Sample records for high energy spin

  1. XVI Workshop on High Energy Spin Physics (D-SPIN2015)

    NASA Astrophysics Data System (ADS)

    Lednicky, Richard

    2016-02-01

    Dear Colleagues, Ladies and Gentlemen, on behalf of the Directorate of Joint Institute for Nuclear Research (JINR) it is a pleasure for me to welcome you here to Dubna for the 16th International Workshop on High Energy Spin Physics. It provides an opportunity to present and discuss the news accumulated during last year. Another important feature of this series of workshops has always been the participation of a large number of physicists from the former Soviet Union and Eastern European countries, for which long trips have previously been limited by financial (and earlier also by bureaucratic) reasons. It thus represents an important addition to the series of large International Symposia on spin physics held in even-numbered years in different countries, including the Symposium held in Dubna in 2012. JINR has a long-lasting tradition of experimental and theoretical studies of spin phenomena. The workshops on high energy spin physics started in Dubna in 1981 due to the initiative of L. Lapidus, an outstanding theoretical physicist. Since then, these meetings have been held in Dubna in every odd year and have become regular thanks to Anatoly Vasilievich Efremov, the chairman for many years. Recent years have brought a lot of new experimental results, and above all the discovery and determination of quantum characteristics of the Higgs boson at the Large Hadron Collider.

  2. High-order moments of spin-orbit energy in a multielectron configuration

    NASA Astrophysics Data System (ADS)

    Na, Xieyu; Poirier, M.

    2016-07-01

    In order to analyze the energy-level distribution in complex ions such as those found in warm dense plasmas, this paper provides values for high-order moments of the spin-orbit energy in a multielectron configuration. Using second-quantization results and standard angular algebra or fully analytical expressions, explicit values are given for moments up to 10th order for the spin-orbit energy. Two analytical methods are proposed, using the uncoupled or coupled orbital and spin angular momenta. The case of multiple open subshells is considered with the help of cumulants. The proposed expressions for spin-orbit energy moments are compared to numerical computations from Cowan's code and agree with them. The convergence of the Gram-Charlier expansion involving these spin-orbit moments is analyzed. While a spectrum with infinitely thin components cannot be adequately represented by such an expansion, a suitable convolution procedure ensures the convergence of the Gram-Charlier series provided high-order terms are accounted for. A corrected analytical formula for the third-order moment involving both spin-orbit and electron-electron interactions turns out to be in fair agreement with Cowan's numerical computations.

  3. Spin structure in high energy processes: Proceedings

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    DePorcel, L.; Dunwoodie, C.

    1994-12-01

    This report contains papers as the following topics: Spin, Mass, and Symmetry; physics with polarized Z{sup 0}s; spin and precision electroweak physics; polarized electron sources; polarization phenomena in quantum chromodynamics; polarized lepton-nucleon scattering; polarized targets in high energy physics; spin dynamics in storage rings and linear accelerators; spin formalism and applications to new physics searches; precision electroweak physics at LEP; recent results on heavy flavor physics from LEP experiments using 1990--1992 data; precise measurement of the left-right cross section asymmetry in Z boson production by electron-positron collisions; preliminary results on heavy flavor physics at SLD; QCD tests with SLD andmore » polarized beams; recent results from TRISTAN at KEK; recent B physics results from CLEO; searching for the H dibaryon at Brookhaven; recent results from the compton observatory; the spin structure of the deuteron; spin structure of the neutron ({sup 3}HE) and the Bjoerken sum rule; a consumer`s guide to lattice QCD results; top ten models constrained by b {yields} sy; a review of the Fermilab fixed target program; results from the D0 experiment; results from CDF at FNAL; quantum-mechanical suppression of bremsstrahlung; report from the ZEUS collaboration at HERA; physics from the first year of H1 at HERA, and hard diffraction. These papers have been cataloged separately elsewhere.« less

  4. Effects of Spin on High-energy Radiation from Accreting Black Holes

    NASA Astrophysics Data System (ADS)

    O' Riordan, Michael; Pe'er, Asaf; McKinney, Jonathan C.

    2016-11-01

    Observations of jets in X-ray binaries show a correlation between radio power and black hole spin. This correlation, if confirmed, points toward the idea that relativistic jets may be powered by the rotational energy of black holes. In order to examine this further, we perform general relativistic radiative transport calculations on magnetically arrested accretion flows, which are known to produce powerful jets via the Blandford-Znajek (BZ) mechanism. We find that the X-ray and γ-ray emission strongly depend on spin and inclination angle. Surprisingly, the high-energy power does not show the same dependence on spin as the BZ jet power, but instead can be understood as a redshift effect. In particular, photons observed perpendicular to the spin axis suffer little net redshift until originating from close to the horizon. Such observers see deeper into the hot, dense, highly magnetized inner disk region. This effect is largest for rapidly rotating black holes due to a combination of frame dragging and decreasing horizon radius. While the X-ray emission is dominated by the near horizon region, the near-infrared (NIR) radiation originates at larger radii. Therefore, the ratio of X-ray to NIR power is an observational signature of black hole spin.

  5. EFFECTS OF SPIN ON HIGH-ENERGY RADIATION FROM ACCRETING BLACK HOLES

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    O’ Riordan, Michael; Pe’er, Asaf; McKinney, Jonathan C., E-mail: michael_oriordan@umail.ucc.ie

    Observations of jets in X-ray binaries show a correlation between radio power and black hole spin. This correlation, if confirmed, points toward the idea that relativistic jets may be powered by the rotational energy of black holes. In order to examine this further, we perform general relativistic radiative transport calculations on magnetically arrested accretion flows, which are known to produce powerful jets via the Blandford–Znajek (BZ) mechanism. We find that the X-ray and γ -ray emission strongly depend on spin and inclination angle. Surprisingly, the high-energy power does not show the same dependence on spin as the BZ jet power,more » but instead can be understood as a redshift effect. In particular, photons observed perpendicular to the spin axis suffer little net redshift until originating from close to the horizon. Such observers see deeper into the hot, dense, highly magnetized inner disk region. This effect is largest for rapidly rotating black holes due to a combination of frame dragging and decreasing horizon radius. While the X-ray emission is dominated by the near horizon region, the near-infrared (NIR) radiation originates at larger radii. Therefore, the ratio of X-ray to NIR power is an observational signature of black hole spin.« less

  6. Universality, maximum radiation, and absorption in high-energy collisions of black holes with spin.

    PubMed

    Sperhake, Ulrich; Berti, Emanuele; Cardoso, Vitor; Pretorius, Frans

    2013-07-26

    We explore the impact of black hole spins on the dynamics of high-energy black hole collisions. We report results from numerical simulations with γ factors up to 2.49 and dimensionless spin parameter χ=+0.85, +0.6, 0, -0.6, -0.85. We find that the scattering threshold becomes independent of spin at large center-of-mass energies, confirming previous conjectures that structure does not matter in ultrarelativistic collisions. It has further been argued that in this limit all of the kinetic energy of the system may be radiated by fine tuning the impact parameter to threshold. On the contrary, we find that only about 60% of the kinetic energy is radiated for γ=2.49. By monitoring apparent horizons before and after scattering events we show that the "missing energy" is absorbed by the individual black holes in the encounter, and moreover the individual black-hole spins change significantly. We support this conclusion with perturbative calculations. An extrapolation of our results to the limit γ→∞ suggests that about half of the center-of-mass energy of the system can be emitted in gravitational radiation, while the rest must be converted into rest-mass and spin energy.

  7. Spin and chirality effects in antler-topology processes at high energy $${e^+e^-}$$ colliders

    DOE PAGES

    Choi, S. Y.; Christensen, N. D.; Salmon, D.; ...

    2015-10-01

    We perform a model-independent investigation of spin and chirality correlation effects in the antler-topology processes e +e -→P +P -→(ℓ+D0)(ℓ-D¯0) at high-energy e +e - colliders with polarized beams. Generally the production process e +e -→P +P - can occur not only through the s-channel exchange of vector bosons, V0 , including the neutral Standard Model (SM) gauge bosons, γ and Z, but also through the s- and t-channel exchanges of new neutral states, S0 and T0 , and the u-channel exchange of new doubly charged states, U-- . The general set of (non-chiral) three-point couplings of the new particlesmore » and leptons allowed in a renormalizable quantum field theory is considered. The general spin and chirality analysis is based on the threshold behavior of the excitation curves for P +P - pair production in e +e - collisions with longitudinal- and transverse-polarized beams, the angular distributions in the production process and also the production-decay angular correlations. In the first step, we present the observables in the helicity formalism. Subsequently, we show how a set of observables can be designed for determining the spins and chiral structures of the new particles without any model assumptions. Finally, taking into account a typical set of approximately chiral invariant scenarios, we demonstrate how the spin and chirality effects can be probed experimentally at a high-energy e +e - collider.« less

  8. Spin and chirality effects in antler-topology processes at high energy $${e^+e^-}$$ colliders

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Choi, S. Y.; Christensen, N. D.; Salmon, D.

    We perform a model-independent investigation of spin and chirality correlation effects in the antler-topology processes e +e -→P +P -→(ℓ+D0)(ℓ-D¯0) at high-energy e +e - colliders with polarized beams. Generally the production process e +e -→P +P - can occur not only through the s-channel exchange of vector bosons, V0 , including the neutral Standard Model (SM) gauge bosons, γ and Z, but also through the s- and t-channel exchanges of new neutral states, S0 and T0 , and the u-channel exchange of new doubly charged states, U-- . The general set of (non-chiral) three-point couplings of the new particlesmore » and leptons allowed in a renormalizable quantum field theory is considered. The general spin and chirality analysis is based on the threshold behavior of the excitation curves for P +P - pair production in e +e - collisions with longitudinal- and transverse-polarized beams, the angular distributions in the production process and also the production-decay angular correlations. In the first step, we present the observables in the helicity formalism. Subsequently, we show how a set of observables can be designed for determining the spins and chiral structures of the new particles without any model assumptions. Finally, taking into account a typical set of approximately chiral invariant scenarios, we demonstrate how the spin and chirality effects can be probed experimentally at a high-energy e +e - collider.« less

  9. Spin-neurons: A possible path to energy-efficient neuromorphic computers

    NASA Astrophysics Data System (ADS)

    Sharad, Mrigank; Fan, Deliang; Roy, Kaushik

    2013-12-01

    Recent years have witnessed growing interest in the field of brain-inspired computing based on neural-network architectures. In order to translate the related algorithmic models into powerful, yet energy-efficient cognitive-computing hardware, computing-devices beyond CMOS may need to be explored. The suitability of such devices to this field of computing would strongly depend upon how closely their physical characteristics match with the essential computing primitives employed in such models. In this work, we discuss the rationale of applying emerging spin-torque devices for bio-inspired computing. Recent spin-torque experiments have shown the path to low-current, low-voltage, and high-speed magnetization switching in nano-scale magnetic devices. Such magneto-metallic, current-mode spin-torque switches can mimic the analog summing and "thresholding" operation of an artificial neuron with high energy-efficiency. Comparison with CMOS-based analog circuit-model of a neuron shows that "spin-neurons" (spin based circuit model of neurons) can achieve more than two orders of magnitude lower energy and beyond three orders of magnitude reduction in energy-delay product. The application of spin-neurons can therefore be an attractive option for neuromorphic computers of future.

  10. High spin states of 72-74Kr

    NASA Astrophysics Data System (ADS)

    Kaushik, M.; Kumawat, M.; Singh, U. K.; Saxena, G.

    2018-05-01

    A theoretical investigation has made on the structure of high spin states of 72-74Kr within the framework of cranked Hartree-Fock-Bogoliubov (CHFB) theory employing a pairing + quadrupole + hexadecapole model interaction. Dependence of shape with the spin, excitation energy, alignment of proton as well as neutron 0g9/2 orbital along with backbending phenomenon are discussed upto a high spin J = 26. We found reasonable agreement with the experimental values and other theoretical calculations.

  11. Spin-neurons: A possible path to energy-efficient neuromorphic computers

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sharad, Mrigank; Fan, Deliang; Roy, Kaushik

    Recent years have witnessed growing interest in the field of brain-inspired computing based on neural-network architectures. In order to translate the related algorithmic models into powerful, yet energy-efficient cognitive-computing hardware, computing-devices beyond CMOS may need to be explored. The suitability of such devices to this field of computing would strongly depend upon how closely their physical characteristics match with the essential computing primitives employed in such models. In this work, we discuss the rationale of applying emerging spin-torque devices for bio-inspired computing. Recent spin-torque experiments have shown the path to low-current, low-voltage, and high-speed magnetization switching in nano-scale magnetic devices.more » Such magneto-metallic, current-mode spin-torque switches can mimic the analog summing and “thresholding” operation of an artificial neuron with high energy-efficiency. Comparison with CMOS-based analog circuit-model of a neuron shows that “spin-neurons” (spin based circuit model of neurons) can achieve more than two orders of magnitude lower energy and beyond three orders of magnitude reduction in energy-delay product. The application of spin-neurons can therefore be an attractive option for neuromorphic computers of future.« less

  12. High-spin structures in the 139Pr nucleus

    NASA Astrophysics Data System (ADS)

    Yeoh, E. Y.; Zhu, S. J.; Wang, J. G.; Xiao, Z. G.; Zhang, M.; Yan, W. H.; Wang, R. S.; Xu, Q.; Wu, X. G.; He, C. Y.; Li, G. S.; Zheng, Y.; Li, C. B.; Cao, X. P.; Hu, S. P.; Yao, S. H.; Yu, B. B.

    2012-06-01

    Background: 139Pr is located in a transitional region of neutron number close to the N=82 shell. The study of its high-spin states and collective bands is important for systematically understanding the nuclear structural characteristics in this region.Purpose: To investigate the high-spin levels and to search for oblate bands in 139Pr.Methods: The high-spin states of 139Pr have been studied via the reaction 124Sn(19F,4n) at a beam energy of 80 MeV. The experiment was carried out at the HI-13 Tandem Accelerator at the China Institute of Atomic Energy (CIAE). The data analysis was done by using the γ-γ coincidence method.Results: The level scheme of 139Pr has been expanded with spin up to 45/2ℏ. A total of 39 new levels and 45 new transitions are identified. Four collective band structures at high-spin states have been newly established. From systematic analysis, one of the bands is proposed as a double decoupled band; two bands are proposed as oblate bands with γ˜-60∘; another band is suggested as an oblate-triaxial band with γ˜-90∘. The other characteristics for these bands are discussed.Conclusions: A new level scheme in 139Pr has been established and the collective bands at high spin have been identified. The result shows that the strong oblate shape-driving effect is caused by neutrons at the high-spin states in 139Pr.

  13. Pressure dependence of transverse acoustic phonon energy in ferropericlase across the spin transition.

    PubMed

    Fukui, Hiroshi; Baron, Alfred Q R; Ishikawa, Daisuke; Uchiyama, Hiroshi; Ohishi, Yasuo; Tsuchiya, Taku; Kobayashi, Hisao; Matsuzaki, Takuya; Yoshino, Takashi; Katsura, Tomoo

    2017-06-21

    We investigated transverse acoustic (TA) phonons in iron-bearing magnesium oxide (ferropericlase) up to 56 GPa using inelastic x-ray scattering (IXS). The results show that the energy of the TA phonon far from the Brillouin zone center suddenly increases with increasing pressure above the spin transition pressure of ferropericlase. Ab initio calculations revealed that the TA phonon energy far from the Brillouin zone center is higher in the low-spin state than in the high spin state; that the TA phonon energy depend weakly on pressure; and that the energy gap between the TA and the lowest-energy-optic phonons is much narrower in the low-spin state than in the high-spin state. This allows us to conclude that the anomalous behavior of the TA mode in the present experiments is the result of gap narrowing due to the spin transition and explains contradictory results in previous experimental studies.

  14. Toroidal high-spin isomers in the nucleus 304120

    NASA Astrophysics Data System (ADS)

    Staszczak, A.; Wong, Cheuk-Yin; Kosior, A.

    2017-05-01

    Background: Strongly deformed oblate superheavy nuclei form an intriguing region where the toroidal nuclear structures may bifurcate from the oblate spheroidal shape. The bifurcation may be facilitated when the nucleus is endowed with a large angular moment about the symmetry axis with I =Iz . The toroidal high-K isomeric states at their local energy minima can be theoretically predicted using the cranked self-consistent Skyrme-Hartree-Fock method. Purpose: We use the cranked Skyrme-Hartree-Fock method to predict the properties of the toroidal high-spin isomers in the superheavy nucleus 120304184. Method: Our method consists of three steps: First, we use the deformation-constrained Skyrme-Hartree-Fock-Bogoliubov approach to search for the nuclear density distributions with toroidal shapes. Next, using these toroidal distributions as starting configurations, we apply an additional cranking constraint of a large angular momentum I =Iz about the symmetry z axis and search for the energy minima of the system as a function of the deformation. In the last step, if a local energy minimum with I =Iz is found, we perform at this point the cranked symmetry- and deformation-unconstrained Skyrme-Hartree-Fock calculations to locate a stable toroidal high-spin isomeric state in free convergence. Results: We have theoretically located two toroidal high-spin isomeric states of 120304184 with an angular momentum I =Iz=81 ℏ (proton 2p-2h, neutron 4p-4h excitation) and I =Iz=208 ℏ (proton 5p-5h, neutron 8p-8h) at the quadrupole moment deformations Q20=-297.7 b and Q20=-300.8 b with energies 79.2 and 101.6 MeV above the spherical ground state, respectively. The nuclear density distributions of the toroidal high-spin isomers 120304184(Iz=81 ℏ and 208 ℏ ) have the maximum density close to the nuclear matter density, 0.16 fm-3, and a torus major to minor radius aspect ratio R /d =3.25 . Conclusions: We demonstrate that aligned angular momenta of Iz=81 ℏ and 208 ℏ arising from

  15. Centrifugal Spinning and Its Energy Storage Applications

    NASA Astrophysics Data System (ADS)

    Yao, Lu

    -/micro-fiber production method to substitute electrospinning in industrial production. Recently, centrifugal spinning has gained researchers' attention. The centrifugal spinning method avoids the use of high voltage supply and can work with concentrated solutions, and most importantly, it can increase the production rate of nano-/micro-fibers to at least two orders or magnitude higher than that of electrospinning. This novel fiber fabrication approach is mostly used in tissue engineering field, and it can be potentially applied in preparing electrodes for SIBs and EDLCs. In the present work, we firstly study the influence of solution intrinsic properties and operational parameters using polyacrylonitrile as an example, and establish the processing-structure relationships for this spinning technique. We then use this novel spinning method to prepare porous carbon nanofibers (PCNFs), SnO2 microfibers and lithium-substituted sodium layered transition metal oxide fibers and use them as electrodes for EDLCs and SIBs. The as-prepared PCNFs, SnO2 microfibers and lithiumsubstituted sodium layered transition metal oxide fibers exhibit good electrochemical performance. It is therefore demonstrated that centrifugal spinning can be a promising nano- /micro-fiber preparation approach for mass production of electrode materials used in energy storage applications.

  16. High-spin structure of 134Xe

    NASA Astrophysics Data System (ADS)

    Vogt, A.; Birkenbach, B.; Reiter, P.; Blazhev, A.; Siciliano, M.; Valiente-Dobón, J. J.; Wheldon, C.; Bazzacco, D.; Bowry, M.; Bracco, A.; Bruyneel, B.; Chakrawarthy, R. S.; Chapman, R.; Cline, D.; Corradi, L.; Crespi, F. C. L.; Cromaz, M.; de Angelis, G.; Eberth, J.; Fallon, P.; Farnea, E.; Fioretto, E.; Freeman, S. J.; Gadea, A.; Geibel, K.; Gelletly, W.; Gengelbach, A.; Giaz, A.; Görgen, A.; Gottardo, A.; Hayes, A. B.; Hess, H.; Hua, H.; John, P. R.; Jolie, J.; Jungclaus, A.; Korten, W.; Lee, I. Y.; Leoni, S.; Liang, X.; Lunardi, S.; Macchiavelli, A. O.; Menegazzo, R.; Mengoni, D.; Michelagnoli, C.; Mijatović, T.; Montagnoli, G.; Montanari, D.; Napoli, D.; Pearson, C. J.; Pellegri, L.; Podolyák, Zs.; Pollarolo, G.; Pullia, A.; Radeck, F.; Recchia, F.; Regan, P. H.; Şahin, E.; Scarlassara, F.; Sletten, G.; Smith, J. F.; Söderström, P.-A.; Stefanini, A. M.; Steinbach, T.; Stezowski, O.; Szilner, S.; Szpak, B.; Teng, R.; Ur, C.; Vandone, V.; Ward, D.; Warner, D. D.; Wiens, A.; Wu, C. Y.

    2016-05-01

    Detailed spectroscopic information on the N ˜82 nuclei is necessary to benchmark shell-model calculations in the region. The nuclear structure above long-lived isomers in 134Xe is investigated after multinucleon transfer (MNT) and actinide fission. Xenon-134 was populated as (i) a transfer product in 238U+ 136Xe and 208Pb+ 136Xe MNT reactions and (ii) as a fission product in the 238U+ 136Xe reaction employing the high-resolution Advanced Gamma Tracking Array (AGATA). Trajectory reconstruction has been applied for the complete identification of beamlike transfer products with the magnetic spectrometer PRISMA. The 198Pt 136Xe MNT reaction was studied with the γ -ray spectrometer GAMMASPHERE in combination with the gas detector array Compact Heavy Ion Counter (CHICO). Several high-spin states in 134Xe on top of the two long-lived isomers are discovered based on γ γ -coincidence relationships and information on the γ -ray angular distributions as well as excitation energies from the total kinetic energy loss and fission fragments. The revised level scheme of 134Xe is extended up to an excitation energy of 5.832 MeV with tentative spin-parity assignments up to 16+. Previous assignments of states above the 7- isomer are revised. Latest shell-model calculations employing two different effective interactions reproduce the experimental findings and support the new spin and parity assignments.

  17. Spin and chirality effects in antler-topology processes at high energy $$\\varvec{e^+e^-}$$ e + e - colliders

    DOE PAGES

    Choi, S. Y.; Christensen, N. D.; Salmon, D.; ...

    2015-10-01

    We perform a model-independent investigation of spin and chirality correlation effects in the antler-topology processes e+e−→P+P−→(ℓ+D0)(ℓ−D¯0) at high-energy e+e− colliders with polarized beams. Generally the production process e+e−→P+P− can occur not only through the s-channel exchange of vector bosons, V0 , including the neutral Standard Model (SM) gauge bosons, γ and Z, but also through the s- and t-channel exchanges of new neutral states, S0 and T0 , and the u-channel exchange of new doubly charged states, U−− . The general set of (non-chiral) three-point couplings of the new particles and leptons allowed in a renormalizable quantum field theory ismore » considered. The general spin and chirality analysis is based on the threshold behavior of the excitation curves for P+P− pair production in e+e− collisions with longitudinal- and transverse-polarized beams, the angular distributions in the production process and also the production-decay angular correlations. In the first step, we present the observables in the helicity formalism. Subsequently, we show how a set of observables can be designed for determining the spins and chiral structures of the new particles without any model assumptions. Finally, taking into account a typical set of approximately chiral invariant scenarios, we demonstrate how the spin and chirality effects can be probed experimentally at a high-energy e+e− collider.« less

  18. High resolution electron energy loss spectroscopy of spin waves in ultra-thin film - The return of the adiabatic approximation?

    NASA Astrophysics Data System (ADS)

    Ibach, Harald

    2014-12-01

    The paper reports on recent considerable improvements in electron energy loss spectroscopy (EELS) of spin waves in ultra-thin films. Spin wave spectra with 4 meV resolution are shown. The high energy resolution enables the observation of standing modes in ultra-thin films in the wave vector range of 0.15 Å- 1 < q|| < 0.3 Å- 1. In this range, Landau damping is comparatively small and standing spin wave modes are well-defined Lorentzians for which the adiabatic approximation is well suited, an approximation which was rightly dismissed by Mills and collaborators for spin waves near the Brillouin zone boundary. With the help of published exchange coupling constants, the Heisenberg model, and a simple model for the spectral response function, experimental spectra for Co-films on Cu(100) as well as for Co films capped with further copper layers are successfully simulated. It is shown that, depending on the wave vector and film thickness, the most prominent contribution to the spin wave spectrum may come from the first standing mode, not from the so-called surface mode. In general, the peak position of a low-resolution spin wave spectrum does not correspond to a single mode. A discussion of spin waves based on the "dispersion" of the peak positions in low resolution spectra is therefore subject to errors.

  19. Toroidal high-spin isomers in the nucleus 120 304

    DOE PAGES

    Staszczak, A.; Wong, Cheuk-Yin; Kosior, A.

    2017-05-22

    Strongly deformed oblate superheavy nuclei form an intriguing region where the toroidal nuclear structures may bifurcate from the oblate spheroidal shape. The bifurcation may be facilitated when the nucleus is endowed with a large angular moment about the symmetry axis withmore » $$I=I_{z}$$. The toroidal high-$K$ isomeric states at their local energy minima can be theoretically predicted using the cranked self-consistent Skyrme-Hartree-Fock method. We use the cranked Skyrme-Hartree-Fock method to predict the properties of the toroidal high-spin isomers in the superheavy nucleus $$^{304}{120}_{184}$$. This method consists of three steps: first, we use the deformation-constrained Skyrme-Hartree-Fock-Bogoliubov approach to search for the nuclear density distributions with toroidal shapes. Next, using these toroidal distributions as starting configurations we apply an additional cranking constraint of a large angular momentum $$I=I_{z}$$ about the symmetry $z$-axis and search for the energy minima of the system as a function of the deformation. In the last step, if a local energy minimum with $$I=I_{z}$$ is found, we perform at this point the cranked symmetry- and deformation-unconstrained Skyrme-Hartree-Fock calculations to locate a stable toroidal high-spin isomeric state in free convergence. Furthemore, we have theoretically located two toroidal high-spin isomeric states of $$^{304}{120}_{184}$$ with an angular momentum $I$=$$I_z$$=81$$\\hbar$$ (proton 2p-2h, neutron 4p-4h excitation) and $I$=$$I_z$$=208$$\\hbar$$ (proton 5p-5h, neutron 8p-8h) at the quadrupole moment deformations $$Q_{20}=-297.7$$~b and $$Q_{20}=-300.8$$~b with energies 79.2 MeV and 101.6 MeV above the spherical ground state, respectively. The nuclear density distributions of the toroidal high-spin isomers $$^{304}{120}_{184}(I_z$$=81$$\\hbar$$ and 208$$\\hbar$$) have the maximum density close to the nuclear matter density, 0.16 fm$$^{-3}$$, and a torus major to minor radius aspect ratio $R/d=3

  20. Spin Uncoupling in Chemisorbed OCCO and CO 2: Two High-Energy Intermediates in Catalytic CO 2 Reduction

    DOE PAGES

    Hedstrom, Svante; dos Santos, Egon Campos; Liu, Chang; ...

    2018-05-08

    Here, the production of useful compounds via the electrochemical carbon dioxide reduction reaction (CO2RR) is a matter of intense research. Although the thermodynamics and kinetic barriers of CO2RR are reported in previous computational studies, the electronic structure details are often overlooked. We study two important CO2RR intermediates: ethylenedione (OCCO) and CO 2 covalently bound to cluster and slab models of the Cu(100) surface. Both molecules exhibit a near-unity negative charge as chemisorbed, but otherwise they behave quite differently, as explained by a spin-uncoupling perspective. OCCO adopts a high-spin, quartetlike geometry, allowing two covalent bonds to the surface with an averagemore » gross interaction energy of –1.82 eV/bond. The energy cost for electronically exciting OCCO– to the quartet state is 1.5 eV which is readily repaid via the formation of its two surface bonds. CO 2, conversely, retains a low-spin, doubletlike structure upon chemisorption, and its single unpaired electron forms a single covalent surface bond of –2.07 eV. The 5.0 eV excitation energy to the CO 2 – quartet state is prohibitively costly and cannot be compensated for by an additional surface bond.« less

  1. Angle and frequency dependence of self-energy from spin fluctuation mediated d-wave pairing for high temperature superconductors.

    PubMed

    Hong, Seung Hwan; Choi, Han-Yong

    2013-09-11

    We investigated the characteristics of spin fluctuation mediated superconductivity employing the Eliashberg formalism. The effective interaction between electrons was modeled in terms of the spin susceptibility measured by inelastic neutron scattering experiments on single crystal La(2-x)Sr(x)CuO4 superconductors. The diagonal self-energy and off-diagonal self-energy were calculated by solving the coupled Eliashberg equation self-consistently for the chosen spin susceptibility and tight-binding dispersion of electrons. The full momentum and frequency dependence of the self-energy is presented for optimally doped, overdoped, and underdoped LSCO cuprates in a superconductive state. These results may be compared with the experimentally deduced self-energy from ARPES experiments.

  2. High spin states of 141Pm

    NASA Astrophysics Data System (ADS)

    Bhattacharyya, Sarmishtha; Chanda, Somen; Bhattacharjee, Tumpa; Basu, Swapan Kumar; Bhowmik, R. K.; Muralithar, S.; Singh, R. P.; Ghugre, S. S.

    2004-01-01

    The high spin states in the N=80 odd- A141Pm nucleus have been investigated by in-beam γ-spectroscopic techniques following the reaction 133Cs( 12C, 4n) 141Pm at E=65 MeV using a modest γ detector array, consisting of seven Compton-suppressed high purity germanium detectors and a multiplicity ball of 14 bismuth germanate elements. Thirty new γ rays have been assigned to 141Pm on the basis of γ-ray singles and γγ-coincidence data. The level scheme of 141Pm has been extended upto an excitation energy of 5.2 MeV and spin {35}/{2}ℏ and 16 new levels have been proposed. Spin-parity assignments for most of the newly proposed levels have been made on the basis of the deduced directional correlation orientation ratios for strong transitions. The meanlives of a few excited states have been determined from the pulsed beam- γγ coincidence data using the generalised centroid-shift method. The level structure is discussed in the light of known systematics of neighbouring N=80 isotonic nuclei.

  3. Spin-wave energy dispersion of a frustrated spin-½ Heisenberg antiferromagnet on a stacked square lattice.

    PubMed

    Majumdar, Kingshuk

    2011-03-23

    The effects of interlayer coupling and spatial anisotropy on the spin-wave excitation spectra of a three-dimensional spatially anisotropic, frustrated spin-½ Heisenberg antiferromagnet (HAFM) are investigated for the two ordered phases using second-order spin-wave expansion. We show that the second-order corrections to the spin-wave energies are significant and find that the energy spectra of the three-dimensional HAFM have similar qualitative features to the energy spectra of the two-dimensional HAFM on a square lattice. We also discuss the features that can provide experimental measures for the strength of the interlayer coupling, spatial anisotropy parameter, and magnetic frustration.

  4. Energy efficient hybrid computing systems using spin devices

    NASA Astrophysics Data System (ADS)

    Sharad, Mrigank

    Emerging spin-devices like magnetic tunnel junctions (MTJ's), spin-valves and domain wall magnets (DWM) have opened new avenues for spin-based logic design. This work explored potential computing applications which can exploit such devices for higher energy-efficiency and performance. The proposed applications involve hybrid design schemes, where charge-based devices supplement the spin-devices, to gain large benefits at the system level. As an example, lateral spin valves (LSV) involve switching of nanomagnets using spin-polarized current injection through a metallic channel such as Cu. Such spin-torque based devices possess several interesting properties that can be exploited for ultra-low power computation. Analog characteristic of spin current facilitate non-Boolean computation like majority evaluation that can be used to model a neuron. The magneto-metallic neurons can operate at ultra-low terminal voltage of ˜20mV, thereby resulting in small computation power. Moreover, since nano-magnets inherently act as memory elements, these devices can facilitate integration of logic and memory in interesting ways. The spin based neurons can be integrated with CMOS and other emerging devices leading to different classes of neuromorphic/non-Von-Neumann architectures. The spin-based designs involve `mixed-mode' processing and hence can provide very compact and ultra-low energy solutions for complex computation blocks, both digital as well as analog. Such low-power, hybrid designs can be suitable for various data processing applications like cognitive computing, associative memory, and currentmode on-chip global interconnects. Simulation results for these applications based on device-circuit co-simulation framework predict more than ˜100x improvement in computation energy as compared to state of the art CMOS design, for optimal spin-device parameters.

  5. Spin-orbit coupling and surface magnetism coexisting in spin-dependent low-energy He+-ion surface scattering

    NASA Astrophysics Data System (ADS)

    Suzuki, T. T.; Sakai, O.

    2017-04-01

    Surface magnetism is analyzed by spin-dependent He+-ion neutralization (the Auger neutralization) in the vicinity of a surface using an electron spin-polarized low-energy He+-ion beam [spin-polarized ion scattering spectroscopy (SP-ISS)]. Recently, spin-orbit coupling (SOC) has been found to act as another mechanism of spin-dependent low-energy He+-ion scattering. Thus, it is crucial for surface magnetism analyses by SP-ISS to separate those two mechanisms. In the present study, we investigated the spin-induced asymmetry in scattering of low-energy He+ ions on ultrathin Au and Sn films as well as the oxygen adsorbate on a magnetized-Fe(100) surface where these two mechanisms may coexist. We found that the Fe surface magnetism immediately disappeared with the growth of those overlayers. On the other hand, we observed no induced spin polarization in the Au and Sn thin films even in the very initial stage of the growth. We also observed that the spin asymmetry of the O adsorbate was induced by the magnetism of the underlying Fe substrate. The present study demonstrates that the two mechanisms of the spin-asymmetric He+-ion scattering (the ion neutralization and SOC) can be separated by an azimuthal-angle-resolved SP-ISS measurement.

  6. Rapid high-resolution spin- and angle-resolved photoemission spectroscopy with pulsed laser source and time-of-flight spectrometer

    NASA Astrophysics Data System (ADS)

    Gotlieb, K.; Hussain, Z.; Bostwick, A.; Lanzara, A.; Jozwiak, C.

    2013-09-01

    A high-efficiency spin- and angle-resolved photoemission spectroscopy (spin-ARPES) spectrometer is coupled with a laboratory-based laser for rapid high-resolution measurements. The spectrometer combines time-of-flight (TOF) energy measurements with low-energy exchange scattering spin polarimetry for high detection efficiencies. Samples are irradiated with fourth harmonic photons generated from a cavity-dumped Ti:sapphire laser that provides high photon flux in a narrow bandwidth, with a pulse timing structure ideally matched to the needs of the TOF spectrometer. The overall efficiency of the combined system results in near-EF spin-resolved ARPES measurements with an unprecedented combination of energy resolution and acquisition speed. This allows high-resolution spin measurements with a large number of data points spanning multiple dimensions of interest (energy, momentum, photon polarization, etc.) and thus enables experiments not otherwise possible. The system is demonstrated with spin-resolved energy and momentum mapping of the L-gap Au(111) surface states, a prototypical Rashba system. The successful integration of the spectrometer with the pulsed laser system demonstrates its potential for simultaneous spin- and time-resolved ARPES with pump-probe based measurements.

  7. Spin Hamiltonian Analysis of the SMM V15 Using High Field ESR

    NASA Astrophysics Data System (ADS)

    Martens, Mathew; van Tol, Hans; Bertaina, Sylvain; Barbara, Bernard; Muller, Achim; Chiorescu, Irinel

    2014-03-01

    We have studied molecular magnets using high field / high frequency Electron Spin Resonance. Such molecular structures contain many quantum spins linked by exchange interactions and consequently their energy structure is often complex and require a good understanding of the molecular spin Hamiltonian. In particular, we studied the V15 molecule, comprised of 15 spins 1/2 and a total spin 1/2, which is a system that recently showed quantum Rabi oscillations of its total quantum spin. This type of molecule is an essential system for advancing molecular structures into quantum computing. We used high frequency characterization techniques (of hundreds of GHz) to gain insight into the exchange anisotropy interactions, crystal field, and anti-symmetric interactions present in this system. We analyzed the data using a detailed numerical analysis of spin interactions and our findings regarding the V15 spin Hamiltonian will be discussed. Supported by the NSF Cooperative Agreement Grant No. DMR-0654118 and No. NHMFL UCGP 5059, NSF grant No. DMR-0645408.

  8. Investigation of high spin states in 133Cs

    NASA Astrophysics Data System (ADS)

    Xu, Q.; Xiao, Z. G.; Zhu, S. J.; Qi, C.; Jia, H.; Qi, B.; Wang, R. S.; Cheng, W. J.; Zhang, Y.; Yi, H.; Lü, L. M.; Wang, Y. J.; Li, H. J.; Huang, Y.; Zhang, Z.; Wu, X. G.; Li, C. B.; Zheng, Y.; Chen, Q. M.; Zhou, W. K.; Li, G. S.

    2018-05-01

    High spin states in 133Cs nucleus have been studied with the reaction 130Te (7Li, 4n) at a beam energy of 38 MeV. The level scheme has been expanded with spin up to 31/2 \\hbar. Compared with a recent paper, ground state band and other two collective band structures at lower spin states have been confirmed. Another collective band structure at higher spin states as well as some levels and transitions are updated. Compared with the experimental data, large-scale shell model and tilted axis cranking model calculations have been carried out. The results show that the band-head configuration of yrast band based on 7/2+ ground state and the side band built on the 5/2+ state are a pair of pseudospin partner states with π \\tilde{f}_{7/2,5/2}. The negative parity band based on 1071.5 keV level originates from π h_{11/2} orbital. Another band built on 2642.9 keV level at high spin states has been proposed with oblate deformation. Other characteristics for these bands were also discussed.

  9. Rashba-Zeeman-effect-induced spin filtering energy windows in a quantum wire

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Xianbo, E-mail: xxb-11@hotmail.com; Nie, Wenjie; Chen, Zhaoxia

    2014-06-14

    We perform a numerical study on the spin-resolved transport in a quantum wire (QW) under the modulation of both Rashba spin-orbit coupling (SOC) and a perpendicular magnetic field by using the developed Usuki transfer-matrix method in combination with the Landauer-Büttiker formalism. Wide spin filtering energy windows can be achieved in this system for unpolarized spin injection. In addition, both the width of energy window and the magnitude of spin conductance within these energy windows can be tuned by varying Rashba SOC strength, which can be apprehended by analyzing the energy dispersions and spin-polarized density distributions inside the QW, respectively. Furthermore » study also demonstrates that these Rashba-SOC-controlled spin filtering energy windows show a strong robustness against disorders. These findings may not only benefit to further understand the spin-dependent transport properties of a QW in the presence of external fields but also provide a theoretical instruction to design a spin filter device.« less

  10. In-beam spectroscopy of medium- and high-spin states in Ce 133

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ayangeakaa, A. D.; Garg, U.; Petrache, C. M.

    2016-05-01

    Medium and high-spin states in Ce-133 were investigated using the Cd-116(Ne-22, 5n) reaction and the Gammasphere array. The level scheme was extended up to an excitation energy of similar to 22.8 MeV and spin 93/2 (h) over bar. Eleven bands of quadrupole transitions and two new dipole bands are identified. The connections to low-lying states of the previously known, high-spin triaxial bands were firmly established, thus fixing the excitation energy and, in many cases, the spin parity of the levels. Based on comparisons with cranked Nilsson-Strutinsky calculations and tilted axis cranking covariant density functional theory, it is shown that allmore » observed bands are characterized by pronounced triaxiality. Competing multiquasiparticle configurations are found to contribute to a rich variety of collective phenomena in this nucleus.« less

  11. Production cross sections for Lee-Wick massive electromagnetic bosons and for spin-zero and spin-one W bosons at high energies.

    NASA Technical Reports Server (NTRS)

    Linsker, R.

    1972-01-01

    Production cross sections for three types of hypothetical particles are calculated in the presented paper. Several (Z, Z') cases were studied corresponding to elastic scattering off protons and neutrons (either free or embedded within a Fermi sea), coherent scattering off a nucleus, and inelastic scattering off a proton (in which case Z' denotes a nucleon resonance or hadronic system in the continuum). Detailed structure-function data are used to improve the accuracy of the inelastic scattering calculation. Results of calculations are given for beam energies between 50 and 10,000 GeV, and masses between 5 and 40 GeV for the massive Lee-Wick spin-1 boson. Cross sections were computed for resonant and semiweak processes. The production cross section of spin-zero weak intermediate bosons was found to be at least one order of magnitude smaller than for spin-1 weak bosons in nearly all regions of interest. The production cross section of spin-zero weak intermediate bosons for inelastic scattering off protons compares with that for elastic scattering in the regions of interest. In the case of massive spin-1 bosons and spin-1 weak intermediates, the main contribution to total production cross section off protons is elastic.

  12. Andreev spectrum with high spin-orbit interactions: Revealing spin splitting and topologically protected crossings

    NASA Astrophysics Data System (ADS)

    Murani, A.; Chepelianskii, A.; Guéron, S.; Bouchiat, H.

    2017-10-01

    In order to point out experimentally accessible signatures of spin-orbit interaction, we investigate numerically the Andreev spectrum of a multichannel mesoscopic quantum wire (N) with high spin-orbit interaction coupled to superconducting electrodes (S), contrasting topological and nontopological behaviors. In the nontopological case (square lattice with Rashba interactions), we find that the Kramers degeneracy of Andreev levels is lifted by a phase difference between the S reservoirs except at multiples of π , when the normal quantum wires can host several conduction channels. The level crossings at these points invariant by time-reversal symmetry are not lifted by disorder. Whereas the dc Josephson current is insensitive to these level crossings, the high-frequency admittance (susceptibility) at finite temperature reveals these level crossings and the lifting of their degeneracy at π by a small Zeeman field. We have also investigated the hexagonal lattice with intrinsic spin-orbit interaction in the range of parameters where it is a two-dimensional topological insulator with one-dimensional helical edges protected against disorder. Nontopological superconducting contacts can induce topological superconductivity in this system characterized by zero-energy level crossing of Andreev levels. Both Josephson current and finite-frequency admittance carry then very specific signatures at low temperature of this disorder-protected Andreev level crossing at π and zero energy.

  13. Spin-Multiplet Components and Energy Splittings by Multistate Density Functional Theory.

    PubMed

    Grofe, Adam; Chen, Xin; Liu, Wenjian; Gao, Jiali

    2017-10-05

    Kohn-Sham density functional theory has been tremendously successful in chemistry and physics. Yet, it is unable to describe the energy degeneracy of spin-multiplet components with any approximate functional. This work features two contributions. (1) We present a multistate density functional theory (MSDFT) to represent spin-multiplet components and to determine multiplet energies. MSDFT is a hybrid approach, taking advantage of both wave function theory and density functional theory. Thus, the wave functions, electron densities and energy density-functionals for ground and excited states and for different components are treated on the same footing. The method is illustrated on valence excitations of atoms and molecules. (2) Importantly, a key result is that for cases in which the high-spin components can be determined separately by Kohn-Sham density functional theory, the transition density functional in MSDFT (which describes electronic coupling) can be defined rigorously. The numerical results may be explored to design and optimize transition density functionals for configuration coupling in multiconfigurational DFT.

  14. Triaxiality and Exotic Rotations at High Spins in 134Ce

    DOE PAGES

    Petrache, C. M.; Guo, S.; Ayangeakaa, A. D.; ...

    2016-06-06

    High-spin states in Ce-134 have been investigated using the Cd-116(Ne-22,4n) reaction and the Gammasphere array. The level scheme has been extended to an excitation energy of similar to 30 MeV and spin similar to 54 (h) over bar. Two new dipole bands and four new sequences of quadrupole transitions were identified. Several new transitions have been added to a number of known bands. One of the strongly populated dipole bands was revised and placed differently in the level scheme, resolving a discrepancy between experiment and model calculations reported previously. Configurations are assigned to the observed bands based on cranked Nilsson-Strutinskymore » calculations. A coherent understanding of the various excitations, both at low and high spins, is thus obtained, supporting an interpretation in terms of coexistence of stable triaxial, highly deformed, and superdeformed shapes up to very high spins. Rotations around different axes of the triaxial nucleus, and sudden changes of the rotation axis in specific configurations, are identified, further elucidating the nature of high-spin collective excitations in the A = 130 mass region.« less

  15. Fission Barrier of ^254No at High Spin

    NASA Astrophysics Data System (ADS)

    Henning, G.; Khoo, T. L.; Seweryniak, D.; Back, B. B.; Bertone, P. F.; Carpenter, M. P.; Greene, J. P.; Gürdal, G.; Hoffman, C. R.; Janssens, R. V. F.; Kay, B. P.; Kondev, F. G.; Lauritsen, T.; Lister, C. J.; McCutchan, E. A.; Nair, C.; Rogers, A. M.; Zhu, S.; Chiara, C. J.; Hauschild, K.; Lopez-Martens, A.; Heinz, A.; Piot, J.; Chowdhury, P.; Lakshmi, S.

    2010-11-01

    Superheavy nuclei provide opportunities to study nuclear structure at the limits in charge, spin and excitation energy. These nuclei exist only because shell effects create a fission barrier Bf. Hence, it is important to determine Bf and its spin dependence. For ^254No, the maximum spin and energy were found [1] to be Imax= 22 and E* = 8 MeV in the reaction ^208Pb(^48Ca,2n) at a beam energy of 219 MeV. At 223 MeV, the maximum spin increases to 32. In contrast, the spin in ^220Th, produced [2] in the ^176Yb(^48 Ca,4n) reaction at 206 and 219 MeV, saturates at 20. A measurement of the entry distribution of ^254No at 223 MeV has been performed to determine Bf(I) and results will be reported.[4pt] [1] P. Reiter et al., Phys. Rev. Lett. 84, 3542 (2000).[0pt] [2] A. Heinz et al., Nucl. Phys. A682, 458c (2001)

  16. Thermodynamic limit and boundary energy of the su(3) spin chain with non-diagonal boundary fields

    NASA Astrophysics Data System (ADS)

    Wen, Fakai; Yang, Tao; Yang, Zhanying; Cao, Junpeng; Hao, Kun; Yang, Wen-Li

    2017-02-01

    We investigate the thermodynamic limit of the su (n)-invariant spin chain models with unparallel boundary fields. It is found that the contribution of the inhomogeneous term in the associated T-Q relation to the ground state energy does vanish in the thermodynamic limit. This fact allows us to calculate the boundary energy of the system. Taking the su (2) (or the XXX) spin chain and the su (3) spin chain as concrete examples, we have studied the corresponding boundary energies of the models. The method used in this paper can be generalized to study the thermodynamic properties and boundary energy of other high rank models with non-diagonal boundary fields.

  17. High-spin states in neutron-deficient nuclei near A=80

    NASA Astrophysics Data System (ADS)

    Theisen, L. V.; Tabor, S. L.; Medsker, L. R.; Neuschaefer, G.; Fry, L. H., Jr.; Clements, J. S.

    1982-03-01

    In-beam γ-ray spectroscopy with the reactions 54Fe + 28Si and 56Fe + 28Si at beam energies from 80 to 99 MeV were used to study high-spin states in neutron-deficient nuclei in the mass A~80 region. Measurements of γ-ray energies, intensities, angular distributions, excitation functions, and γ-γ coincidences were used to assign new levels in 79Rb and 80Sr. For the first time, high-spin states in 81Sr have been observed. NUCLEAR REACTIONS 56Fe(28Si,xpynγ) and 54Fe(28Si,xpynγ) Elab=80-99 MeV; measured Eγ, Iγ, γ-γ coincidences, σ(Eγ,E), and σ(Eγ,θ) 79Rb, 80Sr, and 81Sr deduced levels, Jπ. Enriched targets.

  18. Highly Integrated Spinning Projectile (HISP)

    DTIC Science & Technology

    1992-02-06

    At A A , AlAA 92-1214 HIGHLY INTEGRATED SPINNING PROJECTILE (HISP) G.R. Legters D.P. Lianos R.G. Brosch Senior Scientist, SAIC Senior Engineer...Integrated Spinning Projectile (HISP) Personal Author: Legters , G.R.; Lianos, D.P.; Brosch, R.G. Corporate Author Or Publisher: SAIC, Melbourne Beach...000001 Record ID: 26099 Source of Document: AIAA AIAA-92-1214 HIGHLY INTEGRATED SPINNING PROJECTILE (HISP) 3» en ZO O G. R. Legters Senior

  19. Detection of multipartite entanglement in spin rings by use of exchange energy

    NASA Astrophysics Data System (ADS)

    Siloi, I.; Troiani, F.

    2014-10-01

    We investigate multipartite entanglement in rings of arbitrary spins with antiferromagnetic interactions between nearest neighbors. In particular, we show that the nondegenerate ground state of rings formed by an even number (N ) of spins is N -partite entangled, and exchange energy can thus be used as a multipartite-entanglement witness. We develop a general approach to compute the energy minima corresponding to biseparable states, and provide numerical results for a representative set of systems. Despite its global character, exchange energy also allows a spin-selective characterization of entanglement. In particular, in the presence of a magnetic defect, one can derive separability criteria for each individual spin, and use exchange energy for detecting entanglement between this and all the other spins.

  20. Ground-state energies of the nonlinear sigma model and the Heisenberg spin chains

    NASA Technical Reports Server (NTRS)

    Zhang, Shoucheng; Schulz, H. J.; Ziman, Timothy

    1989-01-01

    A theorem on the O(3) nonlinear sigma model with the topological theta term is proved, which states that the ground-state energy at theta = pi is always higher than the ground-state energy at theta = 0, for the same value of the coupling constant g. Provided that the nonlinear sigma model gives the correct description for the Heisenberg spin chains in the large-s limit, this theorem makes a definite prediction relating the ground-state energies of the half-integer and the integer spin chains. The ground-state energies obtained from the exact Bethe ansatz solution for the spin-1/2 chain and the numerical diagonalization on the spin-1, spin-3/2, and spin-2 chains support this prediction.

  1. Aging, memory, and nonhierarchical energy landscape of spin jam

    NASA Astrophysics Data System (ADS)

    Samarakoon, Anjana; Sato, Taku J.; Chen, Tianran; Chern, Gai-Wei; Yang, Junjie; Klich, Israel; Sinclair, Ryan; Zhou, Haidong; Lee, Seung-Hun

    2016-10-01

    The notion of complex energy landscape underpins the intriguing dynamical behaviors in many complex systems ranging from polymers, to brain activity, to social networks and glass transitions. The spin glass state found in dilute magnetic alloys has been an exceptionally convenient laboratory frame for studying complex dynamics resulting from a hierarchical energy landscape with rugged funnels. Here, we show, by a bulk susceptibility and Monte Carlo simulation study, that densely populated frustrated magnets in a spin jam state exhibit much weaker memory effects than spin glasses, and the characteristic properties can be reproduced by a nonhierarchical landscape with a wide and nearly flat but rough bottom. Our results illustrate that the memory effects can be used to probe different slow dynamics of glassy materials, hence opening a window to explore their distinct energy landscapes.

  2. Simulations of high-spin black-hole binaries

    NASA Astrophysics Data System (ADS)

    Scheel, Mark; Lovelace, Geoffrey

    2014-03-01

    Black holes can in principle have spins up to the Kerr limit a = 1 , and some (highly uncertain) estimates from X-ray binaries yield a > 0 . 98 . Because binaries with highly-spinning black holes may be detectable by LIGO, it is important to be able to simulate and understand these systems. We present binary black hole simulations with large spins, including a generic, precessing simulation with a spin of a > 0 . 99 on one of the black holes. We discuss some of the difficulties with simulating high-spin black holes and how to overcome them.

  3. On the TAP Free Energy in the Mixed p-Spin Models

    NASA Astrophysics Data System (ADS)

    Chen, Wei-Kuo; Panchenko, Dmitry

    2018-05-01

    Thouless et al. (Phys Mag 35(3):593-601, 1977), derived a representation for the free energy of the Sherrington-Kirkpatrick model, called the TAP free energy, written as the difference of the energy and entropy on the extended configuration space of local magnetizations with an Onsager correction term. In the setting of mixed p-spin models with Ising spins, we prove that the free energy can indeed be written as the supremum of the TAP free energy over the space of local magnetizations whose Edwards-Anderson order parameter (self-overlap) is to the right of the support of the Parisi measure. Furthermore, for generic mixed p-spin models, we prove that the free energy is equal to the TAP free energy evaluated on the local magnetization of any pure state.

  4. Unconventional spin dynamics in the honeycomb-lattice material α -RuCl3 : High-field electron spin resonance studies

    NASA Astrophysics Data System (ADS)

    Ponomaryov, A. N.; Schulze, E.; Wosnitza, J.; Lampen-Kelley, P.; Banerjee, A.; Yan, J.-Q.; Bridges, C. A.; Mandrus, D. G.; Nagler, S. E.; Kolezhuk, A. K.; Zvyagin, S. A.

    2017-12-01

    We present high-field electron spin resonance (ESR) studies of the honeycomb-lattice material α -RuCl3 , a prime candidate to exhibit Kitaev physics. Two modes of antiferromagnetic resonance were detected in the zigzag ordered phase, with magnetic field applied in the a b plane. A very rich excitation spectrum was observed in the field-induced quantum paramagnetic phase. The obtained data are compared with the results of recent numerical calculations, strongly suggesting a very unconventional multiparticle character of the spin dynamics in α -RuCl3 . The frequency-field diagram of the lowest-energy ESR mode is found consistent with the behavior of the field-induced energy gap, revealed by thermodynamic measurements.

  5. Energy as a witness of multipartite entanglement in chains of arbitrary spins

    NASA Astrophysics Data System (ADS)

    Troiani, F.; Siloi, I.

    2012-09-01

    We develop a general approach for deriving the energy minima of biseparable states in chains of arbitrary spins s, and we report numerical results for spin values s≤5/2 (with N≤8). The minima provide a set of threshold values for exchange energy that allow us to detect different degrees of multipartite entanglement in one-dimensional spin systems. We finally demonstrate that the Heisenberg exchange Hamiltonian of N spins has a nondegenerate N-partite entangled ground state, and it can thus witness such correlations in all finite spin chains.

  6. Aging, memory, and nonhierarchical energy landscape of spin jam

    PubMed Central

    Samarakoon, Anjana; Sato, Taku J.; Chen, Tianran; Chern, Gai-Wei; Yang, Junjie; Klich, Israel; Sinclair, Ryan; Zhou, Haidong; Lee, Seung-Hun

    2016-01-01

    The notion of complex energy landscape underpins the intriguing dynamical behaviors in many complex systems ranging from polymers, to brain activity, to social networks and glass transitions. The spin glass state found in dilute magnetic alloys has been an exceptionally convenient laboratory frame for studying complex dynamics resulting from a hierarchical energy landscape with rugged funnels. Here, we show, by a bulk susceptibility and Monte Carlo simulation study, that densely populated frustrated magnets in a spin jam state exhibit much weaker memory effects than spin glasses, and the characteristic properties can be reproduced by a nonhierarchical landscape with a wide and nearly flat but rough bottom. Our results illustrate that the memory effects can be used to probe different slow dynamics of glassy materials, hence opening a window to explore their distinct energy landscapes. PMID:27698141

  7. High spin systems with orbital degeneracy.

    PubMed

    Shen, Shun-Qing; Xie, X C; Zhang, F C

    2002-01-14

    High-spin systems with orbital degeneracy are studied in the large spin limit. In the absence of Hund's coupling, the classical spin model is mapped onto disconnected orbital systems with spins up and down, respectively. The ground state of the isotropic model is an orbital valence bond state where each bond is an orbital singlet with parallel spins, and neighboring bonds interact antiferromagnetically. Possible relevance to the transition metal oxides is discussed.

  8. Mass-number and excitation-energy dependence of the spin cutoff parameter

    DOE PAGES

    Grimes, S. M.; Voinov, A. V.; Massey, T. N.

    2016-07-12

    Here, the spin cutoff parameter determining the nuclear level density spin distribution ρ(J) is defined through the spin projection as < J 2 z > 1/2 or equivalently for spherical nuclei, (< J(J+1) >/3) 1/2. It is needed to divide the total level density into levels as a function of J. To obtain the total level density at the neutron binding energy from the s-wave resonance count, the spin cutoff parameter is also needed. The spin cutoff parameter has been calculated as a function of excitation energy and mass with a super-conducting Hamiltonian. Calculations have been compared with two commonlymore » used semiempirical formulas. A need for further measurements is also observed. Some complications for deformed nuclei are discussed. The quality of spin cut off parameter data derived from isomeric ratio measurement is examined.« less

  9. Energy extraction of a spinning particle via the super Penrose process from an extremal Kerr black hole

    NASA Astrophysics Data System (ADS)

    Liu, Yan; Liu, Wen-Biao

    2018-03-01

    The energy extraction of the collisional Penrose process has been investigated in recent years. Previous researchers mainly concentrated on the case of nonspin massive or massless particles, and they discovered that when the collision occurs near the horizon of extremal rotating black holes, the arbitrary large efficiency can be achieved with the particle's angular momentum below the critical value as L1<2 . In this paper, the energy extraction of spinning massive particles is calculated via the super Penrose process. We obtain the dependence of the impact factor and the turning points on the particle's spin s . The super Penrose process can occur only when s ≤1 and J1<2 , where J1 is the spinning particle's angular momentum. It is found that the efficiency of the energy extraction is monotonously increasing with the particle's spin s increasing for s <1 , and it can become arbitrarily high when the collision occurs close to the horizon. We compare the maximum extracted energy of spinning particles with that of the nonspin case and find a significant increase of the extracted energy. When s →1 , the maximum extracted energy can be orders of magnitude larger than that of the nonspin case. For the astrophysical black holes, the large efficiency is also obtained. Naturally, when the particle's spin s ≪1 , we can degenerate the result back to the nonspin case.

  10. Competing decay modes of a high-spin isomer in the proton-unbound nucleus ¹⁵⁸Ta*

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Carroll, R. J.; Page, R. D.; Joss, D. T.

    2015-01-01

    An isomeric state at high spin and excitation energy was recently observed in the proton-unbound nucleus 158Ta. This state was observed to decay by both α and γ decay modes. The large spin change required to decay via γ-ray emission incurs a lifetime long enough for α decay to compete. The α decay has an energy of 8644(11) keV, which is among the highest observed in the region, a partial half-life of 440(70) μs and changes the spin by 11ℏ. In this study, additional evidence supporting the assignment of this α decay to the high-spin isomer in 158Ta will bemore » presented.« less

  11. Unconventional spin dynamics in the honeycomb-lattice material α - RuCl 3 : High-field electron spin resonance studies

    DOE PAGES

    Ponomaryov, A. N.; Schulze, E.; Wosnitza, J.; ...

    2017-12-19

    Here, we present high-field electron spin resonance (ESR) studies of the honeycomb-lattice material α-RuCl 3, a prime candidate to exhibit Kitaev physics. Two modes of antiferromagnetic resonance were detected in the zigzag ordered phase, with magnetic field applied in the a b plane. A very rich excitation spectrum was observed in the field-induced quantum paramagnetic phase. We compare the data obtained with the results of recent numerical calculations, strongly suggesting a very unconventional multiparticle character of the spin dynamics in α-RuCl 3. Finally, the frequency-field diagram of the lowest-energy ESR mode is found consistent with the behavior of the field-inducedmore » energy gap, revealed by thermodynamic measurements.« less

  12. Unconventional spin dynamics in the honeycomb-lattice material α - RuCl 3 : High-field electron spin resonance studies

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ponomaryov, A. N.; Schulze, E.; Wosnitza, J.

    Here, we present high-field electron spin resonance (ESR) studies of the honeycomb-lattice material α-RuCl 3, a prime candidate to exhibit Kitaev physics. Two modes of antiferromagnetic resonance were detected in the zigzag ordered phase, with magnetic field applied in the a b plane. A very rich excitation spectrum was observed in the field-induced quantum paramagnetic phase. We compare the data obtained with the results of recent numerical calculations, strongly suggesting a very unconventional multiparticle character of the spin dynamics in α-RuCl 3. Finally, the frequency-field diagram of the lowest-energy ESR mode is found consistent with the behavior of the field-inducedmore » energy gap, revealed by thermodynamic measurements.« less

  13. Tunable bistable devices for harvesting energy from spinning wheels

    NASA Astrophysics Data System (ADS)

    Elhadidi, Mohamed; Helal, Mohammed; Nassar, Omar; Arafa, Mustafa; Zeyada, Yasser

    2015-04-01

    Bistable systems have recently been employed for vibration energy harvesting owing to their favorable dynamic characteristics and desirable response for wideband excitation. In this paper, we investigate the use of bistable harvesters to extract energy from spinning wheels. The proposed harvester consists of a piezoelectric cantilever beam that is mounted on a rigid spinning hub and carries a tip mass in the form of a permanent magnet. Magnetic repulsion forces from an opposite magnet cause the beam to possess two stable equilibrium positions. Inter-well lead-lag oscillations caused by rotation in a vertical plane provide a good source for energy extraction. The design offers frequency tuning, as the centrifugal forces strain the harvester, thereby increasing its natural frequency to cope with a variable rotational speed. This has applications in self-powered sensors mounted on spinning wheels, such as tire pressure monitoring sensors. An effort is made to select the design parameters to enable the harvester to exhibit favorable inter-well oscillations across a range of rotational speeds for enhanced energy harvesting. Findings of the present work are verified both numerically and experimentally.

  14. Spin dynamics of possible density wave states in the pseudogap phase of high-temperature superconductors

    NASA Astrophysics Data System (ADS)

    Hsu, Chen-Hsuan; Wang, Zhiqiang; Chakravarty, Sudip

    2012-12-01

    In a recent inelastic neutron scattering experiment in the pseudogap state of the high-temperature superconductor YBa2Cu3O6.6, an unusual “vertical” dispersion of the spin excitations with a large in-plane anisotropy was observed. In this paper, we discuss in detail the spin susceptibility of the singlet d-density wave, the triplet d-density wave as well as the more common spin density wave orders with hopping anisotropies. From numerical calculations within the framework of random phase approximation, we find nearly vertical dispersion relations for spin excitations with anisotropic incommensurability at low energy ω≤90meV, which are reminiscent of the experiments. At very high energy ω≥165meV, we also find energy-dependent incommensurability. Although there are some important differences between the three cases, unpolarized neutron measurements cannot discriminate between these alternate possibilities; the vertical dispersion, however, is a distinct feature of all three density wave states in contrast to the superconducting state, which shows an hour-glass shape dispersion.

  15. High-fidelity spin entanglement using optimal control.

    PubMed

    Dolde, Florian; Bergholm, Ville; Wang, Ya; Jakobi, Ingmar; Naydenov, Boris; Pezzagna, Sébastien; Meijer, Jan; Jelezko, Fedor; Neumann, Philipp; Schulte-Herbrüggen, Thomas; Biamonte, Jacob; Wrachtrup, Jörg

    2014-02-28

    Precise control of quantum systems is of fundamental importance in quantum information processing, quantum metrology and high-resolution spectroscopy. When scaling up quantum registers, several challenges arise: individual addressing of qubits while suppressing cross-talk, entangling distant nodes and decoupling unwanted interactions. Here we experimentally demonstrate optimal control of a prototype spin qubit system consisting of two proximal nitrogen-vacancy centres in diamond. Using engineered microwave pulses, we demonstrate single electron spin operations with a fidelity F≈0.99. With additional dynamical decoupling techniques, we further realize high-quality, on-demand entangled states between two electron spins with F>0.82, mostly limited by the coherence time and imperfect initialization. Crosstalk in a crowded spectrum and unwanted dipolar couplings are simultaneously eliminated to a high extent. Finally, by high-fidelity entanglement swapping to nuclear spin quantum memory, we demonstrate nuclear spin entanglement over a length scale of 25 nm. This experiment underlines the importance of optimal control for scalable room temperature spin-based quantum information devices.

  16. Highly Efficient Room Temperature Spin Injection Using Spin Filtering in MgO

    NASA Astrophysics Data System (ADS)

    Jiang, Xin

    2007-03-01

    Efficient electrical spin injection into GaAs/AlGaAs quantum well structures was demonstrated using CoFe/MgO tunnel spin injectors at room temperature. The spin polarization of the injected electron current was inferred from the circular polarization of electroluminescence from the quantum well. Polarization values as high as 57% at 100 K and 47% at 290 K were obtained in a perpendicular magnetic field of 5 Tesla. The interface between the tunnel spin injector and the GaAs interface remained stable even after thermal annealing at 400 ^oC. The temperature dependence of the electron-hole recombination time and the electron spin relaxation time in the quantum well was measured using time-resolved optical techniques. By taking into account of these properties of the quantum well, the intrinsic spin injection efficiency can be deduced. We conclude that the efficiency of spin injection from a CoFe/MgO spin injector is nearly independent of temperature and, moreover, is highly efficient with an efficiency of ˜ 70% for the temperature range studied (10 K to room temperature). Tunnel spin injectors are thus highly promising components of future semiconductor spintronic devices. Collaborators: Roger Wang^1, 3, Gian Salis^2, Robert Shelby^1, Roger Macfarlane^1, Seth Bank^3, Glenn Solomon^3, James Harris^3, Stuart S. P. Parkin^1 ^1 IBM Almaden Research Center, San Jose, CA 95120 ^2 IBM Zurich Research Laboratory, S"aumerstrasse 4, 8803 R"uschlikon, Switzerland ^3 Solid States and Photonics Laboratory, Stanford University, Stanford, CA 94305

  17. Thermodynamics of energy, charge, and spin currents in a thermoelectric quantum-dot spin valve

    NASA Astrophysics Data System (ADS)

    Tang, Gaomin; Thingna, Juzar; Wang, Jian

    2018-04-01

    We provide a thermodynamically consistent description of energy, charge, and spin transfers in a thermoelectric quantum-dot spin valve in the collinear configuration based on nonequilibrium Green's function and full counting statistics. We use the fluctuation theorem symmetry and the concept of entropy production to characterize the efficiency with which thermal gradients can transduce charges or spins against their chemical potentials, arbitrary far from equilibrium. Close to equilibrium, we recover the Onsager reciprocal relations and the connection to linear response notions of performance such as the figure of merit. We also identify regimes where work extraction is more efficient far then close from equilibrium.

