Science.gov

Sample records for high energy shock

  1. Shock wave generated by high-energy electric spark discharge

    NASA Astrophysics Data System (ADS)

    Liu, Qingming; Zhang, Yunming

    2014-10-01

    Shock wave generated by electric spark discharge was studied experimentally and the shock wave energy was evaluated in this paper. A pressure measurement system was established to study the pressure field of the electric spark discharge process. A series of electric spark discharge experiments were carried out and the energy of the electric spark used in present study was in the range of 10 J, 100 J, and 1000 J, respectively. The shock wave energy released from the electric spark discharge process was calculated by using the overpressure values at different measurement points near the electric spark discharge center. The good consistency of shock wave energies calculated by pressure histories at different measuring points in the same electric spark discharge experiment illustrates the applicability of the weak shock wave theory in calculating the energy of shock wave induced by electric spark discharge process. The result showed that shock wave formed at the initial stage of electric spark discharge process, and the shock wave energy is only a little part of electric spark energy. From the analysis of the shock wave energy and electric spark energy, a good linear relationship between shock wave energy and electric spark energy was established, which make it possible to calculate shock wave energy by measuring characteristic parameters of electric spark discharge process instead of shock wave. So, the initiation energy of direct initiation of detonation can be determined easily by measuring the parameters of electric spark discharge process.

  2. Scatttering of High-energy Particles at a Collisionless Shock Front: Dependence on the Shock Angle

    NASA Astrophysics Data System (ADS)

    Gedalin, M.; Dröge, W.; Kartavykh, Y. Y.

    2015-07-01

    Many shock acceleration theories deal with gyrophase-averaged particle distributions that depend only on the energy and pitch angle of the particles. Diffusive shock acceleration includes shock crossing as a necessary component. As long as the shock width is much smaller than the mean free path of a particle, the crossing is governed by the macroscopic fields inside the transition layer. The dynamics of high-energy particles in these fields is non-adiabatic and gyrophase dependent. The magnetic moment is not conserved in a wide range of shock angles, nor is the condition of reflection determined by the magnetic bottle relation. Instead, for a pitch angle and unknown gyrophase of an incident particle there is a finite probability of reflection. This probability varies between zero and unity in a wide range of pitch angles. In this work we investigate how the matching conditions at the shock front could be modified with the gyrophase dependence taken into account, e.g., in the form of the scattering probabilities.

  3. Laser Driven Radiative Shocks in High Energy Density

    NASA Astrophysics Data System (ADS)

    Manka, C.; Lunsford, R.; Nikitin, S.; Laming, M.; Zabatakis, D.; Grun, J.

    2008-03-01

    The long time over which oscillations associated with radiative shocks within the interstellar medium occur makes direct observation of these instabilities highly problematic. A velocity dependant cooling instability is thought to cause fluctuations in the propagation velocity of such shocks. An experiment at NRL investigates and perhaps validates the applicability of present analytic models to various multidimensional radiative shock instabilities. The PHAROS laser at NRL is used to create the relevant shock front by ablative acceleration of an aluminized Mylar foil that covers a small gas filled tunnel in a PMMA block. As this shock propagates along the tunnel, a secondary shock is launched into the walls of the tunnel and the progress of this shock into the PMMA block preserves a continuous record of the primary shock's velocity as it travels the length of the tunnel. The density gradient associated with the shock in the PMMA is recorded using dark field shadowgraphy on a SIM-8 multi-channel high speed framing camera. The tunnel shock velocity is determined from the shape of the shock launched into the PMMA block for any time prior to the instant at which the image frame was taken, providing documentation of any oscillations in the velocity of the shock.

  4. DIFFUSIVE SHOCK ACCELERATION OF HIGH-ENERGY CHARGED PARTICLES AT FAST INTERPLANETARY SHOCKS: A PARAMETER SURVEY

    SciTech Connect

    Giacalone, Joe

    2015-01-20

    We present results from numerical simulations of the acceleration of solar energetic particles (SEPs) associated with strong, fast, and radially propagating interplanetary shocks. We focus on the phase of the SEP event at the time of the shock passage at 1 AU, which is when the peak intensity at energies below a few MeV is the highest. The shocks in our study start between 2 and 10 solar radii and propagate beyond 1 AU. We study the effect of various shock and particle input parameters, such as the spatial diffusion coefficient, shock speed, solar wind speed, initial location of the shock, and shock deceleration rate, on the total integrated differential intensity, I, of SEPs with kinetic energies > 10 MeV. I is the integral over energy of the differential intensity spectrum at the time of the shock passage at 1 AU. We find that relatively small changes in the parameters can lead to significant event-to-event changes in I. For example, a factor of 2 increase in the diffusion coefficient at a given energy and spatial location, can lead to a decrease in I by as much as a factor of 50. This may help explain why there are fewer large SEP events seen during the current solar maximum compared to previous maxima. It is known that the magnitude of the interplanetary magnetic field is noticeably weaker this solar cycle than it was in the previous cycle and this will naturally lead to a somewhat larger diffusion coefficient of SEPs.

  5. High-Energy Emission at Shocks in Millisecond Pulsar Binaries

    NASA Astrophysics Data System (ADS)

    Kust Harding, Alice; Wadiasingh, Zorawar; Venter, Christo; Boettcher, Markus

    2016-04-01

    A large number of new Black Widow (BW) and Redback (RB) energetic millisecond pulsars have been discovered through radio searches of unidentified Fermi sources, increasing the known number of these systems from 4 to 28. We model the high-energy emission components from particles accelerated to several TeV in intrabinary shocks in BW and RB systems, and their predicted modulation at the binary orbital period. Synchrotron emission is expected at X-ray energies and such modulated emission has already been detected by Chandra and XMM. Inverse Compton emission from accelerated particles scattering the UV emission from the radiated companion star is expected in the Fermi and TeV bands. Detections or constraints on this emission will probe the unknown physics of pulsar winds.

  6. Development of Ultra Small Shock Tube for High Energy Molecular Beam Source

    SciTech Connect

    Miyoshi, Nobuya; Nagata, Shuhei; Kinefuchi, Ikuya; Shimizu, Kazuya; Matsumoto, Yoichiro; Takagi, Shu

    2008-12-31

    A molecular beam source exploiting a small shock tube is described for potential generation of high energy beam in a range of 1-5 eV without any undesirable impurities. The performance of a non-diaphragm type shock tube with an inner diameter of 2 mm was evaluated by measuring the acceleration and attenuation process of shock waves. With this shock tube installed in a molecular beam source, we measured the time-of-flight distributions of shock-heated beams, which demonstrated the ability of controlling the beam energy with the initial pressure ratio of the shock tube.

  7. Development of Ultra Small Shock Tube for High Energy Molecular Beam Source

    NASA Astrophysics Data System (ADS)

    Miyoshi, Nobuya; Nagata, Shuhei; Kinefuchi, Ikuya; Shimizu, Kazuya; Takagi, Shu; Matsumoto, Yoichiro

    2008-12-01

    A molecular beam source exploiting a small shock tube is described for potential generation of high energy beam in a range of 1-5 eV without any undesirable impurities. The performance of a non-diaphragm type shock tube with an inner diameter of 2 mm was evaluated by measuring the acceleration and attenuation process of shock waves. With this shock tube installed in a molecular beam source, we measured the time-of-flight distributions of shock-heated beams, which demonstrated the ability of controlling the beam energy with the initial pressure ratio of the shock tube.

  8. Gamma-ray burst high energy emission from internal shocks

    NASA Astrophysics Data System (ADS)

    Galli, A.; Guetta, D.

    2008-03-01

    Aims:In this paper we study synchrotron and synchrotron self Compton (SSC) emission from internal shocks (IS) during the prompt and X-ray flare phases of gamma-ray bursts (GRBs). The aim is to test the IS model for the flare emission and for whether GRBs can be GeV sources. Methods: We determine the parameters for which the IS model can account for the observed prompt and X-ray flares emission, and study the detectability of the high energy SSC emission by the AGILE and GLAST satellites. Results: We find that the detectability of the SSC emission during the prompt phase of GRBs improves for higher values of the fireball Lorentz factor Γ and of the temporal variability t_v. If IS is the mechanism responsible for the flare emission, and the Lorentz factor of the shells producing the flare is Γ 100, the flare light curves are expected to present some substructures with temporal variability tv = 10-100 ms which are much smaller than the average duration of flares, and similar to those observed during the prompt phase of GRBs. If one assumes lower Lorentz factors, such as Γ 10 div 25, then a larger temporal variability tv 40 s can also account for the observed flare properties. However in this case we predict that X-ray flares do not have a counterpart at very high energies (MeV-GeV). Conclusions: An investigation on the substructures of the X-ray flare light curves, and simultaneous X-ray and high energy observations, will allow us to corroborate the hypothesis that late IS are responsible for the X-ray flares.

  9. Shock Initiation of Hexanitrostilbene at Ultra-high Shock Pressures and Critical Energy Determination

    NASA Astrophysics Data System (ADS)

    Bowden, Mike; Maisey, Matthew

    2011-06-01

    Hexanitrostilbene is a secondary explosive with attractive properties for detonator usage, including thermal stability, good safety properties and easy initiability. It is desirable to characterize the shock initiation of detonator explosives to enable optimization of system parameters. HNS is a suitable explosive for use in electrical and optical slapper detonators, where shock pressures generated by the flyer plates used can exceed 30 GPa. This extreme shock regime can be explored by initiating HNS with a variety of flyer thicknesses, from 3 to 25 microns at velocities of several km/s. Thresholds for optical and electrical slapper detonators were evaluated, and Photonic Doppler Velocimetery used to determine the flyer velocity at threshold. The flyer diameters are in excess of the critical diameter for HNS, allowing a one-dimensional treatment of the initiation. Calculated values for pressure and shock duration are used to evaluate the critical energy criteria Pn τ . The calculated value of n is compared to published values and discussed for similar systems. The James Criterion is used to analyze the initiation, with values of Ec and Σc being determined from experimental data, providing a predictive capability to model other configurations such as different flyer thicknesses and materials.

  10. Shock initiation of hexanitrostilbene at ultra-high shock pressures and critical energy determination

    NASA Astrophysics Data System (ADS)

    Bowden, Mike; Maisey, Matthew Peter; Knowles, Sarah

    2012-03-01

    Hexanitrostilbene (HNS) is a secondary explosive with attractive properties for detonator usage, including thermal stability, good safety properties and easy initiability. It is desirable to characterize the shock initiation of detonator explosives to enable optimization of system parameters. HNS is a suitable explosive for use in electrical and optical slapper detonators, where shock pressures generated by the flyer plates used can exceed 30 GPa. This extreme shock regime can be explored by initiating HNS with a variety of flyer thicknesses, from 3 to 25 microns at velocities of several km/s. Thresholds for optical and electrical slapper detonators were evaluated, and Photonic Doppler Velocimetery used to determine the flyer velocity at threshold. The flyer diameters are in excess of the critical diameter for HNS, allowing a one-dimensional treatment of the initiation. Calculated values for pressure and shock duration are used to evaluate the critical energy criteria P2τ. The James Criterion is used to analyse the initiation, with values of EC and ΣC being determined from experimental data, providing a predictive capability to model other configurations such as different flyer thicknesses and materials.

  11. Chemistry away from local equilibrium: shocking high-energy and energy absorbing materials

    NASA Astrophysics Data System (ADS)

    Strachan, Alejandro

    2015-06-01

    In this presentation I will describe reactive molecular dynamics and coarse grain simulations of shock induced chemistry. MD simulations of the chemical reactions following the shock-induced collapse of cylindrical pores in the high-energy density material RDX provide the first atomistic picture of the shock to deflagration transition in nanoscale hotspots. We find that energy localization during pore collapse leads to ultra-fast, multi-step chemical reactions that occur under non-equilibrium conditions. The formation of exothermic products during the first few picoseconds of the process prevents the hotspot from quenching, and within 30 ps a deflagration wave develops. Quite surprisingly, an artificial hot-spot matching the shock-induced one in size and thermodynamic conditions quenches; providing strong evidence that the dynamic nature of the loading plays a role in determining the criticality of the hotspot. To achieve time and lengths beyond what is possible in MD we developed a mesoscale model that incorporates chemical reactions at a coarse-grained level. We used this model to explore shock propagation on materials that can undergo volume-reducing, endothermic chemical reactions. The simulations show that such chemical reactions can attenuate the shockwave and characterize how the characteristics of the chemistry affect this behavior. We find that the amount of volume collapse and the activation energy are critical to weaken the shock, whereas the endothermicity of the reactions plays only a minor role. As in the reactive MD simulations, we find that the non-equilibrium state following the shock affects the nucleation of chemistry and, thus, the timescales for equilibration between various degrees of freedom affect the response of the material.

  12. The prompt GRB high energy emission from internal shocks: synchrotron vs inverse Compton component

    SciTech Connect

    Bosnjak, Zeljka; Daigne, Frederic; Dubus, Guillaume

    2009-05-25

    We performed a detailed calculation of gamma-ray burst (GRB) prompt emission in the framework of the internal shock scenario, focusing on the high energy (GeV) bands. In order to follow the evolution of the ultrarelativistic inhomogeneous wind, we combined a model for the dynamics of internal shocks with a detailed calculation of the radiative processes occurring in the shocked medium. We present the resulting synthetic GRB light curves and spectra. We show the spectral evolution that can be expected for different sets of microphysics parameters and parameters of the dynamical evolution, and how the relative importance of synchrotron and inverse Compton components is varying during a burst.

  13. Shock waves in a Z-pinch and the formation of high energy density plasma

    SciTech Connect

    Rahman, H. U.; Wessel, F. J.; Ney, P.; Presura, R.; Ellahi, Rahmat; Shukla, P. K.

    2012-12-15

    A Z-pinch liner, imploding onto a target plasma, evolves in a step-wise manner, producing a stable, magneto-inertial, high-energy-density plasma compression. The typical configuration is a cylindrical, high-atomic-number liner imploding onto a low-atomic-number target. The parameters for a terawatt-class machine (e.g., Zebra at the University of Nevada, Reno, Nevada Terawatt Facility) have been simulated. The 2-1/2 D MHD code, MACH2, was used to study this configuration. The requirements are for an initial radius of a few mm for stable implosion; the material densities properly distributed, so that the target is effectively heated initially by shock heating and finally by adiabatic compression; and the liner's thickness adjusted to promote radial current transport and subsequent current amplification in the target. Since the shock velocity is smaller in the liner, than in the target, a stable-shock forms at the interface, allowing the central load to accelerate magnetically and inertially, producing a magneto-inertial implosion and high-energy density plasma. Comparing the implosion dynamics of a low-Z target with those of a high-Z target demonstrates the role of shock waves in terms of compression and heating. In the case of a high-Z target, the shock wave does not play a significant heating role. The shock waves carry current and transport the magnetic field, producing a high density on-axis, at relatively low temperature. Whereas, in the case of a low-Z target, the fast moving shock wave preheats the target during the initial implosion phase, and the later adiabatic compression further heats the target to very high energy density. As a result, the compression ratio required for heating the low-Z plasma to very high energy densities is greatly reduced.

  14. Ultra-high-energy cosmic rays in a galactic wind and its termination shock

    NASA Technical Reports Server (NTRS)

    Jokipii, J. R.; Morfill, G.

    1987-01-01

    Results are reported from numerical modeling of the acceleration and transport of ultra-high-energy cosmic rays in a galactic wind and its termination shock. A two-dimensional (azimuthally symmetric) wind and spiral magnetic field, with a spherical termination shock, where the velocity drops suddenly, is assumed. The time-dependent cosmic-ray transport equation, including all major transport effects is solved using an implicit finite-difference scheme. Particles are injected as the shock of low energy, and the subsequent evolution of the distribution function is followed. Iron nuclei are readily accelerated at the shock to energies up to 100 billion GeV, and protons to 10 billion GeV. A major effect aiding the acceleration of these particles is the spiral of the magnetic field carried out by the wind, caused by the rotation of the Galaxy, with the result that the shock is nearly normal over most of its area. Increasing the magnetic field or rotation rate increases the maximum energy attainable. Anisotropies and energy densities of the particles are also discussed. It is concluded that the process is consistent with observations of ultra-high-energy cosmic rays.

  15. High Energy Concentration by Spherical Converging Shocks in a Shock Tube with Conically Shaped Test Section

    NASA Astrophysics Data System (ADS)

    Apazidis, N.; Kjellander, M.; Tillmark, N.

    Converging shock waves have been extensively investigated during the past several decades. Continuing interest in this research is motivated by the ability to obtain extreme conditions in gas in the focal region. In a pioneering work, Guderley [1], (1942) published a self-similar solution of the amplification of strong converging spherical and cylindrical shock waves close to the center of convergence. Another solution to the problem was presented by Stanyukovich [2], and since then a large number of analytical and numerical studies have been conducted, see e.g. Refs. [3, 4, 5, 6, 7, 8].

  16. Dynamics of High Energy Ions at a Structured Collisionless Shock Front

    NASA Astrophysics Data System (ADS)

    Gedalin, M.; Dröge, W.; Kartavykh, Y. Y.

    2016-07-01

    Ions undergoing first-order Fermi acceleration at a shock are scattered in the upstream and downstream regions by magnetic inhomogeneities. For high energy ions this scattering is efficient at spatial scales substantially larger than the gyroradius of the ions. The transition from one diffusive region to the other occurs via crossing the shock, and the ion dynamics during this crossing is mainly affected by the global magnetic field change between the upstream and downstream region. We study the effects of the fine structure of the shock front, such as the foot-ramp-overshoot profile and the phase-standing upstream and downstream magnetic oscillations. We also consider time dependent features, including reformation and large amplitude coherent waves. We show that the influence of the spatial and temporal structure of the shock front on the dependence of the transition and reflection on the pitch angle of the ions is already weak at ion speeds five times the speed of the upstream flow.

  17. Shock-induced decomposition of high energy materials: A ReaxFF molecular dynamics study

    NASA Astrophysics Data System (ADS)

    Tiwari, Subodh; Mishra, Ankit; Nomura, Ken-Ichi; Kalia, Rajiv; Nakano, Aiichiro; Vashishta, Priya

    Atomistic simulations of shock-induced detonation provide critical information about high-energy (HE) materials such as sensitivity, crystallographic anisotropy, detonation velocity, and reaction pathways. However, first principles methods are unable to handle systems large enough to describe shock appropriately. We report reactive-force-field ReaxFF simulations of shock-induced decomposition of 1, 3, 5-triamino-2, 3, 6-trinitrobenzene (TATB) and 1,1-diamino 2-2-dinitroethane (FOX-7) crystal. A flyer acts as mechanical stimuli to introduce a shock, which in turn initiated chemical reactions. Our simulation showed a shock speed of 9.8 km/s and 8.23 km/s for TATB and FOX-7, respectively. Reactivity analysis proves that FOX-7 is more reactive than TATB. Chemical reaction pathways analysis revealed similar pathways for the formation of N2 and H2O in both TATB and FOX-7. However, abundance of NH3 formation is specific to FOX-7. Large clusters formed during the reactions also shows different compositions between TATB and FOX-7. Carbon soot formation is much more pronounced in TATB. Overall, this study provides a detailed comparison between shock induced reaction pathway between FOX-7 and TATB. This work was supported by the Office of Naval Research Grant No. N000014-12-1-0555.

  18. High-energy effective action from scattering of QCD shock waves

    SciTech Connect

    Ian Balitsky

    2007-01-01

    At high energies, the relevant degrees of freedom are Wilson lines--infinite gauge links ordered along straight lines collinear to the velocities of colliding particles. The effective action for these Wilson lines is determined by the scattering of QCD shock waves. I develop the symmetric expansion of the effective action in powers of strength of one of the shock waves and calculate the leading term of the series. The corresponding first-order effective action, symmetric with respect to projectile and target, includes both up and down fan diagrams and pomeron loops.

  19. High-energy effective action from scattering of QCD shock waves

    SciTech Connect

    Ian Balitsky

    2005-06-16

    At high energies, the relevant degrees of freedom are Wilson lines - infinite gauge links ordered along straight lines collinear to the velocities of colliding particles. The effective action for these Wilson lines is determined by the scattering of QCD shock waves. I develop the symmetric expansion of the effective action in powers of strength of one of the shock waves and calculate the leading term of the series. The corresponding first-order effective action, symmetric with respect to projectile and target, includes both up and down fan diagrams and pomeron loops.

  20. High-energy effective action from scattering of QCD shock waves

    SciTech Connect

    Ian Balitsky

    2005-10-25

    At high energies, the relevant degrees of freedom are Wilson lines--infinite gauge links ordered along straight lines collinear to the velocities of colliding particles. The effective action for these Wilson lines is determined by the scattering of QCD shock waves. I develop the symmetric expansion of the effective action in powers of strength of one of the shock waves and calculate the leading term of the series. The corresponding first-order effective action, symmetric with respect to the projectile and target, includes both up and down fan diagrams and pomeron loops.

  1. High-energy effective action from scattering of QCD shock waves

    SciTech Connect

    Ian Balitsky

    2005-07-01

    At high energies, the relevant degrees of freedom are Wilson lines - infinite gauge links ordered along straight lines collinear to the velocities of colliding particles. The effective action for these Wilson lines is determined by the scattering of QCD shock waves. I develop the symmetric expansion of the effective action in powers of strength of one of the shock waves and calculate the leading term of the series. The corresponding first-order effective action, symmetric with respect to projectile and target, includes both up and down fan diagrams and pomeron loops.

  2. High-energy effective action from scattering of QCD shock waves

    SciTech Connect

    Ian Balitsky

    2005-05-15

    At high energies, the relevant degrees of freedom are Wilson lines - infinite gauge links ordered along straight lines collinear to the velocities of colliding particles. The effective action for these Wilson lines is determined by the scattering of QCD shock waves. I develop the symmetric expansion of the effective action in powers of strength of one of the shock waves and calculate the leading term of the series. The corresponding first-order effective action, symmetric with respect to projectile and target, includes both up and down fan diagrams and pomeron loops.

  3. HIGH-ENERGY NEUTRINO AND GAMMA-RAY TRANSIENTS FROM TRANS-RELATIVISTIC SUPERNOVA SHOCK BREAKOUTS

    SciTech Connect

    Kashiyama, Kazumi; Gao, Shan; Meszaros, Peter; Murase, Kohta; Horiuchi, Shunsaku

    2013-05-20

    Trans-relativistic shocks that accompany some supernovae (SNe) produce X-ray burst emissions as they break out in the dense circumstellar medium around the progenitors. This phenomenon is sometimes associated with peculiar low-luminosity gamma-ray bursts (LL GRBs). Here, we investigate the high-energy neutrino and gamma-ray counterparts of such a class of SNe. Just beyond the shock breakout radius, particle acceleration in the collisionless shock starts to operate in the presence of breakout photons. We show that protons may be accelerated to sufficiently high energies and produce high-energy neutrinos and gamma rays via the photomeson interaction. These neutrinos and gamma rays may be detectable from {approx}< 10 Mpc away by IceCube/KM3Net as multi-TeV transients almost simultaneously with the X-ray breakout, and even from {approx}< 100 Mpc away with follow-up observations by the Cherenkov Telescope Array using a wide-field sky monitor like Swift as a trigger. A statistical technique using a stacking approach could also be possible for the detection, with the aid of the SN optical/infrared counterparts. Such multi-messenger observations offer the possibility to probe the transition of trans-relativistic shocks from radiation-mediated to collisionless ones, and would also constrain the mechanisms of particle acceleration and emission in LL GRBs.

  4. Formation of reverse shocks in magnetized high energy density supersonic plasma flows

    NASA Astrophysics Data System (ADS)

    Lebedev, Sergey

    2013-10-01

    There has been considerable effort in developing experiments for studies of both collisionless and radiative shocks in high energy density plasmas (HEDP), but there is still very limited experimental information the concerning properties of HEDP shocks in the presence of a magnetic field. A new experimental platform, based on the use of supersonic ablation plasma flows in inverse wire array z-pinches, was developed for studies of shocks in magnetized HEDP plasmas in a well-defined and diagnosable 1-D interaction geometry. The mechanism of flow generation ensures that the plasma flow (MA ~ 5 - 6 , Vflow 100 km/s, ni ~ 1017 cm-3) has a frozen-in magnetic field at a level sufficient to affect the shocks formed in the interaction with conducting obstacles. Experiments show that in addition to the formation of a ``standard'' reverse shock in a stagnated HEDP plasma, the presence of the magnetic field leads to the formation of an additional shock-like feature in the upstream plasma. This shock is triggered by the pile-up of magnetic flux diffusing into the upstream flow, despite a relatively small initial level of the frozen-in magnetic field (the flow ram pressure being much greater than the magnetic field pressure). The thickness of this shock is much smaller than the m.f.p. for the ion-ion collisions, the shock is formed at a distance of ~c/ωpi from the foil and remains stationary for the duration of the experiment (~100 ns). The plasma parameters in the flow and in the shock are measured using optical Thomson scattering, two-color laser interferometry, monochromatic X-ray radiography and miniature magnetic probes. The quantitative data from this experiment, especially the spatial profiles of the density and of the flow velocity measured simultaneously in the upstream and downstream of the shock, will allow detailed verification of MHD and PIC codes used by the HEDP community. Supported by EPSRC Grant EP/G001324/1 and by the OFES under DOE Cooperative Agreement DESC

  5. Modeling of energy transfer in hypersonic shocks using high fidelity models

    NASA Astrophysics Data System (ADS)

    Zhu, Tong

    shock speeds above 9 km/s. High fidelity models for simulating both the dissociation and relaxation processes in N+N2 and N2+N2 systems are also investigated. Relaxation cross sections are computed and the 99 bin method shows good agreement between the bin-to-bin and state specific relaxation cross sections for both N-N2 and N2-N2 relaxation. These relaxation cross sections are then implemented separately in 0D DSMC isothermal relaxation cases. For both cases, the rotational and vibrational temperatures relax to the equilibrium heat bath temperature. For N-N 2 relaxations, the rotational temperature relaxes faster than the vibrational temperature at relatively low translational temperature and at a very similar rate to the vibrational temperature at relatively high temperature. These are in qualitative agreement with the observation of earlier experiments. The one-dimensional binning method and associated cross sections by Parsons et al. are implemented in DSMC simulations and the results are compared with those using the traditional TCE and LB models. For shock conditions similar to those in the experiments of Gorelov, it is found that the MD-QCT chemical reaction model predicts more dissociation and faster relaxation of the vibrational temperature. In the higher speed shock condition of the experiment by Fujita, the use of MD-QCT databases for both chemical reaction and internal energy predicts more dissociation in the downstream of the shock but slower relaxation of the rotational temperature. Also the rotational temperature in the shock region is in somewhat better agreement with the experiment of Fujita.

  6. Electron acceleration to high energies at quasi-parallel shock waves in the solar corona

    NASA Technical Reports Server (NTRS)

    Mann, G.; Classen, H.-T.

    1995-01-01

    In the solar corona shock waves are generated by flares and/or coronal mass ejections. They manifest themselves in solar type 2 radio bursts appearing as emission stripes with a slow drift from high to low frequencies in dynamic radio spectra. Their nonthermal radio emission indicates that electrons are accelerated to suprathermal and/or relativistic velocities at these shocks. As well known by extraterrestrial in-situ measurements supercritical, quasi-parallel, collisionless shocks are accompanied by so-called SLAMS (short large amplitude magnetic field structures). These SLAMS can act as strong magnetic mirrors, at which charged particles can be reflected and accelerated. Thus, thermal electrons gain energy due to multiple reflections between two SLAMS and reach suprathermal and relativistic velocities. This mechanism of accelerating electrons is discussed for circumstances in the solar corona and may be responsible for the so-called 'herringbones' observed in solar type 2 radio bursts.

  7. Hepato-porto-biliary changes following a high energy electrical shock.

    PubMed

    Alnuaimi, Osama; Lazăr, Mihai; Apostolescu, Cătălin; Scheau, Cristian; Adriana Ion, Daniela

    2011-12-24

    Present day increasing dependence on electricity, in both home and work environments, can lead, if the necessary precautions are not met, to a wide type of injuries, from cutaneous burns to important visceral lesions. We report the case of a 44 year-old male with cutaneous and severe visceral lesions, paresis and paresthesia of the right upper limb induced by a high energy electrical shock. No psychiatric manifestations were observed. This case followed an unusual course due to the particular evolution of the hepatic lesions, which included necrosis, abscesses, thrombosis and angiocholitis. PMID:24432255

  8. The formation of reverse shocks in magnetized high energy density supersonic plasma flows

    SciTech Connect

    Lebedev, S. V. E-mail: l.suttle10@imperial.ac.uk; Suttle, L.; Swadling, G. F.; Bennett, M.; Bland, S. N.; Burdiak, G. C.; Chittenden, J. P.; Grouchy, P. de; Hall, G. N.; Hare, J. D.; Kalmoni, N.; Niasse, N.; Patankar, S.; Smith, R. A.; Suzuki-Vidal, F.; Burgess, D.; Clemens, A.; Ciardi, A.; Sheng, L.; Yuan, J.; and others

    2014-05-15

    A new experimental platform was developed, based on the use of supersonic plasma flow from the ablation stage of an inverse wire array z-pinch, for studies of shocks in magnetized high energy density physics plasmas in a well-defined and diagnosable 1-D interaction geometry. The mechanism of flow generation ensures that the plasma flow (Re{sub M} ∼ 50, M{sub S} ∼ 5, M{sub A} ∼ 8, V{sub flow} ≈ 100 km/s) has a frozen-in magnetic field at a level sufficient to affect shocks formed by its interaction with obstacles. It is found that in addition to the expected accumulation of stagnated plasma in a thin layer at the surface of a planar obstacle, the presence of the magnetic field leads to the formation of an additional detached density jump in the upstream plasma, at a distance of ∼c/ω{sub pi} from the obstacle. Analysis of the data obtained with Thomson scattering, interferometry, and local magnetic probes suggests that the sub-shock develops due to the pile-up of the magnetic flux advected by the plasma flow.

  9. Acceleration of High Energy Cosmic Rays in the Nonlinear Shock Precursor

    NASA Astrophysics Data System (ADS)

    Derzhinsky, F.; Diamond, P. H.; Malkov, M. A.

    2006-10-01

    The problem of understanding acceleration of very energetic cosmic rays to energies above the 'knee' in the spectrum at 10^15-10^16eV remains one of the great challenges in modern physics. Recently, we have proposed a new approach to understanding high energy acceleration, based on exploiting scattering of cosmic rays by inhomogenities in the compressive nonlinear shock precursor, rather than by scattering across the main shock, as is conventionally assumed. We extend that theory by proposing a mechanism for the generation of mesoscale magnetic fields (krg<1, where rg is the cosmic ray gyroradius). The mechanism is the decay or modulational instability of resonantly generated Alfven waves scattering off ambient density perturbations in the precursors. Such perturbations can be produced by Drury instability. This mechanism leads to the generation of longer wavelength Alfven waves, thus enabling the confinement of higher energy particles. A simplified version of the theory, cast in the form of a Fokker-Planck equation for the Alfven population, will also be presented. This process also limits field generation on rg scales.

  10. Nonlinear effects in collision cascades and high energy shock waves during ta-C:H growth

    SciTech Connect

    Piazza, F.; Resto, O.; Morell, G.

    2007-07-01

    The surface topography of hydrogenated tetrahedral amorphous carbon (ta-C:H) is critical for various applications such as microelectromechanical devices, magnetic and optical storage devices, and medical implants. The surface topography of ta-C:H films deposited by distributed electron cyclotron resonance plasma from C{sub 2}H{sub 2} gas precursor was investigated. The effects of pressure, together with ion flux and energy, are studied by atomic force microscopy in relation to the structural evolution of the films. The results are compared with the predictions of the Edward-Wilkinson model [Proc. R. Soc. London, Ser. A 44, 1039 (1966)] recently proposed to account for ta-C:H growth and with previous interpretations based on hypersonic shock waves. The random hillocks observed on the smooth surfaces of ta-C:H films deposited at high pressure are thought to result from the interference of high energy shock waves triggered by C{sub 4}H{sub x}{sup +} ions that produce overlapping collision cascades and induce nonlinear effects.

  11. On ultra-high energy cosmic ray acceleration at the termination shock of young pulsar winds

    NASA Astrophysics Data System (ADS)

    Lemoine, Martin; Kotera, Kumiko; Pétri, Jérôme

    2015-07-01

    Pulsar wind nebulae (PWNe) are outstanding accelerators in Nature, in the sense that they accelerate electrons up to the radiation reaction limit. Motivated by this observation, this paper examines the possibility that young pulsar wind nebulae can accelerate ions to ultra-high energies at the termination shock of the pulsar wind. We consider here powerful PWNe, fed by pulsars born with ~ millisecond periods. Assuming that such pulsars exist, at least during a few years after the birth of the neutron star, and that they inject ions into the wind, we find that protons could be accelerated up to energies of the order of the Greisen-Zatsepin-Kuzmin cut-off, for a fiducial rotation period P ~ 1 msec and a pulsar magnetic field Bstar ~ 1013 G, implying a fiducial wind luminosity Lp ~ 1045 erg/s and a spin-down time tsd ~ 3× 107 s. The main limiting factor is set by synchrotron losses in the nebula and by the size of the termination shock; ions with Z>= 1 may therefore be accelerated to even higher energies. We derive an associated neutrino flux produced by interactions in the source region. For a proton-dominated composition, our maximum flux lies slightly below the 5-year sensitivity of IceCube-86 and above the 3-year sensitivity of the projected Askaryan Radio Array. It might thus become detectable in the next decade, depending on the exact level of contribution of these millisecond pulsar wind nebulae to the ultra-high energy cosmic ray flux.

  12. Investigation of efficient shock acceleration of ions using high energy lasers in low density targets

    NASA Astrophysics Data System (ADS)

    Antici, P.; Gauthier, M.; D'Humieres, E.; Albertazzi, B.; Beaucourt, C.; Böker, J.; Chen, S.; Dervieux, V.; Feugeas, J. L.; Glesser, M.; Levy, A.; Nicolai, P.; Romagnani, L.; Tikhonchuk, V.; Pepin, H.; Fuchs, J.

    2012-10-01

    Intense research is being conducted on sources of laser-accelerated ions and their applications that have the potential of becoming novel particle sources. In most experiments, a high intensity and short laser pulse interacts with a solid density target. It was recently shown that a promising way to accelerate ions to higher energies and in a collimated beam is to use under-dense or near-critical density targets instead of solid ones. In these conditions, simulations have revealed that protons are predicted to be accelerated by a collisionless shock mechanism that significantly increases their energy. We present recent experiments performed on the 100 TW LULI laser (France) and the TITAN facility at LLNL, USA. The near critical density plasma was prepared by exploding thin solid foils by a long laser pulse. The plasma density profile was controlled by varying the target thickness and the delay between the long and the short laser pulse. When exploding the target, we obtained proton energies that are comparable if not higher than what was obtained under similar laser conditions, but with solid targets which make them a promising candidate for an efficient proton source.

