Science.gov

Sample records for high cortical spreading

  1. Cortical spreading depression: An enigma

    NASA Astrophysics Data System (ADS)

    Miura, R. M.; Huang, H.; Wylie, J. J.

    2007-08-01

    The brain is a complex organ with active components composed largely of neurons, glial cells, and blood vessels. There exists an enormous experimental and theoretical literature on the mechanisms involved in the functioning of the brain, but we still do not have a good understanding of how it works on a gross mechanistic level. In general, the brain maintains a homeostatic state with relatively small ion concentration changes, the major ions being sodium, potassium, and chloride. Calcium ions are present in smaller quantities but still play an important role in many phenomena. Cortical spreading depression (CSD for short) was discovered over 60 years ago by A.A.P. Leão, a Brazilian physiologist doing his doctoral research on epilepsy at Harvard University, “Spreading depression of activity in the cerebral cortex," J. Neurophysiol., 7 (1944), pp. 359-390. Cortical spreading depression is characterized by massive changes in ionic concentrations and slow nonlinear chemical waves, with speeds on the order of mm/min, in the cortex of different brain structures in various experimental animals. In humans, CSD is associated with migraine with aura, where a light scintillation in the visual field propagates, then disappears, and is followed by a sustained headache. To date, CSD remains an enigma, and further detailed experimental and theoretical investigations are needed to develop a comprehensive picture of the diverse mechanisms involved in producing CSD. A number of mechanisms have been hypothesized to be important for CSD wave propagation. In this paper, we briefly describe several characteristics of CSD wave propagation, and examine some of the mechanisms that are believed to be important, including ion diffusion, membrane ionic currents, osmotic effects, spatial buffering, neurotransmitter substances, gap junctions, metabolic pumps, and synaptic connections. Continuum models of CSD, consisting of coupled nonlinear diffusion equations for the ion concentrations, and

  2. Dynamics of Ionic Shifts in Cortical Spreading Depression.

    PubMed

    Enger, Rune; Tang, Wannan; Vindedal, Gry Fluge; Jensen, Vidar; Johannes Helm, P; Sprengel, Rolf; Looger, Loren L; Nagelhus, Erlend A

    2015-11-01

    Cortical spreading depression is a slowly propagating wave of near-complete depolarization of brain cells followed by temporary suppression of neuronal activity. Accumulating evidence indicates that cortical spreading depression underlies the migraine aura and that similar waves promote tissue damage in stroke, trauma, and hemorrhage. Cortical spreading depression is characterized by neuronal swelling, profound elevation of extracellular potassium and glutamate, multiphasic blood flow changes, and drop in tissue oxygen tension. The slow speed of the cortical spreading depression wave implies that it is mediated by diffusion of a chemical substance, yet the identity of this substance and the pathway it follows are unknown. Intercellular spread between gap junction-coupled neurons or glial cells and interstitial diffusion of K(+) or glutamate have been proposed. Here we use extracellular direct current potential recordings, K(+)-sensitive microelectrodes, and 2-photon imaging with ultrasensitive Ca(2+) and glutamate fluorescent probes to elucidate the spatiotemporal dynamics of ionic shifts associated with the propagation of cortical spreading depression in the visual cortex of adult living mice. Our data argue against intercellular spread of Ca(2+) carrying the cortical spreading depression wavefront and are in favor of interstitial K(+) diffusion, rather than glutamate diffusion, as the leading event in cortical spreading depression. PMID:25840424

  3. Dynamics of Ionic Shifts in Cortical Spreading Depression

    PubMed Central

    Enger, Rune; Tang, Wannan; Vindedal, Gry Fluge; Jensen, Vidar; Johannes Helm, P.; Sprengel, Rolf; Looger, Loren L.; Nagelhus, Erlend A.

    2015-01-01

    Cortical spreading depression is a slowly propagating wave of near-complete depolarization of brain cells followed by temporary suppression of neuronal activity. Accumulating evidence indicates that cortical spreading depression underlies the migraine aura and that similar waves promote tissue damage in stroke, trauma, and hemorrhage. Cortical spreading depression is characterized by neuronal swelling, profound elevation of extracellular potassium and glutamate, multiphasic blood flow changes, and drop in tissue oxygen tension. The slow speed of the cortical spreading depression wave implies that it is mediated by diffusion of a chemical substance, yet the identity of this substance and the pathway it follows are unknown. Intercellular spread between gap junction-coupled neurons or glial cells and interstitial diffusion of K+ or glutamate have been proposed. Here we use extracellular direct current potential recordings, K+-sensitive microelectrodes, and 2-photon imaging with ultrasensitive Ca2+ and glutamate fluorescent probes to elucidate the spatiotemporal dynamics of ionic shifts associated with the propagation of cortical spreading depression in the visual cortex of adult living mice. Our data argue against intercellular spread of Ca2+ carrying the cortical spreading depression wavefront and are in favor of interstitial K+ diffusion, rather than glutamate diffusion, as the leading event in cortical spreading depression. PMID:25840424

  4. [Cortical spreading depolarization: a new pathophysiological mechanism in neurological diseases].

    PubMed

    Sánchez-Porras, Renán; Robles-Cabrera, Adriana; Santos, Edgar

    2014-05-20

    Cortical spreading depolarization is a wave of almost complete depolarization of the neuronal and glial cells that occurs in different neurological diseases such as migraine with aura, subarachnoid hemorrhage, intracerebral hemorrhage, head trauma and stroke. These depolarization waves are characterized by a change in the negative potential with an amplitude between -10 and -30mV, duration of ∼1min and changes in the ion homeostasis between the intra- and extracellular space. This results in neuronal edema and dendritic distortion. Under pathologic states of hypoperfusion, cortical spreading depolarization can produce oxidative stress, worsen hypoxia and induce neuronal death. This is due to intense arterial vasoconstriction produced by an inverse response called spreading ischemia. Only in the last years there has been an electrophysiological confirmation of cortical spreading depolarization in human brains. Occurrence of cortical spreading depolarization has been associated with worse outcome in patients. Currently, increased knowledge regarding the pathophysiologic mechanisms supports the hypothetical correlation of cortical spreading depolarization with brain damage in humans. There are diverse therapeutic alternatives that promise inhibition of cortical spreading depolarization and subsequent better outcomes. PMID:23928069

  5. Role of cortical spreading depression in the pathophysiology of migraine.

    PubMed

    Cui, Yilong; Kataoka, Yosky; Watanabe, Yasuyoshi

    2014-10-01

    A migraine is a recurring neurological disorder characterized by unilateral, intense, and pulsatile headaches. In one-third of migraine patients, the attacks are preceded by a visual aura, such as a slowly-propagating scintillating scotoma. Migraine aura is thought to be a result of the neurovascular phenomenon of cortical spreading depression (SD), a self-propagating wave of depolarization that spreads across the cerebral cortex. Several animal experiments have demonstrated that cortical SD causes intracranial neurogenic inflammation around the meningeal blood vessels, such as plasma protein extravasation and pro-inflammatory peptide release. Cortical SD has also been reported to activate both peripheral and central trigeminal nociceptive pathways. Although several issues remain to be resolved, recent evidence suggests that cortical SD could be the initial trigger of intracranial neurogenic inflammation, which then contributes to migraine headaches via subsequent activation of trigeminal afferents. PMID:25260797

  6. Cortico-cortical evoked potentials for sites of early versus late seizure spread in stereoelectroencephalography.

    PubMed

    Lega, Bradley; Dionisio, Sasha; Flanigan, Patrick; Bingaman, William; Najm, Imad; Nair, Dileep; Gonzalez-Martinez, Jorge

    2015-09-01

    Cortico-cortical evoked potentials offer the possibility of understanding connectivity within seizure networks to improve diagnosis and more accurately identify candidates for seizure surgery. We sought to determine if cortico-cortical evoked potentials and post-stimulation oscillatory changes differ for sites of EARLY versus LATE ictal spread. 37 patients undergoing stereoelectroencephalography were tested using a cortico-cortical evoked potential paradigm. All electrodes were classified according to the speed of ictal spread. EARLY spread sites were matched to a LATE spread site equidistant from the onset zone. Root-mean-square was used to quantify evoked responses and post-stimulation gamma band power and coherence were extracted and compared. Sites of EARLY spread exhibited significantly greater evoked responses after stimulation across all patients (t(36)=2.973, p=0.004). Stimulation elicited enhanced gamma band activity at EARLY spread sites (t(36)=2.61, p=0.03, FDR corrected); this gamma band oscillation was highly coherent with the onset zone. Cortico-cortical evoked potentials and post-stimulation changes in gamma band activity differ between sites of EARLY versus LATE ictal spread. The oscillatory changes can help visualize connectivity within the seizure network. PMID:26220373

  7. In vivo optical imaging of cortical spreading depression in rat

    NASA Astrophysics Data System (ADS)

    Chen, Shangbin; Li, Pengcheng; Luo, Weihua; Gong, Hui; Cheng, Haiying; Luo, Qingming

    2003-12-01

    Intrinsic optical signals imaging (IOSI) and laser speckle imaging (LSI) are both novel techniques for functional neuroimaging in vivo. Combining them to study cortical spreading depression (CSD) which is an important disease model for migraine and other neurological disorders. CSD were induced by pinprick in Sprague-Dawley rats. Intrinsic optical signals (IOS) at 540 nm showed CSD evolution happened in one hemisphere cortex at speeds of 3.7+/-0.4 mm/min, and the vasodilation closely correlated a four-phasic response. By LSI, we observed a transient and significant increase cerebral blood flow (CBF). In this paper, optical imaging would be showed as a powerful tool for describing the hemodynamic character during CSD in rat.

  8. Cortical spreading depression activates and upregulates MMP-9

    PubMed Central

    Gursoy-Ozdemir, Yasemin; Qiu, Jianhua; Matsuoka, Norihiro; Bolay, Hayrunnisa; Bermpohl, Daniela; Jin, Hongwei; Wang, Xiaoying; Rosenberg, Gary A.; Lo, Eng H.; Moskowitz, Michael A.

    2004-01-01

    Cortical spreading depression (CSD) is a propagating wave of neuronal and glial depolarization and has been implicated in disorders of neurovascular regulation such as stroke, head trauma, and migraine. In this study, we found that CSD alters blood-brain barrier (BBB) permeability by activating brain MMPs. Beginning at 3–6 hours, MMP-9 levels increased within cortex ipsilateral to the CSD, reaching a maximum at 24 hours and persisting for at least 48 hours. Gelatinolytic activity was detected earliest within the matrix of cortical blood vessels and later within neurons and pia arachnoid (≥3 hours), particularly within piriform cortex; this activity was suppressed by injection of the metalloprotease inhibitor GM6001 or in vitro by the addition of a zinc chelator (1,10-phenanthroline). At 3–24 hours, immunoreactive laminin, endothelial barrier antigen, and zona occludens-1 diminished in the ipsilateral cortex, suggesting that CSD altered proteins critical to the integrity of the BBB. At 3 hours after CSD, plasma protein leakage and brain edema developed contemporaneously. Albumin leakage was suppressed by the administration of GM6001. Protein leakage was not detected in MMP-9–null mice, implicating the MMP-9 isoform in barrier disruption. We conclude that intense neuronal and glial depolarization initiates a cascade that disrupts the BBB via an MMP-9–dependent mechanism. PMID:15146242

  9. Mathematical Modeling of Spreading Cortical Depression: Spiral and Reverberating Waves

    NASA Astrophysics Data System (ADS)

    Tuckwell, Henry C.

    2008-07-01

    Mathematical models of spreading depression are considered in the form of reaction-diffusion systems in two space dimensions. The systems are solved numerically. In the two component model with potassium and calcium ion concentrations, we demonstrate, using updated parameter values, travelling solitary waves of increased potassium and decreased calcium. These have circular wavefronts emanating from a region of application of potassium chloride. The collision of two such waves does not, as in one space dimension, result in annihilation but the formation of a unified wave with a large wavefront. For the first time we show that the mathematical model reproduces the actual properties of spreading depression waves in cortical structures. With attention to geometry, timing and location of stimuli we have succeeded in finding reverberating waves matching experiment. By simulating the technique of anodal block, spiral waves have also been demonstrated which parallel those found experimentally. The six-component model, which contains additionally sodium, chloride, glutamate and GABA, is also investigated in 2 space dimensions, including an experimentally based exchange pump for sodium and potassium. Solutions are obtained without (amplitude 29 mM external K+) and with action potentials (amplitude 44 mM external K+) with speeds of propagation, allowing for tortuosity, of 1.4 mm/minute and 2.7 mm/minute, respectively. When action potentials are included a somewhat higher pump strength is required to ensure the return to resting state.

  10. Changes in hemodynamics and light scattering during cortical spreading depression

    NASA Astrophysics Data System (ADS)

    Li, Pengcheng; Yang, Yuanyuan; Luo, Qingming

    2005-01-01

    Cortical spreading depression (CSD) has been known to play an important role in the mechanism of migraine, stroke and brain injure. Optical imaging of intrinsic signals has been shown a powerful method for characterizing the spatial and temporal pattern of the propagation of CSD. However, the possible physiological mechanisms underlying the intrinsic optical signal (IOS) during CSD still remain incompletely understood. In this study, a spectroscopic recording of the change in optical intrinsic signal during CSD was performed and an analysis method based on the modified Beer-Lambert law was used to estimate the changes in the concentration of HbO2 and Hb, and changes in light scattering from the spectra data. The CSD were induced by pinprick in 10 α-chloralose/urethane anesthetized Sprague-Dawley rats. In all experiments, four-phasic changes in optical reflectance were observed at 450 nm ~ 570 nm, and triphasic changes in optical reflectance were observed in the range of 570 nm ~750 nm. But at 750 nm ~ 850 nm, only biphasic changes of optical signal were detected. Converting the spectra data to the changes in light scattering and concentration of Hb and HbO2, we found that the CSD induced an initial increase in concentration of HbO2 (amplitude: 9.0+/-3.7%), which was 26.2+/-18.6 s earlier than the onset of increase of Hb concentration. Furthermore, the concentration of HbO2 showed a four-phasic change, whereas the concentration of Hb only showed a biphasic change. For the changes in light scattering during CSD, a triphasic change was observed.

  11. Mathematical approaches to modeling of cortical spreading depression

    NASA Astrophysics Data System (ADS)

    Miura, Robert M.; Huang, Huaxiong; Wylie, Jonathan J.

    2013-12-01

    Migraine with aura (MwA) is a debilitating disease that afflicts about 25%-30% of migraine sufferers. During MwA, a visual illusion propagates in the visual field, then disappears, and is followed by a sustained headache. MwA was conjectured by Lashley to be related to some neurological phenomenon. A few years later, Leão observed electrophysiological waves in the brain that are now known as cortical spreading depression (CSD). CSD waves were soon conjectured to be the neurological phenomenon underlying MwA that had been suggested by Lashley. However, the confirmation of the link between MwA and CSD was not made until 2001 by Hadjikhani et al. [Proc. Natl. Acad. Sci. U.S.A. 98, 4687-4692 (2001)] using functional MRI techniques. Despite the fact that CSD has been studied continuously since its discovery in 1944, our detailed understandings of the interactions between the mechanisms underlying CSD waves have remained elusive. The connection between MwA and CSD makes the understanding of CSD even more compelling and urgent. In addition to all of the information gleaned from the many experimental studies on CSD since its discovery, mathematical modeling studies provide a general and in some sense more precise alternative method for exploring a variety of mechanisms, which may be important to develop a comprehensive picture of the diverse mechanisms leading to CSD wave instigation and propagation. Some of the mechanisms that are believed to be important include ion diffusion, membrane ionic currents, osmotic effects, spatial buffering, neurotransmitter substances, gap junctions, metabolic pumps, and synaptic connections. Discrete and continuum models of CSD consist of coupled nonlinear differential equations for the ion concentrations. In this review of the current quantitative understanding of CSD, we focus on these modeling paradigms and various mechanisms that are felt to be important for CSD.

  12. Repetitive trigeminal nociceptive stimulation in rats increases their susceptibility to cortical spreading depression.

    PubMed

    Toriumi, Haruki; Shimizu, Toshihiko; Ebine, Taeko; Takizawa, Tsubasa; Kayama, Yohei; Koh, Anri; Shibata, Mamoru; Suzuki, Norihiro

    2016-05-01

    We examined the ability of trigeminal nerve activation to induce cortical spreading depression in rats. Capsaicin was injected into the bilateral plantar or whisker pad for either 4 or 6 days in rats. The number and duration of cortical spreading depressions induced by potassium were significantly increased in animals injected with capsaicin in the bilateral whisker pad compared with animals injected in the bilateral plantar or in controls, while administration of a GABAA receptor agonist decreased these effects. Repetitive nociceptive stimulation of the trigeminal nerve lowers the threshold for the induction of cortical spreading depression by altering GABAergic neuronal activity. PMID:26739227

  13. Cortical NADH during pharmacological manipulations of the respiratory chain and spreading depression in vivo.

    PubMed

    Rex, A; Pfeifer, L; Fink, F; Fink, H

    1999-08-01

    The nicotinamide adenine dinucleotide (NADH) is one of the main means for energy transfer in the mitochondrial respiratory chain and is an important parameter of cellular metabolism. NADH can be measured by its fluorescence and various fluorometric methods have been developed. In this study, a pulsed nitrogen laser combined with a fibreoptic set-up and photomultipliers was used to induce and measure NADH fluorescence on the cortical surface. The aim of the study was to assess the suitability of the laser induced spectroscopy for in vivo and on-line measurement of NADH in neuroscience and particularly for the assessment of neuronal metabolism. Changes in cerebral blood flow may affect fluorescence measurement. To assess the consequences of alterations in blood flow, the vasodilators glyceryl trinitrate and nimodipine and the vasoconstrictor endothelin-1 were applied. The induced hemodynamic changes were verified by colour Doppler sonography. The tests using the vasodilators showed that an increased blood flow in the brain increased not only NADH fluorescence but also the scattered light measured. The vasoconstrictor caused opposite effects. Insertion of a compensation method (subtraction of the scattered light) allowed the exclusion of hemodynamic artifacts. Effects of changes in the cellular metabolism were induced by sodium cyanide, an inhibitor of the mitochondrial respiratory chain, or by 2,4-dinitrophenol (2,4-DNP), an uncoupler of the oxidative phosphorylation. Sodium cyanide induced a transient increase of NADH fluorescence and 2,4-DNP decreased intracellular NADH fluorescence. Furthermore, the repercussions of cortical spreading depressions (CSD), a response of the brain to noxious stimuli, on cortical NADH fluorescence were determined. A single CSD decreased cortical NADH fluorescence for about 1 min, followed by a 5- to 10-min increase. The changes in NADH levels seem to correspond with the excitation and inhibition of neuronal metabolism, respectively. In

  14. Simultaneous imaging of intrinsic optical signals and cerebral vessel responses during cortical spreading depression in rats

    NASA Astrophysics Data System (ADS)

    Li, Pengcheng; Chen, Shangbin; Luo, Weihua; Luo, Qingming

    2003-12-01

    Cortical spreading depression (CSD) is an important disease model for migraine and cerebral ischemia. We investigated the spatio-temporal characteristics of the intrinsic optical signals (IOS) at 570 nm and the cerebral blood vessel responses during CSD simultaneously by optical reflectance imaging in vivo. The CSD were induced by pinprick in 10 α-chloralose/urethane anesthetized Sprague-Dawley rats. A four-phasic IOS response was observed at pial arteries and parenchymal sites in all experimental animals and an initial slight pial arteries dilation (21.5%+/-13.6%) and constriction (-4.2%+/-3.5%) precedes the dramatic dilation (69.2%+/-26.1%) of pial arterioles was recorded. Our experimental results show a high correlation (r = 0.89+/-0.025) between the IOS response and the diameter changes of the cerebral blood vessels during CSD in rats.

  15. Spreading photoparoxysmal EEG response is associated with an abnormal cortical excitability pattern.

    PubMed

    Siniatchkin, Michael; Groppa, Sergey; Jerosch, Bettina; Muhle, Hiltrud; Kurth, Christoph; Shepherd, Alex J; Siebner, Hartwig; Stephani, Ulrich

    2007-01-01

    Photosensitivity or photoparoxysmal response (PPR) is a highly heritable electroencephalographic trait characterized by an abnormal cortical response to intermittent photic stimulation (IPS). In PPR-positive individuals, IPS induces spikes, spike-waves or intermittent slow waves. The PPR may be restricted to posterior visual areas (i.e. local PPR with occipital spikes only) or spread to anterior non-visual cortical regions (i.e. PPR with propagation). The mechanisms underlying the PPR and causing its spread remain to be clarified. In unmedicated PPR-positive individuals and PPR-negative control participants without any history of previous seizures, we used focal transcranial magnetic stimulation (TMS) to investigate the excitability of the visual or primary motor cortex (M1). In the first experiment [18 healthy control subjects (i.e. without PPR in electroencephalography: 6 females, mean age 26.5 +/- 7.34 years) and 17 healthy participants with PPR (7 females, mean age 25.18 +/- 12.2 years) were studied], occipital TMS was used to elicit phosphenes or to suppress the visual perception of letter trigrams. PPR-positive individuals with propagation had lower phosphene thresholds and steeper stimulus-response curves than individuals without PPR or with occipital spikes only. Occipital TMS also induced a stronger suppression of visual perception in PPR-positive subjects with propagation relative to subjects without PPR or with occipital spikes. In the second experiment, we applied TMS over the right M1 without concurrent IPS and measured the motor threshold, the stimulus response curve, and the duration of the cortical silent period (CSP) in PPR positive individuals with propagation and in PPR-negative control participants [15 right-handed healthy subjects without PPR (3 males, mean age 17.7 +/- 3.6 years) and 14 right-handed healthy individuals showing a PPR with propagation (3 males, mean age 17.4 +/- 3.9 years)]. PPR-positive individuals showed no changes in these

  16. Geometry Shapes Propagation: Assessing the Presence and Absence of Cortical Symmetries through a Computational Model of Cortical Spreading Depression

    PubMed Central

    Kroos, Julia M.; Diez, Ibai; Cortes, Jesus M.; Stramaglia, Sebastiano; Gerardo-Giorda, Luca

    2016-01-01

    Cortical spreading depression (CSD), a depolarization wave which originates in the visual cortex and travels toward the frontal lobe, has been suggested to be one neural correlate of aura migraine. To the date, little is known about the mechanisms which can trigger or stop aura migraine. Here, to shed some light on this problem and, under the hypothesis that CSD might mediate aura migraine, we aim to study different aspects favoring or disfavoring the propagation of CSD. In particular, by using a computational neuronal model distributed throughout a realistic cortical mesh, we study the role that the geometry has in shaping CSD. Our results are two-fold: first, we found significant differences in the propagation traveling patterns of CSD, both intra and inter-hemispherically, revealing important asymmetries in the propagation profile. Second, we developed methods able to identify brain regions featuring a peculiar behavior during CSD propagation. Our study reveals dynamical aspects of CSD, which, if applied to subject-specific cortical geometry, might shed some light on how to differentiate between healthy subjects and those suffering migraine. PMID:26869913

  17. Geometry Shapes Propagation: Assessing the Presence and Absence of Cortical Symmetries through a Computational Model of Cortical Spreading Depression.

    PubMed

    Kroos, Julia M; Diez, Ibai; Cortes, Jesus M; Stramaglia, Sebastiano; Gerardo-Giorda, Luca

    2016-01-01

    Cortical spreading depression (CSD), a depolarization wave which originates in the visual cortex and travels toward the frontal lobe, has been suggested to be one neural correlate of aura migraine. To the date, little is known about the mechanisms which can trigger or stop aura migraine. Here, to shed some light on this problem and, under the hypothesis that CSD might mediate aura migraine, we aim to study different aspects favoring or disfavoring the propagation of CSD. In particular, by using a computational neuronal model distributed throughout a realistic cortical mesh, we study the role that the geometry has in shaping CSD. Our results are two-fold: first, we found significant differences in the propagation traveling patterns of CSD, both intra and inter-hemispherically, revealing important asymmetries in the propagation profile. Second, we developed methods able to identify brain regions featuring a peculiar behavior during CSD propagation. Our study reveals dynamical aspects of CSD, which, if applied to subject-specific cortical geometry, might shed some light on how to differentiate between healthy subjects and those suffering migraine. PMID:26869913

  18. [The Effect of Cortical Spreading Depression Wave on EEG Spectral Power Anaesthesed and Conscious Rats].

    PubMed

    Koroleva, V I; Sakharov, D S; Bogdanov, A V

    2016-01-01

    EEG power changes in anaesthetized and conscious rats were studied (under repeated experiments) in wide frequency band (0.1-200 Hz) during cortical spreading depression wave (SD). In anaesthetized rats the decrease of EEG spectral power was shown through all diapasons under consideration. The most pronounced decay of the EEG power was marked in the 30-40 Hz band (27.3 ± 18.5, p = 2.46 x 10-(11)). In other frequency ranges the power decrease was less but its significance remained high. In conscious rats the simultaneous decay of the EEG power from 20 to 100 Hz range was also the most informative index of SD wave. The maximum power loss was found for band 30-40 Hz (11.2 ± 7.8, p = 2.55 x 10(-7)). It was shown that besides of EEG power decay the development of SD wave was characterized by the appearance of high frequency activity in front of SD and at the end of it. The increase of high-frequency activity in front of SD wave appeared in the ipsilateral hemisphere and moved along the cortex with the velocity of the SD wave itself. However the bursts of high frequency activity at the end of unilateral SD occurred simultaneously in both hemispheres and lasted 1.5-2.5 min. Findings contribute to detection of SD wave on basis of EEG spectral analysis. PMID:27538287

  19. NR2A contributes to genesis and propagation of cortical spreading depression in rats.

    PubMed

    Bu, Fan; Du, Ruoxing; Li, Yi; Quinn, John P; Wang, Minyan

    2016-01-01

    Cortical spreading depression (CSD) is a transient propagating excitation of synaptic activity followed by depression, which is implicated in migraine. Increasing evidence points to an essential role of NR2A-containing NMDA receptors in CSD propagation in vitro; however, whether these receptors mediate CSD genesis in vivo requires clarification and the role of NR2A on CSD propagation is still under debate. Using in vivo CSD in rats with electrophysiology and in vitro CSD in chick retina with intrinsic optical imaging, we addressed the role of NR2A in CSD. We demonstrated that NVP-AAM077, a potent antagonist for NR2A-containing receptors, perfused through microdialysis probes, markedly reduced cortex susceptibility to CSD, but also reduced magnitude of CSD genesis in rats. Additionally, NVP-AAM077 at 0.3 nmol perfused into the contralateral ventricle, considerably suppressed the magnitude of CSD propagation wave and propagation rate in rats. This reduction in CSD propagation was also observed with TCN-201, a negative allosteric modulator selective for NR2A, at 3 μM, in the chick retina. Our data provides strong evidence that NR2A subunit contributes to CSD genesis and propagation, suggesting drugs selectively antagonizing NR2A-containing receptors might constitute a highly specific strategy treating CSD associated migraine with a likely better safety profile. PMID:27001011

  20. NR2A contributes to genesis and propagation of cortical spreading depression in rats

    PubMed Central

    Bu, Fan; Du, Ruoxing; Li, Yi; Quinn, John P; Wang, Minyan

    2016-01-01

    Cortical spreading depression (CSD) is a transient propagating excitation of synaptic activity followed by depression, which is implicated in migraine. Increasing evidence points to an essential role of NR2A-containing NMDA receptors in CSD propagation in vitro; however, whether these receptors mediate CSD genesis in vivo requires clarification and the role of NR2A on CSD propagation is still under debate. Using in vivo CSD in rats with electrophysiology and in vitro CSD in chick retina with intrinsic optical imaging, we addressed the role of NR2A in CSD. We demonstrated that NVP-AAM077, a potent antagonist for NR2A-containing receptors, perfused through microdialysis probes, markedly reduced cortex susceptibility to CSD, but also reduced magnitude of CSD genesis in rats. Additionally, NVP-AAM077 at 0.3 nmol perfused into the contralateral ventricle, considerably suppressed the magnitude of CSD propagation wave and propagation rate in rats. This reduction in CSD propagation was also observed with TCN-201, a negative allosteric modulator selective for NR2A, at 3 μM, in the chick retina. Our data provides strong evidence that NR2A subunit contributes to CSD genesis and propagation, suggesting drugs selectively antagonizing NR2A-containing receptors might constitute a highly specific strategy treating CSD associated migraine with a likely better safety profile. PMID:27001011

  1. Parenchymal spin-lock fMRI signals associated with cortical spreading depression

    PubMed Central

    Autio, Joonas A; Shatillo, Artem; Giniatullin, Rashid; Gröhn, Olli H

    2014-01-01

    We found novel types of parenchymal functional magnetic resonance imaging (fMRI) signals in the rat brain during large increases in metabolism. Cortical spreading depression (CSD), a self-propagating wave of cellular activation, is associated with several pathologic conditions such as migraine and stroke. It was used as a paradigm to evoke transient neuronal depolarization leading to enhanced energy consumption. Activation of CSD was investigated using spin-lock (SL), diffusion, blood oxygenation level-dependent and cerebral blood volume fMRI techniques. Our results show that the SL-fMRI signal is generated by endogenous parenchymal mechanisms during CSD propagation, and these mechanisms are not associated with hemodynamic changes or cellular swelling. Protein phantoms suggest that pH change alone does not explain the observed SL-fMRI signal changes. However, increased amounts of inorganic phosphates released from high-energy phosphates combined with pH changes may produce SL- power-dependent longitudinal relaxation in the rotating frame (R1ρ) changes in protein phantoms that are similar to those observed during CSD, as seen before in acute ischemia under our experimental conditions. This links SL-fMRI changes intimately to energy metabolism and supports the use of the SL technique as a new, promising functional approach for noninvasive imaging of metabolic transitions in the active or pathologic brain. PMID:24496172

  2. Cortical high-density counterstream architectures.

    PubMed

    Markov, Nikola T; Ercsey-Ravasz, Mária; Van Essen, David C; Knoblauch, Kenneth; Toroczkai, Zoltán; Kennedy, Henry

    2013-11-01

    Small-world networks provide an appealing description of cortical architecture owing to their capacity for integration and segregation combined with an economy of connectivity. Previous reports of low-density interareal graphs and apparent small-world properties are challenged by data that reveal high-density cortical graphs in which economy of connections is achieved by weight heterogeneity and distance-weight correlations. These properties define a model that predicts many binary and weighted features of the cortical network including a core-periphery, a typical feature of self-organizing information processing systems. Feedback and feedforward pathways between areas exhibit a dual counterstream organization, and their integration into local circuits constrains cortical computation. Here, we propose a bow-tie representation of interareal architecture derived from the hierarchical laminar weights of pathways between the high-efficiency dense core and periphery. PMID:24179228

  3. A multidomain model for ionic electrodiffusion and osmosis with an application to cortical spreading depression

    NASA Astrophysics Data System (ADS)

    Mori, Yoichiro

    2015-07-01

    Ionic electrodiffusion and osmotic water flow are central processes in many physiological systems. We formulate a system of partial differential equations that governs ion movement and water flow in biological tissue. A salient feature of this model is that it satisfies a free energy identity, ensuring the thermodynamic consistency of the model. A numerical scheme is developed for the model in one spatial dimension and is applied to a model of cortical spreading depression, a propagating breakdown of ionic and cell volume homeostasis in the brain.

  4. Computational study on cortical spreading depression based on a generalized cellular automaton model

    NASA Astrophysics Data System (ADS)

    Chen, Shangbin; Hu, Lele; Li, Bing; Xu, Changcheng; Liu, Qian

    2009-02-01

    Cortical spreading depression (CSD) is an important neurophysiological phenomenon correlating with some neural disorders, such as migraine, cerebral ischemia and epilepsy. By now, we are still not clear about the mechanisms of CSD's initiation and propagation, also the relevance between CSD and those neural diseases. Nevertheless, characterization of CSD, especially the spatiotemporal evolution, will promote the understanding of the CSD's nature and mechanisms. Besides the previous experimental work on charactering the spatiotemporal evolution of CSD in rats by optical intrinsic signal imaging, a computational study based on a generalized cellular automaton (CA) model was proposed here. In the model, we exploited a generalized neighborhood connection rule: a central CA cell is related with a group of surrounding CA cells with different weight coefficients. By selecting special parameters, the generalized CA model could be transformed to the traditional CA models with von Neumann, Moore and hexagon neighborhood connection means. Hence, the new model covered several properties of CSD simulated in traditional CA models: 1) expanding from the origin site like a circular wave; 2) annihilation of two waves traveling in opposite directions after colliding; 3) wavefront of CSD breaking and recovering when and after encountering an obstacle. By setting different refractory period in the different CA lattice field, different connection coefficient in different direction within the defined neighborhood, inhomogeneous propagation of CSD was simulated with high fidelity. The computational results were analogous to the reported time-varying CSD waves by optical imaging. So, the generalized CA model would be useful to study CSD because of its intuitive appeal and computational efficiency.

  5. Cortical spreading depression produces a neuroprotective effect activating mitochondrial uncoupling protein-5.

    PubMed

    Viggiano, Emanuela; Monda, Vincenzo; Messina, Antonietta; Moscatelli, Fiorenzo; Valenzano, Anna; Tafuri, Domenico; Cibelli, Giuseppe; De Luca, Bruno; Messina, Giovanni; Monda, Marcellino

    2016-01-01

    Depression of electrocorticogram propagating over the cortex surface results in cortical spreading depression (CSD), which is probably related to the pathophysiology of stroke, epilepsy, and migraine. However, preconditioning with CSD produces neuroprotection to subsequent ischemic episodes. Such effects require the expression or activation of several genes, including neuroprotective ones. Recently, it has been demonstrated that the expression of the uncoupling proteins (UCPs) 2 and 5 is amplified during brain ischemia and their expression exerts a long-term effect upon neuron protection. To evaluate the neuroprotective consequence of CSD, the expression of UCP-5 in the brain cortex was measured following CSD induction. CSD was evoked in four samples of rats, which were sacrificed after 2 hours, 4 hours, 6 hours, and 24 hours. Western blot analyses were carried out to measure UCP-5 concentrations in the prefrontal cortices of both hemispheres, and immunohistochemistry was performed to determine the localization of UCP-5 in the brain cortex. The results showed a significant elevation in UCP-5 expression at 24 hours in all cortical strata. Moreover, UCP-5 was triggered by CSD, indicating that UCP-5 production can have a neuroprotective effect. PMID:27468234

  6. Cortical spreading depression produces a neuroprotective effect activating mitochondrial uncoupling protein-5

    PubMed Central

    Viggiano, Emanuela; Monda, Vincenzo; Messina, Antonietta; Moscatelli, Fiorenzo; Valenzano, Anna; Tafuri, Domenico; Cibelli, Giuseppe; De Luca, Bruno; Messina, Giovanni; Monda, Marcellino

    2016-01-01

    Depression of electrocorticogram propagating over the cortex surface results in cortical spreading depression (CSD), which is probably related to the pathophysiology of stroke, epilepsy, and migraine. However, preconditioning with CSD produces neuroprotection to subsequent ischemic episodes. Such effects require the expression or activation of several genes, including neuroprotective ones. Recently, it has been demonstrated that the expression of the uncoupling proteins (UCPs) 2 and 5 is amplified during brain ischemia and their expression exerts a long-term effect upon neuron protection. To evaluate the neuroprotective consequence of CSD, the expression of UCP-5 in the brain cortex was measured following CSD induction. CSD was evoked in four samples of rats, which were sacrificed after 2 hours, 4 hours, 6 hours, and 24 hours. Western blot analyses were carried out to measure UCP-5 concentrations in the prefrontal cortices of both hemispheres, and immunohistochemistry was performed to determine the localization of UCP-5 in the brain cortex. The results showed a significant elevation in UCP-5 expression at 24 hours in all cortical strata. Moreover, UCP-5 was triggered by CSD, indicating that UCP-5 production can have a neuroprotective effect. PMID:27468234

  7. Spreading Photoparoxysmal EEG Response is Associated with an Abnormal Cortical Excitability Pattern

    ERIC Educational Resources Information Center

    Siniatchkin, Michael; Groppa, Sergey; Jerosch, Bettina; Muhle, Hiltrud; Kurth, Christoph; Shepherd, Alex J.; Siebner, Hartwig; Stephani, Ulrich

    2007-01-01

    Photosensitivity or photoparoxysmal response (PPR) is a highly heritable electroencephalographic trait characterized by an abnormal cortical response to intermittent photic stimulation (IPS). In PPR-positive individuals, IPS induces spikes, spike-waves or intermittent slow waves. The PPR may be restricted to posterior visual areas (i.e. local PPR…

  8. Poloxamer-188 and citicoline provide neuronal membrane integrity and protect membrane stability in cortical spreading depression.

    PubMed

    Yıldırım, Timur; Eylen, Alpaslan; Lule, Sevda; Erdener, Sefik Evren; Vural, Atay; Karatas, Hulya; Ozveren, Mehmet Faik; Dalkara, Turgay; Gursoy-Ozdemir, Yasemin

    2015-01-01

    Under pathological conditions such as brain trauma, subarachnoid hemorrhage and stroke, cortical spreading depression (CSD) or peri-infarct depolarizations contribute to brain damage in animal models of neurological disorders as well as in human neurological diseases. CSD causes transient megachannel opening on the neuronal membrane, which may compromise neuronal survival under pathological conditions. Poloxamer-188 (P-188) and citicoline are neuroprotectants with membrane sealing properties. The aim of this study is to investigate the effect of P-188 and citicoline on the neuronal megachannel opening induced by CSD in the mouse brain. We have monitored megachannel opening with propidium iodide, a membrane impermeable fluorescent dye and, demonstrate that P-188 and citicoline strikingly decreased CSD-induced neuronal PI influx in cortex and hippocampal dentate gyrus. Therefore, these agents may be providing neuroprotection by blocking megachannel opening, which may be related to their membrane sealing action and warrant further investigation for treatment of traumatic brain injury and ischemic stroke. PMID:25340256

  9. Effects of Ca2+ channel blockers on cortical hypoperfusion and expression of c-Fos-like immunoreactivity after cortical spreading depression in rats.

    PubMed Central

    Shimazawa, M.; Hara, H.; Watano, T.; Sukamoto, T.

    1995-01-01

    1. We examined the effects of two Ca2+ channel blockers, lomerizine (KB-2796) and flunarizine, on the cortical hypoperfusion (measured by hydrogen clearance and laser Doppler flowmetry methods) and cortical c-Fos-like immunoreactivity that follow KCl-induced cortical spreading depression in anaesthetized rats. Cortical spreading depression was induced by application of 1 M KCl for 30 s to the cortical surface, 3.0 mm posterior to the area of cerebral blood flow measurement. 2. In control rats, KB-2796 (0.3 and 1 mg kg-1, i.v.) dose-dependently increased cerebral blood flow significantly at 30 min and 15 min, respectively, after its administration. Flunarizine (1 mg kg-1, i.v.) significantly increased cerebral blood flow 15 min after its administration. In contrast, dimetotiazine (3 mg kg-1, i.v.), a 5-HT2 and histamine H1 antagonist, failed to affect cerebral blood flow significantly. 3. After KCl application to the cortex, cerebral blood flow monitored by the laser Doppler flowmetry method increased transiently, for a few minutes, then fell and remained approximately 20 to 30% below control for at least 60 min. Cerebral blood flow monitored by the hydrogen clearance method was also approximately 20 to 30% below baseline for at least 60 min after KCl application. KB-2796 (0.3 and 1 mg kg-1, i.v.) and flunarizine (1 and 3 mg kg-1, i.v.) administered 5 min before KCl application inhibited the cortical hypoperfusion that followed KCl application, but dimetotiazine (1 and 3 mg kg-1, i.v.) did not. 4. An indicator of neuronal activation, c-Fos-like immunoreactivity, was detected in the ipsilateral, but not in the contralateral frontoparietal cortex 2 h after KCl application. No c-Fos-like immunoreactivity was seen on either side of the brain in the hippocampus, thalamus, striatum or cerebellum. 5. KB-2796 (1 mg kg-1, i.v.) and flunarizine (3 mg kg-1, i.v.), but not dimetotiazine (3 mg kg-1, i.v.), significantly attenuated the expression of c-Fos-like immunoreactivity in

  10. Investigation of feline brain anatomy for the detection of cortical spreading depression with magnetic resonance imaging.

    PubMed

    Smith, J M; James, M F; Bockhorst, K H; Smith, M I; Bradley, D P; Papadakis, N G; Carpenter, T A; Parsons, A A; Leslie, R A; Hall, L D; Huang, C L

    2001-05-01

    Cortical spreading depression (CSD) and peri-infarct depolarisation (PID) are related phenomena that have been associated with the human clinical syndromes of migraine (CSD), head injury and stroke (PID). Nevertheless the existence of CSD in man remains controversial, despite the detection of this phenomenon in the brains of most, if not all, other animal species investigated. This failure to unambiguously detect CSD clinically may be at least partly due to the anatomically complex, gyrencephalic structure of the human brain. This study was designed to establish conditions for the study of CSD in the brain of a gyrencephalic species using the noninvasive technique of magnetic resonance imaging (MRI). The 3-dimensional (3D) gyrencephalic anatomy of the cat brain was examined to determine the imaging conditions necessary to detect CSD events. Orthogonal transverse, sagittal and horizontal T1-weighted image slices showed that the marginal and suprasylvian gyri were the most appropriate cortical structures to study CSD. This was in view of (1) their simple geometry: (2) their lengthy extent of grey matter orientated rostrocaudally in the cortex: (3) their separation by a sulcus across which CSD spread could be studied and (4) the discontinuity in the grey matter in these regions between the right and left hemispheres dorsal to the corpus callosum. The structure suggested by the T1-weighted images was corroborated by systematic diffusion tensor imaging to map the fractional anisotropy and diffusion trace. Thus a single horizontal image plane could visualise the neighbouring suprasylvian and marginal gyri of both cerebral hemispheres, whereas its complex shape and position ruled out the ectosylvian gyrus for CSD studies. With the horizontal imaging plane, CSD events were reproducibly detected by animating successive diffusion-weighted MR images following local KCl stimulation of the cortical surface. In single image frames, CSD detection and characterisation required

  11. Investigation of feline brain anatomy for the detection of cortical spreading depression with magnetic resonance imaging

    PubMed Central

    SMITH, J. M.; JAMES, M. F.; BOCKHORST, K. H. J.; SMITH, M. I.; BRADLEY, D. P.; PAPADAKIS, N. G.; CARPENTER, T. A.; PARSONS, A. A.; LESLIE, R. A.; HALL, L. D.; HUANG, C. L.-H.

    2001-01-01

    Cortical spreading depression (CSD) and peri-infarct depolarisation (PID) are related phenomena that have been associated with the human clinical syndromes of migraine (CSD), head injury and stroke (PID). Nevertheless the existence of CSD in man remains controversial, despite the detection of this phenomenon in the brains of most, if not all, other animal species investigated. This failure to unambiguously detect CSD clinically may be at least partly due to the anatomically complex, gyrencephalic structure of the human brain. This study was designed to establish conditions for the study of CSD in the brain of a gyrencephalic species using the noninvasive technique of magnetic resonance imaging (MRI). The 3-dimensional (3D) gyrencephalic anatomy of the cat brain was examined to determine the imaging conditions necessary to detect CSD events. Orthogonal transverse, sagittal and horizontal T1-weighted image slices showed that the marginal and suprasylvian gyri were the most appropriate cortical structures to study CSD. This was in view of (1) their simple geometry: (2) their lengthy extent of grey matter orientated rostrocaudally in the cortex: (3) their separation by a sulcus across which CSD spread could be studied and (4) the discontinuity in the grey matter in these regions between the right and left hemispheres dorsal to the corpus callosum. The structure suggested by the T1-weighted images was corroborated by systematic diffusion tensor imaging to map the fractional anisotropy and diffusion trace. Thus a single horizontal image plane could visualise the neighbouring suprasylvian and marginal gyri of both cerebral hemispheres, whereas its complex shape and position ruled out the ectosylvian gyrus for CSD studies. With the horizontal imaging plane, CSD events were reproducibly detected by animating successive diffusion-weighted MR images following local KCl stimulation of the cortical surface. In single image frames, CSD detection and characterisation required

  12. Effects of sciatic nerve stimulation on the propagation of cortical spreading depression

    NASA Astrophysics Data System (ADS)

    Sun, Xiaoli; Yu, Zhidong; Zeng, Shaoqun; Luo, Qingming; Li, Pengcheng

    2008-02-01

    Cortical spreading depression (CSD) is an important pathological model of migraine and is related to other neural disorders, such as cerebral ischemia and epilepsy. It has been reported that brain stimulation is a quite effective way to treat neural diseases. However, direct stimulation could cause harm to brain. If peripheral nerve stimulation could have the same treatment, it would be essential to investigate the mechanisms of peripheral nerve and the study of sciatic nerve stimulation would have profound clinical meaning. In this paper, we used optical intrinsic signal imaging (OISI) and extracellular electrophysiologic recording techniques to study the effects of sciatic nerve stimulation on the propagation of CSD. We found that: (1) continuous sciatic nerve stimulation on rats caused a decrease in light intensity on the whole cortex, which meant an increase in cerebral blood volume(CBV); (2) the spreading velocity of CSD declined from 3.63+/- 0.272 mm/min to 3.06+/-0.260 mm/min during sciatic nerve stimulation, compared with that without sciatic nerve stimulation. In summary, data suggests that sciatic nerve stimulation elicits a response of cortex and causes a slowdown in the propagation of CSD.