  18. Energy Spectrum for the System, of N Ising Spins with Identical, Spin-Spin Coupling K/N - Anatomy of Phase Transition

    NASA Astrophysics Data System (ADS)

    Czachor, A.

    2008-04-01

    For the Kittel-Shore-Kac interspin coupling K/N between N Ising spins the ferromagnetic phase transition in specific heat vs. T plot has appeared in literature as a purely mathematical phenomenon, via the exact calculation of the sum of states Z(T) and subsequent differentiations with respect to temperature T. Physical nature of the transition remains in such derivation invisible. As it is expected to be related to the interaction/temperature competition in populating energy levels of the system, in this paper we construct the density of energy states D(E) (or energy spectrum) of such systems, both for the ferromagnetic (K > 0) and antiferromagnetic (K < 0) coupling between spins. This allows one to see the essence of the difference between these systems as related to the discrete vs. quasi-continuous shape of the spectra at low energy states.

  19. Anomalous High-Energy Waterfall-Like Electronic Structure in 5 d Transition Metal Oxide Sr2IrO4 with a Strong Spin-Orbit Coupling

    PubMed Central

    Liu, Yan; Yu, Li; Jia, Xiaowen; Zhao, Jianzhou; Weng, Hongming; Peng, Yingying; Chen, Chaoyu; Xie, Zhuojin; Mou, Daixiang; He, Junfeng; Liu, Xu; Feng, Ya; Yi, Hemian; Zhao, Lin; Liu, Guodong; He, Shaolong; Dong, Xiaoli; Zhang, Jun; Xu, Zuyan; Chen, Chuangtian; Cao, Gang; Dai, Xi; Fang, Zhong; Zhou, X. J.

    2015-01-01

    The low energy electronic structure of Sr2IrO4 has been well studied and understood in terms of an effective Jeff = 1/2 Mott insulator model. However, little work has been done in studying its high energy electronic behaviors. Here we report a new observation of the anomalous high energy electronic structure in Sr2IrO4. By taking high-resolution angle-resolved photoemission measurements on Sr2IrO4 over a wide energy range, we have revealed for the first time that the high energy electronic structures show unusual nearly-vertical bands that extend over a large energy range. Such anomalous high energy behaviors resemble the high energy waterfall features observed in the cuprate superconductors. While strong electron correlation plays an important role in producing high energy waterfall features in the cuprate superconductors, the revelation of the high energy anomalies in Sr2IrO4, which exhibits strong spin-orbit coupling and a moderate electron correlation, points to an unknown and novel route in generating exotic electronic excitations. PMID:26267653

  20. Anomalous High-Energy Waterfall-Like Electronic Structure in 5 d Transition Metal Oxide Sr2IrO4 with a Strong Spin-Orbit Coupling

    NASA Astrophysics Data System (ADS)

    Liu, Yan; Yu, Li; Jia, Xiaowen; Zhao, Jianzhou; Weng, Hongming; Peng, Yingying; Chen, Chaoyu; Xie, Zhuojin; Mou, Daixiang; He, Junfeng; Liu, Xu; Feng, Ya; Yi, Hemian; Zhao, Lin; Liu, Guodong; He, Shaolong; Dong, Xiaoli; Zhang, Jun; Xu, Zuyan; Chen, Chuangtian; Cao, Gang; Dai, Xi; Fang, Zhong; Zhou, X. J.

    2015-08-01

    The low energy electronic structure of Sr2IrO4 has been well studied and understood in terms of an effective Jeff = 1/2 Mott insulator model. However, little work has been done in studying its high energy electronic behaviors. Here we report a new observation of the anomalous high energy electronic structure in Sr2IrO4. By taking high-resolution angle-resolved photoemission measurements on Sr2IrO4 over a wide energy range, we have revealed for the first time that the high energy electronic structures show unusual nearly-vertical bands that extend over a large energy range. Such anomalous high energy behaviors resemble the high energy waterfall features observed in the cuprate superconductors. While strong electron correlation plays an important role in producing high energy waterfall features in the cuprate superconductors, the revelation of the high energy anomalies in Sr2IrO4, which exhibits strong spin-orbit coupling and a moderate electron correlation, points to an unknown and novel route in generating exotic electronic excitations.

  1. Anomalous High-Energy Waterfall-Like Electronic Structure in 5 d Transition Metal Oxide Sr2IrO4 with a Strong Spin-Orbit Coupling.

    PubMed

    Liu, Yan; Yu, Li; Jia, Xiaowen; Zhao, Jianzhou; Weng, Hongming; Peng, Yingying; Chen, Chaoyu; Xie, Zhuojin; Mou, Daixiang; He, Junfeng; Liu, Xu; Feng, Ya; Yi, Hemian; Zhao, Lin; Liu, Guodong; He, Shaolong; Dong, Xiaoli; Zhang, Jun; Xu, Zuyan; Chen, Chuangtian; Cao, Gang; Dai, Xi; Fang, Zhong; Zhou, X J

    2015-08-12

    The low energy electronic structure of Sr2IrO4 has been well studied and understood in terms of an effective Jeff = 1/2 Mott insulator model. However, little work has been done in studying its high energy electronic behaviors. Here we report a new observation of the anomalous high energy electronic structure in Sr2IrO4. By taking high-resolution angle-resolved photoemission measurements on Sr2IrO4 over a wide energy range, we have revealed for the first time that the high energy electronic structures show unusual nearly-vertical bands that extend over a large energy range. Such anomalous high energy behaviors resemble the high energy waterfall features observed in the cuprate superconductors. While strong electron correlation plays an important role in producing high energy waterfall features in the cuprate superconductors, the revelation of the high energy anomalies in Sr2IrO4, which exhibits strong spin-orbit coupling and a moderate electron correlation, points to an unknown and novel route in generating exotic electronic excitations.

  2. Spin reorientation of a nonsymmetric body with energy dissipation

    NASA Technical Reports Server (NTRS)

    Cenker, R. J.

    1973-01-01

    Stable rotating semi-rigid bodies were demonstrated analytically, and verified in flights such as Explorer 1 and ATS-5 satellites. The problem arises from the two potential orientations which the final spin vector can take after large angle reorientation from minor to major axis, i.e., along the positive or negative axis of the maximum inertia. Reorientation of a satellite initially spinning about the minor axis using an energy dissipation device may require that the final spin orientation be controlled. Examples of possible applications are the Apogee Motor Assembly with Paired Satellites (AMAPS) configuration, where proper orientation of the thruster is required; and reorientation of ATS-5, where the spin sensitive nature of the despin device (yo-yo mechanism) requires that the final spin vector point is a specified direction.

  3. High-spin lifetime measurements in the N=Z nucleus Kr72

    NASA Astrophysics Data System (ADS)

    Andreoiu, C.; Svensson, C. E.; Afanasjev, A. V.; Austin, R. A. E.; Carpenter, M. P.; Dashdorj, D.; Finlay, P.; Freeman, S. J.; Garrett, P. E.; Greene, J.; Grinyer, G. F.; Görgen, A.; Hyland, B.; Jenkins, D.; Johnston-Theasby, F.; Joshi, P.; Machiavelli, A. O.; Moore, F.; Mukherjee, G.; Phillips, A. A.; Reviol, W.; Sarantites, D. G.; Schumaker, M. A.; Seweryniak, D.; Smith, M. B.; Valiente-Dobón, J. J.; Wadsworth, R.

    2007-04-01

    High-spin states in the N=Z nucleus Kr72 have been populated in the Ca40(Ca40, 2α)Kr72 fusion-evaporation reaction at a beam energy of 165 MeV using the Gammasphere array for γ-ray detection coupled to the Microball array for charged particle detection. The previously observed bands in Kr72 were extended to an excitation energy of ˜24 MeV and angular momentum of 30ℏ. Using the Doppler shift attenuation method the lifetimes of high-spin states were measured for the first time. Excellent agreement between the results of calculations within the isovector mean field theory and experiment is observed both for rotational and deformation properties. No enhancement of quadrupole deformation expected in the presence of isoscalar t=0 np pairing is observed. Current data do not show any evidence for the existence of the isoscalar np pairing.

  4. Inflation in Einstein-Cartan theory with energy-momentum tensor with spin

    NASA Technical Reports Server (NTRS)

    Fennelly, A. J.; Bradas, James C.; Smalley, Larry L.

    1988-01-01

    Generalized, or power-law, inflation is shown to necessarily exist for a simple, anisotropic (Bianchi Type I) cosmology in the Einstein-Cartan gravitational theory with the Ray-Smalley (RS) improved energy-momentum tensor with spin. Formal solution of the EC field equations with the fluid equations of motion explicitly shows inflation caused by the RS spin angular kinetic energy density.

  5. Interfacial Dzyaloshinskii-Moriya interaction, surface anisotropy energy, and spin pumping at spin orbit coupled Ir/Co interface

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kim, Nam-Hui; Jung, Jinyong; Cho, Jaehun

    2016-04-04

    The interfacial Dzyaloshinskii-Moriya interaction (iDMI), surface anisotropy energy, and spin pumping at the Ir/Co interface are experimentally investigated by performing Brillouin light scattering. Contrary to previous reports, we suggest that the sign of the iDMI at the Ir/Co interface is the same as in the case of the Pt/Co interface. We also find that the magnitude of the iDMI energy density is relatively smaller than in the case of the Pt/Co interface, despite the large strong spin-orbit coupling (SOC) of Ir. The saturation magnetization and the perpendicular magnetic anisotropy (PMA) energy are significantly improved due to a strong SOC. Ourmore » findings suggest that an SOC in an Ir/Co system behaves in different ways for iDMI and PMA. Finally, we determine the spin pumping effect at the Ir/Co interface, and it increases the Gilbert damping constant from 0.012 to 0.024 for 1.5 nm-thick Co.« less

  6. High spin states in 164Lu

    NASA Astrophysics Data System (ADS)

    Juneja, P.; Gupta, S. L.; Pancholi, S. C.; Kumar, Ashok; Mehta, D.; Chaturvedi, L.; Katoch, S. K.; Malik, S.; Shanker, G.; Bhowmik, R. K.; Muralithar, S.; Rodrigues, G.; Singh, R. P.

    1996-03-01

    High spin states in the odd-odd 164Lu nucleus have been investigated for the first time, through in-beam gamma-ray spectroscopy, following the 150Sm(19F,5n) reaction at beam energy Elab=105 MeV. Four bands, including two signature split bands are identified. The interpretation of the experimental results is discussed in comparison with the existing data in the neighboring nuclei and in the framework of the cranked shell model. The πh11/2⊗νi13/2 yrast band exhibits anomalous signature splitting and signature inversion is observed at a spin of 18ħ. This provides the missing datum for the systematics of staggering and signature inversion for the neighboring odd-odd N=93 isotones and supports the predictions of angular-momentum projection calculations by Hara and Sun. In the second signature split πh 11/2h9/2 band, the AB neutron crossing occurs at a rotational frequency of ~0.29 MeV. This is indicative of the disappearance of the blocking effect of the odd neutron.

  7. Spin-symmetry conversion and internal rotation in high J molecular systems

    NASA Astrophysics Data System (ADS)

    Mitchell, Justin; Harter, William

    2006-05-01

    Dynamics and spectra of molecules with internal rotation or rovibrational coupling is approximately modeled by rigid or semi-rigid rotors with attached gyroscopes. Using Rotational Energy (RE)^1 surfaces, high resolution molecular spectra for high angular momentum show two distinct but related phenomena; spin-symmetry conversion and internal rotation. For both cases the high total angular momentum allows for transitions that would otherwise be forbidden. Molecular body-frame J-localization effects associated with tight energy level-clusters dominate the rovibronic spectra of high symmetry molecules, particularly spherical tops at J>10. ^2 The effects include large and widespread spin-symmetry mixing contrary to conventional wisdom^3 about weak nuclear moments. Such effects are discussed showing how RE surface plots may predict them even at low J. Classical dynamics of axially constrained rotors are approximated by intersecting rotational-energy-surfaces (RES) that have (J-S).B.(J-S) forms in the limit of constraints that do no work. Semi-classical eigensolutions are compared to those found by direct diagonalization. ^1 W.G Hater, in Handbook of Atomic, Molecular and Optical Physics, edited by G.W.F Drake (Springer, Germany 2006) ^2 W. G. Harter, Phys. Rev. A24,192-262(1981). ^3 G. Herzberg, Infrared and Raman Spectra (VanNostrand 1945) pp. 458,463.

  8. The nuclear spin response to intermediate energy protons

    NASA Astrophysics Data System (ADS)

    Baker, F. T.; Bimbot, L.; Castel, B.; Fergerson, R. W.; Glashausser, C.; Green, A.; Hausser, O.; Hicks, K.; Jones, K.; Miller, C. A.; Nanda, S. K.; Smith, R. D.; Vetterli, M.; Wambach, J.; Abegg, R.; Beatty, D.; Cupps, V.; Djalali, C.; Henderson, R.; Jackson, K. P.; Jeppeson, R.; Lisantti, J.; Morlet, M.; Sawafta, R.; Unkelbach, W.; Willis, A.; Yen, S.

    1990-03-01

    Measurements of the spin-flip probability Snn for inclusive inelastic proton scattering around 300 MeV from nuclei between 12C and 90Zr show that an enhanced spin response near 40 MeV excitation at q ∼ 100 MeV/ c is a general feature of nuclear structure. Data for 40Ca at 800 MeV confirm that the enhancement is not a peculiarity of 300 MeV scattering. In addition, measurements in 44Ca up to 75 MeV show that the enhancement cannot be attributed solely to a relatively narrow resonance. Continuum RPA calculations suggest that the enhancement is due to the exhaustion of most S = 0 strength at lower energy and a shift of S = 1 strength to higher energy.

  9. High Spin States in ^24Mg

    NASA Astrophysics Data System (ADS)

    Schwartz, J.; Lister, C. J.; Wuosmaa, A.; Betts, R. R.; Blumenthal, D.; Carpenter, M. P.; Davids, C. N.; Fischer, S. M.; Hackman, G.; Janssens, R. V. F.

    1996-05-01

    The ^12C(^16O,α)^24Mg reaction was used at 51.5MeV to populate high angular momentum states in ^24Mg. Gamma-rays de-exciting high spin states were detected in a 20 detector spectrometer (the AYE-ball) triggered by the ANL Fragment Mass Analyser (FMA). Channel selection, through detection of ^24Mg nuclei with the appropriate time of flight, was excellent. All the known decays from high spin states were seen in a few hours, with the exception of the 5.04 MeV γ-decay of the J^π=9^- state at 16.904 MeV footnote A.E.Smith et al., Phys. Lett. \\underlineB176, (1986)292. which could not be confirmed. The potential of the technique for studying the radiative decay of states with very high spin in light nuclei will be discussed.

  10. Coexistence of perfect spin filtering for entangled electron pairs and high magnetic storage efficiency in one setup.

    PubMed

    Ji, T T; Bu, N; Chen, F J; Tao, Y C; Wang, J

    2016-04-14

    For Entangled electron pairs superconducting spintronics, there exist two drawbacks in existing proposals of generating entangled electron pairs. One is that the two kinds of different spin entangled electron pairs mix with each other. And the other is a low efficiency of entanglement production. Herein, we report the spin entanglement state of the ferromagnetic insulator (FI)/s-wave superconductor/FI structure on a narrow quantum spin Hall insulator strip. It is shown that not only the high production of entangled electron pairs in wider energy range, but also the perfect spin filtering of entangled electron pairs in the context of no highly spin-polarized electrons, can be obtained. Moreover, the currents for the left and right leads in the antiferromagnetic alignment both can be zero, indicating 100% tunnelling magnetoresistance with highly magnetic storage efficiency. Therefore, the spin filtering for entangled electron pairs and magnetic storage with high efficiencies coexist in one setup. The results may be experimentally demonstrated by measuring the tunnelling conductance and the noise power.

  11. The spin-partitioned total position-spread tensor: An application to Heisenberg spin chains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fertitta, Edoardo; Paulus, Beate; El Khatib, Muammar

    2015-12-28

    The spin partition of the Total Position-Spread (TPS) tensor has been performed for one-dimensional Heisenberg chains with open boundary conditions. Both the cases of a ferromagnetic (high-spin) and an anti-ferromagnetic (low-spin) ground-state have been considered. In the case of a low-spin ground-state, the use of alternating magnetic couplings allowed to investigate the effect of spin-pairing. The behavior of the spin-partitioned TPS (SP-TPS) tensor as a function of the number of sites turned to be closely related to the presence of an energy gap between the ground-state and the first excited-state at the thermodynamic limit. Indeed, a gapped energy spectrum ismore » associated to a linear growth of the SP-TPS tensor with the number of sites. On the other hand, in gapless situations, the spread presents a faster-than-linear growth, resulting in the divergence of its per-site value. Finally, for the case of a high-spin wave function, an analytical expression of the dependence of the SP-TPS on the number of sites n and the total spin-projection S{sub z} has been derived.« less

  12. Influence of primary fragment excitation energy and spin distributions on fission observables

    NASA Astrophysics Data System (ADS)

    Litaize, Olivier; Thulliez, Loïc; Serot, Olivier; Chebboubi, Abdelaziz; Tamagno, Pierre

    2018-03-01

    Fission observables in the case of 252Cf(sf) are investigated by exploring several models involved in the excitation energy sharing and spin-parity assignment between primary fission fragments. In a first step the parameters used in the FIFRELIN Monte Carlo code "reference route" are presented: two parameters for the mass dependent temperature ratio law and two constant spin cut-off parameters for light and heavy fragment groups respectively. These parameters determine the initial fragment entry zone in excitation energy and spin-parity (E*, Jπ). They are chosen to reproduce the light and heavy average prompt neutron multiplicities. When these target observables are achieved all other fission observables can be predicted. We show here the influence of input parameters on the saw-tooth curve and we discuss the influence of a mass and energy-dependent spin cut-off model on gamma-rays related fission observables. The part of the model involving level densities, neutron transmission coefficients or photon strength functions remains unchanged.

  13. Spin-to-charge conversion for hot photoexcited electrons in germanium

    NASA Astrophysics Data System (ADS)

    Zucchetti, C.; Bottegoni, F.; Isella, G.; Finazzi, M.; Rortais, F.; Vergnaud, C.; Widiez, J.; Jamet, M.; Ciccacci, F.

    2018-03-01

    We investigate the spin-to-charge conversion in highly doped germanium as a function of the kinetic energy of the carriers. Spin-polarized electrons are optically generated in the Ge conduction band, and their kinetic energy is varied by changing the photon energy in the 0.7-2.2 eV range. The spin detection scheme relies on spin-dependent scattering inside Ge, which yields an inverse spin-Hall electromotive force. The detected signal shows a sign inversion for h ν ≈1 eV which can be related to an interplay between the spin relaxation of high-energy electrons photoexcited from the heavy-hole and light-hole bands and that of low-energy electrons promoted from the split-off band. The inferred spin-Hall angle increases by about 3 orders of magnitude within the analyzed photon energy range. Since, for increasing photon energies, the phonon contribution to spin scattering exceeds that of impurities, our result indicates that the spin-to-charge conversion mediated by phonons is much more efficient than the one mediated by impurities.

  14. Maximal Rashba-like spin splitting via kinetic-energy-coupled inversion-symmetry breaking.

    PubMed

    Sunko, Veronika; Rosner, H; Kushwaha, P; Khim, S; Mazzola, F; Bawden, L; Clark, O J; Riley, J M; Kasinathan, D; Haverkort, M W; Kim, T K; Hoesch, M; Fujii, J; Vobornik, I; Mackenzie, A P; King, P D C

    2017-09-27

    Engineering and enhancing the breaking of inversion symmetry in solids-that is, allowing electrons to differentiate between 'up' and 'down'-is a key goal in condensed-matter physics and materials science because it can be used to stabilize states that are of fundamental interest and also have potential practical applications. Examples include improved ferroelectrics for memory devices and materials that host Majorana zero modes for quantum computing. Although inversion symmetry is naturally broken in several crystalline environments, such as at surfaces and interfaces, maximizing the influence of this effect on the electronic states of interest remains a challenge. Here we present a mechanism for realizing a much larger coupling of inversion-symmetry breaking to itinerant surface electrons than is typically achieved. The key element is a pronounced asymmetry of surface hopping energies-that is, a kinetic-energy-coupled inversion-symmetry breaking, the energy scale of which is a substantial fraction of the bandwidth. Using spin- and angle-resolved photoemission spectroscopy, we demonstrate that such a strong inversion-symmetry breaking, when combined with spin-orbit interactions, can mediate Rashba-like spin splittings that are much larger than would typically be expected. The energy scale of the inversion-symmetry breaking that we achieve is so large that the spin splitting in the CoO 2 - and RhO 2 -derived surface states of delafossite oxides becomes controlled by the full atomic spin-orbit coupling of the 3d and 4d transition metals, resulting in some of the largest known Rashba-like spin splittings. The core structural building blocks that facilitate the bandwidth-scaled inversion-symmetry breaking are common to numerous materials. Our findings therefore provide opportunities for creating spin-textured states and suggest routes to interfacial control of inversion-symmetry breaking in designer heterostructures of oxides and other material classes.

  15. Decoupling a hole spin qubit from the nuclear spins.

    PubMed

    Prechtel, Jonathan H; Kuhlmann, Andreas V; Houel, Julien; Ludwig, Arne; Valentin, Sascha R; Wieck, Andreas D; Warburton, Richard J

    2016-09-01

    A huge effort is underway to develop semiconductor nanostructures as low-noise hosts for qubits. The main source of dephasing of an electron spin qubit in a GaAs-based system is the nuclear spin bath. A hole spin may circumvent the nuclear spin noise. In principle, the nuclear spins can be switched off for a pure heavy-hole spin. In practice, it is unknown to what extent this ideal limit can be achieved. A major hindrance is that p-type devices are often far too noisy. We investigate here a single hole spin in an InGaAs quantum dot embedded in a new generation of low-noise p-type device. We measure the hole Zeeman energy in a transverse magnetic field with 10 neV resolution by dark-state spectroscopy as we create a large transverse nuclear spin polarization. The hole hyperfine interaction is highly anisotropic: the transverse coupling is <1% of the longitudinal coupling. For unpolarized, randomly fluctuating nuclei, the ideal heavy-hole limit is achieved down to nanoelectronvolt energies; equivalently dephasing times up to a microsecond. The combination of large and strong optical dipole makes the single hole spin in a GaAs-based device an attractive quantum platform.

  16. Logical spin-filtering in a triangular network of quantum nanorings with a Rashba spin-orbit interaction

    NASA Astrophysics Data System (ADS)

    Dehghan, E.; Sanavi Khoshnoud, D.; Naeimi, A. S.

    2018-01-01

    The spin-resolved electron transport through a triangular network of quantum nanorings is studied in the presence of Rashba spin-orbit interaction (RSOI) and a magnetic flux using quantum waveguide theory. This study illustrates that, by tuning Rashba constant, magnetic flux and incoming electron energy, the triangular network of quantum rings can act as a perfect logical spin-filtering with high efficiency. By changing in the energy of incoming electron, at a proper value of the Rashba constant and magnetic flux, a reverse in the direction of spin can take place in the triangular network of quantum nanorings. Furthermore, the triangular network of quantum nanorings can be designed as a device and shows several simultaneous spintronic properties such as spin-splitter and spin-inverter. This spin-splitting is dependent on the energy of the incoming electron. Additionally, different polarizations can be achieved in the two outgoing leads from an originally incoming spin state that simulates a Stern-Gerlach apparatus.

  17. Collisional Penrose process with spinning particles

    NASA Astrophysics Data System (ADS)

    Mukherjee, Sajal

    2018-03-01

    In this article, we have investigated collisional Penrose process (CPP) using spinning particles in a Kerr spacetime. Recent studies have shown that the collision between two spinning particles can produce a significantly high energy in the center of mass frame. Here, we explicitly compute the energy extraction and efficiency as measured by an observer at infinity. We consider the colliding particles as well as the escaping particles may contain spins. It has been shown that the energy extraction is larger than the non-spinning case and also their possibility to escape to infinity is wider than the geodesics.

  18. Realization of Rectangular Artificial Spin Ice and Direct Observation of High Energy Topology.

    PubMed

    Ribeiro, I R B; Nascimento, F S; Ferreira, S O; Moura-Melo, W A; Costa, C A R; Borme, J; Freitas, P P; Wysin, G M; de Araujo, C I L; Pereira, A R

    2017-10-25

    In this work, we have constructed and experimentally investigated frustrated arrays of dipoles forming two-dimensional artificial spin ices with different lattice parameters (rectangular arrays with horizontal and vertical lattice spacings denoted by a and b respectively). Arrays with three different aspect ratios γ = a/b = [Formula: see text], [Formula: see text] and [Formula: see text] are studied. Theoretical calculations of low-energy demagnetized configurations for these same parameters are also presented. Experimental data for demagnetized samples confirm most of the theoretical results. However, the highest energy topology (doubly-charged monopoles) does not emerge in our theoretical model, while they are seen in experiments for large enough γ. Our results also insinuate that the string tension connecting two magnetic monopoles in a pair vanishes in rectangular lattices with a critical ratio γ = γ c  = [Formula: see text], supporting previous theoretical predictions.

  19. Observation of high-spin bands with large moments of inertia in Xe 124

    DOE PAGES

    Nag, Somnath; Singh, A. K.; Hagemann, G. B.; ...

    2016-09-07

    In this paper, high-spin states in 124Xe have been populated using the 80Se( 48Ca, 4n) reaction at a beam energy of 207 MeV and high-multiplicity, γ-ray coincidence events were measured using the Gammasphere spectrometer. Six high-spin rotational bands with moments of inertia similar to those observed in neighboring nuclei have been observed. The experimental results are compared with calculations within the framework of the Cranked Nilsson-Strutinsky model. Finally, it is suggested that the configurations of the bands involve excitations of protons across the Z = 50 shell gap coupled to neutrons within the N = 50 - 82 shell ormore » excited across the N = 82 shell closure.« less

  20. High-efficiency Resonant rf Spin Rotator with Broad Phase Space Acceptance for Pulsed Polarized Cold Neutron Beams

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Seo, P. -N.; Barron-Palos, L.; Bowman, J. D.

    2008-01-01

    High precision fundamental neutron physics experiments have been proposed for the intense pulsed spallation neutron beams at JSNS, LANSCE, and SNS to test the standard model and search for new physics. Certain systematic effects in some of these experiments have to be controlled at the few ppb level. The NPD Gamma experiment, a search for the small parity-violating {gamma}-ray asymmetry A{sub Y} in polarized cold neutron capture on parahydrogen, is one example. For the NPD Gamma experiment we developed a radio-frequency resonant spin rotator to reverse the neutron polarization in a 9.5 cm x 9.5 cm pulsed cold neutron beammore » with high efficiency over a broad cold neutron energy range. The effect of the spin reversal by the rotator on the neutron beam phase space is compared qualitatively to rf neutron spin flippers based on adiabatic fast passage. We discuss the design of the spin rotator and describe two types of transmission-based neutron spin-flip efficiency measurements where the neutron beam was both polarized and analyzed by optically polarized {sup 3}He neutron spin filters. The efficiency of the spin rotator was measured at LANSCE to be 98.8 {+-} 0.5% for neutron energies from 3 to 20 meV over the full phase space of the beam. Systematic effects that the rf spin rotator introduces to the NPD Gamma experiment are considered.« less

  1. Equation-of-motion coupled cluster method for high spin double electron attachment calculations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Musiał, Monika, E-mail: musial@ich.us.edu.pl; Lupa, Łukasz; Kucharski, Stanisław A.

    The new formulation of the equation-of-motion (EOM) coupled cluster (CC) approach applicable to the calculations of the double electron attachment (DEA) states for the high spin components is proposed. The new EOM equations are derived for the high spin triplet and quintet states. In both cases the new equations are easier to solve but the substantial simplification is observed in the case of quintets. Out of 21 diagrammatic terms contributing to the standard DEA-EOM-CCSDT equations for the R{sub 2} and R{sub 3} amplitudes only four terms survive contributing to the R{sub 3} part. The implemented method has been applied tomore » the calculations of the excited states (singlets, triplets, and quintets) energies of the carbon and silicon atoms and potential energy curves for selected states of the Na{sub 2} (triplets) and B{sub 2} (quintets) molecules.« less

  2. Polarized targets in high energy physics

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cates, G.D. Jr.

    1994-12-01

    Various approaches are discussed for producing polarized nuclear targets for high energy physics experiments. As a unifying theme, examples are drawn from experiments to measure spin dependent structure functions of nucleons in deep inelastic scattering. This single physics goal has, over roughly two decades, been a driving force in advances in target technology. Actual or planned approaches have included solid targets polarized by dynamic nuclear polarization (DNP), several types of internal targets for use in storage rings, and gaseous {sup 3}He targets polarized by spin-exchange optical pumping. This last approach is the type of target adopted for SLAC E-142, anmore » experiment to measure the spin structure function of the neutron, and is described in detail.« less

  3. High spin cycles: topping the spin record for a single molecule verging on quantum criticality

    NASA Astrophysics Data System (ADS)

    Baniodeh, Amer; Magnani, Nicola; Lan, Yanhua; Buth, Gernot; Anson, Christopher E.; Richter, Johannes; Affronte, Marco; Schnack, Jürgen; Powell, Annie K.

    2018-03-01

    The cyclisation of a short chain into a ring provides fascinating scenarios in terms of transforming a finite array of spins into a quasi-infinite structure. If frustration is present, theory predicts interesting quantum critical points, where the ground state and thus low-temperature properties of a material change drastically upon even a small variation of appropriate external parameters. This can be visualised as achieving a very high and pointed summit where the way down has an infinity of possibilities, which by any parameter change will be rapidly chosen, in order to reach the final ground state. Here we report a mixed 3d/4f cyclic coordination cluster that turns out to be very near or even at such a quantum critical point. It has a ground state spin of S = 60, the largest ever observed for a molecule (120 times that of a single electron). [Fe10Gd10(Me-tea)10(Me-teaH)10(NO3)10].20MeCN forms a nano-torus with alternating gadolinium and iron ions with a nearest neighbour Fe-Gd coupling and a frustrating next-nearest neighbour Fe-Fe coupling. Such a spin arrangement corresponds to a cyclic delta or saw-tooth chain, which can exhibit unusual frustration effects. In the present case, the quantum critical point bears a `flatland' of tens of thousands of energetically degenerate states between which transitions are possible at no energy costs with profound caloric consequences. Entropy-wise the energy flatland translates into the pointed summit overlooking the entropy landscape. Going downhill several target states can be reached depending on the applied physical procedure which offers new prospects for addressability.

  4. Control of spin ambiguity during reorientation of an energy dissipating body

    NASA Technical Reports Server (NTRS)

    Kaplan, M. H.; Cenker, R. J.

    1973-01-01

    A quasi-rigid body initially spinning about its minor principal axis and experiencing energy dissipation will enter a tumbling mode and eventually reorient itself such that stable spin about its major principal axis is achieved. However, in this final state the body may be spinning in a positive or negative sense with respect to its major axis and aligned in a positive or negative sense with the inertially fixed angular momentum vector. This ambiguity can be controlled only through an active system. The associated dynamical formulations and simulations of uncontrolled reorientations are presented. Three control schemes are discussed and results offered for specific examples. These schemes include displacement of internal masses, spinning up of internal inertia, and reaction jets, all of which have demonstrated the ability to control spin ambiguity.

  5. Hierarchy of low-energy models of the electronic structure of cuprate HTSCs: The role of long-range spin-correlated hops

    NASA Astrophysics Data System (ADS)

    Val'kov, V. V.; Mitskan, V. A.; Dzebisashvili, D. M.; Barabanov, A. F.

    2018-02-01

    It is shown that for the three-band Emery p-d-model that reflects the real structure of the CuO2-plane of high-temperature superconductors in the regime of strong electron correlations, it is possible to carry out a sequence of reductions to the effective models reproducing low-energy features of elementary excitation spectrum and revealing the spin-polaron nature of the Fermi quasiparticles. The first reduction leads to the spin-fermion model in which the subsystem of spin moments, coupled by the exchange interaction and localized on copper ions, strongly interacts with oxygen holes. The second reduction deals with the transformation from the spin-fermion model to the φ-d-exchange model. An important feature of this transformation is the large energy of the φ-d-exchange coupling, which leads to the formation of spin polarons. The use of this fact allows us to carry out the third reduction, resulting in the t ˜-J˜ *-I -model. Its distinctive feature is the importance of spin-correlated hops as compared to the role of such processes in the commonly used t-J*-model derived from the Hubbard model. Based on the comparative analysis of the spectrum of Fermi excitations calculated for the obtained effective models of the CuO2-plane of high-temperature superconductors, the important role of the usually ignored long-range spin-correlated hops is determined.

  6. Maximal Rashba-like spin splitting via kinetic-energy-coupled inversion-symmetry breaking

    NASA Astrophysics Data System (ADS)

    Sunko, Veronika; Rosner, H.; Kushwaha, P.; Khim, S.; Mazzola, F.; Bawden, L.; Clark, O. J.; Riley, J. M.; Kasinathan, D.; Haverkort, M. W.; Kim, T. K.; Hoesch, M.; Fujii, J.; Vobornik, I.; MacKenzie, A. P.; King, P. D. C.

    2017-09-01

    Engineering and enhancing the breaking of inversion symmetry in solids—that is, allowing electrons to differentiate between ‘up’ and ‘down’—is a key goal in condensed-matter physics and materials science because it can be used to stabilize states that are of fundamental interest and also have potential practical applications. Examples include improved ferroelectrics for memory devices and materials that host Majorana zero modes for quantum computing. Although inversion symmetry is naturally broken in several crystalline environments, such as at surfaces and interfaces, maximizing the influence of this effect on the electronic states of interest remains a challenge. Here we present a mechanism for realizing a much larger coupling of inversion-symmetry breaking to itinerant surface electrons than is typically achieved. The key element is a pronounced asymmetry of surface hopping energies—that is, a kinetic-energy-coupled inversion-symmetry breaking, the energy scale of which is a substantial fraction of the bandwidth. Using spin- and angle-resolved photoemission spectroscopy, we demonstrate that such a strong inversion-symmetry breaking, when combined with spin-orbit interactions, can mediate Rashba-like spin splittings that are much larger than would typically be expected. The energy scale of the inversion-symmetry breaking that we achieve is so large that the spin splitting in the CoO2- and RhO2-derived surface states of delafossite oxides becomes controlled by the full atomic spin-orbit coupling of the 3d and 4d transition metals, resulting in some of the largest known Rashba-like spin splittings. The core structural building blocks that facilitate the bandwidth-scaled inversion-symmetry breaking are common to numerous materials. Our findings therefore provide opportunities for creating spin-textured states and suggest routes to interfacial control of inversion-symmetry breaking in designer heterostructures of oxides and other material classes.

  7. Free-energy analysis of spin models on hyperbolic lattice geometries.

    PubMed

    Serina, Marcel; Genzor, Jozef; Lee, Yoju; Gendiar, Andrej

    2016-04-01

    We investigate relations between spatial properties of the free energy and the radius of Gaussian curvature of the underlying curved lattice geometries. For this purpose we derive recurrence relations for the analysis of the free energy normalized per lattice site of various multistate spin models in the thermal equilibrium on distinct non-Euclidean surface lattices of the infinite sizes. Whereas the free energy is calculated numerically by means of the corner transfer matrix renormalization group algorithm, the radius of curvature has an analytic expression. Two tasks are considered in this work. First, we search for such a lattice geometry, which minimizes the free energy per site. We conjecture that the only Euclidean flat geometry results in the minimal free energy per site regardless of the spin model. Second, the relations among the free energy, the radius of curvature, and the phase transition temperatures are analyzed. We found out that both the free energy and the phase transition temperature inherit the structure of the lattice geometry and asymptotically approach the profile of the Gaussian radius of curvature. This achievement opens new perspectives in the AdS-CFT correspondence theories.

  8. Nutation and precession control of the High Energy Solar Physics (HESP) satellite

    NASA Technical Reports Server (NTRS)

    Jayaraman, C. P.; Robertson, B. P.

    1993-01-01

    The High Energy Solar Physics (HESP) spacecraft is an intermediate class satellite proposed by NASA to study solar high-energy phenomena during the next cycle of high solar activity in the 1998 to 2005 time frame. The HESP spacecraft is a spinning satellite which points to the sun with stringent pointing requirements. The natural dynamics of a spinning satellite includes an undesirable effect: nutation, which is due to the presence of disturbances and offsets of the spin axis from the angular momentum vector. The proposed Attitude Control System (ACS) attenuates nutation with reaction wheels. Precessing the spacecraft to track the sun in the north-south and east-west directions is accomplished with the use of torques from magnetic torquer bars. In this paper, the basic dynamics of a spinning spacecraft are derived, control algorithms to meet HESP science requirements are discussed and simulation results to demonstrate feasibility of the ACS concept are presented.

  9. Coaxial wet-spun yarn supercapacitors for high-energy density and safe wearable electronics

    NASA Astrophysics Data System (ADS)

    Kou, Liang; Huang, Tieqi; Zheng, Bingna; Han, Yi; Zhao, Xiaoli; Gopalsamy, Karthikeyan; Sun, Haiyan; Gao, Chao

    2014-05-01

    Yarn supercapacitors have great potential in future portable and wearable electronics because of their tiny volume, flexibility and weavability. However, low-energy density limits their development in the area of wearable high-energy density devices. How to enhance their energy densities while retaining their high-power densities is a critical challenge for yarn supercapacitor development. Here we propose a coaxial wet-spinning assembly approach to continuously spin polyelectrolyte-wrapped graphene/carbon nanotube core-sheath fibres, which are used directly as safe electrodes to assembly two-ply yarn supercapacitors. The yarn supercapacitors using liquid and solid electrolytes show ultra-high capacitances of 269 and 177 mF cm-2 and energy densities of 5.91 and 3.84 μWh cm-2, respectively. A cloth supercapacitor superior to commercial capacitor is further interwoven from two individual 40-cm-long coaxial fibres. The combination of scalable coaxial wet-spinning technology and excellent performance of yarn supercapacitors paves the way to wearable and safe electronics.

  10. Coaxial wet-spun yarn supercapacitors for high-energy density and safe wearable electronics

    PubMed Central

    Kou, Liang; Huang, Tieqi; Zheng, Bingna; Han, Yi; Zhao, Xiaoli; Gopalsamy, Karthikeyan; Sun, Haiyan; Gao, Chao

    2014-01-01

    Yarn supercapacitors have great potential in future portable and wearable electronics because of their tiny volume, flexibility and weavability. However, low-energy density limits their development in the area of wearable high-energy density devices. How to enhance their energy densities while retaining their high-power densities is a critical challenge for yarn supercapacitor development. Here we propose a coaxial wet-spinning assembly approach to continuously spin polyelectrolyte-wrapped graphene/carbon nanotube core-sheath fibres, which are used directly as safe electrodes to assembly two-ply yarn supercapacitors. The yarn supercapacitors using liquid and solid electrolytes show ultra-high capacitances of 269 and 177 mF cm−2 and energy densities of 5.91 and 3.84 μWh cm−2, respectively. A cloth supercapacitor superior to commercial capacitor is further interwoven from two individual 40-cm-long coaxial fibres. The combination of scalable coaxial wet-spinning technology and excellent performance of yarn supercapacitors paves the way to wearable and safe electronics. PMID:24786366

  11. Rolling friction and energy dissipation in a spinning disc

    PubMed Central

    Ma, Daolin; Liu, Caishan; Zhao, Zhen; Zhang, Hongjian

    2014-01-01

    This paper presents the results of both experimental and theoretical investigations for the dynamics of a steel disc spinning on a horizontal rough surface. With a pair of high-speed cameras, a stereoscopic vision method is adopted to perform omnidirectional measurements for the temporal evolution of the disc's motion. The experiment data allow us to detail the dynamics of the disc, and consequently to quantify its energy. From our experimental observations, it is confirmed that rolling friction is a primary factor responsible for the dissipation of the energy. Furthermore, a mathematical model, in which the rolling friction is characterized by a resistance torque proportional to the square of precession rate, is also proposed. By employing the model, we perform qualitative analysis and numerical simulations. Both of them provide results that precisely agree with our experimental findings. PMID:25197246

  12. Widespread spin polarization effects in photoemission from topological insulators

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jozwiak, C.; Chen, Y. L.; Fedorov, A. V.

    2011-06-22

    High-resolution spin- and angle-resolved photoemission spectroscopy (spin-ARPES) was performed on the three-dimensional topological insulator Bi{sub 2}Se{sub 3} using a recently developed high-efficiency spectrometer. The topological surface state's helical spin structure is observed, in agreement with theoretical prediction. Spin textures of both chiralities, at energies above and below the Dirac point, are observed, and the spin structure is found to persist at room temperature. The measurements reveal additional unexpected spin polarization effects, which also originate from the spin-orbit interaction, but are well differentiated from topological physics by contrasting momentum and photon energy and polarization dependencies. These observations demonstrate significant deviations ofmore » photoelectron and quasiparticle spin polarizations. Our findings illustrate the inherent complexity of spin-resolved ARPES and demonstrate key considerations for interpreting experimental results.« less

  13. High Energy Scattering in the AdS/CFT Correspondence

    NASA Astrophysics Data System (ADS)

    Penedones, Joao

    2007-12-01

    This work explores the celebrated AdS/CFT correspondence in the regime of high energy scattering in Anti--de Sitter (AdS) spacetime. In particular, we develop the eikonal approximation to high energy scattering in AdS and explore its consequences for the dual Conformal Field Theory (CFT). Using position space Feynman rules, we rederive the eikonal approximation for high energy scattering in flat space. Following this intuitive position space perspective, we then generalize the eikonal approximation for high energy scattering in AdS and other spacetimes. Remarkably, we are able to resum, in terms of a generalized phase shift, ladder and cross ladder Witten diagrams associated to the exchange of an AdS spin j field, to all orders in the coupling constant. By the AdS/CFT correspondence, the eikonal amplitude in AdS is related to the four point function of CFT primary operators in the regime of large 't Hooft coupling, including all terms of the 1/N expansion. We then show that the eikonal amplitude determines the behavior of the CFT four point function for small values of the cross ratios in a Lorentzian regime and that this controls its high spin and dimension conformal partial wave decomposition. These results allow us to determine the anomalous dimension of high spin and dimension double trace primary operators, by relating it to the AdS eikonal phase shift. Finally we find that, at large energies and large impact parameters in AdS, the gravitational interaction dominates all other interactions, as in flat space. Therefore, the anomalous dimension of double trace operators, associated to graviton exchange in AdS, yields a universal prediction for CFT's with AdS gravitational duals.

  14. Relativistic fluid dynamics with spin

    NASA Astrophysics Data System (ADS)

    Florkowski, Wojciech; Friman, Bengt; Jaiswal, Amaresh; Speranza, Enrico

    2018-04-01

    Using the conservation laws for charge, energy, momentum, and angular momentum, we derive hydrodynamic equations for the charge density, local temperature, and fluid velocity, as well as for the polarization tensor, starting from local equilibrium distribution functions for particles and antiparticles with spin 1/2. The resulting set of differential equations extends the standard picture of perfect-fluid hydrodynamics with a conserved entropy current in a minimal way. This framework can be used in space-time analyses of the evolution of spin and polarization in various physical systems including high-energy nuclear collisions. We demonstrate that a stationary vortex, which exhibits vorticity-spin alignment, corresponds to a special solution of the spin-hydrodynamical equations.

  15. Highly retrievable spin-wave-photon entanglement source.

    PubMed

    Yang, Sheng-Jun; Wang, Xu-Jie; Li, Jun; Rui, Jun; Bao, Xiao-Hui; Pan, Jian-Wei

    2015-05-29

    Entanglement between a single photon and a quantum memory forms the building blocks for a quantum repeater and quantum network. Previous entanglement sources are typically with low retrieval efficiency, which limits future larger-scale applications. Here, we report a source of highly retrievable spin-wave-photon entanglement. Polarization entanglement is created through interaction of a single photon with an ensemble of atoms inside a low-finesse ring cavity. The cavity is engineered to be resonant for dual spin-wave modes, which thus enables efficient retrieval of the spin-wave qubit. An intrinsic retrieval efficiency up to 76(4)% has been observed. Such a highly retrievable atom-photon entanglement source will be very useful in future larger-scale quantum repeater and quantum network applications.

  16. Control of exciton spin statistics through spin polarization in organic optoelectronic devices

    PubMed Central

    Wang, Jianpu; Chepelianskii, Alexei; Gao, Feng; Greenham, Neil C.

    2012-01-01

    Spintronics based on organic semiconductor materials is attractive because of its rich fundamental physics and potential for device applications. Manipulating spins is obviously important for spintronics, and is usually achieved by using magnetic electrodes. Here we show a new approach where spin populations can be controlled primarily by energetics rather than kinetics. We find that exciton spin statistics can be substantially controlled by spin-polarizing carriers after injection using high magnetic fields and low temperatures, where the Zeeman energy is comparable with the thermal energy. By using this method, we demonstrate that singlet exciton formation can be suppressed by up to 53% in organic light-emitting diodes, and the dark conductance of organic photovoltaic devices can be increased by up to 45% due to enhanced formation of triplet charge-transfer states, leading to less recombination to the ground state. PMID:23149736

  17. Velocity of the high-spin low-spin interface inside the thermal hysteresis loop of a spin-crossover crystal, via photothermal control of the interface motion.

    PubMed

    Slimani, Ahmed; Varret, François; Boukheddaden, Kamel; Garrot, Damien; Oubouchou, Hassane; Kaizaki, Sumio

    2013-02-22

    We investigated by optical microscopy the thermal transition of the spin-crossover dinuclear iron(II) compound [(Fe(NCSe)(py)(2))(2)(m-bpypz)]. In a high-quality crystal the high-spin (HS) low-spin (LS) thermal transition took place with a sizable hysteresis, at ~108 K and ~116 K on cooling and heating, respectively, through the growth of a single macroscopic domain with a straight LS and HS interface. The interface orientation was almost constant and its propagation velocity was close to ~6 and 26 μ m s(-1) for the on-cooling and on-heating processes, respectively. We found that the motion of the interface was sensitive to the intensity of the irradiation beam of the microscope, through a photothermal effect. By fine-tuning the intensity we could stop and even reverse the interface motion. This way we stabilized a biphasic state of the crystal, and we followed the spontaneous motion of the interface at different temperatures inside the thermal hysteresis loop. This experiment gives access for the first time to an accurate determination of the equilibrium temperature in the case of thermal hysteresis--which was not accessible by the usual quasistatic investigations. The temperature dependence of the propagation velocity inside the hysteretic interval was revealed to be highly nonlinear, and it was quantitatively reproduced by a dynamical mean-field theory, which made possible an estimate of the macroscopic energy barrier.

  18. High energy radiation from jets and accretion disks near rotating black holes

    NASA Astrophysics Data System (ADS)

    O'Riordan, Michael; Pe'er, Asaf; McKinney, Jonathan C.

    2017-01-01

    We model the low/hard state in X-ray binaries as a magnetically arrested accretion flow, and calculate the resulting radiation using a general-relativistic radiative transport code. Firstly, we investigate the origin of the high-energy emission. We find the following indications of a significant jet contribution at high energies: (i) a pronounced γ-ray peak at ˜ 1023 Hz, (ii) a break in the optical/UV band where the spectrum changes from disk to jet dominated, and (iii) a low-frequency synchrotron peak ≲ 1014 Hz implies that a significant fraction of any observed X-ray and γ-ray emission originates in the jet. Secondly, we investigate the effects of black hole spin on the high-energy emission. We find that the X-ray and γ-ray power depend strongly on spin and inclination angle. Surprisingly, this dependence is not a result of the Blandford-Znajek mechanism, but instead can be understood as a redshift effect. For rapidly rotating black holes, observers with large inclinations see deeper into the hot, dense, highly-magnetized inner regions of the accretion flow. Since the lower frequency emission originates at larger radii, it is not significantly affected by the spin. Therefore, the ratio of the X-ray to near-infrared power is an observational probe of black hole spin.

  19. Driving spin transition at interface: Role of adsorption configurations

    NASA Astrophysics Data System (ADS)

    Zhang, Yachao

    2018-01-01

    A clear insight into the electrical manipulation of molecular spins at interface is crucial to the design of molecule-based spintronic devices. Here we report on the electrically driven spin transition in manganocene physisorbed on a metallic surface in two different adsorption configurations predicted by ab initio techniques, including a Hubbard-U correction at the manganese site and accounting for the long-range van der Waals interactions. We show that the application of an electric field at the interface induces a high-spin to low-spin transition in the flat-lying manganocene, while it could hardly alter the high-spin ground state of the standing-up molecule. This phenomenon cannot be explained by either the molecule-metal charge transfer or the local electron correlation effects. We demonstrate a linear dependence of the intra-molecular spin-state splitting on the energy difference between crystal-field splitting and on-site Coulomb repulsion. After considering the molecule-surface binding energy shifts upon spin transition, we reproduce the obtained spin-state energetics. We find that the configuration-dependent responses of the spin-transition originate from the binding energy shifts instead of the variation of the local ligand field. Through these analyses, we obtain an intuitive understanding of the effects of molecule-surface contact on spin-crossover under electrical bias.

  20. Photon energy dependence of photo-induced inverse spin-Hall effect in Pt/GaAs and Pt/Ge

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Isella, Giovanni, E-mail: giovanni.isella@polimi.it; Bottegoni, Federico; Ferrari, Alberto

    2015-06-08

    We report the photon energy dependence of photo-induced inverse spin Hall effect (ISHE) in Pt/GaAs and Pt/Ge Schottky junctions. The experimental results are compared with a spin drift-diffusion model, which highlights the role played by the different spin lifetime in the two semiconductors, in determining the energy dependence of the ISHE signal detected in the Pt layer. The good qualitative agreement between experiments and modelling indicates that photo-induced ISHE can be used as a tool to characterize spin lifetime in semiconductors.

  1. Material Targets for Scaling All-Spin Logic

    NASA Astrophysics Data System (ADS)

    Manipatruni, Sasikanth; Nikonov, Dmitri E.; Young, Ian A.

    2016-01-01

    All-spin-logic devices are promising candidates to augment and complement beyond-CMOS integrated circuit computing due to nonvolatility, ultralow operating voltages, higher logical efficiency, and high density integration. However, the path to reach lower energy-delay product performance compared to CMOS transistors currently is not clear. We show that scaling and engineering the nanoscale magnetic materials and interfaces is the key to realizing spin-logic devices that can surpass the energy-delay performance of CMOS transistors. With validated stochastic nanomagnetic and vector spin-transport numerical models, we derive the target material and interface properties for the nanomagnets and channels. We identify promising directions for material engineering and discovery focusing on the systematic scaling of magnetic anisotropy (Hk ) and saturation magnetization (Ms ), the use of perpendicular magnetic anisotropy, and the interface spin-mixing conductance of the ferromagnet-spin-channel interface (Gmix ). We provide systematic targets for scaling a spin-logic energy-delay product toward 2 aJ ns, comprehending the stochastic noise for nanomagnets.

  2. Terrestrial black holes as sources of super-high energy radiation

    NASA Astrophysics Data System (ADS)

    Trofimenko, A. P.; Gurin, V. S.

    1993-04-01

    The study proposes small black holes which can be located in the earth's interior as sources of superhigh energy radiation; their origin is not constrained to the big bang. The intensity and spectrum of massless and massive particle radiation due to the Hawking effect for black holes with masses of 10 exp 8 to 10 exp 16 are estimated. The possibility of their detection according to a number of features (high particle energies, thermal energetic spectrum, transientness or an explicit trend to intensity and energy increase, and some expressed direction of emission associated with source localization) is explored. The rates of the radiation of massless particles with spin-1/2 and with spin-1 are illustrated in graphic form.

  3. Inevitable inflation in Einstein-Cartan theory with improved energy-momentum tensor with spin

    NASA Technical Reports Server (NTRS)

    Fennelly, A. J.; Bradas, James C.; Smalley, Larry L.

    1988-01-01

    Generalized, or power-law, inflation is shown to necessarily exist for a simple, anisotropic, (Bianchi Type-1) cosmology in the Einstein-Cartan gravitational theory with the Ray-Smalley improved energy momentum tensor with spin. Formal solution of the EC field equations with the fluid equations of motion explicitly shows inflation caused by the RS spin angular kinetic energy density. Shear is not effective in preventing inflation in the ECRS model. The relation between fluid vorticity, torsion, reference axis rotation, and shear ellipsoid precession shows through clearly.

  4. Mildly Recycled Pulsars at High-Energies

    NASA Astrophysics Data System (ADS)

    Pellizzoni, A.

    2011-08-01

    Mildly recyled pulsars (MRP), conventionally defined as neutron star having spin period in the 20-100 ms range and surface magnetic field <1011 Gauss, probably rise from binary systems (disrupted or not) with an intermediate or an high mass companion. Despite their relatively low spin-down energies compared to the ``fully'' recycled millisecond pulsars (arising from common low mass X-ray binaries), nearby MRPs can be detected by deep X-ray observations and by timing analysis of the very long data span provided by gamma-ray space detectors. The discovery of peculiar timing and spectral properties, possibly transitional, of the MRPs can be of the utmost importance to link different classes of neutron stars and study their evolution.

  5. Low-cost high-resolution fast spin-echo MR of acoustic schwannoma: an alternative to enhanced conventional spin-echo MR?

    PubMed

    Allen, R W; Harnsberger, H R; Shelton, C; King, B; Bell, D A; Miller, R; Parkin, J L; Apfelbaum, R I; Parker, D

    1996-08-01

    To determine whether unenhanced high-resolution T2-weighted fast spin-echo MR imaging provides an acceptable and less expensive alternative to contrast-enhanced conventional T1-weighted spin-echo MR techniques in the diagnosis of acoustic schwannoma. We reviewed in a blinded fashion the records of 25 patients with pathologically documented acoustic schwannoma and of 25 control subjects, all of whom had undergone both enhanced conventional spin-echo MR imaging and unenhanced fast spin-echo MR imaging of the cerebellopontine angle/internal auditory canal region. The patients were imaged with the use of a quadrature head receiver coil for the conventional spin-echo sequences and dual 3-inch phased-array receiver coils for the fast spin-echo sequences. The size of the acoustic schwannomas ranged from 2 to 40 mm in maximum dimension. The mean maximum diameter was 12 mm, and 12 neoplasms were less than 10 mm in diameter. Acoustic schwannoma was correctly diagnosed on 98% of the fast spin-echo images and on 100% of the enhanced conventional spin-echo images. Statistical analysis of the data using the kappa coefficient demonstrated agreement beyond chance between these two imaging techniques for the diagnosis of acoustic schwannoma. There is no statistically significant difference in the sensitivity and specificity of unenhanced high-resolution fast spin-echo imaging and enhance T1-weighted conventional spin-echo imaging in the detection of acoustic schwannoma. We believe that the unenhanced high-resolution fast spin-echo technique provides a cost-effective method for the diagnosis of acoustic schwannoma.

  6. Dependence of spin dephasing on initial spin polarization in a high-mobility two-dimensional electron system

    NASA Astrophysics Data System (ADS)

    Stich, D.; Zhou, J.; Korn, T.; Schulz, R.; Schuh, D.; Wegscheider, W.; Wu, M. W.; Schüller, C.

    2007-11-01

    We have studied the spin dynamics of a high-mobility two-dimensional electron system in a GaAs/Al0.3Ga0.7As single quantum well by time-resolved Faraday rotation and time-resolved Kerr rotation in dependence on the initial degree of spin polarization, P , of the electrons. By increasing the initial spin polarization from the low- P regime to a significant P of several percent, we find that the spin dephasing time, T2* , increases from about 20to200ps . Moreover, T2* increases with temperature at small spin polarization but decreases with temperature at large spin polarization. All these features are in good agreement with theoretical predictions by Weng and Wu [Phys. Rev. B 68, 075312 (2003)]. Measurements as a function of spin polarization at fixed electron density are performed to further confirm the theory. A fully microscopic calculation is performed by setting up and numerically solving the kinetic spin Bloch equations, including the D’yakonov-Perel’ and the Bir-Aronov-Pikus mechanisms, with all the scattering explicitly included. We reproduce all principal features of the experiments, i.e., a dramatic decrease of spin dephasing with increasing P and the temperature dependences at different spin polarizations.

  7. Spin stability of sounding rocket secondary payloads following high velocity ejections

    NASA Astrophysics Data System (ADS)

    Nelson, Weston M.

    The Auroral Spatial Structures Probe (ASSP) mission is a sounding rocket mission studying solar energy input to space weather. ASSP requires the high velocity ejection (up to 50 m/s) of 6 secondary payloads, spin stabilized perpendicular to the ejection velocity. The proposed scientific instrumentation depends on a high degree of spin stability, requiring a maximum coning angle of less than 5°. It also requires that the spin axis be aligned within 25° of the local magnetic field lines. The maximum velocities of current ejection methods are typically less than 10m/s, and often produce coning angles in excess of 20°. Because of this they do not meet the ASSP mission requirements. To meet these requirements a new ejection method is being developed by NASA Wallops Flight Facility. Success of the technique in meeting coning angle and B-field alignment requirements is evaluated herein by modeling secondary payload dynamic behavior using a 6-DOF dynamic simulation employing state space integration written in MATLAB. Simulation results showed that secondary payload mass balancing is the most important factor in meeting stability requirements. Secondary mass payload properties will be measured using an inverted torsion pendulum. If moment of inertia measurement errors can be reduced to 0.5%, it is possible to achieve mean coning and B-field alignment angles of 2.16° and 2.71°, respectively.

  8. In-Beam Studies of High Spin States in Mercury -182 and MERCURY-184

    NASA Astrophysics Data System (ADS)

    Bindra, Kanwarjit Singh

    The high spin states in ^{182 }Hg were studied by using the reaction ^{154}Gd(^{32}S, 4n) at the Holifield Heavy Ion Research Facility. In addition, the in-beam gamma-rays in ^{183}Hg were identified for the first time using the reaction ^{155}Gd(^{32}S, 4n) at the Argonne BGO-FMA facility. Five new bands were observed for the first time in ^{182}Hg by studying the gamma-gamma coincidence relationships. The spins and parities of the nuclear levels were assigned on the basis of the measured ratios of directional correlations for oriented nuclei (DCO ratios). Shape co-existence similar to that observed in ^{184{-}186}Hg was established. The well deformed prolate band was extended to a state with tentative spin (20^+). The 2^+ state of the prolate band was identified at an energy of 548.6 keV which is higher in energy than in ^{184}Hg. A two parameter band mixing calculation yielded an interaction strength of 87 keV between the prolate 2^+ and the oblate 2^+ states. Four of the five new bands were found to be similar in behavior to ones seen in ^{184}Hg. An attempt was made to study the behavior of some of these bands at high spins by analyzing their kinematic and dynamic moments of inertia. The gamma-ray transitions in ^{183}Hg were identified from fragment-gamma and gamma-gamma coincidence measurements. A total of five bands of levels were identified and the spins and parities of the levels were assigned by comparing the level scheme of ^{138 }Hg obtained with that of ^ {185}Hg established previously. The interpretation of these bands in terms of associated quasi-particle configurations also relies on noted similarities with the structure of ^{185}Hg. Shape co-existence was established in ^{183}Hg as a result of this study. Two of the bands associated with the (624) 9/2^+ orbital were found to exhibit signature splitting, as expected for i _{13/2} excitations built on the prolate shape with moderate deformation. Two other bands which do not show signature splitting

  9. Joule heating and spin-transfer torque investigated on the atomic scale using a spin-polarized scanning tunneling microscope.

    PubMed

    Krause, S; Herzog, G; Schlenhoff, A; Sonntag, A; Wiesendanger, R

    2011-10-28

    The influence of a high spin-polarized tunnel current onto the switching behavior of a superparamagnetic nanoisland on a nonmagnetic substrate is investigated by means of spin-polarized scanning tunneling microscopy. A detailed lifetime analysis allows for a quantification of the effective temperature rise of the nanoisland and the modification of the activation energy barrier for magnetization reversal, thereby using the nanoisland as a local thermometer and spin-transfer torque analyzer. Both the Joule heating and spin-transfer torque are found to scale linearly with the tunnel current. The results are compared to experiments performed on lithographically fabricated magneto-tunnel junctions, revealing a very high spin-transfer torque switching efficiency in our experiments.

  10. Iron spin transitions in the lower mantle

    NASA Astrophysics Data System (ADS)

    McCammon, C.; Dubrovinsky, L.; Potapkin, V.; Glazyrin, K.; Kantor, A.; Kupenko, I.; Prescher, C.; Sinmyo, R.; Smirnov, G.; Chumakov, A.; Rüffer, R.

    2012-04-01

    Iron has the ability to adopt different electronic configurations (spin states), which can significantly influence mantle properties and dynamics. It is now generally accepted as a result of studies over the past decade that ferrous iron in (Mg,Fe)O undergoes a high-spin to low-spin transition in the mid-part of the lower mantle; however results on (Mg,Fe)(Si,Al)O3 perovskite, the dominant phase of the lower mantle, remain controversial. Identifying spin transitions in (Mg,Fe)(Si,Al)O3 perovskite presents a significant challenge. X-ray emission spectroscopy provides information on the bulk spin number, but cannot separate individual contributions. Nuclear forward scattering measures hyperfine interactions, but is not well suited to complex materials due to the non-uniqueness of fitting models. Energy-domain Mössbauer spectroscopy generally enables an unambiguous resolution of all hyperfine parameters which can be used to infer spin states; however high pressure measurements using conventional radioactive point sources require extremely long counting times. To solve this problem, we have developed an energy-domain synchrotron Mössbauer source that enables rapid measurement of spectra under extreme conditions (both high pressure and high temperature) with a quality generally sufficient to unambiguously deconvolute even highly complex spectra. We have used the newly developed method to measure high quality Mössbauer spectra of different compositions of (Mg,Fe)O and (Mg,Fe)(Si,Al)O3 perovskite at pressures up to 122 GPa and temperatures up to 2400 K. Experiments were carried out at the European Synchrotron Radiation Facility on the nuclear resonance beamline ID18 equipped with a portable laser heating system for diamond anvil cells. Our results confirm previous observations for (Mg,Fe)O that show a broad spin crossover region at high pressures and high temperatures, and show unambiguously that ferric iron in (Mg,Fe)(Si,Al)O3 perovskite remains in the high-spin state

  11. Entangling atomic spins with a Rydberg-dressed spin-flip blockade

    DOE PAGES

    Jau, Y. -Y.; Hankin, A. M.; Keating, T.; ...

    2015-10-05

    Controlling the quantum entanglement between parts of a many-body system is key to unlocking the power of quantum technologies such as quantum computation, high-precision sensing, and the simulation of many-body physics. The spin degrees of freedom of ultracold neutral atoms in their ground electronic state provide a natural platform for such applications thanks to their long coherence times and the ability to control them with magneto-optical fields. However, the creation of strong coherent coupling between spins has been challenging. In this paper, we demonstrate a strong and tunable Rydberg-dressed interaction between spins of individually trapped caesium atoms with energy shiftsmore » of order 1 MHz in units of Planck’s constant. This interaction leads to a ground-state spin-flip blockade, whereby simultaneous hyperfine spin flips of two atoms are inhibited owing to their mutual interaction. Finally, we employ this spin-flip blockade to rapidly produce single-step Bell-state entanglement between two atoms with a fidelity ≥81(2)%.« less

  12. HDice, Highly-Polarized Low-Background Frozen-Spin HD Targets for CLAS experiments at Jefferson Lab

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wei, Xiangdong; Bass, Christopher; D'Angelo, Annalisa

    2012-12-01

    Large, portable frozen-spin HD (Deuterium-Hydride) targets have been developed for studying nucleon spin properties with low backgrounds. Protons and Deuterons in HD are polarized at low temperatures (~10mK) inside a vertical dilution refrigerator (Oxford Kelvinox-1000) containing a high magnetic field (up to 17T). The targets reach a frozen-spin state within a few months, after which they can be cold transferred to an In-Beam Cryostat (IBC). The IBC, a thin-walled dilution refrigerator operating either horizontally or vertically, is use with quasi-4{pi} detector systems in open geometries with minimal energy loss for exiting reaction products in nucleon structure experiments. The first applicationmore » of this advanced target system has been used for Spin Sum Rule experiments at the LEGS facility in Brookhaven National Laboratory. An improved target production and handling system has been developed at Jefferson Lab for experiments with the CEBAF Large Acceptance Spectrometer, CLAS.« less

  13. Measurements of energy behaviour of spin-dependent np—observables over 1.2-3.7 GeV energy region Dubna ``Delta-Sigma'' Experiment

    NASA Astrophysics Data System (ADS)

    Sharov, V. I.; Anischenko, N. G.; Antonenko, V. G.; Averichev, S. A.; Azhgirey, L. S.; Bartenev, V. D.; Bazhanov, N. A.; Belyaev, A. A.; Blinov, N. A.; Borisov, N. S.; Borzakov, S. B.; Borzunov, Yu. T.; Bushuev, Yu. P.; Chernenko, L. P.; Chernykh, E. V.; Chumakov, V. F.; Dolgh, S. A.; Fedorov, A. N.; Fimushkin, V. V.; Finger, M.; Finger, M.; Golovanov, L. B.; Gurevich, G. M.; Guriev, D. K.; Janata, A.; Kirillov, A. D.; Kolomiets, V. G.; Komogorov, E. V.; Kovalenko, A. D.; Kovalev, A. I.; Krasnov, V. A.; Krstonoshich, P.; Kuzmin, E. S.; Kuzmin, N. A.; Ladygin, V. P.; Lazarev, A. B.; Lehar, F.; de Lesquen, A.; Liburg, M. Yu.; Livanov, A. N.; Lukhanin, A. A.; Maniakov, P. K.; Matafonov, V. N.; Matyushevsky, E. A.; Moroz, V. D.; Morozov, A. A.; Neganov, A. B.; Nikolaevsky, G. P.; Nomofilov, A. A.; Panteleev, Tz.; Pillpenko, Yu. K.; Pisarev, I. L.; Plis, Yu. A.; Polunin, Yu. P.; Prokofiev, A. N.; Prytkov, V. Yu.; Rukoyatkin, P. A.; Schedrov, V. A.; Schevelev, O. N.; Shilov, S. N.; Shindin, R. A.; Slunecka, M.; Slunečková, V.; Starikov, A. Yu.; Stoletov, G. D.; Strunov, L. N.; Svetov, A. L.; Usov, Yu. A.; Vasiliev, T.; Volkov, V. I.; Vorobiev, E. I.; Yudin, I. P.; Zaitsev, I. V.; Zhdanov, A. A.; Zhmyrov, V. N.

