Science.gov

Sample records for high energy sources

  1. High-Energy Neutrinos from Galactic Sources

    NASA Astrophysics Data System (ADS)

    Kappes, Alexander

    2011-10-01

    Even 100 years after the discovery of cosmic rays their origin remains a mystery. In recent years, TeV gamma-ray detectors have discovered and investigated many Galactic sources where particles are accelerated up to energies of 100 TeV. However, it has not been possible up to now to identify these sites unambiguously as sources of hadronic acceleration. The observation of cosmic high-energy neutrinos from these or other sources will be a smoking-gun evidence for the sites of the acceleration of cosmic rays.

  2. High energy efficient solid state laser sources

    NASA Technical Reports Server (NTRS)

    Byer, Robert L.

    1989-01-01

    Recent progress in the development of highly efficient coherent optical sources was reviewed. This work has focused on nonlinear frequency conversion of the highly coherent output of the non-planar ring laser oscillators developed earlier in the program, and includes high efficiency second harmonic generation and the operation of optical parametric oscillators for wavelength diversity and tunability.

  3. High energy efficient solid state laser sources

    NASA Technical Reports Server (NTRS)

    Byer, Robert L.

    1988-01-01

    Recent progress in the development of highly efficient coherent optical sources is reviewed. This work focusses on nonlinear frequency conversion of the highly coherent output of the Non-Planar Ring Laser Oscillators developed earlier in the program, and includes high efficiency second harmonic generation and the operation of optical parametric oscillators for wavelength diversity and tunability.

  4. High energy efficient solid state laser sources

    NASA Technical Reports Server (NTRS)

    Byer, Robert L.

    1987-01-01

    Investigations continue of diode-laser-pumped solid-state laser oscillators and nonlinear processes using them as sources. Diode laser array pumped Nd:YAG and Nd:glass lasers have been demonstrated. Theoretical studies of non-planar oscillators have been advanced, producing new designs which should be more resistant to feedback and offer better frequency stability. A monolithic, singly resonant Optical Parametric Oscillator in MgO:LiNbO3 has been operated.

  5. Very High-Energy Gamma-Ray Sources.

    ERIC Educational Resources Information Center

    Weekes, Trevor C.

    1986-01-01

    Discusses topics related to high-energy, gamma-ray astronomy (including cosmic radiation, gamma-ray detectors, high-energy gamma-ray sources, and others). Also considers motivation for the development of this field, the principal results to date, and future prospects. (JN)

  6. High energy efficient solid state laser sources

    NASA Technical Reports Server (NTRS)

    Byer, Robert L.

    1987-01-01

    Diode-laser-pumped solid-state laser oscillators and nonlinear processes were investigated. A new generation on nonplanar oscillator was fabricated, and it is anticipated that passive linewidths will be pushed to the kilohertz regime. A number of diode-pumped laser transitions were demonstrated in the rod configuration. Second-harmonic conversion efficiencies as high as 15% are routinely obtained in a servo-locked external resonant doubling crystal at 15 mW cw input power levels at 1064 nm.

  7. High-energy Neutrinos from Sources in Clusters of Galaxies

    NASA Astrophysics Data System (ADS)

    Fang, Ke; Olinto, Angela V.

    2016-09-01

    High-energy cosmic rays can be accelerated in clusters of galaxies, by mega-parsec scale shocks induced by the accretion of gas during the formation of large-scale structures, or by powerful sources harbored in clusters. Once accelerated, the highest energy particles leave the cluster via almost rectilinear trajectories, while lower energy ones can be confined by the cluster magnetic field up to cosmological time and interact with the intracluster gas. Using a realistic model of the baryon distribution and the turbulent magnetic field in clusters, we studied the propagation and hadronic interaction of high-energy protons in the intracluster medium. We report the cumulative cosmic-ray and neutrino spectra generated by galaxy clusters, including embedded sources, and demonstrate that clusters can contribute a significant fraction of the observed IceCube neutrinos above 30 TeV while remaining undetected in high-energy cosmic rays and γ rays for reasonable choices of parameters and source scenarios.

  8. ENERGY CONSERVATION THROUGH POINT SOURCE RECYCLE WITH HIGH TEMPERATURE HYPERFILTRATION

    EPA Science Inventory

    The report gives results of a study of energy conservation effects of point source recycle with high-temperature hyperfiltration (HF) in the textile industry. (HF and ultrafiltration (UF) are pressure-driven membrane processes which have potential for recycle of water, energy, an...

  9. Testing Special Relativity at High Energies with Astrophysical Sources

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    2007-01-01

    Since the group of Lorentz boosts is unbounded, there is a question as to whether Lorentz invariance (LI) holds to infinitely short distances. However, special and general relativity may break down at the Planck scale. Various quantum gravity scenarios such as loop quantum gravity, as well as some forms of string theory and extra dimension models may imply Lorentz violation (LV) at ultrahigh energies. The Gamma-Ray Large Area Space Telescope (GLAST), to be launched in mid-December, will measure the spectra of distant extragalactic sources of high energy gamma-rays, particularly active galactic nuclei and gamma-ray bursts. GLAST can look for energy-dependent gamma-ray propagation effects from such sources as a signal of Lorentz invariance violation. These sources may also exhibit the high energy cutoffs predicted to be the result of intergalactic annihilation interactions with low energy photons having a flux level as determined by various astronomical observations. With LV the threshold for such interactions can be significantly raised, changing the predicted absorption turnover in the observed spectrum of the sources. Stecker and Glashow have shown that the existence such absorption features in the spectra of extragalactic sources puts constraints on LV. Such constraints have important implications for some quantum gravity and large extra dimension models. Future spaceborne detectors dedicated to measuring gamma-ray polarization can look for birefringence effects as a possible signal of loop quantum gravity. A very small LV may also result in the modification or elimination of the GZK effect, thus modifying the spectrum of ultrahigh energy cosmic rays. This possibility can be explored with ground-based arrays such as Auger or with a space based detector system such as the proposed OWL satellite mission.

  10. High-energy diffraction microscopy at the advanced photon source

    SciTech Connect

    Lienert, U.; Li, S.; Hefferan, C.; Lind, J.; Suter, R.; Bernier, J.; Barton, N.; Brandes, M.; Mills, M.; Miller, M.; Jakobsen, B.; Pantleon, W.

    2012-02-28

    The status of the High Energy Diffraction Microscopy (HEDM) program at the 1-ID beam line of the Advanced Photon Source is reported. HEDM applies high energy synchrotron radiation for the grain and sub-grain scale structural and mechanical characterization of polycrystalline bulk materials in situ during thermomechanical loading. Case studies demonstrate the mapping of grain boundary topology, the evaluation of stress tensors of individual grains during tensile deformation and comparison to a finite element modeling simulation, and the characterization of evolving dislocation structure. Complementary information is obtained by post mortem electron microscopy on the same sample volume previously investigated by HEDM.

  11. Variable energy, high flux, ground-state atomic oxygen source

    NASA Technical Reports Server (NTRS)

    Chutjian, Ara (Inventor); Orient, Otto J. (Inventor)

    1987-01-01

    A variable energy, high flux atomic oxygen source is described which is comprised of a means for producing a high density beam of molecules which will emit O(-) ions when bombarded with electrons; a means of producing a high current stream of electrons at a low energy level passing through the high density beam of molecules to produce a combined stream of electrons and O(-) ions; means for accelerating the combined stream to a desired energy level; means for producing an intense magnetic field to confine the electrons and O(-) ions; means for directing a multiple pass laser beam through the combined stream to strip off the excess electrons from a plurality of the O(-) ions to produce ground-state O atoms within the combined stream; electrostatic deflection means for deflecting the path of the O(-) ions and the electrons in the combined stream; and, means for stopping the O(-) ions and the electrons and for allowing only the ground-state O atoms to continue as the source of the atoms of interest. The method and apparatus are also adaptable for producing other ground-state atoms and/or molecules.

  12. Development of a high-energy distributed energy source electromagnetic railgun with improved energy conversion efficiency

    SciTech Connect

    Tower, M.M.; Haight, C.H.

    1984-03-01

    Vought Corporation in cooperation with the Center for Electromechanics at the University of Texas (CEM-UT) has developed under sponsorship by the Defense Advanced Research Projects Agency (DARPA) and the Army Armament, Munitions, and Chemical Command (AMCCOM) a high-energy distributed energy source (DES) electromagnetic (EM) railgun accelerator. This paper discusses the development and current status of the DES railgun which has the design capability to launch projectile masses up to 60 grams to the 3-4 km/sec velocity regime with energy conversion efficiencies above 35 percent. These goals are being accomplished through utilization of scaled-energy CEM-UT railgun experiments for sequenced timing/staging and a full energy (575 kJ) design at Vought for high efficiency capability. The operational Vought single-pulse railgun forms the baseline for the full energy testing.

  13. ULTRA-LOW-ENERGY HIGH-CURRENT ION SOURCE

    SciTech Connect

    Anders, Andre; Yushkov, Georgy Yu.; Baldwin, David A.

    2009-11-20

    The technical objective of the project was to develop an ultra-low-energy, high-intensity ion source (ULEHIIS) for materials processing in high-technology fields including semiconductors, micro-magnetics and optics/opto-electronics. In its primary application, this ion source can be incorporated into the 4Wave thin-film deposition technique called biased target ion-beam deposition (BTIBD), which is a deposition technique based on sputtering (without magnetic field, i.e., not the typical magnetron sputtering). It is a technological challenge because the laws of space charge limited current (Child-Langmuir) set strict limits of how much current can be extracted from a reservoir of ions, such as a suitable discharge plasma. The solution to the problem was an innovative dual-discharge system without the use of extraction grids.

  14. Multiwavelength observations of unidentified high energy gamma ray sources

    NASA Technical Reports Server (NTRS)

    Halpern, Jules P.

    1993-01-01

    As was the case for COS B, the majority of high-energy (greater than 100 MeV) gamma-ray sources detected by the EGRET instrument on GRO are not immediately identifiable with cataloged objects at other wavelengths. These persistent gamma-ray sources are, next to the gamma-ray bursts, the least understood objects in the universe. Even a rudimentary understanding of their nature awaits identifications and follow-up work at other wavelengths to tell us what they are. The as yet unidentified sources are potentially the most interesting, since they may represent unrecognized new classes of astronomical objects, such as radio-quiet pulsars or new types of active galactic nuclei (AGN's). This two-year investigation is intended to support the analysis, correlation, and theoretical interpretation of data that we are obtaining at x ray, optical, and radio wavelengths in order to render the gamma-ray data interpretable. According to plan, in the first year concentration was on the identification and study of Geminga. The second year will be devoted to studies of similar unidentified gamma-ray sources which will become available in the first EGRET catalogs. The results obtained so far are presented in the two papers which are reproduced in the Appendix. In these papers, we discuss the pulse profiles of Geminga, the geometry and efficiency of the magnetospheric accelerator, the distance to Geminga, the implications for theories of polar cap heating, the effect of the magnetic field on the surface emission and environment of the neutron star, and possible interpretations of a radio-quiet Geminga. The implications of the other gamma-ray pulsars which were discovered to have high gamma-ray efficiency are also discussed, and the remaining unidentified COS B sources are attributed to a population of efficient gamma-ray sources, some of which may be radio quiet.

  15. Search for point sources of high energy neutrinos with Amanda

    SciTech Connect

    Ahrens, J.

    2002-08-01

    Report of search for likely point sources for neutrinos observed by the Amanda detector. Places intensity limits on observable point sources. This paper describes the search for astronomical sources of high-energy neutrinos using the AMANDA-B10 detector, an array of 302 photomultiplier tubes, used for the detection of Cherenkov light from upward traveling neutrino-induced muons, buried deep in ice at the South Pole. The absolute pointing accuracy and angular resolution were studied by using coincident events between the AMANDA detector and two independent telescopes on the surface, the GASP air Cherenkov telescope and the SPASE extensive air shower array. Using data collected from April to October of 1997 (130.1 days of livetime), a general survey of the northern hemisphere revealed no statistically significant excess of events from any direction. The sensitivity for a flux of muon neutrinos is based on the effective detection area for through-going muons. Averaged over the Northern sky, the effective detection area exceeds 10,000 m{sup 2} for E{sub {mu}} {approx} 10 TeV. Neutrinos generated in the atmosphere by cosmic ray interactions were used to verify the predicted performance of the detector. For a source with a differential energy spectrum proportional to E{sub {nu}}{sup -2} and declination larger than +40{sup o}, we obtain E{sup 2} (dN{sub {nu}}/dE) {le} 10{sup -6} GeV cm{sup -2} s{sup -1} for an energy threshold of 10 GeV.

  16. Progress in high-energy-class diode laser pump sources

    NASA Astrophysics Data System (ADS)

    Crump, P.; Frevert, C.; Bugge, F.; Knigge, S.; Erbert, G.; Tränkle, G.; Pietrzak, A.; Hüslewede, R.; Zorn, M.; Sebastian, J.; Lotz, J.; Fassbender, W.; Neukum, J.; Körner, J.; Hein, J.; Töpfer, T.

    2015-03-01

    A new generation of diode-pumped high-energy-class solid-state laser facilities is in development that generate multijoule pulse energies at around 10 Hz. Currently deployed quasi-continuous-wave (QCW) diode lasers deliver average inpulse pump powers of around 300 W per bar. Increased power-per-bar helps to reduce the system size, complexity and cost per Joule and the increased pump brilliance also enables more efficient operation of the solid state laser itself. It has been shown in recent studies, that optimized QCW diode laser bars centered at 940…980 nm can operate with an average in-pulse power of > 1000 W per bar, triple that of commercial sources. When operated at pulsed condition of 1 ms, 10 Hz, this corresponds to > 1 J/bar. We review here the status of these high-energy-class pump sources, showing how the highest powers are enabled by using long resonators (4…6 mm) for improved cooling and robustly passivated output facets for high reliability. Results are presented for prototype passively-cooled single bar assemblies and monolithic stacked QCW arrays. We confirm that 1 J/bar is sustained for fast-axis collimated stacks with a bar pitch of 1.7 mm, with narrow lateral far field angle (< 12° with 95% power) and spectral width (< 12 nm with 95% power). Such stacks are anticipated to enable Joule/bar pump densities to be used near-term in commercial high power diode laser systems. Finally, we briefly summarize the latest status of research into bars with higher efficiencies, including studies into operation at sub-zero temperatures (-70°C), which also enables higher powers and narrower far field and spectra.

  17. Non-ionic PAG behavior under high energy exposure sources

    NASA Astrophysics Data System (ADS)

    Lawson, Richard A.; Noga, David E.; Tolbert, Laren M.; Henderson, Clifford L.

    2009-03-01

    A series of non-ionic PAGs were synthesized and their acid generation efficiency measured under deep ultraviolet and electron beam exposures. The acid generation efficiency was determined with an on-wafer method that uses spectroscopic ellipsometry to measure the absorbance of an acid sensitive dye (Coumarin 6). Under DUV exposures, common ionic onium salt PAGs showed excellent photoacid generation efficiency, superior to most non-ionic PAGS tested in this work. In contrast, under 100 keV high energy e-beam exposures, almost all of the non-ionic PAGs showed significantly better acid generation performance than the ionic onium salt PAGs tested. In particular, one non-ionic PAG showed almost an order of magnitude improvement in the Dill C acid generation rate constant as compared to a triarylsulfonium PAG. The high energy acid generation efficiency was found to correlate well with the electron affinity of the PAGs, suggesting that improvements in PAG design can be predicted. Non-ionic PAGs merit further investigation as a means for producing higher sensitivity resists under high energy exposure sources.

  18. High Energy Density Science at the Linac Coherent Light Source

    SciTech Connect

    Lee, R W

    2007-10-19

    High energy density science (HEDS), as a discipline that has developed in the United States from National Nuclear Security Agency (NNSA)-sponsored laboratory research programs, is, and will remain, a major component of the NNSA science and technology strategy. Its scientific borders are not restricted to NNSA. 'Frontiers in High Energy Density Physics: The X-Games of Contemporary Science' identified numerous exciting scientific opportunities in this field, while pointing to the need for a overarching interagency plan for its evolution. Meanwhile, construction of the first x-ray free-electron laser, the Office-of-Science-funded Linear Coherent Light Source-LCLS: the world's first free electron x-ray laser, with 100-fsec time resolution, tunable x-ray energies, a high rep rate, and a 10 order-of-magnitude increase in brightness over any other x-ray source--led to the realization that the scientific needs of NNSA and the broader scientific community could be well served by an LCLS HEDS endstation employing both short-pulse and high-energy optical lasers. Development of this concept has been well received in the community. NNSA requested a workshop on the applicability of LCLS to its needs. 'High Energy Density Science at the LCLS: NNSA Defense Programs Mission Need' was held in December 2006. The workshop provided strong support for the relevance of the endstation to NNSA strategic requirements. The range of science that was addressed covered a wide swath of the vast HEDS phase space. The unique possibilities provided by the LCLS in areas of intense interest to NNSA Defense Programs were discussed. The areas of focus included warm dense matter and equations of state, hot dense matter, and behavior of high-pressure materials under conditions of high strain-rate and extreme dynamic loading. Development of new and advanced diagnostic techniques was also addressed. This report lays out the relevant science, as brief summaries (Ch. II), expanded descriptions (Ch. V), and a

  19. High energy mode locked fiber oscillators for high contrast, high energy petawatt laser seed sources

    SciTech Connect

    Dawson, J W; Messerly, M J; An, J; Kim, D; Barty, C J

    2006-06-15

    In a high-energy petawatt laser beam line the ASE pulse contrast is directly related to the total laser gain. Thus a more energetic input pulse will result in increased pulse contrast at the target. We have developed a mode-locked fiber laser with high quality pulses and energies exceeding 25nJ. We believe this 25nJ result is scalable to higher energies. This oscillator has no intra-cavity dispersion compensation, which yields an extremely simple, and elegant laser configuration. We will discuss the design of this laser, our most recent results and characterization of all the key parameters relevant to it use as a seed laser. Our oscillator is a ring cavity mode-locked fiber laser [1]. These lasers operate in a self-similar pulse propagation regime characterized by a spectrum that is almost square. This mode was found theoretically [2] to occur only in the positive dispersion regime. Further increasing positive dispersion should lead to increasing pulse energy [2]. We established that the positive dispersion required for high-energy operation was approximately that of 2m of fiber. To this end, we constructed a laser cavity similar to [1], but with no gratings and only 2m of fiber, which we cladding pumped in order to ensure sufficient pump power was available to achieve mode-locked operation. A schematic of the laser is shown in figure 1 below. This laser produced low noise 25nJ pulses with a broad self similar spectrum (figure 2) and pulses that could be de-chirped to <100fs (figure 3). Pulse contrast is important in peta-watt laser systems. A major contributor to pulse contrast is amplified spontaneous emission (ASE), which is proportional to the gain in the laser chain. As the oscillator strength is increased, the required gain to reach 1PW pulses is decreased, reducing ASE and improving pulse contrast. We believe these lasers can be scaled in a stable fashion to pulse energies as high as 100nJ and have in fact seen 60nJ briefly in our lab, which is work still

  20. Active Galactic Nuclei:. Sources for Ultra High Energy Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Biermann, P. L.; Becker, J. K.; Caramete, L.; Gergely, L.; Mariş, I. C.; Meli, A.; de Souza, V.; Stanev, T.

    Ultra high energy cosmic ray events presently show a spectrum, which we interpret here as galactic cosmic rays due to a starburst, in the radio galaxy Cen A which is pushed up in energy by the shock of a relativistic jet. The knee feature and the particles with energy immediately higher in galactic cosmic rays then turn into the bulk of ultra high energy cosmic rays. This entails that all ultra high energy cosmic rays are heavy nuclei. This picture is viable if the majority of the observed ultra high energy events come from the radio galaxy Cen A, and are scattered by intergalactic magnetic fields across much of the sky.

  1. Optimum target source term estimation for high energy electron accelerators

    NASA Astrophysics Data System (ADS)

    Nayak, M. K.; Sahu, T. K.; Nair, Haridas G.; Nandedkar, R. V.; Bandyopadhyay, Tapas; Tripathi, R. M.; Hannurkar, P. R.

    2016-05-01

    Optimum target for bremsstrahlung emission is defined as the thickness of the target material, which produces maximum bremsstrahlung yield, on interaction of electron with the target. The bremsstrahlung dose rate per unit electron beam power at a distance of 1 m from the target material gives the optimum target source term. In the present work, simulations were performed for three different electron energies, 450, 1000 and 2500 MeV using EGSnrc Monte-Carlo code to determine the optimum thickness. An empirical relation for optimum target as a function of electron energy and atomic number of the target materials is found out from results. Using the simulated optimum target thickness, experiments are conducted to determine the optimum target source term. For the experimental determination, two available electron energies, 450 MeV and 550 MeV from booster synchrotron of Indus facility is used. The optimum target source term for these two energies are also simulated. The experimental and simulated source term are found to be in very good agreement within ±3%. Based on the agreement of the simulated source term with the experimental source term at 450 MeV and 550 MeV, the same simulation methodology is used to simulate optimum target source term up to 2500 MeV. The paper describes the simulations and experiments carried out on optimum target bremsstrahlung source term and the results obtained.

  2. High-energy gamma-ray sources of cosmological origin

    NASA Astrophysics Data System (ADS)

    Brun, Pierre; Cohen-Tanugi, Johann

    2016-06-01

    The current generation of instruments in gamma-ray astrophysics launched a new era in the search for a dark matter signal in the high-energy sky. Such searches are said indirect, in the sense that the presence of a dark matter particle is inferred from the detection of products of its pair-annihilation or decay. They have recently started to probe the natural domain of existence for weakly interacting massive particles (WIMPs), the favorite dark matter candidates today. In this article, we review the basic framework for indirect searches and we present a status of current limits obtained with gamma-ray observations. We also devote a section to another possible class of cosmological gamma-ray sources, primordial black holes, also considered as a potential constituent of dark matter. xml:lang="fr"

  3. Energy Sources (Energy/Power). Industrial Arts, Senior High--Level II. North Dakota Senior High Industrial Arts Curriculum Guides.

    ERIC Educational Resources Information Center

    Lawrence, Allen; And Others

    This course guide for an energy sources course is one of four developed for the energy/power area in the North Dakota senior high industrial arts education program. (Eight other guides are available for two other areas of Industrial Arts--graphic communications and production.) Part 1 provides such introductory information as a definition and…

  4. HIGH INTENSITY LOW-ENERGY POSITRON SOURCE AT JEFFERSON

    SciTech Connect

    Serkan Golge, Bogdan Wojtsekhowski, Branislav Vlahovic

    2012-07-01

    We present a novel concept of a low-energy e{sup +} source with projected intensity on the order of 10{sup 10} slow e{sup +}/s. The key components of this concept are a continuous wave e{sup -} beam, a rotating positron-production target, a synchronized raster/anti-raster, a transport channel, and extraction of e{sup +} into a field-free area through a magnetic plug for moderation in a cryogenic solid. Components were designed in the framework of GEANT4-based (G4beamline) Monte Carlo simulation and TOSCA magnetic field calculation codes. Experimental data to demonstrate the effectiveness of the magnetic plug is presented.

  5. Axion-Like particles from extragalactic High Energy sources

    NASA Astrophysics Data System (ADS)

    Conrad, J.; Meyer, M.; Montanino, D.

    2016-05-01

    Background radiation fields (such as Extragalactic Background Light, EBL, or Cosmic Microwave Background, CMB) pervade the Universe. Above a certain energy any gamma ray flux emitted by an extragalactic source should be attenuated by the process γ+ γ(bgk) → e + + e - pair production. We have considered a scenario in which the photons are partly converted into light Axion Like Particles (ALPs) in the local magnetic field of an (extragalactic) source. Then, while the unconverted fraction of photons undergo absorption, the ALP component travel to our galaxy where is converted back to photons by the galactic magnetic field resulting in a sort of cosmic light shining through wall effect. In particular, we have considered two scenarios: 1) conversion in the turbulent magnetic field inside a galaxy cluster; and 2) conversion of photons in the coherent magnetic field at parsec scales in a Blazar jet. Afterwards, we have also analyzed mock data coming from a hypothetical Imaging Air Cherenkov Telescopes (IACT) array with characteristics similar to the Cherenkov Telescope Array (CTA) and we have investigated the dependence of the sensitivity to detect a gamma ray excess on the magnetic field parameters.

  6. Radioistopes to Solar to High Energy Accelerators - Chip-Scale Energy Sources

    NASA Astrophysics Data System (ADS)

    Lal, Amit

    2013-12-01

    This talk will present MEMS based power sources that utilize radioisotopes, solar energy, and potentially nuclear energy through advancements in integration of new structures and materials within MEMS. Micro power harvesters can harness power from vibration, radioisotopes, light, sound, and biology may provide pathways to minimize or even eliminate batteries in sensor nodes. In this talk work on radioisotope thin films for MEMS will be include the self-reciprocating cantilever, betavoltaic cells, and high DC voltages. The self-reciprocating cantilever energy harvester allows small commercially viable amounts of radioisotopes to generate mW to Watts of power so that very reliable power sources that last 100s of years are possible. The tradeoffs between reliability and potential stigma with radioisotopes allow one to span a useful design space with reliability as a key parameter. These power sources provide pulsed power at three different time scales using mechanical, RF, and static extraction of energy from collected charge. Multi-use capability, both harvesting radioisotope power and local vibration energy extends the reliability of micro-power sources further.

  7. Reliable pump sources for high-energy class lasers

    NASA Astrophysics Data System (ADS)

    Wölz, Martin; Pietrzak, Agnieszka; Kindsvater, Alex; Wolf, Jürgen; Meusel, Jens; Hülsewede, Ralf; Sebastian, Jürgen

    2015-05-01

    High-energy class laser systems operating at high average power are destined to serve fundamental research and commercial applications. System cost is becoming decisive, and JENOPTIK supports future developments with the new range of 500 W quasi-continuous wave (QCW) laser diode bars. In response to different strategies in implementing high-energy class laser systems, pump wavelengths of 880 nm and 940 nm are available. The higher power output per chip increases array irradiance and reduces the size of the optical system, lowering system cost. Reliability testing of the 880 nm laser diode bar has shown 1 Gshots at 500 W and 300 μs pulse duration, with insignificant degradation. Parallel operation in eight-bar diode stacks permits 4 kW pulse power operation. A new high-density QCW package is under development at JENOPTIK. Cost and reliability being the design criteria, the diode stacks are made by simultaneous soldering of submounts and insulating ceramic. The new QCW stack assembly technology permits an array irradiance of 12.5 kW/cm². We present the current state of the development, including laboratory data from prototypes using the new 500 W laser diode in dense packaging.

  8. Type IIn supernovae as sources of high energy astrophysical neutrinos

    NASA Astrophysics Data System (ADS)

    Zirakashvili, V. N.; Ptuskin, V. S.

    2016-05-01

    It is shown that high-energy astrophysical neutrinos observed in the IceCube experiment can be produced by protons accelerated in extragalactic Type IIn supernova remnants by shocks propagating in the dense circumstellar medium. The nonlinear diffusive shock acceleration model is used for description of particle acceleration. We calculate the neutrino spectrum produced by an individual Type IIn supernova and the spectrum of neutrino background produced by IIn supernovae in the expanding Universe. We also found that the arrival direction of one Icecube neutrino candidate (track event 47) is at 1.35° from Type IIn supernova 2005bx.

  9. Constraining sources of ultra high energy cosmic rays using high energy observations with the Fermi satellite

    SciTech Connect

    Pe'er, Asaf; Loeb, Abraham E-mail: aloeb@cfa.harvard.edu

    2012-03-01

    We analyze the conditions that enable acceleration of particles to ultra-high energies, ∼ 10{sup 20} eV (UHECRs). We show that broad band photon data recently provided by WMAP, ISOCAM, Swift and Fermi satellites, yield constraints on the ability of active galactic nuclei (AGN) to produce UHECRs. The high energy (MeV–GeV) photons are produced by Compton scattering of the emitted low energy photons and the cosmic microwave background or extra-galactic background light. The ratio of the luminosities at high and low photon energies can therefore be used as a probe of the physical conditions in the acceleration site. We find that existing data excludes core regions of nearby radio-loud AGN as possible acceleration sites of UHECR protons. However, we show that giant radio lobes are not excluded. We apply our method to Cen A, and show that acceleration of protons to ∼ 10{sup 20} eV can only occur at distances ∼>100 kpc from the core.

  10. High contrast Kr gas jet Kα x-ray source for high energy density physics experimentsa)

    NASA Astrophysics Data System (ADS)

    Kugland, N. L.; Neumayer, P.; Döppner, T.; Chung, H.-K.; Constantin, C. G.; Girard, F.; Glenzer, S. H.; Kemp, A.; Niemann, C.

    2008-10-01

    A high contrast 12.6keV Kr Kα source has been demonstrated on the petawatt-class Titan laser facility using strongly clustering Kr gas jet targets. The contrast ratio (Kα to continuum) is 65, with a competitive ultrashort pulse laser to x-ray conversion efficiency of 10-5. Filtered shadowgraphy indicates that the Kr Kα and Kβ x rays are emitted from a roughly 1×2mm2 emission volume, making this source suitable for area backlighting and scattering. Spectral calculations indicate a typical bulk electron temperature of 50-70eV (i.e., mean ionization state 13-16), based on the observed ratio of Kα to Kβ. Kr gas jets provide a debris-free high energysource for time-resolved diagnosis of dense matter.

  11. High-energy sources before INTEGRAL. INTEGRAL reference catalog

    NASA Astrophysics Data System (ADS)

    Ebisawa, K.; Bourban, G.; Bodaghee, A.; Mowlavi, N.; Courvoisier, T. J.-L.

    2003-11-01

    We describe the INTEGRAL reference catalog which classifies previously known bright X-ray and gamma-ray sources before the launch of INTEGRAL. These sources are, or have been at least once, brighter than ~ 1 mCrab above 3 keV, and are expected to be detected by INTEGRAL. This catalog is being used in the INTEGRAL Quick Look Analysis to discover new sources or significantly variable sources. We compiled several published X-ray and gamma-ray catalogs, and surveyed recent publications for new sources. Consequently, there are 1122 sources in our INTEGRAL reference catalog. In addition to the source positions, we show an approximate spectral model and expected flux for each source, based on which we derive expected INTEGRAL counting rates. Assuming the default instrument performances and at least ~ 105 s exposure time for any part of the sky, we expect that INTEGRAL will detect at least ~ 700 sources below 10 keV and ~ 400 sources above 20 keV over the mission life. The Catalog is available in electronic form at the CDS via anonymous ftp to cdsarc.u-strasbg.fr (130.79.128.5) or via http://cdsweb.u-strasbg.fr/cgi-bin/qcat?/A+A/411/L59

  12. High fidelity nuclear energy system optimization towards an environmentally benign, sustainable, and secure energy source.

    SciTech Connect

    Tsvetkov, Pavel Valeryevich; Rodriguez, Salvador B.; Ames, David E., II; Rochau, Gary Eugene

    2009-09-01

    The impact associated with energy generation and utilization is immeasurable due to the immense, widespread, and myriad effects it has on the world and its inhabitants. The polar extremes are demonstrated on the one hand, by the high quality of life enjoyed by individuals with access to abundant reliable energy sources, and on the other hand by the global-scale environmental degradation attributed to the affects of energy production and use. Thus, nations strive to increase their energy generation, but are faced with the challenge of doing so with a minimal impact on the environment and in a manner that is self-reliant. Consequently, a revival of interest in nuclear energy has followed, with much focus placed on technologies for transmuting nuclear spent fuel. The performed research investigates nuclear energy systems that optimize the destruction of nuclear waste. In the context of this effort, nuclear energy system is defined as a configuration of nuclear reactors and corresponding fuel cycle components. The proposed system has unique characteristics that set it apart from other systems. Most notably the dedicated High-Energy External Source Transmuter (HEST), which is envisioned as an advanced incinerator used in combination with thermal reactors. The system is configured for examining environmentally benign fuel cycle options by focusing on minimization or elimination of high level waste inventories. Detailed high-fidelity exact-geometry models were developed for representative reactor configurations. They were used in preliminary calculations with Monte Carlo N-Particle eXtented (MCNPX) and Standardized Computer Analysis for Licensing Evaluation (SCALE) code systems. The reactor models have been benchmarked against existing experimental data and design data. Simulink{reg_sign}, an extension of MATLAB{reg_sign}, is envisioned as the interface environment for constructing the nuclear energy system model by linking the individual reactor and fuel component sub

  13. Thulium heat source for high-endurance and high-energy density power systems

    SciTech Connect

    Walter, C.E.; Kammeraad, J.E.; Van Konynenburg, R.; VanSant, J.H.

    1991-05-01

    We are studying the performance characteristics of radioisotope heat source designs for high-endurance and high-energy-density power systems that use thulium-170. Heat sources in the power range of 5--50 kW{sub th} coupled with a power conversion efficiency of {approximately}30%, can easily satisfy current missions for autonomous underwater vehicles. New naval missions will be possible because thulium isotope power systems have a factor of one-to-two hundred higher endurance and energy density than chemical and electrochemical systems. Thulium-170 also has several other attractive features, including the fact that it decays to stable ytterbium-170 with a half-life of four months. For terrestrial applications, refueling on that time scale should be acceptable in view of the advantage of its benign decay. The heat source designs we are studying account for the requirements of isotope production, shielding, and integration with power conversion components. These requirements are driven by environmental and safety considerations. Thulium is present in the form of thin refractory thulia disks that allow power conversion at high peak temperature. We give estimates of power system state points, performance, mass, and volume characteristics. Monte Carlo radiation analysis provides a detailed assessment of shield requirements and heat transfer under normal and distressed conditions is also considered. 11 refs., 7 figs., 4 tabs.

  14. Thulium heat source for high-endurance and high-energy density power systems

    NASA Astrophysics Data System (ADS)

    Walter, C. E.; Kammeraad, J. E.; Vankonynenburg, R.; Vansant, J. H.

    1991-05-01

    We are studying the performance characteristics of radioisotope heat source designs for high-endurance and high-energy-density power systems that use thulium-170. Heat sources in the power range of 5 to 50 kW(sub th) coupled with a power conversion efficiency of approximately 30 percent, can easily satisfy current missions for autonomous underwater vehicles. New naval missions will be possible because thulium isotope power systems have a factor of one-to-two hundred higher endurance and energy density than chemical and electrochemical systems. Thulium-170 also has several other attractive features, including the fact that it decays to stable ytterbium-170 with a half-life of four months. For terrestrial applications, refueling on that time scale should be acceptable in view of the advantage of its benign decay. The heat source designs we are studying account for the requirements of isotope production, shielding, and integration with power conversion components. These requirements are driven by environmental and safety considerations. Thulium is present in the form of thin refractory thulia disks that allow power conversion at high peak temperature. We give estimates of power system state points, performance, mass, and volume characteristics. Monte Carlo radiation analysis provides a detailed assessment of shield requirements and heat transfer under normal and distressed conditions is also considered.

  15. POLARIZED ION SOURCES FOR HIGH ENERGY ACCELERATORS AND COLLIDERS

    SciTech Connect

    ZELENSKI,A.N.

    2000-10-16

    The recent progress in polarized ion source development is reviewed. In dc operation a 1.0 mA polarized H{sup -} ion current is now available from the Optically-Pumped Polarized Ion Source (OPPIS) . In pulsed operation a 10 mA polarized H{sup -} ion current was demonstrated at the TRIUMF pulsed OPPIS test bench and a 3.5 mA peak current was obtained from an Atomic Beam Source (ABS) at the INR Moscow test bench. The possibilities for future improvements with both techniques are discussed. A new OPPIS for RHIC spin physics is described. The OPPIS reliably delivered polarized beam for the polarized run at RHIC. The results obtained with a new pulsed ABS injector for the IUCF Cooler Ring are also discussed.

  16. POLARIZED ION SOURCES FOR HIGH ENERGY ACCELERATORS AND COLLIDERS

    SciTech Connect

    ZELENSKI,A.N.

    2000-10-16

    The recent progress in polarized ion source development is reviewed. In dc operation a 1.0 mA polarized H{sup -} ion current is now available from the Optically-Pumped Polarized Ion Source (OPPIS). In pulsed operation a 10 mA polarized H{sup -} ion current was demonstrated at the TRIUMF pulsed OPPIS test bench and a 3.5 mA peak current was obtained from an Atomic Beam Source (ABS) at the INR Moscow test bench. The possibilities for future improvements with both techniques are discussed. A new OPPIS for RHIC spin physics is described. The OPPIS reliably delivered polarized beam for the polarized run at RHIC. The results obtained with a new pulsed ABS injector for the IUCF Cooler Ring are also discussed.

  17. Contribution from individual nearby sources to the spectrum of high-energy cosmic-ray electrons

    NASA Astrophysics Data System (ADS)

    Sedrati, R.; Attallah, R.

    2014-04-01

    In the last few years, very important data on high-energy cosmic-ray electrons and positrons from high-precision space-born and ground-based experiments have attracted a great deal of interest. These particles represent a unique probe for studying local comic-ray accelerators because they lose energy very rapidly. These energy losses reduce the lifetime so drastically that high-energy cosmic-ray electrons can attain the Earth only from rather local astrophysical sources. This work aims at calculating, by means of Monte Carlo simulation, the contribution from some known nearby astrophysical sources to the cosmic-ray electron/positron spectra at high energy (≥ 10 GeV). The background to the electron energy spectrum from distant sources is determined with the help of the GALPROP code. The obtained numerical results are compared with a set of experimental data.

  18. A search for cosmic sources of high energy neutrinos with small underground detectors

    NASA Technical Reports Server (NTRS)

    Berezinsky, V. S.; Castagnoli, C.; Galeotti, P.

    1985-01-01

    On the basis of standard source calculations of high energy neutrino fluxes, some models of astrophysical object (single stars and binary systems) are discussed from which a detectable muon flux is expected in small underground detectors.

  19. High fidelity nuclear energy system optimization towards an environmentally benign, sustainable, and secure energy source.

    SciTech Connect

    Tsvetkov, Pavel Valeryevich; Rodriguez, Salvador B.; Ames, David E., II; Rochau, Gary Eugene

    2010-10-01

    A new high-fidelity integrated system method and analysis approach was developed and implemented for consistent and comprehensive evaluations of advanced fuel cycles leading to minimized Transuranic (TRU) inventories. The method has been implemented in a developed code system integrating capabilities of Monte Carlo N - Particle Extended (MCNPX) for high-fidelity fuel cycle component simulations. In this report, a Nuclear Energy System (NES) configuration was developed to take advantage of used fuel recycling and transmutation capabilities in waste management scenarios leading to minimized TRU waste inventories, long-term activities, and radiotoxicities. The reactor systems and fuel cycle components that make up the NES were selected for their ability to perform in tandem to produce clean, safe, and dependable energy in an environmentally conscious manner. The diversity in performance and spectral characteristics were used to enhance TRU waste elimination while efficiently utilizing uranium resources and providing an abundant energy source. A computational modeling approach was developed for integrating the individual models of the NES. A general approach was utilized allowing for the Integrated System Model (ISM) to be modified in order to provide simulation for other systems with similar attributes. By utilizing this approach, the ISM is capable of performing system evaluations under many different design parameter options. Additionally, the predictive capabilities of the ISM and its computational time efficiency allow for system sensitivity/uncertainty analysis and the implementation of optimization techniques.

  20. High energy supercontinuum sources using tapered photonic crystal fibers for multispectral photoacoustic microscopy

    NASA Astrophysics Data System (ADS)

    Bondu, Magalie; Brooks, Christopher; Jakobsen, Christian; Oakes, Keith; Moselund, Peter Morten; Leick, Lasse; Bang, Ole; Podoleanu, Adrian

    2016-06-01

    We demonstrate a record bandwidth high energy supercontinuum source suitable for multispectral photoacoustic microscopy. The source has more than 150 nJ/10 nm bandwidth over a spectral range of 500 to 1600 nm. This performance is achieved using a carefully designed fiber taper with large-core input for improved power handling and small-core output that provides the desired spectral range of the supercontinuum source.

  1. High energy supercontinuum sources using tapered photonic crystal fibers for multispectral photoacoustic microscopy.

    PubMed

    Bondu, Magalie; Brooks, Christopher; Jakobsen, Christian; Oakes, Keith; Moselund, Peter Morten; Leick, Lasse; Bang, Ole; Podoleanu, Adrian

    2016-06-01

    We demonstrate a record bandwidth high energy supercontinuum source suitable for multispectral photoacoustic microscopy. The source has more than 150  nJ/10  nm bandwidth over a spectral range of 500 to 1600 nm. This performance is achieved using a carefully designed fiber taper with large-core input for improved power handling and small-core output that provides the desired spectral range of the supercontinuum source. PMID:26836298

  2. CONSTRAINTS ON THE SOURCE OF ULTRA-HIGH-ENERGY COSMIC RAYS USING ANISOTROPY VERSUS CHEMICAL COMPOSITION

    SciTech Connect

    Liu, Ruo-Yu; Wang, Xiang-Yu; Taylor, Andrew M.; Lemoine, Martin; Waxman, Eli

    2013-10-20

    The joint analysis of anisotropy signals and chemical composition of ultra-high-energy cosmic rays offers strong potential for shedding light on the sources of these particles. Following up on an earlier idea, this paper studies the anisotropies produced by protons of energy >E/Z, assuming that anisotropies at energy >E have been produced by nuclei of charge Z, which share the same magnetic rigidity. We calculate the number of secondary protons produced through photodisintegration of the primary heavy nuclei. Making the extreme assumption that the source does not inject any proton, we find that the source(s) responsible for anisotropies such as reported by the Pierre Auger Observatory should lie closer than ∼20-30, 80-100, and 180-200 Mpc if the anisotropy signal is mainly composed of oxygen, silicon, and iron nuclei, respectively. A violation of this constraint would otherwise result in the secondary protons forming a more significant anisotropy signal at lower energies. Even if the source were located closer than this distance, it would require an extraordinary metallicity ∼> 120, 1600, and 1100 times solar metallicity in the acceleration zone of the source, for oxygen, silicon, and iron, respectively, to ensure that the concomitantly injected protons do not produce a more significant low-energy anisotropy. This offers interesting prospects for constraining the nature and the source of ultra-high-energy cosmic rays with the increase in statistics expected from next-generation detectors.

  3. Energy: Sources and Issues. Science Syllabus for Middle and Junior High Schools. Block I.

    ERIC Educational Resources Information Center

    Cappiello, Jane E.; O'Neil, Karen E.

    This syllabus provides a list of concepts and understandings related to four areas of energy. They are: (1) the nature of energy (an energy definition, basic categories of energy, forms of energy, laws of energy conversion, and measuring energy); (2) energy sources of the past and present (history of energy use and present major sources of…

  4. The HEAO 1 A-4 catalog of high-energy X-ray sources

    NASA Technical Reports Server (NTRS)

    Levine, A. M.; Lang, F. L.; Lewin, W. H. G.; Primini, F. A.; Dobson, C. A.; Doty, J. P.; Hoffman, J. A.; Howe, S. K.; Scheepmaker, A.; Wheaton, W. A.

    1984-01-01

    Results are reported from an all-sky survey carried out at high X-ray energies (13-180 keV) from August 1977 until January 1979 using data obtained with the UCSD/MIT Hard X-Ray and Low-Energy Gamma-Ray Instrument on the HEAO 1 satellite. Visual displays are presented which indicate qualitatively the location, intensities, and time variability of the detected high-energy X-ray sources. A model-dependent procedure for the quantitative analysis of the sky survey data is described. The results of this procedure are presented in tabular form and include fitted count rates in four broad energy bands for about 70 sources. All sources which were detected at a level of statistical significance of not less than about 6 sigma were clearly evident in the visual displays of sky survey data. The survey is therefore complete, except in regions of source confusion, down to an intensity level of about 1/75 of the Crab Nebula in the 13-80 keV band. Forty-four sources were detected in the 40-80 keV energy band, and 14 were detected in the 80-180 keV band. Although most of the detected sources are galactic, seven are extragalactic.

  5. Using the Virtual Observatory: multi-instrument, multi-wavelength study of high-energy sources

    NASA Astrophysics Data System (ADS)

    Derrière, S.; Goosmann, R. W.; Bot, C.; Bonnarel, F.

    2014-12-01

    This paper presents a tutorial explaining the use of Virtual Observatory tools in high energy astrophysics. Most of the tools used in this paper were developed at the Strasbourg astronomical Data Center and we show how they can be applied to conduct a multi-instrument, multi-wavelength analysis of sources detected by the High Energy Stereoscopic System and the Fermi Large Area Telescope. The analysis involves queries of different data catalogs, selection and cross-correlation techniques on multi-waveband images, and the construction of high energy color-color plots and multi-wavelength spectra. The tutorial is publicly available on the website of the European Virtual Observatory project.

  6. Evaluation of high-energy brachytherapy source electronic disequilibrium and dose from emitted electrons

    SciTech Connect

    Ballester, Facundo; Granero, Domingo; Perez-Calatayud, Jose; Melhus, Christopher S.; Rivard, Mark J.

    2009-09-15

    Purpose: The region of electronic disequilibrium near photon-emitting brachytherapy sources of high-energy radionuclides ({sup 60}Co, {sup 137}Cs, {sup 192}Ir, and {sup 169}Yb) and contributions to total dose from emitted electrons were studied using the GEANT4 and PENELOPE Monte Carlo codes. Methods: Hypothetical sources with active and capsule materials mimicking those of actual sources but with spherical shape were examined. Dose contributions due to source photons, x rays, and bremsstrahlung; source {beta}{sup -}, Auger electrons, and internal conversion electrons; and water collisional kerma were scored. To determine if conclusions obtained for electronic equilibrium conditions and electron dose contribution to total dose for the representative spherical sources could be applied to actual sources, the {sup 192}Ir mHDR-v2 source model (Nucletron B.V., Veenendaal, The Netherlands) was simulated for comparison to spherical source results and to published data. Results: Electronic equilibrium within 1% is reached for {sup 60}Co, {sup 137}Cs, {sup 192}Ir, and {sup 169}Yb at distances greater than 7, 3.5, 2, and 1 mm from the source center, respectively, in agreement with other published studies. At 1 mm from the source center, the electron contributions to total dose are 1.9% and 9.4% for {sup 60}Co and {sup 192}Ir, respectively. Electron emissions become important (i.e., >0.5%) within 3.3 mm of {sup 60}Co and 1.7 mm of {sup 192}Ir sources, yet are negligible over all distances for {sup 137}Cs and {sup 169}Yb. Electronic equilibrium conditions along the transversal source axis for the mHDR-v2 source are comparable to those of the spherical sources while electron dose to total dose contribution are quite different. Conclusions: Electronic equilibrium conditions obtained for spherical sources could be generalized to actual sources while electron contribution to total dose depends strongly on source dimensions, material composition, and electron spectra.

  7. Energy-harvesting power sources for very-high-G gun-fired munitions

    NASA Astrophysics Data System (ADS)

    Rastegar, J.; Murray, R.; Pereira, C.; Nguyen, H.-L.

    2010-04-01

    Several novel classes of piezoelectric-based energy-harvesting power sources are presented for very high-G gun-fired munitions (40,000 - 240,000 Gs). The power sources are designed to harvest energy from the firing acceleration and in certain applications also from in-flight vibrations. The harvested energy is converted to electrical energy for powering onboard electronics, and can provide enough energy to eliminate the need for batteries in applications such as fuzing. During the munitions firing, a spring-mass system undergoes deformation, thereby storing mechanical potential energy in the elastic element. After release, the spring-mass system is free to vibrate and energy is harvested using piezoelectric materials. Two distinct classes of systems are presented: First are systems where the spring-mass elements are loaded and released directly by the firing acceleration. Second are those which use intermediate mechanisms reacting to the firing acceleration to load and release the spring-mass system. Description and evaluation of various methods for loading and releasing the spring-mass system in the high-impact environment, as well as packaging for very-high-G survivability are discussed at length. Also included are methods for using the devices as hybrid generator-sensors, how the devices intrinsically provide augmented safety, and methods to increase the efficiency of such power sources for very high-G applications. Examples of a number of prototypes for complete high-G energy harvesting systems are presented. These power sources have been designed using extensive modeling, finite element analysis, and model validation testing. The results of laboratory, air-gun and firing tests are also presented.

  8. Hybrid high-energy high-power pulsewidth-tunable picosecond source.

    PubMed

    Pouysegur, Julien; Guichard, Florent; Zaouter, Yoann; Hanna, Marc; Druon, Frédéric; Hönninger, Clemens; Mottay, Eric; Georges, Patrick

    2015-11-15

    A hybrid ytterbium-doped fiber-bulk laser source allowing the generation of 3 ps, 350 μJ, 116 MW peak power Fourier transform-limited pulses at 50 kHz repetition rate and 1030 nm wavelength is described. Pulse duration tunability is provided by an adjustable spectral compression-based seeder system. Energy scaling capabilities of the architecture by use of the divided-pulse amplification method are investigated. This source provides a robust, compact, and versatile solution for applications such as RF photocathode guns, x- and γ-ray generation by inverse Compton scattering, and optical parametric chirped-pulse amplification pumping. PMID:26565830

  9. High Energy Cosmic Electrons: Messengers from Nearby Cosmic Ray Sources or Dark Matter?

    NASA Technical Reports Server (NTRS)

    Moiseev, Alexander

    2011-01-01

    This slide presentation reviews the recent discoveries by the Large Area Telescope (LAT) and the Gamma-ray Burst Monitor (GBM) on board the Fermi Gamma-Ray Telescope in reference to high energy cosmic electrons, and whether their source is cosmic rays or dark matter. Specific interest is devoted to Cosmic Ray electrons anisotropy,

  10. Search for very high energy gamma rays from the galactic plane and other possible galactic sources

    NASA Astrophysics Data System (ADS)

    Morello, C.; Navarra, G.; Periale, L.; Vallania, P.

    An extensive air shower array is operating at the Plateau Rosa station (3.500 m.a.s.l.) since 1980 in the search for very high energy gamma-ray sources. The authors discuss the stability of the array and present the results obtained from Feb. 1982 to Aug. 1985, concerning D.C., periodic and sporadic emissions.

  11. Development of Ultra Small Shock Tube for High Energy Molecular Beam Source

    NASA Astrophysics Data System (ADS)

    Miyoshi, Nobuya; Nagata, Shuhei; Kinefuchi, Ikuya; Shimizu, Kazuya; Takagi, Shu; Matsumoto, Yoichiro

    2008-12-01

    A molecular beam source exploiting a small shock tube is described for potential generation of high energy beam in a range of 1-5 eV without any undesirable impurities. The performance of a non-diaphragm type shock tube with an inner diameter of 2 mm was evaluated by measuring the acceleration and attenuation process of shock waves. With this shock tube installed in a molecular beam source, we measured the time-of-flight distributions of shock-heated beams, which demonstrated the ability of controlling the beam energy with the initial pressure ratio of the shock tube.

  12. Development of Ultra Small Shock Tube for High Energy Molecular Beam Source

    SciTech Connect

    Miyoshi, Nobuya; Nagata, Shuhei; Kinefuchi, Ikuya; Shimizu, Kazuya; Matsumoto, Yoichiro; Takagi, Shu

    2008-12-31

    A molecular beam source exploiting a small shock tube is described for potential generation of high energy beam in a range of 1-5 eV without any undesirable impurities. The performance of a non-diaphragm type shock tube with an inner diameter of 2 mm was evaluated by measuring the acceleration and attenuation process of shock waves. With this shock tube installed in a molecular beam source, we measured the time-of-flight distributions of shock-heated beams, which demonstrated the ability of controlling the beam energy with the initial pressure ratio of the shock tube.

  13. A tunable low-energy photon source for high-resolution angle-resolved photoemission spectroscopy

    SciTech Connect

    Harter, John W.; Monkman, Eric J.; Shai, Daniel E.; Nie Yuefeng; Uchida, Masaki; Burganov, Bulat; Chatterjee, Shouvik; King, Philip D. C.; Shen, Kyle M.

    2012-11-15

    We describe a tunable low-energy photon source consisting of a laser-driven xenon plasma lamp coupled to a Czerny-Turner monochromator. The combined tunability, brightness, and narrow spectral bandwidth make this light source useful in laboratory-based high-resolution photoemission spectroscopy experiments. The source supplies photons with energies up to {approx}7 eV, delivering under typical conditions >10{sup 12} ph/s within a 10 meV spectral bandwidth, which is comparable to helium plasma lamps and many synchrotron beamlines. We first describe the lamp and monochromator system and then characterize its output, with attention to those parameters which are of interest for photoemission experiments. Finally, we present angle-resolved photoemission spectroscopy data using the light source and compare its performance to a conventional helium plasma lamp.

  14. Nonthermal processes around collapsed objects: High energy gamma ray sources in the radio sky

    NASA Technical Reports Server (NTRS)

    Helfand, David J.; Ruderman, Malvin; Applegate, James H.; Becker, Robert H.

    1993-01-01

    In our proposal responding to the initial Guest Observer NRA for the Compton Gamma Ray Observatory, 'Nonthermal Processes Around Collapsed Objects: High Energy Gamma Ray Sources in the Radio Sky', we stated that 'At high energies - the identity of the principal Galactic source population remains unknown' although the 'one certain source of high energy emission is young radio pulsars'. These two statements remain true, although at this writing, eighteen months after the beginning of the Compton allsky survey, much of the gamma-ray data required to greatly extend our knowledge of the Galaxy's high energy emission has been collected. The thrust of the program supported by our grant was to collect and analyze a complementary set of data on the Milky Way at radio wavelengths in order to help identify the dominant Pop 1 component of the Galaxy's gamma ray sources, and to pursue theoretical investigations on the origins and emission mechanisms of young pulsars, the one component of this population identified to date. We summarize here our accomplishments under the grant. In Section 2, we describe our VLA surveys of the Galactic Plane along with the current status of the radio source catalogs derived therefrom; unfortunately, owing to the TDRSS antenna problem and subsequent extension of the Sky Survey, we were not able to carry out a comparison with the EGRET data directly, although everything is now in place to do so as soon as it becomes available. In Section 2, we summarize our progress on the theoretical side, including the substantial completion of a dissertation on pulsar origins and work on the high energy emission mechanisms of isolated pulsars. We list the personnel supported by the grant in section 4 and provide a complete bibliography of publications supported in whole or in part by the grant in the final section.

  15. THE HIGH-ENERGY, ARCMINUTE-SCALE GALACTIC CENTER GAMMA-RAY SOURCE

    SciTech Connect

    Chernyakova, M.; Malyshev, D.; Aharonian, F. A.; Crocker, R. M.; Jones, D. I.

    2011-01-10

    Employing data collected during the first 25 months of observations by the Fermi-LAT, we describe and subsequently seek to model the very high energy (>300 MeV) emission from the central few parsecs of our Galaxy. We analyze the morphological, spectral, and temporal characteristics of the central source, 1FGL J1745.6-2900. The data show a clear, statistically significant signal at energies above 10 GeV, where the Fermi-LAT has angular resolution comparable to that of HESS at TeV energies. This makes a meaningful joint analysis of the data possible. Our analysis of the Fermi data (alone) does not uncover any statistically significant variability of 1FGL J1745.6-2900 at GeV energies on the month timescale. Using the combination of Fermi data on 1FGL J1745.6-2900 and HESS data on the coincident, TeV source HESS J1745-290, we show that the spectrum of the central gamma-ray source is inflected with a relatively steep spectral region matching between the flatter spectrum found at both low and high energies. We model the gamma-ray production in the inner 10 pc of the Galaxy and examine cosmic ray (CR) proton propagation scenarios that reproduce the observed spectrum of the central source. We show that a model that instantiates a transition from diffusive propagation of the CR protons at low energy to almost rectilinear propagation at high energies can explain well the spectral phenomenology. We find considerable degeneracy between different parameter choices which will only be broken with the addition of morphological information that gamma-ray telescopes cannot deliver given current angular resolution limits. We argue that a future analysis performed in combination with higher-resolution radio continuum data holds out the promise of breaking this degeneracy.

  16. Characteristics of High Energy Ka and Bremsstrahlung Sources Generated by Short Pulse Petawatt Lasers

    SciTech Connect

    Park, H; Izumi, N; Key, M H; Koch, J A; Landen, O L; Patel, P K; Phillips, T W; Zhang, B B

    2004-04-13

    We have measured the characteristics of high energy K{alpha} sources created with the Vulcan Petawatt laser at RAL and the JanUSP laser at LLNL. High energy x-ray backlighters will be essential for radiographing High-Energy-Density Experimental Science (HEDES) targets for NIF projects especially to probe implosions and high areal density planar samples. Hard K{alpha} x-ray photons are created through relativistic electron plasma interactions in the target material after irradiation by short pulse high intensity lasers. For our Vulcan experiment, we employed a CsI scintillator/CCD camera for imaging and a CCD camera for single photon counting. We measured the Ag K{alpha} source (22 keV) size using a pinhole array and the K{alpha} flux using a single photon counting method. We also radiographed a high Z target using the high energy broadband x-rays generated from these short pulse lasers. This paper will present results from these experiments.

  17. High homogeneity 25 cm low-energy rf ion source with inherent electron compensation

    NASA Astrophysics Data System (ADS)

    Dudin, S. V.; Rafalskyi, D. V.; Zykov, A. V.

    2010-08-01

    A 25 cm single-grid low-energy rf ion source with inherent electron compensation is described and characterized. Measurements were carried out using Ar and CF4 filling gas. The dependence of the ion beam current to the target as well as the current partition between the beam fast and slow ions on the rf discharge pressure for both filling gases is discussed. The unique ability of generation of coinciding ion and electron flows is demonstrated and the measured ion and electron energy distribution functions are presented as well. The developed broad ion beam source is able of providing 0.5-5 mA/cm2 current density in the low ion energy range of 50-250 eV, with possibility of independent current density and energy control. It is shown that complementing the rf plasma source with a profiling electrode allows for CF4 ion source operation attaining ±5% ion beam uniformity over 250 mm in diameter. The presented CF4 etching test results exhibit the possibility of highly directional anisotropic Si and SiO2 etching utilizing the developed single grid rf ion source.

  18. A New Method for Finding Point Sources in High-energy Neutrino Data

    NASA Astrophysics Data System (ADS)

    Fang, Ke; Miller, M. Coleman

    2016-08-01

    The IceCube collaboration has reported the first detection of high-energy astrophysical neutrinos, including ˜50 high-energy starting events, but no individual sources have been identified. It is therefore important to develop the most sensitive and efficient possible algorithms to identify the point sources of these neutrinos. The most popular current method works by exploring a dense grid of possible directions to individual sources, and identifying the single direction with the maximum probability of having produced multiple detected neutrinos. This method has numerous strengths, but it is computationally intensive and because it focuses on the single best location for a point source, additional point sources are not included in the evidence. We propose a new maximum likelihood method that uses the angular separations between all pairs of neutrinos in the data. Unlike existing autocorrelation methods for this type of analysis, which also use angular separations between neutrino pairs, our method incorporates information about the point-spread function and can identify individual point sources. We find that if the angular resolution is a few degrees or better, then this approach reduces both false positive and false negative errors compared to the current method, and is also more computationally efficient up to, potentially, hundreds of thousands of detected neutrinos.

  19. Dense Plasma Focus - From Alternative Fusion Source to Versatile High Energy Density Plasma Source for Plasma Nanotechnology

    NASA Astrophysics Data System (ADS)

    Rawat, R. S.

    2015-03-01

    The dense plasma focus (DPF), a coaxial plasma gun, utilizes pulsed high current electrical discharge to heat and compress the plasma to very high density and temperature with energy densities in the range of 1-10 × 1010 J/m3. The DPF device has always been in the company of several alternative magnetic fusion devices as it produces intense fusion neutrons. Several experiments conducted on many different DPF devices ranging over several order of storage energy have demonstrated that at higher storage energy the neutron production does not follow I4 scaling laws and deteriorate significantly raising concern about the device's capability and relevance for fusion energy. On the other hand, the high energy density pinch plasma in DPF device makes it a multiple radiation source of ions, electron, soft and hard x-rays, and neutrons, making it useful for several applications in many different fields such as lithography, radiography, imaging, activation analysis, radioisotopes production etc. Being a source of hot dense plasma, strong shockwave, intense energetic beams and radiation, etc, the DPF device, additionally, shows tremendous potential for applications in plasma nanoscience and plasma nanotechnology. In the present paper, the key features of plasma focus device are critically discussed to understand the novelties and opportunities that this device offers in processing and synthesis of nanophase materials using, both, the top-down and bottom-up approach. The results of recent key experimental investigations performed on (i) the processing and modification of bulk target substrates for phase change, surface reconstruction and nanostructurization, (ii) the nanostructurization of PLD grown magnetic thin films, and (iii) direct synthesis of nanostructured (nanowire, nanosheets and nanoflowers) materials using anode target material ablation, ablated plasma and background reactive gas based synthesis and purely gas phase synthesis of various different types of

  20. Are gamma-ray bursts the sources of ultra-high energy cosmic rays?

    NASA Astrophysics Data System (ADS)

    Baerwald, Philipp; Bustamante, Mauricio; Winter, Walter

    2015-03-01

    We reconsider the possibility that gamma-ray bursts (GRBs) are the sources of the ultra-high energy cosmic rays (UHECRs) within the internal shock model, assuming a pure proton composition of the UHECRs. For the first time, we combine the information from gamma-rays, cosmic rays, prompt neutrinos, and cosmogenic neutrinos quantitatively in a joint cosmic ray production and propagation model, and we show that the information on the cosmic energy budget can be obtained as a consequence. In addition to the neutron model, we consider alternative scenarios for the cosmic ray escape from the GRBs, i.e., that cosmic rays can leak from the sources. We find that the dip model, which describes the ankle in UHECR observations by the pair production dip, is strongly disfavored in combination with the internal shock model because (a) unrealistically high baryonic loadings (energy in protons versus energy in electrons/gamma-rays) are needed for the individual GRBs and (b) the prompt neutrino flux easily overshoots the corresponding neutrino bound. On the other hand, GRBs may account for the UHECRs in the ankle transition model if cosmic rays leak out from the source at the highest energies. In that case, we demonstrate that future neutrino observations can efficiently test most of the parameter space - unless the baryonic loading is much larger than previously anticipated.

  1. Hard X-Ray Flare Source Sizes Measured with the Ramaty High Energy Solar Spectroscopic Imager

    NASA Technical Reports Server (NTRS)

    Dennis, Brian R.; Pernak, Rick L.

    2009-01-01

    Ramaty High Energy Solar Spectroscopic Imager (RHESSI) observations of 18 double hard X-ray sources seen at energies above 25 keV are analyzed to determine the spatial extent of the most compact structures evident in each case. The following four image reconstruction algorithms were used: Clean, Pixon, and two routines using visibilities maximum entropy and forward fit (VFF). All have been adapted for this study to optimize their ability to provide reliable estimates of the sizes of the more compact sources. The source fluxes, sizes, and morphologies obtained with each method are cross-correlated and the similarities and disagreements are discussed. The full width at half-maximum (FWHM) of the major axes of the sources with assumed elliptical Gaussian shapes are generally well correlated between the four image reconstruction routines and vary between the RHESSI resolution limit of approximately 2" up to approximately 20" with most below 10". The FWHM of the minor axes are generally at or just above the RHESSI limit and hence should be considered as unresolved in most cases. The orientation angles of the elliptical sources are also well correlated. These results suggest that the elongated sources are generally aligned along a flare ribbon with the minor axis perpendicular to the ribbon. This is verified for the one flare in our list with coincident Transition Region and Coronal Explorer (TRACE) images. There is evidence for significant extra flux in many of the flares in addition to the two identified compact sources, thus rendering the VFF assumption of just two Gaussians inadequate. A more realistic approximation in many cases would be of two line sources with unresolved widths. Recommendations are given for optimizing the RHESSI imaging reconstruction process to ensure that the finest possible details of the source morphology become evident and that reliable estimates can be made of the source dimensions.