  13. Physical exercise versus fluoxetine: antagonistic effects on cortical spreading depression in Wistar rats.

    PubMed

    Mirelle Costa Monteiro, Heloísa; Lima Barreto-Silva, Nathália; Elizabete Dos Santos, Gracyelle; de Santana Santos, Amanda; Séfora Bezerra Sousa, Mariana; Amâncio-Dos-Santos, Ângela

    2015-09-01

    The antidepressant fluoxetine and physical exercise exert similar effects on the serotoninergic system by increasing brain serotonin availability, and both show antagonistic action on cortical excitability. Here we provide the first assessment of the interaction of the two together on cortical spreading depression (CSD) in young adult rats. Wistar rats (40-60 days of life) received fluoxetine (10mg/kg/d, orogastrically) or an equivalent volume of water. Half of the animals from each condition were assigned to perform physical exercise in a treadmill, and the other half formed the sedentary (non-treadmill) control groups. Body parameters (Lee index and thoracic and abdominal circumferences) and the velocity of CSD propagation were investigated. Fluoxetine+exercise animals had less weight gain (78.68±3.19g) than either the fluoxetine-only (93.34±4.77g) or exercise-only group (97.04±3.48g), but body parameters did not differ among them. The velocity of CSD propagation was reduced in the fluoxetine-only and exercise-only groups compared to sedentary water controls (3.24±0.39mm/min). For the fluoxetine+exercise group, CSD velocity values were significantly lower (2.92±0.22mm/min) than for fluoxetine only (3.03±0.35mm/min); however, they were similar to values for the exercise-only group (2.96±0.23mm/min). These findings confirm the similar effects of fluoxetine and exercise and suggest a greater effect of physical exercise in reducing brain excitability. PMID:26004534

  14. Increased Susceptibility to Cortical Spreading Depression in the Mouse Model of Familial Hemiplegic Migraine Type 2

    PubMed Central

    Barone, Virginia; De Fusco, Maurizio; Pietrobon, Daniela; Pizzorusso, Tommaso; Casari, Giorgio

    2011-01-01

    Familial hemiplegic migraine type 2 (FHM2) is an autosomal dominant form of migraine with aura that is caused by mutations of the α2-subunit of the Na,K-ATPase, an isoform almost exclusively expressed in astrocytes in the adult brain. We generated the first FHM2 knock-in mouse model carrying the human W887R mutation in the Atp1a2 orthologous gene. Homozygous Atp1a2R887/R887 mutants died just after birth, while heterozygous Atp1a2+/R887 mice showed no apparent clinical phenotype. The mutant α2 Na,K-ATPase protein was barely detectable in the brain of homozygous mutants and strongly reduced in the brain of heterozygous mutants, likely as a consequence of endoplasmic reticulum retention and subsequent proteasomal degradation, as we demonstrate in transfected cells. In vivo analysis of cortical spreading depression (CSD), the phenomenon underlying migraine aura, revealed a decreased induction threshold and an increased velocity of propagation in the heterozygous FHM2 mouse. Since several lines of evidence involve a specific role of the glial α2 Na,K pump in active reuptake of glutamate from the synaptic cleft, we hypothesize that CSD facilitation in the FHM2 mouse model is sustained by inefficient glutamate clearance by astrocytes and consequent increased cortical excitatory neurotransmission. The demonstration that FHM2 and FHM1 mutations share the ability to facilitate induction and propagation of CSD in mouse models further support the role of CSD as a key migraine trigger. PMID:21731499

  15. A Mathematical Model of the Metabolic and Perfusion Effects on Cortical Spreading Depression

    PubMed Central

    Chang, Joshua C.; Brennan, Kevin C.; He, Dongdong; Huang, Huaxiong; Miura, Robert M.; Wilson, Phillip L.; Wylie, Jonathan J.

    2013-01-01

    Cortical spreading depression (CSD) is a slow-moving ionic and metabolic disturbance that propagates in cortical brain tissue. In addition to massive cellular depolarizations, CSD also involves significant changes in perfusion and metabolism—aspects of CSD that had not been modeled and are important to traumatic brain injury, subarachnoid hemorrhage, stroke, and migraine. In this study, we develop a mathematical model for CSD where we focus on modeling the features essential to understanding the implications of neurovascular coupling during CSD. In our model, the sodium-potassium–ATPase, mainly responsible for ionic homeostasis and active during CSD, operates at a rate that is dependent on the supply of oxygen. The supply of oxygen is determined by modeling blood flow through a lumped vascular tree with an effective local vessel radius that is controlled by the extracellular potassium concentration. We show that during CSD, the metabolic demands of the cortex exceed the physiological limits placed on oxygen delivery, regardless of vascular constriction or dilation. However, vasoconstriction and vasodilation play important roles in the propagation of CSD and its recovery. Our model replicates the qualitative and quantitative behavior of CSD—vasoconstriction, oxygen depletion, extracellular potassium elevation, prolonged depolarization—found in experimental studies. We predict faster, longer duration CSD in vivo than in vitro due to the contribution of the vasculature. Our results also help explain some of the variability of CSD between species and even within the same animal. These results have clinical and translational implications, as they allow for more precise in vitro, in vivo, and in silico exploration of a phenomenon broadly relevant to neurological disease. PMID:23967075

  16. Elicitation interval dependent spatiotemporal evolution of cortical spreading depression waves revealed by optical intrinsic signal imaging

    NASA Astrophysics Data System (ADS)

    Chen, Shangbin; Gong, Hui; Zeng, Shaoqun; Luo, Qingming; Li, Pengcheng

    2007-02-01

    This study aimed to investigate the variation of propagation patterns of successive cortical spreading depression (CSD) waves induced by K + or pinprick in rat cortex. In the K + induction group, 18 Sprague-Dawley rats under Î+/--chloralose/urethane anesthesia were used to elicit CSD by 1 M KCl solution in the frontal cortex. Optical intrinsic signal imaging (OISI) at an isosbestic point of hemoglobin (550 nm) was applied to examine regional cerebral blood volume (CBV) changes in the parieto-occipital cortex. In 6 of the 18 rats, OISI was performed in conjunction with DC potential recording of the cortex. The results of this group were reported previously. In the pinprick group, 6 rats were used to induce CSD by pinprick with 8 min interval, and the other 6 rats were pricked with 4 min. CBV changes during CSD appeared as repetitive propagation of wave-like hyperemia at a speed of 3.7+/-0.4 mm/min, which was characterized by a significant negative peak (-14.3+/-3.2%) in the reflectance signal. Except for the first CSD wave, the following waves don't spread fully in the observed cortex all the time and they might abort in the medial area. Independent on the stimulation of pinprick or K+, a short interval of the current CSD to the last CSD no more than 4 min would induce the current CSD be partially propagated. For the first time, the data reveals the time-varying propagation patterns of CSD waves might be affected by the interval between CSD waves. The results suggest that the propagation patterns of a series of CSD waves are time-varying in different regions of rat cortex, and the variation is related to the interval between CSD waves.

  17. Aquaporin-4 regulates the velocity and frequency of cortical spreading depression in mice.

    PubMed

    Yao, Xiaoming; Smith, Alex J; Jin, Byung-Ju; Zador, Zsolt; Manley, Geoffrey T; Verkman, A S

    2015-10-01

    The astrocyte water channel aquaporin-4 (AQP4) regulates extracellular space (ECS) K(+) concentration ([K(+)]e) and volume dynamics following neuronal activation. Here, we investigated how AQP4-mediated changes in [K(+)]e and ECS volume affect the velocity, frequency, and amplitude of cortical spreading depression (CSD) depolarizations produced by surface KCl application in wild-type (AQP4(+/+)) and AQP4-deficient (AQP4(-/-)) mice. In contrast to initial expectations, both the velocity and the frequency of CSD were significantly reduced in AQP4(-/-) mice when compared with AQP4(+/+) mice, by 22% and 32%, respectively. Measurement of [K(+)]e with K(+)-selective microelectrodes demonstrated an increase to ∼35 mM during spreading depolarizations in both AQP4(+/+) and AQP4(-/-) mice, but the rates of [K(+)]e increase (3.5 vs. 1.5 mM/s) and reuptake (t1/2 33 vs. 61 s) were significantly reduced in AQP4(-/-) mice. ECS volume fraction measured by tetramethylammonium iontophoresis was greatly reduced during depolarizations from 0.18 to 0.053 in AQP4(+/+) mice, and 0.23 to 0.063 in AQP4(-/-) mice. Analysis of the experimental data using a mathematical model of CSD propagation suggested that the reduced velocity of CSD depolarizations in AQP4(-/-) mice was primarily a consequence of the slowed increase in [K(+)]e during neuronal depolarization. These results demonstrate that AQP4 effects on [K(+)]e and ECS volume dynamics accelerate CSD propagation. PMID:25944186

  18. Epigenetics and cortical spreading depression: changes of DNA methylation level at retrotransposon sequences.

    PubMed

    Drongitis, Denise; Rainone, Sara; Piscopo, Marina; Viggiano, Emanuela; Viggiano, Alessandro; De Luca, Bruno; Fucci, Laura; Donizetti, Aldo

    2016-08-01

    Cortical spreading depression (CSD) is an evolutionarily conserved phenomenon that involves a slow and self-propagating depolarization wave associated with spontaneous depression of electrical neuronal activity. CSD plays a central role in the pathophysiology of several brain diseases and is considered to be able to promote "Preconditioning". This phenomenon consists of the brain protecting itself against future injury by adaptation. Understanding of the molecular mechanisms underlying Preconditioning has significant clinical implications. We have already proposed that the long-lasting effects of CSD could be related to silencing of retrotransposon sequences by histone methylation. We analyzed DNA methylation of two retrotransposon sequences, LINE1 and L1, and their corresponding expression pattern after CSD induction. Based on immunoprecipitation assay of the methylated DNA (meDIP), we demonstrated hypermethylation of both sequences in preconditioned rat brain cortex compared with a control 24 h after CSD induction. Using quantitative PCR, we also showed that CSD induction caused a decrease of the transcript level of both retrotransposon sequences. Our data are consistent with the hypothesis of epigenetic modifications in Preconditioning-dependent neuroprotection by increasing genome stability via the silencing of retrotransposon sequences. PMID:27169424

  19. Computational model of cerebral blood flow redistribution during cortical spreading depression

    NASA Astrophysics Data System (ADS)

    Verisokin, Andrey Y.; Verveyko, Darya V.; Postnov, Dmitry E.

    2016-04-01

    In recent decades modelling studies on cortical spreading depression (CSD) and migraine waves successfully contributed to formation of modern view on these fundamental phenomena of brain physiology. However, due to the extreme complexity of object under study (brain cortex) and the diversity of involved physiological pathways, the development of new mathematical models of CSD is still a very relevant and challenging research problem. In our study we follow the functional modelling approach aimed to map the action of known physiological pathways to the specific nonlinear mechanisms that govern formation and evolution of CSD wave patterns. Specifically, we address the role of cerebral blood flow (CBF) redistribution that is caused by excessive neuronal activity by means of neurovascular coupling and mediates a spatial pattern of oxygen and glucose delivery. This in turn changes the local metabolic status of neural tissue. To build the model we simplify the web of known cell-to-cell interactions within a neurovascular unit by selecting the most relevant ones, such as local neuron-induced elevation of extracellular potassium concentration and biphasic response of arteriole radius. We propose the lumped description of distance-dependent hemodynamic coupling that fits the most recent experimental findings.

  20. Refractory period modulates the spatiotemporal evolution of cortical spreading depression: a computational study.

    PubMed

    Li, Bing; Chen, Shangbin; Li, Pengcheng; Luo, Qingming; Gong, Hui

    2014-01-01

    Cortical spreading depression (CSD) is a pathophysiological phenomenon, which underlies some neurological disorders, such as migraine and stroke, but its mechanisms are still not completely understood. One of the striking facts is that the spatiotemporal evolution of CSD wave is varying. Observations in experiments reveal that a CSD wave may propagate through the entire cortex, or just bypass some areas of the cortex. In this paper, we have applied a 2D reaction-diffusion equation with recovery term to study the spatiotemporal evolution of CSD. By modulating the recovery rate from CSD in the modeled cortex, CSD waves with different spatiotemporal evolutions, either bypassing some areas or propagating slowly in these areas, were present. Moreover, spiral CSD waves could also be induced in case of the transiently altered recovery rate, i.e. block release from the absolute refractory period. These results suggest that the refractory period contributes to the different propagation patterns of CSD, which may help to interpret the mechanisms of CSD propagation. PMID:24400104

  1. Minimum conditions for the induction of cortical spreading depression in brain slices

    PubMed Central

    Tang, Yujie T.; Mendez, Jorge M.; Theriot, Jeremy J.; Sawant, Punam M.; López-Valdés, Héctor E.; Ju, Y. Sungtaek

    2014-01-01

    Cortical spreading depression (CSD) occurs during various forms of brain injury such as stroke, subarachnoid hemorrhage, and brain trauma, but it is also thought to be the mechanism of the migraine aura. It is therefore expected to occur over a range of conditions including the awake behaving state. Yet it is unclear how such a massive depolarization could occur under relatively benign conditions. Using a microfluidic device with focal stimulation capability in a mouse brain slice model, we varied extracellular potassium concentration as well as the area exposed to increased extracellular potassium to determine the minimum conditions necessary to elicit CSD. Importantly, we focused on potassium levels that are physiologically plausible (≤145 mM; the intracellular potassium concentration). We found a strong correlation between the threshold concentration and the slice area exposed to increased extracellular potassium: minimum area of exposure was needed with the highest potassium concentration, while larger areas were needed at lower concentrations. We also found that moderate elevations of extracellular potassium were able to elicit CSD in relatively small estimated tissue volumes that might be activated under noninjury conditions. Our results thus show that CSD may be inducible under the conditions that expected in migraine aura as well as those related to brain trauma. PMID:25122714

  2. Spread of electrical activity at cortical level after repetitive magnetic stimulation in normal subjects.

    PubMed

    Lorenzano, C; Gilio, F; Inghilleri, M; Conte, A; Fofi, L; Manfredi, M; Berardelli, A

    2002-11-01

    In normal subjects, focal repetitive transcranial magnetic stimulation (rTMS) of the hand motor area evokes muscle potentials (MEPs) from muscles in the hand (target muscles) and the arm (non-target muscles). In this study we investigated the mechanisms underlying the spread of MEPs induced by focal rTMS in non-target muscles. rTMS was delivered with a Magstim stimulator and a figure-of-eight coil placed over the first dorsal interosseus (FDI) motor area of the left hemisphere. Trains of 10 stimuli were given at a suprathreshold intensity (120% of motor threshold) and at frequencies of 5, 10 and 20 Hz at rest. Electromyographic (EMG) activity was recorded simultaneously from the FDI (target muscle) and the contralateral biceps muscle and from the FDI muscle ipsilateral to the side of stimulation (non-target muscle). rTMS delivered in trains to the FDI motor area of the left hemisphere elicited MEPs in the contralateral FDI (target muscle) that gradually increased in amplitude over the course of the train. Focal rTMS trains also induced MEPs in the contralateral biceps (non-target muscle) but did so only after the second or third stimulus; like target-muscle MEPs, in non-target muscle MEPs progressively increased in amplitude during the train. At no frequency did rTMS elicit MEPs in the FDI muscle ipsilateral to the site of stimulation. rTMS left the latency of EMG responses in the FDI and biceps muscles unchanged during the trains of stimuli. The latency of biceps MEPs was longer after rTMS than after a single TMS pulse. In conditioning-test experiments designed to investigate the cortical origin of the spread, a single TMS pulse delivered over the left hemisphere at an interstimulus interval (ISI) of 50, 100 and 150 ms reduced the amplitude of the test MEP evoked by a single TMS pulse delivered over the right hemisphere; and a conditioning rTMS train delivered over the left hemisphere increased the amplitude of the test MEP evoked by a single TMS pulse over the

  3. A Lipid-signaled Myosin Phosphatase Surge Disperses Cortical Contractile Force Early in Cell Spreading

    PubMed Central

    2009-01-01

    When cells cease migrating through the vasculature, adhere to extracellular matrix, and begin to spread, they exhibit rapid changes in contraction and relaxation at peripheral regions newly contacting the underlying substrata. We describe here a requirement in this process for myosin II disassembly at the cell cortex via the action of myosin phosphatase (MP), which in turn is regulated by a plasma membrane signaling lipid. Cells in suspension exhibit high levels of activity of the signaling enzyme phospholipase D2 (PLD2), elevating production of the lipid second messenger phosphatidic acid (PA) at the plasma membrane, which in turn recruits MP and stores it there in a presumed inactive state. On cell attachment, down-regulation of PLD2 activity decreases PA production, leading to MP release, myosin dephosphorylation, and actomyosin disassembly. This novel model for recruitment and restraint of MP provides a means to effect a rapid cytoskeletal reorganization at the cell cortex upon demand. PMID:18946083

  4. High-Degree Neurons Feed Cortical Computations.

    PubMed

    Timme, Nicholas M; Ito, Shinya; Myroshnychenko, Maxym; Nigam, Sunny; Shimono, Masanori; Yeh, Fang-Chin; Hottowy, Pawel; Litke, Alan M; Beggs, John M

    2016-05-01

    Recent work has shown that functional connectivity among cortical neurons is highly varied, with a small percentage of neurons having many more connections than others. Also, recent theoretical developments now make it possible to quantify how neurons modify information from the connections they receive. Therefore, it is now possible to investigate how information modification, or computation, depends on the number of connections a neuron receives (in-degree) or sends out (out-degree). To do this, we recorded the simultaneous spiking activity of hundreds of neurons in cortico-hippocampal slice cultures using a high-density 512-electrode array. This preparation and recording method combination produced large numbers of neurons recorded at temporal and spatial resolutions that are not currently available in any in vivo recording system. We utilized transfer entropy (a well-established method for detecting linear and nonlinear interactions in time series) and the partial information decomposition (a powerful, recently developed tool for dissecting multivariate information processing into distinct parts) to quantify computation between neurons where information flows converged. We found that computations did not occur equally in all neurons throughout the networks. Surprisingly, neurons that computed large amounts of information tended to receive connections from high out-degree neurons. However, the in-degree of a neuron was not related to the amount of information it computed. To gain insight into these findings, we developed a simple feedforward network model. We found that a degree-modified Hebbian wiring rule best reproduced the pattern of computation and degree correlation results seen in the real data. Interestingly, this rule also maximized signal propagation in the presence of network-wide correlations, suggesting a mechanism by which cortex could deal with common random background input. These are the first results to show that the extent to which a neuron

  5. High-Degree Neurons Feed Cortical Computations

    PubMed Central

    Timme, Nicholas M.; Ito, Shinya; Shimono, Masanori; Yeh, Fang-Chin; Litke, Alan M.; Beggs, John M.

    2016-01-01

    Recent work has shown that functional connectivity among cortical neurons is highly varied, with a small percentage of neurons having many more connections than others. Also, recent theoretical developments now make it possible to quantify how neurons modify information from the connections they receive. Therefore, it is now possible to investigate how information modification, or computation, depends on the number of connections a neuron receives (in-degree) or sends out (out-degree). To do this, we recorded the simultaneous spiking activity of hundreds of neurons in cortico-hippocampal slice cultures using a high-density 512-electrode array. This preparation and recording method combination produced large numbers of neurons recorded at temporal and spatial resolutions that are not currently available in any in vivo recording system. We utilized transfer entropy (a well-established method for detecting linear and nonlinear interactions in time series) and the partial information decomposition (a powerful, recently developed tool for dissecting multivariate information processing into distinct parts) to quantify computation between neurons where information flows converged. We found that computations did not occur equally in all neurons throughout the networks. Surprisingly, neurons that computed large amounts of information tended to receive connections from high out-degree neurons. However, the in-degree of a neuron was not related to the amount of information it computed. To gain insight into these findings, we developed a simple feedforward network model. We found that a degree-modified Hebbian wiring rule best reproduced the pattern of computation and degree correlation results seen in the real data. Interestingly, this rule also maximized signal propagation in the presence of network-wide correlations, suggesting a mechanism by which cortex could deal with common random background input. These are the first results to show that the extent to which a neuron

  6. δ-Opioid receptor agonists inhibit migraine-related hyperalgesia, aversive state and cortical spreading depression in mice

    PubMed Central

    Pradhan, Amynah A; Smith, Monique L; Zyuzin, Jekaterina; Charles, Andrew

    2014-01-01

    Background and Purpose Migraine is an extraordinarily common brain disorder for which treatment options continue to be limited. Agonists that activate the δ-opioid receptor may be promising for the treatment of migraine as they are highly effective for the treatment of chronic rather than acute pain, do not induce hyperalgesia, have low abuse potential and have anxiolytic and antidepressant properties. The aim of this study was to investigate the therapeutic potential of δ-opioid receptor agonists for migraine by characterizing their effects in mouse migraine models. Experimental Approach Mechanical hypersensitivity was assessed in mice treated with acute and chronic doses of nitroglycerin (NTG), a known human migraine trigger. Conditioned place aversion to NTG was also measured as a model of migraine-associated negative affect. In addition, we assessed evoked cortical spreading depression (CSD), an established model of migraine aura, in a thinned skull preparation. Key Results NTG evoked acute and chronic mechanical and thermal hyperalgesia in mice, as well as conditioned place aversion. Three different δ-opioid receptor agonists, SNC80, ARM390 and JNJ20788560, significantly reduced NTG-evoked hyperalgesia. SNC80 also abolished NTG-induced conditioned place aversion, suggesting that δ-opioid receptor activation may also alleviate the negative emotional state associated with migraine. We also found that SNC80 significantly attenuated CSD, a model that is considered predictive of migraine preventive therapies. Conclusions and Implications These data show that δ-opioid receptor agonists modulate multiple basic mechanisms associated with migraine, indicating that δ-opioid receptors are a promising therapeutic target for this disorder. PMID:24467301

  7. Three-Dimensional Visualization with Large Data Sets: A Simulation of Spreading Cortical Depression in Human Brain

    PubMed Central

    Ertürk, Korhan Levent; Şengül, Gökhan

    2012-01-01

    We developed 3D simulation software of human organs/tissues; we developed a database to store the related data, a data management system to manage the created data, and a metadata system for the management of data. This approach provides two benefits: first of all the developed system does not require to keep the patient's/subject's medical images on the system, providing less memory usage. Besides the system also provides 3D simulation and modification options, which will help clinicians to use necessary tools for visualization and modification operations. The developed system is tested in a case study, in which a 3D human brain model is created and simulated from 2D MRI images of a human brain, and we extended the 3D model to include the spreading cortical depression (SCD) wave front, which is an electrical phoneme that is believed to cause the migraine. PMID:23258956

  8. Influence of Ovarian Hormones on Cortical Spreading Depression and Its Suppression by L-kynurenine in Rat

    PubMed Central

    Chauvel, Virginie

    2013-01-01

    Migraine is sexually dimorphic and associated in 20–30% of patients with an aura most likely caused by cortical spreading depression (CSD). We have previously shown that systemic L-kynurenine (L-KYN), the precursor of kynurenic acid, suppresses CSD and that this effect depends on the stage of the estrous cycle in female rats. The objectives here are to determine the influence of ovarian hormones on KCl-induced CSD and its suppression after L-KYN by directly modulating estradiol or progesterone levels in ovariectomized rats. Adult female rats were ovariectomized and subcutaneously implanted with silastic capsules filled with progesterone or 17β-estradiol mixed with cholesterol, with cholesterol only or left empty. Two weeks after the ovariectomy/capsule implantation, the animals received an i.p. injection of L-KYN (300 mg/kg) or NaCl as control. Thirty minutes later CSDs were elicited by applying KCl over the occipital cortex and recorded by DC electrocorticogram for 1 hour. The results show that both estradiol and progesterone increase CSD frequency after ovariectomy. The suppressive effect of L-KYN on CSD frequency, previously reported in normal cycling females, is not found anymore after ovariectomy, but reappears after progesterone replacement therapy. Taken together, these results emphasize the complex role of sex hormones on cortical excitability. The CSD increase by estradiol and, more surprisingly, progesterone may explain why clinically migraine with aura appears or worsens during pregnancy or with combined hormonal treatments. PMID:24340013

  9. Association of seizures with cortical spreading depression and peri-infarct depolarisations in the acutely injured human brain

    PubMed Central

    Fabricius, Martin; Fuhr, Susanne; Willumsen, Lisette; Dreier, Jens P; Bhatia, Robin; Boutelle, Martyn G.; Hartings, Jed A; Bullock, Ross; Strong, Anthony J; Lauritzen, Martin

    2008-01-01

    Objective To test the co-occurrence and interrelation of ictal activity and cortical spreading depressions (CSDs) - including the related periinfarct depolarisations in acute brain injury caused by trauma, and spontaneous subarachnoid and/or intracerebral haemorrhage. Methods 63 patients underwent craniotomy and electrocorticographic (ECoG) recordings were taken near foci of damaged cortical tissue for up to 10 days. Results 32 of 63 patients exhibited CSDs (5 to 75 episodes), and 11 had ECoGraphic seizure activity (1-81 episodes). Occurrence of seizures was significantly associated with CSD, as 10 of 11 patients with seizures also had CSD (p=0.007, 2-tailed Fishers exact test). Clinically overt seizures were only observed in one patient. Each patient with CSD and seizures displayed one of four different patterns of interaction between CSD and seizures. In four patients CSD was immediately preceded by prolonged seizure activity. In three patients the two phenomena were separated in time: multiple CSDs were replaced by ictal activity. In one patient seizures appeared to trigger repeated CSDs at the adjacent electrode. In two patients ongoing repeated seizures were interrupted each time CSD occurred. Conclusions Seizure activity occurs in association with CSD in the injured human brain. Significance ECoG recordings in brain injury patients provide insight into pathophysiological mechanisms that is not accessible by scalp EEG recordings. PMID:18621582

  10. Cortical Surface Reconstruction from High-Resolution MR Brain Images

    PubMed Central

    Osechinskiy, Sergey; Kruggel, Frithjof

    2012-01-01

    Reconstruction of the cerebral cortex from magnetic resonance (MR) images is an important step in quantitative analysis of the human brain structure, for example, in sulcal morphometry and in studies of cortical thickness. Existing cortical reconstruction approaches are typically optimized for standard resolution (~1 mm) data and are not directly applicable to higher resolution images. A new PDE-based method is presented for the automated cortical reconstruction that is computationally efficient and scales well with grid resolution, and thus is particularly suitable for high-resolution MR images with submillimeter voxel size. The method uses a mathematical model of a field in an inhomogeneous dielectric. This field mapping, similarly to a Laplacian mapping, has nice laminar properties in the cortical layer, and helps to identify the unresolved boundaries between cortical banks in narrow sulci. The pial cortical surface is reconstructed by advection along the field gradient as a geometric deformable model constrained by topology-preserving level set approach. The method's performance is illustrated on exvivo images with 0.25–0.35 mm isotropic voxels. The method is further evaluated by cross-comparison with results of the FreeSurfer software on standard resolution data sets from the OASIS database featuring pairs of repeated scans for 20 healthy young subjects. PMID:22481909

  11. N-Palmitoylethanolamine Prevents the Run-down of Amplitudes in Cortical Spreading Depression Possibly Implicating Proinflammatory Cytokine Release.

    PubMed

    Richter, Frank; Koulen, Peter; Kaja, Simon

    2016-01-01

    Cortical spreading depression (CSD), a wave of neuronal depolarization in the cerebral cortex following traumatic brain injury or cerebral ischemia, significantly aggravates brain damage. Here, we tested whether N-palmitoylethanolamine (PEA), a substance that effectively reduces lesion volumes and neurological deficits after ischemic stroke, influences CSD. CSD was elicited chemically in adult rats and occurrence, amplitude, duration and propagation velocity of CSD was determined prior to and for 6 hours after intraperitoneal injection of PEA. The chosen systemic administration of PEA stabilized the amplitude of CSD for at least four hours and prevented the run-down of amplitudes that is typically observed and was also seen in untreated controls. The propagation velocity of the CSD waves was unaltered indicating stable neuronal excitability. The stabilization of CSD amplitudes by PEA indicates that inhibition or prevention of CSD does not underlie PEA's profound neuroprotective effect. Rather, PEA likely inhibits proinflammatory cytokine release thereby preventing the run-down of CSD amplitudes. This contribution of PEA to the maintenance of neuronal excitability in healthy tissue during CSD potentially adds to neuroprotection outside a damaged area, while other mechanisms control PEA-mediated neuroprotection in damaged tissue resulting from traumatic brain injury or cerebral ischemia. PMID:27004851

  12. N-Palmitoylethanolamine Prevents the Run-down of Amplitudes in Cortical Spreading Depression Possibly Implicating Proinflammatory Cytokine Release

    PubMed Central

    Richter, Frank; Koulen, Peter; Kaja, Simon

    2016-01-01

    Cortical spreading depression (CSD), a wave of neuronal depolarization in the cerebral cortex following traumatic brain injury or cerebral ischemia, significantly aggravates brain damage. Here, we tested whether N-palmitoylethanolamine (PEA), a substance that effectively reduces lesion volumes and neurological deficits after ischemic stroke, influences CSD. CSD was elicited chemically in adult rats and occurrence, amplitude, duration and propagation velocity of CSD was determined prior to and for 6 hours after intraperitoneal injection of PEA. The chosen systemic administration of PEA stabilized the amplitude of CSD for at least four hours and prevented the run-down of amplitudes that is typically observed and was also seen in untreated controls. The propagation velocity of the CSD waves was unaltered indicating stable neuronal excitability. The stabilization of CSD amplitudes by PEA indicates that inhibition or prevention of CSD does not underlie PEA’s profound neuroprotective effect. Rather, PEA likely inhibits proinflammatory cytokine release thereby preventing the run-down of CSD amplitudes. This contribution of PEA to the maintenance of neuronal excitability in healthy tissue during CSD potentially adds to neuroprotection outside a damaged area, while other mechanisms control PEA-mediated neuroprotection in damaged tissue resulting from traumatic brain injury or cerebral ischemia. PMID:27004851

  13. Large-Scale Mass Spectrometry Imaging Investigation of Consequences of Cortical Spreading Depression in a Transgenic Mouse Model of Migraine

    NASA Astrophysics Data System (ADS)

    Carreira, Ricardo J.; Shyti, Reinald; Balluff, Benjamin; Abdelmoula, Walid M.; van Heiningen, Sandra H.; van Zeijl, Rene J.; Dijkstra, Jouke; Ferrari, Michel D.; Tolner, Else A.; McDonnell, Liam A.; van den Maagdenberg, Arn M. J. M.

    2015-06-01

    Cortical spreading depression (CSD) is the electrophysiological correlate of migraine aura. Transgenic mice carrying the R192Q missense mutation in the Cacna1a gene, which in patients causes familial hemiplegic migraine type 1 (FHM1), exhibit increased propensity to CSD. Herein, mass spectrometry imaging (MSI) was applied for the first time to an animal cohort of transgenic and wild type mice to study the biomolecular changes following CSD in the brain. Ninety-six coronal brain sections from 32 mice were analyzed by MALDI-MSI. All MSI datasets were registered to the Allen Brain Atlas reference atlas of the mouse brain so that the molecular signatures of distinct brain regions could be compared. A number of metabolites and peptides showed substantial changes in the brain associated with CSD. Among those, different mass spectral features showed significant ( t-test, P < 0.05) changes in the cortex, 146 and 377 Da, and in the thalamus, 1820 and 1834 Da, of the CSD-affected hemisphere of FHM1 R192Q mice. Our findings reveal CSD- and genotype-specific molecular changes in the brain of FHM1 transgenic mice that may further our understanding about the role of CSD in migraine pathophysiology. The results also demonstrate the utility of aligning MSI datasets to a common reference atlas for large-scale MSI investigations.

  14. Unexpected effects of peripherally administered kynurenic acid on cortical spreading depression and related blood–brain barrier permeability

    PubMed Central

    Oláh, Gáspár; Herédi, Judit; Menyhárt, Ákos; Czinege, Zsolt; Nagy, Dávid; Fuzik, János; Kocsis, Kitti; Knapp, Levente; Krucsó, Erika; Gellért, Levente; Kis, Zsolt; Farkas, Tamás; Fülöp, Ferenc; Párdutz, Árpád; Tajti, János; Vécsei, László; Toldi, József

    2013-01-01

    Cortical spreading depression (CSD) involves a slowly-propagating depolarization wave in the cortex, which can appear in numerous pathophysiological conditions, such as migraine with aura, stroke, and traumatic brain injury. Neurons and glial cells are also depolarized transiently during the phenomena. CSD is followed by a massive increase in glutamate release and by changes in the brain microcirculation. The aim of this study was to investigate the effects of two N-methyl-D-aspartate receptor antagonists, endogenous kynurenic acid (KYNA) and dizocilpine, on CSD and the related blood–brain barrier (BBB) permeability in rats. In intact animals, KYNA hardly crosses the BBB but has some positive features as compared with its precursor L-Kynurenine, which is frequently used in animal studies (KYNA cannot be metabolized to excitotoxic agents such as 3-hydroxy-L-kynurenine and quinolinic acid). We therefore investigated the possible effects of peripherally administered KYNA. Repetitive CSD waves were elicited by the application of 1 M KCl solution to the cortex. Direct current-electrocorticograms were measured for 1 hour. Four parameters of the waves were compared. Evans blue dye and fluorescent microscopy were used to study the possible changes in the permeability of the BBB. The results demonstrated that N-methyl-D-aspartate receptor antagonists can reduce the number of CSD waves and decrease the permeability of the BBB during CSD. These results suggest that KYNA itself or its derivatives may offer a new approach in the therapy of migraines. PMID:24068867

  15. Large-scale mass spectrometry imaging investigation of consequences of cortical spreading depression in a transgenic mouse model of migraine.

    PubMed

    Carreira, Ricardo J; Shyti, Reinald; Balluff, Benjamin; Abdelmoula, Walid M; van Heiningen, Sandra H; van Zeijl, Rene J; Dijkstra, Jouke; Ferrari, Michel D; Tolner, Else A; McDonnell, Liam A; van den Maagdenberg, Arn M J M

    2015-06-01

    Cortical spreading depression (CSD) is the electrophysiological correlate of migraine aura. Transgenic mice carrying the R192Q missense mutation in the Cacna1a gene, which in patients causes familial hemiplegic migraine type 1 (FHM1), exhibit increased propensity to CSD. Herein, mass spectrometry imaging (MSI) was applied for the first time to an animal cohort of transgenic and wild type mice to study the biomolecular changes following CSD in the brain. Ninety-six coronal brain sections from 32 mice were analyzed by MALDI-MSI. All MSI datasets were registered to the Allen Brain Atlas reference atlas of the mouse brain so that the molecular signatures of distinct brain regions could be compared. A number of metabolites and peptides showed substantial changes in the brain associated with CSD. Among those, different mass spectral features showed significant (t-test, P < 0.05) changes in the cortex, 146 and 377 Da, and in the thalamus, 1820 and 1834 Da, of the CSD-affected hemisphere of FHM1 R192Q mice. Our findings reveal CSD- and genotype-specific molecular changes in the brain of FHM1 transgenic mice that may further our understanding about the role of CSD in migraine pathophysiology. The results also demonstrate the utility of aligning MSI datasets to a common reference atlas for large-scale MSI investigations. PMID:25877011

  16. Resistance to High-Stakes Testing Spreads

    ERIC Educational Resources Information Center

    Schaeffer, Bob

    2012-01-01

    A rising tide of protest is sweeping across the nation as growing numbers of parents, teachers, administrators and academics take action against high-stakes testing. Instead of test-and-punish policies, which have failed to improve academic performance or equity, the movement is pressing for broader forms of assessment. From Texas to New York and…

  17. Immunomodulatory Effect of Toll-Like Receptor-3 Ligand Poly I:C on Cortical Spreading Depression.

    PubMed

    Ghaemi, Amir; Sajadian, Azadeh; Khodaie, Babak; Lotfinia, Ahmad Ali; Lotfinia, Mahmoud; Aghabarari, Afsaneh; Khaleghi Ghadiri, Maryam; Meuth, Sven; Gorji, Ali

    2016-01-01

    The release of inflammatory mediators following cortical spreading depression (CSD) is suggested to play a role in pathophysiology of CSD-related neurological disorders. Toll-like receptors (TLR) are master regulators of innate immune function and involved in the activation of inflammatory responses in the brain. TLR3 agonist poly I:C exerts anti-inflammatory effect and prevents cell injury in the brain. The aim of the present study was to examine the effect of systemic administration of poly I:C on the release of cytokines (TNF-α, IFN-γ, IL-4, TGF-β1, and GM-CSF) in the brain and spleen, splenic lymphocyte proliferation, expression of GAD65, GABAAα, GABAAβ as well as Hsp70, and production of dark neurons after induction of repetitive CSD in juvenile rats. Poly I:C significantly attenuated CSD-induced production of TNF-α and IFN-γ in the brain as well as TNF-α and IL-4 in the spleen. Poly I:C did not affect enhancement of splenic lymphocyte proliferation after CSD. Administration of poly I:C increased expression of GABAAα, GABAAβ as well as Hsp70 and decreased expression of GAD65 in the entorhinal cortex compared to CSD-treated tissues. In addition, poly I:C significantly prevented production of CSD-induced dark neurons. The data indicate neuroprotective and anti-inflammatory effects of TLR3 activation on CSD-induced neuroinflammation. Targeting TLR3 may provide a novel strategy for developing new treatments for CSD-related neurological disorders. PMID:25416860

  18. Effect of velocity spread on operation of high power gyrotrons

    SciTech Connect

    Levush, B.; Cai, S.Y.; Antonsen, T.M. Jr.; Guss, W.C.; Basten, M.A.; Kreischer, K.E.; Temkin, R.

    1995-12-31

    The effect of velocity spread on the operation of 140 GHz gyrotrons has been studied. The performance of two cavities, with low and high Q, has been examined experimentally and theoretically. The simulation code MAGY was modified to include the measured velocity distribution function and the measured pitch angle in order to compare the measured efficiencies with the predicted efficiencies. Based on measurements, the inferred velocity spread at a beam current of 40 A is given by {l_angle}{delta}{upsilon}{sub {perpendicular}}/{upsilon}{sub {perpendicular}}{r_angle}{sub RMS} = 15%. Simulations with this spread produced efficiencies lower than those measured. However, it was found that assuming {l_angle}{delta}{upsilon}{sub {perpendicular}}/{upsilon}{sub {perpendicular}}{r_angle}{sub RMS} = 10% for 40 A current and using the experimentally determined dependence of the spread on the current the calculated efficiencies agree well with the measured efficiencies for the low Q cavity. The efficiency of the low Q gyrotron at 40 A beam current is only 27%. For the same beam current and velocity spread the efficiency of the high Q gyrotron was predicted to be 40% which agrees well with the measured efficiency of 39%.

  19. Effects of short-term and long-term treatment with medium- and long-chain triglycerides ketogenic diet on cortical spreading depression in young rats.

    PubMed

    de Almeida Rabello Oliveira, Marcela; da Rocha Ataíde, Terezinha; de Oliveira, Suzana Lima; de Melo Lucena, Ana Luíza; de Lira, Carla Emmanuela Pereira Rodrigues; Soares, Anderson Acioli; de Almeida, Clarissa Beatriz Santos; Ximenes-da-Silva, Adriana

    2008-03-21

    The ketogenic diet (KD) is a high fat and low carbohydrate and protein diet. It is used in the clinical treatment of epilepsy, in order to decrease cerebral excitability. KD is usually composed by long-chain triglycerides (LCT) while medium-chain triglycerides (MCT) diet is beginning to be used in some clinical treatment of disorders of pyruvate carboxylase enzyme and long-chain fatty acid oxidation. Our study aimed to analyze the effects of medium- and long-chain KD on cerebral electrical activity, analyzing the propagation of the phenomenon of cortical spreading depression (CSD). Three groups of weaned rats (21 days old) received, for 7 weeks, either a control (AIN-93G diet), or a MCT-KD (rich in triheptanoin oil), or a LCT-KD (rich in soybean oil). They were compared to another three groups (21 days old) receiving the same diets for just 10 days. CSD propagation was evaluated just after ending the dietary treatments. Results showed that short-term KD treatment resulted in a significant reduction of the CSD velocity of propagation (control group: 4.02+/-1.04mm/min; MCT-KD: 0.81+/-1.46mm/min and LCT-KD: 2.26+/-0.41mm/min) compared to the control group. However, long-term treatment with both KDs had no effect on the CSD velocity (control group: 3.10+/-0.41mm/min, MCT-KD: 2.91+/-1.62mm/min, LCT-KD: 3.02+/-2.26mm/min) suggesting that both short-term KDs have a positive effect in decreasing brain cerebral excitability in young animals. These data show for the first time that triheptanoin has an effect on central nervous system. PMID:18281154

  20. Highly Nonrandom Features of Synaptic Connectivity in Local Cortical Circuits

    PubMed Central

    2005-01-01

    How different is local cortical circuitry from a random network? To answer this question, we probed synaptic connections with several hundred simultaneous quadruple whole-cell recordings from layer 5 pyramidal neurons in the rat visual cortex. Analysis of this dataset revealed several nonrandom features in synaptic connectivity. We confirmed previous reports that bidirectional connections are more common than expected in a random network. We found that several highly clustered three-neuron connectivity patterns are overrepresented, suggesting that connections tend to cluster together. We also analyzed synaptic connection strength as defined by the peak excitatory postsynaptic potential amplitude. We found that the distribution of synaptic connection strength differs significantly from the Poisson distribution and can be fitted by a lognormal distribution. Such a distribution has a heavier tail and implies that synaptic weight is concentrated among few synaptic connections. In addition, the strengths of synaptic connections sharing pre- or postsynaptic neurons are correlated, implying that strong connections are even more clustered than the weak ones. Therefore, the local cortical network structure can be viewed as a skeleton of stronger connections in a sea of weaker ones. Such a skeleton is likely to play an important role in network dynamics and should be investigated further. PMID:15737062

  1. Causal mapping as a tool to mechanistically interpret phenomena in cell motility: application to cortical oscillations in spreading cells.

    PubMed

    Weinreb, Gabriel E; Elston, Timothy C; Jacobson, Ken

    2006-09-01

    Biological processes that occur at the cellular level and consist of large numbers of interacting elements are highly nonlinear and generally involve multiple time and spatial scales. The quantitative description of these complex systems is of great importance but presents large challenges. We outline a new systems biology approach, causal mapping (CMAP), which is a coarse-grained biological network tool that permits description of causal interactions between the elements of the network and overall system dynamics. On one hand, the CMAP is an intermediate between experiments and physical modeling, describing major requisite elements, their interactions and paths of causality propagation. On the other hand, the CMAP is an independent tool to explore the hierarchical organization of cell and the role of uncertainties in the system. It appears to be a promising easy-to-use technique for cell biologists to systematically probe verbally formulated qualitative hypotheses. We apply the CMAP to study the phenomenon of contractility oscillations in spreading cells in which microtubules have been depolymerized. The precise mechanism by which these oscillations are governed by a complex mechano-chemical system is not known but the data observed in experiments can be described by a CMAP. The CMAP suggests that the source of the oscillations results from the opposing effects of Rho activation leading to a decreased level of myosin light chain phosphatase and a cyclic calcium influx caused by increased membrane tension and leading to a periodically enhanced activation of myosin light chain kinase. PMID:16800006

  2. RECOGNIZE: A Social Norms Campaign to Reduce Rumor Spreading in a Junior High School

    ERIC Educational Resources Information Center

    Cross, Jennifer E.; Peisner, William

    2009-01-01

    This article studied changes in rumor spreading and perceptions of peers' rumor spreading among students at one public junior high school following a social norms marketing campaign. Results of the study show that perceptions of peer rumor spreading fell following the campaign, but self-reports of rumor spreading did not decrease. Results suggest…

  3. Cortical thickness reduction in individuals at ultra-high-risk for psychosis.

    PubMed

    Jung, Wi Hoon; Kim, June Sic; Jang, Joon Hwan; Choi, Jung-Seok; Jung, Myung Hun; Park, Ji-Young; Han, Ji Yeon; Choi, Chi-Hoon; Kang, Do-Hyung; Chung, Chun Kee; Kwon, Jun Soo

    2011-07-01

    Although schizophrenia is characterized by gray matter (GM) abnormalities, particularly in the prefrontal and temporal cortices, it is unclear whether cerebral cortical GM is abnormal in individuals at ultra-high-risk (UHR) for psychosis. We addressed this issue by studying cortical thickness in this group with magnetic resonance imaging (MRI). We measured cortical thickness of 29 individuals with no family history of psychosis at UHR, 31 patients with schizophrenia, and 29 healthy matched control subjects using automated surface-based analysis of structural MRI data. Hemispheric mean and regional cortical thickness were significantly different according to the stage of the disease. Significant cortical differences across these 3 groups were found in the distributed area of cerebral cortices. UHR group showed significant cortical thinning in the prefrontal cortex, anterior cingulate cortex, inferior parietal cortex, parahippocampal cortex, and superior temporal gyrus compared with healthy control subjects. Significant cortical thinning in schizophrenia group relative to UHR group was found in all the regions described above in addition with posterior cingulate cortex, insular cortex, and precentral cortex. These changes were more pronounced in the schizophrenia group compared with the control subjects. These findings suggest that UHR is associated with cortical thinning in regions that correspond to the structural abnormalities found in schizophrenia. These structural abnormalities might reflect functional decline at the prodromal stage of schizophrenia, and there may be progressive thinning of GM cortex over time. PMID:20026559

  4. Construction of 4D high-definition cortical surface atlases of infants: Methods and applications.

    PubMed

    Li, Gang; Wang, Li; Shi, Feng; Gilmore, John H; Lin, Weili; Shen, Dinggang

    2015-10-01

    In neuroimaging, cortical surface atlases play a fundamental role for spatial normalization, analysis, visualization, and comparison of results across individuals and different studies. However, existing cortical surface atlases created for adults are not suitable for infant brains during the first two postnatal years, which is the most dynamic period of postnatal structural and functional development of the highly-folded cerebral cortex. Therefore, spatiotemporal cortical surface atlases for infant brains are highly desired yet still lacking for accurate mapping of early dynamic brain development. To bridge this significant gap, leveraging our infant-dedicated computational pipeline for cortical surface-based analysis and the unique longitudinal infant MRI dataset acquired in our research center, in this paper, we construct the first spatiotemporal (4D) high-definition cortical surface atlases for the dynamic developing infant cortical structures at seven time points, including 1, 3, 6, 9, 12, 18, and 24 months of age, based on 202 serial MRI scans from 35 healthy infants. For this purpose, we develop a novel method to ensure the longitudinal consistency and unbiasedness to any specific subject and age in our 4D infant cortical surface atlases. Specifically, we first compute the within-subject mean cortical folding by unbiased groupwise registration of longitudinal cortical surfaces of each infant. Then we establish longitudinally-consistent and unbiased inter-subject cortical correspondences by groupwise registration of the geometric features of within-subject mean cortical folding across all infants. Our 4D surface atlases capture both longitudinally-consistent dynamic mean shape changes and the individual variability of cortical folding during early brain development. Experimental results on two independent infant MRI datasets show that using our 4D infant cortical surface atlases as templates leads to significantly improved accuracy for spatial normalization

  5. Spreading of Viscous Liquids at High Temperature: Silicate Glasseson Molybdenum

    SciTech Connect

    Lopez-Esteban, Sonia; Saiz, Eduardo; Moya, Jose S.; Tomsia,Antoni P.