    2005-01-01

    New accurate data on the neutron-proton spin-dependent total cross section difference Δ σ L( np) at the neutron beam kinetic energies 1.4, 1.7, 1.9 and 2.0 GeV are presented. A number of physical and methodical results on investigation of an elastic np→pn charge exchange process over a few GeV region are also presented. Measurements were carried out at the Synchrophasotron and Nuclotron of the Veksler and Baldin Laboratory of High Energies of the Joint Institute for Nuclear Research.

  14. Quantum spin Hall insulator in halogenated arsenene films with sizable energy gaps

    PubMed Central

    Wang, Dongchao; Chen, Li; Shi, Changmin; Wang, Xiaoli; Cui, Guangliang; Zhang, Pinhua; Chen, Yeqing

    2016-01-01

    Based on first-principles calculations, the electronic and topological properties of halogenated (F-, Cl-, Br- and I-) arsenene are investigated in detail. It is found that the halogenated arsenene sheets show Dirac type characteristic in the absence of spin-orbital coupling (SOC), whereas energy gap will be induced by SOC with the values ranging from 0.194 eV for F-arsenene to 0.255 eV for I-arsenene. Noticeably, these four newly proposed two-dimensional (2D) systems are verified to be quantum spin Hall (QSH) insulators by calculating the edge states with obvious linear cross inside bulk energy gap. It should be pointed out that the large energy gap in these 2D materials consisted of commonly used element is quite promising for practical applications of QSH insulators at room temperature. PMID:27340091

  15. HEAO 1 high-energy X-ray observations of Centaurus X-3

    NASA Technical Reports Server (NTRS)

    Howe, S. K.; Primini, F. A.; Bautz, M. W.; Lang, F. L.; Levine, A. M.; Lewin, W. H. G.

    1983-01-01

    Pulsations of 4.8 sec were detected up to energies above 38 keV by the present High Energy X-ray and Low Energy Gamma-Ray HEAO 1 satellite experiment observations of Cen X-3, and an analysis of the X-ray spectrum as a function of pulse phase indicates that the spectrum hardens during an interval of about 1.2 sec which lags the pulse peak by about 0.6 sec. The results of correlated observations of pulse period and X-ray intensity include (1) the detection of a high intensity state during which the pulse period is on the average increasing, (2) the measurement of comparable high intensities during episodes of both period increase and decrease, (3) the detection of X-ray pulsations at a much reduced level during a period of low intensity, and (4) the detection of a transition between spin-down, and spin-up episodes that coincides with a rapid decrease in X-ray intensity.

  16. Radiation reaction for spinning bodies in effective field theory. II. Spin-spin effects

    NASA Astrophysics Data System (ADS)

    Maia, Natália T.; Galley, Chad R.; Leibovich, Adam K.; Porto, Rafael A.

    2017-10-01

    We compute the leading post-Newtonian (PN) contributions at quadratic order in the spins to the radiation-reaction acceleration and spin evolution for binary systems, entering at four-and-a-half PN order. Our calculation includes the backreaction from finite-size spin effects, which is presented for the first time. The computation is carried out, from first principles, using the effective field theory framework for spinning extended objects. At this order, nonconservative effects in the spin-spin sector are independent of the spin supplementary conditions. A nontrivial consistency check is performed by showing that the energy loss induced by the resulting radiation-reaction force is equivalent to the total emitted power in the far zone. We find that, in contrast to the spin-orbit contributions (reported in a companion paper), the radiation reaction affects the evolution of the spin vectors once spin-spin effects are incorporated.

  17. High-spin spectroscopy of 139Ce

    NASA Astrophysics Data System (ADS)

    Kaim, S.; Petrache, C. M.; Gargano, A.; Itaco, N.; Zerrouki, T.; Leguillon, R.; Astier, A.; Deloncle, I.; Konstantinopoulos, T.; Régis, J. M.; Wilmsen, D.; Melon, B.; Nannini, A.; Ducoin, C.; Guinet, D.; Bhattacharjee, T.

    2015-02-01

    High-spin states in 139Ce have been populated using the 130Te(14C,5 n ) reaction. The level scheme has been extended to higher spins, including a new band of dipole transitions. The parity of several states has been changed from negative to positive, mainly based on the comparison with the level structure of the core nucleus 140Ce and the results of a realistic shell-model calculation. The dipole band is interpreted as a magnetic rotation band with π h11/2 2⊗ν h11/2 -1 configuration built on small deformation axial shape with (ɛ2=0.12 ,γ =0∘) .

  18. Rhenium-phthalocyanine molecular nanojunction with high magnetic anisotropy and high spin filtering efficiency

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, J.; Institute of Nanomaterial and Nanostructure, Changsha University of Science and Technology, Changsha 410114; Hu, J.

    2015-07-20

    Using the density functional and non-equilibrium Green's function approaches, we studied the magnetic anisotropy and spin-filtering properties of various transition metal-Phthalocyanine molecular junctions across two Au electrodes. Our important finding is that the Au-RePc-Au junction has both large spin filtering efficiency (>80%) and large magnetic anisotropy energy, which makes it suitable for device applications. To provide insights for the further experimental work, we discussed the correlation between the transport property, magnetic anisotropy, and wave function features of the RePc molecule, and we also illustrated the possibility of controlling its magnetic state.

  19. Theory of high-resolution tunneling spin transport on a magnetic skyrmion

    NASA Astrophysics Data System (ADS)

    Palotás, Krisztián; Rózsa, Levente; Szunyogh, László

    2018-05-01

    Tunneling spin transport characteristics of a magnetic skyrmion are described theoretically in magnetic scanning tunneling microscopy (STM). The spin-polarized charge current in STM (SP-STM) and tunneling spin transport vector quantities, the longitudinal spin current and the spin transfer torque, are calculated in high spatial resolution within the same theoretical framework. A connection between the conventional charge current SP-STM image contrasts and the magnitudes of the spin transport vectors is demonstrated that enables the estimation of tunneling spin transport properties based on experimentally measured SP-STM images. A considerable tunability of the spin transport vectors by the involved spin polarizations is also highlighted. These possibilities and the combined theory of tunneling charge and vector spin transport pave the way for gaining deep insight into electric-current-induced tunneling spin transport properties in SP-STM and to the related dynamics of complex magnetic textures at surfaces.

  20. Tunnel based spin injection devices for semiconductor spintronics

    NASA Astrophysics Data System (ADS)

    Jiang, Xin

    This dissertation summarizes the work on spin-dependent electron transport and spin injection in tunnel based spintronic devices. In particular, it focuses on a novel three terminal hot electron device combining ferromagnetic metals and semiconductors---the magnetic tunnel transistor (MTT). The MTT has extremely high magnetic field sensitivity and is a useful tool to explore spin-dependent electron transport in metals, semiconductors, and at their interfaces over a wide energy range. In Chap. 1, the basic concept and fabrication of the MTT are discussed. Two types of MTTs, with ferromagnetic single and spin-valve base layers, respectively, are introduced and compared. In the following chapters, the transport properties of the MTT are discussed in detail, including the spin-dependent hot electron attenuation lengths in CoFe and NiFe thin films on GaAs (Chap. 2), the bias voltage dependence of the magneto-current (Chap. 3), the giant magneto-current effect in MTTs with a spin-valve base (Chap. 4), and the influence of non-magnetic seed layers on magneto-electronic properties of MTTs with a Si collector (Chap. 5). Chap. 6 concentrates on electrical injection of spin-polarized electrons into semiconductors, which is an essential ingredient in semiconductor spintronics. Two types of spin injectors are discussed: an MTT injector and a CoFe/MgO tunnel injector. The spin polarization of the injected electron current is detected optically by measuring the circular polarization of electroluminescence from a quantum well light emitting diode. Using an MTT injector a spin polarization of ˜10% is found for injection electron energy of ˜2 eV at 1.4K. This moderate spin polarization is most likely limited by significant electron spin relaxation at high energy. Much higher spin injection efficiency is obtained by using a CoFe/MgO tunnel injector with spin polarization values of ˜50% at 100K. The temperature and bias dependence of the electroluminescence polarization provides

  1. High Spin Isomers and Super Heavy Elements (SHE) Synthesis

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Popescu, Domitian G.

    2010-04-30

    To get closer to the SHE-Island the new radioactive beams are proposed for future fusion reaction. We suggest something different: to use the advantage of High Spin Isomer States, by tacking into account the importance of the G (spin-isospin cupling) suggested by Ripka 1.

  2. Low-Cost High-Energy Potassium Cathode

    DOE PAGES

    Xue, Leigang; Li, Yutao; Gao, Hongcai; ...

    2017-01-26

    Potassium has as rich an abundance as sodium in the earth, but the development of a K-ion battery is lagging behind because of the higher mass and larger ionic size of K + than that of Li + and Na +, which makes it difficult to identify a high-voltage and high-capacity intercalation cathode host. Here we propose a cyanoperovskite K xMnFe(CN) 6 (0 ≤ x ≤ 2) as a potassium cathode: high-spin Mn III/Mn II and low-spin Fe III/Fe II couples have similar energies and exhibit two close plateaus centered at 3.6 V; two active K + per formula unitmore » enable a theoretical specific capacity of 156 mAh g -1; Mn and Fe are the two most-desired transition metals for electrodes because they are cheap and environmental friendly. As a powder prepared by an inexpensive precipitation method, the cathode delivers a specific capacity of 142 mAh g -1. Lastly, the observed voltage, capacity, and its low cost make it competitive in large-scale electricity storage applications.« less

  3. Experimental Flight Characterization of Spin Stabilized Projectiles at High Angle of Attack

    DTIC Science & Technology

    2017-08-07

    ARL-TR-8082 ● AUG 2017 US Army Research Laboratory Experimental Flight Characterization of Spin- Stabilized Projectiles at High ...Experimental Flight Characterization of Spin- Stabilized Projectiles at High Angle of Attack by Frank Fresconi and Ilmars Celmins Weapons and Materials...June 2016–June 2017 4. TITLE AND SUBTITLE Experimental Flight Characterization of Spin-Stabilized Projectiles at High Angle of Attack 5a. CONTRACT

  4. Imaging the Formation of High-Energy Dispersion Anomalies in the Actinide UCoGa5

    NASA Astrophysics Data System (ADS)

    Das, Tanmoy; Durakiewicz, Tomasz; Zhu, Jian-Xin; Joyce, John J.; Sarrao, John L.; Graf, Matthias J.

    2012-10-01

    We use angle-resolved photoemission spectroscopy to image the emergence of substantial dispersion and spectral-weight anomalies in the electronic renormalization of the actinide compound UCoGa5 that was presumed to belong to a conventional Fermi-liquid family. Kinks or abrupt breaks in the slope of the quasiparticle dispersion are detected both at low (approximately 130 meV) and high (approximately 1 eV) binding energies below the Fermi energy, ruling out any significant contribution of phonons. We perform numerical calculations to demonstrate that the anomalies are adequately described by coupling between itinerant fermions and spin fluctuations arising from the particle-hole continuum of the spin-orbit-split 5f states of uranium. These anomalies resemble the “waterfall” phenomenon of the high-temperature copper-oxide superconductors, suggesting that spin fluctuations are a generic route toward multiform electronic phases in correlated materials as different as high-temperature superconductors and actinides.

  5. Absence of high-temperature ballistic transport in the spin-1/2 XXX chain within the grand-canonical ensemble

    NASA Astrophysics Data System (ADS)

    Carmelo, J. M. P.; Prosen, T.

    2017-01-01

    Whether in the thermodynamic limit, vanishing magnetic field h → 0, and nonzero temperature the spin stiffness of the spin-1/2 XXX Heisenberg chain is finite or vanishes within the grand-canonical ensemble remains an unsolved and controversial issue, as different approaches yield contradictory results. Here we provide an upper bound on the stiffness and show that within that ensemble it vanishes for h → 0 in the thermodynamic limit of chain length L → ∞, at high temperatures T → ∞. Our approach uses a representation in terms of the L physical spins 1/2. For all configurations that generate the exact spin-S energy and momentum eigenstates such a configuration involves a number 2S of unpaired spins 1/2 in multiplet configurations and L - 2 S spins 1/2 that are paired within Msp = L / 2 - S spin-singlet pairs. The Bethe-ansatz strings of length n = 1 and n > 1 describe a single unbound spin-singlet pair and a configuration within which n pairs are bound, respectively. In the case of n > 1 pairs this holds both for ideal and deformed strings associated with n complex rapidities with the same real part. The use of such a spin 1/2 representation provides useful physical information on the problem under investigation in contrast to often less controllable numerical studies. Our results provide strong evidence for the absence of ballistic transport in the spin-1/2 XXX Heisenberg chain in the thermodynamic limit, for high temperatures T → ∞, vanishing magnetic field h → 0 and within the grand-canonical ensemble.

  6. Orientation estimation algorithm applied to high-spin projectiles

    NASA Astrophysics Data System (ADS)

    Long, D. F.; Lin, J.; Zhang, X. M.; Li, J.

    2014-06-01

    High-spin projectiles are low cost military weapons. Accurate orientation information is critical to the performance of the high-spin projectiles control system. However, orientation estimators have not been well translated from flight vehicles since they are too expensive, lack launch robustness, do not fit within the allotted space, or are too application specific. This paper presents an orientation estimation algorithm specific for these projectiles. The orientation estimator uses an integrated filter to combine feedback from a three-axis magnetometer, two single-axis gyros and a GPS receiver. As a new feature of this algorithm, the magnetometer feedback estimates roll angular rate of projectile. The algorithm also incorporates online sensor error parameter estimation performed simultaneously with the projectile attitude estimation. The second part of the paper deals with the verification of the proposed orientation algorithm through numerical simulation and experimental tests. Simulations and experiments demonstrate that the orientation estimator can effectively estimate the attitude of high-spin projectiles. Moreover, online sensor calibration significantly enhances the estimation performance of the algorithm.

  7. Direct observation of low energy nuclear spin excitations in HoCrO3 by high resolution neutron spectroscopy.

    PubMed

    Chatterji, T; Jalarvo, N; Kumar, C M N; Xiao, Y; Brückel, Th

    2013-07-17

    We have investigated low energy nuclear spin excitations in the strongly correlated electron compound HoCrO3. We observe clear inelastic peaks at E = 22.18 ± 0.04 μeV in both energy loss and gain sides. The energy of the inelastic peaks remains constant in the temperature range 1.5-40 K at which they are observed. The intensity of the inelastic peak increases at first with increasing temperature and then decreases at higher temperatures. The temperature dependence of the energy and intensity of the inelastic peaks is very unusual compared to that observed in other Nd, Co, V and also simple Ho compounds. Huge quasielastic scattering appears at higher temperatures presumably due to the fluctuating electronic moments of the Ho ions that get increasingly disordered at higher temperatures. The strong quasielastic scattering may also originate in the first Ho crystal-field excitations at about 1.5 meV.

  8. Design and commissioning of an aberration-corrected ultrafast spin-polarized low energy electron microscope with multiple electron sources.

    PubMed

    Wan, Weishi; Yu, Lei; Zhu, Lin; Yang, Xiaodong; Wei, Zheng; Liu, Jefferson Zhe; Feng, Jun; Kunze, Kai; Schaff, Oliver; Tromp, Ruud; Tang, Wen-Xin

    2017-03-01

    We describe the design and commissioning of a novel aberration-corrected low energy electron microscope (AC-LEEM). A third magnetic prism array (MPA) is added to the standard AC-LEEM with two prism arrays, allowing the incorporation of an ultrafast spin-polarized electron source alongside the standard cold field emission electron source, without degrading spatial resolution. The high degree of symmetries of the AC-LEEM are utilized while we design the electron optics of the ultrafast spin-polarized electron source, so as to minimize the deleterious effect of time broadening, while maintaining full control of electron spin. A spatial resolution of 2nm and temporal resolution of 10ps (ps) are expected in the future time resolved aberration-corrected spin-polarized LEEM (TR-AC-SPLEEM). The commissioning of the three-prism AC-LEEM has been successfully finished with the cold field emission source, with a spatial resolution below 2nm. Copyright © 2017 Elsevier B.V. All rights reserved.

  9. Strongly deformed nuclear shapes at ultra-high spin and shape coexistence in N ~ 90 nuclei

    DOE PAGES

    Riley, M. A.; Aguilar, A.; Evans, A. O.; ...

    2009-01-01

    The N ~ 90 region of the nuclear chart has featured prominently as the spectroscopy of nuclei at extreme spin has progressed. This talk will present recent discoveries from investigations of high spin behavior in the N ~ 90 Er, Tm and Yb nuclei utilizing the Gammasphere gamma-ray spectrometer. In particular it will include discussion of the beautiful shape evolution and coexistence observed in these nuclei along with the identification of a remarkable new family of band structures. The latter are very weakly populated rotational sequences with high moment of inertia that bypass the classic terminating configurations near spin 40-50h,more » marking a return to collectivity that extends discrete γ-ray spectroscopy to well over 60h. Establishing the nature of the yrast states in these nuclei beyond the oblate band-termination states has been a major goal for the past two decades. Cranking calculations suggest that these new structures most likely represent stable triaxial strongly deformed bands that lie in a valley of favored shell energy in deformation and particle-number space.« less

  10. Spin-spin relaxation of protons in ferrofluids characterized with a high-Tc superconducting quantum interference device-detected magnetometer in microtesla fields

    NASA Astrophysics Data System (ADS)

    Liao, Shu-Hsien; Liu, Chieh-Wen; Yang, Hong-Chang; Chen, Hsin-Hsien; Chen, Ming-Jye; Chen, Kuen-Lin; Horng, Herng-Er; Wang, Li-Min; Yang, Shieh-Yueh

    2012-06-01

    In this work, the spin-spin relaxation of protons in ferrofluids is characterized using a high-Tc SQUID-based detector in microtesla fields. We found that spin-spin relaxation rate is enhanced in the presence of superparamagnetic nanoparticles. The enhanced relaxation rates are attributed to the microscopic field gradients from magnetic nanoparticles that dephase protons' spins nearby. The relaxation rates decrease when temperatures increase. Additionally, the alternating current magnetic susceptibility was inversely proportional to temperature. Those characteristics explained the enhanced Brownian motion of nanoparticles at high temperatures. Characterizing the relaxation will be helpful for assaying bio-molecules and magnetic resonance imaging in microtesla fields.

  11. Unique spin-polarized transmission effects in a QD ring structure

    NASA Astrophysics Data System (ADS)

    Hedin, Eric; Joe, Yong

    2010-10-01

    Spintronics is an emerging field in which the spin of the electron is used for switching purposes and to communicate information. In order to obtain spin-polarized electron transmission, the Zeeman effect is employed to produce spin-split energy states in quantum dots which are embedded in the arms of a mesoscopic Aharonov-Bohm (AB) ring heterostructure. The Zeeman splitting of the QD energy levels can be induced by a parallel magnetic field, or by a perpendicular field which also produces AB-effects. The combination of these effects on the transmission resonances of the structure is studied analytically and several parameter regimes are identified which produce a high degree of spin-polarized output. Contour and line plots of the weighted spin polarization as a function of electron energy and magnetic field are presented to visualize the degree of spin-polarization. Taking advantage of these unique parameter regimes shows the potential promise of such devices for producing spin-polarized currents.

  12. Spin Transparent Siberian Snake And Spin Rotator With Solenoids

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Koop, I. A.; Otboyev, A. V.; Shatunov, P. Yu.

    2007-06-13

    For intermediate energies of electrons and protons it happens that it is more convenient to construct Siberian snakes and spin rotators using solenoidal fields. Strong coupling caused by the solenoids is suppressed by a number of skew and normal quadrupole magnets. More complicate problem of the spin transparency of such devices also can be solved. This paper gives two examples: spin rotator for electron ring in the eRHIC project and Siberian snake for proton (antiproton) storage ring HESR, which cover whole machines working energy region.

  13. Collins-Soper equation for the energy evolution of transverse-momentum and spin dependent parton distributions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Idilbi, Ahmad; Ji Xiangdong; Yuan Feng

    The hadron-energy evolution (Collins and Soper) equation for all the leading-twist transverse-momentum and spin dependent parton distributions is derived in the impact parameter space. Based on this equation, we present a resummation formulas for the spin dependent structure functions of the semi-inclusive deep-inelastic scattering.

  14. Energy dependence of the spin excitation anisotropy in uniaxial-strained BaFe 1.9Ni 0.1As 2

    DOE PAGES

    Song, Yu; Lu, Xingye; Abernathy, Douglas L.; ...

    2015-11-06

    In this study, we use inelastic neutron scattering to study the temperature and energy dependence of the spin excitation anisotropy in uniaxial-strained electron-doped iron pnictide BaFe 1.9Ni 0.1As 2 near optimal superconductivity (T c = 20K). Our work has been motivated by the observation of in-plane resistivity anisotropy in the paramagnetic tetragonal phase of electron-underdoped iron pnictides under uniaxial pressure, which has been attributed to a spin-driven Ising-nematic state or orbital ordering. Here we show that the spin excitation anisotropy, a signature of the spin-driven Ising-nematic phase, exists for energies below 60 meV in uniaxial-strained BaFe 1.9Ni 0.1As 2. Sincemore » this energy scale is considerably larger than the energy splitting of the d xz and d yz bands of uniaxial-strained Ba(Fe 1–xCox) 2As 2 near optimal superconductivity, spin Ising-nematic correlations are likely the driving force for the resistivity anisotropy and associated electronic nematic correlations.« less

  15. Resonant Tunneling Spin Pump

    NASA Technical Reports Server (NTRS)

    Ting, David Z.

    2007-01-01

    The resonant tunneling spin pump is a proposed semiconductor device that would generate spin-polarized electron currents. The resonant tunneling spin pump would be a purely electrical device in the sense that it would not contain any magnetic material and would not rely on an applied magnetic field. Also, unlike prior sources of spin-polarized electron currents, the proposed device would not depend on a source of circularly polarized light. The proposed semiconductor electron-spin filters would exploit the Rashba effect, which can induce energy splitting in what would otherwise be degenerate quantum states, caused by a spin-orbit interaction in conjunction with a structural-inversion asymmetry in the presence of interfacial electric fields in a semiconductor heterostructure. The magnitude of the energy split is proportional to the electron wave number. Theoretical studies have suggested the possibility of devices in which electron energy states would be split by the Rashba effect and spin-polarized currents would be extracted by resonant quantum-mechanical tunneling.

  16. Global potential energy surface of ground state singlet spin O4

    NASA Astrophysics Data System (ADS)

    Mankodi, Tapan K.; Bhandarkar, Upendra V.; Puranik, Bhalchandra P.

    2018-02-01

    A new global potential energy for the singlet spin state O4 system is reported using CASPT2/aug-cc-pVTZ ab initio calculations. The geometries for the six-dimensional surface are constructed using a novel point generation scheme that employs randomly generated configurations based on the beta distribution. The advantage of this scheme is apparent in the reduction of the number of required geometries for a reasonably accurate potential energy surface (PES) and the consequent decrease in the overall computational effort. The reported surface matches well with the recently published singlet surface by Paukku et al. [J. Chem. Phys. 147, 034301 (2017)]. In addition to the O4 PES, the ground state N4 PES is also constructed using the point generation scheme and compared with the existing PES [Y. Paukku et al., J. Chem. Phys. 139, 044309 (2013)]. The singlet surface is constructed with the aim of studying high energy O2-O2 collisions and predicting collision induced dissociation cross section to be used in simulating non-equilibrium aerothermodynamic flows.

  17. Spinning eggs and ballerinas

    NASA Astrophysics Data System (ADS)

    Cross, Rod

    2013-01-01

    Measurements are presented on the rise of a spinning egg. It was found that the spin, the angular momentum and the kinetic energy all decrease as the egg rises, unlike the case of a ballerina who can increase her spin and kinetic energy by reducing her moment of inertia. The observed effects can be explained, in part, in terms of rolling friction between the egg and the surface on which it spins.

  18. Low Temperature Electrical Spin Injection from Highly Spin Polarized Co₂CrAl Heusler Alloy into p-Si.

    PubMed

    Kar, Uddipta; Panda, J; Nath, T K

    2018-06-01

    The low temperature spin accumulation in p-Si using Co2CrAl/SiO2 tunnel junction has been investigated in detail. The heterojunction has been fabricated using electron beam evaporation (EBE) technique. The 3-terminal contacts in Hanle geometry has been made for spin transport measurements. The electrical transport properties have been investigated at different isothermal conditions in the temperature range of 10-300 K. The current-voltage characteristics of the junction shows excellent rectifying magnetic diode like behaviour in lower temperature range (below 200 K). At higher temperature, the junction shows nonlinear behaviour without rectifying characteristics. We have observed spin accumulation signal in p-Si semiconductor using SiO2/Co2CrAl tunnel junction in the low temperature regime (30-100 K). Hence the highly spin polarized Full Heusler alloys compounds, like Co2CrAl etc., are very attractive and can act as efficient tunnel device for spin injection in the area of spintronics devices in near future. The estimated spin life time is τ = 54 pS and spin diffusion length inside p-Si is LSD = 289 nm at 30 K for this heterostructure.

  19. Renormalized Stress-Energy Tensor of an Evaporating Spinning Black Hole.

    PubMed

    Levi, Adam; Eilon, Ehud; Ori, Amos; van de Meent, Maarten

    2017-04-07

    We provide the first calculation of the renormalized stress-energy tensor (RSET) of a quantum field in Kerr spacetime (describing a stationary spinning black hole). More specifically, we employ a recently developed mode-sum regularization method to compute the RSET of a minimally coupled massless scalar field in the Unruh vacuum state, the quantum state corresponding to an evaporating black hole. The computation is done here for the case a=0.7M, using two different variants of the method: t splitting and φ splitting, yielding good agreement between the two (in the domain where both are applicable). We briefly discuss possible implications of the results for computing semiclassical corrections to certain quantities, and also for simulating dynamical evaporation of a spinning black hole.

  20. Spin-wave-driven high-speed domain-wall motions in soft magnetic nanotubes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Jaehak; Yoo, Myoung-Woo; Kim, Sang-Koog, E-mail: sangkoog@snu.ac.kr

    We report on a micromagnetic simulation study of interactions between propagating spin waves and a head-to-head domain wall in geometrically confined magnetic nanotubes. We found that incident spin waves of specific frequencies can lead to sufficiently high-speed (on the order of a few hundreds of m/s or higher) domain-wall motions in the same direction as that of the incident spin-waves. The domain-wall motions and their speed vary remarkably with the frequency and the amplitude of the incident spin-waves. High-speed domain-wall motions originate from the transfer torque of spin waves' linear momentum to the domain wall, through the partial or completemore » reflection of the incident spin waves from the domain wall. This work provides a fundamental understanding of the interaction of the spin waves with a domain wall in the magnetic nanotubes as well as a route to all-magnetic control of domain-wall motions in the magnetic nanoelements.« less

  1. Spin filter and spin valve in ferromagnetic graphene

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Yu, E-mail: kwungyusung@gmail.com; Dai, Gang; Research Center for Microsystems and Terahertz, China Academy of Engineering Physics, Mianyang 621999

    2015-06-01

    We propose and demonstrate that a EuO-induced and top-gated graphene ferromagnetic junction can be simultaneously operated as a spin filter and a spin valve. We attribute such a remarkable result to a coexistence of a half-metal band and a common energy gap for opposite spins in ferromagnetic graphene. We show that both the spin filter and the spin valve can be effectively controlled by a back gate voltage, and they survive for practical metal contacts and finite temperature. Specifically, larger single spin currents and on-state currents can be reached with contacts with work functions similar to graphene, and the spinmore » filter can operate at higher temperature than the spin valve.« less

  2. Spin-Controlled Conductivity in a Thiophene-Functionalized Iron-Bis(dicarbollide)

    NASA Astrophysics Data System (ADS)

    Beach, Benjamin; Sauriol, Dustin; Derosa, Pedro

    2016-04-01

    The relationship between spin state and conductivity is studied for a thiophene-functionalized iron(III)-bis(dicarbollide) with one or two thiophenes at each end of the cage. Iron has a high ground state spin that can be adjusted by external electromagnetic fields to produce different magnetic states. The hypothesis explored here is that changes in the spin state of these Fe-containing molecules can lead to significant changes in molecular conductivity. Two examples of the possible application of such spin-dependent conductivity are its use as a molecular switch, the basic building block in digital logic, or as a memory bit. The molecules were first optimized using the Becke-3 Lee-Yang-Parr functional (B3LYP) with the 6-31G(d) basis set. A relaxed molecular geometry at each spin state was then placed between gold electrodes to conduct spin-polarized electron transport calculations with the density functional theory/non-equilibrium Green's functions formalism. The revised Perdew-Burke-Ernzerhf solids exchange-correlation functional (PBES) with double zeta polarized basis set was used. The result of these calculations show that the conductivity increases with the spin state. The cage structure is shown to exhibit fully delocalized molecular orbitals (MOs) appropriate for high conductivity and thus, in this system, the conductivity depends on the position of the MOs relative to the Fermi level. Minority spins are responsible for the conductivity of the doublet spin state while majority spins dominate for the quartet and sextet spin states as they are found closer to the Fermi level when they are occupied. Energy calculations predict a difference in energy between the more and the less conductive spin states (sextet and doublet respectively) that is 15-20 times greater than the thermal energy, which would imply stability at room temperature; however, the energy difference is sufficiently small that transitions between spin states can be induced.

  3. Neutron scattering studies of spin-phonon hybridization and superconducting spin gaps in the high temperature superconductor La 2-x(Sr;Ba) xCuO 4

    DOE PAGES

    Wagman, J. J.; Carlo, Jeremy P.; Gaudet, J.; ...

    2016-03-14

    We present time-of-flight neutron-scattering measurements on single crystals of La 2-xBa xCuO 4 (LBCO) with 0 ≤ x ≤ 0.095 and La 2-xSr xCuO 4 (LSCO) with x = 0.08 and 0.11. This range of dopings spans much of the phase diagram relevant to high temperature cuprate superconductivity, ranging from insulating, three dimensional commensurate long range antiferromagnetic order for x ≤ 0.02 to two dimensional (2D) incommensurate antiferromagnetism co-existing with superconductivity for x ≥ 0.05. Previous work on lightly doped LBCO with x = 0.035 showed a clear resonant enhancement of the inelastic scattering coincident with the low energy crossingsmore » of the highly dispersive spin excitations and quasi-2D optic phonons. The present work extends these measurements across the phase diagram and shows this enhancement to be a common feature to this family of layered quantum magnets. Furthermore we show that the low temperature, low energy magnetic spectral weight is substantially larger for samples with non-superconducting ground states relative to any of the samples with superconducting ground states. Lastly spin gaps, suppression of low energy magnetic spectral weight, are observed in both superconducting LBCO and LSCO samples, consistent with previous observations for superconducting LSCO« less

  4. Entanglement of two qubits coupled to an XY spin chain: Role of energy current

    NASA Astrophysics Data System (ADS)

    Liu, Ben-Qiong; Shao, Bin; Zou, Jian

    2009-12-01

    We investigate the entanglement dynamics of a two-qubit system which interacts with a Heisenberg XY spin chain constrained to carry an energy current. We show an explicit connection between the decoherence factor and entanglement, and numerically and analytically study the dynamical process of entanglement in both weak- and strong-coupling cases for two initial states, the general pure state and the mixed Werner state. We provide results that the entanglement evolution depends not only on the energy current, the anisotropy parameter and the system-environment couplings but also on the size of degrees of freedom of environment. In particular, our results imply that entanglement will be strongly suppressed by the introduction of energy current on the environmental spin chain in the weak-coupling region while it is not sensitive to the energy current in the strong-coupling region. We also observe the sudden death of entanglement in the system and show how the energy current affects the phenomenon.

  5. Spin-filter spin valves with nano-oxide layers for high density recording heads

    NASA Astrophysics Data System (ADS)

    Al-Jibouri, Abdul; Hoban, M.; Lu, Z.; Pan, G.

    2002-05-01

    A new spin-filter spin valve with nano-oxide specular layers with structure of Ta/NiFe/IrMn/CoFe/NOL1/CoFe/Cu/CoFetfl/CutCu/NOL2/Ta was deposited using a Nordiko 9606 physical vapor deposition system. The data clearly show that the magnetoresistive (MR) ratio has been significantly improved for spin valves with thinner free layers. The MR ratio remains larger than 12% even when the CoFe free layer is as thin as 1 nm. An optimized MR ratio of ˜15% was obtained when tfl was about 1.2 nm and tCu about 1.5 nm, and was a result of the balance between the increase in the electron mean free path difference and current shunting through the conducting layer. It is also found that the Cu enhancing layer can improve soft magnetic properties of the CoFe free layer due to the low atomic intermixing observed between Co and Cu. The CoFe free layer of 1-4 nm exhibited coercivity of ˜3 Oe after annealing in a static magnetic field. This kind of spin valve with a very thin soft CoFe free layer is particularly attractive for ultra high density read head applications.

  6. Synchronization of spin-transfer torque oscillators by spin pumping, inverse spin Hall, and spin Hall effects

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Elyasi, Mehrdad; Bhatia, Charanjit S.; Yang, Hyunsoo, E-mail: eleyang@nus.edu.sg

    2015-02-14

    We have proposed a method to synchronize multiple spin-transfer torque oscillators based on spin pumping, inverse spin Hall, and spin Hall effects. The proposed oscillator system consists of a series of nano-magnets in junction with a normal metal with high spin-orbit coupling, and an accumulative feedback loop. We conduct simulations to demonstrate the effect of modulated charge currents in the normal metal due to spin pumping from each nano-magnet. We show that the interplay between the spin Hall effect and inverse spin Hall effect results in synchronization of the nano-magnets.

  7. Heat-transfer optimization of a high-spin thermal battery

    NASA Astrophysics Data System (ADS)

    Krieger, Frank C.

    Recent advancements in thermal battery technology have produced batteries incorporating a fusible material heat reservoir for operating temperature control that operate reliably under the high spin rates often encountered in ordnance applications. Attention is presently given to the heat-transfer optimization of a high-spin thermal battery employing a nonfusible steel heat reservoir, on the basis of a computer code that simulated the effect of an actual fusible material heat reservoir on battery performance. Both heat paper and heat pellet employing thermal battery configurations were considered.

  8. Quantum dot as spin current generator and energy harvester

    NASA Astrophysics Data System (ADS)

    Szukiewicz, Barbara; Wysokiński, Karol I.

    2015-05-01

    The thermoelectric transport in the device composed of a central nanoscopic system in contact with two electrodes and subject to the external magnetic field of Zeeman type has been studied. The device can support pure spin current in the electrodes and may serve as a source of the temperature induced spin currents with possible applications in spintronics. The system may also be used as an energy harvester. We calculate its thermodynamic efficiency η and the power output P. The maximal efficiency of the device reaches the Carnot value when the device works reversibly but with the vanishing power. The interactions between carriers diminish the maximal efficiency of the device, which under the constant load drops well below the Carnot limit but may exceed the Curzon-Ahlborn limit. While the effect of intradot Coulomb repulsion on η depends on the parameters, the interdot/interlevel interaction strongly diminishes the device efficiency.

  9. An ultra-high vacuum scanning tunneling microscope operating at sub-Kelvin temperatures and high magnetic fields for spin-resolved measurements

    NASA Astrophysics Data System (ADS)

    Salazar, C.; Baumann, D.; Hänke, T.; Scheffler, M.; Kühne, T.; Kaiser, M.; Voigtländer, R.; Lindackers, D.; Büchner, B.; Hess, C.

    2018-06-01

    We present the construction and performance of an ultra-low-temperature scanning tunneling microscope (STM), working in ultra-high vacuum (UHV) conditions and in high magnetic fields up to 9 T. The cryogenic environment of the STM is generated by a single-shot 3He magnet cryostat in combination with a 4He dewar system. At a base temperature (300 mK), the cryostat has an operation time of approximately 80 h. The special design of the microscope allows the transfer of the STM head from the cryostat to a UHV chamber system, where samples and STM tips can be easily exchanged. The UHV chambers are equipped with specific surface science treatment tools for the functionalization of samples and tips, including high-temperature treatments and thin film deposition. This, in particular, enables spin-resolved tunneling measurements. We present test measurements using well-known samples and tips based on superconductors and metallic materials such as LiFeAs, Nb, Fe, and W. The measurements demonstrate the outstanding performance of the STM with high spatial and energy resolution as well as the spin-resolved capability.

  10. Spin formalism and applications to new physics searches

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Haber, H.E.

    1994-12-01

    An introduction to spin techniques in particle physics is given. Among the topics covered are: helicity formalism and its applications to the decay and scattering of spin-1/2 and spin-1 particles, techniques for evaluating helicity amplitudes (including projection operator methods and the spinor helicity method), and density matrix techniques. The utility of polarization and spin correlations for untangling new physics beyond the Standard Model at future colliders such as the LHC and a high energy e{sup +}e{sup {minus}} linear collider is then considered. A number of detailed examples are explored including the search for low-energy supersymmetry, a non-minimal Higgs boson sector,more » and new gauge bosons beyond the W{sup {+-}} and Z.« less

  11. High-Nuclearity Magnetic Clusters: Generalized Spin Hamiltonian and Its Use for the Calculation of the Energy Levels, Bulk Magnetic Properties, and Inelastic Neutron Scattering Spectra.

    PubMed

    Borrás-Almenar, J. J.; Clemente-Juan, J. M.; Coronado, E.; Tsukerblat, B. S.

    1999-12-27

    A general solution of the exchange problem in the high-nuclearity spin clusters (HNSC) containing arbitrary number of exchange-coupled centers and topology is developed. All constituent magnetic centers are supposed to possess well-isolated orbitally non-degenerate ground states so that the isotropic Heisenberg-Dirac-Van Vleck (HDVV) term is the leading part of the exchange spin Hamiltonian. Along with the HDVV term, we consider higher-order isotropic exchange terms (biquadratic exchange), as well as the anisotropic terms (anisotropic and antisymmetric exchange interactions and local single-ion anisotropies). All these terms are expressed as irreducible tensor operators (ITO). This allows us to take full advantage of the spin symmetry of the system. At the same time, we have also benefitted by taking into account the point group symmetry of the cluster, which allows us to work with symmetrized spin functions. This results in an additional reduction of the matrices to diagonalize. The approach developed here is accompanied by an efficient computational procedure that allows us to calculate the bulk magnetic properties (magnetic susceptibility, magnetization, and magnetic specific heat) as well as the spectroscopic properties of HNSC. Special attention is paid to calculate the magnetic excitations observed by inelastic neutron scattering (INS), their intensities, and their Q and temperature dependencies. This spectroscopic technique provides direct access to the energies and wave functions of the different spin states of the cluster; thus, it can be applied to spin clusters in order to obtain deep and detailed information on the nature of the magnetic exchange phenomenon. The general expression for the INS cross-section of spin clusters interacting by all kinds of exchange interactions, including also the single-ion zero-field splitting term, is derived for the first time. A closed-form expression is also derived for the particular case in which only the isotropic

  12. Observation of the spin-polarized surface state in a noncentrosymmetric superconductor BiPd

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Neupane, Madhab; Alidoust, Nasser; Hosen, M. Mofazzel

    Recently, noncentrosymmetric superconductor BiPd has attracted considerable research interest due to the possibility of hosting topological superconductivity. Here in this paper we report a systematic high-resolution angle-resolved photoemission spectroscopy (ARPES) and spin-resolved ARPES study of the normal state electronic and spin properties of BiPd. Our experimental results show the presence of a surface state at higher-binding energy with the location of Dirac point at around 700 meV below the Fermi level. The detailed photon energy, temperature-dependent and spin-resolved ARPES measurements complemented by our first-principles calculations demonstrate the existence of the spin-polarized surface states at high-binding energy. The absence of suchmore » spin-polarized surface states near the Fermi level negates the possibility of a topological superconducting behaviour on the surface. Our direct experimental observation of spin-polarized surface states in BiPd provides critical information that will guide the future search for topological superconductivity in noncentrosymmetric materials.« less

  13. Observation of the spin-polarized surface state in a noncentrosymmetric superconductor BiPd

    DOE PAGES

    Neupane, Madhab; Alidoust, Nasser; Hosen, M. Mofazzel; ...

    2016-11-07

    Recently, noncentrosymmetric superconductor BiPd has attracted considerable research interest due to the possibility of hosting topological superconductivity. Here in this paper we report a systematic high-resolution angle-resolved photoemission spectroscopy (ARPES) and spin-resolved ARPES study of the normal state electronic and spin properties of BiPd. Our experimental results show the presence of a surface state at higher-binding energy with the location of Dirac point at around 700 meV below the Fermi level. The detailed photon energy, temperature-dependent and spin-resolved ARPES measurements complemented by our first-principles calculations demonstrate the existence of the spin-polarized surface states at high-binding energy. The absence of suchmore » spin-polarized surface states near the Fermi level negates the possibility of a topological superconducting behaviour on the surface. Our direct experimental observation of spin-polarized surface states in BiPd provides critical information that will guide the future search for topological superconductivity in noncentrosymmetric materials.« less

  14. Investigation of High-Spin States in ^203Rn

    NASA Astrophysics Data System (ADS)

    Beausang, C. W.; Novak, J. R.; Caprio, M.; Casten, R. F.; Cederkall, J.; Cooper, J. R.; Krücken, R.; Wang, Z.; Zamfir, N. V.; Barton, C. J.

    1999-10-01

    High-spin states in ^203Rn were populated following the reaction ^34S + ^174Yb + 5n at beam energies ranging from 160 to 170 MeV. Gamma-rays were detected using the multi-Ge detector array YRAST Ball located at the Wright Nuclear Structure Laboratory. In addition the SCARY array, an array of 28 solar cell detectors, each 1 cm by 1 cm, was arranged around the target at backward angles. These were used to detect fission fragments and hence discriminate against the very large fission background encountered in this reaction. Following our excitation function measurement several transitions can be assigned to ^203Rn, where previously no information was available on excited states. Data analysis is continuing and preliminary results will be presented. This work is supported by the US-DOE under grant number DE-FG02-91ER-40609.

  15. Spinning Eggs and Ballerinas

    ERIC Educational Resources Information Center

    Cross, Rod

    2013-01-01

    Measurements are presented on the rise of a spinning egg. It was found that the spin, the angular momentum and the kinetic energy all decrease as the egg rises, unlike the case of a ballerina who can increase her spin and kinetic energy by reducing her moment of inertia. The observed effects can be explained, in part, in terms of rolling friction…

  16. Energy consumption analysis of graphene based all spin logic device with voltage controlled magnetic anisotropy

    NASA Astrophysics Data System (ADS)

    Zhang, Zhizhong; Zhang, Yue; Zheng, Zhenyi; Wang, Guanda; Su, Li; Zhang, Youguang; Zhao, Weisheng

    2017-05-01

    All spin logic device (ASLD) is a promising option to realize the ultra-low power computing systems. However, the low spin transport efficiency and the non-local switching of the detector have become two key challenges of the ASLD. In this paper, we analyze the energy consumption of a graphene based ASLD with the ferromagnetic layer switching assistance by voltage control magnetic anisotropy (VCMA) effect. This structure has significant potential towards ultra-low power consumption: the applied voltage can not only shorten switching time of the ferromagnetic layer, but also decreases the critical injection current; the graphene channel enhances greatly the spin transport efficiency. By applying the approximate circuit model, the impact of material configurations, interfaces and geometry can be synthetically studied. An accurate physic model was also developed, based on which, we carry out the micro-magnetic simulations to analyze the magnetization dynamics. Combining these electrical and magnetic investigations, the energy consumption of the proposed ASLD can be estimated. With the optimizing parameters, the energy consumption can be reduced to 2.5 pJ for a logic operation.

  17. Low temperature and high field regimes of connected kagome artificial spin ice: the role of domain wall topology.

    PubMed

    Zeissler, Katharina; Chadha, Megha; Lovell, Edmund; Cohen, Lesley F; Branford, Will R

    2016-07-22

    Artificial spin ices are frustrated magnetic nanostructures where single domain nanobars act as macrosized spins. In connected kagome artificial spin ice arrays, reversal occurs along one-dimensional chains by propagation of ferromagnetic domain walls through Y-shaped vertices. Both the vertices and the walls are complex chiral objects with well-defined topological edge-charges. At room temperature, it is established that the topological edge-charges determine the exact switching reversal path taken. However, magnetic reversal at low temperatures has received much less attention and how these chiral objects interact at reduced temperature is unknown. In this study we use magnetic force microscopy to image the magnetic reversal process at low temperatures revealing the formation of quite remarkable high energy remanence states and a change in the dynamics of the reversal process. The implication is the breakdown of the artificial spin ice regime in these connected structures at low temperatures.

  18. Puncture initial data for black-hole binaries with high spins and high boosts

    NASA Astrophysics Data System (ADS)

    Ruchlin, Ian; Healy, James; Lousto, Carlos O.; Zlochower, Yosef

    2017-01-01

    We solve the Hamiltonian and momentum constraints of general relativity for two black holes with nearly extremal spins and relativistic boosts in the puncture formalism. We use a non-conformally-flat ansatz with an attenuated superposition of two Lorentz-boosted, conformally Kerr or conformally Schwarzschild 3-metrics and their corresponding extrinsic curvatures. We compare evolutions of these data with the standard Bowen-York conformally flat ansatz (technically limited to intrinsic spins χ =S /MADM2=0.928 and boosts P /MADM=0.897 ), finding, typically, an order of magnitude smaller burst of spurious radiation and agreement with inspiral and merger. As a first case study, we evolve two equal-mass black holes from rest with an initial separation of d =12 M and spins χi=Si/mi2=0.99 , compute the waveforms produced by the collision, the energy and angular momentum radiated, and the recoil of the final remnant black hole. We find that the black-hole trajectories curve at close separations, leading to the radiation of angular momentum. We also study orbiting nonspinning and moderate-spin black-hole binaries and compare these with standard Bowen-York data. We find a substantial reduction in the nonphysical initial burst of radiation which leads to cleaner waveforms. Finally, we study the case of orbiting binary black-hole systems with spin magnitude χi=0.95 in an aligned configuration and compare waveform and final remnant results with those of the SXS Collaboration [54 A. H. Mroue et al., Phys. Rev. Lett. 111, 241104 (2013)., 10.1103/PhysRevLett.111.241104], finding excellent agreement. This represents the first moving puncture evolution of orbiting and spinning black holes exceeding the Bowen-York limit. Finally, we study different choices of the initial lapse and lapse evolution equation in the moving puncture approach to improve the accuracy and efficiency of the simulations.

  19. Discovery of highly spin-polarized conducting surface states in the strong spin-orbit coupling semiconductor Sb2Se3

    NASA Astrophysics Data System (ADS)

    Das, Shekhar; Sirohi, Anshu; Kumar Gupta, Gaurav; Kamboj, Suman; Vasdev, Aastha; Gayen, Sirshendu; Guptasarma, Prasenjit; Das, Tanmoy; Sheet, Goutam

    2018-06-01

    Majority of the A2B3 -type chalcogenide systems with strong spin-orbit coupling (SOC), such as Bi2Se3,Bi2Te3 , and Sb2Te3 , etc., are topological insulators. One important exception is Sb2Se3 where a topological nontrivial phase was argued to be possible under ambient conditions, but such a phase could be detected to exist only under pressure. In this paper, we show that Sb2Se3 like Bi2Se3 displays a generation of highly spin-polarized current under mesoscopic superconducting point contacts as measured by point-contact Andreev reflection spectroscopy. In addition, we observe a large negative and anisotropic magnetoresistance of the mesoscopic metallic point contacts formed on Sb2Se3 . Our band-structure calculations confirm the trivial nature of Sb2Se3 crystals and reveal two trivial surface states one of which shows large spin splitting due to Rashba-type SOC. The observed high spin polarization and related phenomena in Sb2Se3 can be attributed to this spin splitting.

  20. Spin-orbit torques in high-resistivity-W/CoFeB/MgO

    NASA Astrophysics Data System (ADS)

    Takeuchi, Yutaro; Zhang, Chaoliang; Okada, Atsushi; Sato, Hideo; Fukami, Shunsuke; Ohno, Hideo

    2018-05-01

    Magnetic heterostructures consisting of high-resistivity (238 ± 5 µΩ cm)-W/CoFeB/MgO are prepared by sputtering and their spin-orbit torques are evaluated as a function of W thickness through an extended harmonic measurement. W thickness dependence of the spin-orbit torque with the Slonczewski-like symmetry is well described by the drift-diffusion model with an efficiency parameter, the so-called effective spin Hall angle, of -0.62 ± 0.03. In contrast, the field-like spin-orbit torque is one order of magnitude smaller than the Slonczewski-like torque and shows no appreciable dependence on the W thickness, suggesting a different origin from the Slonczewski-like torque. The results indicate that high-resistivity W is promising for low-current and reliable spin-orbit torque-controlled devices.

  1. Spin Imbalanced Quasi-Two-Dimensional Fermi Gases

    NASA Astrophysics Data System (ADS)

    Ong, Willie C.

    Spin-imbalanced Fermi gases serve as a testbed for fundamental notions and are efficient table-top emulators of a variety of quantum matter ranging from neutron stars, the quark-gluon plasma, to high critical temperature superconductors. A macroscopic quantum phenomenon which occurs in spin-imbalanced Fermi gases is that of phase separation; in three dimensions, a spin-balanced, fully-paired superfluid core is surrounded by an imbalanced normal-fluid shell, followed by a fully polarized shell. In one dimension, the behavior is reversed; a balanced phase appears outside a spin-imbalanced core. This thesis details the first density profile measurements and studies on spin-imbalanced quasi-2D Fermi gases, accomplished with high-resolution, rapid sequential spin-imaging. The measured cloud radii and central densities are in disagreement with mean-field Bardeen-Cooper-Schrieffer theory for a 2D system. Data for normal-fluid mixtures are well fit by a simple 2D polaron model of the free energy. Not predicted by the model is an observed phase transition to a spin-balanced central core above a critical polarisation.

  2. Isolated Spin Qubits in SiC with a High-Fidelity Infrared Spin-to-Photon Interface

    NASA Astrophysics Data System (ADS)

    Christle, David J.; Klimov, Paul V.; de las Casas, Charles F.; Szász, Krisztián; Ivády, Viktor; Jokubavicius, Valdas; Ul Hassan, Jawad; Syväjärvi, Mikael; Koehl, William F.; Ohshima, Takeshi; Son, Nguyen T.; Janzén, Erik; Gali, Ádám; Awschalom, David D.

    2017-04-01

    The divacancies in SiC are a family of paramagnetic defects that show promise for quantum communication technologies due to their long-lived electron spin coherence and their optical addressability at near-telecom wavelengths. Nonetheless, a high-fidelity spin-photon interface, which is a crucial prerequisite for such technologies, has not yet been demonstrated. Here, we demonstrate that such an interface exists in isolated divacancies in epitaxial films of 3C-SiC and 4H-SiC. Our data show that divacancies in 4H-SiC have minimal undesirable spin mixing, and that the optical linewidths in our current sample are already similar to those of recent remote entanglement demonstrations in other systems. Moreover, we find that 3C-SiC divacancies have a millisecond Hahn-echo spin coherence time, which is among the longest measured in a naturally isotopic solid. The presence of defects with these properties in a commercial semiconductor that can be heteroepitaxially grown as a thin film on Si shows promise for future quantum networks based on SiC defects.

  3. Spin Relaxation and Manipulation in Spin-orbit Qubits

    NASA Astrophysics Data System (ADS)

    Borhani, Massoud; Hu, Xuedong

    2012-02-01

    We derive a generalized form of the Electric Dipole Spin Resonance (EDSR) Hamiltonian in the presence of the spin-orbit interaction for single spins in an elliptic quantum dot (QD) subject to an arbitrary (in both direction and magnitude) applied magnetic field. We predict a nonlinear behavior of the Rabi frequency as a function of the magnetic field for sufficiently large Zeeman energies, and present a microscopic expression for the anisotropic electron g-tensor. Similarly, an EDSR Hamiltonian is devised for two spins confined in a double quantum dot (DQD). Finally, we calculate two-electron-spin relaxation rates due to phonon emission, for both in-plane and perpendicular magnetic fields. Our results have immediate applications to current EDSR experiments on nanowire QDs, g-factor optimization of confined carriers, and spin decay measurements in DQD spin-orbit qubits.

  4. Monte Carlo investigations on surface elastic energy of spin-crossover solids: Direct access to image pressure and the Eshelby constant

    NASA Astrophysics Data System (ADS)

    Boukheddaden, Kamel

    2013-10-01

    We present theoretical investigations on surface elastic energy in spin-crossover (SC) solids studied in the frame of a microscopic elastic model, coupling spin, and lattice deformations. Although surface energy plays a crucial role in driving the SC transition, specific quantitative investigations on its effect have been neglected in most of the recent theoretical works based on atomistic descriptions of the SC transitions, resolved by Monte Carlo or by molecular dynamics simulations. Here, we perform a quantitative study of the surface energy resulting from an inserted high-spin (HS) domain in a low-spin (LS) lattice. This situation may be produced experimentally in SC solids, at low temperature, through a photoexcitation by a single pulse laser shot. We demonstrate that the surface energy depends on the ratio between the local molecular volume misfit (between the LS and HS sites) δυ and the lattice volume V, such as Esurf˜δυ2/V for the HS atom at the center of lattice, while it is Esurf˜δυ2/L (L is the length of the lattice) in the case of the HS atom located on the edge of the lattice. We then derived the image pressure (negative in the case of embedded dilatation centers) through the work of the free surface atoms and evaluated the Eshelby constant, which was found equal to γ˜1.90, in very good agreement with the available data of literature. Energetic configuration diagrams in the homogeneous (HS and LS) and heterogeneous (coexistence of HS and LS) are calculated, from which estimations of the macroscopic bulk modulus were deduced.

  5. rotational Raman spectroscopy methods for probing energy thermalisation processes during spin-exchange optical pumping

    NASA Astrophysics Data System (ADS)

    Newton, Hayley; Walkup, Laura L.; Whiting, Nicholas; West, Linda; Carriere, James; Havermeyer, Frank; Ho, Lawrence; Morris, Peter; Goodson, Boyd M.; Barlow, Michael J.

    2014-05-01

    Spin-exchange optical pumping (SEOP) has been widely used to produce enhancements in nuclear spin polarisation for hyperpolarised noble gases. However, some key fundamental physical processes underlying SEOP remain poorly understood, particularly in regards to how pump laser energy absorbed during SEOP is thermalised, distributed and dissipated. This study uses in situ ultra-low frequency Raman spectroscopy to probe rotational temperatures of nitrogen buffer gas during optical pumping under conditions of high resonant laser flux and binary Xe/N2 gas mixtures. We compare two methods of collecting the Raman scattering signal from the SEOP cell: a conventional orthogonal arrangement combining intrinsic spatial filtering with the utilisation of the internal baffles of the Raman spectrometer, eliminating probe laser light and Rayleigh scattering, versus a new in-line modular design that uses ultra-narrowband notch filters to remove such unwanted contributions. We report a ~23-fold improvement in detection sensitivity using the in-line module, which leads to faster data acquisition and more accurate real-time monitoring of energy transport processes during optical pumping. The utility of this approach is demonstrated via measurements of the local internal gas temperature (which can greatly exceed the externally measured temperature) as a function of incident laser power and position within the cell.

  6. Ab initio Potential-Energy Surfaces and Electron-Spin-Exchange Cross Sections for H-O2 Interactions

    NASA Technical Reports Server (NTRS)

    Stallcop, James R.; Partridge, Harry; Levin, Eugene

    1996-01-01

    Accurate quartet- and doublet-state potential-energy surfaces for the interaction of a hydrogen atom and an oxygen molecule in their ground states have been determined from an ab initio calculation using large-basis sets and the internally contracted multireference configuration interaction method. These potential surfaces have been used to calculate the H-O2 electron-spin-exchange cross section; the square root of the cross section (in a(sub 0)), not taking into account inelastic effects, can be obtained approximately from the expressions 2.390E(sup -1/6) and 5.266-0.708 log10(E) at low and high collision energies E (in E(sub h)), respectively. These functional forms, as well as the oscillatory structure of the cross section found at high energies, are expected from the nature of the interaction energy. The mean cross section (the cross section averaged over a Maxwellian velocity distribution) agrees reasonably well with the results of measurements.

  7. Eating a planet and spinning up

    NASA Astrophysics Data System (ADS)

    Qureshi, Ahmed; Naoz, Smadar; Shkolnik, Evgenya L.

    2018-01-01

    One of the predictions of high eccentricity planetary migration is that many planets will end up plunging into their host stars. We investigate the consequence of planetary mergers on their stellar hosts’ spin-period. Energy and angular momentum conservation yield that a planet consumption by a star will spin-up of the star. We find that our calculations align with the observed bifurcation in the stellar spin-period in young clusters. After a Sun-like star has eaten a planet, it will then, spin down due to magnetic braking, consistent with the observed lack of fast rotators in old clusters. The agreement between the calculations presented here and the observed spin-period of stars in young clusters provides circumstantial evidence that planetary accretion onto their host stars is a generic feature in planetary-system evolution.

  8. Spin-Forbidden Reactions: Adiabatic Transition States Using Spin-Orbit Coupled Density Functional Theory.

    PubMed

    Gaggioli, Carlo Alberto; Belpassi, Leonardo; Tarantelli, Francesco; Harvey, Jeremy N; Belanzoni, Paola

    2018-04-06

    A spin-forbidden chemical reaction involves a change in the total electronic spin state from reactants to products. The mechanistic study is challenging because such a reaction does not occur on a single diabatic potential energy surface (PES), but rather on two (or multiple) spin diabatic PESs. One possible approach is to calculate the so-called "minimum energy crossing point" (MECP) between the diabatic PESs, which however is not a stationary point. Inclusion of spin-orbit coupling between spin states (SOC approach) allows the reaction to occur on a single adiabatic PES, in which a transition state (TS SOC) as well as activation free energy can be calculated. This Concept article summarizes a previously published application in which, for the first time, the SOC effects, using spin-orbit ZORA Hamiltonian within density functional theory (DFT) framework, are included and account for the mechanism of a spin-forbidden reaction in gold chemistry. The merits of the MECP and TS SOC approaches and the accuracy of the results are compared, considering both our recent calculations on molecular oxygen addition to gold(I)-hydride complexes and new calculations for the prototype spin-forbidden N 2 O and N 2 Se dissociation reactions. © 2018 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim.

  9. Collisional spin-oriented Sherman function in electron-hole semiconductor plasmas: Landau damping effect

    NASA Astrophysics Data System (ADS)

    Lee, Myoung-Jae; Jung, Young-Dae

    2018-04-01

    The influence of Landau damping on the spin-oriented collisional asymmetry is investigated in electron-hole semiconductor plasmas. The analytical expressions of the spin-singlet and the spin-triplet scattering amplitudes as well as the spin-oriented asymmetry Sherman function are obtained as functions of the scattering angle, the Landau parameter, the effective Debye length, and the collision energy. It is found that the Landau damping effect enhances the spin-singlet and spin-triplet scattering amplitudes in the forward and back scattering domains, respectively. It is also found that the Sherman function increases with an increase in the Landau parameter. In addition, the spin-singlet scattering process is found to be dominant rather than the spin-triplet scattering process in the high collision energy domain.

  10. Selective coupling of individual electron and nuclear spins with integrated all-spin coherence protection

    NASA Astrophysics Data System (ADS)

    Terletska, Hanna; Dobrovitski, Viatcheslav

    2015-03-01

    The electron spin of the NV center in diamond is a promising platform for spin sensing. Applying the dynamical decoupling, the NV electron spin can be used to detect the individual weakly coupled carbon-13 nuclear spins in diamond and employ them for small-scale quantum information processing. However, the nuclear spins within this approach remain unprotected from decoherence, which ultimately limits the detection and restricts the fidelity of the quantum operation. Here we investigate possible schemes for combining the resonant decoupling on the NV spin with the decoherence protection of the nuclear spins. Considering several schemes based on pulse and continuous-wave decoupling, we study how the joint electron-nuclear spin dynamics is affected. We identify regimes where the all-spin coherence protection improves the detection and manipulation. We also discuss potential applications of the all-spin decoupling for detecting spins outside diamond, with the purpose of implementing the nanoscale NMR. This work was supported by the US Department of Energy Basic Energy Sciences (Contract No. DE-AC02-07CH11358).

  11. High-spin states in the N=50 nucleus ^87Rb

    NASA Astrophysics Data System (ADS)

    Fotiades, N.; Cizewski, J. A.; Krücken, R.; Clark, R. M.; Fallon, P.; Lee, I. Y.; Macchiavelli, A. O.; Becker, J. A.; Bernstein, L. A.; McNabb, D. P.; Younes, W.

    2001-10-01

    High-spin states in ^87Rb have been studied following the fission of two compound nuclei (^199Tl and ^197Pb) formed in different fusion-evaporation reactions. The Gammasphere array at LBNL was used to detect γ-ray coincidences. The level scheme has been extended above the previously known 1578 keV, 9/2^+ isomer by observation of many states up to ~7.2 MeV excitation energy. Coupling of the odd g_9/2 proton to the yrast states in the ^86Kr core accounts for the first excited states observed above the 9/2^+ isomer. The level scheme of ^87Rb is also compared to excitations in ^85Kr and the ^89Y isotone. This work has been supported in part by the U.S. Department of Energy under Contracts No. W-7405-ENG-36 (LANL), FG02-91ER-40609 (Yale), W-7405-ENG-48 (LLNL) and AC03-76SF00098 (LBNL) and by the National Science Foundation (Rutgers).

  12. Phase diagrams and free-energy landscapes for model spin-crossover materials with antiferromagnetic-like nearest-neighbor and ferromagnetic-like long-range interactions

    NASA Astrophysics Data System (ADS)

    Chan, C. H.; Brown, G.; Rikvold, P. A.

    2017-11-01

    We present phase diagrams, free-energy landscapes, and order-parameter distributions for a model spin-crossover material with a two-step transition between the high-spin and low-spin states (a square-lattice Ising model with antiferromagnetic-like nearest-neighbor and ferromagnetic-like long-range interactions) [P. A. Rikvold et al., Phys. Rev. B 93, 064109 (2016), 10.1103/PhysRevB.93.064109]. The results are obtained by a recently introduced, macroscopically constrained Wang-Landau Monte Carlo simulation method [Phys. Rev. E 95, 053302 (2017), 10.1103/PhysRevE.95.053302]. The method's computational efficiency enables calculation of thermodynamic quantities for a wide range of temperatures, applied fields, and long-range interaction strengths. For long-range interactions of intermediate strength, tricritical points in the phase diagrams are replaced by pairs of critical end points and mean-field critical points that give rise to horn-shaped regions of metastability. The corresponding free-energy landscapes offer insights into the nature of asymmetric, multiple hysteresis loops that have been experimentally observed in spin-crossover materials characterized by competing short-range interactions and long-range elastic interactions.

  13. On the structure and spin states of Fe(III)-EDDHA complexes.

    PubMed

    Gómez-Gallego, Mar; Fernández, Israel; Pellico, Daniel; Gutiérrez, Angel; Sierra, Miguel A; Lucena, Juan J

    2006-07-10

    DFT methods are suitable for predicting both the geometries and spin states of EDDHA-Fe(III) complexes. Thus, extensive DFT computational studies have shown that the racemic-Fe(III) EDDHA complex is more stable than the meso isomer, regardless of the spin state of the central iron atom. A comparison of the energy values obtained for the complexes under study has also shown that high-spin (S = 5/2) complexes are more stable than low-spin (S = 1/2) ones. These computational results matched the experimental results of the magnetic susceptibility values of both isomers. In both cases, their behavior has been fitted as being due to isolated high-spin Fe(III) in a distorted octahedral environment. The study of the correlation diagram also confirms the high-spin iron in complex 2b. The geometry optimization of these complexes performed with the standard 3-21G* basis set for hydrogen, carbon, oxygen, and nitrogen and the Hay-Wadt small-core effective core potential (ECP) including a double-xi valence basis set for iron, followed by single-point energy refinement with the 6-31G* basis set, is suitable for predicting both the geometries and the spin-states of EDDHA-Fe(III) complexes. The presence of a high-spin iron in Fe(III)-EDDHA complexes could be the key to understanding their lack of reactivity in electron-transfer processes, either chemically or electrochemically induced, and their resistance to photodegradation.

  14. Magnetism of epitaxial Tb films on W(110) studied by spin-polarized low-energy electron microscopy

    NASA Astrophysics Data System (ADS)

    Prieto, J. E.; Chen, Gong; Schmid, A. K.; de la Figuera, J.

    2016-11-01

    Thin epitaxial films of Tb metal were grown on a clean W(110) substrate in ultrahigh vacuum and studied in situ by low-energy electron microscopy. Annealed films present magnetic contrast in spin-polarized low-energy electron microscopy. The energy dependence of the electron reflectivity was determined and a maximum value of its spin asymmetry of about 1% was measured. The magnetization direction of the Tb films is in-plane. Upon raising the temperature, no change in the domain distribution is observed, while the asymmetry in the electron reflectivity decreases when approaching the critical temperature, following a power law ˜(1-T /TC) β with a critical exponent β of 0.39.