  2. The Third EGRET Catalog of High-Energy Gamma-Ray Sources

    NASA Technical Reports Server (NTRS)

    Hartman, R. C.; Bertsch, D. L.; Bloom, S. D.; Chen, A. W.; Deines-Jones, P.; Esposito, J. A.; Fichtel, C. E.; Friedlander, D. P.; Hunter, S. D.; McDonald, L. M.; Sreekumar, P.; Thompson, D. J.; Jones, B. B.; Lin, Y. C.; Michelson, P. F.; Nolan, P. L.; Tompkins, W. F.; Kanbach, G.; Mayer-Hasselwander, H. A.; Muecke, A.

    1998-01-01

    The third catalog of high-energy gamma-ray sources detected by the EGRET telescope on the Compton Gamma Ray Observatory includes data from 1991 April 22 to 1995 October 3 (Cycles 1, 2, 3, and 4 of the mission). In addition to including more data than the second EGRET catalog (Thompson et al. 1995) and its supplement (Thompson et al. 1996), this catalog uses completely reprocessed data (to correct a number of mostly minimal errors and problems). The 271 sources (E greater than 100 MeV) in the catalog include the single 1991 solar flare bright enough to be detected as a source, the Large Magellanic Cloud, five pulsars, one probable radio galaxy detection (Cen A), and 66 high-confidence identifications of blazars (BL Lac objects, flat-spectrum radio quasars, or unidentified flat-spectrum radio sources). In addition, 27 lower-confidence potential blazar identifications are noted. Finally, the catalog contains 170 sources not yet identified firmly with known objects, although potential identifications have been suggested for a number of those. A figure is presented that gives approximate upper limits for gamma-ray sources at any point in the sky, as well as information about sources listed in the second catalog and its supplement which do not appear in this catalog.

  3. The Third EGRET Catalog of High-Energy Gamma-Ray Sources

    NASA Technical Reports Server (NTRS)

    Hartman, R. C.; Bertsch, D. L.; Bloom, S. D.; Chen, A. W.; Deines-Jones, P.; Esposito, J. A.; Fichtel, C. E.; Friedlander, D. P.; Hunter, S. D.; McDonald, L. M.; Sreekumar, P.; Thompson, D. J.; Jones, B. B.; Lin, Y. C.; Michelson, P. F.; Nolan, P. L.; Tompkins, W. F.; Kanbach, G.; Mayer-Hasselwander, A.; Muecke, A.

    1998-01-01

    The third catalog of high-energy gamma-ray sources detected by the EGRET telescope on the Compton Gamma Ray Observatory includes data from 1991 April 22 to 1995 October 3 (Cycles 1, 2, 3, and 4 of the mission). In addition to including more data than the second EGRET catalog and its supplement, this catalog uses completely reprocessed data (to correct a number of mostly minimal errors and problems). The 271 sources (E greater than 100 MeV) in the catalog include the single 1991 solar flare bright enough to be detected as a source, the Large Magellanic Cloud, five pulsars, one probable radio galaxy detection (Cen A), and 66 high-confidence identifications of blazars (BL Lac objects, flat-spectrum radio quasars, or unidentified flat-spectrum radio sources). In addition, 27 lower-confidence potential blazar identifications are noted. Finally, the catalog contains 170 sources not yet identified firmly with known objects, although potential identifications have been suggested for a number of those. A figure is presented that gives approximate upper limits for gamma-ray sources at any point in the sky, as well as information about sources listed in the second catalog and its supplement which do not appear in this catalog.

  4. Liquid lithium target as a high intensity, high energy neutron source

    DOEpatents

    Parkin, Don M.; Dudey, Norman D.

    1976-01-01

    This invention provides a target jet for charged particles. In one embodiment the charged particles are high energy deuterons that bombard the target jet to produce high intensity, high energy neutrons. To this end, deuterons in a vacuum container bombard an endlessly circulating, free-falling, sheet-shaped, copiously flowing, liquid lithium jet that gushes by gravity from a rectangular cross-section vent on the inside of the container means to form a moving web in contact with the inside wall of the vacuum container. The neutrons are produced via break-up of the beam in the target by stripping, spallation and compound nuclear reactions in which the projectiles (deuterons) interact with the target (Li) to produce excited nuclei, which then "boil off" or evaporate a neutron.

  5. Localization, time histories, and energy spectra of a new type of recurrent high-energy transient source

    NASA Technical Reports Server (NTRS)

    Atteia, J.-L.; Boer, M.; Hurley, K.; Niel, M.; Vedrenne, G.; Fenimore, E. E.; Klebesadel, R. W.; Laros, J. G.; Kuznetsov, A. V.; Kouveliotou, C.

    1987-01-01

    The detection of a recurrent high-energy transient source which is neither a classical X-ray nor a gamma-ray burster, but whose properties are intermediate between the two, is reported. The energy spectra of 12 recurrent events are found to be soft, characterized by kT's of 34-56 keV. The time histories are short with rise and fall times as fast as about 10 ms. The source location is a 0.12 sq deg region about 10 deg from the Galactic center.

  6. Search for ultra-high energy emission from Geminga and five unidentified EGRET sources

    SciTech Connect

    Not Available

    1993-01-01

    Data from the CYGNUS extensive air shower array were searched for continuous ultra-high energy (UHE) gamma radiation from five unidentified EGRET sources and from the Geminga pulsar. No evidence for continuous emission from any of these objects was found. Data in the Geminga source bin were also searched for pulsed emission using the recent EGRET ephemeris (237 ms period). No evidence of a periodic signal was found. The 90% confidence level upper limit on the continuous gamma-ray flux above 80 TeV for Geminga is 7.9 [times] 10[sup [minus]14] cm[sup [minus]2] s[sup [minus]1].

  7. Search for ultra-high energy emission from Geminga and five unidentified EGRET sources

    SciTech Connect

    The CYGNUS Collaboration

    1993-05-01

    Data from the CYGNUS extensive air shower array were searched for continuous ultra-high energy (UHE) gamma radiation from five unidentified EGRET sources and from the Geminga pulsar. No evidence for continuous emission from any of these objects was found. Data in the Geminga source bin were also searched for pulsed emission using the recent EGRET ephemeris (237 ms period). No evidence of a periodic signal was found. The 90% confidence level upper limit on the continuous gamma-ray flux above 80 TeV for Geminga is 7.9 {times} 10{sup {minus}14} cm{sup {minus}2} s{sup {minus}1}.

  8. High energy X-ray observations of Sco-like sources with Ariel V

    NASA Technical Reports Server (NTRS)

    Greenhill, J. G.; Coe, M. J.; Burnell, S. J. B.; Strong, K. T.; Carpenter, G. F.

    1979-01-01

    Results are reported for observations of Sco X-1 and the similar sources 4U 1702-36 (GX 349+2, Sco X-2), 4U 1813-14 (GX 17+2), and 4U 1758-25 (GX 5-1) by several of the X-ray telescopes aboard the Ariel 5 satellite over the energy range from 2 to approximately 100 keV. The results confirm the existence of a high-energy tail in the spectrum of Sco X-1, demonstrate that 4U 1702-36 has a similar spectrum, and provide evidence for a variation of the 26-56-keV flux from 4U 1702-36 by more than a factor of four with no related change in the 2.9-7.6-keV flux. The high-energy emission from Sco X-1 is found to be one to two orders of magnitude above the extrapolated low-energy emission. Observed X-ray, radio, and optical properties of these four sources, as well as two additional Sco-like sources, are summarized.

  9. High-flux source of low-energy neutral beams using reflection of ions from metals

    NASA Technical Reports Server (NTRS)

    Cuthbertson, John W.; Motley, Robert W.; Langer, William D.

    1992-01-01

    Reflection of low-energy ions from surfaces can be applied as a method of producing high-flux beams of low-energy neutral particles, and is an important effect in several areas of plasma technology, such as in the edge region of fusion devices. We have developed a beam source based on acceleration and reflection of ions from a magnetically confined coaxial RF plasma source. The beam provides a large enough flux to allow the energy distribution of the reflected neutrals to be measured despite the inefficiency of detection, by means of an electrostatic cylindrical mirror analyzer coupled with a quadrupole mass spectrometer. Energy distributions have been measured for oxygen, nitrogen, and inert gas ions incident with from 15 to 70 eV reflected from amorphous metal surfaces of several compositions. For ions of lighter atomic mass than the reflecting metal, reflected beams have peaked energy distributions; beams with the peak at 4-32 eV have been measured. The energy and mass dependences of the energy distributions as well as measurements of absolute flux, and angular distribution and divergence are reported. Applications of the neutral beams produced are described.

  10. Axion-Like Particle Imprint in Cosmological Very-High-Energy Sources

    SciTech Connect

    Dominguez, A.; Sanchez-Conde, M.A.; Prada, F.; /IAA, Granada

    2012-06-13

    Discoveries of very high energy (VHE) photons from distant blazars suggest that, after correction by extragalactic background light (EBL) absorption, there is a flatness or even a turn-up in their spectra at the highest energies that cannot be easily explained by the standard framework. Here, it is shown that a possible solution to this problem is achieved by assuming the existence of axion-like particles (ALPs) with masses {approx} 1 neV. The ALP scenario is tested making use of observations of the highest redshift blazars known in the VHE energy regime, namely 3C 279, 3C 66A, PKS 1222+216 and PG 1553+113. In all cases, better fits to the observed spectra are found when including ALPs rather than considering EBL only. Interestingly, quite similar critical energies for photon/ALP conversions are also derived, independently of the source considered.

  11. High Energy Laboratory Astrophysics Experiments using electron beam ion traps and advanced light sources

    NASA Astrophysics Data System (ADS)

    Brown, Gregory V.; Beiersdorfer, Peter; Bernitt, Sven; Eberle, Sita; Hell, Natalie; Kilbourne, Caroline; Kelley, Rich; Leutenegger, Maurice; Porter, F. Scott; Rudolph, Jan; Steinbrugge, Rene; Traebert, Elmar; Crespo-Lopez-Urritia, Jose R.

    2015-08-01

    We have used the Lawrence Livermore National Laboratory's EBIT-I electron beam ion trap coupled with a NASA/GSFC microcalorimeter spectrometer instrument to systematically address problems found in the analysis of high resolution X-ray spectra from celestial sources, and to benchmark atomic physics codes employed by high resolution spectral modeling packages. Our results include laboratory measurements of transition energies, absolute and relative electron impact excitation cross sections, charge exchange cross sections, and dielectronic recombination resonance strengths. More recently, we have coupled to the Max-Plank Institute for Nuclear Physics-Heidelberg's FLASH-EBIT electron beam ion trap to third and fourth generation advanced light sources to measure photoexcitation and photoionization cross sections, as well as, natural line widths of X-ray transitions in highly charged iron ions. Selected results will be presented.

  12. Some evidence for high energy gamma-ray sources at large galactic latitudes

    NASA Technical Reports Server (NTRS)

    Stamenov, J. N.; Karakula, S.; Tkaczyk, W.

    1985-01-01

    The arrival directions of the gamma-quanta with energies of about 10 to 15th power eV which were registrated by Tien Shan experiment were compared with COS-B observations. On the basis of the Monte Carlo simulations it was shown with low probability that arrival directions of Tien Shan gamma-quanta initiated showers are not uniformly distributed. It is shown that in the region not seen by COS-B mission, the high energy gamma-ray sources should be located at position of 90 deg. 1 sup 11 130 deg and b sup 11 or = 50 deg. The integral intensity of these sources should be I ( 10 to the 15th power eV) = 4.8 + or - 1.7).10 to the 13th power/sq cm/s/str. There is no coincidence between the gamma-quanta registrated by Tien Shan experiment with Geminga intense COS-B gamma source. So it is shown that the integral photon spectrum of Geminga (I(e) approx E sup-Beta, where Beta = 0.8 for E 1 GeV) becomes steeper (Beta 1.2) in high energy region with probability 99.9.%.

  13. High-energy sources at low radio frequency: the Murchison Widefield Array view of Fermi blazars

    NASA Astrophysics Data System (ADS)

    Giroletti, M.; Massaro, F.; D'Abrusco, R.; Lico, R.; Burlon, D.; Hurley-Walker, N.; Johnston-Hollitt, M.; Morgan, J.; Pavlidou, V.; Bell, M.; Bernardi, G.; Bhat, R.; Bowman, J. D.; Briggs, F.; Cappallo, R. J.; Corey, B. E.; Deshpande, A. A.; Ewall-Rice, A.; Emrich, D.; Gaensler, B. M.; Goeke, R.; Greenhill, L. J.; Hazelton, B. J.; Hindson, L.; Kaplan, D. L.; Kasper, J. C.; Kratzenberg, E.; Feng, L.; Jacobs, D.; Kudryavtseva, N.; Lenc, E.; Lonsdale, C. J.; Lynch, M. J.; McKinley, B.; McWhirter, S. R.; Mitchell, D. A.; Morales, M. F.; Morgan, E.; Oberoi, D.; Offringa, A. R.; Ord, S. M.; Pindor, B.; Prabu, T.; Procopio, P.; Riding, J.; Rogers, A. E. E.; Roshi, A.; Udaya Shankar, N.; Srivani, K. S.; Subrahmanyan, R.; Tingay, S. J.; Waterson, M.; Wayth, R. B.; Webster, R. L.; Whitney, A. R.; Williams, A.; Williams, C. L.

    2016-04-01

    Context. Low-frequency radio arrays are opening a new window for the study of the sky, both to study new phenomena and to better characterize known source classes. Being flat-spectrum sources, blazars are so far poorly studied at low radio frequencies. Aims: We characterize the spectral properties of the blazar population at low radio frequency, compare the radio and high-energy properties of the gamma-ray blazar population, and search for radio counterparts of unidentified gamma-ray sources. Methods: We cross-correlated the 6100 deg2 Murchison Widefield Array Commissioning Survey catalogue with the Roma blazar catalogue, the third catalogue of active galactic nuclei detected by Fermi-LAT, and the unidentified members of the entire third catalogue of gamma-ray sources detected by Fermi-LAT. When available, we also added high-frequency radio data from the Australia Telescope 20 GHz catalogue. Results: We find low-frequency counterparts for 186 out of 517 (36%) blazars, 79 out of 174 (45%) gamma-ray blazars, and 8 out of 73 (11%) gamma-ray blazar candidates. The mean low-frequency (120-180 MHz) blazar spectral index is ⟨αlow⟩ = 0.57 ± 0.02: blazar spectra are flatter than the rest of the population of low-frequency sources, but are steeper than at ~GHz frequencies. Low-frequency radio flux density and gamma-ray energy flux display a mildly significant and broadly scattered correlation. Ten unidentified gamma-ray sources have a (probably fortuitous) positional match with low radio frequency sources. Conclusions: Low-frequency radio astronomy provides important information about sources with a flat radio spectrum and high energy. However, the relatively low sensitivity of the present surveys still misses a significant fraction of these objects. Upcoming deeper surveys, such as the GaLactic and Extragalactic All-Sky MWA (GLEAM) survey, will provide further insight into this population. Tables 5-7 are only available at the CDS via anonymous ftp to http

  14. Locating very high energy gamma ray sources with arc minute accuracy

    NASA Technical Reports Server (NTRS)

    Akerlof, C. W.; Cawley, M. F.; Chantell, M.; Fegan, D. J.; Harris, K.; Hillas, A. M.; Jennings, D. G.; Lamb, R. C.; Lawrence, M. A.; Lang, M. J.

    1992-01-01

    The angular accuracy of gamma-ray detectors is intrinsically limited by the physical processes involved in photon detection. Although a number of point-like sources were detected by the COS-B satellite, only two were unambiguously identified by time signature with counterparts at longer wavelengths. By taking advantage of the extended longitudinal structure of Very High Energy gamma-ray showers, measurements in the TeV energy range can pinpoint source coordinates to arc minute accuracy. This was demonstrated using Cerenkov air shower imaging techniques. With two telescopes in coincidence, the individual event circular probable error will be 0.13 deg. The half-cone angle of the field of view is effectively 1 deg.

  15. Radio Monitoring of High Energy Sources by the Green Bank Interferometer

    NASA Astrophysics Data System (ADS)

    Hjellming, Robert

    The environments of accretion disks produce both X-rays and highly- variable radio emission. Satellites like RXTE are providing unprecedented data on the X-ray variability of such sources; the only parallel radio observations, in terms of the number of objects studied, the frequency with which they are observed, and the instantaneous public availability of the data, come from the Green Bank Interferometer (GBI). The high-energy photons observed by RXTE must be related to the high-energy electrons traced by the GBI, and the interpretation of the results from the one instrument is aided immeasurably by the observations of the other. Unfortunately the GBI is now in danger of being shut down due to lack of continuing funding. Here we request such financial support from RXTE.

  16. Galactic PeVatrons: modeling the new sources of high-energy cosmic rays.

    NASA Astrophysics Data System (ADS)

    Gladilin, Petr; Bykov, Andrey; Osipov, Sergey

    Recent observations (experiments Tunka, KASCADE, etc.) indicate that the spectrum of galactic cosmic rays in the energy range of 10(14) - 10(16) eV has notable features (fluctuations) against the background of a general power law. There are breaks in the spectrum and the spectral index varies from 2.93 to 3.21 on them. A possible explanation for this behavior of the spectrum is the imposition of particle spectra from the sources with different spectral indices of accelerated particles. One of these sources could be the systems of two colliding shocks. Such systems can often occur, for example, in active starforming regions near the Galactic Center or in stellar clusters. Special attention is paid to the regions where the shock of the expanding supernova remnant approaches the stellar wind of nearby massive star (or stars). The number of these systems is estimated as 10 systems per Galaxy. Using the non-linear time-dependent model of charged particle acceleration in two shocks colliding system we have shown that these systems have a set of important features and can make a significant contribution to the total flux of galactic cosmic rays in the high energy range 10(12) - 10(16) eV. Numerical calculations showed that the particles accelerated in the system have very hard spectral energy distribution with the index gamma=1. Maximal energies of the proton component accelerated via two-shocks systems extend well above the “knee” and can reach up to 10(15)-10({17)) eV depending on the magnitude of the amplified magnetic field, flows velocities and the system’s size. Hard spectrum of the particles on these energies and high proton intensity (up to 10(36) erg/s) make these sources possibly responsible for the fluctuations in the galactic cosmic rays spectrum.

  17. Dense Plasma Focus With High Energy Helium Beams for Radiological Source Replacement

    NASA Astrophysics Data System (ADS)

    Schmidt, Andrea; Ellsworth, Jennifer; Falabella, Steve; Link, Anthony; Rusnak, Brian; Sears, Jason; Tang, Vincent

    2014-10-01

    A dense plasma focus (DPF) is a compact accelerator that can produce intense high energy ion beams (multiple MeV). It could be used in place of americium-beryllium (AmBe) neutron sources in applications such as oil well logging if optimized to produce high energy helium beams. AmBe sources produce neutrons when 5.5 MeV alphas emitted from the Am interact with the Be. However, due to the very small alpha-Be cross section for alphas <2 MeV, an AmBe source replacement would have to accelerate ~0.15 μC of He to 2 + MeV in order to produce 107 neutrons per pulse. We are using our particle in cell (PIC) model in LSP of a 4 kJ dense plasma focus discharge to guide the optimization of a compact DPF for the production of high-energy helium beam. This model is fluid for the run-down phase, and then transitions to fully kinetic prior to the pinch in order to include kinetic effects such as ion beam formation and anomalous resistivity. An external pulsed-power driver circuit is used at the anode-cathode boundary. Simulations will be benchmarked to He beam measurements using filtered and time-of-flight Faraday cup diagnostics. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. This work supported by US DOE/NA-22 Office of Non-proliferation Research and Development. Computing support for this work came from the LLNL Institutional Computing Grand Challenge program.

  18. Physical basis for signal separation for remote sensing of multiple high energy radiation sources

    NASA Astrophysics Data System (ADS)

    Richards, J.; Jain, V. K.

    2015-08-01

    In `radiation remote sensing' multiple unknown high energy sources are generally involved. The detectors, upon sensing the corresponding mixed signals, must separate their contributions blindly for further analysis. A practical way to perform this separation could be through the Independent Component Analysis algorithm. However, the challenge faced is that theoretically there is no correlation among events, even those arising from the same source - thereby disabling meaningful ICA analysis. We overcome this hurdle by use of a thin barrier and by providing wide detector pulses. The radiation events that interact with the barrier take a longer time to reach the detector due to their increased path length. They also lose some energy, which makes them increasingly prone to capture in the barrier once they have scattered. These observations are confirmed through Monte-Carlo simulations upon Gamma-ray sources. Normalized crosscovariance up to 0.22 was found, but is actually controllable through appropriate selection of the detector shaping-pulse width. Experiments on a physical setup confirm these findings. Finally, the application of the ICA approach is demonstrated to demix, or separate, the individual contributions of the sources to the observed detector signals.

  19. A New Type of Transient High-Energy Source in the Direction of the Galactic Centre

    NASA Technical Reports Server (NTRS)

    Kouveliotou, C.; VanParadijs, J.; Fishman, G. J.; Briggs, M. S.; Kommers, J.; Harmon, B. A.; Meegan, C. A.; Lewin, W. H. G.

    1996-01-01

    Sources of high-energy (greater than 20 keV) bursts fall into two distinct types: the non-repeating gamma-ray bursters, several thousand of which have been detected but whose origin remains unknown, and the soft gamma-ray repeaters (SGRs), of which there are only three. The SGRs are known to be associated with supernova remnants, suggesting that the burst events most probably originate from young neutron stars. Here we report the detection of a third type of transient high-energy source. On 2 December 1995, we observed the onset of a sequence of hard X-ray bursts from a direction close to that of the Galactic Center. The interval between bursts was initially several minutes, but after two days, the burst rate had dropped to about one per hour and has been largely unchanged since then. More than 1,000 bursts have now been detected, with remarkably similar light curves and intensities; this behaviour is unprecendented among transient X-ray and gamma-ray sources. We suggest that the origin of these bursts might be related to the spasmodic accretion of material onto a neutron star.

  20. On the Evolution of and High-Energy Emission from GHz-Peaked-Spectrum Sources

    SciTech Connect

    Stawarz, L.; Ostorero, L.; Begelman, M.C.; Moderski, R.; Kataoka, J.; Wagner, S.

    2007-12-18

    Here we discuss evolution and broad-band emission of compact (< kpc) lobes in young radio sources. We propose a simple dynamical description for these objects, consisting of a relativistic jet propagating into a uniform gaseous medium in the central parts of an elliptical host. In the framework of the proposed model, we follow the evolution of ultrarelativistic electrons injected from a terminal hotspot of a jet to expanding lobes, taking into account their adiabatic energy losses as well as radiative cooling. This allows us to discuss the broad-band lobe emission of young radio sources. In particular, we argue that the observed spectral turnover in the radio synchrotron spectra of these objects cannot originate from the synchrotron self-absorption process but is most likely due to free-free absorption effects connected with neutral clouds of interstellar medium engulfed by the expanding lobes and photoionized by active centers. We also find a relatively strong and complex high-energy emission component produced by inverse-Compton up-scattering of various surrounding photon fields by the lobes electrons. We argue that such high energy radiation is strong enough to account for several observed properties of GHz-peaked-spectrum (GPS) radio galaxies at UV and X-ray frequencies. In addition, this emission is expected to extend up to GeV (or possibly even TeV) photon energies and can thus be probed by several modern {gamma}-ray instruments. In particular, we suggest that GPS radio galaxies should constitute a relatively numerous class of extragalactic sources detected by GLAST.

  1. Automatic Quenching of High Energy gamma-ray Sources by Synchrotron Photons

    SciTech Connect

    Stawarz, Lukasz; Kirk, John; /Heidelberg, Max Planck Inst.

    2007-02-02

    Here we investigate evolution of a magnetized system, in which continuously produced high energy emission undergoes annihilation on a soft photon field, such that the synchrotron radiation of the created electron-positron pairs increases number density of the soft photons. This situation is important in high energy astrophysics, because, for an extremely wide range of magnetic field strengths (nano to mega Gauss), it involves {gamma}-ray photons with energies between 0.3GeV and 30TeV. We derive and analyze the conditions for which the system is unstable to runaway production of soft photons and ultrarelativistic electrons, and for which it can reach a steady state with an optical depth to photon-photon annihilation larger than unity, as well those for which efficient pair loading of the emitting volume takes place. We also discuss the application of our analysis to a realistic situation involving astrophysical sources of a broad-band {gamma}-ray emission and briefly consider the particular case of sources close to active supermassive black holes.

  2. Ultra high energy cosmic rays: implications of Auger data for source spectra and chemical composition

    NASA Astrophysics Data System (ADS)

    Aloisio, R.; Berezinsky, V.; Blasi, P.

    2014-10-01

    We use a kinetic-equation approach to describe the propagation of ultra high energy cosmic ray protons and nuclei and calculate the expected spectra and mass composition at the Earth for different assumptions on the source injection spectra and chemical abundances. When compared with the spectrum, the elongation rate Xmax(E) and dispersion σ(Xmax) as observed with the Pierre Auger Observatory, several important consequences can be drawn: a) the injection spectra of nuclei must be very hard, ~ E-γ with γ~ 1- 1.6; b) the maximum energy of nuclei of charge Z in the sources must be ~ 5Z× 1018 eV, thereby not requiring acceleration to extremely high energies; c) the fit to the Auger spectrum can be obtained only at the price of adding an ad hoc light extragalactic component with a steep injection spectrum ~ E-2.7). In this sense, at the ankle EA≈ 5× 1018 eV) all the components are of extragalactic origin, thereby suggesting that the transition from Galactic to extragalactic cosmic rays occurs below the ankle. Interestingly, the additional light extragalactic component postulated above compares well, in terms of spectrum and normalization, with the one recently measured by KASCADE-Grande.

  3. Ultra high energy cosmic rays: implications of Auger data for source spectra and chemical composition

    SciTech Connect

    Aloisio, R.; Blasi, P.

    2014-10-01

    We use a kinetic-equation approach to describe the propagation of ultra high energy cosmic ray protons and nuclei and calculate the expected spectra and mass composition at the Earth for different assumptions on the source injection spectra and chemical abundances. When compared with the spectrum, the elongation rate X{sub max}(E) and dispersion σ(X{sub max}) as observed with the Pierre Auger Observatory, several important consequences can be drawn: a) the injection spectra of nuclei must be very hard, ∼ E{sup -γ} with γ∼ 1- 1.6; b) the maximum energy of nuclei of charge Z in the sources must be ∼ 5Z× 10{sup 18} eV, thereby not requiring acceleration to extremely high energies; c) the fit to the Auger spectrum can be obtained only at the price of adding an ad hoc light extragalactic component with a steep injection spectrum ∼ E{sup -2.7}). In this sense, at the ankle E{sub A}≈ 5× 10{sup 18} eV) all the components are of extragalactic origin, thereby suggesting that the transition from Galactic to extragalactic cosmic rays occurs below the ankle. Interestingly, the additional light extragalactic component postulated above compares well, in terms of spectrum and normalization, with the one recently measured by KASCADE-Grande.

  4. Characterization of spatially resolved high resolution x-ray spectrometers for high energy density physics and light source experiments

    SciTech Connect

    Hill, K. W. Bitter, M.; Delgado-Aparacio, L.; Efthimion, P.; Pablant, N. A.; Lu, J.; Beiersdorfer, P.; Chen, H.; Magee, E.

    2014-11-15

    A high resolution 1D imaging x-ray spectrometer concept comprising a spherically bent crystal and a 2D pixelated detector is being optimized for diagnostics of small sources such as high energy density physics (HEDP) and synchrotron radiation or x-ray free electron laser experiments. This instrument is used on tokamak experiments for Doppler measurements of ion temperature and plasma flow velocity profiles. Laboratory measurements demonstrate a resolving power, E/ΔE of order 10 000 and spatial resolution better than 10 μm. Initial tests of the high resolution instrument on HEDP plasmas are being performed.

  5. Coded apertures allow high-energy x-ray phase contrast imaging with laboratory sources

    NASA Astrophysics Data System (ADS)

    Ignatyev, K.; Munro, P. R. T.; Chana, D.; Speller, R. D.; Olivo, A.

    2011-07-01

    This work analyzes the performance of the coded-aperture based x-ray phase contrast imaging approach, showing that it can be used at high x-ray energies with acceptable exposure times. Due to limitations in the used source, we show images acquired at tube voltages of up to 100 kVp, however, no intrinsic reason indicates that the method could not be extended to even higher energies. In particular, we show quantitative agreement between the contrast extracted from the experimental x-ray images and the theoretical one, determined by the behavior of the material's refractive index as a function of energy. This proves that all energies in the used spectrum contribute to the image formation, and also that there are no additional factors affecting image contrast as the x-ray energy is increased. We also discuss the method flexibility by displaying and analyzing the first set of images obtained while varying the relative displacement between coded-aperture sets, which leads to image variations to some extent similar to those observed when changing the crystal angle in analyzer-based imaging. Finally, we discuss the method's possible advantages in terms of simplification of the set-up, scalability, reduced exposure times, and complete achromaticity. We believe this would helpful in applications requiring the imaging of highly absorbing samples, e.g., material science and security inspection, and, in the way of example, we demonstrate a possible application in the latter.

  6. A search for sources of ultra high energy gamma rays at air shower energies with Ooty EAS array

    NASA Technical Reports Server (NTRS)

    Gopalakrishnan, N. V.; Sreekantan, B. V.; Tonwar, S. C.

    1985-01-01

    A 24 detector extensive air shower array is being operated at Ootacamund (2200 m altitude, 11.4 deg N latitude) in southern India to search for sources of Cosmic gamma rays of energies greater then 5 x 10 to the 13th power eV. The angular resolution of the array has been experimentally estimated to be better than about 2 deg. Since June '84, nearly 2.5 million showers have been collected and their arrival directions determined. These showers are being studied to search for very high energy gamma ray emission from interesting astrophysical objects such as Cygnus X-3, Crab pulsar and Geminga.

  7. SAS-2 observations of high energy gamma rays from discrete sources

    NASA Technical Reports Server (NTRS)

    Kniffen, D. A.; Fichtel, C. E.; Hartman, R. C.; Lamb, R. C.; Thompson, D. J.

    1977-01-01

    The SAS-2 identified six localized high energy (greater than 35 MeV) gamma ray sources. Four of these are the radio pulsars, PSR 0531+21, PSR 0833-45, PSR 1818-04, and PSR 1717-46 discovered in a search of 75 radio pulsars. The fact that only one of these is observed in X-rays, and the significant differences in pulse profiles in the gamma ray and radio observations, leads to the speculation that different mechanisms are involved.

  8. The development of the high intensity electron cyclotron resonance ion source at China Institute of Atomic Energy.

    PubMed

    Tang, B; Ma, R; Ma, Y; Chen, L; Huang, Q; Liang, H; Cui, B; Jiang, W

    2014-02-01

    High-current microwave ion source has been under development over 15 years for accelerator driven sub-critical system research at China Institute of Atomic Energy, and the beam intensity higher than 140 mA proton beam is produced by this ion source with long lifetime and high reliability. The emittance of high intensity continue-wave and pulse beam is measured on a test-bench in the laboratory. Based on the good performance of this proton ion source, a new 120 mA deuterium ion source is proposed for a high intensity neutron generator. The ion source details and status will be presented. PMID:24593490

  9. First Search for Point Sources of High-energy Cosmic Neutrinos with the ANTARES Neutrino Telescope

    NASA Astrophysics Data System (ADS)

    Adrián-Martínez, S.; Aguilar, J. A.; Samarai, I. Al; Albert, A.; André, M.; Anghinolfi, M.; Anton, G.; Anvar, S.; Ardid, M.; Assis Jesus, A. C.; Astraatmadja, T.; Aubert, J.-J.; Baret, B.; Basa, S.; Bertin, V.; Biagi, S.; Bigi, A.; Bigongiari, C.; Bogazzi, C.; Bou-Cabo, M.; Bouhou, B.; Bouwhuis, M. C.; Brunner, J.; Busto, J.; Camarena, F.; Capone, A.; Cârloganu, C.; Carminati, G.; Carr, J.; Cecchini, S.; Charif, Z.; Charvis, Ph.; Chiarusi, T.; Circella, M.; Coniglione, R.; Costantini, H.; Coyle, P.; Curtil, C.; Decowski, M. P.; Dekeyser, I.; Deschamps, A.; Distefano, C.; Donzaud, C.; Dornic, D.; Dorosti, Q.; Drouhin, D.; Eberl, T.; Emanuele, U.; Enzenhöfer, A.; Ernenwein, J.-P.; Escoffier, S.; Fermani, P.; Ferri, M.; Flaminio, V.; Folger, F.; Fritsch, U.; Fuda, J.-L.; Galatà, S.; Gay, P.; Giacomelli, G.; Giordano, V.; Gómez-González, J. P.; Graf, K.; Guillard, G.; Halladjian, G.; Hallewell, G.; van Haren, H.; Hartman, J.; Heijboer, A. J.; Hello, Y.; Hernández-Rey, J. J.; Herold, B.; Hößl, J.; Hsu, C. C.; de Jong, M.; Kadler, M.; Kalekin, O.; Kappes, A.; Katz, U.; Kavatsyuk, O.; Kooijman, P.; Kopper, C.; Kouchner, A.; Kreykenbohm, I.; Kulikovskiy, V.; Lahmann, R.; Lamare, P.; Larosa, G.; Lattuada, D.; Lefèvre, D.; Lim, G.; Lo Presti, D.; Loehner, H.; Loucatos, S.; Mangano, S.; Marcelin, M.; Margiotta, A.; Martínez-Mora, J. A.; Meli, A.; Montaruli, T.; Moscoso, L.; Motz, H.; Neff, M.; Nezri, E.; Palioselitis, D.; Păvălaş, G. E.; Payet, K.; Payre, P.; Petrovic, J.; Piattelli, P.; Picot-Clemente, N.; Popa, V.; Pradier, T.; Presani, E.; Racca, C.; Reed, C.; Richardt, C.; Richter, R.; Rivière, C.; Robert, A.; Roensch, K.; Rostovtsev, A.; Ruiz-Rivas, J.; Rujoiu, M.; Russo, G. V.; Salesa, F.; Samtleben, D. F. E.; Sapienza, P.; Schöck, F.; Schuller, J.-P.; Schüssler, F.; Seitz, T.; Shanidze, R.; Simeone, F.; Spies, A.; Spurio, M.; Steijger, J. J. M.; Stolarczyk, Th.; Sánchez-Losa, A.; Taiuti, M.; Tamburini, C.; Toscano, S.; Vallage, B.; Van Elewyck, V.; Vannoni, G.; Vecchi, M.; Vernin, P.; Wagner, S.; Wijnker, G.; Wilms, J.; de Wolf, E.; Yepes, H.; Zaborov, D.; Zornoza, J. D.; Zúñiga, J.

    2011-12-01

    Results are presented of a search for cosmic sources of high-energy neutrinos with the ANTARES neutrino telescope. The data were collected during 2007 and 2008 using detector configurations containing between 5 and 12 detection lines. The integrated live time of the analyzed data is 304 days. Muon tracks are reconstructed using a likelihood-based algorithm. Studies of the detector timing indicate a median angular resolution of 0.5 ± 0.1 deg. The neutrino flux sensitivity is 7.5 × 10-8(E ν/ GeV)-2 GeV-1 s-1 cm-2 for the part of the sky that is always visible (δ < -48 deg), which is better than limits obtained by previous experiments. No cosmic neutrino sources have been observed. We dedicate this Letter to the memory of our colleague and friend Luciano Moscoso, who passed away during the preparation of this Letter.

  10. ESRF-type lattice design and optimization for the High Energy Photon Source

    NASA Astrophysics Data System (ADS)

    Xu, Gang; Jiao, Yi; Peng, Yue-Mei

    2016-02-01

    A new generation of storage ring-based light sources, called diffraction-limited storage rings (DLSRs), with emittance approaching the diffraction limit for multi-keV photons by means of multi-bend achromat lattices, has attracted extensive studies worldwide. Among various DLSR proposals, the hybrid multi-bend achromat concept developed at the European Synchrotron Radiation Facility (ESRF) predicts an effective way of minimizing the emittance while keeping the required chromatic sextupole strengths to an achievable level. For the High Energy Photon Source planned to be built in Beijing, an ESRF-type lattice design consisting of 48 hybrid seven-bend achromats is proposed to reach emittance as low as 60 pm·rad with a circumference of about 1296 m. Sufficient dynamic aperture, allowing vertical on-axis injection, and moderate momentum acceptance are achieved simultaneously for a promising ring performance. Supported by NSFC (11475202, 11405187) and Youth Innovation Promotion Association CAS (2015009)

  11. Constraining Very High-Energy Gamma Ray Sources Using IceCube Neutrino Observations

    NASA Astrophysics Data System (ADS)

    Vance, Gregory; Feintzeig, J.; Karle, A.; IceCube Collaboration

    2014-01-01

    Modern gamma ray astronomy has revealed the most violent, energetic objects in the known universe, from nearby supernova remnants to distant active galactic nuclei. In an effort to discover more about the fundamental nature of such objects, we present searches for astrophysical neutrinos in coincidence with known gamma ray sources. Searches were conducted using data from IceCube Neutrino Observatory, a cubic-kilometer neutrino detector that is sensitive to astrophysical particles with energies above 1 TeV. The detector is situated at the South Pole, and uses more than 5,000 photomultiplier tubes to detect Cherenkov light from the interactions of particles within the ice. Existing models of proton-proton interactions allow us to link gamma ray fluxes to the production of high-energy neutrinos, so neutrino data from IceCube can be used to constrain the mechanisms by which gamma ray sources create such energetic photons. For a few particularly bright sources, such as the blazar Markarian 421, IceCube is beginning to reach the point where actual constraints can be made. As more years of data are analyzed, the limits will improve and stronger constraints will become possible. This work was supported in part by the National Science Foundation's REU Program through NSF Award AST-1004881 to the University of Wisconsin-Madison.

  12. Galactic sources of high energy neutrinos: Expectation from gamma-ray data

    NASA Astrophysics Data System (ADS)

    Sahakyan, N.

    2016-07-01

    The recent results from ground based γ-ray detectors (HESS, MAGIC, VERITAS) provide a population of TeV galactic γ-ray sources which are potential sources of High Energy (HE) neutrinos. Since the γ-rays and ν-s are produced from decays of neutral and charged pions, the flux of TeV γ-rays can be used to estimate the upper limit of ν flux and vice versa; the detectability of ν flux implies a minimum flux of the accompanying γ-rays (assuming the internal and the external absorption of γ-rays is negligible). Using this minimum flux, it is possible to find the sources which can be detected with cubic-kilometer telescopes. I will discuss the possibility to detect HE neutrinos from powerful galactic accelerators, such as Supernova Remnants (SNRs) and Pulsar Wind Nebulae (PWNe) and show that likely only RX J1713.7-3946, RX J0852.0-4622 and Vela X can be detected by current generation of instruments (IceCube and Km3Net). It will be shown also, that galactic binary systems could be promising sources of HE ν-s. In particular, ν-s and γ-rays from Cygnus X-3 will be discussed during recent gamma-ray activity, showing that in the future such kind of activities could produce detectable flux of HE ν-s.

  13. High-Energy Density science at the Linac Coherent Light Source

    NASA Astrophysics Data System (ADS)

    Glenzer, S. H.; Fletcher, L. B.; Hastings, J. B.

    2016-03-01

    The Matter in Extreme Conditions end station at the Linac Coherent Light Source holds great promise for novel pump-probe experiments to make new discoveries in high- energy density science. In recent experiments we have demonstrated the first spectrally- resolved measurements of plasmons using a seeded 8-keV x-ray laser beam. Forward x-ray Thomson scattering spectra from isochorically heated solid aluminum show a well-resolved plasmon feature that is down-shifted in energy by 19 eV from the incident 8 keV elastic scattering feature. In this spectral range, the simultaneously measured backscatter spectrum shows no spectral features indicating observation of collective plasmon oscillations on a scattering length comparable to the screening length. This technique is a prerequisite for Thomson scattering measurements in compressed matter where the plasmon shift is a sensitive function of the free electron density and where the plasmon intensity provides information on temperature.

  14. Sources of High-Energy Emission in the Green Pea Galaxies: New Constraints from Magellan Spectra

    NASA Astrophysics Data System (ADS)

    Carroll, Derek Alexander

    2016-01-01

    The recently discovered Green Pea galaxies display extreme starburst activity and may be some of the only possible Lyman continuum emitting galaxies at low redshift. Green Peas are characterized by their unusually high [O III]/[O II] ratios, similar to the ratios observed in high-redshift galaxies. In addition, the presence of the high-energy He II 4686 line shows that the Green Peas are highly ionized. However, the origin of the He II emission in the Green Peas, and many other starburst galaxies, is still an open question. We analyze IMACS and MagE spectra from the Magellan telescopes in order to evaluate the most probable cause of this He II emission. We also analyze other properties like dust content, temperature and density, and kinematic components. Our IMACS spectra show no Wolf-Rayet (WR) features. We set upper limits on the WR populations in our sample and conclude that Wolf-Rayet stars are not a likely candidate for the He II emission. With deeper MagE spectra we investigate energetic shocks as a possible source of the He II, and move one step closer to uncovering the origin of high-energy photons in these unique starbursts.

  15. Mesoscale Science with High Energy X-ray Diffraction Microscopy at the Advanced Photon Source

    NASA Astrophysics Data System (ADS)

    Suter, Robert

    2014-03-01

    Spatially resolved diffraction of monochromatic high energy (> 50 keV) x-rays is used to map microstructural quantities inside of bulk polycrystalline materials. The non-destructive nature of High Energy Diffraction Microscopy (HEDM) measurements allows tracking of responses as samples undergo thermo-mechanical or other treatments. Volumes of the order of a cubic millimeter are probed with micron scale spatial resolution. Data sets allow direct comparisons to computational models of responses that frequently involve long-ranged, multi-grain interactions; such direct comparisons have only become possible with the development of HEDM and other high energy x-ray methods. Near-field measurements map the crystallographic orientation field within and between grains using a computational reconstruction method that simulates the experimental geometry and matches orientations in micron sized volume elements to experimental data containing projected grain images in large numbers of Bragg peaks. Far-field measurements yield elastic strain tensors through indexing schemes that sort observed diffraction peaks into sets associated with individual crystals and detect small radial motions in large numbers of such peaks. Combined measurements, facilitated by a new end station hutch at Advanced Photon Source beamline 1-ID, are mutually beneficial and result in accelerated data reduction. Further, absorption tomography yields density contrast that locates secondary phases, void clusters, and cracks, and tracks sample shape during deformation. A collaboration led by the Air Force Research Laboratory and including the Advanced Photon Source, Lawrence Livermore National Laboratory, Carnegie Mellon University, Petra-III, and Cornell University and CHESS is developing software and hardware for combined measurements. Examples of these capabilities include tracking of grain boundary migrations during thermal annealing, tensile deformation of zirconium, and combined measurements of nickel

  16. HIGH VOLTAGE ION SOURCE

    DOEpatents

    Luce, J.S.

    1960-04-19

    A device is described for providing a source of molecular ions having a large output current and with an accelerated energy of the order of 600 kv. Ions are produced in an ion source which is provided with a water-cooled source grid of metal to effect maximum recombination of atomic ions to molecular ions. A very high accelerating voltage is applied to withdraw and accelerate the molecular ions from the source, and means are provided for dumping the excess electrons at the lowest possible potentials. An accelerating grid is placed adjacent to the source grid and a slotted, grounded accelerating electrode is placed adjacent to the accelerating grid. A potential of about 35 kv is maintained between the source grid and accelerating grid, and a potential of about 600 kv is maintained between the accelerating grid and accelerating electrode. In order to keep at a minimum the large number of oscillating electrons which are created when such high voltages are employed in the vicinity of a strong magnetic field, a plurality of high voltage cascaded shields are employed with a conventional electron dumping system being employed between each shield so as to dump the electrons at the lowest possible potential rather than at 600 kv.

  17. The impact of networks of robotic telescopes in continuous monitoring of high energy cosmic sources

    NASA Astrophysics Data System (ADS)

    Giovannelli, Franco; Sabau-Graziati, Lola

    High energy (HE) cosmic sources are characterized by emissions in a wide range of the electromagnetic spectrum. In order to clarify their behavior and understand the involved physics it is necessary to perform simultaneous measurements in a range of energy as wide as possible. This makes it necessary to use different techniques and instrumentation both space- and ground-based. Simultaneous observations are in general very difficult to be performed because they need the involvement of many instruments that belong to many experiments under the control of many groups and countries. However, since the importance of multifrequency measurements is now universally recognized, many efforts are made in order to obtain such measurements. Our group has been a pioneer in such a kind of measurements since middle of 1970s. We will briefly discuss the impact of such measurements in different class of HE cosmic sources, such as T Tauri stars (TTSs), active galactic nuclei (AGNs), gamma-ray bursts (GRBs), X-ray binary systems (XRBs), and cataclysmic variables (CVs). This discussion is mainly based on the review paper "The impact of the space experiments on our knowledge of the physics of the universe" tep{GiovannelliSabauGraziati2004} and subsequent revisions. We will also discuss the importance of having a network of robotic telescopes that can provide long term optical monitoring of the classes of HE sources already discussed. Such measurements will provide fundamental data for understanding many problems that are still open, such as the physics of the outbursts in flaring systems, the search of rotational periods of white dwarfs in CVs and orbital periods of those systems, rotational periods and periodicities of flare-like events of TTSs, correlations between optical and X-ray flares in X-ray/Be systems, fluctuations in the light curves of AGNs and their correlations with the HE emission in order to test the validity of current models, etc.

  18. PEPX-type lattice design and optimization for the High Energy Photon Source

    NASA Astrophysics Data System (ADS)

    Jiao, Yi; Xu, Gang

    2015-06-01

    A new generation of storage ring-based light sources, called diffraction-limited storage rings (DLSR), with emittance approaching the diffraction limit for multi-keV photons by using multi-bend achromat lattice, has attracted worldwide and extensive studies of several laboratories, and been seriously considered as a means of upgrading existing facilities in the imminent future. Among various DLSR proposals, the PEPX design demonstrated that it is feasible to achieve sufficient ring acceptance for off-axis injection in a DLSR, by designing the lattice based on the ‘third-order achromat’ concept and with a special high-beta injection section. For the High Energy Photon Source (HEPS) planned to be built in Beijing, a PEPX-type lattice has been designed and continuously improved. In this paper, we report the evolution of the PEPX-type design for HEPS, and discuss the main issues relevant to the linear optics design and nonlinear optimization. Supported by NSFC (11475202, 11405187) and Youth Innovation Association of Chinese Academy of Sciences (2015009)

  19. Energy Sources and Development.

    ERIC Educational Resources Information Center

    Crank, Ron

    This instructional unit is one of 10 developed by students on various energy-related areas that deals specifically with energy sources and development. Its objective is for the student to be able to discuss energy sources and development related to the historical perspective, biological development, current aspects, and future expectations…

  20. Search for ultra high energy gamma-rays from various sources

    NASA Technical Reports Server (NTRS)

    Dzikowski, T.; Gawin, J.; Korejwo, J.; Grochalska, B.; Wdowczyk, J.

    1985-01-01

    The hypothesis that there exists an excess of showers from the Galactic plane on the level 1 to 2% at energies just above 10 to the 16th power eV is explored. The excess shower from the Galactic plane seems to be very similar in properties to excess showers from the point sources/flat spectrum, deficit of low energy muons. Those facts suggest that the excess from the Galactic plane are probably due to summing up of the contribution from individual point sources. That in turn suggest that those sources are rather numerous.

  1. Complex carbohydrates as a possible source of high energy to formulate functional feeds.

    PubMed

    Ochoa, Leonel; Paniagua Michel, José de Jesús; Olmos-Soto, Jorge

    2014-01-01

    Carbohydrates (CHOs) are the most abundant organic compounds found in living organisms and are a great source of metabolic energy, both for plants and animals. Besides of CHOs great potential to solve animal's energy requirements and diminishing high feed cost, we first must to understand its digestibility and assimilation to avoid several inconvenients. Today, CHOs feed animal inclusions are of great concern about cost-benefits, animal's health status, and environmental pollution. In this chapter, we make a brief description about sugars (DP1-2), oligosaccharides (DP3-9), polysaccharides (DP ≥10), and their essential characteristics to understand the role of marine and terrestrial CHOs in animal nutrition. Subsequently, we talk about basic concepts, CHOs functional benefits, suggestions about their application and successful cases. This information will contribute to produce a new generation of high-quality and energetic functional feed formulations for livestock and aquaculture farms; which must be of low cost, healthy, and environmentally friendly, with the inclusion of prebiotics and probiotics. PMID:25300550

  2. Two source energy balance model-refinements and lysimeter tests in the Southern High Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A thermal two-source energy balance model (TSM) was evaluated for predicting daily evapotranspiration (ET) of alfalfa, corn, cotton, grain sorghum, soybean, and wheat in a semiarid, advective environment. Crop ET was measured with large, monolythic weighing lysimeters. The TSM solved the energy budg...

  3. Two source energy balance model:Refinements and lysimeter tests in the Southern High Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    A thermal two-source energy balance model (TSM) was evaluated for predicting daily evapotranspiration (ET) of alfalfa, corn, cotton, grain sorghum, soybean, and wheat in a semiarid, advective environment. Crop ET was measured with large, monolythic weighing lysimeters. The TSM solved the energy budg...

  4. On the possibility of observing cosmic ray sources in high energy gamma rays

    NASA Technical Reports Server (NTRS)

    Ormes, J. F.

    1987-01-01

    If cosmic rays are accelerated by strong shocks, then cosmic ray sources should be characterized by spectra, dN/dE alpha E exp -(2.0-2.2), reflecting the strength of those shocks. This is expected from the 'standard leaky box' model of cosmic ray propagation in which the source spectra are harder than the observed spectra because higher energy particles have shorter residence times in the galactic magnetic fields. Furthermore, data on cosmic ray nucleons suggest that these sources might be surrounded by material. If the latter is true, such sources should be observable in gamma rays at energies beyond 1 GeV where the angular resolution of gamma-ray telescopes is optimized and the background is significantly reduced. For identified sources, the source location accuracy can be shown to improve with increasing energy in spite of the decreasing statistics, as long as the gamma-ray spectrum is harder than dN/dE alpha E exp -gamma. A Monte Carlo model is used to predict the photon spectra which would be expected from cosmic ray sources under varying assumptions about the strength of the shocks in the acceleration region.

  5. Z-pinches as intense x-ray sources for high energy density physics application

    SciTech Connect

    Matzen, M.K.

    1997-02-01

    Fast z-pinch implosions can convert more than 10% of the stored electrical energy in a pulsed-power accelerator into x rays. These x rays are produced when an imploding cylindrical plasma, driven by the magnetic field pressure associated with very large axial currents, stagnates upon the cylindrical axis of symmetry. On the Saturn pulsed-power accelerator at Sandia National Laboratories, for example, currents of 6 to 8 MA with a risetime of less than 50 ns are driven through cylindrically-symmetric loads, producing implosions velocities as high as 100 cm/{mu}s and x-ray energies as high as 500 kJ. The keV component of the resulting x-ray spectrum has been used for many years 8 a radiation source for material response studies. Alternatively, the x-ray output can be thermalized into a near-Planckian x-ray source by containing it within a large cylindrical radiation case. These large volume, long-lived radiation sources have recently been used for ICF-relevant ablator physics experiments as well as astrophysical opacity and radiation-material interaction experiments. Hydromagnetic Rayleigh-Taylor instabilities and cylindrical load symmetry are critical, limiting factors in determining the assembled plasma densities and temperatures, and thus in the x-ray pulse widths that can be produced on these accelerators. In recent experiments on the Saturn accelerator, these implosion nonuniformities have been minimized by using uniform-fill gas puff loads or by using wire arrays with as many a 192 wires. These techniques produced significant improvements in the pinched plasma quality, Zn reproducibility, and x-ray output power. X-ray pulse widths of less than 5 ns and peak powers of 75{+-}10 TW have been achieved with arrays of 120 tungsten wires. These powers represent greater than a factor of three in power amplification over the electrical power of the Saturn n accelerator, and are a record for x-ray powers in the laboratory.

  6. High-Energy Density science at the Linac Coherent Light Source

    DOE PAGESBeta

    Glenzer, S. H.; Fletcher, L. B.; Hastings, J. B.

    2016-03-01

    The Matter in Extreme Conditions end station at the Linac Coherent Light Source holds great promise for novel pump-probe experiments to make new discoveries in high- energy density science. Recently, our experiments have demonstrated the first spectrally- resolved measurements of plasmons using a seeded 8-keV x-ray laser beam. Forward x-ray Thomson scattering spectra from isochorically heated solid aluminum show a well-resolved plasmon feature that is down-shifted in energy by 19 eV from the incident 8 keV elastic scattering feature. In this spectral range, the simultaneously measured backscatter spectrum shows no spectral features indicating observation of collective plasmon oscillations on amore » scattering length comparable to the screening length. Moreover, this technique is a prerequisite for Thomson scattering measurements in compressed matter where the plasmon shift is a sensitive function of the free electron density and where the plasmon intensity provides information on temperature.« less

  7. Optimizing the operation of a high resolution vertical Johann spectrometer using a high energy fluorescer x-ray source

    SciTech Connect

    Haugh, Michael; Stewart, Richard

    2010-10-15

    This paper describes the operation and testing for a vertical Johann spectrometer (VJS) operating in the 13 keV range. The spectrometer is designed to use thin curved mica crystals or thick germanium crystals. The VJS must have a resolution of E/{Delta}E=3000 or better to measure the Doppler broadening of highly ionized krypton and operate at a small x-ray angle in order to be used as a diagnostic in a laser plasma target chamber. The VJS was aligned, tested, and optimized using a fluorescer type high energy x-ray (HEX) source located at National Security Technologies (NSTec), LLC, in Livermore, CA. The HEX uses a 160 kV x-ray tube to excite fluorescence from various targets. Both rubidium and bismuth fluorescers were used for this effort. This presentation describes the NSTec HEX system and the methods used to optimize and characterize the VJS performance.

  8. High-Energy Cosmic Ray Self-Confinement Close to Extra-Galactic Sources.

    PubMed

    Blasi, Pasquale; Amato, Elena; D'Angelo, Marta

    2015-09-18

    The ultrahigh-energy cosmic rays observed on the Earth are most likely accelerated in extra-Galactic sources. For the typical luminosities invoked for such sources, the electric current associated to the flux of cosmic rays that leave them is large. The associated plasma instabilities create magnetic fluctuations that can efficiently scatter particles. We argue that this phenomenon forces cosmic rays to be self-confined in the source proximity for energies Esources for energies Esource luminosity in units of 10^{44} erg/s. PMID:26430978

  9. High-Energy Cosmic Ray Self-Confinement Close to Extra-Galactic Sources

    NASA Astrophysics Data System (ADS)

    Blasi, Pasquale; Amato, Elena; D'Angelo, Marta

    2015-09-01

    The ultrahigh-energy cosmic rays observed on the Earth are most likely accelerated in extra-Galactic sources. For the typical luminosities invoked for such sources, the electric current associated to the flux of cosmic rays that leave them is large. The associated plasma instabilities create magnetic fluctuations that can efficiently scatter particles. We argue that this phenomenon forces cosmic rays to be self-confined in the source proximity for energies E sources for energies E source luminosity in units of 1044 erg /s .

  10. Bounds on the density of sources of ultra-high energy cosmic rays from the Pierre Auger Observatory

    SciTech Connect

    Collaboration: Pierre Auger Collaboration

    2013-05-01

    We derive lower bounds on the density of sources of ultra-high energy cosmic rays from the lack of significant clustering in the arrival directions of the highest energy events detected at the Pierre Auger Observatory. The density of uniformly distributed sources of equal intrinsic intensity was found to be larger than ∼ (0.06−5) × 10{sup −4} Mpc{sup −3} at 95% CL, depending on the magnitude of the magnetic deflections. Similar bounds, in the range (0.2−7) × 10{sup −4} Mpc{sup −3}, were obtained for sources following the local matter distribution.

  11. Time correlations between low and high energy gamma rays from discrete sources

    NASA Technical Reports Server (NTRS)

    Ellsworth, R. W.

    1995-01-01

    Activities covered the following areas: (1) continuing analysis of the Cygnus Experiment data on the shadowing of cosmic rays by the moon and sun, which led to a direct confirmation of the angular resolution of the CYGNUS EAS array; and (2) development of analysis methods for the daily search overlapping with EGRET targets. To date, no steady emission of ultrahigh energy (UHE) gamma rays from any source has been detected by the Cygnus Experiment, but some evidence for sporadic emission had been found. Upper limits on steady fluxes from 49 sources in the northern hemisphere have been published. In addition, a daily search of 51 possible sources over the interval April 1986 to June 1992 found no evidence for emission. From these source lists, four candidates were selected for comparison with EGRET data.

  12. In-source resonance ionization spectroscopy of high lying energy levels in atomic uranium

    NASA Astrophysics Data System (ADS)

    Raeder, Sebastian; Fies, Silke; Gottwald, Tina; Mattolat, Christoph; Rothe, Sebastian; Wendt, Klaus

    2010-02-01

    In-source resonance ionization spectroscopy of uranium has been carried out as preparation for the analysis of low contaminations of nuclear material in environmental samples via laser mass spectrometry. Using three-step resonance ionization spectroscopy, 86 levels of odd parity in the energy range from 37,200-38,650 cm - 1 were studied, 51 of these levels were previously unknown. Suitable excitation schemes for analytic applications are discussed.

  13. Effect of high energy electrons on H- production and destruction in a high current DC negative ion source for cyclotron

    NASA Astrophysics Data System (ADS)

    Onai, M.; Etoh, H.; Aoki, Y.; Shibata, T.; Mattei, S.; Fujita, S.; Hatayama, A.; Lettry, J.

    2016-02-01

    Recently, a filament driven multi-cusp negative ion source has been developed for proton cyclotrons in medical applications. In this study, numerical modeling of the filament arc-discharge source plasma has been done with kinetic modeling of electrons in the ion source plasmas by the multi-cusp arc-discharge code and zero dimensional rate equations for hydrogen molecules and negative ions. In this paper, main focus is placed on the effects of the arc-discharge power on the electron energy distribution function and the resultant H- production. The modelling results reasonably explains the dependence of the H- extraction current on the arc-discharge power in the experiments.

  14. A liquid metal ion source in a high energy microprobe setup

    NASA Astrophysics Data System (ADS)

    Adamczewski, J.; Stephan, A.; Meijer, J.; Becker, H. W.; Bukow, H. H.; Rolfs, C.

    1999-10-01

    We describe first experiments with a new arrangement of the Bochum superconducting solenoid microprobe using a single ended electrostatic accelerator and the implementation of a high brightness Ga liquid metal ion source. In this setup the accelerator and the microprobe components are mounted on a common optical bench which is mechanically decoupled from the laboratory building via a separate basement. Care had to be taken of the ion optical adaptation of the source to the accelerator tube in order to preserve the source brightness in the entire experimental setup. The emittance characteristic of the Ga ion beam was determined directly at the location of the microprobe via automatic emittance scanning using the computer controlled slit system of the setup. By this means the parameters of the unfocused beam could be measured for both the accelerated case (315 keV) and the unaccelerated case (30 keV). It could be shown that the observed brightness of the source behind the extraction optics is about three orders of magnitude less than values quoted in the literature (˜10 6 A m -2 rad -2 eV -1) which were deduced from the virtual source size and the angular current density of the ion beam at the source tip. The parameters of the focused beam are presented.

  15. Identification of High Energy Gamma-Ray Sources And Source Populations in the Era of Deep All-Sky Coverage

    SciTech Connect

    Reimer, Olaf; Torres, Diego F.; /ICREA, Barcelona /Barcelona, IEEC

    2007-04-17

    A large fraction of the anticipated source detections by the Gamma-ray Large Area Space Telescope (GLAST-LAT) will initially be unidentified. We argue that traditional approaches to identify individuals and/or populations of gamma ray sources will encounter procedural limitations. Those limitations are discussed on the background of source identifications from EGRET observations. Generally, our ability to classify (faint) source populations in the anticipated GLAST dataset with the required degree of statistical confidence will be hampered by sheer source wealth. A new paradigm for achieving the classification of gamma ray source populations is discussed.

  16. High-energy, efficient, 30-Hz ultraviolet laser sources for airborne ozone-lidar systems.

    PubMed

    Elsayed, Khaled A; Chen, Songsheng; Petway, Larry B; Meadows, Byron L; Marsh, Waverly D; Edwards, William C; Barnes, James C; DeYoung, Russell J

    2002-05-20

    Two compact, high-pulse-energy, injection-seeded, 30-Hz frequency-doubled Nd:YAG-laser-pumped Ti: sapphire lasers were developed and operated at infrared wavelengths of 867 and 900 nm. Beams with laser pulse energy >30 mJ at ultraviolet wavelengths of 289 and 300 nm were generated through a tripling of the frequencies of these Ti:sapphire lasers. This work is directed at the replacement of dye lasers for use in an airborne ozone differential absorption lidar system. The ultraviolet pulse energy at 289 and 300 nm had 27% and 31% absolute optical energy conversion efficiencies from input pulse energies at 867 and 900 nm, respectively. PMID:12027160

  17. Quightness: A proposed figure of merit for sources of low-energy, high-charge-state ions

    NASA Astrophysics Data System (ADS)

    Schmieder, Robert W.

    1990-03-01

    A variety of ion sources, including the EBIS and ECRIS, are distinguished by their ability to produce low-energy ions of very high charge state. It would be useful to have some figure of merit that is particularly sensitive to this performance. I propose here such a quantity, called ``Quightness,'' which is related to brightness but which enhances the contrast between sources supplying multicharged ions of low energy. The rationale for introducing this quantity, its etymology and relationship to other figures of merit, and some representative values are presented.

  18. High brightness electron sources

    SciTech Connect

    Sheffield, R.L.

    1995-07-01

    High energy physics accelerators and free electron lasers put increased demands on the electron beam sources. This paper describes the present research on attaining intense bright electron beams using photoinjectors. Recent results from the experimental programs will be given. The performance advantages and difficulties presently faced by researchers will be discussed, and the following topics will be covered. Progress has been made in photocathode materials, both in lifetime and quantum efficiency. Cesium telluride has demonstrated significantly longer lifetimes than cesium antimonide at 10{sup {minus}8} torr. However, the laser system is more difficult because cesium telluride requires quadrupled YLF instead of the doubled YLF required for cesium antimonide. The difficulty in using photoinjectors is primarily the drive laser, in particular the amplitude stability. Finally, emittance measurements of photoinjector systems can be complicated by the non-thermal nature of the electron beam. An example of the difficulty in measuring beam emittance is given.

  19. Locating very high energy gamma-ray sources with arcminute accuracy

    NASA Technical Reports Server (NTRS)

    Akerlof, C. W.; Cawley, M. F.; Chantell, M.; Harris, K.; Lawrence, M. A.; Fegan, D. J.; Lang, M. J.; Hillas, A. M.; Jennings, D. G.; Lamb, R. C.

    1991-01-01

    The angular accuracy of gamma-ray detectors is intrinsically limited by the physical processes involved in photon detection. Although a number of pointlike sources were detected by the COS B satellite, only two have been unambiguously identified by time signature with counterparts at longer wavelengths. By taking advantage of the extended longitudinal structure of VHE gamma-ray showers, measurements in the TeV energy range can pinpoint source coordinates to arcminute accuracy. This has now been demonstrated with new data analysis procedures applied to observations of the Crab Nebula using Cherenkov air shower imaging techniques. With two telescopes in coincidence, the individual event circular probable error will be 0.13 deg. The half-cone angle of the field of view is effectively 1 deg.