  13. GENERATION OF HIGH-ENERGY PHOTONS AT ULTRA-RELATIVISTIC SHOCK BREAKOUT IN SUPERNOVAE

    SciTech Connect

    Ohtani, Yukari; Suzuki, Akihiro; Shigeyama, Toshikazu

    2013-11-10

    We present theoretical expectations for non-thermal emission due to the bulk Comptonization at the ultra-relativistic shock breakout. We calculate the transfer of photons emitted from the shocked matter with a Monte Carlo code fully taking into account special relativity. As a hydrodynamical model, we use the self-similar solution of Nakayama and Shigeyama. Our calculations reveal that the spectral shape exhibits a double peak or a single peak depending on the shock temperature at breakout; if it is significantly smaller than the rest energy of an electron, the spectrum has a double peak. We also include a few sample light curves, and estimate the total radiation energy. In comparison with observations of γ-ray bursts, a part of the higher energy component in the spectra and the total energy can be reproduced by some parameter sets. Meanwhile, the lower energy counterpart in the Band function is not reproduced by our results and the duration seems too short to represent an entire γ-ray burst. Therefore the subsequent phase will constitute the lower energy part of the spectrum.

  14. THE HIGH ENERGY BUDGET ALLOCATIONS IN SHOCKS AND GAMMA RAY BURSTS

    SciTech Connect

    Eichler, David; Guetta, Dafne; Pohl, Martin

    2010-10-10

    The statistical distribution of energies among particles responsible for long gamma-ray burst (GRB) emission is analyzed in light of recent results of the Fermi Observatory. The all-sky flux, F{sub {gamma}}, recorded by the Gamma-Ray Burst Monitor (GBM) is shown, despite its larger energy range, to be not significantly larger than that reported by the Burst and Transient Explorer, suggesting a relatively small flux in the 3-30 MeV energy range. The present-day energy input rate in {gamma}-rays recorded by the GBM from long GRBs is found, assuming star formation rates in the literature, to be W-dot(0)=0.5 F{sub {gamma}H}/c=5x10{sup 42}erg Mpc{sup -3} yr{sup -1}. The Large Area Telescope fluence, when observed, is about 5%-10% per decade of the total, in good agreement with the predictions of saturated, nonlinear shock acceleration. The high-energy component of long GRBs, as measured by Fermi, is found to contain only {approx}10{sup -2.5} of the energy needed to produce ultrahigh-energy cosmic rays (UHECRs) above 4 EeV, assuming the latter to be extragalactic, when various numerical factors are carefully included, if the cosmic-ray source spectrum has a spectral index of -2. The observed {gamma}-ray fraction of the required UHECR energy is even smaller if the source spectrum is softer than E {sup -2}. The AMANDA II limits rule out such a GRB origin for UHECRs if much more than 10{sup -2} of the cosmic-ray energy goes into neutrinos that are within, and simultaneous with, the {gamma}-ray beam. It is suggested that 'orphan' neutrinos out of the {gamma}-ray beam might be identifiable via orphan afterglow or other wide angle signatures of GRBs in lieu of coincidence with prompt {gamma}-rays, and it is recommended that feasible single neutrino trigger criteria be established to search for such coincidences.

  15. Electronic energy gap of molecular hydrogen from electrical conductivity measurements at high shock pressures

    NASA Technical Reports Server (NTRS)

    Nellis, W. J.; Mitchell, A. C.; Mccandless, P. C.; Erskine, D. J.; Weir, S. T.

    1992-01-01

    Electrical conductivities were measured for liquid D2 and H2 shock compressed to pressures of 10-20 GPa (100-200 kbar), molar volumes near 8 cu cm/mol, and calculated temperatures of 2900-4600 K. The semiconducting energy gap derived from the conductivities is 12 eV, in good agreement with recent quasi-particle calculations and with oscillator frequencies measured in diamond-anvil cells.

  16. Observation and analysis of emergent coherent structures in a high-energy-density shock-driven planar mixing layer experiment.

    PubMed

    Doss, F W; Flippo, K A; Merritt, E C

    2016-08-01

    Coherent emergent structures have been observed in a high-energy-density supersonic mixing layer experiment. A millimeter-scale shock tube uses lasers to drive Mbar shocks into the tube volume. The shocks are driven into initially solid foam (60 mg/cm^{3}) hemicylinders separated by an Al or Ti metal tracer strip; the components are vaporized by the drive. Before the experiment disassembles, the shocks cross at the tube center, creating a very fast (ΔU> 200 km/s) shear-unstable zone. After several nanoseconds, an expanding mixing layer is measured, and after 10+ ns we observe the appearance of streamwise-periodic, spanwise-aligned rollers associated with the primary Kelvin-Helmholtz instability of mixing layers. We additionally image roller pairing and spanwise-periodic streamwise-aligned filaments associated with secondary instabilities. New closures are derived to connect length scales of these structures to estimates of fluctuating velocity data otherwise unobtainable in the high-energy-density environment. This analysis indicates shear-induced specific turbulent energies 10^{3}-10^{4} times higher than the nearest conventional experiments. Because of difficulties in continuously driving systems under these conditions and the harshness of the experimental environment limiting the usable diagnostics, clear evidence of these developing structures has never before been observed in this regime. PMID:27627387

  17. Observation and analysis of emergent coherent structures in a high-energy-density shock-driven planar mixing layer experiment

    NASA Astrophysics Data System (ADS)

    Doss, F. W.; Flippo, K. A.; Merritt, E. C.

    2016-08-01

    Coherent emergent structures have been observed in a high-energy-density supersonic mixing layer experiment. A millimeter-scale shock tube uses lasers to drive Mbar shocks into the tube volume. The shocks are driven into initially solid foam (60 mg /cm3 ) hemicylinders separated by an Al or Ti metal tracer strip; the components are vaporized by the drive. Before the experiment disassembles, the shocks cross at the tube center, creating a very fast (Δ U > 200 km/s) shear-unstable zone. After several nanoseconds, an expanding mixing layer is measured, and after 10+ ns we observe the appearance of streamwise-periodic, spanwise-aligned rollers associated with the primary Kelvin-Helmholtz instability of mixing layers. We additionally image roller pairing and spanwise-periodic streamwise-aligned filaments associated with secondary instabilities. New closures are derived to connect length scales of these structures to estimates of fluctuating velocity data otherwise unobtainable in the high-energy-density environment. This analysis indicates shear-induced specific turbulent energies 103-104 times higher than the nearest conventional experiments. Because of difficulties in continuously driving systems under these conditions and the harshness of the experimental environment limiting the usable diagnostics, clear evidence of these developing structures has never before been observed in this regime.

  18. Shock Geometry, Seed Populations, and the Origin of Variable Elemental Composition at High Energies in Large Gradual Solar Particle Events

    NASA Astrophysics Data System (ADS)

    Tylka, A. J.; Cohen, C. M. S.; Dietrich, W. F.; Lee, M. A.; Maclennan, C. G.; Mewaldt, R. A.; Ng, C. K.; Reames, D. V.

    2005-05-01

    Above a few tens of MeV per nucleon, large, gradual solar energetic particle (SEP) events are highly variable in their spectral characteristics and elemental composition. The origin of this variability has been a matter of intense and ongoing debate. In this paper, we propose that this variability arises from the interplay of two factors-shock geometry and a compound seed population, typically comprising both solar-wind and flare suprathermals. Whereas quasi-parallel shocks generally draw their seeds from solar-wind suprathermals, quasi-perpendicular shocks-by requiring a higher initial speed for effective injection-preferentially accelerate seed particles from flares. Solar-wind and flare seed particles have distinctive compositional characteristics, which are then reflected in the accelerated particles. We first examine our hypothesis in the context of particles locally accelerated near 1 AU by traveling interplanetary shocks. We illustrate the implications of our hypothesis for SEPs with two very large events, 2002 April 21 and 2002 August 24. These two events arise from very similar solar progenitors but nevertheless epitomize extremes in high-energy SEP variability. We then test our hypothesis with correlation studies based on observations of 43 large SEP events in 1997-2003 by the Advanced Composition Explorer, Wind, the Interplanetary Monitoring Platform 8, and GOES. We consider correlations among high-energy Fe/O, event size, spectral characteristics, the presence of GeV protons, and event duration at high energies. The observed correlations are all qualitatively consistent with our hypothesis. Although these correlation studies cannot be construed as proof of our hypothesis, they certainly confirm its viability. We also examine the alternative hypothesis in which a direct flare component-rather than flare particles subsequently processed through a shock-dominates at high energies. This alternative would produce compositional characteristics similar to

  19. THE LONG AND THE SHORT OF THE HIGH-ENERGY EMISSION IN GRB090926A: AN EXTERNAL SHOCK

    SciTech Connect

    Sacahui, J. R.; Fraija, N.; Gonzalez, M. M.; Lee, W. H. E-mail: nifraija@astro.unam.mx E-mail: wlee@astro.unam.mx

    2012-08-20

    Synchrotron self-Compton (SSC) emission from a reverse shock has been suggested as the origin for the high-energy component lasting 2 s in the prompt phase of GRB98080923. The model describes spectral indices, fluxes, and the duration of the high-energy component as well as a long keV tail present in the prompt phase of GRB980923. Here, we present an extension of this model to describe the high-energy emission of GRB090926A. We argue that the emission consists of two components, one with a duration less than 1 s during the prompt phase, and a second, longer-lasting GeV phase lasting hundred of seconds after the prompt phase. The short high-energy phase can be described as SSC emission from a reverse shock similar to that observed in GRB980923, while the longer component arises from the forward shock. The main assumption is that the jet is magnetized and evolves in the thick-shell case, and the calculated fluxes and break energies are all consistent with the observed values. A comparison between the resulting parameters obtained for GRB980923 and GRB090926A suggests differences in burst tails that could be attributable to the circumburst medium, and this could account for previous analyses reported in the literature for other bursts. We find that the density of the surrounding medium inferred from the observed values associated with the forward shock agrees with standard values for host galaxies such as the one associated with GRB090926A.

  20. Energy of a shock wave generated in different metals under irradiation by a high-power laser pulse

    SciTech Connect

    Gus'kov, S. Yu. Kasperczuk, A.; Pisarczyk, T.; Borodziuk, S.; Ullschmied, J.; Krousky, E.; Masek, K.; Pfeifer, M.; Skala, J.; Pisarczyk, P.

    2007-10-15

    The energies of a shock wave generated in different metals under irradiation by a high-power laser beam were determined experimentally. The experiments were performed with the use of targets prepared from a number of metals, such as aluminum, copper, silver and lead (which belong to different periods of the periodic table) under irradiation by pulses of the first and third harmonics of the PALS iodine laser at a radiation intensity of approximately 10{sup 14} W/cm{sup 2}. It was found that, for heavy metals, like for light solid materials, the fraction of laser radiation energy converted into the energy of a shock wave under irradiation by a laser pulse of the third harmonic considerably (by a factor of 2-3) exceeds the fraction of laser radiation energy converted under irradiation by a laser pulse of the first harmonic. The influence of radiation processes on the efficiency of conversion of the laser energy into the energy of the shock wave was analyzed.

  1. Quasiperpendicular High Mach Number Shocks.

    PubMed

    Sulaiman, A H; Masters, A; Dougherty, M K; Burgess, D; Fujimoto, M; Hospodarsky, G B

    2015-09-18

    Shock waves exist throughout the Universe and are fundamental to understanding the nature of collisionless plasmas. Reformation is a process, driven by microphysics, which typically occurs at high Mach number supercritical shocks. While ongoing studies have investigated this process extensively both theoretically and via simulations, their observations remain few and far between. In this Letter we present a study of very high Mach number shocks in a parameter space that has been poorly explored and we identify reformation using in situ magnetic field observations from the Cassini spacecraft at 10 AU. This has given us an insight into quasiperpendicular shocks across 2 orders of magnitude in Alfvén Mach number (M_{A}) which could potentially bridge the gap between modest terrestrial shocks and more exotic astrophysical shocks. For the first time, we show evidence for cyclic reformation controlled by specular ion reflection occurring at the predicted time scale of ~0.3τ_{c}, where τ_{c} is the ion gyroperiod. In addition, we experimentally reveal the relationship between reformation and M_{A} and focus on the magnetic structure of such shocks to further show that for the same M_{A}, a reforming shock exhibits stronger magnetic field amplification than a shock that is not reforming. PMID:26430997

  2. Quasiperpendicular High Mach Number Shocks

    NASA Astrophysics Data System (ADS)

    Sulaiman, A. H.; Masters, A.; Dougherty, M. K.; Burgess, D.; Fujimoto, M.; Hospodarsky, G. B.

    2015-09-01

    Shock waves exist throughout the Universe and are fundamental to understanding the nature of collisionless plasmas. Reformation is a process, driven by microphysics, which typically occurs at high Mach number supercritical shocks. While ongoing studies have investigated this process extensively both theoretically and via simulations, their observations remain few and far between. In this Letter we present a study of very high Mach number shocks in a parameter space that has been poorly explored and we identify reformation using in situ magnetic field observations from the Cassini spacecraft at 10 AU. This has given us an insight into quasiperpendicular shocks across 2 orders of magnitude in Alfvén Mach number (MA ) which could potentially bridge the gap between modest terrestrial shocks and more exotic astrophysical shocks. For the first time, we show evidence for cyclic reformation controlled by specular ion reflection occurring at the predicted time scale of ˜0.3 τc , where τc is the ion gyroperiod. In addition, we experimentally reveal the relationship between reformation and MA and focus on the magnetic structure of such shocks to further show that for the same MA , a reforming shock exhibits stronger magnetic field amplification than a shock that is not reforming.

  3. Collisionless shocks driven by 800 nm laser pulses generate high-energy carbon ions

    SciTech Connect

    Zhang, H.; Shen, B. F. Wang, W. P.; Xu, Y.; Liu, Y. Q.; Liang, X. Y.; Leng, Y. X.; Li, R. X. Xu, Z. Z.; Yan, X. Q.; Chen, J. E.

    2015-01-15

    We present experimental studies on ion acceleration from diamond-like carbon (DLC) foils irradiated by 800 nm, linearly polarized laser pulses with peak intensity of 1.7 × 10{sup 19 }W/cm{sup 2} to 3.5 × 10{sup 19 }W/cm{sup 2} at oblique incidence. Diamond-like carbon foils are heated by the prepulse of a high-contrast laser pulse and expand to form plasmas of near-critical density caused by thermal effect before the arrival of the main pulse. It is demonstrated that carbon ions are accelerated by a collisionless shock wave in slightly overdense plasma excited by forward-moving hot electrons generated by the main pulse.

  4. Reduction of high-energy shock-wave-induced renal tubular injury by selenium.

    PubMed

    Strohmaier, W L; Lahme, S; Weidenbach, P M; Bichler, K H

    1999-10-01

    In shock-wave-induced renal injury cavitation-generated free radicals play an important role. Using an in vitro model with Madin-Darby canine kidney (MDCK) cells, we investigated the influence of selenium, a free radical scavenger, in shock-wave-induced tubular cell injury. Suspensions of MDCK cells (33 x 10(6) cells/ml) were placed in small containers (volume 1.1 ml) for shock wave exposure. Two groups of 12 containers each were examined: (1) control (no medication), (2) selenium (0.4 microg/ml nutrient medium). Six containers in each group were exposed to shock waves (impulse rate 256, frequency 60 Hz, generator voltage 18 kV), while the other six containers in each group served as a control. After shock wave exposure, the concentration of cellular enzymes such as lactate dehydrogenase (LDH), N-acetyl-beta-glucosaminidase (NAG), glutamate oxaloacetate transaminase (GOT) and glutamate lactate dehydrogenase (GLDH) in the nutrient medium was examined. Following shock wave exposure there was a significant rise in LDH, NAG, GOT and GLDH concentrations. Selenium reduced this enzyme leakage significantly. Thus we conclude that selenium protects renal tubular cells against shock-wave-induced injury. Since selenium is an essential part of glutathione peroxidase, this effect seems to be mediated by a reduction in reactive oxygen species. PMID:10550528

  5. Contributions from Ultraviolet Spectroscopy to the Prediction of High-energy Proton Hazards from CME Shocks

    NASA Astrophysics Data System (ADS)

    Lin, J.; Raymond, J. C.; Cranmer, S. R.; Kohl, J. L.

    2004-05-01

    A significant potential hazard to astronauts and their equipment in interplanetary space is the relativistic proton flux produced by coronal mass ejections (CMEs) and solar flares. The longest-duration phase of solar energetic particle (SEP) activity is believed to come from the CME shock as it propagates through the extended corona and heliosphere. Ultraviolet spectroscopy by SOHO has revealed a means for: (1) detecting and characterizing CME shocks in the corona, and (2) determining the plasma conditions in the pre-CME corona which are needed to understand the formation and evolution of shocks. Such remote sensing - combined with models of SEP acceleration and transport - can be used to predict the strength, duration, and production sites of the radiation. This poster describes the specific means by which ultraviolet spectroscopy and other remote-sensing data can be used to determine the inputs and boundary conditions for individual events (such as the October-November 2003 storms) in existing SEP model codes. We also discuss an additional potential source of SEP radiation associated with electric fields in the current sheets that form in flare regions in the wake of CME. Both observations and model calculations show that the reconnection-induced electric field can reach a maximum strength of a few V/cm within tens of minutes after the onset of the eruption, then decreases gradually over several hours. SEPs produced in these regions may account for X-rays and γ -rays observed prior to the formation of CME shocks. Ultraviolet spectroscopy has been shown to provide constraints on the plasma properties in all of the above CME features. This work is supported by NASA under grant NAG5-12865 to the Smithsonian Astrophysical Observatory, by Agenzia Spaziale Italiana, and by the Swiss contribution to ESA's PRODEX program.

  6. The High Energy Density science instrument at the European XFEL, Hamburg, Germany: a new platform for shock compression research

    NASA Astrophysics Data System (ADS)

    Appel, Karen; Nakatsutsumi, Motoaki; Priebe, Gerd; Pelka, Alexander; Thorpe, Ian; Tschentscher, Thomas

    2015-06-01

    The High Energy Density science instrument (HED) at the European XFEL, Hamburg, Germany will provide unique experimental possibilities for the investigation of near solid material driven to extreme states and will also establish a new platform to study materials response to shock compression. HED is located at the SASE2 undulator, which provides up to 27000 pulses per second with about 1012 photons per pulse, photon energies between 3 and 24 keV and pulse lengths of 2 - 100 fs. Self-seeding is foreseen, as well as natural bandwidth (BW) SASE radiation. In addition, energy BW of 10-4 and 10-6 will be available through monochromators. Focussing is based on CRL optics, which will allow to provide beam sizes of 2 μm, 10-20 μm and 150 - 260 μm at the sample position. Samples will be driven to extreme states by different types of optical lasers (either 200 kHz/3 mJ/15 fs, 10 Hz/100 TW/30 fs or 10 Hz/100J/ns), the pump-probe FEL beam (delays of up to 2 -23 ps for 5 -20 keV using a split-and-delay unit) and pulsed magnetic fields (up to 50 T). Pump probe experiments can be performed at adapted repetition rates (4.5 MHz, 1 - 10 Hz, single shot). X-ray techniques comprise diffraction, imaging and spectroscopic methods. User operation is planned for fall 2017. We will present the science case of HED, the current layout and present ideas on first shock compression experiments.

  7. High energy neutrino emission and neutrino background from gamma-ray bursts in the internal shock model

    SciTech Connect

    Murase, Kohta; Nagataki, Shigehiro

    2006-03-15

    High energy neutrino emission from gamma-ray bursts (GRBs) is discussed. In this paper, by using the simulation kit GEANT4, we calculate proton cooling efficiency including pion-multiplicity and proton-inelasticity in photomeson production. First, we estimate the maximum energy of accelerated protons in GRBs. Using the obtained results, neutrino flux from one burst and a diffuse neutrino background are evaluated quantitatively. We also take account of cooling processes of pion and muon, which are crucial for resulting neutrino spectra. We confirm the validity of analytic approximate treatments on GRB fiducial parameter sets, but also find that the effects of multiplicity and high-inelasticity can be important on both proton cooling and resulting spectra in some cases. Finally, assuming that the GRB rate traces the star formation rate, we obtain a diffuse neutrino background spectrum from GRBs for specific parameter sets. We introduce the nonthermal baryon-loading factor, rather than assume that GRBs are main sources of ultra-high energy cosmic rays (UHECRs). We find that the obtained neutrino background can be comparable with the prediction of Waxman and Bahcall, although our ground in estimation is different from theirs. In this paper, we study on various parameters since there are many parameters in the model. The detection of high energy neutrinos from GRBs will be one of the strong evidences that protons are accelerated to very high energy in GRBs. Furthermore, the observations of a neutrino background has a possibility not only to test the internal shock model of GRBs but also to give us information about parameters in the model and whether GRBs are sources of UHECRs or not.

  8. Strong shock generation by fast electron energy deposition

    SciTech Connect

    Fox, T. E.; Pasley, J.; Robinson, A. P. L.

    2013-12-15

    It has been suggested that fast electrons may play a beneficial role in the formation of the ignitor shock in shock ignition owing to the high areal density of the fuel at the time of the ignitor pulse. In this paper, we extend previous studies which have focused on monoenergetic electron sources to populations with extended energy distributions. In good agreement with analytic scalings, we show that strong shocks can be produced with peak pressures of a few hundred Mbar to over 1 Gbar using fast electron intensities of 1–10 PW/cm{sup 2} in a uniform deuterium-tritium plasma at 10 g/cm{sup 3}. However, the length required for shock formation increases with fast electron temperature. As this shock formation distance becomes comparable to the target size, the shock is not able to fully develop, and this implies a limit on the ability of fast electrons to aid shock formation.

  9. Prospects for detection of very high-energy emission from GRB in the context of the external shock model

    NASA Astrophysics Data System (ADS)

    Galli, A.; Piro, L.

    2008-10-01

    Context: The detection of the 100 GeV-TeV emission by a gamma-ray burst (GRB) will provide an unprecedented opportunity to study the nature of the central engine and the interaction between the relativistic flow and the environment of the burst's progenitor. Aims: In this paper we show that there are exciting prospects of detecting from the burst by MAGIC high-energy (HE) emission during the early X-ray flaring activity and, later, during the normal afterglow phase. We also identify the best observational strategy: trigger conditions and time period of observation. Methods: We determine the expected HE emission from the flaring and afterglow phases of GRBs in the context of the external shock scenario and compare them with the MAGIC threshold. Results: We find that an X-ray flare with the average properties of the class can be detected in the 100 GeV range by MAGIC, provided that z ≲ 0.7. The requested observational window with MAGIC should then start from 10-20 s after the burst and cover about 1000-2000 s. Furthermore, we demonstrate that there are solid prospects of detecting the late afterglow emission in the same energy range for most of the bursts with z ≲ 0.5 if the density of the external medium is n ≳ a few cm-3. In this case, the MAGIC observation shall extend to about 10-20 ks. We provide recipes for tailoring this prediction to the observational properties of each burst, in particular the fluence in the prompt emission and the redshift, thus allowing an almost real time decision procedure to decide whether to continue the follow-up observation of a burst at late times.

  10. Shock compaction of high- Tc superconductors

    SciTech Connect

    Weir, S.T.; Nellis, W.J.; McCandless, P.C.; Brocious, W.F. ); Seaman, C.L.; Early, E.A.; Maple, M.B. . Dept. of Physics); Kramer, M.J. ); Syono, Y.; Kikuchi, M. )

    1990-09-01

    We present the results of shock compaction experiments on high-{Tc} superconductors and describe the way in which shock consolidation addresses critical problems concerning the fabrication of high J{sub c} bulk superconductors. In particular, shock compaction experiments on YBa{sub 2}Cu{sub 3}O{sub 7} show that shock-induced defects can greatly increase intragranular critical current densities. The fabrication of crystallographically aligned Bi{sub 2}Sr{sub 2}CaCu{sub 2}O{sub 8} samples by shock-compaction is also described. These experiments demonstrate the potential of the shock consolidation method as a means for fabricating bulk high-{Tc} superconductors having high critical current densities.

  11. Magnetized collisionless shock studies using high velocity plasmoids

    NASA Astrophysics Data System (ADS)

    Weber, Thomas; Intrator, Thomas; Gao, Kevin

    2012-10-01

    Magnetized collisionless shocks are ubiquitous throughout the cosmos and are observed to accelerate particles to relativistic velocities, amplify magnetic fields, transport energy, and create non-thermal distributions. They exhibit transitional scale lengths much shorter than the collisional mean free path and are mediated by collective interactions rather than Coulomb collisions. The Magnetized Shock Experiment (MSX) leverages advances in Field Reversed Configuration (FRC) plasmoid formation and acceleration to produce highly supersonic and super-Alfvènic supercritical shocks with pre-existing magnetic field at perpendicular, parallel or oblique angles to the direction of propagation. Adjustable shock speed, density, and magnetic field provide unique access to a range of parameter space relevant to a variety of naturally occurring shocks. This effort examines experimentally, analytically, and numerically the physics of collisionless shock formation, structure, and kinetic effects in a laboratory setting and draw comparisons between experimental data and astronomical observations. Approved for Public Release: LA-UR-12-22886

  12. Heterogeneous Shock Energy Deposition in Shock Wave Consolidation of Metal Powders.

    NASA Astrophysics Data System (ADS)

    Mutz, Andrew Howard

    Shock wave consolidation of powder is a high deformation rate process in which a shock wave generated by an explosive or a colliding projectile rapidly densifies and bonds together the powder particles into a solid compact. The deposition of the shock energy during this process is highly inhomogeneous on the powder particle scale. Evidence of the extent and pattern of the energy deposition was provided by recovery experiments performed using a crystalline metallic glass forming alloy, and analyzed using a heat flow model. The energy deposited during the shock wave passage was best modeled as deposited partly into the particle bulk and partly onto particle surfaces. To investigate this inhomogeneity, and the powder parameters which influence it, a propellant driven gas gun was designed, built and utilized. The planarity of the shock waves produced using the targets designed for the gun was established. Powder - powder thermocouples were impacted with powders of varying sizes to establish the effect of particle size on energy deposition. Small particles in contact with large ones were inferred to absorb the greater fraction of shock energy. Hardened and unhardened steel powder was shocked to investigate the effect of particle hardness on energy distribution. The recovered compacts were not measurably affected by the initial hardness. Compaction experiments were performed on a Ni based super-alloy and on a SiC reinforced Ti matrix composite to test some of the practical applications of the process and the target designs developed. Superior tensile properties were observed in the shock consolidated and heat treated Ni based 718 alloy. The SiC reinforced composite was recovered in the intended net shape with no macro-cracks in the compact body, but with fractured SiC particles.

  13. Ferrites based infrared radiation coatings with high emissivity and high thermal shock resistance and their application on energy-saving kettle

    NASA Astrophysics Data System (ADS)

    Zhang, Jianyi; Fan, Xi'an; Lu, Lei; Hu, Xiaoming; Li, Guangqiang

    2015-07-01

    Starting from Fe2O3, MnO2, Co2O3 and NiO powders, the ferrites based infrared radiation coatings with high emissivity and high thermal shock resistance were successfully prepared on the surface of carbon steel by high velocity oxy-fuel spraying (HVOF). The coating thickness was about 120-150 μm and presented a typical flat lamellar structure. The coating surface was rough and some submicron grade grains distributed on it. The infrared emissivity of the ferrites based coating by HVOF was over 0.74 in 3-20 μm waveband at 800 °C, which was obviously higher than that of the coating by brushing process in the short waveband. The bonding strength was 30.7 MPa between the coating and substrate, which was five times more than that of conventional coatings by brushing process. The combined effect of the superior bonding strength, typical lamellar structure, pre-existing microcracks and newly generated pores made the cycle times reach 27 when the coating samples were quenched from 1000 °C using water. Lastly, the infrared radiation coatings were applied on the underside of household kettle, and the energy-saving efficiency could reach 30.5%. The ferrites based infrared radiation coatings obtained in this work are good candidates for saving energy in the field of cookware and industrial high temperature furnace.

  14. Simulations of high-gain shock-ignited inertial-confinement-fusion implosions using less than 1 MJ of direct KrF-laser energy

    NASA Astrophysics Data System (ADS)

    Bates, Jason W.; Schmitt, Andrew J.; Fyfe, David E.; Obenschain, Steve P.; Zalesak, Steve T.

    2010-06-01

    In this paper, we report on recent numerical simulations of inertial-confinement-fusion (ICF) implosions using the FAST radiation hydrocode at the U.S. Naval Research Laboratory. Our study focuses on three classes of shock-ignited target designs utilizing less than 1 MJ of direct, krypton-fluoride (KrF) laser energy, which was "zoomed" to maximize the coupling efficiency. In the shock-ignition approach [R. Betti, C.D. Zhou, K.S. Anderson, et al., Phys. Rev. Lett. 98 (2007) 155001], a moderate-intensity, compressive laser pulse is followed by a short-duration high-intensity spike that launches a spherically-convergent shock wave to ignite a thick shell of compressed fuel. Such an arrangement appears to offer several significant advantages, including a low ignition threshold, high gain, and less susceptibility to the deleterious effects of hydrodynamic and laser-plasma instabilities. According to one-dimensional simulations, fusion gains over 200 can be achieved with shock-ignited targets using less than 750 kJ of laser energy. This represents a significant improvement in performance over conventional centrally-ignited designs. To examine the stability of these targets, several two-dimensional simulations were also performed that incorporated realistic perturbation sources such as laser imprinting and roughness spectra for inner/outer pellet surfaces. Although the simulations indicate that appreciable low-mode distortion of the fuel shell can occur at late time as a result of these perturbations, high gains are still achieved in many cases owing to the low in-flight aspect ratios of shock-ignited targets. We should remark, though, that the high convergence ratios of these same designs suggest that other sources of low-mode asymmetries, which were not considered in this study (e.g., beam misalignment and energy-balance errors), may be important in determining overall pellet stability and performance. We discuss these issues, as well as other salient design

  15. Internal energy relaxation in shock wave structure

    SciTech Connect

    Josyula, Eswar Suchyta, Casimir J.; Boyd, Iain D.; Vedula, Prakash

    2013-12-15

    The Wang Chang-Uhlenbeck (WCU) equation is numerically integrated to characterize the internal structure of Mach 3 and Mach 5 shock waves in a gas with excitation in the internal energy states for the treatment of inelastic collisions. Elastic collisions are modeled with the hard sphere collision model and the transition rates for the inelastic collisions modified appropriately using probabilities based on relative velocities of the colliding particles. The collision integral is evaluated by the conservative discrete ordinate method [F. Tcheremissine, “Solution of the Boltzmann kinetic equation for high-speed flows,” Comput. Math. Math. Phys. 46, 315–329 (2006); F. Cheremisin, “Solution of the Wang Chang-Uhlenbeck equation,” Dokl. Phys. 47, 487–490 (2002)] developed for the Boltzmann equation. For the treatment of the diatomic molecules, the internal energy modes in the Boltzmann equation are described quantum mechanically given by the WCU equation. As a first step in the treatment of the inelastic collisions by the WCU equation, a two- and three-quantum system is considered to study the effect of the varying of (1) the inelastic cross section and (2) the energy gap between the quantum energy states. An alternative method, the direct simulation Monte Carlo method, is used for the Mach 3 shock wave to ensure the consistency of implementation in the two methods and there is an excellent agreement between the two methods. The results from the WCU implementation showed consistent trends for the Mach 3 and Mach5 standing shock waves simulations. Inelastic contributions change the downstream equilibrium state and allow the flow to transition to the equilibrium state further upstream.

  16. Turbulent energy generated by accelerations and shocks

    SciTech Connect

    Mikaelian, K.O.

    1986-10-08

    The turbulent energy generated at the interface between two fluids undergoing a constant acceleration or a shock is calculated. Assuming linear density profiles in the mixed region we find E/sub turbulent//E/sub directed/ = 2.3A/sup 2/% (constant acceleration) and 9.3A/sup 2/% (shock), where A is the Atwood number. Diffusion models predict somewhat less turbulent energy and a density profile with a tail extending into the lower density fluid. Eddy sizes are approximately 27% (constant acceleration) and 17% (shock) of the mixing depth into the heavier fluid. 6 refs., 3 figs.

  17. High spatial resolution, high energy synchrotron x-ray diffraction characterization of residual strains and stresses in laser shock peened Inconel 718SPF alloy

    NASA Astrophysics Data System (ADS)

    Gill, Amrinder S.; Zhou, Zhong; Lienert, Ulrich; Almer, Jonathan; Lahrman, David F.; Mannava, S. R.; Qian, Dong; Vasudevan, Vijay K.

    2012-04-01

    Laser shock peening (LSP) is an advanced surface enhancement technique used to enhance the fatigue strength of metal parts by imparting deep compressive residual stresses. In the present study, LSP was performed on IN718 SPF alloy, a fine grained nickel-based superalloy, with three different power densities and depth resolved residual strain and stress characterization was conducted using high energy synchrotron x-ray diffraction in beam line 1-ID-C at the Advanced Photon Source at the Argonne National laboratory. A fine probe size and conical slits were used to non-destructively obtain data from specific gauge volumes in the samples, allowing for high-resolution strain measurements. The results show that LSP introduces deep compressive residual stresses and the magnitude and depth of these stresses depend on the energy density of the laser. The LSP induced residual stresses were also simulated using three-dimensional nonlinear finite element analysis, with employment of the Johnson-Cook model for describing the nonlinear materials constitutive behavior. Good agreement between the experimental and simulated data was obtained. These various results are presented and discussed.

  18. Turbulent energy flux generated by shock/homogeneous-turbulence interaction

    NASA Astrophysics Data System (ADS)

    Sinha, Krishnendu; Quadros, Russell; Larsson, Johan

    2015-11-01

    High-speed turbulent flows with shock waves are characterized by high localized surface heat transfer rates. Computational predictions are often inaccurate due to the limitations in modeling of the unclosed turbulent energy flux in the highly non-equilibrium regions of shock interaction. In this paper, we investigate the turbulent energy flux generated when homogeneous isotropic turbulence passes through a nominally normal shock wave. We use linear interaction analysis where the incoming turbulence is idealized as being composed of a collection of two-dimensional planar vorticity waves, and the shock wave is taken to be a discontinuity. The nature of the post-shock turbulent energy flux is predicted to be strongly dependent on the incidence angle of the incoming waves. The energy flux correlation is also decomposed into its vortical, entropy and acoustic contributions to understand its rapid non-monotonic variation behind the shock. Three-dimensional statistics, calculated by integrating two-dimensional results over a prescribed upstream energy spectrum, are compared with available direct numerical simulation data. A detailed budget of the governing equation is also considered in order to gain insight into the underlying physics.

  19. MAGNETIC METHOD FOR PRODUCING HIGH VELOCITY SHOCK WAVES IN GASES

    DOEpatents

    Josephson, V.