  15. Spin-density fluctuations and the fluctuation-dissipation theorem in 3 d ferromagnetic metals

    DOE PAGES

    Wysocki, Alex L.; Valmispild, V. N.; Kutepov, A.; ...

    2017-11-15

    Spatial and time scales of spin-density fluctuations (SDFs) were analyzed in 3d ferromagnets using ab initio linear-response calculations of complete wave-vector and energy dependence of the dynamic spin susceptibility tensor. We demonstrate that SDFs are spread continuously over the entire Brillouin zone and while the majority of them reside within the 3d bandwidth, a significant amount comes from much higher energies. A validity of the adiabatic approximation in spin dynamics is discussed. The SDF spectrum is shown to have two main constituents: a minor low-energy spin-wave contribution and a much larger high-energy component from more localized excitations. Furthermore, using themore » fluctuation-dissipation theorem, the on-site spin correlator and the related effective fluctuating moment were properly evaluated and their universal dependence on the 3d band population is further discussed.« less

  16. Spin-density fluctuations and the fluctuation-dissipation theorem in 3 d ferromagnetic metals

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wysocki, Alex L.; Valmispild, V. N.; Kutepov, A.

    Spatial and time scales of spin-density fluctuations (SDFs) were analyzed in 3d ferromagnets using ab initio linear-response calculations of complete wave-vector and energy dependence of the dynamic spin susceptibility tensor. We demonstrate that SDFs are spread continuously over the entire Brillouin zone and while the majority of them reside within the 3d bandwidth, a significant amount comes from much higher energies. A validity of the adiabatic approximation in spin dynamics is discussed. The SDF spectrum is shown to have two main constituents: a minor low-energy spin-wave contribution and a much larger high-energy component from more localized excitations. Furthermore, using themore » fluctuation-dissipation theorem, the on-site spin correlator and the related effective fluctuating moment were properly evaluated and their universal dependence on the 3d band population is further discussed.« less

  17. A new spin on electron liquids: Phenomena in systems with spin-orbit coupling

    NASA Astrophysics Data System (ADS)

    Bernevig, B. Andrei

    Conventional microelectronic devices are based on the ability to store and control the flow of electronic charge. Spin-based electronics promises a radical alternative, offering the possibility of logic operations with much lower power consumption than equivalent charge-based logic operations. Our research suggests that spin transport is fundamentally different from the transport of charge. The generalized Ohm's law that governs the flow of spins indicates that the generation of spin current by an electric field can be reversible and non-dissipative. Spin-orbit coupling and spin currents appear in many other seemingly unrelated areas of physics. Spin currents are as fundamental in theoretical physics as charge currents. In strongly correlated systems such as spin-chains, one can write down the Hamiltonian as a spin-current - spin-current interaction. The research presented here shows that the fractionalized excitations of one-dimensional spin chains are gapless and carry spin current. We present the most interesting example of such a chain, the Haldane-Shastry spin chain, which is exactly solvable in terms of real-space wavefunctions. Spin-orbit coupling can be found in high-energy physics, hidden under a different name: non-trivial fibrations. Particles moving in a space which is non-trivially related to an (iso)spin space acquire a gauge connection (the condensed-matter equivalent of a Berry phase) which can be either abelian or non-abelian. In most cases, the consequences of such gauge connection are far-reaching. We present a problem where particles move on an 8-dimensional manifold and posses an isospin space with is a 7-sphere S 7. The non-trivial isospin space gives the Hamiltonian SO (8) landau-level structure, and the system exhibits a higher-dimensional Quantum Hall Effect.

  18. High-mobility ultrathin semiconducting films prepared by spin coating

    NASA Astrophysics Data System (ADS)

    Mitzi, David B.; Kosbar, Laura L.; Murray, Conal E.; Copel, Matthew; Afzali, Ali

    2004-03-01

    The ability to deposit and tailor reliable semiconducting films (with a particular recent emphasis on ultrathin systems) is indispensable for contemporary solid-state electronics. The search for thin-film semiconductors that provide simultaneously high carrier mobility and convenient solution-based deposition is also an important research direction, with the resulting expectations of new technologies (such as flexible or wearable computers, large-area high-resolution displays and electronic paper) and lower-cost device fabrication. Here we demonstrate a technique for spin coating ultrathin (~50Å), crystalline and continuous metal chalcogenide films, based on the low-temperature decomposition of highly soluble hydrazinium precursors. We fabricate thin-film field-effect transistors (TFTs) based on semiconducting SnS2-xSex films, which exhibit n-type transport, large current densities (>105Acm-2) and mobilities greater than 10cm2V-1s-1-an order of magnitude higher than previously reported values for spin-coated semiconductors. The spin-coating technique is expected to be applicable to a range of metal chalcogenides, particularly those based on main group metals, as well as for the fabrication of a variety of thin-film-based devices (for example, solar cells, thermoelectrics and memory devices).

  19. Spin manipulation and relaxation in spin-orbit qubits

    NASA Astrophysics Data System (ADS)

    Borhani, Massoud; Hu, Xuedong

    2012-03-01

    We derive a generalized form of the electric dipole spin resonance (EDSR) Hamiltonian in the presence of the spin-orbit interaction for single spins in an elliptic quantum dot (QD) subject to an arbitrary (in both direction and magnitude) applied magnetic field. We predict a nonlinear behavior of the Rabi frequency as a function of the magnetic field for sufficiently large Zeeman energies, and present a microscopic expression for the anisotropic electron g tensor. Similarly, an EDSR Hamiltonian is devised for two spins confined in a double quantum dot (DQD), where coherent Rabi oscillations between the singlet and triplet states are induced by jittering the inter-dot distance at the resonance frequency. Finally, we calculate two-electron-spin relaxation rates due to phonon emission, for both in-plane and perpendicular magnetic fields. Our results have immediate applications to current EDSR experiments on nanowire QDs, g-factor optimization of confined carriers, and spin decay measurements in DQD spin-orbit qubits.

  20. Bipolaronic charge density waves, polaronic spin density waves and high Tc superconductivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aubry, S.

    1992-01-01

    At large enough electron phonon coupling, the existence of bipolaronic, polaronic and mixed states is rigorously proven for the adiabatic Holstein model at any dimension and any band filling. The ground-state is one of them which then prove the existence of insulating Bipolaronic Charge Density Waves. The role of the quantum lattice fluctuations is analysed and found to be neglegible in that regime but to become essential in case of phonon softening then favoring the occurence of superconductivity. When a strong Hubbard term is also present, the bipolarons break into polorons and the ground state is expected to be amore » polaronic spin density wave. If the repulsive Hubbard term is comparable to the electron-phonon coupling, the energy for breaking a bipoloron into two polarons can become small and we get instead of these two degenerate structures, a pait of polarons bounded by a spin resonance which we call spin resonant bipolaron''. This resonant bipolaron is still strongly bound, but the role of the quantum lattice fluctuations becomes now very important and yields a sharp broadening of the bandwidth of this resonant bipolarona. Thus, the strong quantum character of these resonant bipolarons could prevent their localization into real space structures which could be insulating bipolaronic CDWs or polaronic SDWS, then favoring the formation of a superconducting coherent state with a possible high {Tc}.« less

  1. Bipolaronic charge density waves, polaronic spin density waves and high {Tc} superconductivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Aubry, S.

    1992-09-01

    At large enough electron phonon coupling, the existence of bipolaronic, polaronic and mixed states is rigorously proven for the adiabatic Holstein model at any dimension and any band filling. The ground-state is one of them which then prove the existence of insulating Bipolaronic Charge Density Waves. The role of the quantum lattice fluctuations is analysed and found to be neglegible in that regime but to become essential in case of phonon softening then favoring the occurence of superconductivity. When a strong Hubbard term is also present, the bipolarons break into polorons and the ground state is expected to be amore » polaronic spin density wave. If the repulsive Hubbard term is comparable to the electron-phonon coupling, the energy for breaking a bipoloron into two polarons can become small and we get instead of these two degenerate structures, a pait of polarons bounded by a spin resonance which we call ``spin resonant bipolaron``. This resonant bipolaron is still strongly bound, but the role of the quantum lattice fluctuations becomes now very important and yields a sharp broadening of the bandwidth of this resonant bipolarona. Thus, the strong quantum character of these resonant bipolarons could prevent their localization into real space structures which could be insulating bipolaronic CDWs or polaronic SDWS, then favoring the formation of a superconducting coherent state with a possible high {Tc}.« less

  2. First example of a high-level correlated calculation of the indirect spin-spin coupling constants involving tellurium: tellurophene and divinyl telluride.

    PubMed

    Rusakov, Yury Yu; Krivdin, Leonid B; Østerstrøm, Freja F; Sauer, Stephan P A; Potapov, Vladimir A; Amosova, Svetlana V

    2013-08-21

    This paper documents the very first example of a high-level correlated calculation of spin-spin coupling constants involving tellurium taking into account relativistic effects, vibrational corrections and solvent effects for medium sized organotellurium molecules. The (125)Te-(1)H spin-spin coupling constants of tellurophene and divinyl telluride were calculated at the SOPPA and DFT levels, in good agreement with experimental data. A new full-electron basis set, av3z-J, for tellurium derived from the "relativistic" Dyall's basis set, dyall.av3z, and specifically optimized for the correlated calculations of spin-spin coupling constants involving tellurium was developed. The SOPPA method shows a much better performance compared to DFT, if relativistic effects calculated within the ZORA scheme are taken into account. Vibrational and solvent corrections are next to negligible, while conformational averaging is of prime importance in the calculation of (125)Te-(1)H spin-spin couplings. Based on the performed calculations at the SOPPA(CCSD) level, a marked stereospecificity of geminal and vicinal (125)Te-(1)H spin-spin coupling constants originating in the orientational lone pair effect of tellurium has been established, which opens a new guideline in organotellurium stereochemistry.

  3. Topologically massive higher spin gravity

    NASA Astrophysics Data System (ADS)

    Bagchi, Arjun; Lal, Shailesh; Saha, Arunabha; Sahoo, Bindusar

    2011-10-01

    We look at the generalisation of topologically massive gravity (TMG) to higher spins, specifically spin-3. We find a special "chiral" point for the spin-three, analogous to the spin-two example, which actually coincides with the usual spin-two chiral point. But in contrast to usual TMG, there is the presence of a non-trivial trace and its logarithmic partner at the chiral point. The trace modes carry energy opposite in sign to the traceless modes. The logarithmic partner of the traceless mode carries negative energy indicating an instability at the chiral point. We make several comments on the asymptotic symmetry and its possible deformations at this chiral point and speculate on the higher spin generalisation of LCFT2 dual to the spin-3 massive gravity at the chiral point.

  4. Spin filter for arbitrary spins by substrate engineering

    NASA Astrophysics Data System (ADS)

    Pal, Biplab; Römer, Rudolf A.; Chakrabarti, Arunava

    2016-08-01

    We design spin filters for particles with potentially arbitrary spin S≤ft(=1/2,1,3/2,\\ldots \\right) using a one-dimensional periodic chain of magnetic atoms as a quantum device. Describing the system within a tight-binding formalism we present an analytical method to unravel the analogy between a one-dimensional magnetic chain and a multi-strand ladder network. This analogy is crucial, and is subsequently exploited to engineer gaps in the energy spectrum by an appropriate choice of the magnetic substrate. We obtain an exact correlation between the magnitude of the spin of the incoming beam of particles and the magnetic moment of the substrate atoms in the chain desired for opening up of a spectral gap. Results of spin polarized transport, calculated within a transfer matrix formalism, are presented for particles having half-integer as well as higher spin states. We find that the chain can be made to act as a quantum device which opens a transmission window only for selected spin components over certain ranges of the Fermi energy, blocking them in the remaining part of the spectrum. The results appear to be robust even when the choice of the substrate atoms deviates substantially from the ideal situation, as verified by extending the ideas to the case of a ‘spin spiral’. Interestingly, the spin spiral geometry, apart from exhibiting the filtering effect, is also seen to act as a device flipping spins—an effect that can be monitored by an interplay of the system size and the period of the spiral. Our scheme is applicable to ultracold quantum gases, and might inspire future experiments in this direction.

  5. Electron Spin Relaxation Rates for High-Spin Fe(III) in Iron Transferrin Carbonate and Iron Transferrin Oxalate

    PubMed Central

    Gaffney, Betty Jean; Eaton, Gareth R.; Eaton*, Sandra S.

    2005-01-01

    To optimize simulations of CW EPR spectra for high-spin Fe(III) with zero-field splitting comparable to the EPR quantum, information is needed on the factors that contribute to the line shapes and line widths. Continuous wave electron paramagnetic resonance (EPR) spectra obtained for iron transferrin carbonate from 4 to 150 K and for iron transferrin oxalate from 4 to 100 K did not exhibit significant temperature dependence of the line shape, which suggested that the line shapes were not relaxation determined. To obtain direct information concerning the electron spin relaxation rates, electron spin echo and inversion recovery EPR were used to measure T1 and Tm for the high-spin Fe(III) in iron transferrin carbonate and iron transferrin oxalate between 5 and 20–30 K. For comparison with the data for the transferrin complexes, relaxation times were obtained for tris(oxalato)ferrate(III). The relaxation rates are similar for the three complexes and do not exhibit a strong dependence on position in the spectrum. Extrapolation of the observed temperature dependence of the relaxation rates to higher temperatures gives values consistent with the conclusion that the CW line shapes are not relaxation determined up to 150 K. PMID:16429607

  6. Theoretical studies of possible toroidal high-spin isomers in the light-mass region

    DOE PAGES

    Staszczak, A.; Wong, Cheuk-Yin

    2016-05-11

    We review our theoretical knowledge of possible toroidal high-spin isomers in the light mass region in 28≤A≤52 obtained previously in cranked Skyrme-Hartree-Fock calculations. We report additional toroidal high-spin isomers in 56Ni with I=114ℏ and 140ℏ, which follow the same (multi-particle) (multi-hole) systematics as other toroidal high-spin isomers. We examine the production of these exotic nuclei by fusion of various projectiles on 20Ne or 28Si as an active target in time-projection-chamber (TPC) experiments.

  7. Recent trends in spin-resolved photoelectron spectroscopy

    NASA Astrophysics Data System (ADS)

    Okuda, Taichi

    2017-12-01

    Since the discovery of the Rashba effect on crystal surfaces and also the discovery of topological insulators, spin- and angle-resolved photoelectron spectroscopy (SARPES) has become more and more important, as the technique can measure directly the electronic band structure of materials with spin resolution. In the same way that the discovery of high-Tc superconductors promoted the development of high-resolution angle-resolved photoelectron spectroscopy, the discovery of this new class of materials has stimulated the development of new SARPES apparatus with new functions and higher resolution, such as spin vector analysis, ten times higher energy and angular resolution than conventional SARPES, multichannel spin detection, and so on. In addition, the utilization of vacuum ultra violet lasers also opens a pathway to the realization of novel SARPES measurements. In this review, such recent trends in SARPES techniques and measurements will be overviewed.

  8. Boson-mediated quantum spin simulators in transverse fields: X Y model and spin-boson entanglement

    NASA Astrophysics Data System (ADS)

    Wall, Michael L.; Safavi-Naini, Arghavan; Rey, Ana Maria

    2017-01-01

    The coupling of spins to long-wavelength bosonic modes is a prominent means to engineer long-range spin-spin interactions, and has been realized in a variety of platforms, such as atoms in optical cavities and trapped ions. To date, much of the experimental focus has been on the realization of long-range Ising models, but generalizations to other spin models are highly desirable. In this work, we explore a previously unappreciated connection between the realization of an X Y model by off-resonant driving of a single sideband of boson excitation (i.e., a single-beam Mølmer-Sørensen scheme) and a boson-mediated Ising simulator in the presence of a transverse field. In particular, we show that these two schemes have the same effective Hamiltonian in suitably defined rotating frames, and analyze the emergent effective X Y spin model through a truncated Magnus series and numerical simulations. In addition to X Y spin-spin interactions that can be nonperturbatively renormalized from the naive Ising spin-spin coupling constants, we find an effective transverse field that is dependent on the thermal energy of the bosons, as well as other spin-boson couplings that cause spin-boson entanglement not to vanish at any time. In the case of a boson-mediated Ising simulator with transverse field, we discuss the crossover from transverse field Ising-like to X Y -like spin behavior as a function of field strength.

  9. Femtosecond time-resolved optical and Raman spectroscopy of photoinduced spin crossover: temporal resolution of low-to-high spin optical switching.

    PubMed

    Smeigh, Amanda L; Creelman, Mark; Mathies, Richard A; McCusker, James K

    2008-10-29

    A combination of femtosecond electronic absorption and stimulated Raman spectroscopies has been employed to determine the kinetics associated with low-spin to high-spin conversion following charge-transfer excitation of a FeII spin-crossover system in solution. A time constant of tau = 190 +/- 50 fs for the formation of the 5T2 ligand-field state was assigned based on the establishment of two isosbestic points in the ultraviolet in conjunction with changes in ligand stretching frequencies and Raman scattering amplitudes; additional dynamics observed in both the electronic and vibrational spectra further indicate that vibrational relaxation in the high-spin state occurs with a time constant of ca. 10 ps. The results set an important precedent for extremely rapid, formally forbidden (DeltaS = 2) nonradiative relaxation as well as defining the time scale for intramolecular optical switching between two electronic states possessing vastly different spectroscopic, geometric, and magnetic properties.

  10. Spin-wave diode

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lan, Jin; Yu, Weichao; Wu, Ruqian

    A diode, a device allowing unidirectional signal transmission, is a fundamental element of logic structures, and it lies at the heart of modern information systems. The spin wave or magnon, representing a collective quasiparticle excitation of the magnetic order in magnetic materials, is a promising candidate for an information carrier for the next-generation energy-saving technologies. Here, we propose a scalable and reprogrammable pure spin-wave logic hardware architecture using domain walls and surface anisotropy stripes as waveguides on a single magnetic wafer. We demonstrate theoretically the design principle of the simplest logic component, a spin-wave diode, utilizing the chiral bound statesmore » in a magnetic domain wall with a Dzyaloshinskii-Moriya interaction, and confirm its performance through micromagnetic simulations. As a result, these findings open a new vista for realizing different types of pure spin-wave logic components and finally achieving an energy-efficient and hardware-reprogrammable spin-wave computer.« less

  11. Spin-wave diode

    DOE PAGES

    Lan, Jin; Yu, Weichao; Wu, Ruqian; ...

    2015-12-28

    A diode, a device allowing unidirectional signal transmission, is a fundamental element of logic structures, and it lies at the heart of modern information systems. The spin wave or magnon, representing a collective quasiparticle excitation of the magnetic order in magnetic materials, is a promising candidate for an information carrier for the next-generation energy-saving technologies. Here, we propose a scalable and reprogrammable pure spin-wave logic hardware architecture using domain walls and surface anisotropy stripes as waveguides on a single magnetic wafer. We demonstrate theoretically the design principle of the simplest logic component, a spin-wave diode, utilizing the chiral bound statesmore » in a magnetic domain wall with a Dzyaloshinskii-Moriya interaction, and confirm its performance through micromagnetic simulations. As a result, these findings open a new vista for realizing different types of pure spin-wave logic components and finally achieving an energy-efficient and hardware-reprogrammable spin-wave computer.« less

  12. High precision pulsar timing and spin frequency second derivatives

    NASA Astrophysics Data System (ADS)

    Liu, X. J.; Bassa, C. G.; Stappers, B. W.

    2018-05-01

    We investigate the impact of intrinsic, kinematic and gravitational effects on high precision pulsar timing. We present an analytical derivation and a numerical computation of the impact of these effects on the first and second derivative of the pulsar spin frequency. In addition, in the presence of white noise, we derive an expression to determine the expected measurement uncertainty of a second derivative of the spin frequency for a given timing precision, observing cadence and timing baseline and find that it strongly depends on the latter (∝t-7/2). We show that for pulsars with significant proper motion, the spin frequency second derivative is dominated by a term dependent on the radial velocity of the pulsar. Considering the data sets from three Pulsar Timing Arrays, we find that for PSR J0437-4715 a detectable spin frequency second derivative will be present if the absolute value of the radial velocity exceeds 33 km s-1. Similarly, at the current timing precision and cadence, continued timing observations of PSR J1909-3744 for about another eleven years, will allow the measurement of its frequency second derivative and determine the radial velocity with an accuracy better than 14 km s-1. With the ever increasing timing precision and observing baselines, the impact of the, largely unknown, radial velocities of pulsars on high precision pulsar timing can not be neglected.

  13. Accurate potential energy functions, non-adiabatic and spin-orbit couplings in the ZnH(+) system.

    PubMed

    Liang, Guiying; Liu, Xiaoting; Zhang, Xiaomei; Xu, Haifeng; Yan, Bing

    2016-03-05

    A high-level ab initio calculation on the ZnH(+) cation has been carried out with the multi-reference configuration interaction method plus Davison correction (MRCI+Q). The scalar relativistic effect is included by using the Douglas-Kroll-Hess (DKH) method. The calculated potential energy curves (PECs) of the 7 Λ-S states are associated with the dissociation limits of Zn(+)((2)Sg)+H((2)Sg), Zn((1)Sg)+H(+)((1)Sg), and Zn(+)((2)Pu)+H((2)Sg), respectively (The Λ-S state is labeled as (2S+1)Λ, in which Λ is the quantum number for the projection along the internuclear axis of the total electronic orbital angular momentum and S is the total electron spin). The spectroscopic constants of the bound states are determined and in good agreement with the available theoretical and experimental results. The permanent dipole moments (PDMs) of Λ-S states and the spin-orbit (SO) matrix elements between Λ-S states are also computed. The results show that the abrupt changes of the PDMs and SO matrix elements come into being for the reason of the avoided crossing between the states with the same symmetry. In addition, the non-adiabatic couplings matrix elements between Λ-S states are also evaluated. Finally, the spin-orbit couplings (SOCs) for the low-lying states are considered with Breit-Pauli operator. The SOC effect makes the 7 Λ-S states of the ZnH(+) cation split into 12 Ω states (Ω=Λ+Sz, in which Sz is projection of the total electron spin S along the internuclear Z-axis). For the (3)0(+) state, the two energy minima exhibit in the potential, which could be attributed to the formation of the new avoided crossing point. The transition dipole moments (TDMs), Franck-Condon factors, and the radiative lifetimes of the selected transitions (2)0(+)-X0(+), (3)0(+)-X0(+), (2)1-X0(+) and (3)1-X0(+) have been reported. Copyright © 2015 Elsevier B.V. All rights reserved.

  14. Spin currents and spin-orbit torques in ferromagnetic trilayers.

    PubMed

    Baek, Seung-Heon C; Amin, Vivek P; Oh, Young-Wan; Go, Gyungchoon; Lee, Seung-Jae; Lee, Geun-Hee; Kim, Kab-Jin; Stiles, M D; Park, Byong-Guk; Lee, Kyung-Jin

    2018-06-01

    Magnetic torques generated through spin-orbit coupling 1-8 promise energy-efficient spintronic devices. For applications, it is important that these torques switch films with perpendicular magnetizations without an external magnetic field 9-14 . One suggested approach 15 to enable such switching uses magnetic trilayers in which the torque on the top magnetic layer can be manipulated by changing the magnetization of the bottom layer. Spin currents generated in the bottom magnetic layer or its interfaces transit the spacer layer and exert a torque on the top magnetization. Here we demonstrate field-free switching in such structures and show that its dependence on the bottom-layer magnetization is not consistent with the anticipated bulk effects 15 . We describe a mechanism for spin-current generation 16,17 at the interface between the bottom layer and the spacer layer, which gives torques that are consistent with the measured magnetization dependence. This other-layer-generated spin-orbit torque is relevant to energy-efficient control of spintronic devices.

  15. Spin-isotropic continuum of spin excitations in antiferromagnetically ordered Fe1.07Te

    NASA Astrophysics Data System (ADS)

    Song, Yu; Lu, Xingye; Regnault, L.-P.; Su, Yixi; Lai, Hsin-Hua; Hu, Wen-Jun; Si, Qimiao; Dai, Pengcheng

    2018-02-01

    Unconventional superconductivity typically emerges in the presence of quasidegenerate ground states, and the associated intense fluctuations are likely responsible for generating the superconducting state. Here we use polarized neutron scattering to study the spin space anisotropy of spin excitations in Fe1.07Te exhibiting bicollinear antiferromagnetic (AF) order, the parent compound of FeTe1 -xSex superconductors. We confirm that the low-energy spin excitations are transverse spin waves, consistent with a local-moment origin of the bicollinear AF order. While the ordered moments lie in the a b plane in Fe1.07Te , it takes less energy for them to fluctuate out of plane, similar to BaFe2As2 and NaFeAs. At energies above E ≳20 meV, we find magnetic scattering to be dominated by an isotropic continuum that persists up to at least 50 meV. Although the isotropic spin excitations cannot be ascribed to spin waves from a long-range-ordered local-moment antiferromagnet, the continuum can result from the bicollinear magnetic order ground state of Fe1.07Te being quasidegenerate with plaquette magnetic order.

  16. Spin-Orbital Excitations in Ca2 RuO4 Revealed by Resonant Inelastic X-Ray Scattering

    NASA Astrophysics Data System (ADS)

    Das, L.; Forte, F.; Fittipaldi, R.; Fatuzzo, C. G.; Granata, V.; Ivashko, O.; Horio, M.; Schindler, F.; Dantz, M.; Tseng, Yi; McNally, D. E.; Rønnow, H. M.; Wan, W.; Christensen, N. B.; Pelliciari, J.; Olalde-Velasco, P.; Kikugawa, N.; Neupert, T.; Vecchione, A.; Schmitt, T.; Cuoco, M.; Chang, J.

    2018-01-01

    The strongly correlated insulator Ca2 RuO4 is considered as a paradigmatic realization of both spin-orbital physics and a band-Mott insulating phase, characterized by orbitally selective coexistence of a band and a Mott gap. We present a high resolution oxygen K -edge resonant inelastic x-ray scattering study of the antiferromagnetic Mott insulating state of Ca2 RuO4 . A set of low-energy (about 80 and 400 meV) and high-energy (about 1.3 and 2.2 eV) excitations are reported, which show strong incident light polarization dependence. Our results strongly support a spin-orbit coupled band-Mott scenario and explore in detail the nature of its exotic excitations. Guided by theoretical modeling, we interpret the low-energy excitations as a result of composite spin-orbital excitations. Their nature unveils the intricate interplay of crystal-field splitting and spin-orbit coupling in the band-Mott scenario. The high-energy excitations correspond to intra-atomic singlet-triplet transitions at an energy scale set by Hund's coupling. Our findings give a unifying picture of the spin and orbital excitations in the band-Mott insulator Ca2 RuO4 .

  17. Formation of quantum spin Hall state on Si surface and energy gap scaling with strength of spin orbit coupling.

    PubMed

    Zhou, Miao; Ming, Wenmei; Liu, Zheng; Wang, Zhengfei; Yao, Yugui; Liu, Feng

    2014-11-19

    For potential applications in spintronics and quantum computing, it is desirable to place a quantum spin Hall insulator [i.e., a 2D topological insulator (TI)] on a substrate while maintaining a large energy gap. Here, we demonstrate a unique approach to create the large-gap 2D TI state on a semiconductor surface, based on first-principles calculations and effective Hamiltonian analysis. We show that when heavy elements with strong spin orbit coupling (SOC) such as Bi and Pb atoms are deposited on a patterned H-Si(111) surface into a hexagonal lattice, they exhibit a 2D TI state with a large energy gap of ≥ 0.5 eV. The TI state arises from an intriguing substrate orbital filtering effect that selects a suitable orbital composition around the Fermi level, so that the system can be matched onto a four-band effective model Hamiltonian. Furthermore, it is found that within this model, the SOC gap does not increase monotonically with the increasing strength of SOC. These interesting results may shed new light in future design and fabrication of large-gap topological quantum states.

  18. Formation of quantum spin Hall state on Si surface and energy gap scaling with strength of spin orbit coupling

    DOE PAGES

    Zhou, Miao; Ming, Wenmei; Liu, Zheng; ...

    2014-11-19

    For potential applications in spintronics and quantum computing, it is desirable to place a quantum spin Hall insulator [i.e., a 2D topological insulator (TI)] on a substrate while maintaining a large energy gap. Here, we demonstrate a unique approach to create the large-gap 2D TI state on a semiconductor surface, based on first-principles calculations and effective Hamiltonian analysis. We show that when heavy elements with strong spin orbit coupling (SOC) such as Bi and Pb atoms are deposited on a patterned H-Si(111) surface into a hexagonal lattice, they exhibit a 2D TI state with a large energy gap of ≥0.5more » eV. The TI state arises from an intriguing substrate orbital filtering effect that selects a suitable orbital composition around the Fermi level, so that the system can be matched onto a four-band effective model Hamiltonian. Furthermore, it is found that within this model, the SOC gap does not increase monotonically with the increasing strength of SOC. These interesting results may shed new light in future design and fabrication of large-gap topological quantum states.« less

  19. Spin-polarized currents in a two-terminal double quantum ring driven by magnetic fields and Rashba spin-orbit interaction

    NASA Astrophysics Data System (ADS)

    Dehghan, E.; Khoshnoud, D. Sanavi; Naeimi, A. S.

    2018-06-01

    Aim of this study is to investigate spin transportation in double quantum ring (DQR). We developed an array of DQR to measure the transmission coefficient and analyze the spin transportation through this system in the presence of Rashba spin-orbit interaction (RSOI) and magnetic flux estimated using S-matrix method. In this article, we compute the spin transport and spin-current characteristics numerically as functions of electron energy, angles between the leads, coupling constant of the leads, RSOI, and magnetic flux. Our results suggest that, for typical values of the magnetic flux (ϕ /ϕ0) and Rashba constant (αR), such system can demonstrates many spintronic properties. It is possible to design a new geometry of DQR by incoming electrons polarization in a way to optimize the system to work as a spin-filtering and spin-inverting nano-device with very high efficiency. The results prove that the spin current will strongly modulate with an increase in the magnetic flux and Rashba constant. Moreover it is shown that, when the lead coupling is weak, the perfect spin-inverter does not occur.

  20. Graphene based superconducting junctions as spin sources for spintronics

    NASA Astrophysics Data System (ADS)

    Emamipour, Hamidreza

    2018-02-01

    We investigate spin-polarized transport in graphene-based ferromagnet-superconductor junctions within the Blonder-Tinkham-Klapwijk formalism by using spin-polarized Dirac-Bogoliubov-de-Gennes equations. We consider superconductor in spin-singlet s-wave pairing state and ferromagnet is modeled by an exchange field with energy of Ex. We have found that graphene-based junctions can be used to produce highly spin-polarized current in different situations. For example, if we design a junction with high Ex and EF compared to order parameter of superconductor, then one can have a large spin-polarized current which is tunable in magnitude and sign by bias voltage and Ex. Therefore graphene-based superconducting junction can be used in spintronic devices in alternative to conventional junctions or half-metallic ferromagnets. Also, we have found that the calculated spin polarization can be used as a tool to distinguish specular Andreev reflection (SAR) from the conventional Andreev reflection (CAR) such that in the case of CAR, spin polarization in sub-gap region is completely negative which means that spin-down current is greater than spin-up current. When the SAR is dominated, the spin polarization is positive at all bias-voltages, which itself shows that spin-up current is greater than spin-down current.

  1. Electric field induced spin-polarized current

    DOEpatents

    Murakami, Shuichi; Nagaosa, Naoto; Zhang, Shoucheng

    2006-05-02

    A device and a method for generating an electric-field-induced spin current are disclosed. A highly spin-polarized electric current is generated using a semiconductor structure and an applied electric field across the semiconductor structure. The semiconductor structure can be a hole-doped semiconductor having finite or zero bandgap or an undoped semiconductor of zero bandgap. In one embodiment, a device for injecting spin-polarized current into a current output terminal includes a semiconductor structure including first and second electrodes, along a first axis, receiving an applied electric field and a third electrode, along a direction perpendicular to the first axis, providing the spin-polarized current. The semiconductor structure includes a semiconductor material whose spin orbit coupling energy is greater than room temperature (300 Kelvin) times the Boltzmann constant. In one embodiment, the semiconductor structure is a hole-doped semiconductor structure, such as a p-type GaAs semiconductor layer.

  2. Extrinsic Rashba spin-orbit coupling effect on silicene spin polarized field effect transistors

    NASA Astrophysics Data System (ADS)

    Pournaghavi, Nezhat; Esmaeilzadeh, Mahdi; Abrishamifar, Adib; Ahmadi, Somaieh

    2017-04-01

    Regarding the spin field effect transistor (spin FET) challenges such as mismatch effect in spin injection and insufficient spin life time, we propose a silicene based device which can be a promising candidate to overcome some of those problems. Using non-equilibrium Green’s function method, we investigate the spin-dependent conductance in a zigzag silicene nanoribbon connected to two magnetized leads which are supposed to be either in parallel or anti-parallel configurations. For both configurations, a controllable spin current can be obtained when the Rashba effect is present; thus, we can have a spin filter device. In addition, for anti-parallel configuration, in the absence of Rashba effect, there is an intrinsic energy gap in the system (OFF-state); while, in the presence of Rashba effect, electrons with flipped spin can pass through the channel and make the ON-state. The current voltage (I-V) characteristics which can be tuned by changing the gate voltage or Rashba strength, are studied. More importantly, reducing the mismatch conductivity as well as energy consumption make the silicene based spin FET more efficient relative to the spin FET based on two-dimensional electron gas proposed by Datta and Das. Also, we show that, at the same conditions, the current and {{I}\\text{on}}/{{I}\\text{off}} ratio of silicene based spin FET are significantly greater than that of the graphene based one.

  3. High-mobility ultrathin semiconducting films prepared by spin coating.

    PubMed

    Mitzi, David B; Kosbar, Laura L; Murray, Conal E; Copel, Matthew; Afzali, Ali

    2004-03-18

    The ability to deposit and tailor reliable semiconducting films (with a particular recent emphasis on ultrathin systems) is indispensable for contemporary solid-state electronics. The search for thin-film semiconductors that provide simultaneously high carrier mobility and convenient solution-based deposition is also an important research direction, with the resulting expectations of new technologies (such as flexible or wearable computers, large-area high-resolution displays and electronic paper) and lower-cost device fabrication. Here we demonstrate a technique for spin coating ultrathin (approximately 50 A), crystalline and continuous metal chalcogenide films, based on the low-temperature decomposition of highly soluble hydrazinium precursors. We fabricate thin-film field-effect transistors (TFTs) based on semiconducting SnS(2-x)Se(x) films, which exhibit n-type transport, large current densities (>10(5) A cm(-2)) and mobilities greater than 10 cm2 V(-1) s(-1)--an order of magnitude higher than previously reported values for spin-coated semiconductors. The spin-coating technique is expected to be applicable to a range of metal chalcogenides, particularly those based on main group metals, as well as for the fabrication of a variety of thin-film-based devices (for example, solar cells, thermoelectrics and memory devices).

  4. Highly-transparent multi-layered spin-coated silk fibroin film

    NASA Astrophysics Data System (ADS)

    Wasapinyokul, Kamol; Kaewpirom, Supranee; Chuwongin, Santhad; Boonsang, Siridech

    2017-10-01

    In this study, the silk fibroin films with different numbers of layers were fabricated by the spin-coating method and their optical transmittances were observed. The process to synthesise the silk fibroin solution was explained - starting from the silk cocoon until the silk-fibroin solution, approximately 7.5% concentration wt/vol, was obtained. The solution was spin-coated onto clean glass substrates to fabricate samples. Totally 10 samples with different numbers of layers, from 1 to 5 layers, were obtained. All samples can be separated into two groups: those left dried at room temperature after spin-coating and those heated at 60°C. They were then measured for their transmittance over the visible-to-near-infrared region. All samples exhibited the high transmittance where the values were at 95% and 98%, for the samples at room temperature and those at 60°C, respectively. This was believed to be due to the heating effect that caused the silk fibroin to arrange itself after being heated, hence the higher transmittance. These high transmittances were maintained regardless of the number of layers and length of heating time. Results from this study could be used to fabricate a silk fibroin film with high optical transmittance and adjustable other properties.

  5. Observation of a new high-spin isomer in {sup 94}Pd

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Brock, T. S.; Nara Singh, B. S.; Wadsworth, R.

    2010-12-15

    A second {gamma}-decaying high-spin isomeric state, with a half-life of 197(22)ns, has been identified in the N=Z+2 nuclide {sup 94}Pd as part of a stopped-beam Rare Isotope Spectroscopic INvestigation at GSI (RISING) experiment. Weisskopf estimates were used to establish a tentative spin/parity of 19{sup -}, corresponding to the maximum possible spin of a negative parity state in the restricted (p{sub 1/2}, g{sub 9/2}) model space of empirical shell model calculations. The reproduction of the E3 decay properties of the isomer required an extension of the model space to include the f{sub 5/2} and p{sub 3/2} orbitals using the CD-Bonn potential.more » This is the first time that such an extension has been required for a high-spin isomer in the vicinity of {sup 100}Sn and reveals the importance of such orbits for understanding the decay properties of high-spin isomers in this region. However, despite the need for the extended model space for the E3 decay, the dominant configuration for the 19{sup -} state remains ({pi}p{sub 1/2}{sup -1}g{sub 9/2}{sup -3}){sub 11} x ({nu}g{sub 9/2}{sup -2}){sub 8}. The half-life of the known, 14{sup +}, isomer was remeasured and yielded a value of 499(13) ns.« less

  6. Electrical detection of proton-spin motion in a polymer device at room temperature

    NASA Astrophysics Data System (ADS)

    Boehme, Christoph

    With the emergence of spintronics concepts based on organic semiconductors there has been renewed interest in the role of both, electron as well as nuclear spin states for the magneto-optoelectronic properties of these materials. In spite of decades of research on these molecular systems, there is still much need for an understanding of some of the fundamental properties of spin-controlled charge carrier transport and recombination processes. This presentation focuses on mechanisms that allow proton spin states to influence electronic transition rates in organic semiconductors. Remarkably, even at low-magnetic field conditions and room temperature, nuclear spin states with energy splittings orders of magnitude below thermal energies are able to influence observables like magnetoresistance and fluorescence. While proton spins couple to charge carrier spins via hyperfine interaction, there has been considerable debate about the nature of the electronic processes that are highly susceptible to these weak hyperfine fields. Here, experiments are presented which show how the magnetic resonant manipulation of electron and nuclear spin states in a π-conjugated polymer device causes changes of the device current. The experiments confirm the extraordinary sensitivity of electronic transitions to very weak magnetic field changes and underscore the potential significance of spin-selection rules for highly sensitive absolute magnetic fields sensor concepts. However, the relevance of these magnetic-field sensitive spin-dependent electron transitions is not just limited to semiconductor materials but also radical pair chemistry and even avian magnetoreceptors This work was supported by the US Department of Energy, Office of Basic Energy Sciences, Division of Materials Sciences and Engineering under Award #DE-SC0000909. The Utah NSF - MRSEC program #DMR 1121252 is acknowledged for instrumentation support.

  7. Spin injection devices with high mobility 2DEG channels (Conference Presentation)

    NASA Astrophysics Data System (ADS)

    Ciorga, Mariusz; Oltscher, Martin; Kuczmik, Thomas; Loher, Josef; Bayer, Andreas; Schuh, Dieter; Bougeard, Dominique; Weiss, Dieter

    2016-10-01

    Effective electrical spin injection into two-dimensional electron gas (2DEG) is a prerequisite for many new functionalities in spintronic device concepts, with the Datta-Das spin field effect transistor [1] being a primary example. Here we will discuss some of the results of our studies on spin injection devices with high mobility 2DEG confined in an inverted AlGaAs/GaAs heterojunction and a diluted ferromagnetic semiconductor (Ga,Mn)As employed as a source and a detector of spin-polarized carriers. Firstly we will show that nonlocal spin valve signal in such devices can significantly exceed the prediction of the standard model of spin injection based on spin drift-diffusion equations [2], what leads to conclusion that ballistic transport in the 2D region directly below the injector should be taken into account to fully describe the spin injection process [3]. Furthermore, we demonstrate also a large magnetoresistance (MR) signal of 20% measured in local configuration, i.e., with spin-polarized current flowing between two ferromagnetic contacts. To our knowledge, this is the highest value of MR observed so far in semiconductor channels. The work has been supported by Deutsche Forschungsgemeinschaft (DFG) through SFB689. [1] S. Datta and B. Das, Appl. Phys. Lett. 56, 665 (1990) [2] M. Oltscher et al., Phys. Rev. Lett. 113, 236602 (2014) [3] K. Cheng and S. Zhang, Phys. Rev. B 92, 214402 (2015)

  8. High-Spin Structures as the Probes of Proton-Neutron Pairing

    NASA Astrophysics Data System (ADS)

    Afanasjev, A. V.

    Rotating N = Z nuclei in the mass A = 58-80 region have been studied within the framework of isovector mean field theory. Available data is well and systematically described in the calculations. The present study supports the presence of strong isovector np pair field at low spin, which is, however, destroyed at high spin. No clear evidence for the existence of the isoscalar t = 0 np pairing has been found.

  9. High-spin states and possible "stapler" band in 115In

    NASA Astrophysics Data System (ADS)

    Chen, Z. Q.; Wang, S. Y.; Liu, L.; Zhang, P.; Jia, H.; Qi, B.; Wang, S.; Sun, D. P.; Liu, C.; Li, Z. Q.; Wu, X. G.; Li, G. S.; He, C. Y.; Zheng, Y.; Zhu, L. H.

    2015-04-01

    High-spin states of 115In have been studied using the 114Cd (7Li,α 2 n ) reaction at a beam energy of 48 MeV. A total of 13 new transitions have been observed and added to the level scheme of 115In. Most of the states in 115In can be interpreted in terms of the weak coupling of a g9 /2 proton hole to the core states of 116Sn or a g7 /2 proton to the core states of 114Cd. A Δ I =1 band with the π (g9/2) -1⊗ν (h11/2) 2 configuration was suggested as an oblate band built on the "stapler" mechanism with the aid of the tilted axis cranking model based on covariant density functional theory.

  10. High temperature spin dynamics in linear magnetic chains, molecular rings, and segments by nuclear magnetic resonance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adelnia, Fatemeh; Lascialfari, Alessandro; Dipartimento di Fisica, Università degli Studi di Pavia and INSTM, Pavia

    2015-05-07

    We present the room temperature proton nuclear magnetic resonance (NMR) nuclear spin-lattice relaxation rate (NSLR) results in two 1D spin chains: the Heisenberg antiferromagnetic (AFM) Eu(hfac){sub 3}NITEt and the magnetically frustrated Gd(hfac){sub 3}NITEt. The NSLR as a function of external magnetic field can be interpreted very well in terms of high temperature spin dynamics dominated by a long time persistence of the decay of the two-spin correlation function due to the conservation of the total spin value for isotropic Heisenberg chains. The high temperature spin dynamics are also investigated in Heisenberg AFM molecular rings. In both Cr{sub 8} closed ringmore » and in Cr{sub 7}Cd and Cr{sub 8}Zn open rings, i.e., model systems for a finite spin segment, an enhancement of the low frequency spectral density is found consistent with spin diffusion but the high cut-off frequency due to intermolecular anisotropic interactions prevents a detailed analysis of the spin diffusion regime.« less

  11. Estimating the spin diffusion length and the spin Hall angle from spin pumping induced inverse spin Hall voltages

    NASA Astrophysics Data System (ADS)

    Roy, Kuntal

    2017-11-01

    There exists considerable confusion in estimating the spin diffusion length of materials with high spin-orbit coupling from spin pumping experiments. For designing functional devices, it is important to determine the spin diffusion length with sufficient accuracy from experimental results. An inaccurate estimation of spin diffusion length also affects the estimation of other parameters (e.g., spin mixing conductance, spin Hall angle) concomitantly. The spin diffusion length for platinum (Pt) has been reported in the literature in a wide range of 0.5-14 nm, and in particular it is a constant value independent of Pt's thickness. Here, the key reasonings behind such a wide range of reported values of spin diffusion length have been identified comprehensively. In particular, it is shown here that a thickness-dependent conductivity and spin diffusion length is necessary to simultaneously match the experimental results of effective spin mixing conductance and inverse spin Hall voltage due to spin pumping. Such a thickness-dependent spin diffusion length is tantamount to the Elliott-Yafet spin relaxation mechanism, which bodes well for transitional metals. This conclusion is not altered even when there is significant interfacial spin memory loss. Furthermore, the variations in the estimated parameters are also studied, which is important for technological applications.

  12. Electronic spin transport in gate-tunable black phosphorus spin valves

    NASA Astrophysics Data System (ADS)

    Liu, Jiawei; Avsar, Ahmet; Tan, Jun You; Oezyilmaz, Barbaros

    High charge mobility, the electric field effect and small spin-orbit coupling make semiconducting black phosphorus (BP) a promising material for spintronics device applications requiring long spin distance spin communication with all rectification and amplification actions. Towards this, we study the all electrical spin injection, transport and detection under non-local spin valve geometry in fully encapsulated ultra-thin BP devices. We observe spin relaxation times as high as 4 ns, with spin relaxation lengths exceeding 6 μm. These values are an order of magnitude higher than what have been measured in typical graphene spin valve devices. Moreover, the spin transport depends strongly on charge carrier concentration and can be manipulated in a spin transistor-like manner by controlling electric field. This behaviour persists even at room temperature. Finally, we will show that similar to its electrical and optical properties, spin transport property is also strongly anisotropic.

  13. High-frequency polarization dynamics in spin-lasers: pushing the limits

    NASA Astrophysics Data System (ADS)

    Gerhardt, Nils C.; Lindemann, Markus; Pusch, Tobias; Michalzik, Rainer; Hofmann, Martin R.

    2017-09-01

    While the high-frequency performance of conventional lasers is limited by the coupled carrier-photon dynamics, spin-polarized lasers have a high potential to overcome this limitation and to push the direct modulation bandwidth beyond 100 GHz. The key is to utilize the ultrafast polarization dynamics in spin-polarized vertical cavity surface-emitting lasers (spin-VCSELs) which is decoupled from the intensity dynamics and its fundamental limitations. The polarization dynamics in such devices, characterized by the polarization oscillation resonance frequency, is mainly determined by the amount of birefringence in the cavity. Using an approach for manipulating the birefringence via mechanical strain we were able to increase the polarization dynamics to resonance frequencies of more than 40 GHz. Up to now these values are only limited by the setup to induce birefringence and do not reflect any fundamental limitations. Taking our record results for the birefringence-induced mode splitting of more than 250 GHz into account, the concept has the potential to provide polarization modulation in spin-VCSELs with modulation frequencies far beyond 100 GHz. This makes them ideal devices for next-generation fast optical interconnects. In this paper we present experimental results for ultrafast polarization dynamics up to 50 GHz and compare them to numerical simulations.

  14. Spin diffusion in disordered organic semiconductors

    NASA Astrophysics Data System (ADS)

    Li, Ling; Gao, Nan; Lu, Nianduan; Liu, Ming; Bässler, Heinz

    2015-12-01

    An analytical theory for spin diffusion in disordered organic semiconductors is derived. It is based on percolation theory and variable range hopping in a disordered energy landscape with a Gaussian density of states. It describes universally the dependence of the spin diffusion on temperature, carrier density, material disorder, magnetic field, and electric field at the arbitrary magnitude of the Hubbard energy of charge pairs. It is found that, compared to the spin transport carried by carriers hopping, the spin exchange will hinder the spin diffusion process at low carrier density, even under the condition of a weak electric field. Importantly, under the influence of a bias voltage, anomalous spreading of the spin packet will lead to an abnormal temperature dependence of the spin diffusion coefficient and diffusion length. This explains the recent experimental data for spin diffusion length observed in Alq3.

  15. High-fidelity readout and control of a nuclear spin qubit in silicon.

    PubMed

    Pla, Jarryd J; Tan, Kuan Y; Dehollain, Juan P; Lim, Wee H; Morton, John J L; Zwanenburg, Floris A; Jamieson, David N; Dzurak, Andrew S; Morello, Andrea

    2013-04-18

    Detection of nuclear spin precession is critical for a wide range of scientific techniques that have applications in diverse fields including analytical chemistry, materials science, medicine and biology. Fundamentally, it is possible because of the extreme isolation of nuclear spins from their environment. This isolation also makes single nuclear spins desirable for quantum-information processing, as shown by pioneering studies on nitrogen-vacancy centres in diamond. The nuclear spin of a (31)P donor in silicon is very promising as a quantum bit: bulk measurements indicate that it has excellent coherence times and silicon is the dominant material in the microelectronics industry. Here we demonstrate electrical detection and coherent manipulation of a single (31)P nuclear spin qubit with sufficiently high fidelities for fault-tolerant quantum computing. By integrating single-shot readout of the electron spin with on-chip electron spin resonance, we demonstrate quantum non-demolition and electrical single-shot readout of the nuclear spin with a readout fidelity higher than 99.8 percent-the highest so far reported for any solid-state qubit. The single nuclear spin is then operated as a qubit by applying coherent radio-frequency pulses. For an ionized (31)P donor, we find a nuclear spin coherence time of 60 milliseconds and a one-qubit gate control fidelity exceeding 98 percent. These results demonstrate that the dominant technology of modern electronics can be adapted to host a complete electrical measurement and control platform for nuclear-spin-based quantum-information processing.

  16. Spin caloric effects in antiferromagnets assisted by an external spin current

    NASA Astrophysics Data System (ADS)

    Gomonay, O.; Yamamoto, Kei; Sinova, Jairo

    2018-07-01

    Searching for novel spin caloric effects in antiferromagnets, we study the properties of thermally activated magnons in the presence of an external spin current and temperature gradient. We predict the spin Peltier effect—generation of a heat flux by spin accumulation—in an antiferromagnetic insulator with cubic or uniaxial magnetic symmetry. This effect is related to the spin-current induced splitting of the relaxation times of the magnons with the opposite spin direction. We show that the Peltier effect can trigger antiferromagnetic domain wall motion with a force whose value grows with the temperature of a sample. At a temperature larger than the energy of the low-frequency magnons, this force is much larger than the force caused by direct spin transfer between the spin current and the domain wall. We also demonstrate that the external spin current can induce the magnon spin Seebeck effect. The corresponding Seebeck coefficient is controlled by the current density. These spin-current assisted caloric effects open new ways for the manipulation of the magnetic states in antiferromagnets.

  17. Spin transport at high temperatures in epitaxial Heusler alloy/n-GaAs lateral spin valves

    NASA Astrophysics Data System (ADS)

    Peterson, Timothy A.; Christie, Kevin D.; Patel, Sahil J.; Crowell, Paul A.; Palmstrøm, Chris J.

    2015-03-01

    We report on electrical injection and detection of spin accumulation in ferromagnet/ n-GaAs lateral spin-valve devices, observed up to and above room temperature. The ferromagnet in these measurements is the Heusler alloy Co2FeSi, and the semiconductor channel is GaAs doped at 3 ×1016 cm-3. The spin signal is enhanced by operating the detection contact under forward bias. The enhancement originates from drift effects at low-temperatures and an increase of the detection efficiency at all temperatures. The detector bias dependence of the observed spin-valve signal is interpreted by taking into account the quantum well (QW) which forms in the degenerately doped region immediately behind the Schottky tunnel barrier. In particular, we believe the QW is responsible for the minority spin accumulation (majority spin current) under large forward bias. The spin diffusion length and lifetime are determined by measuring the separation dependence of the non-local spin valve signal in a family of devices patterned by electron beam lithography. A spin diffusion length of 700 nm and lifetime of 46 picoseconds are found at a temperature of 295 K. This work was supported by the NSF under DMR-1104951, the NSF MRSEC program and C-SPIN, a SRC STARNET center sponsored by MARCO and DARPA.

  18. Quasiparticle band gap of organic-inorganic hybrid perovskites: Crystal structure, spin-orbit coupling, and self-energy effects

    NASA Astrophysics Data System (ADS)

    Gao, Weiwei; Gao, Xiang; Abtew, Tesfaye A.; Sun, Yi-Yang; Zhang, Shengbai; Zhang, Peihong

    2016-02-01

    The quasiparticle band gap is one of the most important materials properties for photovoltaic applications. Often the band gap of a photovoltaic material is determined (and can be controlled) by various factors, complicating predictive materials optimization. An in-depth understanding of how these factors affect the size of the gap will provide valuable guidance for new materials discovery. Here we report a comprehensive investigation on the band gap formation mechanism in organic-inorganic hybrid perovskites by decoupling various contributing factors which ultimately determine their electronic structure and quasiparticle band gap. Major factors, namely, quasiparticle self-energy, spin-orbit coupling, and structural distortions due to the presence of organic molecules, and their influences on the quasiparticle band structure of organic-inorganic hybrid perovskites are illustrated. We find that although methylammonium cations do not contribute directly to the electronic states near band edges, they play an important role in defining the band gap by introducing structural distortions and controlling the overall lattice constants. The spin-orbit coupling effects drastically reduce the electron and hole effective masses in these systems, which is beneficial for high carrier mobilities and small exciton binding energies.

  19. Quantum computing with acceptor spins in silicon.

    PubMed

    Salfi, Joe; Tong, Mengyang; Rogge, Sven; Culcer, Dimitrie

    2016-06-17

    The states of a boron acceptor near a Si/SiO2 interface, which bind two low-energy Kramers pairs, have exceptional properties for encoding quantum information and, with the aid of strain, both heavy hole and light hole-based spin qubits can be designed. Whereas a light-hole spin qubit was introduced recently (arXiv:1508.04259), here we present analytical and numerical results proving that a heavy-hole spin qubit can be reliably initialised, rotated and entangled by electrical means alone. This is due to strong Rashba-like spin-orbit interaction terms enabled by the interface inversion asymmetry. Single qubit rotations rely on electric-dipole spin resonance (EDSR), which is strongly enhanced by interface-induced spin-orbit terms. Entanglement can be accomplished by Coulomb exchange, coupling to a resonator, or spin-orbit induced dipole-dipole interactions. By analysing the qubit sensitivity to charge noise, we demonstrate that interface-induced spin-orbit terms are responsible for sweet spots in the dephasing time [Formula: see text] as a function of the top gate electric field, which are close to maxima in the EDSR strength, where the EDSR gate has high fidelity. We show that both qubits can be described using the same starting Hamiltonian, and by comparing their properties we show that the complex interplay of bulk and interface-induced spin-orbit terms allows a high degree of electrical control and makes acceptors potential candidates for scalable quantum computation in Si.

  20. Electron-Spin Filters Based on the Rashba Effect

    NASA Technical Reports Server (NTRS)

    Ting, David Z.-Y.; Cartoixa, Xavier; McGill, Thomas C.; Moon, Jeong S.; Chow, David H.; Schulman, Joel N.; Smith, Darryl L.

    2004-01-01

    Semiconductor electron-spin filters of a proposed type would be based on the Rashba effect, which is described briefly below. Electron-spin filters more precisely, sources of spin-polarized electron currents have been sought for research on, and development of, the emerging technological discipline of spintronics (spin-based electronics). There have been a number of successful demonstrations of injection of spin-polarized electrons from diluted magnetic semiconductors and from ferromagnetic metals into nonmagnetic semiconductors. In contrast, a device according to the proposal would be made from nonmagnetic semiconductor materials and would function without an applied magnetic field. The Rashba effect, named after one of its discoverers, is an energy splitting, of what would otherwise be degenerate quantum states, caused by a spin-orbit interaction in conjunction with a structural-inversion asymmetry in the presence of interfacial electric fields in a semiconductor heterostructure. The magnitude of the energy split is proportional to the electron wave number. The present proposal evolved from recent theoretical studies that suggested the possibility of devices in which electron energy states would be split by the Rashba effect and spin-polarized currents would be extracted by resonant quantum-mechanical tunneling. Accordingly, a device according to the proposal would be denoted an asymmetric resonant interband tunneling diode [a-RITD]. An a-RITD could be implemented in a variety of forms, the form favored in the proposal being a double-barrier heterostructure containing an asymmetric quantum well. It is envisioned that a-RITDs would be designed and fabricated in the InAs/GaSb/AlSb material system for several reasons: Heterostructures in this material system are strong candidates for pronounced Rashba spin splitting because InAs and GaSb exhibit large spin-orbit interactions and because both InAs and GaSb would be available for the construction of highly asymmetric

  1. Perturbational treatment of spin-orbit coupling for generally applicable high-level multi-reference methods

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Mai, Sebastian; Marquetand, Philipp; González, Leticia

    2014-08-21

    An efficient perturbational treatment of spin-orbit coupling within the framework of high-level multi-reference techniques has been implemented in the most recent version of the COLUMBUS quantum chemistry package, extending the existing fully variational two-component (2c) multi-reference configuration interaction singles and doubles (MRCISD) method. The proposed scheme follows related implementations of quasi-degenerate perturbation theory (QDPT) model space techniques. Our model space is built either from uncontracted, large-scale scalar relativistic MRCISD wavefunctions or based on the scalar-relativistic solutions of the linear-response-theory-based multi-configurational averaged quadratic coupled cluster method (LRT-MRAQCC). The latter approach allows for a consistent, approximatively size-consistent and size-extensive treatment of spin-orbitmore » coupling. The approach is described in detail and compared to a number of related techniques. The inherent accuracy of the QDPT approach is validated by comparing cuts of the potential energy surfaces of acrolein and its S, Se, and Te analoga with the corresponding data obtained from matching fully variational spin-orbit MRCISD calculations. The conceptual availability of approximate analytic gradients with respect to geometrical displacements is an attractive feature of the 2c-QDPT-MRCISD and 2c-QDPT-LRT-MRAQCC methods for structure optimization and ab inito molecular dynamics simulations.« less

  2. Distinct nature of orbital-selective Mott phases dominated by low-energy local spin fluctuations

    NASA Astrophysics Data System (ADS)

    Song, Ze-Yi; Jiang, Xiu-Cai; Lin, Hai-Qing; Zhang, Yu-Zhong

    2017-12-01

    Quantum orbital-selective Mott (OSM) transitions are investigated within dynamical mean-field theory based on a two-orbital Hubbard model with different bandwidth at half filling. We find two distinct OSM phases both showing coexistence of itinerant electrons and localized spins, dependent on whether the Hund's coupling is full or of Ising type. The critical values and the nature of the OSM transitions are efficiently determined by entanglement entropy. We reveal that vanishing of the Kondo energy scale evidenced by absence of local spin fluctuations at low frequency in local dynamical spin susceptibility is responsible for the appearance of non-Fermi-liquid OSM phase in Ising Hund's coupling case. We argue that this scenario can also be applied to account for emergent quantum non-Fermi liquid in the one-band Hubbard model when short-range antiferromagnetic order is considered.

  3. Observation of Spin-Polarons in a strongly interacting Fermi liquid

    NASA Astrophysics Data System (ADS)

    Zwierlein, Martin

    2009-03-01

    We have observed spin-polarons in a highly imbalanced mixture of fermionic atoms using tomographic RF spectroscopy. Feshbach resonances allow to freely tune the interactions between the two spin states involved. A single spin down atom immersed in a Fermi sea of spin up atoms can do one of two things: For strong attraction, it can form a molecule with exactly one spin up partner, but for weaker interaction it will spread its attraction and surround itself with a collection of majority atoms. This spin down atom ``dressed'' with a spin up cloud constitutes the spin-polaron. We have observed a striking spectroscopic signature of this quasi-particle for various interaction strengths, a narrow peak in the spin down spectrum that emerges above a broad background. The narrow width signals a long lifetime of the spin-polaron, much longer than the collision rate with spin up atoms, as it must be for a proper quasi-particle. The peak position allows to directly measure the polaron energy. The broad pedestal at high energies reveals physics at short distances and is thus ``molecule-like'': It is exactly matched by the spin up spectra. The comparison with the area under the polaron peak allows to directly obtain the quasi-particle weight Z. We observe a smooth transition from polarons to molecules. At a critical interaction strength of 1/kFa = 0.7, the polaron peak vanishes and spin up and spin down spectra exactly match, signalling the formation of molecules. This is the same critical interaction strength found earlier to separate a normal Fermi mixture from a superfluid molecular Bose-Einstein condensate. The spin-polarons determine the low-temperature phase diagram of imbalanced Fermi mixtures. In principle, polarons can interact with each other and should, at low enough temperatures, form a superfluid of p-wave pairs. We will present a first indication for interactions between polarons.

  4. Spin-orbit torque induced magnetic vortex polarity reversal utilizing spin-Hall effect

    NASA Astrophysics Data System (ADS)

    Li, Cheng; Cai, Li; Liu, Baojun; Yang, Xiaokuo; Cui, Huanqing; Wang, Sen; Wei, Bo

    2018-05-01

    We propose an effective magnetic vortex polarity reversal scheme that makes use of spin-orbit torque introduced by spin-Hall effect in heavy-metal/ferromagnet multilayers structure, which can result in subnanosecond polarity reversal without endangering the structural stability. Micromagnetic simulations are performed to investigate the spin-Hall effect driven dynamics evolution of magnetic vortex. The mechanism of magnetic vortex polarity reversal is uncovered by a quantitative analysis of exchange energy density, magnetostatic energy density, and their total energy density. The simulation results indicate that the magnetic vortex polarity is reversed through the nucleation-annihilation process of topological vortex-antivortex pair. This scheme is an attractive option for ultra-fast magnetic vortex polarity reversal, which can be used as the guidelines for the choice of polarity reversal scheme in vortex-based random access memory.

  5. Reexamination of Spin Transport Through a DOUBLE-δ Magnetic Barrier with Spin-Orbit Interactions

    NASA Astrophysics Data System (ADS)

    Bi, Caihua; Zhai, Feng

    We revisit the properties of spin transport through a semiconductor 2DEG system subjected to the modulation of both a ferromagnetic metal (FM) stripe on top and the Rashba and Dresselhaus spin-orbit interactions (SOIs). The FM stripe has a magnetization along the transporting direction and generates an inhomogeneous magnetic field in the 2DEG plane which is taken as a double-δ shape. It is found that the spin polarization of this system generated from a spin-unpolarized injection can be remarkable only within a low Fermi energy region and is not more than 30% for the parameters available in current experiments. In this energy region, both the magnitude and the orientation of the spin polarization can be tuned by the Rashba strength, the Dresselhaus strength, and the magnetic field strength. The magnetization reversal of the FM stripe cannot result in a change of the conductance, but can rotate the orientation of the spin polarization. The results are in contrast to those in [ J. Phys.: Condens. Matter 15 (2003) L31] where a pure spin state for incident electrons is artificially assumed.

  6. Spin dynamics and exchange interactions in CuO measured by neutron scattering

    NASA Astrophysics Data System (ADS)

    Jacobsen, H.; Gaw, S. M.; Princep, A. J.; Hamilton, E.; Tóth, S.; Ewings, R. A.; Enderle, M.; Wheeler, E. M. Hétroy; Prabhakaran, D.; Boothroyd, A. T.

    2018-04-01

    The magnetic properties of CuO encompass several contemporary themes in condensed-matter physics, including quantum magnetism, magnetic frustration, magnetically-induced ferroelectricity, and orbital currents. Here we report polarized and unpolarized neutron inelastic scattering measurements which provide a comprehensive map of the cooperative spin dynamics in the low-temperature antiferromagnetic (AFM) phase of CuO throughout much of the Brillouin zone. At high energies (E ≳100 meV ), the spectrum displays continuum features consistent with the des Cloizeax-Pearson dispersion for an ideal S =1/2 Heisenberg AFM chain. At lower energies, the spectrum becomes more three dimensional, and we find that a linear spin-wave model for a Heisenberg AFM provides a very good description of the data, allowing for an accurate determination of the relevant exchange constants in an effective spin Hamiltonian for CuO. In the high-temperature helicoidal phase, there are features in the measured low-energy spectrum that we could not reproduce with a spin-only model. We discuss how these might be associated with the magnetically-induced multiferroic behavior observed in this phase.

  7. Constraining Parameters in Pulsar Models of Repeating FRB 121102 with High-energy Follow-up Observations

    NASA Astrophysics Data System (ADS)

    Xiao, Di; Dai, Zi-Gao

    2017-09-01

    Recently, a precise (sub-arcsecond) localization of the repeating fast radio burst (FRB) 121102 led to the discovery of persistent radio and optical counterparts, the identification of a host dwarf galaxy at a redshift of z = 0.193, and several campaigns of searches for higher-frequency counterparts, which gave only upper limits on the emission flux. Although the origin of FRBs remains unknown, most of the existing theoretical models are associated with pulsars, or more specifically, magnetars. In this paper, we explore persistent high-energy emission from a rapidly rotating highly magnetized pulsar associated with FRB 121102 if internal gradual magnetic dissipation occurs in the pulsar wind. We find that the efficiency of converting the spin-down luminosity to the high-energy (e.g., X-ray) luminosity is generally much smaller than unity, even for a millisecond magnetar. This provides an explanation for the non-detection of high-energy counterparts to FRB 121102. We further constrain the spin period and surface magnetic field strength of the pulsar with the current high-energy observations. In addition, we compare our results with the constraints given by the other methods in previous works and expect to apply our new method to some other open issues in the future.