  20. A Bright Source of High-Energy X-rays: Final Report on LDRD Project 04-FS-007

    SciTech Connect

    Colvin, J D; Felter, T E; Searson, P C; Chen, M

    2005-02-03

    We have demonstrated the feasibility of fabricating pure-metal foams via a novel four-step technique based upon ion beam lithography. In this report we discuss why and how such foams are useful as bright, high-photon-energy x-ray sources; the details of the fabrication technique we employed to make such foams; the results obtained; and what we plan to do in the future to improve the technique and turn the foams so fabricated into real laser targets for high-brightness, high-energy back lighting.

  1. Counter-facing plasma focus system as a repetitive and/or long-pulse high energy density plasma source

    NASA Astrophysics Data System (ADS)

    Aoyama, Yutaka; Nakajima, Mitsuo; Horioka, Kazuhiko

    2009-11-01

    A plasma focus system composed of a pair of counter-facing coaxial plasma guns is proposed as a long-pulse and/or repetitive high energy density plasma source. A proof-of-concept experiment demonstrated that with an assist of breakdown and outer electrode connections, current sheets evolved into a configuration for stable plasma confinement at the center of the electrodes. The current sheets could successively compress and confine the high energy density plasma every half period of the discharge current, enabling highly repetitive light emissions in extreme ultraviolet region with time durations in at least ten microseconds.

  2. A high resolution gas scintillation proportional counter for studying low energy cosmic X-ray sources

    NASA Technical Reports Server (NTRS)

    Hamilton, T. T.; Hailey, C. J.; Ku, W. H.-M.; Novick, R.

    1980-01-01

    In recent years much effort has been devoted to the development of large area gas scintillation proportional counters (GSPCs) suitable for use in X-ray astronomy. The paper deals with a low-energy GSPC for use in detecting sub-keV X-rays from cosmic sources. This instrument has a measured energy resolution of 85 eV (FWHM) at 149 eV over a sensitive area of 5 sq cm. The development of imaging capability for this instrument is discussed. Tests are performed on the feasibility of using an arrangement of several phototubes placed adjacent to one another to determine event locations in a large flat counter. A simple prototype has been constructed and successfully operated.

  3. [Feasibility of Developing Post High School Technician Programs for Emerging Energy Sources in Southwestern United States.] Policies and Manpower Needs Related to Emerging Energy Sources in Arizona and New Mexico. Final Report.

    ERIC Educational Resources Information Center

    Edington, Everett; And Others

    The energy manpower research project was established to review the process used to identify skills needed in emerging energy sources and to discover any new occupations for which additional post-high school, vocational/technical training would be needed. A supplemental part of the project was the development of a solar energy instructional module.…

  4. Electron beam effective source surface distances for a high energy linear accelerator.

    PubMed

    Sharma, S C; Johnson, M W

    1991-06-01

    The design of the Varian Clinac 1800 linear accelerator electron applicator system does not allow clearance for all head and neck patients to be treated at the standard calibration distance of 100 cm. Discrepancies have been found between dose calculations using the inverse square law for extended distances and their measured data. A 4 X 4 cm2 applicator at an energy of 9 MeV, for example, had dose differences of 13 and 23% at distances of 105 and 110 cm SSD. Because of these discrepancies, effective source surface distances (SSDeff) were determined for all the standard electron energies and applicators of a Clinac 1800. These effective source surface distances ranged from 41.6 cm to 92.6 cm for the 4 X 4 cm2 cone/6 MeV electron beam through the 25 X 25 cm2 cone/20 MeV electron beam. A summary of these distances and an analysis of the clinical use of both a best fit SSDeff and a common SSDeff for patient dosimetry calculations is presented. PMID:1907830

  5. Effect of high energy electrons on H⁻ production and destruction in a high current DC negative ion source for cyclotron.

    PubMed

    Onai, M; Etoh, H; Aoki, Y; Shibata, T; Mattei, S; Fujita, S; Hatayama, A; Lettry, J

    2016-02-01

    Recently, a filament driven multi-cusp negative ion source has been developed for proton cyclotrons in medical applications. In this study, numerical modeling of the filament arc-discharge source plasma has been done with kinetic modeling of electrons in the ion source plasmas by the multi-cusp arc-discharge code and zero dimensional rate equations for hydrogen molecules and negative ions. In this paper, main focus is placed on the effects of the arc-discharge power on the electron energy distribution function and the resultant H(-) production. The modelling results reasonably explains the dependence of the H(-) extraction current on the arc-discharge power in the experiments. PMID:26932009

  6. MEASUREMENT OF THE HIGH ENERGY COMPONENT OF THE X-RAY SPECTRA INTHE VENUS ECR ION SOURCE

    SciTech Connect

    Leitner, Daniela; Benitez, Janilee Y.; Lyneis, Claude M.; Todd,Damon S.; Ropponen,Tommi; Ropponen,Janne; Koivisto, Hannu; Gammino, Santo

    2007-11-15

    High performance electron cyclotron resonance (ECR) ion sources, such as VENUS (Versatile ECR for Nuclear Science), produce large amounts of x-rays. By studying their energy spectra, conclusions can be drawn about the electron heating process and the electron confinement. In addition, the bremsstrahlung from the plasma chamber is partly absorbed by the cold mass of the superconducting magnet adding an extra heat load to the cryostat. Germanium or NaI detectors are generally used for x-ray measurements. Due to the high x-ray flux from the source, the experimental set-up to measure bremsstrahlung spectra from ECR ion sources is somewhat different than for the traditional nuclear physics measurements these detectors are generally used for. In particular the collimation and background shielding can be problematic. In this paper we will discuss the experimental set-up for such a measurement, the energy calibration and background reduction, the correction for detector efficiency, the shielding of the detector and collimation of the x-ray flux. We will present x-ray energy spectra and cryostat heating rates in dependence of various ion source parameters such as confinement fields, minimum B-field, rf power and heating frequency.

  7. Measurement of the high energy component of the x-ray spectra in the VENUS electron cyclotron resonance ion source

    SciTech Connect

    Leitner, D.; Benitez, J. Y.; Lyneis, C. M.; Todd, D. S.; Ropponen, T.; Ropponen, J.; Koivisto, H.; Gammino, S.

    2008-03-15

    High performance electron cyclotron resonance (ECR) ion sources, such as VENUS (Versatile ECR for NUclear Science), produce large amounts of x-rays. By studying their energy spectra, conclusions can be drawn about the electron heating process and the electron confinement. In addition, the bremsstrahlung from the plasma chamber is partly absorbed by the cold mass of the superconducting magnet, adding an extra heat load to the cryostat. Germanium or NaI detectors are generally used for x-ray measurements. Due to the high x-ray flux from the source, the experimental setup to measure bremsstrahlung spectra from ECR ion sources is somewhat different from that for the traditional nuclear physics measurements these detectors are generally used for. In particular, the collimation and background shielding can be problematic. In this paper, we will discuss the experimental setup for such a measurement, the energy calibration and background reduction, the shielding of the detector, and collimation of the x-ray flux. We will present x-ray energy spectra and cryostat heating rates depending on various ion source parameters, such as confinement fields, minimum B-field, rf power, and heating frequency.

  8. High energy neutron radiography

    SciTech Connect

    Gavron, A.; Morley, K.; Morris, C.; Seestrom, S.; Ullmann, J.; Yates, G.; Zumbro, J.

    1996-06-01

    High-energy spallation neutron sources are now being considered in the US and elsewhere as a replacement for neutron beams produced by reactors. High-energy and high intensity neutron beams, produced by unmoderated spallation sources, open potential new vistas of neutron radiography. The authors discuss the basic advantages and disadvantages of high-energy neutron radiography, and consider some experimental results obtained at the Weapons Neutron Research (WNR) facility at Los Alamos.

  9. Development of Compact Electron Cyclotron Resonance Ion Source with Permanent Magnets for High-Energy Carbon-Ion Therapy

    SciTech Connect

    Muramatsu, M.; Kitagawa, A.; Iwata, Y.; Hojo, S.; Sakamoto, Y.; Sato, S.; Ogawa, Hirotsugu; Yamada, S.; Ogawa, Hiroyuki; Yoshida, Y.; Ueda, T.; Miyazaki, H.; Drentje, A. G.

    2008-11-03

    Heavy-ion cancer treatment is being carried out at the Heavy Ion Medical Accelerator in Chiba (HIMAC) with 140 to 400 MeV/n carbon ions at National Institute of Radiological Sciences (NIRS) since 1994. At NIRS, more than 4,000 patients have been treated, and the clinical efficiency of carbon ion radiotherapy has been demonstrated for many diseases. A more compact accelerator facility for cancer therapy is now being constricted at the Gunma University. In order to reduce the size of the injector (consists of ion source, low-energy beam transport and post-accelerator Linac include these power supply and cooling system), an ion source requires production of highly charged carbon ions, lower electric power for easy installation of the source on a high-voltage platform, long lifetime and easy operation. A compact Electron Cyclotron Resonance Ion Source (ECRIS) with all permanent magnets is one of the best types for this purpose. An ECRIS has advantage for production of highly charged ions. A permanent magnet is suitable for reduce the electric power and cooling system. For this, a 10 GHz compact ECRIS with all permanent magnets (Kei2-source) was developed. The maximum mirror magnetic fields on the beam axis are 0.59 T at the extraction side and 0.87 T at the gas-injection side, while the minimum B strength is 0.25 T. These parameters have been optimized for the production of C{sup 4+} based on experience at the 10 GHz NIRS-ECR ion source. The Kei2-source has a diameter of 320 mm and a length of 295 mm. The beam intensity of C{sup 4+} was obtained to be 618 e{mu}A under an extraction voltage of 30 kV. Outline of the heavy ion therapy and development of the compact ion source for new facility are described in this paper.

  10. Development of Compact Electron Cyclotron Resonance Ion Source with Permanent Magnets for High-Energy Carbon-Ion Therapy

    NASA Astrophysics Data System (ADS)

    Muramatsu, M.; Kitagawa, A.; Iwata, Y.; Hojo, S.; Sakamoto, Y.; Sato, S.; Ogawa, Hirotsugu; Yamada, S.; Ogawa, Hiroyuki; Yoshida, Y.; Ueda, T.; Miyazaki, H.; Drentje, A. G.

    2008-11-01

    Heavy-ion cancer treatment is being carried out at the Heavy Ion Medical Accelerator in Chiba (HIMAC) with 140 to 400 MeV/n carbon ions at National Institute of Radiological Sciences (NIRS) since 1994. At NIRS, more than 4,000 patients have been treated, and the clinical efficiency of carbon ion radiotherapy has been demonstrated for many diseases. A more compact accelerator facility for cancer therapy is now being constricted at the Gunma University. In order to reduce the size of the injector (consists of ion source, low-energy beam transport and post-accelerator Linac include these power supply and cooling system), an ion source requires production of highly charged carbon ions, lower electric power for easy installation of the source on a high-voltage platform, long lifetime and easy operation. A compact Electron Cyclotron Resonance Ion Source (ECRIS) with all permanent magnets is one of the best types for this purpose. An ECRIS has advantage for production of highly charged ions. A permanent magnet is suitable for reduce the electric power and cooling system. For this, a 10 GHz compact ECRIS with all permanent magnets (Kei2-source) was developed. The maximum mirror magnetic fields on the beam axis are 0.59 T at the extraction side and 0.87 T at the gas-injection side, while the minimum B strength is 0.25 T. These parameters have been optimized for the production of C4+ based on experience at the 10 GHz NIRS-ECR ion source. The Kei2-source has a diameter of 320 mm and a length of 295 mm. The beam intensity of C4+ was obtained to be 618 eμA under an extraction voltage of 30 kV. Outline of the heavy ion therapy and development of the compact ion source for new facility are described in this paper.

  11. Embedded star clusters as sources of high-energy cosmic rays . Modelling and constraints

    NASA Astrophysics Data System (ADS)

    Maurin, G.; Marcowith, A.; Komin, N.; Krayzel, F.; Lamanna, G.

    2016-06-01

    Context. Massive stars are mainly found in stellar associations. These massive star clusters occur in the heart of giant molecular clouds. The strong stellar wind activity in these objects generates large bubbles and induces collective effects that could accelerate particles up to high energy and produce γ-rays. The best way to input an acceleration origin to the stellar wind interaction in massive stellar cluster is to observe young massive star clusters in which no supernova explosion has occurred yet. Aims: This work aims to constrain the part of stellar wind mechanical energy that is converted into energetic particles using the sensitivity of the ongoing Fermi-LAT instrument. This work further provides detailed predictions of expected γ-ray fluxes in the view of the on-set of the next generation of imaging atmospheric Cherenkov telescopes. Methods: A one-zone model where energetic particles are accelerated by repeated interactions with strong supersonic shocks occurring in massive star clusters was developed. The particle escape from the star cluster and subsequent interaction with the surrounding dense material and magnetic fields of the HII region was computed. We applied this model to a selection of eight embedded star clusters constricted by existing observations. We evaluated the γ-ray signal from each object, combining both leptonic and hadronic contributions. We searched for these emissions in the Fermi-LAT observations in the energy range from 3 to 300 GeV and compared them to the sensitivity of the Cherenkov Telescope Array (CTA). Results: No significant γ-ray emission from these star clusters has been found. Less than 10% of stellar wind luminosities are supplied to the relativistic particles. Some clusters even show acceleration efficiency of less than 1%. The CTA would be able to detect γ-ray emission from several clusters in the case of an acceleration efficiency of close to one percent.

  12. High energy metal ion implantation using `Magis`, a novel, broad-beam, Marx-generator-based ion source

    SciTech Connect

    Anders, A.; Brown, I.G.; Dickinson, M.R.; MacGill, R.A.

    1996-08-01

    Ion energy of the beam formed by an ion source is proportional to extractor voltage and ion charge state. Increasing the voltage is difficult and costly for extraction voltage over 100 kV. Here we explore the possibility of increasing the charge states of metal ions to facilitate high-energy, broad beam ion implantation at a moderate voltage level. Strategies to enhance the ion charge state include operating in the regimes of high-current vacuum sparks and short pulses. Using a time-of-flight technique we have measured charge states as high as 7+ (73 kA vacuum spark discharge) and 4+ (14 kA short pulse arc discharge), both for copper, with the mean ion charge states about 6.0 and 2.5, respectively. Pulsed discharges can conveniently be driven by a modified Marx generator, allowing operation of ``Magis`` with a single power supply (at ground potential) for both plasma production and ion extraction.

  13. Applying high frame-rate digital radiography and dual-energy distributed-sources for advanced tomosynthesis

    NASA Astrophysics Data System (ADS)

    Travish, Gil; Rangel, Felix J.; Evans, Mark A.; Schmiedehausen, Kristin

    2013-09-01

    Conventional radiography uses a single point x-ray source with a fan or cone beam to visualize various areas of the human body. An imager records the transmitted photons—historically film and now increasingly digital radiography (DR) flat panel detectors—followed by optional image post-processing. Some post-processing techniques of particular interest are tomosynthesis, and dual energy subtraction. Tomosynthesis adds the ability to recreate quasi-3D images from a series of 2D projections. These exposures are typically taken along an arc or other path; and, tomosynthesis reconstruction is used to form a three-dimensional representation of the area of interest. Dual-energy radiography adds the ability to enhance or "eliminate" structures based on their different attenuation of well-separated end-point energies in two exposures. These advanced capabilities come at a high cost in terms of complexity, imaging time, capital equipment, space, and potentially reduced image quality due to motion blur if acquired sequentially. Recently, the prospect of creating x-ray sources, which are composed of arrays of micro-emitters, has been put forward. These arrays offer a flat-panel geometry and may afford advantages in fabrication methodology, size and cost. They also facilitate the use of the dual energy technology. Here we examine the possibility of using such an array of x-ray sources combined with high frame-rate (~kHz) DR detectors to produce advanced medical images without the need for moving gantries or other complex motion systems. Combining the advantages of dual energy imaging with the ability to determine the relative depth location of anatomical structures or pathological findings from imaging procedures should prove to be a powerful diagnostic tool. We also present use cases that would benefit from the capabilities of this modality.

  14. On the high-energy gamma-ray signature of cosmic-ray sources

    NASA Technical Reports Server (NTRS)

    Ormes, J. F.; Ozel, M. E.; Morris, D. J.

    1988-01-01

    Monte Carlo simulations of the gamma-ray emission from hypothetical cosmic-ray sources are performed. Sources which might correspond to acceleration by supernova shocks in 'average' interstellar conditions and deep within giant molecular clouds are considered. The consequences of dropping the common assumption that the cosmic-ray spectrum at the sources is the same as that observed at earth are examined. Spectral effects which can be related to the depth of the material shroud and the population of accelerated particles are explored using these simulations and are described. The results are compared with the COS B catalog of gamma-ray sources, and the implications for the underlying particle populations and source mechanisms are discussed.

  15. The long-term Swift observations of the high-energy peaked BL Lacertae source 1ES 1959+650

    NASA Astrophysics Data System (ADS)

    Kapanadze, B.; Romano, P.; Vercellone, S.; Kapanadze, S.; Mdzinarishvili, T.; Kharshiladze, G.

    2016-03-01

    We present the results based on the monitoring of the high-energy peaked BL Lacertae object 1ES 1959+650 by the Swift satellite during 2005-2014. Our timing study shows that the source was highly variable on longer (weeks-to-months) time-scales with the 0.3-10 keV fluxes ranging by a factor of 8. It sometimes showed a significant intra-day variability in the course of ˜1 ks, detected mainly in the epochs of higher brightness states. The flux variability exhibited an erratic character and no signatures of periodic variations are revealed. The X-ray spectra were mainly curved with broad ranges of photon index, curvature parameter, hardness ratio, synchrotron spectral energy distribution (SED) peak location which exhibited a significant variability with the flux at different time-scales. Our study of multi-wavelength cross-correlations shows that the one-zone synchrotron self-Compton scenario was not always valid for 1ES 1959+650. The X-ray flares were sometimes not accompanied with an increasing activity in the γ-ray or lower-energy parts of the spectrum and vice versa. Similar to the prominent `orphan' TeV event in 2002, significant flares in the high-energy and very high energy bands in 2009 May and 2012 May were not accompanied by those in the synchrotron part of the spectrum. Similar to other TeV-detected high-energy peaked BLLs, the stochastic acceleration of the electrons from the magnetic turbulence close to the shock front may be more important for our target compared to other scenarios since it showed mainly broader synchrotron SEDs during the X-ray flares expected when the stochastic mechanism is more efficient.

  16. The effect of high energy concentration source irradiation on structure and properties of Fe-based bulk metallic glass

    NASA Astrophysics Data System (ADS)

    Pilarczyk, Wirginia

    2016-06-01

    Metallic glasses exhibit metastable structure and maintain this relatively stable amorphous state within certain temperature range. High intensity laser beam was used for the surface irradiation of Fe-Co-B-Si-Nb bulk metallic glasses. The variable parameter was laser beam pulse energy. For the analysis of structure and properties of bulk metallic glasses and their surface after laser remelting the X-ray analysis, microscopic observation and test of mechanical properties were carried out. Examination of the nanostructure of amorphous materials obtained by high pressure copper mold casting method and the irradiated with the use of TITAN 80-300 HRTEM was carried out. Nanohardness and reduced Young's modulus of particular amorphous and amorphous-crystalline material zone of the laser beam were examined with the use of Hysitron TI950 Triboindenter nanoindenter and with the use of Berkovich's indenter. The XRD and microscopic analysis showed that the test material is amorphous in its structure before irradiation. Microstructure observation with electron transmission microscopy gave information about alloy crystallization in the irradiated process. Identification of given crystal phases allows to determine the kind of crystal phases created in the first place and also further changes of phase composition of alloy. The main value of the nanohardness of the surface prepared by laser beam has the order of magnitude similar to bulk metallic glasses formed by casting process irrespective of the laser beam energy used. Research results analysis showed that the area between parent material and fusion zone is characterized by extraordinarily interesting structure which is and will be the subject of further analysis in the scope of bulk metallic glasses amorphous structure and high energy concentration source. The main goal of this work is the results' presentation of structure and chosen properties of the selected bulk metallic glasses after casting process and after irradiation

  17. High-Brightness Beam Generation and Characterization at the Advanced Photon Source Low-Energy Undulator Test Line Linac*

    NASA Astrophysics Data System (ADS)

    Lewellen, John; Biedron, Sandra; Borland, Michael; Hahne, Michael; Harkay, Katherine; Lumpkin, Alex; Milton, Stephen; Sereno, Nicholas; Travish, Gil

    2000-04-01

    Improvements to the Advanced Photon Source injector linac have been made to allow for the production and characterization of high-brightness beams in support of fourth-generation light source research. In particular, effort has been directed at generating beams suitable for use in the low-energy undulator test line (LEUTL) free-electron laser (FEL). We describe the enhancements to the linac operational and diagnostic capabilities that enabled self-amplified spontaneous emission (SASE) operation of the FEL at 530 nm. Electron beam measurement techniques and recent results will be discussed. Beam properties are measured under the same operational conditions as those used for FEL studies. The nominal FEL beam parameters are as follows: 217 MeV beam energy; less than 0.15 mm-mrad normalized emittance; 100 A peak current from a 0.7-nC charge at a 7-psec bunch. * Work supported by the U.S. Department of Energy, Office of Basic Energy Sciences, under Contract No. W-31-109-ENG-38

  18. Tentative study on high-photon-energy quasi-x-ray laser generator by forming plasma x-ray source

    NASA Astrophysics Data System (ADS)

    Sato, Eiichi; Hayasi, Yasuomi; Ichimaru, Toshio; Mori, Hidezo; Tanaka, Etsuro; Ojima, Hidenori; Takayama, Kazuyoshi; Usuki, Tatsumi; Sato, Koetsu; Sakamaki, Kimio; Tamakawa, Yoshiharu

    2001-04-01

    Tentative study on high-photon-energy quasi-x-ray-laser generator by forming plasma x-ray source is described. The generator employs a high-voltage power supply, a low-impedance coaxial transmission line, a high-voltage condenser with a capacity of about 200 nF, a turbo-molecular pump, a thyristor pulse generator as a trigger device, and a flash x-ray tube. The high-voltage main condenser is charged up to 60 kV by the power supply, and the electric charges in the condenser are discharged to the tube after triggering the cathode electrode. The flash x-rays are then produced. The x-ray tube is of a demountable triode that is connected to the turbo molecular pump with a pressure of approximately 1 mPa. As the electron flows from the cathode electrode are roughly converged to the copper target by the electric field in the tube, the plasma x- ray source, which consists of metal ions and electrons, forms by the target evaporating. Both the tube voltage and current displayed damped oscillations, and their peak values increased according to increases in the charging voltage. In the present work, the peak tube voltage was much higher than the initial charging voltage of the main condenser, and the peak current was about 25 kA with a charging voltage of 60 kV. When the charging voltage was increased, the plasma x-ray source formed, and the characteristic x-ray intensities of K-series lines increased. When the plate target was employed, we observed high-intensity characteristic x-rays from the axial direction of the linear plasma x-ray source. In the case where the rod target was employed, we detected higher-intensity characteristic x-rays.

  19. Non-conventional energy sources

    SciTech Connect

    Furlan, G.; Rodriguez, H.; Violini, G.

    1982-01-01

    This book presents the papers given at a conference on renewable energy sources. Topics considered at the conference included the estimate of global and diffuse radiation, thin films in photothermal solar energy conversion, solar collectors, prospects for photovoltaic products in the developing countries, passive energy systems in buildings, hydrogen fuels, geothermal energy, wind energy, tidal energy, and wave energy in developing countries.

  20. Potential of renewable and alternative energy sources

    NASA Astrophysics Data System (ADS)

    Konovalov, V.; Pogharnitskaya, O.; Rostovshchikova, A.; Matveenko, I.

    2015-11-01

    The article deals with application potential of clean alternative renewable energy sources. By means of system analysis the forecast for consumption of electrical energy in Tomsk Oblast as well as main energy sources of existing energy system have been studied up to 2018. Engineering potential of renewable and alternative energy sources is evaluated. Besides, ranking in the order of their efficiency descending is performed. It is concluded that Tomsk Oblast has high potential of alternative and renewable energy sources, among which the most promising development perspective is implementation of gasification stations to save fuel consumed by diesel power stations as well as building wind-power plants.

  1. Compact high-power/high-energy 2 μm and mid-infrared laser sources for OCM

    NASA Astrophysics Data System (ADS)

    Kieleck, C.; Hildenbrand, A.; Schellhorn, M.; Stoeppler, G.; Eichhorn, M.

    2013-10-01

    The paper describes two laser prototypes devoted to the jamming or the damaging of heat-seeking missiles for use in field trials. The semi-ruggedized compact jamming prototype is based either on an OP-GaAs or a ZnGeP2 (ZGP) OPO directly pumped by a 2.09 μm Q-switched Ho3+:YAG laser with up to 20 W of average power around 2.1 μm and an M2 of less than 1.1. For jamming in band II, up to 3.5 W of average power were obtained and repetition rates from 20 kHz to 100 kHz were achieved. For 3.5 W of averaged output power, the M2 of the signal and idler beams were estimated to be less than 1.2. The destruction laser consists of a Ho3+:LLF MOPA laser system which is used to pump a ZGP OPO. The maximum pulse energy of the Ho3+:LLF MOPA was 82 mJ at a repetition rate of 100 Hz. The pump beam quality was measured to M2x = 1.01 and M2y = 1.03 at a wavelength of 2053 nm. The total 3-5 μm energy obtained for destruction was 23.4 mJ, corresponding to an optical-to-optical conversion efficiency of 51 %. The M2 values of the signal were M2x = 1.81 and M2y = 1.98. The M2 values of the corresponding idler beam were M2x = 1.91 and M2y = 1.94, respectively. ISL is also currently working on new laser sources and non linear conversion setups for proposing new versions that should be more compact, more efficient and more integrable.

  2. Advances in the Two Source Energy Balance (TSEB) model using very high resolution remote sensing data in vineyards

    NASA Astrophysics Data System (ADS)

    Nieto Solana, H.; Kustas, W. P.; Torres-Rua, A. F.; ELarab, M.; Song, L.; Alfieri, J. G.; Prueger, J. H.; McKee, L.; Anderson, M. C.; Alsina, M. M.; Jensen, A.; McKee, M.

    2015-12-01

    The thermal-based Two Source Energy Balance (TSEB) model partitions the water and energy fluxes from vegetation and soil components providing thus the ability for estimating soil evaporation (E) and canopy transpiration (T) separately. However, it is crucial for ET partitioning to retrieve reliable estimates of canopy and soil temperatures as well as the net radiation partitioning (ΔRn), as the latter determines the available energy for water and heat exchange from soil and canopy sources. These two factors become especially relevant in agricultural areas, with vegetation clumped along rows and hence only partially covering the soil surface for much of the growing season. The effects on radiation and temperature partitioning is extreme for vineyards and orchards, where there is often significant separation between plants, resulting in strongly clumped vegetation with significant fraction of bare soil/substrate. To better understand the effects of strongly clumped vegetation on radiation and Land Surface Temperature (LST) partitioning very high spatial resolution remote sensing data acquired from an Unmanned Aerial System (UAS) were collected over vineyards in Califronia, as part of the Grape Remote sensing and Atmospheric Profile and Evapotranspiration eXperiment (GRAPEX).The multi-temporal observations from the UAS and very high pixel resolution permitted the estimation of reliable soil and leaf temperatures using a contextual algorithm based on the inverse relationship between LST and a vegetation index. An improvement in the algorithm estimating the effective leaf area index explicitly developed for vine rows and ΔRn using the 4SAIL Radiative Transfer Model is as well developed. The revisions to the TSEB model are evaluated with in situ measurements of energy fluxes and transmitted solar radiation. Results show that the modifications to the TSEB resulted in closer agreement with the flux tower measurements compared to the original TSEB model formulations. The

  3. Energy sources for Nigeria

    SciTech Connect

    Okoroji, C.E.I.

    1982-09-01

    A public consensus has developed on the need for national energy policies and better planning in the utilization of energy resources in Nigeria. A look at Nigeria's energy future is timely as a period of rapid technological growth and industrial development begins. At the present time, Nigeria exports a relatively high percentage (92%) of the petroleum produced annually. In addition, about 95% of all produced natural gas is flared. Only a relatively minor fraction of the coal produced is used and the rest exported to West African countries. Water power in Nigeria is not yet fully developed. Although the deposits of uranium and oil sand may be substantial, the reserves are not currently known. The proportions in which mineral fuels are used are not related to their relative abundance. Based on present production rates, domestic reserves of petroleum will last 20 years, those of natural gas 63 years, and those of coal 1503 years. Nigeria is not currently and is not likely to become self-sufficient in terms of energy requirements. During the past decade, Nigeria's population has increased by 28.4%. Of vital concern for the immediate future in Nigeria are the demands on energy consumption and mineral resources resulting from increasing population pressure.

  4. Talbot-Lau based Moiré deflectometry with non-coherent sources as potential High Energy Density plasma diagnostic

    SciTech Connect

    Valdivia, M. P.; Stutman, D.; Finkenthal, M.

    2013-10-28

    X-ray phase-contrast radiography could better characterize highly localized density gradients expected in High Energy Density (HED) plasma experiments than conventional attenuation radiography. In particular, the Talbot-Lau (TL) grating interferometer, which works with extended and polychromatic x-ray sources, is a potentially attractive HED diagnostic due to its high sensitivity. For HED characterization the TL setup and imaging techniques must be changed from the recently studied medical system. The object magnification must be increased greatly in order to resolve μm scale gradients while the Talbot magnification must be increased in order to keep the gratings away from the plasma. Additionally, techniques for retrieving the density profile from a single plasma image must be developed. We thus study the performance of high magnification TL interferometers, in conjunction with Moiré fringe deflectometry for single image phase retrieval. The results show a very good interferometer contrast (≤30%) at high magnification. The Moiré technique enables measuring both sharp and mild density gradients with good accuracy and spatial resolution. Both the laboratory and simulation studies indicate that the TL based Moiré deflectometry is more sensitive than the propagation phase-contrast method when utilizing an extended x-ray source (∼80 μm). In HED experiments this would allow for less demanding X-ray backlighters than those used at present.

  5. Talbot-Lau based Moiré deflectometry with non-coherent sources as potential High Energy Density plasma diagnostic

    NASA Astrophysics Data System (ADS)

    Valdivia, M. P.; Stutman, D.; Finkenthal, M.

    2013-10-01

    X-ray phase-contrast radiography could better characterize highly localized density gradients expected in High Energy Density (HED) plasma experiments than conventional attenuation radiography. In particular, the Talbot-Lau (TL) grating interferometer, which works with extended and polychromatic x-ray sources, is a potentially attractive HED diagnostic due to its high sensitivity. For HED characterization the TL setup and imaging techniques must be changed from the recently studied medical system. The object magnification must be increased greatly in order to resolve μm scale gradients while the Talbot magnification must be increased in order to keep the gratings away from the plasma. Additionally, techniques for retrieving the density profile from a single plasma image must be developed. We thus study the performance of high magnification TL interferometers, in conjunction with Moiré fringe deflectometry for single image phase retrieval. The results show a very good interferometer contrast (≤30%) at high magnification. The Moiré technique enables measuring both sharp and mild density gradients with good accuracy and spatial resolution. Both the laboratory and simulation studies indicate that the TL based Moiré deflectometry is more sensitive than the propagation phase-contrast method when utilizing an extended x-ray source (˜80 μm). In HED experiments this would allow for less demanding X-ray backlighters than those used at present.

  6. Modeling surface energy fluxes over Texas High Plains using Two-Source Model

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Evapotranspiration (ET) is an essential component of the water balance and a major consumptive use of irrigation water and precipitation on cropland. In this study, we applied the Two-Source Model (TSM) to estimate hourly and daily ET from the Landsat Thematic Mapper (TM) data for the semi-arid Texa...

  7. Exploring the nature of the unidentified very-high-energy gamma-ray source HESS J1507-622

    NASA Astrophysics Data System (ADS)

    Domainko, W.; Ohm, S.

    2012-09-01

    Context. Several extended sources of very-high-energy (VHE; E > 100 GeV) gamma rays have been found that lack counterparts belonging to an established class of VHE gamma-ray emitters. Aims: The nature of the first unidentified VHE gamma-ray source with significant angular offset from the Galactic plane of 3.5°, HESS J1507-622, is explored. Methods.Fermi-LAT data in the high-energy (HE, 100 MeV < E < 100 GeV) gamma-ray range collected over 34 month are used to describe the spectral energy distribution (SED) of the source. Additionally, implications of the off-plane location of the source for a leptonic and hadronic gamma-ray emission model are investigated. Results: HESS J1507-622 is detected in the Fermi energy range and its spectrum is best described by a power law in energy with Γ = 1.7 ± 0.1stat ± 0.2sys and integral flux between (0.3-300) GeV of F = (2.0 ± 0.5stat ± 1.0sys) × 10-9 cm-2 s-1. The SED constructed from the Fermi and H.E.S.S. data for this source does not support a smooth power-law continuation from the VHE to the HE gamma-ray range. With the available data it is not possible to discriminate between a hadronic and a leptonic scenario for HESS J1507-622. The location and compactness of the source indicate a considerable physical offset from the Galactic plane for this object. In case of a multiple-kpc distance, this challenges a pulsar wind nebula (PWN) origin for HESS J1507-622 since the time of travel for a pulsar born in the Galactic disk to reach such a location would exceed the inverse Compton (IC) cooling time of electrons that are energetic enough to produce VHE gamma-rays. However, an origin of this gamma-ray source connected to a pulsar that was born off the Galactic plane in the explosion of a hypervelocity star cannot be excluded. Conclusions: The nature of HESS J1507-622 is still unknown to date, and a PWN scenario cannot be ruled out in general. On the contrary HESS J1507-622 could be the first discovered representative of a

  8. Systematic search for molecular clouds near supernova remnants as sources of very-high-energy γ-ray emission

    NASA Astrophysics Data System (ADS)

    Häffner, Stephanie; Stegmann, Christian; Jung-Richardt, Ira

    2015-12-01

    Supernova remnants accelerate particles up to energies of at least 100 TeV as established by observations in very-high-energy γ-ray astronomy. Molecular clouds in their vicinity provide an increased amount of target material for proton-proton interaction and subsequent neutral pion decay into γ-rays of accelerated hadrons escaping the remnant. Therefore, these molecular clouds are potential γ-ray sources. The γ-ray emission from these clouds provides a unique environment to derive information on the propagation of very-high-energy particles through the interstellar medium as well as on the acceleration of hadrons in supernova remnants. Current Imaging Atmospheric Cherenkov Telescope systems are suitable to explore a large parameter space of the propagation properties depending on the age of the supernova remnant and the distance between the remnant and the nearby molecular cloud. In this paper we present our strategy and results of a systematic search for γ-ray emitting molecular clouds near supernova remnants which are potentially detectable with current experiments in the TeV energy range and explore the prospects of future experiments.

  9. Development of A Semiconductor Laser Based High Temperature Fine Thermal Energy Source in an Optical Fiber Tip for Clinical Applications

    NASA Astrophysics Data System (ADS)

    Fujimoto, Takahiro; Imai, Yusuke; Tei, Kazuyoku; Yamaguchi, Shigeru

    2013-05-01

    A new technique for generating high temperatures on the surface of an optical fiber is developed for medical applications using lower-power semiconductor lasers with output powers lower than 10 W. Using a power level of 4-6 W semiconductor laser with a pulse duration of 180 ms at a wavelength of 980 nm, a laser-coupled fiber tip was once processed to contain a certain amount of Ti with a depth of 100 µm from the tip surface so that the laser energy could be efficiently absorbed to be transferred to thermal energy. With consecutive laser pulse irradiation, the tip processed fiber (TP fiber) served as a reproducible fine heat source whose temperature was measured to be in excess 3100 K based on two-color thermometry. Processing of ceramic and niobium plate, which are hardly ablated with direct low power (6 W) irradiation, was successfully demonstrated by contacting the TP fiber excited with the same power.

  10. Vacuum insulation of the high energy negative ion source for fusion application.

    PubMed

    Kojima, A; Hanada, M; Hilmi, A; Inoue, T; Watanabe, K; Taniguchi, M; Kashiwagi, M; Umeda, N; Tobari, H; Kobayashi, S; Yamano, Y; Grisham, L R

    2012-02-01

    Vacuum insulation on a large size negative ion accelerator with multiple extraction apertures and acceleration grids for fusion application was experimentally examined and designed. In the experiment, vacuum insulation characteristics were investigated in the JT-60 negative ion source with >1000 apertures on the grid with the surface area of ∼2 m(2). The sustainable voltages varied with a square root of the gap lengths between the grids, and decreased with number of the apertures and with the surface area of the grids. Based on the obtained results, the JT-60SA (super advanced) negative ion source is designed to produce 22 A, 500 keV D(-) ion beams for 100 s. PMID:22380274

  11. Vacuum insulation of the high energy negative ion source for fusion application

    SciTech Connect

    Kojima, A.; Hanada, M.; Inoue, T.; Watanabe, K.; Taniguchi, M.; Kashiwagi, M.; Umeda, N.; Tobari, H.; Hilmi, A.; Kobayashi, S.; Yamano, Y.; Grisham, L. R.

    2012-02-15

    Vacuum insulation on a large size negative ion accelerator with multiple extraction apertures and acceleration grids for fusion application was experimentally examined and designed. In the experiment, vacuum insulation characteristics were investigated in the JT-60 negative ion source with >1000 apertures on the grid with the surface area of {approx}2 m{sup 2}. The sustainable voltages varied with a square root of the gap lengths between the grids, and decreased with number of the apertures and with the surface area of the grids. Based on the obtained results, the JT-60SA (super advanced) negative ion source is designed to produce 22 A, 500 keV D{sup -} ion beams for 100 s.

  12. A high-energy, high-flux source of gamma-rays from all-optical non-linear Thomson scattering

    NASA Astrophysics Data System (ADS)

    Corvan, D. J.; Zepf, M.; Sarri, G.

    2016-09-01

    γ-Ray sources are among the most fundamental experimental tools currently available to modern physics. As well as the obvious benefits to fundamental research, an ultra-bright source of γ-rays could form the foundation of scanning of shipping containers for special nuclear materials and provide the bases for new types of cancer therapy. However, for these applications to prove viable, γ-ray sources must become compact and relatively cheap to manufacture. In recent years, advances in laser technology have formed the cornerstone of optical sources of high energy electrons which already have been used to generate synchrotron radiation on a compact scale. Exploiting the scattering induced by a second laser, one can further enhance the energy and number of photons produced provided the problems of synchronisation and compact γ-ray detection are solved. Here, we report on the work that has been done in developing an all-optical and hence, compact non-linear Thomson scattering source, including the new methods of synchronisation and compact γ-ray detection. We present evidence of the generation of multi-MeV (maximum 16-18 MeV) and ultra-high brilliance (exceeding 1020 photons s-1mm-2mrad-2 0.1% BW at 15 MeV) γ-ray beams. These characteristics are appealing for the paramount practical applications mentioned above.

  13. A New Paradigm for Identification of Classes of High Energy Gamma-Ray Sources

    SciTech Connect

    Torres, D F; Reimer, O

    2005-04-08

    A large fraction of the expected number of source detections of the forthcoming observatory Gamma-ray Large Area Space Telescope (GLAST) will be initially unidentified. We argue that traditional methodological approaches to identify individual detections and/or populations of gamma-ray sources present procedural limitations. These limitations will hamper our ability to classify the populations lying in the anticipated dataset with the required degree of confidence, in particular for those for which no member has yet been detected convincingly with the predecessor experiment EGRET. Here we suggest a new paradigm for achieving the classification of gamma-ray source populations that is based on implementing an a priori protocol to search for theoretically-motivated candidates. It is essential that such paradigm will be defined before the data is unblinded, in order to protect the discovery potential of the sample. Key to the new procedure is a quantitative assessment of the confidence level by which new populations can be claimed to have been discovered. When needed, small number statistics is applied for population studies in gamma-ray astronomy. Although we refer here explicitly only to the case of GLAST, the scheme we present can certainly be adapted to other experiments confronted with a similar combination of problems.

  14. A new array for the study of ultra high energy gamma-ray sources

    NASA Technical Reports Server (NTRS)

    Brooke, G.; Lambert, A.; Ogden, P. A.; Reid, R. J. O.; Patel, M.; Ferrett, J. C.; Watson, A. A.; West, A. A.

    1985-01-01

    The design and operation of a 32 x 1 10 to the 15th power sq m array of scintillation detectors for the detection of 10 to the 15th power eV cosmic rays is described with an expected angular resolution of 1 deg, thus improving the present signal/background ratio for gamma ray sources. Data are recorded on a hybrid CAMAC, an in-house system which uses a laser and Pockel-Cell arrangement to routinely calibrate the timing stability of the detectors.

  15. Broadband High-Energy Observations of the Superluminal Jet Source GRO J1655-40 During an Outburst

    NASA Technical Reports Server (NTRS)

    Zhang, S. N.; Ebisawa, K.; Sunyaev, R.; Ueda, Y.; Harmon, B. A.; Sazonov, S.; Fishman, G. J.; Inoue, H.; Paciesas, W. S.; Takahash, T.

    1997-01-01

    The X-ray/radio transient superluminal jet source GRO J1655-40 was recently suggested to contain a black hole from optical observations. Because it is a relatively close-by system (d approximately 3.2 kpc), it can likely provide us with rich information about the physics operating in both Galactic and extragalactic jet sources. We present the first simultaneous broadband high-energy observations of GRO J1655-40 during the 1995 July-August outburst by three instruments: ASCA, WATCH/Granat, and BATSE/CGRO, in the energy band from 1 keV to 2 MeV. Our observations strengthen the interpretation that GRO J1655-40 contains a black hole. We detected a two-component energy spectrum, commonly seen from other Galactic black hole binaries, but never detected from a neutron star system. Combining our results with the mass limits derived from optical radial velocity and orbital period measurements, we further constrain the mass of the central object to be between 3.3 and 5.8 solar mass, above the well-established mass upper limit of 3.2 solar mass for a neutron star (the optical mass function for GRO J1655-40 is 3.16 + 0.2 solar mass). This system is therefore the first Galactic superluminal jet source for which there is strong evidence that the system contains a stellar mass black hole. The inclination angle of the binary system is constrained to be between 76 deg and 87 deg, consistent with estimates obtained from optical light curves and radio jet kinematics.

  16. Optimizing the Operation of a Vertical Johann Spectrometer Using a High Energy Fluorescer X-ray Source

    SciTech Connect

    Haugh, Michael; Stewart, Richard

    2010-10-01

    This paper describes the operation and testing for a Vertical Johann Spectrometer (VJS) operating in the 13 keV range. The spectrometer is designed to use thin curved mica crystals or thick germanium crystals. The VJS must have a resolution E/ΔE=3000 or better to measure Doppler broadening of highly ionized krypton and operate at a small X-ray angle in order to be used as a diagnostic in a laser plasma target chamber. The VJS was aligned, tested, and optimized using a fluorescer type high energy X-ray (HEX) source located at National Security Technologies, LLC (NSTec), in Livermore, California. The HEX uses a 160 kV X-ray tube to excite fluorescence from various targets. Both rubidium and bismuth fluorescers were used for this effort. This presentation describes the NSTec HEX system and the methods used to optimize and characterize the VJS performance.

  17. Detection of spatially extended sources in high energy astrophysics with special application to lunar occultation

    NASA Astrophysics Data System (ADS)

    Jenke, Peter Alexander

    2009-01-01

    Occultation is a technique that enables image reconstruction and source identification with a non-imaging detector. Such an approach is well suited for a future survey mission in nuclear astrophysics. In particular, the Lunar Occultation Technique (LOT) utilizes the Moon as an occulting object and is the basis of a new gamma-ray survey mission concept, the Lunar OCcultation Observer (LOCO). Techniques utilizing the LOT to detect spatially extended emission, from the Galactic plane or Galactic Center region, have been developed. Given knowledge of detector position in lunar orbit, combined with lunar ephemeris and relevant coordinate transformations, occultation time series can be used to reconstruct skymaps of these extended Galactic emitters. Monte-Carlo Markov Chains (MCMC), incorporating the Metropolis-Hastings algorithm for parametric model testing, form the basis of the technique. Performance of the imaging methodology, and its application to nuclear astrophysics will be presented.

  18. Development of a Position Sensitive Neutron Detector with High Efficiency and Energy Resolution for Use at High-Flux Beam Sources.

    PubMed

    Markoff, Diane M; Cianciolo, Vince; Britton, Chuck L; Cooper, Ronald G; Greene, Geoff L

    2005-01-01

    We are developing a high-efficiency neutron detector with 1 cm position resolution and coarse energy resolution for use at high-flux neutron source facilities currently proposed or under construction. The detector concept integrates a segmented (3)He ionization chamber with the position sensitive, charged particle collection methods of a MicroMegas detector. Neutron absorption on the helium produces protons and tritons that ionize the fill gas. The charge is amplified in the field region around a wire mesh and subsequently detected in current mode by wire strips mounted on a substrate. One module consisting of a high-voltage plate, a field-shaping high-voltage plate, a grid and wire strips defines a detection region. For 100 % efficiency, detector modules are consecutively placed along the beam axis. Analysis over several regions with alternating wire strip orientation provides a two-dimensional beam profile. By using (3)He, a 1/v absorption gas, each axial region captures neutrons of a different energy range, providing an energy-sensitive detection scheme especially useful at continuous beam sources. PMID:27308166

  19. Development of a Position Sensitive Neutron Detector with High Efficiency and Energy Resolution for Use at High-Flux Beam Sources

    PubMed Central

    Markoff, Diane M.; Cianciolo, Vince; Britton, Chuck L.; Cooper, Ronald G.; Greene, Geoff L.

    2005-01-01

    We are developing a high-efficiency neutron detector with 1 cm position resolution and coarse energy resolution for use at high-flux neutron source facilities currently proposed or under construction. The detector concept integrates a segmented 3He ionization chamber with the position sensitive, charged particle collection methods of a MicroMegas detector. Neutron absorption on the helium produces protons and tritons that ionize the fill gas. The charge is amplified in the field region around a wire mesh and subsequently detected in current mode by wire strips mounted on a substrate. One module consisting of a high-voltage plate, a field-shaping high-voltage plate, a grid and wire strips defines a detection region. For 100 % efficiency, detector modules are consecutively placed along the beam axis. Analysis over several regions with alternating wire strip orientation provides a two-dimensional beam profile. By using 3He, a 1/v absorption gas, each axial region captures neutrons of a different energy range, providing an energy-sensitive detection scheme especially useful at continuous beam sources. PMID:27308166

  20. Fission Energy and Other Sources of Energy

    ERIC Educational Resources Information Center

    Alfven, Hannes

    1974-01-01

    Discusses different forms of energy sources and basic reasons for the opposition to the use of atomic energy. Suggests that research efforts should also be aimed toward the fission technology to make it acceptable besides major research studies conducted in the development of alternative energy sources. (CC)

  1. Suzaku Observation of the Unidentified Very High Energy Gamma-Ray Source HESS J1702-420

    NASA Astrophysics Data System (ADS)

    Fujinaga, Takahisa; Bamba, Aya; Dotani, Tadayasu; Ozaki, Masanobu; Pü:Hlhofer, Gerd; Wagner, Stefan; Reimer, Olaf; Funk, Stefan; Hinton, Jim

    2011-11-01

    A deep X-ray observation of the unidentified very high energy (VHE) gamma-ray source HESS J1702-420, for the first time, was carried out by Suzaku. No bright sources were detected in the XIS field of view (FOV), except for two faint point-like sources. The two sources, however, are considered not to be related to HESS J1702-420, because their fluxes in the 2-10 keV band (˜10-14 erg s-1 cm-2) are ˜3 orders of magnitude smaller than the VHE gamma-ray flux in the 1-10 TeV band (FTeV = 3.1 × 10-11 erg s-1 cm-2). We compared the energy spectrum of diffuse emission, extracted from the entire XIS FOV with those from nearby observations. If we consider the systematic error of background subtraction, no significant diffuse emission was detected with an upper limit of FX < 2.7 × 10-12 erg s-1 cm-2 in the 2-10 keV band for an assumed power-law spectrum of Γ = 2.1 and a source size same as that in the VHE band. The upper limit of the X-ray flux is twelve-times as small as the VHE gamma-ray flux. The large flux ratio (FTeV/FX) indicates that HESS J1702-420 is another example of a ``dark'' particle accelerator. If we use a simple one-zone leptonic model, in which VHE gamma-rays are produced through inverse Compton scattering of the cosmic microwave background and interstellar far-infrared emission, and the X-rays via the synchrotron mechanism, an upper limit of the magnetic field (1.7μG), is obtained from the flux ratio. Because the magnetic field is weaker than the typical value in the galactic plane (3-10 νG), the simple one-zone model may not work for HESS J1702-420 and a significant fraction of the VHE gamma-rays may originate from protons.

  2. Axion-like particle effects on the polarization of cosmic high-energy gamma sources

    SciTech Connect

    Bassan, Nicola; Mirizzi, Alessandro; Roncadelli, Marco E-mail: alessandro.mirizzi@desy.de

    2010-05-01

    Various satellite-borne missions are being planned to measure the polarization of a large number of gamma-ray bursts (GRBs). We show that the polarization pattern resulting from the current models of GRB emission can be drastically modified by the existence of very light axion-like particles (ALPs), which are predicted by many extensions of the Standard Model of particle physics. Basically, the propagation of photons emitted by a GRB through cosmic magnetic fields with a domain-like structure induces photon-ALP mixing, which is expected to produce a strong modification of the initial photon polarization. Because of the random orientation of the magnetic field in each domain, this effect strongly depends on the orientation of the line of sight. As a consequence, photon-ALP conversion considerably broadens the initial polarization distribution. Searching for such a peculiar feature through future high-statistics polarimetric measurements therefore offers a new opportunity to discover very light ALPs.

  3. The high energy spherical grating monochromator minus A new source of soft x rays at Daresbury (abstract)

    SciTech Connect

    Surman, M.; Cragg-Hine, I.; Singh, J.; Bowler, B.; Padmore, H.A.; Norman, D. ); Johnson, A.L.; Atrei, A.; Walter, W.K.; King, D.A. ); Davis, R.; Purcell, K.G.; Thornton, G. )

    1992-01-01

    In this article we report the characteristics of the new High Energy Spherical Grating Monochromator beam line on the SRS. The instrument, which has no entrance slit, was designed to provide high photon flux with small spot size, in the energy range covering the 1s binding energies of carbon, nitrogen, oxygen, and fluorine. Radiation from a bending magnet is horizontally focused onto the exit slit by a long, Pt-coated meridian cylinder ({ital R}=299 m, 2 mrad horiz. aperture, 2{degree} glancing angle). The light is vertically diffracted and focused by one of three interchangeable spherical gratings (1050, 1500, and 1800 lines mm{sup {minus}1}) operating in negative order. Finally, the light is refocused by an ellipsoidal mirror. The photon flux, determined with copper and carbon photocathodes, is presented for the three gratings. Useful flux is obtained in the range 250--1200 eV, with intensity maxima for each grating at 600, 700, and 800 eV of 11, 9, and 5{times}10{sup 10} photons s{sup {minus}1} per 100-mA stored beam into a band pass of 0.05%. The influence of contaminants which are present on the optical elements is discussed, together with details of beam line operating conditions which minimize the build up of such contaminants. Photoabsorption and photoemission measurements indicate a high (up to 30%) second order and some third order light content. Resolution determinations obtained from photoabsorption measurements are presented. Although features as narrow as 250 meV have been resolved, the resolving power of the instrument is found to depend strongly on stored beam current. We suggest this may be due to electron beam (i.e., source) blow-up. We critically discuss the suitability of the new facility for surface EXAFS of low {ital Z} adsorbates, in particular above the carbon, nitrogen, and oxygen 1s edges, using examples from recent studies which have been undertaken on the beamline.

  4. Blazars as Ultra-high-energy Cosmic-ray Sources: Implications for TeV Gamma-Ray Observations

    NASA Astrophysics Data System (ADS)

    Murase, Kohta; Dermer, Charles D.; Takami, Hajime; Migliori, Giulia

    2012-04-01

    The spectra of BL Lac objects and Fanaroff-Riley I radio galaxies are commonly explained by the one-zone leptonic synchrotron self-Compton (SSC) model. Spectral modeling of correlated multiwavelength data gives the comoving magnetic field strength, the bulk outflow Lorentz factor, and the emission region size. Assuming the validity of the SSC model, the Hillas condition shows that only in rare cases such sources accelerate protons to much above 1019 eV, so >~ 1020 eV ultra-high-energy cosmic rays (UHECRs) are likely to be heavy ions if powered by this type of radio-loud active galactic nuclei (AGNs). Survival of nuclei is shown to be possible in TeV BL Lacs and misaligned counterparts with weak photohadronic emissions. Another signature of hadronic production is intergalactic UHECR-induced cascade emission, which is an alternative explanation of the TeV spectra of some extreme non-variable blazars such as 1ES 0229+200 or 1ES 1101-232. We study this kind of cascade signal, taking into account effects of the structured extragalactic magnetic fields in which the sources should be embedded. We demonstrate the importance of cosmic-ray deflections on the γ-ray flux, and show that required absolute cosmic-ray luminosities are larger than the average UHECR luminosity inferred from UHECR observations and can even be comparable to the Eddington luminosity of supermassive black holes. Future TeV γ-ray observations using the Cerenkov Telescope Array and the High Altitude Water Cerenkov detector array can test for UHECR acceleration by observing >25 TeV photons from relatively low redshift sources such as 1ES 0229+200, and gsimTeV photons from more distant radio-loud AGNs.

  5. BLAZARS AS ULTRA-HIGH-ENERGY COSMIC-RAY SOURCES: IMPLICATIONS FOR TeV GAMMA-RAY OBSERVATIONS

    SciTech Connect

    Murase, Kohta; Dermer, Charles D.; Takami, Hajime; Migliori, Giulia

    2012-04-10

    The spectra of BL Lac objects and Fanaroff-Riley I radio galaxies are commonly explained by the one-zone leptonic synchrotron self-Compton (SSC) model. Spectral modeling of correlated multiwavelength data gives the comoving magnetic field strength, the bulk outflow Lorentz factor, and the emission region size. Assuming the validity of the SSC model, the Hillas condition shows that only in rare cases such sources accelerate protons to much above 10{sup 19} eV, so {approx}> 10{sup 20} eV ultra-high-energy cosmic rays (UHECRs) are likely to be heavy ions if powered by this type of radio-loud active galactic nuclei (AGNs). Survival of nuclei is shown to be possible in TeV BL Lacs and misaligned counterparts with weak photohadronic emissions. Another signature of hadronic production is intergalactic UHECR-induced cascade emission, which is an alternative explanation of the TeV spectra of some extreme non-variable blazars such as 1ES 0229+200 or 1ES 1101-232. We study this kind of cascade signal, taking into account effects of the structured extragalactic magnetic fields in which the sources should be embedded. We demonstrate the importance of cosmic-ray deflections on the {gamma}-ray flux, and show that required absolute cosmic-ray luminosities are larger than the average UHECR luminosity inferred from UHECR observations and can even be comparable to the Eddington luminosity of supermassive black holes. Future TeV {gamma}-ray observations using the Cerenkov Telescope Array and the High Altitude Water Cerenkov detector array can test for UHECR acceleration by observing >25 TeV photons from relatively low redshift sources such as 1ES 0229+200, and {approx}>TeV photons from more distant radio-loud AGNs.

  6. Advances in the Two Source Energy Balance (TSEB) model using very high resolution remote sensing data in vineyards

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The thermal-based Two Source Energy Balance (TSEB) model partitions the water and energy fluxes from vegetation and soil components providing thus the ability for estimating soil evaporation (E) and canopy transpiration (T) separately. However, it is crucial for ET partitioning to retrieve reliable ...

  7. Developing a bright 17 keV x-ray source for probing high-energy-density states of matter at high spatial resolution

    SciTech Connect

    Huntington, C. M.; Park, H.-S.; Maddox, B. R.; Barrios, M. A.; Benedetti, R.; Braun, D. G.; Landen, O. L.; Wehrenberg, C. E.; Remington, B. A.; Hohenberger, M.; Regan, S. P.

    2015-04-15

    A set of experiments were performed on the National Ignition Facility (NIF) to develop and optimize a bright, 17 keV x-ray backlighter probe using laser-irradiated Nb foils. High-resolution one-dimensional imaging was achieved using a 15 μm wide slit in a Ta substrate to aperture the Nb He{sub α} x-rays onto an open-aperture, time integrated camera. To optimize the x-ray source for imaging applications, the effect of laser pulse shape and spatial profile on the target was investigated. Two laser pulse shapes were used—a “prepulse” shape that included a 3 ns, low-intensity laser foot preceding the high-energy 2 ns square main laser drive, and a pulse without the laser foot. The laser spatial profile was varied by the use of continuous phase plates (CPPs) on a pair of shots compared to beams at best focus, without CPPs. A comprehensive set of common diagnostics allowed for a direct comparison of imaging resolution, total x-ray conversion efficiency, and x-ray spectrum between shots. The use of CPPs was seen to reduce the high-energy tail of the x-ray spectrum, whereas the laser pulse shape had little effect on the high-energy tail. The measured imaging resolution was comparably high for all combinations of laser parameters, but a higher x-ray flux was achieved without phase plates. This increased flux was the result of smaller laser spot sizes, which allowed us to arrange the laser focal spots from multiple beams and produce an x-ray source which was more localized behind the slit aperture. Our experiments are a first demonstration of point-projection geometry imaging at NIF at the energies (>10 keV) necessary for imaging denser, higher-Z targets than have previously been investigated.

  8. High-energy in-beam neutron measurements of metal-based shielding for accelerator-driven spallation neutron sources

    NASA Astrophysics Data System (ADS)

    DiJulio, D. D.; Cooper-Jensen, C. P.; Björgvinsdóttir, H.; Kokai, Z.; Bentley, P. M.

    2016-05-01

    Metal-based shielding plays an important role in the attenuation of harmful and unwanted radiation at an accelerator-driven spallation neutron source. At the European Spallation Source, currently under construction in Lund, Sweden, metal-based materials are planned to be used extensively as neutron guide substrates in addition to other shielding structures around neutron guides. The usage of metal-based materials in the vicinity of neutron guides however requires careful consideration in order to minimize potential background effects in a neutron instrument at the facility. Therefore, we have carried out a combined study involving high-energy neutron measurements and Monte Carlo simulations of metal-based shielding, both to validate the simulation methodology and also to investigate the benefits and drawbacks of different metal-based solutions. The measurements were carried out at The Svedberg Laboratory in Uppsala, Sweden, using a 174.1 MeV neutron beam and various thicknesses of aluminum-, iron-, and copper-based shielding blocks. The results were compared to geant4 simulations and revealed excellent agreement. Our combined study highlights the particular situations where one type of metal-based solution may be preferred over another.

  9. Direct photoetching of polymers using radiation of high energy density from a table-top extreme ultraviolet plasma source

    SciTech Connect

    Barkusky, Frank; Bayer, Armin; Peth, Christian; Mann, Klaus

    2009-01-01

    In order to perform material interaction studies with intense extreme ultraviolet (EUV) radiation, a Schwarzschild mirror objective coated with Mo/Si multilayers was adapted to a compact laser-driven EUV plasma source utilizing a solid Au target. By 10x demagnified imaging of the plasma a maximum pulse energy density of {approx}0.73 J/cm{sup 2} at a wavelength of 13.5 nm can be achieved in the image plane of the objective at a pulse duration of 8.8 ns. In this paper we present EUV photoetching rates measured for polymethyl methacrylate, polycarbonate, and polytetrafluoroethylene at various fluence levels. A linear dependence between etch depth and applied EUV pulse number could be observed without the necessity for any incubation pulses. By evaluating the slope of these data, etch rates were determined, revealing also a linear behavior for low fluences. A threshold energy density could not be observed. The slope of the linear etch regime as well as deviations from the linear trend at higher energy densities are discussed and compared to data known from deep UV laser ablation. Furthermore, the surface roughness of the structured polymers was measured by atomic force microscopy and compared to the nonirradiated polymer surface, indicating a rather smooth etch process (roughness increase of 20%-30%). The different shapes of the etch craters observed for the three polymers at high energy densities can be explained by the measured fluence dependence of the etch rates, having consequences for the proper use of polymer ablation for beam profiling of focused EUV radiation.

  10. Feasibility of producing a short, high energy s-band linear accelerator using a klystron power source

    SciTech Connect

    Baillie, Devin; Aubin, J. St.; Fallone, B. G.; Steciw, S.

    2013-04-15

    Purpose: To use a finite-element method (FEM) model to study the feasibility of producing a short s-band (2.9985 GHz) waveguide capable of producing x-rays energies up to 10 MV, for applications in a linac-MR, as well as conventional radiotherapy. Methods: An existing waveguide FEM model developed by the authors' group is used to simulate replacing the magnetron power source with a klystron. Peak fields within the waveguide are compared with a published experimental threshold for electric breakdown. The RF fields in the first accelerating cavity are scaled, approximating the effect of modifications to the first coupling cavity. Electron trajectories are calculated within the RF fields, and the energy spectrum, beam current, and focal spot of the electron beam are analyzed. One electron spectrum is selected for Monte Carlo simulations and the resulting PDD compared to measurement. Results: When the first cavity fields are scaled by a factor of 0.475, the peak magnitude of the electric fields within the waveguide are calculated to be 223.1 MV/m, 29% lower than the published threshold for breakdown at this operating frequency. Maximum electron energy increased from 6.2 to 10.4 MeV, and beam current increased from 134 to 170 mA. The focal spot FWHM is decreased slightly from 0.07 to 0.05 mm, and the width of the energy spectrum increased slightly from 0.44 to 0.70 MeV. Monte Carlo results show d{sub max} is at 2.15 cm for a 10 Multiplication-Sign 10 cm{sup 2} field, compared with 2.3 cm for a Varian 10 MV linac, while the penumbral widths are 4.8 and 5.6 mm, respectively. Conclusions: The authors' simulation results show that a short, high-energy, s-band accelerator is feasible and electric breakdown is not expected to interfere with operation at these field strengths. With minor modifications to the first coupling cavity, all electron beam parameters are improved.

  11. Two-source energy balance model evaluation for mapping evapotranspiration on the semi-arid Southern High Plains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Evapotranspiration (ET) is an essential component of the water balance and a major consumptive use of irrigation water and precipitation on cropland. In this study, we applied the Two-Source Energy Balance (T-SEB) model to estimate hourly ET from the Landsat Thematic Mapper (TM) data for the semi-ar...

  12. High resolution monochromator for inelastic scattering studies of high energy phonons using undulator radiation at the advanced photon source

    SciTech Connect

    Macrander, A.T.; Schwoerer-Boehning, M.; Abbamonte, P.M.; Hu, M.

    1997-08-01

    A monochromator for use at 13.84 keV with a calculated bandpass of 5.2 meV was designed built, and tested. Tuning was performed by rotating the inner crystal of a pair of nested silicon channel-cut crystals. The inner crystal employs the (884) reflection, and the outer crystal employs a collimating asymmetric (422) reflection (dynamical asymmetry factor, b, equal to {minus}17.5). Tests were done with a double-crystal Si(111) pre-monochromator situated upstream of the high resolution monochromator and a Si(777) backscattering crystal situated downstream. For this optical arrangement an ideal value of 6.3 meV as calculated by x-ray dynamical diffraction theory applies for the FWHM of the convolution of the net monochromator reflectivity function with that of the Si(777) reflection. This calculated value is to be compared to the value of 7.1 meV measured by tuning the high resolution monochromator. Measured efficiencies were less than ideal by a factor of 3.2 to 4.9, where the larger flux reduction factors were found with higher positron storage ring currents.