    2004-12-15

    The spreading of Si-Ca-Al-Ti-O glasses on molybdenum has been investigated. By controlling the oxygen activity in the furnace, spreading can take place under reactive or non-reactive conditions. As the nucleation of the reaction product under reactive conditions is slow in comparison to the spreading kinetics, in both cases the glass front moves on the metal surface with similar spreading velocities. Spreading can be described using a molecular dynamics model where the main contribution to the wetting activation energy comes from the viscous interactions in the liquid. Enhanced interfacial diffusions in low-oxygen activities (reactive cases) form triple-line ridges that can pin the wetting front and cause a stick-slip motion.

  6. Effect of high velocity, large amplitude stimuli on the spread of Depolarization in S1 “Barrel” Cortex

    PubMed Central

    Davis, Douglas J.; Sachdev, Robert; Pieribone, Vincent A.

    2013-01-01

    We examined the effect of large, controlled whisker movements, delivered at a high speed, on the amplitude and spread of depolarization in the anesthetized mouse barrel cortex. The stimulus speed was varied between 1500 to 6000 degrees per second and the extent of movement was varied between 4–16 degrees. The rate of rise of the response was linearly related to the rate of rise of the stimulus. The initial spatial extent of cortical activation was also related to the rate of rise of the stimulus: that is the faster the stimulus onset, the faster the rate of rise of the response, the larger the extent of cortex activated initially. The spatial extent of the response and the rate of rise of the response were not correlated with changes in the deflection amplitude. But slower, longer lasting stimuli produced an Off response, making the actual extent of activation larger for the slowest rising stimuli. These results indicate that the spread of cortical activation depends on stimulus features. PMID:22150170

  7. Magnetic resonance imaging assessed cortical porosity is highly correlated with μCT porosity

    PubMed Central

    Bae, Won C; Patil, Shantanu; Biswas, Reni; Li, Shihong; Chang, Eric Y; Statum, Sheronda; D'Lima, Darryl D; Chung, Christine B; Du, Jiang

    2014-01-01

    Cortical bone is typically regarded as “MR invisible” with conventional clinical magnetic resonance imaging (MRI) pulse sequences. However, recent studies have demonstrated that free water in the microscopic pores of cortical bone has a short T2* but a relatively long T2, and may be detectable with conventional clinical spin echo (SE) or fast spin echo (FSE) sequences. In this study we describe the use of a conventional two-dimensional (2D) FSE sequence to assess cortical bone microstructure and measure cortical porosity using a clinical 3T scanner. Twelve cadaveric human cortical bone samples were studied with MRI and micro computed tomography (μCT) (downsampled to the same spatial resolution). Preliminary results show that FSE-determined porosity is highly correlated (R2 = 0.83; P < 0.0001) with μCT porosity. Bland Altman analysis suggested a good agreement between FSE and μCT with tight limit of agreement at around 3%. There is also a small bias of -2% for the FSE data, which suggested that the FSE approach slightly underestimated μCT porosity. The results demonstrate that cortical porosity can be directly assessed using conventional clinical FSE sequences. The clinical feasibility of this approach was also demonstrated on six healthy volunteers using 2D FSE sequences as well as 2D ultrashort echo time (UTE) sequences with a minimal echo time (TE) of 8 μs, which provide high contrast imaging of cortical bone in vivo. PMID:24928498

  8. Cortical thickness and surface area in neonates at high risk for schizophrenia.

    PubMed

    Li, Gang; Wang, Li; Shi, Feng; Lyall, Amanda E; Ahn, Mihye; Peng, Ziwen; Zhu, Hongtu; Lin, Weili; Gilmore, John H; Shen, Dinggang

    2016-01-01

    Schizophrenia is a neurodevelopmental disorder associated with subtle abnormal cortical thickness and cortical surface area. However, it is unclear whether these abnormalities exist in neonates associated with genetic risk for schizophrenia. To this end, this preliminary study was conducted to identify possible abnormalities of cortical thickness and surface area in the high-genetic-risk neonates. Structural magnetic resonance images were acquired from offspring of mothers (N = 21) who had schizophrenia (N = 12) or schizoaffective disorder (N = 9), and also matched healthy neonates of mothers who were free of psychiatric illness (N = 26). Neonatal cortical surfaces were reconstructed and parcellated as regions of interest (ROIs), and cortical thickness for each vertex was computed as the shortest distance between the inner and outer surfaces. Comparisons were made for the average cortical thickness and total surface area in each of 68 cortical ROIs. After false discovery rate (FDR) correction, it was found that the female high-genetic-risk neonates had significantly thinner cortical thickness in the right lateral occipital cortex than the female control neonates. Before FDR correction, the high-genetic-risk neonates had significantly thinner cortex in the left transverse temporal gyrus, left banks of superior temporal sulcus, left lingual gyrus, right paracentral cortex, right posterior cingulate cortex, right temporal pole, and right lateral occipital cortex, compared with the control neonates. Before FDR correction, in comparison with control neonates, male high-risk neonates had significantly thicker cortex in the left frontal pole, left cuneus cortex, and left lateral occipital cortex; while female high-risk neonates had significantly thinner cortex in the bilateral paracentral, bilateral lateral occipital, left transverse temporal, left pars opercularis, right cuneus, and right posterior cingulate cortices. The high-risk neonates also had significantly

  9. The effect of high voltage, high frequency pulsed electric field on slain ovine cortical bone.

    PubMed

    Asgarifar, Hajarossadat; Oloyede, Adekunle; Zare, Firuz

    2014-04-01

    High power, high frequency pulsed electric fields known as pulsed power (PP) has been applied recently in biology and medicine. However, little attention has been paid to investigate the application of pulse power in musculoskeletal system and its possible effect on functional behavior and biomechanical properties of bone tissue. This paper presents the first research investigating whether or not PP can be applied safely on bone tissue as a stimuli and what will be the possible effect of these signals on the characteristics of cortical bone by comparing the mechanical properties of this type of bone pre and post expose to PP and in comparison with the control samples. A positive buck-boost converter was applied to generate adjustable high voltage, high frequency pulses (up to 500 V and 10 kHz). The functional behavior of bone in response to pulse power excitation was elucidated by applying compressive loading until failure. The stiffness, failure stress (strength) and the total fracture energy (bone toughness) were determined as a measure of the main bone characteristics. Furthermore, an ultrasonic technique was applied to determine and comprise bone elasticity before and after pulse power stimulation. The elastic property of cortical bone samples appeared to remain unchanged following exposure to pulse power excitation for all three orthogonal directions obtained from ultrasonic technique and similarly from the compression test. Nevertheless, the compressive strength and toughness of bone samples were increased when they were exposed to 66 h of high power pulsed electromagnetic field compared to the control samples. As the toughness and the strength of the cortical bone tissue are directly associated with the quality and integrity of the collagen matrix whereas its stiffness is primarily related to bone mineral content these overall results may address that although, the pulse power stimulation can influence the arrangement or the quality of the collagen network

  10. The Effect of High Voltage, High Frequency Pulsed Electric Field on Slain Ovine Cortical Bone

    PubMed Central

    Asgarifar, Hajarossadat; Oloyede, Adekunle; Zare, Firuz

    2014-01-01

    High power, high frequency pulsed electric fields known as pulsed power (PP) has been applied recently in biology and medicine. However, little attention has been paid to investigate the application of pulse power in musculoskeletal system and its possible effect on functional behavior and biomechanical properties of bone tissue. This paper presents the first research investigating whether or not PP can be applied safely on bone tissue as a stimuli and what will be the possible effect of these signals on the characteristics of cortical bone by comparing the mechanical properties of this type of bone pre and post expose to PP and in comparison with the control samples. A positive buck-boost converter was applied to generate adjustable high voltage, high frequency pulses (up to 500 V and 10 kHz). The functional behavior of bone in response to pulse power excitation was elucidated by applying compressive loading until failure. The stiffness, failure stress (strength) and the total fracture energy (bone toughness) were determined as a measure of the main bone characteristics. Furthermore, an ultrasonic technique was applied to determine and comprise bone elasticity before and after pulse power stimulation. The elastic property of cortical bone samples appeared to remain unchanged following exposure to pulse power excitation for all three orthogonal directions obtained from ultrasonic technique and similarly from the compression test. Nevertheless, the compressive strength and toughness of bone samples were increased when they were exposed to 66 h of high power pulsed electromagnetic field compared to the control samples. As the toughness and the strength of the cortical bone tissue are directly associated with the quality and integrity of the collagen matrix whereas its stiffness is primarily related to bone mineral content these overall results may address that although, the pulse power stimulation can influence the arrangement or the quality of the collagen network

  11. Cortical Activity during a Highly-Trained Resistance Exercise Movement Emphasizing Force, Power or Volume

    PubMed Central

    Flanagan, Shawn D.; Dunn-Lewis, Courtenay; Comstock, Brett A.; Maresh, Carl M.; Volek, Jeff S.; Denegar, Craig R.; Kraemer, William J.

    2012-01-01

    Cortical activity is thought to reflect the biomechanical properties of movement (e.g., force or velocity of movement), but fatigue and movement familiarity are important factors that require additional consideration in electrophysiological research. The purpose of this within-group quantitative electroencephalogram (EEG) investigation was to examine changes in cortical activity amplitude and location during four resistance exercise movement protocols emphasizing rate (PWR), magnitude (FOR), or volume (VOL) of force production, while accounting for movement familiarity and fatigue. EEG signals were recorded during each complete repetition and were then grouped by functional region, processed to eliminate artifacts, and averaged to compare overall differences in the magnitude and location of cortical activity between protocols over the course of six sets. Biomechanical, biochemical, and exertional data were collected to contextualize electrophysiological data. The most fatiguing protocols were accompanied by the greatest increases in cortical activity. Furthermore, despite non-incremental loading and lower force levels, VOL displayed the largest increases in cortical activity over time and greatest motor and sensory activity overall. Our findings suggest that cortical activity is strongly related to aspects of fatigue during a high intensity resistance exercise movement. PMID:24961265

  12. Meta-cognition is associated with cortical thickness in youth at clinical high risk of psychosis.

    PubMed

    Buchy, Lisa; Stowkowy, Jacque; MacMaster, Frank P; Nyman, Karissa; Addington, Jean

    2015-09-30

    Meta-cognition is compromised in people with schizophrenia and people at clinical high risk (CHR) of psychosis. In the current work in a CHR sample, we hypothesized that meta-cognitive functions would correlate with cortical thickness in five brain regions implicated in the pathogenesis of psychosis: inferior and middle frontal cortices, anterior cingulate cortex, superior temporal cortex and insula. Secondly, we hypothesized that similar neural systems would underlie different meta-cognitive functions. Narratives were gathered for 29 youth at CHR of psychosis using a semi-structured interview. Four meta-cognitive functions within the narratives were measured with the Meta-cognition Assessment Scale and regressed on cortical thickness from our a priori regions of interest using FreeSurfer. Mapping statistics from our a priori regions of interest revealed that meta-cognition functions were associated with cortical thickness in inferior and middle frontal gyri, superior temporal cortex and insula. The distribution of cortical thickness was partially similar across the four MAS items. Results confirm our hypothesis that cortical thickness is significantly associated with meta-cognition in brain regions that consistently show gray matter reductions across the schizophrenia spectrum. Evidence for thickness covariation in a variety of regions suggests partial dependence in the neural architecture underlying various meta-cognitive functions in CHR. PMID:26210694

  13. Linking contemporary high resolution magnetic resonance imaging to the von Economo legacy: A study on the comparison of MRI cortical thickness and histological measurements of cortical structure.

    PubMed

    Scholtens, Lianne H; de Reus, Marcel A; van den Heuvel, Martijn P

    2015-08-01

    The cerebral cortex is a distinctive part of the mammalian nervous system, displaying a spatial variety in cyto-, chemico-, and myelinoarchitecture. As part of a rich history of histological findings, pioneering anatomists von Economo and Koskinas provided detailed mappings on the cellular structure of the human cortex, reporting on quantitative aspects of cytoarchitecture of cortical areas. Current day investigations into the structure of human cortex have embraced technological advances in Magnetic Resonance Imaging (MRI) to assess macroscale thickness and organization of the cortical mantle in vivo. However, direct comparisons between current day MRI estimates and the quantitative measurements of early anatomists have been limited. Here, we report on a simple, but nevertheless important cross-analysis between the histological reports of von Economo and Koskinas on variation in thickness of the cortical mantle and MRI derived measurements of cortical thickness. We translated the von Economo cortical atlas to a subdivision of the commonly used Desikan-Killiany atlas (as part of the FreeSurfer Software package and a commonly used parcellation atlas in studies examining MRI cortical thickness). Next, values of "width of the cortical mantle" as provided by the measurements of von Economo and Koskinas were correlated to cortical thickness measurements derived from high-resolution anatomical MRI T1 data of 200+ subjects of the Human Connectome Project (HCP). Cross-correlation revealed a significant association between group-averaged MRI measurements of cortical thickness and histological recordings (r = 0.54, P < 0.001). Further validating such a correlation, we manually segmented the von Economo parcellation atlas on the standardized Colin27 brain dataset and applied the obtained three-dimensional von Economo segmentation atlas to the T1 data of each of the HCP subjects. Highly consistent with our findings for the mapping to the Desikan-Killiany regions, cross

  14. High-gravity spreading of liquid puddles on wetting flexible substrates

    NASA Astrophysics Data System (ADS)

    Yang, Chen; Burrous, Adam; Xie, Jingjin; Shaikh, Hassan; Elike-Avion, Akofa; Rojas Rodriguez, Luis; Ramachandran, Adithya; Choi, Wonjae; Mazzeo, Aaron D.

    2016-02-01

    This letter describes a mechanical approach of using high gravity to decrease the capillary length and increase the spreading rate of liquid puddles on wetting flexible substrates. By using centrifugation and a flexible substrate floating on a high-density liquid, uniform acceleration enhances the spreading of liquid puddles. Under high gravity of 600 g, the capillary length reduces by a factor of 24.5 to ˜60 μm. The reduction in capillary length results in gravity dominating the spreading of small puddles that would otherwise have slower spreading driven by both surface tension and gravity of 1 g. The resulting measurements suggest that derived expressions in the literature for gravity-driven spreading of puddles under earth's standard gravity extend to predicting the behavior of sufficiently large puddles spreading on flexible substrates exposed to more than 100 g of acceleration. This work explores the spreading of puddles/coatings under high gravity, and the techniques described in this work will allow further interrogation of the transition between surface tension- and gravity-driven spreading.

  15. Probing region-specific microstructure of human cortical areas using high angular and spatial resolution diffusion MRI

    PubMed Central

    Aggarwal, Manisha; Nauen, David W.; Troncoso, Juan C.; Mori, Susumu

    2014-01-01

    Regional heterogeneity in cortical cyto- and myeloarchitecture forms the structural basis of mapping of cortical areas in the human brain. In this study, we investigate the potential of diffusion MRI to probe the microstructure of cortical gray matter and its region-specific heterogeneity across cortical areas in the fixed human brain. High angular resolution diffusion imaging (HARDI) data at an isotropic resolution of 92-μm and 30 diffusion-encoding directions were acquired using a 3D diffusion-weighted gradient-and-spin-echo sequence, from the prefrontal (Brodmann area 9), primary motor (area 4), primary somatosensory (area 3b), and primary visual (area 17) cortical specimens (n = 3 each) from three human subjects. Further, the diffusion MR findings in these cortical areas were compared with histological silver impregnation of the same specimens, in order to investigate the underlying architectonic features that constitute the microstructural basis of diffusion-driven contrasts in cortical gray matter. Our data reveal distinct and region-specific diffusion MR contrasts across the studied areas, allowing delineation of intracortical bands of tangential fibers in specific layers layer I, layer VI, and the inner and outer bands of Baillarger. The findings of this work demonstrate unique sensitivity of diffusion MRI to differentiate region-specific cortical microstructure in the human brain, and will be useful for myeloarchitectonic mapping of cortical areas as well as to achieve an understanding of the basis of diffusion NMR contrasts in cortical gray matter. PMID:25449747

  16. Alterations in cortical thickness development in preterm-born individuals: Implications for high-order cognitive functions

    PubMed Central

    Nam, Kie Woo; Castellanos, Nazareth; Simmons, Andrew; Froudist-Walsh, Seán; Allin, Matthew P.; Walshe, Muriel; Murray, Robin M.; Evans, Alan; Muehlboeck, J-Sebastian; Nosarti, Chiara

    2015-01-01

    Very preterm birth (gestational age < 33 weeks) is associated with alterations in cortical thickness and with neuropsychological/behavioural impairments. Here we studied cortical thickness in very preterm born individuals and controls in mid-adolescence (mean age 15 years) and beginning of adulthood (mean age 20 years), as well as longitudinal changes between the two time points. Using univariate approaches, we showed both increases and decreases in cortical thickness in very preterm born individuals compared to controls. Specifically (1) very preterm born adolescents displayed extensive areas of greater cortical thickness, especially in occipitotemporal and prefrontal cortices, differences which decreased substantially by early adulthood; (2) at both time points, very preterm-born participants showed smaller cortical thickness, especially in parahippocampal and insular regions. We then employed a multivariate approach (support vector machine) to study spatially discriminating features between the two groups, which achieved a mean accuracy of 86.5%. The spatially distributed regions in which cortical thickness best discriminated between the groups (top 5%) included temporal, occipitotemporal, parietal and prefrontal cortices. Within these spatially distributed regions (top 1%), longitudinal changes in cortical thickness in left temporal pole, right occipitotemporal gyrus and left superior parietal lobe were significantly associated with scores on language-based tests of executive function. These results describe alterations in cortical thickness development in preterm-born individuals in their second decade of life, with implications for high-order cognitive processing. PMID:25871628

  17. Alterations in cortical thickness development in preterm-born individuals: Implications for high-order cognitive functions.

    PubMed

    Nam, Kie Woo; Castellanos, Nazareth; Simmons, Andrew; Froudist-Walsh, Seán; Allin, Matthew P; Walshe, Muriel; Murray, Robin M; Evans, Alan; Muehlboeck, J-Sebastian; Nosarti, Chiara

    2015-07-15

    Very preterm birth (gestational age <33 weeks) is associated with alterations in cortical thickness and with neuropsychological/behavioural impairments. Here we studied cortical thickness in very preterm born individuals and controls in mid-adolescence (mean age 15 years) and beginning of adulthood (mean age 20 years), as well as longitudinal changes between the two time points. Using univariate approaches, we showed both increases and decreases in cortical thickness in very preterm born individuals compared to controls. Specifically (1) very preterm born adolescents displayed extensive areas of greater cortical thickness, especially in occipitotemporal and prefrontal cortices, differences which decreased substantially by early adulthood; (2) at both time points, very preterm-born participants showed smaller cortical thickness, especially in parahippocampal and insular regions. We then employed a multivariate approach (support vector machine) to study spatially discriminating features between the two groups, which achieved a mean accuracy of 86.5%. The spatially distributed regions in which cortical thickness best discriminated between the groups (top 5%) included temporal, occipitotemporal, parietal and prefrontal cortices. Within these spatially distributed regions (top 1%), longitudinal changes in cortical thickness in left temporal pole, right occipitotemporal gyrus and left superior parietal lobe were significantly associated with scores on language-based tests of executive function. These results describe alterations in cortical thickness development in preterm-born individuals in their second decade of life, with implications for high-order cognitive processing. PMID:25871628

  18. Alterations of cortical pyramidal neurons in mice lacking high-affinity nicotinic receptors

    PubMed Central

    Ballesteros-Yáñez, Inmaculada; Benavides-Piccione, Ruth; Bourgeois, Jean-Pierre; Changeux, Jean-Pierre; DeFelipe, Javier

    2010-01-01

    The neuronal nicotinic acetylcholine receptors (nAChRs) are allosteric membrane proteins involved in multiple cognitive processes, including attention, learning, and memory. The most abundant form of heterooligomeric nAChRs in the brain contains the β2- and α4- subunits and binds nicotinic agonists with high affinity. In the present study, we investigated in the mouse the consequences of the deletion of one of the nAChR components: the β2-subunit (β2−/−) on the microanatomy of cortical pyramidal cells. Using an intracellular injection method, complete basal dendritic arbors of 650 layer III pyramidal neurons were sampled from seven cortical fields, including primary sensory, motor, and associational areas, in both β2−/− and WT animals. We observed that the pyramidal cell phenotype shows significant quantitative differences among different cortical areas in mutant and WT mice. In WT mice, the density of dendritic spines was rather similar in all cortical fields, except in the prelimbic/infralimbic cortex, where it was significantly higher. In the absence of the β2-subunit, the most significant reduction in the density of spines took place in this high-order associational field. Our data suggest that the β2-subunit is involved in the dendritic morphogenesis of pyramidal neurons and, in particular, in the circuits that contribute to the high-order functional connectivity of the cerebral cortex. PMID:20534523

  19. High-spatial-resolution mapping of the oxygen concentration in cortical tissue (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Jaswal, Rajeshwer S.; Yaseen, Mohammad A.; Fu, Buyin; Boas, David A.; Sakadžic, Sava

    2016-03-01

    Due to a lack of imaging tools for high-resolution imaging of cortical tissue oxygenation, the detailed maps of the oxygen partial pressure (PO2) around arterioles, venules, and capillaries remain largely unknown. Therefore, we have limited knowledge about the mechanisms that secure sufficient oxygen delivery in microvascular domains during brain activation, and provide some metabolic reserve capacity in diseases that affect either microvascular networks or the regulation of cerebral blood flow (CBF). To address this challenge, we applied a Two-Photon PO2 Microscopy to map PO2 at different depths in mice cortices. Measurements were performed through the cranial window in the anesthetized healthy mice as well as in the mouse models of microvascular dysfunctions. In addition, microvascular morphology was recorded by the two-photon microscopy at the end of each experiment and subsequently segmented. Co-registration of the PO2 measurements and exact microvascular morphology enabled quantification of the tissue PO2 dependence on distance from the arterioles, capillaries, and venules at various depths. Our measurements reveal significant spatial heterogeneity of the cortical tissue PO2 distribution that is dominated by the high oxygenation in periarteriolar spaces. In cases of impaired oxygen delivery due to microvascular dysfunction, significant reduction in tissue oxygenation away from the arterioles was observed. These tissue domains may be the initial sites of cortical injury that can further exacerbate the progression of the disease.

  20. Using high-resolution quantitative mapping of R1 as an index of cortical myelination.

    PubMed

    Lutti, Antoine; Dick, Frederic; Sereno, Martin I; Weiskopf, Nikolaus

    2014-06-01

    A fundamental tenet of neuroscience is that cortical functional differentiation is related to the cross-areal differences in cyto-, receptor-, and myeloarchitectonics that are observed in ex-vivo preparations. An ongoing challenge is to create noninvasive magnetic resonance (MR) imaging techniques that offer sufficient resolution, tissue contrast, accuracy and precision to allow for characterization of cortical architecture over an entire living human brain. One exciting development is the advent of fast, high-resolution quantitative mapping of basic MR parameters that reflect cortical myeloarchitecture. Here, we outline some of the theoretical and technical advances underlying this technique, particularly in terms of measuring and correcting for transmit and receive radio frequency field inhomogeneities. We also discuss new directions in analytic techniques, including higher resolution reconstructions of the cortical surface. We then discuss two recent applications of this technique. The first compares individual and group myelin maps to functional retinotopic maps in the same individuals, demonstrating a close relationship between functionally and myeloarchitectonically defined areal boundaries (as well as revealing an interesting disparity in a highly studied visual area). The second combines tonotopic and myeloarchitectonic mapping to localize primary auditory areas in individual healthy adults, using a similar strategy as combined electrophysiological and post-mortem myeloarchitectonic studies in non-human primates. PMID:23756203

  1. DETECTING DYNAMIC AND GENETIC EFFECTS ON BRAIN STRUCTURE USING HIGH-DIMENSIONAL CORTICAL PATTERN MATCHING.

    PubMed

    Thompson, Paul M; Hayashi, Kiralee M; de Zubicaray, Greig; Janke, Andrew L; Rose, Stephen E; Semple, James; Doddrell, David M; Cannon, Tyrone D; Toga, Arthur W

    2002-01-01

    We briefly describe a set of algorithms to detect and visualize effects of disease and genetic factors on the brain. Extreme variations in cortical anatomy, even among normal subjects, complicate the detection and mapping of systematic effects on brain structure in human populations. We tackle this problem in two stages. First, we develop a cortical pattern matching approach, based on metrically covariant partial differential equations (PDEs), to associate corresponding regions of cortex in an MRI brain image database (N=102 scans). Second, these high-dimensional deformation maps are used to transfer within-subject cortical signals, including measures of gray matter distribution, shape asymmetries, and degenerative rates, to a common anatomic template for statistical analysis. We illustrate these techniques in two applications: (1) mapping dynamic patterns of gray matter loss in longitudinally scanned Alzheimer's disease patients; and (2) mapping genetic influences on brain structure. We extend statistics used widely in behavioral genetics to cortical manifolds. Specifically, we introduce methods based on h-squared distributed random fields to map hereditary influences on brain structure in human populations. PMID:19759832

  2. The Roots of Alzheimer's Disease: Are High-Expanding Cortical Areas Preferentially Targeted?†.

    PubMed

    Fjell, Anders M; Amlien, Inge K; Sneve, Markus H; Grydeland, Håkon; Tamnes, Christian K; Chaplin, Tristan A; Rosa, Marcello G P; Walhovd, Kristine B

    2015-09-01

    Alzheimer's disease (AD) is regarded a human-specific condition, and it has been suggested that brain regions highly expanded in humans compared with other primates are selectively targeted. We calculated shared and unique variance in the distribution of AD atrophy accounted for by cortical expansion between macaque and human, affiliation to the default mode network (DMN), ontogenetic development and normal aging. Cortical expansion was moderately related to atrophy, but a critical discrepancy was seen in the medial temporo-parietal episodic memory network. Identification of "hotspots" and "coldspots" of expansion across several primate species did not yield compelling evidence for the hypothesis that highly expanded regions are specifically targeted. Controlling for distribution of atrophy in aging substantially attenuated the expansion-AD relationship. A path model showed that all variables explained unique variance in AD atrophy but were generally mediated through aging. This supports a systems-vulnerability model, where critical networks are subject to various negative impacts, aging in particular, rather than being selectively targeted in AD. An alternative approach is suggested, focused on the interplay of the phylogenetically old and preserved medial temporal lobe areas with more highly expanded association cortices governed by different principles of plasticity and stability. PMID:24658616

  3. Spreading convulsions, spreading depolarization and epileptogenesis in human cerebral cortex.

    PubMed

    Dreier, Jens P; Major, Sebastian; Pannek, Heinz-Wolfgang; Woitzik, Johannes; Scheel, Michael; Wiesenthal, Dirk; Martus, Peter; Winkler, Maren K L; Hartings, Jed A; Fabricius, Martin; Speckmann, Erwin-Josef; Gorji, Ali

    2012-01-01

    Spreading depolarization of cells in cerebral grey matter is characterized by massive ion translocation, neuronal swelling and large changes in direct current-coupled voltage recording. The near-complete sustained depolarization above the inactivation threshold for action potential generating channels initiates spreading depression of brain activity. In contrast, epileptic seizures show modest ion translocation and sustained depolarization below the inactivation threshold for action potential generating channels. Such modest sustained depolarization allows synchronous, highly frequent neuronal firing; ictal epileptic field potentials being its electrocorticographic and epileptic seizure its clinical correlate. Nevertheless, Leão in 1944 and Van Harreveld and Stamm in 1953 described in animals that silencing of brain activity induced by spreading depolarization changed during minimal electrical stimulations. Eventually, epileptic field potentials were recorded during the period that had originally seen spreading depression of activity. Such spreading convulsions are characterized by epileptic field potentials on the final shoulder of the large slow potential change of spreading depolarization. We here report on such spreading convulsions in monopolar subdural recordings in 2 of 25 consecutive aneurismal subarachnoid haemorrhage patients in vivo and neocortical slices from 12 patients with intractable temporal lobe epilepsy in vitro. The in vitro results suggest that γ-aminobutyric acid-mediated inhibition protects from spreading convulsions. Moreover, we describe arterial pulse artefacts mimicking epileptic field potentials in three patients with subarachnoid haemorrhage that ride on the slow potential peak. Twenty-one of the 25 subarachnoid haemorrhage patients (84%) had 656 spreading depolarizations in contrast to only three patients (12%) with 55 ictal epileptic events isolated from spreading depolarizations. Spreading depolarization frequency and depression

  4. Getter sputtering system for high-throughput fabrication of composition spreads.

    PubMed

    Gregoire, John M; van Dover, R B; Jin, Jing; Disalvo, Francis J; Abruña, Héctor D

    2007-07-01

    We describe a sputtering system that can deposit composition spreads in an effectively UHV environment but which does not require the high-throughput paradigm to be compromised by a long pump down each time a target is changed. The system deploys four magnetron sputter guns in a cryoshroud (getter sputtering) which allows elements such as Ti and Zr to be deposited with minimal contamination by oxygen or other reactive background gases. The system also relies on custom substrate heaters to give rapid heating and cool down. The effectiveness of the gettering technique is evaluated, and example results obtained for catalytic activity of a pseudoternary composition spread are presented. PMID:17672743

  5. Human cortical sensitivity to interaural level differences in low- and high-frequency sounds.

    PubMed

    Salminen, Nelli H

    2015-02-01

    Interaural level difference (ILD) is used as a cue in horizontal sound source localization. In free field, the magnitude of ILD depends on frequency: it is more prominent at high than low frequencies. Here, a magnetoencephalography experiment was conducted to test whether the sensitivity of the human auditory cortex to ILD is also frequency-dependent. Robust cortical sensitivity to ILD was found that could not be explained by monaural level effects, but this sensitivity did not differ between low- and high-frequency stimuli. This is consistent with previous psychoacoustical investigations showing that performance in ILD discrimination is not dependent on frequency. PMID:25698049

  6. Cosputtered composition-spread reproducibility established by high-throughput x-ray fluorescence

    SciTech Connect

    Gregoire, John M.; Dale, Darren; Kazimirov, Alexander; DiSalvo, Francis J.; Dover, R. Bruce van

    2010-09-15

    We describe the characterization of sputtered yttria-zirconia composition spread thin films by x-ray fluorescence (XRF). We also discuss our automated analysis of the XRF data, which was collected in a high throughput experiment at the Cornell High Energy Synchrotron Source. The results indicate that both the composition reproducibility of the library deposition and the composition measurements have a precision of better than 1 atomic percent.

  7. Automatic cortical surface reconstruction of high-resolution T1 echo planar imaging data.

    PubMed

    Renvall, Ville; Witzel, Thomas; Wald, Lawrence L; Polimeni, Jonathan R

    2016-07-01

    Echo planar imaging (EPI) is the method of choice for the majority of functional magnetic resonance imaging (fMRI), yet EPI is prone to geometric distortions and thus misaligns with conventional anatomical reference data. The poor geometric correspondence between functional and anatomical data can lead to severe misplacements and corruption of detected activation patterns. However, recent advances in imaging technology have provided EPI data with increasing quality and resolution. Here we present a framework for deriving cortical surface reconstructions directly from high-resolution EPI-based reference images that provide anatomical models exactly geometric distortion-matched to the functional data. Anatomical EPI data with 1mm isotropic voxel size were acquired using a fast multiple inversion recovery time EPI sequence (MI-EPI) at 7T, from which quantitative T1 maps were calculated. Using these T1 maps, volumetric data mimicking the tissue contrast of standard anatomical data were synthesized using the Bloch equations, and these T1-weighted data were automatically processed using FreeSurfer. The spatial alignment between T2(⁎)-weighted EPI data and the synthetic T1-weighted anatomical MI-EPI-based images was improved compared to the conventional anatomical reference. In particular, the alignment near the regions vulnerable to distortion due to magnetic susceptibility differences was improved, and sampling of the adjacent tissue classes outside of the cortex was reduced when using cortical surface reconstructions derived directly from the MI-EPI reference. The MI-EPI method therefore produces high-quality anatomical data that can be automatically segmented with standard software, providing cortical surface reconstructions that are geometrically matched to the BOLD fMRI data. PMID:27079529

  8. Cortical cytasters: a highly conserved developmental trait of Bilateria with similarities to Ctenophora

    PubMed Central

    2011-01-01

    Background Cytasters (cytoplasmic asters) are centriole-based nucleation centers of microtubule polymerization that are observable in large numbers in the cortical cytoplasm of the egg and zygote of bilaterian organisms. In both protostome and deuterostome taxa, cytasters have been described to develop during oogenesis from vesicles of nuclear membrane that move to the cortical cytoplasm. They become associated with several cytoplasmic components, and participate in the reorganization of cortical cytoplasm after fertilization, patterning the antero-posterior and dorso-ventral body axes. Presentation of the hypothesis The specific resemblances in the development of cytasters in both protostome and deuterostome taxa suggest that an independent evolutionary origin is unlikely. An assessment of published data confirms that cytasters are present in several protostome and deuterostome phyla, but are absent in the non-bilaterian phyla Cnidaria and Ctenophora. We hypothesize that cytasters evolved in the lineage leading to Bilateria and were already present in the most recent common ancestor shared by protostomes and deuterostomes. Thus, cytasters would be an ancient and highly conserved trait that is homologous across the different bilaterian phyla. The alternative possibility is homoplasy, that is cytasters have evolved independently in different lineages of Bilateria. Testing the hypothesis So far, available published information shows that appropriate observations have been made in eight different bilaterian phyla. All of them present cytasters. This is consistent with the hypothesis of homology and conservation. However, there are several important groups for which there are no currently available data. The hypothesis of homology predicts that cytasters should be present in these groups. Increasing the taxonomic sample using modern techniques uniformly will test for evolutionary patterns supporting homology, homoplasy, or secondary loss of cytasters. Implications of

  9. Human cortical sensitivity to interaural time difference in high-frequency sounds.

    PubMed

    Salminen, Nelli H; Altoè, Alessandro; Takanen, Marko; Santala, Olli; Pulkki, Ville

    2015-05-01

    Human sound source localization relies on various acoustical cues one of the most important being the interaural time difference (ITD). ITD is best detected in the fine structure of low-frequency sounds but it may also contribute to spatial hearing at higher frequencies if extracted from the sound envelope. The human brain mechanisms related to this envelope ITD cue remain unexplored. Here, we tested the sensitivity of the human auditory cortex to envelope ITD in magnetoencephalography (MEG) recordings. We found two types of sensitivity to envelope ITD. First, the amplitude of the auditory cortical N1m response was smaller for zero envelope ITD than for long envelope ITDs corresponding to the sound being in opposite phase in the two ears. Second, the N1m response amplitude showed ITD-specific adaptation for both fine-structure and for envelope ITD. The auditory cortical sensitivity was weaker for envelope ITD in high-frequency sounds than for fine-structure ITD in low-frequency sounds but occurred within a range of ITDs that are encountered in natural conditions. Finally, the participants were briefly tested for their behavioral ability to detect envelope ITD. Interestingly, we found a correlation between the behavioral performance and the neural sensitivity to envelope ITD. In conclusion, our findings show that the human auditory cortex is sensitive to ITD in the envelope of high-frequency sounds and this sensitivity may have behavioral relevance. PMID:25668126

  10. Divergent modes of clonal spread and intraperitoneal mixing in high-grade serous ovarian cancer.

    PubMed

    McPherson, Andrew; Roth, Andrew; Laks, Emma; Masud, Tehmina; Bashashati, Ali; Zhang, Allen W; Ha, Gavin; Biele, Justina; Yap, Damian; Wan, Adrian; Prentice, Leah M; Khattra, Jaswinder; Smith, Maia A; Nielsen, Cydney B; Mullaly, Sarah C; Kalloger, Steve; Karnezis, Anthony; Shumansky, Karey; Siu, Celia; Rosner, Jamie; Chan, Hector Li; Ho, Julie; Melnyk, Nataliya; Senz, Janine; Yang, Winnie; Moore, Richard; Mungall, Andrew J; Marra, Marco A; Bouchard-Côté, Alexandre; Gilks, C Blake; Huntsman, David G; McAlpine, Jessica N; Aparicio, Samuel; Shah, Sohrab P

    2016-07-01

    We performed phylogenetic analysis of high-grade serous ovarian cancers (68 samples from seven patients), identifying constituent clones and quantifying their relative abundances at multiple intraperitoneal sites. Through whole-genome and single-nucleus sequencing, we identified evolutionary features including mutation loss, convergence of the structural genome and temporal activation of mutational processes that patterned clonal progression. We then determined the precise clonal mixtures comprising each tumor sample. The majority of sites were clonally pure or composed of clones from a single phylogenetic clade. However, each patient contained at least one site composed of polyphyletic clones. Five patients exhibited monoclonal and unidirectional seeding from the ovary to intraperitoneal sites, and two patients demonstrated polyclonal spread and reseeding. Our findings indicate that at least two distinct modes of intraperitoneal spread operate in clonal dissemination and highlight the distribution of migratory potential over clonal populations comprising high-grade serous ovarian cancers. PMID:27182968

  11. Exponential quantum spreading in a class of kicked rotor systems near high-order resonances

    NASA Astrophysics Data System (ADS)

    Wang, Hailong; Wang, Jiao; Guarneri, Italo; Casati, Giulio; Gong, Jiangbin

    2013-11-01

    Long-lasting exponential quantum spreading was recently found in a simple but very rich dynamical model, namely, an on-resonance double-kicked rotor model [J. Wang, I. Guarneri, G. Casati, and J. B. Gong, Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.107.234104 107, 234104 (2011)]. The underlying mechanism, unrelated to the chaotic motion in the classical limit but resting on quasi-integrable motion in a pseudoclassical limit, is identified for one special case. By presenting a detailed study of the same model, this work offers a framework to explain long-lasting exponential quantum spreading under much more general conditions. In particular, we adopt the so-called “spinor” representation to treat the kicked-rotor dynamics under high-order resonance conditions and then exploit the Born-Oppenheimer approximation to understand the dynamical evolution. It is found that the existence of a flat band (or an effectively flat band) is one important feature behind why and how the exponential dynamics emerges. It is also found that a quantitative prediction of the exponential spreading rate based on an interesting and simple pseudoclassical map may be inaccurate. In addition to general interests regarding the question of how exponential behavior in quantum systems may persist for a long time scale, our results should motivate further studies toward a better understanding of high-order resonance behavior in δ-kicked quantum systems.

  12. Modelling the wind-borne spread of highly pathogenic avian influenza virus between farms.

    PubMed

    Ssematimba, Amos; Hagenaars, Thomas J; de Jong, Mart C M

    2012-01-01

    A quantitative understanding of the spread of contaminated farm dust between locations is a prerequisite for obtaining much-needed insight into one of the possible mechanisms of disease spread between farms. Here, we develop a model to calculate the quantity of contaminated farm-dust particles deposited at various locations downwind of a source farm and apply the model to assess the possible contribution of the wind-borne route to the transmission of Highly Pathogenic Avian Influenza virus (HPAI) during the 2003 epidemic in the Netherlands. The model is obtained from a Gaussian Plume Model by incorporating the dust deposition process, pathogen decay, and a model for the infection process on exposed farms. Using poultry- and avian influenza-specific parameter values we calculate the distance-dependent probability of between-farm transmission by this route. A comparison between the transmission risk pattern predicted by the model and the pattern observed during the 2003 epidemic reveals that the wind-borne route alone is insufficient to explain the observations although it could contribute substantially to the spread over short distance ranges, for example, explaining 24% of the transmission over distances up to 25 km. PMID:22348042

  13. Protrusive and Contractile Forces of Spreading Human Neutrophils.

    PubMed

    Henry, Steven J; Chen, Christopher S; Crocker, John C; Hammer, Daniel A

    2015-08-18

    Human neutrophils are mediators of innate immunity and undergo dramatic shape changes at all stages of their functional life cycle. In this work, we quantified the forces associated with a neutrophil's morphological transition from a nonadherent, quiescent sphere to its adherent and spread state. We did this by tracking, with high spatial and temporal resolution, the cell's mechanical behavior during spreading on microfabricated post-array detectors printed with the extracellular matrix protein fibronectin. Two dominant mechanical regimes were observed: transient protrusion and steady-state contraction. During spreading, a wave of protrusive force (75 ± 8 pN/post) propagates radially outward from the cell center at a speed of 206 ± 28 nm/s. Once completed, the cells enter a sustained contractile state. Although post engagement during contraction was continuously varying, posts within the core of the contact zone were less contractile (-20 ± 10 pN/post) than those residing at the geometric perimeter (-106 ± 10 pN/post). The magnitude of the protrusive force was found to be unchanged in response to cytoskeletal inhibitors of lamellipodium formation and myosin II-mediated contractility. However, cytochalasin B, known to reduce cortical tension in neutrophils, slowed spreading velocity (61 ± 37 nm/s) without significantly reducing protrusive force. Relaxation of the actin cortical shell was a prerequisite for spreading on post arrays as demonstrated by stiffening in response to jasplakinolide and the abrogation of spreading. ROCK and myosin II inhibition reduced long-term contractility. Function blocking antibody studies revealed haptokinetic spreading was induced by β2 integrin ligation. Neutrophils were found to moderately invaginate the post arrays to a depth of ∼1 μm as measured from spinning disk confocal microscopy. Our work suggests a competition of adhesion energy, cortical tension, and the relaxation of cortical tension is at play at the onset of

  14. Protrusive and Contractile Forces of Spreading Human Neutrophils

    PubMed Central

    Henry, Steven J.; Chen, Christopher S.; Crocker, John C.; Hammer, Daniel A.

    2015-01-01

    Human neutrophils are mediators of innate immunity and undergo dramatic shape changes at all stages of their functional life cycle. In this work, we quantified the forces associated with a neutrophil’s morphological transition from a nonadherent, quiescent sphere to its adherent and spread state. We did this by tracking, with high spatial and temporal resolution, the cell’s mechanical behavior during spreading on microfabricated post-array detectors printed with the extracellular matrix protein fibronectin. Two dominant mechanical regimes were observed: transient protrusion and steady-state contraction. During spreading, a wave of protrusive force (75 ± 8 pN/post) propagates radially outward from the cell center at a speed of 206 ± 28 nm/s. Once completed, the cells enter a sustained contractile state. Although post engagement during contraction was continuously varying, posts within the core of the contact zone were less contractile (−20 ± 10 pN/post) than those residing at the geometric perimeter (−106 ± 10 pN/post). The magnitude of the protrusive force was found to be unchanged in response to cytoskeletal inhibitors of lamellipodium formation and myosin II-mediated contractility. However, cytochalasin B, known to reduce cortical tension in neutrophils, slowed spreading velocity (61 ± 37 nm/s) without significantly reducing protrusive force. Relaxation of the actin cortical shell was a prerequisite for spreading on post arrays as demonstrated by stiffening in response to jasplakinolide and the abrogation of spreading. ROCK and myosin II inhibition reduced long-term contractility. Function blocking antibody studies revealed haptokinetic spreading was induced by β2 integrin ligation. Neutrophils were found to moderately invaginate the post arrays to a depth of ∼1 μm as measured from spinning disk confocal microscopy. Our work suggests a competition of adhesion energy, cortical tension, and the relaxation of cortical tension is at play at the

  15. Narrow Energy Spread Protons and Ions from High-Intensity, High-Contrast Laser Solid Target Interactions

    SciTech Connect

    Dollar, Franklin; Matsuoka, Takeshi; McGuffey, Christopher; Bulanov, Stepan S.; Chvykov, Vladimir; Kalintchenko, Galina; Thomas, Alec G. R.; Willingale, Louise; Yanovsky, Victor; Maksimchuk, Anatoly; Krushelnick, Karl; Davis, Jack; Petrov, George

    2010-11-04

    Recent simulations show that an idealized, high intensity, short pulse laser can generate quasi-monoenergetic proton beams with energies over 100 MeV in an interaction with a thin film. However, most short pulse laser facilities with sufficient intensity have difficulty controlling the nanosecond and picosecond contrast necessary to realize such a regime. Experiments were performed to investigate proton and ion acceleration from a high contrast, short pulse laser by employing dual plasma mirrors along with a deformable mirror at the HERCULES laser facility at the Center for Ultrafast Optical Sciences, University of Michigan. Plasma mirrors were characterized, allowing a 50% throughput with an intensity contrast increase of 105. The focal spot quality was also exceptional, showing a 1.1 micron full width at half maximum (FWHM) focal diameter. Experiments were done using temporally cleaned 30 TW, 32 fs pulses to achieve an intensity of up to 10{sup 21} Wcm{sup -2} on Si{sub 3}N{sub 4} and Mylar targets with thicknesses ranging 50 nm to 13 microns. Proton beams with energy spreads below 2 MeV were observed from all thicknesses, peaking with energies up to 10.3 MeV and an energy spread of 0.8 MeV. Similar narrow energy spreads were observed for oxygen, nitrogen, and carbon at the silicon nitride thickness of 50 nm with energies up to 24 MeV with an energy spread of 3 MeV, whereas the energy spread is greatly increased at a larger thickness. Maximum energies were confirmed with CR39 track detectors, while a Thomson ion spectrometer was used to gauge the monoenergetic nature of the beam.