  8. Constraining Parameters in Pulsar Models of Repeating FRB 121102 with High-energy Follow-up Observations

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xiao, Di; Dai, Zi-Gao, E-mail: dzg@nju.edu.cn

    2017-09-10

    Recently, a precise (sub-arcsecond) localization of the repeating fast radio burst (FRB) 121102 led to the discovery of persistent radio and optical counterparts, the identification of a host dwarf galaxy at a redshift of z = 0.193, and several campaigns of searches for higher-frequency counterparts, which gave only upper limits on the emission flux. Although the origin of FRBs remains unknown, most of the existing theoretical models are associated with pulsars, or more specifically, magnetars. In this paper, we explore persistent high-energy emission from a rapidly rotating highly magnetized pulsar associated with FRB 121102 if internal gradual magnetic dissipation occursmore » in the pulsar wind. We find that the efficiency of converting the spin-down luminosity to the high-energy (e.g., X-ray) luminosity is generally much smaller than unity, even for a millisecond magnetar. This provides an explanation for the non-detection of high-energy counterparts to FRB 121102. We further constrain the spin period and surface magnetic field strength of the pulsar with the current high-energy observations. In addition, we compare our results with the constraints given by the other methods in previous works and expect to apply our new method to some other open issues in the future.« less

  9. SU (N ) spin-wave theory: Application to spin-orbital Mott insulators

    NASA Astrophysics Data System (ADS)

    Dong, Zhao-Yang; Wang, Wei; Li, Jian-Xin

    2018-05-01

    We present the application of the SU (N ) spin-wave theory to spin-orbital Mott insulators whose ground states exhibit magnetic orders. When taking both spin and orbital degrees of freedom into account rather than projecting Hilbert space onto the Kramers doublet, which is the lowest spin-orbital locked energy levels, the SU (N ) spin-wave theory should take the place of the SU (2 ) one due to the inevitable spin-orbital multipole exchange interactions. To implement the application, we introduce an efficient general local mean-field method, which involves all local fluctuations, and develop the SU (N ) linear spin-wave theory. Our approach is tested firstly by calculating the multipolar spin-wave spectra of the SU (4 ) antiferromagnetic model. Then, we apply it to spin-orbital Mott insulators. It is revealed that the Hund's coupling would influence the effectiveness of the isospin-1 /2 picture when the spin-orbital coupling is not large enough. We further carry out the SU (N ) spin-wave calculations of two materials, α -RuCl3 and Sr2IrO4 , and find that the magnonic and spin-orbital excitations are consistent with experiments.

  10. Spin Filtering Studies at COSY and AD

    NASA Astrophysics Data System (ADS)

    Nass, Alexander

    2009-08-01

    The high physics potential of experiments with stored high-energy polarized antiprotons led to the proposal of PAX (Polarized Antiproton eXperiment) [1] for the High Energy Storage Ring (HESR) of the FAIR at GSI (Darmstadt/Germany). It is proposed to polarize a stored antiproton beam by means of spin filtering with a polarized H (D) gas target. The feasibility of spin filtering has been demonstrated in the FILTEX experiment. The current interpretation foresees a self-cancellation of the electron contribution to the filtering process and only the hadronic contribution is effective. Several experimental studies with protons (at COSY/Jülich) as well as antiprotons (at AD/CERN) will be carried out to test the principle and measure p¯p⃗ and p¯d⃗ cross sections. A polarized internal gas target (PIT) with surrounding Silicon detectors immersed into a low-β section has to be set up.

  11. Energy levels and exchange interactions of spin clusters

    NASA Astrophysics Data System (ADS)

    Belorizky, E.

    1993-02-01

    We first describe a simple method for diagonalizing the isotropic exchange Hamiltonian of a cluster of N spins in the most general case where all the exchange constants are different. The technique, based on the rotation invariance of the system, leads to a considerable reduction of the total matrix. Simple expressions of the magnetization and susceptibility are provided and an example of the determination of the exchange constants of a complex with five Cu^{2+} ions is given. It is also shown that for a large variety of spin configurations occuring in metal complexes, it is possible to diagonalize the dominant isotropic exchange spin hamiltonian in a straightforward way by using recoupling techniques. This allows to solve problems up to a nine spin cluster with spins having different g values. This survey is pursued by the theoretical approach of the magnetic properties of interacting spins on a finite ring with a detailed study of an oligonuclear metal nitroxide complex formed by six Mn^{2+}(S = 5/2) and six free radicals (s = 1/2). The temperature behaviour of the susceptibility is interpreted with a semi-classical model of a cyclic alternate finite chain. Finally we give a procedure for determining the three exchange constants of three spin 1/2 coupled by isotropic exchange constants in the unsolved case where these constants are all dilferent. Nous décrivons d'abord une méthode simple pour diagonaliser l'Hamiltonien d'échange isotrope d'un cluster de N spins dans le cas le plus général où toutes les constantes d'échange sont différentes. La technique, basée sur l'invariance rotationnelle du système, conduit à une réduction considérable de la matrice totale. On donne des expressions simples de l'aimantation et de la susceptibilité et la méthode est appliquée à la détermination des interactions d'échange d'un complexe comprenant cinq ions Cu^{2+}. On montre également que pour une assez grande variété de configurations de spins pr

  12. Observational signature of high spin at the Event Horizon Telescope

    NASA Astrophysics Data System (ADS)

    Gralla, Samuel E.; Lupsasca, Alexandru; Strominger, Andrew

    2018-04-01

    We analytically compute the observational appearance of an isotropically emitting point source on a circular, equatorial orbit near the horizon of a rapidly spinning black hole. The primary image moves on a vertical line segment, in contrast to the primarily horizontal motion of the spinless case. Secondary images, also on the vertical line, display a rich caustic structure. If detected, this unique signature could serve as a `smoking gun' for a high spin black hole in nature.

  13. Nucleon Alignment and Shape Competition at High Spin in ^180Hf

    NASA Astrophysics Data System (ADS)

    Tandel, U. S.; Chowdhury, P.; Tandel, S. K.; Sheppard, S.; Cline, D.; Wu, C. Y.; Carpenter, M. P.; Janssens, R. V. F.; Khoo, T. L.; Lauritsen, T.; Lister, C. J.; Seweryniak, D.; Zhu, S.

    2006-10-01

    In light even-N Hf isotopes (N = 96-106), the first i13/2 neutron alignment occurs at hφ< 0.3 MeV. In contrast, no alignment was observed up to ˜ 0.4 MeV in ^180,182Hf (N = 108,110) [1]. Theoretical calculations predict that oblate collective rotation becomes yrast at high spins in ^180Hf [2, 3]. In the present work, the yrast band of ^180Hf has been extended to high spins, via inelastic excitation, using a 1300 MeV ^180Hf beam incident on a thin ^232Th target. The γ rays were detected by Gammasphere, with event by event Doppler correction and Q-value selectivity provided by CHICO. The data reveal onset of the first nucleon alignment in ^180Hf at hφ ˜ 0.43 MeV, which is significantly higher than predictions (˜ 0.35 MeV). Interestingly, the γ-vibrational band is crossed by a band with apparent high moment-of-inertia at ˜ 0.25 MeV. This structure, which becomes near yrast at the highest observed spins will be discussed in the context of nucleon alignment and shape competition at high spin in ^180Hf. [1] E. Ngijoi-Yogo, Ph.D. thesis, U.Mass. Lowell (2004) [2] R.R. Hilton and H.J. Mang, Phys. Rev. Lett. 43, 1979 (1979). [3] F.R. Xu et al., Phys. Rev. C62, 014301 (2000).

  14. Controlling spin relaxation with a cavity

    DOE PAGES

    Bienfait, A.; Pla, J. J.; Kubo, Y.; ...

    2016-02-15

    Spontaneous emission of radiation is one of the fundamental mechanisms by which an excited quantum system returns to equilibrium. For spins, however, spontaneous emission is generally negligible compared to other non-radiative relaxation processes because of the weak coupling between the magnetic dipole and the electromagnetic field. In 1946, Purcell realized that the rate of spontaneous emission can be greatly enhanced by placing the quantum system in a resonant cavity. This effect has since been used extensively to control the lifetime of atoms and semiconducting heterostructures coupled to microwave or optical cavities, and is essential for the realization of high-efficiency single-photonmore » sources. In this paper, we report the application of this idea to spins in solids. By coupling donor spins in silicon to a superconducting microwave cavity with a high quality factor and a small mode volume, we reach the regime in which spontaneous emission constitutes the dominant mechanism of spin relaxation. The relaxation rate is increased by three orders of magnitude as the spins are tuned to the cavity resonance, demonstrating that energy relaxation can be controlled on demand. Our results provide a general way to initialize spin systems into their ground state and therefore have applications in magnetic resonance and quantum information processing. Finally, they also demonstrate that the coupling between the magnetic dipole of a spin and the electromagnetic field can be enhanced up to the point at which quantum fluctuations have a marked effect on the spin dynamics; as such, they represent an important step towards the coherent magnetic coupling of individual spins to microwave photons.« less

  15. Structure of spin excitations in heavily electron-doped Li 0.8Fe 0.2ODFeSe superconductors

    DOE PAGES

    Pan, Bingying; Shen, Yao; Hu, Die; ...

    2017-07-25

    Heavily electron-doped iron-selenide high-transition-temperature (high-T c) superconductors, which have no hole Fermi pockets, but have a notably high T c, have challenged the prevailing s± pairing scenario originally proposed for iron pnictides containing both electron and hole pockets. The microscopic mechanism underlying the enhanced superconductivity in heavily electron-doped iron-selenide remains unclear. Here, we used neutron scattering to study the spin excitations of the heavily electron-doped iron-selenide material Li 0.8Fe 0.2ODFeSe (T c = 41 K). Our data revealed nearly ring-shaped magnetic resonant excitations surrounding (π, π) at ~21 meV. As the energy increased, the spin excitations assumed a diamond shape,more » and they dispersed outward until the energy reached ~60 meV and then inward at higher energies. The observed energy-dependent momentum structure and twisted dispersion of spin excitations near (π, π) are analogous to those of hole-doped cuprates in several aspects, thus implying that such spin excitations are essential for the remarkably high T c in these materials.« less

  16. Preparation and properties of a monomeric high-spin Mn(V)-oxo complex.

    PubMed

    Taguchi, Taketo; Gupta, Rupal; Lassalle-Kaiser, Benedikt; Boyce, David W; Yachandra, Vittal K; Tolman, William B; Yano, Junko; Hendrich, Michael P; Borovik, A S

    2012-02-01

    Oxomanganese(V) species have been implicated in a variety of biological and synthetic processes, including their role as a key reactive center within the oxygen-evolving complex in photosynthesis. Nearly all mononuclear Mn(V)-oxo complexes have tetragonal symmetry, producing low-spin species. A new high-spin Mn(V)-oxo complex that was prepared from a well-characterized oxomanganese(III) complex having trigonal symmetry is now reported. Oxidation experiments with [FeCp(2)](+) were monitored with optical and electron paramagnetic resonance (EPR) spectroscopies and support a high-spin oxomanganese(V) complex formulation. The parallel-mode EPR spectrum has a distinctive S = 1 signal at g = 4.01 with a six-line hyperfine pattern having A(z) = 113 MHz. The presence of an oxo ligand was supported by resonance Raman spectroscopy, which revealed O-isotope-sensitive peaks at 737 and 754 cm(-1) assigned as a Fermi doublet centered at 746 cm(-1)(Δ(18)O = 31 cm(-1)). Mn Kβ X-ray emission spectra showed Kβ' and Kβ(1,3) bands at 6475.92 and 6490.50 eV, respectively, which are characteristic of a high-spin Mn(V) center. © 2012 American Chemical Society

  17. How well can we measure black hole spin?

    NASA Astrophysics Data System (ADS)

    Bonson, K.; Gallo, L.

    2015-07-01

    Being one of only two fundamental properties black holes possess, the spin of supermassive black holes (SMBHs) is of great interest for understanding accretion processes and galaxy evolution. However, in these early days of spin measurements, we often struggle to obtain consistent spin values for the same object because of different modeling approaches. Here we examine various techniques and observing conditions to determine which yield the most accurate spin measurements. We have created and fit over 6500 simulated Seyfert 1 spectra, using both XMM-Newton and NuStar responses, in an effort to uncover any systematic ``blind spots'' and determine how best to approach measuring spin in AGN. With the next generation of high-energy observatories like Astro-H and ATHENA, it is imperative that we understand just how well we are presently measuring spin and how we can maximize the potential of current and future missions.

  18. Research of spin-orbit interaction in organic conjugated polymers

    NASA Astrophysics Data System (ADS)

    Li, H.; Zhou, M. Y.; Wu, S. Y.; Liang, X. R.

    2017-06-01

    The effect of spin-orbit interaction on the one-dimensional organic polymer was investigated theoretically. Spin-orbital interaction led to the spatial separation of energy band but did not eliminate spin degeneration, which was different from energy level splitting in the Zeeman Effect. Spin-orbit interaction had little effect on the energy band structure, charge density, and lattice position, etc.; Spin precession was obtained when a polaron was transported along the polymer chain, which theoretically proved that it was feasible to control the spin precession of polaron in organic polymers by the use of external electric field.

  19. High-sensitivity GMR with low coercivity in top-IrMn spin-valves

    NASA Astrophysics Data System (ADS)

    Liu, H. R.; Qu, B. J.; Ren, T. L.; Liu, L. T.; Xie, H. L.; Li, C. X.; Ku, W. J.

    2003-12-01

    Top-IrMn spin-valves with a structure of Ta/NiFe/CoFe/Cu/CoFe/IrMn/Ta have been investigated. The spin-valves were deposited by high vacuum DC magnetron sputtering at room temperature. The magnetoresistance ratio reaches 9.12% at room temperature. The coercivity of the free layer and the exchange bias field is 1.04 and 180 Oe, respectively. The maximum sensitivity of the spin-valves is 8.36%/Oe. A reduction of 33.2% of the coercivity was obtained after a 2-min RIE process. Utilizing standard integrated circuit (IC) process, mass production of robust giant magnetoresistance sensors can be achieved with these spin-valve thin films.

  20. Identical spin rotation effect and electron spin waves in quantum gas of atomic hydrogen

    NASA Astrophysics Data System (ADS)

    Lehtonen, L.; Vainio, O.; Ahokas, J.; Järvinen, J.; Novotny, S.; Sheludyakov, S.; Suominen, K.-A.; Vasiliev, S.; Khmelenko, V. V.; Lee, D. M.

    2018-05-01

    We present an experimental study of electron spin waves in atomic hydrogen gas compressed to high densities of ∼5 × 1018 cm‑3 at temperatures ranging from 0.26 to 0.6 K in the strong magnetic field of 4.6 T. Hydrogen gas is in a quantum regime when the thermal de-Broglie wavelength is much larger than the s-wave scattering length. In this regime the identical particle effects play a major role in atomic collisions and lead to the identical spin rotation effect (ISR). We observed a variety of spin wave modes caused by this effect with strong dependence on the magnetic potential caused by variations of the polarizing magnetic field. We demonstrate confinement of the ISR modes in the magnetic potential and manipulate their properties by changing the spatial profile of the magnetic field. We have found that at a high enough density of H gas the magnons accumulate in their ground state in the magnetic trap and exhibit long coherence, which has a profound effect on the electron spin resonance spectra. Such macroscopic accumulation of the ground state occurs at a certain critical density of hydrogen gas, where the chemical potential of the magnons becomes equal to the energy of their ground state in the trapping potential.

  1. Spin-dependent delay time in ferromagnet/insulator/ferromagnet heterostructures

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xie, ZhengWei; Zheng Shi, De; Lv, HouXiang

    2014-07-07

    We study theoretically spin-dependent group delay and dwell time in ferromagnet/insulator/ferromagnet (FM/I/FM) heterostructure. The results indicate that, when the electrons with different spin orientations tunnel through the FM/I/FM junction, the spin-up process and the spin-down process are separated on the time scales. As the self-interference delay has the spin-dependent features, the variations of spin-dependent dwell-time and spin-dependent group-delay time with the structure parameters appear different features, especially, in low incident energy range. These different features show up as that the group delay times for the spin-up electrons are always longer than those for spin-down electrons when the barrier height ormore » incident energy increase. In contrast, the dwell times for the spin-up electrons are longer (shorter) than those for spin-down electrons when the barrier heights (the incident energy) are under a certain value. When the barrier heights (the incident energy) exceed a certain value, the dwell times for the spin-up electrons turn out to be shorter (longer) than those for spin-down electrons. In addition, the group delay time and the dwell time for spin-up and down electrons also relies on the comparative direction of magnetization in two FM layers and tends to saturation with the thickness of the barrier.« less

  2. Bulk electron spin polarization generated by the spin Hall current

    NASA Astrophysics Data System (ADS)

    Korenev, V. L.

    2006-07-01

    It is shown that the spin Hall current generates a nonequilibrium spin polarization in the interior of crystals with reduced symmetry in a way that is drastically different from the previously well-known “equilibrium” polarization during the spin relaxation process. The steady state spin polarization value does not depend on the strength of spin-orbit interaction offering possibility to generate relatively high spin polarization even in the case of weak spin-orbit coupling.

  3. Coherently coupling distinct spin ensembles through a high-Tc superconducting resonator

    NASA Astrophysics Data System (ADS)

    Ghirri, A.; Bonizzoni, C.; Troiani, F.; Buccheri, N.; Beverina, L.; Cassinese, A.; Affronte, M.

    2016-06-01

    The problem of coupling multiple spin ensembles through cavity photons is revisited by using (3,5-dichloro-4-pyridyl)bis(2,4,6-trichlorophenyl)methyl (PyBTM) organic radicals and a high-Tc superconducting coplanar resonator. An exceptionally strong coupling is obtained and up to three spin ensembles are simultaneously coupled. The ensembles are made physically distinguishable by chemically varying the g factor and by exploiting the inhomogeneities of the applied magnetic field. The coherent mixing of the spin and field modes is demonstrated by the observed multiple anticrossing, along with the simulations performed within the input-output formalism, and quantified by suitable entropic measures.

  4. Magnetic excitations in the spin-1/2 triangular-lattice antiferromagnet Cs 2CuBr 4

    DOE PAGES

    Zvyagin, S. A.; Ozerov, M.; Kamenskyi, D.; ...

    2015-11-27

    We present on high- field electron spin resonance (ESR) studies of magnetic excitations in the spin- 1/2 triangular-lattice antiferromagnet Cs 2CuBr 4. Frequency- field diagrams of ESR excitations are measured for different orientations of magnetic fields up to 25 T. We show that the substantial zero- field energy gap, Δ ≈ 9.5 K, observed in the low-temperature excitation spectrum of Cs 2CuBr 4 [Zvyagin et al:, Phys. Rev. Lett. 112, 077206 (2014)], is present well above T N. Noticeably, the transition into the long-range magnetically ordered phase does not significantly affect the size of the gap, suggesting that even belowmore » T N the high-energy spin dynamics in Cs 2CuBr 4 is determined by short-range-order spin correlations. The experimental data are compared with results of model spin-wave-theory calculations for spin-1/2 triangle-lattice antiferromagnet.« less

  5. The Excitation of High Spin States with Quasielastic and Deep Inelastic Reactions.

    NASA Astrophysics Data System (ADS)

    Knott, Clinton Neal

    1988-12-01

    The feasibility of populating high spin states using reactions induced by a 220 MeV ^{22 }Ne beam on a ^{170} Er target was studied. The experiment was carried out using a multidetector array for high resolution gamma-ray spectroscopy, a 14 element sum multiplicity spectrometer and six DeltaE-E particle telescopes. Detailed information was obtained concerning the reaction mechanisms associated with various reaction channels. Deep inelastic collisions are shown to be a promising tool for high spin spectroscopy in regions of the chart of nuclides which are not accessible by other reactions.

  6. Population of high spin states by quasi-elastic and deep inelastic collisions

    NASA Astrophysics Data System (ADS)

    Takai, H.; Knott, C. N.; Winchell, D. F.; Saladin, J. X.; Kaplan, M. S.; de Faro, L.; Aryaeinejad, R.; Blue, R. A.; Ronningen, R. M.; Morrissey, D. J.; Lee, I. Y.; Dietzsch, O.

    1988-09-01

    The feasibility of populating high spin states using reactions induced by a 10 MeV/nucleon 22Ne beam on 170Er was studied. The experiment was carried out using a multidetector array for high resolution γ-ray spectroscopy, a 14 element sum-multiplicity spectrometer and six ΔE-E telescopes. Detailed information was obtained concerning the reaction mechanisms associated with various reaction channels. Deep inelastic collisions are shown to be a promising tool for high spin spectroscopy in regions of the chart of nuclides which are not accessible by other reactions.

  7. Spin-resolved inelastic electron scattering by spin waves in noncollinear magnets

    NASA Astrophysics Data System (ADS)

    dos Santos, Flaviano José; dos Santos Dias, Manuel; Guimarães, Filipe Souza Mendes; Bouaziz, Juba; Lounis, Samir

    2018-01-01

    Topological noncollinear magnetic phases of matter are at the heart of many proposals for future information nanotechnology, with novel device concepts based on ultrathin films and nanowires. Their operation requires understanding and control of the underlying dynamics, including excitations such as spin waves. So far, no experimental technique has attempted to probe large wave-vector spin waves in noncollinear low-dimensional systems. In this paper, we explain how inelastic electron scattering, being suitable for investigations of surfaces and thin films, can detect the collective spin-excitation spectra of noncollinear magnets. To reveal the particularities of spin waves in such noncollinear samples, we propose the usage of spin-polarized electron-energy-loss spectroscopy augmented with a spin analyzer. With the spin analyzer detecting the polarization of the scattered electrons, four spin-dependent scattering channels are defined, which allow us to filter and select specific spin-wave modes. We take as examples a topological nontrivial skyrmion lattice, a spin-spiral phase, and the conventional ferromagnet. Then we demonstrate that, counterintuitively and in contrast to the ferromagnetic case, even non-spin-flip processes can generate spin waves in noncollinear substrates. The measured dispersion and lifetime of the excitation modes permit us to fingerprint the magnetic nature of the substrate.

  8. Spin 0 and spin 1/2 quantum relativistic particles in a constant gravitational field

    NASA Astrophysics Data System (ADS)

    Khorrami, M.; Alimohammadi, M.; Shariati, A.

    2003-04-01

    The Klein-Gordon and Dirac equations in a semi-infinite lab ( x>0), in the background metric d s2= u2( x)(-d t2+d x2)+d y2+d z2, are investigated. The resulting equations are studied for the special case u( x)=1+ gx. It is shown that in the case of zero transverse-momentum, the square of the energy eigenvalues of the spin-1/2 particles are less than the squares of the corresponding eigenvalues of spin-0 particles with same masses, by an amount of mgℏ c. Finally, for non-zero transverse-momentum, the energy eigenvalues corresponding to large quantum numbers are obtained and the results for spin-0 and spin-1/2 particles are compared to each other.

  9. Energy as Entanglement Witness in Bilinear-Biquadratic Spin-1 Chain

    NASA Astrophysics Data System (ADS)

    Xu, Feng; Wang, An-Min; Zhao, Ning-Bo; Su, Xiao-Qiang; Zhu, Ren-Gui

    2006-10-01

    Energy is introduced as an entanglement witness to describe the entanglement property of a quantum system. The thermal equilibrium system is guaranteed to be entangled when system is cooled down below the entanglement temperature TE. By virtue of this concept we exploit the minimum separable state energy and entanglement temperature TE of the bilinear-biquadratic antiferromagnetic spin-1 chain model. We numerically calculate TE for arbitrary values of the strength of biquadratic exchange interaction Q up to N = 7. We find TE decreases with Q for fixed N when Q is between -3 and 1/3 (J = 1). In this regime TE also decreases with N for fixed Q and varies slowly for large N. While the thermal system is always entangled when Q is smaller than -3.

  10. Entangling spin-spin interactions of ions in individually controlled potential wells

    NASA Astrophysics Data System (ADS)

    Wilson, Andrew; Colombe, Yves; Brown, Kenton; Knill, Emanuel; Leibfried, Dietrich; Wineland, David

    2014-03-01

    Physical systems that cannot be modeled with classical computers appear in many different branches of science, including condensed-matter physics, statistical mechanics, high-energy physics, atomic physics and quantum chemistry. Despite impressive progress on the control and manipulation of various quantum systems, implementation of scalable devices for quantum simulation remains a formidable challenge. As one approach to scalability in simulation, here we demonstrate an elementary building-block of a configurable quantum simulator based on atomic ions. Two ions are trapped in separate potential wells that can individually be tailored to emulate a number of different spin-spin couplings mediated by the ions' Coulomb interaction together with classical laser and microwave fields. We demonstrate deterministic tuning of this interaction by independent control of the local wells and emulate a particular spin-spin interaction to entangle the internal states of the two ions with 0.81(2) fidelity. Extension of the building-block demonstrated here to a 2D-network, which ion-trap micro-fabrication processes enable, may provide a new quantum simulator architecture with broad flexibility in designing and scaling the arrangement of ions and their mutual interactions. This research was funded by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA), ONR, and the NIST Quantum Information Program.

  11. Spin Filtering Studies at COSY and AD

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nass, Alexander

    2009-08-04

    The high physics potential of experiments with stored high-energy polarized antiprotons led to the proposal of PAX (Polarized Antiproton eXperiment) for the High Energy Storage Ring (HESR) of the FAIR at GSI (Darmstadt/Germany). It is proposed to polarize a stored antiproton beam by means of spin filtering with a polarized H (D) gas target. The feasibility of spin filtering has been demonstrated in the FILTEX experiment. The current interpretation foresees a self-cancellation of the electron contribution to the filtering process and only the hadronic contribution is effective. Several experimental studies with protons (at COSY/Juelich) as well as antiprotons (at AD/CERN)more » will be carried out to test the principle and measure p-barp-vector and p-bard-vector cross sections. A polarized internal gas target (PIT) with surrounding Silicon detectors immersed into a low-beta section has to be set up.« less

  12. Energy transfer enhancement by oxygen perturbation of spin-forbidden electronic transitions in aromatic systems

    NASA Astrophysics Data System (ADS)

    Monguzzi, A.; Tubino, R.; Salamone, M. M.; Meinardi, F.

    2010-09-01

    Triplet-triplet energy transfer in multicomponent organic systems is usually entirely ascribed to a Dexter-type mechanism involving only short-range donor/acceptor interactions. We demonstrate that the presence of molecular oxygen introduces a perturbation to the electronic structure of one of the involved moieties which can induce a large increase in the spin-forbidden transition oscillator strength so that the otherwise negligible Förster contribution dominates the overall energy transfer rate.

  13. Atomic-scale understanding of high thermal stability of the Mo/CoFeB/MgO spin injector for spin-injection in remanence.

    PubMed

    Tao, Bingshan; Barate, Philippe; Devaux, Xavier; Renucci, Pierre; Frougier, Julien; Djeffal, Abdelhak; Liang, Shiheng; Xu, Bo; Hehn, Michel; Jaffrès, Henri; George, Jean-Marie; Marie, Xavier; Mangin, Stéphane; Han, Xiufeng; Wang, Zhanguo; Lu, Yuan

    2018-05-31

    Remanent spin injection into a spin light emitting diode (spin-LED) at zero magnetic field is a prerequisite for future application of spin optoelectronics. Here, we demonstrate the remanent spin injection into GaAs based LEDs with a thermally stable Mo/CoFeB/MgO spin injector. A systematic study of magnetic properties, polarization-resolved electroluminescence (EL) and atomic-scale interfacial structures has been performed in comparison with the Ta/CoFeB/MgO spin injector. The perpendicular magnetic anisotropy (PMA) of the Mo/CoFeB/MgO injector shows more advanced thermal stability than that of the Ta/CoFeB/MgO injector and robust PMA can be maintained up to 400 °C annealing. The remanent circular polarization (PC) of EL from the Mo capped spin-LED reaches a maximum value of 10% after 300 °C annealing, and even remains at 4% after 400 °C annealing. In contrast, the Ta capped spin-LED almost completely loses the remanent PC under 400 °C annealing. Combined advanced electron microscopy and spectroscopy studies reveal that a large amount of Ta diffuses into the MgO tunneling barrier through the CoFeB layer after 400 °C annealing. However, the diffusion of Mo into CoFeB is limited and never reaches the MgO barrier. These findings afford a comprehensive perspective to use the highly thermally stable Mo/CoFeB/MgO spin injector for efficient electrical spin injection in remanence.

  14. Spin temperature concept verified by optical magnetometry of nuclear spins

    NASA Astrophysics Data System (ADS)

    Vladimirova, M.; Cronenberger, S.; Scalbert, D.; Ryzhov, I. I.; Zapasskii, V. S.; Kozlov, G. G.; Lemaître, A.; Kavokin, K. V.

    2018-01-01

    We develop a method of nonperturbative optical control over adiabatic remagnetization of the nuclear spin system and apply it to verify the spin temperature concept in GaAs microcavities. The nuclear spin system is shown to exactly follow the predictions of the spin temperature theory, despite the quadrupole interaction that was earlier reported to disrupt nuclear spin thermalization. These findings open a way for the deep cooling of nuclear spins in semiconductor structures, with the prospect of realizing nuclear spin-ordered states for high-fidelity spin-photon interfaces.

  15. Theoretical Study of the Jahn-Teller effect in CH3CN+ (X2E) and CD3CN+ (X2E): multimode spin-vibronic energy level calculations.

    PubMed

    Zhang, Shiyang; Mo, Yuxiang

    2009-10-15

    The spin-vibronic energy levels for CH(3)CN(+)(X(2)E) and CD(3)CN(+)(X(2)E) have been calculated using a diabatic model including multimode vibronic couplings and spin-orbit interaction without adjusting any parameter. The diabatic potential energy surfaces are represented by the Taylor expansions including linear, quadratic and bilinear vibronic coupling terms. The normal coordinates used in the Taylor expansion were expressed by the mass-weighted Cartesian coordinates. The adiabatic potential energy surfaces for CH(3)CN(+) and CD(3)CN(+) were calculated at the level of CASPT2/cc-pvtz, and the spin-orbit coupling constant was calculated at the level of MRCI/CAS/cc-pvtz. The spin-orbit energy splittings for the ground vibrational states of CH(3)CN(+)(X(2)E) and CD(3)CN(+)(X(2)E) are 20 and 16 cm(-1), respectively, which are resulted from the quenching of the spin-orbit coupling strength of 51 cm(-1). The calculated spin-vibronic levels are in good agreement with the experimental data. The calculation results show that the Jahn-Teller effects in CH(3)CN(+)(X(2)E) and CD(3)CN(+)(X(2)E) are essential to understand their spin-vibronic energy structure.

  16. Analogies between Vanadoborates and Planar Aromatic Hydrocarbons: A High-Spin Analogue of Aromaticity.

    PubMed

    King, R Bruce

    2017-12-23

    The vanadium-vanadium interactions in the polygonal aggregates of d¹ vanadium(IV) atoms, with a total of 4 k + 2 vanadium electrons ( k an integer) imbedded in an electronically inactive borate matrix in certain vanadoborate structures are analogous to the ring carbon-carbon interactions in diamagnetic planar cyclic hydrocarbons. They thus represent a high-spin analogue of aromaticity. Thus, the vanadoborate anion [V₆B 20 O 50 H₈] 8- with six V(IV) electrons (i.e., 4 k + 2 for k = 1) contains a macrohexagon of d¹ V(IV) atoms with four unpaired electrons. This high-spin system is related to the low-spin aromaticity in the diamagnetic benzene having six π electrons. Similarly, the vanadoborate anion [V 10 B 28 O 74 H₈] 16- with ten V(IV) electrons (i.e., 4 k + 2 for k = 2) contains a macrodecagon of d¹ V(IV) atoms with eight unpaired electrons. Again, this high-spin system is related to the aromaticity in the diamagnetic 1,6-methanol[10]annulene, having ten π electrons.

  17. Density functional perturbational orbital theory of spin polarization in electronic systems. II. Transition metal dimer complexes.

    PubMed

    Seo, Dong-Kyun

    2007-11-14

    We present a theoretical scheme for a semiquantitative analysis of electronic structures of magnetic transition metal dimer complexes within spin density functional theory (DFT). Based on the spin polarization perturbational orbital theory [D.-K. Seo, J. Chem. Phys. 125, 154105 (2006)], explicit spin-dependent expressions of the spin orbital energies and coefficients are derived, which allows to understand how spin orbitals form and change their energies and shapes when two magnetic sites are coupled either ferromagnetically or antiferromagnetically. Upon employment of the concept of magnetic orbitals in the active-electron approximation, a general mathematical formula is obtained for the magnetic coupling constant J from the analytical expression for the electronic energy difference between low-spin broken-symmetry and high-spin states. The origin of the potential exchange and kinetic exchange terms based on the one-electron picture is also elucidated. In addition, we provide a general account of the DFT analysis of the magnetic exchange interactions in compounds for which the active-electron approximation is not appropriate.

  18. Spin-Caloritronic Batteries

    NASA Astrophysics Data System (ADS)

    Yu, Xiao-Qin; Zhu, Zhen-Gang; Su, Gang; Jauho, A.-P.

    2017-11-01

    The thermoelectric performance of a topological energy converter is analyzed. The H -shaped device is based on a combination of transverse topological effects involving the spin: the inverse spin Hall effect and the spin Nernst effect. The device can convert a temperature drop in one arm into an electric power output in the other arm. Analytical expressions for the output voltage, the figure of merit (Z T ), and energy-converting efficiency are reported. We show that the output voltage and the Z T can be tuned by the geometry of the device and the physical properties of the material. Importantly, contrary to a conventional thermoelectric device, here a low electric conductivity may, in fact, enhance the Z T value, thereby opening a path to strategies in optimizing the figure of merit.

  19. Dramatically Enhanced Spin Dynamo with Plasmonic Diabolo Cavity.

    PubMed

    Gou, Peng; Qian, Jie; Xi, Fuchun; Zou, Yuexin; Cao, Jun; Yu, Haochi; Zhao, Ziyi; Yang, Le; Xu, Jie; Wang, Hengliang; Zhang, Lijian; An, Zhenghua

    2017-07-13

    The applications of spin dynamos, which could potentially power complex nanoscopic devices, have so far been limited owing to their extremely low energy conversion efficiencies. Here, we present a unique plasmonic diabolo cavity (PDC) that dramatically improves the spin rectification signal (enhancement of more than three orders of magnitude) under microwave excitation; further, it enables an energy conversion efficiency of up to ~0.69 mV/mW, compared with ~0.27 μV/mW without a PDC. This remarkable improvement arises from the simultaneous enhancement of the microwave electric field (~13-fold) and the magnetic field (~195-fold), which cooperate in the spin precession process generates photovoltage (PV) efficiently under ferromagnetic resonance (FMR) conditions. The interplay of the microwave electromagnetic resonance and the ferromagnetic resonance originates from a hybridized mode based on the plasmonic resonance of the diabolo structure and Fabry-Perot-like modes in the PDC. Our work sheds light on how more efficient spin dynamo devices for practical applications could be realized and paves the way for future studies utilizing both artificial and natural magnetism for applications in many disciplines, such as for the design of future efficient wireless energy conversion devices, high frequent resonant spintronic devices, and magnonic metamaterials.

  20. Topologically protected unidirectional edge spin waves

    NASA Astrophysics Data System (ADS)

    Wang, Xiang Rong; Wang, Xiansi; Su, Ying

    Magnetic materials are highly correlated spin systems that do not respect the time-reversal symmetry. The low-energy excitations of magnetic materials are spin waves whose quanta are magnons. Like electronic materials that can be topologically nontrivial, a magnetic material can also be topologically nontrivial with topologically protected unidirectional edge states. These edge states should be superb channels of processing and manipulating spin waves because they are robust against perturbations and geometry changes, unlike the normal spin wave states that are very sensitive to the system changes and geometry. Therefore, the magnetic topological matter is of fundamental interest and technologically useful in magnonics. Here, we show that ferromagnetically interacting spins on a two-dimensional honeycomb lattice with nearest-neighbour interactions and governed by the Landau-Lifshitz-Gilbert equation, can be topologically nontrivial with gapped bulk spin waves and gapless edge spin waves. These edge spin waves are indeed very robust against defects under topological protection. Because of the unidirectional nature of these topologically protected edge spin waves, an interesting functional magnonic device called beam splitter can be made out of a domain wall in a strip. It is shown that an in-coming spin wave beam along one edge splits into two spin wave beams propagating along two opposite directions on the other edge after passing through a domain wall. This work was supported by Hong Kong GRF Grants (Nos. 163011151 and 16301816) and the Grant from NNSF of China (No. 11374249). X.S.W acknowledge support from UESTC.

  1. Equation-of-motion coupled cluster method for the description of the high spin excited states

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Musiał, Monika, E-mail: musial@ich.us.edu.pl; Lupa, Łukasz; Kucharski, Stanisław A.

    2016-04-21

    The equation-of-motion (EOM) coupled cluster (CC) approach in the version applicable for the excitation energy (EE) calculations has been formulated for high spin components. The EE-EOM-CC scheme based on the restricted Hartree-Fock reference and standard amplitude equations as used in the Davidson diagonalization procedure yields the singlet states. The triplet and higher spin components require separate amplitude equations. In the case of quintets, the relevant equations are much simpler and easier to solve. Out of 26 diagrammatic terms contributing to the R{sub 1} and R{sub 2} singlet equations in the case of quintets, only R{sub 2} operator survives with 5more » diagrammatic terms present. In addition all terms engaging three body elements of the similarity transformed Hamiltonian disappear. This indicates a substantial simplification of the theory. The implemented method has been applied to the pilot study of the excited states of the C{sub 2} molecule and quintet states of C and Si atoms.« less

  2. Dissociation cross section for high energy O2-O2 collisions

    NASA Astrophysics Data System (ADS)

    Mankodi, T. K.; Bhandarkar, U. V.; Puranik, B. P.

    2018-04-01

    Collision-induced dissociation cross section database for high energy O2-O2 collisions (up to 30 eV) is generated and published using the quasiclassical trajectory method on the singlet, triplet, and quintet spin ground state O4 potential energy surfaces. At equilibrium conditions, these cross sections predict reaction rate coefficients that match those obtained experimentally. The main advantage of the cross section database based on ab initio computations is in the study of complex flows with high degree of non-equilibrium. Direct simulation Monte Carlo simulations using the reactive cross section databases are carried out for high enthalpy hypersonic oxygen flow over a cylinder at rarefied ambient conditions. A comparative study with the phenomenological total collision energy chemical model is also undertaken to point out the difference and advantage of the reported ab initio reaction model.

  3. Robust spin correlations at high magnetic fields in the harmonic honeycomb iridates

    DOE PAGES

    Modic, K. A.; Ramshaw, Brad J.; Betts, J. B.; ...

    2017-08-01

    Here, the complex antiferromagnetic orders observed in the honeycomb iridates are a double-edged sword in the search for a quantum spin-liquid: both attesting that the magnetic interactions provide many of the necessary ingredients, while simultaneously impeding access. Focus has naturally been drawn to the unusual magnetic orders that hint at the underlying spin correlations. However, the study of any particular broken symmetry state generally provides little clue about the possibility of other nearby ground states. Here we use magnetic fields approaching 100 Tesla to reveal the extent of the spin correlations in γ-lithium iridate. We find that a small componentmore » of field along the magnetic easy-axis melts long-range order, revealing a bistable, strongly correlated spin state. Far from the usual destruction of antiferromagnetism via spin polarization, the high-field state possesses only a small fraction of the total iridium moment, without evidence for long-range order up to the highest attainable magnetic fields.« less

  4. Low energy spin dynamics of rare-earth orthoferrites YFeO3 and LaFeO3

    NASA Astrophysics Data System (ADS)

    Park, Kisoo; Sim, Hasung; Leiner, Jonathan; Yoshida, Yoshiyuki; Eisaki, Hiroshi; Yano, Shinichiro; Gardner, Jason; Park, Je-Geun

    YFeO3 and LaFeO3\\ are members of the rare-earth orthoferrites (RFeO3) family with Pbnm space group. With the strong superexchange interaction between Fe3 + ions, both compounds exhibit the room temperature antiferromagnetic order (TN >600 K) with a slight spin canting. Here we report low-energy magnetic excitation of YFeO3 and LaFeO3 using inelastic neutron scattering measurements, showing evidence of magnon mode splitting and a spin anisotropy gap at the zone center. Spin wave calculations with the spin Hamiltonian including both Dzyaloshinsky-Moriya interaction and single-ion anisotropy accounts for the observed features well. Our results offer insight into the underlying physics of other RFeO3\\ with magnetic rare-earth ions or related Fe3+-based multiferroic perovskites such as BiFeO3. The work at the IBS CCES (South Korea) was supported by the research program of the Institute for Basic Science (IBS-R009-G1).

  5. Spin polarized electronic states and spin textures at the surface of oxygen-deficient SrTiO3

    NASA Astrophysics Data System (ADS)

    Jeschke, Harald O.; Altmeyer, Michaela; Rozenberg, Marcelo; Gabay, Marc; Valenti, Roser

    We investigate the electronic structure and spin texture at the (001) surface of SrTiO3 in the presence of oxygen vacancies by means of ab initio density functional theory (DFT) calculations of slabs. Relativistic non-magnetic DFT calculations exhibit Rashba-like spin winding with a characteristic energy scale ~ 10 meV. However, when surface magnetism on the Ti ions is included, bands become spin-split with an energy difference ~ 100 meV at the Γ point. This energy scale is comparable to the observations in SARPES experiments performed on the two-dimensional electronic states confined near the (001) surface of SrTiO3. We find the spin polarized state to be the ground state of the system, and while magnetism tends to suppress the effects of the relativistic Rashba interaction, signatures of it are still clearly visible in terms of complex spin textures. We gratefully acknowledge financial support from the Deutsche Forschungsgemeinschaft through grants SFB/TR 49 and FOR 1346.

  6. A High-Spin Rate Measurement Method for Projectiles Using a Magnetoresistive Sensor Based on Time-Frequency Domain Analysis

    PubMed Central

    Shang, Jianyu; Deng, Zhihong; Fu, Mengyin; Wang, Shunting

    2016-01-01

    Traditional artillery guidance can significantly improve the attack accuracy and overall combat efficiency of projectiles, which makes it more adaptable to the information warfare of the future. Obviously, the accurate measurement of artillery spin rate, which has long been regarded as a daunting task, is the basis of precise guidance and control. Magnetoresistive (MR) sensors can be applied to spin rate measurement, especially in the high-spin and high-g projectile launch environment. In this paper, based on the theory of a MR sensor measuring spin rate, the mathematical relationship model between the frequency of MR sensor output and projectile spin rate was established through a fundamental derivation. By analyzing the characteristics of MR sensor output whose frequency varies with time, this paper proposed the Chirp z-Transform (CZT) time-frequency (TF) domain analysis method based on the rolling window of a Blackman window function (BCZT) which can accurately extract the projectile spin rate. To put it into practice, BCZT was applied to measure the spin rate of 155 mm artillery projectile. After extracting the spin rate, the impact that launch rotational angular velocity and aspect angle have on the extraction accuracy of the spin rate was analyzed. Simulation results show that the BCZT TF domain analysis method can effectively and accurately measure the projectile spin rate, especially in a high-spin and high-g projectile launch environment. PMID:27322266

  7. A High-Spin Rate Measurement Method for Projectiles Using a Magnetoresistive Sensor Based on Time-Frequency Domain Analysis.

    PubMed

    Shang, Jianyu; Deng, Zhihong; Fu, Mengyin; Wang, Shunting

    2016-06-16

    Traditional artillery guidance can significantly improve the attack accuracy and overall combat efficiency of projectiles, which makes it more adaptable to the information warfare of the future. Obviously, the accurate measurement of artillery spin rate, which has long been regarded as a daunting task, is the basis of precise guidance and control. Magnetoresistive (MR) sensors can be applied to spin rate measurement, especially in the high-spin and high-g projectile launch environment. In this paper, based on the theory of a MR sensor measuring spin rate, the mathematical relationship model between the frequency of MR sensor output and projectile spin rate was established through a fundamental derivation. By analyzing the characteristics of MR sensor output whose frequency varies with time, this paper proposed the Chirp z-Transform (CZT) time-frequency (TF) domain analysis method based on the rolling window of a Blackman window function (BCZT) which can accurately extract the projectile spin rate. To put it into practice, BCZT was applied to measure the spin rate of 155 mm artillery projectile. After extracting the spin rate, the impact that launch rotational angular velocity and aspect angle have on the extraction accuracy of the spin rate was analyzed. Simulation results show that the BCZT TF domain analysis method can effectively and accurately measure the projectile spin rate, especially in a high-spin and high-g projectile launch environment.

  8. Low energy nuclear spin excitations in Ho metal investigated by high resolution neutron spectroscopy.

    PubMed

    Chatterji, Tapan; Jalarvo, Niina

    2013-04-17

    We have investigated the low energy excitations in metallic Ho by high resolution neutron spectroscopy. We found at T = 3 K clear inelastic peaks in the energy loss and energy gain sides, along with the central elastic peak. The energy of this low energy excitation, which is 26.59 ± 0.02 μeV at T = 3 K, decreased continuously and became zero at TN ≈ 130 K. By fitting the data in the temperature range 100-127.5 K with a power law we obtained the power-law exponent β = 0.37 ± 0.02, which agrees with the expected value β = 0.367 for a three-dimensional Heisenberg model. Thus the energy of the low energy excitations can be associated with the order parameter.

  9. Spin nematics next to spin singlets

    NASA Astrophysics Data System (ADS)

    Yokoyama, Yuto; Hotta, Chisa

    2018-05-01

    We provide a route to generate nematic order in a spin-1/2 system. Unlike the well-known magnon-binding mechanism, our spin nematics requires neither the frustration effect nor spin polarization in a high field or in the vicinity of a ferromagnet, but instead appears next to the spin singlet phase. We start from a state consisting of a quantum spin-1/2 singlet dimer placed on each site of a triangular lattice, and show that interdimer ring exchange interactions efficiently dope the SU(2) triplets that itinerate and interact, easily driving a stable singlet state to either Bose-Einstein condensates or a triplet crystal, some hosting a spin nematic order. A variety of roles the ring exchange serves includes the generation of a bilinear-biquadratic interaction between nearby triplets, which is responsible for the emergent nematic order separated from the singlet phase by a first-order transition.

  10. Radiation reaction for spinning bodies in effective field theory. I. Spin-orbit effects

    NASA Astrophysics Data System (ADS)

    Maia, Natália T.; Galley, Chad R.; Leibovich, Adam K.; Porto, Rafael A.

    2017-10-01

    We compute the leading post-Newtonian (PN) contributions at linear order in the spin to the radiation-reaction acceleration and spin evolution for binary systems, which enter at fourth PN order. The calculation is carried out, from first principles, using the effective field theory framework for spinning compact objects, in both the Newton-Wigner and covariant spin supplementary conditions. A nontrivial consistency check is performed on our results by showing that the energy loss induced by the resulting radiation-reaction force is equivalent to the total emitted power in the far zone, up to so-called "Schott terms." We also find that, at this order, the radiation reaction has no net effect on the evolution of the spins. The spin-spin contributions to radiation reaction are reported in a companion paper.

  11. Classical aspects of higher spin topologically massive gravity

    NASA Astrophysics Data System (ADS)

    Chen, Bin; Long, Jiang; Zhang, Jian-Dong

    2012-10-01

    We study the classical solutions of three-dimensional topologically massive gravity (TMG) and its higher spin generalization, in the first-order formulation. The action of higher spin TMG has been proposed by Chen and Long (2011 J. High Energy Phys. JHEP12(2011)114) to be of a Chern-Simons-like form. The equations of motion are more complicated than the ones in pure higher spin AdS3 gravity, but are still tractable. As all the solutions in higher spin gravity are automatically the solutions of higher spin TMG, we focus on other solutions. We manage to find the AdS pp-wave solutions with higher spin hair and find that the non-vanishing higher spin fields may or may not modify the pp-wave geometry. In order to discuss the warped spacetime, we introduce the notion of a special Killing vector, which is defined to be the symmetry on the frame-like fields. We reproduce various warped spacetimes of TMG in our framework, with the help of special Killing vectors.

  12. Nanopatterned reconfigurable spin-textures for magnonics

    NASA Astrophysics Data System (ADS)

    Albisetti, E.; Petti, D.; Pancaldi, M.; Madami, M.; Tacchi, S.; Curtis, J.; King, W. P.; Papp, A.; Csaba, G.; Porod, W.; Vavassori, P.; Riedo, E.; Bertacco, R.

    The control of spin-waves holds the promise to enable energy-efficient information transport and wave-based computing. Conventionally, the engineering of spin-waves is achieved via physically patterning magnetic structures such as magnonic crystals and micro-nanowires. We demonstrate a new concept for creating reconfigurable magnonic nanostructures, by crafting at the nanoscale the magnetic anisotropy landscape of a ferromagnet exchange-coupled to an antiferromagnet. By performing a highly localized field cooling with the hot tip of a scanning probe microscope, magnetic structures, with arbitrarily oriented magnetization and tunable unidirectional anisotropy, are patterned without modifying the film chemistry and topography. We demonstrate that, in such structures, the spin-wave excitation and propagation can be spatially controlled at remanence, and can be tuned by external magnetic fields. This opens the way to the use of nanopatterned spin-textures, such as domains and domain walls, for exciting and manipulating magnons in reconfigurable nanocircuits. Partially funded by the EC through project SWING (no. 705326).

  13. Temperature for a dynamic spin ensemble

    NASA Astrophysics Data System (ADS)

    Ma, Pui-Wai; Dudarev, S. L.; Semenov, A. A.; Woo, C. H.

    2010-09-01

    In molecular dynamics simulations, temperature is evaluated, via the equipartition principle, by computing the mean kinetic energy of atoms. There is no similar recipe yet for evaluating temperature of a dynamic system of interacting spins. By solving semiclassical Langevin spin-dynamics equations, and applying the fluctuation-dissipation theorem, we derive an equation for the temperature of a spin ensemble, expressed in terms of dynamic spin variables. The fact that definitions for the kinetic and spin temperatures are fully consistent is illustrated using large-scale spin dynamics and spin-lattice dynamics simulations.

  14. Optimal Charge-to-Spin Conversion in Graphene on Transition-Metal Dichalcogenides

    NASA Astrophysics Data System (ADS)

    Offidani, Manuel; Milletarı, Mirco; Raimondi, Roberto; Ferreira, Aires

    2017-11-01

    When graphene is placed on a monolayer of semiconducting transition metal dichalcogenide (TMD) its band structure develops rich spin textures due to proximity spin-orbital effects with interfacial breaking of inversion symmetry. In this work, we show that the characteristic spin winding of low-energy states in graphene on a TMD monolayer enables current-driven spin polarization, a phenomenon known as the inverse spin galvanic effect (ISGE). By introducing a proper figure of merit, we quantify the efficiency of charge-to-spin conversion and show it is close to unity when the Fermi level approaches the spin minority band. Remarkably, at high electronic density, even though subbands with opposite spin helicities are occupied, the efficiency decays only algebraically. The giant ISGE predicted for graphene on TMD monolayers is robust against disorder and remains large at room temperature.

  15. Robust spin-current injection in lateral spin valves with two-terminal Co2FeSi spin injectors

    NASA Astrophysics Data System (ADS)

    Oki, S.; Kurokawa, T.; Honda, S.; Yamada, S.; Kanashima, T.; Itoh, H.; Hamaya, K.

    2017-05-01

    We demonstrate generation and detection of pure spin currents by combining a two-terminal spin-injection technique and Co2FeSi (CFS) spin injectors in lateral spin valves (LSVs). We find that the two-terminal spin injection with CFS has the robust dependence of the nonlocal spin signals on the applied bias currents, markedly superior to the four-terminal spin injection with permalloy reported previously. In our LSVs, since the spin transfer torque from one CFS injector to another CFS one is large, the nonlocal magnetoresistance with respect to applied magnetic fields shows large asymmetry in high bias-current conditions. For utilizing multi-terminal spin injection with CFS as a method for magnetization reversals, the terminal arrangement of CFS spin injectors should be taken into account.

  16. High-spin Fe2+ and Fe3+ in single-crystal aluminous bridgmanite in the lower mantle

    NASA Astrophysics Data System (ADS)

    Lin, Jung-Fu; Mao, Zhu; Yang, Jing; Liu, Jin; Xiao, Yuming; Chow, Paul; Okuchi, Takuo

    2016-07-01

    Spin and valence states of iron in single-crystal bridgmanite (Mg0.89Fe0.12Al0.11Si0.89O3) are investigated using X-ray emission and Mössbauer spectroscopies with laser annealing up to 115 GPa. The results show that Fe predominantly substitutes for Mg2+ in the pseudo-dodecahedral A site, in which 80% of the iron is Fe3+ that enters the lattice via the charge-coupled substitution with Al3+ in the octahedral B site. The total spin momentum and hyperfine parameters indicate that these ions remain in the high-spin state with Fe2+ having extremely high quadrupole splitting due to lattice distortion. (Al,Fe)-bearing bridgmanite is expected to contain mostly high-spin, A-site Fe3+, together with a smaller amount of A-site Fe2+, that remains stable throughout the region. Even though the spin transition of B-site Fe3+ in bridgmanite was reported to cause changes in its elasticity at high pressures, (Fe,Al)-bearing bridgmanite with predominantly A-site Fe will not exhibit elastic anomalies associated with the spin transition.

  17. Spin-Triplet Pairing Induced by Spin-Singlet Interactions in Noncentrosymmetric Superconductors

    NASA Astrophysics Data System (ADS)

    Matsuzaki, Tomoaki; Shimahara, Hiroshi

    2017-02-01

    In noncentrosymmetric superconductors, we examine the effect of the difference between the intraband and interband interactions, which becomes more important when the band splitting increases. We define the difference ΔVμ between their coupling constants, i.e., that between the intraband and interband hopping energies of intraband Cooper pairs. Here, the subscript μ of ΔVμ indicates that the interactions scatter the spin-singlet and spin-triplet pairs when μ = 0 and μ = 1,2,3, respectively. It is shown that the strong antisymmetric spin-orbit interaction reverses the target spin parity of the interaction: it converts the spin-singlet and spin-triplet interactions represented by ΔV0 and ΔVμ>0 into effective spin-triplet and spin-singlet pairing interactions, respectively. Hence, for example, triplet pairing can be induced solely by the singlet interaction ΔV0. We name the pairing symmetry of the system after that of the intraband Cooper pair wave function, but with an odd-parity phase factor excluded. The pairing symmetry must then be even, even for the triplet component, and the following results are obtained. When ΔVμ is small, the spin-triplet p-wave interactions induce spin-triplet s-wave and spin-triplet d-wave pairings in the regions where the repulsive singlet s-wave interaction is weak and strong, respectively. When ΔV0 is large, a repulsive interband spin-singlet interaction can stabilize spin-triplet pairing. When the Rashba interaction is adopted for the spin-orbit interaction, the spin-triplet pairing interactions mediated by transverse magnetic fluctuations do not contribute to triplet pairing.

  18. GRAVITATIONAL MODEL OF HIGH-ENERGY PARTICLES IN A COLLIMATED JET

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    De Freitas Pacheco, J. A.; Gariel, J.; Marcilhacy, G.

    2012-11-10

    Observations suggest that relativistic particles play a fundamental role in the dynamics of jets emerging from active galactic nuclei as well as in their interaction with the intracluster medium. However, no general consensus exists concerning the acceleration mechanism of those high-energy particles. A gravitational acceleration mechanism is proposed here in which particles leaving precise regions within the ergosphere of a rotating supermassive black hole (BH) produce a highly collimated flow. These particles follow unbound geodesics which are asymptotically parallel to the spin axis of the BH and are characterized by the energy E, the Carter constant Q, and zero angularmore » momentum of the component L{sub z} . If environmental effects are neglected, the present model predicts the presence of electrons with energies around 9.4 GeV at distances of about 140 kpc from the ergosphere. The present mechanism can also accelerate protons up to the highest energies observed in cosmic rays by the present experiments.« less

  19. Controllable spin polarization and spin filtering in a zigzag silicene nanoribbon

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Farokhnezhad, Mohsen, E-mail: Mohsen-farokhnezhad@physics.iust.ac.ir; Esmaeilzadeh, Mahdi, E-mail: mahdi@iust.ac.ir; Pournaghavi, Nezhat

    2015-05-07

    Using non-equilibrium Green's function, we study the spin-dependent electron transport properties in a zigzag silicene nanoribbon. To produce and control spin polarization, it is assumed that two ferromagnetic strips are deposited on the both edges of the silicene nanoribbon and an electric field is perpendicularly applied to the nanoribbon plane. The spin polarization is studied for both parallel and anti-parallel configurations of exchange magnetic fields induced by the ferromagnetic strips. We find that complete spin polarization can take place in the presence of perpendicular electric field for anti-parallel configuration and the nanoribbon can work as a perfect spin filter. Themore » spin direction of transmitted electrons can be easily changed from up to down and vice versa by reversing the electric field direction. For parallel configuration, perfect spin filtering can occur even in the absence of electric field. In this case, the spin direction can be changed by changing the electron energy. Finally, we investigate the effects of nonmagnetic Anderson disorder on spin dependent conductance and find that the perfect spin filtering properties of nanoribbon are destroyed by strong disorder, but the nanoribbon retains these properties in the presence of weak disorder.« less

  20. Electrical Spin Driving by g -Matrix Modulation in Spin-Orbit Qubits

    NASA Astrophysics Data System (ADS)

    Crippa, Alessandro; Maurand, Romain; Bourdet, Léo; Kotekar-Patil, Dharmraj; Amisse, Anthony; Jehl, Xavier; Sanquer, Marc; Laviéville, Romain; Bohuslavskyi, Heorhii; Hutin, Louis; Barraud, Sylvain; Vinet, Maud; Niquet, Yann-Michel; De Franceschi, Silvano

    2018-03-01

    In a semiconductor spin qubit with sizable spin-orbit coupling, coherent spin rotations can be driven by a resonant gate-voltage modulation. Recently, we have exploited this opportunity in the experimental demonstration of a hole spin qubit in a silicon device. Here we investigate the underlying physical mechanisms by measuring the full angular dependence of the Rabi frequency, as well as the gate-voltage dependence and anisotropy of the hole g factor. We show that a g -matrix formalism can simultaneously capture and discriminate the contributions of two mechanisms so far independently discussed in the literature: one associated with the modulation of the g factor, and measurable by Zeeman energy spectroscopy, the other not. Our approach has a general validity and can be applied to the analysis of other types of spin-orbit qubits.

  1. Storing quantum information in spins and high-sensitivity ESR

    NASA Astrophysics Data System (ADS)

    Morton, John J. L.; Bertet, Patrice

    2018-02-01

    Quantum information, encoded within the states of quantum systems, represents a novel and rich form of information which has inspired new types of computers and communications systems. Many diverse electron spin systems have been studied with a view to storing quantum information, including molecular radicals, point defects and impurities in inorganic systems, and quantum dots in semiconductor devices. In these systems, spin coherence times can exceed seconds, single spins can be addressed through electrical and optical methods, and new spin systems with advantageous properties continue to be identified. Spin ensembles strongly coupled to microwave resonators can, in principle, be used to store the coherent states of single microwave photons, enabling so-called microwave quantum memories. We discuss key requirements in realising such memories, including considerations for superconducting resonators whose frequency can be tuned onto resonance with the spins. Finally, progress towards microwave quantum memories and other developments in the field of superconducting quantum devices are being used to push the limits of sensitivity of inductively-detected electron spin resonance. The state-of-the-art currently stands at around 65 spins per √{ Hz } , with prospects to scale down to even fewer spins.

  2. Storing quantum information in spins and high-sensitivity ESR.

    PubMed

    Morton, John J L; Bertet, Patrice

    2018-02-01

    Quantum information, encoded within the states of quantum systems, represents a novel and rich form of information which has inspired new types of computers and communications systems. Many diverse electron spin systems have been studied with a view to storing quantum information, including molecular radicals, point defects and impurities in inorganic systems, and quantum dots in semiconductor devices. In these systems, spin coherence times can exceed seconds, single spins can be addressed through electrical and optical methods, and new spin systems with advantageous properties continue to be identified. Spin ensembles strongly coupled to microwave resonators can, in principle, be used to store the coherent states of single microwave photons, enabling so-called microwave quantum memories. We discuss key requirements in realising such memories, including considerations for superconducting resonators whose frequency can be tuned onto resonance with the spins. Finally, progress towards microwave quantum memories and other developments in the field of superconducting quantum devices are being used to push the limits of sensitivity of inductively-detected electron spin resonance. The state-of-the-art currently stands at around 65 spins per Hz, with prospects to scale down to even fewer spins. Copyright © 2017. Published by Elsevier Inc.

  3. Origin of the Energy Barrier to Chemical Reactions of O2 on Al(111): Evidence for Charge Transfer, Not Spin Selection

    DTIC Science & Technology

    2012-11-08

    change of O2 spin, at the barrier [Fig. 3]; i.e., the corresponding diabatic surfaces cross. Far from the Al surface, the triplet state is...previous theoretical models, in particular nonadiabatic [17] or diabatic [16] approaches, which also find an energy barrier consistent with experiment...crossings of different diabatic O2 spin configuration sur- faces are accommodated by small spin fluctuations within the metal surface. For parallel

  4. Surprising loss of three-dimensionality in low-energy spin correlations on approaching superconductivity in Fe1 +yTe1 -xSex

    NASA Astrophysics Data System (ADS)

    Xu, Zhijun; Schneeloch, J. A.; Wen, Jinsheng; Winn, B. L.; Granroth, G. E.; Zhao, Yang; Gu, Genda; Zaliznyak, Igor; Tranquada, J. M.; Birgeneau, R. J.; Xu, Guangyong

    2017-10-01

    We report inelastic neutron scattering measurements of low-energy (ℏ ω ≲10 meV) magnetic excitations in the "11" system Fe1 +yTe1 -xSex . The spin correlations are two-dimensional (2D) in the superconducting samples at low temperature, but appear much more three-dimensional (3D) when the temperature rises well above Tc˜15 K, with a clear increase of the (dynamic) spin correlation length perpendicular to the Fe planes. This behavior is extremely unusual; typically, the suppression of thermal fluctuations at low temperature would favor the enhancement of 3D correlations, or even ordering, and the reversion to 2D cannot be naturally explained when only the spin degree of freedom is considered. Our results suggest that the low temperature physics in the 11 system, in particular the evolution of low-energy spin excitations towards superconducting pairing, intrinsically involves changes in orbital correlations.

  5. Spin Funneling for Enhanced Spin Injection into Ferromagnets

    PubMed Central

    Sayed, Shehrin; Diep, Vinh Q.; Camsari, Kerem Yunus; Datta, Supriyo

    2016-01-01

    It is well-established that high spin-orbit coupling (SOC) materials convert a charge current density into a spin current density which can be used to switch a magnet efficiently and there is increasing interest in identifying materials with large spin Hall angle for lower switching current. Using experimentally benchmarked models, we show that composite structures can be designed using existing spin Hall materials such that the effective spin Hall angle is larger by an order of magnitude. The basic idea is to funnel spins from a large area of spin Hall material into a small area of ferromagnet using a normal metal with large spin diffusion length and low resistivity like Cu or Al. We show that this approach is increasingly effective as magnets get smaller. We avoid unwanted charge current shunting by the low resistive NM layer utilizing the newly discovered phenomenon of pure spin conduction in ferromagnetic insulators via magnon diffusion. We provide a spin circuit model for magnon diffusion in FMI that is benchmarked against recent experiments and theory. PMID:27374496

  6. Spin Funneling for Enhanced Spin Injection into Ferromagnets

    NASA Astrophysics Data System (ADS)

    Sayed, Shehrin; Diep, Vinh Q.; Camsari, Kerem Yunus; Datta, Supriyo

    2016-07-01

    It is well-established that high spin-orbit coupling (SOC) materials convert a charge current density into a spin current density which can be used to switch a magnet efficiently and there is increasing interest in identifying materials with large spin Hall angle for lower switching current. Using experimentally benchmarked models, we show that composite structures can be designed using existing spin Hall materials such that the effective spin Hall angle is larger by an order of magnitude. The basic idea is to funnel spins from a large area of spin Hall material into a small area of ferromagnet using a normal metal with large spin diffusion length and low resistivity like Cu or Al. We show that this approach is increasingly effective as magnets get smaller. We avoid unwanted charge current shunting by the low resistive NM layer utilizing the newly discovered phenomenon of pure spin conduction in ferromagnetic insulators via magnon diffusion. We provide a spin circuit model for magnon diffusion in FMI that is benchmarked against recent experiments and theory.

  7. High Frequency QPOs due to Black Hole Spin

    NASA Technical Reports Server (NTRS)

    Kazanas, Demos; Fukumura, K.

    2009-01-01

    We present detailed computations of photon orbits emitted by flares at the innermost stable circular orbit (ISCO) of accretion disks around rotating black holes. We show that for sufficiently large spin parameter, i.e. a > 0.94 M, flare a sufficient number of photons arrive at an observer after multiple orbits around the black hole, to produce an "photon echo" of constant lag, i.e. independent of the relative phase between the black hole and the observer, of T approximates 14 M. This constant time delay, then, leads to a power spectrum with a QPO at a frequency nu approximates 1/14M, even for a totally random ensemble of such flares. Observation of such a QPO will provide incontrovertible evidence for the high spin of the black hole and a very accurate, independent, measurement of its mass.

  8. Antiferromagnetism, confinement and spin response in the QED(3) effective theory of high-temperature superconductivity

    NASA Astrophysics Data System (ADS)

    Seradjeh, Babak Hosseyni

    In this thesis, we study the effective theory of a phase-fluctuating d-wave superconductor at zero temperature, formulated by quantum electrodynamics in three space-time dimensions (QED3). This theory describes the quantum critical behaviour in underdoped high-temperature superconductors in terms of an emergent gauge field. The gauge field couples minimally to nodal spin degrees of freedom (spinons) at low energies. It is massive in the superconductor but exhibits Maxwell dynamics when superconductivity is destroyed by strong phase fluctuations of the Cooper pairs. We show that, when dynamical chiral symmetry breaking in QED3 is supplemented by residual interactions, namely, the velocity anisotropy around the nodes, short-range repulsion between electrons, and nonlinear effects of dispersion (all irrelevant for the critical behaviour itself), the loss of superconductivity gives rise to an antiferromagnetic state, in accord with observation. Then, we turn to the problem of confinement of spinons outside the superconducting phase. We assume that the gauge group is a compact U(1) and, thus, allows for monopole configurations. In the absence of fermions, the interaction between monopoles is Coulombic, monopoles form a free plasma, and static fermionic charge is confined for all values of the gauge coupling by a linear potential mediated by free monopoles. We show that this permanent confinement survives in the presence of dynamical fermionic matter. This work comprises three separate studies. We first support our claim, for relativistic fermions, by an electrostatic study of the monopole gas. This is backed up by a controlled renormalization group analysis on the equivalent sine-Gordon theory. In the second study, we extend these findings to the non-relativistic case, with a spinon Fermi surface. In the last study, we provide a variational approach to the problem, in agreement with our other works. Finally, we focus our attention on the more practical application of

  9. Femtosecond Measurements Of Size-Dependent Spin Crossover In FeII(pyz)Pt(CN)4 Nanocrystals

    DOE PAGES

    Sagar, D. M.; Baddour, Frederick G.; Konold, Patrick; ...

