetization, and the effects of relativity on complex, state-of-the-art atomic calculations.

  9. A high-frequency electrospray driven by gas volume charges

    SciTech Connect

    Lastochkin, Dmitri; Chang, H.-C.

    2005-06-15

    High-frequency (>10 kHz) ac electrospray is shown to eject volatile dielectric liquid drops by an entirely different mechanism from dc sprays. The steady dc Taylor conic tip is absent and continuous spraying of submicron drops is replaced by individual dynamic pinchoff events involving the entire drop. We attribute this spraying mechanism to a normal Maxwell force produced by an undispersed plasma cloud in front of the meniscus that produces a visible glow at the spherical tip. The volume charge within the cloud is formed by electron-induced gas ionization of the evaporated liquid and produces a large normal field that is much higher than the nominal applied field such that drop ejection occurs at a voltage (at high frequencies) that is as much as ten times lower than that for dc sprays. The ejection force is sensitive to the liquid properties (but not its electrolyte composition), the ac frequency and trace amounts of inert gases, which are believed to catalyze the ionization reactions. As electroneutral drops are ejected, due to the large (>100) ratio between individual drop ejection time and the ac frequency, this mechanism can produce large (microns) electroneutral drops at relatively low voltages.

  10. Charged Particle Effects on Solar Sails - An Overview

    NASA Technical Reports Server (NTRS)

    Garrett, Henry B.; Minow, Joseph I.

    2004-01-01

    The NASA In-Space Propulsion Program is currently sponsoring a comprehensive look at the effects of the charged particle environment on the first generation of Solar Sail propulsion systems. As part of this, a joint NASA MSFC/JPL team is investigating the effects of spacecraft charging on the preliminary ISP Solar Sail mission designs. This paper will begin by reviewing the plasma environments being proposed for such missions-these range from the ambient solar wind at approximately 1 AU in the ecliptic plane, approximately 0.5 AU solar-polar orbit, and geosynchronous orbit. Following a discussion of the critical design issues associated with Solar Sails from a charging standpoint, a simple Sail configuration for modeling purposes will be presented. Results for the various environments will be illustrated in terms of the estimated surface potentials for the Solar Sail using the NASCAP-2K charging analysis program. Based on these potentials, representative plasma flow fields and potential contours surrounding the Solar Sail will then be presented. The implications of these results--the surface potentials and plasma flow--will be discussed in the context of their effects on Solar Sail operations and structural configurations.

  11. Krypton charge exchange cross sections for Hall effect thruster models

    SciTech Connect

    Hause, Michael L.; Prince, Benjamin D.; Bemish, Raymond J.

    2013-04-28

    Following discharge from a Hall effect thruster, charge exchange occurs between ions and un-ionized propellant atoms. The low-energy cations produced can disturb operation of onboard instrumentation or the thruster itself. Charge-exchange cross sections for both singly and doubly charged propellant atoms are required to model these interactions. While xenon is the most common propellant currently used in Hall effect thrusters, other propellants are being considered, in particular, krypton. We present here guided-ion beam measurements and comparisons to semiclassical calculations for Kr{sup +} + Kr and Kr{sup 2+} + Kr cross sections. The measurements of symmetric Kr{sup +} + Kr charge exchange are in good agreement with both the calculations including spin-orbit effects and previous measurements. For the symmetric Kr{sup 2+} + Kr reaction, we present cross section measurements for center-of-mass energies between 1 eV and 300 eV, which spans energies not previously examined experimentally. These cross section measurements compare well with a simple one-electron transfer model. Finally, cross sections for the asymmetric Kr{sup 2+} + Kr {yields} Kr{sup +} + Kr{sup +} reaction show an onset near 12 eV, reaching cross sections near constant value of 1.6 A{sup 2} with an exception near 70-80 eV.

  12. Effective dynamics of an electrically charged string with a current

    NASA Astrophysics Data System (ADS)

    Kazinski, P. O.

    2005-08-01

    Equations of motion for an electrically charged string with a current in an external electromagnetic field with regard to the first correction due to the self-action are derived. It is shown that the reparametrization invariance of the free action of the string imposes constraints on the possible form of the current. The effective equations of motion are obtained for an absolutely elastic charged string in the form of a ring (circle). Equations for the external electromagnetic fields that admit stationary states of such a ring are revealed. Solutions to the effective equations of motion of an absolutely elastic charged ring in the absence of external fields as well as in an external uniform magnetic field are obtained. In the latter case, the frequency at which one can observe radiation emitted by the ring is evaluated. A model of an absolutely nonstretchable charged string with a current is proposed. The effective equations of motion are derived within this model, and a class of solutions to these equations is found.

  13. An acoustic charge transport imager for high definition television applications

    NASA Technical Reports Server (NTRS)

    Hunt, William D.; Brennan, Kevin F.; Summers, Chris J.

    1992-01-01

    In this report we present the progress during the second six month period of the project. This includes both experimental and theoretical work on the acoustic charge transport (ACT) portion of the chip, the theoretical program modelling of both the avalanche photodiode (APD) and the charge transfer and overflow transistor and the materials growth and fabrication part of the program.

  14. Generating free charges by carrier multiplication in quantum dots for highly efficient photovoltaics.

    PubMed

    Ten Cate, Sybren; Sandeep, C S Suchand; Liu, Yao; Law, Matt; Kinge, Sachin; Houtepen, Arjan J; Schins, Juleon M; Siebbeles, Laurens D A

    2015-02-17

    of free charges that can contribute to the photocurrent in a device. We show that free mobile charges can be efficiently produced via CM in solids of strongly coupled PbSe QDs. Strong electronic coupling between the QDs resulted in a charge carrier mobility of the order of 1 cm(2) V(-1) s(-1). This mobility is sufficiently high so that virtually all electron-hole pairs escape from recombination. The impact of temperature on the CM efficiency in PbSe QD solids was also studied. We inferred that temperature has no observable effect on the rate of cooling of hot charges nor on the CM rate. We conclude that exploitation of CM requires that charges have sufficiently high mobility to escape from recombination. The contribution of CM to the efficiency of photovoltaic devices can be further enhanced by an increase of the CM efficiency above the energetic threshold of twice the band gap. For large-scale applications in photovoltaic devices, it is important to develop abundant and nontoxic materials that exhibit efficient CM. PMID:25607377

  15. Effect of thermodiffusion on pH-regulated surface charge properties of nanoparticle.

    PubMed

    Das, Pradipta Kr

    2016-01-01

    Surface properties of nanoparticle are of high importance in the field of biotechnology, drug delivery and micro/nanofabrication. In this article, we developed a comprehensive theoretical model and subsequently solved that numerically to study the effect of thermodiffusion of ions on surface charge properties of nanoparticle. The theoretical study has been done considering silica nanoparticle for two aqueous solutions NaCl and KCl. The effect of solution pH in conjunction with nanoparticle temperature on surface charge density has been obtained for different salt concentrations (1, 10 and 100 mM) and nanoparticle size (diameter of 2 and 100 nm). It is observed from the results that with increasing temperature of the nanoparticle, the negative surface charge density gets higher due to increasing thermodiffusion effect. It is also found out that the magnitude of surface charge density is higher for KCl solution than NaCl solution under same condition which is attributed mostly due to less thermodiffusion of counterions for KCl than NaCl. Present study also shows that magnitude of surface charge density decreases with increasing nanoparticle size until it reaches a limiting value (called critical size) above which the effect of nanoparticle size on surface charge density is insignificant. PMID:26530465

  16. Excitation and ionization of highly charged ions by electron impact

    SciTech Connect

    Sampson, D.H.

    1989-11-15

    Two approaches for very rapid calculation of atomic data for high temperature plasma modeling have been developed. The first uses hydrogenic basis states and has been developed and applied in many papers discussed in previous progress reports. Hence, it is only briefly discussed here. The second is a very rapid, yet accurate, fully relativistic approach that has been developed over the past two or three years. It is described in more detail. Recently it has been applied to large scale production of atomic data. Specifically, it has been used to calculate relativistic distorted wave collision strengths and oscillator strengths for the following: all transitions from the ground level to the n=3 and 4 excited levels in the 71 Neon-like ions with nuclear charge number Z in the range 22 {le} Z {le} 92; all transitions among the 2s{sub {1/2}}, 2p{sub {1/2}} and 2p{sub 3/2} levels and from them to all nlj levels with n=3,4 and 5 in the 85 Li-like ions with 8 {le} Z {le} 92; all transitions among the 3s{sub {1/2}}, 3p{sub 3/2}, 3d{sub 3/2} and 3d{sub 5/2} levels and from them to all nlj levels with n=4 and 5 in the 71 Na-like ions with 22 {le} Z {le} 92; and all transitions among 4s{sub {1/2}}, 4p{sub {1/2}}, 4p{sub 3/2}, 4d{sub 3/2}, 4d{sub 5/2}, 4f{sub 5/2} and 4f{sub 7/2} levels and from them to all nlj levels with n=5 in the 33 Cu-like ions with 60 {le} Z {le} 92. Also the program has been extended to give cross-sections for excitation to specific magnetic sublevels of the target ion by an electron beam and very recently it has been extended to give relativistic distorted wave cross sections for ionization of highly charged ions by electron impact.

  17. Amplified effect of surface charge on cell adhesion by nanostructures

    NASA Astrophysics Data System (ADS)

    Xu, Li-Ping; Meng, Jingxin; Zhang, Shuaitao; Ma, Xinlei; Wang, Shutao

    2016-06-01

    Nano-biointerfaces with varied surface charge can be readily fabricated by integrating a template-based process with maleimide-thiol coupling chemistry. Significantly, nanostructures are employed for amplifying the effect of surface charge on cell adhesion, as revealed by the cell-adhesion performance, cell morphology and corresponding cytoskeletal organization. This study may provide a promising strategy for developing new biomedical materials with tailored cell adhesion for tissue implantation and regeneration.Nano-biointerfaces with varied surface charge can be readily fabricated by integrating a template-based process with maleimide-thiol coupling chemistry. Significantly, nanostructures are employed for amplifying the effect of surface charge on cell adhesion, as revealed by the cell-adhesion performance, cell morphology and corresponding cytoskeletal organization. This study may provide a promising strategy for developing new biomedical materials with tailored cell adhesion for tissue implantation and regeneration. Electronic supplementary information (ESI) available: Experimental details, SEM, KFM AFM, chemical modification and characterization. See DOI: 10.1039/c6nr00649c

  18. New Supercharging Reagents Produce Highly Charged Protein Ions in Native Mass Spectrometry

    PubMed Central

    Going, Catherine C.; Xia, Zijie; Williams, Evan R.

    2015-01-01

    The effectiveness of two new supercharging reagents for producing highly charged ions by electrospray ionization (ESI) from aqueous solutions in which proteins have native structures and reactivities were investigated. In aqueous solution, 2-thiophenone and 4-hydroxymethyl-1,3-dioxolan-2-one (HD) at a concentration of 2% by volume can increase the average charge of cytochrome c and myoglobin by up to 163%, resulting in even higher charge states than those that are produced from water/methanol/acid solutions in which proteins are denatured. The greatest extent of supercharging occurs in pure water, but these supercharging reagents are also highly effective in aqueous solutions containing 200 mM ammonium acetate buffer commonly used in native mass spectrometry (MS). These reagents are less effective supercharging reagents than m-nitrobenzyl alcohol (m-NBA) and propylene carbonate (PC) when ions are formed from water/methanol/acid. The extent to which loss of the heme group from myoglobin occurs is related to the extent of supercharging. Results from guanidine melts of cytochrome c monitored with tryptophan fluorescence show that the supercharging reagents PC, sulfolane and HD are effective chemical denaturants in solution. These results provide additional evidence for the role of protein structural changes in the electrospray droplet as the primary mechanism for supercharging with these reagents in native MS. These results also demonstrate that for at least some proteins, the formation of highly charged ions from native MS is no longer a significant barrier for obtaining structural information using conventional tandem MS methods. PMID:26421324

  19. New supercharging reagents produce highly charged protein ions in native mass spectrometry.

    PubMed

    Going, Catherine C; Xia, Zijie; Williams, Evan R

    2015-11-01

    The effectiveness of two new supercharging reagents for producing highly charged ions by electrospray ionization (ESI) from aqueous solutions in which proteins have native structures and reactivities were investigated. In aqueous solution, 2-thiophenone and 4-hydroxymethyl-1,3-dioxolan-2-one (HD) at a concentration of 2% by volume can increase the average charge of cytochrome c and myoglobin by up to 163%, resulting in even higher charge states than those that are produced from water/methanol/acid solutions in which these proteins are denatured. The greatest extent of supercharging occurs in pure water, but these supercharging reagents are also highly effective in aqueous solutions containing 200 mM ammonium acetate buffer commonly used in native mass spectrometry (MS). These reagents are less effective supercharging reagents than m-nitrobenzyl alcohol (m-NBA) and propylene carbonate (PC) when ions are formed from water/methanol/acid. The extent to which loss of the heme group from myoglobin occurs is related to the extent of supercharging. Results from guanidine melts of cytochrome c monitored with tryptophan fluorescence show that the supercharging reagents PC, sulfolane and HD are effective chemical denaturants in solution. These results provide additional evidence for the role of protein structural changes in the electrospray droplet as the primary mechanism for supercharging with these reagents in native MS. These results also demonstrate that for at least some proteins, the formation of highly charged ions from native MS is no longer a significant barrier for obtaining structural information using conventional tandem MS methods. PMID:26421324

  20. Synergistic Effect of High Charge and Energy Particle Radiation and Chronological Age on Biomarkers of Oxidative Stress and Tissue Degeneration: A Ground-Based Study Using the Vertebrate Laboratory Model Organism Oryzias latipes

    PubMed Central

    Zheng, Xuan; Zhang, Xinyan; Ding, Lingling; Lee, Jeffrey R.; Weinberger, Paul M.; Dynan, William S.

    2014-01-01

    High charge and energy (HZE) particles are a main hazard of the space radiation environment. Uncertainty regarding their health effects is a limiting factor in the design of human exploration-class space missions, that is, missions beyond low earth orbit. Previous work has shown that HZE exposure increases cancer risk and elicits other aging-like phenomena in animal models. Here, we investigate how a single exposure to HZE particle radiation, early in life, influences the subsequent age-dependent evolution of oxidative stress and appearance of degenerative tissue changes. Embryos of the laboratory model organism, Oryzias latipes (Japanese medaka fish), were exposed to HZE particle radiation at doses overlapping the range of anticipated human exposure. A separate cohort was exposed to reference γ-radiation. Survival was monitored for 750 days, well beyond the median lifespan. The population was also sampled at intervals and liver tissue was subjected to histological and molecular analysis. HZE particle radiation dose and aging contributed synergistically to accumulation of lipid peroxidation products, which are a marker of chronic oxidative stress. This was mirrored by a decline in PPARGC1A mRNA, which encodes a transcriptional co-activator required for expression of oxidative stress defense genes and for mitochondrial maintenance. Consistent with chronic oxidative stress, mitochondria had an elongated and enlarged ultrastructure. Livers also had distinctive, cystic lesions. Depending on the endpoint, effects of γ-rays in the same dose range were either lesser or not detected. Results provide a quantitative and qualitative framework for understanding relative contributions of HZE particle radiation exposure and aging to chronic oxidative stress and tissue degeneration. PMID:25375139

  1. Synergistic Effect of High Charge and Energy Particle Radiation and Chronological Age on Biomarkers of Oxidative Stress and Tissue Degeneration: A Ground-Based Study Using the Vertebrate Laboratory Model Organism Oryzias latipes

    DOE PAGESBeta

    Zheng, Xuan; Zhang, Xinyan; Ding, Lingling; Lee, Jeffrey R.; Weinberger, Paul M.; Dynan, William S.

    2014-11-06

    High charge and energy (HZE) particles are a main hazard of the space radiation environment. Uncertainty regarding their health effects is a limiting factor in the design of human exploration-class space missions, that is, missions beyond low earth orbit. Previous work has shown that HZE exposure increases cancer risk and elicits other aging-like phenomena in animal models. Here, we investigate how a single exposure to HZE particle radiation, early in life, influences the subsequent age-dependent evolution of oxidative stress and appearance of degenerative tissue changes. Embryos of the laboratory model organism, Oryzias latipes (Japanese medaka fish), were exposed to HZEmore » particle radiation at doses overlapping the range of anticipated human exposure. A separate cohort was exposed to reference γ-radiation. Survival was monitored for 750 days, well beyond the median lifespan. The population was also sampled at intervals and liver tissue was subjected to histological and molecular analysis. HZE particle radiation dose and aging contributed synergistically to accumulation of lipid peroxidation products, which are a marker of chronic oxidative stress. This was mirrored by a decline in PPARGC1A mRNA, which encodes a transcriptional co-activator required for expression of oxidative stress defense genes and for mitochondrial maintenance. Consistent with chronic oxidative stress, mitochondria had an elongated and enlarged ultrastructure. Livers also had distinctive, cystic lesions. Depending on the endpoint, effects of γ-rays in the same dose range were either lesser or not detected. Results provide a quantitative and qualitative framework for understanding relative contributions of HZE particle radiation exposure and aging to chronic oxidative stress and tissue degeneration.« less

  2. Synergistic Effect of High Charge and Energy Particle Radiation and Chronological Age on Biomarkers of Oxidative Stress and Tissue Degeneration: A Ground-Based Study Using the Vertebrate Laboratory Model Organism Oryzias latipes

    SciTech Connect

    Zheng, Xuan; Zhang, Xinyan; Ding, Lingling; Lee, Jeffrey R.; Weinberger, Paul M.; Dynan, William S.

    2014-11-06

    High charge and energy (HZE) particles are a main hazard of the space radiation environment. Uncertainty regarding their health effects is a limiting factor in the design of human exploration-class space missions, that is, missions beyond low earth orbit. Previous work has shown that HZE exposure increases cancer risk and elicits other aging-like phenomena in animal models. Here, we investigate how a single exposure to HZE particle radiation, early in life, influences the subsequent age-dependent evolution of oxidative stress and appearance of degenerative tissue changes. Embryos of the laboratory model organism, Oryzias latipes (Japanese medaka fish), were exposed to HZE particle radiation at doses overlapping the range of anticipated human exposure. A separate cohort was exposed to reference γ-radiation. Survival was monitored for 750 days, well beyond the median lifespan. The population was also sampled at intervals and liver tissue was subjected to histological and molecular analysis. HZE particle radiation dose and aging contributed synergistically to accumulation of lipid peroxidation products, which are a marker of chronic oxidative stress. This was mirrored by a decline in PPARGC1A mRNA, which encodes a transcriptional co-activator required for expression of oxidative stress defense genes and for mitochondrial maintenance. Consistent with chronic oxidative stress, mitochondria had an elongated and enlarged ultrastructure. Livers also had distinctive, cystic lesions. Depending on the endpoint, effects of γ-rays in the same dose range were either lesser or not detected. Results provide a quantitative and qualitative framework for understanding relative contributions of HZE particle radiation exposure and aging to chronic oxidative stress and tissue degeneration.

  3. High-k shallow traps observed by charge pumping with varying discharging times

    SciTech Connect

    Ho, Szu-Han; Chen, Ching-En; Tseng, Tseung-Yuen; Chang, Ting-Chang; Lu, Ying-Hsin; Lo, Wen-Hung; Tsai, Jyun-Yu; Liu, Kuan-Ju; Wang, Bin-Wei; Cao, Xi-Xin; Chen, Hua-Mao; Cheng, Osbert; Huang, Cheng-Tung; Chen, Tsai-Fu

    2013-11-07

    In this paper, we investigate the influence of falling time and base level time on high-k bulk shallow traps measured by charge pumping technique in n-channel metal-oxide-semiconductor field-effect transistors with HfO{sub 2}/metal gate stacks. N{sub T}-V{sub high} {sub level} characteristic curves with different duty ratios indicate that the electron detrapping time dominates the value of N{sub T} for extra contribution of I{sub cp} traps. N{sub T} is the number of traps, and I{sub cp} is charge pumping current. By fitting discharge formula at different temperatures, the results show that extra contribution of I{sub cp} traps at high voltage are in fact high-k bulk shallow traps. This is also verified through a comparison of different interlayer thicknesses and different Ti{sub x}N{sub 1−x} metal gate concentrations. Next, N{sub T}-V{sub high} {sub level} characteristic curves with different falling times (t{sub falling} {sub time}) and base level times (t{sub base} {sub level}) show that extra contribution of I{sub cp} traps decrease with an increase in t{sub falling} {sub time}. By fitting discharge formula for different t{sub falling} {sub time}, the results show that electrons trapped in high-k bulk shallow traps first discharge to the channel and then to source and drain during t{sub falling} {sub time}. This current cannot be measured by the charge pumping technique. Subsequent measurements of N{sub T} by charge pumping technique at t{sub base} {sub level} reveal a remainder of electrons trapped in high-k bulk shallow traps.

  4. The interactions of high-energy, highly charged Xe ions with buckyballs

    SciTech Connect

    Ali, R.; Berry, H.G.; Cheng, S.

    1994-12-31

    Ionization and fragmentation have been measured for C{sub 60} molecules bombarded by highly charged (up to 35+) xenon ions with energies ranging up to 625 MeV. The observed mass distribution of positively charged fragments is explained in terms of a theoretical model indicating that the total interaction cross section contains roughly equal contributions from (a) excitation of the giant plasmon resonance, and (b) large-energy-transfer processes that lead to multiple fragmentation of the molecule. Preliminary results of measurements on VUV photons emitted in these interactions are also presented.

  5. Spectroscopic Measurements of Photo Pumped Highly Charged Ions

    NASA Astrophysics Data System (ADS)

    Graf, A.; Beiersdorfer, P.; Brown, G. V.; Crespo Lopez Urrutia, J. R.

    2011-11-01

    We report on recent x-ray laser spectroscopic measurements of line emission from photo-excited highly charged ions. The ion cloud of the HI-LIGHT portable electron beam ion trap (EBIT) was used as a target for the Linac Coherent Light Source (LCLS) free electron laser in the Soft X-Ray (SXR) end station. The SXR monochromator allowed a precision investigation of transition energies and oscillator strength ratios of emission lines from Na-like Fe^15+ and Ne-like Fe^16+ important for astrophysical diagnostics. We have demonstrated a technique for calibration of the SXR monochromator photon energy scale using photo-excited resonant fluorescence spectra of very well known lines from H-like and He-like F and O. Numerous instruments were used to diagnose the fluorescent and autoionizing decay channels of the trapped plasma including an Iglet-X broadband germanium detector, a variable line spacing reflection grating soft x-ray/VUV spectrometer and a Wien filter based ion extraction system. An overview of the experiment as well as preliminary results will be presented.

  6. Multiple ionization of atoms by highly charged ions

    NASA Astrophysics Data System (ADS)

    Tolstikhina, Inga Yu; Shevelko, V. P.

    2015-06-01

    A method is suggested for quickly and easily estimating multiple ionization (MI) cross sections of heavy atoms colliding with highly charged ions, using the independent-particle model (IPM). One-electron ionization probabilities p(b) are calculated using the geometrical model for p(0) values at zero impact parameter b and the relativistic Born approximation for one-electron ionization cross sections. Numerical results of MI cross sections are presented for Ne and Ar atoms colliding with Ar8+, Fe20+, Au24+, Bi67+ and U90+ ions at energies 1 MeV u{}-1-10 GeV u{}-1and compared with available experimental data and CTMC (classical trajectory Monte Carlo) calculations. The present method of calculation describes experimental dependencies of MI cross sections on the number of ejected electrons m within a factor of two to three. Numerical calculations show that at intermediate ion energies E = 1 - 10 MeV u{}-1, the contribution of MI cross sections to the total, i.e. summed over all m values, is quite large ˜35% and decreases with increasing energy.

  7. The study towards high intensity high charge state laser ion sources.

    PubMed

    Zhao, H Y; Jin, Q Y; Sha, S; Zhang, J J; Li, Z M; Liu, W; Sun, L T; Zhang, X Z; Zhao, H W

    2014-02-01

    As one of the candidate ion sources for a planned project, the High Intensity heavy-ion Accelerator Facility, a laser ion source has been being intensively studied at the Institute of Modern Physics in the past two years. The charge state distributions of ions produced by irradiating a pulsed 3 J/8 ns Nd:YAG laser on solid targets of a wide range of elements (C, Al, Ti, Ni, Ag, Ta, and Pb) were measured with an electrostatic ion analyzer spectrometer, which indicates that highly charged ions could be generated from low-to-medium mass elements with the present laser system, while the charge state distributions for high mass elements were relatively low. The shot-to-shot stability of ion pulses was monitored with a Faraday cup for carbon target. The fluctuations within ±2.5% for the peak current and total charge and ±6% for pulse duration were demonstrated with the present setup of the laser ion source, the suppression of which is still possible. PMID:24593615

  8. Magnetic-dipole transitions in highly charged ions as a basis of ultraprecise optical clocks.

    PubMed

    Yudin, V I; Taichenachev, A V; Derevianko, A

    2014-12-01

    We evaluate the feasibility of using magnetic-dipole (M1) transitions in highly charged ions as a basis of an optical atomic clockwork of exceptional accuracy. We consider a range of possibilities, including M1 transitions between clock levels of the same fine-structure and hyperfine-structure manifolds. In highly charged ions these transitions lie in the optical part of the spectra and can be probed with lasers. The most direct advantage of our proposal comes from the low degeneracy of clock levels and the simplicity of atomic structure in combination with negligible quadrupolar shift. We demonstrate that such clocks can have projected fractional accuracies below the 10^{-20}-10^{-21} level for all common systematic effects, such as blackbody radiation, Zeeman, ac-Stark, and quadrupolar shifts. PMID:25526127

  9. Charge trapping properties of alternative high-kappa dielectrics in MOS devices

    NASA Astrophysics Data System (ADS)

    Zhou, Xing

    High-kappa dielectrics are promising candidates to replace SiO 2 in advanced integrated circuits in future space systems. Studies of the effects of ionizing radiation and bias-temperature stress (BTS) on high-kappa dielectrics were performed. Trapped charge densities are evaluated as functions of temperature and stress time. Prior radiation exposure enhances BTS-induced degradation in these devices. Worst-case responses in combined effects are positive (or zero) bias irradiation followed by NBTS for HfO2-based devices. Degradation due to oxide or interface trap-charge changes in magnitude with the bias polarity during switched-bias annealing either after irradiation or constant voltage stress (CVS). This demonstrates that metastable electron trapping (dominant during post-rad annealing) and hydrogen transport and reactions (dominant during post-CVS annealing) in the near-interfacial dielectric layers play significant roles in the defect formation process. Additional defect growth with time was observed as a result of additional charge injection through the gate stacks during the annealing process. These results provide insights into fundamental trapping properties of high-kappa dielectrics and can be used to help predict long-term reliability of these devices.

  10. Numerical Simulation of High-Voltage Spacecraft Charging at High Altitudes: Comparison of NASCAP and ECO-M

    NASA Astrophysics Data System (ADS)

    Danilov, V. V.; Dvoryashin, V. M.; Elgin, B. A.; Drolshagen, G.

    1998-11-01

    Computer simulation of spacecraft (SC) charging is one of the main means for the analysis of SC interaction with the hot plasma space environment. Results of two computer codes are presented: NASCAP and ECO-M. Both were applied to the simulation of high-voltage charging of a rotating SC. The analysed SC model is a conducting cylinder covered by thin dielectric material. The plasma environment, solar irradiation, secondary emission and other parameters correspond to realistic conditions for SC in geostationary orbit during a magnetic substorm. Two cases were analysed by both codes: 1) a continuously rotating cylinder; b) rotation starts after equilibrium charging was reached for a fixed orientation. In the first case the potential of illuminated SC surfaces increases steadily from 0 up to a steady-state level with oscillations resulting from the SC rotation frequency. In the second case a rapid potential jump after the beginning of rotation is observed. The potential of initially illuminated surface is changed from -3kV up to +3kV relative the space. A physical explanation of this effect is suggested. The main results of the computer simulations are: (a) a good agreement between ECO-M and NASCAP results, (b) SC rotation has a large influence on the high-voltage charging processes, (c) transition from eclipse to sunlight conditions could lead to sudden jumps of surface potentials.

  11. Numerical Simulation of High-Voltage Charging at High Altitudes; Comparison of NASCAP and ECO-M

    NASA Astrophysics Data System (ADS)

    Danilov, V. V.; Dvoryashin, V. M.; Kramarenko, A. M.; Sokolov, V. S.; Vasilyev, Yu. V.

    1996-12-01

    Computer simulation of spacecraft (SC) charging is one of the main means for the analysis of SC interaction with the hot plasma space environment. Results of two computer codes are presented: NASCAP and ECO-M. Both were applied to the simulation of high-voltage charging of a rotating SC. The analysed SC model is a conducting cylinder covered by thin dielectric material. The plasma environment, solar irradiation, secondary emission and other parameters correspond to realistic conditions for SC in geostationary orbit during a magnetic substorm. Two cases were analysed by both codes: 1) a continuously rotating cylinder; b) rotation starts after equilibrium charging was reached for a fixed orientation. In the first case the potential of illuminated SC surfaces increases steadily from O up to a steady-state level with oscillations resulting from the SC rotation frequency. In the second case a rapid potential jump after the beginning of rotation is observed. The potential of initially illuminated surface is changed from -3kV up to +3kV relative to space. A physical explanation of this effect is suggested. The main results of the computer simulations are: (a) a good agreement between ECO-M and NASCAP results, (b) SC rotation has a large influence on the high-voltage charging processes, (c) transition from eclipse to sunlight conditions could lead to sudden jumps of surface potentials.