  13. Economics and energy sources.

    PubMed

    Munro, Malcolm G

    2013-01-01

    Energy-based instrumentation has not only facilitated the rapid adoption of laparoscopic surgery, but could be considered essential for the completion of abdominal and pelvic procedures under endoscopic guidance. For decades, relatively simple and generic reusable monopolar and bipolar systems were the only options available. More recently, the available options for energy-based surgical instrumentation have become more crowded with the introduction of ultrasound-based cutting and sealing instruments and proprietary, impedance monitoring radiofrequency coagulation devices. Such instrumentation is presented as being easier to use as well as providing greater safety and efficacy. However, these new instruments typically require the expenditure of capital for proprietary energy generators and are usually designed to be for single use, a circumstance that increases per case costs, a circumstance that begs the question of value. Do the additional costs expended for the more expensive devices translate into reduced complications, faster operating time, or even wider access to minimally invasive procedures because they enable more surgeons to offer the service? Herein is explored the complex economic issues associated with the use of energy-based surgical devices as they apply to minimal access surgery in general and to laparoscopic procedures specifically. PMID:23659752

  14. Energy Sources, Teacher's Guide.

    ERIC Educational Resources Information Center

    Karplus, Robert

    The unit presented in this teacher's guide is the first of two developed for the fifth year in the Science Curriculum Improvement Study (SCIS) curriculum. Attention is focused on energy transfers involved in the interaction of matter in solid, liquid, and gaseous forms. The chapters are presented in six parts which include activities for reviewing…

  15. Two-Source Energy Balance Model Evaluation for Mapping Evapotranspiration on the Semi- arid Southern High Plains

    NASA Astrophysics Data System (ADS)

    Gowda, P. H.; Chavez, J. L.; Colaizzi, P. D.; Evett, S. R.; Howell, T. A.; Copeland, K.

    2007-05-01

    Evapotranspiration (ET) is an essential component of the water balance and a major consumptive use of irrigation water and precipitation on cropland. In this study, we applied the Two-Source Energy Balance (T-SEB) model to estimate hourly ET from Landsat Thematic Mapper (TM) data for the semi-arid Southern High Plains of the United States where more than 90 percent of the groundwater withdrawals are used for irrigation. For this purpose, a Landsat TM image covering a major portion of the Southern High Plains (parts of Texas Panhandle and northeastern New Mexico) was acquired for 23 July 2006 for the overpass at 11:26 AM CST. Atmospheric correction on the TM imagery was done using MODTRAN, an atmospheric radiative transfer model. Comprehensive ground-truth data were collected to develop a detailed land use map showing major crops grown in the region. Performance of the T SEB model was evaluated by comparing mapped ET data with measured hourly ET data on five weighing lysimeters at Bushland, TX [35 Deg. 11' N, 102 Deg. 06' W; 1,170 m elevation MSL] managed by the Conservation and Production Research Laboratory, USDA-ARS. Lysimeter-measured ET rates varied from 0.24 to 0.71 mm/h. Comparison of estimated hourly mapped ET values with lysimetric measurements had an accuracy within 6% of the measured ET (r2=0.99), with a root mean squared error of 0.03 mm/h. These results support the use of the T-SEB model for the semi-arid Southern High Plains; however, more evaluation is needed for different agroclimatological conditions in the region.

  16. [Pollution and alternative energy sources].

    PubMed

    Melino, C

    1989-01-01

    In order to reach higher standards of living, man has always been interested in searching new energy sources. Natural energy from sun, wind and water has been overcame by more sophisticated resources such as coal, vapour, hydroelectricity, natural gas, petroleum, and, at least, nuclear energy. However all these resources present unwanted effects, namely various hazards to man and environment. On this matter society is quering the risk-benefit balance of some energy choices and optimum performance with new safety means to limit dangerousness are being pursued and developed. It is necessary to evaluate carefully every aspect of safety without under-estimating or over-evaluating problems. For each energy source a "real price" has to be paired, even more in the future, since more energy will be required to guarantee the necessary technological progress linked to a better quality of life. In the present review all risks related to different energy sources are described and discussed aiming at defining: 1) specific risks for different sources 2) benefit from their utilization 3) means of defence guaranteeing security for man and environment. Italy is strictly dependent for energy production, which comes for 80% from abroad. An appropriate balance is required considering economical and social factors and real availability of energy. This balance needs therefore to be clearly evaluated hoping in a better future for an alternative energy, less dangerous and more clear, such as that from nuclear fusion. PMID:2483087

  17. High Intensity Polarized Electron Sources

    NASA Astrophysics Data System (ADS)

    Poelker, M.; Adderley, P.; Brittian, J.; Clark, J.; Grames, J.; Hansknecht, J.; McCarter, J.; Stutzman, M. L.; Suleiman, R.; Surles-Law, K.

    2008-02-01

    During the 1990s, at numerous facilities world wide, extensive R&D devoted to constructing reliable GaAs photoguns helped ensure successful accelerator-based nuclear and high-energy physics programs using spin polarized electron beams. Today, polarized electron source technology is considered mature, with most GaAs photoguns meeting accelerator and experiment beam specifications in a relatively trouble-free manner. Proposals for new collider facilities however, require electron beams with parameters beyond today's state-of-the-art and serve to renew interest in conducting polarized electron source R&D. And at CEBAF/Jefferson Lab, there is an immediate pressing need to prepare for new experiments that require considerably more beam current than before. One experiment in particular—Q-weak, a parity violation experiment that will look for physics beyond the Standard Model—requires 180 uA average current at polarization >80% for a duration of one year, with run-averaged helicity correlated current asymmetry less than 0.1 ppm. Neighboring halls will continue taking beam during Q-weak, pushing the total average beam current from the gun beyond 300 uA. This workshop contribution describes R&D at Jefferson Lab, dedicated toward extending the operating current of polarized electron sources to meet the requirements of high current experiments at CEBAF and to better appreciate the technological challenges of new accelerators, particularly high average current machines like eRHIC that require at least 25 mA at high polarization.

  18. VEDCO energy installations sources

    SciTech Connect

    McDonald, A.

    1996-12-31

    A process for solid waste management is described. The approach combines materials recovery, recycling, and using refuse-derived fuel for cogeneration. A fluidized bed system is used for combustion. An example of the use of this system is briefly cited; it has extended landfill life up to 100 years for one county and allowed three counties to close municipal landfills. Over 50,000 tons of material are recycled each year, saving more than $100 million on waste disposal. Energy generation saves a chemical company over 3 million gallons of oil annually and allows the local utility company to save 75,000 tons of coal. Air emissions at the chemical company will also be reduced by over 50%.

  19. Alternative energy sources for agriculture

    SciTech Connect

    Baird, D.

    1981-05-01

    The following energy systems are discussed as alternative sources of energy for agriculture and potential demonstration projects in vocational agriculture programs: solar water heating, solar greenhouse heating, solar crop drying, gasification of wood or crop residues, and methane generation from livestock wastes. 13 references.

  20. What Did We Learn From Chandra, Xmm-Newton And Fermi-Lat About The High Energy Emission In Young Radio Sources?

    NASA Astrophysics Data System (ADS)

    Siemiginowska, Aneta; Guainazzi, M.; Hardcastle, M.; Kelly, B. C.; Kunert-Bajraszewska, M.; Migliori, G.; Sobolewska, M.; Stawarz, L.

    2013-04-01

    Giga-Hertz Peaked Spectrum (GPS) and Compact Steep Spectrum (CSS) radio sources comprise a large population of compact objects with radio emission fully contained within the innermost regions of the host galaxy (< a few kpc). Spectral and kinematic age measurements indicate their young age (typically < thousands years and in some cases less a few hundred years). These sources provide the important insights to the initial phase of the jet formation, radio source growth, source evolution and the jet impact on the ISM in the very central regions of the host galaxy. We have obtained Chandra and XMM-Newton observations for a large sample of these sources over several observing cycles. Our most recent Chandra observations targeted Compact Symmetric Objects (CSO) associated with the nuclear regions of nearby galaxies. All these CSO have measured kinematic ages within 100-3000 year old. I will present the results of our ongoing observing program focusing on the high energy properties of these young sources.

  1. High-charge-state ion sources

    SciTech Connect

    Clark, D.J.

    1983-06-01

    Sources of high charge state positive ions have uses in a variety of research fields. For heavy ion particle accelerators higher charge state particles give greater acceleration per gap and greater bending strength in a magnet. Thus higher energies can be obtained from circular accelerators of a given size, and linear accelerators can be designed with higher energy gain per length using higher charge state ions. In atomic physics the many atomic transitions in highly charged ions supplies a wealth of spectroscopy data. High charge state ion beams are also used for charge exchange and crossed beam experiments. High charge state ion sources are reviewed. (WHK)

  2. Energy sources for intravenous nutrition

    PubMed Central

    Rowlands, B J

    1987-01-01

    Controversy exists concerning the appropriate use of carbohydrate solutions and fat emulsions as energy sources in intravenous nutritional regimens. Current evidence suggests that glucose is the carbohydrate energy source of choice and that when infused with appropriate quantities of protein it provides cheap and effective nutritional support in the majority of patients and clinical circumstances. During glucose infusion, blood glucose and acid-base balance should be closely monitored and, when indicated, exogenous insulin should be added to the regimen to combat hyperglycaemia and improve protein anabolism. Fat emulsions, although expensive, may justifiably be used in patients with moderate or severe stress to provide up to 50% of non-protein energy, especially in circumstances where attempts to satisfy energy requirements exclusively with glucose would impose an additional metabolic stress. PMID:3109093

  3. High intensity, pulsed thermal neutron source

    DOEpatents

    Carpenter, J.M.

    1973-12-11

    This invention relates to a high intensity, pulsed thermal neutron source comprising a neutron-producing source which emits pulses of fast neutrons, a moderator block adjacent to the last neutron source, a reflector block which encases the fast neutron source and the moderator block and has a thermal neutron exit port extending therethrough from the moderator block, and a neutron energy- dependent decoupling reflector liner covering the interior surfaces of the thermal neutron exit port and surrounding all surfaces of the moderator block except the surface viewed by the thermal neutron exit port. (Official Gazette)

  4. Radiation sources with planar wire arrays and planar foils for inertial confinement fusion and high energy density physics research

    NASA Astrophysics Data System (ADS)

    Kantsyrev, V. L.; Chuvatin, A. S.; Safronova, A. S.; Rudakov, L. I.; Esaulov, A. A.; Velikovich, A. L.; Shrestha, I.; Astanovitsky, A.; Osborne, G. C.; Shlyaptseva, V. V.; Weller, M. E.; Keim, S.; Stafford, A.; Cooper, M.

    2014-03-01

    This article reports on the joint success of two independent lines of research, each of them being a multi-year international effort. One of these is the development of innovative sources, such as planar wire arrays (PWAs). PWAs turned out to be a prolific radiator, which act mainly as a resistor, even though the physical mechanism of efficient magnetic energy conversion into radiation still remains unclear. We review the results of our extensive studies of PWAs. We also report the new results of the experimental comparison PWAs with planar foil liners (another promising alternative to wire array loads at multi-mega-ampere generators). Pioneered at UNR, the PWA Z-pinch loads have later been tested at the Sandia National Laboratories (SNL) on the Saturn generator, on GIT-12 machine in Russia, and on the QiangGuang-1 generator in China, always successfully. Another of these is the drastic improvement in energy efficiency of pulsed-power systems, which started in early 1980s with Zucker's experiments at Naval Research Laboratory (NRL). Successful continuation of this approach was the Load Current Multiplier (LCM) proposed by Chuvatin in collaboration with Rudakov and Weber from NRL. The 100 ns LCM was integrated into the Zebra generator, which almost doubled the plasma load current, from 0.9 to 1.7 MA. The two above-mentioned innovative approaches were used in combination to produce a new compact hohlraum radiation source for ICF, as jointly proposed by SNL and UNR [Jones et al., Phys. Rev. Lett. 104, 125001 (2010)]. The first successful proof-of-the-principle experimental implementation of new hohlraum concept at university-scale generator Zebra/LCM is demonstrated. A numerical simulation capability with VisRaD code (from PRISM Co.) established at UNR allowed for the study of hohlraum coupling physics and provides the possibility of optimization of a new hohlraum. Future studies are discussed.

  5. Radiation sources with planar wire arrays and planar foils for inertial confinement fusion and high energy density physics research

    SciTech Connect

    Kantsyrev, V. L.; Safronova, A. S.; Esaulov, A. A.; Shrestha, I.; Astanovitsky, A.; Osborne, G. C.; Shlyaptseva, V. V.; Weller, M. E.; Keim, S.; Stafford, A.; Cooper, M.; Chuvatin, A. S.; Rudakov, L. I.; Velikovich, A. L.

    2014-03-15

    This article reports on the joint success of two independent lines of research, each of them being a multi-year international effort. One of these is the development of innovative sources, such as planar wire arrays (PWAs). PWAs turned out to be a prolific radiator, which act mainly as a resistor, even though the physical mechanism of efficient magnetic energy conversion into radiation still remains unclear. We review the results of our extensive studies of PWAs. We also report the new results of the experimental comparison PWAs with planar foil liners (another promising alternative to wire array loads at multi-mega-ampere generators). Pioneered at UNR, the PWA Z-pinch loads have later been tested at the Sandia National Laboratories (SNL) on the Saturn generator, on GIT-12 machine in Russia, and on the QiangGuang-1 generator in China, always successfully. Another of these is the drastic improvement in energy efficiency of pulsed-power systems, which started in early 1980s with Zucker's experiments at Naval Research Laboratory (NRL). Successful continuation of this approach was the Load Current Multiplier (LCM) proposed by Chuvatin in collaboration with Rudakov and Weber from NRL. The 100 ns LCM was integrated into the Zebra generator, which almost doubled the plasma load current, from 0.9 to 1.7 MA. The two above-mentioned innovative approaches were used in combination to produce a new compact hohlraum radiation source for ICF, as jointly proposed by SNL and UNR [Jones et al., Phys. Rev. Lett. 104, 125001 (2010)]. The first successful proof-of-the-principle experimental implementation of new hohlraum concept at university-scale generator Zebra/LCM is demonstrated. A numerical simulation capability with VisRaD code (from PRISM Co.) established at UNR allowed for the study of hohlraum coupling physics and provides the possibility of optimization of a new hohlraum. Future studies are discussed.

  6. Measurement of the high energy component of the x-ray spectra in the VENUS electron cyclotron resonance ion source (abstract only)

    SciTech Connect

    Leitner, D.; Benitez, J. Y.; Lyneis, C. M.; Todd, D. S.; Ropponen, T.; Ropponen, J.; Koivisto, H.; Gammino, S.

    2008-02-15

    High performance electron cyclotron resonance (ECR) ion sources, such as VENUS (versatile ECR for nuclear science), produce large amounts of x rays. By studying their energy spectra, conclusions can be drawn about the electron heating process and the electron confinement. In addition, the bremsstrahlung from the plasma chamber is partly absorbed by the cold mass of the superconducting magnet adding an extra heat load to the cryostat. Germanium or NaI detectors are generally used for x-ray measurements. Due to the high x-ray flux from the source, the experimental setup to measure bremsstrahlung spectra from ECR ion sources is somewhat different than for the traditional nuclear physics measurements these detectors are generally used for. In particular, the collimation and background shielding can be problematic. In this paper we will discuss the experimental setup for such a measurement, the energy calibration and background reduction, the shielding of the detector, and collimation of the x-ray flux. We will present x-ray energy spectra and cryostat heating rates in dependence of various ion source parameters such as confinement fields, minimum B-field, rf power, and heating frequency.

  7. Multimessenger search for sources of gravitational waves and high-energy neutrinos: Initial results for LIGO-Virgo and IceCube

    NASA Astrophysics Data System (ADS)

    Aartsen, M. G.; Ackermann, M.; Adams, J.; Aguilar, J. A.; Ahlers, M.; Ahrens, M.; Altmann, D.; Anderson, T.; Arguelles, C.; Arlen, T. C.; Auffenberg, J.; Bai, X.; Barwick, S. W.; Baum, V.; Beatty, J. J.; Becker Tjus, J.; Becker, K.-H.; BenZvi, S.; Berghaus, P.; Berley, D.; Bernardini, E.; Bernhard, A.; Besson, D. Z.; Binder, G.; Bindig, D.; Bissok, M.; Blaufuss, E.; Blumenthal, J.; Boersma, D. J.; Bohm, C.; Bos, F.; Bose, D.; Böser, S.; Botner, O.; Brayeur, L.; Bretz, H.-P.; Brown, A. M.; Casey, J.; Casier, M.; Chirkin, D.; Christov, A.; Christy, B.; Clark, K.; Classen, L.; Clevermann, F.; Coenders, S.; Cowen, D. F.; Cruz Silva, A. H.; Danninger, M.; Daughhetee, J.; Davis, J. C.; Day, M.; de André, J. P. A. M.; De Clercq, C.; De Ridder, S.; Desiati, P.; de Vries, K. D.; de With, M.; DeYoung, T.; Díaz-Vélez, J. C.; Dunkman, M.; Eagan, R.; Eberhardt, B.; Eichmann, B.; Eisch, J.; Euler, S.; Evenson, P. A.; Fadiran, O.; Fazely, A. R.; Fedynitch, A.; Feintzeig, J.; Felde, J.; Feusels, T.; Filimonov, K.; Finley, C.; Fischer-Wasels, T.; Flis, S.; Franckowiak, A.; Frantzen, K.; Fuchs, T.; Gaisser, T. K.; Gallagher, J.; Gerhardt, L.; Gier, D.; Gladstone, L.; Glüsenkamp, T.; Goldschmidt, A.; Golup, G.; Gonzalez, J. G.; Goodman, J. A.; Góra, D.; Grandmont, D. T.; Grant, D.; Gretskov, P.; Groh, J. C.; Groß, A.; Ha, C.; Haack, C.; Haj Ismail, A.; Hallen, P.; Hallgren, A.; Halzen, F.; Hanson, K.; Hebecker, D.; Heereman, D.; Heinen, D.; Helbing, K.; Hellauer, R.; Hellwig, D.; Hickford, S.; Hill, G. C.; Hoffman, K. D.; Hoffmann, R.; Homeier, A.; Hoshina, K.; Huang, F.; Huelsnitz, W.; Hulth, P. O.; Hultqvist, K.; Hussain, S.; Ishihara, A.; Jacobi, E.; Jacobsen, J.; Jagielski, K.; Japaridze, G. S.; Jero, K.; Jlelati, O.; Jurkovic, M.; Kaminsky, B.; Kappes, A.; Karg, T.; Karle, A.; Kauer, M.; Kelley, J. L.; Kheirandish, A.; Kiryluk, J.; Kläs, J.; Klein, S. R.; Köhne, J.-H.; Kohnen, G.; Kolanoski, H.; Koob, A.; Köpke, L.; Kopper, C.; Kopper, S.; Koskinen, D. J.; Kowalski, M.; Kriesten, A.; Krings, K.; Kroll, G.; Kroll, M.; Kunnen, J.; Kurahashi, N.; Kuwabara, T.; Labare, M.; Larsen, D. T.; Larson, M. J.; Lesiak-Bzdak, M.; Leuermann, M.; Leute, J.; Lünemann, J.; Macías, O.; Madsen, J.; Maggi, G.; Maruyama, R.; Mase, K.; Matis, H. S.; McNally, F.; Meagher, K.; Medici, M.; Meli, A.; Meures, T.; Miarecki, S.; Middell, E.; Middlemas, E.; Milke, N.; Miller, J.; Mohrmann, L.; Montaruli, T.; Morse, R.; Nahnhauer, R.; Naumann, U.; Niederhausen, H.; Nowicki, S. C.; Nygren, D. R.; Obertacke, A.; Odrowski, S.; Olivas, A.; Omairat, A.; O'Murchadha, A.; Palczewski, T.; Paul, L.; Penek, Ö.; Pepper, J. A.; Pérez de los Heros, C.; Pfendner, C.; Pieloth, D.; Pinat, E.; Posselt, J.; Price, P. B.; Przybylski, G. T.; Pütz, J.; Quinnan, M.; Rädel, L.; Rameez, M.; Rawlins, K.; Redl, P.; Rees, I.; Reimann, R.; Resconi, E.; Rhode, W.; Richman, M.; Riedel, B.; Robertson, S.; Rodrigues, J. P.; Rongen, M.; Rott, C.; Ruhe, T.; Ruzybayev, B.; Ryckbosch, D.; Saba, S. M.; Sander, H.-G.; Sandroos, J.; Santander, M.; Sarkar, S.; Schatto, K.; Scheriau, F.; Schmidt, T.; Schmitz, M.; Schoenen, S.; Schöneberg, S.; Schönwald, A.; Schukraft, A.; Schulte, L.; Schulz, O.; Seckel, D.; Sestayo, Y.; Seunarine, S.; Shanidze, R.; Sheremata, C.; Smith, M. W. E.; Soldin, D.; Spiczak, G. M.; Spiering, C.; Stamatikos, M.; Stanev, T.; Stanisha, N. A.; Stasik, A.; Stezelberger, T.; Stokstad, R. G.; Stößl, A.; Strahler, E. A.; Ström, R.; Strotjohann, N. L.; Sullivan, G. W.; Taavola, H.; Taboada, I.; Tamburro, A.; Tepe, A.; Ter-Antonyan, S.; Terliuk, A.; Tešić, G.; Tilav, S.; Toale, P. A.; Tobin, M. N.; Tosi, D.; Tselengidou, M.; Unger, E.; Usner, M.; Vallecorsa, S.; van Eijndhoven, N.; Vandenbroucke, J.; van Santen, J.; Vehring, M.; Voge, M.; Vraeghe, M.; Walck, C.; Wallraff, M.; Weaver, Ch.; Wellons, M.; Wendt, C.; Westerhoff, S.; Whelan, B. J.; Whitehorn, N.; Wichary, C.; Wiebe, K.; Wiebusch, C. H.; Williams, D. R.; Wissing, H.; Wolf, M.; Wood, T. R.; Woschnagg, K.; Xu, D. L.; Xu, X. W.; Yanez, J. P.; Yodh, G.; Yoshida, S.; Zarzhitsky, P.; Ziemann, J.; Zierke, S.; Zoll, M.; Aasi, J.; Abbott, B. P.; Abbott, R.; Abbott, T.; Abernathy, M. R.; Acernese, F.; Ackley, K.; Adams, C.; Adams, T.; Addesso, P.; Adhikari, R. X.; Affeldt, C.; Agathos, M.; Aggarwal, N.; Aguiar, O. D.; Ajith, P.; Alemic, A.; Allen, B.; Allocca, A.; Amariutei, D.; Andersen, M.; Anderson, R. A.; Anderson, S. B.; Anderson, W. G.; Arai, K.; Araya, M. C.; Arceneaux, C.; Areeda, J. S.; Ast, S.; Aston, S. M.; Astone, P.; Aufmuth, P.; Augustus, H.; Aulbert, C.; Aylott, B. E.; Babak, S.; Baker, P. T.; Ballardin, G.; Ballmer, S. W.; Barayoga, J. C.; Barbet, M.; Barish, B. C.; Barker, D.; Barone, F.; Barr, B.; Barsotti, L.; Barsuglia, M.; Barton, M. A.; Bartos, I.; Bassiri, R.; Basti, A.; Batch, J. C.

    2014-11-01

    We report the results of a multimessenger search for coincident signals from the LIGO and Virgo gravitational-wave observatories and the partially completed IceCube high-energy neutrino detector, including periods of joint operation between 2007-2010. These include parts of the 2005-2007 run and the 2009-2010 run for LIGO-Virgo, and IceCube's observation periods with 22, 59 and 79 strings. We find no significant coincident events, and use the search results to derive upper limits on the rate of joint sources for a range of source emission parameters. For the optimistic assumption of gravitational-wave emission energy of 10-2 M⊙c2 at ˜150 Hz with ˜60 ms duration, and high-energy neutrino emission of 1 051 erg comparable to the isotropic gamma-ray energy of gamma-ray bursts, we limit the source rate below 1.6 ×1 0-2 Mpc-3 yr-1 . We also examine how combining information from gravitational waves and neutrinos will aid discovery in the advanced gravitational-wave detector era.

  8. A K-alpha x-ray source using high energy and high repetition rate laser system for phase contrast imaging

    PubMed Central

    Fourmaux, Sylvain; Kieffer, Jean-Claude; Kincaid, Russell; Krol, Andrzej

    2009-01-01

    K-alpha x-ray sources from laser produced plasmas provide completely new possibilities for x-ray phase-contrast imaging applications. By tightly focusing intense femtosecond laser pulses onto a solid target K-alpha x-ray pulses are generated through the interaction of energetic electrons created in the plasma with the bulk target. In this paper, we present a continuous and efficient Mo K-alpha x-ray source produced by a femtosecond laser system operating at 100 Hz repetition rate with maximum pulse energy of 110 mJ before compression. The source has an x-ray conversion efficiency of greater than 10−5 into K-alpha line emission. In preparation for phase contrast imaging applications, the size of the resultant K-alpha x-ray emission spot has been also characterized. The source exhibits sufficient spatial coherence to observe phase contrast. We observe a relatively small broadening of the K-alpha source size compared to the size of the laser beam itself. Detailed characterization of the source including the x-ray spectrum and the x-ray average yield along with phase contrast images of test objects will be presented. PMID:20046807

  9. Compact High Power THz Source

    SciTech Connect

    Geoffrey Krafft

    2003-08-01

    In this paper a new type of THz radiation source, based on recirculating an electron beam through a high gradient superconducting radio frequency cavity, and using this beam to drive a standard electromagnetic undulator, is discussed. Because the beam is recirculated, short bunches may be produced that radiate coherently in the undulator, yielding high average THz power for relatively low average beam power. Deceleration from the coherent emission, and the detuning it causes is discussed.

  10. Search for the Identification of 3EG J1835+5918: Evidence for a New Type of High-Energy Gamma-Ray Source

    NASA Technical Reports Server (NTRS)

    Mirabal, N.; Halpern, Jules P.; Eracleous, M.; Becker, R. H.; Oliversen, Ronald (Technical Monitor)

    2001-01-01

    The EGRET source 3EG J1835+5918 is the brightest and most accurately positioned of the as-yet unidentified high-energy gamma-ray sources at high Galactic latitude (l, b = 89 deg, 25 deg). We present a multiwavelength study of the region around it, including X-ray, radio, and optical imaging surveys, as well as optical spectroscopic classification of most of the active objects in this area. Identifications are made of all but one of the ROSAT and ASCA sources in this region to a flux limit of approximately 5 x 10(exp -14) erg/sq cm s, which is 10(exp -4) of the gamma-ray flux. The identified X-ray sources in or near the EGRET error ellipse are radio-quiet QSOs, a galaxy cluster, and coronal emitting stars. We also find eight quasars using purely optical color selection, and we have monitored the entire field for variable optical objects on short and long time scales without any notable discoveries. The radio sources inside the error ellipse are all fainter than 4 mJy at 1.4 GHz. There are no flat-spectrum radio sources in the vicinity; the brightest neighboring radio sources are steep-spectrum radio galaxies or quasars. Since no blazar-like or pulsar-like candidate has been found as a result of these searches, 3EG J1835+5918 must be lacking one or more of the physically essential attributes of these known classes of gamma-ray emitters. If it is an AGN it lacks the beamed emission radio of blazars by at least a factor of 100 relative to identified EGRET blazars. If it is an isolated neutron star, it lacks the steady thermal X-rays from a cooling surface and the magnetospheric non-thermal X-ray emission that is characteristic of all EGRET pulsars. If a pulsar, 3EG J1835+5918 must be either older or more distant than Geminga, and probably an even more efficient or beamed gamma-ray engine. One intermittent ROSA T source falls on a blank optical field to a limit of B greater than 23.4, V greater than 23.3, and R greater than 22.5. In view of this conspicuous absence, RX

  11. A Proposal to the Department of Energy for The Fabrication of a Very High Energy Polarized Gama Ray Beam Facility and A Program of Medium Energy Physics Research at The National Synchrotron Light Source

    SciTech Connect

    Sandorfi, A.M.; LeVine, M.J.; Thorn, C.E.; Giordano, G.; Matone, G.

    1982-09-01

    This proposal requests support for the fabrication and operation of a modest facility that would provide relatively intense beams of monochromatic and polarized photons with energies in the range of several hundreds of MeV. These {gamma} rays would be produced by Compton backscattering laser light from the electrons circulating in the 2.5-3.0 GeV 'X-RAY' storage ring of the National Synchrotron Light Source (NSLS) at Brookhaven National Laboratory. The excellent emittance, phase space, and high current of this state-of-the-art storage ring will allow the production of 2 x 10{sup 7} {gamma} rays per second. These photons would be tagged by detecting the scattered electrons, thereby determining the energy to 2.7 MeV for all {gamma}-ray energies. The efficiency of this tagging procedure is 100% and the {gamma}-ray beam would be essentially background free. Tagging will also allow the flexibility of operating with a dynamic range as large as 200 MeV in photon energy while still preserving high resolution and polarization. These beams will permit a fruitful study of important questions in medium-energy nuclear physics. The initial goals of this program are to reach reliable operation with photon energies up to 300 MeV and to develop {gamma}-ray beams with energies up to about 500 MeV. To demonstrate reliable operation, a modest physics program is planned that, for the most part, utilizes existing magnets and detector systems but nonetheless addresses several important outstanding problems. Gamma ray beams of the versatility, intensity, energy, and resolution that can be achieved at this facility are not currently available at any other world facility either existing or under construction. Furthermore, the proposed program would produce the first intense source of medium-energy {gamma} rays that are polarized. Because of the difficulties in producing such polarized beams, it is very unlikely that viable alternate sources can be developed in the near future; at present

  12. Hybrid energy sources for embedded sensor nodes

    NASA Astrophysics Data System (ADS)

    Silva, Ramon; Farinholt, Kevin; Park, Gyuhae

    2011-04-01

    In this paper, we present a series of hybrid energy configurations that are designed to provide a robust power source for embedded sensing hardware. The proper management of energy resources is a critical component in the design of any deployed sensing network. For systems that are installed in remote or inaccessible locations, or those with an operational lifespan that exceeds traditional battery technologies, energy harvesting is an attractive alternative. Unfortunately, the dependence on a single energy source (i.e. solar) can cause potential problems when environmental conditions preclude the system from operating at peak performance. In this paper we consider the use of a hybrid energy source that extracts energy from multiple sources and uses this collective energy to power sensing hardware. The sources considered in this work include: solar, vibration, thermal gradients, and RF energy capture. Methods of increasing the efficiency, energy storage medium, target applications and the integrated use of energy harvesting sources with wireless energy transmission will be discussed.

  13. Development of a compact electron-cyclotron-resonance ion source for high-energy carbon-ion therapy

    NASA Astrophysics Data System (ADS)

    Muramatsu, M.; Kitagawa, A.; Sakamoto, Y.; Sato, S.; Sato, Y.; Ogawa, Hirotsugu; Yamada, S.; Ogawa, Hiroyuki; Yoshida, Y.; Drentje, A. G.

    2005-11-01

    Ion sources for medical facilities should have characteristics of easy maintenance, low electric power consumption, good stability, and long operation time without problems (one year or longer). For this, a 10GHz compact electron-cyclotron-resonance ion source with all-permanent magnets (Kei2 source) was developed. The maximum mirror magnetic fields on the beam axis are 0.59T at the extraction side and 0.87T at the gas-injection side, while the minimum B strength is 0.25T. These parameters have been optimized for the production of C4+ based on the experience at the 10GHz NIRS-ECR ion source and a previous prototype compact source (Kei source). The Kei2 source has a diameter of 320mm and a length of 295mm. The beam intensity of C4+ was obtained to be 530μA under an extraction voltage of 40kV. The beam stability was better than 6% at C4+ of 280μA during 90h with no adjustment of the operation parameters. The details of the design and beam tests of the source are described in this paper.

  14. Cavity as a Source of Conformational Fluctuation and High-Energy State: High-Pressure NMR Study of a Cavity-Enlarged Mutant of T4Lysozyme

    PubMed Central

    Maeno, Akihiro; Sindhikara, Daniel; Hirata, Fumio; Otten, Renee; Dahlquist, Frederick W.; Yokoyama, Shigeyuki; Akasaka, Kazuyuki; Mulder, Frans A.A.; Kitahara, Ryo

    2015-01-01

    Although the structure, function, conformational dynamics, and controlled thermodynamics of proteins are manifested by their corresponding amino acid sequences, the natural rules for molecular design and their corresponding interplay remain obscure. In this study, we focused on the role of internal cavities of proteins in conformational dynamics. We investigated the pressure-induced responses from the cavity-enlarged L99A mutant of T4 lysozyme, using high-pressure NMR spectroscopy. The signal intensities of the methyl groups in the 1H/13C heteronuclear single quantum correlation spectra, particularly those around the enlarged cavity, decreased with the increasing pressure, and disappeared at 200 MPa, without the appearance of new resonances, thus indicating the presence of heterogeneous conformations around the cavity within the ground state ensemble. Above 200 MPa, the signal intensities of >20 methyl groups gradually decreased with the increasing pressure, without the appearance of new resonances. Interestingly, these residues closely matched those sensing a large conformational change between the ground- and high-energy states, at atmospheric pressure. 13C and 1H NMR line-shape simulations showed that the pressure-induced loss in the peak intensity could be explained by the increase in the high-energy state population. In this high-energy state, the aromatic side chain of F114 gets flipped into the enlarged cavity. The accommodation of the phenylalanine ring into the efficiently packed cavity may decrease the partial molar volume of the high-energy state, relative to the ground state. We suggest that the enlarged cavity is involved in the conformational transition to high-energy states and in the volume fluctuation of the ground state. PMID:25564860

  15. A new method of observing weak extended x-ray sources with the Reuven Ramaty high-energy solar spectroscopic imager.

    PubMed

    Hannah, Iain G; Hurford, Gordon J; Hudson, Hugh S; Lin, Robert P

    2007-02-01

    We present a new method, fan-beam modulation, for observing weak extended x-ray sources with the Reuven Ramaty High-Energy Solar Spectroscopic Imager (RHESSI). This space-based solar x-ray and gamma-ray telescope has much greater sensitivity than previous experiments in the 3-25 keV range, but is normally not well suited to detecting extended sources since their signal is not modulated by RHESSI's rotating grids. When the spacecraft is offpointed from the target source, however, the fan-beam modulation time-modulates the transmission by shadowing resulting from exploiting the finite thickness of the grids. In this article we detail how the technique is implemented and verify its consistency with sources with clear known signals that have occurred during RHESSI offpointing: microflares and the Crab Nebula. In both cases the results are consistent with previous and complementary measurements. Preliminary work indicates that this new technique allows RHESSI to observe the integrated hard x-ray spectrum of weak extended sources on the quiet Sun. PMID:17578130

  16. Fermi LAT detection of a new high-energy transient gamma-ray source Fermi J0751-5136

    NASA Astrophysics Data System (ADS)

    Kocevski, D.; Buson, S.

    2016-08-01

    During the week from 18 July through 25 July, 2016, the Large Area Telescope (LAT), one of the two instruments on the Fermi Gamma-ray Space Telescope, observed gamma-ray activity from a previously unidentified transient source.

  17. Energy dispersive X-ray diffraction in the diamond anvil, high-pressure apparatus - Comparison of synchrotron and conventional X-ray sources

    NASA Technical Reports Server (NTRS)

    Spain, I. L.; Black, D. R.

    1985-01-01

    The use of both conventional fixed-anode X-ray sources and synchrotron radiation to carry out energy-dispersive X-ray diffraction experiments at high pressure in a diamond anvil cell, is discussed. The photon flux at the sample and at the detector for the two cases are compared and the results are presented in graphs. It is shown that synchrotron radiation experiments can be performed with nearly two orders of magnitude increase in data rate if superior detectors and detector electronics are available.

  18. Development of a low-energy and high-current pulsed neutral beam injector with a washer-gun plasma source for high-beta plasma experiments.

    PubMed

    Ii, Toru; Gi, Keii; Umezawa, Toshiyuki; Asai, Tomohiko; Inomoto, Michiaki; Ono, Yasushi

    2012-08-01

    We have developed a novel and economical neutral-beam injection system by employing a washer-gun plasma source. It provides a low-cost and maintenance-free ion beam, thus eliminating the need for the filaments and water-cooling systems employed conventionally. In our primary experiments, the washer gun produced a source plasma with an electron temperature of approximately 5 eV and an electron density of 5 × 10(17) m(-3), i.e., conditions suitable for ion-beam extraction. The dependence of the extracted beam current on the acceleration voltage is consistent with space-charge current limitation, because the observed current density is almost proportional to the 3/2 power of the acceleration voltage below approximately 8 kV. By optimizing plasma formation, we successfully achieved beam extraction of up to 40 A at 15 kV and a pulse length in excess of 0.25 ms. Its low-voltage and high-current pulsed-beam properties enable us to apply this high-power neutral beam injection into a high-beta compact torus plasma characterized by a low magnetic field. PMID:22938291

  19. Development of a low-energy and high-current pulsed neutral beam injector with a washer-gun plasma source for high-beta plasma experiments

    NASA Astrophysics Data System (ADS)

    Ii, Toru; Gi, Keii; Umezawa, Toshiyuki; Asai, Tomohiko; Inomoto, Michiaki; Ono, Yasushi

    2012-08-01

    We have developed a novel and economical neutral-beam injection system by employing a washer-gun plasma source. It provides a low-cost and maintenance-free ion beam, thus eliminating the need for the filaments and water-cooling systems employed conventionally. In our primary experiments, the washer gun produced a source plasma with an electron temperature of approximately 5 eV and an electron density of 5 × 1017 m-3, i.e., conditions suitable for ion-beam extraction. The dependence of the extracted beam current on the acceleration voltage is consistent with space-charge current limitation, because the observed current density is almost proportional to the 3/2 power of the acceleration voltage below approximately 8 kV. By optimizing plasma formation, we successfully achieved beam extraction of up to 40 A at 15 kV and a pulse length in excess of 0.25 ms. Its low-voltage and high-current pulsed-beam properties enable us to apply this high-power neutral beam injection into a high-beta compact torus plasma characterized by a low magnetic field.

  20. XMM-Newton Observations Reveal the X-ray Counterpart of the Very-high-energy gamma-ray Source HESS J1640-465

    SciTech Connect

    Funk, S.; Hinton, J.A.; Puhlhofer, G.; Aharonian, F.A.; Hofmann, W.; Reimer, O.; Wagner, S.; Funk, S.; Hinton, J.A.; Puehlhofer, G.; Aharonian, F.A.; Hofmann, W.; Reimer, O.; Wagner, S.

    2007-03-05

    We present X-ray observations of the as of yet unidentified very high-energy (VHE) {gamma}-ray source HESS J1640-465 with the aim of establishing a counterpart of this source in the keV energy range, and identifying the mechanism responsible for the VHE emission. The 21.8 ksec XMM-Newton observation of HESS J1640-465 in September 2005 represents a significant improvement in sensitivity and angular resolution over previous ASCA studies in this region. These new data show a hard-spectrum X-ray emitting object at the centroid of the H.E.S.S. source, within the shell of the radio Supernova Remnant (SNR) G338.3-0.0. This object is consistent with the position and flux previously measured by both ASCA and Swift-XRT but is now shown to be significantly extended. We argue that this object is very likely the counterpart to HESS J1640-465 and that both objects may represent the Pulsar Wind Nebula of an as of yet undiscovered pulsar associated with G338.3-0.0.

  1. Testing of two source energy balance model under irrigated and dryland conditions using high resolution airborne imagery

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two Source Model (TSM) calculates the heat and water exchange and interaction between soil-atmosphere and vegetation-atmosphere separately. This is achieved through decomposition of radiometric surface temperature to soil and vegetation component temperatures either from multi-angular remotely sense...

  2. A new method of testing space-based high-energy electron detectors with radioactive electron sources

    NASA Astrophysics Data System (ADS)

    Zhang, S. Y.; Shen, G. H.; Sun, Y.; Zhou, D. Z.; Zhang, X. X.; Li, J. W.; Huang, C.; Zhang, X. G.; Dong, Y. J.; Zhang, W. J.; Zhang, B. Q.; Shi, C. Y.

    2016-05-01

    Space-based electron detectors are commonly tested using radioactive β-sources which emit a continuous spectrum without spectral lines. Therefore, the tests are often to be considered only qualitative. This paper introduces a method, which results in more than a qualitative test even when using a β-source. The basic idea is to use the simulated response function of the instrument to invert the measured spectrum and compare this inverted spectrum with a reference spectrum obtained from the same source. Here we have used Geant4 to simulate the instrument response function (IRF) and a 3.5 mm thick Li-drifted Si detector to obtain the reference 90Sr/90Yi source spectrum to test and verify the geometric factors of the Omni-Direction Particle Detector (ODPD) on the Tiangong-1 (TG-1) and Tiangong-2 (TG-2) spacecraft. The TG spacecraft are experimental space laboratories and prototypes of the Chinese space station. The excellent agreement between the measured and reference spectra demonstrates that this test method can be used to quantitatively assess the quality of the instrument. Due to its simplicity, the method is faster and therefore more efficient than traditional full calibrations using an electron accelerator.

  3. Supplementing Conservation Practices with Alternative Energy Sources.

    ERIC Educational Resources Information Center

    Kraetsch, Gayla A.

    1981-01-01

    Universities and colleges have two major roles: to reduce their own energy consumption and costs, and to develop and test new energy options. Alternative energy sources considered include solar energy, wind power, biomass, hydropower, ocean energy, geothermal heat, coal, and nuclear energy. (MLW)

  4. Energy Recovery Linacs for Light Source Applications

    SciTech Connect

    George Neil

    2011-04-01

    Energy Recovery Linacs are being considered for applications in present and future light sources. ERLs take advantage of the continuous operation of superconducting rf cavities to accelerate high average current beams with low losses. The electrons can be directed through bends, undulators, and wigglers for high brightness x ray production. They are then decelerated to low energy, recovering power so as to minimize the required rf drive and electrical draw. When this approach is coupled with advanced continuous wave injectors, very high power, ultra-short electron pulse trains of very high brightness can be achieved. This paper will review the status of worldwide programs and discuss the technology challenges to provide such beams for photon production.

  5. Development of liquid-metal-ion source low-energy ion gun/high-temperature ultrahigh vacuum scanning tunneling microscope combined system

    SciTech Connect

    Uchigasaki, M.; Kamioka, T.; Hirata, T.; Shimizu, T.; Lin, F.; Shinada, T.; Ohdomari, I.

    2005-12-15

    A liquid-metal-ion source low-energy ion gun/high-temperature ultrahigh vacuum scanning tunneling microscope combined system (LMIS-IG/STM) has been developed in order to investigate the ion beam modification process in situ based on our previous ion gun/STM combined system (IG/STM). Various kinds of metal ions can be irradiated with low acceleration energy of 0.01-5 keV during STM observation at 400-600 deg. C. As an example, real-time STM observation of Si(111)7x7 surface irradiated with Si{sup 2+} ions is demonstrated. The STM results have shown that the surface defects generated by Si{sup 2+} ion irradiation exhibit similar behavior of surface defects induced by Ar{sup +} irradiation with IG/STM.

  6. High power microwave source development

    NASA Astrophysics Data System (ADS)

    Benford, James N.; Miller, Gabriel; Potter, Seth; Ashby, Steve; Smith, Richard R.

    1995-05-01

    The requirements of this project have been to: (1) improve and expand the sources available in the facility for testing purposes and (2) perform specific tasks under direction of the Defense Nuclear Agency about the applications of high power microwaves (HPM). In this project the HPM application was power beaming. The requirements of this program were met in the following way: (1) We demonstrated that a compact linear induction accelerator can drive HPM sources at repetition rates in excess of 100 HZ at peak microwave powers of a GW. This was done for the relativistic magnetron. Since the conclusion of this contract such specifications have also been demonstrated for the relativistic klystron under Ballistic Missile Defense Organization funding. (2) We demonstrated an L band relativistic magnetron. This device has been used both on our single pulse machines, CAMEL and CAMEL X, and the repetitive system CLIA. (3) We demonstrated that phase locking of sources together in large numbers is a feasible technology and showed the generation of multigigawatt S-band radiation in an array of relativistic magnetrons.

  7. Search for the Identification of 3EG J1835+5918: Evidence for a New Type of High-Energy Gamma-Ray Source?

    NASA Technical Reports Server (NTRS)

    Mirabal, N.; Halpern, Jules P.; Eracleous, M.; Becker, R. H.; Oliversen, Ronald (Technical Monitor)

    2001-01-01

    Most of the EGRET high-energy gamma-ray sources remain unidentified. It is highly likely that many of these are fainter blazars or pulsars, but there may also be new types of sources to be discovered. We have focussed our search for novel gamma-ray sources on 3EG 1835+5918, which is the brightest and most accurately positioned of the unidentified EGRET sources at high Galactic latitude (l, b = 89 deg, 25 deg). In this talk, we will summarize the results of X-ray, radio, and optical surveys of this location. In particular, we have made complete optical identifications of all of the ROSAT and ASCA sources in this region to a flux limit of approximately 1 x 10(exp -13) ergs/sq cm s. All of the X-ray sources within the EGRET error circle are radio-quiet quasars or coronally emitting stars. Previous radio pulsar searches have been unsuccessful. We set an upper limit of 3.8 mJy (at 1.4 GHz) on any possible radio counterpart to 3EG 1835+5918. We also find several quasars and white dwarfs using optical color selection, and we have monitored the entire field for variable optical objects on short and long time scales. Since no blazar-like or pulsar-like candidate has been found as a result of these searches, we assert that 3EG 1835+5918 must be lacking in one or more of the physically essential attributes of those classes of gamma-ray emitters. In particular, its radio flux is at least two orders of magnitude fainter than any of the securely identified EGRET blazars, and its soft X-ray flux is at least 30 times fainter than that of Geminga and other EGRET pulsars. If it is an AGN it lacks the beamed radio emission of blazars. If it is an isolated neutron star, it lacks both the thermal X-rays from a cooling surface and the magnetospheric non-thermal X-ray emission that is characteristic of all EGRET pulsars. As such, it is more problematic physically than Geminga, which is an ordinary pulsar that only lacks radio emission. As a pulsar, 3EG 1835+5918 would have to be either

  8. Conservation as an alternative energy source

    NASA Technical Reports Server (NTRS)

    Allen, D. E.

    1978-01-01

    A speech is given outlining the energy situation in the United States. It is warned that the existing energy situation cannot prevail and the time is fast running out for continued growth or even maintenance of present levels. Energy conservation measures are given as an aid to decrease U.S. energy consumption, which would allow more time to develop alternative sources of energy.

  9. MASTER OT J130845.02-323254.9: Variable Stars as Source of the High Energy Neutrino.

    NASA Astrophysics Data System (ADS)

    Lipunov, V.; Tyurina, N.; Gorbovskoy, E.; Buckley, D.

    2016-09-01

    As reported in ATel #9425 Global MASTER Net auto-detection system ( ( Lipunov et al., MASTER Global Robotic Net, Advances in Astronomy, 2010, 30L) discovered OT source at (RA, Dec) = 13h 08m 45.02s -32d 32m 54.9s on 2016-08-24.73811 UT during inspection of HESE IceCube alert (14 August 2016, 58537957 trigger number http://gcn.gsfc.nasa.gov/notices_amon/58537957_128340.amon , Dornic et al. ATEL #9440 ). MASTER-SAAO auto-detection system detected again OT at RA (2000) = 13 08 45.02 -32 32 54.9 on 2016-09-04.7627UT (ATEL #9425).

  10. High-brightness multilaser source

    NASA Astrophysics Data System (ADS)

    Goodman, Douglas S.; Gordon, Wayne L.; Jollay, Richard A.; Roblee, Jeffrey W.; Gavrilovic, Paul; Kuksenkov, Dmitri V.; Goyal, Anish K.; Zu, Qinxin

    1999-04-01

    This paper discusses a high-brightness multi-laser source developed at Polaroid for such applications as coupling light to fibers, pumping fiber lasers, pumping solid state lasers, material processing, and medical procedures. The power and brightness are obtained by imaging the nearfields of up to eight separate multi-mode lasers side by side on a multi-faceted mirror that makes the beams parallel. The lasers are microlensed to equalize the divergences in the two principal meridians. Each laser is aligned in a field- replaceable illuminator module whose output beam, focused at infinity, is bore-sighted in a mechanical cylinder. The illuminators are arranged roughly radially and the nearfields are reimaged on the mirror, which is produced by diamond machining. The array of nearfields is linearly polarized. A customizable afocal relay forms a telecentric image of the juxtaposed nearfields, as required by the application. The lasers can be of differing powers and wavelengths, and they can be independently switched. Light from other sources can be combined. The output can be utilized in free space or it can be coupled into a fiber for transport or a fiber laser for pumping. A linearly polarized free space output can be obtained, which allows two units to be polarization combined to double the power and brightness.

  11. Fusion: an energy source for synthetic fuels

    SciTech Connect

    Fillo, J A; Powell, J; Steinberg, M

    1980-01-01

    The decreasing availability of fossil fuels emphasizes the need to develop systems which will produce synthetic fuel to substitute for and supplement the natural supply. An important first step in the synthesis of liquid and gaseous fuels is the production of hydrogen. Thermonuclear fusion offers an inexhaustible source of energy for the production of hydrogen from water. Depending on design, electric generation efficiencies of approx. 40 to 60% and hydrogen production efficiencies by high temperature electrolysis of approx. 50 to 70% are projected for fusion reactors using high temperature blankets. Fusion/coal symbiotic systems appear economically promising for the first generation of commercial fusion synfuels plants. Coal production requirements and the environmental effects of large-scale coal usage would be greatly reduced by a fusion/coal system. In the long term, there could be a gradual transition to an inexhaustible energy system based solely on fusion.

  12. Observations of celestial X-ray sources above 20 keV with the high-energy scintillation spectrometer on board OSO 8

    NASA Technical Reports Server (NTRS)

    Crannell, C. J.; Dennis, B. R.; Dolan, J. H.; Frost, K. J.; Orwig, L. E.; Beall, J. H.; Maurer, G. S.

    1977-01-01

    High-energy X-ray spectra of the Crab Nebula, Cyg- XR-1, and Cen A were determined from observations with the scintillation spectrometer on board the OSO-8 satellite, launched in June, 1975. Each of these sources was observed over two periods of 8 days or more, enabling a search for day-to-day and year to year variations in the spectral and temporal characteristics of the X-ray emission. No variation in the light curve of the Crab pulsar was found from observations which span a 15-day period in March 1976, with demonstrable phase stability. Transitions associated with the binary phase of Cyg XR-1 and a large change in the emission from Con A are reported.

  13. The X-ray behaviour of the high-energy peaked BL Lacertae source PKS 2155-304 in the 0.3-10 keV band

    NASA Astrophysics Data System (ADS)

    Kapanadze, B.; Romano, P.; Vercellone, S.; Kapanadze, S.

    2014-10-01

    We present the results of our monitoring of the high-energy peaked BL Lac object PKS 2155-304 by the Swift/X-Ray Telescope (XRT) during 2005-2012. Our timing study shows that the source was highly variable both on longer (weeks-to-months) and intra-day time-scales, up to a factor of 7 in flux, and 30 per cent in fractional variability amplitudes, with no periodic variations. The X-ray spectra are mainly curved with broad ranges of photon index, curvature parameter, and hardness ratio which exhibit significant variability with the flux on different time-scales. Our study of multi-wavelength cross-correlations has revealed that the one-zone SSC scenario seems to be valid for the most optical-to-gamma-ray flares observed during 2006-2012. An `orphan' X-ray flare with no counterpart in other spectral bands suggests the existence of different electron populations. Based on the absence of a correlation between photon index and curvature parameter (expected from the energy-dependent acceleration probability scenario), the observed distribution of curvature parameter from the XRT spectra peaking at b = 0.37, and the observed anti-correlation between the curvature parameter and the 0.3-10 keV flux (i.e. lower curvatures in flaring states), we conclude that the most likely mechanism responsible for producing X-ray emission during the flares is the stochastic acceleration of the electrons.

  14. Power conditioning system for energy sources

    SciTech Connect

    Mazumder, Sudip K.; Burra, Rajni K.; Acharya, Kaustuva

    2008-05-13

    Apparatus for conditioning power generated by an energy source includes an inverter for converting a DC input voltage from the energy source to a square wave AC output voltage, and a converter for converting the AC output voltage from the inverter to a sine wave AC output voltage.

  15. Biochar As a Renewable Energy Source

    NASA Astrophysics Data System (ADS)

    Stein, Richard

    2011-11-01

    Biochar is a form of charcoal prepared by heating biomass in limited air. It is porous and has high surface area, maintaining much of the morphology of the biomass. The heat for its preparation arises primarily from burning volatiles emitted upon heating. About half the chemical energy in the biomass is contained in the biochar, about 40% is used for the conversion, and about 10% may be used as a local heat source. The biochar can serve as a soil additive where it acts as a template for the growth of bacteria and fungi which then lead to improved growth of biomass by as much as several hundred percent. It remains inert in the soil for many years. Thus, it sequesters the carbon, originally coming from the carbon dioxide absorbed during the photosynthesis occurring during the growth of the biomass. Its use reduces fertilizer and water needs and to pollution arising from the run-off of fertilizer and emission of noxious vapors. Its use is best done at a local level, close to sources of biomass from farm and forest waste. The Pioneer Valley Biochar Initiative along with the Center of Agriculture of the University of Massachusetts, Amherst is promoting the use of biochar on local farms which reduces their dependence on energy arising from fossil fuel and nuclear sources.

  16. HIGH-INTENSITY, HIGH CHARGE-STATE HEAVY ION SOURCES

    SciTech Connect

    ALESSI,J.G.

    2004-08-16

    There are many accelerator applications for high intensity heavy ion sources, with recent needs including dc beams for RIA, and pulsed beams for injection into synchrotrons such as RHIC and LHC. The present status of sources producing high currents of high charge state heavy ions is reviewed. These sources include ECR, EBIS, and Laser ion sources. Benefits and limitations for these type sources are described. Possible future improvements in these sources are also mentioned.

  17. Delays in Tapping Energy Sources

    ERIC Educational Resources Information Center

    Abelson, Philip H.

    1975-01-01

    Summarizes factors that will create severe energy shortages by 1980. Indicates that conservation is not enough, and the quickest path toward relief is the expansion of surface mining of low-sulfur coal in the Rocky Mountain states. (GS)

  18. Phase development during high-energy ball-milling of zinc oxide and iron - the impact of grain size on the source and the degree of contamination.

    PubMed

    Štefanić, G; Krehula, S; Štefanić, I

    2015-11-21

    High-energy ball-milling of powder mixtures of zincite (ZnO) and iron (α-Fe) at different weight ratios was performed in air using a planetary ball mill with a stainless steel milling assembly. Structural and microstructural changes during the ball-milling (up to 30 h) were monitored using X-ray powder diffraction, field emission scanning electron microscopy (FE-SEM) and UV-Vis diffuse reflectance spectroscopy. The mechanism of iron oxidation was determined from the results of Mössbauer spectroscopy. It was found that an early phase of ball-milling caused the oxidation of iron from Fe(0) to Fe(2+) followed by the formation of a solid solution structurally similar to wüstite. The wüstite-type phase rapidly disappeared upon prolonged milling, which was accompanied by further oxidation of iron from Fe(2+) to Fe(3+) and the formation of spinel-type ferrite structurally similar to franklinite (ZnFe2O4) in the products with a high zinc content, or magnetite (Fe3O4) in the products with a high iron content. Further milling or annealing had a low impact on the franklinite-type phase, but caused the transition of the magnetite-type phase to the phase structurally similar to hematite (α-Fe2O3). The results of energy dispersive X-ray spectrometry (EDS) showed a dramatic increase in the degree of contamination with the increase in the proportion of the starting iron (∼9 times higher contamination during the milling of pure iron compared with pure zincite). It was shown that the source of contamination (balls or vial) strongly depends on the type of milled sample. Ball-milling of relatively big and heavy grains (starting iron) caused preferential contamination from the vial whereas ball-milling of smaller and lighter grains (products obtained after prolonged milling) caused preferential contamination from the balls. After prolonged milling the contamination due to wear of the balls was dominant in all the products. An explanation for the observed impact of grain size on

  19. Pomegranate-Structured Conversion-Reaction Cathode with a Built-in Li Source for High-Energy Li-Ion Batteries.

    PubMed

    Fan, Xiulin; Zhu, Yujie; Luo, Chao; Suo, Liumin; Lin, Yan; Gao, Tao; Xu, Kang; Wang, Chunsheng

    2016-05-24

    Transition metal fluorides (such as FeF3 or CoF2) promise significantly higher theoretical capacities (>571 mAh g(-1)) than the cathode materials currently used in Li-ion batteries. However, their practical application faces major challenges that include poor electrochemical reversibility induced by the repeated bond-breaking and formation and the accompanied volume changes and the difficulty of building an internal Li source within the material so that a full Li-ion cell could be assembled at a discharged state without inducing further technical risk and cost issues. In this work, we effectively addressed these challenges by designing and synthesizing, via an aerosol-spray pyrolysis technique, a pomegranate-structured nanocomposite FeM/LiF/C (M = Co, Ni), in which 2-3 nm carbon-coated FeM nanoparticles (∼10 nm in diameter) and LiF nanoparticles (∼20 nm) are uniformly embedded in a porous carbon sphere matrix (100-1000 nm). This uniquely architectured nanocomposite was made possible by the extremely short pyrolysis time (∼1 s) and carbon coating in a high-temperature furnace, which prevented the overgrowth of FeM and LiF in the primordial droplet that serves as the carbon source. The presence of Ni or Co in FeM/LiF/C effectively suppresses the formation of Fe3C and further reduces the metallic particle size. The pomegranate architecture ensures the intimate contact among FeM, LiF, and C, thus significantly enhancing the conversion-reaction kinetics, while the nanopores inside the pomegranate-like carbon matrix, left by solvent evaporation during the pyrolysis, effectively accommodate the volume change of FeM/LiF during charge/discharge. Thus, the FeM/LiF/C nanocomposite shows a high specific capacity of >300 mAh g(-1) for more than 100 charge/discharge cycles, which is one of the best performances among all of the prelithiated metal fluoride cathodes ever reported. The pomegranate-structured FeM/LiF/C with its built-in Li source provides an inspiration to the

  20. Sugar cane. Positive energy source for alcohol

    SciTech Connect

    Polack, J.A.; Birkett, H.S.; West, M.D.

    1981-06-01

    Sugar cane stands out as a renewable resource for fuel alcohol production, thanks to its unique, highly positive energy balance. It supplies its own processing fuel, bagasse. Net liquid fuel usage is only that consumed on the farm, amounting to a maximum of 0.3 volume per volume of ethanol produced. In some locations, the net liquid fuel consumption of the farm is as low as 0.12 volume/volume produced. This small debit may be offset by generating electric power and by foreseeable processing improvements. In view of the very favorable fuel balance for sugar cane, a decision to employ it as a renewable source of ethanol depends wholly on economic and political factors, which in turn are highly location-dependent.

  1. Renewable energy sources 1991, part 2

    NASA Astrophysics Data System (ADS)

    Michalicka, L.

    1991-12-01

    The International Conference on Renewable Energy Sources was held in Prague on 1-4 Jul. 1991. Part 2 of the proceedings is devoted to the use of the energy of wind, biogas, and small hydroelectric sources. The publication contains 14 contributions, of which 3 were inputted in INIS. Topics covered include: a wind power plant in Sweden and its environmental impacts, economic aspects of the introduction of alternative energy sources in Czechoslovakia, and the efficiency of application of a Fresnel lens-based solar collector.

  2. ENERGY CONSERVATION THROUGH SOURCE REDUCTION

    EPA Science Inventory

    This report deals with energy conservation through reduction in generation of post-consumer solid waste. The objective, scope, methodology and summary of the report are presented in Section 1. Section 2 contains the conclusions. Section 3 presents a review of output and input app...

  3. High Power Polarized Positron Source

    NASA Astrophysics Data System (ADS)

    Mikhailichenko, Alexander

    2009-09-01

    We discuss the basics of polarized positron production by low energy polarized electrons. Efficiency of conversion ˜0.1-1% might be interesting for the Continuous Electron Beam Accelerator Facility (CEBAF) and the International Linear Collider (ILC).

  4. High power millimeter wave source development program

    NASA Technical Reports Server (NTRS)

    George, T. V.

    1989-01-01

    High power millimeter wave sources for fusion program; ECH source development program strategy; and 1 MW, 140 GHz gyrotron experiment design philosophy are briefly outlined. This presentation is represented by viewgraphs only.

  5. Estimation of water and energy fluxes over complex landscapes. Two Source Energy Balance modelling using very high resolution thermal and optical imagery in vineyards and wooded rangelands

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Modelling the water and energy balance at the land surface is a crucial task for many applications related to crop production, water resources management, climate change studies, weather forecasting, and natural hazards assessment. To improve the modelling of evapotranspiration (ET) over structurall...

  6. ALTERNATIVE ENERGY SOURCES FOR WASTEWATER TREATMENT PLANTS

    EPA Science Inventory

    The technology assessment provides an introduction to the use of several alternative energy sources at wastewater treatment plants. The report contains fact sheets (technical descriptions) and data sheets (cost and design information) for the technologies. Cost figures and schema...

  7. High flux solar energy transformation

    DOEpatents

    Winston, Roland; Gleckman, Philip L.; O'Gallagher, Joseph J.

    1991-04-09

    Disclosed are multi-stage systems for high flux transformation of solar energy allowing for uniform solar intensification by a factor of 60,000 suns or more. Preferred systems employ a focusing mirror as a primary concentrative device and a non-imaging concentrator as a secondary concentrative device with concentrative capacities of primary and secondary stages selected to provide for net solar flux intensification of greater than 2000 over 95 percent of the concentration area. Systems of the invention are readily applied as energy sources for laser pumping and in other photothermal energy utilization processes.

  8. High flux solar energy transformation

    DOEpatents

    Winston, R.; Gleckman, P.L.; O'Gallagher, J.J.

    1991-04-09

    Disclosed are multi-stage systems for high flux transformation of solar energy allowing for uniform solar intensification by a factor of 60,000 suns or more. Preferred systems employ a focusing mirror as a primary concentrative device and a non-imaging concentrator as a secondary concentrative device with concentrative capacities of primary and secondary stages selected to provide for net solar flux intensification of greater than 2000 over 95 percent of the concentration area. Systems of the invention are readily applied as energy sources for laser pumping and in other photothermal energy utilization processes. 7 figures.

  9. In situ observation of formation and growth of oxygen nano-precipitates in silicon with high energy X-rays from a laboratory source

    NASA Astrophysics Data System (ADS)

    Grillenberger, H.; Knerer, D.; Magerl, A.

    2011-03-01

    A focusing Laue diffractometer is used to analyze the strain field in silicon in situ during different thermal treatments up to 1000 °C. A high energy X-ray tube is the source for this so-called strain field diffraction (SFD) setup. The SFD setup is utilized to monitor in situ the strain generated by growing oxygen precipitates (bulk micro defects, BMD) in Czochralski grown silicon. Subsequently, the in situ investigated samples are characterized subsequently with ex situ techniques including FT-IR, infra red light scattering tomography (IR-LST) and TEM. By correlating enhancements of the integrated intensity (EII) of an investigated 220 silicon Bragg peak with BMD diameters obtained with TEM measurements a strong dependency of the total BMD volume and EII is found. The detection limit of the SFD setup is determined at a BMD diameter of 7 nm and a density of 1013 cm-3, and at 40 nm at a density of 108 cm-3. Thus SFD reaches into a detection range only covered by TEM so far and having additional advantages in in situ capability and minimal sample preparation requirements.