    1960-01-26

    A device is described for producing high-energy plasmas comprising a tapered shock tube of dielectric material and having a closed small end, an exceedingly low-inductance coll supported about and axially aligned with the small end of the tapered tube. an elongated multiturn coil supported upon the remninder of the exterior wall of the shock tube. a potential source and switch connected in series with the low-inductance coil, a potential source and switch connected in series with the elongated coil, means for hermetically sealing the large end of the tube, means for purging the tube of gases, and means for admitting a selected gas into the shock tube.

  20. Detonation in shocked homogeneous high explosives

    SciTech Connect

    Yoo, C.S.; Holmes, N.C.; Souers, P.C.

    1995-11-01

    We have studied shock-induced changes in homogeneous high explosives including nitromethane, tetranitromethane, and single crystals of pentaerythritol tetranitrate (PETN) by using fast time-resolved emission and Raman spectroscopy at a two-stage light-gas gun. The results reveal three distinct steps during which the homogeneous explosives chemically evolve to final detonation products. These are (1) the initiation of shock compressed high explosives after an induction period, (2) thermal explosion of shock-compressed and/or reacting materials, and (3) a decay to a steady-state representing a transition to the detonation of uncompressed high explosives. Based on a gray-body approximation, we have obtained the CJ temperatures: 3800 K for nitromethane, 2950 K for tetranitromethane, and 4100 K for PETN. We compare the data with various thermochemical equilibrium calculations. In this paper we will also show a preliminary result of single-shot time-resolved Raman spectroscopy applied to shock-compressed nitromethane.

  1. Symmetry of spherically converging shock waves through reflection, relating to the shock ignition fusion energy scheme.

    PubMed

    Davie, C J; Evans, R G

    2013-05-01

    We examine the properties of perturbed spherically imploding shock waves in an ideal fluid through the collapse, bounce, and development into an outgoing shock wave. We find broad conservation of the size and shape of ingoing and outgoing perturbations when viewed at the same radius. The outgoing shock recovers the velocity of the unperturbed shock outside the strongly distorted core. The results are presented in the context of the robustness of the shock ignition approach to inertial fusion energy. PMID:23683207

  2. Validating density-functional theory simulations at high energy-density conditions with liquid krypton shock experiments to 850 GPa on Sandia's Z machine

    SciTech Connect

    Mattsson, Thomas R.; Root, Seth; Mattsson, Ann E.; Shulenburger, Luke; Magyar, Rudolph J.; Flicker, Dawn G.

    2014-11-11

    We use Sandia's Z machine and magnetically accelerated flyer plates to shock compress liquid krypton to 850 GPa and compare with results from density-functional theory (DFT) based simulations using the AM05 functional. We also employ quantum Monte Carlo calculations to motivate the choice of AM05. We conclude that the DFT results are sensitive to the quality of the pseudopotential in terms of scattering properties at high energy/temperature. A new Kr projector augmented wave potential was constructed with improved scattering properties which resulted in excellent agreement with the experimental results to 850 GPa and temperatures above 10 eV (110 kK). In conclusion, we present comparisons of our data from the Z experiments and DFT calculations to current equation of state models of krypton to determine the best model for high energy-density applications.

  3. Validating density-functional theory simulations at high energy-density conditions with liquid krypton shock experiments to 850 GPa on Sandia's Z machine

    DOE PAGESBeta

    Mattsson, Thomas R.; Root, Seth; Mattsson, Ann E.; Shulenburger, Luke; Magyar, Rudolph J.; Flicker, Dawn G.

    2014-11-11

    We use Sandia's Z machine and magnetically accelerated flyer plates to shock compress liquid krypton to 850 GPa and compare with results from density-functional theory (DFT) based simulations using the AM05 functional. We also employ quantum Monte Carlo calculations to motivate the choice of AM05. We conclude that the DFT results are sensitive to the quality of the pseudopotential in terms of scattering properties at high energy/temperature. A new Kr projector augmented wave potential was constructed with improved scattering properties which resulted in excellent agreement with the experimental results to 850 GPa and temperatures above 10 eV (110 kK). Inmore » conclusion, we present comparisons of our data from the Z experiments and DFT calculations to current equation of state models of krypton to determine the best model for high energy-density applications.« less

  4. Condensed matter at high shock pressures

    SciTech Connect

    Nellis, W.J.; Holmes, N.C.; Mitchell, A.C.; Radousky, H.B.; Hamilton, D.

    1985-07-12

    Experimental techniques are described for shock waves in liquids: Hugoniot equation-of-state, shock temperature and emission spectroscopy, electrical conductivity, and Raman spectroscopy. Experimental data are reviewed and presented in terms of phenomena that occur at high densities and temperatures in shocked He, Ar, N/sub 2/, CO, SiO/sub 2/-aerogel, H/sub 2/O, and C/sub 6/H/sub 6/. The superconducting properties of Nb metal shocked to 100 GPa (1 Mbar) and recovered intact are discussed in terms of prospects for synthesizing novel, metastable materials. Ultrahigh pressure data for Cu is reviewed in the range 0.3 to 6TPa (3 to 60 Mbar). 56 refs., 9 figs., 1 tab.

  5. Proton shock acceleration using a high contrast high intensity laser

    NASA Astrophysics Data System (ADS)

    Gauthier, Maxence; Roedel, Christian; Kim, Jongjin; Aurand, Bastian; Curry, Chandra; Goede, Sebastian; Propp, Adrienne; Goyon, Clement; Pak, Art; Kerr, Shaun; Ramakrishna, Bhuvanesh; Ruby, John; William, Jackson; Glenzer, Siegfried

    2015-11-01

    Laser-driven proton acceleration is a field of intense research due to the interesting characteristics of this novel particle source including high brightness, high maximum energy, high laminarity, and short duration. Although the ion beam characteristics are promising for many future applications, such as in the medical field or hybrid accelerators, the ion beam generated using TNSA, the acceleration mechanism commonly achieved, still need to be significantly improved. Several new alternative mechanisms have been proposed such as collisionless shock acceleration (CSA) in order to produce a mono-energetic ion beam favorable for those applications. We report the first results of an experiment performed with the TITAN laser system (JLF, LLNL) dedicated to the study of CSA using a high intensity (5x1019W/cm2) high contrast ps laser pulse focused on 55 μm thick CH and CD targets. We show that the proton spectrum generated during the interaction exhibits high-energy mono-energetic features along the laser axis, characteristic of a shock mechanism.

  6. Shock properties of high-strength ceramics

    SciTech Connect

    Grady, D.E.

    1994-12-31

    A broad class of brittle solids subjected to large amplitude shock waves can support substantial shear stress (of order 2-10 GPa) without failing due to the very limited slip systems in these materials. When failure occurs under sufficiently intense shock loading, the effect is usually observed as a wave splitting in the compressive shock front. Because of the high confining stress state associated with the failure event in the shock compression environment, it is no longer certain whether the microstructural processes of deformation are brittle or ductile. Some, although by no means sufficient, evidence supports a brittle deformation mechanism in the materials of interest. The present short paper focuses on two aspects of the transition regime neighboring the HEL in the compressive shock process. First, issues of rate dependence associated with prompt yield under shock compression are not well understood. We report here on observations of wave profile data on ceramics, examining he issue of elastic precursor decay. Also in this study, a number of the experimental observations of failure waves in ceramic materials (principally glass) are surveyed. Some of the principal results are summarized and dynamic failure mechanisms consistent with these results are discussed.

  7. Comminution of solids caused by kinetic energy of high shear strain rate, with implications for impact, shock, and shale fracturing

    PubMed Central

    Bažant, Zdeněk P.; Caner, Ferhun C.

    2013-01-01

    Although there exists a vast literature on the dynamic comminution or fragmentation of rocks, concrete, metals, and ceramics, none of the known models suffices for macroscopic dynamic finite element analysis. This paper outlines the basic idea of the macroscopic model. Unlike static fracture, in which the driving force is the release of strain energy, here the essential idea is that the driving force of comminution under high-rate compression is the release of the local kinetic energy of shear strain rate. The density of this energy at strain rates >1,000/s is found to exceed the maximum possible strain energy density by orders of magnitude, making the strain energy irrelevant. It is shown that particle size is proportional to the −2/3 power of the shear strain rate and the 2/3 power of the interface fracture energy or interface shear stress, and that the comminution process is macroscopically equivalent to an apparent shear viscosity that is proportional (at constant interface stress) to the −1/3 power of this rate. A dimensionless indicator of the comminution intensity is formulated. The theory was inspired by noting that the local kinetic energy of shear strain rate plays a role analogous to the local kinetic energy of eddies in turbulent flow. PMID:24218624

  8. Magnetized Collisionless Shock Studies Using High Velocity Plasmoids

    NASA Astrophysics Data System (ADS)

    Weber, Thomas; Intrator, T.

    2013-04-01

    Magnetized collisionless shocks are ubiquitous throughout the cosmos and are observed to accelerate particles to relativistic velocities, amplify magnetic fields, transport energy, and create non-thermal distributions. They exhibit transitional scale lengths much shorter than the collisional mean free path and are mediated by collective interactions rather than Coulomb collisions. The Magnetized Shock Experiment (MSX) leverages advances in Field Reversed Configuration (FRC) plasmoid formation and acceleration to produce highly supersonic and super-Alfvénic supercritical shocks with pre-existing magnetic field at perpendicular, parallel or oblique angles to the direction of propagation. Adjustable shock speed, density, and magnetic field provide unique access to a range of parameter space relevant to a variety of naturally occurring shocks. This effort examines experimentally, analytically, and numerically the physics of collisionless shock formation, structure, and kinetic effects in a laboratory setting and draw comparisons between experimental data and astronomical observations. Supported by DOE Office of Fusion Energy Sciences and National Nuclear Security Administration under LANS contract DE-AC52-06NA25369 Approved for Public Release: LA-UR-12-22886

  9. Magnetized collisionless shock studies using high velocity plasmoids

    NASA Astrophysics Data System (ADS)

    Weber, T.; Intrator, T.; Gao, K.

    2012-12-01

    Magnetized collisionless shocks are ubiquitous throughout the cosmos and are observed to accelerate particles to relativistic velocities, amplify magnetic fields, transport energy, and create non-thermal distributions. They exhibit transitional scale lengths much shorter than the collisional mean free path and are mediated by collective interactions rather than Coulomb collisions. The Magnetized Shock Experiment (MSX) leverages advances in Field Reversed Configuration (FRC) plasmoid formation and acceleration to produce highly supersonic and super-Alfvènic supercritical shocks with pre-existing magnetic field at perpendicular, parallel or oblique angles to the direction of propagation. Adjustable shock speed, density, and magnetic field provide unique access to a range of parameter space relevant to a variety of naturally occurring shocks. This effort examines experimentally, analytically, and numerically the physics of collisionless shock formation, structure, and kinetic effects in a laboratory setting and draw comparisons between experimental data and astronomical observations. Supported by DOE Office of Fusion Energy Sciences and National Nuclear Security Administration under LANS contract DE-AC52-06NA25369 Approved for Public Release: LA-UR-12-22886

  10. Dynamic Theory: some shock wave and energy implications

    SciTech Connect

    Williams, P.E.

    1981-02-01

    The Dynamic Theory, a unifying five-dimensional theory of space, time, and matter, is examined. The theory predicts an observed discrepancy between shock wave viscosity measurements at low and high pressures in aluminum, a limiting mass-to-energy conversion rate consistent with the available data, and reduced pressures in electromagneticaly contained controlled-fusion plasmas.

  11. Macroeconomic impacts of energy shocks: an overview

    SciTech Connect

    Not Available

    1984-03-23

    Through a comparison of existing models of the US economy, this study evaluates the likely short- to medium-term effects of energy price changes on inflation, unemployment, and economic growth. It focuses on the impacts during the four years immediately following the energy price change. During this period, the economy's adjustment may still be unfolding and not yet complete. The working group studied 10 scenarios simulated by 14 participating modelers. We identified several prominent conclusions relating to the impacts of a shock, the efficacy of different economic policies, energy policy considerations, and key characteristics of the participating models.

  12. High energy ions and electrons upstream from the Earth's bow shock and their dependence on geomagnetic conditions: Statistical results between years 1982-1988

    NASA Astrophysics Data System (ADS)

    Anagnostopoulos, G. C.; Kaliabetsos, G.; Argyropoulos, G.; Sarris, E. T.

    We present initial results from a statistical analysis of 2034 energetic (50-220 keV) ion events observed by the IMP-8 spacecraft upstream from the Earth’s bow shock during a 6 years period. The most important findings are the following: (1) the percentage Pe of high intensity energetic ion events accompanied by the presence of relativistic (≥ 220 keV) electrons is ˜80% (for all geomagnetic conditions), and increases significantly with increasing the index Kp of geomagnetic activity, (2) high intensity energetic ion events most often (˜93%) show spectra extending up to energies E>˜300 keV, (3) a percentage of ˜71.5% of events display non-inverse energy dispersion of ion intensities. The above results, as well as additional results discussed in the text, suggest that a percentage as high as ˜80% of high intensity 50-220 keV ion events in our statistical sample have an origin within the magnetosphere.

  13. Vibrational energy transfer and quenching of OH A{sup 2}{Sigma}{sup +}({nu}{prime}=1) measured at high temperatures in a shock tube

    SciTech Connect

    Paul, P.H.

    1995-05-25

    Rate coefficients are reported for vibrational energy transfer and electronic quenching of OH A{sup 2}{Sigma}{sup +}({nu}{prime}=1) by N{sub 2}, O{sub 2}, CO, CO{sub 2}, NO, Ar, Kr, and Xe. Rate coefficients for electronic quenching of OH A{sup 2}{Sigma}{sup +}({nu}{prime}=0) by the same set of collision partners are also reported. The measurements were performed at high temperatures (1900 and 2300 K) behind reproducible shock waves. The cross sections for quenching in {nu}{prime} = 1 were observed to be quite similar to the values found for quenching in {nu}{prime} = 0. For all of the species studied, the cross sections were found to be independent of temperature from 1900 to 2300 K. However, all of the high-temperature cross sections were found to be smaller than the previously reported values for quenching and vibrational energy transfer at 300 K. The decrease in the cross sections with temperature was observed to be more pronounced for vibrational energy transfer than for electronic quenching. 33 refs., 3 tabs.

  14. Gamma-ray emission from globular clusters. Shock high energy emission from the Be-Star/Pulsar System PSR 1259-63. Echoes in x-ray novae

    NASA Technical Reports Server (NTRS)

    Kaaret, Philip

    1995-01-01

    This grant covers work on the Compton phase 3 investigation, 'Shock High Energy Emission from the Be- Star/Pulsar System PSR 1259-63' and cycle 4 investigations 'Diffuse Gamma-Ray Emission at High Latitudes' and 'Echoes in X-Ray Novae'. Work under the investigation 'Diffuse Gamma-Ray Emission at High Latitudes' has lead to the publication of a paper (attached), describing gamma-ray emissivity variations in the northern galactic hemisphere. Using archival EGRET data, we have found a large irregular region of enhanced gamma-ray emissivity at energies greater 100 MeV. This is the first observation of local structure in the gamma-ray emissivity. Work under the investigation 'Echoes in X-Ray Novae' is proceeding with analysis of data from OSSE from the transient source GRO J1655-40. The outburst of this source last fall triggered this Target of Opportunity investigation. Preliminary spectral analysis shows emission out to 600 keV and a pure power low spectrum with no evidence of an exponential cutoff. Work is complete on the analysis of BATSE data from the Be-Star/Pulsar Sustem PSR 1259-63.

  15. Generation of laser plasma bunches with a high efficiency of energy concentration for laboratory simulation of collisionless shock waves in magnetised cosmic plasma

    NASA Astrophysics Data System (ADS)

    Zakharov, Yu P.; Ponomarenko, A. G.; Tishchenko, V. N.; Antonov, V. M.; Melekhov, A. V.; Posukh, V. G.; Prokopov, P. A.; Terekhin, V. A.

    2016-05-01

    We present the results of first experiments on the formation of collisionless shock waves (CSWs) in background plasma by injecting laser plasma bunches transverse to the magnetic field (as a piston) with a maximum energy up to 100 J per unit of solid angle and with a high enough degree of ion magnetisation. With this aim in view, on a unique KI-1 facility at the Institute of Laser Physics, Siberian Branch of the Russian Academy of Sciences (ILP), a plastic (polyethylene) target irradiated by a CO2 laser in the most energy-efficient regime (near the plasma formation threshold) and a highly ionised hydrogen plasma with a high concentration in a large volume (not less than 1 m3) have been employed. As a result of model experiments performed on the basis of a model of collisionless interaction of plasma flows, developed at the VNIIEF and being adequate to the problem under consideration, not only an intensive, background-induced, deceleration of a super-Alfven laser plasma flow, but also the formation in that flow of a strong perturbation having the properties of a subcritical CSW and propagating transverse to the magnetic field, have been first registered in the laboratory conditions.

  16. Energy Dissipation at a Shock Front in Diamond: Simulation and Comparison with Phase Contrast Imaging Data

    NASA Astrophysics Data System (ADS)

    Beckwith, Martha; Schropp, Andreas; Ping, Yuan; Swift, Damian; Collins, Gilbert

    2015-06-01

    Understanding the behavior of carbon at high pressures and temperatures is essential for predicting the structure and evolution of giant planets, such as Uranus and Neptune. Shock compression experiments on pure carbon materials, such as diamond, can provide insight into their behavior at the extreme temperatures and pressures of the giant planets. Phase contrast imaging and hydrodynamic simulations were used to examine the propagation of a shock front in diamond. As the shock front propagates through the sample, a decrease in the shock amplitude and an increase in the shock width are observed, indicating that energy dissipative processes, such as viscosity, are apparent. In addition, fractures are observed in the diamond sample behind the shock, which could also contribute to the energy dissipation at the shock front. Work at LLNL performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344.

  17. Mechanochemistry for Shock Wave Energy Dissipation

    NASA Astrophysics Data System (ADS)

    Shaw, William; Ren, Yi; Su, Zhi; Moore, Jeffrey; Suslick, Kenneth; Dlott, Dana

    2015-06-01

    Using our laser-driven flyer-plate apparatus we have developed a technique for detecting mechanically driven chemical reactions that attenuate shock waves. In these experiments 75 μm laser-driven flyer-plates travel at speeds of up to 2.8 km/s. Photonic Doppler velocimetry is used to monitor both the flight speed and the motions of an embedded mirror behind the sample on the supporting substrate. Since the Hugoniot of the substrate is known, mirror motions can be converted into the transmitted shock wave flux and fluence through a sample. Flux shows the shock profile whereas fluence represents the total energy transferred per unit area, and both are measured as a function of sample thickness. Targets materials are micrograms of carefully engineered organic and inorganic compounds selected for their potential to undergo negative volume, endothermic reactions. In situ fluorescence measurements and a suite of post mortem analytical methods are used to detect molecular chemical reactions that occur due to impact.

  18. High Throughput Screen for Escherichia coli Heat Shock Protein 70 (Hsp70/DnaK): ATPase Assay in Low Volume By Exploiting Energy Transfer

    PubMed Central

    Miyata, Yoshinari; Chang, Lyra; Bainor, Anthony; McQuade, Thomas J.; Walczak, Christopher P.; Zhang, Yaru; Larsen, Martha J.; Kirchhoff, Paul; Gestwicki, Jason E.

    2011-01-01

    Members of the heat shock protein 70 (Hsp70) family of molecular chaperones are emerging as potential therapeutic targets. Their ATPase activity has classically been measured using colorimetric phosphate-detection reagents, such as quinaldine red (QR). While such assays are suitable for 96-well plate formats, they typically lose sensitivity when attempted in lower volume due to path length and meniscus effects. These limitations and Hsp70’s weak enzymatic activity have combined to create significant challenges in high throughput screening. To overcome these difficulties, we have adopted an energy transfer strategy that was originally reported by Zuck et al. (Anal. Biochem. 2005, 342:254–259). Briefly, white 384-well plates emit fluorescence when irradiated at 430 nm. In turn, this intrinsic fluorescence can be quenched by energy transfer with the QR-based chromophore. Using this more sensitive approach, we tested 55,400 compounds against DnaK, a prokaryotic member of the Hsp70 family. The assay performance was good (Z′ ~ 0.6, CV ~8%) and at least one promising new inhibitor was identified. In secondary assays, this compound specifically blocked stimulation of DnaK by its co-chaperone, DnaJ. Thus, this simple and inexpensive adaptation of a colorimetric method might be suitable for screening against Hsp70-family members. PMID:20926844

  19. Shock ignition target design for inertial fusion energy

    NASA Astrophysics Data System (ADS)

    Schmitt, Andrew J.; Bates, Jason W.; Obenschain, Steven P.; Zalesak, Steven T.; Fyfe, David E.

    2010-04-01

    Continuing work in the design of shock ignition targets is described. Because of reduced implosion velocity requirements, low target adiabats, and efficient drive by short wavelength lasers, these targets produce high gain (>100) at laser energies well below 1 MJ. Effects of hydrodynamic instabilities such as Rayleigh-Taylor or Richtmyer-Meshkov are greatly reduced in these low-aspect ratio targets. Of particular interest is the optimum ratio of ignitor to compression pulse energy. A simple pellet model and simulation-derived coupling coefficients are used to analyze optimal fuel assembly, and determine that shock ignition allows enough control to create theoretically optimum assemblies. The effects on target design due to constraints on the compression and ignitor pulse intensities are also considered and addressed. Significant sensitivity is observed from low-mode perturbations because of large convergence ratios, but a more powerful ignitor can mitigate this.

  20. High Bandwidth Differential Amplifier for Shock Experiments

    SciTech Connect

    Ross, P. W., Tran, V., Chau, R.

    2012-04-30

    We developed a high bandwidth differential amplifier for gas gun shock experiments/applications. The circuit has a bandwidth > 1 GHz, and is capable of measuring signals of ≤1.5 V with a common mode rejection of 250 V. Conductivity measurements of gas gun targets are measured by flowing high currents through the targets. The voltage is measured across the target using a technique similar to a four-point probe. Because of the design of the current source and load, the target voltage is approximately 250 V relative to ground. Since the expected voltage change in the target is < 1 V, the differential amplifier must have a large common mode rejection. High pass filters suppress internal ringing of operational amplifiers. Results of bench tests are shown.

  1. High Bandwidth Differential Amplifier for Shock Experiments

    SciTech Connect

    Ross, P., Tran, V., Chau, R.

    2012-10-01

    We developed a high bandwidth differential amplifier for gas gun shock experiments. The circuit has a bandwidth up to 1 GHz, and is capable of measuring signals of ≤1.5 V with a common mode rejection of 250 V. Conductivity measurements of gas gun targets are measured by flowing high currents through the targets. The voltage is measured across the target using a technique similar to a four-point probe. Because of the design of the current source and load, the target voltage is approximately 250 V relative to ground. Since the expected voltage change in the target is < 1 V, the differential amplifier must have a large common mode rejection. Various amplifying designs are shown, although the increased amplification decreases bandwidth. Bench tests show that the amplifier can withstand significant common mode DC voltage and measure 10 ns, and 50 mV signals.

  2. Shock

    MedlinePlus

    ... Emergencies A-Z Share this! Home » Emergency 101 Shock Shock is a serious, often life-threatening medical condition ... of death for critically ill or injured people. Shock results when the body is not getting enough ...

  3. Shock

    MedlinePlus

    ... problems) Hypovolemic shock (caused by too little blood volume) Anaphylactic shock (caused by allergic reaction) Septic shock ( ... as heart attack or heart failure ) Low blood volume (as with heavy bleeding or dehydration ) Changes in ...

  4. Ion heating and energy redistribution across supercritical perpendicular shocks: Application to planetary and interplanetary shocks

    NASA Astrophysics Data System (ADS)

    Yang, Z.; Liu, Y. D.; Richardson, J. D.; Parks, G. K.

    2013-12-01

    We investigate how the ion dissipative process across supercritical perpendicular shocks depends on the shock front micro-structures. At a collisionless plasma shock, the dissipation and micro-structure of the shock font are dominated by wave-particle interactions. Comparison of the ion thermalization at different kinds of shocks, e.g., planetary and interplanetary shocks, can quantify how much interaction is occurring at the shock boundary. Investigation of this problem for diverse solar wind (SW) conditions will yield important information on the dependences of the ion thermalization and energy redistribution on plasma parameters. With the aid of a successful automatic separation method [Yang et al., 2009], the incident ions at the shock can be divided into two parts: reflected (R) ions and directly transmitted (DT) ions. Corresponding heating efficiency of each population of ions at the shock can be calculated respectively. Wilkinson & Schwartz [1990] have theorized that the amount of reflected ions at perpendicular shocks depends on plasma parameters. Based on the Rankine-Hugoniot (R-H) conservation laws, they found that the fraction reflected is strongly dependent on the magnitude of the ratio of specific heat capacities γ chosen in the R-H relations. The main goal of this work is to investigate how the plasma parameters, e.g. the particle velocity distribution, the plasma beta value, seed populations, etc. (from a particle dynamic point of view), control the amount of reflected ions by using one-dimensional (1-D) full-particle-cell simulations. The simulation results may help to explain the ion heating efficiency and energy redistribution at shocks observed by Cluster, Wind, Voyager, etc.

  5. Energy trapping and shock disintegration in a composite granular medium.

    PubMed

    Daraio, C; Nesterenko, V F; Herbold, E B; Jin, S

    2006-02-10

    We report the first experimental observation of impulse confinement and the disintegration of shock and solitary waves in one-dimensional strongly nonlinear composite granular materials. The chains consist of alternating ensembles of beads with high and low elastic moduli (more than 2 orders of magnitude difference) of different masses. The trapped energy is contained within the "softer" sections of the composite chain and is slowly released in the form of weak, separated pulses over an extended period of time. This effect is enhanced by using a specific group assembly and precompression. PMID:16486993

  6. Motion of the Heliospheric Termination Shock at High Heliographic Latitude

    NASA Technical Reports Server (NTRS)

    Barnes, Aaron

    1995-01-01

    We expect the mean distance of the heliospheric termination shock to be greater (smaller) at polar latitudes than at equatorial latitudes, depending on whether the mean dynamic pressure of the solar wind is greater or smaller at high latitudes. The heliospheric termination shock is expected to move in response to variation in upstream solar wind conditions, so that at any particular instant the termination shock will resemble a distorted asymmetric balloon with some parts moving inward and others moving outward. If the shock is a gasdynamic or magnetohydrodynamic shock the results of the analysis depend only very weakly on the nature of the upstream disturbance; typical speeds of the disturbed shock are approximately 100 to 200 km/s. In the absence of a significant latitude gradient of the typical magnitude of solar wind disturbances typical motions of the disturbed shock at polar latitudes would be about twice as fast, due to the higher speed of the high-latitude wind. If the dynamics of the termination shock are dominated by acceleration of the anomalous component of the cosmic rays, the motion of the shock in response to a given disturbance is substantially slower than in the gasdynamic case. Conceivably, particle acceleration might be a less important effect at higher latitudes, and we envision the possibility of a termination shock that is dominated by particle acceleration at lower latitudes and is an MHD shock at high latitudes. In this event high latitude solar wind disturbances would produce substantially larger inward and outward motions of the shock in the polar regions.

  7. Compression of High Porosity Aluminum by Strong Shock Waves

    SciTech Connect

    Vildanov, V. G.; Gorshkov, M. M.; Slobodenjukov, V. M.; Borshchevsky, A. O.; Petrovtsev, A. V.

    2006-08-03

    Measuring results on shock compression of porous aluminum with initial density of {rho}00 = 0.6 g/cm3 up to pressures of 170 GPa are presented under shock wave velocity measurement scale of 40 mm. High underground explosion was used as a shock wave source. Obtained results were described in shock wave velocity (D) -- particle velocity (u) coordinates by linear dependence of D = 0.647 + 1.26 u at 4.6 {<=} u {<=} 14.8 km/s.

  8. Performance of Low Dissipative High Order Shock-Capturing Schemes for Shock-Turbulence Interactions

    NASA Technical Reports Server (NTRS)

    Sandham, N. D.; Yee, H. C.

    1998-01-01

    Accurate and efficient direct numerical simulation of turbulence in the presence of shock waves represents a significant challenge for numerical methods. The objective of this paper is to evaluate the performance of high order compact and non-compact central spatial differencing employing total variation diminishing (TVD) shock-capturing dissipations as characteristic based filters for two model problems combining shock wave and shear layer phenomena. A vortex pairing model evaluates the ability of the schemes to cope with shear layer instability and eddy shock waves, while a shock wave impingement on a spatially-evolving mixing layer model studies the accuracy of computation of vortices passing through a sequence of shock and expansion waves. A drastic increase in accuracy is observed if a suitable artificial compression formulation is applied to the TVD dissipations. With this modification to the filter step the fourth-order non-compact scheme shows improved results in comparison to second-order methods, while retaining the good shock resolution of the basic TVD scheme. For this characteristic based filter approach, however, the benefits of compact schemes or schemes with higher than fourth order are not sufficient to justify the higher complexity near the boundary and/or the additional computational cost.

  9. Nonadiabatic electron heating at high-Mach-number perpendicular shocks

    NASA Technical Reports Server (NTRS)

    Tokar, R. L.; Aldrich, C. H.; Forslund, D. W.; Quest, K. B.

    1986-01-01

    Fully kinetic simulations of high-Mach-number (HMN) perpendicular collisionless shocks are described. It is shown that electron acceleration in the cross-shock electron field can produce downstream electron temperature significantly higher than those expected for adiabatic compression. The momentum space for test electrons at Mach 6 is illustrated.

  10. Theoretical study of the effect of the size of a high-energy proton beam of the Large Hadron Collider on the formation and propagation of shock waves in copper irradiated by 450-GeV proton beams

    NASA Astrophysics Data System (ADS)

    Ryazanov, A. I.; Stepakov, A. V.; Vasilyev, Ya. S.; Ferrari, A.

    2014-02-01

    The interaction of 450-GeV protons with copper, which is the material of the collimators of the Large Hadron Collider, has been theoretically studied. A theoretical model for the formation and propagation of shock waves has been proposed on the basis of the analysis of the energy released by a proton beam in the electronic subsystem of the material owing to the deceleration of secondary particles appearing in nuclear reactions induced by this beam on the electronic subsystem of the material. The subsequent transfer of the energy from the excited electronic subsystem to the crystal lattice through the electron-phonon interaction has been described within the thermal spike model [I.M. Lifshitz, M.I. Kaganov, and L.V. Tanatarov, Sov. Phys. JETP 4, 173 (1957); I.M. Lifshitz, M.I. Kaganov, and L.V. Tanatarov, At. Energ. 6, 391 (1959); K. Yasui, Nucl. Instrum. Methods Phys. Res., Sect. B 90, 409 (1994)]. The model of the formation of shock waves involves energy exchange processes between excited electronic and ionic subsystems of the irradiated material and is based on the hydrodynamic approximation proposed by Zel'dovich [Ya.B. Zel'dovich and Yu.P. Raizer, Physics of Shock Waves and High-Temperature Hydrodynamic Phenomena (Nauka, Moscow, 1966; Dover, New York, 2002)]. This model makes it possible to obtain the space-time distributions of the main physical characteristics (temperatures of the ionic and electronic subsystems, density, pressure, etc.) in materials irradiated by high-energy proton beams and to analyze the formation and propagation of shock waves in them. The nonlinear differential equations describing the conservation laws of mass, energy, and momentum of electrons and ions in the Euler variables in the case of the propagation of shock waves has been solved with the Godunov scheme [S. K. Godunov, A.V. Zabrodin, M.Ya. Ivanov, A.N. Kraiko, and G.P. Prokopov, Numerical Solution of Multidimensional Problems in Gas Dynamics (Nauka, Moscow, 1976) [in Russian

  11. Design, Simulation and Fabrication of Triaxial MEMS High Shock Accelerometer.

    PubMed

    Zhang, Zhenhai; Shi, Zhiguo; Yang, Zhan; Xie, Zhihong; Zhang, Donghong; Cai, De; Li, Kejie; Shen, Yajing

    2015-04-01

    On the basis of analyzing the disadvantage of other structural accelerometer, three-axis high g MEMS piezoresistive accelerometer was put forward in order to apply to the high-shock test field. The accelerometer's structure and working principle were discussed in details. The simulation results show that three-axis high shock MEMS accelerometer can bear high shock. After bearing high shock impact in high-shock shooting test, three-axis high shock MEMS accelerometer can obtain the intact metrical information of the penetration process and still guarantee the accurate precision of measurement in high shock load range, so we can not only analyze the law of stress wave spreading and the penetration rule of the penetration process of the body of the missile, but also furnish the testing technology of the burst point controlling. The accelerometer has far-ranging application in recording the typical data that projectile penetrating hard target and furnish both technology guarantees for penetration rule and defend engineering. PMID:26353519

  12. The Maximum Energy of Accelerated Particles in Relativistic Collisionless Shocks

    NASA Astrophysics Data System (ADS)

    Sironi, Lorenzo; Spitkovsky, Anatoly; Arons, Jonathan

    2013-07-01

    The afterglow emission from gamma-ray bursts (GRBs) is usually interpreted as synchrotron radiation from electrons accelerated at the GRB external shock that propagates with relativistic velocities into the magnetized interstellar medium. By means of multi-dimensional particle-in-cell simulations, we investigate the acceleration performance of weakly magnetized relativistic shocks, in the magnetization range 0 <~ σ <~ 10-1. The pre-shock magnetic field is orthogonal to the flow, as generically expected for relativistic shocks. We find that relativistic perpendicular shocks propagating in electron-positron plasmas are efficient particle accelerators if the magnetization is σ <~ 10-3. For electron-ion plasmas, the transition to efficient acceleration occurs for σ <~ 3 × 10-5. Here, the acceleration process proceeds similarly for the two species, since the electrons enter the shock nearly in equipartition with the ions, as a result of strong pre-heating in the self-generated upstream turbulence. In both electron-positron and electron-ion shocks, we find that the maximum energy of the accelerated particles scales in time as ɛmaxvpropt 1/2. This scaling is shallower than the so-called (and commonly assumed) Bohm limit ɛmaxvpropt, and it naturally results from the small-scale nature of the Weibel turbulence generated in the shock layer. In magnetized plasmas, the energy of the accelerated particles increases until it reaches a saturation value ɛsat/γ0 mic 2 ~ σ-1/4, where γ0 mic 2 is the mean energy per particle in the upstream bulk flow. Further energization is prevented by the fact that the self-generated turbulence is confined within a finite region of thickness vpropσ-1/2 around the shock. Our results can provide physically grounded inputs for models of non-thermal emission from a variety of astrophysical sources, with particular relevance to GRB afterglows.

  13. Alternate methods for high level pyrotechnic shock simulation

    NASA Astrophysics Data System (ADS)

    Gray, Phillip J., Sr.