  12. Weakly nonlinear electrophoresis of a highly charged colloidal particle

    NASA Astrophysics Data System (ADS)

    Schnitzer, Ory; Zeyde, Roman; Yavneh, Irad; Yariv, Ehud

    2013-05-01

    At large zeta potentials, surface conduction becomes appreciable in thin-double-layer electrokinetic transport. In the linear weak-field regime, where this effect is quantified by the Dukhin number, it is manifested in non-Smoluchowski electrophoretic mobilities. In this paper we go beyond linear response, employing the recently derived macroscale model of Schnitzer and Yariv ["Macroscale description of electrokinetic flows at large zeta potentials: Nonlinear surface conduction," Phys. Rev. E 86, 021503 (2012), 10.1103/PhysRevE.86.021503] as the infrastructure for a weakly nonlinear analysis of spherical-particle electrophoresis. A straightforward perturbation in the field strength is frustrated by the failure to satisfy the far-field conditions, representing a non-uniformity of the weak-field approximation at large distances away from the particle, where salt advection becomes comparable to diffusion. This is remedied using inner-outer asymptotic expansions in the spirit of Acrivos and Taylor ["Heat and mass transfer from single spheres in Stokes flow," Phys. Fluids 5, 387 (1962), 10.1063/1.1706630], with the inner region representing the particle neighborhood and the outer region corresponding to distances scaling inversely with the field magnitude. This singular scheme furnishes an asymptotic correction to the electrophoretic velocity, proportional to the applied field cubed, which embodies a host of nonlinear mechanisms unfamiliar from linear electrokinetic theories. These include the effect of induced zeta-potential inhomogeneity, animated by concentration polarization, on electro-osmosis and diffuso-osmosis; bulk advection of salt; nonuniform bulk conductivity; Coulomb body forces acting on bulk volumetric charge; and the nonzero electrostatic force exerted upon the otherwise screened particle-layer system. A numerical solution of the macroscale model validates our weakly nonlinear analysis.

  13. Highly transverse velocity distribution of convoy electrons emitted by highly charged ions

    NASA Astrophysics Data System (ADS)

    Seliger, M.; Tőkési, K.; Reinhold, C. O.; Burgdörfer, J.

    2003-05-01

    We present a theoretical study of convoy electron emission resulting from highly charged ion (HCI) transport through carbon foils. Employing a classical transport theory we analyze the angular and energy distribution formed by multiple scattering of electrons in the solid. We find that the convoy electron distribution becomes highly transverse at intermediate foil thicknesses representing an oblate spheroidal distribution due to the stepwise excitation of the HCI. The calculated convoy electron spectra are found to be in good agreement with recent measurements.

  14. Space charge effects on the current-voltage characteristics of gated field emitter arrays

    NASA Astrophysics Data System (ADS)

    Jensen, K. L.; Kodis, M. A.; Murphy, R. A.; Zaidman, E. G.

    1997-07-01

    Microfabricated field emitter arrays (FEAs) can provide the very high electron current densities required for rf amplifier applications, typically on the order of 100 A/cm2. Determining the dependence of emission current on gate voltage is important for the prediction of emitter performance for device applications. Field emitters use high applied fields to extract current, and therefore, unlike thermionic emitters, the current densities can exceed 103A/cm2 when averaged over an array. At such high current densities, space charge effects (i.e., the influence of charge between cathode and collector on emission) affect the emission process or initiate conditions which can lead to failure mechanisms for field emitters. A simple model of a field emitter will be used to calculate the one-dimensional space charge effects on the emission characteristics by examining two components: charge between the gate and anode, which leads to Child's law, and charge within the FEA unit cell, which gives rise to a field suppression effect which can exist for a single field emitter. The predictions of the analytical model are compared with recent experimental measurements designed to assess space charge effects and predict the onset of gate current. It is shown that negative convexity on a Fowler-Nordheim plot of Ianode(Vgate) data can be explained in terms of field depression at the emitter tip in addition to reflection of electrons by a virtual cathode created when the anode field is insufficient to extract all of the current; in particular, the effects present within the unit cell constitute a newly described effect.

  15. Dynamic Charge Carrier Trapping in Quantum Dot Field Effect Transistors.

    PubMed

    Zhang, Yingjie; Chen, Qian; Alivisatos, A Paul; Salmeron, Miquel

    2015-07-01

    Noncrystalline semiconductor materials often exhibit hysteresis in charge transport measurements whose mechanism is largely unknown. Here we study the dynamics of charge injection and transport in PbS quantum dot (QD) monolayers in a field effect transistor (FET). Using Kelvin probe force microscopy, we measured the temporal response of the QDs as the channel material in a FET following step function changes of gate bias. The measurements reveal an exponential decay of mobile carrier density with time constants of 3-5 s for holes and ∼10 s for electrons. An Ohmic behavior, with uniform carrier density, was observed along the channel during the injection and transport processes. These slow, uniform carrier trapping processes are reversible, with time constants that depend critically on the gas environment. We propose that the underlying mechanism is some reversible electrochemical process involving dissociation and diffusion of water and/or oxygen related species. These trapping processes are dynamically activated by the injected charges, in contrast with static electronic traps whose presence is independent of the charge state. Understanding and controlling these processes is important for improving the performance of electronic, optoelectronic, and memory devices based on disordered semiconductors. PMID:26099508

  16. Membrane Permeabilization Induced by Sphingosine: Effect of Negatively Charged Lipids

    PubMed Central

    Jiménez-Rojo, Noemi; Sot, Jesús; Viguera, Ana R.; Collado, M. Isabel; Torrecillas, Alejandro; Gómez-Fernández, J.C.; Goñi, Félix M.; Alonso, Alicia

    2014-01-01

    Sphingosine [(2S, 3R, 4E)-2-amino-4-octadecen-1, 3-diol] is the most common sphingoid long chain base in sphingolipids. It is the precursor of important cell signaling molecules, such as ceramides. In the last decade it has been shown to act itself as a potent metabolic signaling molecule, by activating a number of protein kinases. Moreover, sphingosine has been found to permeabilize phospholipid bilayers, giving rise to vesicle leakage. The present contribution intends to analyze the mechanism by which this bioactive lipid induces vesicle contents release, and the effect of negatively charged bilayers in the release process. Fluorescence lifetime measurements and confocal fluorescence microscopy have been applied to observe the mechanism of sphingosine efflux from large and giant unilamellar vesicles; a graded-release efflux has been detected. Additionally, stopped-flow measurements have shown that the rate of vesicle permeabilization increases with sphingosine concentration. Because at the physiological pH sphingosine has a net positive charge, its interaction with negatively charged phospholipids (e.g., bilayers containing phosphatidic acid together with sphingomyelins, phosphatidylethanolamine, and cholesterol) gives rise to a release of vesicular contents, faster than with electrically neutral bilayers. Furthermore, phosphorous 31-NMR and x-ray data show the capacity of sphingosine to facilitate the formation of nonbilayer (cubic phase) intermediates in negatively charged membranes. The data might explain the pathogenesis of Niemann-Pick type C1 disease. PMID:24940775

  17. Fast charging technique for high power LiFePO4 batteries: A mechanistic analysis of aging

    NASA Astrophysics Data System (ADS)

    Anseán, D.; Dubarry, M.; Devie, A.; Liaw, B. Y.; García, V. M.; Viera, J. C.; González, M.

    2016-07-01

    One of the major issues hampering the acceptance of electric vehicles (EVs) is the anxiety associated with long charging time. Hence, the ability to fast charging lithium-ion battery (LIB) systems is gaining notable interest. However, fast charging is not tolerated by all LIB chemistries because it affects battery functionality and accelerates its aging processes. Here, we investigate the long-term effects of multistage fast charging on a commercial high power LiFePO4-based cell and compare it to another cell tested under standard charging. Coupling incremental capacity (IC) and IC peak area analysis together with mechanistic model simulations ('Alawa' toolbox with harvested half-cell data), we quantify the degradation modes that cause aging of the tested cells. The results show that the proposed fast charging technique caused similar aging effects as standard charging. The degradation is caused by a linear loss of lithium inventory, coupled with a less degree of linear loss of active material on the negative electrode. This study validates fast charging as a feasible mean of operation for this particular LIB chemistry and cell architecture. It also illustrates the benefits of a mechanistic approach to understand cell degradation on commercial cells.

  18. Phonon Effects on Spin-Charge Separation in One Dimension

    NASA Astrophysics Data System (ADS)

    Wu, Chang-Qin; Ning, Wen-Qiang; Zhao, Hui; Lin, Hai-Qing

    2006-03-01

    Phonon effects on spin-charge separation in one dimension are investigated through the calculation of one-electron spectral functions in terms of the recently developed cluster perturbation theory together with an optimized phonon approach. It is found that the retardation effect due to the finiteness of phonon frequency suppresses the spin-charge separation and eventually makes it invisible in the spectral function. A signature of electrons pairing in weak interaction regimes was found to be consistent with the existence of a metallic phase proposed recently by Clay and Hardikar [Phys. Rev. Lett. 95, 096401 (2005)]. By a comparison between our result and the experimental data of TTF-TCNQ, it is observed that electron-phonon interaction must be taken into account even in the strongly correlated system.

  19. Charge and Hydrophobicity Effects of NIR Fluorophores on Bone-Specific Imaging

    PubMed Central

    Bao, Kai; Nasr, Khaled A.; Hyun, Hoon; Lee, Jeong Heon; Gravier, Julien; Gibbs, Summer L.; Choi, Hak Soo

    2015-01-01

    Recent advances in near-infrared (NIR) fluorescence imaging enabled real-time intraoperative detection of bone metastases, bone growth, and tissue microcalcification. Pamidronate (PAM) has been widely used for this purpose because of its high binding affinity toward bone and remarkable therapeutic effects. Herein we describe the development of a series of PAM-conjugated NIR fluorophores that varied in net charges and hydrophobicity, and compared their bone targeting efficiency, biodistribution, and blood clearance. Since the targeting moiety, PAM, is highly negatively charged but small, the overall in vivo bone targeting and biodistribution were mediated by the physicochemical properties of conjugated fluorophores. PMID:25825600

  20. Charge carrier coherence and Hall effect in organic semiconductors

    PubMed Central

    Yi, H. T.; Gartstein, Y. N.; Podzorov, V.

    2016-01-01

    Hall effect measurements are important for elucidating the fundamental charge transport mechanisms and intrinsic mobility in organic semiconductors. However, Hall effect studies frequently reveal an unconventional behavior that cannot be readily explained with the simple band-semiconductor Hall effect model. Here, we develop an analytical model of Hall effect in organic field-effect transistors in a regime of coexisting band and hopping carriers. The model, which is supported by the experiments, is based on a partial Hall voltage compensation effect, occurring because hopping carriers respond to the transverse Hall electric field and drift in the direction opposite to the Lorentz force acting on band carriers. We show that this can lead in particular to an underdeveloped Hall effect observed in organic semiconductors with substantial off-diagonal thermal disorder. Our model captures the main features of Hall effect in a variety of organic semiconductors and provides an analytical description of Hall mobility, carrier density and carrier coherence factor. PMID:27025354

  1. Charge carrier coherence and Hall effect in organic semiconductors

    NASA Astrophysics Data System (ADS)

    Yi, H. T.; Gartstein, Y. N.; Podzorov, V.

    2016-03-01

    Hall effect measurements are important for elucidating the fundamental charge transport mechanisms and intrinsic mobility in organic semiconductors. However, Hall effect studies frequently reveal an unconventional behavior that cannot be readily explained with the simple band-semiconductor Hall effect model. Here, we develop an analytical model of Hall effect in organic field-effect transistors in a regime of coexisting band and hopping carriers. The model, which is supported by the experiments, is based on a partial Hall voltage compensation effect, occurring because hopping carriers respond to the transverse Hall electric field and drift in the direction opposite to the Lorentz force acting on band carriers. We show that this can lead in particular to an underdeveloped Hall effect observed in organic semiconductors with substantial off-diagonal thermal disorder. Our model captures the main features of Hall effect in a variety of organic semiconductors and provides an analytical description of Hall mobility, carrier density and carrier coherence factor.

  2. Charge carrier coherence and Hall effect in organic semiconductors.

    PubMed

    Yi, H T; Gartstein, Y N; Podzorov, V

    2016-01-01

    Hall effect measurements are important for elucidating the fundamental charge transport mechanisms and intrinsic mobility in organic semiconductors. However, Hall effect studies frequently reveal an unconventional behavior that cannot be readily explained with the simple band-semiconductor Hall effect model. Here, we develop an analytical model of Hall effect in organic field-effect transistors in a regime of coexisting band and hopping carriers. The model, which is supported by the experiments, is based on a partial Hall voltage compensation effect, occurring because hopping carriers respond to the transverse Hall electric field and drift in the direction opposite to the Lorentz force acting on band carriers. We show that this can lead in particular to an underdeveloped Hall effect observed in organic semiconductors with substantial off-diagonal thermal disorder. Our model captures the main features of Hall effect in a variety of organic semiconductors and provides an analytical description of Hall mobility, carrier density and carrier coherence factor. PMID:27025354

  3. Effective Reduction of Coulomb Repulsion in Charged Granular Matter

    NASA Astrophysics Data System (ADS)

    Scheffler, T.; Werth, J.; Wolf, D. E.

    2000-04-01

    This paper is an extension to a previous article by Scheffler and Wolfs.6 We study the rate of energy dissipation due to inelastic collisions in a charged granular gas. One observes that the electrostatic repulsion of two particles is effectively reduced by nearest neighbor interactions in a dense granular gas. We study the radial distribution function for dense systems, which leads to a better expression for the reduced energy barrier.

  4. Resistive Micromegas for sampling calorimetry, a study of charge-up effects

    NASA Astrophysics Data System (ADS)

    Chefdeville, M.; Karyotakis, Y.; Geralis, T.; Titov, M.

    2016-07-01

    Micromegas, as a proportional and compact gaseous detector, is well suited for sampling calorimetry. The limitation of occasional sparking has now been lifted by means of resistive electrodes but at the cost of current-dependent charge-up effects. These effects are studied in this contribution, with an emphasis on gain variations during operation at high particle rate and under heavy ionisation. Results are reproduced by a simple model of charging-up which will be used for detector design optimisation in the future.

  5. The effect of dust charge fluctuations in the near-Enceladus plasma

    NASA Astrophysics Data System (ADS)

    Yaroshenko, Victoria; Luehr, Hermann

    The geologically active moon Enceladus feeds the most extended, Saturns’ E ring by dust particles and creates a specific multispecies plasma environment -the Enceladus plasma torus. The key process of dust-plasma interactions is dust charging. The grain electrostatic potential in space is usually calculated from the so called orbit-motion limited (OML) model [1]. It is valid for a single particle immersed into collisionless plasmas with Maxwellian electron and ion distributions. Such a parameter regime cannot be directly applied to the conditions relevant for the Enceladus plasma environment and especially, for the dense plume region, where the dust density is high, sometimes even exceeding the plasma number density. Generalizing the OML formalism, we examine several new factors that can significantly affect the equilibrium grain charging: (a) multispecies composition of the core plasma, including hot electrons and newborn cold ions; (b) effect of high dust number density (c) the role of dust size distributions. We also focus on such a specific peculiarity of dust charging as charge fluctuations. Since the grain charges are not fixed and can fluctuate, this introduces the crucial difference between ordinary plasma species (electrons and ions) and charged dust particles. There are two reasons for such fluctuations. The charging of the grains depends on the local plasma characteristics, and thus some temporal or spatial variations in the plasma parameters ultimately modify numbers of charges acquired by a grain. Some of these effects related to the near-Enceladus plasma environment have recently been discussed [2]. A second reason for charge fluctuations is the discrete nature of the charge carriers. Electrons and ions are absorbed or emitted by the grain surface randomly thus leading to stochastic fluctuations of the dust net charge. These fluctuations exist always even in a steady-state uniform plasma, and we discuss the statistical characteristics of random dust

  6. Optical transitions in highly charged californium ions with high sensitivity to variation of the fine-structure constant.

    PubMed

    Berengut, J C; Dzuba, V A; Flambaum, V V; Ong, A

    2012-08-17

    We study electronic transitions in highly charged Cf ions that are within the frequency range of optical lasers and have very high sensitivity to potential variations in the fine-structure constant, α. The transitions are in the optical range despite the large ionization energies because they lie on the level crossing of the 5f and 6p valence orbitals in the thallium isoelectronic sequence. Cf(16+) is a particularly rich ion, having several narrow lines with properties that minimize certain systematic effects. Cf(16+) has very large nuclear charge and large ionization energy, resulting in the largest α sensitivity seen in atomic systems. The lines include positive and negative shifters. PMID:23006353

  7. Effect of three-body interactions on the phase behavior of charge-stabilized colloidal suspensions.

    PubMed

    Hynninen, A-P; Dijkstra, M; van Roij, R

    2004-06-01

    We study numerically the effect of attractive triplet interactions on the phase behavior of suspensions of highly charged colloidal particles at low salinity. In our computer simulations, we employ the pair and triplet potentials that were obtained from a numerical Poisson-Boltzmann study [Phys. Rev. E 66, 011402 (2002)

  8. 2D coherent charge transport in highly ordered conducting polymers doped by solid state diffusion

    NASA Astrophysics Data System (ADS)

    Kang, Keehoon; Watanabe, Shun; Broch, Katharina; Sepe, Alessandro; Brown, Adam; Nasrallah, Iyad; Nikolka, Mark; Fei, Zhuping; Heeney, Martin; Matsumoto, Daisuke; Marumoto, Kazuhiro; Tanaka, Hisaaki; Kuroda, Shin-Ichi; Sirringhaus, Henning

    2016-08-01

    Doping is one of the most important methods to control charge carrier concentration in semiconductors. Ideally, the introduction of dopants should not perturb the ordered microstructure of the semiconducting host. In some systems, such as modulation-doped inorganic semiconductors or molecular charge transfer crystals, this can be achieved by spatially separating the dopants from the charge transport pathways. However, in conducting polymers, dopants tend to be randomly distributed within the conjugated polymer, and as a result the transport properties are strongly affected by the resulting structural and electronic disorder. Here, we show that in the highly ordered lamellar microstructure of a regioregular thiophene-based conjugated polymer, a small-molecule p-type dopant can be incorporated by solid state diffusion into the layers of solubilizing side chains without disrupting the conjugated layers. In contrast to more disordered systems, this allows us to observe coherent, free-electron-like charge transport properties, including a nearly ideal Hall effect in a wide temperature range, a positive magnetoconductance due to weak localization and the Pauli paramagnetic spin susceptibility.

  9. Mitigation of charged impurity effects in graphene field-effect transistors with polar organic molecules (Presentation Recording)

    NASA Astrophysics Data System (ADS)

    Worley, Barrett C.; Kim, Seohee; Akinwande, Deji; Rossky, Peter J.; Dodabalapur, Ananth

    2015-09-01

    Recent developments in monolayer graphene production allow its use as the active layer in field-effect transistor technology. Favorable electrical characteristics of monolayer graphene include high mobility, operating frequency, and good stability. These characteristics are governed by such key transport physical phenomena as electron-hole transport symmetry, Dirac point voltage, and charged impurity effects. Doping of graphene occurs during device fabrication, and is largely due to charged impurities located at or near the graphene/substrate interface. These impurities cause scattering of charge carriers, which lowers mobility. Such scattering is detrimental to graphene transistor performance, but our group has shown that coating with fluoropolymer thin films or exposure to polar organic vapors can restore favorable electrical characteristics to monolayer graphene. By partially neutralizing charged impurities and defects, we can improve the mobility by approximately a factor of 2, change the Dirac voltage by fairly large amounts, and reduce the residual carrier density significantly. We hypothesize that this phenomena results from screening of charged impurities by the polar molecules. To better understand such screening interactions, we performed computational chemistry experiments to observe interactions between polar organic molecules and monolayer graphene. The molecules interacted more strongly with defective graphene than with pristine graphene, and the electronic environment of graphene was altered. These computational observations correlate well with our experimental results to support our hypothesis that polar molecules can act to screen charged impurities on or near monolayer graphene. Such screening favorably mitigates charge scattering, improving graphene transistor performance.

  10. Pairing of Fermions with Unequal Effective Charges in an Artificial Magnetic Field

    NASA Astrophysics Data System (ADS)

    Unal, Nur; Oktel, M. O.

    2016-05-01

    Artificial magnetic fields (AMFs) created for ultracold systems depend sensitively on the internal structure of the atoms. In a mixture, each component couples to the AMF with a different charge. This enables the study of Bardeen-Cooper-Schrieffer pairing of fermions with unequal effective charges. We investigate the superconducting (SC) transition of a system formed by such pairs as a function of the field strength. We consider a homogeneous two-component Fermi gas of unequal charges but equal densities with attractive interactions. We find that the phase diagram is altered drastically compared to the usual equal charge case. First, for some AMFs there is no SC transition and isolated SC phases are formed, reflecting the discrete Landau level (LL) structure. SC phases become reentrant both in AMF and temperature. For extremely high fields where both components are confined to their lowest LLs, the effect of the charge imbalance is suppressed. Charge asymmetry reduces the critical temperature even in the low-field semiclassical regime. We discuss a pair breaking mechanism due to the unequal Lorentz forces acting on the components of the Cooper pairs to identify the underlying physics.

  11. Charging effect simulation model used in simulations of plasma etching of silicon

    SciTech Connect

    Ishchuk, Valentyn; Volland, Burkhard E.; Hauguth, Maik; Rangelow, Ivo W.; Cooke, Mike

    2012-10-15

    Understanding the consequences of local surface charging on the evolving etching profile is a critical challenge in high density plasma etching. Deflection of the positively charged ions in locally varying electric fields can cause profile defects such as notching, bowing, and microtrenching. We have developed a numerical simulation model capturing the influence of the charging effect over the entire course of the etching process. The model is fully integrated into ViPER (Virtual Plasma Etch Reactor)-a full featured plasma processing simulation software developed at Ilmenau University of Technology. As a consequence, we show that local surface charge concurrently evolves with the feature profile to affect the final shape of the etched feature. Using gas chopping (sometimes called time-multiplexed) etch process for experimental validation of the simulation, we show that the model provides excellent fits to the experimental data and both, bowing and notching effects are captured-as long as the evolving profile and surface charge are simultaneously simulated. In addition, this new model explains that surface scallops, characteristic of gas chopping technique, are eroded and often absent in the final feature profile due to surface charging. The model is general and can be applied across many etching chemistries.

  12. Charging effect simulation model used in simulations of plasma etching of silicon

    NASA Astrophysics Data System (ADS)

    Ishchuk, Valentyn; Volland, Burkhard E.; Hauguth, Maik; Cooke, Mike; Rangelow, Ivo W.

    2012-10-01

    Understanding the consequences of local surface charging on the evolving etching profile is a critical challenge in high density plasma etching. Deflection of the positively charged ions in locally varying electric fields can cause profile defects such as notching, bowing, and microtrenching. We have developed a numerical simulation model capturing the influence of the charging effect over the entire course of the etching process. The model is fully integrated into ViPER (Virtual Plasma Etch Reactor)—a full featured plasma processing simulation software developed at Ilmenau University of Technology. As a consequence, we show that local surface charge concurrently evolves with the feature profile to affect the final shape of the etched feature. Using gas chopping (sometimes called time-multiplexed) etch process for experimental validation of the simulation, we show that the model provides excellent fits to the experimental data and both, bowing and notching effects are captured—as long as the evolving profile and surface charge are simultaneously simulated. In addition, this new model explains that surface scallops, characteristic of gas chopping technique, are eroded and often absent in the final feature profile due to surface charging. The model is general and can be applied across many etching chemistries.

  13. Secondary ion coincidence in highly charged ion based secondary ion mass spectroscopy for process characterization

    SciTech Connect

    Hamza, A.V.; Schenkel, T.; Barnes, A.V.; Schneider, D.H.

    1999-01-01

    Coincidence counting in highly charged ion based secondary ion mass spectroscopy has been applied to the characterization of selective tungsten deposition via disilane reduction of tungsten hexafluoride on a patterned SiO{sub 2}/Si wafer. The high secondary ion yield and the secondary ion emission from a small area produced by highly charged ions make the coincidence technique very powerful.

  14. Effect of surface charge of immortalized mouse cerebral endothelial cell monolayer on transport of charged solutes.

    PubMed

    Yuan, Wei; Li, Guanglei; Gil, Eun Seok; Lowe, Tao Lu; Fu, Bingmei M

    2010-04-01

    Charge carried by the surface glycocalyx layer (SGL) of the cerebral endothelium has been shown to significantly modulate the permeability of the blood-brain barrier (BBB) to charged solutes in vivo. The cultured monolayer of bEnd3, an immortalized mouse cerebral endothelial cell line, is becoming a popular in vitro BBB model due to its easy growth and maintenance of many BBB characteristics over repeated passages. To test whether the SGL of bEnd3 monolayer carries similar charge as that in the intact BBB and quantify this charge, which can be characterized by the SGL thickness (L(f)) and charge density (C(mf)), we measured the solute permeability of bEnd3 monolayer to neutral solutes and to solutes with similar size but opposite charges: negatively charged alpha-lactalbumin (-11) and positively charged ribonuclease (+3). Combining the measured permeability data with a transport model across the cell monolayer, we predicted the L(f) and the C(mf) of bEnd3 monolayer, which is approximately 160 nm and approximately 25 mEq/L, respectively. We also investigated whether orosomucoid, a plasma glycoprotein modulating the charge of the intact BBB, alters the charge of bEnd3 monolayer. We found that 1 mg/mL orosomucoid would increase SGL charge density of bEnd3 monolayer to approximately 2-fold of its control value. PMID:20087768

  15. Characteristics of the soft X-ray emission from laser-produced highly charged platinum plasmas

    NASA Astrophysics Data System (ADS)

    Hara, Hiroyuki; Arai, Goki; Kondo, Yoshiki; Dinh, Thanh-Hung; Dunne, Padraig; O’Sullivan, Gerry; Ejima, Takeo; Hatano, Tadashi; Jiang, Weihua; Nishikino, Masaharu; Sasaki, Akira; Sunahara, Atsushi; Higashiguchi, Takeshi

    2016-06-01

    We characterized the spectral structure of the soft X-ray emission and determined the plasma parameters in laser-produced highly charged platinum plasmas. The spectral structure observed originated from Pt21+ to Pt34+ ions, emissions from which overlapped to produce a high output flux in the carbon-window soft X-ray spectral region. Using dual laser pulse irradiation, we observed the maximum output flux, which was 20% larger than that obtained under single-laser irradiation, and the evolution of a strongly absorbed spectral structure, which was attributed to the effects of both opacity and long-scale length of the expanding pre-plasma.

  16. High-charge energetic ions generated by intersecting laser pulses

    NASA Astrophysics Data System (ADS)

    Yang, L.; Deng, Z. G.; Yu, M. Y.; Wang, X. G.

    2016-08-01

    Ion acceleration from the interaction of two intersecting intense laser pulses with an overdense plasma is investigated using a three-dimensional particle-in-cell simulation. It is found that, comparing with the single-pulse case, the charge of the resulting energetic ion bunch can be increased by more than an order of magnitude without much loss of quality. Dependence of the ion charge on the interaction parameters, including separation distance and incidence angles of the lasers, is considered. It is shown that the charge of the accelerated ion bunch can be optimized by controlling the degree of laser overlapping. The improved performance can be attributed to the enhanced laser intensity as well as stochastic heating of the accelerated electrons. Since at present the intensity of readily available lasers is limited, the two pulse scheme should be useful for realizing higher laser intensity in order to achieve higher-energy target normal sheath acceleration ions.

  17. Single ion induced surface nanostructures: a comparison between slow highly charged and swift heavy ions.

    PubMed

    Aumayr, Friedrich; Facsko, Stefan; El-Said, Ayman S; Trautmann, Christina; Schleberger, Marika

    2011-10-01

    This topical review focuses on recent advances in the understanding of the formation of surface nanostructures, an intriguing phenomenon in ion-surface interaction due to the impact of individual ions. In many solid targets, swift heavy ions produce narrow cylindrical tracks accompanied by the formation of a surface nanostructure. More recently, a similar nanometric surface effect has been revealed for the impact of individual, very slow but highly charged ions. While swift ions transfer their large kinetic energy to the target via ionization and electronic excitation processes (electronic stopping), slow highly charged ions produce surface structures due to potential energy deposited at the top surface layers. Despite the differences in primary excitation, the similarity between the nanostructures is striking and strongly points to a common mechanism related to the energy transfer from the electronic to the lattice system of the target. A comparison of surface structures induced by swift heavy ions and slow highly charged ions provides a valuable insight to better understand the formation mechanisms. PMID:21900733

  18. Effects of charge and size on condensation of supersaturated water vapor on nanoparticles of SiO2.

    PubMed

    Chen, Chin-Cheng; Cheng, Hsiu-Chin

    2007-01-21

    The effects of size and charge on the condensation of a supersaturated water vapor on monodisperse nanoparticles of SiO(2) were investigated in a flow cloud chamber. The dependences of the critical supersaturation S(cr) on particle size at diameters of 10, 12, and 15 nm as well as on charge and charge polarity are determined experimentally. A novel electrospray aerosol generator was developed to generate a high concentration of SiO(2) nanoparticles of less than 10 nm by electrospraying silicon tetraethoxide (STE) ethanol solution followed by the thermal decomposition of STE. The effects of liquid flow rate, liquid concentration, flow rate of carrier gas, and liquid conductivity on the particle size distribution and concentration were examined. For charged particles, the nucleation occurs at a critical supersaturation S(cr) lower than that on neutral particles, and the charge effect fades away as particle size increases. The charge effect is stronger than the theoretical predictions. In addition, a sign preference is detected, i.e., water vapor condenses more readily on negatively charged particle, a trend consistent with those observed on ions. However, both effects of charge and charge polarity on S(cr) are stronger than that predicted by Volmer's theory for ion-induced nucleation. PMID:17249890

  19. Advancement of highly charged ion beam production by superconducting ECR ion source SECRAL (invited)

    NASA Astrophysics Data System (ADS)

    Sun, L.; Guo, J. W.; Lu, W.; Zhang, W. H.; Feng, Y. C.; Yang, Y.; Qian, C.; Fang, X.; Ma, H. Y.; Zhang, X. Z.; Zhao, H. W.

    2016-02-01

    At Institute of Modern Physics (IMP), Chinese Academy of Sciences (CAS), the superconducting Electron Cyclotron Resonance (ECR) ion source SECRAL (Superconducting ECR ion source with Advanced design in Lanzhou) has been put into operation for about 10 years now. It has been the main working horse to deliver intense highly charged heavy ion beams for the accelerators. Since its first plasma at 18 GHz, R&D work towards more intense highly charged ion beam production as well as the beam quality investigation has never been stopped. When SECRAL was upgraded to its typical operation frequency 24 GHz, it had already showed its promising capacity of very intense highly charged ion beam production. And it has also provided the strong experimental support for the so called scaling laws of microwave frequency effect. However, compared to the microwave power heating efficiency at 18 GHz, 24 GHz microwave heating does not show the ω2 scale at the same power level, which indicates that microwave power coupling at gyrotron frequency needs better understanding. In this paper, after a review of the operation status of SECRAL with regard to the beam availability and stability, the recent study of the extracted ion beam transverse coupling issues will be discussed, and the test results of the both TE01 and HE11 modes will be presented. A general comparison of the performance working with the two injection modes will be given, and a preliminary analysis will be introduced. The latest results of the production of very intense highly charged ion beams, such as 1.42 emA Ar12+, 0.92 emA Xe27+, and so on, will be presented.