  10. Alpha Schottky junction energy source

    NASA Astrophysics Data System (ADS)

    Litz, Marc S.; Fan, Zhaoyang; Carroll, James J.; Bayne, Stephen

    2012-06-01

    Isotope batteries offer solutions for long-lived low-power sensor requirements. Alpha emitting isotopes have energy per decay 103 times that of beta emitters. Alpha particles are absorbed within 20 μm of most materials reducing shielding mitigation. However, damage to materials from the alphas limits their practical use. A Schottky Barrier Diode (SBD) geometry is considered with an alpha emitting contact-layer on a diamond-like crystal semiconductor region. The radiation tolerance of diamond, the safety of alpha particles, combined with the internal field of the SBD is expected to generate current useful for low-power electronic devices over decades. Device design parameters and calculations of the expected current are described.

  11. High pulse power rf sources for linear colliders

    SciTech Connect

    Wilson, P.B.

    1983-09-01

    RF sources with high peak power output and relatively short pulse lengths will be required for future high gradient e/sup +/e/sup -/ linear colliders. The required peak power and pulse length depend on the operating frequency, energy gradient and geometry of the collider linac structure. The frequency and gradient are in turn constrained by various parameters which depend on the beam-beam collision dynamics, and on the total ac wall-plug power that has been committed to the linac rf system. Various rf sources which might meet these requirements are reviewed. Existing source types (e.g., klystrons, gyrotrons) and sources which show future promise based on experimental prototypes are first considered. Finally, several proposals for high peak power rf sources based on unconventional concepts are discussed. These are an FEL source (two beam accelerator), rf energy storage cavities with switching, and a photocathode device which produces an rf current by direct emission modulation of the cathode.

  12. Risk with energy from conventional and nonconventional sources.

    PubMed

    Inhaber, H

    1979-02-23

    Risk to human health was compared for five conventional and six nonconventional energy systems. The entire cycle for producing energy was considered, not just part. The most important conclusion drawn is that the risk to human health from nonconventional sources can be as high as, or even higher than, that of conventional sources. This result is produced only when the risk per unit energy is considered, rather than the risk per solar panel or windmill. The risk from nonconventional energy sources derives from the large amount of material and labor needed, along with their backup and storage requirements. Risk evaluation is a relatively new discipline, and therefore the results presented here can be considered only a beginning. However, society should keep relative risk in mind when evaluating present and future energy sources. PMID:419404

  13. Spallation neutron source and other high intensity froton sources

    SciTech Connect

    Weiren Chou

    2003-02-06

    This lecture is an introduction to the design of a spallation neutron source and other high intensity proton sources. It discusses two different approaches: linac-based and synchrotron-based. The requirements and design concepts of each approach are presented. The advantages and disadvantages are compared. A brief review of existing machines and those under construction and proposed is also given. An R&D program is included in an appendix.

  14. The JLab high power ERL light source

    SciTech Connect

    G.R. Neil; C. Behre; S.V. Benson; M. Bevins; G. Biallas; J. Boyce; J. Coleman; L.A. Dillon-Townes; D. Douglas; H.F. Dylla; R. Evans; A. Grippo; D. Gruber; J. Gubeli; D. Hardy; C. Hernandez-Garcia; K. Jordan; M.J. Kelley; L. Merminga; J. Mammosser; W. Moore; N. Nishimori; E. Pozdeyev; J. Preble; R. Rimmer; Michelle D. Shinn; T. Siggins; C. Tennant; R. Walker; G.P. Williams and S. Zhang

    2005-03-19

    A new THz/IR/UV photon source at Jefferson Lab is the first of a new generation of light sources based on an Energy-Recovered, (superconducting) Linac (ERL). The machine has a 160 MeV electron beam and an average current of 10 mA in 75 MHz repetition rate hundred femtosecond bunches. These electron bunches pass through a magnetic chicane and therefore emit synchrotron radiation. For wavelengths longer than the electron bunch the electrons radiate coherently a broadband THz {approx} half cycle pulse whose average brightness is > 5 orders of magnitude higher than synchrotron IR sources. Previous measurements showed 20 W of average power extracted[1]. The new facility offers simultaneous synchrotron light from the visible through the FIR along with broadband THz production of 100 fs pulses with >200 W of average power. The FELs also provide record-breaking laser power [2]: up to 10 kW of average power in the IR from 1 to 14 microns in 400 fs pulses at up to 74.85 MHz repetition rates and soon will produce similar pulses of 300-1000 nm light at up to 3 kW of average power from the UV FEL. These ultrashort pulses are ideal for maximizing the interaction with material surfaces. The optical beams are Gaussian with nearly perfect beam quality. See www.jlab.org/FEL for details of the operating characteristics; a wide variety of pulse train configurations are feasible from 10 microseconds long at high repetition rates to continuous operation. The THz and IR system has been commissioned. The UV system is to follow in 2005. The light is transported to user laboratories for basic and applied research. Additional lasers synchronized to the FEL are also available. Past activities have included production of carbon nanotubes, studies of vibrational relaxation of interstitial hydrogen in silicon, pulsed laser deposition and ablation, nitriding of metals, and energy flow in proteins. This paper will present the status of the system and discuss some of the discoveries we have made

  15. The JLab high power ERL light source

    NASA Astrophysics Data System (ADS)

    Neil, G. R.; Behre, C.; Benson, S. V.; Bevins, M.; Biallas, G.; Boyce, J.; Coleman, J.; Dillon-Townes, L. A.; Douglas, D.; Dylla, H. F.; Evans, R.; Grippo, A.; Gruber, D.; Gubeli, J.; Hardy, D.; Hernandez-Garcia, C.; Jordan, K.; Kelley, M. J.; Merminga, L.; Mammosser, J.; Moore, W.; Nishimori, N.; Pozdeyev, E.; Preble, J.; Rimmer, R.; Shinn, M.; Siggins, T.; Tennant, C.; Walker, R.; Williams, G. P.; Zhang, S.

    2006-02-01

    A new THz/IR/UV photon source at Jefferson Lab is the first of a new generation of light sources based on an Energy-Recovered, (superconducting) Linac (ERL). The machine has a 160 MeV electron beam and an average current of 10 mA in 75 MHz repetition rate hundred femtosecond bunches. These electron bunches pass through a magnetic chicane and therefore emit synchrotron radiation. For wavelengths longer than the electron bunch the electrons radiate coherently a broadband THz ˜ half cycle pulse whose average brightness is >5 orders of magnitude higher than synchrotron IR sources. Previous measurements showed 20 W of average power extracted [Carr, et al., Nature 420 (2002) 153]. The new facility offers simultaneous synchrotron light from the visible through the FIR along with broadband THz production of 100 fs pulses with >200 W of average power. The FELs also provide record-breaking laser power [Neil, et al., Phys. Rev. Lett. 84 (2000) 662]: up to 10 kW of average power in the IR from 1 to 14 μm in 400 fs pulses at up to 74.85 MHz repetition rates and soon will produce similar pulses of 300-1000 nm light at up to 3 kW of average power from the UV FEL. These ultrashort pulses are ideal for maximizing the interaction with material surfaces. The optical beams are Gaussian with nearly perfect beam quality. See www.jlab.org/FEL for details of the operating characteristics; a wide variety of pulse train configurations are feasible from 10 ms long at high repetition rates to continuous operation. The THz and IR system has been commissioned. The UV system is to follow in 2005. The light is transported to user laboratories for basic and applied research. Additional lasers synchronized to the FEL are also available. Past activities have included production of carbon nanotubes, studies of vibrational relaxation of interstitial hydrogen in silicon, pulsed laser deposition and ablation, nitriding of metals, and energy flow in proteins. This paper will present the status of the

  16. High-energy detector

    DOEpatents

    Bolotnikov, Aleksey E.; Camarda, Giuseppe; Cui, Yonggang; James, Ralph B.

    2011-11-22

    The preferred embodiments are directed to a high-energy detector that is electrically shielded using an anode, a cathode, and a conducting shield to substantially reduce or eliminate electrically unshielded area. The anode and the cathode are disposed at opposite ends of the detector and the conducting shield substantially surrounds at least a portion of the longitudinal surface of the detector. The conducting shield extends longitudinally to the anode end of the detector and substantially surrounds at least a portion of the detector. Signals read from one or more of the anode, cathode, and conducting shield can be used to determine the number of electrons that are liberated as a result of high-energy particles impinge on the detector. A correction technique can be implemented to correct for liberated electron that become trapped to improve the energy resolution of the high-energy detectors disclosed herein.

  17. High stability wavefront reference source

    DOEpatents

    Feldman, M.; Mockler, D.J.

    1994-05-03

    A thermally and mechanically stable wavefront reference source which produces a collimated output laser beam is disclosed. The output beam comprises substantially planar reference wavefronts which are useful for aligning and testing optical interferometers. The invention receives coherent radiation from an input optical fiber, directs a diverging input beam of the coherent radiation to a beam folding mirror (to produce a reflected diverging beam), and collimates the reflected diverging beam using a collimating lens. In a class of preferred embodiments, the invention includes a thermally and mechanically stable frame comprising rod members connected between a front end plate and a back end plate. The beam folding mirror is mounted on the back end plate, and the collimating lens mounted to the rods between the end plates. The end plates and rods are preferably made of thermally stable metal alloy. Preferably, the input optical fiber is a single mode fiber coupled to an input end of a second single mode optical fiber that is wound around a mandrel fixedly attached to the frame of the apparatus. The output end of the second fiber is cleaved so as to be optically flat, so that the input beam emerging therefrom is a nearly perfect diverging spherical wave. 7 figures.

  18. High stability wavefront reference source

    DOEpatents

    Feldman, Mark; Mockler, Daniel J.

    1994-01-01

    A thermally and mechanically stable wavefront reference source which produces a collimated output laser beam. The output beam comprises substantially planar reference wavefronts which are useful for aligning and testing optical interferometers. The invention receives coherent radiation from an input optical fiber, directs a diverging input beam of the coherent radiation to a beam folding mirror (to produce a reflected diverging beam), and collimates the reflected diverging beam using a collimating lens. In a class of preferred embodiments, the invention includes a thermally and mechanically stable frame comprising rod members connected between a front end plate and a back end plate. The beam folding mirror is mounted on the back end plate, and the collimating lens mounted to the rods between the end plates. The end plates and rods are preferably made of thermally stable metal alloy. Preferably, the input optical fiber is a single mode fiber coupled to an input end of a second single mode optical fiber that is wound around a mandrel fixedly attached to the frame of the apparatus. The output end of the second fiber is cleaved so as to be optically flat, so that the input beam emerging therefrom is a nearly perfect diverging spherical wave.

  19. Very high power THz radiation sources

    SciTech Connect

    Carr, G.L.; Martin, Michael C.; McKinney, Wayne R.; Jordan, K.; Neil, George R.; Williams, G.P.

    2002-10-31

    We report the production of high power (20 watts average, {approx} 1 Megawatt peak) broadband THz light based on coherent emission from relativistic electrons. Such sources are ideal for imaging, for high power damage studies and for studies of non-linear phenomena in this spectral range. We describe the source, presenting theoretical calculations and their experimental verification. For clarity we compare this source to one based on ultrafast laser techniques.

  20. High energy gamma ray astronomy

    NASA Technical Reports Server (NTRS)

    Fichtel, Carl E.

    1987-01-01

    High energy gamma ray astronomy has evolved with the space age. Nonexistent twenty-five years ago, there is now a general sketch of the gamma ray sky which should develop into a detailed picture with the results expected to be forthcoming over the next decade. The galactic plane is the dominant feature of the gamma ray sky, the longitude and latitude distribution being generally correlated with galactic structural features including the spiral arms. Two molecular clouds were already seen. Two of the three strongest gamma ray sources are pulsars. The highly variable X-ray source Cygnus X-3 was seen at one time, but not another in the 100 MeV region, and it was also observed at very high energies. Beyond the Milky Way Galaxy, there is seen a diffuse radiation, whose origin remains uncertain, as well as at least one quasar, 3C 273. Looking to the future, the satellite opportunities for high energy gamma ray astronomy in the near term are the GAMMA-I planned to be launched in late 1987 and the Gamma Ray Observatory, scheduled for launch in 1990. The Gamma Ray Observatory will carry a total of four instruments covering the entire energy range from 30,000 eV to 3 x 10 to the 10th eV with over an order of magnitude increase in sensitivity relative to previous satellite instruments.

  1. Energy Sources of T-Tauri Stars

    NASA Astrophysics Data System (ADS)

    Calvet, N.; Albarran, J.

    1984-06-01

    We empirically estimated the total energy loss from the atmospheric regions above the photo sphere in T Tauri stars. We have also estimated the flux input into the atmosphere by magnetohydrodynamic (MHD) aves produced in the subphotospheric convection zone. Within the uncertainties of both theory and observations, this flux seems to represent the basic energy input into the atmosphere provided that a large surface coverage of magnetic regions exists. In addition to this basic energy input from the convection zone the T Tauri atmospheres must have other energy sources, originating in the stellar surfitee. Among those we can include the flux of energy carried by Alfven waves resulting from the action of surface material motions on magnetic flux tubes, as well as dissipation and annihilation of magnetic fields in flare events. The observed decrease in emission line fluxes with luminosity seems to indicate that MHD wave fluxes heat the chromosphere, while the uppermost atmospheric regions require another source of heating.

  2. High power millimeter wave ECRH source needs for fusion program

    SciTech Connect

    Not Available

    1984-06-01

    This document stems from the four-day Gyrotron Symposium held at the US Department of Energy (DOE) Headquarters on June 13-16, 1983, and serves as a position paper for the Office of Fusion Energy, DOE, on high-power millimeter wave source development for Electron Cyclotron Heating (ECH) of plasmas. It describes the fusion program needs for gyrotron as ECH sources, their current status, and desirable development strategies.

  3. Controlling hazardous energy sources (lockout/tagout)

    NASA Technical Reports Server (NTRS)

    Dominguez, Manuel B.

    1991-01-01

    The minimum requirements as established by the Occupational Safety and Health Administration (OSHA) standard 29 CFR 1910.147 are discussed for preventing the unexpected operation of equipment or release of energy which could cause injury to personnel, damage to equipment, harm to the environment, or loss or compromise of test data. Safety requirements both for government and contractor personnel are explained for potentially hazardous energy sources during work operations at LeRC (Cleveland and Plum Brook Stations). Basic rules are presented to ensure protection against harmful exposures, and baseline implementation requirements are discussed from which detailed lockout/tagout procedures can be developed for individual equipment items. Examples of energy sources covered by this document include electrical, pneumatic, mechanical, chemical, cryogenic, thermal, spring tension/compression suspended or moving loads, and other potentially hazardous sources. Activities covered by this standard include, but are not limited to, construction, maintenance, installation, calibration, inspection, cleaning, or repair.

  4. High energy beam lines

    NASA Astrophysics Data System (ADS)

    Marchetto, M.; Laxdal, R. E.

    2014-01-01

    The ISAC post accelerator comprises an RFQ, DTL and SC-linac. The high energy beam lines connect the linear accelerators as well as deliver the accelerated beams to two different experimental areas. The medium energy beam transport (MEBT) line connects the RFQ to the DTL. The high energy beam transport (HEBT) line connects the DTL to the ISAC-I experimental stations (DRAGON, TUDA-I, GPS). The DTL to superconducting beam (DSB) transport line connects the ISAC-I and ISAC-II linacs. The superconducting energy beam transport (SEBT) line connects the SC linac to the ISAC-II experimental station (TUDA-II, HERACLES, TIGRESS, EMMA and GPS). All these lines have the function of transporting and matching the beams to the downstream sections by manipulating the transverse and longitudinal phase space. They also contain diagnostic devices to measure the beam properties.

  5. The Jefferson Lab High Power Light Source

    SciTech Connect

    James R. Boyce

    2006-01-01

    Jefferson Lab has designed, built and operated two high average power free-electron lasers (FEL) using superconducting RF (SRF) technology and energy recovery techniques. Between 1999-2001 Jefferson Lab operated the IR Demo FEL. This device produced over 2 kW in the mid-infrared, in addition to producing world record average powers in the visible (50 W), ultraviolet (10 W) and terahertz range (50 W) for tunable, short-pulse (< ps) light. This FEL was the first high power demonstration of an accelerator configuration that is being exploited for a number of new accelerator-driven light source facilities that are currently under design or construction. The driver accelerator for the IR Demo FEL uses an Energy Recovered Linac (ERL) configuration that improves the energy efficiency and lowers both the capital and operating cost of such devices by recovering most of the power in the spent electron beam after optical power is extracted from the beam. The IR Demo FEL was de-commissioned in late 2001 for an upgraded FEL for extending the IR power to over 10 kW and the ultraviolet power to over 1 kW. The FEL Upgrade achieved 10 kW of average power in the mid-IR (6 microns) in July of 2004, and its IR operation currently is being extended down to 1 micron. In addition, we have demonstrated the capability of on/off cycling and recovering over a megawatt of electron beam power without diminishing machine performance. A complementary UV FEL will come on-line within the next year. This paper presents a summary of the FEL characteristics, user community accomplishments with the IR Demo, and planned user experiments.

  6. High Energy Astrophysics Program

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This report reviews activities performed by members of the USRA (Universities Space Research Association) contract team during the six months during the reporting period (10/95 - 3/96) and projected activities during the coming six months. Activities take place at the Goddard Space Flight Center, within the Laboratory for High Energy Astrophysics. Developments concern instrumentation, observation, data analysis, and theoretical work in Astrophysics. Missions supported include: Advanced Satellite for Cosmology and Astrophysics (ASCA), X-ray Timing Experiment (XTE), X-ray Spectrometer (XRS), Astro-E, High Energy Astrophysics Science, Archive Research Center (HEASARC), and others.

  7. High Energy Astrophysics Program

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This report reviews activities performed-by members of the USRA contract team during the six months of the reporting period and projected activities during the coming six months. Activities take place at the Goddard Space Flight Center, visiting the Laboratory for High Energy Astrophysics. Developments concern instrumentation, observation, data analysis, and theoretical work in Astrophysics. Missions supported include: Advanced Satellite for Cosmology and Astrophysics (ASCA); X-ray Timing Experiment (XTE); X-ray Spectrometer (XRS); Astro-E; High Energy Astrophysics Science Archive Research Center (HEASARC), and others.

  8. Methods of performing downhole operations using orbital vibrator energy sources

    DOEpatents

    Cole, Jack H.; Weinberg, David M.; Wilson, Dennis R.

    2004-02-17

    Methods of performing down hole operations in a wellbore. A vibrational source is positioned within a tubular member such that an annulus is formed between the vibrational source and an interior surface of the tubular member. A fluid medium, such as high bulk modulus drilling mud, is disposed within the annulus. The vibrational source forms a fluid coupling with the tubular member through the fluid medium to transfer vibrational energy to the tubular member. The vibrational energy may be used, for example, to free a stuck tubular, consolidate a cement slurry and/or detect voids within a cement slurry prior to the curing thereof.

  9. On the determination of the cosmic infrared background radiation from the high-energy spectrum of extragalactic gamma-ray sources

    NASA Technical Reports Server (NTRS)

    Dwek, Eli; Slavin, Jonathan

    1994-01-01

    In a recent paper Stecker, De Jager, & Salamon have suggested using the observed approximately MeV to TeV spectra of extragalactic gamma-ray sources as probes of the local density of the cosmic infrared background radiation (CIBR) and have subsequently claimed a first possible measurement of the CIBR from the analysis of the gamma-ray spectrum of Mrk 421 (De Jager, Stecker, & Salamon). The CIBR from normal galaxies consists of two components: a stellar emission component (CIBRs), and a thermal dust emission component (CIBRd). Photons with energies in the approximately 0.1-2 TeV range interact primarily with the CIBRs, whereas interactions with CIBRd dominate the absorption of photons in the approximately 2-100 TeV energy range. SDS 92 and DSS94 considered only the interaction of the gamma-rays with the dust emission component of the CIBR. We present here an improved analysis of the absorption of extragalactic TeV gamma rays by the CIBR, taking the dual nature of its origin into account. Applying the analysis to the observed gamma-ray spectrum of Mrk 421, a BL Lac object at z = 0.031, we find agreement with DSS94 tentative evidence for absorption by the CINRs. Our analysis therefore limits the detection of the CIBR to the approximately 15-40 micron wavelength regime which, considering the uncertainties in the highest energy (greater than 4 TeV) data and ion the possibility of absorption inside the source, many turn out to be an upper limit on its energy density. At shorter wavelengths (lambda approximately = 1-15 microns), where the gamma-ray interactions are dominated by the CIBRs, our analysis definitely yields only an upper limit on the energy density of the CIBR. In contrast, DSS94 have claimed a possible first measurement of the CIBR over the entire 1-120 micron wavelength region. The upper limit on the CIBRs and tentative detection of the CIBRd are consistent with normal galaxies contributing most of the energy to the CIBR, and constrain the contribution of

  10. Secondary School Teachers' Knowledge and Attitudes Towards Renewable Energy Sources

    NASA Astrophysics Data System (ADS)

    Liarakou, Georgia; Gavrilakis, Costas; Flouri, Eleni

    2009-04-01

    Investigating knowledge, perceptions as well as attitudes of public that concern various aspects of environmental issues is of high importance for Environmental Education. An integrated understanding of these parameters can properly support the planning of Environmental Education curriculum and relevant educational materials. In this survey we investigated knowledge and attitudes of secondary school teachers in Greece towards renewable energy sources, particularly wind and solar energy systems. A questionnaire with both open and close questions was used as the main methodological instrument. Findings revealed that although teachers were informed about renewable energy sources and well disposed towards these sources, they hardly expressed clear positions regarding several issues about wind and solar energy technologies and farms. Moreover such themes are limited integrated in teaching either as extra curricular educational programs or through the curriculum. These findings cannot confirm that teachers could influence students' opinion towards renewable energy systems. Thus, authorities should invest more in Environmental Education and relevant Teachers' Education.

  11. Extraterrestrial high energy neutrino fluxes

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    1979-01-01

    Using the most recent cosmic ray spectra up to 2x10 to the 20th power eV, production spectra of high energy neutrinos from cosmic ray interactions with interstellar gas and extragalactic interactions of ultrahigh energy cosmic rays with 3K universal background photons are presented and discussed. Estimates of the fluxes from cosmic diffuse sources and the nearby quasar 3C273 are made using the generic relationship between secondary neutrinos and gammas and using recent gamma ray satellite data. These gamma ray data provide important upper limits on cosmological neutrinos. Quantitative estimates of the observability of high energy neutrinos from the inner galaxy and 3C273 above atmospheric background for a DUMAND type detector are discussed in the context of the Weinberg-Salam model with sq sin theta omega = 0.2 and including the atmospheric background from the decay of charmed mesons. Constraints on cosmological high energy neutrino production models are also discussed. It appears that important high energy neutrino astronomy may be possible with DUMAND, but very long observing times are required.

  12. Energy scavenging sources for biomedical sensors.

    PubMed

    Romero, E; Warrington, R O; Neuman, M R

    2009-09-01

    Energy scavenging has increasingly become an interesting option for powering electronic devices because of the almost infinite lifetime and the non-dependence on fuels for energy generation. Moreover, the rise of wireless technologies promises new applications in medical monitoring systems, but these still face limitations due to battery lifetime and size. A trade-off of these two factors has typically governed the size, useful life and capabilities of an autonomous system. Energy generation from sources such as motion, light and temperature gradients has been established as commercially viable alternatives to batteries for human-powered flashlights, solar calculators, radio receivers and thermal-powered wristwatches, among others. Research on energy harvesting from human activities has also addressed the feasibility of powering wearable or implantable systems. Biomedical sensors can take advantage of human-based activities as the energy source for energy scavengers. This review describes the state of the art of energy scavenging technologies for powering sensors and instrumentation of physiological variables. After a short description of the human power and the energy generation limits, the different transduction mechanisms, recent developments and challenges faced are reviewed and discussed. PMID:19687530

  13. High-power laser source evaluation

    SciTech Connect

    Back, C. A.; Decker, C. D.; Davis, J. F.; Dixit, S.; Grun, J.; Managan, R. A.; Serduke, F. J. D.; Simonson, G. F.; Suter, L. J.; Wuest, C. R.; Ze, F.

    1998-07-01

    Robust Nuclear-Weapons-Effects Testing (NWET) capability will be needed for the foreseeable future to ensure the performance and reliability, in nuclear environments, of the evolving U.S. stockpile of weapons and other assets. Ongoing research on the use of high-energy lasers to generate environments of utility in nuclear weapon radiation effects simulations is addressed in the work described in this report. Laser-driven hohlraums and a variety of other targets have been considered in an effort to develop NWET capability of the highest possible fidelity in above-ground experiments. The envelope of large-system test needs is shown as the gray region in fig. 1. It does not represent the spectrum of any device; it is just the envelope of the spectral region of outputs from a number of possible devices. It is a goal of our laser-only and ignition-capsule source development work to generate x rays that fall somewhere in this envelope. One of the earlier appearances of this envelope is in ref. 1. The Defense Special Weapons Agency provided important support for the work described herein. A total of $520K was provided in the 1997 IACROs 97-3022 for Source Development and 97-3048 for Facilitization. The period of performance specified in the Statement of Work ran from 28 February 1997 until 30 November 1997. This period was extended, by agreement with DSWA, for two reasons: 1) despite the stated period of performance, funds were not available at LLNL to begin this work until somewhat later in the fiscal year, and 2) we agreed to stretch the current resources until follow-on funds were in hand, to minimize effects of ramping down and up again. The tasks addressed in this report are the following: 1) Non-ignition-source model benchmarking and design. This involves analysis of existing and new data on laser-only sources to benchmark LASNEX predictions 2) Non-ignition-source development experiments 3) Ignition capsule design to improve total x-ray output and simplify target

  14. Power conversion from environmentally scavenged energy sources.

    SciTech Connect

    Druxman, Lee Daniel

    2007-09-01

    As the power requirements for modern electronics continue to decrease, many devices which were once dependent on wired power are now being implemented as portable devices operating from self-contained power sources. The most prominent source of portable power is the electrochemical battery, which converts chemical energy into electricity. However, long lasting batteries require large amounts of space for chemical storage, and inevitably require replacement when the chemical reaction no longer takes place. There are many transducers and scavenging energy sources (SES) that are able to exploit their environment to generate low levels of electrical power over a long-term time period, including photovoltaic cells, thermoelectric generators, thermionic generators, and kinetic/piezoelectric power generators. This generated power is sustainable as long as specific environmental conditions exist and also does not require the large volume of a long lifetime battery. In addition to the required voltage generation, stable power conversion requires excess energy to be efficiently stored in an ultracapacitor or similar device and monitoring control algorithms to be implemented, while computer modeling and simulation can be used to complement experimental testing. However, building an efficient and stable power source scavenged from a varying input source is challenging.

  15. An Inexpensive Source of High Voltage

    ERIC Educational Resources Information Center

    Saraiva, Carlos

    2012-01-01

    As a physics teacher I like recycling old apparatus and using them for demonstrations in my classes. In physics laboratories in schools, sources of high voltage include induction coils or electronic systems that can be bought from companies that sell lab equipment. But these sources can be very expensive. In this article, I will explain how you…

  16. High energy particle astronomy.

    NASA Technical Reports Server (NTRS)

    Buffington, A.; Muller, R. A.; Smith, L. H.; Smoot, G. F.

    1972-01-01

    Discussion of techniques currently used in high energy particle astronomy for measuring charged and neutral cosmic rays and their isotope and momentum distribution. Derived from methods developed for accelerator experiments in particle physics, these techniques help perform important particle astronomy experiments pertaining to nuclear cosmic ray and gamma ray research, electron and position probes, and antimatter searches.

  17. High Energy Astronomy Observatory

    NASA Technical Reports Server (NTRS)

    1980-01-01

    An overview of the High Energy Astronomy Observatory 2 contributions to X-ray astronomy is presented along with a brief description of the satellite and onboard telescope. Observations relating to galaxies and galactic clusters, black holes, supernova remnants, quasars, and cosmology are discussed.

  18. Reusable Energy and Power Sources: Rechargeable Batteries

    ERIC Educational Resources Information Center

    Hsiung, Steve C.; Ritz, John M.

    2007-01-01

    Rechargeable batteries are very popular within consumer electronics. If one uses a cell phone or portable electric tool, she/he understands the need to have a reliable product and the need to remember to use the recharging systems that follow a cycle of charge/discharge. Rechargeable batteries are being called "green" energy sources. They are a…

  19. Alternative Energy Sources in Seismic Methods

    NASA Astrophysics Data System (ADS)

    Tün, Muammer; Pekkan, Emrah; Mutlu, Sunay; Ecevitoğlu, Berkan

    2015-04-01

    When the suitability of a settlement area is investigated, soil-amplification, liquefaction and fault-related hazards should be defined, and the associated risks should be clarified. For this reason, soil engineering parameters and subsurface geological structure of a new settlement area should be investigated. Especially, faults covered with quaternary alluvium; thicknesses, shear-wave velocities and geometry of subsurface sediments could lead to a soil amplification during an earthquake. Likewise, changes in shear-wave velocities along the basin are also very important. Geophysical methods can be used to determine the local soil properties. In this study, use of alternative seismic energy sources when implementing seismic reflection, seismic refraction and MASW methods in the residential areas of Eskisehir/Turkey, were discussed. Our home developed seismic energy source, EAPSG (Electrically-Fired-PS-Gun), capable to shoot 2x24 magnum shotgun cartridges at once to generate P and S waves; and our home developed WD-500 (500 kg Weight Drop) seismic energy source, mounted on a truck, were developed under a scientific research project of Anadolu University. We were able to reach up to penetration depths of 1200 m for EAPSG, and 800 m for WD-500 in our seismic reflection surveys. WD-500 seismic energy source was also used to perform MASW surveys, using 24-channel, 10 m apart, 4.5 Hz vertical geophone configuration. We were able to reach 100 m of penetration depth in MASW surveys.

  20. A Web Based Puzzle for Energy Sources

    ERIC Educational Resources Information Center

    Secken, Nilgun

    2006-01-01

    At present many countries in the world consume too much fossil fuels such as petroleum, natural gas and coal to meet their energy needs. These fossil fuels are not renewable; their sources are limited and reducing gradually. More importantly they have been becoming more expensive day by day and their damage to the environment has been increasing.…

  1. Compact Neutron Sources for Energy and Security

    NASA Astrophysics Data System (ADS)

    Uesaka, Mitsuru; Kobayashi, Hitoshi

    We choose nuclear data and nuclear material inspection for energy application, and nondestructive testing of explosive and hidden nuclear materials for security application. Low energy (~100 keV) electrostatic accelerators of deuterium are commercially available for nondestructive testing. For nuclear data measurement, electrostatic ion accelerators and L-band (1.428GHz) and S-band (2.856GHz) electron linear accelerators (linacs) are used for the neutron source. Compact or mobile X-band (9.3, 11.424GHz) electron linac neutron sources are under development. A compact proton linac neutron source is used for nondestructive testing, especially water in solids. Several efforts for more neutron intensity using proton and deuteron accelerators are also introduced.

  2. Compact Neutron Sources for Energy and Security

    NASA Astrophysics Data System (ADS)

    Uesaka, Mitsuru; Kobayashi, Hitoshi

    We choose nuclear data and nuclear material inspection for energy application, and nondestructive testing of explosive and hidden nuclear materials for security application. Low energy (˜100keV) electrostatic accelerators of deuterium are commercially available for nondestructive testing. For nuclear data measurement, electrostatic ion accelerators and L-band (1.428GHz) and S-band (2.856GHz) electron linear accelerators (linacs) are used for the neutron source. Compact or mobile X-band (9.3, 11.424GHz) electron linac neutron sources are under development. A compact proton linac neutron source is used for nondestructive testing, especially water in solids. Several efforts for more neutron intensity using proton and deuteron accelerators are also introduced.

  3. Safety's impact on an alternative energy source

    SciTech Connect

    Denton, D.K.

    1983-01-01

    Our ability to make underground mines a safe place to work will be a major concern to those seeking to use coal as an energy source. Increased production will stimulate a heightened concern for making mining a more effective energy resource. This effectiveness means that unless safe performance is achieved, the cost of poor safety, such as loss of lives and costly delays due to breakdowns and other failures, will greatly reduce productivity of underground mining operations. As such, coal companies and miners must be prepared to safely manage their operation before underground mining makes a significant effect on energy independence.

  4. Hawaii's energy self-sufficiency program from renewable energy sources

    SciTech Connect

    Neill, D.R.

    1981-01-01

    The need for public support for incentives to accelerate commercialization of renewable energy sources is discussed from the viewpoint of the Hawaiian program to use the state's wind, solar, geothermal, and OTEC resources to achieve energy self-sufficiency. The objectives and major events in the research, development and demonstration and implementation programs and related activities are described. (LEW)

  5. Development of Electricity Generation from Renewable Energy Sources in Turkey

    NASA Astrophysics Data System (ADS)

    Kentel, E.

    2011-12-01

    Electricity is mainly produced from coal, natural gas and hydropower in Turkey. However, almost all the natural gas and high quality coal are imported. Thus, increasing the shares of both hydro and other renewables in energy supply is necessary to decrease dependency of the country on foreign sources. In 2008, the total installed capacity of Turkey was around 42000 MW and 66 % of this was from thermal sources. The remaining 33 % was from hydro, which leaves only one percent for the other renewable energy sources. The share of renewable energy in the energy budget of Turkey has increased in the last two decades; however, in 2008, only 17 % of the total electricity generation was realized from renewable sources most of which was hydro. According to State Hydraulic Works (SHW) which is the primary executive state agency responsible for the planning, operating and managing of Turkey's water resources, Turkey utilizes only around 35% of its economically viable hydro potential. The current situation clearly demonstrates the need for increasing the share of renewables in the energy budget. New laws, such as the Electricity Market Law, have been enacted and the following items were identified by the Ministry of Energy and Natural Resources of Turkey among primary energy policies and priorities: (i) decreasing dependency on foreign resources by prioritizing utilization of natural resources, (ii) increasing the share of renewable energy resources in the energy budget of Turkey; (iii) minimization of adverse environmental impacts of production and utilization of natural resources. The government's energy policy increased investments in renewable energy resources; however lack of a needed legal framework brought various environmental and social problems with this fast development. The development of the share of renewable resources in the energy budget, current government policy, and environmental concerns related with renewables, and ideas to improve the overall benefits of

  6. Kansas Energy Sources: A Geological Review

    USGS Publications Warehouse

    Merriam, D.F.; Brady, L.L.; Newell, K.D.

    2012-01-01

    Kansas produces both conventional energy (oil, gas, and coal) and nonconventional (coalbed gas, wind, hydropower, nuclear, geothermal, solar, and biofuels) and ranks the 22nd in state energy production in the U. S. Nonrenewable conventional petroleum is the most important energy source with nonrenewable, nonconventional coalbed methane gas becoming increasingly important. Many stratigraphic units produce oil and/or gas somewhere in the state with the exception of the Salina Basin in north-central Kansas. Coalbed methane is produced from shallow wells drilled into the thin coal units in southeastern Kansas. At present, only two surface coal mines are active in southeastern Kansas. Although Kansas has been a major exporter of energy in the past (it ranked first in oil production in 1916), now, it is an energy importer. ?? 2011 International Association for Mathematical Geology.

  7. Central airport energy systems using alternate energy sources

    SciTech Connect

    Not Available

    1982-07-01

    The purpose of this project was to develop the concept of a central airport energy system designed to supply energy for aircraft ground support and terminal complex utility systems using municipal waste as a fuel. The major task was to estimate the potential for reducing aircraft and terminal fuel consumption by the use of alternate renewable energy sources. Additional efforts included an assessment of indirect benefits of reducing airport atmospheric and noise pollution.

  8. Theoretical High Energy Physics

    SciTech Connect

    Christ, Norman H.; Weinberg, Erick J.

    2014-07-14

    we provide reports from each of the six faculty supported by the Department of Energy High Energy Physics Theory grant at Columbia University. Each is followed by a bibliography of the references cited. A complete list of all of the publications in the 12/1/2010-04/30/2014 period resulting from research supported by this grant is provided in the following section. The final section lists the Ph.D. dissertations based on research supported by the grant that were submitted during this period.

  9. Multi-source energy harvester for wildlife tracking

    NASA Astrophysics Data System (ADS)

    Wu, You; Zuo, Lei; Zhou, Wanlu; Liang, Changwei; McCabe, Michael

    2014-03-01

    Sufficient power supply to run GPS machinery and transmit data on a long-term basis remains to be the key challenge for wildlife tracking technology. Traditional way of replacing battery periodically is not only time and money consuming but also dangerous to live-trapping wild animals. In this paper, an innovative wildlife tracking device with multi-source energy harvester with advantage of high efficiency and reliability is investigated and developed. This multi-source energy harvester entails a solar energy harvester and an innovative rotational electromagnetic energy harvester is mounted on the "wildlife tracking collar" which will remarkably extend the duration of wild life tracking. A feedforward and feedback control of DC-DC converter circuit is adopted to passively realize the Maximum Power Point Tracking (MPPT) logic for the solar energy harvester. The rotational electromagnetic energy harvester can mechanically rectify the irregular bidirectional motion into unidirectional motion has been modeled and demonstrated.

  10. Probing the high energy universe

    NASA Astrophysics Data System (ADS)

    Davies, John K.

    1988-04-01

    Techniques and programs involved with gamma-ray astronomy are discussed. The way in which information about high energy processes in the universe can be obtained from the study of gamma-ray emissions is reviewed. Coded mask telescopes, the French and Soviet Gamma-1 project to study gamma-rays in the 100-300 MeV energy range, and the French Sigma hard X-ray/medium energy gamma-ray experiment are considered. The planned NASA Gamma-Ray Observatory mission is described, including the burst and transient source, experiment, the Compton telescope, the energetic gamma-ray experimental telescope, and the oriented scintillation spectrometer experiment. Also, the proposed ESA Gamma-Ray Astronomy with Spectroscopy and Positioning mission is examined.

  11. High energy from space

    NASA Technical Reports Server (NTRS)

    Margon, Bruce; Canizares, Claude; Catura, Richard C.; Clark, George W.; Fichtel, Carl E.; Friedman, Herbert; Giacconi, Riccardo; Grindlay, Jonathan E.; Helfand, David J.; Holt, Stephen S.

    1991-01-01

    The following subject areas are covered: (1) important scientific problems for high energy astrophysics (stellar activity, the interstellar medium in galaxies, supernovae and endpoints of stellar evolution, nucleosynthesis, relativistic plasmas and matter under extreme conditions, nature of gamma-bursts, identification of black holes, active nuclei, accretion physics, large-scale structures, intracluster medium, nature of dark matter, and the X- and gamma-ray background); (2) the existing experimental programs (Advanced X-Ray Astrophysics Facility (AXAF), Gamma Ray Observatory (GRO), X-Ray Timing Explorer (XTE), High Energy Transient Experiment (HETE), U.S. participation in foreign missions, and attached Shuttle and Space Station Freedom payloads); (3) major missions for the 1990's; (4) a new program of moderate missions; (5) new opportunities for small missions; (6) technology development issues; and (7) policy issues.

  12. High energy transients

    NASA Technical Reports Server (NTRS)

    Woosley, S. E.

    1984-01-01

    A meeting was convened on the campus of the University of California at Santa Cruz during the two-week interval July 11 through July 22, 1983. Roughly 100 participants were chosen so as to give broad representation to all aspects of high energy transients. Ten morning review sessions were held in which invited speakers discussed the current status of observations and theory of the above subjects. Afternoon workshops were also held, usually more than one per day, to informally review various technical aspects of transients, confront shortcomings in theoretical models, and to propose productive courses for future research. Special attention was also given to the instrumentation used to study high energy transient and the characteristics and goals of a dedicated space mission to study transients in the next decade were determined. A listing of articles written by various members of the workshop is included.

  13. Evolution of laser-produced Sn extreme ultraviolet source diameter for high-brightness source

    SciTech Connect

    Roy, Amitava E-mail: aroy@barc.gov.in; Arai, Goki; Hara, Hiroyuki; Higashiguchi, Takeshi; Ohashi, Hayato; Sunahara, Atsushi; Li, Bowen; Dunne, Padraig; O'Sullivan, Gerry; Miura, Taisuke; Mocek, Tomas; Endo, Akira

    2014-08-18

    We have investigated the effect of irradiation of solid Sn targets with laser pulses of sub-ns duration and sub-mJ energy on the diameter of the extreme ultraviolet (EUV) emitting region and source conversion efficiency. It was found that an in-band EUV source diameter as low as 18 μm was produced due to the short scale length of a plasma produced by a sub-ns laser. Most of the EUV emission occurs in a narrow region with a plasma density close to the critical density value. Such EUV sources are suitable for high brightness and high repetition rate metrology applications.

  14. High Energy Density Microwaves

    SciTech Connect

    Phillips, R.M.

    1999-04-01

    These proceedings represent papers presented at the RF98 Workshop entitled `High Energy Density Microwaves` held in California in October, 1998. The topics discussed were predominantly accelerator{minus}related. The Workshop dealt, for the most part, with the generation and control of electron beams, the amplification of RF signals, the design of mode converters, and the effect of very high RF field gradients. This Workshop was designed to address the concerns of the microwave tube industry worldwide, the plasma physicists who deal with very high beam currents and gigawatts of RF power, and researchers in accelerator centers around the world. Papers were presented on multibeam klystrons, gyrotron development, plasmas in microwave tubes, RF breakdown, and alternatives to conventional linear coliders at 1 TeV and above. The Workshop was partially sponsored by the US Department of Energy. There were 46 papers presented at the conference,out of which 19 have been abstracted for the Energy,Science and Technology database.(AIP)

  15. Universal energy spectrum from point sources

    NASA Technical Reports Server (NTRS)

    Tomozawa, Yukio

    1992-01-01

    The suggestion is made that the energy spectrum from point sources such as galactic black hole candidates (GBHC) and active galactic nuclei (AGN) is universal on the average, irrespective of the species of the emitted particles, photons, nucleons, or others. The similarity between the observed energy spectra of cosmic rays, gamma-rays, and X-rays is discussed. In other words, the existing data for gamma-rays and X-rays seem to support the prediction. The expected data from the Gamma Ray Observatory are to provide a further test.

  16. 10 CFR 39.53 - Energy compensation source.

    Code of Federal Regulations, 2014 CFR

    2014-01-01

    ... 10 Energy 1 2014-01-01 2014-01-01 false Energy compensation source. 39.53 Section 39.53 Energy NUCLEAR REGULATORY COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS FOR WELL LOGGING Equipment § 39.53 Energy compensation source. The licensee may use an energy compensation source (ECS) which...

  17. 10 CFR 39.53 - Energy compensation source.

    Code of Federal Regulations, 2011 CFR

    2011-01-01

    ... 10 Energy 1 2011-01-01 2011-01-01 false Energy compensation source. 39.53 Section 39.53 Energy NUCLEAR REGULATORY COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS FOR WELL LOGGING Equipment § 39.53 Energy compensation source. The licensee may use an energy compensation source (ECS) which...

  18. 10 CFR 39.53 - Energy compensation source.

    Code of Federal Regulations, 2010 CFR

    2010-01-01

    ... 10 Energy 1 2010-01-01 2010-01-01 false Energy compensation source. 39.53 Section 39.53 Energy NUCLEAR REGULATORY COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS FOR WELL LOGGING Equipment § 39.53 Energy compensation source. The licensee may use an energy compensation source (ECS) which is contained within a logging tool, or other...

  19. 10 CFR 39.53 - Energy compensation source.

    Code of Federal Regulations, 2012 CFR

    2012-01-01

    ... 10 Energy 1 2012-01-01 2012-01-01 false Energy compensation source. 39.53 Section 39.53 Energy NUCLEAR REGULATORY COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS FOR WELL LOGGING Equipment § 39.53 Energy compensation source. The licensee may use an energy compensation source (ECS) which...

  20. 10 CFR 39.53 - Energy compensation source.

    Code of Federal Regulations, 2013 CFR

    2013-01-01

    ... 10 Energy 1 2013-01-01 2013-01-01 false Energy compensation source. 39.53 Section 39.53 Energy NUCLEAR REGULATORY COMMISSION LICENSES AND RADIATION SAFETY REQUIREMENTS FOR WELL LOGGING Equipment § 39.53 Energy compensation source. The licensee may use an energy compensation source (ECS) which...

  1. Electric Power From Ambient Energy Sources

    SciTech Connect

    DeSteese, John G.; Hammerstrom, Donald J.; Schienbein, Lawrence A.

    2000-10-03

    This report summarizes research on opportunities to produce electric power from ambient sources as an alternative to using portable battery packs or hydrocarbon-fueled systems in remote areas. The work was an activity in the Advanced Concepts Project conducted by Pacific Northwest National Laboratory (PNNL) for the Office of Research and Development in the U.S. Department of Energy Office of Nonproliferation and National Security.

  2. Renewable energy sources 1991, part 3

    NASA Astrophysics Data System (ADS)

    Michalicka, L.

    1991-12-01

    The Fourth International Conference on Renewable Energy Sources was held at Prague Technical University from 1-4 Jul. 1991. Part 3 of the proceedings contains a report on the conference and 10 contributions, of which 2 were inputted in INIS: one deals with the economic problems of wind-, solar- and oil-driven water pumps, the other deals with the decrease in sunshine brought about by the operation of Czechoslovak nuclear power plants.

  3. Hybrid Design of Electric Power Generation Systems Including Renewable Sources of Energy

    ERIC Educational Resources Information Center

    Wang, Lingfeng; Singh, Chanan

    2008-01-01

    With the stricter environmental regulations and diminishing fossil-fuel reserves, there is now higher emphasis on exploiting various renewable sources of energy. These alternative sources of energy are usually environmentally friendly and emit no pollutants. However, the capital investments for those renewable sources of energy are normally high,…

  4. High brightness EUV light source modeling

    NASA Astrophysics Data System (ADS)

    Zakharov, Sergey V.; Choi, Peter; Zakharov, Vasily S.

    2010-04-01

    EUV source for actinic mask metrology, particularly for defect inspection, requires extremely high brightness. The selfabsorption of radiation limits the in-band EUV radiance of the source plasma and the etendue constraint limits the usable power of a conventional single unit EUV source. Theoretical study and numerical modelling has been carried out to address fundamental issues in tin and xenon plasmas and to optimize the performance of EUV sources. The highly ionized xenon plasma in the presence of fast electrons demonstrates the enhanced radiance. Theoretical models and robust modelling tools are being further developed under an international collaboration project FIRE in the frame of the EU FP7 IAPP program. NANO-UV is delivering a new generation of EUV light source with an intrinsic photon collector. Extensive numerical modelling has provided basic numbers to select the optimal regimes for tin and xenon based source operation. From these designs, a family of specially configured multiplexed source structures is being introduced to address the mask metrology needs.

  5. New high-power source of directional electromagnetic radiation

    NASA Astrophysics Data System (ADS)

    Kumakhov, M. A.

    2014-07-01

    A new source of electromagnetic radiation in a wide spectral range can be based on multiple contactless deflection of the beams of charged particles in a circular channel. The radiation with wavelengths ranging from submillimeter to radio ranges can be generated using nonrelativistic electrons. Directional radiation is obtained at relativistic energies. The IR, optical, and UV radiation can be generated. The X-ray and gamma-radiation can be obtained at relatively high energies. The new source is compared with the source of synchrotron radiation. The radiation intensity at energies of 1-2 GeV is relatively high, since strong currents are possible in the ring channel. The channeling and synchrotron emission are simultaneously obtained at relatively small (several tens of nanometers) internal diameters of the ring.

  6. The source of multi spectral energy of solar energetic electron

    SciTech Connect

    Herdiwijaya, Dhani

    2015-04-16

    We study the solar energetic electron distribution obtained from ACE and GOES satellites which have different altitudes and electron spectral energy during the year 1997 to 2011. The electron spectral energies were 0.038–0.315 MeV from EPAM instrument onboard ACE satellite and >2 MeV from GOES satellite. We found that the low electron energy has no correlation with high energy. In spite of we have corrected to the altitude differences. It implied that they originated from time dependent events with different sources and physical processes at the solar atmosphere. The sources of multi spectral energetic electron were related to flare and CME phenomena. However, we also found that high energetic electron comes from coronal hole.

  7. Exotic X-ray Sources from Intermediate Energy Electron Beams

    SciTech Connect

    Chouffani, K.; Wells, D.; Harmon, F.; Jones, J.L.; Lancaster, G.

    2003-08-26

    High intensity x-ray beams are used in a wide variety of applications in solid-state physics, medicine, biology and material sciences. Synchrotron radiation (SR) is currently the primary, high-quality x-ray source that satisfies both brilliance and tunability. The high cost, large size and low x-ray energies of SR facilities, however, are serious limitations. Alternatively, 'novel' x-ray sources are now possible due to new small linear accelerator (LINAC) technology, such as improved beam emittance, low background, sub-Picosecond beam pulses, high beam stability and higher repetition rate. These sources all stem from processes that produce Radiation from relativistic Electron beams in (crystalline) Periodic Structures (REPS), or the periodic 'structure' of laser light. REPS x-ray sources are serious candidates for bright, compact, portable, monochromatic, and tunable x-ray sources with varying degrees of polarization and coherence. Despite the discovery and early research into these sources over the past 25 years, these sources are still in their infancy. Experimental and theoretical research are still urgently needed to answer fundamental questions about the practical and ultimate limits of their brightness, mono-chromaticity etc. We present experimental results and theoretical comparisons for three exotic REPS sources. These are Laser-Compton Scattering (LCS), Channeling Radiation (CR) and Parametric X-Radiation (PXR)

  8. Using Alternate Energy Sources. The Illinois Plan for Industrial Education.

    ERIC Educational Resources Information Center

    Illinois State Univ., Normal.

    This guide, which is one in the "Exploration" series of curriculum guides intended to assist junior high and middle school industrial educators in helping their students explore diverse industrial situations and technologies used in industry, deals with using alternate energy sources. The following topics are covered in the individual lessons:…

  9. Neutron beam optimization for boron neutron capture therapy using the D-D and D-T high-energy neutron sources

    SciTech Connect

    Verbeke, J.M.; Vujic, J.L.; Leung, K.N.

    2000-02-01

    A monoenergetic neutron beam simulation study is carried out to determine the most suitable neutron energy for treatment of shallow and deep-seated brain tumors in the context of boron neutron capture therapy. Two figures-of-merit--the absorbed skin dose and the absorbed tumor dose at a given depth in the brain--are used to measure the neutron beam quality. Based on the results of this study, moderators, reflectors, and delimiters are designed and optimized to moderate the high-energy neutrons from the fusion reactions {sup 2}H(d,n){sup 3}He and {sup 3}H(d,n){sup 4}He down to a suitable energy spectrum. Two different computational models (MCNP and BNCT-RTPE) have been used to study the dose distribution in the brain. With the optimal beam-shaping assembly, a 1-A mixed deuteron/triton beam of energy 150 keV accelerated onto a titanium target leads to a treatment time of 1 h. The dose near the center of the brain obtained with this configuration is > 65% higher than the dose from a typical spectrum produced by the Brookhaven Medical Research Reactor and is comparable to the dose obtained by other accelerator-produced neutron beams.

  10. High-energy transients.

    PubMed

    Gehrels, Neil; Cannizzo, John K

    2013-06-13

    We present an overview of high-energy transients in astrophysics, highlighting important advances over the past 50 years. We begin with early discoveries of γ-ray transients, and then delve into physical details associated with a variety of phenomena. We discuss some of the unexpected transients found by Fermi and Swift, many of which are not easily classifiable or in some way challenge conventional wisdom. These objects are important insofar as they underscore the necessity of future, more detailed studies. PMID:23630376

  11. Very high energy colliders

    NASA Astrophysics Data System (ADS)

    Richter, B.

    1985-05-01

    The required emittance in very high energy machines are small. It will be a real challenge to produce these small emittances and to maintain them during acceleration. The small emittances probably make acceleration by laser techniques easier, if such techniques will be practical at all. The beam spot sizes are very small indeed. It will be a challenge to design beam transport systems with the necessary freedom from aberration required for these small spot sizes. It would of course help if the beta functions at the collision points could be reduced. Beam power will be large - to paraphrase the old saying, power is money - and efficient acceleration systems will be required.

  12. High energy electron cooling

    SciTech Connect

    Parkhomchuk, V.

    1997-09-01

    High energy electron cooling requires a very cold electron beam. The questions of using electron cooling with and without a magnetic field are presented for discussion at this workshop. The electron cooling method was suggested by G. Budker in the middle sixties. The original idea of the electron cooling was published in 1966. The design activities for the NAP-M project was started in November 1971 and the first run using a proton beam occurred in September 1973. The first experiment with both electron and proton beams was started in May 1974. In this experiment good result was achieved very close to theoretical prediction for a usual two component plasma heat exchange.

  13. Prospects at high energies

    SciTech Connect

    Quigg, C.

    1988-11-01

    I discuss some possibilities for neutrino experiments in the fixed-target environment of the SPS, Tevatron, and UNK, with their primary proton beams of 0.4, 0.9, and 3.0 TeV. The emphasis is on unfinished business: issues that have been recognized for some time, but not yet resolved. Then I turn to prospects for proton-proton colliders to explore the 1-TeV scale. I review the motivation for new physics in the neighborhood of 1 TeV and mention some discovery possibilities for high-energy, high-luminosity hadron colliders and the implications they would have for neutrino physics. I raise the possibility of the direct study of neutrino interactions in hadron colliders. I close with a report on the status of the SSC project. 38 refs., 17 figs.

  14. Ion source choices - an h- source for the high intensity neutrino source

    SciTech Connect

    Moehs, Douglas P.; Welton, Robert F.; Stockli, Martin P.; Peters, Jens; Alessi, James; /Brookhaven

    2006-08-01

    The High Intensity Neutrino Source (HINS) program at Fermilab (formerly the Proton Driver) aims to develop a multi-mission linear accelerator (LINAC) capable of accelerate H{sup -} ions to 8 GeV. This paper touches on the ion source requirements for the HINS and discusses long pulse length testing of three ion sources which appear to have the capability of meeting these requirements.

  15. Reflection high-energy electron diffraction evaluation of thermal deoxidation of chemically cleaned Si, SiGe, and Ge layers for solid-source molecular beam epitaxy

    SciTech Connect

    Ali, Dyan; Richardson, Christopher J. K.

    2012-11-15

    The authors present a study on the thermal evolution of the reflection high-energy electron diffraction pattern of chemically cleaned (001)-oriented Si, Ge, and SiGe surfaces, associating observed changes in the reconstructions with the desorption of known residual contaminants for Si and Ge surfaces. The implications of residual oxides prior to epitaxy on stacking fault densities in the grown films are presented. Further evidence for the two-phase nature of oxides on SiGe surfaces is provided, demonstrating that it is necessary to heat a SiGe surface up to the thermal deoxidation temperature of a Si surface to obtain stacking fault-free growth.

  16. Cyanate as an energy source for nitrifiers.

    PubMed

    Palatinszky, Marton; Herbold, Craig; Jehmlich, Nico; Pogoda, Mario; Han, Ping; von Bergen, Martin; Lagkouvardos, Ilias; Karst, Søren M; Galushko, Alexander; Koch, Hanna; Berry, David; Daims, Holger; Wagner, Michael

    2015-08-01

    Ammonia- and nitrite-oxidizing microorganisms are collectively responsible for the aerobic oxidation of ammonia via nitrite to nitrate and have essential roles in the global biogeochemical nitrogen cycle. The physiology of nitrifiers has been intensively studied, and urea and ammonia are the only recognized energy sources that promote the aerobic growth of ammonia-oxidizing bacteria and archaea. Here we report the aerobic growth of a pure culture of the ammonia-oxidizing thaumarchaeote Nitrososphaera gargensis using cyanate as the sole source of energy and reductant; to our knowledge, the first organism known to do so. Cyanate, a potentially important source of reduced nitrogen in aquatic and terrestrial ecosystems, is converted to ammonium and carbon dioxide in Nitrososphaera gargensis by a cyanase enzyme that is induced upon addition of this compound. Within the cyanase gene family, this cyanase is a member of a distinct clade also containing cyanases of nitrite-oxidizing bacteria of the genus Nitrospira. We demonstrate by co-culture experiments that these nitrite oxidizers supply cyanase-lacking ammonia oxidizers with ammonium from cyanate, which is fully nitrified by this microbial consortium through reciprocal feeding. By screening a comprehensive set of more than 3,000 publically available metagenomes from environmental samples, we reveal that cyanase-encoding genes clustering with the cyanases of these nitrifiers are widespread in the environment. Our results demonstrate an unexpected metabolic versatility of nitrifying microorganisms, and suggest a previously unrecognized importance of cyanate in cycling of nitrogen compounds in the environment. PMID:26222031

  17. Panchromatic spectral energy distributions of Herschel sources

    NASA Astrophysics Data System (ADS)

    Berta, S.; Lutz, D.; Santini, P.; Wuyts, S.; Rosario, D.; Brisbin, D.; Cooray, A.; Franceschini, A.; Gruppioni, C.; Hatziminaoglou, E.; Hwang, H. S.; Le Floc'h, E.; Magnelli, B.; Nordon, R.; Oliver, S.; Page, M. J.; Popesso, P.; Pozzetti, L.; Pozzi, F.; Riguccini, L.; Rodighiero, G.; Roseboom, I.; Scott, D.; Symeonidis, M.; Valtchanov, I.; Viero, M.; Wang, L.

    2013-03-01

    Combining far-infrared Herschel photometry from the PACS Evolutionary Probe (PEP) and Herschel Multi-tiered Extragalactic Survey (HerMES) guaranteed time programs with ancillary datasets in the GOODS-N, GOODS-S, and COSMOS fields, it is possible to sample the 8-500 μm spectral energy distributions (SEDs) of galaxies with at least 7-10 bands. Extending to the UV, optical, and near-infrared, the number of bands increases up to 43. We reproduce the distribution of galaxies in a carefully selected restframe ten colors space, based on this rich data-set, using a superposition of multivariate Gaussian modes. We use this model to classify galaxies and build median SEDs of each class, which are then fitted with a modified version of the magphys code that combines stellar light, emission from dust heated by stars and a possible warm dust contribution heated by an active galactic nucleus (AGN). The color distribution of galaxies in each of the considered fields can be well described with the combination of 6-9 classes, spanning a large range of far- to near-infrared luminosity ratios, as well as different strength of the AGN contribution to bolometric luminosities. The defined Gaussian grouping is used to identify rare or odd sources. The zoology of outliers includes Herschel-detected ellipticals, very blue z ~ 1 Ly-break galaxies, quiescent spirals, and torus-dominated AGN with star formation. Out of these groups and outliers, a new template library is assembled, consisting of 32 SEDs describing the intrinsic scatter in the restframe UV-to-submm colors of infrared galaxies. This library is tested against L(IR) estimates with and without Herschel data included, and compared to eightother popular methods often adopted in the literature. When implementing Herschel photometry, these approaches produce L(IR) values consistent with each other within a median absolute deviation of 10-20%, the scatter being dominated more by fine tuning of the codes, rather than by the choice of

  18. Theory of high-energy messengers

    NASA Astrophysics Data System (ADS)

    Dermer, Charles D.

    2016-05-01

    Knowledge of the distant high-energy universe comes from photons, ultra-high energy cosmic rays (UHECRs), high-energy neutrinos, and gravitational waves. The theory of high-energy messengers reviewed here focuses on the extragalactic background light at all wavelengths, cosmic rays and magnetic fields in intergalactic space, and neutrinos of extragalactic origin. Comparisons are drawn between the intensities of photons and UHECRs in intergalactic space, and the high-energy neutrinos recently detected with IceCube at about the Waxman-Bahcall flux. Source candidates for UHECRs and high-energy neutrinos are reviewed, focusing on star-forming and radio-loud active galaxies. HAWC and Advanced LIGO are just underway, with much anticipation.

  19. Optimization of Beam-Shaping Assemblies for BNCS Using the High-Energy Neutron Sources D-D and D-T

    SciTech Connect

    Verbeke, Jerome M.; Chen, Allen S.; Vujic, Jasmina L.; Leung, Ka-Ngo

    2001-06-15

    Boron neutron capture synovectomy is a novel approach for the treatment of rheumatoid arthritis. The goal of the treatment is the ablation of diseased synovial membranes in articulating joints. The treatment of knee joints is the focus of this work. A method was developed, as discussed previously, to predict the dose distribution in a knee joint from any neutron and photon beam spectra incident on the knee. This method is validated and used to design moderators for the deuterium-deuterium (D-D) and deuterium-tritium (D-T) neutron sources. Treatment times >2 h were obtained with the D-D reaction. They could potentially be reduced if the {sup 10}B concentration in the synovium was increased. For D-T neutrons, high therapeutic ratios and treatment times <5 min were obtained for neutron yields of 10{sup 14} s{sup -1}. This treatment time makes the D-T reaction attractive for boron neutron capture synovectomy.

  20. Matter sourced anisotropic stress for dark energy

    NASA Astrophysics Data System (ADS)

    Chang, Baorong; Lu, Jianbo; Xu, Lixin

    2014-11-01

    Usually a dark energy as a perfect fluid is characterized by the ratio of pressure to energy density (w =p /ρ ) and the ratio of their perturbations in its rest frame (cs2=δ p /δ ρ ). However, a dark energy would have other characteristics beyond its equation of state and the effective speed of sound. Here the extra property is the anisotropic stress sourced by matter as a simple extension to the perfect fluid model. At the background level, this anisotropic stress is zero with respect to the cosmological principle, but not at the first-order perturbation. We tested the viability of the existence of this kind of anisotropic stress by using the currently available cosmic observations through the geometrical and dynamical measurements. Using the Markov-chain Monte Carlo method, we found that the upper bounds on the anisotropic stress which enters into the summation of the Newtonian potentials should be of the order O (1 0-3)Δm . We did not find any strong evidence for the existence of this matter-sourced anisotropic stress, even in the 1 σ region.

  1. High Average Power, High Energy Short Pulse Fiber Laser System

    SciTech Connect

    Messerly, M J

    2007-11-13

    Recently continuous wave fiber laser systems with output powers in excess of 500W with good beam quality have been demonstrated [1]. High energy, ultrafast, chirped pulsed fiber laser systems have achieved record output energies of 1mJ [2]. However, these high-energy systems have not been scaled beyond a few watts of average output power. Fiber laser systems are attractive for many applications because they offer the promise of high efficiency, compact, robust systems that are turn key. Applications such as cutting, drilling and materials processing, front end systems for high energy pulsed lasers (such as petawatts) and laser based sources of high spatial coherence, high flux x-rays all require high energy short pulses and two of the three of these applications also require high average power. The challenge in creating a high energy chirped pulse fiber laser system is to find a way to scale the output energy while avoiding nonlinear effects and maintaining good beam quality in the amplifier fiber. To this end, our 3-year LDRD program sought to demonstrate a high energy, high average power fiber laser system. This work included exploring designs of large mode area optical fiber amplifiers for high energy systems as well as understanding the issues associated chirped pulse amplification in optical fiber amplifier systems.

  2. Radiant Energy Power Source for Jet Aircraft

    SciTech Connect

    Doellner, O.L.

    1992-02-01

    This report beings with a historical overview on the origin and early beginnings of Radiant Energy Power Source for Jet Aircraft. The report reviews the work done in Phase I (Grant DE-FG01-82CE-15144) and then gives a discussion of Phase II (Grant DE-FG01-86CE-15301). Included is a reasonably detailed discussion of photovoltaic cells and the research and development needed in this area. The report closes with a historical perspective and summary related to situations historically encountered on projects of this nature. 15 refs.

  3. High energy physics

    SciTech Connect

    Kernan, A.; Shen, B.C.; Ma, E.