    Two effective methods to recreate a realistic pyrotechnic shock are presented. The first method employs a resonant beam and is used for SRS levels of 12,000 G or more. The test unit is at one end of the beam and a hammer strikes the opposite end causing a shock to be transmitted to the other end of the fixture. The second method is based on a standard shaker system with a resonant beam to amplify the input signal. The engineer defines the duration of the shock signal induced to the vibration amplifier using the GenRad 2514 controller. The shock signal is then input via the shaker to the resonant beam, which amplifies the signal to produce the desired response at the end of the fixture. The shock response spectrum stays within a +/-6 dB tolerance with levels as high as 3000 G peak. These methods are repeatable, reliable, cost-effective, and consistent with a real pyroevent.

  14. Shock characterization of an ultra-high strength concrete

    NASA Astrophysics Data System (ADS)

    Erzar, B.; Pontiroli, C.; Buzaud, E.

    2016-05-01

    Nowadays, the design of protective structures may imply ultra-high performance concretes. These materials present a compressive strength 5 times higher than standard concretes. However, few reliable data on the shock response of such materials are available in the literature. Thus, a characterization of an ultra-high strength concrete has been conducted by means of hydrostatic and triaxial tests in the quasi-static regime, and plate impact experiments for shock response. Data have been gathered up to 6 GPa and a simple modelling approach has been applied to get a reliable representation of the shock compression of this concrete.

  15. Generation of high pressure shocks relevant to the shock-ignition intensity regime

    SciTech Connect

    Batani, D.; Folpini, G.; Giuffrida, L.; Maheut, Y.; Malka, G.; Nicolai, Ph.; Ribeyre, X.; Antonelli, L.; Atzeni, S.; Marocchino, A.; Schiavi, A.; Badziak, J.; Chodukowski, T.; Kalinowska, Z.; Pisarczyk, T.; Rosinski, M.; Baffigi, F.; Cristoforetti, G.; Gizzi, L. A.; Koester, P.; and others

    2014-03-15

    An experiment was performed using the PALS laser to study laser-target coupling and laser-plasma interaction in an intensity regime ≤10{sup 16} W/cm{sup 2}, relevant for the “shock ignition” approach to Inertial Confinement Fusion. A first beam at low intensity was used to create an extended preformed plasma, and a second one to create a strong shock. Pressures up to 90 Megabars were inferred. Our results show the importance of the details of energy transport in the overdense region.

  16. Enhanced ion beam energy by relativistic transparency in laser-driven shock ion acceleration

    NASA Astrophysics Data System (ADS)

    Kim, Young-Kuk; Hur, Min Sup

    2015-11-01

    We investigated the effects of relativistic transparency (RT) on electrostatic shock ion acceleration. Penetrating portion of the laser pulse directly heats up the electrons to a very high temperature in backside of the target, resulting in a condition of high shock velocity. The reflected portion of the pulse can yield a fast hole boring and density compression in near-critical density plasma to satisfy the electrostatic shock condition; 1.5 high speed electrostatic shock reflects upstream ions up to velocity ~2vsh. In 1D PIC simulation, we have clearly observed RT-based shock acceleration which generates significantly higher ion beam energy in comparison to that in a purely opaque plasma. In multi-dimensional systems, various instabilities should be considered such as Weibel-like instability, which causes filamentation during the laser penetration. From series of comparisons of linearly polarized and circularly polarized pulses for the RT-based shock, we observed the circularly polarized pulse is usually more advantageous in reducing the instability, possibly leading to better RT-based shock acceleration. The Basic Science Research Program through the National Research Foundation (NRF) of Korea funded by the Ministry of Science, ICT and Future Planning (Grant number NRF- 2013R1A1A2006353).

  17. Intensity and energy spectrum of electrons accelerated in the earth's bow shock

    NASA Technical Reports Server (NTRS)

    Anderson, K. A.

    1974-01-01

    Shock waves accelerate charged particles in the solar atmosphere, in interplanetary space and around the earth's magnetosphere. Acceleration of both electrons and protons occurs in the earth's bow-shock. The acceleration of protons up to 100 keV appears to be a steady state process and may even occur upstream from the bow shock due to waves generated by reflected solar wind protons. The electrons, on the other hand, are known to be accelerated in or near the shock. The intensity of these electrons ranges from about 100 to 2,000 per sr-sq cm-sec-keV at 14 keV. The energy spectrum is not a simple power low and is highly variable. If segments of the spectra are fitted to a power low, slopes ranging from -2 to -4.5 result over the energy range 0.5 to 100 keV.

  18. On high-resolution finite volume shock capturing schemes

    NASA Astrophysics Data System (ADS)

    Causon, D. M.; Clarke, N.

    1990-07-01

    Conservative, shock capturing methods for the unsteady Euler equations are reviewed and it is shown that the concepts of entropy satisfaction and total variation diminution can be applied to well-known classical schemes. For an associated scheme to be efficient in applications, it is necessary that it be constructed with economy of implementation in mind, and that it be able to capture strong shock waves with high resolution. We describe a scheme which is efficient in both respects.

  19. On high resolution finite volume shock capturing schemes

    NASA Astrophysics Data System (ADS)

    Causon, D. M.; Clarke, N.

    Conservative shock-capturing methods for the unsteady Euler equations are reviewed, and it is shown that the concepts of entropy satisfaction and total variation diminution can be applied to well known classical schemes. For an associated scheme to be efficient in applications, it is necessary that it be constructed with economy of implementation in mind, and that it be able to capture strong shock waves with high resolution. A scheme which is efficient in both respects is described.

  20. Shock-induced synthesis of high temperature superconducting materials

    DOEpatents

    Ginley, D.S.; Graham, R.A.; Morosin, B.; Venturini, E.L.

    1987-06-18

    It has now been determined that the unique features of the high pressure shock method, especially the shock-induced chemical synthesis technique, are fully applicable to high temperature superconducting materials. Extraordinarily high yields are achievable in accordance with this invention, e.g., generally in the range from about 20% to about 99%, often in the range from about 50% to about 90%, lower and higher yields, of course, also being possible. The method of this invention involves the application of a controlled high pressure shock compression pulse which can be produced in any conventional manner, e.g., by detonation of a high explosive material, the impact of a high speed projectile or the effect of intense pulsed radiation sources such as lasers or electron beams. Examples and a discussion are presented.

  1. Structures and properties of materials recovered from high shock pressures

    SciTech Connect

    Nellis, W.J.

    1994-03-01

    Shock compression produces high dynamic pressures, densities, temperatures, and their quench rates. Because of these extreme conditions, shock compression produces materials with novel crystal structures, microstructures, and physical properties. Using a 6.5-m-long two-stage gun, we perform experiments with specimens up to 10 mm in diameter and 0.001--1 mm thick. For example, oriented disks of melt-textured superconducting YBa{sub 2}Cu{sub 3}O{sub 7} were shocked to 7 GPa without macroscopic fracture. Lattice defects are deposited in the crystal, which improve magnetic hysteresis at {approximately}1 kOe. A computer code has been developed to simulate shock compaction of 100 powder particles. Computations will be compared with experiments with 15--20 {mu}m Cu powders. The method is applicable to other powders and dynamic conditions.

  2. Very high Mach number shocks - Theory. [in space plasmas

    NASA Technical Reports Server (NTRS)

    Quest, Kevin B.

    1986-01-01

    The theory and simulation of collisionless perpendicular supercritical shock structure is reviewed, with major emphasis on recent research results. The primary tool of investigation is the hybrid simulation method, in which the Newtonian orbits of a large number of ion macroparticles are followed numerically, and in which the electrons are treated as a charge neutralizing fluid. The principal results include the following: (1) electron resistivity is not required to explain the observed quasi-stationarity of the earth's bow shock, (2) the structure of the perpendicular shock at very high Mach numbers depends sensitively on the upstream value of beta (the ratio of the thermal to magnetic pressure) and electron resistivity, (3) two-dimensional turbulence will become increasingly important as the Mach number is increased, and (4) nonadiabatic bulk electron heating will result when a thermal electron cannot complete a gyrorbit while transiting the shock.

  3. PVDF shock sensors: applications to polar materials and high explosives.

    PubMed

    Bauer, F

    2000-01-01

    Ferroelectric polymers (PVDF) with well-defined and precisely known electrical properties are now routinely available from commercial sources. Electrical processing with the Bauer cyclic poling method can produce individual films with well-defined remanent polarization up to 9 /spl mu/C/cm/sup 2/. These polymers provide an unusual opportunity to study the structure and physical properties of materials subjected to shock loading. The behavior of PVDF has been studied over a wide range of pressures using high-pressure shock loading and has yielded well-behaved, reproducible data up to 25 GPa in inert materials. The application of PVDF gauges for recording shock waves induced in polar materials such as Kel-F, PMMA, or in reactive materials is hampered by observations of anomalous responses due to shock-induced polarization or an electrical charge released inside a shock-compressed explosive. A solution using an appropriate electrical shielding has been identified and applied to PVDF for shock measurement studies of Kel-F, and for Hugoniot measurements of high explosives (PH). Furthermore, shock pressure profiles obtained with in situ PVDF gauges in porous HE (Formex) in a detonation regime have been achieved. Typical results of shock pressure profile versus time show a fast superpressure of a few nanoseconds followed by a pressure release down to a plateau level and then by a pressure decay. More accurate measurements are reported with electrically improved PVDF gauges as well as with 0.25 mm/sup 2/ active area PVDF gauges. PMID:18238691

  4. Shock ignition of thermonuclear fuel with high areal density.

    PubMed

    Betti, R; Zhou, C D; Anderson, K S; Perkins, L J; Theobald, W; Solodov, A A

    2007-04-13

    A novel method by C. Zhou and R. Betti [Bull. Am. Phys. Soc. 50, 140 (2005)] to assemble and ignite thermonuclear fuel is presented. Massive cryogenic shells are first imploded by direct laser light with a low implosion velocity and on a low adiabat leading to fuel assemblies with large areal densities. The assembled fuel is ignited from a central hot spot heated by the collision of a spherically convergent ignitor shock and the return shock. The resulting fuel assembly features a hot-spot pressure greater than the surrounding dense fuel pressure. Such a nonisobaric assembly requires a lower energy threshold for ignition than the conventional isobaric one. The ignitor shock can be launched by a spike in the laser power or by particle beams. The thermonuclear gain can be significantly larger than in conventional isobaric ignition for equal driver energy. PMID:17501359

  5. Elastic precursor shock waves in tantalum at very high strain rates

    NASA Astrophysics Data System (ADS)

    Crowhurst, Jonathan; Armstrong, Michael; Gates, Sean; Radousky, Harry; Zaug, Joseph

    2015-06-01

    We have obtained data from micron-thick tantalum films using our ultrafast laser shock platform. By measuring free surface velocity time histories at breakout, and shock wave arrival times at different film thicknesses, we have been able to estimate the dependence of particle and shock velocities on propagation distances and strain rates. We will show how elastic precursor shock waves depend on strain rate in the regime up to and above 109 s-1. We find that while elastic amplitudes are very large at very early times decay occurs rapidly as propagation distance increases. Finally we will consider the prospects for using these data to obtain the dynamic strength of tantalum at these very high strain rates. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344 with Laboratory directed Research and Development funding (12ERD042).

  6. Elastic precursor shock waves in tantalum at very high strain rates

    NASA Astrophysics Data System (ADS)

    Crowhurst, Jonathan; Armstrong, Michael; Radousky, Harry; Zaug, Joseph; Gates, Sean

    2015-03-01

    We have obtained data from micron-thick tantalum films using our ultrafast laser shock platform. By measuring free surface velocity time histories at breakout, and shock wave arrival times at different film thicknesses, we have been able to estimate the dependence of particle and shock velocities on propagation distances and strain rates. We will show how elastic precursor shock waves depend on strain rate in the regime up to and above 109 s-1. We find that while elastic amplitudes are very large at very early times decay occurs rapidly as propagation distance increases. Finally we will consider the prospects for using these data to obtain the dynamic strength of tantalum at these very high strain rates. This work was performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract No. DE-AC52-07NA27344 with Laboratory directed Research and Development funding (12ERD042).

  7. Electron acceleration in a nonrelativistic shock with very high Alfvén Mach number.

    PubMed

    Matsumoto, Y; Amano, T; Hoshino, M

    2013-11-22

    Electron acceleration associated with various plasma kinetic instabilities in a nonrelativistic shock with very high Alfvén Mach number (M(A)~45) is revealed by means of a two-dimensional fully kinetic particle-in-cell simulation. Electromagnetic (ion Weibel) and electrostatic (ion-acoustic and Buneman) instabilities are strongly activated at the same time in different regions of the two-dimensional shock structure. Relativistic electrons are quickly produced predominantly by the shock surfing mechanism with the Buneman instability at the leading edge of the foot. The energy spectrum has a high-energy tail exceeding the upstream ion kinetic energy accompanying the main thermal population. This gives a favorable condition for the ion-acoustic instability at the shock front, which in turn results in additional energization. The large-amplitude ion Weibel instability generates current sheets in the foot, implying another dissipation mechanism via magnetic reconnection in a three-dimensional shock structure in the very-high-M(A) regime. PMID:24313495

  8. Periodic Architecture for High Performance Shock Absorbing Composites

    PubMed Central

    Misra, Abha; Kumar, Praveen

    2013-01-01

    A novel composite architecture consisting of a periodic arrangement of closely-spaced spheres of a stiff material embedded in a soft matrix is proposed for extremely high damping and shock absorption capacity. Efficacy of this architecture is demonstrated by compression loading a composite, where multiple steel balls were stacked upon each other in a polydimethylsiloxane (PDMS) matrix, at a low strain-rate of 0.05 s−1 and a very high strain-rate of >2400 s−1. The balls slide over each other upon loading, and revert to their original position when the load is removed. Because of imposition of additional strains into the matrix via this reversible, constrained movement of the balls, the composite absorbs significantly larger energy and endures much lesser permanent damage than the monolithic PDMS during both quasi-static and impact loadings. During the impact loading, energy absorbed per unit weight for the composite was ~8 times larger than the monolithic PDMS. PMID:23792699

  9. Quantified Energy Dissipation Rates in the Terrestrial Bow Shock. 1.; Analysis Techniques and Methodology

    NASA Technical Reports Server (NTRS)

    Wilson, L. B., III; Sibeck, D. G.; Breneman, A.W.; Le Contel, O.; Cully, C.; Turner, D. L.; Angelopoulos, V.; Malaspina, D. M.

    2014-01-01

    We present a detailed outline and discussion of the analysis techniques used to compare the relevance of different energy dissipation mechanisms at collisionless shock waves. We show that the low-frequency, quasi-static fields contribute less to ohmic energy dissipation, (-j · E ) (minus current density times measured electric field), than their high-frequency counterparts. In fact, we found that high-frequency, large-amplitude (greater than 100 millivolts per meter and/or greater than 1 nanotesla) waves are ubiquitous in the transition region of collisionless shocks. We quantitatively show that their fields, through wave-particle interactions, cause enough energy dissipation to regulate the global structure of collisionless shocks. The purpose of this paper, part one of two, is to outline and describe in detail the background, analysis techniques, and theoretical motivation for our new results presented in the companion paper. The companion paper presents the results of our quantitative energy dissipation rate estimates and discusses the implications. Together, the two manuscripts present the first study quantifying the contribution that high-frequency waves provide, through wave-particle interactions, to the total energy dissipation budget of collisionless shock waves.

  10. Vacuum high-harmonic generation and electromagnetic shock

    NASA Astrophysics Data System (ADS)

    Böhl, P.; King, B.; Ruhl, H.

    2016-04-01

    > When one takes into account the presence of virtual charged states in the quantum vacuum, a nonlinear self-interaction can arise in the propagation of electromagnetic fields. This self-interaction is often referred to as `real photon-photon scattering'. When the centre-of-mass energy of colliding photons is much lower than the rest energy of an electron-positron pair, this quantum effect can be included in the classical field equations of motion as a vacuum current and charge density using the Heisenberg-Euler Lagrangian. Using analytical and numerical methods for subcritical fields, the intrinsic solution to Maxwell's equations has been found for counterpropagating probe and pump plane waves in the presence of vacuum four- and six-wave mixing. In the corresponding all-order solution for the scattered probe, a route to vacuum high-harmonic generation is identified in which a long phase length can compensate for the weakness of interacting fields. The resulting shocks in the probe carrier wave and envelope are studied for different parameter regimes and polarisation set-ups. In this special issue, we study two additional set-ups: that of a slowly varying single-cycle background to highlight the effect of an oscillating background on the probe harmonic spectrum, and that of a few-cycle probe to highlight the smoothing of the harmonic peaks produced by a wider spectrum of probe photons. We also correct sign errors in an earlier publication.

  11. High doses of corticosteroids in the treatment of septic shock.

    PubMed

    Hellman, A; Alestig, K

    1985-01-01

    High doses of corticosteroids are reported to be beneficial in the treatment of septic shock in many animal species, e.g. dog, rat and rabbit. Recent findings in baboons subjected to E. coli shock indicate that early treatment with a combination of antibiotics and steroids strongly enhance survival rate. In clinical studies the protective effects of steroids are more ambiguous, however. In part this may be explained by variations in the amount of steroids used or by the fact that in some studies the steroid is administered late in shock. The dose recommended, 30 mg/kg bw of methylprednisolone or an equivalent amount of another glucocorticoid given once or twice, is based on animal as well as clinical documentation. PMID:3911703

  12. Therapeutic Strategies for High-Dose Vasopressor-Dependent Shock

    PubMed Central

    Bassi, Estevão; Park, Marcelo; Azevedo, Luciano Cesar Pontes

    2013-01-01

    There is no consensual definition of refractory shock. The use of more than 0.5 mcg/kg/min of norepinephrine or epinephrine to maintain target blood pressure is often used in clinical trials as a threshold. Nearly 6% of critically ill patients will develop refractory shock, which accounts for 18% of deaths in intensive care unit. Mortality rates are usually greater than 50%. The assessment of fluid responsiveness and cardiac function can help to guide therapy, and inotropes may be used if hypoperfusion signs persist after initial resuscitation. Arginine vasopressin is frequently used in refractory shock, although definite evidence to support this practice is still missing. Its associations with corticosteroids improved outcome in observational studies and are therefore promising alternatives. Other rescue therapies such as terlipressin, methylene blue, and high-volume isovolemic hemofiltration await more evidence before use in routine practice. PMID:24151551

  13. High-speed spectrograph for shock tube studies

    NASA Technical Reports Server (NTRS)

    Borucki, W. J.

    1973-01-01

    Instrument provides information on spatial distribution of electron density of gas flow in high-performance shock tube. System permits measurement of profiles of hydrogen-alpha and -beta lines with enough spectral range to record spectral features from the near ultraviolet to the long-wavelength cutoff of photographic film.

  14. Shock.

    PubMed

    Wacker, David A; Winters, Michael E

    2014-11-01

    Critically ill patients with undifferentiated shock are complex and challenging cases in the ED. A systematic approach to assessment and management is essential to prevent unnecessary morbidity and mortality. The simplified, systematic approach described in this article focuses on determining the presence of problems with cardiac function (the pump), intravascular volume (the tank), or systemic vascular resistance (the pipes). With this approach, the emergency physician can detect life-threatening conditions and implement time-sensitive therapy. PMID:25441032

  15. Stability of shocks relating to the shock ignition inertial fusion energy scheme

    SciTech Connect

    Davie, C. J. Bush, I. A.; Evans, R. G.

    2014-08-15

    Motivated by the shock ignition approach to improve the performance of inertial fusion targets, we make a series of studies of the stability of shock waves in planar and converging geometries. We examine stability of shocks moving through distorted material and driving shocks with non-uniform pressure profiles. We then apply a fully 3D perturbation, following this spherically converging shock through collapse to a distorted plane, bounce and reflection into an outgoing perturbed, broadly spherical shock wave. We find broad shock stability even under quite extreme perturbation.

  16. Material response mechanisms are needed to obtain highly accurate experimental shock wave data

    NASA Astrophysics Data System (ADS)

    Forbes, Jerry

    2015-06-01

    The field of shock wave compression of matter has provided a simple set of equations relating thermodynamic and kinematic parameters that describe the conservation of mass, momentum and energy across a steady shock wave with one-dimensional flow. Well-known condensed matter shock wave experimental results will be reviewed to see whether the assumptions required for deriving these simple R-H equations are met. Note that the material compression model is not required for deriving the 1-D conservation flow equations across a steady shock front. However, this statement is misleading from a practical experimental viewpoint since obtaining small systematic errors in shock wave measured parameters requires the material compression and release mechanisms to be known. A brief review will be presented on systematic errors in shock wave data from common experimental techniques for fluids, elastic-plastic solids, materials with negative volume phase transitions, glass and ceramic materials, and high explosives. Issues related to time scales of experiments and quasi-steady flow will also be presented.

  17. An artificial energy method for calculating flows with shocks

    NASA Technical Reports Server (NTRS)

    Rose, M. E.

    1980-01-01

    The artificial-viscosity method, first proposed by von Neumann and Richtmyer, introduces an artificial viscous pressure term in regions of compression such that an increase in entropy occurs in shock transition zones. The paper describes how dissipative flows can be induced by reducing the total energy available for adiabatic processes in shock zones. A class of inviscid fluid flows, called semiflows, is described in which the flows exhibit thermodynamic differences. Induced dissipative flows modify the pressure in regions of compression in a manner analogous to the artificial-viscosity method and for a gas, the effect is equivalent to suitably modifying the gas constant in the equation of state. By employing MacCormack's method and the usual non-adiabatic equations, numerical solutions of a Riemann problem are compared with the modified artificial energy method, showing that the dissipation effect predicted by the analytical formulation is reflected in the numerical method as well.

  18. High-pressure phases in shock-induced melt of the unique highly shocked LL6 chondrite Northwest Africa 757

    NASA Astrophysics Data System (ADS)

    Hu, Jinping; Sharp, Thomas G.

    2016-06-01

    Northwest Africa 757 is unique in the LL chondrite group because of its abundant shock-induced melt and high-pressure minerals. Olivine fragments entrained in the melt transform partially and completely into ringwoodite. Plagioclase and Ca-phosphate transform to maskelynite, lingunite, and tuite. Two distinct shock-melt crystallization assemblages were studied by FIB-TEM analysis. The first melt assemblage, which includes majoritic garnet, ringwoodite plus magnetite-magnesiowüstite, crystallized at pressures of 20-25 GPa. The other melt assemblage, which consists of clinopyroxene and wadsleyite, solidified at ~15 GPa, suggesting a second veining event under lower pressure conditions. These shock features are similar to those in S6 L chondrites and indicate that NWA 757 experienced an intense impact event, comparable to the impact event that disrupted the L chondrite parent body at 470 Ma.

  19. High-pressure phases in shock-induced melt of the unique highly shocked LL6 chondrite Northwest Africa 757

    NASA Astrophysics Data System (ADS)

    Hu, Jinping; Sharp, Thomas G.

    2016-07-01

    Northwest Africa 757 is unique in the LL chondrite group because of its abundant shock-induced melt and high-pressure minerals. Olivine fragments entrained in the melt transform partially and completely into ringwoodite. Plagioclase and Ca-phosphate transform to maskelynite, lingunite, and tuite. Two distinct shock-melt crystallization assemblages were studied by FIB-TEM analysis. The first melt assemblage, which includes majoritic garnet, ringwoodite plus magnetite-magnesiowüstite, crystallized at pressures of 20-25 GPa. The other melt assemblage, which consists of clinopyroxene and wadsleyite, solidified at ~15 GPa, suggesting a second veining event under lower pressure conditions. These shock features are similar to those in S6 L chondrites and indicate that NWA 757 experienced an intense impact event, comparable to the impact event that disrupted the L chondrite parent body at 470 Ma.

  20. Measuring high pressure equation of state of polystyrene using laser driven shock wave

    NASA Astrophysics Data System (ADS)

    Shu, Hua; Huang, Xiuguang; Ye, Junjian; Wu, Jiang; Jia, Guo; Fang, Zhiheng; Xie, Zhiyong; Zhou, Huazhen; Fu, Sizu

    2015-11-01

    High precision polystyrene equation of state data were measured using laser-driven shock waves with pressures from 180 GPa to 700 GPa. α quartz was used as standard material, the shock wave trajectory in quartz and polystyrene was measured using the Velocity Interferometer for Any Reflector (VISAR). Instantaneous shock velocity in quartz and polystyrene was obtained when the shock wave pass the interface. This provided ~1% precision in shock velocity measurements.

  1. Development of a shock noise prediction code for high-speed helicopters - The subsonically moving shock

    NASA Technical Reports Server (NTRS)

    Tadghighi, H.; Holz, R.; Farassat, F.; Lee, Yung-Jang

    1991-01-01

    A previously defined airfoil subsonic shock-noise prediction formula whose result depends on a mapping of the time-dependent shock surface to a time-independent computational domain is presently coded and incorporated in the NASA-Langley rotor-noise prediction code, WOPWOP. The structure and algorithms used in the shock-noise prediction code are presented; special care has been taken to reduce computation time while maintaining accuracy. Numerical examples of shock-noise prediction are presented for hover and forward flight. It is confirmed that shock noise is an important component of the quadrupole source.

  2. Optical observation of shock waves and cavitation bubbles in high intensity laser-induced shock processes

    SciTech Connect

    Marti-Lopez, L.; Ocana, R.; Porro, J. A.; Morales, M.; Ocana, J. L.

    2009-07-01

    We report an experimental study of the temporal and spatial dynamics of shock waves, cavitation bubbles, and sound waves generated in water during laser shock processing by single Nd:YAG laser pulses of nanosecond duration. A fast ICCD camera (2 ns gate time) was employed to record false schlieren photographs, schlieren photographs, and Mach-Zehnder interferograms of the zone surrounding the laser spot site on the target, an aluminum alloy sample. We recorded hemispherical shock fronts, cylindrical shock fronts, plane shock fronts, cavitation bubbles, and phase disturbance tracks.

  3. [Research on Energy Distribution During Osteoarthritis Treatment Using Shock Wave Lithotripsy].

    PubMed

    Zhang, Shinian; Wang, Xiaofeng; Zhang, Dong

    2015-04-01

    Extracorporeal shock wave treatment is capable of providing a non-surgical and effective treatment modality for patients suffering from osteoarthritis. The major objective of current works is to investigate how the shock wave (SW) field would change if a bony structure exists in the path of the acoustic wave. Firstly, a model of finite element method (FEM) was developed based on Comsol software in the present study. Then, high-speed photography experiments were performed to record cavitation bubbles with the presence of mimic bone. On the basis of comparing experimental with simulated results, the effectiveness of FEM model could be verified. Finally, the energy distribution during extracorporeal shock wave treatment was predicted. The results showed that the shock wave field was deflected with the presence of bony structure and varying deflection angles could be observed as the bone shifted up in the z-direction relative to shock wave geometric focus. Combining MRI/CT scans to FEM modeling is helpful for better standardizing the treatment dosage and optimizing treatment protocols in the clinic. PMID:26211244

  4. High strength and high ductility behavior of 6061-T6 alloy after laser shock processing

    NASA Astrophysics Data System (ADS)

    Gencalp Irizalp, Simge; Saklakoglu, Nursen

    2016-02-01

    The plastic deformation behavior of 6061-T6 alloy which was subjected to severe plastic deformation (SPD) at high strain rates during laser shock processing (LSP) was researched. In LSP-treated materials, the near surface microstructural change was examined by TEM and fracture surfaces after tensile testing were examined by SEM. An increase in strength of metallic materials brings about the decrease in ductility. In this study, the results showed that LSP-treated 6061-T6 alloy exhibited both high strength and high ductility. TEM observation showed that stacking fault (SF) ribbon enlarged, deformation twins formed and twin boundary increased in LSP-treated 6061-T6 alloy. This observation was an indication of stacking fault energy (SFE) decrease. Work hardening capability was recovered after LSP impacts.

  5. Low-energy proton increases associated with interplanetary shock waves.

    NASA Technical Reports Server (NTRS)

    Palmeira, R. A. R.; Allum, F. R.; Rao, U. R.

    1971-01-01

    Impulsive increases in the low energy proton flux observed by the Explorer 34 satellite, in very close time association with geomagnetic storm sudden commencements are described. It is shown that these events are of short duration (20-30 min) and occur only during the decay phase of a solar cosmic-ray flare event. The differential energy spectrum and the angular distribution of the direction of arrival of the particles are discussed. Two similar increases observed far away from the earth by the Pioneer 7 and 8 deep-space probes are also presented. These impulsive increases are compared with Energetic Storm Particle events and their similarities and differences are discussed. A model is suggested to explain these increases, based on the sweeping and trapping of low energy cosmic rays of solar origin by the advancing shock front responsible for the sudden commencement detected on the earth.

  6. Collisionless shock generation in high-speed counterstreaming plasma flows by a high-power laser

    SciTech Connect

    Morita, T.; Aoki, H.; Sakawa, Y.; Kuramitsu, Y.; Kato, T. N.; Dono, S.; Tanji, H.; Li, Y. T.; Zhang, Y.; Liu, X.; Zhong, J. Y.; Takabe, H.; Zhang, J.

    2010-12-15

    The experimental demonstration of the formation of a strong electrostatic (ES) collisionless shock has been carried out with high-speed counterstreaming plasmas, produced by a high-power laser irradiation, without external magnetic field. The nearly four times density jump observed in the experiment shows a high Mach-number shock. This large density jump is attributed to the compression of the downstream plasma by momentum transfer by ion reflection of the upstream plasma. Particle-in-cell (PIC) simulation shows the production of a collisionless high Mach-number ES shock with counterstreaming interaction of two plasma slabs with different temperatures and densities, as pointed out by Sorasio et al. [Phys. Rev. Lett. 96, 045005 (2006)]. It is speculated that the shock discontinuity is balanced with the momentum of incoming and reflected ions and the predominant pressure of the electrons in the downstream with PIC simulation.

  7. Energy harvesting from human motion: exploiting swing and shock excitations

    NASA Astrophysics Data System (ADS)

    Ylli, K.; Hoffmann, D.; Willmann, A.; Becker, P.; Folkmer, B.; Manoli, Y.

    2015-02-01

    Modern compact and low power sensors and systems are leading towards increasingly integrated wearable systems. One key bottleneck of this technology is the power supply. The use of energy harvesting techniques offers a way of supplying sensor systems without the need for batteries and maintenance. In this work we present the development and characterization of two inductive energy harvesters which exploit different characteristics of the human gait. A multi-coil topology harvester is presented which uses the swing motion of the foot. The second device is a shock-type harvester which is excited into resonance upon heel strike. Both devices were modeled and designed with the key constraint of device height in mind, in order to facilitate the integration into the shoe sole. The devices were characterized under different motion speeds and with two test subjects on a treadmill. An average power output of up to 0.84 mW is achieved with the swing harvester. With a total device volume including the housing of 21 cm3 a power density of 40 μW cm-3 results. The shock harvester generates an average power output of up to 4.13 mW. The power density amounts to 86 μW cm-3 for the total device volume of 48 cm3. Difficulties and potential improvements are discussed briefly.

  8. Particle Acceleration in Shock-Shock Interaction

    NASA Astrophysics Data System (ADS)

    Nakanotani, Masaru; Matsukiyo, Shuichi; Hada, Tohru

    2015-04-01

    Collisionless shock waves play a crucial role in producing high energy particles. One of the most plausible acceleration mechanisms is the first order Fermi acceleration in which non-thermal particles statistically gain energy while scattered by MHD turbulence both upstream and downstream of a shock. Indeed, X-ray emission from energetic particles accelerated at supernova remnant shocks is often observed [e.g., Uchiyama et al., 2007]. Most of the previous studies on shock acceleration assume the presence of a single shock. In space, however, two shocks frequently come close to or even collide with each other. For instance, it is observed that a CME (coronal mass ejection) driven shock collides with the earth's bow shock [Hietala et al., 2011], or interplanetary shocks pass through the heliospheric termination shock [Lu et al., 1999]. Colliding shocks are observed also in high power laser experiments [Morita et al., 2013]. It is expected that shock-shock interactions efficiently produce high energy particles. A previous work using hybrid simulation [Cargill et al., 1986] reports efficient ion acceleration when supercritical two shocks collide. In the hybrid simulation, however, the electron dynamics cannot be resolved so that electron acceleration cannot be discussed in principle. Here, we perform one-dimensional full Particle-in-Cell (PIC) simulations to examine colliding two symmetric oblique shocks and the associated electron acceleration. In particular, the following three points are discussed in detail. 1. Energetic electrons are observed upstream of the two shocks before their collision. These energetic electrons are efficiently accelerated through multiple reflections at the two shocks (Fermi acceleration). 2. The reflected electrons excite large amplitude upstream waves. Electron beam cyclotron instability [Hasegawa, 1975] and electron fire hose instability [Li et al., 2000] appear to occur. 3. The large amplitude waves can scatters energetic electrons in

  9. Highly Excited H2 in Herbig–Haro 7: Formation Pumping in Shocked Molecular Gas?

    NASA Astrophysics Data System (ADS)

    Pike, R. E.; Geballe, T. R.; Burton, M. G.; Chrysostomou, A.

    2016-05-01

    We have obtained K-band spectra at R ∼ 5000 and an angular resolution of 0.″3 of a section of the Herbig–Haro 7 (HH7) bow shock, using the Near-Infrared Integral Field Spectrograph at Gemini North. Present in the portion of the data cube corresponding to the brightest part of the bow shock are emission lines of H2 with upper state energies ranging from ∼6000 K to the dissociation energy of H2, ∼50,000 K. Because of low signal-to-noise ratios, the highest excitation lines cannot be easily seen elsewhere in the observed region. However, excitation temperatures, measured throughout much of the observed region using lines from levels as high as 25,000 K, are a strong function of upper level energy, indicating that the very highest levels are populated throughout. The level populations in the brightest region are well fit by a two-temperature model, with 98.5% of the emitting gas at T = 1800 K and 1.5% at T = 5200 K. The bulk of the H2 line emission in HH7, from the 1800 K gas, has previously been well-modeled by a continuous shock, but the 5200 K cozmponent is inconsistent with standalone standard continuous shock models. We discuss various possible origins for the hot component and suggest that this component is H2 newly reformed on dust grains and then ejected from them, presumably following dissociation of some of the H2 by the shock.

  10. Electron heating in a Monte Carlo model of a high Mach number, supercritical, collisionless shock

    NASA Technical Reports Server (NTRS)

    Ellison, Donald C.; Jones, Frank C.

    1987-01-01

    Preliminary work in the investigation of electron injection and acceleration at parallel shocks is presented. A simple model of electron heating that is derived from a unified shock model which includes the effects of an electrostatic potential jump is described. The unified shock model provides a kinetic description of the injection and acceleration of ions and a fluid description of electron heating at high Mach number, supercritical, and parallel shocks.

  11. Energy-Dependent Ionization States of Shock-Accelerated Particles in the Solar Corona

    NASA Technical Reports Server (NTRS)

    Reames, Donald V.; Ng, C. K.; Tylka, A. J.