  20. Advancement of highly charged ion beam production by superconducting ECR ion source SECRAL (invited).

    PubMed

    Sun, L; Guo, J W; Lu, W; Zhang, W H; Feng, Y C; Yang, Y; Qian, C; Fang, X; Ma, H Y; Zhang, X Z; Zhao, H W

    2016-02-01

    At Institute of Modern Physics (IMP), Chinese Academy of Sciences (CAS), the superconducting Electron Cyclotron Resonance (ECR) ion source SECRAL (Superconducting ECR ion source with Advanced design in Lanzhou) has been put into operation for about 10 years now. It has been the main working horse to deliver intense highly charged heavy ion beams for the accelerators. Since its first plasma at 18 GHz, R&D work towards more intense highly charged ion beam production as well as the beam quality investigation has never been stopped. When SECRAL was upgraded to its typical operation frequency 24 GHz, it had already showed its promising capacity of very intense highly charged ion beam production. And it has also provided the strong experimental support for the so called scaling laws of microwave frequency effect. However, compared to the microwave power heating efficiency at 18 GHz, 24 GHz microwave heating does not show the ω(2) scale at the same power level, which indicates that microwave power coupling at gyrotron frequency needs better understanding. In this paper, after a review of the operation status of SECRAL with regard to the beam availability and stability, the recent study of the extracted ion beam transverse coupling issues will be discussed, and the test results of the both TE01 and HE11 modes will be presented. A general comparison of the performance working with the two injection modes will be given, and a preliminary analysis will be introduced. The latest results of the production of very intense highly charged ion beams, such as 1.42 emA Ar(12+), 0.92 emA Xe(27+), and so on, will be presented. PMID:26931925

  1. Effect of Ionic Strength and Surface Charge on Convective Deposition.

    PubMed

    Joshi, Kedar; Muangnapoh, Tanyakorn; Stever, Michael D; Gilchrist, James F

    2015-11-17

    Particle-particle and particle-substrate interactions play a crucial role in capillary driven convective self-assembly for continuous deposition of particles. This systematic study demonstrates the nontrivial effects of varying surface charge and ionic strength of monosized silica microspheres in water on the quality of the deposited monolayer. Increase in particle surface charge results a broader range of parameters that result in monolayer deposition which can be explained considering the particle-substrate electrostatic repulsion in solution. Resulting changes in the coating morphology and microstructure at different solution conditions were observed using confocal microscopy enabling correlation of order to disorder transitions with relative particle stability. These results, in part, may explain similar results seen by Muangnapoh et al., 2013 in vibration-assisted convective deposition. PMID:26501996

  2. Work Towards Experimental Evidence Of Hard X-Ray Photoionization In Highly Charged Krypton

    SciTech Connect

    Silver, E.; Brickhouse, N. S.; Kirby, K.; Lin, T.; Gillaspy, J. D.; Gokhale, P.; Kanter, E. P.; Dunford, R. W.; Seifert, S.; Young, L.; McDonald, J.; Schneider, D.

    2011-06-01

    Ions of almost any charge state can be produced through electron-impact ionization. Here we describe our first experiments designed to photoionize these highly charged ions with hard x-rays by pairing an electron and photon beam. A spectral line at 12.7(1) keV with an intensity corroborated by theory may be the first evidence of hard x-ray photoionization of a highly charged ion.

  3. Work toward experimental evidence of hard x-ray photoionization in highly charged krypton.

    SciTech Connect

    Silver, E.; Gillaspy, J.D.; Gokhale, P.; Kanter, E.P.; Brickhouse, N.S.; Dunford, R.W.; Kirby, K.; Lin, T.; McDonald, J.; Schneider, D.; Seifert, S.; Young, L.

    2011-06-01

    Ions of almost any charge state can be produced through electron-impact ionization. Here we describe our first experiments designed to photoionize these highly charged ions with hard x-rays by pairing an electron and photon beam. A spectral line at 12.7(1) keV with an intensity corroborated by theory may be the first evidence of hard x-ray photoionization of a highly charged ion.

  4. EUV spectroscopy of highly charged high Z ions in the Large Helical Device plasmas

    NASA Astrophysics Data System (ADS)

    Suzuki, C.; Koike, F.; Murakami, I.; Tamura, N.; Sudo, S.; Sakaue, H. A.; Nakamura, N.; Morita, S.; Goto, M.; Kato, D.; Nakano, T.; Higashiguchi, T.; Harte, C. S.; OʼSullivan, G.

    2014-11-01

    We present recent results on the extreme ultraviolet (EUV) spectroscopy of highly charged high Z ions in plasmas produced in the Large Helical Device (LHD) at the National Institute for Fusion Science. Tungsten, bismuth and lanthanide elements have recently been studied in the LHD in terms of their importance in fusion research and EUV light source development. In relatively low temperature plasmas, quasicontinuum emissions from open 4d or 4f subshell ions are predominant in the EUV region, while the spectra tend to be dominated by discrete lines from open 4s or 4p subshell ions in higher temperature plasmas. Comparative analyses using theoretical calculations and charge-separated spectra observed in an electron beam ion trap have been performed to achieve better agreement with the spectra measured in the LHD. As a result, databases on Z dependence of EUV spectra in plasmas have been widely extended.

  5. The interactions of high-energy, highly-charged ions with fullerenes

    SciTech Connect

    Ali, R.; Berry, H.G.; Cheng, S.

    1996-03-01

    In 1985, Robert Curl and Richard Smalley discovered a new form of carbon, the fullerene, C{sub 60}, which consists of 60 carbon atoms in a closed cage resembling a soccer ball. In 1990, Kritschmer et al. were able to make macroscopic quantities of fullerenes. This has generated intense activity to study the properties of fullerenes. One area of research involves collisions between fullerenes and atoms, ions or electrons. In this paper we describe experiments involving interactions between fullerenes and highly charged ions in which the center-of-mass energies exceed those used in other work by several orders of magnitude. The high values of projectile velocity and charge state result in excitation and decay processes differing significantly from those seen in studies 3 at lower energies. Our results are discussed in terms of theoretical models analogous to those used in nuclear physics and this provides an interesting demonstration of the unity of physics.

  6. Substituent effects on charge transport in films of Au nanocrystals.

    PubMed

    Stansfield, Gemma L; Thomas, P John

    2012-07-25

    Charge transport (CT) in films of arylthiol-capped Au nanocrystals (NCs) exhibits strong substituent effects, with electron-donating substituents markedly decreasing conductivity. Films suited for measurements were obtained by ligand-exchange reactions on AuNCs grown at the water/toluene interface. Detailed analysis suggests the NCs interact with the ligands by resonance rather than inductive effects. The films were characterized by TEM, SEM, XPS, UV/vis, and AFM. CT characteristics were studied between 15 and 300 K. PMID:22746531

  7. Effect of Surface Charge on Laser-induced Neutral Atom Desorption

    SciTech Connect

    Beck, Kenneth M.; Joly, Alan G.; Hess, Wayne P.

    2010-10-01

    When an ionic metal oxide crystal is cleaved, inhomogeneous electrical charging of the surface can be a result. Such an effect has been well-documented in magnesium oxide (100). For example, recent rigorous AFM studies indicate that nanoscale charged clusters of MgO are created during cleavage, with high concentrations often located at terrace step edges.[1] In addition, ablation processes of freshly cleaved magnesium oxide crystals may be effected by remnant surface charging and microstructures.[2] We report here that such surface charging strongly impacts even neutral atom desorption, even under conditions of extremely mild excitation of surface terrace features. In our experiments, single crystal MgO (100) is cleaved in air and placed in an ultra-high vacuum chamber (UHV). We irradiate the crystal at 6.4 eV, photon energy resonant with five-coordinated (5-C) terrace sites and probe desorbing neutral oxygen atoms. It is found that a significant fraction of desorbed neutral oxygen atoms from the charged surface possess kinetic energies in excess of 0.7 eV. This is in contrast to uncharged samples (discharged in vacuo over 24 hours) that display a near-thermal oxygen atom distribution.

  8. ISS Charging Hazards and Low Earth Orbit Space Weather Effects

    NASA Technical Reports Server (NTRS)

    Minow, Joseph; Parker, L.; Coffey, V.; Wright K.; Koontz, S.; Edwards, D.

    2008-01-01

    Current collection by high voltage solar arrays on the International Space Station (ISS) drives the vehicle to negative floating potentials in the low Earth orbit daytime plasma environment. Pre-flight predictions of ISS floating potentials Phi greater than |-100 V| suggested a risk for degradation of dielectric thermal control coatings on surfaces in the U.S. sector due to arcing and an electrical shock hazard to astronauts during extravehicular activity (EVA). However, hazard studies conducted by the ISS program have demonstrated that the thermal control material degradation risk is effectively mitigated during the lifetime of the ISS vehicle by a sufficiently large ion collection area present on the vehicle to balance current collection by the solar arrays. To date, crew risk during EVA has been mitigated by operating one of two plasma contactors during EVA to control the vehicle potential within Phi less than or equal to |-40 V| with a backup process requiring reorientation of the solar arrays into a configuration which places the current collection surfaces into wake. This operation minimizes current collection by the solar arrays should the plasma contactors fail. This paper presents an analysis of F-region electron density and temperature variations at low and midlatitudes generated by space weather events to determine what range of conditions represent charging threats to ISS. We first use historical ionospheric plasma measurements from spacecraft operating at altitudes relevant to the 51.6 degree inclination ISS orbit to provide an extensive database of F-region plasma conditions over a variety of solar cycle conditions. Then, the statistical results from the historical data are compared to more recent in-situ measurements from the Floating Potential Measurement Unit (FPMU) operating on ISS in a campaign mode since its installation in August, 2006.

  9. HIGH CURRENT D- PRODUCTION BY CHARGE EXCHANGE IN SODIUM

    SciTech Connect

    Hooper, E.B.; Poulsen, P.; Pincosy, P.A.

    1981-02-01

    A beam of D{sup -} ions has been produced at 7-13 keV, with currents up to 2.2 {angstrom}, using charge exchange in sodium vapor. The beam profile is bi-Gaussian with angular divergence 0.7{sup o} x 2.8{sup o} and peak current density 15 mA/cm{sup 2}. The characteristics of the beam are in excellent agreement with predictions based on atomic cross sections. The sodium vapor target is formed by a jet directed across the beam. The sodium density drops rapidly in the beamline downstream from the charge exchange region, decreasing three orders of magnitude in 15 cm. Measurement and analysis of the plasma accompanying the beam demonstrate that plasma densities nearly equal to the beam density are obtained 1 m from the charge exchange medium. The plasma produced in the sodium is thus well confined to the charge exchange region and does not propagate along the beam.

  10. Miniaturized high-resolution mass/charge spectrograph /design study/

    NASA Technical Reports Server (NTRS)

    Taylor, L. H.

    1969-01-01

    Use of a double-focusing mass/charge spectrograph weighing less than 25 pounds is feasible for solar wind experiments. Instrument has a parallel-plate energy filter between the ion source and the double focusing units which alleviates the problem of designing an ion source of small energy spread.

  11. A compact, high-voltage pulsed charging system based on an air-core pulse transformer.

    PubMed

    Zhang, Tianyang; Chen, Dongqun; Liu, Jinliang; Liu, Chebo; Yin, Yi

    2015-09-01

    Charging systems of pulsed power generators on mobile platforms are expected to be compact and provide high pulsed power, high voltage output, and high repetition rate. In this paper, a high-voltage pulsed charging system with the aforementioned characteristics is introduced, which can be applied to charge a high-voltage load capacitor. The operating principle of the system and the technical details of the components in the system are described in this paper. The experimental results show that a 600 nF load capacitor can be charged to 60 kV at 10 Hz by the high-voltage pulsed charging system for a burst of 0.5 s. The weight and volume of the system are 60 kg and 600 × 500 × 380 mm(3), respectively. PMID:26429466

  12. Effects of metal oxide nanoparticles on the stability of dispersions of weakly charged colloids.

    PubMed

    Herman, David; Walz, John Y

    2015-05-01

    The stability behavior of dispersions of weakly charged silica colloids was studied in the presence of highly charged metal oxide nanoparticles. Experiments were performed using 5 nm zirconia as well as 10 nm alumina nanoparticles (both positively charged), which were added to 0.1 vol % suspensions of 1.0 μm silica microparticles at the silica IEP. Both types of nanoparticles provided effective stabilization of the silica; i.e., the silica suspensions were stabilized for longer than the observation period (greater than 12 h). Stability was observed at zirconia concentrations as low as 10(-4) vol % and at an alumina concentration of 10(-2) vol %. The nanoparticles adsorbed onto the microparticle surfaces (confirmed via SEM imaging), which increased the zeta-potential of the silica. Force profile measurements performed with colloidal probe atomic force microscopy showed that the adsorption was effectively irreversible. PMID:25860256

  13. Hydrogen Absorption into Austenitic Stainless Steels Under High-Pressure Gaseous Hydrogen and Cathodic Charge in Aqueous Solution

    NASA Astrophysics Data System (ADS)

    Enomoto, Masato; Cheng, Lin; Mizuno, Hiroyuki; Watanabe, Yoshinori; Omura, Tomohiko; Sakai, Jun'ichi; Yokoyama, Ken'ichi; Suzuki, Hiroshi; Okuma, Ryuji

    2014-12-01

    Type 316L and Type 304 austenitic stainless steels, both deformed and non-deformed, were hydrogen charged cathodically in an aqueous solution as well as by exposure to high-pressure gaseous hydrogen in an attempt to identify suitable conditions of cathodic charge for simulating hydrogen absorption from gaseous hydrogen environments. Thermal desorption analysis (TDA) was conducted, and the amount of absorbed hydrogen and the spectrum shape were compared between the two charging methods. Simulations were performed by means of the McNabb-Foster model to analyze the spectrum shape and peak temperature, and understand the effects of deformation on the spectra. It was revealed that the spectrum shape and peak temperature were dependent directly upon the initial distribution of hydrogen within the specimen, which varied widely according to the hydrogen charge condition. Deformation also had a marked effect on the amount of absorbed hydrogen in Type 304 steel due to the strain-induced martensitic transformation.

  14. Strong coupling electrostatics for randomly charged surfaces: antifragility and effective interactions.

    PubMed

    Ghodrat, Malihe; Naji, Ali; Komaie-Moghaddam, Haniyeh; Podgornik, Rudolf

    2015-05-01

    We study the effective interaction mediated by strongly coupled Coulomb fluids between dielectric surfaces carrying quenched, random monopolar charges with equal mean and variance, both when the Coulomb fluid consists only of mobile multivalent counterions and when it consists of an asymmetric ionic mixture containing multivalent and monovalent (salt) ions in equilibrium with an aqueous bulk reservoir. We analyze the consequences that follow from the interplay between surface charge disorder, dielectric and salt image effects, and the strong electrostatic coupling that results from multivalent counterions on the distribution of these ions and the effective interaction pressure they mediate between the surfaces. In a dielectrically homogeneous system, we show that the multivalent counterions are attracted towards the surfaces with a singular, disorder-induced potential that diverges logarithmically on approach to the surfaces, creating a singular but integrable counterion density profile that exhibits an algebraic divergence at the surfaces with an exponent that depends on the surface charge (disorder) variance. This effect drives the system towards a state of lower thermal 'disorder', one that can be described by a renormalized temperature, exhibiting thus a remarkable antifragility. In the presence of an interfacial dielectric discontinuity, the singular behavior of counterion density at the surfaces is removed but multivalent counterions are still accumulated much more strongly close to randomly charged surfaces as compared with uniformly charged ones. The interaction pressure acting on the surfaces displays in general a highly non-monotonic behavior as a function of the inter-surface separation with a prominent regime of attraction at small to intermediate separations. This attraction is caused directly by the combined effects from charge disorder and strong coupling electrostatics of multivalent counterions, which dominate the surface-surface repulsion due to

  15. Surface charge effects on the 2D conformation of supercoiled DNA.

    PubMed

    Schmatko, Tatiana; Muller, Pierre; Maaloum, Mounir

    2014-04-21

    We have adsorbed plasmid pUc19 DNA on a supported bilayer. By varying the fraction of cationic lipids in the membrane, we have tuned the surface charge. Plasmid conformations were imaged by Atomic Force Microscopy (AFM). We performed two sets of experiments: deposition from salt free solution on charged bilayers and deposition from salty solutions on neutral bilayers. Both sets show similar trends: at low surface charge density or low bulk salt concentration, the internal electrostatic repulsion forces plasmids to adopt completely opened structures, while at high surface charge density or higher bulk salt concentration, usual supercoiled plectonemes are observed. We experimentally demonstrate the equivalence of surface screening by mobile interfacial charges and bulk screening from salt ions. At low to medium screening, the electrostatic repulsion at plasmid crossings is predominant, leading to a number of crossovers decreasing linearly with the characteristic screening length. We compare our data with an analytical 2D-equilibrated model developed recently for the system and extract the DNA effective charge density when strands are adsorbed at the surface. PMID:24647451

  16. Tribological Properties of Nanodiamonds in Aqueous Suspensions: Effect of the Surface Charge

    NASA Astrophysics Data System (ADS)

    Krim, J.; Liu, Zijian; Leininger, D. A.; Kooviland, A.; Smirnov, A. I.; Shendarova, O.; Brenner, D. W.

    The presence of granular nanoparticulates, be they wear particles created naturally by frictional rubbing at a geological fault line or products introduced as lubricant additives, can dramatically alter friction at solid-liquid interfaces. Given the complexity of such systems, understanding system properties at a fundamental level is particularly challenging. The Quartz Crystal Microbalance (QCM) is an ideal tool for studies of material-liquid-nanoparticulate interfaces. We have employed it here to study the uptake and nanotribological properties of positively and negatively charged 5-15 nm diameter nanodiamonds dispersed in water[1] in the both the presence and absence of a macroscopic contact with the QCM electrode. The nanodiamonds were found to impact tribological performance at both nanometer and macroscopic scales. The tribological effects were highly sensitive to the sign of the charge: negatively (positively) charged particles were more weakly (strongly) bound and reduced (increased) frictional drag at the solid-liquid interface. For the macroscopic contacts, negatively charged nanodiamonds appeared to be displaced from the contact, while the positively charged ones were not. Overall, the negatively charged nanodiamonds were more stable in an aqueous dispersion for extended time periods. Work supported by NSF and DOE.

  17. Effect of ion suprathermality on arbitrary amplitude dust acoustic waves in a charge varying dusty plasma

    SciTech Connect

    Tribeche, Mouloud; Mayout, Saliha; Amour, Rabia

    2009-04-15

    Arbitrary amplitude dust acoustic waves in a high energy-tail ion distribution are investigated. The effects of charge variation and ion suprathermality on the large amplitude dust acoustic (DA) soliton are then considered. The correct suprathermal ion charging current is rederived based on the orbit motion limited approach. In the adiabatic case, the variable dust charge is expressed in terms of the Lambert function and we take advantage of this transcendental function to show the existence of rarefactive variable charge DA solitons involving cusped density humps. The dust charge variation leads to an additional enlargement of the DA soliton, which is less pronounced as the ions evolve far away from Maxwell-Boltzmann distribution. In the nonadiabatic case, the dust charge fluctuation may provide an alternate physical mechanism causing anomalous dissipation the strength of which becomes important and may prevail over that of dispersion as the ion spectral index {kappa} increases. Our results may provide an explanation for the strong spiky waveforms observed in auroral electric field measurements by Ergun et al.[Geophys. Res. Lett. 25, 2025 (1998)].

  18. Effect of alkyl functionalization on charging of colloidal silica in apolar media.

    PubMed

    Poovarodom, Saran; Poovarodom, Sathin; Berg, John C

    2010-11-15

    The present work examines the effect of alkyl-silane treatment on the charging of colloids in apolar solvent using two otherwise identical 250 nm diameter, spherical silica particles, one with untreated surface and the other treated with hexadecyltrimethoxysilane (C16), dispersed in an apolar isoparaffin solvent (Isopar-L) containing one of three oil-soluble surfactants: Aerosol-OT, OLOA 11,000, and zirconyl 2-ethyl hexanoate. The electrophoretic mobility of each dispersion was determined using phase angle light scattering (PALS). It was found that at sufficiently high surfactant concentration, i.e., where micelles begin to form in the bulk, the particle surfaces could be electrically charged. All three surfactants studied imparted a negative surface charge to the untreated silica particles. In all cases, the C16-treated particles were also found to be negatively charged but had a much higher magnitude of mobility than the untreated silica. Although the increase in magnitude of mobility as a result of the alkyl functionalization was surprising, it could be attributed to the increase in the number of surface hydroxyl groups arising from the hydrolysis of unbound methoxy groups of the silane molecules. The added hydroxyl groups provided additional potential acid-base interaction sites, resulting in higher particle mobility. It was also found that further increases in surfactant concentration lowered the particle mobility, attributed to the increasing concentration of electrically charged micelles, which may partially neutralize the surface charge or compress the electrical double layer. PMID:20728088

  19. Charge Identification of Highly Ionizing Particles in Desensitized Nuclear Emulsion Using High Speed Read-Out System

    SciTech Connect

    Toshito, T.; Kodama, K.; Yusa, K.; Ozaki, M.; Amako, K.; Kameoka, S.; Murakami, K.; Sasaki, T.; Aoki, S.; Ban, T.; Fukuda, T.; Naganawa, N.; Nakamura, T.; Natsume, M.; Niwa, K.; Takahashi, S.; Kanazawa, M.; Kanematsu, N.; Komori, M.; Sato, S.; Asai, M.; /Nagoya U. /Aichi U. of Education /Gunma U., Maebashi /JAXA, Sagamihara /KEK, Tsukuba /Kobe U. /Chiba, Natl. Inst. Rad. Sci. /SLAC /Toho U.

    2006-05-10

    We performed an experimental study of charge identification of heavy ions from helium to carbon having energy of about 290 MeV/u using an emulsion chamber. Emulsion was desensitized by means of forced fading (refreshing) to expand a dynamic range of response to highly charged particles. For the track reconstruction and charge identification, the fully automated high speed emulsion read-out system, which was originally developed for identifying minimum ionizing particles, was used without any modification. Clear track by track charge identification up to Z=6 was demonstrated. The refreshing technique has proved to be a powerful technique to expand response of emulsion film to highly ionizing particles.

  20. Pairing of Fermions with Unequal Effective Charges in an Artificial Magnetic Field

    NASA Astrophysics Data System (ADS)

    Ünal, F. Nur; Oktel, M. Ö.

    2016-01-01

    Artificial magnetic fields (AMFs) created for ultracold systems depend sensitively on the internal structure of the atoms. In a mixture, each component experiences a different AMF depending on its internal state. This enables the study of Bardeen-Cooper-Schrieffer pairing of fermions with unequal effective charges. In this Letter, we investigate the superconducting (SC) transition of a system formed by such pairs as a function of field strength. We consider a homogeneous two-component Fermi gas of unequal effective charges but equal densities with attractive interactions. We find that the phase diagram is altered drastically compared to the usual balanced charge case. First, for some AMFs there is no SC transition and isolated SC phases are formed, reflecting the discrete Landau level (LL) structure. SC phases become reentrant both in AMF and temperature. For extremely high fields where both components are confined to their lowest LLs, the effect of the charge imbalance is suppressed. Charge asymmetry reduces the critical temperature even in the low-field semiclassical regime. We discuss a pair breaking mechanism due to the unequal Lorentz forces acting on the components of the Cooper pairs to identify the underlying physics.

  1. Pairing of Fermions with Unequal Effective Charges in an Artificial Magnetic Field.

    PubMed

    Ünal, F Nur; Oktel, M Ö

    2016-01-29

    Artificial magnetic fields (AMFs) created for ultracold systems depend sensitively on the internal structure of the atoms. In a mixture, each component experiences a different AMF depending on its internal state. This enables the study of Bardeen-Cooper-Schrieffer pairing of fermions with unequal effective charges. In this Letter, we investigate the superconducting (SC) transition of a system formed by such pairs as a function of field strength. We consider a homogeneous two-component Fermi gas of unequal effective charges but equal densities with attractive interactions. We find that the phase diagram is altered drastically compared to the usual balanced charge case. First, for some AMFs there is no SC transition and isolated SC phases are formed, reflecting the discrete Landau level (LL) structure. SC phases become reentrant both in AMF and temperature. For extremely high fields where both components are confined to their lowest LLs, the effect of the charge imbalance is suppressed. Charge asymmetry reduces the critical temperature even in the low-field semiclassical regime. We discuss a pair breaking mechanism due to the unequal Lorentz forces acting on the components of the Cooper pairs to identify the underlying physics. PMID:26871343

  2. Detergent solubilization of phospholipid vesicle. Effect of electric charge.

    PubMed Central

    Urbaneja, M A; Alonso, A; Gonzalez-Mañas, J M; Goñi, F M; Partearroyo, M A; Tribout, M; Paredes, S

    1990-01-01

    In order to explore the effect of electric charge on detergent solubilization of phospholipid bilayers, the interaction of nine electrically charged surfactants with neutral or electrically charged liposomes has been examined. The detergents belonged to the alkyl pyridinium, alkyl trimethylammonium or alkyl sulphate families. Large unilamellar liposomes formed by egg phosphatidylcholine plus or minus stearylamine or dicetyl phosphate were used. Solubilization was assessed as a decrease in light-scattering of the liposome suspensions. The results suggest that electrostatic forces do not play a significant role in the formation of mixed micelles and that hydrophobic interactions are by far the main forces involved in solubilization. In addition, from the study of thirty different liposome-surfactant systems, we have derived a series of empirical rules that may be useful in predicting the behaviour of untested surfactants: (i) the detergent concentration producing the onset of solubilization (Don) decreases as the alkyl chain length increases; the decrease follows a semi-logarithmic pattern in the case of alkyl pyridinium compounds; (ii) for surfactants with critical micellar concentrations (cmc) less than 6 x 10(-3) M, Don. is independent of the nature of the detergent and the bilayer composition; for detergents having cmc greater than 6 x 10(-3) M, Don. increases linearly with the cmc; and (iii) Don. varies linearly with the surfactant concentration that produces maximum solubilization. PMID:2400390

  3. Fractionally charged skyrmions in fractional quantum Hall effect

    DOE PAGESBeta

    Balram, Ajit C.; Wurstbauer, U.; Wójs, A.; Pinczuk, A.; Jain, J. K.

    2015-11-26

    The fractional quantum Hall effect has inspired searches for exotic emergent topological particles, such as fractionally charged excitations, composite fermions, abelian and nonabelian anyons and Majorana fermions. Fractionally charged skyrmions, which support both topological charge and topological vortex-like spin structure, have also been predicted to occur in the vicinity of 1/3 filling of the lowest Landau level. The fractional skyrmions, however, are anticipated to be exceedingly fragile, suppressed by very small Zeeman energies. Here we show that, slightly away from 1/3 filling, the smallest manifestations of the fractional skyrmion exist in the excitation spectrum for a broad range of Zeemanmore » energies, and appear in resonant inelastic light scattering experiments as well-defined resonances slightly below the long wavelength spin wave mode. The spectroscopy of these exotic bound states serves as a sensitive tool for investigating the residual interaction between composite fermions, responsible for delicate new fractional quantum Hall states in this filling factor region.« less

  4. Spin dynamics in relativistic ionization with highly charged ions in super-strong laser fields

    NASA Astrophysics Data System (ADS)

    Klaiber, Michael; Yakaboylu, Enderalp; Müller, Carsten; Bauke, Heiko; Paulus, Gerhard G.; Hatsagortsyan, Karen Z.

    2014-03-01

    Spin dynamics and induced spin effects in above-threshold ionization of hydrogenlike highly charged ions in super-strong laser fields are investigated. Spin-resolved ionization rates in the tunnelling regime are calculated by employing two versions of a relativistic Coulomb-corrected strong-field approximation (SFA). An intuitive simpleman model is developed which explains the derived scaling laws for spin flip and spin asymmetry effects. The intuitive model as well as our ab initio numerical simulations support the analytical results for the spin effects obtained in the dressed SFA where the impact of the laser field on the electron spin evolution in the bound state is taken into account. In contrast, the standard SFA is shown to fail in reproducing spin effects in ionization even at a qualitative level. The anticipated spin-effects are expected to be measurable with modern laser techniques combined with an ion storage facility.

  5. Surface modification on highly oriented pyrolytic graphite by slow highly charged ions

    NASA Astrophysics Data System (ADS)

    Baba, Yukari; Nagata, Kazuo; Takahashi, Satoshi; Nakamura, Nobuyuki; Yoshiyasu, Nobuo; Sakurai, Makoto; Yamada, Chikashi; Ohtani, Shunsuke; Tona, Masahide

    2005-12-01

    We have investigated surface modification by highly charged ions (HCIs) on highly oriented pyrolytic graphite (HOPG) surfaces with Raman spectroscopy and scanning tunneling microscopy. The xenon-HCIs having various charges up to 48+ were incident on HOPG samples with an identical collision velocity (5 × 10 5 m/s). In Raman spectra, disorder induced peaks (D peak) appeared around 1355 cm -1 in addition to narrower, persistent peaks (G peak) at 1580 cm -1 which are characteristic of unirradiated HOPG. The intensity ratio of the D peak to the G peak is much larger than that of HOPG irradiated with singly charged ions (SCIs) at the same fluence. By the annealing treatment, the intensity of the D peak decreased as small as practically unobservable. In the microscopic observation, on the other hand, protrusion nanostructures induced by HCI impacts did not disappear completely although their volume decreased drastically. From such relaxation dynamics, it is made clear that not only point and dimmer vacancies which is created in common with SCI irradiation, but also "cluster vacancies" are formed at the surface and subsurface.