    1997-07-01

    This proposal is for the continuation of the High Energy Physics program at the University of California at Riverside. In hadron collider physics the authors will complete their transition from experiment UA1 at CERN to the DZERO experiment at Fermilab. On experiment UA1 their effort will concentrate on data analysis at Riverside. At Fermilab they will coordinate the high voltage system for all detector elements. They will also carry out hardware/software development for the D0 muon detector. The TPC/Two-Gamma experiment has completed its present phase of data-taking after accumulating 160 pb{sup {minus}}1 of luminosity. The UC Riverside group will continue data and physics analysis and make minor hardware improvement for the high luminosity run. The UC Riverside group is participating in design and implementation of the data acquisition system for the OPAL experiment at LEP. Mechanical and electronics construction of the OPAL hadron calorimeter strip readout system is proceeding on schedule. Data analysis and Monte Carlo detector simulation efforts are proceeding in preparation for the first physics run when IEP operation comenses in fall 1989.

  4. Outlook for alternative energy sources. [aviation fuels

    NASA Technical Reports Server (NTRS)

    Card, M. E.

    1980-01-01

    Predictions are made concerning the development of alternative energy sources in the light of the present national energy situation. Particular emphasis is given to the impact of alternative fuels development on aviation fuels. The future outlook for aircraft fuels is that for the near term, there possibly will be no major fuel changes, but minor specification changes may be possible if supplies decrease. In the midterm, a broad cut fuel may be used if current development efforts are successful. As synfuel production levels increase beyond the 1990's there may be some mixtures of petroleum-based and synfuel products with the possibility of some shale distillate and indirect coal liquefaction products near the year 2000.

  5. Spherical explosion with a central energy source

    NASA Astrophysics Data System (ADS)

    Masuyama, Miyu; Shigeyama, Toshikazu; Tsuboki, Yoichiro

    2016-04-01

    We present a novel semi-analytic solution that describes the propagation of a spherical blast wave driven by a central energy source. The initial density profile has a power-law function of the distance from the center and the energy is injected only into the central region at a rate given by a power-law function of time. This solution is composed of three regions separated by the contact surface and the shock front. The innermost region is assumed to be uniform and the outside of the contact surface includes the shocked matter described by self-similar solutions. We analytically derive the applicable range of parameters of this solution from requirements needed to satisfy the boundary conditions. We perform numerical simulations for flows with various values of parameters, some of which reside out of the thus-derived applicable range, and compare the results with the semi-analytic solutions.

  6. Cassava: a basic energy source in the tropics

    SciTech Connect

    Cock, J.H.

    1982-11-19

    Cassava (Manihot esculenta) is the fourth most important source of food energy in the tropics. More than two-thirds of the total production of this crop is used as food for humans, with lesser amounts being used for animal feed and industrial purposes. The ingestion of high levels of cassava has been associated with chronic cyanide toxicity in parts of Africa, but this appears to be related to inadequate processing of the root and poor overall nutrition. Although cassava is not a complete food it is important as a cheap source of calories. The crop has a high yield potential under good conditions, and compared to other crops it excels under suboptimal conditions, thus offering the possibility of using marginal land to increase total agricultural production. Breeding programs that bring together germ plasm from different regions coupled with improved agronomic practices can markedly increase yields. The future demand for fresh cassava may depend on improved storage methods. The markets for cassava as a substitute for cereal flours in bakery products and as an energy source in animal feed rations are likely to expand. The use of cassava as a source of ethanol for fuel depends on finding an efficient source of energy for distillation or an improved method of separating ethanol from water. 7 figures, 8 tables.

  7. Generation of a pulsed high-current low-energy beam in a plasma electron source with a self-heated cathode

    NASA Astrophysics Data System (ADS)

    Gavrilov, N. V.; Men'shakov, A. I.

    2016-05-01

    The transition of a low-current discharge with a self-heated hollow cathode to a high-current discharge is studied, and stability conditions for the latter in the pulsed-periodic mode with a current of 0.1-1.0 kA, pulse width of 0.1-1.0 ms, and a pulse repetition rate of 0.1-1.0 kHz are determined. The thermal conditions of the hollow cathode are analyzed, and the conclusion is drawn that the emission current high density is due to pulsed self-heating of the cathode's surface layer. Conditions for stable emission from a plasma cathode with a grid acting as a plasma boundary using such a discharge are found at low accelerating voltage (100-200 eV) and a gas pressure of 0.1-0.4 Pa. The density of the ion current from a plasma generated by a pulsed beam with a current of 100 A is found to reach 0.1 A/cm2. Probe diagnostics data for the emitting and beam plasmas in the electron source are presented, and a mechanism behind the instability of electron emission from the plasma is suggested on their basis.

  8. High Energy Astrophysics Mission

    NASA Technical Reports Server (NTRS)

    White, Nicholas E.; Ormes, Jonathan F. (Technical Monitor)

    2000-01-01

    The nature of gravity and its relationship to the other three forces and to quantum theory is one of the major challenges facing us as we begin the new century. In order to make progress we must challenge the current theories by observing the effects of gravity under the most extreme conditions possible. Black holes represent one extreme, where the laws of physics as we understand them break down. The Universe as whole is another extreme, where its evolution and fate is dominated by the gravitational influence of dark matter and the nature of the Cosmological constant. The early universe represents a third extreme, where it is thought that gravity may somehow be unified with the other forces. NASA's "Cosmic Journeys" program is part of a NASA/NSF/DoE tri-agency initiative designed to observe the extremes of gravity throughout the universe. This program will probe the nature of black holes, ultimately obtaining a direct image of the event horizon. It will investigate the large scale structure of the Universe to constrain the location and nature of dark matter and the nature of the cosmological constant. Finally it will search for and study the highest energy processes, that approach those found in the early universe. I will outline the High Energy Astrophysics part of this program.

  9. A Reflection High Energy Electron Diffraction-Reflectance Anisotropy Spectroscopy Study of Silicon Growth Dynamics During Gas Source Molecular Beam Epitaxy from Silanes

    NASA Astrophysics Data System (ADS)

    Joyce, B. A.; Zhang, J.; Taylor, A. G.; Lees, A. K.

    Molecular beam epitaxy (MBE) provides an ideal experimental vehicle for the in situ study of thin film growth dynamics. By using a combination of reflection high energy electron diffraction (RHEED) and reflectance anisotropy (difference) spectroscopy [RA(D)S], it is possible to separate morphological (long range order) and local electronic structure effects, which we demonstrate with the growth of silicon films from disilane (Si2H6) on Si(001) (2 × 1)+(1 × 2) reconstructed surfaces. The rate-limiting step in Si growth from both monosilane (SiH4) and disilane is the desorption of molecular hydrogen and we have found using RAS that, over a significant range of temperature and coverage, hydrogen desorption follows zeroth order kinetics as the result of a step-mediated process. Finally, we show how this influences the growth rate on substrates of differing degrees of vicinality.

  10. Cyanate as energy source for nitrifiers

    PubMed Central

    Palatinszky, Marton; Herbold, Craig; Jehmlich, Nico; Pogoda, Mario; Han, Ping; von Bergen, Martin; Lagkouvardos, Ilias; Karst, Søren M.; Galushko, Alexander; Koch, Hanna; Berry, David; Daims, Holger; Wagner, Michael

    2015-01-01

    Ammonia- and nitrite-oxidizers are collectively responsible for the aerobic oxidation of ammonia via nitrite to nitrate and play essential roles for the global biogeochemical nitrogen cycle. The physiology of these nitrifying microbes has been intensively studied since the first experiments of Sergei Winogradsky more than a century ago. Urea and ammonia are the only recognized energy sources that promote the aerobic growth of ammonia-oxidizing bacteria and archaea. Here we report the aerobic growth of a pure culture of the ammonia-oxidizing thaumarchaeote Nitrososphaera gargensis1 on cyanate as the sole source of energy and reductant, the first organism known to do so. Cyanate, which is a potentially important source of reduced nitrogen in aquatic and terrestrial ecosystems2, is converted to ammonium and CO2 by this archaeon using a cyanase that is induced upon addition of this compound. Within the cyanase gene family, this cyanase is a member of a distinct clade that also contains cyanases of nitrite-oxidizing bacteria of the genus Nitrospira. We demonstrate by co-culture experiments that these nitrite-oxidizers supply ammonia-oxidizers lacking cyanase with ammonium from cyanate, which is fully nitrified by this consortium through reciprocal feeding. Screening of a comprehensive set of more than 3,000 publically available metagenomes from environmental samples revealed that cyanase-encoding genes clustering with the cyanases of these nitrifiers are widespread in the environment. Our results demonstrate an unexpected metabolic versatility of nitrifying microbes and suggest a previously unrecognized importance of cyanate for N-cycling in the environment. PMID:26222031

  11. High Energy Laser Diagnostic Sensors

    NASA Astrophysics Data System (ADS)

    Luke, James R.; Goddard, Douglas N.; Lewis, Jay; Thomas, David

    2010-10-01

    Recent advancements in high energy laser (HEL) sources have outpaced diagnostic tools capable of accurately quantifying system performance. Diagnostic tools are needed that allow system developers to measure the parameters that define HEL effectiveness. The two critical parameters for quantifying HEL effectiveness are the irradiance on target and resultant rise in target temperature. Off-board sensing has its limitations, including unpredictable changes in the reflectivity of the target, smoke and outgassing, and atmospheric distortion. On-board sensors overcome the limitations of off-board techniques but must survive high irradiance levels and extreme temperatures. We have developed sensors for on-target diagnostics of high energy laser beams and for the measurement of the thermal response of the target. The conformal sensors consist of an array of quantum dot photodetectors and resistive temperature detectors. The sensor arrays are lithographically fabricated on flexible substrates and can be attached to a variety of laser targets. We have developed a nanoparticle adhesive process that provides good thermal contact with the target and that ensures the sensor remains attached to the target for as long as the target survives. We have calibrated the temperature and irradiance sensors and demonstrated them in a HEL environment.

  12. High power THz sources for nonlinear imaging

    SciTech Connect

    Tekavec, Patrick F.; Kozlov, Vladimir G.

    2014-02-18

    Many biological and chemical compounds have unique absorption features in the THz (0.1 - 10 THz) region, making the use of THz waves attractive for imaging in defense, security, biomedical imaging, and monitoring of industrial processes. Unlike optical radiation, THz frequencies can pass through many substances such as paper, clothing, ceramic, etc. with little attenuation. The use of currently available THz systems is limited by lack of highpower, sources as well as sensitive detectors and detector arrays operating at room temperature. Here we present a novel, high power THz source based on intracavity downconverison of optical pulses. The source delivers 6 ps pulses at 1.5 THz, with an average power of >300 μW and peak powers >450 mW. We propose an imaging method based on frequency upconverison that is ideally suited to use the narrow bandwidth and high peak powers produced by the source. By upconverting the THz image to the infrared, commercially available detectors can be used for real time imaging.

  13. Ion source and injection line for high intensity medical cyclotron

    SciTech Connect

    Jia, XianLu Guan, Fengping; Yao, Hongjuan; Zhang, TianJue; Yang, Jianjun; Song, Guofang; Ge, Tao; Qin, Jiuchang

    2014-02-15

    A 14 MeV high intensity compact cyclotron, CYCIAE-14, was built at China Institute of Atomic Energy (CIAE). An injection system based on the external H− ion source was used on CYCIAE-14 so as to provide high intensity beam, while most positron emission tomography cyclotrons adopt internal ion source. A beam intensity of 100 μA/14 MeV was extracted from the cyclotron with a small multi-cusp H− ion source (CIAE-CH-I type) and a short injection line, which the H− ion source of 3 mA/25 keV H− beam with emittance of 0.3π mm mrad and the injection line of with only 1.2 m from the extraction of ion source to the medial plane of the cyclotron. To increase the extracted beam intensity of the cyclotron, a new ion source (CIAE-CH-II type) of 9.1 mA was used, with maximum of 500 μA was achieved from the cyclotron. The design and test results of the ion source and injection line optimized for high intensity acceleration will be given in this paper.

  14. FSU High Energy Physics

    SciTech Connect

    Prosper, Harrison B.; Adams, Todd; Askew, Andrew; Berg, Bernd; Blessing, Susan K.; Okui, Takemichi; Owens, Joseph F.; Reina, Laura; Wahl, Horst D.

    2014-12-01

    The High Energy Physics group at Florida State University (FSU), which was established in 1958, is engaged in the study of the fundamental constituents of matter and the laws by which they interact. The group comprises theoretical and experimental physicists, who sometimes collaborate on projects of mutual interest. The report highlights the main recent achievements of the group. Significant, recent, achievements of the group’s theoretical physicists include progress in making precise predictions in the theory of the Higgs boson and its associated processes, and in the theoretical understanding of mathematical quantities called parton distribution functions that are related to the structure of composite particles such as the proton. These functions are needed to compare data from particle collisions, such as the proton-proton collisions at the CERN Large Hadron Collider (LHC), with theoretical predictions. The report also describes the progress in providing analogous functions for heavy nuclei, which find application in neutrino physics. The report highlights progress in understanding quantum field theory on a lattice of points in space and time (an area of study called lattice field theory), the progress in constructing several theories of potential new physics that can be tested at the LHC, and interesting new ideas in the theory of the inflationary expansion of the very early universe. The focus of the experimental physicists is the Compact Muon Solenoid (CMS) experiment at CERN. The report, however, also includes results from the D0 experiment at Fermilab to which the group made numerous contributions over a period of many years. The experimental group is particularly interested in looking for new physics at the LHC that may provide the necessary insight to extend the standard model (SM) of particle physics. Indeed, the search for new physics is the primary task of contemporary particle physics, one motivated by the need to explain certain facts, such as the

  15. 46 CFR 111.10-5 - Multiple energy sources.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 46 Shipping 4 2014-10-01 2014-10-01 false Multiple energy sources. 111.10-5 Section 111.10-5...-GENERAL REQUIREMENTS Power Supply § 111.10-5 Multiple energy sources. Failure of any single generating set energy source such as a boiler, diesel, gas turbine, or steam turbine must not cause all generating...

  16. 46 CFR 111.10-5 - Multiple energy sources.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 46 Shipping 4 2012-10-01 2012-10-01 false Multiple energy sources. 111.10-5 Section 111.10-5...-GENERAL REQUIREMENTS Power Supply § 111.10-5 Multiple energy sources. Failure of any single generating set energy source such as a boiler, diesel, gas turbine, or steam turbine must not cause all generating...

  17. 46 CFR 111.10-5 - Multiple energy sources.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 46 Shipping 4 2010-10-01 2010-10-01 false Multiple energy sources. 111.10-5 Section 111.10-5...-GENERAL REQUIREMENTS Power Supply § 111.10-5 Multiple energy sources. Failure of any single generating set energy source such as a boiler, diesel, gas turbine, or steam turbine must not cause all generating...

  18. 46 CFR 111.10-5 - Multiple energy sources.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 46 Shipping 4 2011-10-01 2011-10-01 false Multiple energy sources. 111.10-5 Section 111.10-5...-GENERAL REQUIREMENTS Power Supply § 111.10-5 Multiple energy sources. Failure of any single generating set energy source such as a boiler, diesel, gas turbine, or steam turbine must not cause all generating...

  19. 46 CFR 111.10-5 - Multiple energy sources.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 46 Shipping 4 2013-10-01 2013-10-01 false Multiple energy sources. 111.10-5 Section 111.10-5...-GENERAL REQUIREMENTS Power Supply § 111.10-5 Multiple energy sources. Failure of any single generating set energy source such as a boiler, diesel, gas turbine, or steam turbine must not cause all generating...

  20. Future scientific applications for high-energy lasers

    SciTech Connect

    Lee, R.W.

    1994-08-01

    This report discusses future applications for high-energy lasers in the areas of astrophysics and space physics; hydrodynamics; material properties; plasma physics; radiation sources; and radiative properties.

  1. Eddy energy sources and flux in the Red Sea

    NASA Astrophysics Data System (ADS)

    Zhan, Peng; Subramanian, Aneesh C.; Kartadikaria, Aditya R.; Hoteit, Ibrahim

    2015-04-01

    In the Red Sea, eddies are reported to be one of the key features of hydrodynamics in the basin. They play a significant role in converting the energy among the large-scale circulation, the available potential energy (APE) and the eddy kinetic energy (EKE). Not only do eddies affect the horizontal circulation, deep-water formation and overturning circulation in the basin, but they also have a strong impact on the marine ecosystem by efficiently transporting heat, nutrients and carbon across the basin and by pumping the nutrient-enriched subsurface water to sustain the primary production. Previous observations and modeling work suggest that the Red Sea is rich of eddy activities. In this study, the eddy energy sources and sinks have been studied based on a high-resolution MITgcm. We have also investigated the possible mechanisms of eddy generation in the Red Sea. Eddies with high EKE are found more likely to appear in the central and northern Red Sea, with a significant seasonal variability. They are more inclined to occur during winter when they acquire their energy mainly from the conversion of APE. In winter, the central and especially the northern Red Sea are subject to important heat loss and extensive evaporation. The resultant densified upper-layer water tends to sink and release the APE through baroclinic instability, which is about one order larger than the barotropic instability contribution and is the largest source term for the EKE in the Red Sea. As a consequence, the eddy energy is confined to the upper layer but with a slope deepening from south to north. In summer, the positive surface heat flux helps maintain the stratification and impedes the gain of APE. The EKE is, therefore, much lower than that in winter despite a higher wind power input. Unlike many other seas, the wind energy is not the main source of energy to the eddies in the Red Sea.

  2. A Possible X-Ray and Radio Counterpart of the High-Energy Gamma-Ray Source 3EG J2227+6122

    NASA Technical Reports Server (NTRS)

    Halpern, Jules P.; Gotthelf, E. V.; Helfand, D. J.; Leighly, K. M.; Oliversen, Ronald (Technical Monitor)

    2001-01-01

    The identity of the persistent EGRET sources in the Galactic plane is largely a mystery. For one of these, 3EG J2227+6122, our complete census of X-ray and radio sources in its error circle reveals a remarkable superposition of an incomplete radio shell with a flat radio spectrum, and a compact, power-law X-ray source with photon index Gamma = 1.5 and with no obvious optical counterpart. The radio shell is polarized at a level of approx. = 25%. The anomalous properties of the radio source prevent us from deriving a completely satisfactory theory as to its nature. Nevertheless, using data from ROSAT, ASCA, the VLA, and optical imaging and spectroscopy, we argue that the X-ray source may be a young pulsar with an associated wind-blown bubble or bow shock nebula, and an example of the class of radio-quiet pulsars which are hypothesized to comprise the majority of EGRET sources in the Galaxy. The distance to this source can be estimated from its X-ray absorption as 3 kpc. At this distance, the X-ray and gamma-ray luminosities would be approx. = 1.7 x 10(exp 33) and approx. = 3.7 x 10(exp 35) erg/s, respectively, which would require an energetic pulsar to power them. If, on the contrary, this X-ray source is not the counterpart of 3EG J2227+6122, then by process of elimination the X-ray luminosity of the latter must be less than 10(exp -4) of its gamma-ray luminosity, a condition not satisfied by any established class of gamma-ray source counterpart. This would require the existence of at least a quantitatively new type of EGRET source, as has been suggested in studies of other EGRET fields.

  3. High energy plasma accelerators

    SciTech Connect

    Tajima, T.

    1985-05-01

    Colinear intense laser beams ..omega../sub 0/, kappa/sub 0/ and ..omega../sub 1/, kappa/sub 1/ shone on a plasma with frequency separation equal to the electron plasma frequency ..omega../sub pe/ are capable of creating a coherent large longitudinal electric field E/sub L/ = mc ..omega../sub pe//e of the order of 1GeV/cm for a plasma density of 10/sup 18/ cm/sup -3/ through the laser beat excitation of plasma oscillations. Accompanying favorable and deleterious physical effects using this process for a high energy beat-wave accelerator are discussed: the longitudinal dephasing, pump depletion, the transverse laser diffraction, plasma turbulence effects, self-steepening, self-focusing, etc. The basic equation, the driven nonlinear Schroedinger equation, is derived to describe this system. Advanced accelerator concepts to overcome some of these problems are proposed, including the plasma fiber accelerator of various variations. An advanced laser architecture suitable for the beat-wave accelerator is suggested. Accelerator physics issues such as the luminosity are discussed. Applications of the present process to the current drive in a plasma and to the excitation of collective oscillations within nuclei are also discussed.

  4. High energy physics

    SciTech Connect

    Kernan, A.; Shen, B.C.; Ma, E.

    1997-07-01

    This proposal is for the continuation of the High Energy Physics Program at the University of California, Riverside. In 1990, we will concentrate on analysis of LEP data from the OPAL detector. We expect to record 10{sup 5} Z`s by the end of 1989 and 10{sup 6} in 1990. This data will be used to measure the number of quark-lepton families in the universe. In the second half of 1990 we will also be occupied with the installation of the D-Zero detector in the Tevatron Collider and the preparation of software for the 1991 run. A new initiative made possible by generous university support is a laboratory for detector development at UCR. The focus will be on silicon strip tracking detectors both for the D-Zero upgrade and for SSC physics. The theory program will pursue further various mass-generating radiative mechanisms for understanding small quark and lepton masses as well as some novel phenomenological aspects of supersymmetry.

  5. Optical arc sensor using energy harvesting power source

    NASA Astrophysics Data System (ADS)

    Choi, Kyoo Nam; Rho, Hee Hyuk

    2016-06-01

    Wireless sensors without external power supply gained considerable attention due to convenience both in installation and operation. Optical arc detecting sensor equipping with self sustaining power supply using energy harvesting method was investigated. Continuous energy harvesting method was attempted using thermoelectric generator to supply standby power in micro ampere scale and operating power in mA scale. Peltier module with heat-sink was used for high efficiency electricity generator. Optical arc detecting sensor with hybrid filter showed insensitivity to fluorescent and incandescent lamps under simulated distribution panel condition. Signal processing using integrating function showed selective arc discharge detection capability to different arc energy levels, with a resolution below 17J energy difference, unaffected by bursting arc waveform. The sensor showed possibility for application to arc discharge detecting sensor in power distribution panel. Also experiment with proposed continuous energy harvesting method using thermoelectric power showed possibility as a self sustainable power source of remote sensor.

  6. Low to high temperature energy conversion system

    NASA Technical Reports Server (NTRS)

    Miller, C. G. (Inventor)

    1977-01-01

    A method for converting heat energy from low temperature heat sources to higher temperature was developed. It consists of a decomposition chamber in which ammonia is decomposed into hydrogen and nitrogen by absorbing heat of decomposition from a low temperature energy source. A recombination reaction then takes place which increases the temperature of a fluid significantly. The system is of use for the efficient operation of compact or low capital investment turbine driven electrical generators, or in other applications, to enable chemical reactions that have a critical lower temperature to be used. The system also recovers heat energy from low temperature heat sources, such as solar collectors or geothermal sources, and converts it to high temperatures.

  7. Natural gas outstrips oil as energy source

    SciTech Connect

    Not Available

    1981-06-01

    Natural gas (all of it domestically produced) was the largest single source of Pakistan's 1980 energy supply, contributing 40.1% of the total, compared with 37.4% for oil, 16.6% for hydroelectricity, 5.6% for coal, and 0.3% for LP-gas, plus a very small amount of nuclear power. In 1979, gas accounted for 37.6% of the total and oil for 38.9%. Eighty percent of Pakistan's total natural gas production of nearly 300 billion CF came from the Sui field in central Pakistan, which is being developed by Pakistan Petroleum Ltd. The balance was produced in Esso's Mari field and the Oil and Gas Development Commission's Sari and Hundi fields.

  8. High Energy Density Capacitors

    SciTech Connect

    2010-07-01

    BEEST Project: Recapping is developing a capacitor that could rival the energy storage potential and price of today’s best EV batteries. When power is needed, the capacitor rapidly releases its stored energy, similar to lightning being discharged from a cloud. Capacitors are an ideal substitute for batteries if their energy storage capacity can be improved. Recapping is addressing storage capacity by experimenting with the material that separates the positive and negative electrodes of its capacitors. These separators could significantly improve the energy density of electrochemical devices.

  9. Simulation of transvertron high power microwave sources

    NASA Astrophysics Data System (ADS)

    Sullivan, Donald J.; Walsh, John E.; Arman, M. Joseph; Godfrey, Brendan B.

    1989-07-01

    The transvertron oscillator or amplifier is a new and efficient type of intense relativistic electron-beam-driven microwave radiation source. In the m = 0 axisymmetric version, it consists of single or multiple cylindrical cavities driven at one of the TM(0np) resonances by a high-voltage, low-impedance electron beam. There is no applied magnetic field, and the oscillatory transverse motion acquired by the axially-injected electron beam is an essential part of the drive mechanism. The transvertron theory was systematically tested for a wide range of parameters and two possible applications. The simulations were designed to verify the theoretical predictions, assess the transvertron as a possible source of intense microwave radiation, and study its potential as a microwave amplifier. Numerical results agree well in all regards with the analytical theory. Simulations were carried out in two dimensions using CCUBE, with the exception of radial loading cases, where the three-dimensional code SOS was required.

  10. A decaborane ion source for high current implantation

    NASA Astrophysics Data System (ADS)

    Perel, Alex S.; Loizides, William K.; Reynolds, William E.

    2002-02-01

    Progressive semiconductor device scaling in each technology node requires the formation of shallower junctions, and thus lower energy implants. The difficulties associated with extraction and transport of low energy beams often result in a loss in wafer throughput. Implantation of boron using the molecular compound decaborane has been found to allow for the shallow implantation of boron without a significant design change in the implanter. The decaborane molecule has 10 boron atoms and 14 hydrogen atoms. The implanted dose is ten times the electrical dose and the implanted depth is equivalent to the depth of a boron beam at 1/11th of the extraction energy. This advantage can only be exploited with an ion source that does not destroy the fragile molecule. We report on the design of an ion source capable of ionizing decaborane without significant fragmentation of the molecule. After it was shown that the decaborane molecule fragments above 350 °C an ion source was designed to prevent thermal dissociation of the molecule. Competitive boron dose rates were achieved using this source in a commercial high current implanter. In addition, evidence is shown that a decaborane dimer is formed in the ion source and can be implanted.

  11. High Brightness Neutron Source for Radiography

    SciTech Connect

    Cremer, J. T.; Piestrup, Melvin, A.; Gary, Charles, K.; Harris, Jack, L. Williams, David, J.; Jones, Glenn, E.; Vainionpaa, J. , H.; Fuller, Michael, J.; Rothbart, George, H.; Kwan, J., W.; Ludewigt, B., A.; Gough, R.., A..; Reijonen, Jani; Leung, Ka-Ngo

    2008-12-08

    This research and development program was designed to improve nondestructive evaluation of large mechanical objects by providing both fast and thermal neutron sources for radiography. Neutron radiography permits inspection inside objects that x-rays cannot penetrate and permits imaging of corrosion and cracks in low-density materials. Discovering of fatigue cracks and corrosion in piping without the necessity of insulation removal is possible. Neutron radiography sources can provide for the nondestructive testing interests of commercial and military aircraft, public utilities and petrochemical organizations. Three neutron prototype neutron generators were designed and fabricated based on original research done at the Lawrence Berkeley National Laboratory (LBNL). The research and development of these generators was successfully continued by LBNL and Adelphi Technology Inc. under this STTR. The original design goals of high neutron yield and generator robustness have been achieved, using new technology developed under this grant. In one prototype generator, the fast neutron yield and brightness was roughly 10 times larger than previously marketed neutron generators using the same deuterium-deuterium reaction. In another generator, we integrate a moderator with a fast neutron source, resulting in a high brightness thermal neutron generator. The moderator acts as both conventional moderator and mechanical and electrical support structure for the generator and effectively mimics a nuclear reactor. In addition to the new prototype generators, an entirely new plasma ion source for neutron production was developed. First developed by LBNL, this source uses a spiral antenna to more efficiently couple the RF radiation into the plasma, reducing the required gas pressure so that the generator head can be completely sealed, permitting the possible use of tritium gas. This also permits the generator to use the deuterium-tritium reaction to produce 14-MeV neutrons with increases

  12. Tropical grasses as a renewable energy source

    SciTech Connect

    Samuels, G.; Alexander, A.G.; Rios, C.; Garcia, M.

    1983-01-01

    Agronomists, evaluating tropical grasses from Saccharum and allied genera as potential renewable energy sources for boiler fuel and alcohol, emphasized (1) maximizing sugar cane's total biomass rather than sucrose production, (2) utilizing alternative tropical grasses during sugar cane's offseason for year-round fuel production, and (3) mechanizing production technologies for fibrous, thin-stemmed tropical grasses that are to be managed as solar-dried fuels and feedstocks. Based on the time required to maximize their dry matter yields, three categories of grasses have emerged as potential energy crops: short rotation (2-3 months) with Sordan 70A (a sorghum/sudan grass hybrid), intermediate rotation (4-6 months) with napier grass, and long rotation (12-18 months) with sugar cane. Total oven-dried matter is 50 tons/acre-yr (114 metric tons /hectare-yr) for sugar cane, 33 tons (74 metric tons) from napier grass harvested at 6-month intervals, and 21 tons (47 metric tons) from Sordan 70A harvested every 14 weeks.

  13. The high energy sky with INTEGRAL

    SciTech Connect

    Ubertini, P.; Bazzano, A.; De Rosa, A.; Fiocchi, M. T.

    2007-07-12

    INTEGRAL is continuing the deep observations of the Galactic Plane and, at level of a mCrab, of the whole sky in the soft Gamma ray range. The new IBIS catalogue contains more than 420 sources detected in 20-40 and 40-100 keV range. We present a view of the INTEGRAL high energy sky with particular regard to sources emitting beyond 100 keV, including Blazar and HESS couterpart.0.

  14. Sludge as source of energy and revenue.

    PubMed

    Onyeche, T I

    2004-01-01

    Sludge is a residue/product from wastewater treatment plants and contains most of the contaminants released during human activities. Some stringent environmental regulations on sludge treatment and disposal exist in many countries. This has resulted in increasing interest in sludge treatment methods that encourage sludge reduction and improvement in biogas production during anaerobic digestion processes. This work demonstrates the first exploitation of valuable energy from homogenised sludge at technical scale with mass reduction. The optimal combination of sludge homogenisation at relatively low pressures using a modified high-pressure homogeniser led to the success of this unique project. Results showed that about 30% more energy could be obtained from thickened and disrupted sludge than from untreated samples. The energy produced was higher than that invested during disruption and digestion processes. About 23% sludge reduction was also observed with no increase in chemical oxygen demand. This new process can produce extra energy for local electrification and heating the digester while the sludge reduction provides economic benefits. Concentration of sludge causes reduction in investment cost on digester as well as reduction in operational time for sludge dewatering. PMID:15581013

  15. Solion ion source for high-efficiency, high-throughput solar cell manufacturing

    SciTech Connect

    Koo, John Binns, Brant; Miller, Timothy; Krause, Stephen; Skinner, Wesley; Mullin, James

    2014-02-15

    In this paper, we introduce the Solion ion source for high-throughput solar cell doping. As the source power is increased to enable higher throughput, negative effects degrade the lifetime of the plasma chamber and the extraction electrodes. In order to improve efficiency, we have explored a wide range of electron energies and determined the conditions which best suit production. To extend the lifetime of the source we have developed an in situ cleaning method using only existing hardware. With these combinations, source life-times of >200 h for phosphorous and >100 h for boron ion beams have been achieved while maintaining 1100 cell-per-hour production.

  16. High flux source of cold rubidium atoms

    NASA Astrophysics Data System (ADS)

    Slowe, Christopher; Vernac, Laurent; Hau, Lene Vestergaard

    2005-10-01

    We report on the production of a continuous, slow, and cold beam of Rb87 atoms with an extremely high flux of 3.2×1012atoms/s, a transverse temperature of 3mK, and a longitudinal temperature of 90mK. We describe the apparatus created to generate the atom beam. Hot atoms are emitted from a rubidium candlestick atomic beam source and transversely cooled and collimated by a 20cm long atomic collimator section, boosting overall beam flux by a factor of 50. The Rb atomic beam is then decelerated and longitudinally cooled by a 1m long Zeeman slower.

  17. High power distributed x-ray source

    NASA Astrophysics Data System (ADS)

    Frutschy, Kris; Neculaes, Bogdan; Inzinna, Lou; Caiafa, Antonio; Reynolds, Joe; Zou, Yun; Zhang, Xi; Gunturi, Satish; Cao, Yang; Waters, Bill; Wagner, Dave; De Man, Bruno; McDevitt, Dan; Roffers, Rick; Lounsberry, Brian; Pelc, Norbert J.

    2010-04-01

    This paper summarizes the development of a distributed x-ray source with up to 60kW demonstrated instantaneous power. Component integration and test results are shown for the dispenser cathode electron gun, fast switching controls, high voltage stand-off insulator, brazed anode, and vacuum system. The current multisource prototype has been operated for over 100 hours without failure, and additional testing is needed to discover the limiting component. Example focal spot measurements and x-ray radiographs are included. Lastly, future development opportunities are highlighted.

  18. HIGH CURRENT RADIO FREQUENCY ION SOURCE

    DOEpatents

    Abdelaziz, M.E.

    1963-04-01

    This patent relates to a high current radio frequency ion source. A cylindrical plasma container has a coil disposed around the exterior surface thereof along the longitudinal axis. Means are provided for the injection of an unionized gas into the container and for applying a radio frequency signal to the coil whereby a radio frequency field is generated within the container parallel to the longitudinal axis thereof to ionize the injected gas. Cathode and anode means are provided for extracting transverse to the radio frequency field from an area midway between the ends of the container along the longitudinal axis thereof the ions created by said radio frequency field. (AEC)

  19. High Energy Colliders

    NASA Astrophysics Data System (ADS)

    Palmer, R. B.; Gallardo, J. C.

    INTRODUCTION PHYSICS CONSIDERATIONS GENERAL REQUIRED LUMINOSITY FOR LEPTON COLLIDERS THE EFFECTIVE PHYSICS ENERGIES OF HADRON COLLIDERS HADRON-HADRON MACHINES LUMINOSITY SIZE AND COST CIRCULAR e^{+}e^- MACHINES LUMINOSITY SIZE AND COST e^{+}e^- LINEAR COLLIDERS LUMINOSITY CONVENTIONAL RF SUPERCONDUCTING RF AT HIGHER ENERGIES γ - γ COLLIDERS μ ^{+} μ^- COLLIDERS ADVANTAGES AND DISADVANTAGES DESIGN STUDIES STATUS AND REQUIRED R AND D COMPARISION OF MACHINES CONCLUSIONS DISCUSSION

  20. On the Energy Source of the Gravitational Field

    NASA Astrophysics Data System (ADS)

    Mayer, Alexander

    2011-11-01

    According to the principles of special relativity, the systemic energy budget of a quantum harmonic oscillator exceeds canonical ``total energy" (E) by the difference between the 1̂-norm and 2̂-norm (E) of the complex number (mc^2 + ipc). This surplus energy manifests as a spatially unbounded continuous waveform centered on the source particle, having a phase velocity equal to the speed of light. In the immediate vicinity of a source particle and at corresponding high radial amplitude variation, the interaction between this waveform and spacetime induces various quantum effects. A kilogram of mass contains ˜ 0^27 subatomic harmonic oscillators (e.g., quarks); decoherent superposition of their momentum-driven (/δx) radiated waveforms provides an isotropic monotonically-decreasing space energy density. Spacetime response to the presence of this distributed energy manifests as the gravitational field in accord with the basic interpretation of general relativity: ``energy curves spacetime.'' Hypotheses put forward in this discussion are empirically testable with tabletop experiments.

  1. Developing a High-Flux Isolated Attosecond Pulse Source

    NASA Astrophysics Data System (ADS)

    Kamalov, Andrei; Ware, Matthew; Bucksbaum, Philip; Cryan, James

    2016-05-01

    High harmonic based light sources have proven to be valuable experimental tools that facilitate studies of electron dynamics at their natural timescale, the attosecond regime. The nature of driving laser sources used in high harmonic generation make it difficult to attain attosecond pulses that are both isolated in time and of a high intensity. We present our progress in commissioning a beamline designed to produce high-flux isolated attosecond pulses. A multistep amplification process provides us with 30 mJ, 25 fs pulses centered around 800 nm with 100 Hz repetition rate. These pulses are spatially split and focused into a gas cell. A non-collinear optical gating scheme is used to produce a lighthouse source of high harmonic radiation wherein each beamlet is an isolated attosecond pulse. A variable-depth grazing-incidence stepped mirror is fabricated to extend the optical path length of the older beamlets and thus overlap the beamlets in time. The combined beam is tightly focused and ensuing mechanics will be studied with an electron spectrometer as well as a xuv photon spectrometer. This work was supported by the U.S. Department of Energy, Office of Science, Basic Energy Sciences, Chemical Sciences, Geosciences, and Biosciences Division.

  2. High-Energy-Density Capacitors

    NASA Technical Reports Server (NTRS)

    Slenes, Kirk

    2003-01-01

    Capacitors capable of storing energy at high densities are being developed for use in pulse-power circuits in such diverse systems as defibrillators, particle- beam accelerators, microwave sources, and weapons. Like typical previously developed energy-storage capacitors, these capacitors are made from pairs of metal/solid-dielectric laminated sheets that are wound and pressed into compact shapes to fit into cans, which are then filled with dielectric fluids. Indeed, these capacitors can be fabricated largely by conventional fabrication techniques. The main features that distinguish these capacitors from previously developed ones are improvements in (1) the selection of laminate materials, (2) the fabrication of the laminated sheets from these materials, and (3) the selection of dielectric fluids. In simplest terms, a high-performance laminated sheet of the type used in these capacitors is made by casting a dielectric polymer onto a sheet of aluminized kraft paper. The dielectric polymer is a siloxane polymer that has been modified with polar pendant groups to increase its permittivity and dielectric strength. Potentially, this polymer is capable of withstanding an energy density of 7.5 J/cm3, which is four times that of the previous state-of-the-art-capacitor dielectric film material. However, the full potential of this polymer cannot be realized at present because (1) at thicknesses needed for optimum performance (.8.0 m), the mechanical strength of a film of this polymer is insufficient for incorporation into a wound capacitor and (2) at greater thickness, the achievable energy density decreases because of a logarithmic decrease in dielectric strength with increasing thickness. The aluminized kraft paper provides the mechanical strength needed for processing of the laminate and fabrication of the capacitor, and the aluminum film serves as an electrode layer. Because part of the thickness of the dielectric is not occupied by the modified siloxane polymer, the

  3. Flare physics at high energies

    NASA Technical Reports Server (NTRS)

    Ramaty, R.

    1990-01-01

    High-energy processes, involving a rich variety of accelerated particle phenomena, lie at the core of the solar flare problem. The most direct manifestation of these processes are high-energy radiations, gamma rays, hard X-rays and neutrons, as well as the accelerated particles themselves, which can be detected in interplanetary space. In the study of astrophysics from the moon, the understanding of these processes should have great importance. The inner solar system environment is strongly influenced by activity on the sun; the physics of solar flares is of great intrinsic interest; and much high-energy astrophysics can be learned from investigations of flare physics at high energies.

  4. An intense low energy muon source for the muon collider

    SciTech Connect

    Taqqu, D.

    1996-05-01

    A scheme for obtaining an intense source of low energy muons is described. It is based on the production of pions in a high field magnetic bottle trap. By ensuring efficient slowing down and extraction of the decay muons an intense intermediate energy muon beam is obtained. For the specific case of negative muons a novel technique called frictional accumulation provides efficient conversion into a 10 keV{mu}{sup {minus}} beam whose emittance is then reduced in a configuration providing extended frictional cooling. The result is a beam of very small transverse and longitudinal emittance that can be used together with an equivalent {mu}{sup +} beam as compact intense muon source for the {mu}{sup +}{mu}{sup {minus}} collider. A final luminosity around 10{sup 34} cm{sup {minus}2}s{sup {minus}1} is expected to be obtained at 2 TeV. {copyright} {ital 1996 American Institute of Physics.}

  5. Economics of renewable and nonrenewable energy sources

    SciTech Connect

    Canavan, G.H.

    1991-05-01

    Nonrenewable sources are subject to intertemporal optimization. Electrical and renewable sources, which are exogenous, can be integrated and treated on nonrenewable sources. For typical conditions, the model predicts that prices will increase and flows will fall more abruptly than is generally expected. These trends are exacerbated by limits on renewable sources. Predicted price trajectories should permit the introduction of alternative fuels if available, but their late introduction could be costly. Greater imports do not appear likely or appropriate. 17 refs., 24 figs.

  6. Alternative biomass sources for thermal energy generation

    NASA Astrophysics Data System (ADS)

    Steensen, Torge; Müller, Sönke; Dresen, Boris; Büscher, Olaf

    2015-04-01

    Traditionally, renewable biomass energy sources comprise forests, agriculture and other large vegetation units. With the increasing demand on those landscape elements, including conflicts of interest to nature conservation and food production, the research focus should also incorporate smaller vegetation entities. In this study, we highlight the availability of small-scale features like roadside vegetation or hedges, which are rarely featured in maps. Roadside vegetation, however, is well known and regularly trimmed to allow the passing of traffic but the cut material is rarely harvested. Here, we combine a remote-sensing-based approach to quantify the seasonal biomass harvests with a GIS-based method to outline optimal transportation routes to, and the location of, storage units and power plants. Our main data source will be ESA's upcoming Sentinel-2 optical satellite. Spatial resolution of 10 meters in the visible and near infrared requires the use of spectral unmixing to derive end member spectra of the targeted biomass objects. Additional stereo-matching and LIDAR measurements allow the accompanying height estimate to derive the biomass volume and its changes over time. GIS data bases from the target areas allow the discrimination between traditional, large features (e.g. forests and agriculture) as well as previously unaccounted for, smaller vegetation units. With the mapped biomass occurrence and additional, GIS-based infrastructure information, we can outline transport routes that take into account local restrictions like nature reserve areas, height or weight limitations as well as transport costs in relation to potential gains. This information can then be processed to outline optimal places for power plants. To simulate the upcoming Sentinel-2 data sets, we use airborne data from the AISA Eagle, spatially and spectrally down-sampled to match Sentinel 2's resolution. Our test scenario is an area in western Germany, the Kirchheller Heide, close to the city

  7. 47 CFR 80.1099 - Ship sources of energy.

    Code of Federal Regulations, 2014 CFR

    2014-10-01

    ... 47 Telecommunication 5 2014-10-01 2014-10-01 false Ship sources of energy. 80.1099 Section 80.1099... Stations § 80.1099 Ship sources of energy. (a) There must be available at all times, while the ship is at sea, a supply of electrical energy sufficient to operate the radio installations and to charge...

  8. 47 CFR 80.1099 - Ship sources of energy.

    Code of Federal Regulations, 2012 CFR

    2012-10-01

    ... 47 Telecommunication 5 2012-10-01 2012-10-01 false Ship sources of energy. 80.1099 Section 80.1099... Stations § 80.1099 Ship sources of energy. (a) There must be available at all times, while the ship is at sea, a supply of electrical energy sufficient to operate the radio installations and to charge...

  9. 47 CFR 80.1099 - Ship sources of energy.

    Code of Federal Regulations, 2010 CFR

    2010-10-01

    ... 47 Telecommunication 5 2010-10-01 2010-10-01 false Ship sources of energy. 80.1099 Section 80.1099... Stations § 80.1099 Ship sources of energy. (a) There must be available at all times, while the ship is at sea, a supply of electrical energy sufficient to operate the radio installations and to charge...

  10. 47 CFR 80.1099 - Ship sources of energy.

    Code of Federal Regulations, 2013 CFR

    2013-10-01

    ... 47 Telecommunication 5 2013-10-01 2013-10-01 false Ship sources of energy. 80.1099 Section 80.1099... Stations § 80.1099 Ship sources of energy. (a) There must be available at all times, while the ship is at sea, a supply of electrical energy sufficient to operate the radio installations and to charge...

  11. 47 CFR 80.1099 - Ship sources of energy.

    Code of Federal Regulations, 2011 CFR

    2011-10-01

    ... 47 Telecommunication 5 2011-10-01 2011-10-01 false Ship sources of energy. 80.1099 Section 80.1099... Stations § 80.1099 Ship sources of energy. (a) There must be available at all times, while the ship is at sea, a supply of electrical energy sufficient to operate the radio installations and to charge...

  12. High energy forming facility

    NASA Technical Reports Server (NTRS)

    Ciurlionis, B.

    1967-01-01

    Watertight, high-explosive forming facility, 25 feet in diameter and 15 feet deep, withstands repeated explosions of 10 pounds of TNT equivalent. The shell is fabricated of high strength steel and allows various structural elements to deform or move elastically and independently while retaining structural integrity.

  13. Highly Stripped Ion Sources for MeV Ion Implantation

    SciTech Connect

    Hershcovitch, Ady

    2009-06-30

    Original technical objectives of CRADA number PVI C-03-09 between BNL and Poole Ventura, Inc. (PVI) were to develop an intense, high charge state, ion source for MeV ion implanters. Present day high-energy ion implanters utilize low charge state (usually single charge) ion sources in combination with rf accelerators. Usually, a MV LINAC is used for acceleration of a few rnA. It is desirable to have instead an intense, high charge state ion source on a relatively low energy platform (de acceleration) to generate high-energy ion beams for implantation. This de acceleration of ions will be far more efficient (in energy utilization). The resultant implanter will be smaller in size. It will generate higher quality ion beams (with lower emittance) for fabrication of superior semiconductor products. In addition to energy and cost savings, the implanter will operate at a lower level of health risks associated with ion implantation. An additional aim of the project was to producing a product that can lead to long­ term job creation in Russia and/or in the US. R&D was conducted in two Russian Centers (one in Tomsk and Seversk, the other in Moscow) under the guidance ofPVI personnel and the BNL PI. Multiple approaches were pursued, developed, and tested at various locations with the best candidate for commercialization delivered and tested at on an implanter at the PVI client Axcelis. Technical developments were exciting: record output currents of high charge state phosphorus and antimony were achieved; a Calutron-Bemas ion source with a 70% output of boron ion current (compared to 25% in present state-of-the-art). Record steady state output currents of higher charge state phosphorous and antimony and P ions: P{sup 2+} (8.6 pmA), P{sup 3+} (1.9 pmA), and P{sup 4+} (0.12 pmA) and 16.2, 7.6, 3.3, and 2.2 pmA of Sb{sup 3+} Sb {sup 4 +}, Sb{sup 5+}, and Sb{sup 6+} respectively. Ultimate commercialization goals did not succeed (even though a number of the products like high

  14. High energy nuclear collisions

    SciTech Connect

    Plasil, F.

    1998-01-01

    This presentation covers three broad topics: a brief introduction to the field of nucleus-nucleus collisions at relativistic energies; a discussion of several topics illustrating what`s been learned after more than a decade of fixed target experiments; and an indication of what the future may bring at the Relativistic Heavy Ion Collider (RHIC) under construction at the Brookhaven National Laboratory (BNL) and at the Large Hadron Collider (LHC) planned at CERN.

  15. Hydrothermal energy: a source of energy for alcohol production

    SciTech Connect

    Stiger, R.R.

    1980-01-01

    A small scale (1 gal/hr) biomass-to-alcohol still was built at the Raft River Geothermal Site to investigate difficulties in geothermal assisted biomass conversion. The unit was successfully operated, producing 95% (190 proof) ethanol from sugar beet juice. The unit was designed and built in less than eight weeks from surplus equipment using commercially available design information. This small-scale still demonstrated that 95% ethanol can be produced from sugar beet beer containing 8 to 10% alcohol using geothermal energy and present commercial technology. The geothermal resource provided both an energy source and process water. Recently, Bechtel National, Incorporated, of San Francisco, California completed a study to analyze the economic feasibility of producing ethanol from potatoes, wheat, and sugar beets using geothermal resources available in the Raft River Region of Idaho. The study concluded that a 20 million gallon per year facility can be built that will supply alcohol at $1.78 per gallon using geothermal energy. (MHR)

  16. Miniaturized, High-Speed, Modulated X-Ray Source

    NASA Technical Reports Server (NTRS)

    Gendreau, Keith; Arzoumanian, Zaven; Kenyon, Steve; Spartana, Nick

    2013-01-01

    A low-cost, miniature x-ray source has been developed that can be modulated in intensity from completely off to full intensity on nanosecond timescales. This modulated x-ray source (MXS) has no filaments and is extremely rugged. The energy level of the MXS is adjustable from 0 to more than 100 keV. It can be used as the core of many new devices, providing the first practical, arbitrarily time-variable source of x-rays. The high-speed switching capability and miniature size make possible many new technologies including x-ray-based communication, compact time-resolved x-ray diffraction, novel x-ray fluorescence instruments, and low- and precise-dose medical x-rays. To make x-rays, the usual method is to accelerate electrons into a target material held at a high potential. When the electrons stop in the target, x-rays are produced with a spectrum that is a function of the target material and the energy to which the electrons are accelerated. Most commonly, the electrons come from a hot filament. In the MXS, the electrons start off as optically driven photoelectrons. The modulation of the x-rays is then tied to the modulation of the light that drives the photoelectron source. Much of the recent development has consisted of creating a photoelectrically-driven electron source that is robust, low in cost, and offers high intensity. For robustness, metal photocathodes were adopted, including aluminum and magnesium. Ultraviolet light from 255- to 350-nm LEDs (light emitting diodes) stimulated the photoemissions from these photocathodes with an efficiency that is maximized at the low-wavelength end (255 nm) to a value of roughly 10(exp -4). The MXS units now have much higher brightness, are much smaller, and are made using a number of commercially available components, making them extremely inexpensive. In the latest MXS design, UV efficiency is addressed by using a high-gain electron multiplier. The photocathode is vapor-deposited onto the input cone of a Burle Magnum

  17. Pulse shortening in high power microwave sources

    SciTech Connect

    Benford, J.; Benford, G.

    1996-12-31

    The authors review the current state of understanding of the universal phenomena that high power microwave pulses are shorter than the applied electrical pulse. Higher power reduces pulse duration, limiting present-day sources to a few hundred joules. Is this limitation fundamental, or are there means to avoid it entirely? There is no reason to think that only one mechanism is responsible. Rather, there are layers of effects which may need to be addressed separately. The authors categories experimental observations in terms of candidate pulse shortening mechanisms such as gap closure, primary and secondary electron bombardment of walls, and RF breakdown. Pulse shortening mechanism theory (microwave field interaction with the beam, resistive filamentation, enhanced closure, etc.) is summarized and compared to observations. They make suggestions for additional experiments and diagnostics to help separate out causes. Finally, means of reducing or eliminating pulse shortening are reviewed.

  18. Pulsar Wind Nebulae as a source of the observed electron and positron excess at high energy: The case of Vela-X

    NASA Astrophysics Data System (ADS)

    Della Torre, S.; Gervasi, M.; Rancoita, P. G.; Rozza, D.; Treves, A.

    2015-12-01

    We investigate, in terms of production from pulsars and their nebulae, the cosmic ray positron and electron fluxes above ∼10 GeV, observed by the AMS-02 experiment up to 1 TeV. We concentrate on the Vela-X case. Starting from the gamma-ray photon spectrum of the source, generated via synchrotron and inverse Compton processes, we estimated the electron and positron injection spectra. Several features are fixed from observations of Vela-X and unknown parameters are borrowed from the Crab nebula. The particle spectra produced in the pulsar wind nebula are then propagated up to the Solar System, using a diffusion model. Differently from previous works, the omnidirectional intensity excess for electrons and positrons is obtained as a difference between the AMS-02 data and the corresponding local interstellar spectrum. An equal amount of electron and positron excess is observed and we interpreted this excess (above ∼100 GeV in the AMS-02 data) as a supply coming from Vela-X. The particle contribution is consistent with models predicting the gamma-ray emission at the source. The input of a few more young pulsars is also allowed, while below ∼100 GeV more aged pulsars could be the main contributors.

  19. ION SOURCES FOR ENERGY EXTREMES OF ION IMPLANTATION.

    SciTech Connect

    HERSCHCOVITCH,A.; JOHNSON, B.M.; BATALIN, V.A.; KROPACHEV, G.N.; KUIBEDA, R.P.; KULEVOY, T.V.; KOLOMIETS, A.A.; PERSHIN, V.I.; PETRENKO, S.V.; RUDSKOY, I.; SELEZNEV, D.N.; BUGAEV, A.S.; GUSHENETS, V.I.; LITOVKO, I.V.; OKS, E.M.; YUSHKOV, G. YU.; MASEUNOV, E.S.; POLOZOV, S.M.; POOLE, H.J.; STOROZHENKO, P.A.; SVAROVSKI, YA.

    2007-08-26

    For the past four years a joint research and development effort designed to develop steady state, intense ion sources has been in progress with the ultimate goal to develop ion sources and techniques, which meet the two energy extreme range needs of mega-electron-volt and 100's of electron-volt ion implanters. This endeavor has already resulted in record steady state output currents of high charge state of Antimony and Phosphorous ions: P{sup 2+} (8.6 pmA), P{sup 3+} (1.9 pmA), and P{sup 4+} (0.12 pmA) and 16.2, 7.6, 3.3, and 2.2 pmA of Sb{sup 3+} Sb{sup 4+}, Sb{sup 5+}, and Sb{sup 6+} respectively. For low energy ion implantation our efforts involve molecular ions and a novel plasmaless/gasless deceleration method. To date, 1 emA of positive Decaborane ions were extracted at 10 keV and smaller currents of negative Decaborane ions were also extracted. Additionally, Boron current fraction of over 70% was extracted from a Bemas-Calutron ion source, which represents a factor of 3.5 improvement over currently employed ion sources.

  20. Acoustic centering of sources with high-order radiation patterns.

    PubMed

    Shabtai, Noam R; Vorländer, Michael

    2015-04-01

    Surrounding spherical microphone arrays have recently been used in order to model the radiation pattern of acoustic sources that are assumed to be at the center of the array. Source centering algorithms are applied to the measurements in order to reduce the negative effect of acoustic source misalignment with regard to the physical center of the microphone array. Recent works aim to minimize the energy that is contained in the high-order coefficients of the radiation pattern in the spherical harmonics domain, in order to directly address the problem of increased order and spatial aliasing resulted by this misalignment. However, objective functions which directly minimize the norm of these coefficients were shown to be convex only when employed on sources with low-order radiation patterns. This work presents a source centering algorithm that operates on plane sections and aims to achieve a convex objective function on every plane section. The results of the proposed algorithm are shown to be more convex than the previous algorithms for sources with higher-order radiation pattern, usually at higher frequencies. PMID:25920846

  1. Optimal Position of Ion Source for High Performance of IEC

    SciTech Connect

    Osawa, Hodaka; Ishibashi, Takayuki; Ohnishi, Masami; Yoshikawa, Kiyoshi

    2005-05-15

    An inertial electrostatic confinement (IEC) fusion device is possibly used for portable neutron sources. R. L. Hirsh reported that D-D the neutrons of 1.8 x 10{sup 8} n/s were produced. Recently, the similar amounts of fusion reactions are observed to occur in IEC devices In the most of IEC devices, since gas pressure is so high that the ions lose their energy by the frequent collisions with the neutral gas. The conditions of the high voltage and the low pressure are preferable because the energy of beam ions is kept very high and used for the fusion reaction more efficiently. It, however, is difficult to produce enough amounts of ions through a glow discharge at the low pressure. One of the solutions is to equip the ion source such as a magnetron near the anode. We have made three-dimensional orbit following code to evaluate the life of the ions produced near the anode surface. The code includes atomic collisions with background neutral gas and indicates the optimal positions to equip ion source which gives longer life of accelerated ions.

  2. Extremely High Current, High-Brightness Energy Recovery Linac

    SciTech Connect

    I. Ben-Zvi; D.S. Barton; D.B. Beavis; M. Blaskiewicz; J.M. Brennan; A. Burrill; R. Calaga; P. Cameron; X.Y. Chang; R. Connolly; D.M. Gassner; J.G. Grimes; H. Hahn; A. Hershcovitch; H.-C. Hseuh; P.D.J. Johnson; D. Kayran; J. Kewisch; R.F. Lambiase; V. Litvinenko; G.T. McIntyre; W. Meng; T.C.N. Nehring; T. Nicoletti; B. Oerter; D. Pate; J. Rank; T. Rao; T. Roser; T. Russo; J. Scaduto; Z. Segalov; K. Smith; N.W.W. Williams; K.-C. Wu; V. Yakimenko; K. Yip; A. Zaltsman; Y. Zhao; H. Bluem; A. Burger; M.D. Cole; A.J. Favale; D. Holmes; J. Rathke; T. Schultheiss; A.M.M. Todd; J.R. Delayen; L. W. Funk; P. Kneisel; H.L. Phillips; J.P. Preble

    2005-05-16

    Next generation ERL light-sources, high-energy electron coolers, high-power Free-Electron Lasers, powerful Compton X-ray sources and many other accelerators were made possible by the emerging technology of high-power, high-brightness electron beams. In order to get the anticipated performance level of ampere-class currents, many technological barriers are yet to be broken. BNL's Collider-Accelerator Department is pursuing some of these technologies for its electron cooling of RHIC application, as well as a possible future electron-hadron collider. We will describe work on CW, high-current and high-brightness electron beams. This will include a description of a superconducting, laser-photocathode RF gun and an accelerator cavity capable of producing low emittance (about 1 micron rms normalized) one nano-Coulomb bunches at currents of the order of one ampere average.

  3. Characterization of the straw stalk of the rapeseed plant as a biomass energy source

    SciTech Connect

    Karaosmanoglu, F.; Tetik, E.; Guerboy, B.; Sanli, I.

    1999-11-01

    Oil seed plants are important biomass energy sources. The rapeseed plant, which yields a high amount of vegetable oil, has a major position among other oil seed plants. In this study the straw stalk of the rapeseed plant (type 00 Brassica napus L.) has been investigated as a candidate for a biomass energy source.

  4. Use of the high-energy X-ray microprobe at the advanced photon source to investigate the interactions between metals and bacteria

    NASA Astrophysics Data System (ADS)

    Kemner, K. M.; Lai, B.; Maser, J.; Schneegurt, M. A.; Cai, Z.; Ilinski, P. P.; Kulpa, C. F.; Legnini, D. G.; Nealson, K. H.; Pratt, S. T.; Rodrigues, W.; Tischler, M. Lee; Yun, W.

    2000-05-01

    Understanding the fate of heavy-metal contaminants in the environment is of fundamental importance in the development and evaluation of effective remediation and sequestration strategies. Among the factors influencing the transport of these contaminants are their chemical speciation and the chemical and physical attributes of the surrounding medium. Bacteria and the extracellular material associated with them are thought to play a key role in determining a contaminant's speciation and thus its mobility in the environment. In addition, the microenvironment at and adjacent to actively metabolizing cell surfaces can be significantly different from the bulk environment. Thus, the spatial distribution and chemical speciation of contaminants and elements that are key to biological processes must be characterized at micron and submicron resolution in order to understand the microscopic physical, geological, chemical, and biological interfaces that determine a contaminant's macroscopic fate. Hard X-ray microimaging is a powerful technique for the element-specific investigation of complex environmental samples at the needed micron and submicron resolution. An important advantage of this technique results from the large penetration depth of hard X-rays in water. This advantage minimizes the requirements for sample preparation and allows the detailed study of hydrated samples. This paper presents results of studies of the spatial distribution of naturally occurring metals and a heavy-metal contaminant (Cr) in and near hydrated bacteria (Pseudomonas fluorescens) in the early stages of biofilm development, performed at the Advanced Photon Source Sector 2 X-ray microscopy beamline.

  5. Dietary sources of energy and macronutrient intakes among Flemish preschoolers.

    PubMed

    De Keyzer, Willem; Lin, Yi; Vereecken, Carine; Maes, Lea; Van Oyen, Herman; Vanhauwaert, Erika; De Backer, Guy; De Henauw, Stefaan; Huybrechts, Inge

    2011-01-01

    This study aims to identify major food sources of energy and macronutrients among Flemish preschoolers as a basis for evaluating dietary guidelines. Three-day estimated diet records were collected from a representative sample of 696 Flemish preschoolers (2.5-6.5 years old; participation response rate: 50%). For 11 dietary constituents, the contribution of 57 food groups was computed by summing the amount provided by the food group for all individuals divided by the total intake of the respective nutrient for all individuals. Bread (12%), sweet snacks (12%), milk (6%), flavoured milk drinks (9%), and meat products (6%) were the top five energy contributors. Sweet snacks were among the top contributors to energy, total fat, all fatty acids, cholesterol, and complex and simple carbohydrates. Fruit juices and flavoured milk drinks are the main contributors to simple carbohydrates (respectively 14% and 18%). All principal food groups like water, bread and cereals, vegetables, fruit, milk and spreadable fats were under-consumed by more than 30% of the population, while the food groups that were over-consumed consisted only of low nutritious and high energy dense foods (sweet snacks, sugared drinks, fried potatoes, sauces and sweet spreads). From the major food sources and gaps in nutrient and food intakes, some recommendations to pursue the nutritional goals could be drawn: the intake of sweet snacks and sugar-rich drinks (incl. fruit juices) should be discouraged, while consumption of fruits, vegetables, water, bread and margarine on bread should be encouraged. PMID:22958525

  6. Dietary sources of energy and macronutrient intakes among Flemish preschoolers

    PubMed Central

    2011-01-01

    This study aims to identify major food sources of energy and macronutrients among Flemish preschoolers as a basis for evaluating dietary guidelines. Three-day estimated diet records were collected from a representative sample of 696 Flemish preschoolers (2.5-6.5 years old; participation response rate: 50%). For 11 dietary constituents, the contribution of 57 food groups was computed by summing the amount provided by the food group for all individuals divided by the total intake of the respective nutrient for all individuals. Bread (12%), sweet snacks (12%), milk (6%), flavoured milk drinks (9%), and meat products (6%) were the top five energy contributors. Sweet snacks were among the top contributors to energy, total fat, all fatty acids, cholesterol, and complex and simple carbohydrates. Fruit juices and flavoured milk drinks are the main contributors to simple carbohydrates (respectively 14% and 18%). All principal food groups like water, bread and cereals, vegetables, fruit, milk and spreadable fats were under-consumed by more than 30% of the population, while the food groups that were over-consumed consisted only of low nutritious and high energy dense foods (sweet snacks, sugared drinks, fried potatoes, sauces and sweet spreads). From the major food sources and gaps in nutrient and food intakes, some recommendations to pursue the nutritional goals could be drawn: the intake of sweet snacks and sugar-rich drinks (incl. fruit juices) should be discouraged, while consumption of fruits, vegetables, water, bread and margarine on bread should be encouraged. PMID:22958525

  7. Alternative Natural Energy Sources in Building Design.

    ERIC Educational Resources Information Center

    Davis, Albert J.; Schubert, Robert P.

    This publication provides a discussion of various energy conserving building systems and design alternatives. The information presented here covers alternative space and water heating systems, and energy conserving building designs incorporating these systems and other energy conserving techniques. Besides water, wind, solar, and bio conversion…

  8. Superconducting Properties of MgB2 with Addition of Other AlB2-type Diborides and Carbon Sources, Prepared Using High Energy Ball Milling and HIP

    NASA Astrophysics Data System (ADS)

    Rodrigues, Durval; Silva, Lucas B. S. da; Metzner, Vivian C. V.; Hellstrom, Eric E.

    In the present work it is described the production of MgB2 samples by using the mixture of MgB2 with other diborides, (TaB2, VB2, and AlB2) which have the same C32 hexagonal structure as the MgB2, and simultaneous addition with the diborides and SiC, that contribute with C, to replace B in the crystalline structure of the matrix. As an important result, the critical current density (Jc) was improved at low magnetic fields when just the diborides are added. However, when SiC is added simultaneously with the diborides, the result is the improvement of Jc at high fields. The critical temperature (Tc) was maintained high.

  9. Experimental High Energy Neutrino Astrophysics

    SciTech Connect

    Distefano, Carla

    2005-10-12

    Neutrinos are considered promising probes for high energy astrophysics. More than four decades after deep water Cerenkov technique was proposed to detect high energy neutrinos. Two detectors of this type are successfully taking data: BAIKAL and AMANDA. They have demonstrated the feasibility of the high energy neutrino detection and have set first constraints on TeV neutrino production astrophysical models. The quest for the construction of km3 size detectors have already started: in the South Pole, the IceCube neutrino telescope is under construction; the ANTARES, NEMO and NESTOR Collaborations are working towards the installation of a neutrino telescope in the Mediterranean Sea.