    2016-01-07

    We report a femtosecond time-resolved spectroscopic study of size-dependent dynamics in nanocrystals (NCs) of Fe(pyz)Pt(CN) 4. We observe that smaller NCs (123 or 78 nm cross section and < 25 nm thickness) exhibit signatures of spin crossover (SCO) with time constants of ~ 5-10 ps whereas larger NCs with 375 nm cross section and 43 nm thickness exhibit a weaker SCO signature accompanied by strong spectral shifting on a ~20 ps time scale. For the small NCs, the fast dynamics appear to result from thermal promotion of residual low-spin states to high-spin states following nonradiative decay, and the size dependencemore » is postulated to arise from differing high-spin vs low-spin fractions in domains residing in strained surface regions. The SCO is less efficient in larger NCs owing to their larger size and hence lower residual LS/HS fractions. Our results suggest that size-dependent dynamics can be controlled by tuning surface energy in NCs with dimensions below ~25 nm for use in energy harvesting, spin switching, and other applications.« less

  10. Unidirectional spin-wave heat conveyer.

    PubMed

    An, T; Vasyuchka, V I; Uchida, K; Chumak, A V; Yamaguchi, K; Harii, K; Ohe, J; Jungfleisch, M B; Kajiwara, Y; Adachi, H; Hillebrands, B; Maekawa, S; Saitoh, E

    2013-06-01

    When energy is introduced into a region of matter, it heats up and the local temperature increases. This energy spontaneously diffuses away from the heated region. In general, heat should flow from warmer to cooler regions and it is not possible to externally change the direction of heat conduction. Here we show a magnetically controllable heat flow caused by a spin-wave current. The direction of the flow can be switched by applying a magnetic field. When microwave energy is applied to a region of ferrimagnetic Y3Fe5O12, an end of the magnet far from this region is found to be heated in a controlled manner and a negative temperature gradient towards it is formed. This is due to unidirectional energy transfer by the excitation of spin-wave modes without time-reversal symmetry and to the conversion of spin waves into heat. When a Y3Fe5O12 film with low damping coefficients is used, spin waves are observed to emit heat at the sample end up to 10 mm away from the excitation source. The magnetically controlled remote heating we observe is directly applicable to the fabrication of a heat-flow controller.

  11. In-Beam Studies of High-Spin States in Mercury -183 and MERCURY-181

    NASA Astrophysics Data System (ADS)

    Shi, Detang

    The high-spin states of ^{183 }Hg were studied by using the reaction ^{155}Gd(^{32}S, 4n)^{183}Hg at a beam energy of 160 MeV with the tandem-linac accelerator system and the multi-element gamma-ray detection array at Florida State University. Two new bands, consisting of stretched E2 transitions and connected by M1 inter-band transitions, were identified in ^{183}Hg. Several new levels were added to the previously known bands at higher spin. The spins and parities to the levels in ^{183}Hg were determined from the analysis of their DCO ratios and B(M1)/B(E2) ratios. While the two pairs of previously known bands in ^ {183}Hg were proposed to 7/2^ -[514] and 9/2^+ [624], the two new bands are assigned as the 1/2^-[521] ground state configuration based upon the systematics of Nilsson orbitals in this mass region. The 354-keV transition previously was considered to be an E2 transition and assigned as the only transition from a band which is built on an oblate deformed i_{13/2} isomeric state. However, our DCO ratio analysis indicates that the 354-keV gamma-ray is an M1 transition. This changes the decay pattern of the 9/2^+[624 ] prolate structure in ^ {183}Hg, so it is seen to feed only into the i_{13/2} isomer band head. Our knowledge of the mercury nuclei far from stability was then extended through an in-beam study of the reaction ^{144}Sm(^{40 }Ar, 3n)^{181}Hg by using the Fragment Mass Analyzer (FMA) and the ten-Compton-suppressed -germanium-detector system at Argonne National Laboratory. Band structures to high-spin states are established for the first time in ^{181}Hg in the present experiment. The observed level structure of ^{181}Hg is midway between those in ^{185}Hg and in ^{183}Hg. The experimental results are analyzed in the framework of the cranking shell model (CSM). Alternative theoretical explanations are also presented and discussed. Systematics of neighboring mercury isotopes and N = 103 isotones is analyzed.

  12. Electrical detection of nuclear spins in organic light-emitting diodes

    NASA Astrophysics Data System (ADS)

    Malissa, H.; Kavand, M.; Waters, D. P.; Lupton, J. M.; Vardeny, Z. V.; Saam, B.; Boehme, C.

    2014-03-01

    We present pulsed combined electrically detected electron paramagnetic and nuclear magnetic resonance experiments on MEH-PPV OLEDs. Spin dynamics in these structures are governed by hyperfine interactions between charge carriers and the surrounding hydrogen nuclei, which are abundant in these materials. Hyperfine coupling has been observed by monitoring the device current during coherent spin excitation. Electron spin echoes (ESEs) are detected by applying one additional readout pulse at the time of echo formation. This allows for the application of high-resolution spectroscopy based on ESE detection, such as electron spin echo envelope modulation (ESEEM) and electron nuclear double resonance (ENDOR) available for electrical detection schemes. We conduct electrically detected ESEEM and ENDOR experiments and show how hyperfine interactions in MEH-PPV with and without deuterated polymer side groups can be observed by device current measurements. We acknowledge support by the Department of Energy, Office of Basic Energy Sciences under Award #DE-SC0000909.

  13. Orbital and spin parts of energy currents for electromagnetic waves through spatially inhomogeneous media

    NASA Astrophysics Data System (ADS)

    Lee, Hyoung-In; Mok, Jinsik

    2018-05-01

    We investigate electromagnetic waves propagating through non-magnetic and loss-free dielectric media, but with spatially inhomogeneous refractive indices. We derive hence a set of analytic formulae for conservation laws and energy-current (Poynting) vector. As a result, we deduce that the energy-current vector cannot be neatly separated into its orbital and spin parts in contrast to the cases with spatially homogeneous media. In addition, we present physical interpretations of the two additional terms due to spatial material inhomogeneity.

  14. Spin mixing at level anti-crossings in the rotating frame makes high-field SABRE feasible.

    PubMed

    Pravdivtsev, Andrey N; Yurkovskaya, Alexandra V; Vieth, Hans-Martin; Ivanov, Konstantin L

    2014-12-07

    A new technique is proposed to carry out Signal Amplification By Reversible Exchange (SABRE) experiments at high magnetic fields. SABRE is a method, which utilizes spin order transfer from para-hydrogen to the spins of a substrate in transient complexes using suitable catalysts. Such a transfer of spin order is efficient at low magnetic fields, notably, in the Level Anti-Crossing (LAC) regions. Here it is demonstrated that LAC conditions can also be fulfilled at high fields in the rotating reference frame under the action of an RF-field. Spin mixing at LACs allows one to polarize substrates at high fields as well; the achievable NMR enhancements are around 360 for the ortho-protons of partially deuterated pyridine used as a substrate and around 700 for H2 and substrate in the active complex with the catalyst. High-field SABRE effects have also been found for several other molecules containing a nitrogen atom in the aromatic ring.

  15. Anisotropic itinerant magnetism and spin fluctuations in BaFe2As2 : A neutron scattering study

    NASA Astrophysics Data System (ADS)

    Matan, K.; Morinaga, R.; Iida, K.; Sato, T. J.

    2009-02-01

    Neutron scattering measurements were performed to investigate magnetic excitations in a single-crystal sample of the ternary iron arsenide BaFe2As2 , a parent compound of a recently discovered family of Fe-based superconductors. In the ordered state, we observe low energy spin-wave excitations with a gap energy Δ=9.8(4)meV . The in-plane spin-wave velocity vab and out-of-plane spin-wave velocity vc measured at 12 meV are 280(150) and 57(7)meVÅ , respectively. At high energy, we observe anisotropic scattering centered at the antiferromagnetic wave vectors. This scattering indicates two-dimensional spin dynamics, which possibly exist inside the Stoner continuum. At TN=136(1)K , the gap closes and quasielastic scattering is observed above TN , indicative of short-range spin fluctuations. In the paramagnetic state, the scattering intensity along the L direction becomes “rodlike,” characteristic of uncorrelated out-of-plane spins, attesting to the two-dimensionality of the system.

  16. Electrical detection of nuclear spin-echo signals in an electron spin injection system

    NASA Astrophysics Data System (ADS)

    Lin, Zhichao; Rasly, Mahmoud; Uemura, Tetsuya

    2017-06-01

    We demonstrated spin echoes of nuclear spins in a spin injection device with a highly polarized spin source by nuclear magnetic resonance (NMR). Efficient spin injection into GaAs from a half-metallic spin source of Co2MnSi enabled efficient dynamic nuclear polarization (DNP) and sensitive detection of NMR signals even at a low magnetic field of ˜0.1 T and a relatively high temperature of 4.2 K. The intrinsic coherence time T2 of 69Ga nuclear spins was evaluated from the spin-echo signals. The relation between T2 and the decay time of the Rabi oscillation suggests that the inhomogeneous effects in our system are not obvious. This study provides an all-electrical NMR system for nuclear-spin-based qubits.

  17. L-dependence of low energy spin excitations in FeTe/Se superconductors

    NASA Astrophysics Data System (ADS)

    Xu, Guangyong; Xu, Zhijun; Schneeloch, John; Wen, Jinsheng; Winn, Barry; Zhao, Yang; Birgeneau, Robert; Gu, Genda; Tranquada, John

    We will present neutron scattering measurements on low energy magnetic excitations from FeTe1-xSex (``11'' system) samples. Our work shows that the low energy magnetic excitations are dominated by 2D correlations in the superconducting (SC) compound at low temperature, with the L-dependence well described by the Fe magnetic form factor. However, at temperatures much higher than TC, the magnetic excitations become more three-dimensional with a clear change in the L-dependence. The low energy magnetic excitations from non-superconducting (NSC) samples, on the other hand, always exhibit three-dimensional features for the entire temperature range of our measurements. Our results suggest that in additional to in-plane correlations, the inter-plane spin correlations are also coupled to the superconducting properties in the ``11'' system.

  18. The influence of further-neighbor spin-spin interaction on a ground state of 2D coupled spin-electron model in a magnetic field

    NASA Astrophysics Data System (ADS)

    Čenčariková, Hana; Strečka, Jozef; Gendiar, Andrej; Tomašovičová, Natália

    2018-05-01

    An exhaustive ground-state analysis of extended two-dimensional (2D) correlated spin-electron model consisting of the Ising spins localized on nodal lattice sites and mobile electrons delocalized over pairs of decorating sites is performed within the framework of rigorous analytical calculations. The investigated model, defined on an arbitrary 2D doubly decorated lattice, takes into account the kinetic energy of mobile electrons, the nearest-neighbor Ising coupling between the localized spins and mobile electrons, the further-neighbor Ising coupling between the localized spins and the Zeeman energy. The ground-state phase diagrams are examined for a wide range of model parameters for both ferromagnetic as well as antiferromagnetic interaction between the nodal Ising spins and non-zero value of external magnetic field. It is found that non-zero values of further-neighbor interaction leads to a formation of new quantum states as a consequence of competition between all considered interaction terms. Moreover, the new quantum states are accompanied with different magnetic features and thus, several kinds of field-driven phase transitions are observed.

  19. Excitation of propagating spin waves by pure spin current

    NASA Astrophysics Data System (ADS)

    Demokritov, Sergej

    Recently it was demonstrated that pure spin currents can be utilized to excite coherent magnetization dynamics, which enables development of novel magnetic nano-oscillators. Such oscillators do not require electric current flow through the active magnetic layer, which can help to reduce the Joule power dissipation and electromigration. In addition, this allows one to use insulating magnetic materials and provides an unprecedented geometric flexibility. The pure spin currents can be produced by using the spin-Hall effect (SHE). However, SHE devices have a number of shortcomings. In particular, efficient spin Hall materials exhibit a high resistivity, resulting in the shunting of the driving current through the active magnetic layer and a significant Joule heating. These shortcomings can be eliminated in devices that utilize spin current generated by the nonlocal spin-injection (NLSI) mechanism. Here we review our recent studies of excitation of magnetization dynamics and propagating spin waves by using NLSI. We show that NLSI devices exhibit highly-coherent dynamics resulting in the oscillation linewidth of a few MHz at room temperature. Thanks to the geometrical flexibility of the NLSI oscillators, one can utilize dipolar fields in magnetic nano-patterns to convert current-induced localized oscillations into propagating spin waves. The demonstrated systems exhibit efficient and controllable excitation and directional propagation of coherent spin waves characterized by a large decay length. The obtained results open new perspectives for the future-generation electronics using electron spin degree of freedom for transmission and processing of information on the nanoscale.

  20. The fragment spin difference scheme for triplet-triplet energy transfer coupling

    NASA Astrophysics Data System (ADS)

    You, Zhi-Qiang; Hsu, Chao-Ping

    2010-08-01

    To calculate the electronic couplings in both inter- and intramolecular triplet energy transfer (TET), we have developed the "fragment spin difference" (FSD) scheme. The FSD was a generalization from the "fragment charge difference" (FCD) method of Voityuk et al. [J. Chem. Phys. 117, 5607 (2002)] for electron transfer (ET) coupling. In FSD, the spin population difference was used in place of the charge difference in FCD. FSD is derived from the eigenstate energies and populations, and therefore the FSD couplings contain all contributions in the Hamiltonian as well as the potential overlap effect. In the present work, two series of molecules, all-trans-polyene oligomers and polycyclic aromatic hydrocarbons, were tested for intermolecular TET study. The TET coupling results are largely similar to those from the previously developed direct coupling scheme, with FSD being easier and more flexible in use. On the other hand, the Dexter's exchange integral value, a quantity that is often used as an approximate for the TET coupling, varies in a large range as compared to the corresponding TET coupling. To test the FSD for intramolecular TET, we have calculated the TET couplings between zinc(II)-porphyrin and free-base porphyrin separated by different numbers of p-phenyleneethynylene bridge units. Our estimated rate constants are consistent with experimentally measured TET rates. The FSD method can be used for both intermolecular and intramolecular TET, regardless of their symmetry. This general applicability is an improvement over most existing methodologies.

  1. Theoretical Study of Spin Crossover in 30 Iron Complexes.

    PubMed

    Kepp, Kasper P

    2016-03-21

    Iron complexes are important spin crossover (SCO) systems with vital roles in oxidative metabolism and promising technological potential. The SCO tendency depends on the free energy balance of high- and low-spin states, which again depends on physical effects such as dispersion, relativistic effects, and vibrational entropy. This work studied 30 different iron SCO systems with experimentally known thermochemical data, using 12 different density functionals. Remarkably general entropy-enthalpy compensation across SCO systems was identified (R = 0.82, p = 0.002) that should be considered in rational SCO design. Iron(II) complexes displayed higher ΔH and ΔS values than iron(III) complexes and also less steep compensation effects. First-coordination sphere ΔS values computed from numerical frequencies reproduce most of the experimental entropy and should thus be included when modeling spin-state changes in inorganic chemistry (R = 0.52, p = 3.4 × 10(-3); standard error in TΔS ≈ 4.4 kJ/mol at 298 K vs 16 kJ/mol of total TΔS on average). Zero-point energies favored high-spin states by 9 kJ/mol on average. Interestingly, dispersion effects are surprisingly large for the SCO process (average: 9 kJ/mol, but up to 33 kJ/mol) and favor the more compact low-spin state. Relativistic effects favor low-spin by ∼9 kJ/mol on average, but up to 24 kJ/mol. B3LYP*, TPSSh, B2PLYP, and PW6B95 performed best for the typical calculation scheme that includes ZPE. However, if relativistic and dispersion effects are included, only B3LYP* remained accurate. On average, high-spin was favored by LYP by 11-15 kJ/mol relative to other correlation functionals, and by 4.2 kJ/mol per 1% HF exchange in hybrids. 13% HF exchange was optimal without dispersion, and 15% was optimal with all effects included for these systems.

  2. Quasi-two-dimensional spin correlations in the triangular lattice bilayer spin glass LuCoGaO 4

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fritsch, Katharina; Ross, Kathyrn A.; Granroth, Garrett E.

    Here we present a single-crystal time-of-flight neutron scattering study of the static and dynamic spin correlations in LuCoGaO 4, a quasi-two-dimensional dilute triangular lattice antiferromagnetic spin-glass material. This system is based on Co 2+ ions that are randomly distributed on triangular bilayers within the YbFe 2O 4 type, hexagonal crystal structure. Antiferromagnetic short-range two-dimensional correlations at wave vectors Q = (1/3,1/3, L) develop within the bilayers at temperatures as high as |Θ CW| ~100 K and extend over roughly five unit cells at temperatures below T g = 19 K. These two-dimensional static correlations are observed as diffuse rods ofmore » neutron scattering intensity along c * and display a continuous spin freezing process in their energy dependence. Aside from exhibiting these typical spin-glass characteristics, this insulating material reveals a novel gapped magnetic resonant spin excitation at ΔE ~12 meV localized around Q = (1 / 3, 1 / 3,L) . The temperature dependence of the spin gap associated with this two-dimensional excitation correlates with the evolution of the static correlations into the spin-glass state ground state. Lastly, we associate it with the effect of the staggered exchange field acting on the S eff = 1/2 Ising-like doublet of the Co 2+ moments.« less

  3. Quasi-two-dimensional spin correlations in the triangular lattice bilayer spin glass LuCoGaO 4

    DOE PAGES

    Fritsch, Katharina; Ross, Kathyrn A.; Granroth, Garrett E.; ...

    2017-09-13

    Here we present a single-crystal time-of-flight neutron scattering study of the static and dynamic spin correlations in LuCoGaO 4, a quasi-two-dimensional dilute triangular lattice antiferromagnetic spin-glass material. This system is based on Co 2+ ions that are randomly distributed on triangular bilayers within the YbFe 2O 4 type, hexagonal crystal structure. Antiferromagnetic short-range two-dimensional correlations at wave vectors Q = (1/3,1/3, L) develop within the bilayers at temperatures as high as |Θ CW| ~100 K and extend over roughly five unit cells at temperatures below T g = 19 K. These two-dimensional static correlations are observed as diffuse rods ofmore » neutron scattering intensity along c * and display a continuous spin freezing process in their energy dependence. Aside from exhibiting these typical spin-glass characteristics, this insulating material reveals a novel gapped magnetic resonant spin excitation at ΔE ~12 meV localized around Q = (1 / 3, 1 / 3,L) . The temperature dependence of the spin gap associated with this two-dimensional excitation correlates with the evolution of the static correlations into the spin-glass state ground state. Lastly, we associate it with the effect of the staggered exchange field acting on the S eff = 1/2 Ising-like doublet of the Co 2+ moments.« less

  4. Out-of-equilibrium spin transport in mesoscopic superconductors.

    PubMed

    Quay, C H L; Aprili, M

    2018-08-06

    The excitations in conventional superconductors, Bogoliubov quasi-particles, are spin-[Formula: see text] fermions but their charge is energy-dependent and, in fact, zero at the gap edge. Therefore, in superconductors (unlike normal metals) spin and charge degrees of freedom may be separated. In this article, we review spin injection into conventional superconductors and focus on recent experiments on mesoscopic superconductors. We show how quasi-particle spin transport and out-of-equilibrium spin-dependent superconductivity can be triggered using the Zeeman splitting of the quasi-particle density of states in thin-film superconductors with small spin-mixing scattering. Finally, we address the spin dynamics and the feedback of quasi-particle spin imbalances on the amplitude of the superconducting energy gap.This article is part of the theme issue 'Andreev bound states'. © 2018 The Author(s).

  5. Electron spin resonance and spin-valley physics in a silicon double quantum dot.

    PubMed

    Hao, Xiaojie; Ruskov, Rusko; Xiao, Ming; Tahan, Charles; Jiang, HongWen

    2014-05-14

    Silicon quantum dots are a leading approach for solid-state quantum bits. However, developing this technology is complicated by the multi-valley nature of silicon. Here we observe transport of individual electrons in a silicon CMOS-based double quantum dot under electron spin resonance. An anticrossing of the driven dot energy levels is observed when the Zeeman and valley splittings coincide. A detected anticrossing splitting of 60 MHz is interpreted as a direct measure of spin and valley mixing, facilitated by spin-orbit interaction in the presence of non-ideal interfaces. A lower bound of spin dephasing time of 63 ns is extracted. We also describe a possible experimental evidence of an unconventional spin-valley blockade, despite the assumption of non-ideal interfaces. This understanding of silicon spin-valley physics should enable better control and read-out techniques for the spin qubits in an all CMOS silicon approach.

  6. NMR study of spin dynamics in mesoscopic molecular clusters

    NASA Astrophysics Data System (ADS)

    Borsa, Ferdinando

    1998-03-01

    Recent published and umpublished work regarding the magnetic properties and the spin dynamics of molecules containing rings of 6,8 and 10 spins and of molecules containing clusters of 8 and 12 spins are reviewed. The 1H nuclear spin-lattice relaxation rate (NSLR) and the Muon Spin Resonance relaxation in Mn12 (A.Lascialfari, D.Gatteschi, F.Borsa, A.Shastri, Z.H.Jang and P.Carretta, Phys.Rev. B 1 January 1998) and Fe8 clusters are presented and discussed with regards to the high temperature spin dynamics of the Mn (Fe) magnetic moments and with regards to the low temperature superparamagnetic behavior. 1H and 63Cu NMR results are presented for two "quantum" spin rings : Cu6 and Cu8. The Cu6 is a weakly coupled (J/k=60K) ferromagnetic S=1/2 spin ring while Cu8 is a strongly coupled (J/k greater than 400K) antiferromagnetic S=1/2 spin ring.The dependence of the NSRL from temperature and from applied magnetic field are analyzed in terms of the calculated magnetic energy levels of the magnetic ring. The values of the energy gap between the ground state and the first excited state are extracted from the exponential decrease of the NSLR as the temperature is lowered. The results in the Cu ( S=1/2) "quantum" rings are compared with the results in "quantum" chains and ladders and with the results in "classical" Fe (S=5/2) antiferromagnetic rings : Fe6 and Fe10 (A.Lascialfari, D.Gatteschi, F.Borsa and A.Cornia , Phys.Rev. 55B,14341,1997) ).

  7. Calculations with the quasirelativistic local-spin-density-functional theory for high-Z atoms

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Guo, Y.; Whitehead, M.A.

    1988-10-01

    The generalized-exchange local-spin-density-functional theory (LSD-GX) with relativistic corrections of the mass velocity and Darwin terms has been used to calculate statistical total energies for the neutral atoms, the positive ions, and the negative ions for high-Z elements. The effect of the correlation and relaxation correction on the statistical total energy is discussed. Comparing the calculated results for the ionization potentials and electron affinities for the atoms (atomic number Z from 37 to 56 and 72 to 80) with experiment, shows that for the atoms rubidium to barium both the LSD-GX and the quasirelativistic LSD-GX, with self-interaction correction, Gopinathan, Whitehead, andmore » Bogdanovic's Fermi-hole parameters (Phys. Rev. A 14, 1 (1976)), and Vosko, Wilk, and Nusair's correlation correction (Can. J. Phys. 58, 1200 (1980)), are very good methods for calculating ionization potentials and electron affinities. For the atoms hafnium to mercury the relativistic effect has to be considered.« less

  8. Higgs mechanism for gravity. II. Higher spin connections

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Boulanger, Nicolas; Kirsch, Ingo; Jefferson Laboratory of Physics, Harvard University, Cambridge, Massachusetts 02138

    We continue the work of [Phys. Rev. D 72, 024001 (2005)] in which gravity is considered as the Goldstone realization of a spontaneously broken diffeomorphism group. We complete the discussion of the coset space Diff (d,R)/SO(1,d-1) formed by the d-dimensional group of analytic diffeomorphisms and the Lorentz group. We find that this coset space is parametrized by coordinates, a metric, and an infinite tower of higher-spin or generalized connections. We then study effective actions for the corresponding symmetry breaking which gives mass to the higher spin connections. Our model predicts that gravity is modified at high energies by the exchangemore » of massive higher spin particles.« less

  9. Highly selective detection of individual nuclear spins with rotary echo on an electron spin probe

    PubMed Central

    Mkhitaryan, V. V.; Jelezko, F.; Dobrovitski, V. V.

    2015-01-01

    We consider an electronic spin, such as a nitrogen-vacancy center in diamond, weakly coupled to a large number of nuclear spins, and subjected to the Rabi driving with a periodically alternating phase. We show that by switching the driving phase synchronously with the precession of a given nuclear spin, the interaction to this spin is selectively enhanced, while the rest of the bath remains decoupled. The enhancement is of resonant character. The key feature of the suggested scheme is that the width of the resonance is adjustable, and can be greatly decreased by increasing the driving strength. Thus, the resonance can be significantly narrowed, by a factor of 10–100 in comparison with the existing detection methods. Significant improvement in selectivity is explained analytically and confirmed by direct numerical many-spin simulations. The method can be applied to a wide range of solid-state systems. PMID:26497777

  10. Anomalous B-field Dependence of Spin-flip Time in High Purity InP

    NASA Astrophysics Data System (ADS)

    Linpeng, Xiayu; Karin, Todd; Barbour, Russell; Glazov, Mikhail; Fu, Kai-Mei

    2015-03-01

    We observe an anomalous B-field dependence of the spin-flip time (T1) of electrons bound to shallow donors which cannot be explained by current spin-relaxation theories. We conduct resonant pump-probe measurements in high-purity InP from the low to high magnetic field regimes, with a maximum T1 (400 μs) observed near the turning point gμB B ~=kB T . At low B, the T1 dependence on B is consistent with an electron correlation time (τc) in the tens of nanoseconds. The physical mechanism for the short τc in this high-purity sample (n ~= 2 ×1014 cm-3) is unclear, but a strong temperature (T) dependence indicates T1 can be further increased by lowering T below the 1.5 K experimental temperature. At high B, a B-3 dependence is observed, in contrast to the expected B-5 predicted by single-phonon spin-orbit mediated interactions. An understanding of the anomalous B-field dependence is expected to elucidate the effect of electron transport (low-field) and phonons (high-field) on T1 for shallow donors, which is of interest for both ensemble and single-spin quantum information applications. This material is based upon work supported by the National Science Foundation under Grant No. 1150647, DGE-0718124 and DGE-1256082. InP samples were graciously provided by Simon Watkins at Simon Fraser University.

  11. High-fidelity projective read-out of a solid-state spin quantum register.

    PubMed

    Robledo, Lucio; Childress, Lilian; Bernien, Hannes; Hensen, Bas; Alkemade, Paul F A; Hanson, Ronald

    2011-09-21

    Initialization and read-out of coupled quantum systems are essential ingredients for the implementation of quantum algorithms. Single-shot read-out of the state of a multi-quantum-bit (multi-qubit) register would allow direct investigation of quantum correlations (entanglement), and would give access to further key resources such as quantum error correction and deterministic quantum teleportation. Although spins in solids are attractive candidates for scalable quantum information processing, their single-shot detection has been achieved only for isolated qubits. Here we demonstrate the preparation and measurement of a multi-spin quantum register in a low-temperature solid-state system by implementing resonant optical excitation techniques originally developed in atomic physics. We achieve high-fidelity read-out of the electronic spin associated with a single nitrogen-vacancy centre in diamond, and use this read-out to project up to three nearby nuclear spin qubits onto a well-defined state. Conversely, we can distinguish the state of the nuclear spins in a single shot by mapping it onto, and subsequently measuring, the electronic spin. Finally, we show compatibility with qubit control: we demonstrate initialization, coherent manipulation and single-shot read-out in a single experiment on a two-qubit register, using techniques suitable for extension to larger registers. These results pave the way for a test of Bell's inequalities on solid-state spins and the implementation of measurement-based quantum information protocols. © 2011 Macmillan Publishers Limited. All rights reserved

  12. Quasi 2D electronic states with high spin-polarization in centrosymmetric MoS2 bulk crystals

    NASA Astrophysics Data System (ADS)

    Gehlmann, Mathias; Aguilera, Irene; Bihlmayer, Gustav; Młyńczak, Ewa; Eschbach, Markus; Döring, Sven; Gospodarič, Pika; Cramm, Stefan; Kardynał, Beata; Plucinski, Lukasz; Blügel, Stefan; Schneider, Claus M.

    2016-06-01

    Time reversal dictates that nonmagnetic, centrosymmetric crystals cannot be spin-polarized as a whole. However, it has been recently shown that the electronic structure in these crystals can in fact show regions of high spin-polarization, as long as it is probed locally in real and in reciprocal space. In this article we present the first observation of this type of compensated polarization in MoS2 bulk crystals. Using spin- and angle-resolved photoemission spectroscopy (ARPES), we directly observed a spin-polarization of more than 65% for distinct valleys in the electronic band structure. By additionally evaluating the probing depth of our method, we find that these valence band states at the point in the Brillouin zone are close to fully polarized for the individual atomic trilayers of MoS2, which is confirmed by our density functional theory calculations. Furthermore, we show that this spin-layer locking leads to the observation of highly spin-polarized bands in ARPES since these states are almost completely confined within two dimensions. Our findings prove that these highly desired properties of MoS2 can be accessed without thinning it down to the monolayer limit.

  13. Nuclear spin polarized H and D by means of spin-exchange optical pumping

    NASA Astrophysics Data System (ADS)

    Stenger, Jörn; Grosshauser, Carsten; Kilian, Wolfgang; Nagengast, Wolfgang; Ranzenberger, Bernd; Rith, Klaus; Schmidt, Frank

    1998-01-01

    Optically pumped spin-exchange sources for polarized hydrogen and deuterium atoms have been demonstrated to yield high atomic flow and high electron spin polarization. For maximum nuclear polarization the source has to be operated in spin temperature equilibrium, which has already been demonstrated for hydrogen. In spin temperature equilibrium the nuclear spin polarization PI equals the electron spin polarization PS for hydrogen and is even larger than PS for deuterium. We discuss the general properties of spin temperature equilibrium for a sample of deuterium atoms. One result are the equations PI=4PS/(3+PS2) and Pzz=PSṡPI, where Pzz is the nuclear tensor polarization. Furthermore we demonstrate that the deuterium atoms from our source are in spin temperature equilibrium within the experimental accuracy.

  14. Effects of external magnetic fields and Rashba spin-orbit coupling on spin conductance in graphene

    NASA Astrophysics Data System (ADS)

    Shirkani, H.; Amiri, F.; Golshan, M. M.

    2013-12-01

    The present article is concerned with spin conductance in graphene (SCG) when both the application of an external magnetic field and Rashba spin-orbit coupling (RSOC) are taken into account. Introducing a Casimir operator, we analyze the structure of total Hamiltonian and demonstrate how the matrix elements along with the summations involved in the suitably adopted Kubo’s formula, may be analytically calculated. From the results so-obtained one finds that, in addition to discrete and symmetric behavior of SCG against the external field, it exhibits large peaks as high as six times that in ordinary two dimensional electron gases. Moreover, it is shown that for any Fermi energy the SCG asymptotically approaches a value three times larger than the standard unit of (e/4π), for large magnetic fields. Effects of the magnetic field, RSOC and Fermi energy on the characteristics of SCG are also discussed. The material presented in this article thus provides novel means of controlling the SCG by external agents.

  15. Thermoelectric spin voltage in graphene

    NASA Astrophysics Data System (ADS)

    Sierra, Juan F.; Neumann, Ingmar; Cuppens, Jo; Raes, Bart; Costache, Marius V.; Valenzuela, Sergio O.

    2018-02-01

    In recent years, new spin-dependent thermal effects have been discovered in ferromagnets, stimulating a growing interest in spin caloritronics, a field that exploits the interaction between spin and heat currents1,2. Amongst the most intriguing phenomena is the spin Seebeck effect3-5, in which a thermal gradient gives rise to spin currents that are detected through the inverse spin Hall effect6-8. Non-magnetic materials such as graphene are also relevant for spin caloritronics, thanks to efficient spin transport9-11, energy-dependent carrier mobility and unique density of states12,13. Here, we propose and demonstrate that a carrier thermal gradient in a graphene lateral spin valve can lead to a large increase of the spin voltage near to the graphene charge neutrality point. Such an increase results from a thermoelectric spin voltage, which is analogous to the voltage in a thermocouple and that can be enhanced by the presence of hot carriers generated by an applied current14-17. These results could prove crucial to drive graphene spintronic devices and, in particular, to sustain pure spin signals with thermal gradients and to tune the remote spin accumulation by varying the spin-injection bias.

  16. Post-Newtonian Dynamics in Dense Star Clusters: Highly Eccentric, Highly Spinning, and Repeated Binary Black Hole Mergers

    NASA Astrophysics Data System (ADS)

    Rodriguez, Carl L.; Amaro-Seoane, Pau; Chatterjee, Sourav; Rasio, Frederic A.

    2018-04-01

    We present models of realistic globular clusters with post-Newtonian dynamics for black holes. By modeling the relativistic accelerations and gravitational-wave emission in isolated binaries and during three- and four-body encounters, we find that nearly half of all binary black hole mergers occur inside the cluster, with about 10% of those mergers entering the LIGO/Virgo band with eccentricities greater than 0.1. In-cluster mergers lead to the birth of a second generation of black holes with larger masses and high spins, which, depending on the black hole natal spins, can sometimes be retained in the cluster and merge again. As a result, globular clusters can produce merging binaries with detectable spins regardless of the birth spins of black holes formed from massive stars. These second-generation black holes would also populate any upper mass gap created by pair-instability supernovae.

  17. Post-Newtonian Dynamics in Dense Star Clusters: Highly Eccentric, Highly Spinning, and Repeated Binary Black Hole Mergers.

    PubMed

    Rodriguez, Carl L; Amaro-Seoane, Pau; Chatterjee, Sourav; Rasio, Frederic A

    2018-04-13

    We present models of realistic globular clusters with post-Newtonian dynamics for black holes. By modeling the relativistic accelerations and gravitational-wave emission in isolated binaries and during three- and four-body encounters, we find that nearly half of all binary black hole mergers occur inside the cluster, with about 10% of those mergers entering the LIGO/Virgo band with eccentricities greater than 0.1. In-cluster mergers lead to the birth of a second generation of black holes with larger masses and high spins, which, depending on the black hole natal spins, can sometimes be retained in the cluster and merge again. As a result, globular clusters can produce merging binaries with detectable spins regardless of the birth spins of black holes formed from massive stars. These second-generation black holes would also populate any upper mass gap created by pair-instability supernovae.

  18. Thermal emergence of laser-induced spin dynamics for a Ni4 cluster

    NASA Astrophysics Data System (ADS)

    Sold, S.; Lefkidis, G.; Kamble, B.; Berakdar, J.; Hübner, W.

    2018-05-01

    We investigate the thermodynamic behavior of laser-induced spin dynamics of a perfect and a distorted Ni4 square in combination with an external thermal bath, by using the Lindblad-superoperator formalism. The energies of the planar molecules are determined with highly correlated ab initio quantum-chemistry calculations. When the distorted structure couples to the thermal bath a unique spin dynamics, i.e., a spin flip, emerges, due to the interplay of optically and thermally induced electronic transitions. The charge and spin relaxation times in dependence on the coupling strength and the bath temperature are determined and compared.

  19. Highly selective detection of individual nuclear spins with rotary echo on an electron spin probe

    DOE PAGES

    Mkhitaryan, V. V.; Jelezko, F.; Dobrovitski, V. V.

    2015-10-26

    We consider an electronic spin, such as a nitrogen-vacancy center in diamond, weakly coupled to a large number of nuclear spins, and subjected to the Rabi driving with a periodically alternating phase. We show that by switching the driving phase synchronously with the precession of a given nuclear spin, the interaction to this spin is selectively enhanced, while the rest of the bath remains decoupled. The enhancement is of resonant character. The key feature of the suggested scheme is that the width of the resonance is adjustable, and can be greatly decreased by increasing the driving strength. Thus, the resonancemore » can be significantly narrowed, by a factor of 10–100 in comparison with the existing detection methods. Significant improvement in selectivity is explained analytically and confirmed by direct numerical many-spin simulations. As a result, the method can be applied to a wide range of solid-state systems.« less

  20. Spin-dependent transport phenomena in organic semiconductors

    NASA Astrophysics Data System (ADS)

    Bergeson, Jeremy D.

    Thin-film organic semiconductors transport can have an anomalously high sensitivity to low magnetic fields. Such a response is unexpected considering that thermal fluctuation energies are greater than the energy associated with the intrinsic spin of charge carriers at a modest magnetic field of 100 Oe by a factor of more than 104 at room temperature and is still greater by 102 even at liquid helium temperatures. Nevertheless, we report experimental characterization of (1) spin-dependent injection, detection and transport of spin-polarized current through organic semiconductors and (2) the influence of a magnetic field on the spin dynamics of recombination-limited transport. The first focus of this work was accomplished by fabricating basic spin-valve devices consisting of two magnetic layers spatially separated by a nonmagnetic organic semiconductor. The spin-valve effect is a change in electrical resistance due to the magnetizations of the magnetic layers changing from parallel to antiparallel alignment, or vice versa. The conductivities of the metallic contacts and that of the semiconductor differed by many orders of magnitude, which inhibited the injection of a spin-polarized current from the magnet into the nonmagnet. We successfully overcame the problem of conductivity mismatch by inserting ultra-thin tunnel barriers at the metal/semiconductor interfaces which aided in yielding a ˜20% spin-valve effect at liquid helium temperatures and the effect persisted up to 150 K. We built on this achievement by constructing spin valves where one of the metallic contacts was replaced by the organic-based magnetic semiconductor vanadium tetracyanoethylene (V[TCNE]2). At 10 K these devices produced the switching behavior of the spin-valve effect. The second focus of this work was the bulk magnetoresistance (MR) of small molecule, oligomer and polymer organic semiconductors in thin-film structures. At room temperature the resistance can change up to 8% at 100 Oe and 15% at

  1. Complete tomography of a high-fidelity solid-state entangled spin-photon qubit pair.

    PubMed

    De Greve, Kristiaan; McMahon, Peter L; Yu, Leo; Pelc, Jason S; Jones, Cody; Natarajan, Chandra M; Kim, Na Young; Abe, Eisuke; Maier, Sebastian; Schneider, Christian; Kamp, Martin; Höfling, Sven; Hadfield, Robert H; Forchel, Alfred; Fejer, M M; Yamamoto, Yoshihisa

    2013-01-01

    Entanglement between stationary quantum memories and photonic qubits is crucial for future quantum communication networks. Although high-fidelity spin-photon entanglement was demonstrated in well-isolated atomic and ionic systems, in the solid-state, where massively parallel, scalable networks are most realistically conceivable, entanglement fidelities are typically limited due to intrinsic environmental interactions. Distilling high-fidelity entangled pairs from lower-fidelity precursors can act as a remedy, but the required overhead scales unfavourably with the initial entanglement fidelity. With spin-photon entanglement as a crucial building block for entangling quantum network nodes, obtaining high-fidelity entangled pairs becomes imperative for practical realization of such networks. Here we report the first results of complete state tomography of a solid-state spin-photon-polarization-entangled qubit pair, using a single electron-charged indium arsenide quantum dot. We demonstrate record-high fidelity in the solid-state of well over 90%, and the first (99.9%-confidence) achievement of a fidelity that will unambiguously allow for entanglement distribution in solid-state quantum repeater networks.

  2. Effective Hamiltonians for correlated narrow energy band systems and magnetic insulators: Role of spin-orbit interactions in metal-insulator transitions and magnetic phase transitions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chakraborty, Subrata; Vijay, Amrendra, E-mail: avijay@iitm.ac.in

    Using a second-quantized many-electron Hamiltonian, we obtain (a) an effective Hamiltonian suitable for materials whose electronic properties are governed by a set of strongly correlated bands in a narrow energy range and (b) an effective spin-only Hamiltonian for magnetic materials. The present Hamiltonians faithfully include phonon and spin-related interactions as well as the external fields to study the electromagnetic response properties of complex materials and they, in appropriate limits, reduce to the model Hamiltonians due to Hubbard and Heisenberg. With the Hamiltonian for narrow-band strongly correlated materials, we show that the spin-orbit interaction provides a mechanism for metal-insulator transition, whichmore » is distinct from the Mott-Hubbard (driven by the electron correlation) and the Anderson mechanism (driven by the disorder). Next, with the spin-only Hamiltonian, we demonstrate the spin-orbit interaction to be a reason for the existence of antiferromagnetic phase in materials which are characterized by a positive isotropic spin-exchange energy. This is distinct from the Néel-VanVleck-Anderson paradigm which posits a negative spin-exchange for the existence of antiferromagnetism. We also find that the Néel temperature increases as the absolute value of the spin-orbit coupling increases.« less

  3. A spin exchange model for singlet fission

    NASA Astrophysics Data System (ADS)

    Yago, Tomoaki; Wakasa, Masanobu

    2018-03-01

    Singlet fission has been analyzed with the Dexter model in which electron exchange occurs between chromophores, conserving the spin for each electron. In the present study, we propose a spin exchange model for singlet fission. In the spin exchange model, spins are exchanged by the exchange interaction between two electrons. Our analysis with simple spin functions demonstrates that singlet fission is possible by spin exchange. A necessary condition for spin exchange is a variation in exchange interactions. We also adapt the spin exchange model to triplet fusion and triplet energy transfer, which often occur after singlet fission in organic solids.

  4. Quantum entanglement and spin control in silicon nanocrystal.

    PubMed

    Berec, Vesna

    2012-01-01

    Selective coherence control and electrically mediated exchange coupling of single electron spin between triplet and singlet states using numerically derived optimal control of proton pulses is demonstrated. We obtained spatial confinement below size of the Bohr radius for proton spin chain FWHM. Precise manipulation of individual spins and polarization of electron spin states are analyzed via proton induced emission and controlled population of energy shells in pure (29)Si nanocrystal. Entangled quantum states of channeled proton trajectories are mapped in transverse and angular phase space of (29)Si <100> axial channel alignment in order to avoid transversal excitations. Proton density and proton energy as impact parameter functions are characterized in single particle density matrix via discretization of diagonal and nearest off-diagonal elements. We combined high field and low densities (1 MeV/92 nm) to create inseparable quantum state by superimposing the hyperpolarizationed proton spin chain with electron spin of (29)Si. Quantum discretization of density of states (DOS) was performed by the Monte Carlo simulation method using numerical solutions of proton equations of motion. Distribution of gaussian coherent states is obtained by continuous modulation of individual spin phase and amplitude. Obtained results allow precise engineering and faithful mapping of spin states. This would provide the effective quantum key distribution (QKD) and transmission of quantum information over remote distances between quantum memory centers for scalable quantum communication network. Furthermore, obtained results give insights in application of channeled protons subatomic microscopy as a complete versatile scanning-probe system capable of both quantum engineering of charged particle states and characterization of quantum states below diffraction limit linear and in-depth resolution.PACS NUMBERS: 03.65.Ud, 03.67.Bg, 61.85.+p, 67.30.hj.

  5. Devices and process for high-pressure magic angle spinning nuclear magnetic resonance

    DOEpatents

    Hoyt, David W; Sears, Jr., Jesse A; Turcu, Romulus V.F.; Rosso, Kevin M; Hu, Jian Zhi

    2014-04-08

    A high-pressure magic angle spinning (MAS) rotor is detailed that includes a high-pressure sample cell that maintains high pressures exceeding 150 bar. The sample cell design minimizes pressure losses due to penetration over an extended period of time.

  6. Devices and process for high-pressure magic angle spinning nuclear magnetic resonance

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hoyt, David W.; Sears, Jesse A.; Turcu, Romulus V. F.

    A high-pressure magic angle spinning (MAS) rotor is detailed that includes a high-pressure sample cell that maintains high pressures exceeding 150 bar. The sample cell design minimizes pressure losses due to penetration over an extended period of time.

  7. Magnetic properties of transition metal fluorides MF2 (M=Mn, Fe, Co, Ni) via high-energy photon diffraction

    NASA Astrophysics Data System (ADS)

    Strempfer, J.; Rütt, U.; Bayrakci, S.; Brückel, Th.; Jauch, W.

    2004-01-01

    We present an overview of recent results from nonresonant magnetic diffraction experiments on the antiferromagnetic compounds MnF2, FeF2, CoF2, and NiF2 using high-energy synchrotron radiation of photon energies above 100 keV. New results are presented on the determination of the spin and of the L/S ratio for CoF2 and NiF2. For CoF2, the saturation value of the long-range-ordered pure spin Sz component Sz=1.11(1) is considerably lower than the value Sz=3/2 for the free Co2+ ion. This is in contrast to our results for NiF2, where the full spin of the free transition-metal ion was found, Sz=0.98(1). The temperature dependence of the magnetization in the critical region as well as in the low-temperature region is also presented. For all compounds, Ising behavior is found in the critical regime, whereas the crossover to the low-temperature spin-wave behavior varies. We attribute this to different anisotropies in this series of compounds.

  8. Thermoelectric unipolar spin battery in a suspended carbon nanotube.

    PubMed

    Cao, Zhan; Fang, Tie-Feng; He, Wan-Xiu; Luo, Hong-Gang

    2017-04-26

    A quantum dot formed in a suspended carbon nanotube exposed to an external magnetic field is predicted to act as a thermoelectric unipolar spin battery which generates pure spin current. The built-in spin flip mechanism is a consequence of the spin-vibration interaction resulting from the interplay between the intrinsic spin-orbit coupling and the vibrational modes of the suspended carbon nanotube. On the other hand, utilizing thermoelectric effect, the temperature difference between the electron and the thermal bath to which the vibrational modes are coupled provides the driving force. We find that both magnitude and direction of the generated pure spin current are dependent on the strength of spin-vibration interaction, the sublevel configuration in dot, the temperatures of electron and thermal bath, and the tunneling rate between the dot and the pole. Moreover, in the linear response regime, the kinetic coefficient is non-monotonic in the temperature T and it reaches its maximum when [Formula: see text] is about one phonon energy. The existence of a strong intradot Coulomb interaction is irrelevant for our spin battery, provided that high-order cotunneling processes are suppressed.

  9. Gate-tunable black phosphorus spin valve with nanosecond spin lifetimes

    NASA Astrophysics Data System (ADS)

    Avsar, Ahmet; Tan, Jun Y.; Kurpas, Marcin; Gmitra, Martin; Watanabe, Kenji; Taniguchi, Takashi; Fabian, Jaroslav; Özyilmaz, Barbaros

    2017-09-01

    Two-dimensional materials offer new opportunities for both fundamental science and technological applications, by exploiting the electron's spin. Although graphene is very promising for spin communication due to its extraordinary electron mobility, the lack of a bandgap restricts its prospects for semiconducting spin devices such as spin diodes and bipolar spin transistors. The recent emergence of two-dimensional semiconductors could help overcome this basic challenge. In this letter we report an important step towards making two-dimensional semiconductor spin devices. We have fabricated a spin valve based on ultrathin (~5 nm) semiconducting black phosphorus (bP), and established fundamental spin properties of this spin channel material, which supports all electrical spin injection, transport, precession and detection up to room temperature. In the non-local spin valve geometry we measure Hanle spin precession and observe spin relaxation times as high as 4 ns, with spin relaxation lengths exceeding 6 μm. Our experimental results are in a very good agreement with first-principles calculations and demonstrate that the Elliott-Yafet spin relaxation mechanism is dominant. We also show that spin transport in ultrathin bP depends strongly on the charge carrier concentration, and can be manipulated by the electric field effect.

  10. Spin-Wave Chirality and Its Manifestations in Antiferromagnets

    NASA Astrophysics Data System (ADS)

    Proskurin, Igor; Stamps, Robert L.; Ovchinnikov, Alexander S.; Kishine, Jun-ichiro

    2017-10-01

    As first demonstrated by Tang and Cohen in chiral optics, the asymmetry in the rate of electromagnetic energy absorption between left and right enantiomers is determined by an optical chirality density. Here, we demonstrate that this effect can exist in magnetic spin systems. By constructing a formal analogy with electrodynamics, we show that in antiferromagnets with broken chiral symmetry, the asymmetry in local spin-wave energy absorption is proportional to a spin-wave chirality density, which is a direct counterpart of optical zilch. We propose that injection of a pure spin current into an antiferromagnet may serve as a chiral symmetry breaking mechanism, since its effect in the spin-wave approximation can be expressed in terms of additional Lifshitz invariants. We use linear response theory to show that the spin current induces a nonequilibrium spin-wave chirality density.

  11. Modulation of spin dynamics via voltage control of spin-lattice coupling in multiferroics

    DOE PAGES

    Zhu, Mingmin; Zhou, Ziyao; Peng, Bin; ...

    2017-02-03

    Our work aims at magnonics manipulation by the magnetoelectric coupling effect and is motivated by the most recent progresses in both magnonics (spin dynamics) and multiferroics fields. Here, voltage control of magnonics, particularly the surface spin waves, is achieved in La 0.7Sr 0.3MnO 3/0.7Pb(Mg 1/3Nb 2/3)O 3-0.3PbTiO 3 multiferroic heterostructures. With the electron spin resonance method, a large 135 Oe shift of surface spin wave resonance (≈7 times greater than conventional voltage-induced ferromagnetic resonance shift of 20 Oe) is determined. A model of the spin-lattice coupling effect, i.e., varying exchange stiffness due to voltage-induced anisotropic lattice changes, has been establishedmore » to explain experiment results with good agreement. In addition, an “on” and “off” spin wave state switch near the critical angle upon applying a voltage is created. The modulation of spin dynamics by spin-lattice coupling effect provides a platform for realizing energy-efficient, tunable magnonics devices.« less

  12. High resolution x-ray fluorescence spectroscopy - a new technique for site- and spin-selectivity

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Wang, Xin

    1996-12-01

    X-ray spectroscopy has long been used to elucidate electronic and structural information of molecules. One of the weaknesses of x-ray absorption is its sensitivity to all of the atoms of a particular element in a sample. Through out this thesis, a new technique for enhancing the site- and spin-selectivity of the x-ray absorption has been developed. By high resolution fluorescence detection, the chemical sensitivity of K emission spectra can be used to identify oxidation and spin states; it can also be used to facilitate site-selective X-ray Absorption Near Edge Structure (XANES) and site-selective Extended X-ray Absorption Fine Structure (EXAFS). Themore » spin polarization in K fluorescence could be used to generate spin selective XANES or spin-polarized EXAFS, which provides a new measure of the spin density, or the nature of magnetic neighboring atoms. Finally, dramatic line-sharpening effects by the combination of absorption and emission processes allow observation of structure that is normally unobservable. All these unique characters can enormously simplify a complex x-ray spectrum. Applications of this novel technique have generated information from various transition-metal model compounds to metalloproteins. The absorption and emission spectra by high resolution fluorescence detection are interdependent. The ligand field multiplet model has been used for the analysis of K{alpha} and K{beta} emission spectra. First demonstration on different chemical states of Fe compounds has shown the applicability of site selectivity and spin polarization. Different interatomic distances of the same element in different chemical forms have been detected using site-selective EXAFS.« less

  13. Spin-orbit configuration interaction calculation of the potential energy curves of iodine oxide

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Roszak, S.; Krauss, M.; Alekseyev, A.B.

    2000-04-06

    An ab initio configuration interaction (CI) study including spin-orbit coupling is carried out for the ground and excited states of the IO radical by employing relativistic effective core potentials. The computed spectroscopic constants are in good agreement with available experimental data, with some tendency to underestimate the strength of bonding. The first excited state, a{sup 4}{Sigma}{sup {minus}}, which has not yet been observed experimentally, is predicted to be bound by 30.1 kJ/mol and to have a significantly larger equilibrium distance than the ground state. It is split by spin-orbit interaction into 1/2 and 3/2 components, with the 1/2 component beingmore » the lower one with a calculated spin-orbit splitting of 210 cm{sup {minus}1}. The most interesting state in the low-energy IO spectrum, A{sub 1}{sup 2}{Pi}{sub 3/2}, is shown to be predissociated due to interaction with a number of repulsive electronic states. Predissociation of the A{sup 1}, {nu}{prime} = 0, 1 vibrational levels is attributed to a fairly weak spin-orbit coupling with the {sup 2}{Delta}{sub 3/2} state, while rotationally dependent predissociation of the {nu}{prime} = 2 level is explained by the coupling with the 1/2(III) state having mainly {sup 2}{Sigma}{sup {minus}} character. Strong predissociation of the {nu}{prime} {ge} 4 levels is attributed to interaction with the higher-lying {Omega} = 3/2 states, with predominantly {sup 4}{Sigma}{sup +} and {sup 4}{Delta} origin.« less

  14. Nuclear spin noise in the central spin model

    NASA Astrophysics Data System (ADS)

    Fröhling, Nina; Anders, Frithjof B.; Glazov, Mikhail

    2018-05-01

    We study theoretically the fluctuations of the nuclear spins in quantum dots employing the central spin model which accounts for the hyperfine interaction of the nuclei with the electron spin. These fluctuations are calculated both with an analytical approach using homogeneous hyperfine couplings (box model) and with a numerical simulation using a distribution of hyperfine coupling constants. The approaches are in good agreement. The box model serves as a benchmark with low computational cost that explains the basic features of the nuclear spin noise well. We also demonstrate that the nuclear spin noise spectra comprise a two-peak structure centered at the nuclear Zeeman frequency in high magnetic fields with the shape of the spectrum controlled by the distribution of the hyperfine constants. This allows for direct access to this distribution function through nuclear spin noise spectroscopy.

  15. Spin Seebeck insulator.

    PubMed

    Uchida, K; Xiao, J; Adachi, H; Ohe, J; Takahashi, S; Ieda, J; Ota, T; Kajiwara, Y; Umezawa, H; Kawai, H; Bauer, G E W; Maekawa, S; Saitoh, E

    2010-11-01

    Thermoelectric generation is an essential function in future energy-saving technologies. However, it has so far been an exclusive feature of electric conductors, a situation which limits its application; conduction electrons are often problematic in the thermal design of devices. Here we report electric voltage generation from heat flowing in an insulator. We reveal that, despite the absence of conduction electrons, the magnetic insulator LaY(2)Fe(5)O(12) can convert a heat flow into a spin voltage. Attached Pt films can then transform this spin voltage into an electric voltage as a result of the inverse spin Hall effect. The experimental results require us to introduce a thermally activated interface spin exchange between LaY(2)Fe(5)O(12) and Pt. Our findings extend the range of potential materials for thermoelectric applications and provide a crucial piece of information for understanding the physics of the spin Seebeck effect.

  16. High-efficiency control of spin-wave propagation in ultra-thin yttrium iron garnet by the spin-orbit torque

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Evelt, M.; Demidov, V. E., E-mail: demidov@uni-muenster.de; Bessonov, V.

    2016-04-25

    We study experimentally with submicrometer spatial resolution the propagation of spin waves in microscopic waveguides based on the nanometer-thick yttrium iron garnet and Pt layers. We demonstrate that by using the spin-orbit torque, the propagation length of the spin waves in such systems can be increased by nearly a factor of 10, which corresponds to the increase in the spin-wave intensity at the output of a 10 μm long transmission line by three orders of magnitude. We also show that, in the regime, where the magnetic damping is completely compensated by the spin-orbit torque, the spin-wave amplification is suppressed by themore » nonlinear scattering of the coherent spin waves from current-induced excitations.« less

  17. Microscopic studies of nonlocal spin dynamics and spin transport (invited)

    NASA Astrophysics Data System (ADS)

    Adur, Rohan; Du, Chunhui; Cardellino, Jeremy; Scozzaro, Nicolas; Wolfe, Christopher S.; Wang, Hailong; Herman, Michael; Bhallamudi, Vidya P.; Pelekhov, Denis V.; Yang, Fengyuan; Hammel, P. Chris

    2015-05-01

    Understanding the behavior of spins coupling across interfaces in the study of spin current generation and transport is a fundamental challenge that is important for spintronics applications. The transfer of spin angular momentum from a ferromagnet into an adjacent normal material as a consequence of the precession of the magnetization of the ferromagnet is a process known as spin pumping. We find that, in certain circumstances, the insertion of an intervening normal metal can enhance spin pumping between an excited ferromagnetic magnetization and a normal metal layer as a consequence of improved spin conductance matching. We have studied this using inverse spin Hall effect and enhanced damping measurements. Scanned probe magnetic resonance techniques are a complementary tool in this context offering high resolution magnetic resonance imaging, localized spin excitation, and direct measurement of spin lifetimes or damping. Localized magnetic resonance studies of size-dependent spin dynamics in the absence of lithographic confinement in both ferromagnets and paramagnets reveal the close relationship between spin transport and spin lifetime at microscopic length scales. Finally, detection of ferromagnetic resonance of a ferromagnetic film using the photoluminescence of nitrogen vacancy spins in neighboring nanodiamonds demonstrates long-range spin transport between insulating materials, indicating the complexity and generality of spin transport in diverse, spatially separated, material systems.

  18. Insulating nanomagnets driven by spin torque

    DOE PAGES

    Jungfleisch, Matthias B.; Ding, Junjia; Zhang, Wei; ...

    2016-11-29

    Magnetic insulators, such as yttrium iron garnet (Y 3Fe 5O 12), are ideal materials for ultra-low power spintronics applications due to their low energy dissipation and efficient spin current generation and transmission. Recently, it has been realized that spin dynamics can be driven very effectively in micrometer-sized Y 3Fe 5O 12/Pt heterostructures by spin-Hall effects. We demonstrate here the excitation and detection of spin dynamics in Y 3Fe 5O 12/Pt nanowires by spin-torque ferromagnetic resonance. The nanowires defined via electron-beam lithography are fabricated by conventional room temperature sputtering deposition on Gd 3Ga 5O 12 substrates and lift-off. We observe field-likemore » and anti-damping-like torques acting on the magnetization precession, which are due to simultaneous excitation by Oersted fields and spin-Hall torques. The Y 3Fe 5O 12/Pt nanowires are thoroughly examined over a wide frequency and power range. We observe a large change in the resonance field at high microwave powers, which is attributed to a decreasing effective magnetization due to microwave absorption. By comparing different nanowire widths, the importance of geometrical confinements for magnetization dynamics becomes evident. In conclusion, our results are the first stepping stones toward the realization of integrated magnonic logic devices based on insulators, where nanomagnets play an essential role.« less

  19. Studies of superconducting materials with muon spin rotation

    NASA Technical Reports Server (NTRS)

    Davis, Michael R.; Stronach, Carey E.; Kossler, W. J.; Schone, H. E.; Yu, X. H.; Uemura, Y. J.; Sternlieb, B. J.; Kempton, J. R.; Oostens, J.; Lankford, W. F.

    1989-01-01

    The muon spin rotation/relaxation technique was found to be an exceptionally effective means of measuring the magnetic properties of superconductors, including the new high temperature superconductor materials, at the microscopic level. The technique directly measures the magnetic penetration depth (type II superconductors (SC's)) and detects the presence of magnetic ordering (antiferromagnetism or spin-glass ordering were observed in some high temperature superconductor (HTSC's) and in many closely related compounds). Extensive studies of HTSC materials were conducted by the Virginia State University - College of William and Mary - Columbia University collaboration at Brookhaven National Laboratory and TRIUMF (Vancouver). A survey of LaSrCuO and YBaCaCuO systems shows an essentially linear relationship between the transition temperature T(sub c) and the relaxation rate. This appears to be a manifestation of the proportionality between T(sub c) and the Fermi energy, which suggests a high energy scale for the SC coupling, and which is not consistent with the weak coupling of phonon-mediated SC. Studies of LaCuO and YBaCuO parent compounds show clear evidence of antiferromagnetism. YBa2Cu(3-x)CO(x)O7 shows the simultaneous presence of spin-glass magnetic ordering and superconductivity. Three-dimensional SC, (Ba, K) BiO3, unlike the layered CuO-based compounds, shows no suggestion of magnetic ordering. Experimental techniques and theoretical implications are discussed.

  20. High efficiency spin-valve and spin-filter in a doped rhombic graphene quantum dot device

    NASA Astrophysics Data System (ADS)

    Silva, P. V.; Saraiva-Souza, A.; Maia, D. W.; Souza, F. M.; Filho, A. G. Souza; Meunier, V.; Girão, E. C.

    2018-04-01

    Spin-polarized transport through a rhombic graphene quantum dot (rGQD) attached to armchair graphene nanoribbon (AGNR) electrodes is investigated by means of the Green's function technique combined with single-band tight-binding (TB) approach including a Hubbard-like term. The Hubbard repulsion was included within the mean-field approximation. Compared to anti-ferromagnetic (AFM), we show that the ferromagnetic (FM) ordering of the rGQD corresponds to a smaller bandgap, thus resulting in an efficient spin injector. As a consequence, the electron transport spectrum reveals a spin valve effect, which is controlled by doping with B/N atoms creating a p-n-type junction. The calculations point out that such systems can be used as spin-filter devices with efficiency close to a 100 % .

  1. Neutral Silicon-Vacancy Center in Diamond: Spin Polarization and Lifetimes

    NASA Astrophysics Data System (ADS)

    Green, B. L.; Mottishaw, S.; Breeze, B. G.; Edmonds, A. M.; D'Haenens-Johansson, U. F. S.; Doherty, M. W.; Williams, S. D.; Twitchen, D. J.; Newton, M. E.

    2017-09-01

    We demonstrate optical spin polarization of the neutrally charged silicon-vacancy defect in diamond (SiV0 ), an S =1 defect which emits with a zero-phonon line at 946 nm. The spin polarization is found to be most efficient under resonant excitation, but nonzero at below-resonant energies. We measure an ensemble spin coherence time T2>100 μ s at low-temperature, and a spin relaxation limit of T1>25 s . Optical spin-state initialization around 946 nm allows independent initialization of SiV0 and NV- within the same optically addressed volume, and SiV0 emits within the telecoms down-conversion band to 1550 nm: when combined with its high Debye-Waller factor, our initial results suggest that SiV0 is a promising candidate for a long-range quantum communication technology.

  2. Enhancing Spin Filters by Use of Bulk Inversion Asymmetry

    NASA Technical Reports Server (NTRS)

    Ting, David; Cartoixa,Xavier

    2007-01-01

    Theoretical calculations have shown that the degrees of spin polarization in proposed nonmagnetic semiconductor resonant tunneling spin filters could be increased through exploitation of bulk inversion asymmetry (BIA). These enhancements would be effected through suitable orientation of spin collectors (or spin-polarization- inducing lateral electric fields), as described below. Spin filters -- more precisely, sources of spin-polarized electron currents -- have been sought for research on, and development of, the emerging technological discipline of spintronics (spin-transport electronics). The proposed spin filters were to be based on the Rashba effect, which is an energy splitting of what would otherwise be degenerate quantum states, caused by a spinorbit interaction in conjunction with a structural-inversion asymmetry (SIA) in the presence of interfacial electric fields in a semiconductor heterostructure. The magnitude of the energy split is proportional to the electron wave number. In a spin filter, the spin-polarized currents produced by the Rashba effect would be extracted by quantum-mechanical resonant tunneling.

  3. “Nodal Gap” induced by the incommensurate diagonal spin density modulation in underdoped high- T c superconductors

    DOE PAGES

    Zhou, Tao; Gao, Yi; Zhu, Jian -Xin

    2015-03-07

    Recenmore » tly it was revealed that the whole Fermi surface is fully gapped for several families of underdoped cuprates. The existence of the finite energy gap along the d -wave nodal lines (nodal gap) contrasts the common understanding of the d -wave pairing symmetry, which challenges the present theories for the high- T c superconductors. Here we propose that the incommensurate diagonal spin-density-wave order can account for the above experimental observation. The Fermi surface and the local density of states are also studied. Our results are in good agreement with many important experiments in high- T c superconductors.« less

  4. Effective one body approach to the dynamics of two spinning black holes with next-to-leading order spin-orbit coupling

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Damour, Thibault; Jaranowski, Piotr; Schaefer, Gerhard

    2008-07-15

    Using a recent, novel Hamiltonian formulation of the gravitational interaction of spinning binaries, we extend the effective one body (EOB) description of the dynamics of two spinning black holes to next-to-leading order (NLO) in the spin-orbit interaction. The spin-dependent EOB Hamiltonian is constructed from four main ingredients: (i) a transformation between the 'effective' Hamiltonian and the 'real' one; (ii) a generalized effective Hamilton-Jacobi equation involving higher powers of the momenta; (iii) a Kerr-type effective metric (with Pade-resummed coefficients) which depends on the choice of some basic 'effective spin vector' S{sub eff}, and which is deformed by comparable-mass effects; and (iv)more » an additional effective spin-orbit interaction term involving another spin vector {sigma}. As a first application of the new, NLO spin-dependent EOB Hamiltonian, we compute the binding energy of circular orbits (for parallel spins) as a function of the orbital frequency, and of the spin parameters. We also study the characteristics of the last stable circular orbit: binding energy, orbital frequency, and the corresponding dimensionless spin parameter a{sub LSO}{identical_to}cJ{sub LSO}/(G(H{sub LSO}/c{sup 2}){sup 2}). We find that the inclusion of NLO spin-orbit terms has a significant 'moderating' effect on the dynamical characteristics of the circular orbits for large and parallel spins.« less

  5. Surprising loss of three-dimensionality in low-energy spin correlations on approaching superconductivity in Fe 1 + y Te 1 - x Se x

    DOE PAGES

    Xu, Zhijun; Schneeloch, J. A.; Wen, Jinsheng; ...