  16. Improved accuracy of cortical bone mineralization measured by polychromatic microcomputed tomography using a novel high mineral density composite calibration phantom

    SciTech Connect

    Deuerling, Justin M.; Rudy, David J.; Niebur, Glen L.; Roeder, Ryan K.

    2010-09-15

    Purpose: Microcomputed tomography (micro-CT) is increasingly used as a nondestructive alternative to ashing for measuring bone mineral content. Phantoms are utilized to calibrate the measured x-ray attenuation to discrete levels of mineral density, typically including levels up to 1000 mg HA/cm{sup 3}, which encompasses levels of bone mineral density (BMD) observed in trabecular bone. However, levels of BMD observed in cortical bone and levels of tissue mineral density (TMD) in both cortical and trabecular bone typically exceed 1000 mg HA/cm{sup 3}, requiring extrapolation of the calibration regression, which may result in error. Therefore, the objectives of this study were to investigate (1) the relationship between x-ray attenuation and an expanded range of hydroxyapatite (HA) density in a less attenuating polymer matrix and (2) the effects of the calibration on the accuracy of subsequent measurements of mineralization in human cortical bone specimens. Methods: A novel HA-polymer composite phantom was prepared comprising a less attenuating polymer phase (polyethylene) and an expanded range of HA density (0-1860 mg HA/cm{sup 3}) inclusive of characteristic levels of BMD in cortical bone or TMD in cortical and trabecular bone. The BMD and TMD of cortical bone specimens measured using the new HA-polymer calibration phantom were compared to measurements using a conventional HA-polymer phantom comprising 0-800 mg HA/cm{sup 3} and the corresponding ash density measurements on the same specimens. Results: The HA-polymer composite phantom exhibited a nonlinear relationship between x-ray attenuation and HA density, rather than the linear relationship typically employed a priori, and obviated the need for extrapolation, when calibrating the measured x-ray attenuation to high levels of mineral density. The BMD and TMD of cortical bone specimens measured using the conventional phantom was significantly lower than the measured ash density by 19% (p<0.001, ANCOVA) and 33% (p<0

  17. A Preliminary Transcranial Magnetic Stimulation Study of Cortical Inhibition and Excitability in High-Functioning Autism and Asperger Disorder

    ERIC Educational Resources Information Center

    Enticott, Peter G.; Rinehart, Nicole J.; Tonge, Bruce J.; Bradshaw, John L.; Fitzgerald, Paul B.

    2010-01-01

    Aim: Controversy surrounds the distinction between high-functioning autism (HFA) and Asperger disorder, but motor abnormalities are associated features of both conditions. This study examined motor cortical inhibition and excitability in HFA and Asperger disorder using transcranial magnetic stimulation (TMS). Method: Participants were diagnosed by…

  18. Highly energized inhibitory interneurons are a central element for information processing in cortical networks

    PubMed Central

    Kann, Oliver; Papageorgiou, Ismini E; Draguhn, Andreas

    2014-01-01

    Gamma oscillations (∼30 to 100 Hz) provide a fundamental mechanism of information processing during sensory perception, motor behavior, and memory formation by coordination of neuronal activity in networks of the hippocampus and neocortex. We review the cellular mechanisms of gamma oscillations about the underlying neuroenergetics, i.e., high oxygen consumption rate and exquisite sensitivity to metabolic stress during hypoxia or poisoning of mitochondrial oxidative phosphorylation. Gamma oscillations emerge from the precise synaptic interactions of excitatory pyramidal cells and inhibitory GABAergic interneurons. In particular, specialized interneurons such as parvalbumin-positive basket cells generate action potentials at high frequency (‘fast-spiking') and synchronize the activity of numerous pyramidal cells by rhythmic inhibition (‘clockwork'). As prerequisites, fast-spiking interneurons have unique electrophysiological properties and particularly high energy utilization, which is reflected in the ultrastructure by enrichment with mitochondria and cytochrome c oxidase, most likely needed for extensive membrane ion transport and γ-aminobutyric acid metabolism. This supports the hypothesis that highly energized fast-spiking interneurons are a central element for cortical information processing and may be critical for cognitive decline when energy supply becomes limited (‘interneuron energy hypothesis'). As a clinical perspective, we discuss the functional consequences of metabolic and oxidative stress in fast-spiking interneurons in aging, ischemia, Alzheimer's disease, and schizophrenia. PMID:24896567

  19. Cortical Source Analysis of High-Density EEG Recordings in Children

    PubMed Central

    Bathelt, Joe; O'Reilly, Helen; de Haan, Michelle

    2014-01-01

    EEG is traditionally described as a neuroimaging technique with high temporal and low spatial resolution. Recent advances in biophysical modelling and signal processing make it possible to exploit information from other imaging modalities like structural MRI that provide high spatial resolution to overcome this constraint1. This is especially useful for investigations that require high resolution in the temporal as well as spatial domain. In addition, due to the easy application and low cost of EEG recordings, EEG is often the method of choice when working with populations, such as young children, that do not tolerate functional MRI scans well. However, in order to investigate which neural substrates are involved, anatomical information from structural MRI is still needed. Most EEG analysis packages work with standard head models that are based on adult anatomy. The accuracy of these models when used for children is limited2, because the composition and spatial configuration of head tissues changes dramatically over development3.  In the present paper, we provide an overview of our recent work in utilizing head models based on individual structural MRI scans or age specific head models to reconstruct the cortical generators of high density EEG. This article describes how EEG recordings are acquired, processed, and analyzed with pediatric populations at the London Baby Lab, including laboratory setup, task design, EEG preprocessing, MRI processing, and EEG channel level and source analysis.  PMID:25045930

  20. High Incidence and Endemic Spread of NDM-1-Positive Enterobacteriaceae in Henan Province, China

    PubMed Central

    Qin, Shangshang; Fu, Ying; Zhang, Qijing; Qi, Hui; Wen, Jian Guo; Xu, Hui; Xu, Lijuan; Zeng, Li; Tian, Hao; Rong, Lijuan; Li, Yonghong; Shan, Lihong; Xu, Hongde; Yu, Yunsong

    2014-01-01

    The emergence and spread of New Delhi metallo-β-lactamase 1 (NDM-1)-producing carbapenem-resistant Enterobacteriaceae (CRE) present an urgent threat to human health. In China, the blaNDM-1 gene has been reported mostly in Acinetobacter spp. but is rarely found in Enterobacteriaceae. Here, we report a high incidence and endemic spread of NDM-1-producing CRE in Henan Province in China. Sixteen (33.3%) of the 48 CRE isolates obtained from patients during June 2011 to July 2012 were positive for blaNDM-1, and the gene was found to be carried on plasmids of various sizes (∼55 to ∼360 kb). These plasmids were readily transferrable to recipient Escherichia coli by conjugation, conferred resistance to multiple antibiotics, and belonged to multiple replicon types. The blaNDM-1-positive CRE isolates were genetically diverse, and six new multilocus sequence typing (MLST) sequence types were linked to the carriage of NDM-1. Five of the isolates were classified as extensively drug-resistant (XDR) isolates, four of which also carried the fosA3 gene conferring resistance to fosfomycin, an alternative drug for treating infections by CRE. In each blaNDM-1-positive CRE isolate, the blaNDM-1 gene was downstream of an intact ISAba125 element and upstream of the bleMBL gene. Furthermore, gene environment analysis suggested the possible transmission of blaNDM-1-containing sequences from Acinetobacter spp. to Klebsiella pneumoniae and Klebsiella oxytoca. These findings reveal the emergence and active transmission of NDM-1-positive CRE in China and underscore the need for heightened measures to control their further spread. PMID:24777095

  1. High-numerical-aperture microscopy with a rotating point spread function.

    PubMed

    Yu, Zhixian; Prasad, Sudhakar

    2016-07-01

    Rotating point spread function (PSF) microscopy via spiral phase engineering can localize point sources over large focal depths in a snapshot mode. The present work gives an approximate vector-field analysis of an improved rotating PSF design that encodes both the 3D location and polarization state of a monochromatic point dipole emitter for high-numerical-aperture microscopy. By examining the angle of rotation and the spatial form of the PSF, one can jointly localize point sources and determine the polarization state of light emitted by them over a 3D field in a single snapshot. Results of numerical simulations of noisy data frames under Poisson shot noise conditions and the errors in the recovery of 3D location and dipole orientation for a single point source are discussed. PMID:27409707

  2. Thalamocortical Connections of Parietal Somatosensory Cortical Fields in Macaque Monkeys are Highly Divergent and Convergent

    PubMed Central

    Padberg, Jeffrey; Cerkevich, Christina; Engle, James; Rajan, Alexander T.; Recanzone, Gregg; Kaas, Jon

    2009-01-01

    We examined the organization and cortical projections of the somatosensory thalamus using multiunit microelectrode recording techniques in anesthetized monkeys combined with neuroanatomical tracings techniques and architectonic analysis. Different portions of the hand representation in area 3b were injected with different anatomical tracers in the same animal, or matched body part representations in parietal areas 3a, 3b, 1, 2, and areas 2 and 5 were injected with different anatomical tracers in the same animal to directly compare their thalamocortical connections. We found that the somatosensory thalamus is composed of several representations of cutaneous and deep receptors of the contralateral body. These nuclei include the ventral posterior nucleus, the ventral posterior superior nucleus, the ventral posterior inferior nucleus, and the ventral lateral nucleus. Each nucleus projects to several different cortical fields, and each cortical field receives projections from multiple thalamic nuclei. In contrast to other sensory systems, each of these somatosensory cortical fields is uniquely innervated by multiple thalamic nuclei. These data indicate that multiple inputs are processed simultaneously within and across several, “hierarchically connected” cortical fields. PMID:19221145

  3. Cortical representation of the human hand assessed by two levels of high-resolution EEG recordings.

    PubMed

    Houzé, Bérengère; Perchet, Caroline; Magnin, Michel; Garcia-Larrea, Luis

    2011-11-01

    Increasing interest in cortical plasticity has prompted the growing use of somatosensory evoked potentials (SEPs) to estimate changes in the cortical representation of body regions. Here, we tested the effect of different sites of hand stimulation and of the density of spatial sampling in the quality of estimation of somatosensory sources. Sources of two SEP components from the primary somatosensory cortex (N20/P20 and P45) were estimated using two levels of spatial sampling (64- vs. 128-channel) and stimulation of four distal sites in the upper limbs, including single digits (first vs. fifth) and distal nerves with comparable cortical projection (superficial branch of the radial nerve and distal ulnar nerve). The most robust separation of somatosensory sources was achieved by comparing the cortical representations of the first digit and the distal ulnar nerve territories on the N20/P20 component of SEPs. Although both the 64- and the 128-electrode montages correctly discriminated these two areas, only the 128-electrode montage was able to significantly separate sources in the other cases, notably when using first versus fifth digit stimulation. Trustworthy distinction of cortical representations was not obtainable when using the P45 component, probably because of greater activation volume, radial orientation of sources in areas 1-2 and increased variability with attention and vigilance. Assessment of tangential SEP components to stimulation of first digit versus ulnar nerve appears the best option to assess plastic somatosensory changes, especially when using relatively low-electrode sampling. PMID:21246666

  4. High-resolution interferometric radar images of equatorial spread F scattering structures using Capon's method

    NASA Astrophysics Data System (ADS)

    Zewdie, G. K.; Rodrigues, F. S.; Paula, E. R.

    2015-12-01

    Coherent backscatter radar imaging techniques use measurements made by multiple antenna baselines (visibility estimates) to infer the spatial distribution of the scatterers (brightness function) responsible for the observed echoes. It has been proposed that the Capon method for spectral estimation can be used for high-resolution estimation of the brightness distribution. We investigate the application of the Capon method to measurements made by a small (7-baseline) 30 MHz ionospheric coherent backscatter radar interferometer in Sao Luis, Brazil. The longest baseline of the interferometer is only 15 times the wavelength of radar signal (10 m), and the ionospheric radar soundings have been made using only 4-8 kW transmitters. Nevertheless, we have been able to obtain high-resolution (kilometric scales in the zonal direction) images of scattering structures during equatorial spread F (ESF) events over a wide field of view (+/- 10 degrees off zenith). We will present numerical simulations demonstrating the performance of the technique for the Sao Luis radar setup as well as results of the Capon technique applied to actual measurements. We will discuss the behavior of the ESF scattering structures as seen in the Capon images. The high-resolution images can assist our interpretation of plasma instabilities in the equatorial ionosphere and serve to test our ability to model the behavior of ionospheric irregularities during space weather events such as those associated with ESF.

  5. Worldwide Alien Invasion: A Methodological Approach to Forecast the Potential Spread of a Highly Invasive Pollinator.

    PubMed

    Acosta, André L; Giannini, Tereza C; Imperatriz-Fonseca, Vera L; Saraiva, Antonio M

    2016-01-01

    The ecological impacts of alien species invasion are a major threat to global biodiversity. The increasing number of invasion events by alien species and the high cost and difficulty of eradicating invasive species once established require the development of new methods and tools for predicting the most susceptible areas to invasion. Invasive pollinators pose serious threats to biodiversity and human activity due to their close relationship with many plants (including crop species) and high potential competitiveness for resources with native pollinators. Although at an early stage of expansion, the bumblebee species Bombus terrestris is becoming a representative case of pollinator invasion at a global scale, particularly given its high velocity of invasive spread and the increasing number of reports of its impacts on native bees and crops in many countries. We present here a methodological framework of habitat suitability modeling that integrates new approaches for detecting habitats that are susceptible to Bombus terrestris invasion at a global scale. Our approach did not include reported invaded locations in the modeling procedure; instead, those locations were used exclusively to evaluate the accuracy of the models in predicting suitability over regions already invaded. Moreover, a new and more intuitive approach was developed to select the models and evaluate different algorithms based on their performance and predictive convergence. Finally, we present a comprehensive global map of susceptibility to Bombus terrestris invasion that highlights priority areas for monitoring. PMID:26882479

  6. Worldwide Alien Invasion: A Methodological Approach to Forecast the Potential Spread of a Highly Invasive Pollinator

    PubMed Central

    2016-01-01

    The ecological impacts of alien species invasion are a major threat to global biodiversity. The increasing number of invasion events by alien species and the high cost and difficulty of eradicating invasive species once established require the development of new methods and tools for predicting the most susceptible areas to invasion. Invasive pollinators pose serious threats to biodiversity and human activity due to their close relationship with many plants (including crop species) and high potential competitiveness for resources with native pollinators. Although at an early stage of expansion, the bumblebee species Bombus terrestris is becoming a representative case of pollinator invasion at a global scale, particularly given its high velocity of invasive spread and the increasing number of reports of its impacts on native bees and crops in many countries. We present here a methodological framework of habitat suitability modeling that integrates new approaches for detecting habitats that are susceptible to Bombus terrestris invasion at a global scale. Our approach did not include reported invaded locations in the modeling procedure; instead, those locations were used exclusively to evaluate the accuracy of the models in predicting suitability over regions already invaded. Moreover, a new and more intuitive approach was developed to select the models and evaluate different algorithms based on their performance and predictive convergence. Finally, we present a comprehensive global map of susceptibility to Bombus terrestris invasion that highlights priority areas for monitoring. PMID:26882479

  7. Development of a Scalable, High-Throughput-Compatible Assay to Detect Tau Aggregates Using iPSC-Derived Cortical Neurons Maintained in a Three-Dimensional Culture Format.

    PubMed

    Medda, X; Mertens, L; Versweyveld, S; Diels, A; Barnham, L; Bretteville, A; Buist, A; Verheyen, A; Royaux, I; Ebneth, A; Cabrera-Socorro, A

    2016-09-01

    Tau aggregation is the pathological hallmark that best correlates with the progression of Alzheimer's disease (AD). The presence of neurofibrillary tangles (NFTs), formed of hyperphosphorylated tau, leads to neuronal dysfunction and loss, and is directly associated with the cognitive decline observed in AD patients. The limited success in targeting β-amyloid pathologies has reinforced the hypothesis of blocking tau phosphorylation, aggregation, and/or spreading as alternative therapeutic entry points to treat AD. Identification of novel therapies requires disease-relevant and scalable assays capable of reproducing key features of the pathology in an in vitro setting. Here we use induced pluripotent stem cells (iPSCs) as a virtually unlimited source of human cortical neurons to develop a robust and scalable tau aggregation model compatible with high-throughput screening (HTS). We downscaled cell culture conditions to 384-well plate format and used Matrigel to introduce an extra physical protection against cell detachment that reduces shearing stress and better recapitulates pathological conditions. We complemented the assay with AlphaLISA technology for the detection of tau aggregates in a high-throughput-compatible format. The assay is reproducible across users and works with different commercially available iPSC lines, representing a highly translational tool for the identification of novel treatments against tauopathies, including AD. PMID:26984927

  8. Mitochondrial dysfunction precedes depression of AMPK/AKT signaling in insulin resistance induced by high glucose in primary cortical neurons.

    PubMed

    Peng, Yunhua; Liu, Jing; Shi, Le; Tang, Ying; Gao, Dan; Long, Jiangang; Liu, Jiankang

    2016-06-01

    Recent studies have demonstrated brain insulin signaling impairment and mitochondrial dysfunction in diabetes. Hyperinsulinemia and hyperlipidemia arising from diabetes have been linked to neuronal insulin resistance, and hyperglycemia induces peripheral sensory neuronal impairment and mitochondrial dysfunction. However, how brain glucose at diabetic conditions elicits cortical neuronal insulin signaling impairment and mitochondrial dysfunction remains unknown. In the present study, we cultured primary cortical neurons with high glucose levels and investigated the neuronal mitochondrial function and insulin response. We found that mitochondrial function was declined in presence of 10 mmol/L glucose, prior to the depression of AKT signaling in primary cortical neurons. We further demonstrated that the cerebral cortex of db/db mice exhibited both insulin resistance and loss of mitochondrial complex components. Moreover, we found that adenosine monophosphate-activated protein kinase (AMPK) inactivation is involved in high glucose-induced mitochondrial dysfunction and insulin resistance in primary cortical neurons and neuroblastoma cells, as well as in cerebral cortex of db/db mice, and all these impairments can be rescued by mitochondrial activator, resveratrol. Taken together, our results extend the finding that high glucose (≥10 mmol/L) comparable to diabetic brain extracellular glucose level leads to neuronal mitochondrial dysfunction and resultant insulin resistance, and targeting mitochondria-AMPK signaling might be a promising strategy to protect against diabetes-related neuronal impairment in central nerves system. We found that high glucose (≥10 mmol/L), comparable to diabetic brain extracellular glucose level, leads to neuronal mitochondrial dysfunction and resultant insulin resistance in an AMPK-dependent manner, and targeting mitochondria-AMPK signaling might be a promising strategy to protect against diabetes-related neuronal impairment in central

  9. Mapping cortical responses to speech using high-density diffuse optical tomography.

    PubMed

    Hassanpour, Mahlega S; Eggebrecht, Adam T; Culver, Joseph P; Peelle, Jonathan E

    2015-08-15

    The functional neuroanatomy of speech processing has been investigated using positron emission tomography (PET) and functional magnetic resonance imaging (fMRI) for more than 20years. However, these approaches have relatively poor temporal resolution and/or challenges of acoustic contamination due to the constraints of echoplanar fMRI. Furthermore, these methods are contraindicated because of safety concerns in longitudinal studies and research with children (PET) or in studies of patients with metal implants (fMRI). High-density diffuse optical tomography (HD-DOT) permits presenting speech in a quiet acoustic environment, has excellent temporal resolution relative to the hemodynamic response, and provides noninvasive and metal-compatible imaging. However, the performance of HD-DOT in imaging the brain regions involved in speech processing is not fully established. In the current study, we use an auditory sentence comprehension task to evaluate the ability of HD-DOT to map the cortical networks supporting speech processing. Using sentences with two levels of linguistic complexity, along with a control condition consisting of unintelligible noise-vocoded speech, we recovered a hierarchically organized speech network that matches the results of previous fMRI studies. Specifically, hearing intelligible speech resulted in increased activity in bilateral temporal cortex and left frontal cortex, with syntactically complex speech leading to additional activity in left posterior temporal cortex and left inferior frontal gyrus. These results demonstrate the feasibility of using HD-DOT to map spatially distributed brain networks supporting higher-order cognitive faculties such as spoken language. PMID:26026816

  10. Spread function of acousto-optic filter with high-speed spectral image analysis

    NASA Astrophysics Data System (ADS)

    Zadorin, Anatoly S.; Nemtchenko, Andrei S.

    1998-08-01

    The contradictory requirements are presented to acousto- optic tunable filters (AOF) of spectral image analysis. On the one hand AOF should have high speed. On the other hand it should have good spectral resolution and wide angular aperture. Thus when AOF is fastly tuned with chirp transients, the diffracted wave intensity at different moments of transient process can considerably diverge form its quasistatic level. It means that spread function (SF) depends on the velocity of frequency tuning, i.e., it is described by 2D function with variables - wave length and velocity of frequency tuning. In Cartesian frame this dependence is presented by some surface being dynamic SF (DSF). It characterizes speed and selectivity properties of AOF. In this work DCF mathematical model was constructed and basic properties of spectral image analysis AOF were investigated. It has been established that the greatest distortions of DSF occur if velocity of frequency tuning has exceeded some critical value connected with acousto-optic interaction geometry and aperture sizes of beams. In this case the side lobes of SF will make 'false' maxima which begin to prevail over the basic. In addition under the conditions of phase mismatch DSF loses the symmetry to position of the main maximum. These effects reduce the accuracy of spectral measurements when tuning velocity is high.

  11. Cortical responses to consciousness of schematic emotional facial expressions: a high-resolution EEG study.

    PubMed

    Babiloni, Claudio; Vecchio, Fabrizio; Buffo, Paola; Buttiglione, Maura; Cibelli, Giuseppe; Rossini, Paolo Maria

    2010-10-01

    Is conscious perception of emotional face expression related to enhanced cortical responses? Electroencephalographic data (112 channels) were recorded in 15 normal adults during the presentation of cue stimuli with neutral, happy or sad schematic faces (duration: "threshold time" inducing about 50% of correct recognitions), masking stimuli (2 s), and go stimuli with happy or sad schematic faces (0.5 s). The subjects clicked left (right) mouse button in response to go stimuli with happy (sad) faces. After the response, they said "seen" or "not seen" with reference to previous cue stimulus. Electroencephalographic data formed visual event-related potentials (ERPs). Cortical sources of ERPs were estimated by LORETA software. Reaction time to go stimuli was generally shorter during "seen" than "not seen" trials, possibly due to covert attention and awareness. The cue stimuli evoked four ERP components (posterior N100, N170, P200, and P300), which had similar peak latency in the "not seen" and "seen" ERPs. Only N170 amplitude showed differences in amplitude in the "seen" versus "not seen" ERPs. Compared to the "not seen" ERPs, the "seen" ones showed prefrontal, premotor, and posterior parietal sources of N170 higher in amplitude with the sad cue stimuli and lower in amplitude with the neutral and happy cue stimuli. These results suggest that nonconscious and conscious processing of schematic emotional facial expressions shares a similar temporal evolution of cortical activity, and conscious processing induces an early enhancement of bilateral cortical activity for the schematic sad facial expressions (N170). PMID:20143385

  12. Using High Angular Resolution Diffusion Imaging Data to Discriminate Cortical Regions

    PubMed Central

    Nagy, Zoltan; Alexander, Daniel C.; Thomas, David L.; Weiskopf, Nikolaus; Sereno, Martin I.

    2013-01-01

    Brodmann’s 100–year–old summary map has been widely used for cortical localization in neuroscience. There is a pressing need to update this map using non–invasive, high–resolution and reproducible data, in a way that captures individual variability. We demonstrate here that standard HARDI data has sufficiently diverse directional variation among grey matter regions to inform parcellation into distinct functional regions, and that this variation is reproducible across scans. This characterization of the signal variation as non–random and reproducible is the critical condition for successful cortical parcellation using HARDI data. This paper is a first step towards an individual cortex–wide map of grey matter microstructure, The gray/white matter and pial boundaries were identified on the high–resolution structural MRI images. Two HARDI data sets were collected from each individual and aligned with the corresponding structural image. At each vertex point on the surface tessellation, the diffusion–weighted signal was extracted from each image in the HARDI data set at a point, half way between gray/white matter and pial boundaries. We then derived several features of the HARDI profile with respect to the local cortical normal direction, as well as several fully orientationally invariant features. These features were taken as a fingerprint of the underlying grey matter tissue, and used to distinguish separate cortical areas. A support–vector machine classifier, trained on three distinct areas in repeat 1 achieved 80–82% correct classification of the same three areas in the unseen data from repeat 2 in three volunteers. Though gray matter anisotropy has been mostly overlooked hitherto, this approach may eventually form the foundation of a new cortical parcellation method in living humans. Our approach allows for further studies on the consistency of HARDI based parcellation across subjects and comparison with independent microstructural measures

  13. Early treatment with high-dose interferon beta-1a reverses cognitive and cortical plasticity deficits in multiple sclerosis

    PubMed Central

    Mori, Francesco; Kusayanagi, Hajime; Buttari, Fabio; Centini, Barbara; Monteleone, Fabrizia; Nicoletti, Carolina Gabri; Bernardi, Giorgio; Di Cantogno, Elisabetta Verdun; Marciani, Maria Grazia; Centonze, Diego

    2012-01-01

    Summary Acute inflammation is associated with cognitive deficits and alterations of cortical plasticity in multiple sclerosis (MS). We tested whether early treatment with high-dose interferon (IFN) beta-1a, known to reduce inflammatory activity, improves cortical function and cognitive deficits in MS. Eighty treatment-naïve relapsing-remitting MS (RRMS) patients received IFN beta-1a (44 mcg) subcutaneously three times per week. Cognitive performance and cortical plasticity were measured through the paced auditory serial addition test (PASAT) and intermittent theta burst stimulation (iTBS) before and up to two years after IFN beta-1a initiation. Before treatment, patients with gadolinium-enhancing lesions (Gd+) on MRI performed worse on the PASAT, and showed lower iTBS-induced plasticity, compared with Gd− patients. Six months after treatment initiation both PASAT and iTBS-induced plasticity improved in Gd+ and remained stable in Gd− patients. These results suggest that cognitive and synaptic plasticity deficits may be rescued during high-dose IFN beta-1a treatment in newly-diagnosed RRMS patients with Gd+ lesions. PMID:23402677

  14. Spreading-wetting method for highly reproducible tertiary growth of perfective bilayer TS-1 membranes

    NASA Astrophysics Data System (ADS)

    Liu, Xuguang; Liu, Yong; Xu, Lei; Zhang, Baoquan; Ma, Laibo

    2015-07-01

    Spreading-wetting method is adopted to seed a support for tertiary growth of hydrophobic TS-1 membrane. It deposits the seed on the macro-hole of the support and results in a dispersive seed distribution. This enables a highly reproducible preparation of the perfective TS-1 membrane, revealed by SEM as a bilayer structure. An intermediate layer of the TS-1 membrane avoids the leaching of Al from the support and ensures the upper layer as the pure hydrophobic TS-1 membrane, proved by XRD, EDS, and water contact angle measurements. Another important advance about the TS-1 membrane is employing a Pd/SiO2 catalytic hydrocracking method to activate it at 593 K. Such a mild method favors maintaining that perfective macrostructure and hydrophobicity. Bearing the thermal stress, generated during the activation process, desires the TS-1 membrane with a sufficient thickness, gained by prolonging the crystallization time. This phenomenon is verified by gas permeation and ascribed with the membrane's mechanical properties.

  15. D2 dopamine receptors modulate neuronal resonance in subthalamic nucleus and cortical high-voltage spindles through HCN channels.

    PubMed

    Yang, Chen; Yan, Zhiqiang; Zhao, Bo; Wang, Julei; Gao, Guodong; Zhu, Junling; Wang, Wenting

    2016-06-01

    The high-voltage spindles (HVSs), one of the characteristic oscillations that include theta frequencies in the basal ganglia (BG)-cortical system, are involved in immobile behavior and show increasing power in Parkinson's disease (PD). Our previous results suggested that the D2 dopamine receptor might be involved in HVSs modulations in a rat model of PD. Membrane resonance is one of the cellular mechanisms of network oscillation; therefore, we investigated how dopamine modulates the theta frequency membrane resonance of neurons in the subthalamic nucleus (STN), a central pacemaker of BG, and whether such changes in STN neurons subsequently alter HVSs in the BG-cortical system. In particular, we tested whether dopamine modulates HVSs through hyperpolarization-activated cyclic nucleotide-gated (HCN) channels-dependent membrane resonance in STN neurons. We found that an antagonist of D2 receptors, but not of D1 receptors, inhibited membrane resonance and HCN currents of STN neurons through a G-protein activity in acute brain slices. Our further in vivo experiments using local injection of a D2 receptor antagonist or an HCN blocker in STNs of free-moving rats showed an increase in HVSs power and correlation in the BG-cortical system. Local injection of lamotrigine, an HCN agonist, counteracted the effect induced by the D2 antagonist. Taken together, our results revealed a potential cellular mechanism underlying HVSs activity modulation in the BG-cortical system, i.e. tuning HCN activities in STN neurons through dopamine D2 receptors. Our findings might lead to a new direction in PD treatment by providing promising new drug targets for HVSs activity modulation. PMID:26808313

  16. High-Yield Spreading of Water-Miscible Solvents on Water for Langmuir-Blodgett Assembly.

    PubMed

    Nie, Hua-Li; Dou, Xuan; Tang, Zhihong; Jang, Hee Dong; Huang, Jiaxing

    2015-08-26

    Langmuir-Blodgett (LB) assembly is a classical molecular thin-film processing technique, in which the material is spread onto water surface from a volatile, water-immiscible solvent to create floating monolayers that can be later transferred to solid substrates. LB has also been applied to prepare colloidal thin films with an unparalleled level of microstructural control and thickness, which has enabled the discovery of many exciting collective properties of nanoparticles and the construction of bulk nanostructured materials. To maximize the benefits of LB assembly, the nanoparticles should be well dispersed in both the spreading solvent and on water. This is quite challenging since colloids usually need contrasting surface properties in order to be stable in the water-hating organic solvents and on water surface. In addition, many organic and polymeric nanostructures dissolve in those organic solvents and cannot be processed directly. Using water-liking spreading solvents can avoid this dilemma. However, spreading of water-miscible solvents on water surface is fundamentally challenging due to extensive mixing, which results in significant material loss. Here we report a conceptually simple strategy and a general technique that allows nearly exclusive spreading of such solvents on water surface using electrospray. Since the volume of these aerosolized droplets is reduced by many orders of magnitude, they are readily depleted during the initial spreading step before any significant mixing could occur. The new strategy drastically reduces the burden of material processing prior to assembly and broadens the scope of LB assembly to previously hard-to-process materials. It also avoids the use of toxic volatile organic spreading solvents, improves the reproducibility, and can be readily automated, making LB assembly a more robust tool for colloidal assembly and thin-film fabrication. PMID:26272701

  17. High Precision Imaging of Microscopic Spread of Glioblastoma with a Targeted Ultrasensitive SERRS Molecular Imaging Probe

    PubMed Central

    Huang, Ruimin; Harmsen, Stefan; Samii, Jason M.; Karabeber, Hazem; Pitter, Kenneth L.; Holland, Eric C.; Kircher, Moritz F.

    2016-01-01

    The dismal prognosis of patients with malignant brain tumors such as glioblastoma multiforme (GBM) is attributed mostly to their diffuse growth pattern and early microscopic tumor spread to distant regions of the brain. Because the microscopic tumor foci cannot be visualized with current imaging modalities, it remains impossible to direct treatments optimally. Here we explored the ability of integrin-targeted surface-enhanced resonance Raman spectroscopy (SERRS) nanoparticles to depict the true tumor extent in a GBM mouse model that closely mimics the pathology in humans. The recently developed SERRS-nanoparticles have a sensitivity of detection in the femtomolar range. An RGD-peptide-conjugated version for integrin-targeting (RGD-SERRS) was compared directly to its non-targeted RAD-SERRS control in the same mice via Raman multiplexing. Pre-blocking with RGD peptide before injection of RGD-SERRS nanoparticles was used to verify the specificity of integrin-targeting. In contrast to the current belief that the enhanced permeability and retention (EPR) effect results in a baseline uptake of nanoparticles regardless of their surface chemistry, integrin-targeting was shown to be highly specific, with markedly lower accumulation after pre-blocking. While the non-targeted SERRS particles enabled delineation of the main tumor, the RGD-SERRS nanoparticles afforded a major improvement in visualization of the true extent and the diffuse margins of the main tumor. This included the detection of unexpected tumor areas distant to the main tumor, tracks of migrating cells of 2-3 cells in diameter, and even isolated distant tumor cell clusters of less than 5 cells. This Raman spectroscopy-based nanoparticle-imaging technology holds promise to allow high precision visualization of the true extent of malignant brain tumors. PMID:27279902

  18. Resting state cortical rhythms in athletes: a high-resolution EEG study.

    PubMed

    Babiloni, Claudio; Marzano, Nicola; Iacoboni, Marco; Infarinato, Francesco; Aschieri, Pierluigi; Buffo, Paola; Cibelli, Giuseppe; Soricelli, Andrea; Eusebi, Fabrizio; Del Percio, Claudio

    2010-01-15

    The present electroencephalographic (EEG) study tested the working hypothesis that the amplitude of resting state cortical EEG rhythms (especially alpha, 8-12 Hz) was higher in elite athletes compared with amateur athletes and non-athletes, as a reflection of the efficiency of underlying back-ground neural synchronization mechanisms. Eyes closed resting state EEG data were recorded in 16 elite karate athletes, 20 amateur karate athletes, and 25 non-athletes. The EEG rhythms of interest were delta (2-4 Hz), theta (4-8 Hz), alpha 1 (8-10.5 Hz), alpha 2 (10.5-13 Hz), beta 1 (13-20 Hz), and beta 2 (20-30 Hz). EEG cortical sources were estimated by low-resolution brain electromagnetic tomography (LORETA). Statistical results showed that the amplitude of parietal and occipital alpha 1 sources was significantly higher in the elite karate athletes than in the non-athletes and karate amateur athletes. Similar results were observed in parietal and occipital delta sources as well as in occipital theta sources. Finally, a control confirmatory experiment showed that the amplitude of parietal and occipital delta and alpha 1 sources was stronger in 8 elite rhythmic gymnasts compared with 14 non-athletes. These results supported the hypothesis that cortical neural synchronization at the basis of eyes-closed resting state EEG rhythms is enhanced in elite athletes than in control subjects. PMID:19879337

  19. Geology of a dying backarc spreading segment: results of high-density samplings of Godzilla Megamullion

    NASA Astrophysics Data System (ADS)

    Ohara, Y.; Snow, J. E.; Michibayashi, K.; Dick, H. J.; Harigane, Y.; Tani, K.; Yamashita, H.; Ishizuka, O.; Loocke, M. P.; Ishii, T.; Okino, K.

    2011-12-01

    The Godzilla Megamullion is the largest known oceanic core complex (OCC), and is located in an extinct backarc basin in the Philippine Sea: the Parece Vela Basin (PVB). Earlier, based on poorly constrained magnetic data, we believed the basin was active from 26 to 12 Ma at an intermediate-spreading rate of 8.8-7.0 cm/year full-rate (Okino et al. 1998; Ohara et al. 2001, 2003). The tectono-magmatic characteristics of Godzilla Megamullion were thus thought unusual and paradoxical. Although a higher magmatic budget is expected for a fast- to intermediate-spreading ridge, the PVB shows features indicating a smaller magmatic budget, including oceanic core complexes and abundant peridotites and gabbros (Ohara et al., 2001; 2003). Many peridotites in the PVB are much less depleted than those exposed at comparable spreading rates on other mid-ocean ridge systems (Ohara et al. 2001, 2003; Ohara 2006). Zircon U-Pb dating of gabbroic and leucocratic rocks from Godzilla Megamullion now reveals that exhumation of the 125 km long detachment surface lasted for ~4 m.y., with continuous magmatic accretion at the spreading axis (Tani et al., 2011). The estimated denudation rate of the OCC was ~2.5 cm/y; significantly slower than the previous estimate based on magnetic data. The latest magmatism occurred at ~7.9 Ma or later, significantly younger than a previous estimate of 12 Ma. The new age data indicate that the terminal phase of PVB spreading was not at intermediate spreading rates, with a significant decline and asymmetry accompanying formation of Godzilla Megamullion in a "dying" backarc spreading segment. The recent field survey also supports a slow- to ultraslow-spreading environment for Godzilla Megamulllion, including increased melt stagnation in the shallow mantle, and decreasing degree of partial melting of the peridotites towards the termination of Godzilla Megamullion. We will be conducting a cruise (YK11-08) during October 2011 focused on the tectono-magmatic process

  20. Cortico-cortical communication dynamics

    PubMed Central

    Roland, Per E.; Hilgetag, Claus C.; Deco, Gustavo

    2014-01-01

    In principle, cortico-cortical communication dynamics is simple: neurons in one cortical area communicate by sending action potentials that release glutamate and excite their target neurons in other cortical areas. In practice, knowledge about cortico-cortical communication dynamics is minute. One reason is that no current technique can capture the fast spatio-temporal cortico-cortical evolution of action potential transmission and membrane conductances with sufficient spatial resolution. A combination of optogenetics and monosynaptic tracing with virus can reveal the spatio-temporal cortico-cortical dynamics of specific neurons and their targets, but does not reveal how the dynamics evolves under natural conditions. Spontaneous ongoing action potentials also spread across cortical areas and are difficult to separate from structured evoked and intrinsic brain activity such as thinking. At a certain state of evolution, the dynamics may engage larger populations of neurons to drive the brain to decisions, percepts and behaviors. For example, successfully evolving dynamics to sensory transients can appear at the mesoscopic scale revealing how the transient is perceived. As a consequence of these methodological and conceptual difficulties, studies in this field comprise a wide range of computational models, large-scale measurements (e.g., by MEG, EEG), and a combination of invasive measurements in animal experiments. Further obstacles and challenges of studying cortico-cortical communication dynamics are outlined in this critical review. PMID:24847217

  1. Anatidae Migration in the Western Palearctic and Spread of Highly Pathogenic Avian Influenza H5N1 Virus

    PubMed Central

    Xiao, Xiangming; Domenech, Joseph; Lubroth, Juan; Martin, Vincent; Slingenbergh, Jan

    2006-01-01

    During the second half of 2005, highly pathogenic avian influenza (HPAI) H5N1 virus spread rapidly from central Asia to eastern Europe. The relative roles of wild migratory birds and the poultry trade are still unclear, given that little is yet known about the range of virus hosts, precise movements of migratory birds, or routes of illegal poultry trade. We document and discuss the spread of the HPAI H5N1 virus in relation to species-specific flyways of Anatidae species (ducks, geese, and swans) and climate. We conclude that the spread of HPAI H5N1 virus from Russia and Kazakhstan to the Black Sea basin is consistent in space and time with the hypothesis that birds in the Anatidae family have seeded the virus along their autumn migration routes. PMID:17283613

  2. High VEGF serum values are associated with locoregional spread of gastroenteropancreatic neuroendocrine tumors (GEP-NETs).

    PubMed

    Cigrovski Berković, Maja; Čačev, Tamara; Catela Ivković, Tina; Marout, Jasminka; Ulamec, Monika; Zjačić-Rotkvić, Vanja; Kapitanović, Sanja

    2016-04-15

    Gastroenteropancreatic neuroendocrine tumors (GEP-NETs) are highly vascularized neoplasms, capable of synthethisizing VEGF-A, a key mediator of angiogenesis. In pancreatic neuroendocrine tumors (pNETs) VEGF expression is higher in benign and low-grade tumors and associated with good prognosis (neuroendocrine paradox) while the VEGF role in gastrointestinal NETs (GI-NETs) is still unclear. In this study, we examined the VEGF-1154A/G polymorphism in 145 GEP-NET patients and 150 controls. Next, we measured VEGF serum levels and VEGF tumor protein expression, comparing it with Ki67 and tumor grade. Patients' VEGF serum levels were compared with VEGF -1145A/G genotypes and metastatic status as well as with chromogranin A (CgA) and 5-hydroxyindolacetic acid (5-HIAA) in case of GI-NET patients. In this study GEP-NET patients had elevated VEGF serum values when compared to healthy controls (p = 0.0013). VEGF-1145G allele correlated with higher VEGF serum levels (p = 0.002). Patients with metastatic tumors had higher VEGF serum values when compared to patients without metastases (p = 0.033), and highest levels were observed in case of lymph node metastases (p = 0.008). VEGF-1145G allele was more frequent in non-functional GI-NET patients than in healthy controls (p = 0.041). CgA was superior to VEGF in tumor detection, while VEGF was superior to 5-HIAA. A correlation was observed between VEGF immunohistochemical staining and Ki-67 (p = 0.028). Tumours with weaker VEGF protein expression were more aggressive than tumours with stronger VEGF expression, confirming a "neuroendocrine paradox" in GI-NETs. Our results suggest the role of VEGF in GI-NETs locoregional spread. PMID:26805636

  3. Traumatic Brain Injury Increases Cortical Glutamate Network Activity by Compromising GABAergic Control

    PubMed Central

    Cantu, David; Walker, Kendall; Andresen, Lauren; Taylor-Weiner, Amaro; Hampton, David; Tesco, Giuseppina; Dulla, Chris G.

    2015-01-01

    Traumatic brain injury (TBI) is a major risk factor for developing pharmaco-resistant epilepsy. Although disruptions in brain circuitry are associated with TBI, the precise mechanisms by which brain injury leads to epileptiform network activity is unknown. Using controlled cortical impact (CCI) as a model of TBI, we examined how cortical excitability and glutamatergic signaling was altered following injury. We optically mapped cortical glutamate signaling using FRET-based glutamate biosensors, while simultaneously recording cortical field potentials in acute brain slices 2–4 weeks following CCI. Cortical electrical stimulation evoked polyphasic, epileptiform field potentials and disrupted the input–output relationship in deep layers of CCI-injured cortex. High-speed glutamate biosensor imaging showed that glutamate signaling was significantly increased in the injured cortex. Elevated glutamate responses correlated with epileptiform activity, were highest directly adjacent to the injury, and spread via deep cortical layers. Immunoreactivity for markers of GABAergic interneurons were significantly decreased throughout CCI cortex. Lastly, spontaneous inhibitory postsynaptic current frequency decreased and spontaneous excitatory postsynaptic current increased after CCI injury. Our results suggest that specific cortical neuronal microcircuits may initiate and facilitate the spread of epileptiform activity following TBI. Increased glutamatergic signaling due to loss of GABAergic control may provide a mechanism by which TBI can give rise to post-traumatic epilepsy. PMID:24610117

  4. High-Resolution fMRI Maps of Cortical Activation in Nonhuman Primates: Correlation with Intrinsic Signal Optical Images

    PubMed Central

    Roe, Anna W.; Chen, Li Min

    2009-01-01

    One of the most widely used functional brain mapping tools is blood oxygen level–dependent (BOLD) functional magnetic resonance imaging (fMRI). This method has contributed to new understandings of the functional roles of different areas in the human brain. However, its ability to map cerebral cortex at high spatial (submillimeter) resolution is still unknown. Other methods such as single- and multiunit electrophysiology and intrinsic signal optical imaging have revealed submillimeter resolution of sensory topography and cortical columnar activations. However, they are limited either by spatial scale (electrophysiology characterizes only local groups of neurons) or by the inability to monitor deep structures in the brain (i.e., cortical regions buried in sulci or subcortical structures). A method that could monitor all regions of the brain at high spatial resolution would be ideal. This capacity would open the doors to investigating, for example, how networks of cerebral cortical columns relate to or produce behavior. In this article we demonstrate that, without benefit of contrast agents, at a magnetic field strength of 9.4 tesla, BOLD fMRI can reveal millimeter-sized topographic maps of digit representation in the somatosensory cortex of the anesthetized squirrel monkey. Furthermore, by mapping the “funneling illusion,” it is possible to detect even submillimeter shifts in activation in the cortex. Our data suggest that at high magnetic field strength, the positive BOLD signal can be used to reveal high spatial resolution maps of brain activity, a finding that weakens previous notions about the ultimate spatial specificity of the positive BOLD signal. PMID:18172338

  5. High-throughput combinatorial study of local stress in thin film composition spreads.

    PubMed

    Woo, Noble C; Ng, Bryan G; van Dover, R Bruce

    2007-07-01

    We investigate the stresses in thin films with sub-millimeter lateral spatial resolution using a dense array of prefabricated cantilever beams prepared by microelectromechanical-system techniques. Stress induced deflection of the cantilever is interrogated by an optical (laser/position sensitive detector) measurement system. Composition spread films are deposited on the cantilever array using a three gun on-axis magnetron cosputtering system. The position dependent composition is inferred using rate calibrations and verified by electron microprobe/energy dispersive spectroscopy. We demonstrate the function of this system using an Fe-Ni-Al composition spread with approximately 1 at. % resolution. This approach allows for measurement of the composition dependence of other electromechanical properties such as the martensitic phase transition temperature of traditional and ferromagnetic shape-memory alloys, as well as the properties of hydrogen storage materials and the magnetic response of magnetostrictive materials. PMID:17672739

  6. Modeling the coupled return-spread high frequency dynamics of large tick assets

    NASA Astrophysics Data System (ADS)

    Curato, Gianbiagio; Lillo, Fabrizio

    2015-01-01

    Large tick assets, i.e. assets where one tick movement is a significant fraction of the price and bid-ask spread is almost always equal to one tick, display a dynamics in which price changes and spread are strongly coupled. We present an approach based on the hidden Markov model, also known in econometrics as the Markov switching model, for the dynamics of price changes, where the latent Markov process is described by the transitions between spreads. We then use a finite Markov mixture of logit regressions on past squared price changes to describe temporal dependencies in the dynamics of price changes. The model can thus be seen as a double chain Markov model. We show that the model describes the shape of the price change distribution at different time scales, volatility clustering, and the anomalous decrease of kurtosis. We calibrate our models based on Nasdaq stocks and we show that this model reproduces remarkably well the statistical properties of real data.