  10. High-energy spectroscopic astrophysics

    NASA Astrophysics Data System (ADS)

    Güdel, Manuel; Walter, Roland

    After three decades of intense research in X-ray and gamma-ray astronomy, the time was ripe to summarize basic knowledge on X-ray and gamma-ray spectroscopy for interested students and researchers ready to become involved in new high-energy missions. This volume exposes both the scientific basics and modern methods of high-energy spectroscopic astrophysics. The emphasis is on physical principles and observing methods rather than a discussion of particular classes of high-energy objects, but many examples and new results are included in the three chapters as well.

  11. High energy particles and quanta in astrophysics

    NASA Technical Reports Server (NTRS)

    Mcdonald, F. B. (Editor); Fichtel, C. E.

    1974-01-01

    The various subdisciplines of high-energy astrophysics are surveyed in a series of articles which attempt to give an overall view of the subject as a whole by emphasizing the basic physics common to all fields in which high-energy particles and quanta play a role. Successive chapters cover cosmic ray experimental observations, the abundances of nuclei in the cosmic radiation, cosmic electrons, solar modulation, solar particles (observation, relationship to the sun acceleration, interplanetary medium), radio astronomy, galactic X-ray sources, the cosmic X-ray background, and gamma ray astronomy. Individual items are announced in this issue.

  12. New approach of determinations of earthquake moment magnitude using near earthquake source duration and maximum displacement amplitude of high frequency energy radiation

    SciTech Connect

    Gunawan, H.; Puspito, N. T.; Ibrahim, G.; Harjadi, P. J. P.

    2012-06-20

    The new approach method to determine the magnitude by using amplitude displacement relationship (A), epicenter distance ({Delta}) and duration of high frequency radiation (t) has been investigated for Tasikmalaya earthquake, on September 2, 2009, and their aftershock. Moment magnitude scale commonly used seismic surface waves with the teleseismic range of the period is greater than 200 seconds or a moment magnitude of the P wave using teleseismic seismogram data and the range of 10-60 seconds. In this research techniques have been developed a new approach to determine the displacement amplitude and duration of high frequency radiation using near earthquake. Determination of the duration of high frequency using half of period of P waves on the seismograms displacement. This is due tothe very complex rupture process in the near earthquake. Seismic data of the P wave mixing with other wave (S wave) before the duration runs out, so it is difficult to separate or determined the final of P-wave. Application of the 68 earthquakes recorded by station of CISI, Garut West Java, the following relationship is obtained: Mw = 0.78 log (A) + 0.83 log {Delta}+ 0.69 log (t) + 6.46 with: A (m), d (km) and t (second). Moment magnitude of this new approach is quite reliable, time processing faster so useful for early warning.

  13. Prospects for inertial fusion as an energy source

    SciTech Connect

    Hogan, W.J.

    1989-06-26

    Progress in the Inertial Confinement Fusion (ICF) Program has been very rapid in the last few years. Target physics experiments with laboratory lasers and in underground nuclear tests have shown that the drive conditions necessary to achieve high gain can be achieved in the laboratory with a pulse-shaped driver of about 10 MJ. Requirements and designs for a Laboratory Microfusion Facility (LMF) have been formulated. Research on driver technology necessary for an ICF reactor is making progress. Prospects for ICF as an energy source are very promising. 11 refs., 5 figs.

  14. High energy physics

    SciTech Connect

    Kernan, A.; Shen, B.C.; Ma, E.

    1997-07-01

    Hadron collider studies will focus on: (i) the search for the top quark with the newly installed D0 detector at the Fermilab Tevatron collider, (ii) the upgrade of the D0 detector to match the new main injector luminosity and (iii) R&D on silicon microstrip tracking devices for the SSC. High statistics studies of Z{sup 0} decay will continue with the OPAL detector at LEP. These studies will include a direct measurement of Z decay to neutrinos, the search for Higgs and heavy quark decays of Z. Preparations for the Large Scintillation Neutrino Detector (LSND) to measure neutrino oscillations at LAMPF will focus on data acquisition and testing of photomultiplier tubes. In the theoretical area E. Ma will concentrate on mass-generating radiative mechanisms for light quarks and leptons in renormalizable gauge field theories. J. Wudka`s program includes a detailed investigation of the magnetic-flip approach to the solar neutrino.

  15. Future of high energy physics

    SciTech Connect

    Panofsky, W.K.H.

    1984-06-01

    A rough overview is given of the expectations for the extension of high energy colliders and accelerators into the xtremely high energy range. It appears likely that the SSC or something like it will be the last gasp of the conventional method of producing high energy proton-proton collisions using synchrotron rings with superconducting magnets. It is likely that LEP will be the highest energy e+e/sup -/ colliding beam storage ring built. The future beyond that depends on the successful demonstrations of new technologies. The linear collider offers hope in this respect for some extension in energy for electrons, and maybe even for protons, but is too early to judge whether, by how much, or when such an extension will indeed take place.

  16. Two-Source Double-Slit Interference in Angle-Resolved High-Energy Above-Threshold Ionization Spectra of Diatoms

    SciTech Connect

    Okunishi, M.; Itaya, R.; Shimada, K.; Pruemper, G.; Ueda, K.; Busuladzic, M.; Gazibegovic-Busuladzic, A.; Milosevic, D. B.; Becker, W.

    2009-07-24

    When an electron from a diatomic molecule undergoes tunneling-rescattering ionization, a novel form of destructive interference can be realized that involves all four geometric orbits that are available to the electron when it is freed, because both ionization and rescattering may take place at the same or at different centers. We find experimentally and confirm theoretically that in orientation-averaged angle-resolved high-order above-threshold ionization spectra the corresponding destructive interference is visible for O{sub 2} but not for N{sub 2}. This effect is different from the suppression of ionization that is well known to occur for O{sub 2}.

  17. Portable, high intensity isotopic neutron source provides increased experimental accuracy

    NASA Technical Reports Server (NTRS)

    Mohr, W. C.; Stewart, D. C.; Wahlgren, M. A.

    1968-01-01

    Small portable, high intensity isotopic neutron source combines twelve curium-americium beryllium sources. This high intensity of neutrons, with a flux which slowly decreases at a known rate, provides for increased experimental accuracy.

  18. Polyvinyl alcohol gelation: A structural locking-up agent and carbon source for Si/CNT/C composites as high energy lithium ion battery anode

    NASA Astrophysics Data System (ADS)

    Chen, Dingqiong; Liao, Wenjuan; Yang, Yang; Zhao, Jinbao

    2016-05-01

    A novel polyvinyl alcohol (PVA) hydrogel method is developed to synthesize Si/CNT/C composites. The Si nanoparticles and CNTs are 'position' locked up by PVA hydrogel in a simple aqueous solution process, and then the Si-CNT-PVA hydrogel has pyrolyzed to form Si/CNT/C composites. In this unique structured Si/CNT/C composites, the CNTs form a porous network acting both as conductive agent for electron transfer and buffer space to accommodate huge Si volume change during lithiation/delithiation process, while the coating layer of carbon carbonized from polyvinyl alcohol (PVA) hydrogel is conducive to stabilize the interweaved composite structure. The complex structures of Si/CNT/C composites and their electrochemical properties are presented in this paper. The Si/CNT/C composites exhibit an initial reversible capacity of nearly 800 mAhg-1, an excellent capacity retention of 97.1% after 100 cycles at the rate of 0.1 C, and high capacity retention even at high current rate.

  19. Polyvinyl alcohol gelation: A structural locking-up agent and carbon source for Si/CNT/C composites as high energy lithium ion battery anode

    NASA Astrophysics Data System (ADS)

    Chen, Dingqiong; Liao, Wenjuan; Yang, Yang; Zhao, Jinbao

    2016-05-01

    A novel polyvinyl alcohol (PVA) hydrogel method is developed to synthesize Si/CNT/C composites. The Si nanoparticles and CNTs are 'position' locked up by PVA hydrogel in a simple aqueous solution process, and then the Si-CNT-PVA hydrogel has pyrolyzed to form Si/CNT/C composites. In this unique structured Si/CNT/C composites, the CNTs form a porous network acting both as conductive agent for electron transfer and buffer space to accommodate huge Si volume change during lithiation/delithiation process, while the coating layer of carbon carbonized from polyvinyl alcohol (PVA) hydrogel is conducive to stabilize the interweaved composite structure. The complex structures of Si/CNT/C composites and their electrochemical properties are presented in this paper. The Si/CNT/C composites exhibit an initial reversible capacity of nearly 800 mAhg-1, an excellent capacity retention of 97.1% after 100 cycles at the rate of 0.1 C, and high capacity retention even at high current rate.

  20. Utilization of high-strength wastewater for the production of biogas as a renewable energy source using hybrid upflow anaerobic sludge blanket (HUASB) reactor

    SciTech Connect

    Shivayogimath, C.B.; Ramanujam, T.K.

    1998-07-01

    Anaerobic digestion of distillery spentwash, a high-strength wastewater, was studied using a hybrid upflow anaerobic sludge blanket (HUASB) reactor for 240 days under ambient conditions. The HUASB reactor combined an open volume in the bottom two-thirds of the reactor for sludge blanket and polypropylene pall rings packing in the upper one-third of the reactor. The aim of the study was to achieve optimum biogas production and waste treatment. Using non-granular anaerobic sewage sludge as seed, the start-up of the HUASB reactor was successfully completed, with the production of active bacterial granules of 1--2 mm size, within 90 days. Examination of the bacterial granules under scanning electron microscope (SEM) revealed that Methanothrix like microorganisms were the dominant species besides Methanosarcina. An organic loading of 24 kg COD/m{sup 3}d at a low hydraulic retention time (HRT) of 6 hours was achieved with 82% reduction in COD. Biogas with high methane content (80%) was produced at these loadings. The specific biogas yield was 0.36 m{sup 3} CH{sub 4}/kg COD. Packing in the upper third of the reactor was very efficient as a gas-solid separator (GSS); and in addition it retained the biomass.

  1. High-radiance LDP source for mask-inspection application

    NASA Astrophysics Data System (ADS)

    Teramoto, Yusuke; Santos, Bárbara; Mertens, Guido; Kops, Ralf; Kops, Margarete; von Wezyk, Alexander; Yabuta, Hironobu; Nagano, Akihisa; Shirai, Takahiro; Ashizawa, Noritaka; Nakamura, Kiyotada; Kasama, Kunihiko

    2015-03-01

    Actinic mask inspection manufactures are currently searching for high-radiance EUV sources for their tools. LDP source, which was previously used for lithography purposes, was found to be a good candidate as it can provide sufficient power and radiance. Introduction of new techniques, modified modules and fine tuning of operational conditions (discharge pulse energy, discharge frequency, laser) has brought radiance level to 180 W/mm2/sr at plasma or 145 W/mm2/sr as clean-photon. The source has been modified in such a way to improve modules reliability, lifetime and radiance stability even though there is still a room for further improvement. Size of the source system is much smaller than that of the lithography source. A debris mitigation system has been tested. Optical transmission was improved to 77 % and several 8-nm-thick Ru samples were exposed to evaluate contamination and erosion of optics. Preliminary results show low sputter and deposition rates, which supports sufficiently long lifetime of the optics.

  2. High energy physics

    SciTech Connect

    Not Available

    1992-04-10

    The Counter Group continues to work on data analysis for Fermilab Experiment E653. Altogether, they expect several thousand reconstructed charm events and approximately 25 B pair events of which 12 have been observed thus far. Preparation continue for Fermilab Experiment E781, a high statistics study of charm baryon production. In the Theory Group, Cutkosky and collaborators study hadron phenomenology and non-perturbative QCD calculations. Levine has a long standing program in computational QED to obtain improved theoretical values for g-2 of the electron. Wolfenstein, Li, and their collaborators have worked on areas of weak interaction phenomenology that may yield insights beyond the standard model, e.g. CP violation and non-zero neutrino masses. Holman has been concerned with phase transitions in gauge theories relevant to cosmological problems. During 1991 most of the group effort was concentrated on the L3 experiment at CERN. Highlights of the results from the analysis of the Z[degrees] resonance include (a) a measurement of the strong coupling constant [alpha][sub s] for b quarks (b) a precision measurement of the average time of B hadrons and (c) a direct determination of the number of light neutrino faculties from the reaction e[sup +]e[sup [minus

  3. Effect of Carbon and Energy Source on Bacterial Chromate Reduction

    SciTech Connect

    Smith, William Aaron; Apel, William Arnold; Petersen, J. N.; Peyton, Brent Michael

    2002-07-01

    Studies were conducted to evaluate carbon and energy sources suitable to support hexavalent chromium (Cr(VI)) reduction by a bacterial consortium enriched from dichromate-contaminated aquifer sediments. The consortium was cultured under denitrifying conditions in a minimal, synthetic groundwater medium that was amended with various individual potential carbon and energy sources. The effects of these individual carbon and energy sources on Cr(VI) reduction and growth were measured. The consortium was found to readily reduce Cr(VI) with sucrose, acetate, L-asparagine, hydrogen plus carbon dioxide, ethanol, glycerol, glycolate, propylene glycol, or D-xylose as a carbon and energy source. Minimal Cr(VI) reduction was observed when the consortium was cultured with citrate, 2-ketoglutarate, L-lactate, pyruvate, succinate, or thiosulfate plus carbon dioxide as a carbon and energy source when compared with abiotic controls. The consortium grew on all of the above carbon and energy sources, with the highest cell densities reached using D-xylose and sucrose, demonstrating that the consortium is metabolically diverse and can reduce Cr(VI) using a variety of different carbon and energy sources. The results suggest that the potential exists for the enrichment of Cr(VI)-reducing microbial populations in situ by the addition of a sucrose-containing feedstock such as molasses, which is an economical and readily available carbon and energy source.

  4. Alternative Energy Sources. Experiments You Can Do...from Edison.

    ERIC Educational Resources Information Center

    Benrey, Ronald M.; Schultz, Robert F.

    Eight experiments dealing with alternative energy sources are presented. Each experiment includes an introductory section which provides background information and discusses the promises and problems of the particular energy source, a list of materials needed to complete the experiment, and the procedures to be used. The experiments involve:…

  5. High energy physics

    SciTech Connect

    Not Available

    1992-04-10

    The Counter Group continues to work on data analysis for Fermilab Experiment E653. Altogether, they expect several thousand reconstructed charm events and approximately 25 B pair events of which 12 have been observed thus far. Preparation continue for Fermilab Experiment E781, a high statistics study of charm baryon production. In the Theory Group, Cutkosky and collaborators study hadron phenomenology and non-perturbative QCD calculations. Levine has a long standing program in computational QED to obtain improved theoretical values for g-2 of the electron. Wolfenstein, Li, and their collaborators have worked on areas of weak interaction phenomenology that may yield insights beyond the standard model, e.g. CP violation and non-zero neutrino masses. Holman has been concerned with phase transitions in gauge theories relevant to cosmological problems. During 1991 most of the group effort was concentrated on the L3 experiment at CERN. Highlights of the results from the analysis of the Z{degrees} resonance include (a) a measurement of the strong coupling constant {alpha}{sub s} for b quarks (b) a precision measurement of the average time of B hadrons and (c) a direct determination of the number of light neutrino faculties from the reaction e{sup +}e{sup {minus}} {yields} {nu}{bar {nu}}{gamma}. We also began a major upgrade of the L3 luminosity monitor by replacing PWC chamber by a Si strip system in front of the BGO calorimeters. Finally we have continued our SSC R&D work on BaF{sub 2} by joining the GEM collaboration.

  6. Energy spectra of high energy atmospheric neutrinos

    NASA Technical Reports Server (NTRS)

    Mitsui, K.; Minorikawa, Y.

    1985-01-01

    Focusing on high energy neutrinos ( or = 1 TeV), a new calculation of atmospheric neutrino intensities was carried out taking into account EMC effects observed in P-A collisions by accelerator, recent measurement of primary cosmic ray spectrum and results of cosmic ray muon spectrum and charge ratio. Other features of the present calculation are (1) taking into account kinematics of three body decays of kaons and charm particles in diffusion equations and (2) taking into account energy dependence of kaon production.

  7. High Energy Neutrino Astronomy and Neutrino Telescopes

    NASA Astrophysics Data System (ADS)

    Kouchner, A.

    2015-04-01

    Neutrinos constitute a unique probe since they escape from their sources, travel undisturbed on cosmological distances and are produced in high-energy (HE) hadronic processes. In particular they would allow a direct detection and unambiguous identification of the acceleration sites of HE baryonic cosmic rays (CR), which remain unknown. Recent results from the ICECUBE collaboration present the first highly significant indication for the detection of high-energy extraterrestrial neutrinos, after several decades of instrumental efforts. We briefly report on this important results which open the route for the high-energy neutrino astronomy era. We then focus on the ANTARES detector, which despite its modest size with respect to ICECUBE is the largest deep-sea neutrino telescope in the world. The primary goal is to search for astrophysical neutrinos in the TeV-PeV range. This comprises generic searches for any diffuse cosmic neutrino flux as well as more specific searches for astrophysical sources such as active galactic nuclei or Galactic sources. The search program also includes multi-messenger analyses based on time and/or space coincidences with other cosmic probes. The ANTARES observatory is sensitive to a wide-range of other phenomena, from atmospheric neutrino oscillations to dark matter annihilation or potential exotics such as nuclearites and magnetic monopoles. The most recent results are reported.

  8. Biogas as a source of rural energy

    SciTech Connect

    Kalia, A.K.

    2000-01-01

    The hilly state of Himachal Pradesh, with nearly 2.15 million cattle and 0.7 million buffalo, has the potential to install 0.64 million biogas plants of 1 m{sup 3} size. These plants could generate nearly 4.90 x 105 m{sup 3} of biogas, equivalent to 3.07 x 10{sup 5} L kerosene per day to meet domestic energy needs of nearly one-fourth of its rural population. During 1982--1998, only 12.8% of this potential was achieved. The percent of possible potential achieved in plant installations in 12 districts of this state, namely, Bilaspur, Chamba, Hamirpur, Kangra, Kinnaur, Kullu, Lahul-Spiti, Mandi, Shimla, Sirmour, Solan, and Una, are 35.35, 1.70, 20.96, 8.67, 1.54, 6.96, 0.00, 18.49, 3.84, 8.521, 18.29, and 13.23%, respectively. There is a need to strengthen biogas promotion, particularly in the districts of Kangra, Mandi, Solan, and Una, which range from mid-hill to low-hill terrain and which have large potential due to high concentration of bovine population. Increased costs and comparatively low rate of subsidies has resulted in a decreasing rate of plant installation annually, from 3,500 during 1987--1992 to fewer than 1,200 during 1995--1998. The percentage of functioning plants was 82% in 1987--1988 but has decreased to 63%. To ensure proper installation and functionality of plants, the authors discuss the needed improvements in the biogas promotion program.

  9. Alternate policies for alternate energy sources

    SciTech Connect

    Hall, F.F.

    1985-09-01

    Some ''alternates within alternates'' are studied and possible improvement of our energy policies are explored. The viability of a hydrogen fuel economy is reviewed. Methanol, ethanol or ammonia versus hydrogen is one area of interest. Others include liquid hydrogen versus jet fuels, the use of geothermal, solar, wind or water energy for production of hydrogen gas versus development of deep earth supplies of natural gas is another. Energy enhancement as opposed to energy conservation is investigated with regard to polar climate and what might be done to improve natural energy balances, particularly in the northern hemisphere. Pumping Arctic Ocean water out into the Pacific Ocean via the Bering Strait would be an energy debit as opposed to energy gains such as biomass conversion of future plant growth throughout the Siberian and Canadian tundra regions and presently very arid desert regions, improved access to northern region fuel, metal ore and mineral resources, year-round shipping and fishing fleet operations in the Arctic Ocean and development of the tremendous Greenland hydro-electric power potential.

  10. High-intensity xenon pulse light source for fluorescence excitation

    NASA Astrophysics Data System (ADS)

    Miyamoto, Makoto; Ueno, Kazuo

    1997-05-01

    A newly developed 60W xenon flash lamp, L6604 and L6605, achieves the goals of longer operating life, higher output, and improved light stability. It operates at 2 Joules per flash input energy with approximately a 4 microsecond flash duration. The stability achieved is 2-3 percent peak-to-peak during a lifetime of 5 X 10e7 flashes, which is almost double that of conventional xenon flash lamps. This newly developed xenon flashlamp should serve as an excellent light source for analytical cytology and other fluorescence instruments. It can function as a high output, stable excitation light source for conventional fluorescence or delayed luminescence with a CCD. Besides providing powerful and stable illumination for absorption analysis of cells on slides, this lamp eliminates the optical artifacts associated with vibration of the stage which often limit throughput. This paper will describe in detail performance improvements obtained from this newly developed xenon flash lamp.

  11. High energy gamma ray imaging

    NASA Astrophysics Data System (ADS)

    Doherty, Michael Richard

    This thesis presents a design study into gamma ray collimation techniques for use in high energy radiation imaging devices for the nuclear industry. Such technology is required to provide information on the nature and location of isotopes within nuclear facilities that have reached the end of their useful life. The work has concentrated on the use of two different techniques, namely mechanical collimation using the Anger camera and electronic collimation using a Compton camera. The work has used computational models to evaluate the performance of such systems and thereby suggest optimal design parameters for use in prototype devices. Ray tracing models have been constructed to simulate both parallel hole and tapered bore diverging collimators. Investigations have been carried out to measure the effects on the spatial resolution of changing various design parameters of the collimators. The effects of varying the hole size, septal thickness and collimator length over a range of source to collimator distances likely to be encountered in an industrial scenario have been examined. Some new insight into the nature of the point spread function of mechanical collimators has been gained and the limitations of the conventional analytical approach to collimator evaluation have been highlighted. Modifications to the standard equations used in collimator design have subsequently been suggested. An analytical description of tapered bore collimators has been derived. Monte Carlo models have been developed to model a single scatter Compton camera. Germanium, silicon and sodium iodide have been investigated as candidates for the scattering detector in such a device. A model of a complete ring array Compton camera system has been used to evaluate performance. The data from the Monte Carlo model has been reconstructed to form images. The quality of the images generated have then been compared with images obtained from parallel hole and focusing mechanical collimators.

  12. Potential Energy Sources Pose Mining Problem

    ERIC Educational Resources Information Center

    Chemical and Engineering News, 1974

    1974-01-01

    Summarizes the discussions of a Division of Industrial and Engineering Chemistry symposium on solids handling for synthetic fuels production. Included is a description of technical difficulties with the use of coal seams and deposits of oil shale and oil sand as potential sources of fuel. (CC)

  13. Investigation of a high power electromagnetic pulse source.

    PubMed

    Wang, Yuwei; Chen, Dongqun; Zhang, Jiande; Cao, Shengguang; Li, Da; Liu, Chebo

    2012-09-01

    A high power electromagnetic pulse source with a resonant antenna driven by a compact power supply was investigated in this paper. To match the impedance of the resonant antenna and initial power source, a compact power conditioning circuit based on electro exploding opening switch (EEOS) and pulsed transformer was adopted. In the preliminary experiments, an impulse capacitor was used to drive the system. With the opening of the EEOS at the current of 15 kA flowing trough the primary of the transformer, the resonant antenna was rapidly charged to about -370 kV within a time of about 100 ns. When the switch in the resonant antenna closed at the charging voltage of about -202 kV, the peak intensity of the detected electric field at a distance of about 10 m from the center of the source was 7.2 kV∕m. The corresponding peak power of the radiated electromagnetic field reached 76 MW, while the total radiated electromagnetic energy was about 0.65 J. The total energy efficiency of the resonant antenna was about 22% which can be improved by increasing the closing rapidity of the switch in the antenna. PMID:23020399

  14. Investigation of a high power electromagnetic pulse source

    NASA Astrophysics Data System (ADS)

    Wang, Yuwei; Chen, Dongqun; Zhang, Jiande; Cao, Shengguang; Li, Da; Liu, Chebo

    2012-09-01

    A high power electromagnetic pulse source with a resonant antenna driven by a compact power supply was investigated in this paper. To match the impedance of the resonant antenna and initial power source, a compact power conditioning circuit based on electro exploding opening switch (EEOS) and pulsed transformer was adopted. In the preliminary experiments, an impulse capacitor was used to drive the system. With the opening of the EEOS at the current of 15 kA flowing trough the primary of the transformer, the resonant antenna was rapidly charged to about -370 kV within a time of about 100 ns. When the switch in the resonant antenna closed at the charging voltage of about -202 kV, the peak intensity of the detected electric field at a distance of about 10 m from the center of the source was 7.2 kV/m. The corresponding peak power of the radiated electromagnetic field reached 76 MW, while the total radiated electromagnetic energy was about 0.65 J. The total energy efficiency of the resonant antenna was about 22% which can be improved by increasing the closing rapidity of the switch in the antenna.

  15. Solar: A Clean Energy Source for Utilities

    SciTech Connect

    Solar Energy Technologies Program

    2010-09-28

    The fact sheet summarizes the goals and activities of the DOE Solar Energy Technologies Program efforts with utilities to remove the technical, regulatory, and market challenges they face in deploying solar technologies.

  16. Energy scaling of terahertz-wave parametric sources.

    PubMed

    Tang, Guanqi; Cong, Zhenhua; Qin, Zengguang; Zhang, Xingyu; Wang, Weitao; Wu, Dong; Li, Ning; Fu, Qiang; Lu, Qingming; Zhang, Shaojun

    2015-02-23

    Terahertz-wave parametric oscillators (TPOs) have advantages of room temperature operation, wide tunable range, narrow line-width, good coherence. They have also disadvantage of small pulse energy. In this paper, several factors preventing TPOs from generating high-energy THz pulses and the corresponding solutions are analyzed. A scheme to generate high-energy THz pulses by using the combination of a TPO and a Stokes-pulse-injected terahertz-wave parametric generator (spi-TPG) is proposed and demonstrated. A TPO is used as a source to generate a seed pulse for the surface-emitted spi-TPG. The time delay between the pump and Stokes pulses is adjusted to guarantee they have good temporal overlap. The pump pulses have a large pulse energy and a large beam size. The Stokes beam is enlarged to make its size be larger than the pump beam size to have a large effective interaction volume. The experimental results show that the generated THz pulse energy from the spi-TPG is 1.8 times as large as that obtained from the TPO for the same pumping pulse energy density of 0.90 J/cm(2) and the same pumping beam size of 3.0 mm. When the pumping beam sizes are 5.0 and 7.0 mm, the enhancement times are 3.7 and 7.5, respectively. The spi-TPG here is similar to a difference frequency generator; it can also be used as a Stokes pulse amplifier. PMID:25836452

  17. High energy high brightness thin disk laser

    NASA Astrophysics Data System (ADS)

    Nixon, Matthew D.; Cates, Michael C.

    2012-11-01

    Boeing has been developing solid state lasers for high energy applications since 2004 using Yb:YAG thin disk lasers as pioneered by A. Giesen1 and commercialized by Trumpf Laser GmbH.2 In this paper, we report results of our second generation design and status of a third generation we are currently developing, which will produce 35 kW and a beam quality <2.

  18. Global High-Resolution Emission Inventories from Combustion Sources

    NASA Astrophysics Data System (ADS)

    Tao, S.; Huang, Y.; Chen, H.; Shen, H.

    2014-12-01

    A series efforts have been made to reduce uncertainty of emission inventories from combustion sources. The inventories developed are highly resolved spatially (0.1 degree), temporally (monthly or daily), and sectorically (over 60 combustion sources). Sub-national, instead of national fuel data are used to reduce spatial bias due to uneven distribution of per person energy consumption within large countries. Space-for-time substitution method was developed to model the dependence of residential energy consumptions on a series of meteorological and socioeconomic conditions. The regression models were used to project temporal variation of energy consumption, subsequently emissions of greenhouse gases and air pollutants. The models can also be used to downscale spatial distribution of residential emissions. By using this approach, global emission inventories of black carbon, polycyclic aromatic hydrocarbons, mercury, TSP, PM10, and PM2.5 have been established. The inventories were used to potential health impact assessment, atmospheric transport and long-range transport modeling, as well as exposure and health impact modeling.

  19. Diffuse fluxes of cosmic high energy neutrinos

    NASA Technical Reports Server (NTRS)

    Stecker, F. W.

    1978-01-01

    Production spectra of high-energy neutrinos from galactic cosmic ray interactions with interstellar gas and extragalactic ultrahigh energy cosmic-ray interactions with microwave black-body photons are presented and discussed. These production processes involve the decay of charged pions and are thus related to the production of cosmic gamma-rays from the decay of neutral pions. Estimates of the neutrino fluxes from various diffuse cosmic sources are then made and the reasons fro significant differences with previous estimates are discussed. Predicted event rates for a DUMAND type detection system are significantly lower than early estimates indicated.

  20. HH55 and its energy source

    NASA Technical Reports Server (NTRS)

    Heyer, Mark H.; Graham, J. A.

    1990-01-01

    Imaging and spectroscopic observations of HH55 in the Lupus molecular cloud are presented. Cohen and Schwartz (1987) have shown that HH55 is apparently not excited by the nearby T Tau star RU Lup as once thought but rather by the coincident FIR point source 15533 - 3742 extracted from IRAS coadded images. The optical counterpart of this IR source is identified as an active, relatively unobscured M-dwarf star. The forbidden emission lines observed in the stellar spectrum exhibit slight asymmetries to blueshifted velocities. Deconvolution of the emission lines reveals a weak moderate-velocity (-100 km/sec) wind component and a stronger emission component whose velocity is very close to that of the star.

  1. HH55 and its energy source

    SciTech Connect

    Heyer, M.H.; Graham, J.A. )

    1990-02-01

    Imaging and spectroscopic observations of HH55 in the Lupus molecular cloud are presented. Cohen and Schwartz (1987) have shown that HH55 is apparently not excited by the nearby T Tau star RU Lup as once thought but rather by the coincident FIR point source 15533 - 3742 extracted from IRAS coadded images. The optical counterpart of this IR source is identified as an active, relatively unobscured M-dwarf star. The forbidden emission lines observed in the stellar spectrum exhibit slight asymmetries to blueshifted velocities. Deconvolution of the emission lines reveals a weak moderate-velocity (-100 km/sec) wind component and a stronger emission component whose velocity is very close to that of the star. 28 refs.

  2. Energy-harvesting power sources for gun-fired munitions

    NASA Astrophysics Data System (ADS)

    Rastegar, J.; Murray, R.; Pereira, C.; Nguyen, H.-L.

    2011-06-01

    A novel class of piezoelectric-based energy-harvesting power sources has been developed for gun-fired munitions which harvest energy from the firing acceleration. These piezoelectric-based devices have been shown to produce enough electrical energy for many applications such as fuzing, where they provide an ultrasafe power source, often eliminating the need for chemical batteries. An overview of the development of these power sources is provided, along with methods and results of laboratory and field testing performed on prototypes. Additionally, methods for integrating the generators into different classes of projectiles are discussed along with strategies for manufacturing and a side-by-side comparison with competing technologies.

  3. New progress of high current gasdynamic ion source (invited)

    NASA Astrophysics Data System (ADS)

    Skalyga, V.; Izotov, I.; Golubev, S.; Sidorov, A.; Razin, S.; Vodopyanov, A.; Tarvainen, O.; Koivisto, H.; Kalvas, T.

    2016-02-01

    The experimental and theoretical research carried out at the Institute of Applied Physics resulted in development of a new type of electron cyclotron resonance ion sources (ECRISs)—the gasdynamic ECRIS. The gasdynamic ECRIS features a confinement mechanism in a magnetic trap that is different from Geller's ECRIS confinement, i.e., the quasi-gasdynamic one similar to that in fusion mirror traps. Experimental studies of gasdynamic ECRIS were performed at Simple Mirror Ion Source (SMIS) 37 facility. The plasma was created by 37.5 and 75 GHz gyrotron radiation with power up to 100 kW. High frequency microwaves allowed to create and sustain plasma with significant density (up to 8 × 1013 cm-3) and to maintain the main advantages of conventional ECRIS such as high ionization degree and low ion energy. Reaching such high plasma density relies on the fact that the critical density grows with the microwave frequency squared. High microwave power provided the average electron energy on a level of 50-300 eV enough for efficient ionization even at neutral gas pressure range of 10-4-10-3 mbar. Gasdynamic ECRIS has demonstrated a good performance producing high current (100-300 mA) multi-charged ion beams with moderate average charge (Z = 4-5 for argon). Gasdynamic ECRIS has appeared to be especially effective in low emittance hydrogen and deuterium beams formation. Proton beams with current up to 500 emA and RMS emittance below 0.07 π ṡ mm ṡ mrad have been demonstrated in recent experiments.

  4. New progress of high current gasdynamic ion source (invited).

    PubMed

    Skalyga, V; Izotov, I; Golubev, S; Sidorov, A; Razin, S; Vodopyanov, A; Tarvainen, O; Koivisto, H; Kalvas, T

    2016-02-01

    The experimental and theoretical research carried out at the Institute of Applied Physics resulted in development of a new type of electron cyclotron resonance ion sources (ECRISs)-the gasdynamic ECRIS. The gasdynamic ECRIS features a confinement mechanism in a magnetic trap that is different from Geller's ECRIS confinement, i.e., the quasi-gasdynamic one similar to that in fusion mirror traps. Experimental studies of gasdynamic ECRIS were performed at Simple Mirror Ion Source (SMIS) 37 facility. The plasma was created by 37.5 and 75 GHz gyrotron radiation with power up to 100 kW. High frequency microwaves allowed to create and sustain plasma with significant density (up to 8 × 10(13) cm(-3)) and to maintain the main advantages of conventional ECRIS such as high ionization degree and low ion energy. Reaching such high plasma density relies on the fact that the critical density grows with the microwave frequency squared. High microwave power provided the average electron energy on a level of 50-300 eV enough for efficient ionization even at neutral gas pressure range of 10(-4)-10(-3) mbar. Gasdynamic ECRIS has demonstrated a good performance producing high current (100-300 mA) multi-charged ion beams with moderate average charge (Z = 4-5 for argon). Gasdynamic ECRIS has appeared to be especially effective in low emittance hydrogen and deuterium beams formation. Proton beams with current up to 500 emA and RMS emittance below 0.07 π ⋅ mm ⋅ mrad have been demonstrated in recent experiments. PMID:26931934

  5. HIGH FLUENCE NEUTRON SOURCE FOR NONDESTRUCTIVE CHARACTERIZATION OF NUCLEAR WASTE

    EPA Science Inventory

    We propose to research the basic plasma physics necessary to develop a high fluence neutron source based on the inertial electrostatically confined (IEC) plasma. An intense neutron source directly addresses the capability to characterize nuclear materials under difficult measurem...

  6. History of energy sources and their utilization in Nigeria

    SciTech Connect

    Ogunsola, O.I. )

    1990-01-01

    Nigeria, a major oil producer, is rich in other energy sources. These include wood, coal, gas, tar sands, and hydro power. Although oil has been the most popular, some other energy sources have a longer history. This article discusses the historical trends in the production and utilization of Nigerian energy sources. Wood has the longest history. However,its utilization was limited to domestic cooking. Imported coal was first used in 1896, but it was not discovered in Nigeria until 1909 and was first produced in 1916. Although oil exploration started in 1901, it was first discovered in commercial quantity in 1956 and produced in 1958. Oil thereafter took over the energy scene from coal until 1969, when hydro energy was first produced. Energy consumption has been mainly from hydro. Tar sands account for about 55% of total proven non-renewable reserves.

  7. Resource management tools based on renewable energy sources

    NASA Astrophysics Data System (ADS)

    Jannson, Tomasz; Forrester, Thomas; Boghrat, Pedram; Pradhan, Ranjit; Kostrzewski, Andrew

    2012-06-01

    Renewable energy is an important source of power for unattended sensors (ground, sea, air), tagging systems, and other remote platforms for Homeland Security and Homeland Defense. Also, Command, Control, Communication, and Intelligence (C3I) systems and technologies often require renewable energy sources for information assurance (IA), in general, and anti-tampering (AT), in particular. However, various geophysical and environmental conditions determine different types of energy harvesting: solar, thermal, vibration, acoustic, hydraulic, wind, and others. Among them, solar energy is usually preferable, but, both a solar habitat and the necessity for night operation can create a need for other types of renewable energy. In this paper, we introduce figures of merit (FoMs) for evaluating preferences of specific energy sources, as resource management tools, based on geophysical conditions. Also, Battery Systemic Modeling is discussed.

  8. Low energy ion beam dynamics of NANOGAN ECR ion source

    NASA Astrophysics Data System (ADS)

    Kumar, Sarvesh; Mandal, A.

    2016-04-01

    A new low energy ion beam facility (LEIBF) has been developed for providing the mass analyzed highly charged intense ion beams of energy ranging from a few tens of keV to a few MeV for atomic, molecular and materials sciences research. The new facility consists of an all permanent magnet 10 GHz electron cyclotron resonance (ECR) ion source (NANOGAN) installed on a high voltage platform (400 kV) which provides large currents of multiply charged ion beams. Higher emittance at low energy of intense ion beam puts a tremendous challenge to the beam optical design of this facility. The beam line consists of mainly the electrostatic quadrupoles, an accelerating section, analyzing cum switching magnet and suitable beam diagnostics including vacuum components. The accelerated ion beam is analyzed for a particular mass to charge (m/q) ratio as well as guided to three different lines along 75°, 90° and 105° using a large acceptance analyzing cum switching magnet. The details of transverse beam optics to all the beam lines with TRANSPORT and GICOSY beam optics codes are being described. Field computation code, OPERA 3D has been utilized to design the magnets and electrostatic quadrupoles. A theoretical estimation of emittance for optimized geometry of ion source is given so as to form the basis of beam optics calculations. The method of quadrupole scan of the beam is used to characterize the emittance of the final beam on the target. The measured beam emittance increases with m/q ratios of various ion beams similar to the trend observed theoretically.

  9. High Energy Astrophysics Program (HEAP)

    NASA Technical Reports Server (NTRS)

    Angelini, Lorella; Corcoran, Michael; Drake, Stephen; McGlynn, Thomas A.; Snowden, Stephen; Mukai, Koji; Cannizzo, John; Lochner, James; Rots, Arnold; Christian, Eric; Barthelmy, Scott; Palmer, David; Mitchell, John; Esposito, Joseph; Sreekumar, P.; Hua, Xin-Min; Mandzhavidze, Natalie; Chan, Kai-Wing; Soong, Yang; Barrett, Paul

    1998-01-01

    This report reviews activities performed by the members of the USRA contract team during the 6 months of the reporting period and projected activities during the coming 6 months. Activities take place at the Goddard Space Flight Center, within the Laboratory for High Energy Astrophysics. Developments concern instrumentation, observation, data analysis, and theoretical work in astrophysics. Supported missions include advanced Satellite for Cosmology and Astrophysics (ASCA), X-Ray Timing Experiment (XTE), X-Ray Spectrometer (XRS), Astro-E, High Energy Astrophysics Science Archive Research Center (HEASARC) and others.

  10. High Energy Astrophysics Program (HEAP)

    NASA Technical Reports Server (NTRS)

    Angelini, L.; Holdridge, David V.; Norris, J. (Technical Monitor)

    1998-01-01

    This report reviews activities performed by members of the USRA contract team during the six months of the reporting period and projected activities during the coming six months. Activities take place at the Goddard Space Flight Center, within the Laboratory for High Energy Astrophysics. Developments concern instrumentation, observation, data analysis, and theoretical work in Astrophysics Missions supported include: Advanced Satellite for Cosmology and Astrophysics (ASCA), X-ray Timing Experiment (XTE), X-ray Spectrometer (XRS), Astro-E, High Energy Astrophysics Science Archive Research Center (HEASARC), and others.

  11. Ultra-High Energy Cosmic Rays

    NASA Astrophysics Data System (ADS)

    Colon, Rafael Antonio; Moncada, Roberto; Guerra, Juan; Anchordoqui, Luis

    2016-01-01

    The search for the origin(s) of ultra-high energy (UHE) cosmic rays (CR) remains one of the cornerstones of high energy astrophysics. The previously proposed sources of acceleration for these UHECRs were gamma-ray bursts (GRB) and active galactic nuclei (AGN) due to their energetic activity and powerful jets. However, a problem arises between the acceleration method and the observed CR spectrum. The CRs from GRBs or AGN jets are assumed to undergo Fermi acceleration and a source injection spectrum proportional to E^-2 is expected. However, the most recent fits to the spectrum and nuclear composition suggest an injection spectrum proportional to E^-1. It is well known that such a hard spectrum is characteristic of unipolar induction of rotating compact objects. When this method is applied to the AGN cores, they prove to be much too luminous to accelerate CR nuclei without photodisintegrating, thus creating significant energy losses. Instead, here we re-examine the possibility of these particles being accelerated around the much less luminous quasar remnants, or dead quasars. We compare the interaction times of curvature radiation and photodisintegration, the two primary energy loss considerations with the acceleration time scale. We show that the energy losses at the source are not significant enough as to prevent these CRs from reaching the maximum observed energies. Using data from observatories in the northern and southern sky, the Telescope Array and the Pierre Auger Observatory respectively, two hotspots have been discerned which have some associated quasar remnants that help to motivate our study.

  12. High Current Ion Sources and Injectors for Heavy Ion Fusion

    SciTech Connect

    Kwan, Joe W.

    2005-02-15

    Heavy ion beam driven inertial fusion requires short ion beam pulses with high current and high brightness. Depending on the beam current and the number of beams in the driver system, the injector can use a large diameter surface ionization source or merge an array of small beamlets from a plasma source. In this paper, we review the scaling laws that govern the injector design and the various ion source options including the contact ionizer, the aluminosilicate source, the multicusp plasma source, and the MEVVA source.

  13. Beam extraction and high stability operation of high current electron cyclotron resonance proton ion source

    SciTech Connect

    Roychowdhury, P. Mishra, L.; Kewlani, H.; Mittal, K. C.; Patil, D. S.

    2014-03-15

    A high current electron cyclotron resonance proton ion source is designed and developed for the low energy high intensity proton accelerator at Bhabha Atomic Research Centre. The plasma discharge in the ion source is stabilized by minimizing the reflected microwave power using four stub auto tuner and magnetic field. The optimization of extraction geometry is performed using PBGUNS code by varying the aperture, shape, accelerating gap, and the potential on the electrodes. While operating the source, it was found that the two layered microwave window (6 mm quartz plate and 2 mm boron nitride plate) was damaged (a fine hole was drilled) by the back-streaming electrons after continuous operation of the source for 3 h at beam current of 20–40 mA. The microwave window was then shifted from the line of sight of the back-streaming electrons and located after the water-cooled H-plane bend. In this configuration the stable operation of the high current ion source for several hours is achieved. The ion beam is extracted from the source by biasing plasma electrode, puller electrode, and ground electrode to +10 to +50 kV, −2 to −4 kV, and 0 kV, respectively. The total ion beam current of 30–40 mA is recorded on Faraday cup at 40 keV of beam energy at 600–1000 W of microwave power, 800–1000 G axial magnetic field and (1.2–3.9) × 10{sup −3} mbar of neutral hydrogen gas pressure in the plasma chamber. The dependence of beam current on extraction voltage, microwave power, and gas pressure is investigated in the range of operation of the ion source.

  14. Redox Disproportionation of Glucose as a Major Biosynthetic Energy Source

    NASA Technical Reports Server (NTRS)

    Weber, Arthur L.

    1996-01-01

    Previous studies have concluded that very little if any energy is required for the microbial biosynthesis of amino acids and lipids from glucose -- processes that yield almost as much ATP (adenosine triphosphate) as they consume. However, these studies did not establish the strength nor the nature of the energy source driving these biological transformations. To identify and estimate the strength of the energy source behind these processes, we calculated the free energy change due to the redox disproportionation of substrate carbon of (a) 26 redox-balanced fermentation reactions, and (b) the biosynthesis of amino acids, lipids, and nucleotides of E. coli from glucose. A plot of the negative free energy of these reactions per mmole of carbon as a function of the number of disproportionative electron transfers per mmol of carbon showed that the energy yields of these fermentations and biosyntheses were directly proportional to the degree of redox disproportionation of carbon. Since this linear relationship showed that redox disproportionation was the dominant energy source of these reactions, we were able to establish that amino acid and lipid biosynthesis obtained most of their energy from redox disproportionation (greater than 94%). In contrast nucleotide biosynthesis was not driven by redox disproportionation of carbon, and consequently depended completely on ATP for energy. This crucial and previously unrecognized role of sugars as an energy source of biosynthesis suggests that sugars were involved at the earliest stage in the origin of anabolic metabolism.

  15. The Bourner lecture. Power sources and the new energy economy

    NASA Astrophysics Data System (ADS)

    Irvine, John T. S.

    This paper focuses on the critical role of power sources in the future energy economy. It highlights the disruptive nature of the new energy technologies that will come into play, addressing the problems of greenhouse emissions and reduced availability of fossil fuel reserves. The importance of power sources such as fuel cells and batteries is discussed and their inter-relationship with the hydrogen economy explored. Overall it is clear that improved methods of energy storage are of critical importance and these must be optimised both in terms of cost and energy density. There are important challenges to be addressed; however, very positive outcomes can be anticipated.

  16. Report from the NSLS workshop: Sources and applications of high intensity uv-vuv light

    SciTech Connect

    Johnson, E.D.; Hastings, J.B.

    1990-12-31

    A workshop was held to evaluate sources and applications of high intensity, ultra violet (UV) radiation for biological, chemical, and materials sciences. The proposed sources are a UV free electron laser (FEL) driven by a high brightness linac and undulators in long, straight sections of a specially designed low energy (400 MeV) storage ring. These two distinct types of sources will provide a broad range of scientific opportunities that were discussed in detail during the workshop.

  17. Report from the NSLS workshop: Sources and applications of high intensity uv-vuv light

    SciTech Connect

    Johnson, E.D.; Hastings, J.B.

    1990-01-01

    A workshop was held to evaluate sources and applications of high intensity, ultra violet (UV) radiation for biological, chemical, and materials sciences. The proposed sources are a UV free electron laser (FEL) driven by a high brightness linac and undulators in long, straight sections of a specially designed low energy (400 MeV) storage ring. These two distinct types of sources will provide a broad range of scientific opportunities that were discussed in detail during the workshop.

  18. High purity bright single photon source.

    PubMed

    Neergaard-Nielsen, J S; Nielsen, B M; Takahashi, H; Vistnes, A I; Polzik, E S

    2007-06-25

    Using cavity-enhanced non-degenerate parametric down-conversion, we have built a frequency tunable source of heralded single photons with a narrow bandwidth of 8 MHz, making it compatible with atomic quantum memories. The photon state is 70% pure single photon as characterized by a tomographic measurement and reconstruction of the quantum state, revealing a clearly negative Wigner function. Furthermore, it has a spectral brightness of ~1,500 photons/s per MHz bandwidth, making it one of the brightest single photon sources available. We also investigate the correlation function of the down-converted fields using a combination of two very distinct detection methods; photon counting and homodyne measurement. PMID:19547121

  19. A power conditioning system for radioisotope thermoelectric generator energy sources

    NASA Technical Reports Server (NTRS)

    Gillis, J. A., Jr.

    1974-01-01

    The use of radioisotope thermoelectric generators (RTG) as the primary source of energy in unmanned spacecraft is discussed. RTG output control, power conditioning system requirements, the electrical design, and circuit performance are also discussed.

  20. Cassava as an energy source: a selected bibliography

    SciTech Connect

    Sherman, C.

    1980-01-01

    This selected bibliography includes 250 articles on cassava as a potential energy source. Factors included are things which influence cassava growth; such as weeding, fertilizer, diseases and genetic selection, as well as the conversion of cassava to ethanol. (DP)

  1. Cooperative research in high energy astrophysics

    NASA Technical Reports Server (NTRS)

    1994-01-01

    Details of the activities conducted under the joint effort of the University of Maryland and NASA Goddard Space Flight Center Laboratory for High Energy Astrophysics are detailed for the period July 1989 through April 1994. The research covered a variety of topics including: (1) detection of cosmic rays and studies of the solar modulation of galactic cosmic rays; (2) support work for several x-ray satellites; (3) high resolution gamma-ray spectroscopy of celestial sources; (4)theoretical astrophysics; and (5) active galaxies.

  2. Astrophysical implications of high energy neutrino limits

    NASA Astrophysics Data System (ADS)

    Becker, Julia K.; Groß, Andreas; Münich, Kirsten; Dreyer, Jens; Rhode, Wolfgang; Biermann, Peter L.

    2007-09-01

    Second generation high energy neutrino telescopes are being built to reach sensitivities of neutrino emission from galactic and extragalactic sources. Current neutrino detectors are already able to set limits which are in the range of some emission models. In particular, the Antarctic Muon and Neutrino Detection Array (AMANDA) has recently presented the so-far most restrictive limit on diffuse neutrino emission [A. Achterberg et al., Phys. Rev. D, submitted for publication, astro-ph/0705.1315.]. Stacking limits which apply to AGN point source classes rather than to single point sources [A. Achterberg, et al., IceCube Collaboration and P.L. Biermann, Astrophys. Phys. 26 (2006) 282] are given as well. In this paper, the two different types of limits will be used to draw conclusions about different emission models. An interpretation of stacking limits as diffuse limits to the emission from considered point source class is presented. The limits can for instance be used to constrain the predicted correlation of EGRET-detected diffuse emission and neutrino emission. Also, the correlation between X-ray and neutrino emission is constrained. Further results for source classes like TeV blazars and FR-II galaxies are presented. Starting from the source catalogs so-far examined for the stacking method, we discuss further potential catalogs and examine the possibilities of the second generation telescopes ICECUBE and KM3NET by comparing catalogs with respect to northern and southern hemisphere total flux.

  3. Pulse switching for high energy lasers

    NASA Technical Reports Server (NTRS)

    Laudenslager, J. B.; Pacala, T. J. (Inventor)

    1981-01-01

    A saturable inductor switch for compressing the width and sharpening the rise time of high voltage pulses from a relatively slow rise time, high voltage generator to an electric discharge gas laser (EDGL) also provides a capability for efficient energy transfer from a high impedance primary source to an intermediate low impedance laser discharge network. The switch is positioned with respect to a capacitive storage device, such as a coaxial cable, so that when a charge build-up in the storage device reaches a predetermined level, saturation of the switch inductor releases or switches energy stored in the capactive storage device to the EDGL. Cascaded saturable inductor switches for providing output pulses having rise times of less than ten nanoseconds and a technique for magnetically biasing the saturable inductor switch are disclosed.

  4. The energy sources of CME acceleration

    NASA Astrophysics Data System (ADS)

    Allawi, H.; Pohjolainen, S.

    2012-11-01

    We investigate the possibility that during the fast acceleration phase of a coronal mass ejection (CME), a freely propagating shock wave could be launched. We test this hypothesis by calculating the speeds of blast waves by using the Taylor-Sedov equation in changing density solar atmosphere, and compare these speeds with the radio type II burst speeds during the CME event on 17 February 2000. The matching speeds and the realistic value of the blast wave energy, 10^{24} J, lead us to suggest that the CME acceleration phase may involve shocks separating from the initial CME driver.

  5. High-energy neutron dosimetry

    NASA Astrophysics Data System (ADS)

    Sutton, Michele Rhea

    2001-12-01

    Fluence-to-dose conversion coefficients for the radiation protection quantity effective dose were calculated for neutrons, photons and protons with energies up to 2 GeV using the MCNPX code. The calculations were performed using the Pacific Northwest National Laboratory versions of the MIRD-V male and female anthropomorphic phantoms modified to include the skin and esophagus. The latest high-energy neutron evaluated cross-section libraries and the recommendations given in ICRP Publication 60 and ICRP Publication 74 were utilized to perform the calculations. Sets of fluence-to- effective dose conversion coefficients are given for anterior-posterior, posterior-anterior, left-lateral, right-lateral and rotational irradiation geometries. This is the first set of dose conversion coefficients over this energy range calculated for the L-LAT irradiation geometry. A unique set of high-energy neutron depth-dose benchmark experiments were performed at the Los Alamos Neutron Science Center/Weapons Neutron Research (LANSCE/WNR) complex. The experiments consisted of filtered neutron beams with energies up to 800 MeV impinging on a 30 x 30 x 30 cm3 tissue-equivalent phantom. The absorbed dose was measured in the phantom at various depths with tissue-equivalent ion chambers. The phantom and the experimental set-up were modeled using MCNPX. Comparisons of the experimental and computational depth- dose distributions indicate that the absorbed dose calculated by MCNPX is within 13% for neutrons with energies up to 750 MeV. This experiment will serve as a benchmark experiment for the testing of high-energy radiation transport codes for the international radiation protection community.

  6. High Power Light Gas Helicon Plasma Source For VASMIR

    NASA Technical Reports Server (NTRS)

    Squire, J. P.; Chang-Diaz, F. R.; Glover, T. W.; Jacobson, V. T.; McCaskill, G. E.; Winter, D. S.; Baity, F. W.; Carter, M. D.; Goulding, R. H.

    2004-01-01

    The VASIMR space propulsion development effort relies on a high power (greater than 10kW) helicon source to produce a dense flowing plasma (H, D and He) target for ion cyclotron resonance (ICR) acceleration of the ions. Subsequent expansion in an expanding magnetic field (magnetic nozzle) converts ion lunetic energy to directed momentum. This plasma source must have critical features to enable an effective propulsion device. First, it must ionize most of the input neutral flux of gas, thus producing a plasma stream with a high degree of ionization for application of ICR power. This avoids propellant waste and potential power losses due to charge exchange. Next, the plasma stream must flow into a region of high magnetic field (approximately 0.5 T) for efficient ICR acceleration. Third, the ratio of input power to plasma flux must be low, providing an energy per ion-electron pair approaching 100 eV. Lastly, the source must be robust and capable of very long life-times (years). In our helicon experiment (VX-10) we have measured a ratio of input gas to plasma flux near 100%. The plasma flows from the helicon region (B approximately 0.1 T) into a region with a peak magnetic field of 0.8 T. The energy input per ion-electron pair has been measured at 300 plus or minus 100 eV. Recent results at Oak Ridge National Laboratory (ORNL) show an enhanced efficiency mode of operation with a high power density, over 5 kW in a 5 cm diameter tube. Our helicon is presently 9 cm in diameter and operates up to 3.5 kW of input power. An upgrade to a power level of 10 kW is underway. Much of our recent work has been with a Boswell double-saddle antenna design. We are also converting the antenna design to a helical type. With these modifications, we anticipate an improvement in the ionization efficiency. This paper presents the results from scaling the helicon in the VX-10 device from 3.5 to 10 kW. We also compare the operation with a double-saddle to a helical antenna design. Finally, we

  7. High energy density electrochemical cell

    NASA Technical Reports Server (NTRS)

    Byrne, J. J.; Williams, D. L.

    1970-01-01

    Primary cell has an anode of lithium, a cathode containing dihaloisocyanuric acid, and a nonaqueous electrolyte comprised of a solution of lithium perchlorate in methyl formate. It produces an energy density of 213 watt hrs/lb and can achieve a high current density.

  8. A compact high brightness laser synchrotron light source for medical applications

    NASA Astrophysics Data System (ADS)

    Nakajima, Kazuhisa

    1999-07-01

    The present high-brightness hard X-ray sources have been developed as third generation synchrotron light sources based on large high energy electron storage rings and magnetic undulators. Recently availability of compact terawatt lasers arouses a great interest in the use of lasers as undulators. The laser undulator concept makes it possible to construct an attractive compact synchrotron radiation source which has been proposed as a laser synchrotron light source. This paper proposes a compact laser synchrotron light source for mediacal applications, such as an intravenous coronary angiography and microbeam therapy.

  9. The very-high-energy gamma-ray sky.

    PubMed

    Aharonian, Felix

    2007-01-01

    Over the past few years, very-high-energy gamma-ray astronomy has emerged as a truly observational discipline, with many detected sources representing different galactic and extragalactic source populations-supernova remnants, pulsar wind nebulae, giant molecular clouds, star formation regions, compact binary systems, and active galactic nuclei. It is expected that observations with the next generation of stereoscopic arrays of imaging atmospheric Cherenkov telescopes over a very broad energy range from 10(10) to 10(15) electron volts will dramatically increase the number of very-high-energy gamma-ray sources, thus having a huge impact on the development of astrophysics, cosmology, and particle astrophysics. PMID:17204642

  10. Alternative Approaches to High Energy Density Fusion

    NASA Astrophysics Data System (ADS)

    Hammer, J.

    2016-03-01

    This paper explores selected approaches to High Energy Density (HED) fusion, beginning with discussion of ignition requirements at the National Ignition Facility (NIF). The needed improvements to achieve ignition are closely tied to the ability to concentrate energy in the implosion, manifested in the stagnation pressure, Pstag . The energy that must be assembled in the imploded state to ignite varies roughly as Pstag -2, so among other requirements, there is a premium on reaching higher Pstag to achieve ignition with the available laser energy. The U.S. inertial confinement fusion program (ICF) is pursuing higher Pstag on NIF through improvements to capsule stability and symmetry. One can argue that recent experiments place an approximate upper bound on the ultimate ignition energy requirement. Scaling the implosions consistently in spatial, temporal and energy scales shows that implosions of the demonstrated quality ignite robustly at 9-15 times the current energy of NIF. While lasers are unlikely to reach that bounding energy, it appears that pulsed-power sources could plausibly do so, giving a range of paths forward for ICF depending on success in improving energy concentration. In this paper, I show the scaling arguments then discuss topics from my own involvement in HED fusion. The recent Viewfactor experiments at NIF have shed light on both the observed capsule drive deficit and errors in the detailed modelling of hohlraums. The latter could be important factors in the inability to achieve the needed symmetry and energy concentration. The paper then recounts earlier work in Fast Ignition and the uses of pulsed- power for HED and fusion applications. It concludes with a description of a method for improving pulsed-power driven hohlraums that could potentially provide a factor of 10 in energy at NIF-like drive conditions and reach the energy bound for indirect drive ICF.

  11. Electron energy recovery system for negative ion sources

    DOEpatents

    Dagenhart, W.K.; Stirling, W.L.

    1979-10-25

    An electron energy recovery system for negative ion sources is provided. The system, employing crossed electric and magnetic fields, separates the electrons from the ions as they are extracted from the ion source plasma generator and before the ions are accelerated to their full energy. With the electric and magnetic fields oriented 90/sup 0/ to each other, the electrons remain at approximately the electrical potential at which they were generated. The electromagnetic forces cause the ions to be accelerated to the full accelerating supply voltage energy while being deflected through an angle of less than 90/sup 0/. The electrons precess out of the accelerating field region into an electron recovery region where they are collected at a small fraction of the full accelerating supply energy. It is possible, by this method, to collect > 90% of the electrons extracted along with the negative ions from a negative ion source beam at < 4% of full energy.

  12. Novel piezoelectric-based energy-harvesting power sources for gun-fired munitions

    NASA Astrophysics Data System (ADS)

    Rastegar, J.; Murray, R.; Pereira, C.; Nguyen, H.-L.

    2007-04-01

    A novel class of piezoelectric-based energy-harvesting power sources is presented for gun-fired munitions and other similar applications that require very high G survivability. The power sources are designed to harvest energy from the firing acceleration as well as vibratory motion of munitions during the flight and convert it to electrical energy to power onboard electronics. The developed piezoelectric-based energy harvesting power sources produce enough electrical energy for applications such as fuzing. The power sources are designed to withstand firing accelerations in excess of 100,000 G. In certain applications such as fuzing, the developed power sources have the potential of completely eliminating the need for chemical batteries. In fuzing applications, the developed power sources have the added advantage of providing additional safety, since with such power sources the fuzing electronics are powered only after the munitions have exited the barrel and have traveled a safe distance from the weapon platform. The design of a number of prototypes, including their packaging for high G hardening, and the results of laboratory and air-gun testing are presented. Methods to increase the efficiency of such energy-harvesting power sources and minimize friction and damping losses are discussed.

  13. Opportunities for renewable energy sources in Central Asia countries

    SciTech Connect

    Obozov, A.J.; Loscutoff, W.V.

    1998-07-01

    This report presents an overview of the state of conventional energy sources and the potential for development of renewable energy sources in the Central Asia countries of Kazakhstan, Uzbekistan, Kyrgyzstan, Turkmenistan, and Tajikistan. The region has a population of about 50 million in an area of more than four million square kilometers. The per capita gross internal product is more than $2,500, although the economy has been declining the past five years. The area has substantial coal, oil, uranium, and natural gas reserves, although they are not distributed equally among the five countries. Energy production is such that the countries do not have to rely heavily on imports. One of the problems in Central Asia is that the energy prices are substantially below the world prices. This is a factor in development of renewable energy sources. The primary renewable energy resources available are wind in Kazakhstan, solar in the entire region, biomass in Kyrgyzstan, and micro-hydropower stations in Kazakhstan and Kyrgyzstan. All of these have the potential to provide a significant amount of the required energy for the region. However, all of the countries have an abundance of various renewable energy resources. To effectively use these resources, however, a number of barriers to their development and commercialization must be overcome. These include low prices of conventional energy sources, absence of legislative support, lack of financing for new technologies, and lack of awareness of renewable energy sources by the population. A number of specific actions are proposed to overcome these barriers. These include establishment of a Central Asia coordinating council for renewable energy, development of a regional renewable energy program, and setting up a number of large demonstration projects. 16 figs.

  14. Turbine under Gulf Stream: Potential energy source

    SciTech Connect

    Venezia, W.A.; Holt, J.

    1995-09-01

    Turbine under the Gulf Stream (TUGS) is a project to design, build, and deploy the prototypes necessary to demonstrate the economic and technical feasibility of generating electric power from the Gulf Stream. The project is based in part on new generator designs and emerging materials technologies. Its successful completion would demonstrate the technology and produce prototype turbines that can be mass produced and sold with service support. Past research and experimentation indicates that energy can be generated from the Gulf Stream. Problems exist such as fluctuations in the current`s axis and inconsistency. Above all, the ocean is a difficult environment in which to work. Therefore, the question is not whether or not a generator can be put in the ocean to generate electricity, but rather can it be done in an economically and environmentally sound way and still be practical?

  15. High Energy Polarization of Blazars: Detection Prospects

    NASA Astrophysics Data System (ADS)

    Chakraborty, N.; Pavlidou, V.; Fields, B. D.

    2015-01-01

    Emission from blazar jets in the ultraviolet, optical, and infrared is polarized. If these low-energy photons were inverse-Compton scattered, the upscattered high-energy photons retain a fraction of the polarization. Current and future X-ray and gamma-ray polarimeters such as INTEGRAL-SPI, PoGOLITE, X-Calibur, Gamma-Ray Burst Polarimeter, GEMS-like missions, ASTRO-H, and POLARIX have the potential to discover polarized X-rays and gamma-rays from blazar jets for the first time. Detection of such polarization will open a qualitatively new window into high-energy blazar emission; actual measurements of polarization degree and angle will quantitatively test theories of jet emission mechanisms. We examine the detection prospects of blazars by these polarimetry missions using examples of 3C 279, PKS 1510-089, and 3C 454.3, bright sources with relatively high degrees of low-energy polarization. We conclude that while balloon polarimeters will be challenged to detect blazars within reasonable observational times (with X-Calibur offering the most promising prospects), space-based missions should detect the brightest blazars for polarization fractions down to a few percent. Typical flaring activity of blazars could boost the overall number of polarimetric detections by nearly a factor of five to six purely accounting for flux increase of the brightest of the comprehensive, all-sky, Fermi-LAT blazar distribution. The instantaneous increase in the number of detections is approximately a factor of two, assuming a duty cycle of 20% for every source. The detectability of particular blazars may be reduced if variations in the flux and polarization fraction are anticorrelated. Simultaneous use of variability and polarization trends could guide the selection of blazars for high-energy polarimetric observations.