  6. High load operation in a homogeneous charge compression ignition engine

    SciTech Connect

    Duffy, Kevin P.; Kieser, Andrew J.; Liechty, Michael P.; Hardy, William L.; Rodman, Anthony; Hergart, Carl-Anders

    2008-12-23

    A homogeneous charge compression ignition engine is set up by first identifying combinations of compression ratio and exhaust gas percentages for each speed and load across the engines operating range. These identified ratios and exhaust gas percentages can then be converted into geometric compression ratio controller settings and exhaust gas recirculation rate controller settings that are mapped against speed and load, and made available to the electronic

  7. The Stopping Power of Asteroidal Materials as High-Energy Charged Particle Shielding

    NASA Astrophysics Data System (ADS)

    Pohl, Leos; Johnson, Daniel; Britt, Daniel

    2014-11-01

    Extended human missions in deep space face a challenging radiation environment from high-energy galactic cosmic rays and solar energetic particles generated by solar flares and related coronal mass ejections. Shielding to attenuate these high-energy particles will require significant mass and volume, and would be extremely expensive launch from the surface of the earth. One possible solution could be the use of asteroidal resources as shielding for these high-energy particles. The effectiveness of shielding material for moderately relativistic charged particles is a function of the mean rate of energy loss, primarily to ionization and atomic excitation and is termed stopping power. In general, low atomic number elements are more effective per unit volume. We have calculated the stopping power for the average compositions of all major meteorite groups and will compare these data with typical spacecraft materials.

  8. Space Charge Effects in a Gas Filled Penning Trap

    NASA Astrophysics Data System (ADS)

    Beck, D.; Ames, F.; Beck, M.; Bollen, G.; Delauré, B.; Schuurmans, P.; Schwarz, S.; Schmidt, P.; Severijns, N.; Forstner, O.

    2001-01-01

    Mass selective buffer gas cooling is a technique used for ions that are stored in a Penning trap. The technique can be applied to all elements and the mass resolving power achieved has proven to be sufficient to resolve isobars. When not only a few but 106 and more ions are stored at the same time, space charge starts to play a dominant role for the spatial distribution. In addition, the observed cyclotron frequency is shifted. This work investigates these effects by numerical calculations.

  9. Space charge effects for multipactor in coaxial lines

    SciTech Connect

    Sorolla, E.

    2015-03-15

    Multipactor is a hazardous vacuum discharge produced by secondary electron emission within microwave devices of particle accelerators and telecommunication satellites. This work analyzes the dynamics of the multipactor discharge within a coaxial line for the mono-energetic electron emission model taking into account the space charge effects. The steady-state is predicted by the proposed model and an analytical expression for the maximum number of electrons released by the discharge presented. This could help to link simulations to experiments and define a multipactor onset criterion.

  10. Universal Charge Diffusion and the Butterfly Effect in Holographic Theories.

    PubMed

    Blake, Mike

    2016-08-26

    We study charge diffusion in holographic scaling theories with a particle-hole symmetry. We show that these theories have a universal regime in which the diffusion constant is given by D_{c}=Cv_{B}^{2}/(2πT), where v_{B} is the velocity of the butterfly effect. The constant of proportionality C depends only on the scaling exponents of the infrared theory. Our results suggest an unexpected connection between transport at strong coupling and quantum chaos. PMID:27610842

  11. Analysis of Longitudinal Space Charge Effects With Radial Dependence

    SciTech Connect

    Wu, Juhao; Huang, Z.; Emma, P.; /SLAC

    2005-09-30

    Longitudinal space charge (LSC) force can be a main effect driving the microbunching instability in the linac for an x-ray free-electron laser (FEL). In this paper, the LSC-induced beam modulation is studied using an integral equation approach that takes into account the transverse (radial) variation of LSC field for both the coasting beam limit and bunched beam. Changes of beam energy and the transverse beam size can be also incorporated. We discuss the validity of this approach and compare it with other analyses as well as numerical simulations.

  12. Spectroscopic investigations of highly charged ions using x-ray calorimeter spectrometers

    NASA Astrophysics Data System (ADS)

    Thorn, Daniel Bristol

    Spectroscopy of K-shell transitions in highly charged heavy ions, like hydrogenlike uranium, has the potential to yield information about quantum electrodynamics (QED) in extremely strong nuclear fields as well as tests of the standard model, specifically parity violation in atomic systems. These measurements would represent the 'holy grail' in high-Z atomic spectroscopy. However, the current state-of-the-art detection schemes used for recording the K-shell spectra from highly charged heavy ions does not yet have the resolving power to be able to attain this goal. As such, to push the field of high-Z spectroscopy forward, new detectors must be found. Recently, x-ray calorimeter spectrometers have been developed that promise to make such measurements. In an effort to make the first steps towards attaining the 'holy grail', measurements have been performed with two x-ray calorimeter spectrometers (the XRS/EBIT and the ECS) designed and built at Goddard Space Flight Center in Greenbelt, MD. The calorimeter spectrometers have been used to record the K-shell spectra of highly charged ions produced in the SuperEBIT electron beam ion trap at Lawrence Livermore National Laboratory in Livermore, CA. Measurements performed with the XRS/EBIT calorimeter array found that the theoretical description of well-above threshold electron-impact excitation cross sections for hydrogenlike iron and nickel ions are correct. Furthermore, the first high-resolution spectrum of hydrogenlike through carbonlike praseodymium ions was recorded with a calorimeter. In addition, the new high-energy array on the EBIT Calorimeter Spectrometer (ECS) was used to resolve the K-shell x-ray emission spectrum of highly charged xenon ions, where a 40 ppm measurement of the energy of the K-shell resonance transition in heliumlike xenon was achieved. This is the highest precision result, ever, for an element with such high atomic number. In addition, a first-of-its-kind measurement of the effect of the

  13. Spectroscopic Investigations of Highly Charged Ions using X-Ray Calorimeter Spectrometers

    SciTech Connect

    Thorn, Daniel Bristol

    2008-11-19

    Spectroscopy of K-shell transitions in highly charged heavy ions, like hydrogen-like uranium, has the potential to yield information about quantum electrodynamics (QED) in extremely strong nuclear fields as well as tests of the standard model, specifically parity violation in atomic systems. These measurements would represent the 'holy grail' in high-Z atomic spectroscopy. However, the current state-of-the-art detection schemes used for recording the K-shell spectra from highly charged heavy ions does not yet have the resolving power to be able to attain this goal. As such, to push the field of high-Z spectroscopy forward, new detectors must be found. Recently, x-ray calorimeter spectrometers have been developed that promise to make such measurements. In an effort to make the first steps towards attaining the 'holy grail', measurements have been performed with two x-ray calorimeter spectrometers (the XRS/EBIT and the ECS) designed and built at Goddard Space Flight Center in Greenbelt, MD. The calorimeter spectrometers have been used to record the K-shell spectra of highly charged ions produced in the SuperEBIT electron beam ion trap at Lawrence Livermore National Laboratory in Livermore, CA. Measurements performed with the XRS/EBIT calorimeter array found that the theoretical description of well-above threshold electron-impact excitation cross sections for hydrogen-like iron and nickel ions are correct. Furthermore, the first high-resolution spectrum of hydrogen-like through carbon-like praseodymium ions was recorded with a calorimeter. In addition, the new high-energy array on the EBIT Calorimeter Spectrometer (ECS) was used to resolve the K-shell x-ray emission spectrum of highly charged xenon ions, where a 40 ppm measurement of the energy of the K-shell resonance transition in helium-like xenon was achieved. This is the highest precision result, ever, for an element with such high atomic number. In addition, a first-of-its-kind measurement of the effect of the

  14. Isotope mass and charge effects in tokamak plasmas

    SciTech Connect

    Pusztai, I.; Candy, J.; Gohil, P.

    2011-12-15

    The effect of primary ion species of differing charge and mass - specifically, deuterium, hydrogen, and helium - on instabilities and transport is studied in DIII-D plasmas through gyrokinetic simulations with gyro [J. Candy and E. Belli, General Atomics Technical Report No. GA-A26818, 2010]. In linear simulations under imposed similarity of the profiles, there is an isomorphism between the linear growth rates of hydrogen isotopes, but the growth rates are higher for Z > 1 main ions due to the appearance of the charge in the Poisson equation. On ion scales the most significant effect of the different electron-to-ion mass ratio appears through collisions stabilizing trapped electron modes. In nonlinear simulations, significant favorable deviations from pure gyro-Bohm scaling are found due to electron-to-ion mass ratio effects and collisions. The presence of any non-trace impurity species cannot be neglected in a comprehensive simulation of the transport; including carbon impurity in the simulations caused a dramatic reduction of energy fluxes. The transport in the analyzed deuterium and helium discharges could be well reproduced in gyrokinetic and gyrofluid simulations while the significant hydrogen discrepancy is the subject of ongoing investigation.

  15. Isotope mass and charge effects in tokamak plasmas

    NASA Astrophysics Data System (ADS)

    Pusztai, I.; Candy, J.; Gohil, P.

    2011-12-01

    The effect of primary ion species of differing charge and mass—specifically, deuterium, hydrogen, and helium—on instabilities and transport is studied in DIII-D plasmas through gyrokinetic simulations with gyro [J. Candy and E. Belli, General Atomics Technical Report No. GA-A26818, 2010]. In linear simulations under imposed similarity of the profiles, there is an isomorphism between the linear growth rates of hydrogen isotopes, but the growth rates are higher for Z > 1 main ions due to the appearance of the charge in the Poisson equation. On ion scales the most significant effect of the different electron-to-ion mass ratio appears through collisions stabilizing trapped electron modes. In nonlinear simulations, significant favorable deviations from pure gyro-Bohm scaling are found due to electron-to-ion mass ratio effects and collisions. The presence of any non-trace impurity species cannot be neglected in a comprehensive simulation of the transport; including carbon impurity in the simulations caused a dramatic reduction of energy fluxes. The transport in the analyzed deuterium and helium discharges could be well reproduced in gyrokinetic and gyrofluid simulations while the significant hydrogen discrepancy is the subject of ongoing investigation.

  16. Space charge and quantum effects on electron emission

    NASA Astrophysics Data System (ADS)

    Jensen, Kevin L.; Lebowitz, Joel; Lau, Y. Y.; Luginsland, John

    2012-03-01

    Space charge effects reduce electron emission by altering the surface barrier via two effects: increasing the barrier height (Schottky factor) and width to electron emission by lowering the surface field and changing the magnitude of the dipole associated with electron density variation. A one-dimensional emission model using a transit time argument to account for charge in the anode-cathode (AK) gap and an analytical model of the dipole is used to approximate the effects of each factor on the current density. The transit time model is compared to the experimental data of Longo [J. Appl. Phys. 94, 6966 (2003)] for thermal emission. Changes in the dipole contribution are primarily associated with tunneling and therefore field emission. The transit time plus dipole modification is compared to the experimental data of Barbour et al. [Phys. Rev. 92, 45 (1953)] for field emission. The model's application to thermal-field, and photoemission in general is discussed, with the former corresponding to continuous current limit and the latter to a pulsed current limit of the model.

  17. Effects of Solar Magnetic Activity on the Charge States of Minor Ions of Solar Wind

    NASA Astrophysics Data System (ADS)

    Wang, Xuyu

    We present an investigation of the effects of solar magnetic activity on the charge states of minor ions (Fe, Si, Mg, Ne, O, C) in the solar wind using ACE solar wind data, the Current Sheet Source Surface (CSSS) model of the corona and SoHO/MDI data during the 23rd solar cycle. We found that the mean charge states indicate a clear trend to increase with the solar activity when the solar wind speed is above 550 km/s. Below this speed, no significant solar activity dependence is found. When displayed as a function of solar wind speed, iron is different from other elements in that it displays lower charge states in slow wind than in fast wind. The percentages of the high charge states for species with higher m/q (Fe) increase with the solar wind speed, while for the species with lower m/q (Si,Mg, O, C), the percentages of the high charge states decrease with the solar wind speed.

  18. Effect of pulsed current charging on the performance of nickel-cadium cells

    NASA Technical Reports Server (NTRS)

    Bedrossian, A. A.; Cheh, H. Y.

    1977-01-01

    The effect of pulsed current charging on the charge acceptance of NiCd cells in terms of mass transfer, kinetic, and structural considerations was investigated. A systemic investigation on the performance of Ni-Cd cells by pulsed current charging was conducted under a variety of well-defined charge-discharge conditions. Experiments were carried out with half cells and film electrodes. The system behavior was studied by charge acceptance, mechanistic, and structural measurements.

  19. Determination of Surface Charge of Titanium Dioxide (Anatase) at High Ionic Strength

    NASA Astrophysics Data System (ADS)

    Schoonen, M. A.; Strongin, D. R.

    2014-12-01

    Charge development on mineral surfaces is an important control on the fate of minor and trace elements in a wide range of environments, including in possible radioactive waste repositories. Formation waters have often a high ionic strength. In this study, we determined the zeta potential (ζ) of anatase in potassium chloride solutions with concentrations up to 3M (25°C). The zeta potential is the potential at the hydrodynamic shear plane. In this study, we made use of the electro-acoustic effect. This effect is based on the development of a measureable potential/current when the electrical double layer outside the shearplane is separated from a charged particle through rapid oscillation induced by a sound wave. The advantage of this type of measurement is that the particles are not subjected to a high electric field (common to typical zeta potential measurements), which leads to electrode reactions and a shift of solution pH. Measurements were collected by subtracting the ion vibration current (IVI) due to the presence of potassium and chloride ions from the CVI. The correction is necessary for measurements in solutions with I > 0.25 M. This subtraction was done at each of the measurement conditions by centrifuging the slurrly, measuring the IVI of the supernatant, reconstituting the slurry, and then measuring CVI of the slurry. Subtraction of IVI at each condition is critical because IVI changes with pH and accounts for most of raw signal. The results show that the anatase isoelectric point shifts from a pH ~6.5 to a value of ~4.5 at 1M KCl. At ionic strength in excess of 1 M KCl, the surface appears to be slightly negatively charged accross the pH range accessible by this technique (pH 2.5-10). The loss of an isoelectric point suggests that KCl is no longer an indifferent electrolyte at 1 M KCl and higher. The results are in disagreement with earlier measurements in which anatase was shown to have a positive charge at high ionic strength across the pH scale. The

  20. Highly charged ion induced nanostructures at surfaces by strong electronic excitations

    NASA Astrophysics Data System (ADS)

    Wilhelm, Richard A.; El-Said, Ayman S.; Krok, Franciszek; Heller, René; Gruber, Elisabeth; Aumayr, Friedrich; Facsko, Stefan

    2015-08-01

    Nanostructure formation by single slow highly charged ion impacts can be associated with high density of electronic excitations at the impact points of the ions. Experimental results show that depending on the target material these electronic excitations may lead to very large desorption yields in the order of a few 1000 atoms per ion or the formation of nanohillocks at the impact site. Even in ultra-thin insulating membranes the formation of nanometer sized pores is observed after ion impact. In this paper, we show recent results on nanostructure formation by highly charged ions and compare them to structures and defects observed after intense electron and light ion irradiation of ionic crystals and graphene. Additional data on energy loss, charge exchange and secondary electron emission of highly charged ions clearly show that the ion charge dominates the defect formation at the surface.

  1. Spectroscopic Non-LTE Modeling of Highly Charged Gold Plasma

    NASA Astrophysics Data System (ADS)

    Dasgupta, A.; Ouart, N. D.; Giuliani, J. L.; Obenschain, S. P.; Clark, R. W.; Aglitskiy, Y.

    2013-10-01

    An X-ray spectrometer is under development at the Naval Research Laboratory (NRL) to investigate emissions from gold targets irradiated by the NIKE KrF facility. This effort is in support of the indirect drive campaign on the National Ignition Facility (NIF). To analyze and interpret the NIKE experimental spectra, we are theoretically exploring line emissions from a gold plasma in the M-band, i.e., 1.5 to 3.5 keV. We employ a detailed Non-LTE atomic model for ions near Ni-like gold by including an adequate number of configurations to obtain spectroscopic details in this range. The atomic states are coupled both collisionally and radiatively, including all dominant atomic processes that have significant contributions to the ionization and emitted synthetic spectra. In particular, we will investigate the effect of dielectronic recombination, which can have a dominant effect on level populations for highly ionized high Z plasmas. Since the radiation field can affect level populations through photoionization and photoexcitation, our collisional-radiative model will include non-local radiation transport. The line shapes of the strong overlapping lines will be resolved by a multifrequency radiation transport method. Synthetic spectra with radiation transport, including resonant photo-pumping, will be generated for realistic densities and temperatures to compare with the NIKE data. Work supported by DOE/NNSA.

  2. Absence of the Electric Aharonov-Bohm Effect due to Induced Charges

    PubMed Central

    Wang, Rui-Feng

    2015-01-01

    This paper states that the induced charge should not be neglected in the electric Aharonov-Bohm (A-B) effect. If the induced charge is taken into account, the interference pattern of the moving charge will not change with the potential difference between the two metal tubes. It means that the scalar potential itself can not affect the phase of the moving charge, and the true factor affecting the phase of the moving charge is the energy of the system including the moving charge and the induced charge. PMID:26392302

  3. Absence of the Electric Aharonov-Bohm Effect due to Induced Charges

    NASA Astrophysics Data System (ADS)

    Wang, Rui-Feng

    2015-09-01

    This paper states that the induced charge should not be neglected in the electric Aharonov-Bohm (A-B) effect. If the induced charge is taken into account, the interference pattern of the moving charge will not change with the potential difference between the two metal tubes. It means that the scalar potential itself can not affect the phase of the moving charge, and the true factor affecting the phase of the moving charge is the energy of the system including the moving charge and the induced charge.

  4. Absence of the Electric Aharonov-Bohm Effect due to Induced Charges.

    PubMed

    Wang, Rui-Feng

    2015-01-01

    This paper states that the induced charge should not be neglected in the electric Aharonov-Bohm (A-B) effect. If the induced charge is taken into account, the interference pattern of the moving charge will not change with the potential difference between the two metal tubes. It means that the scalar potential itself can not affect the phase of the moving charge, and the true factor affecting the phase of the moving charge is the energy of the system including the moving charge and the induced charge. PMID:26392302

  5. Single Electron Charging and Quantum Effects in Semiconductor Nanostructures

    NASA Astrophysics Data System (ADS)

    Foxman, Ethan Bradley

    1993-01-01

    We present an experimental study of a small region (~0.3 times 0.3 mum^2) of two-dimensional electron gas in a GaAs/rm Al_{x}Ga_{1-x}As heterostructure. The small electron gas is coupled to electrical leads through tunnel barriers formed by negatively biased Schottky gates on the surface of the heterostructure. Electron transport is studied as a function of gate voltage, magnetic field, temperature, bias voltage and tunneling barrier height. We observe a rich interplay between single electron charging and quantum effects. The conductance of such systems was known to consist of a series of nearly periodic conductance peaks.^{1,2} We further investigate this behavior and show that our observations are consistent with a model that synthesizes classical single electron charging and a discrete tunneling density of states.^{3,4}. We investigate the nature and origin of this tunneling density of states. The spectrum of states is determined through current-voltage measurements and low-bias conductance measurements. The tunneling density of states is mapped as a function of gate voltage and magnetic field. In the latter case, we show that our observations can be understood through a self-consistent model of single electron charging in the quantum Hall regime.^5. Lastly, we report conductance measurements in the regime where the conductance across the tunnel barriers separating the small electron gas from its leads becomes of order e^2/h. We observe that in this regime single electron charging effects are quenched. This effect is shown to arise from an increased capacitance across one of the barriers and from the increased lifetime broadening of states in the small electron gas. ^6 (Copies available exclusively from MIT Libraries, Rm. 14-0551, Cambridge, MA 02139-4307. Ph. 617 -253-5668; Fax 617-253-1690.) ftn^1J. H. F. Scott -Thomas, S. B. Field, M. A. Kastner, H. I. Smith, and D. A. Antoniadis, Phys. Rev. Lett. 62, 583 (1989). ^2U. Meirav, M. A. Kastner, and S. J. Wind

  6. Graphene quantum dots as a highly efficient solution-processed charge trapping medium for organic nano-floating gate memory.

    PubMed

    Ji, Yongsung; Kim, Juhan; Cha, An-Na; Lee, Sang-A; Lee, Myung Woo; Suh, Jung Sang; Bae, Sukang; Moon, Byung Joon; Lee, Sang Hyun; Lee, Dong Su; Wang, Gunuk; Kim, Tae-Wook

    2016-04-01

    A highly efficient solution-processible charge trapping medium is a prerequisite to developing high-performance organic nano-floating gate memory (NFGM) devices. Although several candidates for the charge trapping layer have been proposed for organic memory, a method for significantly increasing the density of stored charges in nanoscale layers remains a considerable challenge. Here, solution-processible graphene quantum dots (GQDs) were prepared by a modified thermal plasma jet method; the GQDs were mostly composed of carbon without any serious oxidation, which was confirmed by x-ray photoelectron spectroscopy. These GQDs have multiple energy levels because of their size distribution, and they can be effectively utilized as charge trapping media for organic NFGM applications. The NFGM device exhibited excellent reversible switching characteristics, with an on/off current ratio greater than 10(6), a stable retention time of 10(4) s and reliable cycling endurance over 100 cycles. In particular, we estimated that the GQDs layer trapped ∼7.2 × 10(12) cm(-2) charges per unit area, which is a much higher density than those of other solution-processible nanomaterials, suggesting that the GQDs layer holds promise as a highly efficient nanoscale charge trapping material. PMID:26905768

  7. High Charge State Ions Extracted from Metal Plasmas in the Transition Regime from Vacuum Spark to High Current Vacuum Arc

    SciTech Connect

    Yushkov, Georgy Yu.; Anders, A.

    2008-06-19

    Metal ions were extracted from pulsed discharge plasmas operating in the transition region between vacuum spark (transient high voltage of kV) and vacuum arc (arc voltage ~;; 20 V). At a peak current of about 4 kA, and with a pulse duration of 8 ?s, we observed mean ion charges states of about 6 for several cathode materials. In the case of platinum, the highest average charge state was 6.74 with ions of charge states as high as 10 present. For gold we found traces of charge state 11, with the highest average charge state of 7.25. At currents higher than 5 kA, non-metallic contaminations started to dominate the ion beam, preventing further enhancement of the metal charge states.

  8. DESIGN CONSIDERATIONS FOR LOW FIELD SHORT PHOTO-INJECTED RF ELECTRON GUN WITH HIGH CHARGE ELECTRON BUNCH.

    SciTech Connect

    CHANG,X.; BEN-ZVI,I.; KEWISCH,J.

    2004-06-21

    The RF field and space charge effect in a low field RF gun is given. The cell lengths are modified to have maximum accelerating efficiency. The modification introduces an extra RF field slice emittance. The phase space evolution of the following emittance compensation system is presented taking into account the chromatic effect. The emittance compensation mechanics for RF field and chromatic effect induced emittance is similar to that of compensating the space charge induced emittance. But the requirements are different to have best compensation for them. The beam waist is far in front of linac entrance to have best compensation for the RF field and chromatic effect induced emittance. For low field RF gun with high charge electron bunch this compensation is more important.

  9. The effects of charge cloud size and digitisation on the SPAN anode

    NASA Astrophysics Data System (ADS)

    Breeveld, A. A.; Edgar, M. L.; Lapington, J. S.; Smith, Alan

    1992-10-01

    Microchannel plate (MCP) detectors are often used with charge division anode readouts, such as the spiral-anode (SPAN) anode, to provide high position resolution. This paper discusses the effect on image quality, of digitization (causing fixed patterning), electronic noise, pulse height distribution (PHD) and charge cloud size. The discussion is supported by experimental data obtained from a 1D SPAN anode. Results from a computer model of this detector, and from a charge cloud simulation model, are also included. The SPAN anode normally has three sinusoidal electrodes with phase differences of 120 deg. An alternative configuration is to use a phase difference of 90 deg. This paper compares the advantages and disadvantages of these arrangements.

  10. Highly Charged Ions from Laser-Cluster Interactions: Local-Field-Enhanced Impact Ionization and Frustrated Electron-Ion Recombination

    SciTech Connect

    Fennel, Thomas; Ramunno, Lora; Brabec, Thomas

    2007-12-07

    Our molecular dynamics analysis of Xe{sub 147-5083} clusters identifies two mechanisms that contribute to the yet unexplained observation of extremely highly charged ions in intense laser cluster experiments. First, electron impact ionization is enhanced by the local cluster electric field, increasing the highest charge states by up to 40%; a corresponding theoretical method is developed. Second, electron-ion recombination after the laser pulse is frustrated by acceleration electric fields typically used in ion detectors. This increases the highest charge states by up to 90%, as compared to the usual assumption of total recombination of all cluster-bound electrons. Both effects together augment the highest charge states by up to 120%, in reasonable agreement with experiments.

  11. High charged red pigment nanoparticles for electrophoretic displays

    NASA Astrophysics Data System (ADS)

    Hou, Xin-Yan; Bian, Shu-Guang; Chen, Jian-Feng; Le, Yuan

    2012-12-01

    Organic pigment permanent red F2R nanoparticles were prepared via surface modification to improve the surface charge and dispersion ability in organic medium. Their large surface chargeability is confirmed by ζ-potential value of -49.8 mV. The prepared particles exhibited average size of 105 nm and showed very narrow distribution with polydispersity index of 0.068. The sedimentation ratio of the prepared particles in tetrachloroethylene was less than 5% within 12 days. The electrophoretic inks consisting of the prepared red particles with white particles as contrast showed good electrophoretic display, its refresh time was 200 ms.

  12. Effects of reliability screens of MOS charge trapping

    SciTech Connect

    Shanneyfelt, M.R.; Winokur, P.S.; Fleetwood, D.M.; Schwank, J.R.; Reber, R.A. Jr.

    1995-09-01

    The effects of pre-irradiation elevated-temperature bias stresses on the radiation hardness of field-oxide transistors have been investigated as a function of stress temperature, time, and bias. Both the stress temperature and time are found to have a significant impact on radiation-induced charge buildup in these transistors. Specifically, an increase in either the stress temperature or time causes a much larger negative shift (towards depletion) in the I-V characteristics of the n-channel field-oxide transistors. This increased shift in the transistor I-V characteristics with stress temperature and time suggests that the mechanisms responsible for the stress effects are thermally activated. An activation energy of {approximately}0.38 eV was measured. The stress bias was found to have no impact on radiation-induced charge buildup in these transistors. The observed stress temperature, time, and bias dependencies appears to be consistent with the diffusion of molecular hydrogen during a given stress period. These results have important implications for the development of hardness assurance test methods.

  13. Generation of Initial Kinetic Distributions for Simulation of Long-Pulse Charged Particle Beams with High Space-Charge intensity

    SciTech Connect

    Lund, Steven M.; Kikuchi, Takashi; Davidson, Ronald C.

    2007-04-03

    Self-consistent Vlasov-Poisson simulations of beams with high space-charge intensity often require specification of initial phase-space distributions that reflect properties of a beam that is well adapted to the transport channel--both in terms of low-order rms (envelope) properties as well as the higher-order phase-space structure. Here, we first review broad classes of kinetic distributions commonly in use as initial Vlasov distributions in simulations of unbunched or weakly bunched beams with intense space-charge fields including: the Kapchinskij-Vladimirskij (KV) equilibrium, continuous-focusing equilibria with specific detailed examples, and various non-equilibrium distributions, such as the semi-Gaussian distribution and distributions formed from specified functions of linear-field Courant-Snyder invariants. Important practical details necessary to specify these distributions in terms of usual accelerator inputs are presented in a unified format. Building on this presentation, a new class of approximate initial kinetic distributions are constructed using transformations that preserve linear-focusing single-particle Courant-Snyder invariants to map initial continuous-focusing equilibrium distributions to a form more appropriate for non-continuous focusing channels. Self-consistent particle-in-cell simulations are employed to show that the approximate initial distributions generated in this manner are better adapted to the focusing channels for beams with high space-charge intensity. This improved capability enables simulation applications that more precisely probe intrinsic stability properties and machine performance.

  14. Generation of initial Vlasov distributions for simulation of charged particle beams with high space-charge intensity

    SciTech Connect

    Lund, S M; Kikuchi, T; Davidson, R C

    2007-04-12

    Self-consistent Vlasov simulations of beams with high space-charge intensity often require specification of initial phase-space distributions that reflect properties of a beam that is well adapted to the transport channel, both in terms of low-order rms (envelope) properties as well as the higher-order phase-space structure. Here, we first review broad classes of distributions commonly in use as initial Vlasov distributions in simulations of beams with intense space-charge fields including: the Kapchinskij-Vladimirskij (KV) equilibrium, continuous-focusing equilibria with specific detailed examples, and various non-equilibrium distributions, such as the semi-Gaussian distribution and distributions formed from specified functions of linear-field Courant-Snyder invariants. Important practical details necessary to specify these distributions in terms of usual accelerator inputs are presented in a unified format. Building on this presentation, a new class of approximate initial distributions are constructed using transformations that preserve linear-focusing single-particle Courant-Snyder invariants to map initial continuous-focusing equilibrium distributions to a form more appropriate for non-continuous focusing channels. Self-consistent particle-in-cell simulations are employed to show that the approximate initial distributions generated in this manner are better adapted to the focusing channels for beams with high space-charge intensity. This improved capability enables simulation applications that more precisely probe intrinsic stability properties and machine performance.

  15. Effective charge and effective radius of water droplet in dropwise cluster

    SciTech Connect

    Shavlov, A. V.; Romanyuk, S. N.; Dzhumandzhi, V. A.

    2013-02-15

    A particle with large electric charge Z (Z Much-Greater-Than 1) and radius R{sub 0} inserted into plasma is surrounded by a plasma shell, which is stable to weak and short-term external exposures. As a result, during experiments the particle can reveal an effective charge Z* lower than the true one (Z*{<=} Z), and an effective radius R* larger than the true one (R*{>=} R{sub 0}). The effective electric charge and the effective radius of a water droplet in a dropwise cluster have been calculated using the Poisson-Boltzmann equation. It has been recognized that these parameters are not the function of a droplet's true charge, but are the function of a droplet's true size and the Debye's radius of the plasma. Experimental data on the droplet properties in a dropwise cluster have been explained.

  16. Charge carrier coherence and Hall effect in organic semiconductors

    DOE PAGESBeta

    Yi, H. T.; Gartstein, Y. N.; Podzorov, V.