  7. Intravital Two-Photon Imaging of Lymphocytes Crossing High Endothelial Venules and Cortical Lymphatics in the Inguinal Lymph Node.

    PubMed

    Park, Chung; Hwang, Il-Young; Kehrl, John H

    2016-01-01

    Lymphocyte recirculation through lymph nodes (LNs) requires their crossing of endothelial barriers present in blood vessels and lymphatics by means of chemoattractant-triggered cell migration. The chemoattractant-chemoattractant receptor axes that predominately govern the trafficking of lymphocytes into, and out of, LNs are CCL19/CCR7 and sphingosine 1-phosphate (S1P)/S1P receptor 1 (S1PR1), respectively. Blood-borne lymphocytes downregulate S1PR1 and use CCR7 signaling to adhere to high endothelial venules (HEVs) for transmigration. During their LN residency, recirculating lymphocytes reacquire S1PR1 and attenuate their sensitivity to chemokines. Eventually lymphocytes exit the LN by entering the cortical or medullary lymphatics, a process that depends upon S1PR1 signaling. Upon entering into the lymph, lymphocytes lose their polarity, downregulate their sensitivity to S1P due to the high concentration of S1P, and upregulate their sensitivity to chemokines. However, many of the details of lymphocyte transmigration across endothelial barriers remain poorly understood. Intravital two-photon imaging with advanced microscope technologies not only allows the real-time observation of immune cells in intact LN of a live mouse, but also provides a means to monitor the interactions between circulating lymphocytes and stromal barriers. Here, we describe procedures to visualize lymphocytes engaging and crossing HEVs, and approaching and crossing the cortical lymphatic endothelium to enter the efferent lymph in live mice. PMID:27271904

  8. Methods for voltage-sensitive dye imaging of rat cortical activity with high signal-to-noise ratio

    PubMed Central

    Lippert, Michael; Takagaki, Kentaroh; Xu, Weifeng; Huang, Xiaoying; Wu, Jian-Young

    2010-01-01

    We describe methods to achieve high sensitivity in voltage-sensitive dye (VSD) imaging from rat barrel and visual cortices in vivo with the use of a blue dye RH1691 and a high dynamic range imaging device (photodiode array). With an improved staining protocol and an off-line procedure to remove pulsation artifact, the sensitivity of VSD recording is comparable to that of local field potential recording from the same location. With this sensitivity, one can record from ~500 individual detectors, each covering an area of cortical tissue 160 μm in diameter (total imaging field ~4 mm in diameter) and a temporal resolution of 1,600 frames/s, without multiple-trial averaging. We can record 80 to 100 trials of intermittent 10 s trials from each imaging field before the VSD signal reduces to one half of its initial amplitude due to bleaching and wash-out. Taken together, the methods described in this report provide a useful tool for visualizing evoked and spontaneous waves from rodent cortex. PMID:17493915

  9. A Bmp Reporter with Ultrasensitive Characteristics Reveals That High Bmp Signaling Is Not Required for Cortical Hem Fate

    PubMed Central

    Doan, Linda T.; Javier, Anna L.; Furr, Nicole M.; Nguyen, Kevin L.; Cho, Ken W.; Monuki, Edwin S.

    2012-01-01

    Insights into Bone morphogenetic protein (Bmp) functions during forebrain development have been limited by a lack of Bmp signaling readouts. Here we used a novel Bmp signaling reporter (“BRE-gal” mice) to study Bmp signaling in the dorsal telencephalon. At early stages, BRE-gal expression was restricted to the dorsal telencephalic midline. At later stages, strong BRE-gal expression occurred in neurons of the marginal zone and dentate gyrus. Comparisons to nuclear phospho-Smad1/5/8 (pSmad) and Msx1 indicated that BRE-gal expression occurred exclusively in neural cells with high-level Bmp signaling. BRE-gal responsiveness to Bmps was confirmed in reporter-negative cortical cells cultured with Bmp4, and both in vivo and in vitro, BRE-gal expression was switch-like, or ultrasensitive. In the early dorsal telencephalon, BRE-gal expression negatively correlated with the cortical selector gene Lhx2, indicating a BRE-gal expression border that coincides with the cortex-hem boundary. However, in Lhx2 null chimeras, neither BRE-gal nor nuclear pSmad increases were observed in ectopic hem cells. These findings establish BRE-gal as an ultrasensitive reporter of Bmp signaling in the dorsal telencephalon, imply that hem fate can be specified at different Bmp signaling intensities, and suggest that Lhx2 primarily regulates the responses to – rather than the intensity of – Bmp signaling in dorsal telencephalic cells. PMID:22984456

  10. Solubilization and characterization of high-affinity [3H]serotonin binding sites from bovine cortical membranes.

    PubMed Central

    VandenBerg, S R; Allgren, R L; Todd, R D; Ciaranello, R D

    1983-01-01

    High-affinity [3H]serotonin binding activity has been solubilized from bovine cerebral cortical membranes by using Triton X-100, Tween-80, and octyl-beta-D-glucopyranoside. This mixture of detergents solubilizes the high-affinity [3H]serotonin binding activity present in crude membrane preparations with retention of 75-90% specific binding. The detergent mixture was chosen because it can easily be removed from the solubilized fraction by dialysis and polystyrene bead adsorption, thus permitting further purification and isolation of the binding sites. Saturation analysis reveals multiple components of high-affinity [3H]serotonin binding. In crude bovine cortical membranes, at least two binding components are present. A higher-affinity binding component, as defined from curvilinear Scatchard plots, has a Kd for [3H]serotonin of 1-3 nM, whereas a lower-affinity component has a Kd of 10-20 nM. In the solubilized preparation, only a single class of binding sites is apparent, with a Kd of 50-100 nM. Removal of detergents by dialysis and polystyrene bead adsorption results in restoration of the curvilinear Scatchard plot with apparent Kds similar to those observed in crude membrane preparations and with increased Bmax values for each component. [3H]Serotonin binding activity in the solubilized preparation is stable to Sephacryl S-300 column chromatography and to glycerol gradient sedimentation. Saturation analysis of the peak binding fractions from both these procedures once again yields curvilinear Scatchard plots, indicating that the multiple high-affinity binding components are preserved and migrate together. The molecular weight, Stokes radius, and frictional coefficient of the binding site(s) have been calculated. After detergent removal the solubilized material shows many of the characteristics usually attributed to S1 receptors, such as high affinity for [3H]serotonin and its analogs and low affinity for serotonin antagonists. PMID:6574495

  11. Partial spread OFDM

    NASA Astrophysics Data System (ADS)

    Elghariani, Ali; Zoltowski, Michael D.

    2012-05-01

    In this paper, partial spread OFDM system has been presented and its performance has been studied when different detection techniques are employed, such as minimum mean square error (MMSE), grouped Maximum Likelihood (ML) and approximated integer quadratic programming (IQP) techniques . The performance study also includes applying two different spreading matrices, Hadamard and Vandermonde. Extensive computer simulation have been implemented and important results show that partial spread OFDM system improves the BER performance and the frequency diversity of OFDM compared to both non spread and full spread systems. The results from this paper also show that partial spreading technique combined with suboptimal detector could be a better solution for applications that require low receiver complexity and high information detectability.

  12. Cortical dynamics revisited.

    PubMed

    Singer, Wolf

    2013-12-01

    Recent discoveries on the organisation of the cortical connectome together with novel data on the dynamics of neuronal interactions require an extension of classical concepts on information processing in the cerebral cortex. These new insights justify considering the brain as a complex, self-organised system with nonlinear dynamics in which principles of distributed, parallel processing coexist with serial operations within highly interconnected networks. The observed dynamics suggest that cortical networks are capable of providing an extremely high-dimensional state space in which a large amount of evolutionary and ontogenetically acquired information can coexist and be accessible to rapid parallel search. PMID:24139950

  13. Visual recovery in cortical blindness is limited by high internal noise.

    PubMed

    Cavanaugh, Matthew R; Zhang, Ruyuan; Melnick, Michael D; Das, Anasuya; Roberts, Mariel; Tadin, Duje; Carrasco, Marisa; Huxlin, Krystel R

    2015-01-01

    Damage to the primary visual cortex typically causes cortical blindness (CB) in the hemifield contralateral to the damaged hemisphere. Recent evidence indicates that visual training can partially reverse CB at trained locations. Whereas training induces near-complete recovery of coarse direction and orientation discriminations, deficits in fine motion processing remain. Here, we systematically disentangle components of the perceptual inefficiencies present in CB fields before and after coarse direction discrimination training. In seven human CB subjects, we measured threshold versus noise functions before and after coarse direction discrimination training in the blind field and at corresponding intact field locations. Threshold versus noise functions were analyzed within the framework of the linear amplifier model and the perceptual template model. Linear amplifier model analysis identified internal noise as a key factor differentiating motion processing across the tested areas, with visual training reducing internal noise in the blind field. Differences in internal noise also explained residual perceptual deficits at retrained locations. These findings were confirmed with perceptual template model analysis, which further revealed that the major residual deficits between retrained and intact field locations could be explained by differences in internal additive noise. There were no significant differences in multiplicative noise or the ability to process external noise. Together, these results highlight the critical role of altered internal noise processing in mediating training-induced visual recovery in CB fields, and may explain residual perceptual deficits relative to intact regions of the visual field. PMID:26389544

  14. Selective detection and complete identification of triglycerides in cortical bone by high-resolution (1)H MAS NMR spectroscopy.

    PubMed

    Mroue, Kamal H; Xu, Jiadi; Zhu, Peizhi; Morris, Michael D; Ramamoorthy, Ayyalusamy

    2016-07-28

    Using (1)H-based magic angle spinning solid-state NMR spectroscopy, we report an atomistic-level characterization of triglycerides in compact cortical bone. By suppressing contributions from immobile molecules present in bone, we show that a (1)H-based constant-time uniform-sign cross-peak (CTUC) two-dimensional COSY-type experiment that correlates the chemical shifts of protons can selectively detect a mobile triglyceride layer as the main component of small lipid droplets embedded on the surface of collagen fibrils. High sensitivity and resolution afforded by this NMR approach could be potentially utilized to investigate the origin of triglycerides and their pathological roles associated with bone fractures, diseases, and aging. PMID:27374353

  15. Minimally invasive endovascular stent-electrode array for high-fidelity, chronic recordings of cortical neural activity.

    PubMed

    Oxley, Thomas J; Opie, Nicholas L; John, Sam E; Rind, Gil S; Ronayne, Stephen M; Wheeler, Tracey L; Judy, Jack W; McDonald, Alan J; Dornom, Anthony; Lovell, Timothy J H; Steward, Christopher; Garrett, David J; Moffat, Bradford A; Lui, Elaine H; Yassi, Nawaf; Campbell, Bruce C V; Wong, Yan T; Fox, Kate E; Nurse, Ewan S; Bennett, Iwan E; Bauquier, Sébastien H; Liyanage, Kishan A; van der Nagel, Nicole R; Perucca, Piero; Ahnood, Arman; Gill, Katherine P; Yan, Bernard; Churilov, Leonid; French, Christopher R; Desmond, Patricia M; Horne, Malcolm K; Kiers, Lynette; Prawer, Steven; Davis, Stephen M; Burkitt, Anthony N; Mitchell, Peter J; Grayden, David B; May, Clive N; O'Brien, Terence J

    2016-03-01

    High-fidelity intracranial electrode arrays for recording and stimulating brain activity have facilitated major advances in the treatment of neurological conditions over the past decade. Traditional arrays require direct implantation into the brain via open craniotomy, which can lead to inflammatory tissue responses, necessitating development of minimally invasive approaches that avoid brain trauma. Here we demonstrate the feasibility of chronically recording brain activity from within a vein using a passive stent-electrode recording array (stentrode). We achieved implantation into a superficial cortical vein overlying the motor cortex via catheter angiography and demonstrate neural recordings in freely moving sheep for up to 190 d. Spectral content and bandwidth of vascular electrocorticography were comparable to those of recordings from epidural surface arrays. Venous internal lumen patency was maintained for the duration of implantation. Stentrodes may have wide ranging applications as a neural interface for treatment of a range of neurological conditions. PMID:26854476

  16. Stochastic multiscale modelling of cortical bone elasticity based on high-resolution imaging.

    PubMed

    Sansalone, Vittorio; Gagliardi, Davide; Desceliers, Christophe; Bousson, Valérie; Laredo, Jean-Denis; Peyrin, Françoise; Haïat, Guillaume; Naili, Salah

    2016-02-01

    Accurate and reliable assessment of bone quality requires predictive methods which could probe bone microstructure and provide information on bone mechanical properties. Multiscale modelling and simulation represent a fast and powerful way to predict bone mechanical properties based on experimental information on bone microstructure as obtained through X-ray-based methods. However, technical limitations of experimental devices used to inspect bone microstructure may produce blurry data, especially in in vivo conditions. Uncertainties affecting the experimental data (input) may question the reliability of the results predicted by the model (output). Since input data are uncertain, deterministic approaches are limited and new modelling paradigms are required. In this paper, a novel stochastic multiscale model is developed to estimate the elastic properties of bone while taking into account uncertainties on bone composition. Effective elastic properties of cortical bone tissue were computed using a multiscale model based on continuum micromechanics. Volume fractions of bone components (collagen, mineral, and water) were considered as random variables whose probabilistic description was built using the maximum entropy principle. The relevance of this approach was proved by analysing a human bone sample taken from the inferior femoral neck. The sample was imaged using synchrotron radiation micro-computed tomography. 3-D distributions of Haversian porosity and tissue mineral density extracted from these images supplied the experimental information needed to build the stochastic models of the volume fractions. Thus, the stochastic multiscale model provided reliable statistical information (such as mean values and confidence intervals) on bone elastic properties at the tissue scale. Moreover, the existence of a simpler "nominal model", accounting for the main features of the stochastic model, was investigated. It was shown that such a model does exist, and its relevance

  17. Cortical responses to the mirror box illusion: a high-resolution EEG study.

    PubMed

    Egsgaard, Line Lindhardt; Petrini, Laura; Christoffersen, Giselle; Arendt-Nielsen, Lars

    2011-12-01

    The mirror box illusion has proven a helpful therapy in pathologies such as phantom limb pain, and although the effect has been suggested to be a result of the interaction between pain, vision, touch, and proprioception, the mechanisms are still unknown. Multichannel (124) brain responses were investigated in healthy men (N = 11) and women (N = 14) during the mirror box illusion. Tactile somatosensory evoked potentials were recorded from the right thumb during two control conditions and two illusions: (control 1) no mirror: looking at the physical right thumb during stimulation, (control 2) no mirror: looking at the physical left thumb during stimulation, (illusion 1) mirror: the illusion that both thumbs were stimulated, and (illusion 2) mirror: the illusion that none of the thumbs were stimulated. In men, a significant medial shift in the y coordinate of the N70 dipole in illusion 2 (P = 0.021) was found when compared with illusion 1. No dipole shift was found for women. Additionally, men showed higher prevalence of P180 cingulate cortex activation during illusion 2 when compared with control 1 and 2 (P = 0.002). During illusion 2, the degree of conformity with the statement "The hand in the mirror feels like my other hand" was negatively correlated with the N70 x coordinate for men and positively correlated with the N70 z coordinate for women. In conclusion, short-term cortical plasticity can be induced by a mismatch between visual input and location of tactile stimulation in men. The present study suggests that gender differences exist in the perception of the mirror box illusion. PMID:22038713

  18. Measurements of Doppler and multipath spread on oblique high-latitude HF paths and their use in characterizing data modem performance

    NASA Astrophysics Data System (ADS)

    Angling, Matthew J.; Cannon, Paul S.; Davies, Nigel C.; Willink, Tricia J.; Jodalen, Vivianne; Lundborg, Bengt

    1998-01-01

    Measurements of Doppler spread, multipath spread, and signal-to-noise ratio have been made on four high-latitude high-frequency (HF) communications paths. The measurement system and analysis techniques are outlined, and an analysis of the data pertinent to the design of robust HF data modems is presented. A summary of the spreads that are exceeded for 5% of time is presented for each path. Doppler spreads range from 2 to 55 Hz, while multipath spreads range from 1 to 11 ms. Physical interpretations of the data are made, and the data are related to the measured performance characteristics of an HF data modem to estimate the modem availability on the paths considered. When there is mode support, availabilities range from 64% to 100% for a signal-to-noise ratio of 0 dB, although the data indicate that the availabilities can generally be increased by optimizing frequency selection.

  19. Spreading and solidification of a metal droplet with a high volume concentration of solid refractory inclusions on a substrate

    NASA Astrophysics Data System (ADS)

    Solonenko, O. P.

    2012-01-01

    In the present paper, a physical engineering model is proposed to describe the process of spreading and solidification of a droplet of metallic melt containing a high volume concentration of fine solid inclusions and impacting onto a substrate. The model enables quick estimation of the final thickness and diameter of the solidified disk, or splat, formed on the substrate surface. The results obtained may prove useful for specialists in the field of thermal spraying and, in particular, plasma spraying of nano- and submicrostructured powder coatings.

  20. The effects of a high-fat sucrose diet on functional outcome following cortical contusion injury in the rat.

    PubMed

    Hoane, Michael R; Swan, Alicia A; Heck, Sarah E

    2011-09-30

    Traumatic brain injury (TBI) is a major public health issue affecting 1.7 million Americans each year, of which approximately 50,000 are fatal. High-fat sucrose (HFS) diets are another public health issue which can lead to obesity, hypertension, and many other debilitating disorders. These two disorders combined can lead to more complicated issues. It has recently been shown that HFS diets can reduce levels of brain-derived neurotrophic factor (BDNF) leading to reductions in neuronal and behavioral plasticity. This reduction in BDNF is suspected of increasing the susceptibility of the brain to injury. To test the effects of a HFS diet on recovery of function post-TBI, male Sprague-Dawley rats were used in this study. Eight weeks prior to TBI, rats were placed on a special HFS diet (n=14) or a standard rodent diet (n=14). Following this eight-week period, rats were prepared with bilateral frontal cortical contusion injuries (CCI) or sham procedures. Beginning two days post-TBI, animals were tested on a battery of behavioral tests to assess somatosensory dysfunction and spatial memory in the Morris water maze, with a reference memory and a working memory task. Following testing, animals were sacrificed and their brains processed for lesion analysis. The HFS diet worsened performance on the bilateral tactile adhesive removal test in sham animals. Injured animals on the Standard diet had a greater improvement in somatosensory performance in the adhesive removal test and had better performance on the working memory task compared to animals on the HFS diet. The HFS diet also resulted in significantly greater loss of cortical tissue post-CCI than in the Standard diet group. This study may aid in determining how nutritional characteristics or habits interact with damage to the brain. PMID:21549156

  1. Spreading Volcanoes

    NASA Astrophysics Data System (ADS)

    Borgia, Andrea; Delaney, Paul T.; Denlinger, Roger P.

    As volcanoes grow, they become ever heavier. Unlike mountains exhumed by erosion of rocks that generally were lithified at depth, volcanoes typically are built of poorly consolidated rocks that may be further weakened by hydrothermal alteration. The substrates upon which volcanoes rest, moreover, are often sediments lithified by no more than the weight of the volcanic overburden. It is not surprising, therefore, that volcanic deformation includes-and in the long term is often dominated by-spreading motions that translate subsidence near volcanic summits to outward horizontal displacements around the flanks and peripheries. We review examples of volcanic spreading and go on to derive approximate expressions for the time volcanoes require to deform by spreading on weak substrates. We also demonstrate that shear stresses that drive low-angle thrust faulting from beneath volcanic constructs have maxima at volcanic peripheries, just where such faults are seen to emerge. Finally, we establish a theoretical basis for experimentally derived scalings that delineate volcanoes that spread from those that do not.

  2. Spreading volcanoes

    USGS Publications Warehouse

    Borgia, A.; Delaney, P.T.; Denlinger, R.P.

    2000-01-01

    As volcanoes grow, they become ever heavier. Unlike mountains exhumed by erosion of rocks that generally were lithified at depth, volcanoes typically are built of poorly consolidated rocks that may be further weakened by hydrothermal alteration. The substrates upon which volcanoes rest, moreover, are often sediments lithified by no more than the weight of the volcanic overburden. It is not surprising, therefore, that volcanic deformation includes-and in the long term is often dominated by-spreading motions that translate subsidence near volcanic summits to outward horizontal displacements around the flanks and peripheries. We review examples of volcanic spreading and go on to derive approximate expressions for the time volcanoes require to deform by spreading on weak substrates. We also demonstrate that shear stresses that drive low-angle thrust faulting from beneath volcanic constructs have maxima at volcanic peripheries, just where such faults are seen to emerge. Finally, we establish a theoretical basis for experimentally derived scalings that delineate volcanoes that spread from those that do not.

  3. Practices associated with Highly Pathogenic Avian Influenza spread in traditional poultry marketing chains: Social and economic perspectives.

    PubMed

    Paul, Mathilde; Baritaux, Virginie; Wongnarkpet, Sirichai; Poolkhet, Chaithep; Thanapongtharm, Weerapong; Roger, François; Bonnet, Pascal; Ducrot, Christian

    2013-04-01

    In developing countries, smallholder poultry production contributes to food security and poverty alleviation in rural areas. However, traditional poultry marketing chains have been threatened by the epidemics caused by the Highly Pathogenic Avian Influenza (H5N1) virus. The article presents a value chain analysis conducted on the traditional poultry marketing chain in the rural province of Phitsanulok, Thailand. The analysis is based on quantitative data collected on 470 backyard chicken farms, and on qualitative data collected on 28 poultry collectors, slaughterhouses and market retailers, using semi-structured interviews. The article examines the organization of poultry marketing chains in time and space, and shows how this may contribute to the spread of Highly Pathogenic Avian Influenza H5N1 in the small-scale poultry sector. The article also discusses the practices and strategies developed by value chain actors facing poultry mortality, with their economic and social determinants. More broadly, this study also illustrates how value chain analysis can contribute to a better understanding of the complex mechanisms associated with the spread of epidemics in rural communities. PMID:23337390

  4. A longitudinal bunch rotation and acceleration scheme for a short bunch and high energy spread muon beam

    NASA Astrophysics Data System (ADS)

    Scrivens, R.

    2000-08-01

    A neutrino factory for νμ would require a high-power proton beam bombarding a target to produce pions that decay to muons which can be accelerated. Such a proton driver could be realized with a high-power linac, which could produce short bunches in the interaction point. If the bunch structure could be maintained to the input of a linear accelerator, the re-bunching of muons would be avoided. A preliminary design of the longitidinal beam dynamics for the acceleration of short muon bunches with a large-energy spread will be presented. Muons bunches are assumed at the linac input to consist of a phase space occupying a region from 200-400 MeV with a bunch length of 24 ps. They are captured and accelerated to 1 GeV with a resulting bunch length of 100 ps. Seventy five percent of the muons are transported within these limits.

  5. An annular high-current electron beam with an energy spread in a coaxial magnetically insulated diode

    NASA Astrophysics Data System (ADS)

    Grishkov, A. A.; Pegel, I. V.

    2013-11-01

    An elementary theory of an annular high-current electron beam in a uniform transport channel and a coaxial magnetically insulated diode is generalized to the case of counterpropagating electron beams with a spread over kinetic energies. Expressions for the sum of the absolute values of the forward and backward currents in a uniform transport channel and for the flux of the longitudinal component of the generalized momentum in a coaxial magnetically insulated diode as functions of the maximum electron kinetic energy are derived for different values of the relative width of the energy distribution function. It is shown that, in a diode with an expanding transport channel and a virtual cathode limiting the extracted current, counterpropagating particle flows are established between the cathode and the virtual cathode within a certain time interval after the beginning of electron emission. The accumulation of electrons in these flows is accompanied by an increase in their spread over kinetic energies and the simultaneous decrease in the maximum kinetic energy. The developed model agrees with the results of particle-in-cell simulations performed using the KARAT and OOPIC-Pro codes.

  6. An annular high-current electron beam with an energy spread in a coaxial magnetically insulated diode

    SciTech Connect

    Grishkov, A. A. Pegel, I. V.

    2013-11-15

    An elementary theory of an annular high-current electron beam in a uniform transport channel and a coaxial magnetically insulated diode is generalized to the case of counterpropagating electron beams with a spread over kinetic energies. Expressions for the sum of the absolute values of the forward and backward currents in a uniform transport channel and for the flux of the longitudinal component of the generalized momentum in a coaxial magnetically insulated diode as functions of the maximum electron kinetic energy are derived for different values of the relative width of the energy distribution function. It is shown that, in a diode with an expanding transport channel and a virtual cathode limiting the extracted current, counterpropagating particle flows are established between the cathode and the virtual cathode within a certain time interval after the beginning of electron emission. The accumulation of electrons in these flows is accompanied by an increase in their spread over kinetic energies and the simultaneous decrease in the maximum kinetic energy. The developed model agrees with the results of particle-in-cell simulations performed using the KARAT and OOPIC-Pro codes.

  7. High gamma power in ECoG reflects cortical electrical stimulation effects on unit activity in layers V/VI

    NASA Astrophysics Data System (ADS)

    Yazdan-Shahmorad, Azadeh; Kipke, Daryl R.; Lehmkuhle, Mark J.

    2013-12-01

    Objective. Cortical electrical stimulation (CES) has been used extensively in experimental neuroscience to modulate neuronal or behavioral activity, which has led this technique to be considered in neurorehabilitation. Because the cortex and the surrounding anatomy have irregular geometries as well as inhomogeneous and anisotropic electrical properties, the mechanism by which CES has therapeutic effects is poorly understood. Therapeutic effects of CES can be improved by optimizing the stimulation parameters based on the effects of various stimulation parameters on target brain regions. Approach. In this study we have compared the effects of CES pulse polarity, frequency, and amplitude on unit activity recorded from rat primary motor cortex with the effects on the corresponding local field potentials (LFP), and electrocorticograms (ECoG). CES was applied at the surface of the cortex and the unit activity and LFPs were recorded using a penetrating electrode array, which was implanted below the stimulation site. ECoGs were recorded from the vicinity of the stimulation site. Main results. Time-frequency analysis of LFPs following CES showed correlation of gamma frequencies with unit activity response in all layers. More importantly, high gamma power of ECoG signals only correlated with the unit activity in lower layers (V-VI) following CES. Time-frequency correlations, which were found between LFPs, ECoGs and unit activity, were frequency- and amplitude-dependent. Significance. The signature of the neural activity observed in LFP and ECoG signals provides a better understanding of the effects of stimulation on network activity, representative of large numbers of neurons responding to stimulation. These results demonstrate that the neurorehabilitation and neuroprosthetic applications of CES targeting layered cortex can be further improved by using field potential recordings as surrogates to unit activity aimed at optimizing stimulation efficacy. Likewise, the signatures

  8. Resveratrol supplementation confers neuroprotection in cortical brain tissue of nonhuman primates fed a high-fat/sucrose diet.

    PubMed

    Bernier, Michel; Wahl, Devin; Ali, Ahmed; Allard, Joanne; Faulkner, Shakeela; Wnorowski, Artur; Sanghvi, Mitesh; Moaddel, Ruin; Alfaras, Irene; Mattison, Julie A; Tarantini, Stefano; Tucsek, Zsuzsanna; Ungvari, Zoltan; Csiszar, Anna; Pearson, Kevin J; de Cabo, Rafael

    2016-05-01

    Previous studies have shown positive effects of long-term resveratrol (RSV) supplementation in preventing pancreatic beta cell dysfunction, arterial stiffening and metabolic decline induced by high-fat/high-sugar (HFS) diet in nonhuman primates. Here, the analysis was extended to examine whether RSV may reduce dietary stress toxicity in the cerebral cortex of the same cohort of treated animals. Middle-aged male rhesus monkeys were fed for 2 years with HFS alone or combined with RSV, after which whole-genome microarray analysis of cerebral cortex tissue was carried out along with ELISA, immunofluorescence, and biochemical analyses to examine markers of vascular health and inflammation in the cerebral cortices. A number of genes and pathways that were differentially modulated in these dietary interventions indicated an exacerbation of neuroinflammation (e.g., oxidative stress markers, apoptosis, NF-κB activation) in HFS-fed animals and protection by RSV treatment. The decreased expression of mitochondrial aldehyde dehydrogenase 2, dysregulation in endothelial nitric oxide synthase, and reduced capillary density induced by HFS stress were rescued by RSV supplementation. Our results suggest that long-term RSV treatment confers neuroprotection against cerebral vascular dysfunction during nutrient stress. PMID:27070252

  9. Resveratrol supplementation confers neuroprotection in cortical brain tissue of nonhuman primates fed a high-fat/sucrose diet

    PubMed Central

    Bernier, Michel; Wahl, Devin; Ali, Ahmed; Allard, Joanne; Faulkner, Shakeela; Wnorowski, Artur; Sanghvi, Mitesh; Moaddel, Ruin; Alfaras, Irene; Mattison, Julie A.; Tarantini, Stefano; Tucsek, Zsuzsanna; Ungvari, Zoltan; Csiszar, Anna; Pearson, Kevin J.; de Cabo, Rafael

    2016-01-01

    Previous studies have shown positive effects of long-term resveratrol (RSV) supplementation in preventing pancreatic beta cell dysfunction, arterial stiffening and metabolic decline induced by high-fat/high-sugar (HFS) diet in nonhuman primates. Here, the analysis was extended to examine whether RSV may reduce dietary stress toxicity in the cerebral cortex of the same cohort of treated animals. Middle-aged male rhesus monkeys were fed for 2 years with HFS alone or combined with RSV, after which whole-genome microarray analysis of cerebral cortex tissue was carried out along with ELISA, immunofluorescence, and biochemical analyses to examine markers of vascular health and inflammation in the cerebral cortices. A number of genes and pathways that were differentially modulated in these dietary interventions indicated an exacerbation of neuroinflammation (e.g., oxidative stress markers, apoptosis, NF-κB activation) in HFS-fed animals and protection by RSV treatment. The decreased expression of mitochondrial aldehyde dehydrogenase 2, dysregulation in endothelial nitric oxide synthase, and reduced capillary density induced by HFS stress were rescued by RSV supplementation. Our results suggest that long-term RSV treatment confers neuroprotection against cerebral vascular dysfunction during nutrient stress. PMID:27070252

  10. Fighting High School Senior Slump: The Spread of an Alternative Senior Program.

    ERIC Educational Resources Information Center

    Wade, Taron

    1999-01-01

    At several New York State high schools, seniors hold internships in architectural firms, Planned Parenthood, dentists' offices, and television and radio stations. Some make documentaries or pursue independent study in various subjects. These opportunities arise through a program (WISE) allowing second-semester seniors to design and complete their…

  11. Early Identification and Prevention of the Spread of Ebola in High-Risk African Countries.

    PubMed

    Breakwell, Lucy; Gerber, A Russell; Greiner, Ashley L; Hastings, Deborah L; Mirkovic, Kelsey; Paczkowski, Magdalena M; Sidibe, Sekou; Banaski, James; Walker, Chastity L; Brooks, Jennifer C; Caceres, Victor M; Arthur, Ray R; Angulo, Frederick J

    2016-01-01

    In the late summer of 2014, it became apparent that improved preparedness was needed for Ebola virus disease (Ebola) in at-risk countries surrounding the three highly affected West African countries (Guinea, Sierra Leone, and Liberia). The World Health Organization (WHO) identified 14 nearby African countries as high priority to receive technical assistance for Ebola preparedness; two additional African countries were identified at high risk for Ebola introduction because of travel and trade connections. To enhance the capacity of these countries to rapidly detect and contain Ebola, CDC established the High-Risk Countries Team (HRCT) to work with ministries of health, CDC country offices, WHO, and other international organizations. From August 2014 until the team was deactivated in May 2015, a total of 128 team members supported 15 countries in Ebola response and preparedness. In four instances during 2014, Ebola was introduced from a heavily affected country to a previously unaffected country, and CDC rapidly deployed personnel to help contain Ebola. The first introduction, in Nigeria, resulted in 20 cases and was contained within three generations of transmission; the second and third introductions, in Senegal and Mali, respectively, resulted in no further transmission; the fourth, also in Mali, resulted in seven cases and was contained within two generations of transmission. Preparedness activities included training, developing guidelines, assessing Ebola preparedness, facilitating Emergency Operations Center establishment in seven countries, and developing a standardized protocol for contact tracing. CDC's Field Epidemiology Training Program Branch also partnered with the HRCT to provide surveillance training to 188 field epidemiologists in Côte d'Ivoire, Guinea-Bissau, Mali, and Senegal to support Ebola preparedness. Imported cases of Ebola were successfully contained, and all 15 priority countries now have a stronger capacity to rapidly detect and contain

  12. Spread of a New Parasitic B Chromosome Variant Is Facilitated by High Gene Flow

    PubMed Central

    Manrique-Poyato, María Inmaculada; López-León, María Dolores; Cabrero, Josefa; Perfectti, Francisco; Camacho, Juan Pedro M.

    2013-01-01

    The B24 chromosome variant emerged several decades ago in a Spanish population of the grasshopper Eyprepocnemis plorans and is currently reaching adjacent populations. Here we report, for the first time, how a parasitic B chromosome (a strictly vertically transmitted parasite) expands its geographical range aided by high gene flow in the host species. For six years we analyzed B frequency in several populations to the east and west of the original population and found extensive spatial variation, but only a slight temporal trend. The highest B24 frequency was found in its original population (Torrox) and it decreased closer to both the eastern and the western populations. The analysis of Inter Simple Sequence Repeat (ISSR) markers showed the existence of a low but significant degree of population subdivision, as well as significant isolation by distance (IBD). Pairwise Nem estimates suggested the existence of high gene flow between the four populations located in the Torrox area, with higher values towards the east. No significant barriers to gene flow were found among these four populations, and we conclude that high gene flow is facilitating B24 diffusion both eastward and westward, with minor role for B24 drive due to the arrival of drive suppressor genes which are also frequent in the donor population. PMID:24386259

  13. Rapid spread of the defensive endosymbiont Spiroplasma in Drosophila hydei under high parasitoid wasp pressure.

    PubMed

    Xie, Jialei; Winter, Caitlyn; Winter, Lauryn; Mateos, Mariana

    2015-02-01

    Maternally transmitted endosymbionts of insects are ubiquitous in nature and play diverse roles in the ecology and evolution of their hosts. To persist in host lineages, many symbionts manipulate host reproduction to their advantage (e.g. cytoplasmic incompatibility and male-killing), or confer fitness benefits to their hosts (e.g. metabolic provisioning and defense against natural enemies). Recent studies suggest that strains of the bacterial genus Spiroplasma protect their host (flies in the genus Drosophila) against parasitoid attack. The Spiroplasma-conferred protection is partial and flies surviving a wasp attack have reduced adult longevity and fecundity. Therefore, it is unclear whether protection against wasps alone can counter Spiroplasma loss by imperfect maternal transmission and any possible fitness costs to harboring Spiroplasma. To address this question, we conducted a population cage study comparing Spiroplasma frequencies over time (host generations) under conditions of high wasp pressure and no wasp pressure. A dramatic increase of Spiroplasma prevalence was observed under high wasp pressure. In contrast, Spiroplasma prevalence in the absence of wasps did not change significantly over time; a pattern consistent with random drift. Thus, the defensive mechanism may contribute to the high prevalence of Spiroplasma in host populations despite imperfect vertical transmission. PMID:25764546

  14. High frequency activation data used to validate localization of cortical electrodes during surgery for deep brain stimulation

    PubMed Central

    Kondylis, Efstathios D.; Randazzo, Michael J.; Alhourani, Ahmad; Wozny, Thomas A.; Lipski, Witold J.; Crammond, Donald J.; Richardson, R. Mark

    2015-01-01

    Movement related synchronization of high frequency activity (HFA, 76–100 Hz) is a somatotopic process with spectral power changes occurring during movement in the sensorimotor cortex (Miller et al., 2007) [1]. These features allowed movement-related changes in HFA to be used to functionally validate the estimations of subdural electrode locations, which may be placed temporarily for research in deep brain stimulation surgery, using the novel tool described in Randazzo et al. (2015) [2]. We recorded electrocorticography (ECoG) signals and localized electrodes in the region of the sensorimotor cortex during an externally cued hand grip task in 8 subjects. Movement related HFA was determined for each trial by comparing HFA spectral power during movement epochs to pre-movement baseline epochs. Significant movement related HFA was found to be focal in time and space, occurring only during movement and only in a subset of electrodes localized to the pre- and post-central gyri near the hand knob. To further demonstrate the use of movement related HFA to aid electrode localization, we provide a sample of the electrode localization tool, with data loaded to allow readers to map movement related HFA onto the cortical surface of a sample patient. PMID:26862560

  15. Explaining the high voice superiority effect in polyphonic music: evidence from cortical evoked potentials and peripheral auditory models.

    PubMed

    Trainor, Laurel J; Marie, Céline; Bruce, Ian C; Bidelman, Gavin M

    2014-02-01

    Natural auditory environments contain multiple simultaneously-sounding objects and the auditory system must parse the incoming complex sound wave they collectively create into parts that represent each of these individual objects. Music often similarly requires processing of more than one voice or stream at the same time, and behavioral studies demonstrate that human listeners show a systematic perceptual bias in processing the highest voice in multi-voiced music. Here, we review studies utilizing event-related brain potentials (ERPs), which support the notions that (1) separate memory traces are formed for two simultaneous voices (even without conscious awareness) in auditory cortex and (2) adults show more robust encoding (i.e., larger ERP responses) to deviant pitches in the higher than in the lower voice, indicating better encoding of the former. Furthermore, infants also show this high-voice superiority effect, suggesting that the perceptual dominance observed across studies might result from neurophysiological characteristics of the peripheral auditory system. Although musically untrained adults show smaller responses in general than musically trained adults, both groups similarly show a more robust cortical representation of the higher than of the lower voice. Finally, years of experience playing a bass-range instrument reduces but does not reverse the high voice superiority effect, indicating that although it can be modified, it is not highly neuroplastic. Results of new modeling experiments examined the possibility that characteristics of middle-ear filtering and cochlear dynamics (e.g., suppression) reflected in auditory nerve firing patterns might account for the higher-voice superiority effect. Simulations show that both place and temporal AN coding schemes well-predict a high-voice superiority across a wide range of interval spacings and registers. Collectively, we infer an innate, peripheral origin for the higher-voice superiority observed in human

  16. An optimal point spread function subtraction algorithm for high-contrast imaging: a demonstration with angular differential imaging

    SciTech Connect

    Lafreniere, D; Marois, C; Doyon, R; Artigau, E; Nadeau, D

    2006-09-19

    Direct imaging of exoplanets is limited by bright quasi-static speckles in the point spread function (PSF) of the central star. This limitation can be reduced by subtraction of reference PSF images. We have developed an algorithm to construct an optimal reference PSF image from an arbitrary set of reference images. This image is built as a linear combination of all available images and is optimized independently inside multiple subsections of the image to ensure that the absolute minimum residual noise is achieved within each subsection. The algorithm developed is completely general and can be used with many high contrast imaging observing strategies, such as angular differential imaging (ADI), roll subtraction, spectral differential imaging, reference star observations, etc. The performance of the algorithm is demonstrated for ADI data. It is shown that for this type of data the new algorithm provides a gain in sensitivity by up 22 to a factor 3 at small separation over the algorithm previously used.

  17. High correlation of Middle East respiratory syndrome spread with Google search and Twitter trends in Korea.

    PubMed

    Shin, Soo-Yong; Seo, Dong-Woo; An, Jisun; Kwak, Haewoon; Kim, Sung-Han; Gwack, Jin; Jo, Min-Woo

    2016-01-01

    The Middle East respiratory syndrome coronavirus (MERS-CoV) was exported to Korea in 2015, resulting in a threat to neighboring nations. We evaluated the possibility of using a digital surveillance system based on web searches and social media data to monitor this MERS outbreak. We collected the number of daily laboratory-confirmed MERS cases and quarantined cases from May 11, 2015 to June 26, 2015 using the Korean government MERS portal. The daily trends observed via Google search and Twitter during the same time period were also ascertained using Google Trends and Topsy. Correlations among the data were then examined using Spearman correlation analysis. We found high correlations (>0.7) between Google search and Twitter results and the number of confirmed MERS cases for the previous three days using only four simple keywords: "MERS", " ("MERS (in Korean)"), " ("MERS symptoms (in Korean)"), and " ("MERS hospital (in Korean)"). Additionally, we found high correlations between the Google search and Twitter results and the number of quarantined cases using the above keywords. This study demonstrates the possibility of using a digital surveillance system to monitor the outbreak of MERS. PMID:27595921

  18. High correlation of Middle East respiratory syndrome spread with Google search and Twitter trends in Korea

    PubMed Central

    Shin, Soo-Yong; Seo, Dong-Woo; An, Jisun; Kwak, Haewoon; Kim, Sung-Han; Gwack, Jin; Jo, Min-Woo

    2016-01-01

    The Middle East respiratory syndrome coronavirus (MERS-CoV) was exported to Korea in 2015, resulting in a threat to neighboring nations. We evaluated the possibility of using a digital surveillance system based on web searches and social media data to monitor this MERS outbreak. We collected the number of daily laboratory-confirmed MERS cases and quarantined cases from May 11, 2015 to June 26, 2015 using the Korean government MERS portal. The daily trends observed via Google search and Twitter during the same time period were also ascertained using Google Trends and Topsy. Correlations among the data were then examined using Spearman correlation analysis. We found high correlations (>0.7) between Google search and Twitter results and the number of confirmed MERS cases for the previous three days using only four simple keywords: “MERS”, “” (“MERS (in Korean)”), “” (“MERS symptoms (in Korean)”), and “” (“MERS hospital (in Korean)”). Additionally, we found high correlations between the Google search and Twitter results and the number of quarantined cases using the above keywords. This study demonstrates the possibility of using a digital surveillance system to monitor the outbreak of MERS. PMID:27595921

  19. High-performance biocomputing for simulating the spread of contagion over large contact networks

    PubMed Central

    2012-01-01

    Background Many important biological problems can be modeled as contagion diffusion processes over interaction networks. This article shows how the EpiSimdemics interaction-based simulation system can be applied to the general contagion diffusion problem. Two specific problems, computational epidemiology and human immune system modeling, are given as examples. We then show how the graphics processing unit (GPU) within each compute node of a cluster can effectively be used to speed-up the execution of these types of problems. Results We show that a single GPU can accelerate the EpiSimdemics computation kernel by a factor of 6 and the entire application by a factor of 3.3, compared to the execution time on a single core. When 8 CPU cores and 2 GPU devices are utilized, the speed-up of the computational kernel increases to 9.5. When combined with effective techniques for inter-node communication, excellent scalability can be achieved without significant loss of accuracy in the results. Conclusions We show that interaction-based simulation systems can be used to model disparate and highly relevant problems in biology. We also show that offloading some of the work to GPUs in distributed interaction-based simulations can be an effective way to achieve increased intra-node efficiency. PMID:22537298

  20. Internal strains and stresses measured in cortical bone via high-energy X-ray diffraction.

    PubMed

    Almer, J D; Stock, S R

    2005-10-01

    High-energy synchrotron X-ray diffraction was used to study internal stresses in bone under in situ compressive loading. A transverse cross-section of a 12-14 year old beagle fibula was studied with 80.7 keV radiation, and the transmission geometry was used to quantify internal strains and corresponding stresses in the mineral phase, carbonated hydroxyapatite. The diffraction patterns agreed with tabulated patterns, and the distribution of diffracted intensity around 00.2/00.4 and 22.2 diffraction rings was consistent with the imperfect 00.1 fiber texture expected along the axis of a long bone. Residual compressive stress along the bone's longitudinal axis was observed in the specimen prior to testing: for 22.2 this stress equaled -95 MPa and for 00.2/00.4 was between -160 and -240 MPa. Diffraction patterns were collected for applied compressive stresses up to -110 MPa, and, up to about -100 MPa, internal stresses rose proportionally with applied stress but at a higher rate, corresponding to stress concentration in the mineral of 2.8 times the stress applied. The widths of the 00.2 and 00.4 diffraction peaks indicated that crystallite size perpendicular to the 00.1 planes increased from t=41 nm before stress was applied to t=44 nm at -118 MPa applied stress and that rms strain epsilon(rms) rose from 2200 muepsilon before loading to 4600 muepsilon at the maximum applied stress. Small angle X-ray scattering of the unloaded sample, recorded after deformation was complete, showed a collagen D-period of 66.4 nm (along the bone axis). PMID:16183302

  1. High-resolution and site-specific scanning spreading resistance microscopy and its applications to silicon devices

    SciTech Connect

    Zhang, L.; Koike, M.; Takeno, S.; Hara, K.