    2000-01-01

    We examine the range of possible energy dependence of the ionization states of ions that are shock-accelerated from the ambient plasma of the solar corona. If acceleration begins in a region of moderate density, sufficiently low in the corona, ions above about 0.1 MeV/amu approach an equilibrium charge state that depends primarily upon their speed and only weakly on the plasma temperature. We suggest that the large variations of the charge states with energy for ions such as Si and Fe observed in the 1997 November 6 event are consistent with stripping in moderately dense coronal. plasma during shock acceleration. In the large solar-particle events studied previously, acceleration occurs sufficiently high in the corona that even Fe ions up to 600 MeV/amu are not stripped of electrons.

  12. Quantified Energy Dissipation Rates in the Terrestrial Bow Shock. 2; Waves and Dissipation

    NASA Technical Reports Server (NTRS)

    Wilson, L. B., III; Sibeck, D. G.; Breneman, A. W.; Le Contel, O.; Cully, C.; Turner, D. L.; Angelopoulos, V.; Malaspina, D. M.

    2014-01-01

    We present the first quantified measure of the energy dissipation rates, due to wave-particle interactions, in the transition region of the Earth's collision-less bow shock using data from the Time History of Events and Macro-Scale Interactions during Sub-Storms spacecraft. Our results show that wave-particle interactions can regulate the global structure and dominate the energy dissipation of collision-less shocks. In every bow shock crossing examined, we observed both low-frequency (less than 10 hertz) and high-frequency (approximately or greater than10 hertz) electromagnetic waves throughout the entire transition region and into the magnetosheath. The low-frequency waves were consistent with magnetosonic-whistler waves. The high-frequency waves were combinations of ion-acoustic waves, electron cyclotron drift instability driven waves, electrostatic solitary waves, and whistler mode waves. The high-frequency waves had the following: (1) peak amplitudes exceeding delta B approximately equal to 10 nanoteslas and delta E approximately equal to 300 millivolts per meter, though more typical values were delta B approximately equal to 0.1-1.0 nanoteslas and delta E approximately equal to 10-50 millivolts per meter (2) Poynting fluxes in excess of 2000 microWm(sup -2) (micro-waves per square meter) (typical values were approximately 1-10 microWm(sup -2) (micro-waves per square meter); (3) resistivities greater than 9000 omega meters; and (4) associated energy dissipation rates greater than 10 microWm(sup -3) (micro-waves per cubic meter). The dissipation rates due to wave-particle interactions exceeded rates necessary to explain the increase in entropy across the shock ramps for approximately 90 percent of the wave burst durations. For approximately 22 percent of these times, the wave-particle interactions needed to only be less than or equal to 0.1 percent efficient to balance the nonlinear wave steepening that produced the shock waves. These results show that wave

  13. Shock initiation studies on high concentration hydrogen peroxide

    SciTech Connect

    Sheffield, Stephen A; Dattelbaum, Dana M; Stahl, David B; Gibson, L. Lee; Bartram, Brian D.

    2009-01-01

    Concentrated hydrogen peroxide (H{sub 2}O{sub 2}) has been known to detonate for many years. However, because of its reactivity and the difficulty in handling and confining it, along with the large critical diameter, few studies providing basic information about the initiation and detonation properties have been published. We are conducting a study to understand and quantify the initiation and detonation properties of highly concentrated H{sub 2}O{sub 2} using a gas-driven two-stage gun to produce well defined shock inputs. Multiple magnetic gauges are used to make in-situ measurements of the growth of reaction and subsequent detonation in the liquid. These experiments are designed to be one-dimensional to eliminate any difficulties that might be encountered with large critical diameters. Because of the concern of the reactivity of the H{sub 2}O{sub 2} with the confining materials, a remote loading system has been developed. The gun is pressurized, then the cell is filled and the experiment shot within less than three minutes. TV cameras are attached to the target so the cell filling can be monitored. Several experiments have been completed on {approx}98 wt % H{sub 2}O{sub 2}/H{sub 2}O mixtures; initiation has been observed in some experiments that shows homogeneous shock initiation behavior. The initial shock pressurizes and heats the mixture. After an induction time, a thermal explosion type reaction produces an evolving reactive wave that strengthens and eventually overdrives the first wave producing a detonation. From these measurements, we have determined unreacted Hugoniot information, times (distances) to detonation (Pop-plot points) that indicate low sensitivity, and detonation velocities of high concentration H{sub 2}O{sub 2}/H{sub 2}O solutions that agree with earlier estimates.

  14. High-speed helicopter rotor noise - Shock waves as a potent source of sound

    NASA Technical Reports Server (NTRS)

    Farassat, F.; Lee, Yung-Jang; Tadghighi, H.; Holz, R.

    1991-01-01

    In this paper we discuss the problem of high speed rotor noise prediction. In particular, we propose that from the point of view of the acoustic analogy, shocks around rotating blades are sources of sound. We show that, although for a wing at uniform steady rectilinear motion with shocks the volume quadrupole and shock sources cancel in the far field to the order of 1/r, this cannot happen for rotating blades. In this case, some cancellation between volume quadrupoles and shock sources occurs, yet the remaining shock noise contribution is still potent. A formula for shock noise prediction is presented based on mapping the deformable shock surface to a time independent region. The resulting equation is similar to Formulation 1A of Langley. Shock noise prediction for a hovering model rotor for which experimental noise data exist is presented. The comparison of measured and predicted acoustic data shows good agreement.

  15. Low-energy ion acceleration at quasi-perpendicular shocks: Transverse diffusion

    NASA Technical Reports Server (NTRS)

    Giacalone, J.; Jokipii, J. R.

    1995-01-01

    The problem of ion injection and acceleration at quasi perpendicular shocks has been the subject of some debate over the past two decades. It is widely known that these shocks efficiently accelerate particles that are well in the high-energy tail of the distribution. However, the issue of injection, or the acceleration of low-energy ions, has yet to reach a consensus. The fundamental issue is whether there is enough diffusion normal to the magnetic field for the particles to remain near the shock. Since transverse diffusion is a physical process that is not well understood in space plasmas, this is an important, and difficult issue to address. In this report, we will investigate the ion injection problem by performing test particle orbit integrations using synthesized turbulent fields. These fields are fully three-dimensional so that transverse diffusion is possible (cross-field diffusion is not possible in geometries where the electromagnetic fields are less than three dimensional). The synthesized fields are produced by superimposing a three-dimensional wave field on a background field. For completeness, we will compare the results from this model with the more well-established theories, such as the diffusive approximation and scatter-free shock drift acceleration. We will also compare these results with other numerical simulation techniques such as the well known hybrid simulation, and other test-particle calculations in which the shock fields are specified to have less than three dimensions. We will also discuss some recent relevant observations and how these compare with our results.

  16. Unsteady shock wave diagnostics with high-speed imaging

    NASA Astrophysics Data System (ADS)

    Skews, B. W.; Kleine, H.; MacLucas, D.; Takehara, K.; Teranishi, H.; Etoh, T. G.

    2008-11-01

    The visual study of unsteady shock wave dynamics has in the past predominantly been done using single-shot images. The advent of ultra-fast, good-resolution high-speed digital cameras has changed this state of affairs and allows the true development of the flow to be studied. It enables the detection of weaker features which are easily overlooked in singleshot visualizations by virtue of the fact that human vision is very sensitive to detecting the motion of an object, even if it generates only a faint optical signal. Recent application of these devices to the study of the focusing of a shock wave in a cylindrical cavity has identified a number of previously unknown features, while other features that previously had been inadequately reported could be clearly identified and explained The observation of deliberately generated weak disturbances allows the quantification of which part of the flow is influenced by which part of the boundaries encompassing it. Whilst the imaging itself is very useful it is also highly desirable to use techniques from which quantitative data can be obtained. Color, such as in direction- and magnitude-indicating color schlieren, and polychrome shearing interferometry, adds an additional dimension to such investigations.

  17. On the Fielding of a High Gain, Shock-Ignited Target on the National Ignitiion Facility in the Near Term

    SciTech Connect

    Perkins, L J; Betti, R; Schurtz, G P; Craxton, R S; Dunne, A M; LaFortune, K N; Schmitt, A J; McKenty, P W; Bailey, D S; Lambert, M A; Ribeyre, X; Theobald, W R; Strozzi, D J; Harding, D R; Casner, A; Atzemi, S; Erbert, G V; Andersen, K S; Murakami, M; Comley, A J; Cook, R C; Stephens, R B

    2010-04-12

    Shock ignition, a new concept for igniting thermonuclear fuel, offers the possibility for a near-term ({approx}3-4 years) test of high gain inertial confinement fusion on the National Ignition Facility at less than 1MJ drive energy and without the need for new laser hardware. In shock ignition, compressed fusion fuel is separately ignited by a strong spherically converging shock and, because capsule implosion velocities are significantly lower than those required for conventional hotpot ignition, fusion energy gains of {approx}60 may be achievable on NIF at laser drive energies around {approx}0.5MJ. Because of the simple all-DT target design, its in-flight robustness, the potential need for only 1D SSD beam smoothing, minimal early time LPI preheat, and use of present (indirect drive) laser hardware, this target may be easier to field on NIF than a conventional (polar) direct drive hotspot ignition target. Like fast ignition, shock ignition has the potential for high fusion yields at low drive energy, but requires only a single laser with less demanding timing and spatial focusing requirements. Of course, conventional symmetry and stability constraints still apply. In this paper we present initial target performance simulations, delineate the critical issues and describe the immediate-term R&D program that must be performed in order to test the potential of a high gain shock ignition target on NIF in the near term.

  18. High thermal shock resistance of the hot rolled and swaged bulk W-ZrC alloys

    NASA Astrophysics Data System (ADS)

    Xie, Z. M.; Liu, R.; Miao, S.; Yang, X. D.; Zhang, T.; Fang, Q. F.; Wang, X. P.; Liu, C. S.; Lian, Y. Y.; Liu, X.; Luo, G. N.

    2016-02-01

    The thermal shock (single shot) resistance and mechanical properties of the W-0.5wt% ZrC (WZC) alloys manufactured by ordinary sintering followed by swaging or rolling process were investigated. No cracks or surface melting were detected on the surface of the rolled WZC alloy plates after thermal shock at a power density of 0.66 GW/m2 for 5 ms, while primary intergranular cracks appear on the surface of the swaged WZC samples after thermal shock at a power density of 0.44 GW/m2 for 5 ms. Three point bending tests indicate that the rolled WZC alloy has a flexural strength of ˜2.4 GPa and a total strain of 1.8% at room temperature, which are 100% and 260% higher than those of the swaged WZC, respectively. The fracture energy density of the rolled WZC alloy is 3.23 × 107 J/m3, about 10 times higher than that of the swaged WZC (2.9 × 106 J/m3). The high thermal shock resistance of the rolled WZC alloys can be ascribed to their extraordinary ductility and plasticity.

  19. The Guitar nebula - A bow shock from a slow-spin, high-velocity neutron star

    NASA Technical Reports Server (NTRS)

    Cordes, James M.; Romani, Roger W.; Lundgren, Scott C.

    1993-01-01

    The discovery is reported of a prominent nebula produced by the motion of a high-velocity pulsar, PSR 2224 + 65, through partially neutral gas. The pulsar's transverse speed of over about 800 km/s makes it arguably the fastest known star in the Galaxy and guarantees that it will ultimately escape the Galactic potential well. A deep H-alpha image reveals a bright head and a giant limb-brightened 'body' whose variable width suggests that the ambient interstellar gas has density variations on length scales less than 0.1 pc. Thermalization of shock energy occurs at a rate of about 0.01 times the pulsar's spindown loss rate. These observations provide some insights into the likelihood of finding shocks around other pulsars and the use of nebulae to find high-velocity neutron stars either not acting as pulsars or with their radiation beamed away from the earth.

  20. The Energy Spectrum of Energetic Particles Downstream of Turbulent Collisionless Shocks

    NASA Astrophysics Data System (ADS)

    Giacalone, Joe; Neugebauer, Marcia

    2008-01-01

    Using simple analytic considerations, numerical simulations, and data analysis, we discuss the physics of charged-particle acceleration by turbulent, rippled, collisionless shocks. The standard theory of diffusive shock acceleration predicts that the energetic-particle energy spectrum, in the region of shocked plasma, is a function of the plasma density jump. But because of the interaction of the shock with plasma turbulence, the jump in plasma density varies in time and from place to place on the shock front. Here we show that for reasonable parameters, the shape of the energetic-particle energy spectra downstream of any given shock is nearly independent of location along the shock front, even though the density jump varies. This is because energetic particles are mobile and sample many turbulent fluctuations during their acceleration. This result holds for shocks having smaller scale ripples than the large-scale radius of curvature (Dc) of the shock. Thus, it applies to the interpretation of spacecraft observations of traveling interplanetary shocks provided the spacecraft separation is less than Dc. This result is confirmed with simple analytic considerations and numerical simulations that solve the combined magnetohydrodynamic equations for a plasma and energetic test particles using the well-known Parker transport equation. This conclusion is further supported by our analysis of ACE and Geotail observations of a few interplanetary shocks.

  1. Characteristics of a piezoresistive accelerometer in high frequency, high shock environments

    SciTech Connect

    Bateman, V.I.; Davie, N.T.; Brown, F.A.

    1993-12-31

    The characteristics of a piezoresistive accelerometer in shock environments are being studied at Sandia National Laboratories in the Mechanical Shock Testing Laboratory. A Hopkinson bar capability has been developed to extend our understanding of the piezoresistive accelerometer with and without mechanical isolation in the high frequency, high shock environments where measurements are being made. Two different Hopkinson bar materials are being used: titanium and beryllium. The characteristics of the piezoresistive accelerometer for frequencies of DC-10 kHz and shock magnitudes of up to 4,000 g as determined from measurements with a titanium Hopkinson bar are presented. The SNL uniaxial shock isolation technique has demonstrated acceptable characteristics for a temperature range of {minus}50{degree}F to +186{degree}F and a frequency bandwidth of DC to 10 kHz. These characteristics have been verified by the calibration of the Hopkinson bar used for accelerometer testing. The beryllium Hopkinson bar configuration is described. Preliminary characteristics of the piezoresistive accelerometer at a nominal shock level of 17,000 g for a frequency range of DC-50 kHz are presented.

  2. Shock ignition: a new approach to high gain inertial confinement fusion on the national ignition facility.

    PubMed

    Perkins, L J; Betti, R; LaFortune, K N; Williams, W H

    2009-07-24

    Shock ignition, an alternative concept for igniting thermonuclear fuel, is explored as a new approach to high gain, inertial confinement fusion targets for the National Ignition Facility (NIF). Results indicate thermonuclear yields of approximately 120-250 MJ may be possible with laser drive energies of 1-1.6 MJ, while gains of approximately 50 may still be achievable at only approximately 0.2 MJ drive energy. The scaling of NIF energy gain with laser energy is found to be G approximately 126E (MJ);{0.510}. This offers the potential for high-gain targets that may lead to smaller, more economic fusion power reactors and a cheaper fusion energy development path. PMID:19659364

  3. Sensitivity of once-shocked, weathered high explosives

    SciTech Connect

    Williams, K.L.; Harris, B.W.

    1998-07-01

    Effects caused by stimulating once-shocked, weathered high explosives (OSW-HE) are investigated. The sensitivity of OSW-HE to mechanical stimuli was determined using standard industry tests. Some initial results are given. Pieces of OSW-HE were collected from active and inactive firing sites and from an area surrounding a drop tower at Los Alamos where skid and spigot tests were done. Samples evaluated were cast explosives or plastic bonded explosive (PBX) formulations containing cyclotrimethylenetrinitramine (RDX), cyclotetramethylene tetranitramine (HMX), 2,4,6-trinitrotoluene (TNT), mock or inert HE [tris(beta-chloroethyl)phosphate (CEF)], barium nitrate, cyanuric acid, talc, and Kel-F. Once-shocked, weathered LX-10 Livermore explosive [HMX/Viton A, (95/5 wt %)], PBX 9011 [HMX/Estane, (90/10 wt %)], PBX 9404 [HMX/nitrocellulose, tris(beta-chloroethyl) phosphate, (94/3/3 wt %)], Composition B or cyclotol (TNT/RDX explosives), and PBX 9007 (90% RDX, 9.1% styrene, 0.5% dioctyl phthalate, and 0.45 resin) were subjected to the hammer test, the drop-weight impact sensitivity test, differential thermal analysis (DTA), the spark test, the Henkin`s critical temperature test, and the flame test. Samples were subjected to remote, wet cutting and drilling; remote, liquid-nitrogen-cooled grinding and crushing; and scanning electron microscope (SEM) surface analyses for morphological changes.

  4. Simulations of high Mach number perpendicular shocks with resistive electrons

    NASA Technical Reports Server (NTRS)

    Quest, K. B.

    1986-01-01

    A simulation code which models the ions as microparticles and the electrons as a resistive massless fluid is employed to study the structure of high Mach number perpendicular shocks. It is found that stable stationary shock solutions can be obtained for Alfven Mach numbers (M sub A) between 5 and 60 for upstream plasmas where the ratio of the plasma pressure to the magnetic pressure is 1, providing that the upstream resistive diffusion length is much smaller than the ion inertial length. For much larger resistive diffusion lengths, the magnetic field overshoot is damped, and the imbalance in the electron momentum equation results in a periodic fluctuation of the fraction of reflected ions. In the limit of M sub A of less than 10, the magnetic overshoot and the fraction of reflected ions increase with increasing M sub A, while at higher Mach numbers the fraction of reflected ions peaks at about 40 percent and the magnetic field overshoot increases at a much slower rate. Electron inertial effects are also considered.

  5. High-efficiency shock-wave generator for extracorporeal lithotripsy.

    PubMed

    Broyer, P; Cathignol, D; Theillère, Y; Mestas, J L

    1996-09-01

    In extracorporeal lithotripsy, the electro-acoustic efficiency of electrohydraulic generators is limited by the inductance of the electrical discharge circuit. A new shock-wave generator is described that uses a coaxial discharge line enabling electro-acoustic efficiency to be greatly increased. The line is built using a para-electric ceramic with a relative dielectric constant of 1700, manufactured for use in high-voltage impulse mode. A coaxial spark gap, with minimal inductance, has been developed to obtain the triggered breakdown of the discharge line. Shock waves are created with a coaxial electrode plugged directly into the spark gap and immersed in an electrolyte of degassed saline. Electrode gap and electrolyte resistivity are adjusted to match the resistivity of the electrolyte volume between the underwater electrodes to the characteristic impedance of the line. The discharge line generates in the medium a rectangular current pulse with an amplitude of about 6000 A and a rise time of 50 ns. Compared with conventional generators, measurements of the expansive peak pressure pulse show an increase of 105% at 10 kV, 86.5% at 12 kV and 34.5% at 14 kV charging voltage. Electro-acoustic efficiency is found to be 11% instead of 5.5% for a conventional discharge circuit. PMID:8945854

  6. Shock response of the commercial high explosive Detasheet

    NASA Astrophysics Data System (ADS)

    Asay, B. W.; Ramsay, J. B.; Anderson, M. U.; Graham, R. A.

    1994-12-01

    The mechanical and chemical response of the flexible commercial high explosive DetasheetR is studied under controlled impact and plane-wave, high explosive loading. Results on nonreactive material behavior, sound speed, shock-initiation sensitivity and detonation pressure are presented. The material is found to respond in a viscous manner reminiscent of viscoelastic response of polymeric materials. Time-resolved pressure and pressure-rate measurements with PVDF piezoelectric polymer gauges are presented along with Manganin pressure and plate-dent test measurements of detonation pressure. Detonation pressures of 18GPa are indicated. Pressure measurements show initiation of reaction between 3 and 8 mm for an impact stress of 3.1 GPa. Plane wave loading wedge tests show run distances to detonation consistent with the pressure measurements, and with behavior like that of XTX8003 (80 % PETN/20 % Sylgard 182R).

  7. Pyrotechnic shock response predictions combining statistical energy analysis and local random phase reconstruction.

    PubMed

    Bodin, E; Brévart, B; Wagstaff, P; Borello, G

    2002-07-01

    Numerous pyrotechnic devices are used on satellites to separate structural subsystems, deploy appendages, and activate on-board operating subsystems. The firing of these pyrotechnic mechanisms leads to severe impulsive loads which could sometimes lead to failures in electronic systems. The objective of the present investigation is to assess the relevance of a method combining deterministic calculations and statistical energy analysis to predict the time overall shock environment of electronic equipment components. The methods are applied to the low- and high-frequency ranges, respectively, which may be defined using a modal parameter based on the effective transmissibility. Initially, in order to address the problem of the low-frequency content of the mechanical shock pulse, the linear dynamic response of the equipment was calculated using direct time integration of a finite element model of the structure. The inputs in the form of the accelerations measured in all three directions at each of the four bolted interfaces were injected into the model. The high-frequency content of the shock response is taken into account by considering the intrinsic dynamic filtering of the equipment. This frequency filter magnitude is extrapolated from the transfer function given by statistical energy analysis between the different imposed accelerations and the response accelerations. Their associated phases are synthesized by considering pseudo-modal phase variations around the group velocity of the structural flexural waves. Combining the effects of the high-frequency filter outputs and the low-frequency finite element calculations yields good predictions of the equipment shock time response over the whole frequency range of interest. PMID:12141340

  8. Pyrotechnic shock response predictions combining statistical energy analysis and local random phase reconstruction

    NASA Astrophysics Data System (ADS)

    Bodin, E.; Brevart, B.; Wagstaff, P.; Borello, G.

    2002-07-01

    Numerous pyrotechnic devices are used on satellites to separate structural subsystems, deploy appendages, and activate on-board operating subsystems. The firing of these pyrotechnic mechanisms leads to severe impulsive loads which could sometimes lead to failures in electronic systems. The objective of the present investigation is to assess the relevance of a method combining deterministic calculations and statistical energy analysis to predict the time overall shock environment of electronic equipment components. The methods are applied to the low- and high-frequency ranges, respectively, which may be defined using a modal parameter based on the effective transmissibility. Initially, in order to address the problem of the low-frequency content of the mechanical shock pulse, the linear dynamic response of the equipment was calculated using direct time integration of a finite element model of the structure. The inputs in the form of the accelerations measured in all three directions at each of the four bolted interfaces were injected into the model. The high-frequency content of the shock response is taken into account by considering the intrinsic dynamic filtering of the equipment. This frequency filter magnitude is extrapolated from the transfer function given by statistical energy analysis between the different imposed accelerations and the response accelerations. Their associated phases are synthesized by considering pseudo-modal phase variations around the group velocity of the structural flexural waves. Combining the effects of the high-frequency filter outputs and the low-frequency finite element calculations yields good predictions of the equipment shock time response over the whole frequency range of interest. copyright 2002 Acoustical Society of America.

  9. IPShocks: Database of Interplanetary Shock Waves

    NASA Astrophysics Data System (ADS)

    Isavnin, Alexey; Lumme, Erkka; Kilpua, Emilia; Lotti, Mikko; Andreeova, Katerina; Koskinen, Hannu; Nikbakhsh, Shabnam

    2016-04-01

    Fast collisionless shocks are one of the key interplanetary structures, which have also paramount role for solar-terrestrial physics. In particular, coronal mass ejection driven shocks accelerate particles to high energies and turbulent post-shock flows may drive intense geomagnetic storms. We present comprehensive Heliospheric Shock Database (ipshocks.fi) developed and hosted at University of Helsinki. The database contains currently over 2000 fast forward and fast reverse shocks observed by Wind, ACE, STEREO, Helios, Ulysses and Cluster spacecraft. In addition, the database has search and sort tools based on the spacecraft, time range, and several key shock parameters (e.g., shock type, shock strength, shock angle), data plots for each shock and data download options. These features allow easy access to shocks and quick statistical analyses. All current shocks are identified visually and analysed using the same procedure.

  10. Solution of the hydrodynamic device model using high-order non-oscillatory shock capturing algorithms

    NASA Technical Reports Server (NTRS)

    Fatemi, Emad; Jerome, Joseph; Osher, Stanley

    1989-01-01

    A micron n+ - n - n+ silicon diode is simulated via the hydrodynamic model for carrier transport. The numerical algorithms employed are for the non-steady case, and a limiting process is used to reach steady state. The simulation employs shock capturing algorithms, and indeed shocks, or very rapid transition regimes, are observed in the transient case for the coupled system, consisting of the potential equation and the conservation equations describing charge, momentum, and energy transfer for the electron carriers. These algorithms, termed essentially non-oscillatory, were successfully applied in other contexts to model the flow in gas dynamics, magnetohydrodynamics, and other physical situations involving the conservation laws in fluid mechanics. The method here is first order in time, but the use of small time steps allows for good accuracy. Runge-Kutta methods allow one to achieve higher accuracy in time if desired. The spatial accuracy is of high order in regions of smoothness.

  11. The effect of stochastic re-acceleration on the energy spectrum of shock-accelerated protons

    SciTech Connect

    Afanasiev, Alexandr; Vainio, Rami; Kocharov, Leon

    2014-07-20

    The energy spectra of particles in gradual solar energetic particle (SEP) events do not always have a power-law form attributed to the diffusive shock acceleration mechanism. In particular, the observed spectra in major SEP events can take the form of a broken (double) power law. In this paper, we study the effect of a process that can modify the power-law spectral form produced by the diffusive shock acceleration: the stochastic re-acceleration of energetic protons by enhanced Alfvénic turbulence in the downstream region of a shock wave. There are arguments suggesting that this process can be important when the shock propagates in the corona. We consider a coronal magnetic loop traversed by a shock and perform Monte Carlo simulations of interactions of shock-accelerated protons with Alfvén waves in the loop. The wave-particle interactions are treated self-consistently, so the finiteness of the available turbulent energy is taken into account. The initial energy spectrum of particles is taken to be a power law. The simulations reveal that the stochastic re-acceleration leads either to the formation of a spectrum that is described in a wide energy range by a power law (although the resulting power-law index is different from the initial one) or to a broken power-law spectrum. The resulting spectral form is determined by the ratio of the energy density of shock-accelerated protons to the wave energy density in the shock's downstream region.

  12. High-pressure shock behavior of WC and Ta2O5 powders.

    SciTech Connect

    Knudson, Marcus D.; Reinhart, William Dodd; Vogler, Tracy John; Root, Seth

    2011-10-01

    Planar shock experiments were conducted on granular tungsten carbide (WC) and tantalum oxide (Ta{sub 2}O{sub 5}) using the Z machine and a 2-stage gas gun. Additional shock experiments were also conducted on a nearly fully dense form of Ta{sub 2}O{sub 5}. The experiments on WC yield some of the highest pressure results for granular materials obtained to date. Because of the high distention of Ta{sub 2}O{sub 5}, the pressures obtained were significantly lower, but the very high temperatures generated led to large contributions of thermal energy to the material response. These experiments demonstrate that the Z machine can be used to obtain accurate shock data on granular materials. The data on Ta{sub 2}O{sub 5} were utilized in making improvements to the P-{lambda} model for high pressures; the model is found to capture the results not only of the Z and gas gun experiments but also those from laser experiments on low density aerogels. The results are also used to illustrate an approach for generating an equation of state using only the limited data coming from nanoindentation. Although the EOS generated in this manner is rather simplistic, for this material it gives reasonably good results.

  13. Electron Energy Distributions at Relativistic Shock Sites: Observational Constraints from the Cygnus A Hotspots

    SciTech Connect

    Cheung, C.C.Teddy; Stawarz, L.; Harris, D.E.; Ostrowski, M.

    2007-10-15

    We report new detections of the hotspots in Cygnus A at 4.5 and 8.0 microns with the Spitzer Space Telescope. Together with detailed published radio observations and synchrotron self-Compton modeling of previous X-ray detections, we reconstruct the underlying electron energy spectra of the two brightest hotspots (A and D). The low-energy portion of the electron distributions have flat power-law slopes (s {approx} 1.5) up to the break energy which corresponds almost exactly to the mass ratio between protons and electrons; we argue that these features are most likely intrinsic rather than due to absorption effects. Beyond the break, the electron spectra continue to higher energies with very steep slopes s>3. Thus, there is no evidence for the 'canonical' s=2 slope expected in 1st order Fermi-type shocks within the whole observable electron energy range. We discuss the significance of these observations and the insight offered into high-energy particle acceleration processes in mildly relativistic shocks.

  14. The chemical shock tube as a tool for studying high-temperature chemical kinetics

    NASA Technical Reports Server (NTRS)

    Brabbs, Theodore A.

    1986-01-01

    Although the combustion of hydrocarbons is our primary source of energy today, the chemical reactions, or pathway, by which even the simplest hydro-carbon reacts with atmospheric oxygen to form CO2 and water may not always be known. Furthermore, even when the reaction pathway is known, the reaction rates are always under discussion. The shock tube has been an important and unique tool for building a data base of reaction rates important in the combustion of hydrocarbon fuels. The ability of a shock wave to bring the gas sample to reaction conditions rapidly and homogeneously makes shock-tube studies of reaction kinetics extremely attractive. In addition to the control and uniformity of reaction conditions achieved with shock-wave methods, shock compression can produce gas temperatures far in excess of those in conventional reactors. Argon can be heated to well over 10 000 K, and temperatures around 5000 K are easily obtained with conventional shock-tube techniques. Experiments have proven the validity of shock-wave theory; thus, reaction temperatures and pressures can be calculated from a measurement of the incident shock velocity. A description is given of the chemical shock tube and auxiliary equipment and of two examples of kinetic experiments conducted in a shock tube.

  15. Low-energy particle acceleration and compression at the termination shock and in the heliosheath

    SciTech Connect

    Florinski, V.; Le Roux, J. A.; Decker, R. B.

    2008-08-25

    We discuss some theoretical aspects of pickup ion acceleration at the solar wind termination shock and beyond in the heliosheath. Our model of anisotropic transport permits a wide range of acceleration mechanisms, including (a) adiabatic compression by the shock of PUI suprathermal tails, (b) standard diffusive acceleration at the shock, (c) mirroring by the magnetic field kink at a quasi-perpendicular shock, and (d) momentum diffusion in the solar wind and the heliosheath. It is shown that momentum diffusion in the heliosheath is an efficient particle accelerator at low energies. We also investigate the processing of a pre-accelerated pickup ion spectra by the termination shock and analyze the long-term averaged anisotropies of the combined distributions near a shock whose obliquity varies with time.

  16. THE MAGNETIZATION DEGREE OF THE OUTFLOW POWERING THE HIGHLY POLARIZED REVERSE-SHOCK EMISSION OF GRB 120308A

    SciTech Connect

    Zhang, Shuai; Jin, Zhi-Ping; Wei, Da-Ming E-mail: dmwei@pmo.ac.cn

    2015-01-01

    GRB 120308A, a long duration γ-ray burst (GRB) detected by Swift, was distinguished by a highly polarized early optical afterglow emission that strongly suggests an ordered magnetic field component in the emitting region. In this work, we model the optical and X-ray emission in the reverse and forward shock scenario and show that the strength of the magnetic field in the reverse-shock region is ∼10 times stronger than that in the forward shock region. Consequently, the outflow powering the highly polarized reverse-shock optical emission was mildly magnetized at a degree of σ ∼ a few percent. Considering the plausible magnetic energy dissipation in both the acceleration and prompt emission phases of the GRB outflow, the afterglow data of GRB 120308A provides us with compelling evidence that, at least for some GRBs, a nonignorable fraction of the energy was released in the form of Poynting flux, confirming the finding first made in the reverse-forward shock emission modeling of the optical afterglow of GRB 990123 by Fan et al. in 2002 and Zhang et al. in 2003.

  17. Simulation of transient flow in a shock tunnel and a high Mach number nozzle

    NASA Technical Reports Server (NTRS)

    Jacobs, P. A.

    1991-01-01

    A finite volume Navier-Stokes code was used to simulate the shock reflection and nozzle starting processes in an axisymmetric shock tube and a high Mach number nozzle. The simulated nozzle starting processes were found to match the classical quasi-1-D theory and some features of the experimental measurements. The shock reflection simulation illustrated a new mechanism for the driver gas contamination of the stagnated test gas.

  18. Simulations of high-Mach-number collisionless perpendicular shocks in astrophysical plasmas

    NASA Technical Reports Server (NTRS)

    Quest, K. B.

    1985-01-01

    A problem of critical importance to space physics and astrophysics is the existence and properties of high-Mach-number shocks. Preliminary results of a simulation of a perpendicular shock with Alfven Mach number 22 are reported. It is shown that for sufficiently small electron resistivity the dissipation for this shock is provided by a periodic rather than time-stationary reflection of ions. The problem of electron heating and the extension to higher Mach numbers are discussed.

  19. Motion of the heliospheric termination shock. 2: Energy loss due to energetic particle acceleration

    NASA Technical Reports Server (NTRS)

    Barnes, Aaron

    1994-01-01

    We present a generalization of earlier analysis of the motion of the heliospheric termination shock in response to heliospheric disturbances (Barnes, 1993) (paper 1), to allow jump conditions that include an energy sink at the shock front. The motivation for this study is that acceleration of the anomalous cosmic ray component may in fact represent such a sink. We have idealized the situation by assuming an infinitely thin shock parameterized by a quantity lambda(0 less than or equals lambda less than or equals 1), defined as the fraction of solar wind energy that is lost due to acceleration of the energetic particle component. If the sink is strong (consuming, say, 50% or more of the incident solar wind energy), the model leads to the following principal conclusions: (1) the shocked plasma would be much denser and cooler than in the standard gasdynamic case, thereby leading to more favorable conditions for direct observation of the shocked plasma; (2) the equilibrium shock position would be slightly farther (less than 10%) from the Sun than in the standard model; (3) as in the gasdynamic case, the shock would normally be in motion, so that the instantaneous position of the termination shock is not determined by interstellar conditions but by the recent history of the wind that has passed through the termination shock; and (4) the response of the shock to upstream disturbances would be similar to the response in the gasdynamic case, but the speed of the new termination shock would be somewhat smaller (probably by a f actor of 4 or less). We estimate that this speed is typically, approximately a few tens of kilometers per second corresponding to an inward or outward excursion of order of less than 1 to several AU, rather less than conventional estimates of several tens of AU.