    2016-03-30

    Hall effect measurements are important for elucidating the fundamental charge transport mechanisms and intrinsic mobility in organic semiconductors. However, Hall effect studies frequently reveal an unconventional behavior that cannot be readily explained with the simple band-semiconductor Hall effect model. Here, we develop an analytical model of Hall effect in organic field-effect transistors in a regime of coexisting band and hopping carriers. The model, which is supported by the experiments, is based on a partial Hall voltage compensation effect, occurring because hopping carriers respond to the transverse Hall electric field and drift in the direction opposite to the Lorentz force actingmore » on band carriers. We show that this can lead in particular to an underdeveloped Hall effect observed in organic semiconductors with substantial off-diagonal thermal disorder. Lastly, our model captures the main features of Hall effect in a variety of organic semiconductors and provides an analytical description of Hall mobility, carrier density and carrier coherence factor.« less

  17. Kinetic-energy transfer in highly-charged-ion collisions with carbon

    NASA Astrophysics Data System (ADS)

    Lake, R. E.; Arista, N. R.

    2015-11-01

    We present an accurate theoretical model for the charge dependence of kinetic energy transferred in collisions between slow highly charged ions (HCIs) and the atoms in a carbon solid. The model is in excellent agreement with experimental kinetic-energy-loss data for carbon nanomembrane and thin carbon foil targets. This study fills a notable gap in the literature of charged-particle energy loss in the regime of low incident velocity (vp≲2.188 ×106 m/s) where charge states greatly exceed the equilibrium values.

  18. Physical limits for high ion charge states in pulsed discharges in vacuum

    SciTech Connect

    Yushkov, Georgy; Anders, Andre

    2008-12-23

    Short-pulse, high-current discharges in vacuum were investigated with the goal to maximize the ion charge state number. In a direct extension of previous work [Appl. Phys. Lett. 92, 041502 (2008)], the role of pulse length, rate of current rise, and current amplitude was studied. For all experimental conditions, the usable (extractable) mean ion charge state could not be pushed beyond 7+. Instead, a maximum of the mean ion charge state (about 6+ to 7+ for most cathode materials) was found for a power of 2-3 MW dissipated in the discharge gap. The maximum is the result of two opposing processes that occur when the power is increased: (i) the formation of higher ion charge states, and (ii) a greater production of neutrals (both metal and non-metal), which reduces the charge state via charge exchange collisions.

  19. Physical limits for high ion charge states in pulsed discharges in vacuum

    SciTech Connect

    Yushkov, Georgy Yu.; Anders, Andre

    2009-02-15

    Short-pulse high-current discharges in vacuum were investigated with the goal to maximize the ion charge state number. In a direct extension of previous work [G. Y. Yushkov and A. Anders, Appl. Phys. Lett. 92, 041502 (2008)], the role of pulse length, rate of current rise, and current amplitude was studied. For all experimental conditions, the usable (extractable) mean ion charge state could not be pushed beyond 7+. Instead, a maximum of the mean ion charge state (about 6+ to 7+ for most cathode materials) was found for a power of 2-3 MW dissipated in the discharge gap. The maximum is the result of two opposing processes that occur when the power is increased: (i) the formation of higher ion charge states and (ii) a greater production of neutrals (both metal and nonmetal), which reduces the charge state via charge exchange collisions.

  20. Solar photovoltaic charging of high voltage nickel metal hydride batteries using DC power conversion

    NASA Astrophysics Data System (ADS)

    Kelly, Nelson A.; Gibson, Thomas L.

    There are an increasing number of vehicle choices available that utilize batteries and electric motors to reduce tailpipe emissions and increase fuel economy. The eventual production of electricity and hydrogen in a renewable fashion, such as using solar energy, can achieve the long-term vision of having no tailpipe environmental impact, as well as eliminating the dependence of the transportation sector on dwindling supplies of petroleum for its energy. In this report we will demonstrate the solar-powered charging of the high-voltage nickel-metal hydride (NiMH) battery used in the GM 2-mode hybrid system. In previous studies we have used low-voltage solar modules to produce hydrogen via the electrolysis of water and to directly charge lithium-ion battery modules. Our strategy in the present work was to boost low-voltage PV voltage to over 300 V using DC-DC converters in order to charge the high-voltage NiMH battery, and to regulate the battery charging using software to program the electronic control unit supplied with the battery pack. A protocol for high-voltage battery charging was developed, and the solar to battery charging efficiency was measured under a variety of conditions. We believe this is the first time such high-voltage batteries have been charged using solar energy in order to prove the concept of efficient, solar-powered charging for battery-electric vehicles.

  1. Charge trapping at Pt/high- k dielectric (Ta 2O 5) interface

    NASA Astrophysics Data System (ADS)

    Stojanovska-Georgievska, L.; Novkovski, N.; Atanassova, E.

    2011-09-01

    A detailed analysis of the effects of constant low current injection was done, both in accumulation ( J=0.001-0.2 mA cm -2) and in inversion ( J=0.001-0.04 mA/cm 2). The samples under investigation were metal-insulator-silicon structures containing high- k dielectric Ta 2O 5 radio frequency sputtered on p-type Si wafers, with Pt metal gate electrodes. The obtained results were compared with the ones obtained for Al gate samples. This experiment confirms the occurrence of charge trapping in the case of high-work-function Pt as metal. The effect has been attributed to emitting of electrons into the Pt conduction band during which creation of empty traps in the dielectric occurs, which then attract electrons injected in the dielectric. In order to examine the reversibility of the process, successive short runs as well as long runs (up to 10000 s) were performed.

  2. Hall effect in quantum critical charge-cluster glass

    NASA Astrophysics Data System (ADS)

    Wu, Jie; Bollinger, Anthony T.; Sun, Yujie

    2016-04-01

    Upon doping, cuprates undergo a quantum phase transition from an insulator to a d-wave superconductor. The nature of this transition and of the insulating state is vividly debated. Here, we study the Hall effect in La2-xSrxCuO4 (LSCO) samples doped near the quantum critical point at x ˜ 0.06. Dramatic fluctuations in the Hall resistance appear below TCG ˜ 1.5 K and increase as the sample is cooled down further, signaling quantum critical behavior. We explore the doping dependence of this effect in detail, by studying a combinatorial LSCO library in which the Sr content is varied in extremely fine steps, Δx ˜ 0.00008. We observe that quantum charge fluctuations wash out when superconductivity emerges but can be restored when the latter is suppressed by applying a magnetic field, showing that the two instabilities compete for the ground state.

  3. Hall effect in quantum critical charge-cluster glass.

    PubMed

    Wu, Jie; Bollinger, Anthony T; Sun, Yujie; Božović, Ivan

    2016-04-19

    Upon doping, cuprates undergo a quantum phase transition from an insulator to a d-wave superconductor. The nature of this transition and of the insulating state is vividly debated. Here, we study the Hall effect in La2-xSrxCuO4(LSCO) samples doped near the quantum critical point atx∼ 0.06. Dramatic fluctuations in the Hall resistance appear belowTCG∼ 1.5 K and increase as the sample is cooled down further, signaling quantum critical behavior. We explore the doping dependence of this effect in detail, by studying a combinatorial LSCO library in which the Sr content is varied in extremely fine steps,Δx∼ 0.00008. We observe that quantum charge fluctuations wash out when superconductivity emerges but can be restored when the latter is suppressed by applying a magnetic field, showing that the two instabilities compete for the ground state. PMID:27044081

  4. Double Photoionization of Beryllium atoms using Effective Charge approximation

    NASA Astrophysics Data System (ADS)

    Saha, Haripada

    2016-05-01

    We plan to report the results of our investigation on double photoionization K-shell electrons from Beryllium atoms. We will present the results of triple differential cross sections at excess energy of 20 eV using our recently extended MCHF method. We will use multiconfiguration Hartree Fock method to calculate the wave functions for the initial state. The final state wave functions will be obtained in the angle depended Effective Charge approximation which accounts for electron correlation between the two final state continuum electrons. We will discuss the effect of core correlation and the valence shell electrons in the triple differential cross section. The results will be compared with the available accurate theoretical calculations and experimental findings.

  5. High intensity high charge state ion beam production with an evaporative cooling magnet ECRIS.

    PubMed

    Lu, W; Qian, C; Sun, L T; Zhang, X Z; Fang, X; Guo, J W; Yang, Y; Feng, Y C; Ma, B H; Xiong, B; Ruan, L; Zhao, H W; Zhan, W L; Xie, D

    2016-02-01

    LECR4 (Lanzhou ECR ion source No. 4) is a room temperature electron cyclotron resonance ion source, designed to produce high current, high charge state ion beams for the SSC-LINAC injector (a new injector for sector separated cyclotron) at the Institute of Modern Physics. LECR4 also serves as a PoP machine for the application of evaporative cooling technology in accelerator field. To achieve those goals, LECR4 ECR ion source has been optimized for the operation at 18 GHz. During 2014, LECR4 ion source was commissioned at 18 GHz microwave of 1.6 kW. To further study the influence of injection stage to the production of medium and high charge state ion beams, in March 2015, the injection stage with pumping system was installed, and some optimum results were produced, such as 560 eμA of O(7+), 620 eμA of Ar(11+), 430 eμA of Ar(12+), 430 eμA of Xe(20+), and so on. The comparison will be discussed in the paper. PMID:26931956

  6. High intensity high charge state ion beam production with an evaporative cooling magnet ECRIS

    NASA Astrophysics Data System (ADS)

    Lu, W.; Qian, C.; Sun, L. T.; Zhang, X. Z.; Fang, X.; Guo, J. W.; Yang, Y.; Feng, Y. C.; Ma, B. H.; Xiong, B.; Ruan, L.; Zhao, H. W.; Zhan, W. L.; Xie, D.

    2016-02-01

    LECR4 (Lanzhou ECR ion source No. 4) is a room temperature electron cyclotron resonance ion source, designed to produce high current, high charge state ion beams for the SSC-LINAC injector (a new injector for sector separated cyclotron) at the Institute of Modern Physics. LECR4 also serves as a PoP machine for the application of evaporative cooling technology in accelerator field. To achieve those goals, LECR4 ECR ion source has been optimized for the operation at 18 GHz. During 2014, LECR4 ion source was commissioned at 18 GHz microwave of 1.6 kW. To further study the influence of injection stage to the production of medium and high charge state ion beams, in March 2015, the injection stage with pumping system was installed, and some optimum results were produced, such as 560 eμA of O7+, 620 eμA of Ar11+, 430 eμA of Ar12+, 430 eμA of Xe20+, and so on. The comparison will be discussed in the paper.

  7. Evaluating the Effect of Ionic Strength on Duplex Stability for PNA Having Negatively or Positively Charged Side Chains

    PubMed Central

    De Costa, N. Tilani S.; Heemstra, Jennifer M.

    2013-01-01

    The enhanced thermodynamic stability of PNA:DNA and PNA:RNA duplexes compared with DNA:DNA and DNA:RNA duplexes has been attributed in part to the lack of electrostatic repulsion between the uncharged PNA backbone and negatively charged DNA or RNA backbone. However, there are no previously reported studies that systematically evaluate the effect of ionic strength on duplex stability for PNA having a charged backbone. Here we investigate the role of charge repulsion in PNA binding by synthesizing PNA strands having negatively or positively charged side chains, then measuring their duplex stability with DNA or RNA at varying salt concentrations. At low salt concentrations, positively charged PNA binds more strongly to DNA and RNA than does negatively charged PNA. However, at medium to high salt concentrations, this trend is reversed, and negatively charged PNA shows higher affinity for DNA and RNA than does positively charged PNA. These results show that charge screening by counterions in solution enables negatively charged side chains to be incorporated into the PNA backbone without reducing duplex stability with DNA and RNA. This research provides new insight into the role of electrostatics in PNA binding, and demonstrates that introduction of negatively charged side chains is not significantly detrimental to PNA binding affinity at physiological ionic strength. The ability to incorporate negative charge without sacrificing binding affinity is anticipated to enable the development of PNA therapeutics that take advantage of both the inherent benefits of PNA and the multitude of charge-based delivery technologies currently being developed for DNA and RNA. PMID:23484047

  8. Evaluating the effect of ionic strength on duplex stability for PNA having negatively or positively charged side chains.

    PubMed

    De Costa, N Tilani S; Heemstra, Jennifer M

    2013-01-01

    The enhanced thermodynamic stability of PNA:DNA and PNA:RNA duplexes compared with DNA:DNA and DNA:RNA duplexes has been attributed in part to the lack of electrostatic repulsion between the uncharged PNA backbone and negatively charged DNA or RNA backbone. However, there are no previously reported studies that systematically evaluate the effect of ionic strength on duplex stability for PNA having a charged backbone. Here we investigate the role of charge repulsion in PNA binding by synthesizing PNA strands having negatively or positively charged side chains, then measuring their duplex stability with DNA or RNA at varying salt concentrations. At low salt concentrations, positively charged PNA binds more strongly to DNA and RNA than does negatively charged PNA. However, at medium to high salt concentrations, this trend is reversed, and negatively charged PNA shows higher affinity for DNA and RNA than does positively charged PNA. These results show that charge screening by counterions in solution enables negatively charged side chains to be incorporated into the PNA backbone without reducing duplex stability with DNA and RNA. This research provides new insight into the role of electrostatics in PNA binding, and demonstrates that introduction of negatively charged side chains is not significantly detrimental to PNA binding affinity at physiological ionic strength. The ability to incorporate negative charge without sacrificing binding affinity is anticipated to enable the development of PNA therapeutics that take advantage of both the inherent benefits of PNA and the multitude of charge-based delivery technologies currently being developed for DNA and RNA. PMID:23484047

  9. Charge Effects for Differentiation of Oligodeoxynucleotide Isomers Containing 8-oxo-dG Residues

    SciTech Connect

    Luo, Hai; Lipton, Mary S.; Smith, Richard D.

    2002-02-01

    Dissociation reactions of a series of multiply charged oligonucleotides anions were studied using an ion trap mass spectrometer. These mixed-nucleobase 12-mers fragment first by loss of a nucleobase (A, G, C and/or 5-methyl-cytosine) followed by cleavage at 3' C-O bond of the sugar from which the base is lost to produce the complementary sequence ions, i.e. a-B and w type of ions. No detectable loss of 8-oxo-guanine and/or thymine from these 12-mers is observed for the gentle collision conditions in the ion trap. The primary loss of a nucleobase and the subsequent backbone cleavage to generate sequence ions strongly depend on the charge state of the parent molecular ion. For low charge states (-2 and ?3), product ions due to the loss of a neutral guanine base and related sequence ions are dominant in the tandem mass spectra. However, preferential loss of a neutral adenine becomes the primary reaction channel from the ?5 charge state of the molecular ion. Such charge state dependent fragmentation behavior was utilized to determine the sites of 8-oxo-dG residue in a series of structural isomers. The position of 8-oxo-dG residue can be simply determined from the fragmentation pattern of ?3 charge state, but not of ?5 charge state. The strategy illustrated here for positional mapping of damaged residues in oligonucleotides is highly sensitive due to effective dynamic range enhancement in the product ion spectra by accessing the sequence informative reaction channels.

  10. Emission Spectroscopy of Highly Charged Ions in Plasma of an Electron Beam Ion Trap

    SciTech Connect

    Draganic, I.; Crespo Lopez-Urrutia, J.R.; Soria Orts, R.; Ullrich, J.; DuBois, R.; Shevelko, V.; Fritzsche, S.; Zou, Y.

    2004-12-01

    The results of experimental study of magnetic dipole (M1) transitions in highly charged ions of argon (Ar9+, Ar10+, Ar13+ and Ar14+) and krypton (Kr18+ and Kr22+) are presented. The forbidden transitions of the highly charged ions in the visible and near UV range of the photon emission spectra have been measured with accuracy better than 1 ppm. Our measurements for the 'coronal lines' are the most accurate yet reported using an EBIT as a spectroscopic source of highly charged ions. These precise wavelength determinations provide a useful test and challenge for atomic structure calculations of many-electron systems.

  11. Confinement physics for thermal, neutral, high-charge-state plasmas in nested-well solenoidal traps.

    PubMed

    Dolliver, D D; Ordonez, C A

    1999-06-01

    A theoretical study is presented which indicates that it is possible to confine a neutral plasma using static electric and solenoidal magnetic fields. The plasma consists of equal temperature electrons and highly stripped ions. The solenoidal magnetic field provides radial confinement, while the electric field, which produces an axial nested-well potential profile, provides axial confinement. A self-consistent, multidimensional numerical solution for the electric potential is obtained, and a fully kinetic theoretical treatment on axial transport is used to determine an axial confinement time scale. The effect on confinement of the presence of a radial electric field is explored with the use of ion trajectory calculations. A thermal, neutral, high-charge-state plasma confined in a nested-well trap opens new possibilities for fundamental studies on plasma recombination and cross-field transport processes under highly controlled conditions. PMID:11969700

  12. Effect of Conformation in Charge Transport for Semiflexible Polymers

    NASA Astrophysics Data System (ADS)

    Noriega, Rodrigo; Salleo, Alberto; Spakowitz, Andrew

    2014-03-01

    Current models for the electronic properties of semiconducting conjugated polymers do not include the hierarchical connectivity between charge transport units that results from the physical makeup of the materials. Concepts like on-chain vs. interchain mobility anisotropy have been known for a long time, yet they must be artificially incorporated into simulations. Models that achieve remarkable predictive power but provide limited physical insight when applied to this new class of materials are of limited use for the rational design of new conjugated polymers. Here we present a new model in which the morphology of individual polymer chains is determined by well-known statistical models and the electronic coupling between units is described using Marcus theory. Combining knowledge from polymer physics and semiconducting materials into an analytical and computational model that realistically incorporates the structural and electronic properties of conjugated polymers, it is possible to explain observations that previously relied on phenomenological models. The multi-scale behavior of charges in these materials (high mobility at short scales, low mobility at long scales) can be naturally described with our framework.

  13. Effects of cytosine methylation on DNA charge transport

    NASA Astrophysics Data System (ADS)

    Hihath, Joshua; Guo, Shaoyin; Zhang, Peiming; Tao, Nongjian

    2012-04-01

    The methylation of cytosine bases in DNA commonly takes place in the human genome and its abnormality can be used as a biomarker in the diagnosis of genetic diseases. In this paper we explore the effects of cytosine methylation on the conductance of DNA. Although the methyl group is a small chemical modification, and has a van der Waals radius of only 2 Å, its presence significantly changes the duplex stability, and as such may also affect the conductance properties of DNA. To determine if charge transport through the DNA stack is sensitive to this important biological modification we perform multiple conductance measurements on a methylated DNA molecule with an alternating G:C sequence and its non-methylated counterpart. From these studies we find a measurable difference in the conductance between the two types of molecules, and demonstrate that this difference is statistically significant. The conductance values of these molecules are also compared with a similar sequence that has been previously studied to help elucidate the charge transport mechanisms involved in direct DNA conductance measurements.

  14. An acoustic charge transport imager for high definition television applications

    NASA Technical Reports Server (NTRS)

    Hunt, William D.; Brennan, Kevin F.; Summers, Christopher J.

    1993-01-01

    This report covers: (1) invention of a new, ultra-low noise, low operating voltage APD which is expected to offer far better performance than the existing volume doped APD device; (2) performance of a comprehensive series of experiments on the acoustic and piezoelectric properties of ZnO films sputtered on GaAs which can possibly lead to a decrease in the required rf drive power for ACT devices by 15dB; (3) development of an advanced, hydrodynamic, macroscopic simulator used for evaluating the performance of ACT and CTD devices and aiding in the development of the next generation of devices; (4) experimental development of CTD devices which utilize a p-doped top barrier demonstrating charge storage capacity and low leakage currents; (5) refinements in materials growth techniques and in situ controls to lower surface defect densities to record levels as well as increase material uniformity and quality.

  15. Preparation of highly charged cellulose nanofibrils using high-pressure homogenization coupled with strong acid hydrolysis pretreatments.

    PubMed

    Tian, Cuihua; Yi, Jianan; Wu, Yiqiang; Wu, Qinglin; Qing, Yan; Wang, Lijun

    2016-01-20

    Cellulose nanofibrils (CNFs) are attracting much attention for the advantages of excellent mechanical strength, good optical transparency, and high surface area. An eco-friendly and energy-saving method was created in this work to produce highly negative charged CNFs using high-pressure mechanical defibrillation coupled with strong acid hydrolysis pretreatments. The morphological development, zeta potential, crystal structure, chemical composition and thermal degradation behavior of the resultant materials were evaluated by transmission electron microscopy (TEM), zeta potential analysis, X-ray diffraction (XRD), Fourier transform infrared spectrometry (FTIR), and thermogravimetric analysis (TGA). These CNFs were fully separated, surface-charged, and highly entangled. They showed a large fiber aspect ratio compared to traditional cellulose nanocrystrals that are produced by strong acid hydrolysis. Compared to hydrochloric acid hydrolysis, the CNFs produced by sulfuric acid pretreatments were completely defibrillated and presented stable suspensions (or gels) even at low fiber content. On the other hand, CNFs pretreated by hydrochloric acid hydrolysis trended to aggregate because of the absence of surface charge. The crystallinity index (CI) of CNFs decreased because of mechanical defibrillation, and then increased dramatically with increased sulfuric acid concentration and reaction time. FTIR analysis showed that the C-O-SO3 group was introduced on the surfaces of CNFs during sulfuric acid hydrolysis. These sulfate groups accelerated the thermal degradation of CNFs, which occurred at lower temperature than wood pulp, indicating that the thermal stability of sulfuric acid hydrolyzed CNFs was decreased. The temperature of the maximum decomposition rate (Tmax) and the maximum weight-loss rates (MWLRmax) were much lower than for wood pulp because of the retardant effect of sulfuric acid during the combustion of CNFs. By contrast, the CNFs treated with hydrochloric acid

  16. Failure mode of valve-regulated lead-acid batteries under high-rate partial-state-of-charge operation

    NASA Astrophysics Data System (ADS)

    Lam, L. T.; Haigh, N. P.; Phyland, C. G.; Urban, A. J.

    Within the next decade, there will be major changes in automotive technology with the introduction of several new features which will increase significantly the on-board power requirements. This high power demand is beyond the capability of present 14 V alternators and thus a 42 V power network is to be adopted. The new 'PowerNet' requires the lead-acid battery to be capable of providing a large number of shallow discharge-charge cycles at a high rate. High-rate discharge is necessary for engine cranking and power assist, while high-rate charge is associated with regenerative braking. The battery will operate at these high rates in a partial-state-of-charge condition, so-called HRPSoC duty. Under simulated HRPSoC duty, it is found that the valve-regulated lead-acid (VRLA) battery fails prematurely due to the progressive accumulation of lead sulfate mainly on the surfaces of the negative plates. This is because the lead sulfate cannot be converted efficiently back to sponge lead during charging either from the engine or from regenerative braking. Eventually, the layer of lead sulfate develops to such extent that the effective surface area of the plate is reduced markedly and the plate can no longer deliver the high cranking-current demanded by the automobile. A mechanistic analysis of battery operation during HRPSoC duty shows that high-rate discharge is the key factor responsible for the build-up of the lead sulfate layer. Such discharge causes a compact layer of tiny lead sulfate crystals to form on the surface of the negative plate and subsequent charging gives rise to an early evolution of hydrogen. Hydrogen evolution is further exacerbated when a high charging current is used.

  17. On the nature of high field charge transport in reinforced silicone dielectrics: Experiment and simulation

    NASA Astrophysics Data System (ADS)

    Huang, Yanhui; Schadler, Linda S.

    2016-08-01

    The high field charge injection and transport properties in reinforced silicone dielectrics were investigated by measuring the time-dependent space charge distribution and the current under dc conditions up to the breakdown field and were compared with the properties of other dielectric polymers. It is argued that the energy and spatial distribution of localized electronic states are crucial in determining these properties for polymer dielectrics. Tunneling to localized states likely dominates the charge injection process. A transient transport regime arises due to the relaxation of charge carriers into deep traps at the energy band tails and is successfully verified by a Monte Carlo simulation using the multiple-hopping model. The charge carrier mobility is found to be highly heterogeneous due to the non-uniform trapping. The slow moving electron packet exhibits a negative field dependent drift velocity possibly due to the spatial disorder of traps.

  18. The effect of additives on charge decay in electron-beam charged polypropylene films

    NASA Astrophysics Data System (ADS)

    Hillenbrand, J; Motz, T; Sessler, G M; Zhang, X; Behrendt, N; von Salis-Soglio, C; Erhard, D P; Altstädt, V; Schmidt, H-W

    2009-03-01

    The charge decay in isotactic polypropylene (i-PP) films of 50 µm thickness, containing three kinds of additives, namely a trisamide, a bisamide and a fluorinated compound, with concentrations in the range 0.004-1 wt% was studied. Compression molding was used to produce the films. The samples were either surface-charged by a corona method or volume-charged by mono-energetic electron beams of different energies, having penetration depths up to 6 µm. In all cases, surface potentials of about 200 V were chosen. After charging the films, the decay of the surface potential was studied either by an isothermal discharge method at 90 °C or by thermally stimulated discharge measurements. The results show a dependence of the decay rate on the kind of additive used, on additive concentration and on the energy of the injected charges. In particular, for samples with fluorinated additives, the stability of the surface potential decreases markedly with increasing electron energy, while such a dependence is very weak for samples containing the bisamide additive and does not exist at all for samples with the trisamide additive. These observations are tentatively explained by the radiation-induced generation of relatively mobile negative ions originating from the bisamide and fluorinated additives.

  19. Highly-charged heavy-ion production with short pulse lasers

    SciTech Connect

    Logan, G.; Bitmire, T.; Perry, M.; Anderson, O.; Kuehl, T.

    1998-01-27

    This MathCAD document describes a possible approach using a PW -class short pulse laser to form a useful number (10{sup 12}) of high and uniform charge state ions with low ion temperature (<< 100 eV) and low momentum spread ({delta}p{sub z}/p, < 10{sup -4} ) for injection into heavy-ion fusion accelerators. As a specific example, we consider here Xenon{sup +26}, which has an ionization energy E{sub i} {approximately} 860 eV for the 26th electron, and a significantly higher ionization potential of 1500 eV for the 27th electron because of the M-shell jump. The approach considered here may be used for other ion species as well. The challenge is not simply to produce high charge states with a laser (the ITEP group [Sharkov] have used long pulse CO{sub 2} lasers to create many charge states of chromium up to helium-like Cr{sup +25} by collisional ionization at high Te), nor just to create such high charge states more selectively by field (tunneling) ionization at higher intensities and shorter pulses. Rather, the challenge is to create a selected uniform high charge state, in useful numbers, while keeping the ion temperature and momentum spread small, and avoiding subsequent loss of ion charge state due to recombination and charge-exchange with background gas atoms during extraction into a useful low emittance beam.

  20. A high-charge-state plasma neutralizer for an energetic H/sup -/ beam

    SciTech Connect

    Schlachter, A.S.; Leung, K.N.; Stearns, J.W.; Olson, R.E.

    1986-10-01

    A high-charge-state plasma neutralizer for a beam of energetic H/sup -/ ions offers the potential of high optimum neutralization efficiency (approx.85%) relative to a gas target (50 to 60%), and considerably reduced target thickness. We have calculated cross sections for charge-changing interactions of fast H/sup -/ and H/sup 0/ in collision with highly charged ions using a semiclassical model for H/sup -/, and the Classical-Trajectory Monte Carlo method plus Born calculations, to obtain correct asymptotic cross sections in the high-energy limit. Charge-state fractions as a function of plasma line density, and f/sub 0//sup max/, the maximum H/sup 0/ fraction, are calculated using these cross sections; we find that f/sub 0//sup mx/ approx. = 85% for ion charge states in the range 1+ to 10+, and that target ion line density for f/sub 0//sup max/ decreases approximately as the square of the plasma ion charge state. The maximum neutral fraction is also high for a partially ionized plasma. We have built a small multicusp plasma generator to use a a plasma neutralizer; preliminary results show that the plasma contains argon ions with an average charge state between 2+ and 3+ for a steady-state discharge.

  1. Isotope-Shift Measurement of High-energy Highly Charged Ion Beams

    NASA Astrophysics Data System (ADS)

    Ozawa, S.; Ariga, T.; Inabe, N.; Kase, M.; Tanihata, I.; Wakasugi, M.; Yano, Y.

    2001-10-01

    Isotope-shift measurement by the laser spectroscopic method was aimed to apply for radioactive isotope beams up to uranium created by projectile fragmentation at RIKEN RI beam factory (T. Katayama, et al.,): Nucl. Phys., A626, 545c (1997).to make a systematic study of the mean square nuclear charge radii. The present work was started to verify the feasibility of the method. Projectile fragments are high-energy highly charged ions and weak currents. Therefore we designed ultralow-background photon-detection system (M. Wakasugi, et al.,): Nucl. Instr. and Meth., A419, 50 (1998).for collinear laser spectroscopy of such ion beams. To demonstrate isotope-shift measurement, we measured precisely the 1s2s ^3S_1-1s2p ^3P_0,1,2 transition energy of He-like ^12C ion accelerated up to 0.9 MeV/u and ^13C ion 0.6 MeV/u. For the precision measurement, the uncertainty coming from the ambiguity in the absolute ion beam velocity was suppressed by means of that the resonance energy was measured by two laser beams which propagate in parallel and anti-parallel directions to the ion beam. As the result, isotope shifts of these transitions were obtained with the accuracy of 10 %. The lower limit of the ion-beam intensity for the measurement is estimated to be 2000 ions/s.

  2. High-speed, high-resolution observations of shaped-charge jets undergoing particulation

    SciTech Connect

    Winer, K.; Breithaupt, D.; Shaw, L.; Muelder, S.; Baum, D.

    1995-02-28

    Image-converter (IC) camera photography has provided spectacular images and quantitative records of liner collapse and early jet formation in shaped charges. We have extended the application of the IC camera to observations of shaped charge jet surfaces undergoing particulation. Sequential, high-resolution photographs were taken following the same 10-cm portion of jet at 2.5-{mu}s intervals. Simultaneous color rotating-mirror framing camera photographs and 450-keV flash x-ray radiographs were also taken of the same region. This combination provides a detailed record of the evolution of surface structure during jet necking and particulation. In the high-resolution photographs, individual features on the jet surfaces as small as {approximately}100 {mu}m can easily be detected and followed as they evolve over time. The jet surface structure is rough with overlapping slip dislocation lines running along the surface at 45{degree} to either side of the jet axis. This is similar to the texture that develops in long rods undergoing static tension. We discuss the implications of these images for increasing jet particulation times.

  3. Relationship of sea level muon charge ratio to primary composition including nuclear target effects

    NASA Technical Reports Server (NTRS)

    Goned, A.; Shalaby, M.; Salem, A. M.; Roushdy, M.