    2017-10-06

    We report inelastic neutron scattering measurements of low-energy ( ℏ ω ≲ 10 meV) magnetic excitations in the “11” system Fe 1+y Te 1-x Se x. The spin correlations are two-dimensional (2D) in the superconducting samples at low temperature, but appear much more three-dimensional (3D) when the temperature rises well above T c ~ 15 K, with a clear increase of the (dynamic) spin correlation length perpendicular to the Fe planes. This behavior is extremely unusual; typically, the suppression of thermal fluctuations at low temperature would favor the enhancement of 3D correlations, or even ordering, and the reversion to 2Dmore » cannot be naturally explained when only the spin degree of freedom is considered. Our results suggest that the low temperature physics in the 11 system, in particular the evolution of low-energy spin excitations towards superconducting pairing, intrinsically involves changes in orbital correlations.« less

  6. Surprising loss of three-dimensionality in low-energy spin correlations on approaching superconductivity in Fe 1 + y Te 1 - x Se x

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Xu, Zhijun; Schneeloch, J. A.; Wen, Jinsheng

    We report inelastic neutron scattering measurements of low-energy ( ℏ ω ≲ 10 meV) magnetic excitations in the “11” system Fe 1+y Te 1-x Se x. The spin correlations are two-dimensional (2D) in the superconducting samples at low temperature, but appear much more three-dimensional (3D) when the temperature rises well above T c ~ 15 K, with a clear increase of the (dynamic) spin correlation length perpendicular to the Fe planes. This behavior is extremely unusual; typically, the suppression of thermal fluctuations at low temperature would favor the enhancement of 3D correlations, or even ordering, and the reversion to 2Dmore » cannot be naturally explained when only the spin degree of freedom is considered. Our results suggest that the low temperature physics in the 11 system, in particular the evolution of low-energy spin excitations towards superconducting pairing, intrinsically involves changes in orbital correlations.« less

  7. Nuclear magnetic resonance studies of high-spin ferric hemoproteins.

    PubMed

    Morishmima, I; Ogawa, S; Inubushi, T; Iizuka, T

    1978-01-01

    220 MHz proton Fourier transform (FT) NMR with quadrature phase detection (QPD) technique is applied to observe largely hyperfine-shifted signals of various hemoproteins and hemoenzymes in ferric high-spin state. The binding of F-, OCN-, SCN-, and CH3OH to the ferric heme iron in high-spin state in various hemoproteins has been studied by the use of FT/QPD technique at 220 MHz. The binding of formate ion to metmyoglobin (metMb) has also been studied. The spectrum of the formate complex was compared with that of hemoglobin M Milwaukee where carboxylate groups are bound to the hemes of the beta subunits. The acid-base transition of ferric myoglobin (Mb) was confirmed by monitoring the pH-dependent shift of the heme side methyl signals with the reflection point at pH 9.1. This finding is analyzed on the basis of rapid exchange between alkaline (low spin) and acidic (high spin) forms accompanied by the dissociation and association of one proton in the ferric Mb. The structure of the heme environment of ferric horseradish peroxidase (HRP) was studied. The pH-dependent features of NMR spectra of the ferric enzyme and its complexes with cyanide and azide were discussed in terms of heme environmental structures, comparing with the case of metMb. The results were interpreted as follows: There exists an ionizable amino group near the heme responsible for the ligand binding reactions of the enzyme, which modulates the entry of external azide to the heme iron through protolytic equilibrium of this group. The pK value of this group was determined to be 5.9 by monitoring the pH-dependent shift of the heme peripheral methyl signals of the native enzyme, indicating that the group is probably a histidyl residue. Acid-alkaline transition of metMb was confirmed to associate with the proton dissociation of an iron-bound water molecule, whereas in HRP, pH-dependent spin state change characterized by pK 11 is attributed not to the simple protolytic reaction of the iron-bound water but

  8. Constructing binary black hole initial data with high mass ratios and spins

    NASA Astrophysics Data System (ADS)

    Ossokine, Serguei; Foucart, Francois; Pfeiffer, Harald; Szilagyi, Bela; Simulating Extreme Spacetimes Collaboration

    2015-04-01

    Binary black hole systems have now been successfully modelled in full numerical relativity by many groups. In order to explore high-mass-ratio (larger than 1:10), high-spin systems (above 0.9 of the maximal BH spin), we revisit the initial-data problem for binary black holes. The initial-data solver in the Spectral Einstein Code (SpEC) was not able to solve for such initial data reliably and robustly. I will present recent improvements to this solver, among them adaptive mesh refinement and control of motion of the center of mass of the binary, and will discuss the much larger region of parameter space this code can now address.

  9. A high-performance Fortran code to calculate spin- and parity-dependent nuclear level densities

    NASA Astrophysics Data System (ADS)

    Sen'kov, R. A.; Horoi, M.; Zelevinsky, V. G.

    2013-01-01

    A high-performance Fortran code is developed to calculate the spin- and parity-dependent shell model nuclear level densities. The algorithm is based on the extension of methods of statistical spectroscopy and implies exact calculation of the first and second Hamiltonian moments for different configurations at fixed spin and parity. The proton-neutron formalism is used. We have applied the method for calculating the level densities for a set of nuclei in the sd-, pf-, and pf+g- model spaces. Examples of the calculations for 28Si (in the sd-model space) and 64Ge (in the pf+g-model space) are presented. To illustrate the power of the method we estimate the ground state energy of 64Ge in the larger model space pf+g, which is not accessible to direct shell model diagonalization due to the prohibitively large dimension, by comparing with the nuclear level densities at low excitation energy calculated in the smaller model space pf. Program summaryProgram title: MM Catalogue identifier: AENM_v1_0 Program summary URL:http://cpc.cs.qub.ac.uk/summaries/AENM_v1_0.html Program obtainable from: CPC Program Library, Queen's University, Belfast, N. Ireland Licensing provisions: Standard CPC licence, http://cpc.cs.qub.ac.uk/licence/licence.html No. of lines in distributed program, including test data, etc.: 193181 No. of bytes in distributed program, including test data, etc.: 1298585 Distribution format: tar.gz Programming language: Fortran 90, MPI. Computer: Any architecture with a Fortran 90 compiler and MPI. Operating system: Linux. RAM: Proportional to the system size, in our examples, up to 75Mb Classification: 17.15. External routines: MPICH2 (http://www.mcs.anl.gov/research/projects/mpich2/) Nature of problem: Calculating of the spin- and parity-dependent nuclear level density. Solution method: The algorithm implies exact calculation of the first and second Hamiltonian moments for different configurations at fixed spin and parity. The code is parallelized using the Message

  10. Locv Calculations for Polarized Liquid 3He with the Spin-Dependent Correlation

    NASA Astrophysics Data System (ADS)

    Bordbar, G. H.; Karimi, M. J.

    We have used the lowest order constrained variational (LOCV) method to calculate some ground-state properties of polarized liquid 3 He at zero temperature with the spin-dependent correlation function employing the Lennard-Jones and Aziz pair potentials. We have seen that the total energy of polarized liquid 3He increases with increasing polarization. For all polarizations, it is shown that the total energy in the spin-dependent case is lower than the spin-independent case. We have seen that the difference between the energies of spin-dependent and spin-independent cases decreases by increasing the polarization. We have shown that the main contribution of the potential energy comes from the spin-triplet state.

  11. Energy-level repulsion by spin-orbit coupling in two-dimensional Rydberg excitons

    NASA Astrophysics Data System (ADS)

    Stephanovich, V. A.; Sherman, E. Ya.; Zinner, N. T.; Marchukov, O. V.

    2018-05-01

    We study the effects of Rashba spin-orbit coupling on two-dimensional Rydberg exciton systems. Using analytical and numerical arguments we demonstrate that this coupling considerably modifies the wave functions and leads to a level repulsion that results in a deviation from the Poissonian statistics of the adjacent level distance distribution. This signifies the crossover to nonintegrability of the system and hints at the possibility of quantum chaos emerging. Such behavior strongly differs from the classical realization, where spin-orbit coupling produces highly entangled, chaotic electron trajectories in an exciton. We also calculate the oscillator strengths and show that randomization appears in the transitions between states with different total momenta.

  12. Thermal properties of spin-S Kitaev-Heisenberg model on a honeycomb lattice

    NASA Astrophysics Data System (ADS)

    Suzuki, Takafumi; Yamaji, Youhei

    2018-05-01

    Temperature (T) dependence of heat capacity C (T) in the S = 1 / 2 Kitaev honeycomb model shows a double-peak structure resulting from fractionalization of spins into two kinds of Majorana fermions. Recently it has been discussed that the double-peak structure in C (T) is also observed in magnetic ordered phases of the S = 1 / 2 Kitaev-Heisenberg (KH) model on a honeycomb lattice when the system is located in the vicinity of the Kitaev's spin liquid phase. In addition to the S = 1 / 2 spin case, similar double-peak structure has been confirmed in the KH honeycomb model for classical Heisenberg spins, where spin S is regarded as S → ∞ . We investigate spin-S dependence of C (T) for the KH honeycomb models by using thermal pure quantum state. We also perform classical Monte Carlo calculations to obtain C (T) for the classical KH model. From obtained results, we find that the origin of the high-temperature peak is different between the quantum spin case with small Ss and the classical Heisenberg spin case. Furthermore, the high-temperature peak in the quantum spin case, which is one of the clues for fractionalization of spins, disappears for S > 1 .

  13. Differentiability of energy functionals in spin-density-functional theory

    NASA Astrophysics Data System (ADS)

    Gál, Tamás

    2007-06-01

    Recently, nonuniqueness of external electrostatic and magnetic fields yielding a given many-electron ground state has been pointed out [K. Capelle and G. Vignale, Phys. Rev. Lett. 86, 5546 (2001); H. Eschrig and W. E. Pickett, Solid State Commun. 118, 123 (2001)], implying the nondifferentiability of the ground-state energy functional of spin-density-functional theory (SDFT), on the basis of which the applicability of widely used DFT methods in SDFT has been put into question and the need for a critical reexamination of those applications has been concluded. Here it is shown, for collinear magnetic fields, that the nonuniqueness of the external potentials in SDFT does not imply the nonexistence of number-conserving functional derivatives as well, with the use of which therefore problems arising from the nondifferentiability are avoided.

  14. Coherently coupling distinct spin ensembles through a high critical temperature superconducting resonator

    NASA Astrophysics Data System (ADS)

    Ghirri, Alberto; Bonizzoni, Claudio; Troiani, Filippo; Affronte, Marco

    The problem of coupling remote ensembles of two-level systems through cavity photons is revisited by using molecular spin centers and a high critical temperature superconducting coplanar resonator. By using PyBTM organic radicals, we achieved the strong coupling regime with values of the cooperativity reaching 4300 at 2 K. We show that up to three distinct spin ensembles are simultaneously coupled through the resonator mode. The ensembles are made physically distinguishable by chemically varying the g-factor and by exploiting the inhomogeneities of the applied magnetic field. The coherent mixing of the spin and field modes is demonstrated by the observed multiple anticrossing, along with the simulations performed within the input-output formalism, and quantified by suitable entropic measures.

  15. Effects of symmetry and spin configuration on spin-dependent transport properties of iron-phthalocyanine-based devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Cui, Li-Ling; School of Science, Hunan University of Technology, Zhuzhou 412007; Yang, Bing-Chu, E-mail: bingchuyang@csu.edu.cn

    2014-07-21

    Spin-dependent transport properties of nanodevices constructed by iron-phthalocyanine (FePc) molecule sandwiched between two zigzag graphene nanoribbon electrodes are studied using first-principles quantum transport calculations. The effects of the symmetry and spin configuration of electrodes have been taken into account. It is found that large magnetoresistance, large spin polarization, dual spin-filtering, and negative differential resistance (NDR) can coexist in these devices. Our results show that 5Z-FePc system presents well conductive ability in both parallel (P) and anti-parallel (AP) configurations. For 6Z-FePc-P system, spin filtering effect and large spin polarization can be found. A dual spin filtering and NDR can also bemore » shown in 6Z-FePc-AP. Our studies indicate that the dual spin filtering effect depends on the orbitals symmetry of the energy bands and spin mismatching of the electrodes. And all the effects would open up possibilities for their applications in spin-valve, spin-filter as well as effective spin diode devices.« less

  16. Examining Lactate Changes during High Intensity Spinning® Training

    ERIC Educational Resources Information Center

    Ipekoglu, Gökhan; Baynaz, Kadir; Mor, Ahmet; Acar, Kürsat; Arslanoglu, Cansel; Arslanoglu, Erkal

    2018-01-01

    The aim of the study was to examine the changes in the acute blood lactate levels of elite taekwondo players when carrying out high-intensity interval training on Spinning® bikes. Twenty elite-level taekwondo athletes participated in the study. The subjects were selected from athletes who had been competitors for at least six years. Their average…

  17. Nuclear spin nanomagnet in an optically excited quantum dot.

    PubMed

    Korenev, V L

    2007-12-21

    Linearly polarized light tuned slightly below the optical transition of the negatively charged exciton (trion) in a single quantum dot causes the spontaneous nuclear spin polarization (self-polarization) at a level close to 100%. The effective magnetic field of spin-polarized nuclei shifts the optical transition energy close to resonance with photon energy. The resonantly enhanced Overhauser effect sustains the stability of the nuclear self-polarization even in the absence of spin polarization of the quantum dot electron. As a result the optically selected single quantum dot represents a tiny magnet with the ferromagnetic ordering of nuclear spins-the nuclear spin nanomagnet.

  18. Coulomb energy differences in isobaric multiplets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Lenzi, S. M.; Farnea, E.; Bazzacco, D.

    2007-02-12

    By comparing the excitation energies of analogue states in isobaric multiplets, several nuclear structure properties can be studied as a function of the angular momentum up to high spin states. In particular, the mirror nuclei 35Ar and 35Cl show large differences between the excitation energies of analogue negative-parity states at high spin, confirming the important contribution of the relativistic electromagnetic spin-orbit interaction to the Coulomb energy. The single-particle character of the configuration of these states is reproduced with very good accuracy by shell model calculations in the sd and pf shells valence space. In addition, evidence of isospin mixing ismore » deduced from the El transitions linking positive and negative parity states.« less

  19. All-spinel oxide Josephson junctions for high-efficiency spin filtering.

    PubMed

    Mesoraca, S; Knudde, S; Leitao, D C; Cardoso, S; Blamire, M G

    2018-01-10

    Obtaining high efficiency spin filtering at room temperature using spinel ferromagnetic tunnel barriers has been hampered by the formation of antiphase boundaries due to their difference in lattice parameters between barrier and electrodes. In this work we demonstrate the use of LiTi 2 O 4 thin films as electrodes in an all-spinel oxide CoFe 2 O 4 -based spin filter devices. These structures show nearly perfect epitaxy maintained throughout the structure and so minimise the potential for APBs formation. The LiTi 2 O 4 in these devices is superconducting and so measurements at low temperature have been used to explore details of the tunnelling and Josephson junction behaviour.

  20. Spin-resolved inelastic mean free path of slow electrons in Fe.

    PubMed

    Zdyb, R; Bauer, E

    2013-07-10

    The spin-dependent reflectivity of slow electrons from ultrathin Fe films on W(110) has been measured with spin polarized low energy electron microscopy. From the amplitude of the quantum size oscillations observed in the reflectivity curves the spin-dependent inelastic mean free path (IMFP) of electrons in Fe has been determined in the energy range from 5 to 16 eV above the vacuum level. The resulting IMFP values for the spin-up electrons are clearly larger than those for the spin-down electrons and the difference between the two values decreases with increasing electron energy in agreement with theoretical predictions.

  1. Effect of transverse vibrations of fissile nuclei on the angular and spin distributions of low-energy fission fragments

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bunakov, V. E.; Kadmensky, S. G., E-mail: kadmensky@phys.vsu.ru; Lyubashevsky, D. E.

    2016-05-15

    It is shown that A. Bohr’s classic theory of angular distributions of fragments originating from low-energy fission should be supplemented with quantum corrections based on the involvement of a superposition of a very large number of angular momenta L{sub m} in the description of the relative motion of fragments flying apart along the straight line coincidentwith the symmetry axis. It is revealed that quantum zero-point wriggling-type vibrations of the fissile system in the vicinity of its scission point are a source of these angular momenta and of high fragment spins observed experimentally.

  2. Manipulation of a Nuclear Spin by a Magnetic Domain Wall in a Quantum Hall Ferromagnet.

    PubMed

    Korkusinski, M; Hawrylak, P; Liu, H W; Hirayama, Y

    2017-03-06

    The manipulation of a nuclear spin by an electron spin requires the energy to flip the electron spin to be vanishingly small. This can be realized in a many electron system with degenerate ground states of opposite spin polarization in different Landau levels. We present here a microscopic theory of a domain wall between spin unpolarized and spin polarized quantum Hall ferromagnet states at filling factor two with the Zeeman energy comparable to the cyclotron energy. We determine the energies and many-body wave functions of the electronic quantum Hall droplet with up to N = 80 electrons as a function of the total spin, angular momentum, cyclotron and Zeeman energies from the spin singlet ν = 2 phase, through an intermediate polarization state exhibiting a domain wall to the fully spin-polarized phase involving the lowest and the second Landau levels. We demonstrate that the energy needed to flip one electron spin in a domain wall becomes comparable to the energy needed to flip the nuclear spin. The orthogonality of orbital electronic states is overcome by the many-electron character of the domain - the movement of the domain wall relative to the position of the nuclear spin enables the manipulation of the nuclear spin by electrical means.

  3. Manipulation of a Nuclear Spin by a Magnetic Domain Wall in a Quantum Hall Ferromagnet

    PubMed Central

    Korkusinski, M.; Hawrylak, P.; Liu, H. W.; Hirayama, Y.

    2017-01-01

    The manipulation of a nuclear spin by an electron spin requires the energy to flip the electron spin to be vanishingly small. This can be realized in a many electron system with degenerate ground states of opposite spin polarization in different Landau levels. We present here a microscopic theory of a domain wall between spin unpolarized and spin polarized quantum Hall ferromagnet states at filling factor two with the Zeeman energy comparable to the cyclotron energy. We determine the energies and many-body wave functions of the electronic quantum Hall droplet with up to N = 80 electrons as a function of the total spin, angular momentum, cyclotron and Zeeman energies from the spin singlet ν = 2 phase, through an intermediate polarization state exhibiting a domain wall to the fully spin-polarized phase involving the lowest and the second Landau levels. We demonstrate that the energy needed to flip one electron spin in a domain wall becomes comparable to the energy needed to flip the nuclear spin. The orthogonality of orbital electronic states is overcome by the many-electron character of the domain - the movement of the domain wall relative to the position of the nuclear spin enables the manipulation of the nuclear spin by electrical means. PMID:28262758

  4. Microscopic studies of nonlocal spin dynamics and spin transport (invited)

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Adur, Rohan; Du, Chunhui; Cardellino, Jeremy

    2015-05-07

    Understanding the behavior of spins coupling across interfaces in the study of spin current generation and transport is a fundamental challenge that is important for spintronics applications. The transfer of spin angular momentum from a ferromagnet into an adjacent normal material as a consequence of the precession of the magnetization of the ferromagnet is a process known as spin pumping. We find that, in certain circumstances, the insertion of an intervening normal metal can enhance spin pumping between an excited ferromagnetic magnetization and a normal metal layer as a consequence of improved spin conductance matching. We have studied this usingmore » inverse spin Hall effect and enhanced damping measurements. Scanned probe magnetic resonance techniques are a complementary tool in this context offering high resolution magnetic resonance imaging, localized spin excitation, and direct measurement of spin lifetimes or damping. Localized magnetic resonance studies of size-dependent spin dynamics in the absence of lithographic confinement in both ferromagnets and paramagnets reveal the close relationship between spin transport and spin lifetime at microscopic length scales. Finally, detection of ferromagnetic resonance of a ferromagnetic film using the photoluminescence of nitrogen vacancy spins in neighboring nanodiamonds demonstrates long-range spin transport between insulating materials, indicating the complexity and generality of spin transport in diverse, spatially separated, material systems.« less

  5. Spin-Orbit Torques in ferrimagnetic GdFeCo

    NASA Astrophysics Data System (ADS)

    Roschewsky, Niklas; Lambert, Charles-Henri; Salahuddin, Sayeef

    Recently spin-orbit torques in antiferromagnets received a lot of attention due to intrinsic high frequency dynamics as well as robustness against perturbations from external magnetic fields. Here, we report on spin-orbit torque (SOT) switching in ferrimagnetic Gdx (Fe90Co10)100-x films on both sides of the magnetic compensation point. In addition to current driven switching experiments we performed harmonic Hall measurements of the effective SOT fields. We find that both the Slonczewski torque as well as the field-like torque diverge at the magnetization compensation point. However, the effective spin Hall angle ξ = (2 | e | / ℏ) MStFM (Heff / | jHM |) is found to be roughly constant across the investigated composition range. This provides important insight into the the angular momentum transfer process in ferrimagnets. This work was supported by the Director, Office of Science, Office of Basic Energy Sciences, Materials Science and Engineering Division of the U.S. Department of Energy under Contract No. DE-AC02-05-CH11231 within the NEMM program (KC2204).

  6. Charge and Spin Dynamics of the Hubbard Chains

    NASA Technical Reports Server (NTRS)

    Park, Youngho; Liang, Shoudan

    1999-01-01

    We calculate the local correlation functions of charge and spin for the one-chain and two-chain Hubbard model using density matrix renormalization group method and the recursion technique. Keeping only finite number of states we get good accuracy for the low energy excitations. We study the charge and spin gaps, bandwidths and weights of the spectra for various values of the on-site Coulomb interaction U and the electron filling. In the low energy part, the local correlation functions are different for the charge and spin. The bandwidths are proportional to t for the charge and J for the spin respectively.

  7. Calculation of nuclear spin-spin coupling constants using frozen density embedding

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Götz, Andreas W., E-mail: agoetz@sdsc.edu; Autschbach, Jochen; Visscher, Lucas, E-mail: visscher@chem.vu.nl

    2014-03-14

    We present a method for a subsystem-based calculation of indirect nuclear spin-spin coupling tensors within the framework of current-spin-density-functional theory. Our approach is based on the frozen-density embedding scheme within density-functional theory and extends a previously reported subsystem-based approach for the calculation of nuclear magnetic resonance shielding tensors to magnetic fields which couple not only to orbital but also spin degrees of freedom. This leads to a formulation in which the electron density, the induced paramagnetic current, and the induced spin-magnetization density are calculated separately for the individual subsystems. This is particularly useful for the inclusion of environmental effects inmore » the calculation of nuclear spin-spin coupling constants. Neglecting the induced paramagnetic current and spin-magnetization density in the environment due to the magnetic moments of the coupled nuclei leads to a very efficient method in which the computationally expensive response calculation has to be performed only for the subsystem of interest. We show that this approach leads to very good results for the calculation of solvent-induced shifts of nuclear spin-spin coupling constants in hydrogen-bonded systems. Also for systems with stronger interactions, frozen-density embedding performs remarkably well, given the approximate nature of currently available functionals for the non-additive kinetic energy. As an example we show results for methylmercury halides which exhibit an exceptionally large shift of the one-bond coupling constants between {sup 199}Hg and {sup 13}C upon coordination of dimethylsulfoxide solvent molecules.« less

  8. Hierarchical data-driven approach to fitting numerical relativity data for nonprecessing binary black holes with an application to final spin and radiated energy

    NASA Astrophysics Data System (ADS)

    Jiménez-Forteza, Xisco; Keitel, David; Husa, Sascha; Hannam, Mark; Khan, Sebastian; Pürrer, Michael

    2017-03-01

    Numerical relativity is an essential tool in studying the coalescence of binary black holes (BBHs). It is still computationally prohibitive to cover the BBH parameter space exhaustively, making phenomenological fitting formulas for BBH waveforms and final-state properties important for practical applications. We describe a general hierarchical bottom-up fitting methodology to design and calibrate fits to numerical relativity simulations for the three-dimensional parameter space of quasicircular nonprecessing merging BBHs, spanned by mass ratio and by the individual spin components orthogonal to the orbital plane. Particular attention is paid to incorporating the extreme-mass-ratio limit and to the subdominant unequal-spin effects. As an illustration of the method, we provide two applications, to the final spin and final mass (or equivalently: radiated energy) of the remnant black hole. Fitting to 427 numerical relativity simulations, we obtain results broadly consistent with previously published fits, but improving in overall accuracy and particularly in the approach to extremal limits and for unequal-spin configurations. We also discuss the importance of data quality studies when combining simulations from diverse sources, how detailed error budgets will be necessary for further improvements of these already highly accurate fits, and how this first detailed study of unequal-spin effects helps in choosing the most informative parameters for future numerical relativity runs.

  9. Simulating a High-Spin Black Hole-Neutron Star Binary

    NASA Astrophysics Data System (ADS)

    Derby, John; Lovelace, Geoffrey; Duez, Matt; Foucart, Francois; Simulating Extreme Spacetimes (SXS) Collaboration

    2017-01-01

    During their first observing run (fall 2015) Advanced LIGO detected gravitational waves from merging black holes. In its future observations LIGO could detect black hole neutron star binaries (BHNS). It is important to have numerical simulations to predict these waves, to help find as many of these waves as possible and to estimate the sources properties, because at times near merger analytic approximations fail. Also, numerical models of the disk formed when the black hole tears apart the neutron star can help us learn about these systems' potential electromagnetic counterparts. One area of the parameter space for BHNS systems that is particularly challenging is simulations with high black hole spin. I will present results from a new BHNS simulation that has a black hole spin of 90% of the theoretical maximum. We are part of SXS but not all.

  10. Evidence for a spinon Fermi surface in a triangular-lattice quantum-spin-liquid candidate

    DOE PAGES

    Shen, Yao; Li, Yao-Dong; Wo, Hongliang; ...

    2016-12-05

    A quantum spin liquid is an exotic quantum state of matter in which spins are highly entangled and remain disordered down to zero temperature. Such a state of matter is potentially relevant to high-temperature superconductivity and quantum-information applications, and experimental identification of a quantum spin liquid state is of fundamental importance for our understanding of quantum matter. Theoretical studies have proposed various quantum-spin-liquid ground states, most of which are characterized by exotic spin excitations with fractional quantum numbers (termed ‘spinons’). In this paper, we report neutron scattering measurements of the triangular-lattice antiferromagnet YbMgGaO 4 that reveal broad spin excitations coveringmore » a wide region of the Brillouin zone. The observed diffusive spin excitation persists at the lowest measured energy and shows a clear upper excitation edge, consistent with the particle–hole excitation of a spinon Fermi surface. Finally, our results therefore point to the existence of a quantum spin liquid state with a spinon Fermi surface in YbMgGaO 4, which has a perfect spin-1/2 triangular lattice as in the original proposal of quantum spin liquids.« less

  11. High performance current and spin diode of atomic carbon chain between transversely symmetric ribbon electrodes.

    PubMed

    Dong, Yao-Jun; Wang, Xue-Feng; Yang, Shuo-Wang; Wu, Xue-Mei

    2014-08-21

    We demonstrate that giant current and high spin rectification ratios can be achieved in atomic carbon chain devices connected between two symmetric ferromagnetic zigzag-graphene-nanoribbon electrodes. The spin dependent transport simulation is carried out by density functional theory combined with the non-equilibrium Green's function method. It is found that the transverse symmetries of the electronic wave functions in the nanoribbons and the carbon chain are critical to the spin transport modes. In the parallel magnetization configuration of two electrodes, pure spin current is observed in both linear and nonlinear regions. However, in the antiparallel configuration, the spin-up (down) current is prohibited under the positive (negative) voltage bias, which results in a spin rectification ratio of order 10(4). When edge carbon atoms are substituted with boron atoms to suppress the edge magnetization in one of the electrodes, we obtain a diode with current rectification ratio over 10(6).

  12. High performance current and spin diode of atomic carbon chain between transversely symmetric ribbon electrodes

    PubMed Central

    Dong, Yao-Jun; Wang, Xue-Feng; Yang, Shuo-Wang; Wu, Xue-Mei

    2014-01-01

    We demonstrate that giant current and high spin rectification ratios can be achieved in atomic carbon chain devices connected between two symmetric ferromagnetic zigzag-graphene-nanoribbon electrodes. The spin dependent transport simulation is carried out by density functional theory combined with the non-equilibrium Green's function method. It is found that the transverse symmetries of the electronic wave functions in the nanoribbons and the carbon chain are critical to the spin transport modes. In the parallel magnetization configuration of two electrodes, pure spin current is observed in both linear and nonlinear regions. However, in the antiparallel configuration, the spin-up (down) current is prohibited under the positive (negative) voltage bias, which results in a spin rectification ratio of order 104. When edge carbon atoms are substituted with boron atoms to suppress the edge magnetization in one of the electrodes, we obtain a diode with current rectification ratio over 106. PMID:25142376

  13. Low Energy Spectrum of Proximate Kitaev Spin Liquid α -RuCl3 by Terahertz Spectroscopy

    NASA Astrophysics Data System (ADS)

    Little, Arielle; Wu, Liang; Kelley, Paige; Banerjee, Arnab; Bridges, Craig; Yan, Jiaqiang; Nagler, Stephen; Mandrus, David; Orenstein, Joseph

    A Quantum Spin Liquid (QSL) is an ultra-quantum state of matter with no ordered ground state. Recently, a route to a QSL identified by Kitaev has received a great deal of attention. The compound α -RuCl3, in which Ru atoms form a honeycomb lattice, has been shown to possess Kitaev exchange interactions, although a smaller Heisenberg interaction exists and leads to a zig-zag antiferromagnetic state below 7 K. Because of proximity to the exactly-solvable Kitaev spin-liquid model, this material is considered a potential host for Majorana-like modes. In this work, we use time-domain terahertz (THz) Spectroscopy to probe the low-energy excitations of α -RuCl3. We observe the emergence of a sharp magnetic spin-wave absorption peak below the AFM ordering temperature at 7 K on top of a broad continuum that persists up to room temperature. Additionally we report the polarization dependence of the THz absorption, which reveals optical birefringence, indicating the presence of large monoclinic domains.

  14. Spectroscopy and high-spin structure of 210Fr: Isomerism and potential evidence for configuration mixing

    NASA Astrophysics Data System (ADS)

    Margerin, V.; Lane, G. J.; Dracoulis, G. D.; Palalani, N.; Smith, M. L.; Stuchbery, A. E.

    2016-06-01

    The structure of 210Fr has been established up to an excitation energy of ˜5.5 MeV and spins of ˜25 ℏ , via time-correlated γ -ray spectroscopy and using the 197Au(18O,5 n )210Fr reaction with pulsed beams at an energy of 97 MeV. A significantly different level scheme has been obtained compared to previous publications. Several isomers are reported here, including a Jπ=(23) +,τ =686 (9 ) -ns state at 4417 keV and a 10-, 29.8(11)-ns state at 1113 keV. The former isomer has been associated with the π (h9/2 3i13/2 2) ν (p1/2 -2f5/2 -1) configuration and decays via proposed E 3 transitions with strengths of 8.4(3) and 21.2(8) W.u. There are only very few known cases of a high-spin isomer decaying via two parallel E 3 transitions. Indeed, this is not seen in other Fr nuclei, and consequently these strengths differ from related decays in the neighboring isotopes. However, by examining the systematics of E 3 transitions in trans-lead nuclei, we suggest that the weaker of the two transitions decays to a mixed 20- state. Systematics of the 10- isomer are also discussed. Comparisons are made between the observed spectrum of states and those predicted from semiempirical shell-model calculations.

  15. Effect of the δ-potential on spin-dependent electron tunneling in double barrier semiconductor heterostructure

    NASA Astrophysics Data System (ADS)

    Chandrasekar, L. Bruno; Gnanasekar, K.; Karunakaran, M.

    2018-06-01

    The effect of δ-potential was studied in GaAs/Ga0.6Al0·4As double barrier heterostructure with Dresselhaus spin-orbit interaction. The role of barrier height and position of the δ- potential in the well region was analysed on spin-dependent electron tunneling using transfer matrix method. The spin-separation between spin-resonances on energy scale depends on both height and position of the δ- potential, whereas the tunneling life time of electrons highly influenced by the position of the δ- potential and not on the height. These results might be helpful for the fabrication of spin-filters.

  16. Majorana spin in magnetic atomic chain systems

    NASA Astrophysics Data System (ADS)

    Li, Jian; Jeon, Sangjun; Xie, Yonglong; Yazdani, Ali; Bernevig, B. Andrei

    2018-03-01

    In this paper, we establish that Majorana zero modes emerging from a topological band structure of a chain of magnetic atoms embedded in a superconductor can be distinguished from trivial localized zero energy states that may accidentally form in this system using spin-resolved measurements. To demonstrate this key Majorana diagnostics, we study the spin composition of magnetic impurity induced in-gap Shiba states in a superconductor using a hybrid model. By examining the spin and spectral densities in the context of the Bogoliubov-de Gennes (BdG) particle-hole symmetry, we derive a sum rule that relates the spin densities of localized Shiba states with those in the normal state without superconductivity. Extending our investigations to a ferromagnetic chain of magnetic impurities, we identify key features of the spin properties of the extended Shiba state bands, as well as those associated with a localized Majorana end mode when the effect of spin-orbit interaction is included. We then formulate a phenomenological theory for the measurement of the local spin densities with spin-polarized scanning tunneling microscopy (STM) techniques. By combining the calculated spin densities and the measurement theory, we show that spin-polarized STM measurements can reveal a sharp contrast in spin polarization between an accidental-zero-energy trivial Shiba state and a Majorana zero mode in a topological superconducting phase in atomic chains. We further confirm our results with numerical simulations that address generic parameter settings.

  17. Experimental demonstration of 55-fs spin canting in photoexcited iron nanoarrays

    NASA Astrophysics Data System (ADS)

    Ren, Yuhang; Lai, Wei; Cevher, Zehra; Gong, Yu; Zhang, G. P.

    2017-02-01

    As magnetic storage density approaches 1TB/in2, a grand challenge is looming as how to read/write such a huge amount of data within a reasonable time. The ultrafast optical manipulation of magnetization offers a solution, but little is known about the intrinsic speed limit of quantum spin switching. Here, we report that low-energy 50-fs laser pulses can induce spin canting in Fe nanoparticles within 55 fs, breaking the previous record by at least one order of magnitude. Both linearly and circularly polarized light can be used to tilt spins. In our model, the incident laser field first excites the orbital angular momentum, and through spin-orbit coupling, the spin cants out-of-plane and results in a distinctive diamond hysteresis loop. The spin canting time decreases with spin angular momentum. This spin canting is not limited to Fe nanoparticles and is also observed in Fe/Pt and Fe3O4 nanoparticles. Our results demonstrate the potential of magnetic nanostructures as a viable magnetic medium for high density and fast-switching magnetic storage devices.

  18. Theory of superconductivity and spin excitations in cuprates

    NASA Astrophysics Data System (ADS)

    Plakida, Nikolay M.

    2018-06-01

    A microscopic theory of high-temperature superconductivity in strongly correlated systems as cuprates is presented. The two-subband extended Hubbard model is considered where the intersite Coulomb repulsion and electron-phonon interaction are taken into account. The low-energy spin excitations are considered within the t-J model.

  19. Spin-orbit induced electronic spin separation in semiconductor nanostructures.

    PubMed

    Kohda, Makoto; Nakamura, Shuji; Nishihara, Yoshitaka; Kobayashi, Kensuke; Ono, Teruo; Ohe, Jun-ichiro; Tokura, Yasuhiro; Mineno, Taiki; Nitta, Junsaku

    2012-01-01

    The demonstration of quantized spin splitting by Stern and Gerlach is one of the most important experiments in modern physics. Their discovery was the precursor of recent developments in spin-based technologies. Although electrical spin separation of charged particles is fundamental in spintronics, in non-uniform magnetic fields it has been difficult to separate the spin states of charged particles due to the Lorentz force, as well as to the insufficient and uncontrollable field gradients. Here we demonstrate electronic spin separation in a semiconductor nanostructure. To avoid the Lorentz force, which is inevitably induced when an external magnetic field is applied, we utilized the effective non-uniform magnetic field which originates from the Rashba spin-orbit interaction in an InGaAs-based heterostructure. Using a Stern-Gerlach-inspired mechanism, together with a quantum point contact, we obtained field gradients of 10(8) T m(-1) resulting in a highly polarized spin current.

  20. Manifestations of the rotation and gravity of the Earth in high-energy physics experiments

    NASA Astrophysics Data System (ADS)

    Obukhov, Yuri N.; Silenko, Alexander J.; Teryaev, Oleg V.

    2016-08-01

    The inertial (due to rotation) and gravitational fields of the Earth affect the motion of an elementary particle and its spin dynamics. This influence is not negligible and should be taken into account in high-energy physics experiments. Earth's influence is manifest in perturbations in the particle motion, in an additional precession of the spin, and in a change of the constitutive tensor of the Maxwell electrodynamics. Bigger corrections are oscillatory, and their contributions average to zero. Other corrections due to the inhomogeneity of the inertial field are not oscillatory but they are very small and may be important only for the storage ring electric dipole moment experiments. Earth's gravity causes the Newton-like force, the reaction force provided by a focusing system, and additional torques acting on the spin. However, there are no observable indications of the electromagnetic effects due to Earth's gravity.

  1. Two-nucleon high-spin states, the Bansal-French model and the crude shell model

    NASA Astrophysics Data System (ADS)

    Chan, Tsan Ung

    1987-08-01

    Recent data on two-nucleon stretched high-spin states agree well with the crude shell model predictions. For two-neutron high-spin states, the A and T linear dependence of B2n in the Bansal-French model can be deduced from the A and T linear dependence of Bn and the crude shell model. 7-2 states in some Zn and Ge even nuclei might be two-proton states. This hypothesis should be confirmed by two-proton transfer reaction.

  2. Understanding and controlling spin-systems using electron spin resonance techniques

    NASA Astrophysics Data System (ADS)

    Martens, Mathew

    Single molecule magnets (SMMs) posses multi-level energy structures with properties that make them attractive candidates for implementation into quantum information technologies. However there are some major hurdles that need to be overcome if these systems are to be used as the fundamental components of an eventual quantum computer. One such hurdle is the relatively short coherence times these systems display which severely limits the amount of time quantum information can remain encoded within them. In this dissertation, recent experiments conducted with the intent of bringing this technology closer to realization are presented. The detailed knowledge of the spin Hamiltonian and mechanisms of decoherence in SMMs are absolutely essential if these systems are to be used in technologies. To that effect, experiments were done on a particularly promising SMM, the complex K6[VIV15AsIII 6O42(H2O)] · 8H2O, known as V15. High-field electron spin resonance (ESR) measurements were performed on this system at the National High Magnetic Field Laboratory. The resulting spectra allowed for detailed analysis of the V15 spin Hamiltonian which will be presented as well as the most precise values yet reported for the g-factors of this system. Additionally, the line widths of the ESR spectra are studied in depth and found to reveal that fluctuations within the spin-orbit interaction are a mechanism for decoherence in V15. A new model for decoherence is presented that describes very well both the temperature and field orientation dependences of the measured ESR line widths. Also essential is the ability to control spin-states of SMMs. Presented in this dissertation as well is the demonstration of the coherent manipulation of the multi-state spin system Mn2+ diluted in MgO by means of a two-tone pulse drive. Through the detuning between the excitation and readout radio frequency pulses it is possible to select the number of photons involved in a Rabi oscillation as well as increase

  3. Local-spin-density calculations for iron: Effect of spin interpolation on ground-state properties

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    MacLaren, J.M.; Clougherty, D.P.; Albers, R.C.

    1990-08-15

    Scalar-relativistic self-consistent linear muffin-tin orbital (LMTO) calculations for bcc and fcc Fe have been performed with several different local approximations to the exchange and correlation energy density and potential. Overall, in contrast to the conclusions of previous studies, we find that the local-spin-density approximation to exchange and correlation can provide an adequate description of bulk Fe {ital provided} that a proper parametrization of the correlation energy density and potential of the homogeneous electron gas over both spin and density is used. Lattice constants, found from the position of the minimum of the total energy as a function of Wigner-Seitz radius,more » agree to within 1% (for {ital s},{ital p},{ital d} LMTO's only) and within 1--2% (for {ital s},{ital p},{ital d},{ital f} LMTO's) of the experimental lattice constants for all forms used for the local correlation. The best agreement, however, was obtained using a local correlation potential derived from the Vosko-Wilk-Nusair form for the spin dependence of the correlation energy density. The calculation performed with this correlation potential was also the only calculation to correctly predict a bcc ferromagnetic ground state.« less

  4. Ground-state-entanglement bound for quantum energy teleportation of general spin-chain models

    NASA Astrophysics Data System (ADS)

    Hotta, Masahiro

    2013-03-01

    Many-body quantum systems in the ground states have zero-point energy due to the uncertainty relation. In many cases, the system in the ground state accompanies spatially entangled energy density fluctuation via the noncommutativity of the energy density operators, though the total energy takes a fixed value, i.e., the lowest eigenvalue of the Hamiltonian. Quantum energy teleportation (QET) is a protocol for the extraction of the zero-point energy out of one subsystem using information of a remote measurement of another subsystem. From an operational viewpoint of protocol users, QET can be regarded as an effective rapid energy transportation without breaking all physical laws, including causality and local energy conservation. In the protocol, the ground-state entanglement plays a crucial role. In this paper, we show analytically for a general class of spin-chain systems that the entanglement entropy is lower bounded by a positive quadratic function of the teleported energy between the regions of a QET protocol. This supports a general conjecture that ground-state entanglement is an evident physical resource for energy transportation in the context of QET. The result may also deepen our understanding of the energy density fluctuation in condensed-matter systems from a perspective of quantum information theory.

  5. Spin Seebeck effect and thermal spin galvanic effect in Ni80Fe20/p-Si bilayers

    NASA Astrophysics Data System (ADS)

    Bhardwaj, Ravindra G.; Lou, Paul C.; Kumar, Sandeep

    2018-01-01

    The development of spintronics and spin-caloritronics devices needs efficient generation, detection, and manipulation of spin current. The thermal spin current from the spin-Seebeck effect has been reported to be more energy efficient than the electrical spin injection methods. However, spin detection has been the one of the bottlenecks since metals with large spin-orbit coupling is an essential requirement. In this work, we report an efficient thermal generation and interfacial detection of spin current. We measured a spin-Seebeck effect in Ni80Fe20 (25 nm)/p-Si (50 nm) (polycrystalline) bilayers without a heavy metal spin detector. p-Si, having a centrosymmetric crystal structure, has insignificant intrinsic spin-orbit coupling, leading to negligible spin-charge conversion. We report a giant inverse spin-Hall effect, essential for the detection of spin-Seebeck effects, in the Ni80Fe20/p-Si bilayer structure, which originates from Rashba spin orbit coupling due to structure inversion asymmetry at the interface. In addition, the thermal spin pumping in p-Si leads to spin current from p-Si to the Ni80Fe20 layer due to the thermal spin galvanic effect and the spin-Hall effect, causing spin-orbit torques. The thermal spin-orbit torques lead to collapse of magnetic hysteresis of the 25 nm thick Ni80Fe20 layer. The thermal spin-orbit torques can be used for efficient magnetic switching for memory applications. These scientific breakthroughs may give impetus to the silicon spintronics and spin-caloritronics devices.

  6. Efficient micromagnetic modelling of spin-transfer torque and spin-orbit torque

    NASA Astrophysics Data System (ADS)

    Abert, Claas; Bruckner, Florian; Vogler, Christoph; Suess, Dieter

    2018-05-01

    While the spin-diffusion model is considered one of the most complete and accurate tools for the description of spin transport and spin torque, its solution in the context of dynamical micromagnetic simulations is numerically expensive. We propose a procedure to retrieve the free parameters of a simple macro-spin like spin-torque model through the spin-diffusion model. In case of spin-transfer torque the simplified model complies with the model of Slonczewski. A similar model can be established for the description of spin-orbit torque. In both cases the spin-diffusion model enables the retrieval of free model parameters from the geometry and the material parameters of the system. Since these parameters usually have to be determined phenomenologically through experiments, the proposed method combines the strength of the diffusion model to resolve material parameters and geometry with the high performance of simple torque models.

  7. Spin pumping and inverse spin Hall voltages from dynamical antiferromagnets

    NASA Astrophysics Data System (ADS)

    Johansen, Øyvind; Brataas, Arne

    2017-06-01

    Dynamical antiferromagnets can pump spins into adjacent conductors. The high antiferromagnetic resonance frequencies represent a challenge for experimental detection, but magnetic fields can reduce these resonance frequencies. We compute the ac and dc inverse spin Hall voltages resulting from dynamical spin excitations as a function of a magnetic field along the easy axis and the polarization of the driving ac magnetic field perpendicular to the easy axis. We consider the insulating antiferromagnets MnF2,FeF2, and NiO. Near the spin-flop transition, there is a significant enhancement of the dc spin pumping and inverse spin Hall voltage for the uniaxial antiferromagnets MnF2 and FeF2. In the uniaxial antiferromagnets it is also found that the ac spin pumping is independent of the external magnetic field when the driving field has the optimal circular polarization. In the biaxial NiO, the voltages are much weaker, and there is no spin-flop enhancement of the dc component.

  8. Spin-polarized Molecular Dynamics simulations of liquid iron silicate at high pressures.

    NASA Astrophysics Data System (ADS)

    Munoz Ramo, David; Stixrude, Lars

    2010-05-01

    Liquid iron silicate (Fe2SiO4) is an important component of natural silicate liquids appearing in Earth's interior. The effect of iron in the properties of these melts is a crucial issue, as it displays a high-spin to low-spin transition at high pressures which is accompanied by volume reduction and changes in the optical absorption spectrum. This phenomenon has a major influence on properties like the buoyancy or the thermal conductivity of the melt, and ultimately on the chemical and thermal evolution of our planet. Computer simulations using ab initio methods have proven to be a powerful approach to the study of liquid silicate systems[1,2], although not yet including Fe. In this paper, we report ab initio molecular dynamics studies of liquid iron silicate at high pressure (up to 400 GPa) and high temperatures (from 3000K to 6000K) that allow us to predict different properties of the system. We use the spin-polarized formalism and the GGA+U density functional for a better treatment of the iron magnetic moments in the system. Previous studies in the solid phase have shown that GGA predicts fayalite as a metal, while the introduction of U leads to a correct description of the band gap and the magnetic ordering of the system. We extend this analysis to the liquid phase. By means of these simulations we predict the liquid structure and thermodynamic properties of the liquid. We compute the theoretical Hugoniot for the system and find good agreement with values obtained from shock experiments [3]. Our calculations show large differences in the magnitude and orientation of the magnetic moments depending on the choice of functional; the GGA+U functional consistently provides larger values of the individual moments (about 1 unit larger) and of the total magnetization of the system. The high-spin to low-spin transition is predicted to take place at pressures from around 260GPa at 3000K to around 280GPa at 6000K in this iron-rich system. [1] N. P. de Koker, L. Stixrude, B

  9. Assisted Writing in Spin Transfer Torque Magnetic Tunnel Junctions

    NASA Astrophysics Data System (ADS)

    Ganguly, Samiran; Ahmed, Zeeshan; Datta, Supriyo; Marinero, Ernesto E.

    2015-03-01

    Spin transfer torque driven MRAM devices are now in an advanced state of development, and the importance of reducing the current requirement for writing information is well recognized. Different approaches to assist the writing process have been proposed such as spin orbit torque, spin Hall effect, voltage controlled magnetic anisotropy and thermal excitation. In this work,we report on our comparative study using the Spin-Circuit Approach regarding the total energy, the switching speed and energy-delay products for different assisted writing approaches in STT-MTJ devices using PMA magnets.

  10. RF-SABRE: A Way to Continuous Spin Hyperpolarization at High Magnetic Fields.

    PubMed

    Pravdivtsev, Andrey N; Yurkovskaya, Alexandra V; Vieth, Hans-Martin; Ivanov, Konstantin L

    2015-10-29

    A new technique is developed that allows one to carry out the signal amplification by reversible exchange (SABRE) experiments at high magnetic field. SABRE is a hyperpolarization method, which utilizes transfer of spin order from para-hydrogen to the spins of a substrate in transient iridium complexes. Previously, it has been thought that such a transfer of spin order is only efficient at low magnetic fields, notably, at level anti-crossing (LAC) regions. Here it is demonstrated that LAC conditions can also be fulfilled at high fields under the action of a RF field. The high-field RF-SABRE experiment can be implemented using commercially available nuclear magnetic resonance (NMR) and magnetic resonance imaging (MRI) machines and does not require technically demanding field-cycling. The achievable NMR enhancements are around 100 for several substrates as compared to their NMR signals at thermal equilibrium conditions at 4.7 T. The frequency dependence of RF-SABRE is comprised of well pronounced peaks and dips, whose position and amplitude are conditioned solely by the magnetic resonance parameters such as chemical shifts and scalar coupling of the spin system involved in the polarization transfer and by the amplitude of the RF field. Thus, the proposed method can serve as a new sensitive tool for probing transient complexes. Simulations of the dependence of magnetization transfer (i.e., NMR signal amplifications) on the frequency and amplitude of the RF field are in good agreement with the developed theoretical approach. Furthermore, the method enables continuous re-hyperpolarization of the SABRE substrate over a long period of time, giving a straightforward way to repetitive NMR experiments.

  11. Large spin current injection in nano-pillar-based lateral spin valve

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Nomura, Tatsuya; Ohnishi, Kohei; Kimura, Takashi, E-mail: t-kimu@phys.kyushu-u.ac.jp

    We have investigated the influence of the injection of a large pure spin current on a magnetization process of a non-locally located ferromagnetic dot in nano-pillar-based lateral spin valves. Here, we prepared two kinds of the nano-pillar-type lateral spin valve based on Py nanodots and CoFeAl nanodots fabricated on a Cu film. In the Py/Cu lateral spin valve, although any significant change of the magnetization process of the Py nanodot has not been observed at room temperature. The magnetization reversal process is found to be modified by injecting a large pure spin current at 77 K. Switching the magnetization bymore » the nonlocal spin injection has also been demonstrated at 77 K. In the CoFeAl/Cu lateral spin valve, a room temperature spin valve signal was strongly enhanced from the Py/Cu lateral spin valve because of the highly spin-polarized CoFeAl electrodes. The room temperature nonlocal switching has been demonstrated in the CoFeAl/Cu lateral spin valve.« less

  12. Advanced Flywheel Composite Rotors: Low-Cost, High-Energy Density Flywheel Storage Grid Demonstration

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    None

    2010-10-01

    GRIDS Project: Boeing is developing a new material for use in the rotor of a low-cost, high-energy flywheel storage technology. Flywheels store energy by increasing the speed of an internal rotor —slowing the rotor releases the energy back to the grid when needed. The faster the rotor spins, the more energy it can store. Boeing’s new material could drastically improve the energy stored in the rotor. The team will work to improve the storage capacity of their flywheels and increase the duration over which they store energy. The ultimate goal of this project is to create a flywheel system thatmore » can be scaled up for use by electric utility companies and produce power for a full hour at a cost of $100 per kilowatt hour.« less

  13. Revisiting spin-lattice relaxation time measurements for dilute spins in high-resolution solid-state NMR spectroscopy

    NASA Astrophysics Data System (ADS)

    Fu, Riqiang; Li, Jun; Cui, Jingyu; Peng, Xinhua

    2016-07-01

    Numerous nuclear magnetic resonance (NMR) measurements of spin-lattice relaxation times (T1S) for dilute spins such as 13C have led to investigations of the motional dynamics of individual functional groups in solid materials. In this work, we revisit the Solomon equations and analyze how the heteronuclear cross relaxation between the dilute S (e.g. 13C) and abundant I (e.g. 1H) spins affects the measured T1S values in solid-state NMR in the absence of 1H saturation during the recovery time. It is found theoretically that at the beginning of the S spin magnetization recovery, the existence of non-equilibrium I magnetization introduces the heteronuclear cross relaxation effect onto the recovery of the S spin magnetization and confirmed experimentally that such a heteronuclear cross relaxation effect results in the recovery overshoot phenomena for the dilute spins when T1S is on the same order of T1H, leading to inaccurate measurements of the T1S values. Even when T1S is ten times larger than T1H, the heteronuclear cross relaxation effect on the measured T1S values is still noticeable. Furthermore, this cross relaxation effect on recovery trajectory of the S spins can be manipulated and even suppressed by preparing the initial I and S magnetization, so as to obtain the accurate T1S values. A sample of natural abundance L-isoleucine powder has been used to demonstrate the T1S measurements and their corresponding measured T1C values under various experimental conditions.

  14. The Enhancement of spin Hall torque efficiency and Reduction of Gilbert damping in spin Hall metal/normal metal/ferromagnetic trilayers

    NASA Astrophysics Data System (ADS)

    Nguyen, Minh-Hai; Pai, Chi-Feng; Ralph, Daniel C.; Buhrman, Robert A.

    2015-03-01

    The spin Hall effect (SHE) in ferromagnet/heavy metal bilayer structures has been demonstrated to be a powerful means for producing pure spin currents and for exerting spin-orbit damping-like and field-like torques on the ferromagnetic layer. Large spin Hall (SH) angles have been reported for Pt, beta-Ta and beta-W films and have been utilized to achieve magnetic switching of in-plane and out-of-plane magnetized nanomagnets, spin torque auto-oscillators, and the control of high velocity domain wall motion. For many of the proposed applications of the SHE it is also important to achieve an effective Gilbert damping parameter that is as low as possible. In general the spin orbit torques and the effective damping are predicted to depend directly on the spin-mixing conductance of the SH metal/ferromagnet interface. This opens up the possibility of tuning these properties with the insertion of a very thin layer of another metal between the SH metal and the ferromagnet. Here we will report on experiments with such trilayer structures in which we have observed both a large enhancement of the spin Hall torque efficiency and a significant reduction in the effective Gilbert damping. Our results indicate that there is considerable opportunity to optimize the effectiveness and energy efficiency of the damping-like torque through engineering of such trilayer structures. Supported in part by NSF and Samsung Electronics Corporation.

  15. Validation of a Crystal Plasticity Model Using High Energy Diffraction Microscopy

    NASA Technical Reports Server (NTRS)

    Beaudoin, A. J.; Obstalecki, M.; Storer, R.; Tayon, W.; Mach, J.; Kenesei, P.; Lienert, U.

    2012-01-01

    High energy diffraction microscopy is used to measure the crystallographic orientation and evolution of lattice strain in an Al Li alloy. The relative spatial arrangement of the several pancake-shaped grains in a tensile sample is determined through in situ and ex situ techniques. A model for crystal plasticity with continuity of lattice spin is posed, where grains are represented by layers in a finite element mesh following the arrangement indicated by experiment. Comparison is drawn between experiment and simulation.

  16. Pure spin current injection in hydrogenated graphene structures

    NASA Astrophysics Data System (ADS)

    Zapata-Peña, Reinaldo; Mendoza, Bernardo S.; Shkrebtii, Anatoli I.

    2017-11-01

    We present a theoretical study of spin-velocity injection (SVI) of a pure spin current (PSC) induced by linearly polarized light that impinges normally on the surface of two 50% hydrogenated noncentrosymmetric two-dimensional (2D) graphene structures. The first structure, labeled Up and also known as graphone, is hydrogenated only on one side, and the second, labeled Alt, is 25% hydrogenated at both sides. The hydrogenation opens an energy gap on both structures. The PSC formalism has been developed in the length gauge perturbing Hamiltonian, and includes, through the single-particle density matrix, the excited coherent superposition of the spin-split conduction bands inherent to the noncentrosymmetric nature of the structures considered in this work. We analyze two possibilities: in the first, the spin is fixed along a chosen direction, and the resulting SVI is calculated; in the second, we choose the SVI direction along the surface plane, and calculate the resulting spin orientation. This is done by changing the energy ℏ ω and polarization angle α of the incoming light. The results are calculated within a full electronic band structure scheme using the density functional theory (DFT) in the local density approximation (LDA). The maxima of the spin velocities are reached when ℏ ω =0.084 eV and α =35∘ for the Up structure, and ℏ ω =0.720 eV and α =150∘ for the Alt geometry. We find a speed of 668 and 645 km/s for the Up and the Alt structures, respectively, when the spin points perpendicularly to the surface. Also, the response is maximized by fixing the spin-velocity direction along a high-symmetry axis, obtaining a speed of 688 km/s with the spin pointing at 13∘ from the surface normal, for the Up, and 906 km/s and the spin pointing at 60∘ from the surface normal, for the Alt system. These speed values are orders of magnitude larger than those of bulk semiconductors, such as CdSe and GaAs, thus making the hydrogenated graphene structures

  17. High spin structure and intruder configurations in 31P

    NASA Astrophysics Data System (ADS)

    Ionescu-Bujor, M.; Iordachescu, A.; Napoli, D. R.; Lenzi, S. M.; Mărginean, N.; Otsuka, T.; Utsuno, Y.; Ribas, R. V.; Axiotis, M.; Bazzacco, D.; Bizzeti-Sona, A. M.; Bizzeti, P. G.; Brandolini, F.; Bucurescu, D.; Cardona, M. A.; De Angelis, G.; De Poli, M.; Della Vedova, F.; Farnea, E.; Gadea, A.; Hojman, D.; Kalfas, C. A.; Kröll, Th.; Lunardi, S.; Martínez, T.; Mason, P.; Pavan, P.; Quintana, B.; Alvarez, C. Rossi; Ur, C. A.; Vlastou, R.; Zilio, S.

    2006-02-01

    The nucleus 31P has been studied in the 24Mg(16O,2αp) reaction with a 70-MeV 16O beam. A complex level scheme extended up to spins 17/2+ and 15/2-, on positive and negative parity, respectively, has been established. Lifetimes for the new states have been investigated by the Doppler shift attenuation method. Two shell-model calculations have been performed to describe the experimental data, one by using the code ANTOINE in a valence space restricted to the sd shell, and the other by applying the Monte Carlo shell model in a valence space including the sd-fp shells. The latter calculation indicates that intruder excitations, involving the promotion of a T=0 proton-neutron pair to the fp shell, play a dominant role in the structure of the positive-parity high-spin states of 31P.

  18. Pulse Phase Dependence of Low Energy Emission Lines in an X-ray pulsar 4U 1626-67 during its spin-up and spin-down phase

    NASA Astrophysics Data System (ADS)

    Beri, Aru; Paul, Biswajit; Dewangan, Gulab Chand

    2016-07-01

    We will present the results obtained from the new observation of an ultra-compact X-ray binary pulsar 4U 1626-67, carried out with the XMM-Newton observatory. 4U 1626-67, a unique accretion powered pulsar underwent two torque reversals since its discovery in 1977. Pulse phase resolved spectroscopy of this source performed using the data from the XMM-Newton observatory during its spin-down phase revealed the dependence of the emission lines on the pulse phase. O VII emission line at 0.569 keV showed the maximum variation by factor of 4. These variations were interpreted due to warps in the accretion disk (Beri et al. 2015). Radiation pressure induced warping is also believed to be the cause for spin-down. In light of this possible explanation for spin-down torque reversal we expect different line variability during the spin-up phase. We will discuss the implications of the results obtained after performing pulse phase resolved spectroscopy using data from the EPIC-pn during the current spin-up phase. Detailed study of the prominent Neon and Oxygen line complexes with the high resolution Reflection Grating Spectrometer (RGS) on-board XMM-Newton will also be presented.

  19. Spinning fluids in general relativity

    NASA Technical Reports Server (NTRS)

    Ray, J. R.; Smalley, L. L.

    1982-01-01

    General relativity field equations are employed to examine a continuous medium with internal spin. A variational principle formerly applied in the special relativity case is extended to the general relativity case, using a tetrad to express the spin density and the four-velocity of the fluid. An energy-momentum tensor is subsequently defined for a spinning fluid. The equations of motion of the fluid are suggested to be useful in analytical studies of galaxies, for anisotropic Bianchi universes, and for turbulent eddies.

  20. Two-nucleon high-spin states, the Bansal-French model and the crude shell model

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Chan, T.U.

    Recent data on two-nucleon stretched high-spin states agree well with the crude shell model predictions. For two-neutron high-spin states, the A and T linear dependence of B/sub 2n/ in the Bansal-French model can be deduced from the A and T linear dependence of B/sub n/ and the crude shell model. 7/sub 2//sup -/ states in some Zn and Ge even nuclei might be two-proton states. This hypothesis should be confirmed by two-proton transfer reaction.

  1. New results on spin determination of nanosatellite BLITS from High Repetition Rate SLR data

    NASA Astrophysics Data System (ADS)

    Kucharski, D.; Kirchner, G.; Lim, H.-C.; Koidl, F.

    2013-03-01

    The nanosatellite BLITS (Ball Lens In The Space) demonstrates a successful design of the new spherical lens type satellite for Satellite Laser Ranging (SLR). The spin parameters of the satellite were calculated from more than 1000 days of SLR data collected from 6 High Repetition Rate (HRR) systems: Beijing, Changchun, Graz, Herstmonceux, Potsdam, Shanghai.Analysis of the 892 passes (September 26, 2009-June 18, 2012) shows precession of the spin axis around orientation of the along track vector calculated at the launch epoch of the satellite RA = 9h16m39s, Dec = 43.1°. The spin period of BLITS remains stable with the mean value Tmean = 5.613 s, RMS = 11 ms. The incident angle between the spin axis and the symmetry axis of the body changes within 60° range.

  2. Satellite transitions acquired in real time by magic angle spinning (STARTMAS): ``Ultrafast'' high-resolution MAS NMR spectroscopy of spin I =3/2 nuclei

    NASA Astrophysics Data System (ADS)

    Thrippleton, Michael J.; Ball, Thomas J.; Wimperis, Stephen

    2008-01-01

    The satellite transitions acquired in real time by magic angle spinning (STARTMAS) NMR experiment combines a train of pulses with sample rotation at the magic angle to refocus the first- and second-order quadrupolar broadening of spin I =3/2 nuclei in a series of echoes, while allowing the isotropic chemical and quadrupolar shifts to evolve. The result is real-time isotropic NMR spectra at high spinning rates using conventional MAS equipment. In this paper we describe in detail how STARTMAS data can be acquired and processed with ease on commercial equipment. We also discuss the advantages and limitations of the approach and illustrate the discussion with numerical simulations and experimental data from four different powdered solids.

  3. Benchmarks and Reliable DFT Results for Spin Gaps of Small Ligand Fe(II) Complexes

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Song, Suhwan; Kim, Min-Cheol; Sim, Eunji

    2017-05-01

    All-electron fixed-node diffusion Monte Carlo provides benchmark spin gaps for four Fe(II) octahedral complexes. Standard quantum chemical methods (semilocal DFT and CCSD(T)) fail badly for the energy difference between their high- and low-spin states. Density-corrected DFT is both significantly more accurate and reliable and yields a consistent prediction for the Fe-Porphyrin complex

  4. Lifetime measurement of high spin states in (75) Kr

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sheikh, Javid; Trivedi, T.; Maurya, K.

    2010-01-01

    The lifetimes of high spin states of {sup 75}Kr have been determined via {sup 50}Cr ({sup 28}Si, 2pn) {sup 75}Kr reaction in positive parity band using the Doppler-shift attenuation method. The transition quadrupole moments Q deduced from lifetime measurements have been compared with {sup 75}Br. Experimental results obtained from lifetime measurement are interpreted in the framework of projected shell model.

  5. Exact Mapping from Many-Spin Hamiltonians to Giant-Spin Hamiltonians.

    PubMed

    Ghassemi Tabrizi, Shadan; Arbuznikov, Alexei V; Kaupp, Martin

    2018-03-26

    Thermodynamic and spectroscopic data of exchange-coupled molecular spin clusters (e.g. single-molecule magnets) are routinely interpreted in terms of two different models: the many-spin Hamiltonian (MSH) explicitly considers couplings between individual spin centers, while the giant-spin Hamiltonian (GSH) treats the system as a single collective spin. When isotropic exchange coupling is weak, the physical compatibility between both spin Hamiltonian models becomes a serious concern, due to mixing of spin multiplets by local zero-field splitting (ZFS) interactions ('S-mixing'). Until now, this effect, which makes the mapping MSH→GSH ('spin projection') non-trivial, had only been treated perturbationally (up to third order), with obvious limitations. Here, based on exact diagonalization of the MSH, canonical effective Hamiltonian theory is applied to construct a GSH that exactly matches the energies of the relevant (2S+1) states comprising an effective spin multiplet. For comparison, a recently developed strategy for the unique derivation of effective ('pseudospin') Hamiltonians, now routinely employed in ab initio calculations of mononuclear systems, is adapted to the problem of spin projection. Expansion of the zero-field Hamiltonian and the magnetic moment in terms of irreducible tensor operators (or Stevens operators) yields terms of all ranks k (up to k=2S) in the effective spin. Calculations employing published MSH parameters illustrate exact spin projection for the well-investigated [Ni(hmp)(dmb)Cl] 4 ('Ni 4 ') single-molecule magnet, which displays weak isotropic exchange (dmb=3,3-dimethyl-1-butanol, hmp - is the anion of 2-hydroxymethylpyridine). The performance of the resulting GSH in finite field is assessed in terms of EPR resonances and diabolical points. The large tunnel splitting in the M=± 4 ground doublet of the S=4 multiplet, responsible for fast tunneling in Ni 4 , is attributed to a Stevens operator with eightfold rotational symmetry, marking

  6. Magnetic tunnel spin injectors for spintronics

    NASA Astrophysics Data System (ADS)

    Wang, Roger

    Research in spin-based electronics, or "spintronics", has a universal goal to develop applications for electron spin in a broad range of electronics and strives to produce low power nanoscale devices. Spin injection into semiconductors is an important initial step in the development of spintronic devices, with the goal to create a highly spin polarized population of electrons inside a semiconductor at room temperature for study, characterization, and manipulation. This dissertation investigates magnetic tunnel spin injectors that aim to meet the spin injection requirements needed for potential spintronic devices. Magnetism and spin are inherently related, and chapter 1 provides an introduction on magnetic tunneling and spintronics. Chapter 2 then describes the fabrication of the spin injector structures studied in this dissertation, and also illustrates the optical spin detection technique that correlates the measured electroluminescence polarization from quantum wells to the electron spin polarization inside the semiconductor. Chapter 3 reports the spin injection from the magnetic tunnel transistor (MTT) spin injector, which is capable of producing highly spin polarized tunneling currents by spin selective scattering in its multilayer structure. The MTT achieves ˜10% lower bound injected spin polarization in GaAs at 1.4 K. Chapter 4 reports the spin injection from CoFe-MgO(100) tunnel spin injectors, where spin dependent tunneling through MgO(100) produces highly spin polarized tunneling currents. These structures achieve lower bound spin polarizations exceeding 50% at 100 K and 30% in GaAs at 290 K. The CoFe-MgO spin injectors also demonstrate excellent thermal stability, maintaining high injection efficiencies even after exposure to temperatures of up to 400 C. Bias voltage and temperature dependent studies on these structures indicate a significant dependence of the electroluminescence polarization on the spin and carrier recombination lifetimes inside the

  7. Spin-resolved correlations in the warm-dense homogeneous electron gas

    NASA Astrophysics Data System (ADS)

    Arora, Priya; Kumar, Krishan; Moudgil, R. K.