    2012-11-06

    Due to the continuous reduction of the critical dimensions of semiconductor devices, it becomes very important to know the two dimensional (2D) doping profile for improving device performance. Scanning spreading resistance microscopy (SSRM) performed in high vacuum is a powerful technique for quantitative 2D-doping profiling, with high spatial resolution and wide dynamic range of carrier concentration, as well as capability of site-specific analysis for accurate position. In this paper, we review SSRM applications to source/drain engineering in Si devices and their correlation with device characteristics by demonstrating several case studies. Direct observation of (110)/(100) CMOSFETs clarified significant differences between both pFETs and nFETs on (110) and (100) silicon substrates, revealing 2D channeling effect of boron ion implantation in pFETs; as well as silicidation impact on junction leakage-current characteristics in nFETs. Furthermore, our sample-preparation breakthrough enables site-specific SSRM characterization within 60 nm ultra thin samples and therefore failure analysis of real SRAM devices, demonstrating the high potential of SSRM technology for further device scaling and for failure analysis.

  2. Ischemia-induced spreading depolarization in the retina.

    PubMed

    Srienc, Anja I; Biesecker, Kyle R; Shimoda, Angela M; Kur, Joanna; Newman, Eric A

    2016-09-01

    Cortical spreading depolarization is a metabolically costly phenomenon that affects the brain in both health and disease. Following severe stroke, subarachnoid hemorrhage, or traumatic brain injury, cortical spreading depolarization exacerbates tissue damage and enlarges infarct volumes. It is not known, however, whether spreading depolarization also occurs in the retina in vivo. We report now that spreading depolarization episodes are generated in the in vivo rat retina following retinal vessel occlusion produced by photothrombosis. The properties of retinal spreading depolarization are similar to those of cortical spreading depolarization. Retinal spreading depolarization waves propagate at a velocity of 3.0 ± 0.1 mm/min and are associated with a negative shift in direct current potential, a transient cessation of neuronal spiking, arteriole constriction, and a decrease in tissue O2 tension. The frequency of retinal spreading depolarization generation in vivo is reduced by administration of the NMDA antagonist MK-801 and the 5-HT(1D) agonist sumatriptan. Branch retinal vein occlusion is a leading cause of vision loss from vascular disease. Our results suggest that retinal spreading depolarization could contribute to retinal damage in acute retinal ischemia and demonstrate that pharmacological agents can reduce retinal spreading depolarization frequency after retinal vessel occlusion. Blocking retinal spreading depolarization generation may represent a therapeutic strategy for preserving vision in branch retinal vein occlusion patients. PMID:27389181

  3. High-acceleration whole body vibration stimulates cortical bone accrual and increases bone mineral content in growing mice.

    PubMed

    Gnyubkin, Vasily; Guignandon, Alain; Laroche, Norbert; Vanden-Bossche, Arnaud; Malaval, Luc; Vico, Laurence

    2016-06-14

    Whole body vibration (WBV) is a promising tool for counteracting bone loss. Most WBV studies on animals have been performed at acceleration <1g and frequency between 30 and 90Hz. Such WBV conditions trigger bone growth in osteopenia models, but not in healthy animals. In order to test the ability of WBV to promote osteogenesis in young animals, we exposed seven-week-old male mice to vibration at 90Hz and 2g peak acceleration for 15min/day, 5 days/week. We examined the effects on skeletal tissues with micro-computed tomography and histology. We also quantified bone vascularization and mechanosensitive osteocyte proteins, sclerostin and DMP1. Three weeks of WBV resulted in an increase of femur cortical thickness (+5%) and area (+6%), associated with a 25% decrease of sclerostin expression, and 35% increase of DMP1 expression in cortical osteocytes. Mass-structural parameters of trabecular bone were unaltered in femur or vertebra, while osteoclastic parameters and bone formation rate were increased at both sites. Three weeks of WBV resulted in higher blood vessel numbers (+23%) in the distal femoral metaphysis. After 9-week WBV, we have not observed the difference in structural cortical or trabecular parameters. However, the tissue mineral density of cortical bone was increased by 2.5%. Three or nine weeks of 2g/90Hz WBV treatment did not affect longitudinal growth rate or body weight increase under our experimental conditions, indicating that these are safe to use. These results validate a potential of 2g/90Hz WBV to stimulate trabecular bone cellular activity, accelerate cortical bone growth, and increase bone mineral density. PMID:27178020

  4. The high bone mass phenotype is characterised by a combined cortical and trabecular bone phenotype: Findings from a pQCT case–control study☆

    PubMed Central

    Gregson, Celia L.; Sayers, Adrian; Lazar, Victor; Steel, Sue; Dennison, Elaine M.; Cooper, Cyrus; Smith, George Davey; Rittweger, Jörn; Tobias, Jon H.

    2013-01-01

    High bone mass (HBM), detected in 0.2% of DXA scans, is characterised by a mild skeletal dysplasia largely unexplained by known genetic mutations. We conducted the first systematic assessment of the skeletal phenotype in unexplained HBM using pQCT in our unique HBM population identified from screening routine UK NHS DXA scans. pQCT measurements from the mid and distal tibia and radius in 98 HBM cases were compared with (i) 65 family controls (constituting unaffected relatives and spouses), and (ii) 692 general population controls. HBM cases had substantially greater trabecular density at the distal tibia (340 [320, 359] mg/cm3), compared to both family (294 [276, 312]) and population controls (290 [281, 299]) (p < 0.001 for both, adjusted for age, gender, weight, height, alcohol, smoking, malignancy, menopause, steroid and estrogen replacement use). Similar results were obtained at the distal radius. Greater cortical bone mineral density (cBMD) was observed in HBM cases, both at the midtibia and radius (adjusted p < 0.001). Total bone area (TBA) was higher in HBM cases, at the distal and mid tibia and radius (adjusted p < 0.05 versus family controls), suggesting greater periosteal apposition. Cortical thickness was increased at the mid tibia and radius (adjusted p < 0.001), implying reduced endosteal expansion. Together, these changes resulted in greater predicted cortical strength (strength strain index [SSI]) in both tibia and radius (p < 0.001). We then examined relationships with age; tibial cBMD remained constant with increasing age amongst HBM cases (adjusted β − 0.01 [− 0.02, 0.01], p = 0.41), but declined in family controls (− 0.05 [− 0.03, − 0.07], p < 0.001) interaction p = 0.002; age-related changes in tibial trabecular BMD, CBA and SSI were also divergent. In contrast, at the radius HBM cases and controls showed parallel age-related declines in cBMD and trabecular BMD. HBM is characterised by increased trabecular BMD and

  5. Malformations of cortical development

    PubMed Central

    Pang, Trudy; Atefy, Ramin; Sheen, Volney

    2012-01-01

    Background Malformations of cortical development (MCD) are increasingly recognized as an important cause of epilepsy and developmental delay. MCD encompass a wide spectrum of disorders with various underlying genetic etiologies and clinical manifestations. High resolution imaging has dramatically improved our recognition of MCD. Review Summary This review will provide a brief overview of the stages of normal cortical development, including neuronal proliferation, neuroblast migration, and neuronal organization. Disruptions at various stages lead to characteristic MCD. Disorders of neurogenesis give rise to microcephaly (small brain) or macrocephaly (large brain). Disorders of early neuroblast migration give rise to periventricular heterotopia (neurons located along the ventricles), whereas abnormalities later in migration lead to lissencephaly (smooth brain) or subcortical band heterotopia (smooth brain with a band of heterotopic neurons under the cortex). Abnormal neuronal migration arrest give rise to over-migration of neurons in cobblestone lissencephaly. Lastly, disorders of neuronal organization cause polymicrogyria (abnormally small gyri and sulci). This review will also discuss the known genetic mutations and potential mechanisms that contribute to these syndromes. Conclusion Identification of various gene mutations has not only given us greater insight into some of the pathophysiologic basis of MCD, but also an understanding of the processes involved in normal cortical development. PMID:18469675

  6. Improving Transferability of Introduced Species’ Distribution Models: New Tools to Forecast the Spread of a Highly Invasive Seaweed

    PubMed Central

    Verbruggen, Heroen; Tyberghein, Lennert; Belton, Gareth S.; Mineur, Frederic; Jueterbock, Alexander; Hoarau, Galice; Gurgel, C. Frederico D.; De Clerck, Olivier

    2013-01-01

    The utility of species distribution models for applications in invasion and global change biology is critically dependent on their transferability between regions or points in time, respectively. We introduce two methods that aim to improve the transferability of presence-only models: density-based occurrence thinning and performance-based predictor selection. We evaluate the effect of these methods along with the impact of the choice of model complexity and geographic background on the transferability of a species distribution model between geographic regions. Our multifactorial experiment focuses on the notorious invasive seaweed Caulerpacylindracea (previously Caulerparacemosa var. cylindracea) and uses Maxent, a commonly used presence-only modeling technique. We show that model transferability is markedly improved by appropriate predictor selection, with occurrence thinning, model complexity and background choice having relatively minor effects. The data shows that, if available, occurrence records from the native and invaded regions should be combined as this leads to models with high predictive power while reducing the sensitivity to choices made in the modeling process. The inferred distribution model of Caulerpacylindracea shows the potential for this species to further spread along the coasts of Western Europe, western Africa and the south coast of Australia. PMID:23950789

  7. The Role of Epidemic Resistance Plasmids and International High-Risk Clones in the Spread of Multidrug-Resistant Enterobacteriaceae

    PubMed Central

    Mathers, Amy J.; Peirano, Gisele

    2015-01-01

    SUMMARY Escherichia coli sequence type 131 (ST131) and Klebsiella pneumoniae ST258 emerged in the 2000s as important human pathogens, have spread extensively throughout the world, and are responsible for the rapid increase in antimicrobial resistance among E. coli and K. pneumoniae strains, respectively. E. coli ST131 causes extraintestinal infections and is often fluoroquinolone resistant and associated with extended-spectrum β-lactamase production, especially CTX-M-15. K. pneumoniae ST258 causes urinary and respiratory tract infections and is associated with carbapenemases, most often KPC-2 and KPC-3. The most prevalent lineage within ST131 is named fimH30 because it contains the H30 variant of the type 1 fimbrial adhesin gene, and recent molecular studies have demonstrated that this lineage emerged in the early 2000s and was then followed by the rapid expansion of its sublineages H30-R and H30-Rx. K. pneumoniae ST258 comprises 2 distinct lineages, namely clade I and clade II. Moreover, it seems that ST258 is a hybrid clone that was created by a large recombination event between ST11 and ST442. Epidemic plasmids with blaCTX-M and blaKPC belonging to incompatibility group F have contributed significantly to the success of these clones. E. coli ST131 and K. pneumoniae ST258 are the quintessential examples of international multidrug-resistant high-risk clones. PMID:25926236

  8. Increasing Incidence of High-Level Tetracycline-Resistant Neisseria gonorrhoeae due to Clonal Spread and Foreign Import

    PubMed Central

    Lee, Hyukmin; Kim, Hyunsoo; Kim, Hyo Jin; Suh, Young Hee; Yong, Dongeun; Jeong, Seok Hoon; Chong, Yunsop

    2016-01-01

    Purpose The detection of high-level tetracycline-resistant strains of Neisseria gonorrhoeae (TRNG) can make important epidemiological contributions that are relevant to controlling infections from this pathogen. In this study, we aimed to determine the incidence of TRNG isolates over time and also to investigate the characteristics and genetic epidemiology of these TRNG isolates in Korea. Materials and Methods The antimicrobial susceptibilities of 601 isolates of N. gonorrhoeae from 2004 to 2011 were tested by standard Clinical and Laboratory Standards Institute methods. To determine the molecular epidemiological relatedness, N. gonorrhoeae multi-antigen sequence typing was performed. Results The incidence of TRNG increased from 2% in 2004 to 21% in 2011. The minimum inhibitory concentration distributions of ceftriaxone and susceptibility of ciprofloxacin in TRNG were different from non-TRNG and varied according to the year of isolation. Most of the TRNG isolates collected from 2004 to 2007 exhibited genetic relatedness, with sequence type (ST) 1798 being the most common. From 2008 to 2011, the STs of the isolates became more variable and introduction of genetically unrelated TRNG were noted. Conclusion The increased incidence of TRNG strains until 2007 appears to be due, at least in part, to clonal spread. However, we propose that the emergence of various STs since 2008 could be associated with foreign import. PMID:26847286

  9. High energy x-ray diffraction/x-ray fluorescence spectroscopy for high-throughput analysis of composition spread thin films

    SciTech Connect

    Gregoire, John M.; Dale, Darren; Kazimirov, Alexander; DiSalvo, Francis J.; Dover, R. Bruce van

    2009-12-15

    High-throughput crystallography is an important tool in materials research, particularly for the rapid assessment of structure-property relationships. We present a technique for simultaneous acquisition of diffraction images and fluorescence spectra on a continuous composition spread thin film using a 60 keV x-ray source. Subsequent noninteractive data processing provides maps of the diffraction profiles, thin film fiber texture, and composition. Even for highly textured films, our diffraction technique provides detection of diffraction from each family of Bragg reflections, which affords direct comparison of the measured profiles with powder patterns of known phases. These techniques are important for high throughput combinatorial studies as they provide structure and composition maps which may be correlated with performance trends within an inorganic library.

  10. Altered Thalamo-Cortical White Matter Connectivity: Probabilistic Tractography Study in Clinical-High Risk for Psychosis and First-Episode Psychosis.

    PubMed

    Cho, Kang Ik K; Shenton, Martha E; Kubicki, Marek; Jung, Wi Hoon; Lee, Tae Young; Yun, Je-Yeon; Kim, Sung Nyun; Kwon, Jun Soo

    2016-05-01

    Disrupted thalamo-cortical connectivity is regarded as a core psychopathology in patients diagnosed with schizophrenia. However, whether the thalamo-cortical white matter connectivity is disrupted before the onset of psychosis is still unknown. To determine this gap in knowledge, the strength of thalamo-cortical white matter anatomical connectivity in subjects at clinical-high risk for psychosis (CHR) was compared to that of first-episode psychosis (FEP) and healthy controls. A total of 37 CHR, 21 FEP, and 37 matched healthy controls underwent diffusion-weighted magnetic resonance imaging to examine the number of probabilistic tractography "counts" representing thalamo-cortical white matter connectivity. We also investigated the relationship with psychopathology. For FEP, the connectivity between the thalamus and parietal cortex was significantly increased (F= 5.65,P< .05) compared to that of healthy controls. However, the connectivity between thalamus and orbitofrontal cortex was significantly reduced compared to both healthy controls (F= 11.86,P< .005) and CHR (F= 6.63,P< .05). Interestingly, CHR exhibited a similar pattern as FEP, albeit with slightly reduced magnitude. Compared to healthy controls, there was a significant decrease (F= 4.16,P< .05) in CHR thalamo-orbitofrontal connectivity. Also, the strength of the thalamo-orbitofrontal connectivity was correlated with the Global Assessment of Functioning score in CHR (r= .35,P< .05). This observed pattern of white matter connectivity disruptions in FEP and in CHR suggests that this pattern of disconnectivity not only highlights the involvement of thalamus but also might be useful as an early biomarker for psychosis. PMID:26598740

  11. High Definition Transcranial Direct Current Stimulation Induces Both Acute and Persistent Changes in Broadband Cortical Synchronization: a Simultaneous tDCS-EEG Study

    PubMed Central

    Roy, Abhrajeet; Baxter, Bryan

    2014-01-01

    The goal of this study was to develop methods for simultaneously acquiring electrophysiological data during high definition transcranial direct current stimulation (tDCS) using high resolution electroencephalography (EEG). Previous studies have pointed to the after effects of tDCS on both motor and cognitive performance, and there appears to be potential for using tDCS in a variety of clinical applications. However, little is known about the real-time effects of tDCS on rhythmic cortical activity in humans due to the technical challenges of simultaneously obtaining electrophysiological data during ongoing stimulation. Furthermore, the mechanisms of action of tDCS in humans are not well understood. We have conducted a simultaneous tDCS-EEG study in a group of healthy human subjects. Significant acute and persistent changes in spontaneous neural activity and event related synchronization (ERS) were observed during and after the application of high definition tDCS over the left sensorimotor cortex. Both anodal and cathodal stimulation resulted in acute global changes in broadband cortical activity which were significantly different than the changes observed in response to sham stimulation. For the group of 8 subjects studied, broadband individual changes in spontaneous activity during stimulation were apparent both locally and globally. In addition, we found that high definition tDCS of the left sensorimotor cortex can induce significant ipsilateral and contralateral changes in event related desynchronization (ERD) and ERS during motor imagination following the end of the stimulation period. Overall, our results demonstrate the feasibility of acquiring high resolution EEG during high definition tDCS and provide evidence that tDCS in humans directly modulates rhythmic cortical synchronization during and after its administration. PMID:24956615

  12. Cortical Modulation of Motor Control Biofeedback among the Elderly with High Fall Risk during a Posture Perturbation Task with Augmented Reality.

    PubMed

    Chang, Chun-Ju; Yang, Tsui-Fen; Yang, Sai-Wei; Chern, Jen-Suh

    2016-01-01

    The cerebral cortex provides sensorimotor integration and coordination during motor control of daily functional activities. Power spectrum density based on electroencephalography (EEG) has been employed as an approach that allows an investigation of the spatial-temporal characteristics of neuromuscular modulation; however, the biofeedback mechanism associated with cortical activation during motor control remains unclear among elderly individuals. Thirty one community-dwelling elderly participants were divided into low fall-risk potential (LF) and high fall-risk potential (HF) groups based upon the results obtained from a receiver operating characteristic analysis of the ellipse area of the center of pressure. Electroencephalography (EEG) was performed while the participants stood on a 6-degree-of-freedom Stewart platform, which generated continuous perturbations and done either with or without the virtual reality scene. The present study showed that when there was visual stimulation and poor somatosensory coordination, a higher level of cortical response was activated in order to keep postural balance. The elderly participants in the LF group demonstrated a significant and strong correlation between postural-related cortical regions; however, the elderly individuals in the HF group did not show such a relationship. Moreover, we were able to clarify the roles of various brainwave bands functioning in motor control. Specifically, the gamma and beta bands in the parietal-occipital region facilitate the high-level cortical modulation and sensorimotor integration, whereas the theta band in the frontal-central region is responsible for mediating error detection during perceptual motor tasks. Finally, the alpha band is associated with processing visual challenges in the occipital lobe.With a variety of motor control demands, increment in brainwave band coordination is required to maintain postural stability. These investigations shed light on the cortical modulation of

  13. Cortical Modulation of Motor Control Biofeedback among the Elderly with High Fall Risk during a Posture Perturbation Task with Augmented Reality

    PubMed Central

    Chang, Chun-Ju; Yang, Tsui-Fen; Yang, Sai-Wei; Chern, Jen-Suh

    2016-01-01

    The cerebral cortex provides sensorimotor integration and coordination during motor control of daily functional activities. Power spectrum density based on electroencephalography (EEG) has been employed as an approach that allows an investigation of the spatial–temporal characteristics of neuromuscular modulation; however, the biofeedback mechanism associated with cortical activation during motor control remains unclear among elderly individuals. Thirty one community-dwelling elderly participants were divided into low fall-risk potential (LF) and high fall-risk potential (HF) groups based upon the results obtained from a receiver operating characteristic analysis of the ellipse area of the center of pressure. Electroencephalography (EEG) was performed while the participants stood on a 6-degree-of-freedom Stewart platform, which generated continuous perturbations and done either with or without the virtual reality scene. The present study showed that when there was visual stimulation and poor somatosensory coordination, a higher level of cortical response was activated in order to keep postural balance. The elderly participants in the LF group demonstrated a significant and strong correlation between postural-related cortical regions; however, the elderly individuals in the HF group did not show such a relationship. Moreover, we were able to clarify the roles of various brainwave bands functioning in motor control. Specifically, the gamma and beta bands in the parietal–occipital region facilitate the high-level cortical modulation and sensorimotor integration, whereas the theta band in the frontal–central region is responsible for mediating error detection during perceptual motor tasks. Finally, the alpha band is associated with processing visual challenges in the occipital lobe.With a variety of motor control demands, increment in brainwave band coordination is required to maintain postural stability. These investigations shed light on the cortical modulation

  14. Spreading and slope instability at the continental margin offshore Mt Etna, imaged by high-resolution 2D seismic data

    NASA Astrophysics Data System (ADS)

    Gross, Felix; Krastel, Sebastian; Behrmann, Jan-Hinrich; Papenberg, Cord; Geersen, Jacob; Ridente, Domenico; Latino Chiocci, Francesco; Urlaub, Morelia; Bialas, Jörg; Micallef, Aaron

    2015-04-01

    Mount Etna is the largest active volcano in Europe. Its volcano edifice is located on top of continental crust close to the Ionian shore in east Sicily. Instability of the eastern flank of the volcano edifice is well documented onshore. The continental margin is supposed to deform as well. Little, however, is known about the offshore extension of the eastern volcano flank and its adjacent continental margin, which is a serious shortcoming in stability models. In order to better constrain the active tectonics of the continental margin offshore the eastern flank of the volcano, we acquired and processed a new marine high-resolution seismic and hydro-acoustic dataset. The data provide new detailed insights into the heterogeneous geology and tectonics of shallow continental margin structures offshore Mt Etna. In a similiar manner as observed onshore, the submarine realm is characterized by different blocks, which are controlled by local- and regional tectonics. We image a compressional regime at the toe of the continental margin, which is bound to an asymmetric basin system confining the eastward movement of the flank. In addition, we constrain the proposed southern boundary of the moving flank, which is identified as a right lateral oblique fault movement north of Catania Canyon. From our findings, we consider a major coupled volcano edifice instability and continental margin gravitational collapse and spreading to be present at Mt Etna, as we see a clear link between on- and offshore tectonic structures across the entire eastern flank. The new findings will help to evaluate hazards and risks accompanied by Mt Etna's slope- and continental margin instability and will be used as a base for future investigations in this region.

  15. Molecular and antigenic evolution and geographical spread of H5N1 highly pathogenic avian influenza viruses in western Africa.

    PubMed

    Ducatez, M F; Olinger, C M; Owoade, A A; Tarnagda, Z; Tahita, M C; Sow, A; De Landtsheer, S; Ammerlaan, W; Ouedraogo, J B; Osterhaus, A D M E; Fouchier, R A M; Muller, C P

    2007-08-01

    In Africa, highly pathogenic avian influenza H5N1 virus was first detected in northern Nigeria and later also in other regions of the country. Since then, seven other African countries have reported H5N1 infections. This study reports a comparison of full-length genomic sequences of H5N1 isolates from seven chicken farms in Nigeria and chicken and hooded vultures in Burkina Faso with earlier H5N1 outbreaks worldwide. In addition, the antigenicity of Nigerian H5N1 isolates was compared with earlier strains. All African strains clustered within three sublineages denominated A (south-west Nigeria, Niger), B (south-west Nigeria, Egypt, Djibouti) and C (northern Nigeria, Burkina Faso, Sudan, Côte d'Ivoire), with distinct nucleotide and amino acid signatures and distinct geographical distributions within Africa. Probable non-African ancestors within the west Asian/Russian/European lineage distinct from the south-east Asian lineages were identified for each sublineage. All reported human cases in Africa were caused by sublineage B. Substitution rates were calculated on the basis of sequences from 11 strains from a single farm in south-west Nigeria. As H5N1 emerged essentially at the same time in the north and south-west of Nigeria, the substitution rates confirmed that the virus probably did not spread from the north to the south, given the observed sequence diversity, but that it entered the country via three independent introductions. The strains from Burkina Faso seemed to originate from northern Nigeria. At least two of the sublineages also circulated in Europe in 2006 as seen in Germany, further suggesting that the sublineages had already emerged outside of Africa and seemed to have followed the east African/west Asian and Black Sea/Mediterranean flyways of migratory birds. PMID:17622635

  16. A high-temperature hydrothermal deposit on the seabed at a Gulf of California spreading center ( Guaymas Basin).

    USGS Publications Warehouse

    Lonsdale, P.F.; Bischoff, J.L.; Burns, V.M.; Kastner, M.; Sweeney, R.E.

    1980-01-01

    A submersible dive on a turbidite-covered spreading axis in Guaymas Basin photographed and sampled extensive terraces and ledges of talc. The rock contains siliceous microfossils, smectite, and euhedral pyrrhotite as well as rather pure iron-rich talc. S and O isotopes indicate precipitation around a hydrothermal vent, at about 2800C. - Authors

  17. Pain catastrophizing and cortical responses in amputees with varying levels of phantom limb pain: a high-density EEG brain-mapping study.

    PubMed

    Vase, Lene; Egsgaard, Line Lindhardt; Nikolajsen, Lone; Svensson, Peter; Jensen, Troels Staehelin; Arendt-Nielsen, Lars

    2012-05-01

    Pain catastrophizing has been associated with phantom limb pain, but so far the cortical processes and the brain regions involved in this relationship have not been investigated. It was therefore tested whether catastrophizing was related to (1) spontaneous pain, (2) somatosensory activity and (3) cortical responses in phantom limb pain patients. The cortical responses were investigated via electroencephalography (EEG) as it has a high temporal resolution which may be ideal for investigating especially the attentional and hypervigilance aspect of catastrophizing to standardized acute stimuli. Eighteen upper limb amputees completed the pain catastrophizing scale. Patients' spontaneous pain levels (worst and average pain, numerical rating scales) and thresholds to electrical stimulation (sensory detection and VRS2: intense but not painful) were determined. Non-painful electrical stimuli were applied to both the affected and non-affected arm, while high-resolution (128 channels) EEG signals were recorded. Catastrophizing accounted for significant amounts of the variance in relation to spontaneous pain, especially worst pain (64.1%), and it was significantly associated with thresholds. At the affected side, catastrophizing was significantly related to the power RMS of the N/P135 dipole located in the area around the secondary somatosensory cortex which has been shown to be associated with arousal and expectations. These findings corroborate the attentional model of pain catastrophizing by indicating that even non-painful stimuli are related to enhanced attention to and negative expectations of stimuli, and they suggest that memory processes may be central to understanding the link between catastrophizing and pain. PMID:22349560

  18. Ischaemia triggered by spreading neuronal activation is inhibited by vasodilators in rats

    PubMed Central

    Dreier, Jens P; Petzold, Gabor; Tille, Katrin; Lindauer, Ute; Arnold, Guy; Heinemann, Uwe; Einhäupl, Karl M; Dirnagl, Ulrich

    2001-01-01

    It has been previously shown that spreading neuronal activation can generate a cortical spreading ischaemia (CSI) in rats. The purpose of the present study was to investigate whether vasodilators cause CSI to revert to a normal cortical spreading depression (CSD). A KCl-induced CSD travelled from an open cranial window to a closed window where the cortex was superfused with physiological artificial cerebrospinal fluid (ACSF). At the closed window, recordings revealed a short-lasting negative slow potential shift accompanied by a variable, small and short initial hypoperfusion followed by hyperaemia and then oligaemia. In contrast, spreading neuronal activation locally induced CSI at the closed window when ACSF contained a NO. synthase (NOS) inhibitor, NG-nitro-l-arginine, and an increased K+ concentration ([K+]ACSF). CSI was characterised by a sharp and prolonged initial cerebral blood flow decrease to 29 ± 11 % of the baseline and a prolonged negative potential shift. Co-application of a NO. donor, S-nitroso-N-acetylpenicillamine, and NOS inhibitor with high [K+]ACSF re-established a short-lasting negative potential shift and spreading hyperaemia typical of CSD. Similarly, the NO.-independent vasodilator papaverine caused CSI to revert to a pattern characteristic of CSD. In acute rat brain slices, NOS inhibition and high [K+]ACSF did not prolong the negative slow potential shift compared to that induced by high [K+]ACSF alone. The data indicate that the delayed recovery of the slow potential was caused by vasoconstriction during application of high [K+]ACSF and a NOS inhibitor in vivo. This supports the possibility of a vicious circle: spreading neuronal activation induces vasoconstriction, and vasoconstriction prevents repolarisation during CSI. Speculatively, this pathogenetic process could be involved in migraine-induced stroke. PMID:11230523

  19. Accessing Real-Life Episodic Information from Minutes versus Hours Earlier Modulates Hippocampal and High-Order Cortical Dynamics.

    PubMed

    Chen, J; Honey, C J; Simony, E; Arcaro, M J; Norman, K A; Hasson, U

    2016-08-01

    It is well known that formation of new episodic memories depends on hippocampus, but in real-life settings (e.g., conversation), hippocampal amnesics can utilize information from several minutes earlier. What neural systems outside hippocampus might support this minutes-long retention? In this study, subjects viewed an audiovisual movie continuously for 25 min; another group viewed the movie in 2 parts separated by a 1-day delay. Understanding Part 2 depended on retrieving information from Part 1, and thus hippocampus was required in the day-delay condition. But is hippocampus equally recruited to access the same information from minutes earlier? We show that accessing memories from a few minutes prior elicited less interaction between hippocampus and default mode network (DMN) cortical regions than accessing day-old memories of identical events, suggesting that recent information was available with less reliance on hippocampal retrieval. Moreover, the 2 groups evinced reliable but distinct DMN activity timecourses, reflecting differences in information carried in these regions when Part 1 was recent versus distant. The timecourses converged after 4 min, suggesting a time frame over which the continuous-viewing group may have relied less on hippocampal retrieval. We propose that cortical default mode regions can intrinsically retain real-life episodic information for several minutes. PMID:26240179

  20. The Relationships of Plate Triple-junction Evolution, Trench-Arc Lengthening, Boninite Generation, and SSZ Spreading Centers to Ophiolite Formation, High-Temperature Soles, and Obduction

    NASA Astrophysics Data System (ADS)

    Casey, J.; Dewey, J. F.

    2014-12-01

    A review of modern-day island arcs, the locations of boninite eruptions, the conditions necessary for hot upper plate spreading, potential regions of shallow SSZ flux melting, and formation of high-temperature metamorphic soles along the subduction channels indicates that many future, recent and ancient large slab ophiolite obduction events can be related to triple junctions that link SSZ spreading centers with trenches. These subduction systems leading to large slab ophiolite obduction events typically face stable continental margins. Boninitic melt generation requires hydrous melting of refractory mantle peridotite under an extremely high-temperature and low-pressure condition. This condition is generally explained by the addition of slab-derived fluids into a hot young oceanic mantle asthenosphere and lithosphere, which previously likely experienced melt extraction. Metamorphic conditions associated with metamorphic soles formation likewise require a hot upper plate lithosphere that, based on sole protolith, geochronologic and thermochronologic data, rapidly heats and then refrigerates and decompresses MORB-OIB type subcreted lithosphere. Numerous examples of present-day and recent SSZ spreading centers that link with two trenches or a trench and transform are considered ideal sites for ophiolite and boninite generation. The SZZ fore-arc spreading centers that link to the trench lines and triple junctions at the front of the arc may also continue towards the arc and back arc, creating no distinction between fore-arc and back-arc spreading episodes or to the transform-linked spreading centers from fore-arc to back arc. These SSZ spreading centers, which may be transiently produced during arc evolution over short or protracted time periods, act to open gaps in the arc massif and lengthen the trench, fore-arc and the arc crustal massif. They lead to an evolving arc magmatic front that begins in the infant fore-arc where ophiolite generation occurs at, near or in

  1. Conjugate volcanic rifted margins, seafloor spreading, and microcontinent: Insights from new high-resolution aeromagnetic surveys in the Norway Basin

    NASA Astrophysics Data System (ADS)

    Gernigon, Laurent; Blischke, Anett; Nasuti, Aziz; Sand, Morten

    2015-05-01

    We have acquired and processed new aeromagnetic data that cover the entire oceanic Norway Basin located between the Møre volcanic rifted margin and the Jan Mayen microcontinent (JMMC). The new compilation allows us to revisit the structure of the conjugate volcanic (rifted) margins and the spreading evolution of the Norway Basin from the Early Eocene breakup time to the Late Oligocene when the Aegir Ridge became extinct. The volcanic margins (in a strict sense) that formed before the opening of the Norway Basin have been disconnected with the previous Jurassic-Mid-Cretaceous episode of crustal thinning. We also show evidence of relationships between the margin architecture, the breakup magmatism distribution along the continent-oceanic transition, and the subsequent oceanic segmentation. The Norway Basin shows a complex system of asymmetric oceanic segments locally affected by episodic ridge jumps. The new aeromagnetic compilation also confirms that a fan-shaped spreading evolution of the Norway Basin was clearly active before the cessation of seafloor spreading and extinction of the Aegir Ridge. An important Mid-Eocene kinematic event at around magnetic chron C21r can be recognized in the Norway Basin. This event coincides with the onset of diking and increasing rifting activity (and possible oceanic accretion?) between the proto-JMMC and the East Greenland margin. It led to a second phase of breakup and microcontinent formation in the Norwegian-Greenland Sea ~26 Myrs later in the Oligocene.

  2. Ketamine Dysregulates the Amplitude and Connectivity of High-Frequency Oscillations in Cortical-Subcortical Networks in Humans: Evidence From Resting-State Magnetoencephalography-Recordings.

    PubMed

    Rivolta, Davide; Heidegger, Tonio; Scheller, Bertram; Sauer, Andreas; Schaum, Michael; Birkner, Katharina; Singer, Wolf; Wibral, Michael; Uhlhaas, Peter J

    2015-09-01

    Hypofunctioning of the N-methyl-D-aspartate receptor (NMDA-R) has been prominently implicated in the pathophysiology of schizophrenia (ScZ). The current study tested the effects of ketamine, a dissociative anesthetic and NMDA-R antagonist, on resting-state activity recorded with magnetoencephalography (MEG) in healthy volunteers. In a single-blind cross-over design, each participant (n = 12) received, on 2 different sessions, a subanesthetic dose of S-ketamine (0.006 mg/Kg) and saline injection. MEG-data were analyzed at sensor- and source-level in the beta (13-30 Hz) and gamma (30-90 Hz) frequency ranges. In addition, connectivity analysis at source-level was performed using transfer entropy (TE). Ketamine increased gamma-power while beta-band activity was decreased. Specifically, elevated 30-90 Hz activity was pronounced in subcortical (thalamus and hippocampus) and cortical (frontal and temporal cortex) regions, whilst reductions in beta-band power were localized to the precuneus, cerebellum, anterior cingulate, temporal and visual cortex. TE analysis demonstrated increased information transfer in a thalamo-cortical network after ketamine administration. The findings are consistent with the pronounced dysregulation of high-frequency oscillations following the inhibition of NMDA-R in animal models of ScZ as well as with evidence from electroencephalogram-data in ScZ-patients and increased functional connectivity during early illness stages. Moreover, our data highlight the potential contribution of thalamo-cortical connectivity patterns towards ketamine-induced neuronal dysregulation, which may be relevant for the understanding of ScZ as a disorder of disinhibition of neural circuits. PMID:25987642

  3. Assessment of Trabecular and Cortical Architecture and Mechanical Competence of Bone by High-Resolution Peripheral Computed Tomography: Comparison with Transiliac Bone Biopsy*

    PubMed Central

    Cohen, A.; Dempster, D.W.; Müller, R.; Guo, X.E.; Nickolas, T.L.; Liu, X.S.; Zhang, X.H.; Wirth, A.J.; van Lenthe, G.H.; Kohler, T.; McMahon, D.J.; Zhou, H.; Rubin, M.R.; Bilezikian, J.P.; Lappe, J. M.; Recker, R.R.; Shane, E.

    2010-01-01

    Purpose High resolution peripheral quantitative CT (HR-pQCT) is a new imaging technique that assesses trabecular and cortical bone microarchitecture of the radius and tibia in vivo. The purpose of this study was to determine the extent to which microarchitectural variables measured by HR-pQCT reflect those measured by the “gold standard”, transiliac bone biopsy. Methods HR-pQCT scans (Xtreme CT, Scanco Medical AG) and iliac crest bone biopsies were performed in 54 subjects (aged 39±10 years). Biopsies were analyzed by 2D quantitative histomorphometry and 3D microcomputed tomography (μCT). Apparent Young’s modulus, an estimate of mechanical competence or strength, was determined by micro-finite element analysis (μFE) of biopsy μCT and HR-pQCT images. Results The strongest correlations observed were between trabecular parameters (bone volume fraction, number, separation) measured by μCT of biopsies and HR-pQCT of the radius (R: 0.365-0.522; p<0.01). Cortical width of biopsies correlated with cortical thickness by HR-pQCT, but only at the tibia (R=0.360, p<0.01). Apparent Young’s modulus calculated by μFE of biopsies correlated with that calculated for both radius (R=0.442; p<0.001) and tibia (R=0.380; p<0.001) HR-pQCT scans. Conclusions The associations between peripheral (HR-pQCT) and axial (transiliac biopsy) measures of microarchitecture and estimated mechanical competence are significant but modest. PMID:19455271

  4. Intrinsic mechanical behavior of femoral cortical bone in young, osteoporotic and bisphosphonate-treated individuals in low- and high energy fracture conditions

    PubMed Central

    Zimmermann, Elizabeth A.; Schaible, Eric; Gludovatz, Bernd; Schmidt, Felix N.; Riedel, Christoph; Krause, Matthias; Vettorazzi, Eik; Acevedo, Claire; Hahn, Michael; Püschel, Klaus; Tang, Simon; Amling, Michael; Ritchie, Robert O.; Busse, Björn

    2016-01-01

    Bisphosphonates are a common treatment to reduce osteoporotic fractures. This treatment induces osseous structural and compositional changes accompanied by positive effects on osteoblasts and osteocytes. Here, we test the hypothesis that restored osseous cell behavior, which resembles characteristics of younger, healthy cortical bone, leads to improved bone quality. Microarchitecture and mechanical properties of young, treatment-naïve osteoporosis, and bisphosphonate-treated cases were investigated in femoral cortices. Tissue strength was measured using three-point bending. Collagen fibril-level deformation was assessed in non-traumatic and traumatic fracture states using synchrotron small-angle x-ray scattering (SAXS) at low and high strain rates. The lower modulus, strength and fibril deformation measured at low strain rates reflects susceptibility for osteoporotic low-energy fragility fractures. Independent of age, disease and treatment status, SAXS revealed reduced fibril plasticity at high strain rates, characteristic of traumatic fracture. The significantly reduced mechanical integrity in osteoporosis may originate from porosity and alterations to the intra/extrafibrillar structure, while the fibril deformation under treatment indicates improved nano-scale characteristics. In conclusion, losses in strength and fibril deformation at low strain rates correlate with the occurrence of fragility fractures in osteoporosis, while improvements in structural and mechanical properties following bisphosphonate treatment may foster resistance to fracture during physiological strain rates. PMID:26879146

  5. Intrinsic mechanical behavior of femoral cortical bone in young, osteoporotic and bisphosphonate-treated individuals in low- and high energy fracture conditions

    DOE PAGESBeta

    Zimmermann, Elizabeth A.; Schaible, Eric; Gludovatz, Bernd; Schmidt, Felix N.; Riedel, Christoph; Krause, Matthias; Vettorazzi, Eik; Acevedo, Claire; Hahn, Michael; Püschel, Klaus; et al

    2016-02-16

    Bisphosphonates are a common treatment to reduce osteoporotic fractures. This treatment induces osseous structural and compositional changes accompanied by positive effects on osteoblasts and osteocytes. Here, we test the hypothesis that restored osseous cell behavior, which resembles characteristics of younger, healthy cortical bone, leads to improved bone quality. Microarchitecture and mechanical properties of young, treatment-naïve osteoporosis, and bisphosphonate-treated cases were investigated in femoral cortices. Tissue strength was measured using three-point bending. Collagen fibril-level deformation was assessed in non-traumatic and traumatic fracture states using synchrotron small-angle x-ray scattering (SAXS) at low and high strain rates. The lower modulus, strength and fibrilmore » deformation measured at low strain rates reflects susceptibility for osteoporotic low-energy fragility fractures. Independent of age, disease and treatment status, SAXS revealed reduced fibril plasticity at high strain rates, characteristic of traumatic fracture. We find the significantly reduced mechanical integrity in osteoporosis may originate from porosity and alterations to the intra/extrafibrillar structure, while the fibril deformation under treatment indicates improved nano-scale characteristics. In conclusion, losses in strength and fibril deformation at low strain rates correlate with the occurrence of fragility fractures in osteoporosis, while improvements in structural and mechanical properties following bisphosphonate treatment may foster resistance to fracture during physiological strain rates.« less

  6. Intrinsic mechanical behavior of femoral cortical bone in young, osteoporotic and bisphosphonate-treated individuals in low- and high energy fracture conditions

    NASA Astrophysics Data System (ADS)

    Zimmermann, Elizabeth A.; Schaible, Eric; Gludovatz, Bernd; Schmidt, Felix N.; Riedel, Christoph; Krause, Matthias; Vettorazzi, Eik; Acevedo, Claire; Hahn, Michael; Püschel, Klaus; Tang, Simon; Amling, Michael; Ritchie, Robert O.; Busse, Björn

    2016-02-01

    Bisphosphonates are a common treatment to reduce osteoporotic fractures. This treatment induces osseous structural and compositional changes accompanied by positive effects on osteoblasts and osteocytes. Here, we test the hypothesis that restored osseous cell behavior, which resembles characteristics of younger, healthy cortical bone, leads to improved bone quality. Microarchitecture and mechanical properties of young, treatment-naïve osteoporosis, and bisphosphonate-treated cases were investigated in femoral cortices. Tissue strength was measured using three-point bending. Collagen fibril-level deformation was assessed in non-traumatic and traumatic fracture states using synchrotron small-angle x-ray scattering (SAXS) at low and high strain rates. The lower modulus, strength and fibril deformation measured at low strain rates reflects susceptibility for osteoporotic low-energy fragility fractures. Independent of age, disease and treatment status, SAXS revealed reduced fibril plasticity at high strain rates, characteristic of traumatic fracture. The significantly reduced mechanical integrity in osteoporosis may originate from porosity and alterations to the intra/extrafibrillar structure, while the fibril deformation under treatment indicates improved nano-scale characteristics. In conclusion, losses in strength and fibril deformation at low strain rates correlate with the occurrence of fragility fractures in osteoporosis, while improvements in structural and mechanical properties following bisphosphonate treatment may foster resistance to fracture during physiological strain rates.

  7. Trabecular and Cortical Bone of Growing C3H Mice Is Highly Responsive to the Removal of Weightbearing

    PubMed Central

    Judex, Stefan

    2016-01-01

    Genetic make-up strongly influences the skeleton’s susceptibility to the loss of weight bearing with some inbred mouse strains experiencing great amounts of bone loss while others lose bone at much smaller rates. At young adulthood, female inbred C3H/HeJ (C3H) mice are largely resistant to catabolic pressure induced by unloading. Here, we tested whether the depressed responsivity to unloading is inherent to the C3H genetic make-up or whether a younger age facilitates a robust skeletal response to unloading. Nine-week-old, skeletally immature, female C3H mice were subjected to 3wk of hindlimb unloading (HLU, n = 12) or served as normal baseline controls (BC, n = 10) or age-matched controls (AC, n = 12). In all mice, cortical and trabecular architecture of the femur, as well as levels of bone formation and resorption, were assessed with μCT, histomorphometry, and histology. Changes in bone marrow progenitor cell populations were determined with flow cytometry. Following 21d of unloading, HLU mice had 52% less trabecular bone in the distal femur than normal age-matched controls. Reflecting a loss of trabecular tissue compared to baseline controls, trabecular bone formation rates (BFR/BS) in HLU mice were 40% lower than in age-matched controls. Surfaces undergoing osteoclastic resorption were not significantly different between groups. In the mid-diaphysis, HLU inhibited cortical bone growth leading to 14% less bone area compared to age-matched controls. Compared to AC, BFR/BS of HLU mice were 53% lower at the endo-cortical surface and 49% lower at the periosteal surface of the mid-diaphysis. The enriched osteoprogenitor cell population (OPC) comprised 2% of the bone marrow stem cells in HLU mice, significantly different from 3% OPC in the AC group. These data show that bone tissue in actively growing C3H mice is lost rapidly, or fails to grow, during the removal of functional weight bearing—in contrast to the insignificant response previously demonstrated in

  8. Trabecular and Cortical Bone of Growing C3H Mice Is Highly Responsive to the Removal of Weightbearing.

    PubMed

    Li, Bing; Sankaran, Jeyantt Srinivas; Judex, Stefan

    2016-01-01

    Genetic make-up strongly influences the skeleton's susceptibility to the loss of weight bearing with some inbred mouse strains experiencing great amounts of bone loss while others lose bone at much smaller rates. At young adulthood, female inbred C3H/HeJ (C3H) mice are largely resistant to catabolic pressure induced by unloading. Here, we tested whether the depressed responsivity to unloading is inherent to the C3H genetic make-up or whether a younger age facilitates a robust skeletal response to unloading. Nine-week-old, skeletally immature, female C3H mice were subjected to 3wk of hindlimb unloading (HLU, n = 12) or served as normal baseline controls (BC, n = 10) or age-matched controls (AC, n = 12). In all mice, cortical and trabecular architecture of the femur, as well as levels of bone formation and resorption, were assessed with μCT, histomorphometry, and histology. Changes in bone marrow progenitor cell populations were determined with flow cytometry. Following 21d of unloading, HLU mice had 52% less trabecular bone in the distal femur than normal age-matched controls. Reflecting a loss of trabecular tissue compared to baseline controls, trabecular bone formation rates (BFR/BS) in HLU mice were 40% lower than in age-matched controls. Surfaces undergoing osteoclastic resorption were not significantly different between groups. In the mid-diaphysis, HLU inhibited cortical bone growth leading to 14% less bone area compared to age-matched controls. Compared to AC, BFR/BS of HLU mice were 53% lower at the endo-cortical surface and 49% lower at the periosteal surface of the mid-diaphysis. The enriched osteoprogenitor cell population (OPC) comprised 2% of the bone marrow stem cells in HLU mice, significantly different from 3% OPC in the AC group. These data show that bone tissue in actively growing C3H mice is lost rapidly, or fails to grow, during the removal of functional weight bearing-in contrast to the insignificant response previously demonstrated in female

  9. Effects of high-dose gamma irradiation on tensile properties of human cortical bone: Comparison of different radioprotective treatment methods.