    1985-01-01

    The discrepancy between the muon charge ratio observed at low energies and that calculated using pp data is removed by including nuclear target effects. Calculations at high energies show that the primary iron spectrum is expected to change slope from 2 to 2.2 to 2.4 to 2.5 for energies approx. 4 x 10 to the 3 GeV/nucleon if scaling features continue to the highest energies.

  4. Systematic adjustment of charge densities and size of polyglycerol amines reduces cytotoxic effects and enhances cellular uptake.

    PubMed

    Hellmund, Markus; Achazi, Katharina; Neumann, Falko; Thota, Bala N S; Ma, Nan; Haag, Rainer

    2015-11-01

    Excessive cationic charge density of polyplexes during cellular uptake is still a major hurdle in the field of non-viral gene delivery. The most efficient cationic vectors such as polyethylene imine (PEI) or polyamidoamine (PAMAM) can be highly toxic and may induce strong side effects due to their high cationic charge densities. Alternatives like polyethylene glycol (PEG) are used to 'shield' these charges and thus to reduce the cytotoxic effects known for PEI/PEG-core-shell architectures. In this study, we compared the ability of hyperbranched polyglycerol amines (hPG amines) with different amine densities and molecular weights as non-viral cationic vectors for DNA delivery. By adjusting the hydroxyl to amine group ratio on varying molecular weights, we were able to perform a systematic study on the cytotoxic effects caused by the effective charge density in correlation to size. We could demonstrate that carriers with moderate charge density have a higher potential for effective DNA delivery as compared to high/low charged ones independent of their size, but the final efficiency can be optimized by the molecular weight. We analyzed the physicochemical properties and cellular uptake capacity as well as the cytotoxicity and transfection efficiency of these new vector systems. PMID:26244171

  5. Spacecraft power system architecture to mitigate spacecraft charging effects

    NASA Technical Reports Server (NTRS)

    Manner, David B. (Inventor)

    1997-01-01

    A power system architecture for a spacecraft and a method of a power supply for a spacecraft are presented which take advantage of the reduced plasma interaction associated with positive ground high voltage photovoltaic arrays and provide a negative ground power supply for electrical loads of the spacecraft. They efficiently convert and regulate power to the load bus and reduce power system mass and complexity. The system and method ground the positive terminal of the solar arrays to the spacecraft hull, and using a power converter to invert the electric sign, permit a negative ground for the electrical distribution bus and electrical components. A number of variations including a load management system and a battery management system having charging and recharging devices are presented.

  6. Studies on low energy beam transport for high intensity high charged ions at IMP

    SciTech Connect

    Yang, Y. Lu, W.; Fang, X.; University of Chinese Academy of Sciences, Beijing 100039 ; Sun, L. T.; Hu, Q.; Cao, Y.; Feng, Y. C.; Zhang, X. Z.; Zhao, H. W.; Xie, D. Z.

    2014-02-15

    Superconducting Electron Cyclotron Resonance ion source with Advanced design in Lanzhou (SECRAL) is an advanced fully superconducting ECR ion source at IMP designed to be operational at the microwave frequency of 18–24 GHz. The existing SECRAL beam transmission line is composed of a solenoid lens and a 110° analyzing magnet. Simulations of particle tracking with 3D space charge effect and realistic 3D magnetic fields through the line were performed using particle-in-cell code. The results of the beam dynamics show that such a low energy beam is very sensitive to the space charge effect and significantly suffers from the second-order aberration of the analyzing magnet resulting in large emittance. However, the second-order aberration could be reduced by adding compensating sextupole components in the beam line. On this basis, a new 110° analyzing magnet with relatively larger acceptance and smaller aberration is designed and will be used in the design of low energy beam transport line for a new superconducting ECR ion source SECRAL-II. The features of the analyzer and the corresponding beam trajectory calculation will be detailed and discussed in this paper.

  7. Studies on low energy beam transport for high intensity high charged ions at IMP.

    PubMed

    Yang, Y; Sun, L T; Hu, Q; Cao, Y; Lu, W; Feng, Y C; Fang, X; Zhang, X Z; Zhao, H W; Xie, D Z

    2014-02-01

    Superconducting Electron Cyclotron Resonance ion source with Advanced design in Lanzhou (SECRAL) is an advanced fully superconducting ECR ion source at IMP designed to be operational at the microwave frequency of 18-24 GHz. The existing SECRAL beam transmission line is composed of a solenoid lens and a 110° analyzing magnet. Simulations of particle tracking with 3D space charge effect and realistic 3D magnetic fields through the line were performed using particle-in-cell code. The results of the beam dynamics show that such a low energy beam is very sensitive to the space charge effect and significantly suffers from the second-order aberration of the analyzing magnet resulting in large emittance. However, the second-order aberration could be reduced by adding compensating sextupole components in the beam line. On this basis, a new 110° analyzing magnet with relatively larger acceptance and smaller aberration is designed and will be used in the design of low energy beam transport line for a new superconducting ECR ion source SECRAL-II. The features of the analyzer and the corresponding beam trajectory calculation will be detailed and discussed in this paper. PMID:24593453

  8. An FET-type charge sensor for highly sensitive detection of DNA sequence.

    PubMed

    Kim, Dong-Sun; Jeong, Yong-Taek; Park, Hey-Jung; Shin, Jang-Kyoo; Choi, Pyung; Lee, Jong-Hyun; Lim, Geunbae

    2004-07-30

    We have fabricated an field effect transistor (FET)-type DNA charge sensor based on 0.5 microm standard complementary metal oxide semiconductor (CMOS) technology which can detect the deoxyribonucleic acid (DNA) probe's immobilization and information on hybridization by sensing the variation of drain current due to DNA charge and investigated its electrical characteristics. FET-type charge sensor for detecting DNA sequence is a semiconductor sensor measuring the change of electric charge caused by DNA probe's immobilization on the gate metal, based on the field effect mechanism of MOSFET. It was fabricated in p-channel (P) MOSFET-type because the phosphate groups present in DNA have a negative charge and this charge determines the effective gate potential of PMOSFET. Gold (Au) which has a chemical affinity with thiol was used as the gate metal in order to immobilize DNA. The gate potential is determined by the electric charge which DNA possesses. Variation of the drain current versus time was measured. The drain current increased when thiol DNA and target DNA were injected into the solution, because of the field effect due to the electrical charge of DNA molecules. The experimental validity was verified by the results of mass changes detected using quartz crystal microbalance (QCM) under the same measurement condition. Therefore it is confirmed that DNA sequence can be detected by measuring the variation of the drain current due to the variation of DNA charge and the proposed FET-type DNA charge sensor might be useful in the development for DNA chips. PMID:15142578

  9. Effects of space charge in beams for heavy ion fusion

    SciTech Connect

    Sharp, W.M.; Friedman, A.; Grote, D.P.

    1995-09-01

    A new analytic model is presented that accurately estimates the radially averaged axial component of the space-charge field of an axisymmetric heavy-ion beam in a cylindrical beam pipe. The model recovers details of the field near the beam ends that are overlooked by simpler models, and the results compare well to exact solutions of Poisson`s equation. Field values are shown for several simple beam profiles and are compared with values obtained from simpler models. The model has been implemented in the fluid/envelope code CIRCE and used to study longitudinal confinement in beams with a variety of axial profiles. The effects of errors in the longitudinal-control fields are presented.

  10. Long-range charge-density-wave proximity effect at cuprate/manganate interfaces.

    PubMed

    Frano, A; Blanco-Canosa, S; Schierle, E; Lu, Y; Wu, M; Bluschke, M; Minola, M; Christiani, G; Habermeier, H U; Logvenov, G; Wang, Y; van Aken, P A; Benckiser, E; Weschke, E; Le Tacon, M; Keimer, B

    2016-08-01

    The interplay between charge density waves (CDWs) and high-temperature superconductivity is currently under intense investigation. Experimental research on this issue is difficult because CDW formation in bulk copper oxides is strongly influenced by random disorder, and a long-range-ordered CDW state in high magnetic fields is difficult to access with spectroscopic and diffraction probes. Here we use resonant X-ray scattering in zero magnetic field to show that interfaces with the metallic ferromagnet La2/3Ca1/3MnO3 greatly enhance CDW formation in the optimally doped high-temperature superconductor YBa2Cu3O6+δ (δ ∼ 1), and that this effect persists over several tens of nanometres. The wavevector of the incommensurate CDW serves as an internal calibration standard of the charge carrier concentration, which allows us to rule out any significant influence of oxygen non-stoichiometry, and to attribute the observed phenomenon to a genuine electronic proximity effect. Long-range proximity effects induced by heterointerfaces thus offer a powerful method to stabilize the charge-density-wave state in the cuprates and, more generally, to manipulate the interplay between different collective phenomena in metal oxides. PMID:27322824

  11. Long-range charge-density-wave proximity effect at cuprate/manganate interfaces

    NASA Astrophysics Data System (ADS)

    Frano, A.; Blanco-Canosa, S.; Schierle, E.; Lu, Y.; Wu, M.; Bluschke, M.; Minola, M.; Christiani, G.; Habermeier, H. U.; Logvenov, G.; Wang, Y.; van Aken, P. A.; Benckiser, E.; Weschke, E.; Le Tacon, M.; Keimer, B.

    2016-08-01

    The interplay between charge density waves (CDWs) and high-temperature superconductivity is currently under intense investigation. Experimental research on this issue is difficult because CDW formation in bulk copper oxides is strongly influenced by random disorder, and a long-range-ordered CDW state in high magnetic fields is difficult to access with spectroscopic and diffraction probes. Here we use resonant X-ray scattering in zero magnetic field to show that interfaces with the metallic ferromagnet La2/3Ca1/3MnO3 greatly enhance CDW formation in the optimally doped high-temperature superconductor YBa2Cu3O6+δ (δ ~ 1), and that this effect persists over several tens of nanometres. The wavevector of the incommensurate CDW serves as an internal calibration standard of the charge carrier concentration, which allows us to rule out any significant influence of oxygen non-stoichiometry, and to attribute the observed phenomenon to a genuine electronic proximity effect. Long-range proximity effects induced by heterointerfaces thus offer a powerful method to stabilize the charge-density-wave state in the cuprates and, more generally, to manipulate the interplay between different collective phenomena in metal oxides.

  12. Electron emission in collisions of fast highly charged bare ions with helium atoms

    NASA Astrophysics Data System (ADS)

    Mondal, Abhoy; Mandal, Chittranjan; Purkait, Malay

    2016-01-01

    We have studied the electron emission from ground state helium atom in collision with fast bare heavy ions at intermediate and high incident energies. In the present study, we have applied the present three-body formalism of the three Coulomb wave (3C-3B) model and the previously adopted four-body formalism of the three Coulomb wave (3C-4B). To represent the active electron in the helium atom in the 3C-3B model, the initial bound state wavefunction is chosen to be hydrogenic with an effective nuclear charge. The wavefunction for the ejected electron in the exit channel has been approximated to be a Coulomb continuum wavefunction with same effective nuclear charge. Effectively the continuum-continuum correlation effect has been considered in the present investigation. Here we have calculated the energy and angular distribution of double differential cross sections (DDCS) at low and high energy electron emission from helium atom. The large forward-backward asymmetry is observed in the angular distribution which is explained in terms of the two-center effect (TCE). Our theoretical results are compared with available experimental results as well as other theoretical calculations based on the plain wave Born approximation (PWBA), continuum-distorted wave (CDW) approximation, continuum-distorted wave eikonal-initial state (CDW-EIS) approximation, and the corresponding values obtained from the 3C-4B model [S. Jana, R. Samanta, M. Purkait, Phys. Scr. 88, 055301 (2013)] respectively. It is observed that the four-body version of the present investigation produces results which are in better agreement with experimental observations for all cases.

  13. Detonation performance of high-dense BTF charges

    NASA Astrophysics Data System (ADS)

    Dolgoborodov, Alexander; Brazhnikov, Michael; Makhov, Michael; Gubin, Sergey; Maklasova, Irina

    2013-06-01

    New experimental data on detonation wave parameters and explosive performance for benzotrifuroxan (BTF) are presented. Optical pyrometry was applied in order to measure the temperature and pressure of BTF detonation products. Chapman-Jouguet pressure and temperature were obtained as following: 33.8 GPa and 3990 K; 34.5 GPa and 4170 K (initial charge densities 1.82 and 1.84 g/cc respectively), the polytropic exponent was estimated as 2.8. The heat of explosion and acceleration ability were measured also. The results of calorimetric measurements performed in bomb calorimeter indicate that BTF slightly surpasses HMX in the heat of explosion. However BTF is inferior to HMX in the acceleration ability, measured by the method of copper casing expansion. It is also considered the hypothesis of formation of nanocarbon particles in detonation products directly behind the detonation front and influence of this processes on the temperature-time history in detonation products. The results of calculations with in view of formation of liquid nanocarbon in products of a detonation also are presented.

  14. High Temperature Thermosetting Polyimide Nanocomposites Prepared with Reduced Charge Organoclay

    NASA Technical Reports Server (NTRS)

    Campbell, Sandi; Liang, Margaret I.

    2005-01-01

    The naturally occurring sodium and calcium cations found in bentonite clay galleries were exchanged with lithium cations. Following the cation exchange, a series of reduced charge clays were prepared by heat treatment of the lithium bentonite at 130 C, 150 C, or 170 C. Inductively coupled plasma (ICP) analysis showed that heating the lithium clay at elevated temperatures reduced its cation exchange capacity. Ion exchange of heat-treated clays with either a protonated alkyl amine or a protonated aromatic diamine resulted in decreasing amounts of the organic modifier incorporated into the lithium clay. The level of silicate dispersion in a thermosetting polyimide matrix was dependent upon the temperature of Li-clay heat treatment as well as the organic modification. In general, clays treated at 150 C or 170 C, and exchanged with protonated octadcylamine or protonated 2,2'-dimethlybenzidine (DMBZ) showed a higher degree of dispersion than clays treated at 130 C, or exchanged with protonated dodecylamine. Dynamic mechanical analysis showed little change in the storage modulus or T(sub g) of the nanocomposites compared to the base resin. However, long term isothermal aging of the samples showed a significant decrease in the resin oxidative weight loss. Nanocomposite samples aged in air for 1000 hours at 288 C showed of to a decrease in weight loss compared to that of the base resin. This again was dependent on the temperature at which the Li-clay was heated and the choice of organic modification.

  15. Acceleration of high charge density electron beams in the SLAC linac

    SciTech Connect

    Sheppard, J.C.; Clendenin, J.E.; Jobe, R.K.; Lueth, V.G.; Millich, A.; Ross, M.C.; Seeman, J.T.; Stiening, R.F.

    1984-01-01

    The SLAC Linear Collider (SLC) will require both electron and positron beams of very high charge density and low emittance to be accelerated to about 50 GeV in the SLAC 3-km linac. The linac is in the process of being improved to meet this requirement. The program to accelerate an electron beam of high charge density through the first third of the SLC linac is described and the experimental results are discussed. 7 references, 5 figures.

  16. Boosted Charge Transfer in SnS/SnO2 Heterostructures: Toward High Rate Capability for Sodium-Ion Batteries.

    PubMed

    Zheng, Yang; Zhou, Tengfei; Zhang, Chaofeng; Mao, Jianfeng; Liu, Huakun; Guo, Zaiping

    2016-03-01

    Constructing heterostructures can endow materials with fascinating performance in high-speed electronics, optoelectronics, and other applications owing to the built-in charge-transfer driving force, which is of benefit to the specific charge-transfer kinetics. Rational design and controllable synthesis of nano-heterostructure anode materials with high-rate performance, however, still remains a great challenge. Herein, ultrafine SnS/SnO2 heterostructures were successfully fabricated and showed enhanced charge-transfer capability. The mobility enhancement is attributed to the interface effect of heterostructures, which induces an electric field within the nanocrystals, giving them much lower ion-diffusion resistance and facilitating interfacial electron transport. PMID:26844806

  17. Visible emission spectroscopy of highly charged tungsten ions in LHD: II. Evaluation of tungsten ion temperature

    NASA Astrophysics Data System (ADS)

    Fujii, K.; Takahashi, Y.; Nakai, Y.; Kato, D.; Goto, M.; Morita, S.; Hasuo, M.; Experiment Group2, LHD

    2015-12-01

    We demonstrated a polarization-resolved high resolution spectroscopy of a visible emission line of highly charged tungsten ions (λ0 = 668.899 nm, Shinohara et al Phys. Scr. 90 125402) for the large helical device (LHD) plasma, where the tungsten ions were introduced by a pellet injection. Its spectral profile shows broadening and polarization dependence, which are attributed to the Doppler and Zeeman effects, respectively. The tungsten ion temperature was evaluated for the first time from the broadening of visible the emission line, with its emission location determined by the Abel inversion of the chord-integrated emission intensities observed with multiple chords. The tungsten ion temperature was found to be close to the helium-like argon ion temperature, which is used as an ion temperature monitor in LHD.

  18. Electrically charged: An effective mechanism for soft EOS supporting massive neutron star

    NASA Astrophysics Data System (ADS)

    Jing, ZhenZhen; Wen, DeHua; Zhang, XiangDong

    2015-10-01

    The massive neutron star discoverer announced that strange particles, such as hyperons should be ruled out in the neutron star core as the soft Equation of State (EOS) can-not support a massive neutron star. However, many of the nuclear theories and laboratory experiments support that at high density the strange particles will appear and the corresponding EOS of super-dense matters will become soft. This situation promotes a challenge between the astro-observation and nuclear physics. In this work, we introduce an effective mechanism to answer this challenge, that is, if a neutron star is electrically charged, a soft EOS will be equivalently stiffened and thus can support a massive neutron star. By employing a representative soft EOS, it is found that in order to obtain an evident effect on the EOS and thus increasing the maximum stellar mass by the electrostatic field, the total net charge should be in an order of 1020 C. Moreover, by comparing the results of two kind of charge distributions, it is found that even for different distributions, a similar total charge: ~ 2.3 × 1020 C is needed to support a ~ 2.0 M ⊙ neutron star.

  19. Three dimensional space charge model for large high voltage satellites. [plasma sheath

    NASA Technical Reports Server (NTRS)

    Cooks, D.; Parker, L. W.; Mccoy, J. E.

    1980-01-01

    High power solar arrays for satellite power systems with dimensions of kilometers, and with tens of kilovolts distributed over their surface face many plasma interaction problems that must be properly anticipated. In most cases, the effects cannot be adequately modeled without detailed knowledge of the plasma sheath structure and space charge effects. Two computer programs were developed to provide fully self consistent plasma sheath models in three dimensions as a result of efforts to model the experimental plasma sheath studies at NASA/JSC. Preliminary results indicate that for the conditions considered, the Child-Langmuir diode theory can provide a useful estimate of the plasma sheath thickness. The limitations of this conclusion are discussed. Some of the models presented exhibit the strong ion focusing observed in the JSC experiments.

  20. Electrohydrodynamic pressure enhanced by free space charge for electrically induced structure formation with high aspect ratio.

    PubMed

    Tian, Hongmiao; Wang, Chunhui; Shao, Jinyou; Ding, Yucheng; Li, Xiangming

    2014-10-28

    Electrically induced structure formation (EISF) is an interesting and unique approach for generating a microstructured duplicate from a rheological polymer by a spatially modulated electric field induced by a patterned template. Most of the research on EISF have so far used various dielectric polymers (with an electrical conductivity smaller than 10(-10) S/m that can be considered a perfect dielectric), on which the electric field induces a Maxwell stress only due to the dipoles (or bounded charges) in the polymer molecules, leading to a structure with a small aspect ratio. This paper presents a different approach for improving the aspect ratio allowed in EISF by doping organic salt into the perfect dielectric polymer, i.e., turning the perfect dielectric into a leaky dielectric, considering the fact that the free space charges enriched in the leaky dielectric polymer can make an additional contribution to the Maxwell stress, i.e., electrohydrodynamic pressure, which is desirable for high aspect ratio structuring. Our numerical simulations and experimental tests have shown that a leaky dielectric polymer, with a small conductivity comparable to that of deionized water, can be much more effective at being electrohydrodynamically deformed into a high aspect ratio in comparison with a perfect dielectric polymer when both of them have roughly the same dielectric constant. PMID:25268463

  1. Effect of magnetic field configuration on the multiply charged ion and plume characteristics in Hall thruster plasmas

    SciTech Connect

    Kim, Holak; Lim, Youbong; Choe, Wonho Park, Sanghoo; Seon, Jongho

    2015-04-13

    Multiply charged ions and plume characteristics in Hall thruster plasmas are investigated with regard to magnetic field configuration. Differences in the plume shape and the fraction of ions with different charge states are demonstrated by the counter-current and co-current magnetic field configurations, respectively. The significantly larger number of multiply charged and higher charge state ions including Xe{sup 4+} are observed in the co-current configuration than in the counter-current configuration. The large fraction of multiply charged ions and high ion currents in this experiment may be related to the strong electron confinement, which is due to the strong magnetic mirror effect in the co-current magnetic field configuration.

  2. Effect of magnetic field configuration on the multiply charged ion and plume characteristics in Hall thruster plasmas

    NASA Astrophysics Data System (ADS)

    Kim, Holak; Lim, Youbong; Choe, Wonho; Park, Sanghoo; Seon, Jongho

    2015-04-01

    Multiply charged ions and plume characteristics in Hall thruster plasmas are investigated with regard to magnetic field configuration. Differences in the plume shape and the fraction of ions with different charge states are demonstrated by the counter-current and co-current magnetic field configurations, respectively. The significantly larger number of multiply charged and higher charge state ions including Xe4+ are observed in the co-current configuration than in the counter-current configuration. The large fraction of multiply charged ions and high ion currents in this experiment may be related to the strong electron confinement, which is due to the strong magnetic mirror effect in the co-current magnetic field configuration.

  3. Design of a high performance CMOS charge pump for phase-locked loop synthesizers

    NASA Astrophysics Data System (ADS)

    Zhiqun, Li; Shuangshuang, Zheng; Ningbing, Hou

    2011-07-01

    A new high performance charge pump circuit is designed and realized in 0.18 μm CMOS process. A wide input ranged rail-to-rail operational amplifier and self-biasing cascode current mirror are used to enable the charge pump current to be well matched in a wide output voltage range. Furthermore, a method of adding a precharging current source is proposed to increase the initial charge current, which will speed up the settling time of CPPLLs. Test results show that the current mismatching can be less than 0.4% in the output voltage range of 0.4 to 1.7 V, with a charge pump current of 100 μA and a precharging current of 70 μA. The average power consumption of the charge pump in the locked condition is around 0.9 mW under a 1.8 V supply voltage.

  4. Low-Charge State AMS for High Throughput 14C Quantification

    SciTech Connect

    Ognibene, T.J.; Roberts, M.L.; Southon, J.R.; Vogel, J.S.

    2000-06-16

    Accelerator mass spectrometry (AMS) quantifies attomole (10{sup -18}) amounts of {sup 14}C in milligram sized samples. This sensitivity is used to trace nutrients, toxins and therapeutics in humans and animals at less than {micro}g/kg doses containing 1-100 nCi of {sup 14}C. Widespread use of AMS in pharmaceutical development and biochemical science has been hampered by the size and expense of the typical spectrometer that has been developed for high precision radiocarbon dating. The precision of AMS can be relaxed for biochemical tracing, but sensitivity, accuracy and throughput are important properties that must be maintained in spectrometers designed for routine quantification. We are completing installation of a spectrometer that will maintain the high throughput of our primary spectrometer but which requires less than 20% of the floor space and of the cost. Sensitivity and throughput are kept high by using the LLNL intense cesium sputter ion source with solid graphitic samples. Resultant space-charge effects are minimized by careful modeling to find optimal ion transport in the spectrometer. A long charge-changing ''stripper gas'' volume removes molecular isobars at potentials of a few hundred kiloVolts, reducing the size of the accelerating component. Fast ion detectors count at high rates to keep a wide dynamic range for 14 C concentrations. Solid sample presentation eliminates the sample cross contamination that degrades accuracy and the effects of ''memory'' in the ion source. Automated processes are under development for conversion of liquid and solid biological samples to the preferred graphitic form for the ion source.

  5. Tuning charge balance in PHOLEDs with ambipolar host materials to achieve high efficiency

    SciTech Connect

    Padmaperuma, Asanga B.; Koech, Phillip K.; Cosimbescu, Lelia; Polikarpov, Evgueni; Swensen, James S.; Chopra, Neetu; So, Franky; Sapochak, Linda S.; Gaspar, Daniel J.

    2009-08-27

    operating voltages, particularly if this is to be achieved in a device that can be manufactured at low cost. To avoid the efficiency losses associated with phosphorescence quenching by back-energy transfer from the dopant onto the host, the triplet excited states of the host material must be higher in energy than the triplet excited state of the dopant.5 This must be accomplished without sacrificing the charge transporting properties of the composite.6 Similar problems limit the efficiency of OLED-based displays, where blue light emitters are the least efficient and least stable. We previously demonstrated the utility of organic phosphine oxide (PO) materials as electron transporting HMs for FIrpic in blue OLEDs.7 However, the high reluctance of PO materials to oxidation and thus, hole injection limits the ability to balance charge injection and transport in the EML without relying on charge transport by the phosphorescent dopant. PO host materials were engineered to transport both electrons and holes in the EML and still maintain high triplet exciton energy to ensure efficient energy transfer to the dopant (Figure 1). There are examples of combining hole transporting moieties (mainly aromatic amines) with electron transport moieties (e.g., oxadiazoles, triazines, boranes)8 to develop new emitter and host materials for small molecule and polymer9 OLEDs. The challenge is to combine the two moieties without lowering the triplet energy of the target molecule. For example, coupling of a dimesitylphenylboryl moiety with a tertiary aromatic amine (FIAMBOT) results in intramolecular electron transfer from the amine to the boron atom through the bridging phenyl. The mesomeric effect of the dimesitylphenylboryl unit acts to extend conjugation and lowers triplet exciton energies (< 2.8 eV) rendering such systems inadequate as ambipolar hosts for blue phosphors.

  6. Rapid heating tensile tests of hydrogen-charged high-energy-rate-forged 316L stainless steel

    SciTech Connect

    Mosley, W.C.

    1989-05-19

    316L stainless steel is a candidate material for construction of equipment that will be exposed to tritium. Proper design of the equipment will require an understanding of how tritium and its decay product helium affect mechanical properties. This memorandum describes results of rapid heating tensile testing of hydrogen-charged specimens of high-energy-rate-forged (HERF) 316L stainless steel. These results provide a data base for comparison with uncharged and tritium-charged-and-aged specimens to distinguish the effects of hydrogen and helium. Details of the experimental equipment and procedures and results for uncharged specimens were reported previously. 3 refs., 10 figs.

  7. Reactive Charged Droplets for Reduction of Matrix Effects in Electrospray Ionization Mass Spectrometry.

    PubMed

    Kulyk, Dmytro S; Miller, Colbert F; Badu-Tawiah, Abraham K

    2015-11-01

    A new quantitative contained-electrospray (ES) process is described here that employs a movable ES emitter to control the reactivity of charged microdroplets by varying their exposure time with acid vapor. The method allows elimination of ion suppression effects caused by the presence of various surface active compounds that coelute with the analyte. For mixtures, contained-ESI mass spectrometric analysis produces relative ion intensities that reflect the true concentrations of analytes in solution. The mechanism for this effect has been elucidated and ascribed to the generation of fine initial droplets in the presence of a high abundance of protons; together, these two factors eliminate competition for charge and space during ion formation. Examples of analytes tested include steroids, phospholipids, phosphopeptides, and sialylated glycans. At least 1 order of magnitude improvement in detection limits, sensitivity, and accuracy of detection was observed when compared to conventional electrospray. PMID:26437455

  8. Vacuum space charge effects in sub-picosecond soft X-ray photoemission on a molecular adsorbate layer

    DOE PAGESBeta

    Dell'Angela, M.; Anniyev, T.; Beye, M.; Coffee, R.; Föhlisch, A.; Gladh, J.; Kaya, S.; Katayama, T.; Krupin, O.; Nilsson, A.; et al

    2015-03-01

    Vacuum space charge-induced kinetic energy shifts of O 1s and Ru 3d core levels in femtosecond soft X-ray photoemission spectra (PES) have been studied at a free electron laser (FEL) for an oxygen layer on Ru(0001). We fully reproduced the measurements by simulating the in-vacuum expansion of the photoelectrons and demonstrate the space charge contribution of the high-order harmonics in the FEL beam. Employing the same analysis for 400 nm pump-X-ray probe PES, we can disentangle the delay dependent Ru 3d energy shifts into effects induced by space charge and by lattice heating from the femtosecond pump pulse.

  9. Effective ionic charge polarization using typical supporting electrolyte and charge injection phenomena in molecularly doped polymer light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Itoh, Eiji; Yamashita, Takanori; Miyairi, Keiichi

    2002-11-01

    An effective method of enhancing charge injection and electroluminescence efficiency of polymer-based light-emitting diodes is introduced. Spin-coated films of poly (N-vinylcarbazole) blended with electron-transport material (Bu-PBD), laser dye (Coumarin6), and the typical supporting electrolyte [tetraethylammonium perchlorate (TEAP)] were examined and it was found that the injection current and luminance of the light emitting diodes doped with TEAP were enhanced dramatically after heat treatment at 80 degC and appropriate biasing in an external electric field of 1.5 x108 V/m at this temperature. A charge injection model based on Fowler-Nordheim tunneling is proposed, taking into account electric field distortion due to the accumulation of ionic space charges at the electrode/film interface. The relaxation time of ionic polarization is found to be related to the cation size of the electrolyte.

  10. High Performance Non-Dispersive X-Ray Spectrometers for Charge Exchange Measurements

    NASA Technical Reports Server (NTRS)

    Porter Frederick; Adams, J.; Beiersdorfer, P.; Brown, G. V.; Karkatoua, D.; Kelley, R. L.; Kilbourne, C. A.; Lautenagger, M.