  20. Motion of the heliospheric termination shock. 2: Energy loss due to energetic particle acceleration

    NASA Astrophysics Data System (ADS)

    Barnes, Aaron

    1994-04-01

    We present a generalization of earlier analysis of the motion of the heliospheric termination shock in response to heliospheric disturbances (Barnes, 1993) (paper 1), to allow jump conditions that include an energy sink at the shock front. The motivation for this study is that acceleration of the anomalous cosmic ray component may in fact represent such a sink. We have idealized the situation by assuming an infinitely thin shock parameterized by a quantity lambda(0 less than or equals lambda less than or equals 1), defined as the fraction of solar wind energy that is lost due to acceleration of the energetic particle component. If the sink is strong (consuming, say, 50% or more of the incident solar wind energy), the model leads to the following principal conclusions: (1) the shocked plasma would be much denser and cooler than in the standard gasdynamic case, thereby leading to more favorable conditions for direct observation of the shocked plasma; (2) the equilibrium shock position would be slightly farther (less than 10%) from the Sun than in the standard model; (3) as in the gasdynamic case, the shock would normally be in motion, so that the instantaneous position of the termination shock is not determined by interstellar conditions but by the recent history of the wind that has passed through the termination shock; and (4) the response of the shock to upstream disturbances would be similar to the response in the gasdynamic case, but the speed of the new termination shock would be somewhat smaller (probably by a f actor of 4 or less). We estimate that this speed is typically, approximately a few tens of kilometers per second corresponding to an inward or outward excursion of order of less than 1 to several AU, rather less than conventional estimates of several tens of AU.

  1. Computational Study of 3-D Hot-Spot Initiation in Shocked Insensitive High-Explosive

    NASA Astrophysics Data System (ADS)

    Najjar, F. M.; Howard, W. M.; Fried, L. E.

    2011-06-01

    High explosive shock sensitivity is controlled by a combination of mechanical response, thermal properties, and chemical properties. The interplay of these physical phenomena in realistic condensed energetic materials is currently lacking. A multiscale computational framework is developed investigating hot spot (void) ignition in a single crystal of an insensitive HE, TATB. Atomistic MD simulations are performed to provide the key chemical reactions and these reaction rates are used in 3-D multiphysics simulations. The multiphysics code, ALE3D, is linked to the chemistry software, Cheetah, and a three-way coupled approach is pursued including hydrodynamics, thermal and chemical analyses. A single spherical air bubble is embedded in the insensitive HE and its collapse due to shock initiation is evolved numerically in time; while the ignition processes due chemical reactions are studied. Our current predictions showcase several interesting features regarding hot spot dynamics including the formation of a ``secondary'' jet. Results obtained with hydro-thermo-chemical processes leading to ignition growth will be discussed for various pore sizes and different shock pressures. LLNL-ABS-471438. This work performed under the auspices of the U.S. Department of Energy by LLNL under Contract DE-AC52-07NA27344.

  2. Acceleration of low-energy protons and alpha particles at interplanetary shock waves

    NASA Technical Reports Server (NTRS)

    Scholer, M.; Hovestadt, D.; Ipavich, F. M.; Gloeckler, G.

    1983-01-01

    The low-energy protons and alpha particles in the energy range 30 keV/charge to 150 keV/charge associated with three different interplanetary shock waves in the immediate preshock and postshock region are studied using data obtained by the ISEE 3. The spatial distributions in the preshock and postshock medium are presented, and the dependence of the phase space density at different energies on the distance from the shock and on the form of the distribution function of both species immediately at the shock is examined. It is found that in the preshock region the particles are flowing in the solar wind frame of reference away from the shock and in the postshock medium the distribution is more or less isotropic in this frame of reference. The distribution function in the postshock region can be represented by a power law in energy which has the same spectral exponent for both protons and alpha particles. It is concluded that the first-order Fermi acceleration process can consistently explain the data, although the spectra of diffuse bow shock associated particles are different from the spectra of the interplanetary shock-associated particles in the immediate vicinity of the shock. In addition, the mean free path of the low energy ions in the preshock medium is found to be considerably smaller than the mean free path determined by the turbulence of the background interplanetary medium.

  3. Probing magnetohydrodynamic shocks with high-J CO observations: W28F

    NASA Astrophysics Data System (ADS)

    Gusdorf, A.; Anderl, S.; Güsten, R.; Stutzki, J.; Hübers, H.-W.; Hartogh, P.; Heyminck, S.; Okada, Y.

    2012-06-01

    Context. Observing supernova remnants (SNRs) and modelling the shocks they are associated with is the best way to quantify the energy SNRs re-distribute back into the interstellar medium (ISM). Aims: We present comparisons of shock models with CO observations in the F knot of the W28 supernova remnant. These comparisons constitute a valuable tool to constrain both the shock characteristics and pre-shock conditions. Methods: New CO observations from the shocked regions with the APEX and SOFIA telescopes are presented and combined. The integrated intensities are compared to the outputs of a grid of models, which were combined from an MHD shock code that calculates the dynamical and chemical structure of these regions and a radiative transfer module based on the large velocity gradient (LVG) approximation. Results: We base our modelling method on the higher J CO transitions, which unambiguously trace the passage of a shock wave. We provide fits for the blue- and red-lobe components of the observed shocks. We find that only stationary, C-type shock models can reproduce the observed levels of CO emission. Our best models are found for a pre-shock density of 104 cm-3, with the magnetic field strength varying between 45 and 100 μG, and a slightly higher shock velocity for the so-called blue-shock (~25 km s-1) than for the red one (~20 km s-1). Our models also satisfactorily account for the pure rotational H2 emission that is observed with Spitzer. Appendices are available in electronic form at http://www.aanda.org

  4. High-frequency electrostatic waves near earth's bow shock

    NASA Technical Reports Server (NTRS)

    Onsager, T. G.; Holzworth, R. H.; Koons, H. C.; Bauer, O. H.; Gurnett, D. A.

    1989-01-01

    Electrostatic wave measurements from the Active Magnetospheric Particle Tracer Explorer Ion Release Module have been used to investigate the wave modes and their possible generation mechanisms in the earth's bow shock and magnetosheath. It is demonstrated that electrostatic waves are present in the bow shock and magnetosheath with frequencies above the maximum frequency for Doppler-shifted ion acoustic waves, yet below the plasma frequency. Waves in this frequency range are tentatively identified as electron beam mode waves. Data from 45 bow shock crossings are then used to investigate possible correlations between the electrostatic wave properties and the near-shock plasma parameters. The most significant relationships found are anticorrelations with Alfven Mach number and electron beta. Mechanisms which might produce electron beams in the shock and magnetosheath are discussed in terms of the correlation study results. These mechanisms include acceleration by the cross-shock electric field and by lower hybrid frequency waves. A magnetosheath 'time of flight' mechanism, in analogy to the electron foreshock region, is introduced as another possible beam generation mechanism.

  5. High-speed OH* chemiluminescence imaging of ignition through a shock tube end-wall

    NASA Astrophysics Data System (ADS)

    Troutman, V. A.; Strand, C. L.; Campbell, M. F.; Tulgestke, A. M.; Miller, V. A.; Davidson, D. F.; Hanson, R. K.

    2016-03-01

    A high-speed OH* chemiluminescence imaging diagnostic was developed to image the structure and homogeneity of combustion events behind reflected shock waves in the Stanford Constrained Reaction Volume Shock Tube. An intensified high-repetition-rate imaging system was used to acquire images of OH* chemiluminescence (near 308 nm) through a fused quartz shock tube end-wall window at 10-33 kHz during the combustion of n-heptane (21 % O2/Ar, φ = 0.5). In general, the imaging technique enabled observation of the main ignition event in the core of the shock tube that corresponded to typical markers of ignition (e.g., pressure rise), as well as localized ignition near the wall that preceded the main core ignition event for some conditions. Case studies were performed to illustrate the utility of this novel imaging diagnostic. First, by comparing localized wall ignition events to the core ignition event, the temperature homogeneity of the post-reflected shock gas near the end-wall was estimated to be within 0.5 % for the test condition presented (T=1159 hbox {K}, P=0.25 hbox {MPa}). Second, the effect of a recession in the shock tube wall, created by an observation window, on the combustion event was visualized. Localized ignition was observed near the window, but this disturbance did not propagate to the core of the shock tube before the main ignition event. Third, the effect of shock tube cleanliness was investigated by conducting tests in which the shock tube was not cleaned for multiple consecutive runs. For tests after no cleaning was performed, ignition events were concentrated in the lower half of the shock tube. In contrast, when the shock tube was cleaned, the ignition event was distributed around the entire circumference of the shock tube; validating the cleaning procedure.

  6. Shock reliability analysis and improvement of MEMS electret-based vibration energy harvesters

    NASA Astrophysics Data System (ADS)

    Renaud, M.; Fujita, T.; Goedbloed, M.; de Nooijer, C.; van Schaijk, R.

    2015-10-01

    Vibration energy harvesters can serve as a replacement solution to batteries for powering tire pressure monitoring systems (TPMS). Autonomous wireless TPMS powered by microelectromechanical system (MEMS) electret-based vibration energy harvester have been demonstrated. The mechanical reliability of the MEMS harvester still has to be assessed in order to bring the harvester to the requirements of the consumer market. It should survive the mechanical shocks occurring in the tire environment. A testing procedure to quantify the shock resilience of harvesters is described in this article. Our first generation of harvesters has a shock resilience of 400 g, which is far from being sufficient for the targeted application. In order to improve this aspect, the first important aspect is to understand the failure mechanism. Failure is found to occur in the form of fracture of the device’s springs. It results from impacts between the anchors of the springs when the harvester undergoes a shock. The shock resilience of the harvesters can be improved by redirecting these impacts to nonvital parts of the device. With this philosophy in mind, we design three types of shock absorbing structures and test their effect on the shock resilience of our MEMS harvesters. The solution leading to the best results consists of rigid silicon stoppers covered by a layer of Parylene. The shock resilience of the harvesters is brought above 2500 g. Results in the same range are also obtained with flexible silicon bumpers, which are simpler to manufacture.

  7. High-Order Simulation of Non-Linear Oscillations and Shocks in the Solar Atmosphere

    NASA Technical Reports Server (NTRS)

    Bryson, S.; Kosovichev, A.; Levy, D.

    2004-01-01

    The solar atmosphere presents a rich source of highly non-linear magneto-hydrodynamic phenomena: strong gradients and forcing terms result in both large shocks and oscillations. The additional requirements of energy balance and initialization in hydrostatic equilibrium compound the challenge of this problem. A wealth of observational data allows us to check the results of our simulations. The problem of simulating the solar atmosphere provides, in addition to an interesting system in its own right, a challenging testbed for high-order shock-capturing methods. We discuss the challenge of simulating solar atmospheric phenomena, concentrating on various high-order central methods ranging from second to fourth order. Our method is based on the central-upwind scheme of Kurganov, Noelle and Petrova, which we extend to high order via various interpolants. We investigate various initial data for our simulations, corresponding to observed conditions in different regions of the solar surface: the normal quiet sun and sunspots. When non-oscillatory using second- and third-order methods, we are able to reproduce non-trivial observational results. In particular we find a correlation between initial data and both the shock speeds and particle oscillation spectra that match observations in the corresponding regions. When using fourth-order WENO interpolants, we find that while the individual shock profiles at any given time appear non-oscillatory, spurious oscillations appear in the fields after long time integrations. The issue of initialization in hydrostatic equilibrium raises difficult issues. Careful treatment of the gravitational source term can reduce violations of hydrostatic equilibrium, but difficulties remain, primarily due to discontinuities in the piecewise-polynomial reconstructions. In the case of the Euler equations in gravity, the use of high-order methods reduces the violation of hydrostatic equilibrium to a sufficiently low level for the above described results

  8. Highly Shocked Low Density Sedimentary Rocks from the Haughton Impact Structure, Devon Island, Nunavut, Canada

    NASA Technical Reports Server (NTRS)

    Osinski, G. R.; Spray, J. G.

    2001-01-01

    We present the preliminary results of a detailed investigation of the shock effects in highly shocked, low density sedimentary rocks from the Haughton impact structure. We suggest that some textural features can be explained by carbonate-silicate immiscibility. Additional information is contained in the original extended abstract.

  9. Perspectives on High-Energy-Density Physics

    NASA Astrophysics Data System (ADS)

    Drake, R. Paul

    2008-11-01

    Much of 21st century plasma physics will involve work to produce, understand, control, and exploit very non-traditional plasmas. High-energy density (HED) plasmas are often examples, variously involving strong Coulomb interactions and few particles per Debeye sphere, dominant radiation effects, strongly relativistic effects, or strongly quantum-mechanical behavior. Indeed, these and other modern plasma systems often fall outside the early standard theoretical definitions of ``plasma''. This presentation will focus on two types of HED plasmas that exhibit non-traditional behavior. Our first example will be the plasmas produced by extremely strong shock waves. Shock waves are present across the entire realm of plasma densities, often in space or astrophysical contexts. HED shock waves (at pressures > 1 Mbar) enable studies in many areas, from equations of state to hydrodynamics to radiation hydrodynamics. We will specifically consider strongly radiative shocks, in which the radiative energy fluxes are comparable to the mechanical energy fluxes that drive the shocks. Modern HED facilities can produce such shocks, which are also present in dense, energetic, astrophysical systems such as supernovae. These shocks are also excellent targets for advanced simulations due to their range of spatial scales and complex radiation transport. Our second example will be relativistic plasmas. In general, these vary from plasmas containing relativistic particle beams, produced for some decades in the laboratory, to the relativistic thermal plasmas present for example in pulsar winds. Laboratory HED relativistic plasmas to date have been those produced by laser beams of irradiance ˜ 10^18 to 10^22 W/cm^2 or by accelerator-produced HED electron beams. These have applications ranging from generation of intense x-rays to production of proton beams for radiation therapy to acceleration of electrons. Here we will focus on electron acceleration, a spectacular recent success and a rare

  10. Observational Evidence for High-Mach Number Regime of Coronal Shock Waves During Powerful Solar Particle Events

    NASA Astrophysics Data System (ADS)

    Rouillard, A. P.; Illya, P.; Zucca, P.; Tylka, A. J.; Vainio, R. O.; Vourlidas, A.

    2015-12-01

    Identifying the physical mechanisms that produce the most energetic particles is a long-standing observational and theoretical challenge in astrophysics. Strong shock waves have been proposed as efficient accelerators both in the solar physics and astrophysical contexts via various acceleration mechanisms. The proposed processes rely on shock waves being super-critical or moving several times faster than the characteristic speed of the medium they propagate through (a high MA). Using recent imaging of the NASA STEREO, SOHO and SDO spacecraft, we provide the first observations of the time-dependent 3-dimensional distribution of the expansion speed and MA of a coronal shock wave. These observations show that the high-energy particles measured near Earth are produced at the time of the sharp rise in the shock Mach number (>10) magnetically connected to Earth. These findings provide direct evidence to energetic particles being accelerated during the formation of a strong coronal shock. Using our new technique, we study the longitudinal spread and timing of a number of other energetic particle events during cycle 24.

  11. Shock experiments and numerical simulations on low energy portable electrically exploding foil accelerators

    NASA Astrophysics Data System (ADS)

    Saxena, A. K.; Kaushik, T. C.; Gupta, Satish C.

    2010-03-01

    Two low energy (1.6 and 8 kJ) portable electrically exploding foil accelerators are developed for moderately high pressure shock studies at small laboratory scale. Projectile velocities up to 4.0 km/s have been measured on Kapton flyers of thickness 125 μm and diameter 8 mm, using an in-house developed Fabry-Pérot velocimeter. An asymmetric tilt of typically few milliradians has been measured in flyers using fiber optic technique. High pressure impact experiments have been carried out on tantalum, and aluminum targets up to pressures of 27 and 18 GPa, respectively. Peak particle velocities at the target-glass interface as measured by Fabry-Pérot velocimeter have been found in good agreement with the reported equation of state data. A one-dimensional hydrodynamic code based on realistic models of equation of state and electrical resistivity has been developed to numerically simulate the flyer velocity profiles. The developed numerical scheme is validated against experimental and simulation data reported in literature on such systems. Numerically computed flyer velocity profiles and final flyer velocities have been found in close agreement with the previously reported experimental results with a significant improvement over reported magnetohydrodynamic simulations. Numerical modeling of low energy systems reported here predicts flyer velocity profiles higher than experimental values, indicating possibility of further improvement to achieve higher shock pressures.

  12. New radiative shocks experiment

    NASA Astrophysics Data System (ADS)

    Leygnac, S.; Bouquet, S.; Stehlé, C.; Benuzzi, A.; Boireau, J.-P.; Chièze, J.-P.; Grandjouan, N.; Huser, G.; Koenig, M.; Malka, V.; Merdji, H.; Michaut, C.; Thais, F.; Vinci, T.

    2002-06-01

    An experimental study of shocks with astrophysical relevance is performed with the high energy density laser of the LULI, at the Ecole Polytechnique. The peculiarity of these shocks is the strong coupling between radiation and hydrodynamics which leads to a structure governed by a radiative precursor. A new experiment has been performed this year where we have observed shocks identified as radiative shocks. We study them in various experimental configurations (several speeds and geometries of the medium where the shock propagates, allowing a quasi-planar or a quasi-spherical expansion). From the measurements it is possible to infer several features of the shock such as the speed, the electronic density, the geometrical shape and spectroscopic informations. The results will be studied with numerical simulations.

  13. Challenging shock models with SOFIA OH observations in the high-mass star-forming region Cepheus A

    NASA Astrophysics Data System (ADS)

    Gusdorf, A.; Güsten, R.; Menten, K. M.; Flower, D. R.; Pineau des Forêts, G.; Codella, C.; Csengeri, T.; Gómez-Ruiz, A. I.; Heyminck, S.; Jacobs, K.; Kristensen, L. E.; Leurini, S.; Requena-Torres, M. A.; Wampfler, S. F.; Wiesemeyer, H.; Wyrowski, F.

    2016-01-01

    Context. OH is a key molecule in H2O chemistry, a valuable tool for probing physical conditions, and an important contributor to the cooling of shock regions around high-mass protostars. OH participates in the re-distribution of energy from the protostar towards the surrounding Interstellar Medium. Aims: Our aim is to assess the origin of the OH emission from the Cepheus A massive star-forming region and to constrain the physical conditions prevailing in the emitting gas. We thus want to probe the processes at work during the formation of massive stars. Methods: We present spectrally resolved observations of OH towards the protostellar outflows region of Cepheus A with the GREAT spectrometer onboard the Stratospheric Observatory for Infrared Astronomy (SOFIA) telescope. Three triplets were observed at 1834.7 GHz, 1837.8 GHz, and 2514.3 GHz (163.4 μm, 163.1 μm between the 2Π1/2 J = 1/2 states, and 119.2 μm, a ground transition between the 2Π3/2 J = 3/2 states), at angular resolutions of 16.̋3, 16.̋3, and 11.̋9, respectively. We also present the CO (16-15) spectrum at the same position. We compared the integrated intensities in the redshifted wings to the results of shock models. Results: The two OH triplets near 163 μm are detected in emission, but with blending hyperfine structure unresolved. Their profiles and that of CO (16-15) can be fitted by a combination of two or three Gaussians. The observed 119.2 μm triplet is seen in absorption, since its blending hyperfine structure is unresolved, but with three line-of-sight components and a blueshifted emission wing consistent with that of the other lines. The OH line wings are similar to those of CO, suggesting that they emanate from the same shocked structure. Conclusions: Under this common origin assumption, the observations fall within the model predictions and within the range of use of our model only if we consider that four shock structures are caught in our beam. Overall, our comparisons suggest that

  14. Supernova dynamics in the laboratory: Radiative shocks produced by ultra-high pressure implosion experiments on the National Ignition Facility

    NASA Astrophysics Data System (ADS)

    Pak, Arthur

    2012-10-01

    Thermonuclear fuel experiments on the National Ignition Facility implode 2-mm diameter capsules with a cryogenic deuterium-tritium ice layer to 1000x liquid density and pressures exceeding 100 Gbar (10^11 atm). About 200 ps after peak compression, a spherical supernova-like radiative shock wave is observed that expands with shock velocities of uS = 300 km/s, temperatures of order 1 keV at densities of 1 g/cc resulting in a radiation strength parameter of Q ˜uS^5 = 10^4. Radiation-hydrodynamic simulations indicate that the shock launched at stagnation first goes down a strong density gradient while propagating outward from the highly compressed DT fuel (˜ 1000g/cc) to the ablation front (˜ 1 g/cc). Similar to what happens inside a star, the shock pressure drops as it accelerates and heats. The radiative shock emission is first observed when it breaks out of the dense compressed fuel shell into the low-density inflowing plasma at the ablation front mimicking the supernova situation where the shock breaks out through the star surface into surrounding in-falling matter [1,2]; the shock is subsequently approaching the supercritical state with a strong pre-cursor followed by rapid cooling. These observations are consistent with the rapid vanishing of the radiation ring 400 ps after peak compression due to strong radiation losses and spherical expansion. The evolution and brightness of the radiative shock provides insight into the performance of these implosions that have the goal to produce burning fusion plasmas in the laboratory. By modifying the capsule ablator composition and thickness, the stagnation pressure, density gradients, shock velocity and radiative properties could be tailored to study various regimes related to supernovae radiative remnants.[4pt] [1] W. David Arnett, Supernovae as phenomena of high-energy astrophysics, Ann NY Aca. Science 302, 90 (1977).[0pt] [2] L. Ensman and A. Burrows, Shock breakout in SN1987A, ApJ 393, 742.

  15. On the maximum energy achievable in the first order Fermi acceleration at shocks

    NASA Astrophysics Data System (ADS)

    Grozny, I.; Diamond, P.; Malkov, M.

    2002-11-01

    Astrophysical shocks are considered as the sites of cosmic ray (CR) production. The primary mechanism is the diffusive shock (Fermi) acceleration which operates via multiple shock recrossing by a particle. Its efficiency, the rate of energy gain, and the maximum energy are thus determined by the transport mechanisms (confinement to the shock) of these particles in a turbulent shock environment. The turbulence is believed to be generated by accelerated particles themselves. Moreover, in the most interesting case of efficient acceleration the entire MHD shock structure is dominated by their pressure. This makes this problem one of the challenging strongly nonlinear problems of astrophysics. We suggest a physical model that describes particle acceleration, shock structure and the CR driven turbulence on an equal footing. The key new element in this scheme is nonlinear cascading of the MHD turbulence on self-excited (via modulational and Drury instability) sound-like perturbations which gives rise to a significant enrichment of the long wave part of the MHD spectrum. This is critical for the calculation of the maximum energy.

  16. Shock Formation and Energy Dissipation of Slow Magnetosonic Waves in Coronal Plumes

    NASA Technical Reports Server (NTRS)

    Cuntz, M.; Suess, S. T.

    2003-01-01

    We study the shock formation and energy dissipation of slow magnetosonic waves in coronal plumes. The wave parameters and the spreading function of the plumes as well as the base magnetic field strength are given by empirical constraints mostly from SOHO/UVCS. Our models show that shock formation occurs at low coronal heights, i.e., within 1.3 bun, depending on the model parameters. In addition, following analytical estimates, we show that scale height of energy dissipation by the shocks ranges between 0.15 and 0.45 Rsun. This implies that shock heating by slow magnetosonic waves is relevant at most heights, even though this type of waves is apparently not a solely operating energy supply mechanism.

  17. High-Speed OH* Chemiluminescence Imaging of Shock Tube End-Wall

    NASA Astrophysics Data System (ADS)

    Troutman, V. A.; Miller, V. A.; Strand, C. S.; Tulgestke, A. M.; Campbell, M. F.; Davidson, D. F.; Hanson, R. K.

    2015-11-01

    We have developed a high-speed OH* chemiluminesence imaging diagnostic and a transparent end-wall for the Stanford Aerosol Shock Tube to better understand the structure and homogeneity of the combustion event behind a reflected shock wave. We use an intensified high repetition rate imaging system to acquire images of OH* chemiluminescence (near 308 nm) at 10-33 kHz from n-heptane combustion. Case studies are presented to illustrate the power of this novel imaging diagnostic: first, we infer the temperature homogeneity of the ignition event; then we image the effect of surface imperfections in the wall of the shock tube; lastly, we visualize the effect of particulates in the shock tube and verify the importance of shock tube cleaning routines.

  18. Heat flux and shock shape measurements on an Aeroassist Flight Experiment model in a high enthalpy free piston shock tunnel

    NASA Technical Reports Server (NTRS)

    Gai, S. L.; Mudford, N. R.; Hackett, C.

    1992-01-01

    This paper describes measurements of heat flux and shock shapes made on a 2.08 percent scale model of the proposed Aeroassist Flight Experiment model in a high enthalpy free piston shock tunnel T3 at the Australian National University in Canberra, Australia. The enthalpy and Reynolds number range covered were 7.5 MJ/kg to 20 MJ/kg and 150,000 to 270,000 per meter respectively. The test Mach number varied between 7.5 and 8. Two test gases, air and nitrogen, were used and the model angle of attack varied from -10 deg to +10 deg to the free stream. The results are discussed and compared to the Mach 10 cold hypersonic air data as obtained in the Langley 31 inch Mach 10 Facility as well as the perfect gas CFD calculations of NASA LaRC.

  19. High density turbulent plasma processes from a shock tube. Final performance report

    SciTech Connect

    Johnson, J.A. III

    1997-01-01

    A broad-based set of measurements has begun on high density turbulent plasma processes. This includes determinations of new plasma physics and the initiation of work on new diagnostics for collisional plasmas as follows: (1) A transient increase is observed in both the spectral energy decay rate and the degree of chaotic complexity at the interface of a shock wave and a turbulent ionized gas. Even though the gas is apparently brought to rest by the shock wave, no evidence is found either of prompt relaminarization or of any systematic influence of end-wall material thermal conductivities on the turbulence parameters. (2) Point fluorescence emissions and averaged spectral line evolutions in turbulent plasmas produced in both the primary and the reflected shock wave flows exhibit ergodicity in the standard turbulence parameters. The data show first evidence of a reverse energy cascade in the collisional turbulent plasma. This suggests that the fully turbulent environment can be described using a stationary state formulation. In these same data, the author finds compelling evidence for a turbulent Stark effect on neutral emission lines in these data which is associated with evidence of large coherent structures and dominant modes in the Fourier analyses of the fluctuations in the optical spectra. (3) A neutral beam generator has been assembled by coupling a Colutron Ion Gun to a charge exchange chamber. Beam-target collisions where the target species is neutral and the beam is either singly charged or neutral have been performed using argon as the working gas. Spectral analysis of the emission shows specific radiative transitions characteristic of both Ar I and Ar II, indicating that some ionization of the target gas results. Gas and plasma parameters such as density, pressure, temperature and flow velocity and their fluctuations can now be followed in real time by spectroscopic analysis of carefully chosen radiative emissions.

  20. Effect of electronic excitation on high-temperature flows behind strong shock waves

    SciTech Connect

    Istomin, V. A.; Kustova, E. V.

    2014-12-09

    In the present paper, a strongly non-equilibrium one-dimensional steady-state flow behind the plane shock wave is studied. We consider a high-temperature chemically reacting five-component ionized mixture of nitrogen species (N{sub 2}/N{sub 2}{sup 2}/N/N{sup +}/e{sup −}) taking into account electronic degrees of freedom in N and N{sup +} (170 and 625 electronic energy levels respectively), and electronic-rotational-vibrational modes in N{sub 2} and N{sub 2}{sup +} (5 and 7 electronic terms). Non-equilibrium reactions of ionization, dissociation, recombination and charge-transfer are included to the kinetic scheme. The system of governing equations is written under the assumption that translation and internal energy relaxation is fast whereas chemical reactions and ionization proceed on the macroscopic gas-dynamics time-scale. The developed model is applied to simulate the flow behind a plane shock wave under initial conditions characteristic for the spacecraft re-entry from an interplanetary flight (Hermes and Fire II experiments). Fluid-dynamic parameters behind the shock wave as well as transport coefficients and the heat flux are calculated for the (N{sub 2}/N{sub 2}{sup +}/N/N{sup +}/e{sup −}) mixture. The effect of electronic excitation on kinetics, dynamics and heat transfer is analyzed. Whereas the contribution of electronic degrees of freedom to the flow macroparameters is negligible, their influence on the heat flux is found to be important under conditions of Hermes re-entry.

  1. High shock, high frequency characteristics of a mechanical isolator for a piezoresistive accelerometer

    SciTech Connect

    Bateman, V.I.; Brown, F.A.; Davie, N.T.

    1995-07-01

    A mechanical isolator has been developed for a piezoresistive accelerometer. The purpose of the isolator is to mitigate high frequency shocks before they reach the accelerometer because the high frequency shocks may cause the accelerometer to resonate. Since the accelerometer is undamped, it often breaks when it resonates. The mechanical isolator was developed in response to impact test requirements for a variety of structures at Sandia National Laboratories. An Extended Technical Assistance Program with the accelerometer manufacturer has resulted in a commercial isolator that will be available to the general public. This mechanical isolator has ten times the bandwidth of any other commercial isolator and has acceptable frequency domain performance from DC to 10 kHz ({plus_minus} 10%) over a temperature range of -65{degrees}F to +185{degrees}F as demonstrated in this paper.

  2. DIFFUSIVE PARTICLE ACCELERATION IN SHOCKED, VISCOUS ACCRETION DISKS: GREEN'S FUNCTION ENERGY DISTRIBUTION

    SciTech Connect

    Becker, Peter A.; Das, Santabrata; Le, Truong E-mail: sbdas@iitg.ernet.in

    2011-12-10

    The acceleration of relativistic particles in a viscous accretion disk containing a standing shock is investigated as a possible explanation for the energetic outflows observed around radio-loud black holes. The energy/space distribution of the accelerated particles is computed by solving a transport equation that includes the effects of first-order Fermi acceleration, bulk advection, spatial diffusion, and particle escape. The velocity profile of the accreting gas is described using a model for shocked viscous disks recently developed by the authors, and the corresponding Green's function distribution for the accelerated particles in the disk and the outflow is obtained using a classical method based on eigenfunction analysis. The accretion-driven, diffusive shock acceleration scenario explored here is conceptually similar to the standard model for the acceleration of cosmic rays at supernova-driven shocks. However, in the disk application, the distribution of the accelerated particles is much harder than would be expected for a plane-parallel shock with the same compression ratio. Hence the disk environment plays a key role in enhancing the efficiency of the shock acceleration process. The presence of the shock helps to stabilize the disk by reducing the Bernoulli parameter, while channeling the excess binding energy into the escaping relativistic particles. In applications to M87 and Sgr A*, we find that the kinetic power in the jet is {approx}0.01 M-dot c{sup 2}, and the outflowing relativistic particles have a mean energy {approx}300 times larger than that of the thermal gas in the disk at the shock radius. Our results suggest that a standing shock may be an essential ingredient in accretion onto underfed black holes, helping to resolve the long-standing problem of the stability of advection-dominated accretion disks.

  3. Properties of planetary fluids at high shock pressures and temperatures

    SciTech Connect

    Nellis, W.J.; Mitchell, A.C.; Holmes, N.C.; McCandless, P.C.

    1991-03-01

    Models of the interiors of Uranus and Neptune are discussed. Pressures and temperatures in the interiors can be achieved in representative constituent molecular fluids by shock compression. Experimental techniques are described and recent results for synthetic Uranus and hydrogen are discussed. 19 refs., 4 figs., 1 tab.

  4. Surprisingly high-pressure shocks in the supernova remnant IC 443

    NASA Technical Reports Server (NTRS)

    Moorhouse, A.; Brand, P. W. J. L.; Geballe, T. R.; Burton, M. G.

    1991-01-01

    The intensities of several lines of molecular hydrogen have been measured from two regions of the supernova-remnant/molecular-cloud shock in IC 443. The lines measured have upper-state energies ranging from 7000 K to 23,000 K. Their relative intensities differ in the two regions, but are consistent with those predicted from the post-shock regions of simple jump-type shocks of different pressure. The pressures so derived are far higher than the pressure in the supernova remnant itself, and a possible reason for this discrepancy is discussed.

  5. Frequency modulation in shock wave-boundary layer interaction by repetitive-pulse laser energy deposition

    NASA Astrophysics Data System (ADS)

    Tamba, T.; Pham, H. S.; Shoda, T.; Iwakawa, A.; Sasoh, A.

    2015-09-01

    Modulation of shock foot oscillation due to energy deposition by repetitive laser pulses in shock wave-boundary layer interaction over an axisymmetric nose-cylinder-flare model in Mach 1.92 flow was experimentally studied. From a series of 256 schlieren images, density oscillation spectra at each pixel were obtained. When laser pulses of approximately 7 mJ were deposited with a repetition frequency, fe, of 30 kHz or lower, the flare shock oscillation had a peak spectrum equivalent to the value of fe. However, with fe of 40 kHz-60 kHz, it experienced frequency modulation down to lower than 20 kHz.

  6. Extracorporeal stone disintegration using chemical explosive pellets as an energy source of underwater shock waves.

    PubMed

    Kuwahara, M; Kambe, K; Kurosu, S; Orikasa, S; Takayama, K

    1986-04-01

    Extracorporeal renal stone disintegration using a chemical explosive pellet (lead azide 10 mg.) as an energy source of underwater shock waves has been successfully performed in animals. The shock wave was observed by holographic interferometry. Shock wave generation was performed by a reflector whose configuration was part of a pseudoellipsoid. The explosions were conducted 10 to 100 times for each animal and the stone (extracted human renal calculus or model calculus of activated alumina) placed in the renal pelvis was disintegrated satisfactorily. Negative findings in explorative laparotomy and histological examination, except for minor bleeding in several tubular lumina of the kidney, indicated that the method was clinically applicable. PMID:3959213

  7. Pseudo-shock waves and their interactions in high-speed intakes

    NASA Astrophysics Data System (ADS)

    Gnani, F.; Zare-Behtash, H.; Kontis, K.

    2016-04-01

    In an air-breathing engine the flow deceleration from supersonic to subsonic conditions takes places inside the isolator through a gradual compression consisting of a series of shock waves. The wave system, referred to as a pseudo-shock wave or shock train, establishes the combustion chamber entrance conditions, and therefore influences the performance of the entire propulsion system. The characteristics of the pseudo-shock depend on a number of variables which make this flow phenomenon particularly challenging to be analysed. Difficulties in experimentally obtaining accurate flow quantities at high speeds and discrepancies of numerical approaches with measured data have been readily reported. Understanding the flow physics in the presence of the interaction of numerous shock waves with the boundary layer in internal flows is essential to developing methods and control strategies. To counteract the negative effects of shock wave/boundary layer interactions, which are responsible for the engine unstart process, multiple flow control methodologies have been proposed. Improved analytical models, advanced experimental methodologies and numerical simulations have allowed a more in-depth analysis of the flow physics. The present paper aims to bring together the main results, on the shock train structure and its associated phenomena inside isolators, studied using the aforementioned tools. Several promising flow control techniques that have more recently been applied to manipulate the shock wave/boundary layer interaction are also examined in this review.

  8. Characterization of a High Temporal Resolution TDLAS System for Measurements in a Shock Tube Facility

    NASA Astrophysics Data System (ADS)

    Förster, F.; O'Byrne, Sean; Kleine, H.; Weigand, B.