    PubMed

    Allaveisi, Farzaneh; Mirzaei, Majid

    2016-08-01

    There are growing interests in the radioprotective methods that can reduce the damaging effects of ionizing radiation on sterilized bone allografts. The aim of this study was to investigate the effects of 50kGy (single dose, and fractionated) gamma irradiation, in presence and absence of l-Cysteine (LC) free radical scavenger, on tensile properties of human femoral cortical bone. A total of 48 standard tensile test specimens was prepared from diaphysis of femurs of three male cadavers (age: 52, 52, and 54 years). The specimens were assigned to six groups (n=8) according to different irradiation schemes, i.e.; Control (Non-irradiated), LC-treated control, a single dose of 50kGy (sole irradiation), a single dose of 50kGy in presence of LC, 10 fractions of 5kGy (sole irradiation), and 10 fractions of 5kGy in presence of LC. Uniaxial tensile tests were carried out to evaluate the variations in tensile properties of the specimens. Fractographic analysis was performed to examine the microstructural features of the fracture surfaces. The results of multivariate analysis showed that fractionation of the radiation dose, as well as the LC treatment of the 50kGy irradiated specimens, significantly reduced the radiation-induced impairment of the tensile properties of the specimens (P<0.05). The fractographic observations were consistent with the mechanical test results. In summary, this study showed that the detrimental effects of gamma sterilization on tensile properties of human cortical bone can be substantially reduced by free radical scavenger treatment, dose fractionation, and the combined treatment of these two methods. PMID:27124804

  10. Consequences for selected high-elevation butterflies and moths from the spread of Pinus mugo into the alpine zone in the High Sudetes Mountains.

    PubMed

    Bílá, Karolína; Šipoš, Jan; Kindlmann, Pavel; Kuras, Tomáš

    2016-01-01

    Due to changes in the global climate, isolated alpine sites have become one of the most vulnerable habitats worldwide. The indigenous fauna in these habitats is threatened by an invasive species, dwarf pine (Pinus mugo), which is highly competitive and could be important in determining the composition of the invertebrate community. In this study, the association of species richness and abundance of butterflies with the extent of Pinus mugo cover at individual alpine sites was determined. Butterflies at alpine sites in the High Sudetes Mountains (Mts.) were sampled using Moericke yellow water traps. The results of a Canonical Correspondence Analysis (CCA) indicated that at a local scale the area of alpine habitats is the main limiting factor for native species of alpine butterflies. Butterfly assemblages are associated with distance to the tree-line with the optimum situated in the lower forest zone. In addition the CCA revealed that biotic factors (i.e. Pinus mugo and alpine tundra vegetation) accounted for a significant amount of the variability in species data. Regionally, the CCA identified that the species composition of butterflies and moths is associated with presence and origin of Pinus mugo. Our study provides evidence that the structure of the Lepidopteran fauna that formed during the postglacial period and also the present composition of species assemblages is associated with the presence of Pinus mugo. With global warming, Pinus mugo has the potential to spread further into alpine areas and negatively affect the local species communities. PMID:27330857

  11. Consequences for selected high-elevation butterflies and moths from the spread of Pinus mugo into the alpine zone in the High Sudetes Mountains

    PubMed Central

    Šipoš, Jan; Kindlmann, Pavel; Kuras, Tomáš

    2016-01-01

    Due to changes in the global climate, isolated alpine sites have become one of the most vulnerable habitats worldwide. The indigenous fauna in these habitats is threatened by an invasive species, dwarf pine (Pinus mugo), which is highly competitive and could be important in determining the composition of the invertebrate community. In this study, the association of species richness and abundance of butterflies with the extent of Pinus mugo cover at individual alpine sites was determined. Butterflies at alpine sites in the High Sudetes Mountains (Mts.) were sampled using Moericke yellow water traps. The results of a Canonical Correspondence Analysis (CCA) indicated that at a local scale the area of alpine habitats is the main limiting factor for native species of alpine butterflies. Butterfly assemblages are associated with distance to the tree-line with the optimum situated in the lower forest zone. In addition the CCA revealed that biotic factors (i.e. Pinus mugo and alpine tundra vegetation) accounted for a significant amount of the variability in species data. Regionally, the CCA identified that the species composition of butterflies and moths is associated with presence and origin of Pinus mugo. Our study provides evidence that the structure of the Lepidopteran fauna that formed during the postglacial period and also the present composition of species assemblages is associated with the presence of Pinus mugo. With global warming, Pinus mugo has the potential to spread further into alpine areas and negatively affect the local species communities. PMID:27330857

  12. A characterization of intermediate-scale spread F structure from four years of high-resolution C/NOFS satellite data

    NASA Astrophysics Data System (ADS)

    Rino, Charles L.; Carrano, Charles S.; Groves, Keith M.; Roddy, Patrick A.

    2016-06-01

    Power law spectra have been invoked to interpret equatorial scintillation data for decades. Published analyses of intensity and phase scintillation data typically report power law spectra of the form q-p with 2.4 < p < 2.6. However, in situ rocket and satellite measurements of equatorial spread F have shown evidence of spectra with two power law components. Strong scatter simulations and recent theoretical results have shown that two-component power law spectra can reconcile simultaneous equatorial scintillation observations from VHF to S-Band. The Communication/Navigation Outage Forecasting System (C/NOFS) satellite Planar Langmuir Probe generated a multiyear high-resolution sampling of equatorial spread F, but published analyses to date have reported only single-component power laws over scales from tens of kilometers to 70 m. This paper summarizes the analysis of high-resolution C/NOFS data collected over the four year period 2011 to 2014. Following an earlier investigation of several months of C/NOFS data by the authors of this paper, the extended data set revealed a pattern of occurrence of two-component spectra in the most highly disturbed data sets. The results confirm a known inverse correlation between turbulent strength and spectral index. The new results are interpreted as an equatorial spread F life cycle pattern with two-component spectra in the early development phase giving way to single-component spectra in the decay phase.

  13. High-Frequency Stimulation of the Subthalamic Nucleus Counteracts Cortical Expression of Major Histocompatibility Complex Genes in a Rat Model of Parkinson’s Disease

    PubMed Central

    Grieb, Benjamin; Engler, Gerhard; Sharott, Andrew; von Nicolai, Constantin; Streichert, Thomas; Papageorgiou, Ismini; Schulte, Alexander; Westphal, Manfred; Lamszus, Katrin; Engel, Andreas K.

    2014-01-01

    High-frequency stimulation of the subthalamic nucleus (STN-HFS) is widely used as therapeutic intervention in patients suffering from advanced Parkinson’s disease. STN-HFS exerts a powerful modulatory effect on cortical motor control by orthodromic modulation of basal ganglia outflow and via antidromic activation of corticofugal fibers. However, STN-HFS-induced changes of the sensorimotor cortex are hitherto unexplored. To address this question at a genomic level, we performed mRNA expression analyses using Affymetrix microarray gene chips and real-time RT-PCR in sensorimotor cortex of parkinsonian and control rats following STN-HFS. Experimental parkinsonism was induced in Brown Norway rats by bilateral nigral injections of 6-hydroxydopamine and was assessed histologically, behaviorally, and electrophysiologically. We applied prolonged (23h) unilateral STN-HFS in awake and freely moving animals, with the non-stimulated hemisphere serving as an internal control for gene expression analyses. Gene enrichment analysis revealed strongest regulation in major histocompatibility complex (MHC) related genes. STN-HFS led to a cortical downregulation of several MHC class II (RT1-Da, Db1, Ba, and Cd74) and MHC class I (RT1CE) encoding genes. The same set of genes showed increased expression levels in a comparison addressing the effect of 6-hydroxydopamine lesioning. Hence, our data suggest the possible association of altered microglial activity and synaptic transmission by STN-HFS within the sensorimotor cortex of 6-hydroxydopamine treated rats. PMID:24621597

  14. Mapping gray matter volume and cortical thickness in Alzheimer's disease

    NASA Astrophysics Data System (ADS)

    Guo, Xiaojuan; Li, Ziyi; Chen, Kewei; Yao, Li; Wang, Zhiqun; Li, Kuncheng

    2010-03-01

    Gray matter volume and cortical thickness are two important indices widely used to detect neuropathological changes in brain structural magnetic resonance imaging. Using optimized voxel-based morphometry (VBM) protocol and surface-based cortical thickness measure, this study comprehensively investigated the regional changes in cortical gray matter volume and cortical thickness in Alzheimer's disease (AD). Thirteen patients with AD and fourteen age- and gender-matched healthy controls were included in this study. Results showed that voxel-based gray matter volume and cortical thickness reductions were highly correlated in the temporal lobe and its medial structure in AD. Moreover significant reduced cortical regions of gray matter volume were obviously more than that of cortical thickness. These findings suggest that gray matter volume and cortical thickness, as two important imaging markers, are effective indices for detecting the neuroanatomical alterations and help us understand the neuropathology from different views in AD.

  15. The application of GIS and RS for epidemics: a case study of the spread of highly pathogenic avian influenza in China in 2004-2005

    NASA Astrophysics Data System (ADS)

    Zhong, Shaobo; Lan, Guiwen; Zhu, Haiguo; Wen, Renqiang; Zhao, Qiansheng; Huang, Quanyi

    2008-12-01

    Because of their inherent advantages, Geographic Information System (GIS) and Remote Sensing (RS) are extremely useful for dealing with geographically referenced information. In the study of epidemics, most data are geographically referenced, which makes GIS and RS the perfect even necessary tools for processing, analysis, representation of epidemic data. Comprehensively considering the data requirements in the study of highly pathogenic avian influenza (HPAI) coupled with the quality of the existing remotely sensed data in terms of the resolution of space, time and spectra, the data sensed by MODIS are chosen and the relevant methods and procedures of data processing from RS and GIS for some environmental factors are proposed. Through using spatial analysis functions and Exploratory Spatial Data Analysis (ESDA) of GIS, some results of relationship between HPAI occurrences and these potential factors are presented. The role played by bird migration is also preliminarily illustrated with some operations such as visualization, overlapping etc. provided by GIS. Through the work of this paper, we conclude: Firstly, the migration of birds causes the spread of HPAI all over the country in 2004-2005. Secondly, the migration of birds is the reason why the spread of HPAI is perturbed. That is, for some classic communicable diseases, their spread exhibits obvious spatial diffusion process. However, the spread of HPAI breaks this general rule. We think leap diffusion and time lag are the probable reasons for this kind of phenomena. Potential distribution of HPAI viruses (corresponding to the distribution of flyways and putative risk sources) is not completely consistent with the occurrences of HPAI. For this phenomenon, we think, in addition to the flyways of birds, all kinds of geographical, climatic factors also have important effect on the occurrences of HPAI. Through the case study of HPAI, we can see that GIS and RS can play very important roles in the study of epidemics.

  16. Effect of auroral substorms on the ionospheric range spread-F enhancements at high southern midlatitudes using real time vertical-sounding ionograms

    NASA Astrophysics Data System (ADS)

    Hajkowicz, Lech A.

    2016-03-01

    A comprehensive study has been undertaken on the effect of magnetic substorm onsets (as deduced from the auroral hourly electrojet AE-index) on the occurrence of high midlatitude (or sub-auroral latitude) ionospheric range spread-F (Sr). Unlike the previous reports real-time ionograms were used in this analysis thus eliminating ambiguities stemming from the correlating secondary evidence of spread-F with auroral substorms. The Australian southernmost ionosonde station Hobart (51.6°S geom.) proved to be uniquely suitable for the task as being sufficiently close to the southern auroral zone. Sr was assigned in km to each hourly nighttime ionogram at two sounding frequencies: Sr1 (at 2 MHz) and Sr2 (at 6 MHz) for four months in 2002: January and June (representing southern summer and winter solstices), and March and September (representing autumn and vernal equinoxes). It is evident that the southern winter solstitial period (June) is associated with high endemic midlatitude spread-F activity. All other seasons are closely linked with temporal sequences of enhanced spread-F activity following substorm onsets. For the first time it was possible not only find a simultaneous occurrence pattern of these diverse phenomena but to deduce numerical characteristics of the response of midlatitude ionosphere to the global auroral stimulus. Excellent case events, hitherto unpublished, are shown illustrating the presence of the AE peaks (in nT) being ahead of Sr peaks (in km) by a time shift ∆t (in h). Sr1 magnitude showed a significant correlation with the magnitudes of the preceding AE with a correlation coefficient (r) of 0.51 (probability of the occurrence by chance less than 0.01). Sr2 peaks were more sensitive to auroral disturbances but were not correlated with the AE magnitude variations. The time shift (∆t) was on average 4 h with a standard deviation of 3 h. The general pattern in the occurrence of magnetic substorms and spread-F is very similar. A number of

  17. 3D Assessment of Cortical Bone Porosity and Tissue Mineral Density Using High-Resolution Micro-CT: Effects of Resolution and Threshold Method

    PubMed Central

    Palacio-Mancheno, Paolo E.; Larriera, Adriana I.; Doty, Stephen B.; Cardoso, Luis; Fritton, Susannah P.

    2013-01-01

    Current micro-CT systems allow scanning bone at resolutions capable of three-dimensional characterization of intracortical vascular porosity and osteocyte lacunae. However, the scanning and reconstruction parameters along with the image segmentation method affect the accuracy of the measurements. In this study, the effects of scanning resolution and image threshold method in quantifying small features of cortical bone (vascular porosity, vascular canal diameter and separation, lacunar porosity and density, and tissue mineral density) were analyzed. Cortical bone from the tibia of Sprague-Dawley rats was scanned at 1-µm and 4-µm resolutions, reconstructions were density-calibrated, and volumes of interest were segmented using approaches based on edge-detection or histogram analysis. With 1-µm resolution scans, the osteocyte lacunar spaces could be visualized, and it was possible to separate the lacunar porosity from the vascular porosity. At 4-µm resolution, the vascular porosity and vascular canal diameter were underestimated, and osteocyte lacunae were not effectively detected, whereas the vascular canal separation and tissue mineral density were overestimated compared to 1-µm resolution. Resolution had a much greater effect on the measurements than did threshold method, with partial volume effects at resolutions coarser than 2 µm demonstrated in two separate analyses, one of which assessed the effect of resolution on an object of known size with similar architecture to a vascular pore. Although there was little difference when using the edge-detection versus histogram-based threshold approaches, edge-detection was somewhat more effective in delineating canal architecture at finer resolutions (1 – 2 µm). In addition, use of a high-resolution (1-µm) density-based threshold on lower resolution (4-µm) density-calibrated images was not effective in improving the lower-resolution measurements. In conclusion, if measuring cortical vascular microarchitecture

  18. High incidence of adverse cerebral blood flow responses to spreading depolarization in the aged ischemic rat brain.

    PubMed

    Menyhárt, Ákos; Makra, Péter; Szepes, Borbála É; Tóth, Orsolya M; Hertelendy, Péter; Bari, Ferenc; Farkas, Eszter

    2015-12-01

    Spreading depolarizations (SDs) occur spontaneously in the brain after stroke, exacerbate ischemic injury, and thus emerge as a potential target of intervention. Aging predicts worse outcome from stroke; yet, the impact of age on SD evolution is not clear. Cerebral ischemia was induced by bilateral common carotid artery occlusion in young (8-9 weeks old, n = 8) and old (2 year olds, n = 6) anesthetized rats. Sham-operated animals of both age groups served as control (n = 12). Electrocorticogram, direct current potential, and cerebral blood flow (CBF) variations were acquired via a small craniotomy above the parietal cortex. SDs were elicited by KCl through a second craniotomy distal to the recording site. Ischemia and age delayed the recovery from SD. CBF decreased progressively during ischemia in the old animals selectively, and inverse neurovascular coupling with SD evolved in the old but not in the young ischemic group. We propose that (mal)adaptation of cerebrovascular function with aging impairs the SD-related CBF response, which is implicated in the intensified expansion of ischemic damage in the old brain. PMID:26346140

  19. Highly sensitive real-time in vivo imaging of an influenza reporter virus reveals dynamics of replication and spread.

    PubMed

    Tran, Vy; Moser, Lindsey A; Poole, Daniel S; Mehle, Andrew

    2013-12-01

    The continual public health threat posed by the emergence of novel influenza viruses necessitates the ability to rapidly monitor infection and spread in experimental systems. To analyze real-time infection dynamics, we have created a replication-competent influenza reporter virus suitable for in vivo imaging. The reporter virus encodes the small and bright NanoLuc luciferase whose activity serves as an extremely sensitive readout of viral infection. This virus stably maintains the reporter construct and replicates in culture and in mice with near-native properties. Bioluminescent imaging of the reporter virus permits serial observations of viral load and dissemination in infected animals, even following clearance of a sublethal challenge. We further show that the reporter virus recapitulates known restrictions due to host range and antiviral treatment, suggesting that this technology can be applied to studying emerging influenza viruses and the impact of antiviral interventions on infections in vivo. These results describe a generalizable method to quickly determine the replication and pathogenicity potential of diverse influenza strains in animals. PMID:24089552

  20. A High Amount of Local Adipose Tissue Is Associated With High Cortical Porosity and Low Bone Material Strength in Older Women.

    PubMed

    Sundh, Daniel; Rudäng, Robert; Zoulakis, Michail; Nilsson, Anna G; Darelid, Anna; Lorentzon, Mattias

    2016-04-01

    Obesity is associated with increased risk of fractures, especially at skeletal sites with a large proportion of cortical bone, such as the humerus and ankle. Obesity increases fracture risk independently of BMD, indicating that increased adipose tissue could have negative effects on bone quality. Microindentation assesses bone material strength index (BMSi) in vivo in humans. The aim of this study was to investigate if different depots of adipose tissue were associated with BMSi and cortical bone microstructure in a population based group of 202 women, 78.2 ± 1.1 (mean ± SD) years old. Bone parameters and subcutaneous (s.c.) fat were measured at the tibia with an XtremeCT device. BMSi was assessed using the OsteoProbe device, and based on at least 11 valid reference point indentations at the mid-tibia. Body composition was measured with dual X-ray absorptiometry. BMSi was inversely correlated to body mass index (BMI) (r = -0.17, p = 0.01), whole body fat mass (r = -0.16,p = 0.02), and, in particular, to tibia s.c. fat (r = -0.33, p < 0.001). Tibia s.c. fat was also correlated to cortical porosity (Ct.Po; r = 0.19, p = 0.01) and cortical volumetric BMD (Ct.vBMD; r = -0.23, p = 0.001). Using linear regression analyses, tibia s.c. fat was found to be independent of covariates (age, height, log weight, bisphosphonates or glucocorticoid use, smoking, calcium intake, walking speed, and BMSi operator) and associated with BMSi (β = -0.34,p < 0.001), Ct.Po (β = 0.18, p = 0.01), and Ct.vBMD (β = -0.32, p < 0.001). BMSi was independent of covariates associated with cortical porosity (β = -0.14, p = 0.04) and cortical volumetric BMD (β = 0.21, p = 0.02) at the distal tibia, but these bone parameters could only explain 3.3% and 5.1% of the variation in BMSi, respectively. In conclusion, fat mass was independently and inversely associated with BMSi and Ct.vBMD, but positively

  1. Automatic Sulcal Curve Extraction on the Human Cortical Surface

    PubMed Central

    Lyu, Ilwoo; Kim, Sun Hyung; Styner, Martin

    2015-01-01

    The recognition of sulcal regions on the cortical surface is an important task to shape analysis and landmark detection. However, it is challenging especially in a complex, rough human cortex. In this paper, we focus on the extraction of sulcal curves from the human cortical surface. The previous sulcal extraction methods are time-consuming in practice and often have a difficulty to delineate curves correctly along the sulcal regions in the presence of significant noise. Our pipeline is summarized in two main steps: 1) We extract candidate sulcal points spread over the sulcal regions. We further reduce the size of the candidate points by applying a line simplification method. 2) Since the candidate points are potentially located away from the exact valley regions, we propose a novel approach to connect candidate sulcal points so as to obtain a set of complete curves (line segments). We have shown in experiment that our method achieves high computational efficiency, improved robustness to noise, and high reliability in a test-retest situation as compared to a well-known existing method. PMID:26028801

  2. Disease spread models to estimate highly uncertain emerging diseases losses for animal agriculture insurance policies: an application to the U.S. farm-raised catfish industry.

    PubMed

    Zagmutt, Francisco J; Sempier, Stephen H; Hanson, Terril R

    2013-10-01

    Emerging diseases (ED) can have devastating effects on agriculture. Consequently, agricultural insurance for ED can develop if basic insurability criteria are met, including the capability to estimate the severity of ED outbreaks with associated uncertainty. The U.S. farm-raised channel catfish (Ictalurus punctatus) industry was used to evaluate the feasibility of using a disease spread simulation modeling framework to estimate the potential losses from new ED for agricultural insurance purposes. Two stochastic models were used to simulate the spread of ED between and within channel catfish ponds in Mississippi (MS) under high, medium, and low disease impact scenarios. The mean (95% prediction interval (PI)) proportion of ponds infected within disease-impacted farms was 7.6% (3.8%, 22.8%), 24.5% (3.8%, 72.0%), and 45.6% (4.0%, 92.3%), and the mean (95% PI) proportion of fish mortalities in ponds affected by the disease was 9.8% (1.4%, 26.7%), 49.2% (4.7%, 60.7%), and 88.3% (85.9%, 90.5%) for the low, medium, and high impact scenarios, respectively. The farm-level mortality losses from an ED were up to 40.3% of the total farm inventory and can be used for insurance premium rate development. Disease spread modeling provides a systematic way to organize the current knowledge on the ED perils and, ultimately, use this information to help develop actuarially sound agricultural insurance policies and premiums. However, the estimates obtained will include a large amount of uncertainty driven by the stochastic nature of disease outbreaks, by the uncertainty in the frequency of future ED occurrences, and by the often sparse data available from past outbreaks. PMID:23560798

  3. Genome sequencing defines phylogeny and spread of methicillin-resistant Staphylococcus aureus in a high transmission setting

    PubMed Central

    Tong, Steven Y.C.; Holden, Matthew T.G.; Nickerson, Emma K.; Cooper, Ben S.; Köser, Claudio U.; Cori, Anne; Jombart, Thibaut; Cauchemez, Simon; Fraser, Christophe; Wuthiekanun, Vanaporn; Thaipadungpanit, Janjira; Hongsuwan, Maliwan; Day, Nicholas P.; Limmathurotsakul, Direk; Parkhill, Julian; Peacock, Sharon J.

    2015-01-01

    Methicillin-resistant Staphylococcus aureus (MRSA) is a major cause of nosocomial infection. Whole-genome sequencing of MRSA has been used to define phylogeny and transmission in well-resourced healthcare settings, yet the greatest burden of nosocomial infection occurs in resource-restricted settings where barriers to transmission are lower. Here, we study the flux and genetic diversity of MRSA on ward and individual patient levels in a hospital where transmission was common. We repeatedly screened all patients on two intensive care units for MRSA carriage over a 3-mo period. All MRSA belonged to multilocus sequence type 239 (ST 239). We defined the population structure and charted the spread of MRSA by sequencing 79 isolates from 46 patients and five members of staff, including the first MRSA-positive screen isolates and up to two repeat isolates where available. Phylogenetic analysis identified a flux of distinct ST 239 clades over time in each intensive care unit. In total, five main clades were identified, which varied in the carriage of plasmids encoding antiseptic and antimicrobial resistance determinants. Sequence data confirmed intra- and interwards transmission events and identified individual patients who were colonized by more than one clade. One patient on each unit was the source of numerous transmission events, and deep sampling of one of these cases demonstrated colonization with a “cloud” of related MRSA variants. The application of whole-genome sequencing and analysis provides novel insights into the transmission of MRSA in under-resourced healthcare settings and has relevance to wider global health. PMID:25491771

  4. Cortical Visual Impairment: New Directions

    PubMed Central

    Good, William V.

    2009-01-01

    Cortical visual impairment is the leading cause of bilateral low vision in children in the U.S., yet very little research is being done to find new diagnostic measures and treatments. Dr. Velma Dobson's pioneering work on visual assessments of developmentally delayed children stands out as highly significant in this field. Future research will assess new diagnostic measures, including advanced imaging techniques. In addition, research will evaluate methods to prevent, treat, and rehabilitate infants and children afflicted with this condition. PMID:19417710

  5. Encoding Cortical Dynamics in Sparse Features

    PubMed Central

    Khan, Sheraz; Lefèvre, Julien; Baillet, Sylvain; Michmizos, Konstantinos P.; Ganesan, Santosh; Kitzbichler, Manfred G.; Zetino, Manuel; Hämäläinen, Matti S.; Papadelis, Christos; Kenet, Tal

    2014-01-01

    Distributed cortical solutions of magnetoencephalography (MEG) and electroencephalography (EEG) exhibit complex spatial and temporal dynamics. The extraction of patterns of interest and dynamic features from these cortical signals has so far relied on the expertise of investigators. There is a definite need in both clinical and neuroscience research for a method that will extract critical features from high-dimensional neuroimaging data in an automatic fashion. We have previously demonstrated the use of optical flow techniques for evaluating the kinematic properties of motion field projected on non-flat manifolds like in a cortical surface. We have further extended this framework to automatically detect features in the optical flow vector field by using the modified and extended 2-Riemannian Helmholtz–Hodge decomposition (HHD). Here, we applied these mathematical models on simulation and MEG data recorded from a healthy individual during a somatosensory experiment and an epilepsy pediatric patient during sleep. We tested whether our technique can automatically extract salient dynamical features of cortical activity. Simulation results indicated that we can precisely reproduce the simulated cortical dynamics with HHD; encode them in sparse features and represent the propagation of brain activity between distinct cortical areas. Using HHD, we decoded the somatosensory N20 component into two HHD features and represented the dynamics of brain activity as a traveling source between two primary somatosensory regions. In the epilepsy patient, we displayed the propagation of the epileptic activity around the margins of a brain lesion. Our findings indicate that HHD measures computed from cortical dynamics can: (i) quantitatively access the cortical dynamics in both healthy and disease brain in terms of sparse features and dynamic brain activity propagation between distinct cortical areas, and (ii) facilitate a reproducible, automated analysis of experimental and clinical

  6. Encoding cortical dynamics in sparse features.

    PubMed

    Khan, Sheraz; Lefèvre, Julien; Baillet, Sylvain; Michmizos, Konstantinos P; Ganesan, Santosh; Kitzbichler, Manfred G; Zetino, Manuel; Hämäläinen, Matti S; Papadelis, Christos; Kenet, Tal

    2014-01-01

    Distributed cortical solutions of magnetoencephalography (MEG) and electroencephalography (EEG) exhibit complex spatial and temporal dynamics. The extraction of patterns of interest and dynamic features from these cortical signals has so far relied on the expertise of investigators. There is a definite need in both clinical and neuroscience research for a method that will extract critical features from high-dimensional neuroimaging data in an automatic fashion. We have previously demonstrated the use of optical flow techniques for evaluating the kinematic properties of motion field projected on non-flat manifolds like in a cortical surface. We have further extended this framework to automatically detect features in the optical flow vector field by using the modified and extended 2-Riemannian Helmholtz-Hodge decomposition (HHD). Here, we applied these mathematical models on simulation and MEG data recorded from a healthy individual during a somatosensory experiment and an epilepsy pediatric patient during sleep. We tested whether our technique can automatically extract salient dynamical features of cortical activity. Simulation results indicated that we can precisely reproduce the simulated cortical dynamics with HHD; encode them in sparse features and represent the propagation of brain activity between distinct cortical areas. Using HHD, we decoded the somatosensory N20 component into two HHD features and represented the dynamics of brain activity as a traveling source between two primary somatosensory regions. In the epilepsy patient, we displayed the propagation of the epileptic activity around the margins of a brain lesion. Our findings indicate that HHD measures computed from cortical dynamics can: (i) quantitatively access the cortical dynamics in both healthy and disease brain in terms of sparse features and dynamic brain activity propagation between distinct cortical areas, and (ii) facilitate a reproducible, automated analysis of experimental and clinical

  7. Pharmacology of cortical inhibition

    PubMed Central

    Krnjević, K.; Randić, Mirjana; Straughan, D. W.

    1966-01-01

    1. We have studied the effects of various pharmacological agents on the cortical inhibitory process described in the previous two papers (Krnjević, Randić & Straughan, 1966a, b); the drugs were mostly administered directly by iontophoresis from micropipettes and by systemic injection (I.V.). 2. Strychnine given by iontophoresis or by the application of a strong solution to the cortical surface potentiated excitatory effects, but very large iontophoretic doses also depressed neuronal firing. Subconvulsive and even convulsive systemic doses had little or no effect at the cortical level. There was no evidence, with any method of application, that strychnine directly interferes with the inhibitory process. 3. Tetanus toxin, obtained from two different sources and injected into the cortex 12-48 hr previously, also failed to block cortical inhibition selectively. As with strychnine, there was some evidence of increased responses to excitatory inputs. 4. Other convulsant drugs which failed to block cortical inhibition included picrotoxin, pentamethylene tetrazole, thiosemicarbazide, longchain ω-amino acids and morphine. 5. The inhibition was not obviously affected by cholinomimetic agents or by antagonists of ACh. 6. α- and β-antagonists of adrenergic transmission were also ineffective. 7. Cortical inhibition was fully developed in the presence of several general anaesthetics, including ether, Dial, pentobarbitone, Mg and chloralose. A temporary reduction in inhibition which is sometimes observed after systemic doses of pentobarbitone, is probably secondary to a fall in blood pressure. 8. Several central excitants such as amphetamine, caffeine and lobeline also failed to show any specific antagonistic action on cortical inhibition. 9. In view of the possibility that GABA is the chemical agent mediating cortical inhibition, an attempt was made to find a selective antagonist of its depressant action on cortical neurones. None of the agents listed above, nor any other

  8. Cortical thinning in former professional soccer players.

    PubMed

    Koerte, Inga K; Mayinger, Michael; Muehlmann, Marc; Kaufmann, David; Lin, Alexander P; Steffinger, Denise; Fisch, Barbara; Rauchmann, Boris-Stephan; Immler, Stefanie; Karch, Susanne; Heinen, Florian R; Ertl-Wagner, Birgit; Reiser, Maximilian; Stern, Robert A; Zafonte, Ross; Shenton, Martha E

    2016-09-01

    Soccer is the most popular sport in the world. Soccer players are at high risk for repetitive subconcussive head impact when heading the ball. Whether this leads to long-term alterations of the brain's structure associated with cognitive decline remains unknown. The aim of this study was to evaluate cortical thickness in former professional soccer players using high-resolution structural MR imaging. Fifteen former male professional soccer players (mean age 49.3 [SD 5.1] years) underwent high-resolution structural 3 T MR imaging, as well as cognitive testing. Fifteen male, age-matched former professional non-contact sport athletes (mean age 49.6 [SD 6.4] years) served as controls. Group analyses of cortical thickness were performed using voxel-based statistics. Soccer players demonstrated greater cortical thinning with increasing age compared to controls in the right inferolateral-parietal, temporal, and occipital cortex. Cortical thinning was associated with lower cognitive performance as well as with estimated exposure to repetitive subconcussive head impact. Neurocognitive evaluation revealed decreased memory performance in the soccer players compared to controls. The association of cortical thinning and decreased cognitive performance, as well as exposure to repetitive subconcussive head impact, further supports the hypothesis that repetitive subconcussive head impact may play a role in early cognitive decline in soccer players. Future studies are needed to elucidate the time course of changes in cortical thickness as well as their association with impaired cognitive function and possible underlying neurodegenerative process. PMID:26286826

  9. Cortical hot spots and labyrinths: why cortical neuromodulation for episodic migraine with aura should be personalized

    PubMed Central

    Dahlem, Markus A.; Schmidt, Bernd; Bojak, Ingo; Boie, Sebastian; Kneer, Frederike; Hadjikhani, Nouchine; Kurths, Jürgen

    2015-01-01

    Stimulation protocols for medical devices should be rationally designed. For episodic migraine with aura we outline model-based design strategies toward preventive and acute therapies using stereotactic cortical neuromodulation. To this end, we regard a localized spreading depression (SD) wave segment as a central element in migraine pathophysiology. To describe nucleation and propagation features of the SD wave segment, we define the new concepts of cortical hot spots and labyrinths, respectively. In particular, we firstly focus exclusively on curvature-induced dynamical properties by studying a generic reaction-diffusion model of SD on the folded cortical surface. This surface is described with increasing level of details, including finally personalized simulations using patient's magnetic resonance imaging (MRI) scanner readings. At this stage, the only relevant factor that can modulate nucleation and propagation paths is the Gaussian curvature, which has the advantage of being rather readily accessible by MRI. We conclude with discussing further anatomical factors, such as areal, laminar, and cellular heterogeneity, that in addition to and in relation to Gaussian curvature determine the generalized concept of cortical hot spots and labyrinths as target structures for neuromodulation. Our numerical simulations suggest that these target structures are like fingerprints, they are individual features of each migraine sufferer. The goal in the future will be to provide individualized neural tissue simulations. These simulations should predict the clinical data and therefore can also serve as a test bed for exploring stereotactic cortical neuromodulation. PMID:25798103

  10. Adaptive shaping of cortical response selectivity in the vibrissa pathway

    PubMed Central

    Zheng, He J. V.; Wang, Qi

    2015-01-01

    One embodiment of context-dependent sensory processing is bottom-up adaptation, where persistent stimuli decrease neuronal firing rate over hundreds of milliseconds. Adaptation is not, however, simply the fatigue of the sensory pathway, but shapes the information flow and selectivity to stimulus features. Adaptation enhances spatial discriminability (distinguishing stimulus location) while degrading detectability (reporting presence of the stimulus), for both the ideal observer of the cortex and awake, behaving animals. However, how the dynamics of the adaptation shape the cortical response and this detection and discrimination tradeoff is unknown, as is to what degree this phenomenon occurs on a continuum as opposed to a switching of processing modes. Using voltage-sensitive dye imaging in anesthetized rats to capture the temporal and spatial characteristics of the cortical response to tactile inputs, we showed that the suppression of the cortical response, in both magnitude and spatial spread, is continuously modulated by the increasing amount of energy in the adapting stimulus, which is nonuniquely determined by its frequency and velocity. Single-trial ideal observer analysis demonstrated a tradeoff between detectability and spatial discriminability up to a moderate amount of adaptation, which corresponds to the frequency range in natural whisking. This was accompanied by a decrease in both detectability and discriminability with high-energy adaptation, which indicates a more complex coupling between detection and discrimination than a simple switching of modes. Taken together, the results suggest that adaptation operates on a continuum and modulates the tradeoff between detectability and discriminability that has implications for information processing in ethological contexts. PMID:25787959

  11. A second-order high-resolution finite difference scheme for a size-structured model for the spread of Mycobacterium marinum.

    PubMed

    Ackleh, Azmy S; Delcambre, Mark L; Sutton, Karyn L

    2015-01-01

    We present a second-order high-resolution finite difference scheme to approximate the solution of a mathematical model of the transmission dynamics of Mycobacterium marinum (Mm) in an aquatic environment. This work extends the numerical theory and continues the preliminary studies on the model first developed in Ackleh et al. [Structured models for the spread of Mycobacterium marinum: foundations for a numerical approximation scheme, Math. Biosci. Eng. 11 (2014), pp. 679-721]. Numerical simulations demonstrating the accuracy of the method are presented, and we compare this scheme to the first-order scheme developed in Ackleh et al. [Structured models for the spread of Mycobacterium marinum: foundations for a numerical approximation scheme, Math. Biosci. Eng. 11 (2014), pp. 679-721] to show that the first-order method requires significantly more computational time to provide solutions with a similar accuracy. We also demonstrated that the model can be a tool to understand surprising or nonintuitive phenomena regarding competitive advantage in the context of biologically realistic growth, birth and death rates. PMID:25271885

  12. Mechanisms of transmission and spread of H5N1 high pathogenicity avian influenza virus in birds and mammals

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The Eurasian-African H5N1 high pathogenicity avian influenza (HPAI) virus has crossed multiple species barriers to infect poultry, captive and wild birds, carnivorous mammals and humans. The specific transmission mechanisms are unclear in most cases, but experimental studies and field data sug...

  13. Comparative sequence analysis of a highly oncogenic but horizontal spread-deficient clone of Marek's disease virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Marek’s disease virus (MDV) is a cell-associated alphaherpesvirus that induces T-cell lymphomas in poultry. MDV isolates vary greatly in pathogenicity. While some are non-pathogenic and are used as vaccines, others such as RB-1B are highly oncogenic. Comparison of the genome sequences of phenotypica...

  14. Comparative sequence analysis of a highly oncogenic but horizontal spread-defective clone of Marek's disease virus

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Marek’s disease virus (MDV) is a cell-associated alphaherpesvirus that induces rapid-onset T-cell lymphomas in poultry. MDV isolates vary greatly in pathogenicity. While some of the strains such as CVI988 are non-pathogenic and are used as vaccines, others such as RB1B are highly oncogenic. Compa...

  15. Line-Bisecting Performance in Highly Skilled Athletes: Does Preponderance of Rightward Error Reflect Unique Cortical Organization and Functioning?

    ERIC Educational Resources Information Center

    Carlstedt, Roland A.

    2004-01-01

    A line-bisecting test was administered to 250 highly skilled right-handed athletes and a control group of 60 right-handed age matched non-athletes. Results revealed that athletes made overwhelmingly more rightward errors than non-athletes, who predominantly bisected lines to the left of the veridical center. These findings were interpreted in the…

  16. The Internet Alert Project: spreading the word about high-risk sexual activities advertised on the Internet.

    PubMed

    Kachur, R E

    2004-11-01

    The Internet is an emerging venue for facilitating high-risk sexual behavior; in particular, use of the Internet to seek out sex partners has been shown to be associated with high-risk sexual behaviors, such as an increase in number of sexual partners and an increase in anal sex, which can increase the risk of contracting and transmitting sexually transmitted diseases (STDs) including HIV. In an effort to assist health departments around the country, the Internet Alert Project was developed to provide Centers for Disease Control and Prevention (CDC) project officers and field staff with information about Internet-advertised, high-risk sexual activities in areas that do not have access to sexually explicit material on the Internet. An evaluation was conducted to determine the utility of the Internet Alert Project, its effect on knowledge and awareness of recipients and on public health efforts. Results of the evaluation show the alerts are a useful and valuable tool. The alerts have helped to increase knowledge about sexually-related uses of the Internet and have also driven public health efforts in the field. The results also indicate the need for project areas to access information found on the Internet in order to keep up with the ever-changing behaviors of at-risk populations. PMID:15511729

  17. New Introductions, Spread of Existing Matrilines, and High Rates of Pyrethroid Resistance Result in Chronic Infestations of Bed Bugs (Cimex lectularius L.) in Lower-Income Housing

    PubMed Central

    Raab, Ronald W.; Moore, Julia E.; Vargo, Edward L.; Rose, Lucy; Raab, Julie; Culbreth, Madeline; Burzumato, Gracie; Koyee, Aurvan; McCarthy, Brittany; Raffaele, Jennifer; Schal, Coby; Vaidyanathan, Rajeev

    2016-01-01

    Infestations of the common bed bug (Cimex lectularius L.) have increased substantially in the United States in the past 10–15 years. The housing authority in Harrisonburg, Virginia, conducts heat-treatments after bed bugs are detected in a lower-income housing complex, by treating each infested unit at 60°C for 4–6 hours. However, a high frequency of recurrent infestations called into question the efficacy of this strategy. Genetic analysis using Bayesian clustering of polymorphic microsatellite loci from 123 bed bugs collected from 23 units from May 2012 to April 2013 in one building indicated that (a) 16/21 (73%) infestations were genetically similar, suggesting ineffective heat-treatments or reintroductions from within the building or from a common external source, followed by local spread of existing populations; and (b) up to 5 of the infestations represented new genotypes, indicating that 5 new populations were introduced into this building in one year, assuming they were not missed in earlier screens. There was little to no gene flow among the 8 genetic clusters identified in the building. Bed bugs in the U.S. often possess one or both point mutations in the voltage-gated sodium channel, termed knockdown resistance (kdr), from valine to leucine (V419L) and leucine to isoleucine (L925I) that confer target-site resistance against pyrethroid insecticides. We found that 48/121 (40%) bed bugs were homozygous for both kdr mutations (L419/I925), and a further 59% possessed at least one of the kdr mutations. We conclude that ineffective heat treatments, new introductions, reintroductions and local spread, and an exceptionally high frequency of pyrethroid resistance are responsible for chronic infestations in lower-income housing. Because heat treatments fail to protect from reintroductions, and pesticide use has not decreased the frequency of infestations, preventing new introductions and early detection are the most effective strategies to avoid bed bug

  18. New Introductions, Spread of Existing Matrilines, and High Rates of Pyrethroid Resistance Result in Chronic Infestations of Bed Bugs (Cimex lectularius L.) in Lower-Income Housing.

    PubMed

    Raab, Ronald W; Moore, Julia E; Vargo, Edward L; Rose, Lucy; Raab, Julie; Culbreth, Madeline; Burzumato, Gracie; Koyee, Aurvan; McCarthy, Brittany; Raffaele, Jennifer; Schal, Coby; Vaidyanathan, Rajeev

    2016-01-01

    Infestations of the common bed bug (Cimex lectularius L.) have increased substantially in the United States in the past 10-15 years. The housing authority in Harrisonburg, Virginia, conducts heat-treatments after bed bugs are detected in a lower-income housing complex, by treating each infested unit at 60°C for 4-6 hours. However, a high frequency of recurrent infestations called into question the efficacy of this strategy. Genetic analysis using Bayesian clustering of polymorphic microsatellite loci from 123 bed bugs collected from 23 units from May 2012 to April 2013 in one building indicated that (a) 16/21 (73%) infestations were genetically similar, suggesting ineffective heat-treatments or reintroductions from within the building or from a common external source, followed by local spread of existing populations; and (b) up to 5 of the infestations represented new genotypes, indicating that 5 new populations were introduced into this building in one year, assuming they were not missed in earlier screens. There was little to no gene flow among the 8 genetic clusters identified in the building. Bed bugs in the U.S. often possess one or both point mutations in the voltage-gated sodium channel, termed knockdown resistance (kdr), from valine to leucine (V419L) and leucine to isoleucine (L925I) that confer target-site resistance against pyrethroid insecticides. We found that 48/121 (40%) bed bugs were homozygous for both kdr mutations (L419/I925), and a further 59% possessed at least one of the kdr mutations. We conclude that ineffective heat treatments, new introductions, reintroductions and local spread, and an exceptionally high frequency of pyrethroid resistance are responsible for chronic infestations in lower-income housing. Because heat treatments fail to protect from reintroductions, and pesticide use has not decreased the frequency of infestations, preventing new introductions and early detection are the most effective strategies to avoid bed bug

  19. Precaution for volume conduction in rodent cortical electroencephalography using high-density polyimide-based microelectrode arrays on the skull.