  16. HIGH ENERGY POLARIZATION OF BLAZARS: DETECTION PROSPECTS

    SciTech Connect

    Chakraborty, N.; Pavlidou, V.; Fields, B. D.

    2015-01-01

    Emission from blazar jets in the ultraviolet, optical, and infrared is polarized. If these low-energy photons were inverse-Compton scattered, the upscattered high-energy photons retain a fraction of the polarization. Current and future X-ray and gamma-ray polarimeters such as INTEGRAL-SPI, PoGOLITE, X-Calibur, Gamma-Ray Burst Polarimeter, GEMS-like missions, ASTRO-H, and POLARIX have the potential to discover polarized X-rays and gamma-rays from blazar jets for the first time. Detection of such polarization will open a qualitatively new window into high-energy blazar emission; actual measurements of polarization degree and angle will quantitatively test theories of jet emission mechanisms. We examine the detection prospects of blazars by these polarimetry missions using examples of 3C 279, PKS 1510-089, and 3C 454.3, bright sources with relatively high degrees of low-energy polarization. We conclude that while balloon polarimeters will be challenged to detect blazars within reasonable observational times (with X-Calibur offering the most promising prospects), space-based missions should detect the brightest blazars for polarization fractions down to a few percent. Typical flaring activity of blazars could boost the overall number of polarimetric detections by nearly a factor of five to six purely accounting for flux increase of the brightest of the comprehensive, all-sky, Fermi-LAT blazar distribution. The instantaneous increase in the number of detections is approximately a factor of two, assuming a duty cycle of 20% for every source. The detectability of particular blazars may be reduced if variations in the flux and polarization fraction are anticorrelated. Simultaneous use of variability and polarization trends could guide the selection of blazars for high-energy polarimetric observations.

  17. Steady State Microbunching for High Brilliance and High Repetition Rate Storage Ring-Based Light Sources

    SciTech Connect

    Chao, Alex; Ratner, Daniel; Jiao, Yi; /Beijing, Inst. High Energy Phys.

    2012-09-06

    Electron-based light sources have proven to be effective sources of high brilliance, high frequency radiation. Such sources are typically either linac-Free Electron Laser (FEL) or storage ring types. The linac-FEL type has high brilliance (because the beam is microbunched) but low repetition rate. The storage ring type has high repetition rate (rapid beam circulation) but comparatively low brilliance or coherence. We propose to explore the feasibility of a microbunched beam in a storage ring that promises high repetition rate and high brilliance. The steady-state-micro-bunch (SSMB) beam in storage ring could provide CW sources for THz, EUV, or soft X-rays. Several SSMB mechanisms have been suggested recently, and in this report, we review a number of these SSMB concepts as promising directions for high brilliance, high repetition rate light sources of the future. The trick of SSMB lies in the RF system, together with the associated synchrotron beam dynamics, of the storage ring. Considering various different RF arrangements, there could be considered a number of scenarios of the SSMB. In this report, we arrange these scenarios more or less in order of the envisioned degree of technical challenge to the RF system, and not in the chronological order of their original references. Once the stored beam is steady-state microbunched in a storage ring, it passes through a radiator repeatedly every turn (or few turns). The radiator extracts a small fraction of the beam energy as coherent radiation with a wavelength corresponding to the microbunched period of the beam. In contrast to an FEL, this radiator is not needed to generate the microbunching (as required e.g. by SASE FELs or seeded FELs), so the radiator can be comparatively simple and short.

  18. Alternative energy sources session ocean thermal energy conversion: Technology development

    NASA Astrophysics Data System (ADS)

    Richards, W. E.; Vadus, J. R.

    1980-03-01

    Four ocean-energy technologies with significant promise are explored: ocean thermal energy conversion; wave power; ocean currents; and salinity gradients. The major funding emphasis has been in OTEC. Technical developments, accomplishments and major findings, remaining problems, and proposed plans for the future are discussed.

  19. CRYSTALLINE BEAMS AT HIGH ENERGIES.

    SciTech Connect

    WEI, J.; OKAMOTO, H.; YURI, Y.; SESSLER, A.; MACHIDA, S.

    2006-06-23

    Previously it was shown that by crystallizing each of the two counter-circulating beams, a much larger beam-beam tune shift can be tolerated during the beam-beam collisions; thus a higher luminosity can be reached for colliding beams [1]. On the other hand, crystalline beams can only be formed at energies below the transition energy ({gamma}{sub T}) of the accelerators [2]. In this paper, we investigate the formation of crystals in a high-{gamma}{sub T} lattice that also satisfies the maintenance condition for a crystalline beam [3].

  20. The Burst and Transient Source Experiment (BATSE) Earth Occultation Catalog of Low-Energy Gamma-Ray Sources

    NASA Technical Reports Server (NTRS)

    Harmon, B. A.; Wilson, C. A.; Fishman, G. J.; Connaughton, V.; Henze, W.; Paciesas, W. S.; Finger, M. H.; McCollough, M. L.; Sahi, M.; Peterson, B.

    2004-01-01

    The Burst and Transient Source Experiment (BATSE), aboard the Compton Gamma Ray Observatory (CGRO), provided a record of the low-energy gamma-ray sky (approx. 20-1000 keV) between 1991 April and 2000 May (9.1 yr). BATSE monitored the high-energy sky using the Earth occultation technique (EOT) for point sources whose emission extended for times on the order of the CGRO orbital period (approx. 92 min) or greater. Using the EOT to extract flux information, a catalog of sources using data from the BATSE Large Area Detectors has been prepared. The first part of the catalog consists of results from the all-sky monitoring of 58 sources, mostly Galactic, with intrinsic variability on timescales of hours to years. For these sources, we have included tables of flux and spectral data, and outburst times for transients. Light curves (or flux histories) have been placed on the World Wide Web. We then performed a deep sampling of these 58 objects, plus a selection of 121 more objects, combining data from the entire 9.1 yr BATSE data set. Source types considered were primarily accreting binaries, but a small number of representative active galaxies, X-ray-emitting stars, and supernova remnants were also included. The sample represents a compilation of sources monitored and/or discovered with BATSE and other high-energy instruments between 1991 and 2000, known sources taken from the HEAO 1 A-4 and Macomb & Gehrels catalogs. The deep sample results include definite detections of 83 objects and possible detections of 36 additional objects. The definite detections spanned three classes of sources: accreting black hole and neutron star binaries, active galaxies, and Supernova remnants. The average fluxes measured for the fourth class, the X-ray emitting stars, were below the confidence limit for definite detection.

  1. Piezoelectric-based energy-harvesting power sources for gun-fired munitions

    NASA Astrophysics Data System (ADS)

    Rastegar, J.; Haarhoff, D.; Pereira, C.; Nguyen, H.-L.

    2006-03-01

    This paper presents a new class of piezoelectric based energy harvesting power sources for use in gun-fired munitions or other similar applications requiring high G survivability . These power sources are designed to harvest energy from the firing acceleration as well as vibratory motion and spinning of munitions during their flight and convert it to electrical energy that could be used directly by power consuming electronics onboard munitions or stored. The power sources are designed to withstand firing accelerations in excess of 100,000 G. The power sources have been shown to have the potential of completely eliminating the need for chemical batteries in many fuzing applications, while having the added advantage of providing for considerably more safety and long shelf life. Prototypes of a number of designs of this class of energy harvesting power sources for various power requirements have been constructed and successfully tested in the laboratory and by the U. S. Army (ARDEC) using air guns.

  2. The energy situation. [emphasizing various energy sources, costs, and environmental effects

    NASA Technical Reports Server (NTRS)

    1973-01-01

    Energy reserves from the principal energy sources other than petroleum and natural gas are summarized. It was found that energy sources are being consumed at rates which exceed the ability to replace them through new discoveries and technology improvements. The costs and implications to environment for using coal and nuclear energy are discussed. Tables are presented on energy consumption, cost of reclamation, and water power capacity.

  3. Writable electrochemical energy source based on graphene oxide

    PubMed Central

    Wei, Di

    2015-01-01

    Graphene oxide (GO) was mainly used as raw material for various types of reduced graphene oxide (rGO) as a cost effective method to make graphene like materials. However, applications of its own unique properties such as extraordinary proton conductivity and super-permeability to water were overlooked. Here GO based battery-like planar energy source was demonstrated on arbitrary insulating substrate (e.g. polymer sheet/paper) by coating PEDOT, GO ink and rGO on Ag charge collectors. Energy from such GO battery depends on its length and one unit cell with length of 0.5 cm can generate energy capacity of 30 Ah/L with voltage up to 0.7 V when room temperature ionic liquid (RTIL) is added. With power density up to 0.4 W/cm3 and energy density of 4 Wh/L, GO battery was demonstrated to drive an electrochromic device. This work is the first attempt to generate decent energy using the fast transported water molecules inside GO. It provides very safe energy source that enables new applications otherwise traditional battery technology can not make including building a foldable energy source on paper and platform for futuristic wearable electronics. A disposable energy source made of GO was also written on a plastic glove to demonstrate wearability. PMID:26462557

  4. Writable electrochemical energy source based on graphene oxide.

    PubMed

    Wei, Di

    2015-01-01

    Graphene oxide (GO) was mainly used as raw material for various types of reduced graphene oxide (rGO) as a cost effective method to make graphene like materials. However, applications of its own unique properties such as extraordinary proton conductivity and super-permeability to water were overlooked. Here GO based battery-like planar energy source was demonstrated on arbitrary insulating substrate (e.g. polymer sheet/paper) by coating PEDOT, GO ink and rGO on Ag charge collectors. Energy from such GO battery depends on its length and one unit cell with length of 0.5 cm can generate energy capacity of 30 Ah/L with voltage up to 0.7 V when room temperature ionic liquid (RTIL) is added. With power density up to 0.4 W/cm(3) and energy density of 4 Wh/L, GO battery was demonstrated to drive an electrochromic device. This work is the first attempt to generate decent energy using the fast transported water molecules inside GO. It provides very safe energy source that enables new applications otherwise traditional battery technology can not make including building a foldable energy source on paper and platform for futuristic wearable electronics. A disposable energy source made of GO was also written on a plastic glove to demonstrate wearability. PMID:26462557

  5. Writable electrochemical energy source based on graphene oxide

    NASA Astrophysics Data System (ADS)

    Wei, Di

    2015-10-01

    Graphene oxide (GO) was mainly used as raw material for various types of reduced graphene oxide (rGO) as a cost effective method to make graphene like materials. However, applications of its own unique properties such as extraordinary proton conductivity and super-permeability to water were overlooked. Here GO based battery-like planar energy source was demonstrated on arbitrary insulating substrate (e.g. polymer sheet/paper) by coating PEDOT, GO ink and rGO on Ag charge collectors. Energy from such GO battery depends on its length and one unit cell with length of 0.5 cm can generate energy capacity of 30 Ah/L with voltage up to 0.7 V when room temperature ionic liquid (RTIL) is added. With power density up to 0.4 W/cm3 and energy density of 4 Wh/L, GO battery was demonstrated to drive an electrochromic device. This work is the first attempt to generate decent energy using the fast transported water molecules inside GO. It provides very safe energy source that enables new applications otherwise traditional battery technology can not make including building a foldable energy source on paper and platform for futuristic wearable electronics. A disposable energy source made of GO was also written on a plastic glove to demonstrate wearability.

  6. Energy source of flagellar type III secretion.

    PubMed

    Paul, Koushik; Erhardt, Marc; Hirano, Takanori; Blair, David F; Hughes, Kelly T

    2008-01-24

    Bacterial flagella contain a specialized secretion apparatus that functions to deliver the protein subunits that form the filament and other structures to outside the membrane. This apparatus is related to the injectisome used by many gram-negative pathogens and symbionts to transfer effector proteins into host cells; in both systems this export mechanism is termed 'type III' secretion. The flagellar secretion apparatus comprises a membrane-embedded complex of about five proteins, and soluble factors, which include export-dedicated chaperones and an ATPase, FliI, that was thought to provide the energy for export. Here we show that flagellar secretion in Salmonella enterica requires the proton motive force (PMF) and does not require ATP hydrolysis by FliI. The export of several flagellar export substrates was prevented by treatment with the protonophore CCCP, with no accompanying decrease in cellular ATP levels. Weak swarming motility and rare flagella were observed in a mutant deleted for FliI and for the non-flagellar type-III secretion ATPases InvJ and SsaN. These findings show that the flagellar secretion apparatus functions as a proton-driven protein exporter and that ATP hydrolysis is not essential for type III secretion. PMID:18216859

  7. Turbulence generation through intense kinetic energy sources

    NASA Astrophysics Data System (ADS)

    Maqui, Agustin F.; Donzis, Diego A.

    2016-06-01

    Direct numerical simulations (DNS) are used to systematically study the development and establishment of turbulence when the flow is initialized with concentrated regions of intense kinetic energy. This resembles both active and passive grids which have been extensively used to generate and study turbulence in laboratories at different Reynolds numbers and with different characteristics, such as the degree of isotropy and homogeneity. A large DNS database was generated covering a wide range of initial conditions with a focus on perturbations with some directional preference, a condition found in active jet grids and passive grids passed through a contraction as well as a new type of active grid inspired by the experimental use of lasers to photo-excite the molecules that comprise the fluid. The DNS database is used to assert under what conditions the flow becomes turbulent and if so, the time required for this to occur. We identify a natural time scale of the problem which indicates the onset of turbulence and a single Reynolds number based exclusively on initial conditions which controls the evolution of the flow. It is found that a minimum Reynolds number is needed for the flow to evolve towards fully developed turbulence. An extensive analysis of single and two point statistics, velocity as well as spectral dynamics and anisotropy measures is presented to characterize the evolution of the flow towards realistic turbulence.

  8. A high performance current source inverter

    SciTech Connect

    Joos, G.; Moschopoulos, G.; Ziogas, P.D.

    1993-10-01

    A recent innovation in current source inverter (CSI) drives has been the introduction of pulsewidth modulation (PWM) for the purpose of improving the quality of the load currents and voltages. However, the typical six switch CSI circuit is not compatible with all standard PWM techniques thus limiting the number of schemes that can be used. The modified CSI circuit discussed in this paper removes most of the restrictions at the ``cost`` of an extra switch. Additional advantages include faster response times through modulation index control and higher efficiency. This paper includes a detailed steady-state analysis and design procedure. The feasibility and performance of the modified CSI are verified by simulation and experimental implementation on a 5 kVA converter.

  9. High-power laser source evaluation

    SciTech Connect

    Back, C.A.; Decker, C.D.; Dipeso, G.J.; Gerassimenko, M.; Managan, R.A.; Serduke, F.J.D.; Simonson, G.F.; Suter, L.J.

    1997-07-01

    This document reports progress in these areas: EXPERIMENTAL RESULTS FROM NOVA: TAMPED XENON UNDERDENSE X-RAY EMITTERS; MODELING MULTI-KEV RADIATION PRODUCTION OF XENON-FILLED BERYLLIUM CANS; MAPPING A CALCULATION FROM LASNEX TO CALE; HOT X RAYS FROM SEEDED NIF CAPSULES; HOHLRAUM DEBRIS MEASUREMENTS AT NOVA; FOAM AND STRUCTURAL RESPONSE CALCULATIONS FOR NIF NEUTRON EXPOSURE SAMPLE CASE ASSEMBLY DESIGN; NON-IGNITION X-RAY SOURCE FLUENCE-AREA PRODUCTS FOR NUCLEAR EFFECTS TESTING ON NIF. Also appended are reprints of two papers. The first is on the subject of ``X-Ray Production in Laser-Heated Xe Gas Targets.`` The second is on ``Efficient Production and Applications of 2- to 10-keV X Rays by Laser-Heated Underdense Radiators.``

  10. Low energy spread ion source with a coaxial magnetic filter

    DOEpatents

    Leung, Ka-Ngo; Lee, Yung-Hee Yvette

    2000-01-01

    Multicusp ion sources are capable of producing ions with low axial energy spread which are necessary in applications such as ion projection lithography (IPL) and radioactive ion beam production. The addition of a radially extending magnetic filter consisting of a pair of permanent magnets to the multicusp source reduces the energy spread considerably due to the improvement in the uniformity of the axial plasma potential distribution in the discharge region. A coaxial multicusp ion source designed to further reduce the energy spread utilizes a cylindrical magnetic filter to achieve a more uniform axial plasma potential distribution. The coaxial magnetic filter divides the source chamber into an outer annular discharge region in which the plasma is produced and a coaxial inner ion extraction region into which the ions radially diffuse but from which ionizing electrons are excluded. The energy spread in the coaxial source has been measured to be 0.6 eV. Unlike other ion sources, the coaxial source has the capability of adjusting the radial plasma potential distribution and therefore the transverse ion temperature (or beam emittance).

  11. Proceedings of the conference on alternative energy sources for Texas

    SciTech Connect

    Rothman, I.N.

    1981-01-01

    Four primary areas of study for alternative energy sources for Texas are considered. These are: energy demand supply and economics; prospects for energy resources (oil, lignite, coal, nuclear, goethermal and solar) and conservation; financial and technical constraints; and future planning. The following papers are presented: US energy outlook to 1990; energy supply and demand projections; comparative economics of solar energy in the generation of big power; gas present and future prospects; prospects for enhanced recovery of oil in Texas; the outlook for coal in USA; implementation of nuclear power in Texas; future outlook - geopressured-geothermal energy for Texas; future prospects for conservation and solar energy; financing and money supply constraints; technical constraints to energy supply increase; planning for the future - the crisis that drones on. Two papers have been abstracted separately.

  12. High efficiency, high pulse energy fiber laser system

    NASA Astrophysics Data System (ADS)

    Bowers, Mark S.; Henrie, Jason; Garske, Megan; Templeman, Dan; Afzal, Robert

    2013-05-01

    We report a master-oscillator/power-amplifier laser system featuring a polarizing and coilable 40-micron-core Yb-doped photonic crystal fiber as the final-stage amplifier. The laser source generates 3.4 ns pulses at a repetition rate 19 kHz, with maximum pulse energy 1.2 mJ, maximum average power 22.8 W, near diffraction-limited (M2 < 1.1) beam quality, and 20% electrical to optical efficiency in a compact package. This pulsed-fiber laser flight system provides high pulse energy, average power, peak power, diffraction limited beam quality, and high efficiency all in a thermally and mechanically stable compact package.

  13. Renewable energy sources in Bulgaria: Current state and trends

    NASA Astrophysics Data System (ADS)

    Kolev, K.

    The over-dependency of Bulgaria on imported fuel stressed the importance of developing a new energy strategy based on energy saving which includes also using renewable energy sources (RES). The target is the substitution of at least 2 percent of the real primary energy consumption with RES by 2010. The author gives a generalized analysis of the available RES in Bulgaria -solar, wind, geothermal, biomass and mini-hydraulic. The potentialities of each source for its usage as a suitable energy supply are pointed out, as well as the current status of research and implementation work, problems connected with legislation, financing and production of particular facilities. The governmental policy concerning RES is considered briefly. A description is given to the project 'Technical and Economical Assessment of Possibilities for Expansion of the RES-part in the Energy Balance of the Country' developed and started in 1994 in the framework of the PHARE program.

  14. Plasmon-enhanced photocathode for high brightness and high repetition rate x-ray sources

    SciTech Connect

    Polyakov, Aleksandr; Senft, Christoph; Thompson, K. F.; Feng, J.; Cabrini, S.; Schuck, P. J.; Padmore, Howard; Peppernick, Samuel J.; Hess, Wayne P.

    2013-02-11

    High brightness electron sources are at the heart of anew generation of x-ray sources based on the Free ElectronLaser (FEL) as well as in Energy Recovery Linac (ERL) and Inverse Compton Scattering (ICS) sources.The source of electrons consists of a photoinjector, comprised of a laser-driven photocathode in a high gradient electric field produced by an rf cavity. The function of the rf cavity is to provide a field sufficient for acceleration of electrons to relativistic velocity over a small distance, thus minimizing effects of the space-charge. Even so, the dense electron beam required for high brightness suffers from a space charge field that chirps and reshapes the electron pulse increasing beam emittance and thus reducing the overall brightness. This emittance growth can be avoided if the initial distribution of electrons is pancake shaped, with a semicircular transverse intensity profile. In this case, the electron distribution develops under its space charge field from a pancake into a uniformly filled ellipsoidal beam. This condition, referred to as the blowout regime, requires ultrashort pulses less than 100 fs long and has been successfully demonstrated recently in a high gradient photoinjector.

  15. Magma energy: the ultimate heat source for geothermal fields

    SciTech Connect

    Hardee, H.C.

    1982-07-01

    A scientific feasibility study, funded by DOE/Basic Energy Sciences, of extracting energy directly from buried magma sources is discussed. This study has examined the problems of locating and drilling into the magma and then extracting useful quantities of energy from the magma. Theoretical calculations with supporting laboratory and field measurements have been used to show that there are no theoretical or physical barriers that prevent the direct extraction of energy from magma. As a result of this study it has been concluded that magma energy utilization is scientifically feasible.

  16. Advanced High Brilliance X-Ray Source

    NASA Technical Reports Server (NTRS)

    Gibson, Walter M.

    1998-01-01

    The possibility to dramatically increase the efficiency of laboratory based protein structure measurements through the use of polycapillary X-ray optics was investigated. This project initiated April 1, 1993 and concluded December 31, 1996 (including a no cost extension from June 31, 1996). This is a final report of the project. The basis for the project is the ability to collect X-rays from divergent electron bombardment laboratory X-ray sources and redirect them into quasiparallel or convergent (focused) beams. For example, a 0.1 radian (approx. 6 deg) portion of a divergent beam collected by a polycapillary collimator and transformed into a quasiparallel beam of 3 millradian (0.2 deg) could give a gain of 6(exp 2)/0.2(exp 2) x T for the intensity of a diffracted beam from a crystal with a 0.2 deg diffraction width. T is the transmission efficiency of the polycapillary diffraction optic, and for T=0.5, the gain would be 36/0.04 x O.5=45. In practice, the effective collection angle will depend on the source spot size, the input focal length of the optic (usually limited by the source spot-to-window distance on the x-ray tube) and the size of the crystal relative to the output diameter of the optic. The transmission efficiency, T, depends on the characteristics (fractional open area, surface roughness, shape and channel diameter) of the polycapillary optic and is typically in the range 0.2-0.4. These effects could substantially reduce the expected efficiency gain. During the course of this study, the possibility to use a weakly focused beam (0.5 deg convergence) was suggested which could give an additional 10-20 X efficiency gain for small samples . Weakly focused beams from double focusing mirrors are frequently used for macromolecular crystallography studies. Furthermore the crystals are typically oscillated by as much as 2 deg during each X-ray exposure in order to increase the reciprocal space (number of crystal planes) sampled and use of a slightly convergent

  17. New Prospects in High Energy Astrophysics

    SciTech Connect

    Blandford, Roger; /KIPAC, Menlo Park

    2011-11-15

    Recent discoveries using TeV, X-ray and radio telescopes as well as Ultra High Energy Cosmic Ray arrays are leading to new insights into longstanding puzzles in high energy astrophysics. Many of these insights come from combining observations throughout the electromagnetic and other spectra as well as evidence assembled from different types of source to propose general principles. Issues discussed in this general overview include methods of accelerating relativistic particles, and amplifying magnetic field, the dynamics of relativistic outflows and the nature of the prime movers that power them. Observational approaches to distinguishing hadronic, leptonic and electromagnetic outflows and emission mechanisms are discussed along with probes of the velocity field and the confinement mechanisms. Observations with GLAST promise to be very prescriptive for addressing these problems.

  18. Prospects of High Energy Laboratory Astrophysics

    SciTech Connect

    Ng, J.S.T.; Chen, P.; /SLAC

    2006-09-21

    Ultra high energy cosmic rays (UHECR) have been observed but their sources and production mechanisms are yet to be understood. We envision a laboratory astrophysics program that will contribute to the understanding of cosmic accelerators with efforts to: (1) test and calibrate UHECR observational techniques, and (2) elucidate the underlying physics of cosmic acceleration through laboratory experiments and computer simulations. Innovative experiments belonging to the first category have already been done at the SLAC FFTB. Results on air fluorescence yields from the FLASH experiment are reviewed. Proposed future accelerator facilities can provided unprecedented high-energy-densities in a regime relevant to cosmic acceleration studies and accessible in a terrestrial environment for the first time. We review recent simulation studies of nonlinear plasma dynamics that could give rise to cosmic acceleration, and discuss prospects for experimental investigation of the underlying mechanisms.

  19. What is learned from high energy bursts and flares

    NASA Technical Reports Server (NTRS)

    Schneid, Edward J.

    1990-01-01

    The Energetic Gamma Ray Experiment Telescope (EGRET) with its large Nal Total Absorption Shower Counter (TASC) has the scientific capability of performing spectroscopy of high energy cosmic gamma ray bursts and solar flares. EGRET, with a spectroscopy energy range from 0.6 to 140 MeV, provides an opportunity to increase the understanding of the high energy mechanisms of gamma ray bursts and solar flares. A likely interpretation of gamma ray burst sources is that they are rotating, magnetized neutron stars. High magnetic fields can influence the emission of high energy gamma rays, so observational spectroscopic data at high energies can provide information on the upper limits of the magnetic fields in the GRB regions of magnetized neutron stars. Likewise, spectroscopy of high energy gamma rays can provide information useful for deriving the flare proton spectrum which in turn can lead to an understanding of high energy solar flare particle acceleration mechanisms.

  20. A portable high power microwave source with permanent magnets

    NASA Astrophysics Data System (ADS)

    Li, Wei; Zhang, Jun; Li, Zhi-qiang; Yang, Jian-Hua

    2016-06-01

    A high power microwave source with permanent magnets is proposed in this paper. The source has the length 330 mm, maximum diameter 350 mm, and total weight 50 kg, including 25 kg of permanent magnets. 1 GW of microwave power with Gaussian radiation pattern and 24% of microwave power generation efficiency in a pulse duration of 75 ns are obtained in the experiment. Operating frequency of the source is 2.32 GHz. Such a small size, light weight, and highly stable in operation source will be used in portable repetitive high power microwave generation systems.

  1. Rapidly pulsed, high intensity, incoherent light source

    NASA Technical Reports Server (NTRS)

    Evans, J. C., Jr.; Brandhorst, H. W., Jr. (Inventor)

    1974-01-01

    A rapid pulsing, high intensity, incoherent light is produced by selectively energizing a plurality of discharge lamps with a triggering circuit. Each lamp is connected to a capacitor, and a power supply is electrically connected to all but one of the capacitors. This last named capacitor is electrically connected to a discharge lamp which is connected to the triggering circuit.

  2. Miniaturized High-Speed Modulated X-Ray Source

    NASA Technical Reports Server (NTRS)

    Gendreau, Keith C. (Inventor); Arzoumanian, Zaven (Inventor); Kenyon, Steven J. (Inventor); Spartana, Nick Salvatore (Inventor)

    2015-01-01

    A miniaturized high-speed modulated X-ray source (MXS) device and a method for rapidly and arbitrarily varying with time the output X-ray photon intensities and energies. The MXS device includes an ultraviolet emitter that emits ultraviolet light, a photocathode operably coupled to the ultraviolet light-emitting diode that emits electrons, an electron multiplier operably coupled to the photocathode that multiplies incident electrons, and an anode operably coupled to the electron multiplier that is configured to produce X-rays. The method for modulating MXS includes modulating an intensity of an ultraviolet emitter to emit ultraviolet light, generating electrons in response to the ultraviolet light, multiplying the electrons to become more electrons, and producing X-rays by an anode that includes a target material configured to produce X-rays in response to impact of the more electrons.

  3. A high energy physics perspective

    SciTech Connect

    Marciano, W.J.

    1997-01-13

    The status of the Standard model and role of symmetry in its development are reviewed. Some outstanding problems are surveyed and possible solutions in the form of additional {open_quotes}Hidden Symmetries {close_quotes} are discussed. Experimental approaches to uncover {open_quotes}New Physics{close_quotes} associated with those symmetries are described with emphasis on high energy colliders. An outlook for the future is given.

  4. Cosmology for high energy physicists

    SciTech Connect

    Albrecht, A.

    1987-11-01

    The standard big bang model of cosmology is presented. Although not perfect, its many successes make it a good starting point for most discussions of cosmology. Places are indicated where well understood laboratory physics is incorporated into the big bang, leading to successful predictions. Much less established aspects of high energy physics and some of the new ideas they have introduced into the field of cosmology are discussed, such as string theory, inflation and monopoles. 49 refs., 5 figs.

  5. High energy overcurrent protective device

    DOEpatents

    Praeg, Walter F.

    1982-01-01

    Electrical loads connected to capacitance elements in high voltage direct current systems are protected from damage by capacitance discharge overcurrents by connecting between the capacitance element and the load, a longitudinal inductor comprising a bifilar winding wound about a magnetic core, which forms an incomplete magnetic circuit. A diode is connected across a portion of the bifilar winding which conducts a unidirectional current only. Energy discharged from the capacitance element is stored in the inductor and then dissipated in an L-R circuit including the diode and the coil winding. Multiple high voltage circuits having capacitance elements may be connected to loads through bifilar windings all wound about the aforementioned magnetic core.

  6. Multipulse current source offers low power losses and high reliability

    NASA Technical Reports Server (NTRS)

    1967-01-01

    Pulse current source uses low loss, high reliability, LC circuits to provide the necessary high impedance for magnetic memory cores, frequently used in digital computational equipment. Square-loop reactors replace the semiconductor switches previously used.

  7. High energy electron positron physics

    SciTech Connect

    Ali, A.; Soding, P.

    1987-01-01

    With the termination of the physics program at PETRA in a year from now, and with the start of TRISTAN and the SLC and later LEP, an era of e/sup +/e/sup -/ physics will come to an end and a new one begins. The field is changing from a field of a few specialists, to becoming one of the mainstream efforts of the high energy community. It seems appropriate at this moment to summarize what has been learned over the past years, in a way more useful to any high energy physicist in particular to newcomers in the e/sup +/e/sup -/ field. This is the purpose of the book. This book should be used as a reference for future workers in the field of e/sup +/e/sup -/ interactions. It includes the most relevant data, parametrizations, theoretical background, and a chapter on detectors. Contents: Foreword; Detectors for High Energy e/sup +/e/sup -/ Physics; Lepton Pair Production and Electroweak Parameters; Hadron Production, Strong and Electroweak Properties; tau Physics; Recent Results on the Charm Sector; Bottom Physics; Lifetime Measurements of tau, Charmed and Beauty Hadrons; UPSILON Spectroscopy; Hadronic Decays of the UPSILON; Quark and Gluon Fragmentation in the e/sup +/e/sup -/ Continuum; Jet Production and QCD; Two Photon Physics; Search for New Particles.

  8. Electron energy distribution function by using probe method in electron cyclotron resonance multicharged ion source

    SciTech Connect

    Kumakura, Sho Kurisu, Yosuke; Kimura, Daiju; Yano, Keisuke; Imai, Youta; Sato, Fuminobu; Kato, Yushi; Iida, Toshiyuki

    2014-02-15

    We are constructing a tandem type electron cyclotron resonance (ECR) ion source (ECRIS). High-energy electrons in ECRIS plasma affect electron energy distribution and generate multicharged ion. In this study, we measure electron energy distribution function (EEDF) of low energy region (≦100 eV) in ECRIS plasma at extremely low pressures (10{sup −3}–10{sup −5} Pa) by using cylindrical Langmuir probe. From the result, it is found that the EEDF correlates with the electron density and the temperature from the conventional probe analysis. In addition, we confirm that the tail of EEDF spreads to high energy region as the pressure rises and that there are electrons with high energy in ECR multicharged ion source plasma. The effective temperature estimated from the experimentally obtained EEDF is larger than the electron temperature obtained from the conventional method.

  9. The GIMLI: A Compact High-Power UWB Radiation Source

    NASA Astrophysics Data System (ADS)

    Delmote, P.; Martin, B.

    This chapter presents the design and performances of a compact, general-purpose, high-power ultra-wideband (UWB) source named GIMLI. The system was designed for dual use, homeland security and military applications. It is powered by a compact, coaxial 12-stage Marx generator with a rise time lower than 25 ns and an operating voltage up to 360 kV. A fast monocycle pulse is sharpened using a pulse former (MPF). The shaper stage comprises a switching module including a peaking and a grounding multi-channel spark gap under a N2 pressure of 6 MPa. The module is followed by a monopulse-to-monocycle converter based on a coaxial Blumlein pulse forming line. The bipolar signal measured at the output of the MPF has a duration shorter than 2 ns with a rise time of 250 ps. The peak-to-peak output voltage is 250 kV on a 50 Ω resistive load. Repetitive operation of the MPF has been experienced with a 200 Hz Tesla transformer developed by the CEA (Commissariat à l'Energie Atomique). Electromagnetic energy is focused by a dedicated antenna. The designed antenna is a TEM half-horn with two ridges which improve the low-frequency focusing. High-power radiation tests show that the field measured at a distance of 9 m from the TEM Horn-antenna is higher than 120 kV/m.

  10. Final Report, Photocathodes for High Repetition Rate Light Sources

    SciTech Connect

    Ben-Zvi, Ilan

    2014-04-20

    This proposal brought together teams at Brookhaven National Laboratory (BNL), Lawrence Berkeley National Laboratory (LBNL) and Stony Brook University (SBU) to study photocathodes for high repetition rate light sources such as Free Electron Lasers (FEL) and Energy Recovery Linacs (ERL). The work done under this grant comprises a comprehensive program on critical aspects of the production of the electron beams needed for future user facilities. Our program pioneered in situ and in operando diagnostics for alkali antimonide growth. The focus is on development of photocathodes for high repetition rate Free Electron Lasers (FELs) and Energy Recovery Linacs (ERLs), including testing SRF photoguns, both normal-conducting and superconducting. Teams from BNL, LBNL and Stony Brook University (SBU) led this research, and coordinated their work over a range of topics. The work leveraged a robust infrastructure of existing facilities and the support was used for carrying out the research at these facilities. The program concentrated in three areas: a) Physics and chemistry of alkali-antimonide cathodes b) Development and testing of a diamond amplifier for photocathodes c) Tests of both cathodes in superconducting RF photoguns and copper RF photoguns

  11. X-ray Sources by Energy Recovered Linacs and Their Needed R&D

    SciTech Connect

    Benson, Stephen; Douglas, David; Dowell, David; Hernandez-Garcia, Carlos; Kayran, D; Krafft, Geoffrey; Legg, Robert; Moog, E; Obina, T; Rimmer, Robert; Yakimenko, V

    2011-05-01

    In this paper we review the current state of research on energy recovered linacs as drivers for future X-ray sources. For many types of user experiments, such sources may have substantial advantages compared to the workhorse sources of the present: high energy storage rings. Energy recovered linacs need to be improved beyond present experience in both energy and average current to support this application. To build an energy recovered linac based X-ray user facility presents many interesting challenges. We present summaries on the Research and Development (R&D) topics needed for full development of such a source, including the discussion at the Future Light Sources Workshop held in Gaithersburg, Maryland on September 15- 17, 2009. A rst iteration of an R&D plan is presented that is founded on the notion of building a set of succeedingly larger test accelerators exploring cathode physics, high average current injector physics, and beam recirculation and beam energy recovery at high average current. Our basic conclusion is that a reviewable design of such a source can be developed after an R&D period of ve to ten years.

  12. X-ray Sources by Energy Recovered Linacs and Their Needed R&D

    SciTech Connect

    Geoffrey Krafft, Stephen Benson, Michael Borland, David Douglas, David Dowell, Carlos Hernandez-Garcia, Dmitry Kayran, Robert Legg, Elizabeth Moog, Takashi Obina, Robert Rimmer, Vitaly Yakimenko

    2011-05-01

    In this paper we review the current state of research on energy recovered linacs as drivers for future X-ray sources. For many types of user experiments, such sources may have substantial advantages compared to the workhorse sources of the present: high energy storage rings. Energy recovered linacs need to be improved beyond present experience in both energy and average current to support this application. To build an energy recovered linac based X-ray user facility presents many interesting challenges. We present summaries on the Research and Development (R&D) topics needed for full development of such a source, including the discussion at the Future Light Sources Workshop held in Gaithersberg, Maryland on September 15-17, 2009. A first iteration of an R&D plan is presented that is founded on the notion of building a set of succeedingly larger test accelerators exploring cathode physics, high average current injector physics, and beam recirculation and beam energy recovery at high average current. Our basic conclusion is that a reviewable design of such a source can be developed after an R&D period of reasonably short duration.

  13. Case study: molasses as the primary energy source on an organic grazing dairy

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Organic dairies face many challenges, one of which is the high cost of purchased organic grains. Molasses may be a less expensive energy alternative. However, anecdotal results have been mixed for farms that used molasses as the sole energy source. This research project quantified animal performance...

  14. High Energy Continuum of High Redshift Quasars

    NASA Technical Reports Server (NTRS)

    Elvis, Martin

    2000-01-01

    Discussion with the RXTE team at GSFC showed that a sufficiently accurate background subtraction procedure had now, been derived for sources at the flux level of PKS 2126-158. However this solution does not apply to observations carried out before April 1997, including our observation. The prospect of an improved solution becoming available soon is slim. As a result the RXTE team agreed to re-observe PKS2126-158. The new observation was carried out in April 1999. Quasi-simultaneous optical observations were obtained, as Service observing., at the 4-meter Anglo-Australian Telescope, and ftp-ed from the AAT on 22April. The RXTE data was processed in late June, arriving at SAO in early July. Coincidentally, our collaborative Beppo-SAX observation of PKS2126-158 was made later in 1999, and a GTO Chandra observation (with which we are involved) was made on November 16. Since this gives us a unique monitoring data for a high redshift quasar over a broad pass-band we are now combining all three observations into a single comprehensive study Final publication of the RXTE data will thus take place under another grant.

  15. Proposal for a High Energy Nuclear Database

    SciTech Connect

    Brown, David A.; Vogt, Ramona

    2005-03-31

    We propose to develop a high-energy heavy-ion experimental database and make it accessible to the scientific community through an on-line interface. This database will be searchable and cross-indexed with relevant publications, including published detector descriptions. Since this database will be a community resource, it requires the high-energy nuclear physics community's financial and manpower support. This database should eventually contain all published data from Bevalac and AGS to RHIC to CERN-LHC energies, proton-proton to nucleus-nucleus collisions as well as other relevant systems, and all measured observables. Such a database would have tremendous scientific payoff as it makes systematic studies easier and allows simpler benchmarking of theoretical models to a broad range of old and new experiments. Furthermore, there is a growing need for compilations of high-energy nuclear data for applications including stockpile stewardship, technology development for inertial confinement fusion and target and source development for upcoming facilities such as the Next Linear Collider. To enhance the utility of this database, we propose periodically performing evaluations of the data and summarizing the results in topical reviews.

  16. Proposal for a High Energy Nuclear Database

    SciTech Connect

    Brown, D A; Vogt, R

    2005-03-31

    The authors propose to develop a high-energy heavy-ion experimental database and make it accessible to the scientific community through an on-line interface. This database will be searchable and cross-indexed with relevant publications, including published detector descriptions. Since this database will be a community resource, it requires the high-energy nuclear physics community's financial and manpower support. This database should eventually contain all published data from Bevalac, AGS and SPS to RHIC and CERN-LHC energies, proton-proton to nucleus-nucleus collisions as well as other relevant systems, and all measured observables. Such a database would have tremendous scientific payoff as it makes systematic studies easier and allows simpler benchmarking of theoretical models to a broad range of old and new experiments. Furthermore, there is a growing need for compilations of high-energy nuclear data for applications including stockpile stewardship, technology development for inertial confinement fusion and target and source development for upcoming facilities such as the Next Linear Collider. To enhance the utility of this database, they propose periodically performing evaluations of the data and summarizing the results in topical reviews.

  17. Energy Efficiency of Biogas Produced from Different Biomass Sources

    NASA Astrophysics Data System (ADS)

    Begum, Shahida; Nazri, A. H.

    2013-06-01

    Malaysia has different sources of biomass like palm oil waste, agricultural waste, cow dung, sewage waste and landfill sites, which can be used to produce biogas and as a source of energy. Depending on the type of biomass, the biogas produced can have different calorific value. At the same time the energy, being used to produce biogas is dependent on transportation distance, means of transportation, conversion techniques and for handling of raw materials and digested residues. An energy systems analysis approach based on literature is applied to calculate the energy efficiency of biogas produced from biomass. Basically, the methodology is comprised of collecting data, proposing locations and estimating the energy input needed to produce biogas and output obtained from the generated biogas. The study showed that palm oil and municipal solid waste is two potential sources of biomass. The energy efficiency of biogas produced from palm oil residues and municipal solid wastes is 1.70 and 3.33 respectively. Municipal solid wastes have the higher energy efficiency due to less transportation distance and electricity consumption. Despite the inherent uncertainties in the calculations, it can be concluded that the energy potential to use biomass for biogas production is a promising alternative.

  18. A low emittance and high efficiency visible light photocathode for high brightness accelerator-based X-ray light sources

    SciTech Connect

    Vecchione, T.; Ben-Zvi, I.; Dowell, D.H.; Feng, J.; Rao, T.; Smedley, J.; Wan, W.; Padmore, H.A.

    2011-07-21

    Free-electron lasers and energy recovery linacs represent a new generation of ultra-high brightness electron accelerator based x-ray sources. Photocathodes are a critical performance-limiting component of these systems. Here, we describe the development of photocathodes based on potassium-cesium-antimonide that satisfy many of the key requirements of future light sources, such as robustness, high quantum efficiency when excited with visible light, and low transverse emittance.

  19. A low emittance and high efficiency visible light photocathode for high brightness accelerator-based X-ray light sources

    SciTech Connect

    Vecchione, T.; Feng, J.; Wan, W.; Padmore, H. A.; Ben-Zvi, I.; Dowell, D. H.; Rao, T.; Smedley, J.

    2011-07-18

    Free-electron lasers and energy recovery linacs represent a new generation of ultra-high brightness electron accelerator based x-ray sources. Photocathodes are a critical performance-limiting component of these systems. Here, we describe the development of photocathodes based on potassium-cesium-antimonide that satisfy many of the key requirements of future light sources, such as robustness, high quantum efficiency when excited with visible light, and low transverse emittance.

  20. High-intensity positive beams extracted from a compact double-chamber ion source

    SciTech Connect

    Huck, H.; Somacal, H.; Di Gregorio, D.E.; Fernandez Niello, J.O.; Igarzabal, M.; Di Paolo, H.; Reinoso, M.

    2005-06-15

    This work presents the design and development of a simple ion source, the associated ion extraction optics, and the beam transport of a low-energy and high-current proton accelerator. In its actual version, the ion source can deliver positive proton currents up to 100 mA. This rather high beam current is achieved by adding a small ionization chamber between the discharge chamber containing the filament and the extraction electrode of the ion source. Different parameters of the ion source and the injection beam line are evaluated by means of computer simulations to optimize the beam production and transmission.

  1. Low-energy point source searches with IceCube

    NASA Astrophysics Data System (ADS)

    Euler, Sebastian; Altmann, David; Ström, Rickard

    2016-04-01

    Due to the overwhelming background of atmospheric muons, the traditional IceCube point source search in the Southern Hemisphere is mainly sensitive to neutrinos with energies above 100TeV. A new approach focuses on events starting inside the instrumented volume. By utilizing different veto techniques we are able to significantly reduce the energy threshold and can now for the first time explore the entire Southern Hemisphere at neutrino energies as low as 100GeV. We present the results of two analyses targeting slightly different energy ranges. Both use one year of data taken with the completed IceCube detector in 2011/12.

  2. Pion exchange at high energies

    SciTech Connect

    Jones, L.M.

    1980-07-01

    The state of Regge pion exchange calculations for high-energy reactions is reviewed. Experimental evidence is summarized to show that (i) the pion trajectory has a slope similar to that of other trajectories; (ii) the pion exchange contribution can dominate contributions of higher trajectories up to quite a large energy; (iii) many two-body cross sections with large pion contributions can be fit only by models which allow for kinematical conspiracy at t=0. The theory of kinematic conspiracy is reviewed for two-body amplitudes, and calculations of the conspiring pion--Pomeron cut discussed. The author then summarizes recent work on pion exchange in Reggeized Deck models for multiparticle final states, with emphasis on the predictions of various models (with and without resonances) for phases of the partial wave amplitudes.

  3. Indications of negative evolution for the sources of the highest energy cosmic rays

    SciTech Connect

    Taylor, Andrew M.; Ahlers, Markus; Hooper, Dan

    2015-09-14

    Using recent measurements of the spectrum and chemical composition of the highest energy cosmic rays, we consider the sources of these particles. We find that these data strongly prefer models in which the sources of the ultra-high-energy cosmic rays inject predominantly intermediate mass nuclei, with comparatively few protons or heavy nuclei, such as iron or silicon. If the number density of sources per comoving volume does not evolve with redshift, the injected spectrum must be very hard (α≃1) in order to fit the spectrum observed from Earth. Such a hard spectral index would be surprising and difficult to accommodate theoretically. In contrast, much softer spectral indices, consistent with the predictions of Fermi acceleration (α≃2), are favored in models with negative source evolution. Furthermore with this theoretical bias, these observations thus favor models in which the sources of the highest energy cosmic rays are preferentially located within the low-redshift universe.

  4. Energy Education Curriculum Resource. Energy Education Workshop: Energy Sources of the Future.

    ERIC Educational Resources Information Center

    Owens, Michael

    This guide is designed to provide teachers with suggestions and assistance in equiping children as advocates of energy stewardship. It is divided into six discussion sections and one section dedicated to specific energy activities presented as curriculum guides for: (1) intermediate science, (2) high school science, (3) intermediate social…

  5. Electrically driven single photon source at high temperature.

    PubMed

    El Halawany, Ahmed; Leuenberger, Michael N

    2016-03-01

    We present a theoretical model for an electrically driven single photon source operating at high temperatures. We show that decoherence, which is usually the main obstacle for operating single photon sources at high temperatures, ensures an efficient operation of the presented electrically driven single photon source at high temperatures. The single-photon source is driven by a single electron source attached to a heterostructure semiconductor nanoring. The electron's dynamics in the nanoring and the subsequent recombination with the hole is described by the generalized master equation with a Hamiltonian based on tight-binding model, taking into account the electron-LO phonon interaction. As a result of decoherence, an almost 100% single photon emission with a strong antibunching behavior i.e. g(2)(0) < 1 at high temperature up to 300 K is achieved. PMID:26828830

  6. Electrically driven single photon source at high temperature

    NASA Astrophysics Data System (ADS)

    El Halawany, Ahmed; Leuenberger, Michael N.

    2016-03-01

    We present a theoretical model for an electrically driven single photon source operating at high temperatures. We show that decoherence, which is usually the main obstacle for operating single photon sources at high temperatures, ensures an efficient operation of the presented electrically driven single photon source at high temperatures. The single-photon source is driven by a single electron source attached to a heterostructure semiconductor nanoring. The electron’s dynamics in the nanoring and the subsequent recombination with the hole is described by the generalized master equation with a Hamiltonian based on tight-binding model, taking into account the electron-LO phonon interaction. As a result of decoherence, an almost 100% single photon emission with a strong antibunching behavior i.e. {{g}(2)}(0)\\ll 1 at high temperature up to 300 K is achieved.

  7. High-radiance LDP source: clean, reliable, and stable EUV source for mask inspection

    NASA Astrophysics Data System (ADS)

    Teramoto, Yusuke; Santos, Bárbara; Mertens, Guido; Kops, Ralf; Kops, Margarete; von Wezyk, Alexander; Bergmann, Klaus; Yabuta, Hironobu; Nagano, Akihisa; Ashizawa, Noritaka; Taniguchi, Yuta; Shirai, Takahiro; Nakamura, Kiyotada; Aoki, Kazuya; Kasama, Kunihiko

    2016-03-01

    High-throughput and -resolution actinic mask inspection tools are needed as EUVL begins to enter into volume production phase. To realize such inspection tools, a high-radiance EUV source is necessary. Ushio's laser-assisted discharge-produced plasma (LDP) source is able to meet industry's requirements in radiance, cleanliness, stability and reliability. Ushio's LDP source has shown the peak radiance at plasma of 180 W/mm2/sr and the area-averaged radiance in a 200-μm-diameter circle behind the debris mitigation system of 120 W/mm2/sr. A new version of the debris mitigation system is in testing phase. Its optical transmission was confirmed to be 73 %, which is 4 % lower than that of the previous version and therefore will be improved. Cleanliness of the system is evaluated by exposing Ru mirrors placed behind the debris mitigation system. Ru sputter rate was proven to be sufficiently low as 3~5 nm/Gpulse at 7 kHz, whereas frequency-dependent sputter rate was 1~3 nm/Gpulse at 5~9 kHz as previously reported. Sn deposition remained very low (< 0.05 nm) and did not grow over time. A new technique to suppress debris was tested and preliminary results were promising. Time-of-flight signal of fast ions was completely suppressed and Ru sputter rate of exposed mirrors at 3 kHz was approximately 1.3 nm/Gpulse, whereas the conventional mitigation system (new version) resulted in Ru sputter rate of 0.7 nm/Gpulse. This new technique also allows increasing the radiance efficiency by 30 %. Stability tests were done at several different discharge frequencies. Pulse energy stability was approximately 10 %. Dose energy stability dropped from approximately 2 % to 0.1 % when feedback control was activated. EUV emission position stability was studied at 3 kHz. Deviation of the plasma center of gravity was 6 μm, which is 3 % of plasma diameter and therefore considered to be negligible. Reliability tests were performed on both R and D and prototype machines and up to 200 hours of non

  8. Duke University high energy physics

    SciTech Connect

    Fortney, L.R.; Goshaw, A.T.; Walker, W.D.

    1992-07-01

    This Progress Report presents a review of the research done in 1992 by the Duke High Energy Physics Group. This is the first year of a three-year grant which was approved by the Office of High Energy Physics at DOE after an external review of our research program during the summer of 1991. Our research is centered at Fermilab where we are involved with two active experiments, one using the Tevatron collider (CDF, the Collider Detector Facility) and the other using a proton beam in the high intensity laboratory (E771, study of beauty production). In addition to these running experiments we are continuing the analysis of data from experiments E735 (collider search for a quark-gluon plasma), E705 (fixed target study of direct photon and {sub {Chi}} meson production) and E597 (particle production from hadron-nucleus collisions). Finally, this year has seen an expansion of our involvement with the design of the central tracking detector for the Solenoidal Detector Collaboration (SDC) and an increased role in the governance of the collaboration. Descriptions of these research activities are presented in this report.

  9. Understanding and accepting fusion as an alternative energy source

    SciTech Connect

    Goerz, D.A.

    1987-12-10

    Fusion, the process that powers our sun, has long promised to be a virtually inexhaustible source of energy for mankind. No other alternative energy source holds such bright promise, and none has ever presentd such formidable scientific and engineering challenges. Serious research efforts have continued for over 30 years in an attempt to harness and control fusion here on earth. Scientists have made considerable progress in the last decade toward achieving the conditions required for fusion power, and recent experimental results and technological progress have made the scientific feasibility of fusion a virtual certainty. With this knowledge and confidence, the emphasis can now shift toward developing power plants that are practical and economical. Although the necessary technology is not in hand today, the extension to an energy producing system in 20 years is just as attainable as was putting a man on the moon. In the next few decades, the world's population will likely double while the demand for energy will nearly quadruple. Realistic projections show that within the next generation a significant fraction of our electric power must come from alternative energy sources. Increasing environmental concerns may further accelerate this timetable in which new energy sources must be introduced. The continued development of fusion systems to help meet the energy needs of the future will require greater public understanding and support of this technology. The fusion community must do more to make the public aware of the fact that energy is a critical international issue and that fusion is a viable and necessary energy technology that will be safe and economical. 12 refs., 8 figs.

  10. High Energy Gas Fracturing Test

    SciTech Connect

    Schulte, R.

    2001-02-27

    The Rocky Mountain Oilfield Testing Center (RMOTC) has recently completed two tests of a high-energy gas fracturing system being developed by Western Technologies of Crossville, Tennessee. The tests involved the use of two active wells located at the Naval Petroleum Reserve No. 3 (NPR-3), thirty-five miles north of Casper, Wyoming (See Figure 1). During the testing process the delivery and operational system was enhanced by RMOTC, Western Technologies, and commercial wireline subcontractors. RMOTC has assisted an industrial client in developing their technology for high energy gas fracturing to a commercial level. The modifications and improvements implemented during the technology testing process are instrumental in all field testing efforts at RMOTC. The importance of well selection can also be critical in demonstrating the success of the technology. To date, significant increases in well productivity have been clearly proven in well 63-TPX-10. Gross fluid production was initially raised by a factor of three. Final production rates increased by a factor of six with the use of a larger submersible pump. Well productivity (bbls of fluid per foot of drawdown) increased by a factor of 15 to 20. The above results assume that no mechanical damage has occurred to the casing or cast iron bridge plug which could allow well production from the Tensleep ''B'' sand. In the case of well 61-A-3, a six-fold increase in total fluid production was seen. Unfortunately, the increase is clouded by the water injection into the well that was necessary to have a positive fluid head on the propellant tool. No significant increase in oil production was seen. The tools which were retrieved from both 63-TPX-10 and 61-A-3 indicated a large amount of energy, similar to high gram perforating, had been expended downhole upon the formation face.

  11. Operation of the Proto-MPEX High Intensity Plasma Source

    NASA Astrophysics Data System (ADS)

    Caughman, J. B. O.; Goulding, R. H.; Biewer, T. M.; Bigelow, T. S.; Campbell, I. H.; Diem, S. J.; Martin, E. H.; Pesavento, P. V.; Rapp, J.; Ray, H. B.; Shaw, G. C.; Showers, M. A.; Luo, G.-N.

    2015-11-01

    The Prototype Materials Plasma Experiment (Proto-MPEX) is a linear high-intensity rf plasma source that combines a high-density helicon plasma generator with electron and ion heating sections. It is being used to study the physics of heating over-dense plasmas in a linear configuration. The helicon plasma is produced by coupling 13.56 MHz rf power at levels up to 100 kW. Microwaves at 28 GHz (~ 150 kW) are coupled to the electrons in the over-dense helicon plasma via Electron Bernstein Waves (EBW). Ion cyclotron heating (~ 30 kW) will be via a magnetic beach approach. Plasma diagnostics include Thomson Scattering and a retarding field energy analyzer near the target, while a microwave interferometer and double-Langmuir probes are used to determine plasma parameters elsewhere in the system. Filterscopes are being used to measure D-alpha emission and He line ratios at multiple locations, and IR cameras image the target plates to determine heat deposition. High plasma densities in the helicon region have been produced in He (>3x1019/m3) and D (>1.5x1019/m3) , and operation with on-axis magnetic field strength >1 T has been demonstrated. Details of the experimental results and future plans for studying plasma surface/RF antenna interactions will be presented. ORNL is managed by UT-Battelle, LLC, for the U.S. DOE under contract DE-AC-05-00OR22725.

  12. Industry-grade high average power femtosecond light source

    NASA Astrophysics Data System (ADS)

    Heckl, O. H.; Weiler, S.; Fleischhaker, R.; Gebs, R.; Budnicki, A.; Wolf, M.; Kleinbauer, J.; Russ, S.; Kumkar, M.; Sutter, D. H.

    2014-03-01

    Ultrashort pulses are capable of processing practically any material with negligible heat affected zone. Typical pulse durations for industrial applications are situated in the low picosecond-regime. Pulse durations of 5 ps or below are a well established compromise between the electron-phonon interaction time of most materials and the need for pulses long enough to suppress detrimental effects such as nonlinear interaction with the ablated plasma plume. However, sub-picosecond pulses can further increase the ablation efficiency for certain materials, depending on the available average power, pulse energy and peak fluence. Based on the well established TruMicro 5000 platform (first release in 2007, third generation in 2011) an Yb:YAG disk amplifier in combination with a broadband seed laser was used to scale the output power for industrial femtosecond-light sources: We report on a subpicosecond amplifier that delivers a maximum of 160 W of average output power at pulse durations of 750 fs. Optimizing the system for maximum peak power allowed for pulse energies of 850 μJ at pulse durations of 650 fs. Based on this study and the approved design of the TruMicro 5000 product-series, industrygrade, high average power femtosecond-light sources are now available for 24/7 operation. Since their release in May 2013 we were able to increase the average output power of the TruMicro 5000 FemtoEdition from 40 W to 80 W while maintaining pulse durations around 800 fs. First studies on metals reveal a drastic increase of processing speed for some micro processing applications.

  13. High Energy Astronomy Observatory (HEAO)

    NASA Technical Reports Server (NTRS)

    1972-01-01

    This is an artist's concept describing the High Energy Astronomy Observatory (HEAO). The HEAO project involved the launching of three unmarned scientific observatories into low Earth orbit between 1977 and 1979 to study some of the most intriguing mysteries of the universe; pulsars, black holes, neutron stars, and super nova. This concept was painted by Jack Hood of the Marshall Space Flight Center (MSFC). Hardware support for the imaging instruments was provided by American Science and Engineering. The HEAO spacecraft were built by TRW, Inc. under project management of the MSFC.

  14. High-efficiency high-energy Ka source for the critically-required maximum illumination of x-ray optics on Z using Z-petawatt-driven laser-breakout-afterburner accelerated ultrarelativistic electrons LDRD .

    SciTech Connect

    Sefkow, Adam B.; Bennett, Guy R.

    2010-09-01

    Under the auspices of the Science of Extreme Environments LDRD program, a <2 year theoretical- and computational-physics study was performed (LDRD Project 130805) by Guy R Bennett (formally in Center-01600) and Adam B. Sefkow (Center-01600): To investigate novel target designs by which a short-pulse, PW-class beam could create a brighter K{alpha} x-ray source than by simple, direct-laser-irradiation of a flat foil; Direct-Foil-Irradiation (DFI). The computational studies - which are still ongoing at this writing - were performed primarily on the RedStorm supercomputer at Sandia National Laboratories Albuquerque site. The motivation for a higher efficiency K{alpha} emitter was very clear: as the backlighter flux for any x-ray imaging technique on the Z accelerator increases, the signal-to-noise and signal-to-background ratios improve. This ultimately allows the imaging system to reach its full quantitative potential as a diagnostic. Depending on the particular application/experiment this would imply, for example, that the system would have reached its full design spatial resolution and thus the capability to see features that might otherwise be indiscernible with a traditional DFI-like x-ray source. This LDRD began FY09 and ended FY10.

  15. Emittance Characteristics of High-Brightness H- Ion Sources

    NASA Astrophysics Data System (ADS)

    Welton, R. F.; Stockli, M. P.; Keller, R.; Thomae, R. W.; Thomason, J.; Sherman, J.; Alessi, J.

    2002-11-01

    A survey of emittance characteristics from high-brightness, H- ion sources has been undertaken. Representative examples of each important type of H- source for accelerator application are investigated: A magnetron surface plasma source (BNL) a multi-cusp-surface-conversion source (LANL) a Penning source (RAL-ISIS) and a multi-cusp-volume source (LBNL). Presently, comparisons between published emittance values from different ion sources are difficult largely because of different definitions used in reported emittances and the use of different data reduction techniques in analyzing data. Although seldom discussed in the literature, rms-emittance values often depend strongly on the method employed to separate real beam from background. In this work, the problem of data reduction along with software developed for emittance analysis is discussed. Raw emittance data, obtained from the above laboratories, is analyzed using a single technique and normalized rms and 90% area-emittance values are determined along with characteristic emittance versus beam fraction curves.

  16. The development of a high average power glass laser source

    NASA Astrophysics Data System (ADS)

    Myers, J. D.

    1984-05-01

    The subject contract has as its objective the development of a high average power glass laser by systematically improving the factors which influence the ability of a laser glass to handle large power levels. Based upon the availability of the thermal laser glass composition Q-100, the rationale used was toward the improvement of the efficiency of a glass laser by developing methods to increase the pumping efficiency and toward the improvement of the power handling capability of the glass laser rod itself. These incremental developments were broken down as follows: (1) Characterization of Q-100 Laser Glass: The measurement of its thermo-physical and thermo-optical properties to better define its engineering design parameters. (2) Improve Pumping Efficiency or Q-100: Primarily by cladding Q-100 with a matching cladding glass which would act as a lens and improve the transfer of pumping energy from the flashlamp. (3) Reduce thermal loading of Q-100 by Selective filtering of the flashlamp radiation and/or use energy transfer schemes to increase that portion of the flashlamp radiation corresponding to the neodymium pump bands. (4) Increase the rupture strength of Q-100 to directly increase its power-handling capability. (5) Investigate alternate pump sources to improve efficiency.

  17. Radio detection of ultra-high energy cosmic neutrinos

    SciTech Connect

    Vieregg, Abigail G.

    2015-07-15

    Ultra-high energy (UHE) neutrino astronomy constitutes a new window of observation onto the UHE universe. The detection and characterization of astrophysical neutrinos at the highest energies (E> 10{sup 18} eV) would reveal the sources of high-energy cosmic rays, the highest energy particles ever seen, and would constrain the evolution of such sources over time. UHE neutrino astrophysics also allows us to probe weak interaction couplings at energies much greater than those available at particle colliders. One promising way of detecting the highest energy neutrinos is through the radio emission created when they interact in a large volume of dielectric, such as ice. Here I discuss current results and future efforts to instrument large volumes of detector material with radio antennas to detect, point back, and characterize the energy of UHE astrophysical neutrinos.

  18. High-current negative-ion sources for pulsed spallation neutron sources: LBNL workshop, October 1994

    SciTech Connect

    Alonso, J.R.

    1995-09-01

    The neutron scattering community has endorsed the need for a high-power (1 to 5 MW) accelerator-driven source of neutrons for materials research. Properly configured, the accelerator could produce very short (sub-microsecond) bursts of cold neutrons, said time structure offering advantages over the continuous flux from a reactor. The recent cancellation of the ANS reactor project has increased the urgency to develop a comprehensive strategy based on the best technological scenarios. Studies to date have built on the experience from ISIS (the 160 kW source in the UK), and call for a high-current (approx. 100 mA peak) H- source-linac combination injecting into one or more accumulator rings in which beam may be further accelerated. The I to 5 GeV proton beam is extracted in a single turn and brought to the target-moderator stations. The high current, high duty-factor, high brightness and high reliability required of the ion source present a very large challenge to the ion source community. The Workshop reported on here, held in Berkeley in October 1994, analyzed in detail the source requirements for proposed accelerator scenarios, the present performance capabilities of different H- source technologies, and identified necessary R&D efforts to bridge the gap.

  19. A high efficiency thermal ionization source adapted to mass spectrometers

    SciTech Connect

    Chamberlin, E.P.; Olivares, J.A.

    1994-07-01

    The high-temperature ion source used on the isotope separators at Los Alamos is unsuitable for mass spectrometry use, because it is bulky, expensive to fabricate, requires careful assembly, etc. A modified source was designed, using the following objectives: reduced number of parts and complexity, one-piece crucible, modular construction, little or no water cooling. The source is shown mounted on a quadrupole mass spectrometer; the ion beam is matched into a sector-type mass spectrometer.

  20. High Energy Density Laboratory Astrophysics

    SciTech Connect

    Remington, B A

    2004-11-11

    High-energy-density (HED) physics refers broadly to the study of macroscopic collections of matter under extreme conditions of temperature and density. The experimental facilities most widely used for these studies are high-power lasers and magnetic-pinch generators. The HED physics pursued on these facilities is still in its infancy, yet new regimes of experimental science are emerging. Examples from astrophysics include work relevant to planetary interiors, supernovae, astrophysical jets, and accreting compact objects (such as neutron stars and black holes). In this paper, we will review a selection of recent results in this new field of HED laboratory astrophysics and provide a brief look ahead to the coming decade.