    Transient heating and pressurization of a gas by shock waves can be useful for a variety of purposes, particularly for configurations involving shock wave focussing. Unless the geometry is particularly simple, the time history of temperature can be difficult to predict accurately. Hence, a non-intrusive measurement technique with high temporal resolution is required to record the time history of the very rapidly changing temperature of a shock-heated flow. One promising measurement techniques for these high-speed flows is Tunable Diode Laser Absorption Spectroscopy (TDLAS)

  9. Studying astrophysical collisionless shocks with counterstreaming plasmas from high power lasers

    NASA Astrophysics Data System (ADS)

    Park, Hye-Sook; Ryutov, D. D.; Ross, J. S.; Kugland, N. L.; Glenzer, S. H.; Plechaty, C.; Pollaine, S. M.; Remington, B. A.; Spitkovsky, A.; Gargate, L.; Gregori, G.; Bell, A.; Murphy, C.; Sakawa, Y.; Kuramitsu, Y.; Morita, T.; Takabe, H.; Froula, D. H.; Fiksel, G.; Miniati, F.; Koenig, M.; Ravasio, A.; Pelka, A.; Liang, E.; Woolsey, N.; Kuranz, C. C.; Drake, R. P.; Grosskopf, M. J.

    2012-03-01

    Collisions of high Mach number flows occur frequently in astrophysics, and the resulting shock waves are responsible for the properties of many astrophysical phenomena, such as supernova remnants, Gamma Ray Bursts and jets from Active Galactic Nuclei. Because of the low density of astrophysical plasmas, the mean free path due to Coulomb collisions is typically very large. Therefore, most shock waves in astrophysics are "collisionless", since they form due to plasma instabilities and self-generated magnetic fields. Laboratory experiments at the laser facilities can achieve the conditions necessary for the formation of collisionless shocks, and will provide a unique avenue for studying the nonlinear physics of collisionless shock waves. We are performing a series of experiments at the Omega and Omega-EP lasers, in Rochester, NY, with the goal of generating collisionless shock conditions by the collision of two high-speed plasma flows resulting from laser ablation of solid targets using ˜1016 W/cm2 laser irradiation. The experiments will aim to answer several questions of relevance to collisionless shock physics: the importance of the electromagnetic filamentation (Weibel) instabilities in shock formation, the self-generation of magnetic fields in shocks, the influence of external magnetic fields on shock formation, and the signatures of particle acceleration in shocks. Our first experiments using Thomson scattering diagnostics studied the plasma state from a single foil and from double foils whose flows collide "head-on". Our data showed that the flow velocity and electron density were 108 cm/s and 1019 cm-3, respectively, where the Coulomb mean free path is much larger than the size of the interaction region. Simulations of our experimental conditions show that weak Weibel mediated current filamentation and magnetic field generation were likely starting to occur. This paper presents the results from these first Omega experiments.

  10. High-Precision Measurements of the Equation of State of Polymers at 100 to 1000 GPa Using Laser-Driven Shock Waves

    NASA Astrophysics Data System (ADS)

    Barrios, M. A.

    2009-11-01

    The equation of state (EOS) of materials at extreme temperatures and pressures is of interest to astrophysics, high-energy-density physics, and inertial confinement fusion (ICF). The high-pressure (>100 GPa) behavior of polymer materials is essential to the understanding of ablator materials for ignition targets. EOS measurements on CHx provide benchmarks on the behavior of polymers under extreme conditions and the effect of stoichiometry (i.e., the C:H ratio) on that behavior. High-power lasers produce shock pressures greater than 100 GPa, and recent advances in diagnostics and analysis have made it possible to perform highly accurate measurements of shock velocity. This improves upon the impedance-matching technique for laser-driven shock experiments, producing ˜1% precision at extreme pressures. The OMEGA laser is used to produce principal (single-shock) Hugoniot EOS measurements on polystyrene (CH), polypropylene (CH2), GDP (C43H56O), and Ge-doped GDP at shock pressures of ˜100 to 1000 GPa. We also present a novel target design that provides double-shock (re-shock) data together with the above data. These data are pertinent to ICF target designs that use multiple shocks to approximate an isentropic compression. Results of the single- and double-shock experiments on these polymers are presented and compared to various EOS models. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC52-08NA28302. In collaboration with T.R. Boehly, D.E. Fratanduono, D.D. Meyerhofer (LLE), D.G. Hicks, P.M. Celliers, and G.W. Collins (LLNL).

  11. Shock compression and release in high-strength ceramics

    SciTech Connect

    Kipp, M E; Grady, D E

    1989-08-01

    A preliminary investigation of shock compression and release properties has been performed on four ceramics: silicon carbide, titanium diboride, boron carbide and zirconium dioxide. Eight planar impact experiments using thin discs of similar ceramic as impactor and target have been completed. The particle velocity history at the interface between the back of the target ceramic and a lithium fluoride window material was acquired with a laser velocity interferometer (VISAR). These wave profiles indicate that each of these materials responds in a unique way to shock loading. Peak impact stresses in these experiments range between 20 and 50 GPa, leading to pronounced permanent deformation behavior of these materials. Dynamic compression and release stress-strain behavior of the ceramics, formulated with numerical iteration methods, is compared with compressive strength properties determined from the experimental data. The current experiments provide data for these ceramic materials which can be used to evaluate computational material models in wave propagation codes. 23 refs., 25 figs., 4 tabs.

  12. Molecular and planetary fluids at high shock pressures

    SciTech Connect

    Nellis, W.J.; Mitchell, A.C.

    1998-07-01

    Shock-compression experiments on liquids using a two-stage gun are described. Results for H{sub 2}, He, H{sub 2}O, N{sub 2}, CO{sub 2}, and a mixture of H{sub 2}O, NH{sub 3}, and C{sub 3}H{sub 8}O (synthetic Uranus) are discussed and related to explosive reaction products, giant planets, laser-driven fusion, and metallic hydrogen. {copyright} {ital 1998 American Institute of Physics.}

  13. Forward acoustic performance of a shock-swallowing high-tip-speed fan (QF-13)

    NASA Technical Reports Server (NTRS)

    Lucas, J. G.; Woodward, R. P.; Mackinnon, M. J.

    1980-01-01

    Forward noise and overall aerodynamic performance data are presented for a high-tip-speed fan having rotor blade airfoils designed to alter the conventional leading-edge bow shocks to weak, oblique shocks which are swallowed within the interblade channels. It was anticipated that the swallowed shocks would minimize the generation of multiple-pure-tone noise. In the speed range where the shocks presumably were swallowed, the multiple-tone noise was lowered only about 3 decibels. Comparison with several high-speed fans on a thrust-corrected basis indicates that the present fan was the quietest in total forward noise at low speeds but offered no advantage at high speeds.

  14. Simulating radiative shocks in nozzle shock tubes

    NASA Astrophysics Data System (ADS)

    van der Holst, B.; Tóth, G.; Sokolov, I. V.; Daldorff, L. K. S.; Powell, K. G.; Drake, R. P.

    2012-06-01

    We use the recently developed Center for Radiative Shock Hydrodynamics (CRASH) code to numerically simulate laser-driven radiative shock experiments. These shocks are launched by an ablated beryllium disk and are driven down xenon-filled plastic tubes. The simulations are initialized by the two-dimensional version of the Lagrangian Hyades code which is used to evaluate the laser energy deposition during the first 1.1 ns. Later times are calculated with the CRASH code. CRASH solves for the multi-material hydrodynamics with separate electron and ion temperatures on an Eulerian block-adaptive-mesh and includes a multi-group flux-limited radiation diffusion and electron thermal heat conduction. The goal of the present paper is to demonstrate the capability to simulate radiative shocks of essentially three-dimensional experimental configurations, such as circular and elliptical nozzles. We show that the compound shock structure of the primary and wall shock is captured and verify that the shock properties are consistent with order-of-magnitude estimates. The synthetic radiographs produced can be used for comparison with future nozzle experiments at high-energy-density laser facilities.

  15. Shock fitting applied to the prediction of high-speed rotor noise

    NASA Technical Reports Server (NTRS)

    Rutherford, J. W.

    1985-01-01

    A shock fitting method applied to the transonic small disturbance (TSD) potential equation is described. This method is then applied to a simple, two dimensional (2-D) rotating disturbance which is analogous to a shock radiating from the tip of a rotor blade in high speed hover. A comparison is made between the results of this method and the more standard shock capturing method. This comparison makes it clear that the effect of the results on the acoustic signature of the 2-D model is significant, and similar results can be expected when the method is extended to the three dimensional (3-D) case.

  16. Mesoscopic simulations of shock-to-detonation transition in reactive liquid high explosive

    NASA Astrophysics Data System (ADS)

    Maillet, J. B.; Bourasseau, E.; Desbiens, N.; Vallverdu, G.; Stoltz, G.

    2011-12-01

    An extension of the model described in a previous work (see Maillet J. B. et al., EPL, 78 (2007) 68001) based on Dissipative Particle Dynamics is presented and applied to a liquid high explosive (HE), with thermodynamic properties mimicking those of liquid nitromethane. Large scale nonequilibrium simulations of reacting liquid HE with model kinetic under sustained shock conditions allow a better understanding of the shock-to-detonation transition in homogeneous explosives. Moreover, the propagation of the reactive wave appears discontinuous since ignition points in the shocked material can be activated by the compressive waves emitted from the onset of chemical reactions.

  17. High-g shock test results of Tadiran TLM-1530MP cells.

    SciTech Connect

    O'Malley, Patrick D.

    2009-06-01

    In April of 2009, testing was done of a high-g instrumentation device that utilized Tadiran TLM-1530MP cells as a power source. As a result of that testing, it was determined that those cells exhibit failure more often when shocked in the axial direction. No failures over many tests where found when the cells were shocked laterally. Moreover, when shocked laterally, the cells exhibited no observable degradation in performance. We looked at the failed cells via non-destructive x-ray analysis to determine what internal structures failed.

  18. Shocks in the solar wind between 1 and 8.5 AU: Voyager 1 observations

    NASA Technical Reports Server (NTRS)

    Gazis, P. R.

    1984-01-01

    A survey was made of all interplanetary shocks detected by the plasma science experiment aboard the Voyager 1 spacecraft between 1.2 and 8.5 AU. Shock normals and shock velocities are determined. The variation of shock frequency and various shock parameters with heliocentric distance is discussed. The results indicate that beyond 1.2 AU, the vast majority of shocks were associated with interaction regions between high and low speed streams; of 95 events, only 1 was clearly associated with a transient event. Forward shocks were more numerous and seemed to form closer to the sun than reverse shocks. Forward shocks were stronger than reverse shocks. The energy balance of three shocks is examined. A close agreement is found between the measured and the predicted pressure ratios across these shocks. The contribution of shocks to the global energy balance is discussed. Shocks are found to have a significant effect in heating the solar wind.

  19. APPARATUS FOR PRODUCING HIGH VELOCITY SHOCK WAVES IN GASES

    DOEpatents

    Scott, F.R.; Josephson, V.

    1960-02-01

    >A device for producing a high-energy ionized gas region comprises an evacuated tapered insulating vessel and a substantially hemispherical insulating cap hermetically affixed to the large end of the vessel, an annular electrode having a diameter equal to and supported in the interior wall of the vessel at the large end and having a conductive portion inside the vessel, a second electrode supported at the small end of the vessel, means connected to the vessel for introducing a selected gas therein, a source of high potential having two poles. means for connecting one pole of the high potential source to the annular electrode, and means for connecting the other pole of the potential source to the second electrode.

  20. Second application of low-energy shock waves has a cumulative effect on free nerve endings.

    PubMed

    Takahashi, Norimasa; Ohtori, Seiji; Saisu, Takashi; Moriya, Hideshige; Wada, Yuichi

    2006-02-01

    Some physicians recommend treating tendinopathies with multiple sessions of shock waves. Some evidence, however, suggests shock wave application can induce nerve fiber degeneration. We questioned whether repeated shock wave application provides a cumulative effect on nerve fibers compared with the effect of one application. One thousand shock wave impulses of an energy flux density of 0.08 mJ/mm were applied to the foot pad of 32 rats. After 14 days, 16 rats received a second application. The foot pads were resected on Days 7, 14, 28, and 42. Sections were processed immunohistochemically using antibodies for sensory nerve. We compared the number of epidermal nerve fibers in rats that received one application of shock waves with the fibers in rats that received two applications. During the first 4 weeks, there was nearly complete degeneration of epidermal nerve fibers in both groups. By the end of 6 weeks, reinnervation of the epidermis began in the single-treatment group. Reinnervation occurred slower in the repeated-treatment group. These data show that a second application has a cumulative effect on nerve fibers. Our data suggest multiple applications of low-energy shock waves might a provide longer-lasting antinociceptive effect. PMID:16462457

  1. High pressure nano-crystalline microstructure of shock compressed single crystal iron

    SciTech Connect

    Hawreliak, J; Kalantar, D; Stolken, J; Remington, B; Lorenzana, H; Wark, J

    2007-12-11

    We discuss the first grain size measurements made during shock compression using in situ x-ray diffraction. Our experiments have shown unambiguously that single crystal iron shock loaded above 13 GPa along the [100] direction will transform from the ambient {alpha}-phase (BCC) to a highly ordered polycrystalline {epsilon}-phase (HCP). Here, we present a detailed shape analysis of the diffraction peaks using a modified Warren-Averbach method to quantify the microstructure of shock compressed high pressure iron. The {epsilon}-phase was determined through this method to have grain sizes between of 2 and 15 nm, in reasonable agreement with results from large scale MD simulations. We conclude that single crystal iron becomes nano-crystalline in shock transforming from the {alpha} to {epsilon} phase.

  2. A fail-safe magnetorheological energy absorber for shock and vibration isolation

    SciTech Connect

    Bai, Xian-Xu; Wereley, Norman M.

    2014-05-07

    Magnetorheological (MR) energy absorbers (EAs) are an effective adaptive EA technology with which to maximize shock and vibration isolation. However, to realize maximum performance of the semi-active control system, the off-state (i.e., field off) stroking load of the MREA must be minimized at all speeds, and the dynamic range of the MREA must be maximized at high speed. This study presents a fail-safe MREA (MREA-FS) concept that, can produce a greater dynamic range at all piston speeds. A bias damping force is generated in the MREA-FS using permanent magnetic fields, which enables fail-safe behavior in the case of power failure. To investigate the feasibility and capability of the MREA-FS in the context of the semi-active control systems, a single-degree-of-freedom base excited rigid payload is mathematically constructed and simulated with skyhook control.

  3. A fail-safe magnetorheological energy absorber for shock and vibration isolation

    NASA Astrophysics Data System (ADS)

    Bai, Xian-Xu; Wereley, Norman M.

    2014-05-01

    Magnetorheological (MR) energy absorbers (EAs) are an effective adaptive EA technology with which to maximize shock and vibration isolation. However, to realize maximum performance of the semi-active control system, the off-state (i.e., field off) stroking load of the MREA must be minimized at all speeds, and the dynamic range of the MREA must be maximized at high speed. This study presents a fail-safe MREA (MREA-FS) concept that, can produce a greater dynamic range at all piston speeds. A bias damping force is generated in the MREA-FS using permanent magnetic fields, which enables fail-safe behavior in the case of power failure. To investigate the feasibility and capability of the MREA-FS in the context of the semi-active control systems, a single-degree-of-freedom base excited rigid payload is mathematically constructed and simulated with skyhook control.

  4. The adiabatic energy change of plasma electrons and the frame dependence of the cross-shock potential at collisionless magnetosonic shock waves

    NASA Technical Reports Server (NTRS)

    Goodrich, C. C.; Scudder, J. D.

    1984-01-01

    The adiabatic energy gain of electrons in the stationary electric and magnetic field structure of collisionless shock waves was examined analytically in reference to conditions of the earth's bow shock. The study was performed to characterize the behavior of electrons interacting with the cross-shock potential. A normal incidence frame (NIF) was adopted in order to calculate the reversible energy change across a time stationary shock, and comparisons were made with predictions made by the de Hoffman-Teller (HT) model (1950). The electron energy gain, about 20-50 eV, is demonstrated to be consistent with a 200-500 eV potential jump in the bow shock quasi-perpendicular geometry. The electrons lose energy working against the solar wind motional electric field. The reversible energy process is close to that modeled by HT, which predicts that the motional electric field vanishes and the electron energy gain from the electric potential is equated to the ion energy loss to the potential.

  5. Proton radiography experiments on shocked high explosive products.

    SciTech Connect

    Ferm, Eric N.; Dennsion, Steve; Lopez, Robert; Prestridge, Kathy; Quintana, John P.; Espinoza, Camilo; King, Gary Hogan Nick; Merrill, Frank; Kevin Morley,; Morris, Christopher L.; Pazuchanic, Peter

    2003-07-22

    We studied the propagation of detonation waves and reflections of normal incident detonation waves in explosive products using the 800 MeV proton radiography facility at LANSCE. Using this system, we obtain seven to twenty-one radiographic images of each experiment. We have examined the experimental wave velocity and density of the materials ahead and behind of the shocks as inferred from radiographs and compare them to standard explosive equations of state. Finally we compare the experiments with calculations of the experiments using the MESA hydrodynamics code.

  6. Electron acceleration in a wavy shock front

    NASA Astrophysics Data System (ADS)

    Vandas, M.; Karlický, M.

    2011-07-01

    Context. It is known that electrons are accelerated at nearly perpendicular shocks by the drift mechanism. And it is also known that energy gain of electrons caused by this mechanism is not very high. Therefore it was suggested in the past that the energy gain might be increased if shocks had wavy fronts. For instance, there were attempts to explain coronal type II burst and their fine structure by electron acceleration in a wavy shock front. Aims: We studied electron acceleration numerically at nearly perpendicular wavy shocks for coronal conditions and compared it with analytical results on electron acceleration at nearly perpendicular plane shocks. Methods: An analytical model of a wavy shock front was used and trajectories of electrons in it and around it were calculated numerically in a guiding centre approximation. Results: We found that energy gains of electrons at a wavy shock front and a corresponding smoothed-into-plane shock on the average were comparable. That is why they do not depend significantly on the shock thickness, magnetic field profile inside the shock, and shock wavy form. They do depend on the angle between the smoothed shock front and ambient magnetic field. Conclusions: On average, a wavy shock front does not significantly increase an acceleration efficiency. Energy gain remarkably exceeds an average level for some combinations of initial parameters. Distribution functions of accelerated electrons have a patchy structure, which is prone to inducing plasma instabilities that will generate plasma waves. This may have relevance to the problem of type II burst origin.

  7. High Energy Density Studies at the OMEGA laser facility

    NASA Astrophysics Data System (ADS)

    Boehly, Thomas

    2015-06-01

    The primary emphasis of the scientific program at the Laboratory for Laser Energetics is laser-driven inertial confinement fusion. We report on high-energy-density (HED) experiments that use the OMEGA laser to produce multi-megabar shocks in materials of interest to the national fusion effort and the associated HED sciences. We present measurements of the behavior of shocked diamond, in both the single-crystal and ultranano-crystalline forms used as an ablator material in fusion capsules. Using the impedance-matching technique both the Hugoniot and release behaviors are measured with respect to multiple reference materials. The release of shocked diamond into liquid deuterium is also measured. We present the results of sound-speed measurements in shocked quartz which is also used as a reference for sound speed measurements in CH and fused silica. This is done using an unsteady wave analysis that tracks the propagation of small perturbations in shock pressure as they traverse the shocked material from `piston' to shock front. The arrival times of these perturbations, as compared to the same in a reference material, provides the sound speed in the shock material. We also present results of optical and x-ray probing of shock waves in foam targets and solid targets, as well as the release plumes of shock material after shock breakout. The import of these measurements to the fusion program and basic HED science will be discussed and plans for future work presented. This work was supported by the U.S. Department of Energy Office of Inertial Confinement Fusion under Cooperative Agreement No. DE-FC52-08NA28302.

  8. High energy neutron radiography

    SciTech Connect

    Gavron, A.; Morley, K.; Morris, C.; Seestrom, S.; Ullmann, J.; Yates, G.; Zumbro, J.

    1996-06-01

    High-energy spallation neutron sources are now being considered in the US and elsewhere as a replacement for neutron beams produced by reactors. High-energy and high intensity neutron beams, produced by unmoderated spallation sources, open potential new vistas of neutron radiography. The authors discuss the basic advantages and disadvantages of high-energy neutron radiography, and consider some experimental results obtained at the Weapons Neutron Research (WNR) facility at Los Alamos.

  9. OT1_pappleto_1: Charting the Cooling Pathways in High-Speed Extragalactic Shocks

    NASA Astrophysics Data System (ADS)

    Appleton, P.

    2010-07-01

    Following in the footsteps of ISO, recent observations with Spitzer have revealed a population of galaxy systems which emit a huge amount of luminosity in their pure rotational mid-IR molecular hydrogen lines, in some cases reaching 10-30 percent of the bolometric luminosity. These large line-luminosities are believed to be powered by galactic-scale shocks, which efficiently transfer kinetic energy to smaller dense clouds in the turbulent post-shock medium. However, nothing at all is known about the other important cooling channels for the shocked gas, such as [OI], H2O, OH, and CO, some of which can rival H2 as a coolant. We propose deep PACS and SPIRE spectroscopy of the Giant Shock in Stephan's Quintet and the Taffy Galaxy bridge to quantify the most important cooling channels and determine the physical state of the gas being shocked. The results have implications for understanding the importance of molecular cooling at higher redshift where turbulence and shock-heating may play a role in galaxy formation.

  10. Selfsimilar time dependent shock structures

    NASA Technical Reports Server (NTRS)

    Beck, R.; Drury, L. O.

    1985-01-01

    Diffusive shock acceleration as an astrophysical mechanism for accelerating charged particles has the advantage of being highly efficient. This means however that the theory is of necessity nonlinear; the reaction of the accelerated particles on the shock structure and the acceleration process must be self-consistently included in any attempt to develop a complete theory of diffusive shock acceleration. Considerable effort has been invested in attempting, at least partially, to do this and it has become clear that in general either the maximum particle energy must be restricted by introducing additional loss processes into the problem or the acceleration must be treated as a time dependent problem (Drury, 1984). It is concluded that stationary modified shock structures can only exist for strong shocks if additional loss processes limit the maximum energy a particle can attain. This is certainly possible and if it occurs the energy loss from the shock will lead to much greater shock compressions. It is however equally possible that no such processes exist and we must then ask what sort of nonstationary shock structure develops. The ame argument which excludes stationary structures also rules out periodic solutions and indeed any solution where the width of the shock remains bounded. It follows that the width of the shock must increase secularly with time and it is natural to examine the possibility of selfsimilar time dependent solutions.

  11. Selfsimilar time dependent shock structures

    NASA Astrophysics Data System (ADS)

    Beck, R.; Drury, L. O.

    1985-08-01

    Diffusive shock acceleration as an astrophysical mechanism for accelerating charged particles has the advantage of being highly efficient. This means however that the theory is of necessity nonlinear; the reaction of the accelerated particles on the shock structure and the acceleration process must be self-consistently included in any attempt to develop a complete theory of diffusive shock acceleration. Considerable effort has been invested in attempting, at least partially, to do this and it has become clear that in general either the maximum particle energy must be restricted by introducing additional loss processes into the problem or the acceleration must be treated as a time dependent problem (Drury, 1984). It is concluded that stationary modified shock structures can only exist for strong shocks if additional loss processes limit the maximum energy a particle can attain. This is certainly possible and if it occurs the energy loss from the shock will lead to much greater shock compressions. It is however equally possible that no such processes exist and we must then ask what sort of nonstationary shock structure develops. The ame argument which excludes stationary structures also rules out periodic solutions and indeed any solution where the width of the shock remains bounded. It follows that the width of the shock must increase secularly with time and it is natural to examine the possibility of selfsimilar time dependent solutions.

  12. Particle acceleration due to shocks in the interplanetary field: High time resolution data and simulation results

    NASA Technical Reports Server (NTRS)

    Kessel, R. L.; Armstrong, T. P.; Nuber, R.; Bandle, J.

    1985-01-01

    Data were examined from two experiments aboard the Explorer 50 (IMP 8) spacecraft. The Johns Hopkins University/Applied Lab Charged Particle Measurement Experiment (CPME) provides 10.12 second resolution ion and electron count rates as well as 5.5 minute or longer averages of the same, with data sampled in the ecliptic plane. The high time resolution of the data allows for an explicit, point by point, merging of the magnetic field and particle data and thus a close examination of the pre- and post-shock conditions and particle fluxes associated with large angle oblique shocks in the interplanetary field. A computer simulation has been developed wherein sample particle trajectories, taken from observed fluxes, are allowed to interact with a planar shock either forward or backward in time. One event, the 1974 Day 312 shock, is examined in detail.

  13. Experimental Investigation of Primary and Secondary Features in High-Mach-Number Shock-Bubble Interaction

    NASA Astrophysics Data System (ADS)

    Ranjan, Devesh; Niederhaus, John; Motl, Bradley; Anderson, Mark; Oakley, Jason; Bonazza, Riccardo

    2007-01-01

    Experiments to study the compression and unstable evolution of an isolated soap-film bubble containing helium, subjected to a strong planar shock wave (M=2.95) in ambient nitrogen, have been performed in a vertical shock tube of square internal cross section using planar laser diagnostics. The early phase of the interaction process is dominated by the formation of a primary vortex ring due to the baroclinic source of vorticity deposited during the shock-bubble interaction, and the mass transfer from the body of the bubble to the vortex ring. The late time (long after shock interaction) study reveals the presence of a secondary baroclinic source of vorticity at high Mach number which is responsible for the formation of counterrotating secondary and tertiary vortex rings and the subsequent larger rate of elongation of the bubble.

  14. In-situ Raman spectroscopy and high-speed photography of a shocked triaminotrinitrobenzene based explosive

    SciTech Connect

    Saint-Amans, C.; Hébert, P. Doucet, M.; Resseguier, T. de

    2015-01-14

    We have developed a single-shot Raman spectroscopy experiment to study at the molecular level the initiation mechanisms that can lead to sustained detonation of a triaminotrinitrobenzene-based explosive. Shocks up to 30 GPa were generated using a two-stage laser-driven flyer plate generator. The samples were confined by an optical window and shock pressure was maintained for at least 30 ns. Photon Doppler Velocimetry measurements were performed at the explosive/window interface to determine the shock pressure profile. Raman spectra were recorded as a function of shock pressure and the shifts of the principal modes were compared to static high-pressure measurements performed in a diamond anvil cell. Our shock data indicate the role of temperature effects. Our Raman spectra also show a progressive extinction of the signal which disappears around 9 GPa. High-speed photography images reveal a simultaneous progressive darkening of the sample surface up to total opacity at 9 GPa. Reflectivity measurements under shock compression show that this opacity is due to a broadening of the absorption spectrum over the entire visible region.

  15. In-situ Raman spectroscopy and high-speed photography of a shocked triaminotrinitrobenzene based explosive

    NASA Astrophysics Data System (ADS)

    Saint-Amans, C.; Hébert, P.; Doucet, M.; de Resseguier, T.

    2015-01-01

    We have developed a single-shot Raman spectroscopy experiment to study at the molecular level the initiation mechanisms that can lead to sustained detonation of a triaminotrinitrobenzene-based explosive. Shocks up to 30 GPa were generated using a two-stage laser-driven flyer plate generator. The samples were confined by an optical window and shock pressure was maintained for at least 30 ns. Photon Doppler Velocimetry measurements were performed at the explosive/window interface to determine the shock pressure profile. Raman spectra were recorded as a function of shock pressure and the shifts of the principal modes were compared to static high-pressure measurements performed in a diamond anvil cell. Our shock data indicate the role of temperature effects. Our Raman spectra also show a progressive extinction of the signal which disappears around 9 GPa. High-speed photography images reveal a simultaneous progressive darkening of the sample surface up to total opacity at 9 GPa. Reflectivity measurements under shock compression show that this opacity is due to a broadening of the absorption spectrum over the entire visible region.

  16. Modeling of dissociation and energy transfer in shock-heated nitrogen flows

    NASA Astrophysics Data System (ADS)

    Munafò, A.; Liu, Y.; Panesi, M.

    2015-12-01

    This work addresses the modeling of dissociation and energy transfer processes in shock heated nitrogen flows by means of the maximum entropy linear model and a newly proposed hybrid bin vibrational collisional model. Both models aim at overcoming two of the main limitations of the state of the art non-equilibrium models: (i) the assumption of equilibrium between rotational and translational energy modes of the molecules and (ii) the reliance on the quasi-steady-state distribution for the description of the population of the internal levels. The formulation of the coarse-grained models is based on grouping the energy levels into bins, where the population is assumed to follow a Maxwell-Boltzmann distribution at its own temperature. Different grouping strategies are investigated. Following the maximum entropy principle, the governing equations are obtained by taking the zeroth and first-order moments of the rovibrational master equations. The accuracy of the proposed models is tested against the rovibrational master equation solution for both flow quantities and population distributions. Calculations performed for free-stream velocities ranging from 5 km/s to 10 km/s demonstrate that dissociation can be accurately predicted by using only 2-3 bins. It is also shown that a multi-temperature approach leads to an under-prediction of dissociation, due to the inability of the former to account for the faster excitation of high-lying vibrational states.

  17. Modeling of dissociation and energy transfer in shock-heated nitrogen flows

    SciTech Connect

    Munafò, A.; Liu, Y.; Panesi, M.

    2015-12-15

    This work addresses the modeling of dissociation and energy transfer processes in shock heated nitrogen flows by means of the maximum entropy linear model and a newly proposed hybrid bin vibrational collisional model. Both models aim at overcoming two of the main limitations of the state of the art non-equilibrium models: (i) the assumption of equilibrium between rotational and translational energy modes of the molecules and (ii) the reliance on the quasi-steady-state distribution for the description of the population of the internal levels. The formulation of the coarse-grained models is based on grouping the energy levels into bins, where the population is assumed to follow a Maxwell-Boltzmann distribution at its own temperature. Different grouping strategies are investigated. Following the maximum entropy principle, the governing equations are obtained by taking the zeroth and first-order moments of the rovibrational master equations. The accuracy of the proposed models is tested against the rovibrational master equation solution for both flow quantities and population distributions. Calculations performed for free-stream velocities ranging from 5 km/s to 10 km/s demonstrate that dissociation can be accurately predicted by using only 2-3 bins. It is also shown that a multi-temperature approach leads to an under-prediction of dissociation, due to the inability of the former to account for the faster excitation of high-lying vibrational states.

  18. Developing a platform for high-resolution phase contrast imaging of high pressure shock waves in matter

    NASA Astrophysics Data System (ADS)

    Schropp, Andreas; Patommel, Jens; Seiboth, Frank; Arnold, Brice; Galtier, Eric C.; Lee, Hae Ja; Nagler, Bob; Hastings, Jerome B.; Schroer, Christian G.

    2012-10-01

    Current and upcoming X-ray sources, such as the Linac Coherent Light Source (LCLS) at the Stanford Linear Accelerator Center (SLAC, USA), the SPring-8 Angstrom Compact Free Electron Laser (SACLA, Japan), or the X-ray Free Electron Laser (XFEL, Germany) will provide X-ray beams with outstanding properties.1, 2 Short and intense X-ray pulses of about 50 fs time duration and even shorter will push X-ray science to new frontiers such as, e. g., in high-resolution X-ray imaging, high-energy-density physics or in dynamical studies based on pump-probe techniques. Fast processes in matter often require high-resolution imaging capabilities either by magnified imaging in direct space or diffractive imaging in reciprocal space. In both cases highest resolutions require focusing the X-ray beam.3, 4 In order to further develop high-resolution imaging at free-electron laser sources we are planning a platform to carry out high-resolution phase contrast imaging experiments based on Beryllium compound refractive X-ray lenses (Be-CRLs) at the Matter in Extreme Conditions (MEC) endstation of the LCLS. The instrument provides all necessary equipment to induce high pressure shock waves by optical lasers. The propagation of a shock wave is then monitored with an X-ray Free Electron Laser (FEL) pulse by magnified phase contrast imaging. With the CRL optics, X-ray beam sizes in the sub-100nm range are expected, leading to a similar spatial resolution in the direct coherent projection image. The experiment combines different state-of-the art scientific techniques that are currently available at the LCLS. In this proceedings paper we describe the technical developments carried out at the LCLS in order to implement magnified X-ray phase contrast imaging at the MEC endstation.

  19. High-Pressure Minerals in Meteorites: Constraints on Shock Conditions and Duration

    NASA Technical Reports Server (NTRS)

    Sharp, Thomas G.

    2004-01-01

    The objective of this research was to better understand the conditions and duration of shock metamorphism in meteorites through microstructural and microanalytical characterization of high-pressure minerals. A) Continue to investigate the mineralogy and microstructures of melt-veins in a suite of chondritic samples ranging from shock grades S3 through S6 to determine how the mineral assemblages that crystallize at high-pressure and are related to shock grade. B) Investigate the chemical, mineralogical, and microstructural heterogeneities that occur across melt veins to interpret crystallization histories. C) Use static high-pressure experiments to simulate crystallization of melt veins for mineralogical and textural comparisons with the melt veins of naturally shocked samples. D) Characterize the compositions and defect microstructures of polycrystalline ringwoodite, wadsleyite, majorite, (Mg,Fe)Si03-ilmenite and (Mg,Fe)SiO3-perovskite in S6 samples to understand the mechanisms of phase transformations that occur during shock. These results will combined with kinetic data to constrain the time scales of kinetic processes. E) Investigate the transformations of metastable high-pressure minerals back to low- pressure forms to constrain post-shock temperatures and estimates of the peak shock pressure. Of these objectives, we have obtained publishable data on A, B and D. I am currently doing difficult high-pressure melting and quench experiments on an L chondrite known as Mbale. These experiments will provide additional constraints on the mineral assemblages that are produced during rapid quench of an L chondrite at pressures of 16 to 25 GPa. Results from published or nearly published research is presented below. Lists of theses, dissertations and publications are given below.

  20. [Effects of cold-shock on tomato seedlings under high temperature stress].