    PubMed

    Stienen, P J; Venzi, M; Poppendieck, W; Hoffmann, K P; Åberg, E

    2016-04-01

    In humans, significant progress has been made to link spatial changes in electroencephalographic (EEG) spectral density, connectivity strength, and phase-amplitude modulation to neurological, physiological, and psychological correlates. In contrast, standard rodent EEG techniques employ only few electrodes, which results in poor spatial resolution. Recently, a technique was developed to overcome this limitation in mice. This technique was based on a polyimide-based microelectrode (PBM) array applied on the mouse skull, maintaining a significant number of electrodes with consistent contact, electrode impedance, and mechanical stability. The present study built on this technique by extending it to rats. Therefore, a similar PBM array, but adapted to rats, was designed and fabricated. In addition, this array was connected to a wireless EEG headstage, allowing recording in untethered, freely moving rats. The advantage of a high-density array relies on the assumption that the signal recorded from the different electrodes is generated from distinct sources, i.e., not volume-conducted. Therefore, the utility and validity of the array were evaluated by determining the level of synchrony between channels due to true synchrony or volume conduction during basal vigilance states and following a subanesthetic dose of ketamine. Although the PBM array allowed recording with high signal quality, under both drug and drug-free conditions, high synchronization existed due to volume conduction between the electrodes even in the higher spectral frequency range. Discrimination existed only between frontally and centrally/distally grouped electrode pairs. Therefore, caution should be used in interpreting spatial data obtained from high-density PBM arrays in rodents. PMID:26864767

  20. Transcranial magnetic stimulation and potential cortical and trigeminothalamic mechanisms in migraine

    PubMed Central

    Andreou, Anna P.; Holland, Philip R.; Akerman, Simon; Summ, Oliver; Fredrick, Joe

    2016-01-01

    A single pulse of transcranial magnetic stimulation has been shown to be effective for the acute treatment of migraine with and without aura. Here we aimed to investigate the potential mechanisms of action of transcranial magnetic stimulation, using a transcortical approach, in preclinical migraine models. We tested the susceptibility of cortical spreading depression, the experimental correlate of migraine aura, and further evaluated the response of spontaneous and evoked trigeminovascular activity of second order trigemontothalamic and third order thalamocortical neurons in rats. Single pulse transcranial magnetic stimulation significantly inhibited both mechanical and chemically-induced cortical spreading depression when administered immediately post-induction in rats, but not when administered preinduction, and when controlled by a sham stimulation. Additionally transcranial magnetic stimulation significantly inhibited the spontaneous and evoked firing rate of third order thalamocortical projection neurons, but not second order neurons in the trigeminocervical complex, suggesting a potential modulatory effect that may underlie its utility in migraine. In gyrencephalic cat cortices, when administered post-cortical spreading depression, transcranial magnetic stimulation blocked the propagation of cortical spreading depression in two of eight animals. These results are the first to demonstrate that cortical spreading depression can be blocked in vivo using single pulse transcranial magnetic stimulation and further highlight a novel thalamocortical modulatory capacity that may explain the efficacy of magnetic stimulation in the treatment of migraine with and without aura. PMID:27246325

  1. Transcranial magnetic stimulation and potential cortical and trigeminothalamic mechanisms in migraine.

    PubMed

    Andreou, Anna P; Holland, Philip R; Akerman, Simon; Summ, Oliver; Fredrick, Joe; Goadsby, Peter J

    2016-07-01

    A single pulse of transcranial magnetic stimulation has been shown to be effective for the acute treatment of migraine with and without aura. Here we aimed to investigate the potential mechanisms of action of transcranial magnetic stimulation, using a transcortical approach, in preclinical migraine models. We tested the susceptibility of cortical spreading depression, the experimental correlate of migraine aura, and further evaluated the response of spontaneous and evoked trigeminovascular activity of second order trigemontothalamic and third order thalamocortical neurons in rats. Single pulse transcranial magnetic stimulation significantly inhibited both mechanical and chemically-induced cortical spreading depression when administered immediately post-induction in rats, but not when administered preinduction, and when controlled by a sham stimulation. Additionally transcranial magnetic stimulation significantly inhibited the spontaneous and evoked firing rate of third order thalamocortical projection neurons, but not second order neurons in the trigeminocervical complex, suggesting a potential modulatory effect that may underlie its utility in migraine. In gyrencephalic cat cortices, when administered post-cortical spreading depression, transcranial magnetic stimulation blocked the propagation of cortical spreading depression in two of eight animals. These results are the first to demonstrate that cortical spreading depression can be blocked in vivo using single pulse transcranial magnetic stimulation and further highlight a novel thalamocortical modulatory capacity that may explain the efficacy of magnetic stimulation in the treatment of migraine with and without aura. PMID:27246325

  2. Detonation spreading in fine TATBs

    SciTech Connect

    Kennedy, J.E.; Lee, K.Y.; Spontarelli, T.; Stine, J.R.

    1998-12-31

    A test has been devised that permits rapid evaluation of the detonation-spreading (or corner-turning) properties of detonations in insensitive high explosives. The test utilizes a copper witness plate as the medium to capture performance data. Dent depth and shape in the copper are used as quantitative measures of the detonation output and spreading behavior. The merits of the test are that it is easy to perform with no dynamic instrumentation, and the test requires only a few grams of experimental explosive materials.

  3. ECoG high gamma activity reveals distinct cortical representations of lyrics passages, harmonic and timbre-related changes in a rock song

    PubMed Central

    Sturm, Irene; Blankertz, Benjamin; Potes, Cristhian; Schalk, Gerwin; Curio, Gabriel

    2014-01-01

    Listening to music moves our minds and moods, stirring interest in its neural underpinnings. A multitude of compositional features drives the appeal of natural music. How such original music, where a composer's opus is not manipulated for experimental purposes, engages a listener's brain has not been studied until recently. Here, we report an in-depth analysis of two electrocorticographic (ECoG) data sets obtained over the left hemisphere in ten patients during presentation of either a rock song or a read-out narrative. First, the time courses of five acoustic features (intensity, presence/absence of vocals with lyrics, spectral centroid, harmonic change, and pulse clarity) were extracted from the audio tracks and found to be correlated with each other to varying degrees. In a second step, we uncovered the specific impact of each musical feature on ECoG high-gamma power (70–170 Hz) by calculating partial correlations to remove the influence of the other four features. In the music condition, the onset and offset of vocal lyrics in ongoing instrumental music was consistently identified within the group as the dominant driver for ECoG high-gamma power changes over temporal auditory areas, while concurrently subject-individual activation spots were identified for sound intensity, timbral, and harmonic features. The distinct cortical activations to vocal speech-related content embedded in instrumental music directly demonstrate that song integrated in instrumental music represents a distinct dimension in complex music. In contrast, in the speech condition, the full sound envelope was reflected in the high gamma response rather than the onset or offset of the vocal lyrics. This demonstrates how the contributions of stimulus features that modulate the brain response differ across the two examples of a full-length natural stimulus, which suggests a context-dependent feature selection in the processing of complex auditory stimuli. PMID:25352799

  4. ECoG high gamma activity reveals distinct cortical representations of lyrics passages, harmonic and timbre-related changes in a rock song.

    PubMed

    Sturm, Irene; Blankertz, Benjamin; Potes, Cristhian; Schalk, Gerwin; Curio, Gabriel

    2014-01-01

    Listening to music moves our minds and moods, stirring interest in its neural underpinnings. A multitude of compositional features drives the appeal of natural music. How such original music, where a composer's opus is not manipulated for experimental purposes, engages a listener's brain has not been studied until recently. Here, we report an in-depth analysis of two electrocorticographic (ECoG) data sets obtained over the left hemisphere in ten patients during presentation of either a rock song or a read-out narrative. First, the time courses of five acoustic features (intensity, presence/absence of vocals with lyrics, spectral centroid, harmonic change, and pulse clarity) were extracted from the audio tracks and found to be correlated with each other to varying degrees. In a second step, we uncovered the specific impact of each musical feature on ECoG high-gamma power (70-170 Hz) by calculating partial correlations to remove the influence of the other four features. In the music condition, the onset and offset of vocal lyrics in ongoing instrumental music was consistently identified within the group as the dominant driver for ECoG high-gamma power changes over temporal auditory areas, while concurrently subject-individual activation spots were identified for sound intensity, timbral, and harmonic features. The distinct cortical activations to vocal speech-related content embedded in instrumental music directly demonstrate that song integrated in instrumental music represents a distinct dimension in complex music. In contrast, in the speech condition, the full sound envelope was reflected in the high gamma response rather than the onset or offset of the vocal lyrics. This demonstrates how the contributions of stimulus features that modulate the brain response differ across the two examples of a full-length natural stimulus, which suggests a context-dependent feature selection in the processing of complex auditory stimuli. PMID:25352799

  5. Learning to Characterize Submarine Lava Flow Morphology at Seamounts and Spreading Centers using High Definition Video and Photomosaics

    NASA Astrophysics Data System (ADS)

    Fundis, A. T.; Sautter, L. R.; Kelley, D. S.; Delaney, J. R.; Kerr-Riess, M.; Denny, A. R.; Elend, M.

    2010-12-01

    In August, 2010 the UW ENLIGHTEN ’10 expedition provided ~140 hours of seafloor HD video footage at Axial Seamount, the most magmatically robust submarine volcano on the Juan de Fuca Ridge. During this expedition, direct imagery from an Insite Pacific HD camera mounted on the ROV Jason 2 was used to classify broad expanses of seafloor where high power (8 kw) and high bandwidth (10 Gb/s) fiber optic cable will be laid as part of the Regional Scale Nodes (RSN) component of the NSF funded Ocean Observatories Initiative. The cable will provide power and two-way, real-time communication to an array of >20 sensors deployed at the summit of the volcano and at active sites of hydrothermal venting to investigate how active processes within the volcano and at seafloor hot springs within the caldera are connected. In addition to HD imagery, over 10,000 overlapping photographs from a down-looking still camera were merged and co-registered to create high resolution photomosaics of two areas within Axial’s caldera. Thousands of additional images were taken to characterize the seafloor along proposed cable routes, allowing optimal routes to be planned well in advance of deployment. Lowest risk areas included those free of large collapse basins, steep flow fronts and fissures. Characterizing the modes of lava distribution across the seafloor is crucial to understanding the construction history of the upper oceanic crust at mid-ocean ridges. In part, reconstruction of crustal development and eruptive histories can be inferred from surface flow morphologies, which provide insights into lava emplacement dynamics and effusion rates of past eruptions. An online resource is under development that will educate students about lava flow morphologies through the use of HD video and still photographs. The objective of the LavaFlow exercise is to map out a proposed cable route across the Axial Seamount caldera. Students are first trained in appropriate terminology and background content

  6. Large-Scale, High-Resolution Multielectrode-Array Recording Depicts Functional Network Differences of Cortical and Hippocampal Cultures

    PubMed Central

    Ito, Shinya; Yeh, Fang-Chin; Hiolski, Emma; Rydygier, Przemyslaw; Gunning, Deborah E.; Hottowy, Pawel; Timme, Nicholas; Litke, Alan M.; Beggs, John M.

    2014-01-01

    Understanding the detailed circuitry of functioning neuronal networks is one of the major goals of neuroscience. Recent improvements in neuronal recording techniques have made it possible to record the spiking activity from hundreds of neurons simultaneously with sub-millisecond temporal resolution. Here we used a 512-channel multielectrode array system to record the activity from hundreds of neurons in organotypic cultures of cortico-hippocampal brain slices from mice. To probe the network structure, we employed a wavelet transform of the cross-correlogram to categorize the functional connectivity in different frequency ranges. With this method we directly compare, for the first time, in any preparation, the neuronal network structures of cortex and hippocampus, on the scale of hundreds of neurons, with sub-millisecond time resolution. Among the three frequency ranges that we investigated, the lower two frequency ranges (gamma (30–80 Hz) and beta (12–30 Hz) range) showed similar network structure between cortex and hippocampus, but there were many significant differences between these structures in the high frequency range (100–1000 Hz). The high frequency networks in cortex showed short tailed degree-distributions, shorter decay length of connectivity density, smaller clustering coefficients, and positive assortativity. Our results suggest that our method can characterize frequency dependent differences of network architecture from different brain regions. Crucially, because these differences between brain regions require millisecond temporal scales to be observed and characterized, these results underscore the importance of high temporal resolution recordings for the understanding of functional networks in neuronal systems. PMID:25126851

  7. The cat's meow: A high-field fMRI assessment of cortical activity in response to vocalizations and complex auditory stimuli.

    PubMed

    Hall, Amee J; Butler, Blake E; Lomber, Stephen G

    2016-02-15

    Sensory systems are typically constructed in a hierarchical fashion such that lower level subcortical and cortical areas process basic stimulus features, while higher level areas reassemble these features into object-level representations. A number of anatomical pathway tracing studies have suggested that the auditory cortical hierarchy of the cat extends from a core region, consisting of the primary auditory cortex (A1) and the anterior auditory field (AAF), to higher level auditory fields that are located ventrally. Unfortunately, limitations on electrophysiological examination of these higher level fields have resulted in an incomplete understanding of the functional organization of the auditory cortex. Thus, the current study uses functional MRI in conjunction with a variety of simple and complex auditory stimuli to provide the first comprehensive examination of function across the entire cortical hierarchy. Auditory cortex function is shown to be largely lateralized to the left hemisphere, and is concentrated bilaterally in fields surrounding the posterior ectosylvian sulcus. The use of narrowband noise stimuli enables the visualization of tonotopic gradients in the posterior auditory field (PAF) and ventral posterior auditory field (VPAF) that have previously been unverifiable using fMRI and pure tones. Furthermore, auditory fields that are inaccessible to more invasive techniques, such as the insular (IN) and temporal (T) cortices, are shown to be selectively responsive to vocalizations. Collectively, these data provide a much needed functional correlate for anatomical examinations of the hierarchy of cortical structures within the cat auditory cortex. PMID:26658927

  8. Cortical State and Attention

    PubMed Central

    Harris, Kenneth D.; Thiele, Alexander

    2012-01-01

    Preface The brain continuously adapts its processing machinery to behavioural demands. To achieve this it rapidly modulates the operating mode of cortical circuits, controlling the way information is transformed and routed. This article will focus on two experimental approaches by which the control of cortical information processing has been investigated: the study of state-dependent cortical processing in rodents, and attention in the primate visual system. Both processes involve a modulation of low-frequency activity fluctuations and spiking correlation, and are mediated by common receptor systems. We suggest that selective attention involves processes similar to state change, operating at a local columnar level to enhance the representation of otherwise nonsalient features while suppressing internally generated activity patterns. PMID:21829219

  9. Cortical motion deafness.

    PubMed

    Ducommun, Christine Y; Michel, Christoph M; Clarke, Stephanie; Adriani, Michela; Seeck, Margitta; Landis, Theodor; Blanke, Olaf

    2004-09-16

    The extent to which the auditory system, like the visual system, processes spatial stimulus characteristics such as location and motion in separate specialized neuronal modules or in one homogeneously distributed network is unresolved. Here we present a patient with a selective deficit for the perception and discrimination of auditory motion following resection of the right anterior temporal lobe and the right posterior superior temporal gyrus (STG). Analysis of stimulus identity and location within the auditory scene remained intact. In addition, intracranial auditory evoked potentials, recorded preoperatively, revealed motion-specific responses selectively over the resected right posterior STG, and electrical cortical stimulation of this region was experienced by the patient as incoming moving sounds. Collectively, these data present a patient with cortical motion deafness, providing evidence that cortical processing of auditory motion is performed in a specialized module within the posterior STG. PMID:15363389

  10. Contributions of Early Cortical Processing and Reading Ability to Functional Status in Individuals at Clinical High Risk for Psychosis

    PubMed Central

    Carrión, Ricardo E.; Cornblatt, Barbara A.; McLaughlin, Danielle; Chang, Jeremy; Auther, Andrea M.; Olsen, Ruth H.; Javitt, Daniel C.

    2015-01-01

    Background There is a growing recognition that individuals at clinical high risk need intervention for functional impairments, along with emerging psychosis, as the majority of clinical high risk (CHR) individuals show persistent deficits in social and role functioning regardless of transition to psychosis. Recent studies have demonstrated reduced reading ability as a potential cause of functional disability in schizophrenia, related to underlying deficits in generation of mismatch negativity (MMN). The present study extends these findings to subjects at CHR. Methods The sample consisted of 34 CHR individuals and 33 healthy comparisons subjects (CNTLs) from the Recognition and Prevention (RAP) Program at the Zucker Hillside Hospital in New York. At baseline, reading measures were collected, along with MMN to pitch, duration, and intensity deviants, and measures of neurocognition, and social and role (academic/work) functioning. Results CHR subjects showed impairments in reading ability, neurocognition, and MMN generation, relative to CNTLs. Lower-amplitude MMN responses were correlated with worse reading ability, slower processing speed, and poorer social and role functioning. However, when entered into a simultaneous regression, only reduced responses to deviance in sound duration and volume predicted poor social and role functioning, respectively. Conclusions Deficits in reading ability exist even prior to illness onset in schizophrenia and may represent a decline in performance from prior abilities. As in schizophrenia, deficits are related to impaired MMN generation, suggesting specific contributions of sensory-level impairment to neurocognitive processes related to social and role function. PMID:25728833

  11. High Level of Vector Competence of Aedes aegypti and Aedes albopictus from Ten American Countries as a Crucial Factor in the Spread of Chikungunya Virus

    PubMed Central

    Vega-Rúa, Anubis; Zouache, Karima; Girod, Romain

    2014-01-01

    ABSTRACT Chikungunya virus (CHIKV) causes a major public health problem. In 2004, CHIKV began an unprecedented global expansion and has been responsible for epidemics in Africa, Asia, islands in the Indian Ocean region, and surprisingly, in temperate regions, such as Europe. Intriguingly, no local transmission of chikungunya virus (CHIKV) had been reported in the Americas until recently, despite the presence of vectors and annually reported imported cases. Here, we assessed the vector competence of 35 American Aedes aegypti and Aedes albopictus mosquito populations for three CHIKV genotypes. We also compared the number of viral particles of different CHIKV strains in mosquito saliva at two different times postinfection. Primarily, viral dissemination rates were high for all mosquito populations irrespective of the tested CHIKV isolate. In contrast, differences in transmission efficiency (TE) were underlined in populations of both species through the Americas, suggesting the role of salivary glands in selecting CHIKV for highly efficient transmission. Nonetheless, both mosquito species were capable of transmitting all three CHIKV genotypes, and TE reached alarming rates as high as 83.3% and 96.7% in A. aegypti and A. albopictus populations, respectively. A. albopictus better transmitted the epidemic mutant strain CHIKV_0621 of the East-Central-South African (ECSA) genotype than did A. aegypti, whereas the latter species was more capable of transmitting the original ECSA CHIKV_115 strain and also the Asian genotype CHIKV_NC. Therefore, a high risk of establishment and spread of CHIKV throughout the tropical, subtropical, and even temperate regions of the Americas is more real than ever. IMPORTANCE Until recently, the Americas had never reported chikungunya (CHIK) autochthonous transmission despite its global expansion beginning in 2004. Large regions of the continent are highly infested with Aedes aegypti and Aedes albopictus mosquitoes, and millions of dengue (DEN

  12. Potential spread of highly pathogenic avian influenza H5N1 by wildfowl: dispersal ranges and rates determined from large-scale satellite telemetry

    USGS Publications Warehouse

    Gaidet, Nicolas; Cappelle, Julien; Takekawa, John Y.; Prosser, Diann J.; Iverson, Samuel A.; Douglas, David C.; Perry, William M.; Mundkur, Taej; Newman, Scott H.

    2010-01-01

    1. Migratory birds are major candidates for long-distance dispersal of zoonotic pathogens. In recent years, wildfowl have been suspected of contributing to the rapid geographic spread of the highly pathogenic avian influenza (HPAI) H5N1 virus. Experimental infection studies reveal that some wild ducks, geese and swans shed this virus asymptomatically and hence have the potential to spread it as they move. 2. We evaluate the dispersive potential of HPAI H5N1 viruses by wildfowl through an analysis of the movement range and movement rate of birds monitored by satellite telemetry in relation to the apparent asymptomatic infection duration (AID) measured in experimental studies. We analysed the first large-scale data set of wildfowl movements, including 228 birds from 19 species monitored by satellite telemetry in 2006–2009, over HPAI H5N1 affected regions of Asia, Europe and Africa. 3. Our results indicate that individual migratory wildfowl have the potential to disperse HPAI H5N1 over extensive distances, being able to perform movements of up to 2900 km within timeframes compatible with the duration of asymptomatic infection. 4. However, the likelihood of such virus dispersal over long distances by individual wildfowl is low: we estimate that for an individual migratory bird there are, on average, only 5–15 days per year when infection could result in the dispersal of HPAI H5N1 virus over 500 km. 5. Staging at stopover sites during migration is typically longer than the period of infection and viral shedding, preventing birds from dispersing a virus over several consecutive but interrupted long-distance movements. Intercontinental virus dispersion would therefore probably require relay transmission between a series of successively infected migratory birds. 6. Synthesis and applications. Our results provide a detailed quantitative assessment of the dispersive potential of HPAI H5N1 virus by selected migratory birds. Such dispersive potential rests on the

  13. A case of a superficial spreading melanoma in situ diagnosed via digital dermoscopic monitoring with high dynamic range conversion.

    PubMed

    Sato, Toshitsugu; Tanaka, Masaru

    2014-10-01

    A 48-year-old woman presented with a 3 mm, pigmented macule at her first visit to our clinic. The macule, which showed complete symmetry and a typical network, was tentatively diagnosed as a Clark nevus; a 6-month follow-up was recommended, and the patient returned 7 months later. At the second visit, the lesion had enlarged to a diameter of 5 mm, and dermoscopy revealed that it had maintained its typical pigment network. At this point, evidence-based monitoring would have led to excision but the decision was made to continue monitoring. Owing to poor compliance, the patient went another 2 years without follow-up. When we assess small lesions, such as this, the usefulness of dermoscopy is apparent. Additionally, we examined the benefits and drawbacks of high dynamic range (HDR) conversion of the dermoscopy images and their helpfulness for inspecting small lesions. Although the delicate structures present in the lesion can be recognized by a dermoscopy expert and HDR image conversion has a capacity to highlight important structures, there is also a risk that HDR image conversion may mask some of the structural changes. However, a comparison of the original dermoscopy images with the HDR-converted images provides newly trained dermoscopists the opportunity to recognize new findings and to distinguish the differences in the findings between both the types of images. Therefore, such comparisons might be useful for obtaining an accurate diagnosis by using dermoscopy and HDR image conversion. PMID:25396087

  14. Flame spread across liquids

    NASA Technical Reports Server (NTRS)

    Ross, Howard D.; Miller, Fletcher; Schiller, David; Sirignano, William

    1995-01-01

    Recent reviews of our understanding of flame spread across liquids show that there are many unresolved issues regarding the phenomenology and causal mechanisms affecting ignition susceptibility, flame spread characteristics, and flame spread rates. One area of discrepancy is the effect of buoyancy in both the uniform and pulsating spread regimes. The approach we have taken to resolving the importance of buoyancy for these flames is: (1) normal gravity (1g) and microgravity (micro g) experiments; and (2) numerical modeling at different gravitational levels. Of special interest to this work, as discussed at the previous workshop, is the determination of whether, and under what conditions, pulsating spread occurs in micro g. Microgravity offers a unique ability to modify and control the gas-phase flow pattern by utilizing a forced air flow over the pool surface.

  15. Cortical thickness abnormalities in late adolescence with online gaming addiction.

    PubMed

    Yuan, Kai; Cheng, Ping; Dong, Tao; Bi, Yanzhi; Xing, Lihong; Yu, Dahua; Zhao, Limei; Dong, Minghao; von Deneen, Karen M; Liu, Yijun; Qin, Wei; Tian, Jie

    2013-01-01

    Online gaming addiction, as the most popular subtype of Internet addiction, had gained more and more attention from the whole world. However, the structural differences in cortical thickness of the brain between adolescents with online gaming addiction and healthy controls are not well unknown; neither was its association with the impaired cognitive control ability. High-resolution magnetic resonance imaging scans from late adolescence with online gaming addiction (n = 18) and age-, education- and gender-matched controls (n = 18) were acquired. The cortical thickness measurement method was employed to investigate alterations of cortical thickness in individuals with online gaming addiction. The color-word Stroop task was employed to investigate the functional implications of the cortical thickness abnormalities. Imaging data revealed increased cortical thickness in the left precentral cortex, precuneus, middle frontal cortex, inferior temporal and middle temporal cortices in late adolescence with online gaming addiction; meanwhile, the cortical thicknesses of the left lateral orbitofrontal cortex (OFC), insula, lingual gyrus, the right postcentral gyrus, entorhinal cortex and inferior parietal cortex were decreased. Correlation analysis demonstrated that the cortical thicknesses of the left precentral cortex, precuneus and lingual gyrus correlated with duration of online gaming addiction and the cortical thickness of the OFC correlated with the impaired task performance during the color-word Stroop task in adolescents with online gaming addiction. The findings in the current study suggested that the cortical thickness abnormalities of these regions may be implicated in the underlying pathophysiology of online gaming addiction. PMID:23326379

  16. Cortical Thickness Abnormalities in Late Adolescence with Online Gaming Addiction

    PubMed Central

    Yuan, Kai; Cheng, Ping; Dong, Tao; Bi, Yanzhi; Xing, Lihong; Yu, Dahua; Zhao, Limei; Dong, Minghao; von Deneen, Karen M.; Liu, Yijun; Qin, Wei; Tian, Jie

    2013-01-01

    Online gaming addiction, as the most popular subtype of Internet addiction, had gained more and more attention from the whole world. However, the structural differences in cortical thickness of the brain between adolescents with online gaming addiction and healthy controls are not well unknown; neither was its association with the impaired cognitive control ability. High-resolution magnetic resonance imaging scans from late adolescence with online gaming addiction (n = 18) and age-, education- and gender-matched controls (n = 18) were acquired. The cortical thickness measurement method was employed to investigate alterations of cortical thickness in individuals with online gaming addiction. The color-word Stroop task was employed to investigate the functional implications of the cortical thickness abnormalities. Imaging data revealed increased cortical thickness in the left precentral cortex, precuneus, middle frontal cortex, inferior temporal and middle temporal cortices in late adolescence with online gaming addiction; meanwhile, the cortical thicknesses of the left lateral orbitofrontal cortex (OFC), insula, lingual gyrus, the right postcentral gyrus, entorhinal cortex and inferior parietal cortex were decreased. Correlation analysis demonstrated that the cortical thicknesses of the left precentral cortex, precuneus and lingual gyrus correlated with duration of online gaming addiction and the cortical thickness of the OFC correlated with the impaired task performance during the color-word Stroop task in adolescents with online gaming addiction. The findings in the current study suggested that the cortical thickness abnormalities of these regions may be implicated in the underlying pathophysiology of online gaming addiction. PMID:23326379

  17. Costs associated with implementation of a strict policy for controlling spread of highly resistant microorganisms in France

    PubMed Central

    Birgand, Gabriel; Leroy, Christophe; Nerome, Simone; Luong Nguyen, Liem Binh; Lolom, Isabelle; Armand-Lefevre, Laurence; Ciotti, Céline; Lecorre, Bertrand; Marcade, Géraldine; Fihman, Vincent; Nicolas-Chanoine, Marie-Hélène; Pelat, Camille; Perozziello, Anne; Fantin, Bruno; Yazdanpanah, Yazdan; Ricard, Jean-Damien; Lucet, Jean-Christophe

    2016-01-01

    Objective To assess costs associated with implementation of a strict ‘search and isolate’ strategy for controlling highly drug-resistant organisms (HDRO). Design Review of data from 2-year prospective surveillance (01/2012 to 12/2013) of HDRO. Setting Three university hospitals located in northern Paris. Methods Episodes were defined as single cases or outbreaks of glycopeptide-resistant enterococci (GRE) or carbapenemase-producing Enterobacteriacae (CPE) colonisation. Costs were related to staff reinforcement, costs of screening cultures, contact precautions and interruption of new admissions. Univariate analysis, along with simple and multiple linear regression analyses, was conducted to determine variables associated with cost of HDRO management. Results Overall, 41 consecutive episodes were included, 28 single cases and 13 outbreaks. The cost (mean±SD) associated with management of a single case identified within and/or 48 h after admission was €4443±11 552 and €11 445±15 743, respectively (p<0.01). In an outbreak, the total cost varied from €14 864 ±17 734 for an episode with one secondary case (€7432±8867 per case) to €136 525 ±151 231 (€12 845±5129 per case) when more than one secondary case occurred. In episodes of single cases, contact precautions and microbiological analyses represented 51% and 30% of overall cost, respectively. In outbreaks, cost related to interruption of new admissions represented 77–94% of total costs, and had the greatest financial impact (R2=0.98, p<0.01). Conclusions In HDRO episodes occurring at three university hospitals, interruption of new admissions constituted the most costly measure in an outbreak situation. PMID:26826145

  18. Specialist enemies, generalist weapons and the potential spread of exotic pathogens: malaria parasites in a highly invasive bird.

    PubMed

    Clark, Nicholas J; Olsson-Pons, Sophie; Ishtiaq, Farah; Clegg, Sonya M

    2015-12-01

    Pathogens can influence the success of invaders. The Enemy Release Hypothesis predicts invaders encounter reduced pathogen abundance and diversity, while the Novel Weapons Hypothesis predicts invaders carry novel pathogens that spill over to competitors. We tested these hypotheses using avian malaria (haemosporidian) infections in the invasive myna (Acridotheres tristis), which was introduced to southeastern Australia from India and was secondarily expanded to the eastern Australian coast. Mynas and native Australian birds were screened in the secondary introduction range for haemosporidians (Plasmodium and Haemoproteus spp.) and results were combined with published data from the myna's primary introduction and native ranges. We compared malaria prevalence and diversity across myna populations to test for Enemy Release and used phylogeographic analyses to test for exotic strains acting as Novel Weapons. Introduced mynas carried significantly lower parasite diversity than native mynas and significantly lower Haemoproteus prevalence than native Australian birds. Despite commonly infecting native species that directly co-occur with mynas, Haemoproteus spp. were only recorded in introduced mynas in the primary introduction range and were apparently lost during secondary expansion. In contrast, Plasmodium infections were common in all ranges and prevalence was significantly higher in both introduced and native mynas than in native Australian birds. Introduced mynas carried several exotic Plasmodium lineages that were shared with native mynas, some of which also infected native Australian birds and two of which are highly invasive in other bioregions. Our results suggest that introduced mynas may benefit through escape from Haemoproteus spp. while acting as important reservoirs for Plasmodium spp., some of which are known exotic lineages. PMID:26433143

  19. Satellite Tracking on the Flyways of Brown-Headed Gulls and Their Potential Role in the Spread of Highly Pathogenic Avian Influenza H5N1 Virus

    PubMed Central

    Ratanakorn, Parntep; Wiratsudakul, Anuwat; Wiriyarat, Witthawat; Eiamampai, Krairat; Farmer, Adrian H.; Webster, Robert G.; Chaichoune, Kridsada; Suwanpakdee, Sarin; Pothieng, Duangrat; Puthavathana, Pilaipan

    2012-01-01

    Brown-headed gulls (Larus brunnicephalus), winter visitors of Thailand, were tracked by satellite telemetry during 2008–2011 for investigating their roles in the highly pathogenic avian influenza (HPAI) H5N1 virus spread. Eight gulls negative for influenza virus infection were marked with solar-powered satellite platform transmitters at Bang Poo study site in Samut Prakarn province, Thailand; their movements were monitored by the Argos satellite tracking system, and locations were mapped. Five gulls completed their migratory cycles, which spanned 7 countries (China, Bangladesh, India, Myanmar, Thailand, Cambodia, and Vietnam) affected by the HPAI H5N1 virus. Gulls migrated from their breeding grounds in China to stay overwinter in Thailand and Cambodia; while Bangladesh, India, Myanmar, and Vietnam were the places of stopovers during migration. Gulls traveled an average distance of about 2400 km between Thailand and China and spent 1–2 weeks on migration. Although AI surveillance among gulls was conducted at the study site, no AI virus was isolated and no H5N1 viral genome or specific antibody was detected in the 75 gulls tested, but 6.6% of blood samples were positive for pan-influenza A antibody. No AI outbreaks were reported in areas along flyways of gulls in Thailand during the study period. Distance and duration of migration, tolerability of the captive gulls to survive the HPAI H5N1 virus challenge and days at viral shedding after the virus challenging suggested that the Brown-headed gull could be a potential species for AI spread, especially among Southeast Asian countries, the epicenter of H5N1 AI outbreak. PMID:23209623

  20. Trabecular and cortical bone density and architecture in women after 60 days of bed rest using high-resolution pQCT: WISE 2005.

    PubMed

    Armbrecht, Gabriele; Belavý, Daniel Ludovic; Backström, Magdalena; Beller, Gisela; Alexandre, Christian; Rizzoli, Rene; Felsenberg, Dieter

    2011-10-01

    Prolonged bed rest is used to simulate the effects of spaceflight and causes disuse-related loss of bone. While bone density changes during bed rest have been described, there are no data on changes in bone microstructure. Twenty-four healthy women aged 25 to 40 years participated in 60 days of strict 6-degree head-down tilt bed rest (WISE 2005). Subjects were assigned to either a control group (CON, n = 8), which performed no countermeasures; an exercise group (EXE, n = 8), which undertook a combination of resistive and endurance training; or a nutrition group (NUT, n = 8), which received a high-protein diet. Density and structural parameters of the distal tibia and radius were measured at baseline, during, and up to 1 year after bed rest by high-resolution peripheral quantitative computed tomography (HR-pQCT). Bed rest was associated with reductions in all distal tibial density parameters (p < 0.001), whereas only distal radius trabecular density decreased. Trabecular separation increased at both the distal tibia and distal radius (p < 0.001), but these effects were first significant after bed rest. Reduction in trabecular number was similar in magnitude at the distal radius (p = 0.021) and distal tibia (p < 0.001). Cortical thickness decreased at the distal tibia only (p < 0.001). There were no significant effects on bone structure or density of the countermeasures (p ≥ 0.057). As measured with HR-pQCT, it is concluded that deterioration in bone microstructure and density occur in women during and after prolonged bed rest. The exercise and nutrition countermeasures were ineffective in preventing these changes. PMID:21812030

  1. Epidural cortical stimulation and aphasia therapy

    PubMed Central

    Cherney, Leora R.; Harvey, Richard L.; Babbitt, Edna M.; Hurwitz, Rosalind; Kaye, Rosalind C.; Lee, Jaime B.; Small, Steven. L.

    2013-01-01

    Background There are several methods of delivering cortical brain stimulation to modulate cortical excitability and interest in their application as an adjuvant strategy in aphasia rehabilitation after stroke is growing. Epidural cortical stimulation, although more invasive than other methods, permits high frequency stimulation of high spatial specificity to targeted neuronal populations. Aims First, we review evidence supporting the use of epidural cortical stimulation for upper limb recovery after focal cortical injury in both animal models and human stroke survivors. These data provide the empirical and theoretical platform underlying the use of epidural cortical stimulation in aphasia. Second, we summarize evidence for the application of epidural cortical stimulation in aphasia. We describe the procedures and primary outcomes of a safety and feasibility study (Cherney, Erickson & Small, 2010), and provide previously unpublished data regarding secondary behavioral outcomes from that study. Main Contribution In a controlled study comparing epidural cortical stimulation plus language treatment (CS/LT) to language treatment alone (LT), eight stroke survivors with nonfluent aphasia received intensive language therapy for 6 weeks. Four of these participants also underwent surgical implantation of an epidural stimulation device which was activated only during therapy sessions. Behavioral data were collected before treatment, immediately after treatment, and at 6 and 12 weeks following the end of treatment. The effect size for the primary outcome measure, the Western Aphasia Battery Aphasia Quotient, was benchmarked as moderate from baseline to immediately post-treatment, and large from baseline to the 12-week follow-up. Similarly, effect sizes obtained at the 12-week follow-up for the Boston Naming Test, the Communicative Effectiveness Index, and for correct information units on a picture description task were greater than those obtained immediately post treatment

  2. Dynamics of large-scale cortical interactions at high gamma frequencies during word production: Event related causality (ERC) analysis of human electrocorticography (ECoG)

    PubMed Central

    Korzeniewska, Anna; Franaszczuk, Piotr J.; Crainiceanu, Ciprian M.; Kuś, Rafał; Crone, Nathan E.

    2011-01-01

    Intracranial EEG studies in humans have shown that functional brain activation in a variety of functional-anatomic domains of human cortex is associated with an increase in power at a broad range of high gamma (> 60 Hz) frequencies. Although these electrophysiological responses are highly specific for the location and timing of cortical processing and in animal recordings are highly correlated with increased population firing rates, there has been little direct empirical evidence for causal interactions between different recording sites at high gamma frequencies. Such causal interactions are hypothesized to occur during cognitive tasks that activate multiple brain regions. To determine whether such causal interactions occur at high gamma frequencies and to investigate their functional significance, we used event-related causality (ERC) analysis to estimate the dynamics, directionality, and magnitude of event-related causal interactions using subdural electrocorticography (ECoG) recorded during two word production tasks: picture naming and auditory word repetition. A clinical subject who had normal hearing but was skilled in American Signed Language (ASL) provided a unique opportunity to test our hypothesis with reference to a predictable pattern of causal interactions, i.e. that language cortex interacts with different areas of sensorimotor cortex during spoken vs. signed responses. Our ERC analyses confirmed this prediction. During word production with spoken responses, perisylvian language sites had prominent causal interactions with mouth/tongue areas of motor cortex, and when responses were gestured in sign language, the most prominent interactions involved hand and arm areas of motor cortex. Furthermore, we found that the sites from which the most numerous and prominent causal interactions originated, i.e. sites with a pattern of ERC “divergence”, were also sites where high gamma power increases were most prominent and where electrocortical stimulation

  3. Cortical thinning in psychopathy

    PubMed Central

    Ly, Martina; Motzkin, Julian C.; Philippi, Carissa L.; Kirk, Gregory R.; Newman, Joseph P.; Kiehl, Kent A.; Koenigs, Michael

    2013-01-01

    Objective Psychopathy is a personality disorder associated with severely antisocial behavior and a host of cognitive and affective deficits. The neuropathological basis of the disorder has not been clearly established. Cortical thickness is a sensitive measure of brain structure that has been used to identify neurobiological abnormalities in a number of psychiatric disorders. The purpose of this study is to evaluate cortical thickness and corresponding functional connectivity in criminal psychopaths. Method Using T1 MRI data, we computed cortical thickness maps in a sample of adult male prison inmates selected based on psychopathy diagnosis (n=21 psychopathic inmates, n=31 non-psychopathic inmates). Using rest-fMRI data from a subset of these inmates (n=20 psychopathic inmates, n=20 non-psychopathic inmates), we then computed functional connectivity within networks exhibiting significant thinning among psychopaths. Results Relative to non-psychopaths, psychopaths exhibited significantly thinner cortex in a number of regions, including left insula and dorsal anterior cingulate cortex, bilateral precentral gyrus, bilateral anterior temporal cortex, and right inferior frontal gyrus. These neurostructural differences were not due to differences in age, IQ, or substance abuse. Psychopaths also exhibited a corresponding reduction in functional connectivity between left insula and left dorsal anterior cingulate cortex. Conclusions Psychopathy is associated with a distinct pattern of cortical thinning and reduced functional connectivity. PMID:22581200

  4. Low and then high frequency oscillations of distinct right cortical networks are progressively enhanced by medium and long term Satyananda Yoga meditation practice

    PubMed Central

    Thomas, John; Jamieson, Graham; Cohen, Marc

    2014-01-01

    Meditation proficiency is related to trait-like (learned) effects on brain function, developed over time. Previous studies show increases in EEG power in lower frequency bands (theta, alpha) in experienced meditators in both meditation states and baseline conditions. Higher gamma band power has been found in advanced Buddhist meditators, yet it is not known if this occurs in Yoga meditation practices. This study used eLORETA to compare differences in cortical source activity underlying scalp EEG from intermediate (mean experience 4 years) and advanced (mean experience 30 years) Australian meditators from the Satyananda Yoga tradition during a body-steadiness meditation, mantra meditation, and non-meditation mental calculation condition. Intermediate Yoga meditators showed greater source activity in low frequencies (particularly theta and alpha1) during mental calculation, body-steadiness and mantra meditation. A similar spatial pattern of significant differences was found in all conditions but the number of significant voxels was double during body-steadiness and mantra meditation than in the non-meditation (calculation) condition. These differences were greatest in right (R) superior frontal and R precentral gyri and extended back to include the R parietal and occipital lobes. Advanced Yoga meditators showed greater activity in high frequencies (beta and especially gamma) in all conditions but greatly expanded during meditation practice. Across all conditions (meditation and non-meditation) differences were greatest in the same regions: R insula, R inferior frontal gyrus and R anterior temporal lobe. Distinct R core networks were identified in alpha1 (8–10 Hz) and gamma (25–42 Hz) bands, respectively. The voxels recruited to these networks greatly expanded during meditation practice to include homologous regions of the left hemisphere. Functional interpretation parallels traditionally described stages of development in Yoga proficiency. PMID:24959124

  5. Partial volume correction using cortical surfaces

    NASA Astrophysics Data System (ADS)

    Blaasvær, Kamille R.; Haubro, Camilla D.; Eskildsen, Simon F.; Borghammer, Per; Otzen, Daniel; Ostergaard, Lasse R.

    2010-03-01

    Partial volume effect (PVE) in positron emission tomography (PET) leads to inaccurate estimation of regional metabolic activities among neighbouring tissues with different tracer concentration. This may be one of the main limiting factors in the utilization of PET in clinical practice. Partial volume correction (PVC) methods have been widely studied to address this issue. MRI based PVC methods are well-established.1 Their performance depend on the quality of the co-registration of the MR and PET dataset, on the correctness of the estimated point-spread function (PSF) of the PET scanner and largely on the performance of the segmentation method that divide the brain into brain tissue compartments.1, 2 In the present study a method for PVC is suggested, that utilizes cortical surfaces, to obtain detailed anatomical information. The objectives are to improve the performance of PVC, facilitate a study of the relationship between metabolic activity in the cerebral cortex and cortical thicknesses, and to obtain an improved visualization of PET data. The gray matter metabolic activity after performing PVC was recovered by 99.7 - 99.8 % , in relation to the true activity when testing on simple simulated data with different PSFs and by 97.9 - 100 % when testing on simulated brain PET data at different cortical thicknesses. When studying the relationship between metabolic activities and anatomical structures it was shown on simulated brain PET data, that it is important to correct for PVE in order to get the true relationship.

  6. Mapping lava morphology of the Galapagos Spreading Center at 92°W: fuzzy logic provides a classification of high-resolution bathymetry and backscatter

    NASA Astrophysics Data System (ADS)

    McClinton, J. T.; White, S. M.; Sinton, J. M.; Rubin, K. H.; Bowles, J. A.

    2010-12-01

    Differences in axial lava morphology along the Galapagos Spreading Center (GSC) can indicate variations in magma supply and emplacement dynamics due to the influence of the adjacent Galapagos hot spot. Unfortunately, the ability to discriminate fine-scale lava morphology has historically been limited to observations of the small coverage areas of towed camera surveys and submersible operations. This research presents a neuro-fuzzy approach to automated seafloor classification using spatially coincident, high-resolution bathymetry and backscatter data. The classification method implements a Sugeno-type fuzzy inference system trained by a multi-layered adaptive neural network and is capable of rapidly classifying seafloor morphology based on attributes of surface geometry and texture. The system has been applied to the 92°W segment of the western GSC in order to quantify coverage areas and distributions of pillow, lobate, and sheet lava morphology. An accuracy assessment has been performed on the classification results. The resulting classified maps provide a high-resolution view of GSC axial morphology and indicate the study area terrain is approximately 40% pillow flows, 40% lobate and sheet flows, and 10% fissured or faulted area, with about 10% of the study area unclassifiable. Fine-scale features such as eruptive fissures, tumuli, and individual pillowed lava flow fronts are also visible. Although this system has been applied to lava morphology, its design and implementation are applicable to other undersea mapping applications.

  7. Quantum Spread Spectrum Communication

    SciTech Connect

    Humble, Travis S

    2010-01-01

    We demonstrate that spectral teleportation can coherently dilate the spectral probability amplitude of a single photon. In preserving the encoded quantum information, this variant of teleportation subsequently enables a form of quantum spread spectrum communication.

  8. Pathways of lateral spreading.

    PubMed

    Jacobi, U; Schanzer, S; Weigmann, H-J; Patzelt, A; Vergou, T; Sterry, W; Lademann, J

    2011-01-01

    In the case of topically applied substances, usually both lateral spreading and competitive penetration into the skin occur in parallel. In the present study, the pathways of lateral spreading were studied quantitatively and visually. The local distribution and lateral spreading of the UV filter substance butyl methoxydibenzoylmethane applied in an o/w emulsion was studied on the forearm and the back. The tape stripping procedure was used to determine the recovery rates inside and outside the area of application. The skin characteristics of transepidermal water loss, pH value, hydration of the stratum corneum and sebum rate were determined at both anatomic sites. Photography and laser scanning microscopy were used to visually investigate the lateral spreading of topically applied dyes. On the back, a preferred direction of lateral spreading parallel to the body axis was observed. This result was caused by differences in the network of furrows. The furrows functioned as a pathway for lateral spreading, whereas the follicles formed a reservoir for the topically applied substance. PMID:21455016

  9. Pathology of Perineural Spread.

    PubMed

    Brown, Ian S

    2016-04-01

    The perineural space is a compartment located between the nerve axons, supporting cells and tissues, and the epineural fibrous sheath. Tumor cells invade this space in response to a complex interplay of trophic factors in the local microenviroment. This attraction of tumor cells to nerves is referred to as neurotropism. The perineural space provides a conduit for tumor spread beyond the primary site of tumor occurrence. Perineural tumor growth is of two types: perineural invasion, affecting small unnamed nerves; and perineural spread, affecting larger, named nerves and presenting with clinical symptoms related to the involved nerve. Both forms of perineural tumor growth represent an adverse prognostic feature and are an essential element of the histopathologic reporting of malignancies of the head and neck region. Perineural spread is associated with decreased overall survival. Endoneurial invasion frequently accompanies perineural spread. The epineurium is more resistant to invasion and represents an important barrier to tumor spread. Immunohistochemical stains such as broad-spectrum keratin can aid in defining the proximal extent of perineural tumor spread. PMID:27123388

  10. Agro-ecological features of the introduction and spread of the highly pathogenic avian influenza (HPAI) H5N1 in northern Nigeria.

    PubMed

    Cecchi, Giuliano; Ilemobade, Albert; Le Brun, Yvon; Hogerwerf, Lenny; Slingenbergh, Jan

    2008-11-01

    Nigeria was the first African country to report highly pathogenic avian influenza (HPAI) H5N1 virus outbreaks in February 2006 and has since been the most severely hit country in sub-Saharan Africa. A retrospective survey carried out towards the end of 2007, coupled with follow-up spatial analysis, support the notion that the H5N1 virus may have spread from rural areas of northern Nigeria near wetlands frequented by palaearctic migratory birds. Possibly, this could have happened already during November to December 2005, one or two months prior to the first officially reported outbreak in a commercial poultry farm (Kaduna state). It is plausible that backyard poultry played a more important role in the H5N1 propagation than thought previously. Farming landscapes with significant numbers of domestic ducks may have helped to bridge the geographical and ecological gap between the waterfowl in the wetlands and the densely populated poultry rich states in north-central Nigeria, where the virus had more sizeable, visible impact. PMID:19021104