    2010-01-01

    Currently, the only measurements of cosmological charge exchange have been made using low resolution, non-dispersive spectrometers like the PSPC on ROSAT and the CCD instruments on Chandra and XMM/Newton. However, upcoming cryogenic spectrometers on Astro-H and IXO will add vast new capabilities to investigate charge exchange in local objects such as comets and planetary atmospheres. They may also allow us to observe charge exchange in extra-solar objects such as galactic supernova remnants. With low spectral resolution instruments such as CCDs, x-ray emission due to charge exchange recombination really only provides information on the acceptor species, such as the solar wind. With the new breed of x-ray calorimeter instruments, emission from charge exchange becomes highly diagnostic allowing one to uniquely determine the acceptor species, ionization state, donor species and ionization state, and the relative velocity of the interaction. We will describe x-ray calorimeter instrumentation and its potential for charge exchange measurements in the near term. We will also touch on the instrumentation behind a decade of high resolution measurements of charge exchange using an x-ray calorimeter at the Lawrence Livermore National Laboratory.

  11. EFFECTS OF CHARGED PARTICLES ON CASCADE IMPACTOR CALIBRATIONS

    EPA Science Inventory

    The report gives results of a determination of collection characteristics for charged and uncharged particles in cascade impactors. Impaction collection efficiency was shown to be as much as 20 percent greater for charged particles than for uncharged particles with certain substr...

  12. Solar Cycle Effects on Geosynchronous Satellite Surface Charging

    NASA Astrophysics Data System (ADS)

    Habash Krause, L.; Chun, F. K.; Cooke, D. L.; Putz, V. B.; Ray, K. P.

    2005-05-01

    Spacecraft in geosynchronous Earth orbit (GEO) frequently undergo surface charging following injection of energetic (E ~ 10 keV) electrons into the environment, especially within the post-midnight sector. Charging data from the GEO spacecraft Defense Satellite Communication System (DSCS-III) B-7 have been recorded over one half solar cycle. The Charge Control Experiment (CCE) aboard DSCS-III B-7 recorded incident fluxes of energetic electrons, ion spectra for determining frame-to-plasma potentials, and dielectric surface-to-frame (differential) charging levels; additionally, it incorporated a Xe plasma contactor for neutralization of charged components. Previous studies have shown 1) a general correlation between geomagnetic activity indices and the severity of frame charging, and 2) a general correlation between the intensity of energetic electron fluxes and differential charging severity. However, it was also shown that the event-specific correlations contain enough variance to cast doubt on the utility of these correlations for a predictive system. With this study, we present both a principle components analysis and a multiple linear regression of the data which incorporate a combination of factors leading to both frame and differential charging, including the geomagnetic activity indices and intensities of the energetic electron fluxes.

  13. Charge-displacement analysis via natural orbitals for chemical valence: Charge transfer effects in coordination chemistry

    NASA Astrophysics Data System (ADS)

    Bistoni, Giovanni; Rampino, Sergio; Tarantelli, Francesco; Belpassi, Leonardo

    2015-02-01

    We recently devised a simple scheme for analyzing on quantitative grounds the Dewar-Chatt-Duncanson donation and back-donation in symmetric coordination complexes. Our approach is based on a symmetry decomposition of the so called Charge-Displacement (CD) function quantifying the charge flow, upon formation of a metal (M)-substrate (S) bond, along the M-S interaction axis and provides clear-cut measures of donation and back-donation charges in correlation with experimental observables [G. Bistoni et al., Angew. Chem., Int. Ed. 52, 11599 (2013)]. The symmetry constraints exclude of course from the analysis most systems of interest in coordination chemistry. In this paper, we show how to entirely overcome this limitation by taking advantage of the properties of the natural orbitals for chemical valence [M. Mitoraj and A. Michalak, J. Mol. Model. 13, 347 (2007)]. A general scheme for disentangling donation and back-donation in the CD function of both symmetric and non-symmetric systems is presented and illustrated through applications to M-ethyne (M = Au, Ni and W) coordination bonds, including an explicative study on substrate activation in a model reaction mechanism.

  14. Hall effect in quantum critical charge-cluster glass

    DOE PAGESBeta

    Bozovic, Ivan; Wu, Jie; Bollinger, Anthony T.; Sun, Yujie

    2016-04-04

    Upon doping, cuprates undergo a quantum phase transition from an insulator to a d-wave superconductor. The nature of this transition and of the insulating state is vividly debated. Here, we study the Hall effect in La2-xSrxCuO4 (LSCO) samples doped near the quantum critical point at x ≈ 0.06. Dramatic fluctuations in the Hall resistance appear below TCG ≈ 1.5 K and increase as the sample is cooled down further, signaling quantum critical behavior. We explore the doping dependence of this effect in detail, by studying a combinatorial LSCO library in which the Sr content is varied in extremely fine steps,more » Δx ≈ 0.00008. Furthermore, we observe that quantum charge fluctuations wash out when superconductivity emerges but can be restored when the latter is suppressed by applying a magnetic field, showing that the two instabilities compete for the ground state.« less

  15. Overview on collision processes of highly charged ions with atoms present status and problems

    SciTech Connect

    Janev, R.K.

    1983-05-01

    This paper provides a brief discussion on the present status of the collision physics of highly charged ions with atoms. The emphasis is on the main achievements in understanding and describing the most important collision processes, and as charge transfer, ionization and Auger-type processes, and even more on those open problems which, due either to their scientific or practical importance, represent challenges to current research in this field. The paper concentrates on general ideas and problems whose development and solutions have advanced or will advance our basic understanding of the collision dynamics of multiply charged ions with atoms.

  16. On the complex ageing characteristics of high-power LiFePO4/graphite battery cells cycled with high charge and discharge currents

    NASA Astrophysics Data System (ADS)

    Groot, Jens; Swierczynski, Maciej; Stan, Ana Irina; Kær, Søren Knudsen

    2015-07-01

    Li-ion batteries are known to undergo complex ageing processes, where the operating conditions have a profound and non-linear effect on both calendar life and cycle life. This is especially a challenge for the automotive industry, where the requirements on product lifetime and reliability are demanding. The aim of the present work is to quantify the ageing in terms of capacity fade and impedance growth as a function of operating conditions typical to high-power automotive applications; high charge and discharge rate, elevated temperatures and wide state-of-charge windows. The cycle life of 34 power-optimised LiFePO4/graphite cells was quantified by testing with charge and discharge rates between 1 and 4C-rate, temperatures between +23 °C and +53 °C, and a depth-of-discharge of either 100% or 60%. Although all cells show similar ageing pattern in general, the cycle life and the impedance growth is remarkably different for the tested cases. In addition, it is concluded that high charging rates, high temperatures or intensive cycling do not always lead to a shorter cycle life. One specifically interesting finding is that the combination of 1C-rate discharge in combination with 3.75C-rate charging was found to degrade the tested cells more rapidly than a symmetric cycle with 3.75C-rate in both directions.

  17. The Impact of Surface Charge on the Mechanical Behavior of High-Porosity Chalk

    NASA Astrophysics Data System (ADS)

    Megawati, M.; Hiorth, A.; Madland, M. V.

    2013-09-01

    We present rock mechanical test results and analytical calculations which demonstrate that a negative surface charge, resulting from sulfate adsorption from the pore water, impacts the rock mechanical behavior of high-porosity chalk. Na2SO4 brine flooded into chalk cores at 130 °C results in significantly reduced bulk modulus and yield point compared with that of NaCl brine at the same conditions. The experimental results have been interpreted using a surface complexation model combined with the Gouy-Chapman theory to describe the double layer. The calculated sulfate adsorption agrees well with the measured data. A sulfate adsorption of about 0.3 μmol/m2 and 0.7-1 μmol/m2 was measured at 50 and 130 °C, respectively. Relative to a total sites of 5 sites/nm2 these values correspond to an occupation of 4 % and 8-13 % which sufficiently explains the negative charging of the calcite surfaces. The interaction between charged surfaces specifically in the weak overlaps of electrical double layer gives rise to the total disjoining pressure in granular contacts. The net repulsive forces act as normal forces in the grains vicinity, counteracting the cohesive forces and enhance pore collapse failure during isotropic loading, which we argue to account for the reduced yield and bulk modulus of chalk cores. The effect of disjoining pressure is also assessed at different sulfate concentrations in aqueous solution, temperatures, as well as ionic strength of solution; all together remarkably reproduce similar trends as observed in the mechanical properties.

  18. Production of high brightness H- beam by charge exchange of hydrogen atom beam in sodium jet

    SciTech Connect

    Davydenko, V.; Zelenski, A.; Ivanov, A.; Kolmogorov, A.

    2010-11-16

    Production of H{sup -} beam for accelerators applications by charge exchange of high brightness hydrogen neutral beam in a sodium jet cell is experimentally studied in joint BNL-BINP experiment. In the experiment, a hydrogen-neutral beam with 3-6 keV energy, equivalent current up to 5 A and 200 microsecond pulse duration is used. The atomic beam is produced by charge exchange of a proton beam in a pulsed hydrogen target. Formation of the proton beam is performed in an ion source by four-electrode multiaperture ion-optical system. To achieve small beam emittance, the apertures in the ion-optical system have small enough size, and the extraction of ions is carried out from the surface of plasma emitter with a low transverse ion temperature of {approx}0.2 eV formed as a result of plasma jet expansion from the arc plasma generator. Developed for the BNL optically pumped polarized ion source, the sodium jet target with recirculation and aperture diameter of 2 cm is used in the experiment. At the first stage of the experiment H{sup -} beam with 36 mA current, 5 keV energy and {approx}0.15 cm {center_dot} mrad normalized emittance was obtained. To increase H{sup -} beam current ballistically focused hydrogen neutral beam will be applied. The effects of H{sup -} beam space-charge and sodium-jet stability will be studied to determine the basic limitations of this approach.

  19. High energetic excitons in carbon nanotubes directly probe charge-carriers

    PubMed Central

    Soavi, Giancarlo; Scotognella, Francesco; Viola, Daniele; Hefner, Timo; Hertel, Tobias; Cerullo, Giulio; Lanzani, Guglielmo

    2015-01-01

    Theory predicts peculiar features for excited-state dynamics in one dimension (1D) that are difficult to be observed experimentally. Single-walled carbon nanotubes (SWNTs) are an excellent approximation to 1D quantum confinement, due to their very high aspect ratio and low density of defects. Here we use ultrafast optical spectroscopy to probe photogenerated charge-carriers in (6,5) semiconducting SWNTs. We identify the transient energy shift of the highly polarizable S33 transition as a sensitive fingerprint of charge-carriers in SWNTs. By measuring the coherent phonon amplitude profile we obtain a precise estimate of the Stark-shift and discuss the binding energy of the S33 excitonic transition. From this, we infer that charge-carriers are formed instantaneously (<50 fs) even upon pumping the first exciton, S11. The decay of the photogenerated charge-carrier population is well described by a model for geminate recombination in 1D. PMID:25959462

  20. Flexible cobalt-phthalocyanine thin films with high charge carrier mobility

    NASA Astrophysics Data System (ADS)

    Singh, Ajay; Kumar, Arvind; Kumar, Ashwini; Samanta, Soumen; Debnath, Anil K.; Jha, Purushottam; Prasad, Rajeshwar; Salmi, Zakaria; Nowak, Sophie; Chehimi, Mohamed M.; Aswal, Dinesh K.; Gupta, Shiv K.

    2012-11-01

    The structural and charge transport characteristics of cobalt phthalocyanine (CoPc) films deposited on flexible bi-axially oriented polyethylene terephthalate (BOPET) substrates are investigated. CoPc films exhibited a preferential (200) orientation with charge carrier mobility of ˜118 cm2 V-1 s-1 (at 300 K). These films exhibited a reversible resistance changes upon bending them to different radius of curvature. The charge transport in CoPc films is governed by a bias dependent crossover from ohmic (J-V) to trap-free space-charge limited conduction (J-V2). These results demonstrate that CoPc films on flexible BOPET having high mobility and high mechanical flexibility are a potential candidate for flexible electronic devices.

  1. Threshold and efficiency for perforation of 1 nm thick carbon nanomembranes with slow highly charged ions

    NASA Astrophysics Data System (ADS)

    Wilhelm, Richard A.; Gruber, Elisabeth; Ritter, Robert; Heller, René; Beyer, André; Turchanin, Andrey; Klingner, Nico; Hübner, René; Stöger-Pollach, Michael; Vieker, Henning; Hlawacek, Gregor; Gölzhäuser, Armin; Facsko, Stefan; Aumayr, Friedrich

    2015-09-01

    Cross-linking of a self-assembled monolayer of 1,1‧-biphenyl-4-thiol by low energy electron irradiation leads to the formation of a carbon nanomembrane, that is only 1 nm thick. Here we study the perforation of these freestanding membranes by slow highly charged ion irradiation with respect to the pore formation yield. It is found that a threshold in potential energy of the highly charged ions of about 10 keV must be exceeded in order to form round pores with tunable diameters in the range of 5-15 nm. Above this energy threshold, the efficiency for a single ion to form a pore increases from 70% to nearly 100% with increasing charge. These findings are verified by two independent methods, namely the analysis of individual membranes stacked together during irradiation and the detailed analysis of exit charge state spectra utilizing an electrostatic analyzer.

  2. Flexible cobalt-phthalocyanine thin films with high charge carrier mobility

    SciTech Connect

    Singh, Ajay; Kumar, Arvind; Kumar, Ashwini; Samanta, Soumen; Debnath, Anil K.; Jha, Purushottam; Prasad, Rajeshwar; Aswal, Dinesh K.; Gupta, Shiv K.; Salmi, Zakaria; Nowak, Sophie; Chehimi, Mohamed M.

    2012-11-26

    The structural and charge transport characteristics of cobalt phthalocyanine (CoPc) films deposited on flexible bi-axially oriented polyethylene terephthalate (BOPET) substrates are investigated. CoPc films exhibited a preferential (200) orientation with charge carrier mobility of {approx}118 cm{sup 2} V{sup -1} s{sup -1} (at 300 K). These films exhibited a reversible resistance changes upon bending them to different radius of curvature. The charge transport in CoPc films is governed by a bias dependent crossover from ohmic (J-V) to trap-free space-charge limited conduction (J-V{sup 2}). These results demonstrate that CoPc films on flexible BOPET having high mobility and high mechanical flexibility are a potential candidate for flexible electronic devices.

  3. Statistical similarity between high energy charged particle fluxes in near-earth space and earthquakes

    NASA Astrophysics Data System (ADS)

    Wang, P.; Chang, Z.; Wang, H.; Lu, H.

    2014-05-01

    It has long been noticed that rapid short-term variations of high energy charged particle fluxes in near-Earth space occur more frequently several hours before the main shock of earthquakes. Physicists wish that this observation supply a possible precursor of strong earthquakes. Based on DEMETER data, we investigate statistical behaviors of flux fluctuations for high energy charged particles in near-Earth space. Long-term clustering, scaling, and universality in the temporal occurrence are found. There is high degree statistical similarity between high energy charged particle fluxes in near-Earth space and earthquakes. Thus, the observations of the high energy particle fluxes in near-Earth space may supply a useful tool in the study of earthquakes.

  4. GaAs series connected photovoltaic converters for high voltage capacitor charging applications

    SciTech Connect

    Rose, B.H.

    1997-09-01

    This report describes the design features of series connected photovoltaic arrays which will be required to charge capacitors to relatively high (400V) voltages in time periods on the order of 1 microsecond. The factors which determine the array voltage and the capacitor charge time are given. Individual element junction designs, along with an interconnect scheme, and a semiconductor process to realize them are presented. Finally, the input laser optical required to meet the requirements is determined.

  5. Generation of Electric and Magnetic Fields During Detonation of High Explosive Charges in Boreholes

    SciTech Connect

    Soloviev, S; Sweeney, J

    2004-06-04

    We present experimental results of a study of electromagnetic field generation during underground detonation of high explosive charges in holes bored in sandy loam and granite. Test conditions and physico-mechanical properties of the soil exert significant influence on the parameters of electromagnetic signals generated by underground TNT charges with masses of 2 - 200 kg. The electric and magnetic field experimental data are satisfactorily described by an electric dipole model with the source embedded in a layered media.

  6. DNA Immobilization and Hybridization Detection by the Intrinsic Molecular Charge Using Capacitive Field-Effect Sensors Modified with a Charged Weak Polyelectrolyte Layer.

    PubMed

    Bronder, Thomas S; Poghossian, Arshak; Scheja, Sabrina; Wu, Chunsheng; Keusgen, Michael; Mewes, Dieter; Schöning, Michael J

    2015-09-16

    Miniaturized setup, compatibility with advanced micro- and nanotechnologies, and ability to detect biomolecules by their intrinsic molecular charge favor the semiconductor field-effect platform as one of the most attractive approaches for the development of label-free DNA chips. In this work, a capacitive field-effect EIS (electrolyte-insulator-semiconductor) sensor covered with a layer-by-layer prepared, positively charged weak polyelectrolyte layer of PAH (poly(allylamine hydrochloride)) was used for the label-free electrical detection of DNA (deoxyribonucleic acid) immobilization and hybridization. The negatively charged probe single-stranded DNA (ssDNA) molecules were electrostatically adsorbed onto the positively charged PAH layer, resulting in a preferentially flat orientation of the ssDNA molecules within the Debye length, thus yielding a reduced charge-screening effect and a higher sensor signal. Each sensor-surface modification step (PAH adsorption, probe ssDNA immobilization, hybridization with complementary target DNA (cDNA), reducing an unspecific adsorption by a blocking agent, incubation with noncomplementary DNA (ncDNA) solution) was monitored by means of capacitance-voltage and constant-capacitance measurements. In addition, the surface morphology of the PAH layer was studied by atomic force microscopy and contact-angle measurements. High hybridization signals of 34 and 43 mV were recorded in low-ionic strength solutions of 10 and 1 mM, respectively. In contrast, a small signal of 4 mV was recorded in the case of unspecific adsorption of fully mismatched ncDNA. The density of probe ssDNA and dsDNA molecules as well as the hybridization efficiency was estimated using the experimentally measured DNA immobilization and hybridization signals and a simplified double-layer capacitor model. The results of field-effect experiments were supported by fluorescence measurements, verifying the DNA-immobilization and hybridization event. PMID:26327272

  7. An ultrarobust high-performance triboelectric nanogenerator based on charge replenishment.

    PubMed

    Guo, Hengyu; Chen, Jun; Yeh, Min-Hsin; Fan, Xing; Wen, Zhen; Li, Zhaoling; Hu, Chenguo; Wang, Zhong Lin

    2015-05-26

    Harvesting ambient mechanical energy is a green route in obtaining clean and sustainable electric energy. Here, we report an ultrarobust high-performance triboelectric nanogenerator (TENG) on the basis of charge replenishment by creatively introducing a rod rolling friction in the structure design. With a grating number of 30 and a free-standing gap of 0.5 mm, the fabricated TENG can deliver an output power of 250 mW/m(2) at a rotating rate of 1000 r/min. And it is capable of charging a 200 μF commercial capacitor to 120 V in 170 s, lighting up a G16 globe light as well as 16 spot lights connected in parallel. Moreover, the reported TENG holds an unprecedented robustness in harvesting rotational kinetic energy. After a continuous rotation of more than 14.4 million cycles, there is no observable electric output degradation. Given the superior output performance together with the unprecedented device robustness resulting from distinctive mechanism and novel structure design, the reported TENG renders an effective and sustainable technology for ambient mechanical energy harvesting. This work is a solid step in the development toward TENG-based self-sustained electronics and systems. PMID:25965297

  8. High Precision Three-body Variational Method for Critical Nuclear Charge

    NASA Astrophysics Data System (ADS)

    Busuttil, Michael A.

    For an atom there exists a critical nuclear charge Zc that is just sufficient to bind the nucleus and its electrons into a stable configuration. A study of the critical charge for two-electron atoms is presented with the purpose of improving accuracy for Zc. To this end, high precision techniques involving the variational method with multiple basis sets in Hylleraas coordinates are employed. The method is particularly well adapted to the case where one electron is strongly bound and the other is at the limit of becoming unbound. The results are analysed in terms of fractional powers of (Z -- Zc) related to the analytic structure of the energy E( Z) and a 1/Z expansion for the energy. This results in a Zc of 0.91102808(5). Future work prompted by this study includes development of direct techniques to determine Zc utilizing the low-Z stability of the method; developing the framework and mathematical justification for a novel bootstrap analysis method used in curve-fitting; and investigating the inclusion of finite nuclear mass, relativistic effects, and other higher order corrections in the determination of Zc.

  9. Charge-Reversal APTES-Modified Mesoporous Silica Nanoparticles with High Drug Loading and Release Controllability.

    PubMed

    Wang, Yifeng; Sun, Yi; Wang, Jine; Yang, Yang; Li, Yulin; Yuan, Yuan; Liu, Changsheng

    2016-07-13

    In this study, we demonstrate a facile strategy (DL-SF) for developing MSN-based nanosystems through drug loading (DL, using doxorubicin as a model drug) followed by surface functionalization (SF) of mesoporous silica nanoparticles (MSNs) via aqueous (3-aminopropyl)triethoxysilane (APTES) silylation. For comparison, a reverse functionalization process (i.e., SF-DL) was also studied. The pre-DL process allows for an efficient encapsulation (encapsulation efficiency of ∼75%) of an anticancer drug [doxorubicin (DOX)] inside MSNs, and post-SF allows in situ formation of an APTES outer layer to restrict DOX leakage under physiological conditions. This method makes it possible to tune the DOX release rate by increasing the APTES decoration density through variation of the APTES concentration. However, the SF-DL approach results in a rapid decrease in drug loading capacity with an increase in APTES concentration because of the formation of the APTES outer layer hampers the inner permeability of the DOX drug, resulting in a burst release similar to that of undecorated MSNs. The resulting DOX-loaded DL-SF MSNs present a slightly negatively charged surface under physiological conditions and become positively charged in and extracellular microenvironment of solid tumor due to the protonation effect under acidic conditions. These merits aid their maintenance of long-term stability in blood circulation, high cellular uptake by a kind of skin carcinoma cells, and an enhanced intracellular drug release behavior, showing their potential in the delivery of many drugs beyond anticancer chemotherapeutics. PMID:27314423

  10. Aziridinyl Fluorophores Demonstrate Bright Fluorescence and Superior Photostability by Effectively Inhibiting Twisted Intramolecular Charge Transfer.

    PubMed

    Liu, Xiaogang; Qiao, Qinglong; Tian, Wenming; Liu, Wenjuan; Chen, Jie; Lang, Matthew J; Xu, Zhaochao

    2016-06-01

    Replacing conventional dialkylamino substituents with a three-membered aziridine ring in naphthalimide leads to significantly enhanced brightness and photostability by effectively suppressing twisted intramolecular charge transfer formation. This replacement is generalizable in other chemical families of fluorophores, such as coumarin, phthalimide, and nitrobenzoxadiazole dyes. In highly polar fluorophores, we show that aziridinyl dyes even outperform their azetidinyl analogues in aqueous solution. We also proposed one simple mechanism that can explain the vulnerability of quantum yield to hydrogen bond interactions in protonic solvents in various fluorophore families. Such knowledge is a critical step toward developing high-performance fluorophores for advanced fluorescence imaging. PMID:27203847

  11. Relativistic calculations of isotope shifts in highly charged ions

    SciTech Connect

    Tupitsyn, I.I.; Shabaev, V.M.; Crespo Lopez-Urrutia, J.R.; Soria Orts, R.; Ullrich, J.; Draganic, I.

    2003-08-01

    The isotope shifts of forbidden transitions in Be- and B-like argon ions are calculated. It is shown that only using the relativistic recoil operator can provide a proper evaluation of the mass isotope shift, which strongly dominates over the field isotope shift for the ions under consideration. Comparing the isotope shifts calculated with the current experimental uncertainties indicates very good perspectives for a first test of the relativistic theory of the recoil effect in middle-Z ions.

  12. Development of a Sweetness Sensor for Aspartame, a Positively Charged High-Potency Sweetener

    PubMed Central

    Yasuura, Masato; Tahara, Yusuke; Ikezaki, Hidekazu; Toko, Kiyoshi

    2014-01-01

    Taste evaluation technology has been developed by several methods, such as sensory tests, electronic tongues and a taste sensor based on lipid/polymer membranes. In particular, the taste sensor can individually quantify five basic tastes without multivariate analysis. However, it has proven difficult to develop a sweetness sensor, because sweeteners are classified into three types according to the electric charges in an aqueous solution; that is, no charge, negative charge and positive charge. Using membrane potential measurements, the taste-sensing system needs three types of sensor membrane for each electric charge type of sweetener. Since the commercially available sweetness sensor was only intended for uncharged sweeteners, a sweetness sensor for positively charged high-potency sweeteners such as aspartame was developed in this study. Using a lipid and plasticizers, we fabricated various lipid/polymer membranes for the sweetness sensor to identify the suitable components of the sensor membranes. As a result, one of the developed sensors showed responses of more than 20 mV to 10 mM aspartame and less than 5 mV to any other taste. The responses of the sensor depended on the concentration of aspartame. These results suggested that the developed sweetness sensor had high sensitivity to and high selectivity for aspartame. PMID:24763213

  13. Inhomogeneity of charge-density-wave order and quenched disorder in a high-Tc superconductor

    NASA Astrophysics Data System (ADS)

    Campi, G.; Bianconi, A.; Poccia, N.; Bianconi, G.; Barba, L.; Arrighetti, G.; Innocenti, D.; Karpinski, J.; Zhigadlo, N. D.; Kazakov, S. M.; Burghammer, M.; Zimmermann, M. V.; Sprung, M.; Ricci, A.

    2015-09-01

    It has recently been established that the high-transition-temperature (high-Tc) superconducting state coexists with short-range charge-density-wave order and quenched disorder arising from dopants and strain. This complex, multiscale phase separation invites the development of theories of high-temperature superconductivity that include complexity. The nature of the spatial interplay between charge and dopant order that provides a basis for nanoscale phase separation remains a key open question, because experiments have yet to probe the unknown spatial distribution at both the nanoscale and mesoscale (between atomic and macroscopic scale). Here we report micro X-ray diffraction imaging of the spatial distribution of both short-range charge-density-wave `puddles' (domains with only a few wavelengths) and quenched disorder in HgBa2CuO4 + y, the single-layer cuprate with the highest Tc, 95 kelvin (refs 26, 27, 28). We found that the charge-density-wave puddles, like the steam bubbles in boiling water, have a fat-tailed size distribution that is typical of self-organization near a critical point. However, the quenched disorder, which arises from oxygen interstitials, has a distribution that is contrary to the usually assumed random, uncorrelated distribution. The interstitial-oxygen-rich domains are spatially anticorrelated with the charge-density-wave domains, because higher doping does not favour the stripy charge-density-wave puddles, leading to a complex emergent geometry of the spatial landscape for superconductivity.

  14. Inhomogeneity of charge-density-wave order and quenched disorder in a high-Tc superconductor.

    PubMed

    Campi, G; Bianconi, A; Poccia, N; Bianconi, G; Barba, L; Arrighetti, G; Innocenti, D; Karpinski, J; Zhigadlo, N D; Kazakov, S M; Burghammer, M; Zimmermann, M v; Sprung, M; Ricci, A

    2015-09-17

    It has recently been established that the high-transition-temperature (high-Tc) superconducting state coexists with short-range charge-density-wave order and quenched disorder arising from dopants and strain. This complex, multiscale phase separation invites the development of theories of high-temperature superconductivity that include complexity. The nature of the spatial interplay between charge and dopant order that provides a basis for nanoscale phase separation remains a key open question, because experiments have yet to probe the unknown spatial distribution at both the nanoscale and mesoscale (between atomic and macroscopic scale). Here we report micro X-ray diffraction imaging of the spatial distribution of both short-range charge-density-wave 'puddles' (domains with only a few wavelengths) and quenched disorder in HgBa2CuO4 + y, the single-layer cuprate with the highest Tc, 95 kelvin (refs 26-28). We found that the charge-density-wave puddles, like the steam bubbles in boiling water, have a fat-tailed size distribution that is typical of self-organization near a critical point. However, the quenched disorder, which arises from oxygen interstitials, has a distribution that is contrary to the usually assumed random, uncorrelated distribution. The interstitial-oxygen-rich domains are spatially anticorrelated with the charge-density-wave domains, because higher doping does not favour the stripy charge-density-wave puddles, leading to a complex emergent geometry of the spatial landscape for superconductivity. PMID:26381983

  15. A high-charge and short-pulse RF photocathode gun for wake-field acceleration

    NASA Astrophysics Data System (ADS)

    Gai, W.; Li, X.; Conde, M.; Power, J.; Schoessow, P.

    1998-02-01

    In this paper we present a design report on 1-1/2 cell, L-Band RF photocathode gun which is capable of generating and accelerating electron beams with peak currents >10 kA. We address several critical issues of high-current RF photoinjectors such as longitudinal space charge effect, and transverse emittance growth. Unlike conventional short electron pulse generation, this design does not require magnetic pulse compression. Based on numerical simulations using SUPERFISH and PARMELA, this design will produce 100 nC beam at 18 MeV with r.m.s. bunch length 1.25 mm and normalized transverse emittance 108 mm mrad. Applications of this source beam for wake-field acceleration are also discussed.

  16. Effects of surface charges of gold nanoclusters on long-term in vivo biodistribution, toxicity, and cancer radiation therapy.