    PubMed

    Li, Sheng-Li; Xia, Ya-Zhen; Liu, Jin; Shi, Xiao-Dan; Sun, Zhi-Qiang

    2014-10-01

    High temperature stress (HTS) is one of the major limiting factors that affect the quality of intensively cultured seedlings in protected facilitates during hot season. Increasing the cross adaptive response of plant induced by temperature stress is an effective way to improve plant stress resistance. In order to explore the alleviating effect of cold-shock intensity on tomato seedlings under HTS, tomato seedlings were subjected to cold-shock treatments every day with 5 °C, 10 °C, and 15 °C for 10 min, 20 min, and 30 min, respectively, in an artificial climate chamber. The effect of single appropriate cold-shock on the gene expression of small heat shock proteins LeHSP 23.8 and CaHSP18 was investigated. The results showed that hypocotyl elongation and plant height of tomato seedlings were restrained by cold-shock treatment before HTS was met. The alleviating effect of tomato seedlings under HTS by cold-shock varied greatly with levels and durations of temperature. The membrane lipids in the leaf of tomato seedlings were subjected to peroxidation injury in the cold-shock treatment at 5 °C, in which the penetration of cell membrane was increased and the activities of antioxidant enzyme was inhibited. The alleviating effect to HTS by cold-shock was decreased with the increasing cold-shock duration at 10 °C, however, a reverse change was found at 15 °C. The results indicated that cross adaptive response of tomato seedling could be induced with a moderate cold-shock temperature for a proper duration before HTS was met. The optimum cold-shock treatment was at 10 °C for 10 min per day, under which, the dry mass, healthy index, activities of protective enzymes (including SOD, POD and CAT) in leaves of tomato seedlings were significantly increased, the contents of proline and soluble protein were enhanced, relative conductivity and malondialdehyde concentration were significantly decreased, and the expression levels of Le-HSP23.8 and CaHSP18 were increased compared

  1. Relationships among Energy Price Shocks, Stock Market, and the Macroeconomy: Evidence from China

    PubMed Central

    Cong, Rong-Gang; Shen, Shaochuan

    2013-01-01

    This paper investigates the interactive relationships among China energy price shocks, stock market, and the macroeconomy using multivariate vector autoregression. The results indicate that there is a long cointegration among them. A 1% rise in the energy price index can depress the stock market index by 0.54% and the industrial value-adding growth by 0.037%. Energy price shocks also cause inflation and have a 5-month lag effect on stock market, which may result in the stock market “underreacting.” The energy price can explain stock market fluctuations better than the interest rate over a longer time period. Consequently, investors should pay greater attention to the long-term effect of energy on the stock market. PMID:23690737

  2. Relationships among energy price shocks, stock market, and the macroeconomy: evidence from China.

    PubMed

    Cong, Rong-Gang; Shen, Shaochuan

    2013-01-01

    This paper investigates the interactive relationships among China energy price shocks, stock market, and the macroeconomy using multivariate vector autoregression. The results indicate that there is a long cointegration among them. A 1% rise in the energy price index can depress the stock market index by 0.54% and the industrial value-adding growth by 0.037%. Energy price shocks also cause inflation and have a 5-month lag effect on stock market, which may result in the stock market "underreacting." The energy price can explain stock market fluctuations better than the interest rate over a longer time period. Consequently, investors should pay greater attention to the long-term effect of energy on the stock market. PMID:23690737

  3. Effect of High Shock Number on Acute Complication Development After Extracorporeal Shockwave Lithotripsy

    PubMed Central

    Hadj-Moussa, Miriam

    2013-01-01

    Abstract Purpose We assessed whether high shock number is associated with higher rates of acute complication development after extracorporeal shockwave lithotripsy (SWL). Patients and Methods A retrospective chart review of 372 patients who underwent 436 SWL procedures at 24 kV using a Medstone STS-T lithotripter (Medstone International Inc., Aliso Viejo, CA) was conducted. Complications occurred within 4 weeks of SWL. Treatments were split into three cohorts based on shock number (<2400, 2401–4000, and >4000). Postoperative sequelae of patients who were stone free and those with residual stone were studied separately. Chi-square tests were used to evaluate the relationship between shock number cohort and postoperative complication development. Results SWL treatments recorded for each cohort were 158 (37.4%), 145 (34.4%), and 119 (28.2%), respectively. The short-term complication rate when SWL was successful was 8.3% overall. Complication rate for each cohort was 9.5% (11), 7.8% (5), and 7.2% (7), respectively. When SWL was successful, statistical analysis revealed no significant difference between complication rates and shock number cohort (P=0.63). Complications in patients with a residual stone occurred after 41.4% of treatments and trended upward with shock number cohort, but did not reach statistical significance (P=0.84). Conclusions At high voltage, high shock number was not shown to cause higher rates of short-term postoperative complications, as experienced by patients, when SWL was successful or resulted in a residual stone, yet complication rates associated with residual stone burden were approximately five times as common. Forgoing a higher shock number in the presence of a residual stone may therefore increase the risks of sequelae immediately after SWL. PMID:23537270

  4. A High Order Finite Difference Scheme with Sharp Shock Resolution for the Euler Equations

    NASA Technical Reports Server (NTRS)

    Gerritsen, Margot; Olsson, Pelle

    1996-01-01

    We derive a high-order finite difference scheme for the Euler equations that satisfies a semi-discrete energy estimate, and present an efficient strategy for the treatment of discontinuities that leads to sharp shock resolution. The formulation of the semi-discrete energy estimate is based on a symmetrization of the Euler equations that preserves the homogeneity of the flux vector, a canonical splitting of the flux derivative vector, and the use of difference operators that satisfy a discrete analogue to the integration by parts procedure used in the continuous energy estimate. Around discontinuities or sharp gradients, refined grids are created on which the discrete equations are solved after adding a newly constructed artificial viscosity. The positioning of the sub-grids and computation of the viscosity are aided by a detection algorithm which is based on a multi-scale wavelet analysis of the pressure grid function. The wavelet theory provides easy to implement mathematical criteria to detect discontinuities, sharp gradients and spurious oscillations quickly and efficiently.

  5. Shock to the system: How catastrophic events and institutional relationships impact Japanese energy policymaking, resilience, and innovation

    NASA Astrophysics Data System (ADS)

    Sklarew, Jennifer F.

    External shocks do not always generate energy system transformation. This dissertation examines how government relationships with electric utilities and the public impact whether shocks catalyze energy system change. The study analyzes Japanese energy policymaking from the oil crises through the Fukushima nuclear disaster. Findings reveal that policymakers' cooperation with and clout over electric utilities and the public can enable shocks to transform energy systems. When electric utilities wield clout, public trust in and influence on the government determine the existing system's resilience and the potential for a new system to emerge. Understanding this effect informs energy policy design and innovation.

  6. A Study of Fundamental Shock Noise Mechanisms

    NASA Technical Reports Server (NTRS)

    Meadows, Kristine R.

    1997-01-01

    This paper investigates two mechanisms fundamental to sound generation in shocked flows: shock motion and shock deformation. Shock motion is modeled numerically by examining the interaction of a sound wave with a shock. This numerical approach is validated by comparison with results obtained by linear theory for a small-disturbance case. Analysis of the perturbation energy with Myers' energy corollary demonstrates that acoustic energy is generated by the interaction of acoustic disturbances with shocks. This analysis suggests that shock motion generates acoustic and entropy disturbance energy. Shock deformation is modeled numerically by examining the interaction of a vortex ring with a shock. These numerical simulations demonstrate the generation of both an acoustic wave and contact surfaces. The acoustic wave spreads cylindrically. The sound intensity is highly directional and the sound pressure increases with increasing shock strength. The numerically determined relationship between the sound pressure and the Mach number is found to be consistent with experimental observations of shock noise. This consistency implies that a dominant physical process in the generation of shock noise is modeled in this study.

  7. Evidence for confinement of low-energy cosmic rays ahead of interplanetary shock waves.

    NASA Technical Reports Server (NTRS)

    Palmeira, R. A. R.; Allum, F. R.

    1973-01-01

    Short-lived (about 15 min), low-energy proton increases associated with the passage of interplanetary shock waves have been previously reported. In the present paper, we have examined in a fine time scale (about 1 min) the concurrent particle and magnetic field data, taken by detectors on Explorer 34, for four of these events. Our results further support the view that these impulsive events are due to confinement of the solar cosmic-ray particles in the region just ahead (about 1,000,000 km) of the advancing shock front.

  8. On the generation of magnetosheath high-speed jets by bow shock ripples

    PubMed Central

    Hietala, H; Plaschke, F

    2013-01-01

    [1]The terrestrial magnetosheath is embedded with coherent high-speed jets of about 1RE in scale, predominantly during quasi-radial interplanetary magnetic field (IMF). When these high dynamic pressure (Pdyn) jets hit the magnetopause, they cause large indentations and further magnetospheric effects. The source of these jets has remained controversial. One of the proposed mechanisms is based on ripples of the quasi-parallel bow shock. In this paper, we combine for the first time, 4 years of subsolar magnetosheath observations from the Time History of Events and Macroscale Interactions during Substorms mission and corresponding NASA/OMNI solar wind conditions with model calculations of a rippled bow shock. Concentrating on the magnetosheath close to the shock during intervals when the angle between the IMF and the Sun-Earth line was small, we find that (1) 97% of the observed jets can be produced by local ripples of the shock under the observed upstream conditions; (2) the coherent jets form a significant fraction of the high Pdyn tail of the magnetosheath flow distribution; (3) the magnetosheath Pdyn distribution matches the flow from a bow shock with ripples that have a dominant amplitude to wavelength ratio of about 9% (∼0.1RE/1RE) and are present ∼12% of the time at any given location. PMID:26167426

  9. On the generation of magnetosheath high speed jets by bow shock ripples (Invited)

    NASA Astrophysics Data System (ADS)

    Hietala, H.; Plaschke, F.

    2013-12-01

    The terrestrial magnetosheath is embedded with coherent high speed jets of about 1 RE in scale, predominantly during quasi-radial interplanetary magnetic field (IMF). When these high dynamic pressure (Pdyn) jets hit the magnetopause, they cause large indentations and further magnetospheric effects. The source of these jets has remained controversial. One of the proposed mechanisms is based on ripples of the quasi-parallel bow shock. In this paper, we combine for the first time four years of subsolar magnetosheath observations from the THEMIS mission and corresponding NASA/OMNI solar wind conditions with model calculations of a rippled bow shock. Concentrating on the magnetosheath close to the shock during low IMF cone-angles, we find that (1) 97% of the observed jets can be produced by local ripples of the shock under the observed upstream conditions; (2) the coherent jets form a significant fraction of the high Pdyn tail of the magnetosheath flow distribution; (3) the magnetosheath Pdyn distribution matches the flow from a bow shock with ripples that have a dominant amplitude to wavelength ratio of about 9% (~ 0.1 RE/1 RE) and are present ~12% of the time at any given location.

  10. Pyroxenes and olivines: Structural implications of shock-wave data for high pressure phases

    NASA Technical Reports Server (NTRS)

    Jeanloz, R.; Ahrens, T. J.

    1975-01-01

    The nature of the shock-induced, high-pressure phases of olivine and pyroxene rocks is examined in the light of data for the densities of a new class of perovskite-related silicate structures. Also examined are some new Hugoniot and release adiabat data for bronzite. Reexamining available shock data for magnesian pyroxenes and olivines leads to the conclusion that they define a mixed phase (or disequilibrium) region to about the 100 GPa range, related to the kinetics of phase transformation in these silicates. By recognizing this point, certain discrepancies in previous interpretations of shock data can be explained. A set of theoretical Hugonoits for pyroxene and olivine stoichiometry, perovskite-bearing assemblages was constructed based on their properties deduced from high-pressure work, showing that the shock data is compatible with transformations to perovskites in the 45-7GPa region. Finally, the shock data indicate very similar properties for olivine and pyroxene at high pressures making them both equally likely candidates for the lower mantle.

  11. Thermal Shock Properties of Yttria-Stabilized Zirconia Coatings Deposited Using Low-Energy Very Low Pressure Plasma Spraying

    NASA Astrophysics Data System (ADS)

    Zhu, Lin; Zhang, Nannan; Bolot, Rodolphe; Liao, Hanlin; Coddet, Christian

    2015-08-01

    Yttria-stabilized zirconia (YSZ) coatings have been frequently used as a thermal protective layer on the metal or alloy component surfaces. In the present study, ZrO2-7%Y2O3 thermal barrier coatings (TBCs) were successfully deposited by DC (direct current) plasma spray process under very low pressure conditions (less than 1 mbar) using low-energy plasma guns F4-VB and F100. The experiments were performed to evaluate the thermal shock resistance of different TBC specimens which were heated to 1373 K at a high-temperature cycling furnace and held for 0.5 h, followed by air cooling at room temperature for 0.2 h. For comparison, a corresponding atmospheric plasma spray (APS) counterpart was also elaborated to carry out the similar experiments. The results indicated that the very low pressure plasma spray (VLPPS) coatings displayed better thermal shock resistance. Moreover, the failure mechanism of the coatings was elucidated.

  12. Numerical dissipation control in high order shock-capturing schemes for LES of low speed flows

    NASA Astrophysics Data System (ADS)

    Kotov, D. V.; Yee, H. C.; Wray, A. A.; Sjögreen, B.; Kritsuk, A. G.

    2016-02-01

    The Yee & Sjögreen adaptive numerical dissipation control in high order scheme (High Order Filter Methods for Wide Range of Compressible Flow Speeds, ICOSAHOM 09, 2009) is further improved for DNS and LES of shock-free turbulence and low speed turbulence with shocklets. There are vastly different requirements in the minimization of numerical dissipation for accurate turbulence simulations of different compressible flow types and flow speeds. Traditionally, the method of choice for shock-free turbulence and low speed turbulence are by spectral, high order central or high order compact schemes with high order linear filters. With a proper control of a local flow sensor, appropriate amount of numerical dissipation in high order shock-capturing schemes can have spectral-like accuracy for compressible low speed turbulent flows. The development of the method includes an adaptive flow sensor with automatic selection on the amount of numerical dissipation needed at each flow location for more accurate DNS and LES simulations with less tuning of parameters for flows with a wide range of flow speed regime during the time-accurate evolution, e.g., time varying random forcing. An automatic selection of the different flow sensors catered to the different flow types is constructed. A Mach curve and high-frequency oscillation indicators are used to reduce the tuning of parameters in controlling the amount of shock-capturing numerical dissipation to be employed for shock-free turbulence, low speed turbulence and turbulence with strong shocks. In Kotov et al. (High Order Numerical Methods for LES of Turbulent Flows with Shocks, ICCFD8, Chengdu, Sichuan, China, July 14-18, 2014) the LES of a turbulent flow with a strong shock by the Yee & Sjögreen scheme indicated a good agreement with the filtered DNS data. A work in progress for the application of the adaptive flow sensor for compressible turbulence with time-varying random forcing is forthcoming. The present study examines the

  13. Performance evaluation and parameter sensitivity of energy-harvesting shock absorbers on different vehicles

    NASA Astrophysics Data System (ADS)

    Guo, Sijing; Liu, Yilun; Xu, Lin; Guo, Xuexun; Zuo, Lei

    2016-07-01

    Traditional shock absorbers provide favourable ride comfort and road handling by dissipating the suspension vibration energy into heat waste. In order to harvest this dissipated energy and improve the vehicle fuel efficiency, many energy-harvesting shock absorbers (EHSAs) have been proposed in recent years. Among them, two types of EHSAs have attracted much attention. One is a traditional EHSA which converts the oscillatory vibration into bidirectional rotation using rack-pinion, ball-screw or other mechanisms. The other EHSA is equipped with a mechanical motion rectifier (MMR) that transforms the bidirectional vibration into unidirectional rotation. Hereinafter, they are referred to as NonMMR-EHSA and MMR-EHSA, respectively. This paper compares their performances with the corresponding traditional shock absorber by using closed-form analysis and numerical simulations on various types of vehicles, including passenger cars, buses and trucks. Results suggest that MMR-EHSA provides better ride performances than NonMMR-EHSA, and that MMR-EHSA is able to improve both the ride comfort and road handling simultaneously over the traditional shock absorber when installed on light-damped, heavy-duty vehicles. Additionally, the optimal parameters of MMR-EHSA are obtained for ride comfort. The optimal solutions ('Pareto-optimal solutions') are also obtained by considering the trade-off between ride comfort and road handling.

  14. Occurrence of high-beta superthermal plasma events in the close environment of Jupiter's bow shock as observed by Ulysses

    SciTech Connect

    Marhavilas, P. K.; Sarris, E. T.; Anagnostopoulos, G. C.

    2011-01-04

    The ratio of the plasma pressure to the magnetic field pressure (or of their energy densities) which is known as the plasma parameter 'beta'({beta}) has important implications to the propagation of energetic particles and the interaction of the solar wind with planetary magnetospheres. Although in the scientific literature the contribution of the superthermal particles to the plasma pressure is generally assumed negligible, we deduced, by analyzing energetic particles and magnetic field measurements recorded by the Ulysses spacecraft, that in a series of events, the energy density contained in the superthermal tail of the particle distribution is comparable to or even higher than the energy density of the magnetic field, creating conditions of high-beta plasma. More explicitly, in this paper we analyze Ulysses/HI-SCALE measurements of the energy density ratio (parameter {beta}{sub ep}) of the energetic ions'(20 keV to {approx}5 MeV) to the magnetic field's in order to find occurrences of high-beta ({beta}{sub ep}>1) superthermal plasma conditions in the environment of the Jovian magnetosphere, which is an interesting plasma laboratory and an important source of emissions in our solar system. In particular, we examine high-beta ion events close to Jupiter's bow shock, which are produced by two processes: (a) bow shock ion acceleration and (b) ion leakage from the magnetosphere.

  15. HSF1 drives a transcriptional program distinct from heat shock to support highly malignant human cancers

    PubMed Central

    Mendillo, Marc L.; Santagata, Sandro; Koeva, Martina; Bell, George W.; Hu, Rong; Tamimi, Rulla M.; Fraenkel, Ernest; Ince, Tan A.; Whitesell, Luke; Lindquist, Susan

    2012-01-01

    SUMMARY Heat-Shock Factor 1 (HSF1), master regulator of the heat-shock response, facilitates malignant transformation, cancer cell survival and proliferation in model systems. The common assumption is that these effects are mediated through regulation of heat-shock protein (HSP) expression. However, the transcriptional network that HSF1 coordinates directly in malignancy and its relationship to the heat-shock response have never been defined. By comparing cells with high and low malignant potential alongside their non-transformed counterparts, we identify an HSF1-regulated transcriptional program specific to highly malignant cells and distinct from heat shock. Cancer-specific genes in this program support oncogenic processes: cell-cycle regulation, signaling, metabolism, adhesion and translation. HSP genes are integral to this program, however, many are uniquely regulated in malignancy. This HSF1 cancer program is active in breast, colon and lung tumors isolated directly from human patients and is strongly associated with metastasis and death. Thus, HSF1 rewires the transcriptome in tumorigenesis, with prognostic and therapeutic implications. PMID:22863008

  16. Robust and Accurate Shock Capturing Method for High-Order Discontinuous Galerkin Methods

    NASA Technical Reports Server (NTRS)

    Atkins, Harold L.; Pampell, Alyssa

    2011-01-01

    A simple yet robust and accurate approach for capturing shock waves using a high-order discontinuous Galerkin (DG) method is presented. The method uses the physical viscous terms of the Navier-Stokes equations as suggested by others; however, the proposed formulation of the numerical viscosity is continuous and compact by construction, and does not require the solution of an auxiliary diffusion equation. This work also presents two analyses that guided the formulation of the numerical viscosity and certain aspects of the DG implementation. A local eigenvalue analysis of the DG discretization applied to a shock containing element is used to evaluate the robustness of several Riemann flux functions, and to evaluate algorithm choices that exist within the underlying DG discretization. A second analysis examines exact solutions to the DG discretization in a shock containing element, and identifies a "model" instability that will inevitably arise when solving the Euler equations using the DG method. This analysis identifies the minimum viscosity required for stability. The shock capturing method is demonstrated for high-speed flow over an inviscid cylinder and for an unsteady disturbance in a hypersonic boundary layer. Numerical tests are presented that evaluate several aspects of the shock detection terms. The sensitivity of the results to model parameters is examined with grid and order refinement studies.

  17. A technique for in-target digital recording during high shock events

    NASA Astrophysics Data System (ADS)

    Menna, Thomas L.; Swann, Jeffrey D.

    An innovative data acquisition technique is described that allows a variety of long duration measurements created from high shock events such as an explosive blast while significantly reducing the risk of data degradation or loss. This technique employs an electronics system that is incorporated into an instrumentation package. The instrumentation package consists of a state-of-the-art high shock resistant analog-to-digital recorder, sensors, battery pack, and signal and trigger conditioning and monitoring circuits. These components are shock isolated and encased in either a protective canister or placed in a hardened recoverable component of the target. Active remote monitoring of this system provides system status information that is necessary for tests utilizing expensive large scale targets that are not accessible for days or weeks before the test.

  18. Recent development and future perspectives of low energy laser shock peening

    NASA Astrophysics Data System (ADS)

    Kalainathan, S.; Prabhakaran, S.

    2016-07-01

    The first part of the review involves the parameters controlling and optimization of low energy laser shock peening process. The second part presents the effect of laser peening without coating on ferrous, aluminum and titanium alloys. Therefore, the recently developed techniques and challenges on it are discussed. Opportunities to tackle the current challenges are overviewed. Finally, in the third part, the future perspectives of low energy laser peening on metal matrix composites and single crystals for several typical applications are deliberated.

  19. Acoustical problems in high energy pulsed E-beams lasers

    NASA Technical Reports Server (NTRS)

    Horton, T. E.; Wylie, K. F.

    1976-01-01

    During the pulsing of high energy, CO2, electron beam lasers, a significant fraction of input energy ultimately appears as acoustical disturbances. The magnitudes of these disturbances were quantified by computer analysis. Acoustical and shock impedance data are presented on materials (Rayleigh type) which show promise in controlling acoustical disturbance in E-beam systems.

  20. Shock-to-detonation transition of RDX and NTO based composite high explosives: experiments and modeling

    NASA Astrophysics Data System (ADS)

    Baudin, Gerard; Roudot, Marie; Genetier, Marc

    2013-06-01

    Composite HMX and NTO based high explosives (HE) are widely used in ammunitions. Designing modern warheads needs robust and reliable models to compute shock ignition and detonation propagation inside HE. Comparing to a pressed HE, a composite HE is not porous and the hot-spots are mainly located at the grain - binder interface leading to a different behavior during shock-to-detonation transition. An investigation of how shock-to-detonation transition occurs inside composite HE containing RDX and NTO is proposed in this lecture. Two composite HE have been studied. The first one is HMX - HTPB 82:18. The second one is HMX - NTO - HTPB 12:72:16. These HE have been submitted to plane sustained shock waves at different pressure levels using a laboratory powder gun. Pressure signals are measured using manganin gauges inserted at several distances inside HE. The corresponding run-distances to detonation are determined using wedge test experiments where the plate impact is performed using a powder gun. Both HE exhibit a single detonation buildup curve in the distance - time diagram of shock-to-detonation transition. This feature seems a common shock-to-detonation behavior for composite HE without porosity. This behavior is also confirmed for a RDX - HTPB 85:15 based composite HE. Such a behavior is exploited to determine the heterogeneous reaction rate versus the shock pressure using a method based on the Cauchy-Riemann problem inversion. The reaction rate laws obtained allow to compute both run-distance to detonation and pressure signals.

  1. Blast Shock Wave Mitigation Using the Hydraulic Energy Redirection and Release Technology

    PubMed Central

    Chen, Yun; Huang, Wei; Constantini, Shlomi

    2012-01-01

    A hydraulic energy redirection and release technology has been developed for mitigating the effects of blast shock waves on protected objects. The technology employs a liquid-filled plastic tubing as a blast overpressure transformer to transfer kinetic energy of blast shock waves into hydraulic energy in the plastic tubings. The hydraulic energy is redirected through the plastic tubings to the openings at the lower ends, and then is quickly released with the liquid flowing out through the openings. The samples of the specifically designed body armor in which the liquid-filled plastic tubings were installed vertically as the outer layer of the body armor were tested. The blast test results demonstrated that blast overpressure behind the body armor samples was remarkably reduced by 97% in 0.2 msec after the liquid flowed out of its appropriate volume through the openings. The results also suggested that a volumetric liquid surge might be created when kinetic energy of blast shock wave was transferred into hydraulic energy to cause a rapid physical movement or displacement of the liquid. The volumetric liquid surge has a strong destructive power, and can cause a noncontact, remote injury in humans (such as blast-induced traumatic brain injury and post-traumatic stress disorder) if it is created in cardiovascular system. The hydraulic energy redirection and release technology can successfully mitigate blast shock waves from the outer surface of the body armor. It should be further explored as an innovative approach to effectively protect against blast threats to civilian and military personnel. PMID:22745740

  2. Blast shock wave mitigation using the hydraulic energy redirection and release technology.

    PubMed

    Chen, Yun; Huang, Wei; Constantini, Shlomi

    2012-01-01

    A hydraulic energy redirection and release technology has been developed for mitigating the effects of blast shock waves on protected objects. The technology employs a liquid-filled plastic tubing as a blast overpressure transformer to transfer kinetic energy of blast shock waves into hydraulic energy in the plastic tubings. The hydraulic energy is redirected through the plastic tubings to the openings at the lower ends, and then is quickly released with the liquid flowing out through the openings. The samples of the specifically designed body armor in which the liquid-filled plastic tubings were installed vertically as the outer layer of the body armor were tested. The blast test results demonstrated that blast overpressure behind the body armor samples was remarkably reduced by 97% in 0.2 msec after the liquid flowed out of its appropriate volume through the openings. The results also suggested that a volumetric liquid surge might be created when kinetic energy of blast shock wave was transferred into hydraulic energy to cause a rapid physical movement or displacement of the liquid. The volumetric liquid surge has a strong destructive power, and can cause a noncontact, remote injury in humans (such as blast-induced traumatic brain injury and post-traumatic stress disorder) if it is created in cardiovascular system. The hydraulic energy redirection and release technology can successfully mitigate blast shock waves from the outer surface of the body armor. It should be further explored as an innovative approach to effectively protect against blast threats to civilian and military personnel. PMID:22745740

  3. Active Galactic Nuclei:. Sources for Ultra High Energy Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Biermann, P. L.; Becker, J. K.; Caramete, L.; Gergely, L.; Mariş, I. C.; Meli, A.; de Souza, V.; Stanev, T.

    Ultra high energy cosmic ray events presently show a spectrum, which we interpret here as galactic cosmic rays due to a starburst, in the radio galaxy Cen A which is pushed up in energy by the shock of a relativistic jet. The knee feature and the particles with energy immediately higher in galactic cosmic rays then turn into the bulk of ultra high energy cosmic rays. This entails that all ultra high energy cosmic rays are heavy nuclei. This picture is viable if the majority of the observed ultra high energy events come from the radio galaxy Cen A, and are scattered by intergalactic magnetic fields across much of the sky.

  4. A Class of High-Resolution Explicit and Implicit Shock-Capturing Methods

    NASA Technical Reports Server (NTRS)

    Yee, H. C.

    1994-01-01

    The development of shock-capturing finite difference methods for hyperbolic conservation laws has been a rapidly growing area for the last decade. Many of the fundamental concepts, state-of-the-art developments and applications to fluid dynamics problems can only be found in meeting proceedings, scientific journals and internal reports. This paper attempts to give a unified and generalized formulation of a class of high-resolution, explicit and implicit shock capturing methods, and to illustrate their versatility in various steady and unsteady complex shock waves, perfect gases, equilibrium real gases and nonequilibrium flow computations. These numerical methods are formulated for the purpose of ease and efficient implementation into a practical computer code. The various constructions of high-resolution shock-capturing methods fall nicely into the present framework and a computer code can be implemented with the various methods as separate modules. Included is a systematic overview of the basic design principle of the various related numerical methods. Special emphasis will be on the construction of the basic nonlinear, spatially second and third-order schemes for nonlinear scalar hyperbolic conservation laws and the methods of extending these nonlinear scalar schemes to nonlinear systems via the approximate Riemann solvers and flux-vector splitting approaches. Generalization of these methods to efficiently include real gases and large systems of nonequilibrium flows will be discussed. Some perbolic conservation laws to problems containing stiff source terms and terms and shock waves are also included. The performance of some of these schemes is illustrated by numerical examples for one-, two- and three-dimensional gas-dynamics problems. The use of the Lax-Friedrichs numerical flux to obtain high-resolution shock-capturing schemes is generalized. This method can be extended to nonlinear systems of equations without the use of Riemann solvers or flux

  5. High-Order Shock-Capturing Methods for Modeling Dynamics of the Solar Atmosphere

    NASA Technical Reports Server (NTRS)

    Bryson, Steve; Kosovichev, Alexander; Levy, Doron

    2004-01-01

    We use one-dimensional high-order central shock capturing numerical methods to study the response of various model solar atmospheres to forcing at the solar surface. The dynamics of the atmosphere is modeled with the Euler equations in a variable-sized flux tube in the presence of gravity. We study dynamics of the atmosphere suggestive of spicule formation and coronal oscillations. These studies are performed on observationally-derived model atmospheres above the quiet sun and above sunspots. To perform these simulations, we provide a new extension of existing second- and third- order shock-capturing methods to irregular grids. We also solve the problem of numerically maintaining initial hydrostatic balance via the introduction of new variables in the model equations and a careful initialization mechanism. We find several striking results: all model atmospheres respond to a single impulsive perturbation with several strong shock waves consistent with the rebound-shock model. These shock waves lift material and the transition region well into the initial corona, and the sensitivity of this lift to the initial impulse depends non-linearly on the details of the atmosphere model. We also reproduce an observed 3-minute coronal oscillation above sunspots compared to 5-minute oscillations above the quiet sun.

  6. Controlled tissue emulsification produced by high intensity focused ultrasound shock waves and millisecond boiling

    PubMed Central

    Khokhlova, Tatiana D.; Canney, Michael S.; Khokhlova, Vera A.; Sapozhnikov, Oleg A.; Crum, Lawrence A.; Bailey, Michael R.

    2011-01-01

    In high intensity focused ultrasound (HIFU) applications, tissue may be thermally necrosed by heating, emulsified by cavitation, or, as was recently discovered, emulsified using repetitive millisecond boiling caused by shock wave heating. Here, this last approach was further investigated. Experiments were performed in transparent gels and ex vivo bovine heart tissue using 1, 2, and 3 MHz focused transducers and different pulsing schemes in which the pressure, duty factor, and pulse duration were varied. A previously developed derating procedure to determine in situ shock amplitudes and the time-to-boil was refined. Treatments were monitored using B-mode ultrasound. Both inertial cavitation and boiling were observed during exposures, but emulsification occurred only when shocks and boiling were present. Emulsified lesions without thermal denaturation were produced with shock amplitudes sufficient to induce boiling in less than 20 ms, duty factors of less than 0.02, and pulse lengths shorter than 30 ms. Higher duty factors or longer pulses produced varying degrees of thermal denaturation combined with mechanical emulsification. Larger lesions were obtained using lower ultrasound frequencies. The results show that shock wave heating and millisecond boiling is an effective and reliable way to emulsify tissue while monitoring the treatment with ultrasound. PMID:22088025

  7. Controlled tissue emulsification produced by high intensity focused ultrasound shock waves and millisecond boiling.

    PubMed

    Khokhlova, Tatiana D; Canney, Michael S; Khokhlova, Vera A; Sapozhnikov, Oleg A; Crum, Lawrence A; Bailey, Michael R

    2011-11-01

    In high intensity focused ultrasound (HIFU) applications, tissue may be thermally necrosed by heating, emulsified by cavitation, or, as was recently discovered, emulsified using repetitive millisecond boiling caused by shock wave heating. Here, this last approach was further investigated. Experiments were performed in transparent gels and ex vivo bovine heart tissue using 1, 2, and 3 MHz focused transducers and different pulsing schemes in which the pressure, duty factor, and pulse duration were varied. A previously developed derating procedure to determine in situ shock amplitudes and the time-to-boil was refined. Treatments were monitored using B-mode ultrasound. Both inertial cavitation and boiling were observed during exposures, but emulsification occurred only when shocks and boiling were present. Emulsified lesions without thermal denaturation were produced with shock amplitudes sufficient to induce boiling in less than 20 ms, duty factors of less than 0.02, and pulse lengths shorter than 30 ms. Higher duty factors or longer pulses produced varying degrees of thermal denaturation combined with mechanical emulsification. Larger lesions were obtained using lower ultrasound frequencies. The results show that shock wave heating and millisecond boiling is an effective and reliable way to emulsify tissue while monitoring the treatment with ultrasound. PMID:22088025

  8. Energy Characteristics of Electric Drive of Oscillatory Motion at the Shock-Free Start

    NASA Astrophysics Data System (ADS)

    Payuk, L. A.; Voronina, N. A.; Galtseva, O. V.

    2016-01-01

    The peculiarity of operation of oscillatory electric drive with doubly-fed motor at realization of algorithm of shock-free start was considered. The method of evaluating of energy parameters of such motors operating at the resonance mode with yueTOM of quantitative and qualitative components of the process of energy conversion by an electric motor (doubly-fed motor) is proposed. The calculation of energy characteristics of electric drive of this type was made, the results of calculation show an increase of energy efficiency (an average, generalized efficiency coefficient nE increased by 10%), which confirms the practical significance of the research object.

  9. Low Energy Shock Wave Therapy Induces Angiogenesis in Acute Hind-Limb Ischemia via VEGF Receptor 2 Phosphorylation

    PubMed Central

    Holfeld, Johannes; Tepeköylü, Can; Blunder, Stefan; Lobenwein, Daniela; Kirchmair, Elke; Dietl, Marion; Kozaryn, Radoslaw; Lener, Daniela; Theurl, Markus; Paulus, Patrick; Kirchmair, Rudolf; Grimm, Michael

    2014-01-01

    Objectives Low energy shock waves have been shown to induce angiogenesis, improve left ventricular ejection fraction and decrease angina symptoms in patients suffering from chronic ischemic heart disease. Whether there is as well an effect in acute ischemia was not yet investigated. Methods Hind-limb ischemia was induced in 10–12 weeks old male C57/Bl6 wild-type mice by excision of the left femoral artery. Animals were randomly divided in a treatment group (SWT, 300 shock waves at 0.1 mJ/mm2, 5 Hz) and untreated controls (CTR), n = 10 per group. The treatment group received shock wave therapy immediately after surgery. Results Higher gene expression and protein levels of angiogenic factors VEGF-A and PlGF, as well as their receptors Flt-1 and KDR have been found. This resulted in significantly more vessels per high-power field in SWT compared to controls. Improvement of blood perfusion in treatment animals was confirmed by laser Doppler perfusion imaging. Receptor tyrosine kinase profiler revealed significant phosphorylation of VEGF receptor 2 as an underlying mechanism of action. The effect of VEGF signaling was abolished upon incubation with a VEGFR2 inhibitor indicating that the effect is indeed VEGFR 2 dependent. Conclusions Low energy shock wave treatment induces angiogenesis in acute ischemia via VEGF receptor 2 stimulation and shows the same promising effects as known from chronic myocardial ischemia. It may therefore develop as an adjunct to the treatment armentarium of acute muscle ischemia in limbs and myocardium. PMID:25093816

  10. High G pyrotechnic shock simulation using metal-to-metal impact

    NASA Technical Reports Server (NTRS)

    Bai, M.; Thatcher, W.

    1979-01-01

    A technique for simulating high g level pyrotechnic shocks is described and the results of applying the technique to obtain the MIL-STD-1540A shock spectrum with a maximum acceleration of 18,000g at 2,000 Hz are presented. Designing the resonant beam and plate on which the test unit is mounted, and generating a proper impulsive load on them, were the essentials of the technique. One dimensional stress wave and Euler equations were employed in the design. A metal pendulum hammer was used to generate the impulsive load.