    PubMed

    Wang, Jun-Ying; Chen, Jie; Yang, Jiang; Wang, Hao; Shen, Xiu; Sun, Yuan-Ming; Guo, Meili; Zhang, Xiao-Dong

    2016-01-01

    Gold nanoclusters (Au NCs) have exhibited great advantages in medical diagnostics and therapies due to their efficient renal clearance and high tumor uptake. The in vivo effects of the surface chemistry of Au NCs are important for the development of both nanobiological interfaces and potential clinical contrast reagents, but these properties are yet to be fully investigated. In this study, we prepared glutathione-protected Au NCs of a similar hydrodynamic size but with three different surface charges: positive, negative, and neutral. Their in vivo biodistribution, excretion, and toxicity were investigated over a 90-day period, and tumor uptake and potential application to radiation therapy were also evaluated. The results showed that the surface charge greatly influenced pharmacokinetics, particularly renal excretion and accumulation in kidney, liver, spleen, and testis. Negatively charged Au NCs displayed lower excretion and increased tumor uptake, indicating a potential for NC-based therapeutics, whereas positively charged clusters caused transient side effects on the peripheral blood system. PMID:27555769

  17. Effects of surface charges of gold nanoclusters on long-term in vivo biodistribution, toxicity, and cancer radiation therapy

    PubMed Central

    Wang, Jun-Ying; Chen, Jie; Yang, Jiang; Wang, Hao; Shen, Xiu; Sun, Yuan-Ming; Guo, Meili; Zhang, Xiao-Dong

    2016-01-01

    Gold nanoclusters (Au NCs) have exhibited great advantages in medical diagnostics and therapies due to their efficient renal clearance and high tumor uptake. The in vivo effects of the surface chemistry of Au NCs are important for the development of both nanobiological interfaces and potential clinical contrast reagents, but these properties are yet to be fully investigated. In this study, we prepared glutathione-protected Au NCs of a similar hydrodynamic size but with three different surface charges: positive, negative, and neutral. Their in vivo biodistribution, excretion, and toxicity were investigated over a 90-day period, and tumor uptake and potential application to radiation therapy were also evaluated. The results showed that the surface charge greatly influenced pharmacokinetics, particularly renal excretion and accumulation in kidney, liver, spleen, and testis. Negatively charged Au NCs displayed lower excretion and increased tumor uptake, indicating a potential for NC-based therapeutics, whereas positively charged clusters caused transient side effects on the peripheral blood system. PMID:27555769

  18. Effects of trace water on charging of silica particles dispersed in a nonpolar medium.

    PubMed

    Gacek, Matthew; Bergsman, David; Michor, Edward; Berg, John C

    2012-08-01

    This paper presents an investigation of the effects of trace water on the charging of silica (SiO(2)) particles dispersed in a nonpolar medium. There are a growing number of applications that seek to use electrostatic effects in apolar media to control particle movement and aggregation stability in such systems. One factor that is often overlooked in the preparation of nonpolar colloidal dispersions is the amount of water that is introduced to the system by hygroscopic particles and surfactants. The amount and location of this water can have significant effects on the electrical properties of these systems. For nonpolar surfactant solutions it has been shown that water can affect the conductivity, and it has been speculated that this is due to swelling of the polar cores of inverse micelles, increasing the fraction of them that are charged. Some studies have suggested that particle surface charging may also be sensitive to water content, but a clear mechanism for the process has not been fully developed. The situation with particles is further complicated by the fact that it is often unclear whether the water resides on the particle surfaces or in the polar cores of inverse micelles. The current work explores not only the effect of water content on reverse micelle and particle charging but seeks to differentiate between water bound to the particles and water located in the micelles. This is accomplished by measuring the solution conductivity and the electrophoretic mobility of silicon dioxide particles dispersed in solutions of Isopar-L and OLOA 11000. The water content is determined for both the dispersion and the supernatant after centrifuging the particles out. It is found that at equilibrium the majority of the water in the system adsorbs to the surface of the hygroscopic silica particles. In addition, the effect of water on particle electrophoretic mobility is found to be dependent on surfactant concentration. At small OLOA concentrations, additional water

  19. Effect of hydrogen on dynamic charge transport in amorphous oxide thin film transistors.

    PubMed

    Kim, Taeho; Nam, Yunyong; Hur, Ji-Hyun; Park, Sang-Hee Ko; Jeon, Sanghun

    2016-08-12

    Hydrogen in zinc oxide based semiconductors functions as a donor or a defect de-activator depending on its concentration, greatly affecting the device characteristics of oxide thin-film transistors (TFTs). Thus, controlling the hydrogen concentration in oxide semiconductors is very important for achieving high mobility and minimizing device instability. In this study, we investigated the charge transport dynamics of the amorphous semiconductor InGaZnO at various hydrogen concentrations as a function of the deposition temperature of the gate insulator. To examine the nature of dynamic charge trapping, we employed short-pulse current-voltage and transient current-time measurements. Among various examined oxide devices, that with a high hydrogen concentration exhibits the best performance characteristics, such as high saturation mobility (10.9 cm(2) v(-1) s(-1)), low subthreshold slope (0.12 V/dec), and negligible hysteresis, which stem from low defect densities and negligible transient charge trapping. Our finding indicates that hydrogen atoms effectively passivate the defects in subgap states of the bulk semiconductor, minimizing the mobility degradation and threshold voltage instability. This study indicates that hydrogen plays a useful role in TFTs by improving the device performance and stability. PMID:27363543

  20. Effect of hydrogen on dynamic charge transport in amorphous oxide thin film transistors

    NASA Astrophysics Data System (ADS)

    Kim, Taeho; Nam, Yunyong; Hur, Ji-Hyun; Park, Sang-Hee Ko; Jeon, Sanghun

    2016-08-01

    Hydrogen in zinc oxide based semiconductors functions as a donor or a defect de-activator depending on its concentration, greatly affecting the device characteristics of oxide thin-film transistors (TFTs). Thus, controlling the hydrogen concentration in oxide semiconductors is very important for achieving high mobility and minimizing device instability. In this study, we investigated the charge transport dynamics of the amorphous semiconductor InGaZnO at various hydrogen concentrations as a function of the deposition temperature of the gate insulator. To examine the nature of dynamic charge trapping, we employed short-pulse current‑voltage and transient current‑time measurements. Among various examined oxide devices, that with a high hydrogen concentration exhibits the best performance characteristics, such as high saturation mobility (10.9 cm2 v‑1 s‑1), low subthreshold slope (0.12 V/dec), and negligible hysteresis, which stem from low defect densities and negligible transient charge trapping. Our finding indicates that hydrogen atoms effectively passivate the defects in subgap states of the bulk semiconductor, minimizing the mobility degradation and threshold voltage instability. This study indicates that hydrogen plays a useful role in TFTs by improving the device performance and stability.

  1. Quantum Hall Effect near the charge neutrality point in graphene

    NASA Astrophysics Data System (ADS)

    Leon, Jorge; Gusev, Guennadii; Plentz, Flavio

    2013-03-01

    The Quantum Hall effect (QHE) of a two-dimensional (2D) electron gas in a strong magnetic field is one of the most fascinating quantum phenomena discovered in condensed matter physics. In this work we propose to study the transport properties of the single layer and bilayer of graphene at the charge neutrality point (CNP) and compare it with random magnetic model developed in theoretical papers in which we argue that at CNP graphene layer is still inhomogeneous, very likely due to random potential of impurities. The random potential fluctuations induce smooth fluctuations in the local filling factor around ν = 0. In this case the transport is determined by special class of trajectories, ``the snake states'', propagating along contour ν = 0. The situation is very similar to the transport of a two-dimensional particles moving in a spatially modulated random magnetic field with zero mean value. We especially emphasize that our results may be equally relevant to the composite fermions description of the half-filled Landau level. The authors thank to CNPq and FAPESP for financial support for this work.

  2. Electron impact excitation of highly charged sodium-like ions

    NASA Technical Reports Server (NTRS)

    Blaha, M.; Davis, J.

    1978-01-01

    Optical transition probabilities and electron collision strengths for Ca X, Fe XVI, Zn XX, Kr XXVI and Mo XXXII are calculated for transitions between n equal to 3 and n equal to 4 levels. The calculations neglect relativistic effects on the radial functions. A semi-empirical approach provides wave functions of the excited states; a distorted wave function without exchange is employed to obtain the excitation cross sections. The density dependence of the relative intensities of certain emission lines in the sodium isoelectronic sequence is also discussed.

  3. Uncharted Frontiers in the Spectroscopy of Highly Charged Ions

    SciTech Connect

    Beiersdorfer, P.; Brown, G.; Crespo, J.; Kim, S.-H.; Neill, P.; Utter, S.; Widmann, K.

    2000-01-08

    The development of novel techniques is critical for maintaining a state-of-the-art core competency in atomic physics and readiness for evolving programmatic needs. We have carried out a three-year effort to develop novel spectroscopic instrumentation that added new dimensions to our capabilities for measuring energy levels, radiative transition probabilities, and electron-ion excitation processes. The new capabilities created were in areas that heretofore had been inaccessible to scientific scrutiny and included high-resolution spectroscopy of hard x rays, femtosecond lifetime measurements, measurements of transition probabilities of long-lived metastable levels, polarization spectroscopy, ultra-precise determinations of energy levels, and the establishment of absolute wavelength standards in x-ray spectroscopy. Instrumentation developed during the period included a transmission-type crystal spectrometer, a flat-field EUV spectrometer, and the development and deployment of absolutely calibrated monolithic crystals. The new capabilities enabled very sensitive tests of atomic wave functions, of calculations of magnetic sublevel populations, and of fundamental theories in uncharted regimes, and provided the basis for developing new diagnostic techniques of high-density plasmas.

  4. Synergistic Effects of Self-Doped Nanostructures as Charge Trapping Elements in Organic Field Effect Transistor Memory.

    PubMed

    Ling, Haifeng; Lin, Jinyi; Yi, Mingdong; Liu, Bin; Li, Wen; Lin, Zongqiong; Xie, Linghai; Bao, Yan; Guo, Fengning; Huang, Wei

    2016-07-27

    Despite remarkable advances in the development of organic field-effect transistor (OFET) memories over recent years, the charge trapping elements remain confined to the critical electrets of polymers, nanoparticles, or ferroelectrics. Nevertheless, rare reports are available on the complementary advantages of different types of trapping elements integrated in one single OFET memory. To address this issue, we fabricated two kinds of pentacene-based OFET memories with solution-processed amorphous and β-phase poly(9,9-dioctylfluorene) (PFO) films as charge trapping layers, respectively. Compared to the amorphous film, the β-PFO film has self-doped nanostructures (20-120 nm) and could act as natural charge trapping elements, demonstrating the synergistic effects of combining both merits of polymer and nanoparticles into one electret. Consequently, the OFET memory with β-PFO showed nearly 26% increment in the storage capacity and a pronounced memory window of ∼45 V in 20 ms programming time. Besides, the retention time of β-PFO device extended 2 times to maintain an ON/OFF current ratio of 10(3), indicating high bias-stress reliability. Furthermore, the β-PFO device demonstrated good photosensitivity in the 430-700 nm range, which was attributed to the additive effect of smaller bandgap and self-doped nanostructures of β-phase. In this regard, the tuning of molecular conformation and aggregation in a polymer electret is an effective strategy to obtain a high performance OFET memory. PMID:27363281

  5. Effect of charge fluctuation on two dimensional dust clusters in elliptical confinement

    SciTech Connect

    Rouaiguia, L.; Djebli, M.; Drir, M.

    2009-03-15

    The structural and melting properties of two dimensional clusters consisting of finite positively charged dust particles are studied. The particles interact through a screened Coulomb potential in an elliptical confinement where Monte Carlo numerical simulation is performed for two different situations. The first one is dealing with constant dust charge and the second one with the charge fluctuation. It is showed that a ground state configuration and a transition from zigzag configuration to linear chain depend on the anisotropic parameter and the number of particles. The effect of charge fluctuation is found to be significant for lower positively charged dust particles. A comparison is made with numerical and experimental results.

  6. Charged Molecules Modulate the Volume Exclusion Effects Exerted by Crowders on FtsZ Polymerization

    PubMed Central

    Monterroso, Begoña; Reija, Belén; Jiménez, Mercedes; Zorrilla, Silvia; Rivas, Germán

    2016-01-01

    We have studied the influence of protein crowders, either combined or individually, on the GTP-induced FtsZ cooperative assembly, crucial for the formation of the dynamic septal ring and, hence, for bacterial division. It was earlier demonstrated that high concentrations of inert polymers like Ficoll 70, used to mimic the crowded cellular interior, favor the assembly of FtsZ into bundles with slow depolymerization. We have found, by fluorescence anisotropy together with light scattering measurements, that the presence of protein crowders increases the tendency of FtsZ to polymerize at micromolar magnesium concentration, being the effect larger with ovomucoid, a negatively charged protein. Neutral polymers and a positively charged protein also diminished the critical concentration of assembly, the extent of the effect being compatible with that expected according to pure volume exclusion models. FtsZ polymerization was also observed to be strongly promoted by a negatively charged polymer, DNA, and by some unrelated polymers like PEGs at concentrations below the crowding regime. The influence of mixed crowders mimicking the heterogeneity of the intracellular environment on the tendency of FtsZ to assemble was also studied and nonadditive effects were found to prevail. Far from exactly reproducing the bacterial cytoplasm environment, this approach serves as a simplified model illustrating how its intrinsically crowded and heterogeneous nature may modulate FtsZ assembly into a functional Z-ring. PMID:26870947

  7. Synergistic High Charge-Storage Capacity for Multi-level Flexible Organic Flash Memory

    NASA Astrophysics Data System (ADS)

    Kang, Minji; Khim, Dongyoon; Park, Won-Tae; Kim, Jihong; Kim, Juhwan; Noh, Yong-Young; Baeg, Kang-Jun; Kim, Dong-Yu

    2015-07-01

    Electret and organic floating-gate memories are next-generation flash storage mediums for printed organic complementary circuits. While each flash memory can be easily fabricated using solution processes on flexible plastic substrates, promising their potential for on-chip memory organization is limited by unreliable bit operation and high write loads. We here report that new architecture could improve the overall performance of organic memory, and especially meet high storage for multi-level operation. Our concept depends on synergistic effect of electrical characterization in combination with a polymer electret (poly(2-vinyl naphthalene) (PVN)) and metal nanoparticles (Copper). It is distinguished from mostly organic nano-floating-gate memories by using the electret dielectric instead of general tunneling dielectric for additional charge storage. The uniform stacking of organic layers including various dielectrics and poly(3-hexylthiophene) (P3HT) as an organic semiconductor, followed by thin-film coating using orthogonal solvents, greatly improve device precision despite easy and fast manufacture. Poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] as high-k blocking dielectric also allows reduction of programming voltage. The reported synergistic organic memory devices represent low power consumption, high cycle endurance, high thermal stability and suitable retention time, compared to electret and organic nano-floating-gate memory devices.

  8. Synergistic High Charge-Storage Capacity for Multi-level Flexible Organic Flash Memory

    PubMed Central

    Kang, Minji; Khim, Dongyoon; Park, Won-Tae; Kim, Jihong; Kim, Juhwan; Noh, Yong-Young; Baeg, Kang-Jun; Kim, Dong-Yu

    2015-01-01

    Electret and organic floating-gate memories are next-generation flash storage mediums for printed organic complementary circuits. While each flash memory can be easily fabricated using solution processes on flexible plastic substrates, promising their potential for on-chip memory organization is limited by unreliable bit operation and high write loads. We here report that new architecture could improve the overall performance of organic memory, and especially meet high storage for multi-level operation. Our concept depends on synergistic effect of electrical characterization in combination with a polymer electret (poly(2-vinyl naphthalene) (PVN)) and metal nanoparticles (Copper). It is distinguished from mostly organic nano-floating-gate memories by using the electret dielectric instead of general tunneling dielectric for additional charge storage. The uniform stacking of organic layers including various dielectrics and poly(3-hexylthiophene) (P3HT) as an organic semiconductor, followed by thin-film coating using orthogonal solvents, greatly improve device precision despite easy and fast manufacture. Poly(vinylidene fluoride-trifluoroethylene) [P(VDF-TrFE)] as high-k blocking dielectric also allows reduction of programming voltage. The reported synergistic organic memory devices represent low power consumption, high cycle endurance, high thermal stability and suitable retention time, compared to electret and organic nano-floating-gate memory devices. PMID:26201747

  9. High-precision digital charge-coupled device TV system

    NASA Astrophysics Data System (ADS)

    Vishnevsky, Grigory I.; Ioffe, S. A.; Berezin, V. Y.; Rybakov, M. I.; Mikhaylov, A. V.; Belyaev, L. V.

    1991-06-01

    In certain test, measurement, and research applications of CCD TV systems, the greater accuracy than usual 8-bit frame-grabbers can provide is demanded without the system being too expensive. The paper presents the concept and features of the high-precision low-cost digital CCD TV system intended for obtaining 12-bit monochrome images of immobile or relatively slow moving objects. The increase in accuracy is achieved by the specific digitization procedure -- one column per frame, which combines the benefits of a slow A/D converter with real-time TV imaging compatibility. To reduce speed restrictions on sample- and-hold circuits, a zoomed pixel read out cycle, corresponding to the pixel to be digitized, is proposed. The system provides great flexibility in choice of integration times and readout rates by means of a programmable readout sequencer, and is easily adaptable to various user demands and CCDs types.

  10. Peritoneal retention of liposomes: Effects of lipid composition, PEG coating and liposome charge.

    PubMed

    Dadashzadeh, S; Mirahmadi, N; Babaei, M H; Vali, A M

    2010-12-01

    In the treatment of peritoneal carcinomatosis, systemic chemotherapy is not quite effective due to the poor penetration of cytotoxic agents into the peritoneal cavity, whereas intraperitoneal administration of chemotherapeutic agents is generally accompanied by quick absorption of the free drug from the peritoneum. Local delivery of drugs with controlled-release delivery systems like liposomes could provide sustained, elevated drug levels and reduce local and systemic toxicity. In order to achieve an ameliorated liposomal formulation that results in higher peritoneal levels of the drug and retention, vesicles composed of different phospholipid compositions (distearoyl [DSPC]; dipalmitoyl [DPPC]; or dimiristoylphosphatidylcholine [DMPC]) and various charges (neutral; negative, containing distearoylphosphatidylglycerol [DSPG]; or positive, containing dioleyloxy trimethylammonium propane [DOTAP]) were prepared at two sizes of 100 and 1000nm. The effect of surface hydrophilicity was also investigated by incorporating PEG into the DSPC-containing neutral and charged liposomes. Liposomes were labeled with (99m)Tc and injected into mouse peritoneum. Mice were then sacrificed at eight different time points, and the percentage of injected radiolabel in the peritoneal cavity and the tissue distribution in terms of the percent of the injected dose/gram of tissue (%ID/g) were obtained. The ratio of the peritoneal AUC to the free label ranged from a minimum of 4.95 for DMPC/CHOL (cholesterol) 100nm vesicles to a maximum of 24.99 for DSPC/CHOL/DOTAP 1000nm (DOTAP 1000) vesicles. These last positively charged vesicles had the greatest peritoneal level; moreover, their level remained constant at approximately 25% of the injected dose from 2 to 48h. Among the conventional (i.e., without PEG) 100nm liposomes, the positively charged vesicles again showed the greatest retention. Incorporation of PEG at this size into the lipid structures augmented the peritoneal level, particularly

  11. Avoided level crossings in very highly charged ions

    NASA Astrophysics Data System (ADS)

    Beiersdorfer, P.; Scofield, J. H.; Brown, G. V.; Chen, M. H.; Hell, N.; Osterheld, A. L.; Vogel, D. A.; Wong, K. L.

    2016-05-01

    We report a systematic measurement of the (2p1/2 -13 d3/2) J =1 and (2s1/2 -13 p1/2) J =1 levels in 14 neonlike ions between Ba46 + and Pb72 + and document the effects of their avoided crossing near Z =68 . Strong mixing affects the oscillator strengths over a surprisingly wide range of atomic numbers and leads to the vanishing of one transition two atomic numbers below the crossing. The crossing voids the otherwise correct expectation that the (2p1/2 -13 d3/2) J =1 level energy is only weakly affected by quantum electrodynamics (QED). For about 10 atomic numbers surrounding the crossing, its QED contributions are anomalously large, attaining almost equality to those affecting the (2s1/2 -13 p1/2) J =1 level. As a result, the accuracy of energy level calculations appears compromised near the crossing.

  12. Strategies for minimizing emittance growth in high charge CW FEL injectors

    SciTech Connect

    Liu, H.

    1995-12-31

    This paper is concerned with the best strategies for designing low emittance, high charge CW FEL injectors. This issue has become more and more critical as today`s interest in FELs is toward UV wavelength high average power operation. The challenge of obtaining the smallest possible emittance is discussed from both the practical point of view and the beam physics point of view. Various mechanisms responsible for beam emittance growth are addressed in detail. Finally, the design of a high charge injector test stand at CEBAF is chosen to help illustrate the design strategies and emittance growth mechanisms discussed in this paper.

  13. Evaporation and discharge dynamics of highly charged multicomponent droplets generated by electrospray ionization.

    PubMed

    Grimm, Ronald L; Beauchamp, J L

    2010-01-28

    We investigate the Rayleigh discharge and evaporation dynamics of highly charged two-component droplets consisting principally of methanol with 2-methoxyethanol, tert-butanol, or m-nitrobenzyl alcohol. A phase Doppler anemometer (PDA) characterizes droplets generated by electrospray ionization (ESI) according to size, velocity, and charge as they move through a uniform electric field within an ion mobility spectrometer (IMS). Repeated field reversals result in droplet "ping-pong" through the PDA. This generates individual droplet histories of solvent evaporation behavior and the dynamics of charge loss to progeny droplets during Rayleigh discharge events. On average, methanol droplets discharge at 127% their Rayleigh limit of charge, q(R), and release 25% of the net charge. Charge loss from methanol/2-methoxyethanol droplets behaves similarly to pure 2-methoxyethanol droplets which release approximately 28% of their net charge. Binary methanol droplets containing up to 50% tert-butanol discharge at a lower percent q(R) than pure methanol and release a greater fraction of their net charge. Mixed 99% methanol/1% m-nitrobenzyl alcohol droplets possess discharge characteristics similar to those of methanol. However, droplets of methanol containing 2% m-nitrobenzyl evaporate down to a fixed size and charge that remains constant with no observable discharges. Quasi-steady-state evaporation models accurately describe observed evaporation phenomena in which methanol/tert-butanol droplets evaporate at a rate similar to that of pure methanol and methanol/2-methoxyethanol droplets evaporate at a rate similar to that of 2-methoxyethanol. We compare these results to previous Rayleigh discharge experiments and discuss the implications for binary solvents in electrospray mass spectrometry (ESI-MS) and field-induced droplet ionization mass spectrometry (FIDI-MS). PMID:19848399

  14. Effect of electric charging on the velocity of water flow in CNT.

    PubMed

    Abbasi, Hossein Reza; Karimian, S M Hossein

    2016-09-01

    The role of electrical charge in controlling the velocity of water molecules in a finite single-walled carbon nanotube (CNT) was studied in detail using molecular dynamics simulation. Different test cases were examined to determine the parameters affecting the control of water-flow velocity in CNT upon electrically charging the surface of a CNT. The results showed that charge magnitude and volume, as well as the charging scenario, are the parameters having greatest effect. The implementation of electric charge on the surface of a CNT was demonstrated to decrease the resistance of CNT to incoming water flow at the entrance, but to increase friction-type resistance to flow along the CNT. Therefore, through controlling the magnitude of electric charge, water flow through the CNT may be accelerated, or decelerated. The results show that the velocity of molecular flow in the CNT increases to a maximum value, and then decreases with electric charge regardless of its sign. In the case studied here, this maximum velocity occurs at electric charging of ±0.25e/atom. It was also shown that, to reach similar flow velocities in a CNT, it is not sufficient to merely implement equal volumes of electric charge, where the volume of electric charging is defined as charge magnitude × charging time. In fact , both magnitude of charging and volume of electric charging must be equal to each other. These findings, together with options to implement scenarios with alternative charging, provide the means to effectively adjust desired velocities in a CNT. PMID:27488104

  15. Three-dimensional effects in resonant charge transfer between atomic particles and nanosystems

    NASA Astrophysics Data System (ADS)

    Gainullin, I. K.; Sonkin, M. A.

    2015-08-01

    Resonant charge transfer (RCT) between negative ions and a metallic nanosystem was investigated by means of a high-performance ab initio three-dimensional (3D) numerical solver. During RCT, an electron was shown to occupy succesively nanosystem eigenstates along the z , ρ , and φ coordinates. Electron tunneling into a nanosystem is a reversible process, because after some time the electron propagates back to the ion. RCT efficiency in a nanosystem was found to exhibit quantum-size effects as well as lateral ion position dependence. This means that during ion-surface interaction, the nanosystem's size and the ion trajectory strongly influence the final charge state of the ion. In the case of real 3D systems (without cylindrical symmetry), the electron density currents form quantum vortices; this result is rather nontrivial for static systems. In addition, the limits of the adiabatic approximation (rate equation) for the RCT calculation with nanosystems are defined.

  16. Parameter-free calculation of charge-changing cross sections at high energy

    NASA Astrophysics Data System (ADS)

    Suzuki, Y.; Horiuchi, W.; Terashima, S.; Kanungo, R.; Ameil, F.; Atkinson, J.; Ayyad, Y.; Cortina-Gil, D.; Dillmann, I.; Estradé, A.; Evdokimov, A.; Farinon, F.; Geissel, H.; Guastalla, G.; Janik, R.; Knoebel, R.; Kurcewicz, J.; Litvinov, Yu. A.; Marta, M.; Mostazo, M.; Mukha, I.; Nociforo, C.; Ong, H. J.; Pietri, S.; Prochazka, A.; Scheidenberger, C.; Sitar, B.; Strmen, P.; Takechi, M.; Tanaka, J.; Tanihata, I.; Vargas, J.; Weick, H.; Winfield, J. S.

    2016-07-01

    Charge-changing cross sections at high energies are expected to provide useful information on nuclear charge radii. No reliable theory to calculate the cross section has yet been available. We develop a formula using Glauber and eikonal approximations and test its validity with recent new data on carbon isotopes measured at around 900 A MeV. We first confirm that our theory reproduces the cross sections of 12,13,14C+12C consistently with the known charge radii. Next we show that the cross sections of C-1912 on a proton target are all well reproduced provided the role of neutrons is accounted for. We also discuss the energy dependence of the charge-changing cross sections.

  17. High temperature Hall-effect apparatus

    NASA Technical Reports Server (NTRS)

    Wood, C.; Lockwood, A.; Chmielewski, A.; Parker, J.; Zoltan, A.

    1984-01-01

    A high-temperature Hall-effect apparatus is described which allows measurements up to temperatures greater than 1200 K using the van der Pauw method. The apparatus was designed for measurements on refractory materials having high charge carrier concentrations and generally low mobilities. Pressure contacts are applied to the samples. Consequently, special contacting methods, peculiar to a specific sample material, are not required. The apparatus has been semiautomated to facilitate measurements. Results are presented on n- and p-type silicon.

  18. Charge effect of a liposomal delivery system encapsulating simvastatin to treat experimental ischemic stroke in rats

    PubMed Central

    Campos-Martorell, Mireia; Cano-Sarabia, Mary; Simats, Alba; Hernández-Guillamon, Mar; Rosell, Anna; Maspoch, Daniel; Montaner, Joan

    2016-01-01

    Background and aims Although the beneficial effects of statins on stroke have been widely demonstrated both in experimental studies and in clinical trials, the aim of this study is to prepare and characterize a new liposomal delivery system that encapsulates simvastatin to improve its delivery into the brain. Materials and methods In order to select the optimal liposome lipid composition with the highest capacity to reach the brain, male Wistar rats were submitted to sham or transitory middle cerebral arterial occlusion (MCAOt) surgery and treated (intravenous [IV]) with fluorescent-labeled liposomes with different net surface charges. Ninety minutes after the administration of liposomes, the brain, blood, liver, lungs, spleen, and kidneys were evaluated ex vivo using the Xenogen IVIS® Spectrum imaging system to detect the load of fluorescent liposomes. In a second substudy, simvastatin was assessed upon reaching the brain, comparing free and encapsulated simvastatin (IV) administration. For this purpose, simvastatin levels in brain homogenates from sham or MCAOt rats at 2 hours or 4 hours after receiving the treatment were detected through ultra-high-protein liquid chromatography. Results Whereas positively charged liposomes were not detected in brain or plasma 90 minutes after their administration, neutral and negatively charged liposomes were able to reach the brain and accumulate specifically in the infarcted area. Moreover, neutral liposomes exhibited higher bioavailability in plasma 4 hours after being administered. The detection of simvastatin by ultra-high-protein liquid chromatography confirmed its ability to cross the blood–brain barrier, when administered either as a free drug or encapsulated into liposomes. Conclusion This study confirms that liposome charge is critical to promote its accumulation in the brain infarct after MCAOt. Furthermore, simvastatin can be delivered after being encapsulated. Thus, simvastatin encapsulation might be a promising

  19. Potential of mean force between like-charged nanoparticles: Many-body effect

    NASA Astrophysics Data System (ADS)

    Zhang, Xi; Zhang, Jin-Si; Shi, Ya-Zhou; Zhu, Xiao-Long; Tan, Zhi-Jie

    2016-03-01

    Ion-mediated interaction is important for the properties of polyelectrolytes such as colloids and nucleic acids. The effective pair interactions between two polyelectrolytes have been investigated extensively, but the many-body effect for multiple polyelectrolytes still remains elusive. In this work, the many-body effect in potential of mean force (PMF) between like-charged nanoparticles in various salt solutions has been comprehensively examined by Monte Carlo simulation and the nonlinear Poisson-Boltzmann theory. Our calculations show that, at high 1:1 salt, the PMF is weakly repulsive and appears additive, while at low 1:1 salt, the additive assumption overestimates the repulsive many-body PMF. At low 2:2 salt, the pair PMF appears weakly repulsive while the many-body PMF can become attractive. In contrast, at high 2:2 salt, the pair PMF is apparently attractive while the many-body effect can cause a weaker attractive PMF than that from the additive assumption. Our microscopic analyses suggest that the elusive many-body effect is attributed to ion-binding which is sensitive to ion concentration, ion valence, number of nanoparticles and charges on nanoparticles.

  20. Potential of mean force between like-charged nanoparticles: Many-body effect

    PubMed Central

    Zhang, Xi; Zhang, Jin-Si; Shi, Ya-Zhou; Zhu, Xiao-Long; Tan, Zhi-Jie

    2016-01-01

    Ion-mediated interaction is important for the properties of polyelectrolytes such as colloids and nucleic acids. The effective pair interactions between two polyelectrolytes have been investigated extensively, but the many-body effect for multiple polyelectrolytes still remains elusive. In this work, the many-body effect in potential of mean force (PMF) between like-charged nanoparticles in various salt solutions has been comprehensively examined by Monte Carlo simulation and the nonlinear Poisson-Boltzmann theory. Our calculations show that, at high 1:1 salt, the PMF is weakly repulsive and appears additive, while at low 1:1 salt, the additive assumption overestimates the repulsive many-body PMF. At low 2:2 salt, the pair PMF appears weakly repulsive while the many-body PMF can become attractive. In contrast, at high 2:2 salt, the pair PMF is apparently attractive while the many-body effect can cause a weaker attractive PMF than that from the additive assumption. Our microscopic analyses suggest that the elusive many-body effect is attributed to ion-binding which is sensitive to ion concentration, ion valence, number of nanoparticles and charges on nanoparticles. PMID:26997415