    2017-04-01

    We have studied spin-resolved correlations in the warm-dense homogeneous electron gas by determining the linear density and spin-density response functions, within the dynamical self-consistent mean-field theory of Singwi et al. The calculated spin-resolved pair-correlation function gσσ'(r) is compared with the recent restricted path-integral Monte Carlo (RPIMC) simulations due to Brown et al. [Phys. Rev. Lett. 110, 146405 (2013)], while interaction energy Eint and exchange-correlation free energy Fxc with the RPIMC and very recent ab initio quantum Monte Carlo (QMC) simulations by Dornheim et al. [Phys. Rev. Lett. 117, 156403 (2016)]. g↑↓(r) is found to be in good agreement with the RPIMC data, while a mismatch is seen in g↑↑(r) at small r where it becomes somewhat negative. As an interesting result, it is deduced that a non-monotonic T-dependence of g(0) is driven primarily by g↑↓(0). Our results of Eint and Fxc exhibit an excellent agreement with the QMC study due to Dornheim et al., which deals with the finite-size correction quite accurately. We observe, however, a visible deviation of Eint from the RPIMC data for high densities ( 8% at rs = 1). Further, we have extended our study to the fully spin-polarized phase. Again, with the exception of high density region, we find a good agreement of Eint with the RPIMC data. This points to the need of settling the problem of finite-size correction in the spin-polarized phase also. Interestingly, we also find that the thermal effects tend to oppose spatial localization as well as spin polarization of electrons. Supplementary material in the form of one zip file available from the Journal web page at http://https://doi.org/10.1140/epjb/e2017-70532-y

  8. Spin resonance and spin fluctuations in a quantum wire

    NASA Astrophysics Data System (ADS)

    Pokrovsky, V. L.

    2017-02-01

    This is a review of theoretical works on spin resonance in a quantum wire associated with the spin-orbit interaction. We demonstrate that the spin-orbit induced internal "magnetic field" leads to a narrow spin-flip resonance at low temperatures in the absence of an applied magnetic field. An applied dc magnetic field perpendicular to and small compared with the spin-orbit field enhances the resonance absorption by several orders of magnitude. The component of applied field parallel to the spin-orbit field separates the resonance frequencies of right and left movers and enables a linearly polarized ac electric field to produce a dynamic magnetization as well as electric and spin currents. We start with a simple model of noninteracting electrons and then consider the interaction that is not weak in 1d electron system. We show that electron spin resonance in the spin-orbit field persists in the Luttinger liquid. The interaction produces an additional singularity (cusp) in the spin-flip channel associated with the plasma oscillation. As it was shown earlier by Starykh and his coworkers, the interacting 1d electron system in the external field with sufficiently large parallel component becomes unstable with respect to the appearance of a spin-density wave. This instability suppresses the spin resonance. The observation of the electron spin resonance in a thin wires requires low temperature and high intensity of electromagnetic field in the terahertz diapason. The experiment satisfying these two requirements is possible but rather difficult. An alternative approach that does not require strong ac field is to study two-time correlations of the total spin of the wire with an optical method developed by Crooker and coworkers. We developed theory of such correlations. We prove that the correlation of the total spin component parallel to the internal magnetic field is dominant in systems with the developed spin-density waves but it vanishes in Luttinger liquid. Thus, the

  9. Neutron Spin Resonance in the 112-Type Iron-Based Superconductor

    NASA Astrophysics Data System (ADS)

    Xie, Tao; Gong, Dongliang; Ghosh, Haranath; Ghosh, Abyay; Soda, Minoru; Masuda, Takatsugu; Itoh, Shinichi; Bourdarot, Frédéric; Regnault, Louis-Pierre; Danilkin, Sergey; Li, Shiliang; Luo, Huiqian

    2018-03-01

    We use inelastic neutron scattering to study the low-energy spin excitations of the 112-type iron pnictide Ca0.82La0.18Fe0.96Ni0.04As2 with bulk superconductivity below Tc=22 K . A two-dimensional spin resonance mode is found around E =11 meV , where the resonance energy is almost temperature independent and linearly scales with Tc along with other iron-based superconductors. Polarized neutron analysis reveals the resonance is nearly isotropic in spin space without any L modulations. Because of the unique monoclinic structure with additional zigzag arsenic chains, the As 4 p orbitals contribute to a three-dimensional hole pocket around the Γ point and an extra electron pocket at the X point. Our results suggest that the energy and momentum distribution of the spin resonance does not directly respond to the kz dependence of the fermiology, and the spin resonance intrinsically is a spin-1 mode from singlet-triplet excitations of the Cooper pairs in the case of weak spin-orbital coupling.

  10. Neutron Spin Resonance in the 112-Type Iron-Based Superconductor.

    PubMed

    Xie, Tao; Gong, Dongliang; Ghosh, Haranath; Ghosh, Abyay; Soda, Minoru; Masuda, Takatsugu; Itoh, Shinichi; Bourdarot, Frédéric; Regnault, Louis-Pierre; Danilkin, Sergey; Li, Shiliang; Luo, Huiqian

    2018-03-30

    We use inelastic neutron scattering to study the low-energy spin excitations of the 112-type iron pnictide Ca_{0.82}La_{0.18}Fe_{0.96}Ni_{0.04}As_{2} with bulk superconductivity below T_{c}=22  K. A two-dimensional spin resonance mode is found around E=11  meV, where the resonance energy is almost temperature independent and linearly scales with T_{c} along with other iron-based superconductors. Polarized neutron analysis reveals the resonance is nearly isotropic in spin space without any L modulations. Because of the unique monoclinic structure with additional zigzag arsenic chains, the As 4p orbitals contribute to a three-dimensional hole pocket around the Γ point and an extra electron pocket at the X point. Our results suggest that the energy and momentum distribution of the spin resonance does not directly respond to the k_{z} dependence of the fermiology, and the spin resonance intrinsically is a spin-1 mode from singlet-triplet excitations of the Cooper pairs in the case of weak spin-orbital coupling.

  11. Equal-Spin Andreev Reflection on Junctions of Spin-Resolved Quantum Hall Bulk State and Spin-Singlet Superconductor.

    PubMed

    Matsuo, Sadashige; Ueda, Kento; Baba, Shoji; Kamata, Hiroshi; Tateno, Mizuki; Shabani, Javad; Palmstrøm, Christopher J; Tarucha, Seigo

    2018-02-22

    The recent development of superconducting spintronics has revealed the spin-triplet superconducting proximity effect from a spin-singlet superconductor into a spin-polarized normal metal. In addition recently superconducting junctions using semiconductors are in demand for highly controlled experiments to engineer topological superconductivity. Here we report experimental observation of Andreev reflection in junctions of spin-resolved quantum Hall (QH) states in an InAs quantum well and the spin-singlet superconductor NbTi. The measured conductance indicates a sub-gap feature and two peaks on the outer side of the sub-gap feature in the QH plateau-transition regime increases. The observed structures can be explained by considering transport with Andreev reflection from two channels, one originating from equal-spin Andreev reflection intermediated by spin-flip processes and second arising from normal Andreev reflection. This result indicates the possibility to induce the superconducting proximity gap in the the QH bulk state, and the possibility for the development of superconducting spintronics in semiconductor devices.

  12. Uncovering many-body correlations in nanoscale nuclear spin baths by central spin decoherence

    PubMed Central

    Ma, Wen-Long; Wolfowicz, Gary; Zhao, Nan; Li, Shu-Shen; Morton, John J.L.; Liu, Ren-Bao

    2014-01-01

    Central spin decoherence caused by nuclear spin baths is often a critical issue in various quantum computing schemes, and it has also been used for sensing single-nuclear spins. Recent theoretical studies suggest that central spin decoherence can act as a probe of many-body physics in spin baths; however, identification and detection of many-body correlations of nuclear spins in nanoscale systems are highly challenging. Here, taking a phosphorus donor electron spin in a 29Si nuclear spin bath as our model system, we discover both theoretically and experimentally that many-body correlations in nanoscale nuclear spin baths produce identifiable signatures in decoherence of the central spin under multiple-pulse dynamical decoupling control. We demonstrate that under control by an odd or even number of pulses, the central spin decoherence is principally caused by second- or fourth-order nuclear spin correlations, respectively. This study marks an important step toward studying many-body physics using spin qubits. PMID:25205440

  13. Non-equilibrium tunneling in zigzag graphene nanoribbon break-junction results in spin filtering

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jiang, Liming; Department of Electrical and Electronic Engineering, The University of Melbourne, Parkville 3010; National ICT Australia, The University of Melbourne, Parkville 3010

    Spintronic devices promise new faster and lower energy-consumption electronic systems. Graphene, a versatile material and candidate for next generation electronics, is known to possess interesting spintronic properties. In this paper, by utilizing density functional theory and non-equilibrium green function formalism, we show that Fano resonance can be generated by introducing a break junction in a zigzag graphene nanoribbon (ZGNR). Using this effect, we propose a new spin filtering device that can be used for spin injection. Our theoretical results indicate that the proposed device could achieve high spin filtering efficiency (over 90%) at practical fabrication geometries. Furthermore, our results indicatemore » that the ZGNR break junction lattice configuration can dramatically affect spin filtering efficiency and thus needs to be considered when fabricating real devices. Our device can be fabricated on top of spin transport channel and provides good integration between spin injection and spin transport.« less

  14. Modeling spin magnetization transport in a spatially varying magnetic field

    NASA Astrophysics Data System (ADS)

    Picone, Rico A. R.; Garbini, Joseph L.; Sidles, John A.

    2015-01-01

    We present a framework for modeling the transport of any number of globally conserved quantities in any spatial configuration and apply it to obtain a model of magnetization transport for spin-systems that is valid in new regimes (including high-polarization). The framework allows an entropy function to define a model that explicitly respects the laws of thermodynamics. Three facets of the model are explored. First, it is expressed as nonlinear partial differential equations that are valid for the new regime of high dipole-energy and polarization. Second, the nonlinear model is explored in the limit of low dipole-energy (semi-linear), from which is derived a physical parameter characterizing separative magnetization transport (SMT). It is shown that the necessary and sufficient condition for SMT to occur is that the parameter is spatially inhomogeneous. Third, the high spin-temperature (linear) limit is shown to be equivalent to the model of nuclear spin transport of Genack and Redfield (1975) [1]. Differences among the three forms of the model are illustrated by numerical solution with parameters corresponding to a magnetic resonance force microscopy (MRFM) experiment (Degen et al., 2009 [2]; Kuehn et al., 2008 [3]; Sidles et al., 2003 [4]; Dougherty et al., 2000 [5]). A family of analytic, steady-state solutions to the nonlinear equation is derived and shown to be the spin-temperature analog of the Langevin paramagnetic equation and Curie's law. Finally, we analyze the separative quality of magnetization transport, and a steady-state solution for the magnetization is shown to be compatible with Fenske's separative mass transport equation (Fenske, 1932 [6]).

  15. Spin-polarized currents generated by magnetic Fe atomic chains.

    PubMed

    Lin, Zheng-Zhe; Chen, Xi

    2014-06-13

    Fe-based devices are widely used in spintronics because of high spin-polarization and magnetism. In this work, freestanding Fe atomic chains, the thinnest wires, were used to generate spin-polarized currents due to the spin-polarized energy bands. By ab initio calculations, the zigzag structure was found to be more stable than the wide-angle zigzag structure and had a higher ratio of spin-up and spin-down currents. By our theoretical prediction, Fe atomic chains have a sufficiently long thermal lifetime only at T ≦̸ 150 K, while C atomic chains are very stable even at T = 1000 K. This means that the spintronic devices based on Fe chains could work only at low temperatures. A system constructed by a short Fe chain sandwiched between two graphene electrodes could be used as a spin-polarized current generator, while a C chain could not be used in this way. The present work may be instructive and meaningful to further practical applications based on recent technical developments on the preparation of metal atomic chains (Proc. Natl. Acad. Sci. USA 107 9055 (2010)).

  16. Spin-filter specular spin valves

    NASA Astrophysics Data System (ADS)

    Lu, Z. Q.; Pan, G.; Jibouri, A. A.; Zheng, Yaunkai

    2002-01-01

    Both a thin free layer and high magnetoresistance (MR) ratio are required in spin valves for high magnetic density recording heads. In traditional spin valve structures, reducing the free layer normally results in a reduction in MR. We report here on a spin-filter specular spin valve with structure Ta 3.5 nm/NiFe 2 nm/IrMn 6 nm/CoFe 1.5 nm/Nol/CoFe 2 nm/Cu 2.2 nm/CoFe tF/Cu tSF/Nol2/Ta 3 nm, which is demonstrated to maintain MR ratio higher than 12% even when the CoFe free layer is reduced to 1 nm. The semiclassical Boltzmann transport equation was used to simulate MR ratio. An optimized MR ratio of ˜14.5% was obtained when tF was about 1.5 nm and tSF about 1.0 nm as a result of the balance between the increase in electron mean free path difference and current shunting through conducting layer. It is found that the Cu enhancing layer not only enhances the MR ratio but also improves soft magnetic properties of CoFe free layer due to the low atomic intermixing observed between Co and Cu. The CoFe free layer of 1-4 nm exhibits a low coercivity of ˜3 Oe even after annealing at 270 °C for 7 h in a field of 1 kOe. Furthermore, the interlayer coupling field Hint between free layer and pinned layer can be controlled by balancing the Rudermann-Kittel-(Kasuya)-Yosida and magnetostatic coupling. Such a thin soft CoFe free layer is particularly attractive for high density read sensor application.

  17. Nuclear Spin Nanomagnet in an Optically Excited Quantum Dot

    NASA Astrophysics Data System (ADS)

    Korenev, V. L.

    2007-12-01

    Linearly polarized light tuned slightly below the optical transition of the negatively charged exciton (trion) in a single quantum dot causes the spontaneous nuclear spin polarization (self-polarization) at a level close to 100%. The effective magnetic field of spin-polarized nuclei shifts the optical transition energy close to resonance with photon energy. The resonantly enhanced Overhauser effect sustains the stability of the nuclear self-polarization even in the absence of spin polarization of the quantum dot electron. As a result the optically selected single quantum dot represents a tiny magnet with the ferromagnetic ordering of nuclear spins—the nuclear spin nanomagnet.

  18. Cooling of a Bose-Einstein Condensate by Spin Distillation.

    PubMed

    Naylor, B; Maréchal, E; Huckans, J; Gorceix, O; Pedri, P; Vernac, L; Laburthe-Tolra, B

    2015-12-11

    We propose and experimentally demonstrate a new cooling mechanism leading to purification of a Bose-Einstein condensate (BEC). Our scheme starts with a BEC polarized in the lowest energy spin state. Spin excited states are thermally populated by lowering the single particle energy gap set by the magnetic field. Then, these spin-excited thermal components are filtered out, which leads to an increase of the BEC fraction. We experimentally demonstrate such cooling for a spin 3 ^{52}Cr dipolar BEC. Our scheme should be applicable to Na or Rb, with the perspective to reach temperatures below 1 nK.

  19. Ultrafast spin dynamics and switching via spin transfer torque in antiferromagnets with weak ferromagnetism

    PubMed Central

    Kim, Tae Heon; Grünberg, Peter; Han, Song Hee; Cho, Beongki

    2016-01-01

    The spin-torque driven dynamics of antiferromagnets with Dzyaloshinskii-Moriya interaction (DMI) were investigated based on the Landau-Lifshitz-Gilbert-Slonczewski equation with antiferromagnetic and ferromagnetic order parameters (l and m, respectively). We demonstrate that antiferromagnets including DMI can be described by a 2-dimensional pendulum model of l. Because m is coupled with l, together with DMI and exchange energy, close examination of m provides fundamental understanding of its dynamics in linear and nonlinear regimes. Furthermore, we discuss magnetization reversal as a function of DMI and anisotropy energy induced by a spin current pulse. PMID:27713522

  20. Consequences of Spin-Orbit Coupling at the Single Hole Level: Spin-Flip Tunneling and the Anisotropic g Factor

    NASA Astrophysics Data System (ADS)

    Bogan, A.; Studenikin, S. A.; Korkusinski, M.; Aers, G. C.; Gaudreau, L.; Zawadzki, P.; Sachrajda, A. S.; Tracy, L. A.; Reno, J. L.; Hargett, T. W.

    2017-04-01

    Hole transport experiments were performed on a gated double quantum dot device defined in a p -GaAs /AlGaAs heterostructure with a single hole occupancy in each dot. The charging diagram of the device was mapped out using charge detection confirming that the single hole limit is reached. In that limit, a detailed study of the two-hole spin system was performed using high bias magnetotransport spectroscopy. In contrast to electron systems, the hole spin was found not to be conserved during interdot resonant tunneling. This allows one to fully map out the two-hole energy spectrum as a function of the magnitude and the direction of the external magnetic field. The heavy-hole g factor was extracted and shown to be strongly anisotropic, with a value of 1.45 for a perpendicular field and close to zero for an in-plane field as required for hybridizing schemes between spin and photonic quantum platforms.

  1. Consequences of Spin-Orbit Coupling at the Single Hole Level: Spin-Flip Tunneling and the Anisotropic g Factor.

    PubMed

    Bogan, A; Studenikin, S A; Korkusinski, M; Aers, G C; Gaudreau, L; Zawadzki, P; Sachrajda, A S; Tracy, L A; Reno, J L; Hargett, T W

    2017-04-21

    Hole transport experiments were performed on a gated double quantum dot device defined in a p-GaAs/AlGaAs heterostructure with a single hole occupancy in each dot. The charging diagram of the device was mapped out using charge detection confirming that the single hole limit is reached. In that limit, a detailed study of the two-hole spin system was performed using high bias magnetotransport spectroscopy. In contrast to electron systems, the hole spin was found not to be conserved during interdot resonant tunneling. This allows one to fully map out the two-hole energy spectrum as a function of the magnitude and the direction of the external magnetic field. The heavy-hole g factor was extracted and shown to be strongly anisotropic, with a value of 1.45 for a perpendicular field and close to zero for an in-plane field as required for hybridizing schemes between spin and photonic quantum platforms.

  2. Consequences of spin-orbit coupling at the single hole level: Spin-flip tunneling and the anisotropic g factor

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bogan, A.; Studenikin, Sergei A.; Korkusinski, M.

    Hole transport experiments were performed on a gated double quantum dot device defined in a p-GaAs/AlGaAs heterostructure with a single hole occupancy in each dot. The charging diagram of the device was mapped out using charge detection confirming that the single hole limit is reached. In that limit, a detailed study of the two-hole spin system was performed using high bias magnetotransport spectroscopy. In contrast to electron systems, the hole spin was found not to be conserved during interdot resonant tunneling. This allows one to fully map out the two-hole energy spectrum as a function of the magnitude and themore » direction of the external magnetic field. As a result, the heavy-hole g factor was extracted and shown to be strongly anisotropic, with a value of 1.45 for a perpendicular field and close to zero for an in-plane field as required for hybridizing schemes between spin and photonic quantum platforms.« less

  3. Consequences of spin-orbit coupling at the single hole level: Spin-flip tunneling and the anisotropic g factor

    DOE PAGES

    Bogan, A.; Studenikin, Sergei A.; Korkusinski, M.; ...

    2017-04-20

    Hole transport experiments were performed on a gated double quantum dot device defined in a p-GaAs/AlGaAs heterostructure with a single hole occupancy in each dot. The charging diagram of the device was mapped out using charge detection confirming that the single hole limit is reached. In that limit, a detailed study of the two-hole spin system was performed using high bias magnetotransport spectroscopy. In contrast to electron systems, the hole spin was found not to be conserved during interdot resonant tunneling. This allows one to fully map out the two-hole energy spectrum as a function of the magnitude and themore » direction of the external magnetic field. As a result, the heavy-hole g factor was extracted and shown to be strongly anisotropic, with a value of 1.45 for a perpendicular field and close to zero for an in-plane field as required for hybridizing schemes between spin and photonic quantum platforms.« less

  4. Detrimental effect of interfacial Dzyaloshinskii-Moriya interaction on perpendicular spin-transfer-torque magnetic random access memory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jang, Peong-Hwa; Lee, Seo-Won, E-mail: swlee-sci@korea.ac.kr, E-mail: kj-lee@korea.ac.kr; Song, Kyungmi

    2015-11-16

    Interfacial Dzyaloshinskii-Moriya interaction in ferromagnet/heavy metal bilayers is recently of considerable interest as it offers an efficient control of domain walls and the stabilization of magnetic skyrmions. However, its effect on the performance of perpendicular spin transfer torque memory has not been explored yet. We show based on numerical studies that the interfacial Dzyaloshinskii-Moriya interaction decreases the thermal energy barrier while increases the switching current. As high thermal energy barrier as well as low switching current is required for the commercialization of spin torque memory, our results suggest that the interfacial Dzyaloshinskii-Moriya interaction should be minimized for spin torque memorymore » applications.« less

  5. Observation of high-spin mixed oxidation state of cobalt in ceramic Co3TeO6

    NASA Astrophysics Data System (ADS)

    Singh, Harishchandra; Ghosh, Haranath; Chandrasekhar Rao, T. V.; Sinha, A. K.; Rajput, Parasmani

    2014-12-01

    We report coexistence of high spin Co3+ and Co2+ in ceramic Co3TeO6 using X-ray Absorption Near Edge Structure (XANES), DC magnetization, and first principles ab-initio calculations. The main absorption line of cobalt Co K-edge XANES spectra, along with a linear combination fit, led us to estimate relative concentration of Co2+ and Co3+as 60:40. The pre edge feature of XANES spectrum shows crystal field splitting of ˜1.26 eV between eg and t2g states, suggesting a mixture of high spin states of both Co2+ and Co3+. Temperature dependent high field DC magnetization measurements reveal dominant antiferromagnetic order with two Neel temperatures (TN1 ˜ 29 K and TN2 ˜ 18 K), consistent with single crystal study. A larger effective magnetic moment is observed in comparison to that reported for single crystal (which contains only Co2+), supports our inference that Co3+ exists in high spin state. Furthermore, we show that both Co2+ and Co3+ being in high spin states constitute a favorable ground state through first principles ab-initio calculations, where Rietveld refined synchrotron X-ray diffraction data are used as input.

  6. High spin polarization and the origin of unique ferromagnetic ground state in CuFeSb

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Sirohi, Anshu; Saha, Preetha; Gayen, Sirshendu

    CuFeSb is isostructural to the ferro-pnictide and chalcogenide superconductors and it is one of the few materials in the family that are known to stabilize in a ferromagnetic ground state. Majority of the members of this family are either superconductors or antiferromagnets. Therefore, CuFeSb may be used as an ideal source of spin polarized current in spin-transport devices involving pnictide and the chalcogenide superconductors. However, for that the Fermi surface of CuFeSb needs to be sufficiently spin polarized. In this paper we report direct measurement of transport spin polarization in CuFeSb by spin-resolved Andreev reflection spectroscopy. From a number ofmore » measurements using multiple superconducting tips we found that the intrinsic transport spin polarization in CuFeSb is high (∼47%). In order to understand the unique ground state of CuFeSb and the origin of large spin polarization at the Fermi level, we have evaluated the spin-polarized band structure of CuFeSb through first principles calculations. Apart from supporting the observed 47% transport spin polarization, such calculations also indicate that the Sb-Fe-Sb angles and the height of Sb from the Fe plane are strikingly different for CuFeSb than the equivalent parameters in other members of the same family thereby explaining the origin of the unique ground state of CuFeSb.« less

  7. High-Frequency Spin-Based Devices for Nanoscale Signal Processing

    DTIC Science & Technology

    2009-01-20

    feedback on the devices in order to improve their spectral properties . Deliverable: Microwave signals without an Applied Field. We have successfully...additionally have the advantage of higher operating frequencies than the more conventional devices based on NiFe alloys. By combining several of...Output from a Co/Ni based STNO. Corresponds to approximately 20 nW, about 10 times larger than typical NiFe .device. 6 High-Frequency Spin-Based

  8. The effect of output-input isolation on the scaling and energy consumption of all-spin logic devices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Hu, Jiaxi; Haratipour, Nazila; Koester, Steven J., E-mail: skoester@umn.edu

    All-spin logic (ASL) is a novel approach for digital logic applications wherein spin is used as the state variable instead of charge. One of the challenges in realizing a practical ASL system is the need to ensure non-reciprocity, meaning the information flows from input to output, not vice versa. One approach described previously, is to introduce an asymmetric ground contact, and while this approach was shown to be effective, it remains unclear as to the optimal approach for achieving non-reciprocity in ASL. In this study, we quantitatively analyze techniques to achieve non-reciprocity in ASL devices, and we specifically compare themore » effect of using asymmetric ground position and dipole-coupled output/input isolation. For this analysis, we simulate the switching dynamics of multiple-stage logic devices with FePt and FePd perpendicular magnetic anisotropy materials using a combination of a matrix-based spin circuit model coupled to the Landau–Lifshitz–Gilbert equation. The dipole field is included in this model and can act as both a desirable means of coupling magnets and a source of noise. The dynamic energy consumption has been calculated for these schemes, as a function of input/output magnet separation, and the results show that using a scheme that electrically isolates logic stages produces superior non-reciprocity, thus allowing both improved scaling and reduced energy consumption.« less

  9. Wigner time delay and spin-orbit activated confinement resonances

    NASA Astrophysics Data System (ADS)

    Keating, D. A.; Deshmukh, P. C.; Manson, S. T.

    2017-09-01

    A study of the photoionization of spin-orbit split subshells of high-Z atoms confined in C60 has been performed using the relativistic-random-phase approximation. Specifically, Hg@C60 5p, Rn@C60 6p and Ra@C60 5d were investigated and the near-threshold confinement resonances in the j = l - 1/2 channels were found to engender structures in the j = l + 1/2 cross sections via correlation in the form of interchannel coupling. These structures are termed spin-orbit induced confinement resonances and they are found to profoundly influence the Wigner time delay spectrum resulting in time delays of tens or hundreds of attoseconds along with dramatic swings in time delay over small energy intervals. Pronounced relativistic effects in time delay are also found. These structures, including their manifestation in time delay spectra, are expected to be general phenomena in the photoionization of spin-orbit doublets in confined high-Z atoms.

  10. Orbital Selective Spin Excitations and their Impact on Superconductivity of LiFe 1 - x Co x As

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Li, Yu; Yin, Zhiping; Wang, Xiancheng

    We use neutron scattering to study spin excitations in single crystals of LiFe 0.88Co 0.12As, which is located near the boundary of the superconducting phase of LiFe 1-xCo xAs and exhibits non- Fermi-liquid behavior indicative of a quantum critical point. By comparing spin excitations of LiFe 0.88Co 0.12As with a combined density functional theory (DFT) and dynamical mean field theory (DMFT) calculation, we conclude that wave-vector correlated low energy spin excitations are mostly from the dxy orbitals, while high-energy spin excitations arise from the dyz and dxz orbitals. Unlike most iron pnictides, the strong orbital selective spin excitations in LiFeAsmore » family cannot be described by anisotropic Heisenberg Hamiltonian. While the evolution of low-energy spin excitations of LiFe 1-xCo xAs are consistent with electron-hole Fermi surface nesting condition for the dxy orbital, the reduced superconductivity in LiFe 0.88Co 0.12As suggests that Fermi surface nesting conditions for the dyz and dxz orbitals are also important for superconductivity in iron pnictides.« less

  11. Orbital Selective Spin Excitations and their Impact on Superconductivity of LiFe 1 - x Co x As

    DOE PAGES

    Li, Yu; Yin, Zhiping; Wang, Xiancheng; ...

    2016-06-17

    We use neutron scattering to study spin excitations in single crystals of LiFe 0.88Co 0.12As, which is located near the boundary of the superconducting phase of LiFe 1-xCo xAs and exhibits non- Fermi-liquid behavior indicative of a quantum critical point. By comparing spin excitations of LiFe 0.88Co 0.12As with a combined density functional theory (DFT) and dynamical mean field theory (DMFT) calculation, we conclude that wave-vector correlated low energy spin excitations are mostly from the dxy orbitals, while high-energy spin excitations arise from the dyz and dxz orbitals. Unlike most iron pnictides, the strong orbital selective spin excitations in LiFeAsmore » family cannot be described by anisotropic Heisenberg Hamiltonian. While the evolution of low-energy spin excitations of LiFe 1-xCo xAs are consistent with electron-hole Fermi surface nesting condition for the dxy orbital, the reduced superconductivity in LiFe 0.88Co 0.12As suggests that Fermi surface nesting conditions for the dyz and dxz orbitals are also important for superconductivity in iron pnictides.« less

  12. Orbital Selective Spin Excitations and their Impact on Superconductivity of LiFe_{1-x}Co_{x}As.

    PubMed

    Li, Yu; Yin, Zhiping; Wang, Xiancheng; Tam, David W; Abernathy, D L; Podlesnyak, A; Zhang, Chenglin; Wang, Meng; Xing, Lingyi; Jin, Changqing; Haule, Kristjan; Kotliar, Gabriel; Maier, Thomas A; Dai, Pengcheng

    2016-06-17

    We use neutron scattering to study spin excitations in single crystals of LiFe_{0.88}Co_{0.12}As, which is located near the boundary of the superconducting phase of LiFe_{1-x}Co_{x}As and exhibits non-Fermi-liquid behavior indicative of a quantum critical point. By comparing spin excitations of LiFe_{0.88}Co_{0.12}As with a combined density functional theory and dynamical mean field theory calculation, we conclude that wave-vector correlated low energy spin excitations are mostly from the d_{xy} orbitals, while high-energy spin excitations arise from the d_{yz} and d_{xz} orbitals. Unlike most iron pnictides, the strong orbital selective spin excitations in the LiFeAs family cannot be described by an anisotropic Heisenberg Hamiltonian. While the evolution of low-energy spin excitations of LiFe_{1-x}Co_{x}As is consistent with the electron-hole Fermi surface nesting conditions for the d_{xy} orbital, the reduced superconductivity in LiFe_{0.88}Co_{0.12}As suggests that Fermi surface nesting conditions for the d_{yz} and d_{xz} orbitals are also important for superconductivity in iron pnictides.

  13. Design and building of new spin polarized Positron Annihilation Induced Auger Electron Spectrometer

    NASA Astrophysics Data System (ADS)

    Lim, Zheng Hui; Mishler, Michael; Joglekar, Prasad; Shastry, Karthik; Koymen, Ali; Sharma, Suresh; Weiss, Alexander

    2014-03-01

    We propose to develop a next generation high flux variable energy spin-polarized position beam facility for materials studies. This new system will have a higher efficiency than our current system, and it will also be the first in the world to combine spin polarization with a time of flight Positron Annihilation induced Auger Electron Spectroscopy (PAES). The spin polarized positrons are electromagnetically guided towards the sample with an axial magnetic field and perpendicular electric fields. These incident positrons get annihilated at the surface of the sample creating two gamma rays and auger electrons via Auger transitions. These signals are useful in characterizing material surface, surface magnetization, and energy sharing in valence band. This new spectrometer, which is currently under construction, will be a next generation positron system. NSF.

  14. Antiresonance induced spin-polarized current generation

    NASA Astrophysics Data System (ADS)

    Yin, Sun; Min, Wen-Jing; Gao, Kun; Xie, Shi-Jie; Liu, De-Sheng

    2011-12-01

    According to the one-dimensional antiresonance effect (Wang X R, Wang Y and Sun Z Z 2003 Phys. Rev. B 65 193402), we propose a possible spin-polarized current generation device. Our proposed model consists of one chain and an impurity coupling to the chain. The energy level of the impurity can be occupied by an electron with a specific spin, and the electron with such a spin is blocked because of the antiresonance effect. Based on this phenomenon our model can generate the spin-polarized current flowing through the chain due to different polarization rates. On the other hand, the device can also be used to measure the generated spin accumulation. Our model is feasible with today's technology.

  15. High spin polarization in CoFeMnGe equiatomic quaternary Heusler alloy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Bainsla, Lakhan; Magnetic Materials Unit, National Institute for Materials Science, Tsukuba 305-0047; Suresh, K. G., E-mail: suresh@phy.iitb.ac.in

    2014-11-28

    We report the structure, magnetic property, and spin polarization of CoFeMnGe equiatomic quaternary Heusler alloy. The alloy was found to crystallize in the cubic Heusler structure (prototype LiMgPdSn) with considerable amount of DO{sub 3} disorder. Thermal analysis result indicated the Curie temperature is about 750 K without any other phase transformation up to melting temperature. The magnetization value was close to that predicted by the Slater-Pauling curve. Current spin polarization of P = 0.70 ± 0.01 was deduced using point contact andreev reflection measurements. The temperature dependence of electrical resistivity has been fitted in the temperature range of 5–300 K in order to check for themore » half metallic behavior. Considering the high spin polarization and Curie temperature, this material appears to be promising for spintronic applications.« less

  16. Low-energy spin dynamics of orthoferrites AFeO3 (A  =  Y, La, Bi)

    NASA Astrophysics Data System (ADS)

    Park, Kisoo; Sim, Hasung; Leiner, Jonathan C.; Yoshida, Yoshiyuki; Jeong, Jaehong; Yano, Shin-ichiro; Gardner, Jason; Bourges, Philippe; Klicpera, Milan; Sechovský, Vladimír; Boehm, Martin; Park, Je-Geun

    2018-06-01

    YFeO3 and LaFeO3 are members of the rare-earth orthoferrites family with Pbnm space group. Using inelastic neutron scattering, the low-energy spin excitations have been measured around the magnetic Brillouin zone center. Splitting of magnon branches and finite magnon gaps (∼2 meV) are observed for both compounds, where the Dzyaloshinsky–Moriya interactions account for most of this gap with some additional contribution from single-ion anisotropy. We also make comparisons with multiferroic BiFeO3 (R3c space group), in which similar behavior was observed. By taking into account all relevant local Dzyaloshinsky–Moriya interactions, our analysis allows for the precise determination of all experimentally observed parameters in the spin-Hamiltonian. We find that different properties of the Pbnm and R3c space group lead to the stabilization of a spin cycloid structure in the latter case but not in the former, which explains the difference in the levels of complexity of magnon band structures for the respective compounds.

  17. Optical hyperpolarization of 13C nuclear spins in nanodiamond ensembles

    NASA Astrophysics Data System (ADS)

    Chen, Q.; Schwarz, I.; Jelezko, F.; Retzker, A.; Plenio, M. B.

    2015-11-01

    Dynamical nuclear polarization holds the key for orders of magnitude enhancements of nuclear magnetic resonance signals which, in turn, would enable a wide range of novel applications in biomedical sciences. However, current implementations of DNP require cryogenic temperatures and long times for achieving high polarization. Here we propose and analyze in detail protocols that can achieve rapid hyperpolarization of 13C nuclear spins in randomly oriented ensembles of nanodiamonds at room temperature. Our protocols exploit a combination of optical polarization of electron spins in nitrogen-vacancy centers and the transfer of this polarization to 13C nuclei by means of microwave control to overcome the severe challenges that are posed by the random orientation of the nanodiamonds and their nitrogen-vacancy centers. Specifically, these random orientations result in exceedingly large energy variations of the electron spin levels that render the polarization and coherent control of the nitrogen-vacancy center electron spins as well as the control of their coherent interaction with the surrounding 13C nuclear spins highly inefficient. We address these challenges by a combination of an off-resonant microwave double resonance scheme in conjunction with a realization of the integrated solid effect which, together with adiabatic rotations of external magnetic fields or rotations of nanodiamonds, leads to a protocol that achieves high levels of hyperpolarization of the entire nuclear-spin bath in a randomly oriented ensemble of nanodiamonds even at room temperature. This hyperpolarization together with the long nuclear-spin polarization lifetimes in nanodiamonds and the relatively high density of 13C nuclei has the potential to result in a major signal enhancement in 13C nuclear magnetic resonance imaging and suggests functionalized and hyperpolarized nanodiamonds as a unique probe for molecular imaging both in vitro and in vivo.

  18. Dynamic magnetic hysteresis properties of two-dimensional ferrimagnetic structures containing high-spin (S = 5/2) and low-spin (S = 1/2)

    NASA Astrophysics Data System (ADS)

    Batı, Mehmet; Ertaş, Mehmet

    2017-09-01

    The dynamic hysteresis behaviors of a containing high spin-5/2 and low spin-1/2 Ising ferrimagnetic system on a square lattice are studied by using the dynamic mean-field approximation. The influences of the temperature, the single-ion anisotropy and the frequency on dynamic hysteresis behaviors are investigated in detail. Somewhat characteristic behaviors are found, such as the presence of triple hysteresis loop for appropriate values of the crystal field or temperature. Besides, we observed that, hysteresis loop area and phase transition points are very sensitive to changes in frequency and thus have profound importance in device application.

  19. Control of the Speed of a Light-Induced Spin Transition through Mesoscale Core-Shell Architecture.

    PubMed

    Felts, Ashley C; Slimani, Ahmed; Cain, John M; Andrus, Matthew J; Ahir, Akhil R; Abboud, Khalil A; Meisel, Mark W; Boukheddaden, Kamel; Talham, Daniel R

    2018-05-02

    The rate of the light-induced spin transition in a coordination polymer network solid dramatically increases when included as the core in mesoscale core-shell particles. A series of photomagnetic coordination polymer core-shell heterostructures, based on the light-switchable Rb a Co b [Fe(CN) 6 ] c · mH 2 O (RbCoFe-PBA) as core with the isostructural K j Ni k [Cr(CN) 6 ] l · nH 2 O (KNiCr-PBA) as shell, are studied using temperature-dependent powder X-ray diffraction and SQUID magnetometry. The core RbCoFe-PBA exhibits a charge transfer-induced spin transition (CTIST), which can be thermally and optically induced. When coupled to the shell, the rate of the optically induced transition from low spin to high spin increases. Isothermal relaxation from the optically induced high spin state of the core back to the low spin state and activation energies associated with the transition between these states were measured. The presence of a shell decreases the activation energy, which is associated with the elastic properties of the core. Numerical simulations using an electro-elastic model for the spin transition in core-shell particles supports the findings, demonstrating how coupling of the core to the shell changes the elastic properties of the system. The ability to tune the rate of optically induced magnetic and structural phase transitions through control of mesoscale architecture presents a new approach to the development of photoswitchable materials with tailored properties.

  20. Modeling of GE Appliances: Cost Benefit Study of Smart Appliances in Wholesale Energy, Frequency Regulation, and Spinning Reserve Markets

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fuller, Jason C.; Parker, Graham B.

    This report is the second in a series of three reports describing the potential of GE’s DR-enabled appliances to provide benefits to the utility grid. The first report described the modeling methodology used to represent the GE appliances in the GridLAB-D simulation environment and the estimated potential for peak demand reduction at various deployment levels. The third report will explore the technical capability of aggregated group actions to positively impact grid stability, including frequency and voltage regulation and spinning reserves, and the impacts on distribution feeder voltage regulation, including mitigation of fluctuations caused by high penetration of photovoltaic distributed generation.more » In this report, a series of analytical methods were presented to estimate the potential cost benefit of smart appliances while utilizing demand response. Previous work estimated the potential technical benefit (i.e., peak reduction) of smart appliances, while this report focuses on the monetary value of that participation. The effects on wholesale energy cost and possible additional revenue available by participating in frequency regulation and spinning reserve markets were explored.« less

  1. Black hole spin inferred from 3:2 epicyclic resonance model of high-frequency quasi-periodic oscillations

    NASA Astrophysics Data System (ADS)

    Šrámková, E.; Török, G.; Kotrlová, A.; Bakala, P.; Abramowicz, M. A.; Stuchlík, Z.; Goluchová, K.; Kluźniak, W.

    2015-06-01

    Estimations of black hole spin in the three Galactic microquasars GRS 1915+105, GRO J1655-40, and XTE J1550-564 have been carried out based on spectral and timing X-ray measurements and various theoretical concepts. Among others, a non-linear resonance between axisymmetric epicyclic oscillation modes of an accretion disc around a Kerr black hole has been considered as a model for the observed high-frequency quasi-periodic oscillations (HF QPOs). Estimates of spin predicted by this model have been derived based on the geodesic approximation of the accreted fluid motion. Here we assume accretion flow described by the model of a pressure-supported torus and carry out related corrections to the mass-spin estimates. We find that for dimensionless black hole spin a ≡ cJ/GM2 ≲ 0.9, the resonant eigenfrequencies are very close to those calculated for the geodesic motion. Their values slightly grow with increasing torus thickness. These findings agree well with results of a previous study carried out in the pseudo-Newtonian approximation. The situation becomes different for a ≳ 0.9, in which case the resonant eigenfrequencies rapidly decrease as the torus thickness increases. We conclude that the assumed non-geodesic effects shift the lower limit of the spin, implied for the three microquasars by the epicyclic model and independently measured masses, from a ~ 0.7 to a ~ 0.6. Their consideration furthermore confirms compatibility of the model with the rapid spin of GRS 1915+105 and provides highly testable predictions of the QPO frequencies. Individual sources with a moderate spin (a ≲ 0.9) should exhibit a smaller spread of the measured 3:2 QPO frequencies than sources with a near-extreme spin (a ~ 1). This should be further examined using the large amount of high-resolution data expected to become available with the next generation of X-ray instruments, such as the proposed Large Observatory for X-ray Timing (LOFT).

  2. Spin-exchange effects in elastic electron-radical collisions

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Fujimoto, M. M.; Michelin, S. E.; Iga, I.

    2006-01-15

    This work presents a theoretical investigation on the spin-exchange effects in the low-energy elastic electron-C{sub 2}O radical collisions. Spin-polarization differential and integral cross sections calculated in the 1-10-eV energy range are reported. Our calculation has shown that the exchange between the scattering and unpaired target electron is strongly influenced by the occurrence of shape resonances. More specifically, our calculated rotationally summed spin-polarization fractions show significant deviation from unity in the resonance region. An analysis of the contributions from individual rotational transitions is also made.

  3. Characteristics of persistent spin current components in a quasi-periodic Fibonacci ring with spin–orbit interactions: Prediction of spin–orbit coupling and on-site energy

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Patra, Moumita; Maiti, Santanu K., E-mail: santanu.maiti@isical.ac.in

    In the present work we investigate the behavior of all three components of persistent spin current in a quasi-periodic Fibonacci ring subjected to Rashba and Dresselhaus spin–orbit interactions. Analogous to persistent charge current in a conducting ring where electrons gain a Berry phase in presence of magnetic flux, spin Berry phase is associated during the motion of electrons in presence of a spin–orbit field which is responsible for the generation of spin current. The interplay between two spin–orbit fields along with quasi-periodic Fibonacci sequence on persistent spin current is described elaborately, and from our analysis, we can estimate the strengthmore » of any one of two spin–orbit couplings together with on-site energy, provided the other is known. - Highlights: • Determination of Rashba and Dresselhaus spin–orbit fields is discussed. • Characteristics of all three components of spin current are explored. • Possibility of estimating on-site energy is given. • Results can be generalized to any lattice models.« less

  4. Nonlinear spin conductance of yttrium iron garnet thin films driven by large spin-orbit torque

    NASA Astrophysics Data System (ADS)

    Thiery, N.; Draveny, A.; Naletov, V. V.; Vila, L.; Attané, J. P.; Beigné, C.; de Loubens, G.; Viret, M.; Beaulieu, N.; Ben Youssef, J.; Demidov, V. E.; Demokritov, S. O.; Slavin, A. N.; Tiberkevich, V. S.; Anane, A.; Bortolotti, P.; Cros, V.; Klein, O.

    2018-02-01

    We report high power spin transfer studies in open magnetic geometries by measuring the spin conductance between two nearby Pt wires deposited on top of an epitaxial yttrium iron garnet thin film. Spin transport is provided by propagating spin waves that are generated and detected by direct and inverse spin Hall effects. We observe a crossover in spin conductance from a linear transport dominated by exchange magnons (low current regime) to a nonlinear transport dominated by magnetostatic magnons (high current regime). The latter are low-damping magnetic excitations, located near the spectral bottom of the magnon manifold, with a sensitivity to the applied magnetic field. This picture is supported by microfocus Brillouin light-scattering spectroscopy. Our findings could be used for the development of controllable spin conductors by variation of relatively weak magnetic fields.

  5. Optimal control of fast and high-fidelity quantum state transfer in spin-1/2 chains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zhang, Xiong-Peng; Shao, Bin, E-mail: sbin610@bit.edu.cn; Hu, Shuai

    Spin chains are promising candidates for quantum communication and computation. Using quantum optimal control (OC) theory based on the Krotov method, we present a protocol to perform quantum state transfer with fast and high fidelity by only manipulating the boundary spins in a quantum spin-1/2 chain. The achieved speed is about one order of magnitude faster than that is possible in the Lyapunov control case for comparable fidelities. Additionally, it has a fundamental limit for OC beyond which optimization is not possible. The controls are exerted only on the couplings between the boundary spins and their neighbors, so that themore » scheme has good scalability. We also demonstrate that the resulting OC scheme is robust against disorder in the chain.« less

  6. Calculation of the spin-polarized electronic structure of an interstitial iron impurity in silicon

    NASA Astrophysics Data System (ADS)

    Katayama-Yoshida, H.; Zunger, Alex

    1985-06-01

    We apply our self-consistent, all-electron, spin-polarized Green's-function method within an impurity-centered, dynamic basis set to study the interstitial iron impurity in silicon. We use two different formulations of the interelectron interactions: the local-spin-density (LSD) formalism and the self-interaction-corrected (SIC) local-spin-density (SIC-LSD) formalism. We find that the SIC-LSD approach is needed to obtain the correct high-spin ground state of Si:Fe+. We propose a quantitative explanation to the observed donor ionization energy and the high-spin ground states for Si:Fe+ within the SIC-LSD approach. For both Si:Fe0 and Si:Fe+, this approach leads to a hyperfine field, contact spin density, and ionization energy in better agreement with experiments than the simple LSD approach. The apparent dichotomy between the covalently delocalized nature of Si:Fe as suggested on the one hand by its reduced hyperfine field (relative to the free atom) and extended spin density and by the occurrence of two closely spaced, stable charge states (within 0.4 eV) and on the other hand by the atomically localized picture (suggested, for example, by the stability of a high-spin, ground-state configuration) is resolved. We find a large reduction in the hyperfine field and contact spin density due to the covalent hybridization between the impurity 3d orbitals and the tails of the delocalized sp3 hybrid orbitals of the surrounding silicon atoms. Using the calculated results, we discuss (i) the underlying mechanism for the stability and plurality of charged states, (ii) the covalent reduction in the hyperfine field, (iii) the remarkable constancy of the impurity Mössbauer isomer shift for different charged states, (iv) comparison with the multiple charged states in ionic crystals, and (v) some related speculation about the mechanism of (Fe2+/Fe3+) oxidation-reduction ionizations in heme proteins and electron-transporting biological systems.

  7. Spin excitations in optimally P-doped BaFe 2 ( As 0.7 P 0.3 ) 2 superconductor

    DOE PAGES

    Hu, Ding; Yin, Zhiping; Zhang, Wenliang; ...

    2016-09-02

    We use inelastic neutron scattering to study temperature and energy dependence of spin excitations in optimally P-doped BaFe 2(As 0:7P 0:3) 2 superconductor (T c = 30 K) throughout the Brillouin zone. In the undoped state, spin waves and paramagnetic spin excitations of BaFe 2As 2 stem from antiferromagnetic (AF) ordering wave vector QAF = ( 1; 0) and peaks near zone boundary at ( 1; 1) around 180 meV. Replacing 30% As by smaller P to induce superconductivity, low-energy spin excitations of BaFe 2(As 0:7P 0:3) 2 form a resonance in the superconducting state and high-energy spin excitations nowmore » peaks around 220 meV near ( 1; 1). These results are consistent with calculations from a combined density functional theory and dynamical mean field theory, and suggest that the decreased average pnictogen height in BaFe 2(As 0:7P 0:3) 2 reduces the strength of electron correlations and increases the effective bandwidth of magnetic excitations.« less

  8. Doppler Velocimetry of Current Driven Spin Helices in a Two-Dimensional Electron Gas

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yang, Luyi

    2013-05-17

    Spins in semiconductors provide a pathway towards the development of spin-based electronics. The appeal of spin logic devices lies in the fact that the spin current is even under time reversal symmetry, yielding non-dissipative coupling to the electric field. To exploit the energy-saving potential of spin current it is essential to be able to control it. While recent demonstrations of electrical-gate control in spin-transistor configurations show great promise, operation at room temperature remains elusive. Further progress requires a deeper understanding of the propagation of spin polarization, particularly in the high mobility semiconductors used for devices. This dissertation presents the demonstrationmore » and application of a powerful new optical technique, Doppler spin velocimetry, for probing the motion of spin polarization at the level of 1 nm on a picosecond time scale. We discuss experiments in which this technique is used to measure the motion of spin helices in high mobility n-GaAs quantum wells as a function of temperature, in-plane electric field, and photoinduced spin polarization amplitude. We find that the spin helix velocity changes sign as a function of wave vector and is zero at the wave vector that yields the largest spin lifetime. This observation is quite striking, but can be explained by the random walk model that we have developed. We discover that coherent spin precession within a propagating spin density wave is lost at temperatures near 150 K. This finding is critical to understanding why room temperature operation of devices based on electrical gate control of spin current has so far remained elusive. We report that, at all temperatures, electron spin polarization co-propagates with the high-mobility electron sea, even when this requires an unusual form of separation of spin density from photoinjected electron density. Furthermore, although the spin packet co-propagates with the two-dimensional electron gas, spin diffusion is

  9. Magnetic Field Dependence of Excitations Near Spin-Orbital Quantum Criticality

    NASA Astrophysics Data System (ADS)

    Biffin, A.; Rüegg, Ch.; Embs, J.; Guidi, T.; Cheptiakov, D.; Loidl, A.; Tsurkan, V.; Coldea, R.

    2017-02-01

    The spinel FeSc2 S4 has been proposed to realize a near-critical spin-orbital singlet (SOS) state, where entangled spin and orbital moments fluctuate in a global singlet state on the verge of spin and orbital order. Here we report powder inelastic neutron scattering measurements that observe the full bandwidth of magnetic excitations and we find that spin-orbital triplon excitations of an SOS state can capture well key aspects of the spectrum in both zero and applied magnetic fields up to 8.5 T. The observed shift of low-energy spectral weight to higher energies upon increasing applied field is naturally explained by the entangled spin-orbital character of the magnetic states, a behavior that is in strong contrast to spin-only singlet ground state systems, where the spin gap decreases upon increasing applied field.

  10. A high-spin and durable polyradical: poly(4-diphenylaminium-1,2-phenylenevinylene).

    PubMed

    Murata, Hidenori; Takahashi, Masahiro; Namba, Kazuaki; Takahashi, Naoki; Nishide, Hiroyuki

    2004-02-06

    A purely organic, high-spin, and durable polyradical molecule was synthesized: It is based on the non-Kekulé- and non-disjoint design of a pi-conjugated poly(1,2-phenylenevinylene) backbone pendantly 4-substituted with multiple robust arylaminium radicals. 4-N,N-Bis(4-methoxy- and -tert-butylphenyl)amino-2-bromostyrene 5 were synthesized and polymerized with a palladium-phosphine catalyst to afford the head-to-tail-linked polyradical precursors (1). Oxidation of 1 with the nitrosonium ion solubilized with a crown ether gave the aminium polyradicals (1(+)()) which were durable (half-life > 1 month) at room temperature in air. A high-spin ground state with an average S = (4.5)/2 for 1a(+) was proved even at room temperature by magnetic susceptibility, magnetization, ESR, and NMR measurements.

  11. One and two-phonon processes of the spin-flip relaxation in quantum dots: Spin-phonon coupling mechanism

    NASA Astrophysics Data System (ADS)

    Wang, Zi-Wu; Li, Shu-Shen

    2012-07-01

    We investigate the spin-flip relaxation in quantum dots using a non-radiation transition approach based on the descriptions for the electron-phonon deformation potential and Fröhlich interaction in the Pavlov-Firsov spin-phonon Hamiltonian. We give the comparisons of the electron relaxations with and without spin-flip assisted by one and two-phonon processes. Calculations are performed for the dependence of the relaxation time on the external magnetic field, the temperature and the energy separation between the Zeeman sublevels of the ground and first-excited state. We find that the electron relaxation time of the spin-flip process is more longer by three orders of magnitudes than that of no spin-flip process.

  12. Spin-dependent electronic transport properties of transition metal atoms doped α-armchair graphyne nanoribbons

    NASA Astrophysics Data System (ADS)

    Fotoohi, Somayeh; Haji-Nasiri, Saeed

    2018-04-01

    Spin-dependent electronic transport properties of single 3d transition metal (TM) atoms doped α-armchair graphyne nanoribbons (α-AGyNR) are investigated by non-equilibrium Green's function (NEGF) method combined with density functional theory (DFT). It is found that all of the impurity atoms considered in this study (Fe, Co, Ni) prefer to occupy the sp-hybridized C atom site in α-AGyNR, and the obtained structures remain planar. The results show that highly localized impurity states are appeared around the Fermi level which correspond to the 3d orbitals of TM atoms, as can be derived from the projected density of states (PDOS). Moreover, Fe, Co, and Ni doped α-AGyNRs exhibit magnetic properties due to the strong spin splitting property of the energy levels. Also for each case, the calculated current-voltage characteristic per super-cell shows that the spin degeneracy in the system is obviously broken and the current becomes strongly spin dependent. Furthermore, a high spin-filtering effect around 90% is found under the certain bias voltages in Ni doped α-AGyNR. Additionally, the structure with Ni impurity reveals transfer characteristic that is suitable for designing a spin current switch. Our findings provide a high possibility to design the next generation spin nanodevices with novel functionalities.

  13. Sensitive Spin Detection Using An On-Chip Squid-Waveguide Resonator

    NASA Astrophysics Data System (ADS)

    Yue, Guang

    evidence of the resonance signal from the 1st transition of the gadolinium ions' energy levels, which shows the setup is successfully built. Due to the high sensitivity of micro-SQUID and the ability to concentrate microwave energy in small areas of the chip, this setup can detect signals from a small number of spins (107) in a small volume (several mum 3).

  14. Many-body Quantum Control of a Spin-1 BEC

    NASA Astrophysics Data System (ADS)

    Hoang, Thai; Anquez, Martin; Robbins, Bryce; Yang, Xiaoyun; Land, Benjamin; Hamley, Christopher; Chapman, Michael

    2014-05-01

    Spin-1 condensates provide a useful platform for investigations of atom squeezing, generation of non-Gaussian states, and dynamical control. We demonstrate dynamic control of a quantum many-body spin-1 system that is enabled by strong collisional interactions. In contrast to the usual single-particle quantum control techniques, the method demonstrated here is intrinsically many-body, exploiting the strong collisional interactions. The experiment uses a spin-1 87Rb condensate initialized in the | F = 1 , mF = 0 > polar state at a high magnetic field above the quantum phase transition, and then prepared in a coherent state using a rf rotation. The many-body control is implemented by time-varying the relative strength of the Zeeman and spin interaction energies of the condensate at multiples of the natural coherent oscillation frequency of the system. This is a parametric excitation method relying on time varying changes to the Hamiltonian. We will present our experimental results, which compare well to theory, and will discuss future directions and applications.

  15. Heat engine by exorcism of Maxwell Demon using spin angular momentum reservoir

    NASA Astrophysics Data System (ADS)

    Bedkihal, Salil; Wright, Jackson; Vaccaro, Joan; Gould, Tim

    Landauer's erasure principle is a hallmark in thermodynamics and information theory. According to this principle, erasing one bit of information incurs a minimum energy cost. Recently, Vaccaro and Barnett (VB) have explored the role of multiple conserved quantities in memory erasure. They further illustrated that for the energy degenerate spin reservoirs, the cost of erasure can be solely in terms of spin angular momentum and no energy. Motivated by the VB erasure, in this work we propose a novel optical heat engine that operates under a single thermal reservoir and a spin angular momentum reservoir. The novel heat engine exploits ultrafast processes of phonon absorption to convert thermal phonon energy to coherent light. The entropy generated in this process then corresponds to a mixture of spin up and spin down populations of energy degenerate electronic ground states which acts as demon's memory. This information is then erased using a polarised spin reservoir that acts as an entropy sink. The proposed heat engines goes beyond the traditional Carnot engine.

  16. Switchable geometric frustration in an artificial-spin-ice-superconductor heterosystem.

    PubMed

    Wang, Yong-Lei; Ma, Xiaoyu; Xu, Jing; Xiao, Zhi-Li; Snezhko, Alexey; Divan, Ralu; Ocola, Leonidas E; Pearson, John E; Janko, Boldizsar; Kwok, Wai-Kwong

    2018-06-11

    Geometric frustration emerges when local interaction energies in an ordered lattice structure cannot be simultaneously minimized, resulting in a large number of degenerate states. The numerous degenerate configurations may lead to practical applications in microelectronics 1 , such as data storage, memory and logic 2 . However, it is difficult to achieve very high degeneracy, especially in a two-dimensional system 3,4 . Here, we showcase in situ controllable geometric frustration with high degeneracy in a two-dimensional flux-quantum system. We create this in a superconducting thin film placed underneath a reconfigurable artificial-spin-ice structure 5 . The tunable magnetic charges in the artificial-spin-ice strongly interact with the flux quanta in the superconductor, enabling switching between frustrated and crystallized flux quanta states. The different states have measurable effects on the superconducting critical current profile, which can be reconfigured by precise selection of the spin-ice magnetic state through the application of an external magnetic field. We demonstrate the applicability of these effects by realizing a reprogrammable flux quanta diode. The tailoring of the energy landscape of interacting 'particles' using artificial-spin-ices provides a new paradigm for the design of geometric frustration, which could illuminate a path to control new functionalities in other material systems, such as magnetic skyrmions 6 , electrons and holes in two-dimensional materials 7,8 , and topological insulators 9 , as well as colloids in soft materials 10-13 .

  17. Determination of the beam-spin asymmetry of deuteron photodisintegration in the energy region Eγ=1.1 -2.3 GeV

    NASA Astrophysics Data System (ADS)

    Zachariou, N.; Ilieva, Y.; Berman, B. L.; Ivanov, N. Ya.; Sargsian, M. M.; Avakian, R.; Feldman, G.; Nadel-Turonski, P.; Adhikari, K. P.; Adikaram, D.; Anderson, M. D.; Pereira, S. Anefalos; Avakian, H.; Badui, R. A.; Baltzell, N. A.; Battaglieri, M.; Baturin, V.; Bedlinskiy, I.; Biselli, A. S.; Briscoe, W. J.; Brooks, W. K.; Burkert, V. D.; Cao, T.; Carman, D. S.; Celentano, A.; Chandavar, S.; Charles, G.; Colaneri, L.; Cole, P. L.; Compton, N.; Contalbrigo, M.; Cortes, O.; Crede, V.; D'Angelo, A.; De Vita, R.; De Sanctis, E.; Deur, A.; Djalali, C.; Dupre, R.; Egiyan, H.; Alaoui, A. El; Fassi, L. El; Elouadrhiri, L.; Fedotov, G.; Fegan, S.; Filippi, A.; Fleming, J. A.; Forest, T. A.; Fradi, A.; Gevorgyan, N.; Ghandilyan, Y.; Gilfoyle, G. P.; Giovanetti, K. L.; Girod, F. X.; Glazier, D. I.; Golovatch, E.; Gothe, R. W.; Griffioen, K. A.; Guidal, M.; Hafidi, K.; Hanretty, C.; Harrison, N.; Hattawy, M.; Hicks, K.; Ho, D.; Holtrop, M.; Hughes, S. M.; Ireland, D. G.; Ishkhanov, B. S.; Isupov, E. L.; Jiang, H.; Jo, H. S.; Joo, K.; Keller, D.; Khachatryan, G.; Khandaker, M.; Kim, A.; Kim, W.; Klein, F. J.; Kubarovsky, V.; Lenisa, P.; Livingston, K.; Lu, H. Y.; MacGregor, I. J. D.; Markov, N.; Mattione, P. T.; McKinnon, B.; Mineeva, T.; Mirazita, M.; Mokeeev, V. I.; Montgomery, R. A.; Moutarde, H.; Camacho, C. Munoz; Net, L. A.; Niccolai, S.; Niculescu, G.; Niculescu, I.; Osipenko, M.; Ostrovidov, A. I.; Park, K.; Pasyuk, E.; Phelps, W.; Phillips, J. J.; Pisano, S.; Pogorelko, O.; Pozdniakov, S.; Price, J. W.; Procureur, S.; Prok, Y.; Protopopescu, D.; Puckett, A. J. R.; Ripani, M.; Rizzo, A.; Rosner, G.; Rossi, P.; Roy, P.; Sabatié, F.; Salgado, C.; Schott, D.; Schumacher, R. A.; Seder, E.; Senderovich, I.; Sharabian, Y. G.; Skorodumina, Iu.; Smith, G. D.; Sober, D. I.; Sokhan, D.; Sparveris, N.; Stepanyan, S.; Strauch, S.; Sytnik, V.; Taiuti, M.; Tian, Ye; Ungaro, M.; Voskanyan, H.; Voutier, E.; Walford, N. K.; Watts, D.; Wei, X.; Wood, M. H.; Zana, L.; Zhang, J.; Zhao, Z. W.; Zonta, I.; CLAS Collaboration

    2015-05-01

    The beam-spin asymmetry, Σ , for the reaction γ d →p n has been measured using the CEBAF Large Acceptance Spectrometer (CLAS) at the Thomas Jefferson National Accelerator Facility (JLab) for six photon-energy bins, between 1.1 and 2.3 GeV, and proton angles in the center-of-mass frame, θc .m ., between 25∘ and 160∘. These are the first measurements of beam-spin asymmetries at θc .m .=90∘ for photon-beam energies above 1.6 GeV, and the first measurements for angles other than θc .m .=90∘ . The angular and energy dependence of Σ is expected to aid in the development of QCD-based models to understand the mechanisms of deuteron photodisintegration in the transition region between hadronic and partonic degrees of freedom, where both effective field theories and perturbative QCD cannot make reliable predictions.

  18. Design and Simulation of a Spin Rotator for Longitudinal Field Measurements in the Low Energy Muons Spectrometer

    NASA Astrophysics Data System (ADS)

    Salman, Z.; Prokscha, T.; Keller, P.; Morenzoni, E.; Saadaoui, H.; Sedlak, K.; Shiroka, T.; Sidorov, S.; Suter, A.; Vrankovic, V.; Weber, H.-P.

    We usedGeant4 to accurately model the low energy muons (LEM) beam line, including scattering due to the 10-nm thin carbon foil in the trigger detector. Simulations of the beam line transmission give excellent agreement with experimental results for beam energies higher than ∼ 12keV.We use these simulations to design and model the operation of a spin rotator for the LEM spectrometer, which will enable longitudinal field measurements in the near future.

  19. Quantum model of a solid-state spin qubit: Ni cluster on a silicon surface by the generalized spin Hamiltonian and X-ray absorption spectroscopy investigations

    NASA Astrophysics Data System (ADS)

    Farberovich, Oleg V.; Mazalova, Victoria L.; Soldatov, Alexander V.

    2015-11-01

    We present here the quantum model of a Ni solid-state electron spin qubit on a silicon surface with the use of a density-functional scheme for the calculation of the exchange integrals in the non-collinear spin configurations in the generalized spin Hamiltonian (GSH) with the anisotropic exchange coupling parameters linking the nickel ions with a silicon substrate. In this model the interaction of a spin qubit with substrate is considered in GSH at the calculation of exchange integrals Jij of the nanosystem Ni7-Si in the one-electron approach taking into account chemical bonds of all Si-atoms of a substrate (environment) with atoms of the Ni7-cluster. The energy pattern was found from the effective GSH Hamiltonian acting in the restricted spin space of the Ni ions by the application of the irreducible tensor operators (ITO) technique. In this paper we offer the model of the quantum solid-state N-spin qubit based on the studying of the spin structure and the spin-dynamics simulations of the 3d-metal Ni clusters on the silicon surface. The solution of the problem of the entanglement between spin states in the N-spin systems is becoming more interesting when considering clusters or molecules with a spectral gap in their density of states. For quantifying the distribution of the entanglement between the individual spin eigenvalues (modes) in the spin structure of the N-spin system we use the density of entanglement (DOE). In this study we have developed and used the advanced high-precision numerical techniques to accurately assess the details of the decoherence process governing the dynamics of the N-spin qubits interacting with a silicon surface. We have studied the Rabi oscillations to evaluate the N-spin qubits system as a function of the time and the magnetic field. We have observed the stabilized Rabi oscillations and have stabilized the quantum dynamical qubit state and Rabi driving after a fixed time (0.327 μs). The comparison of the energy pattern with the

  20. High energy density capacitors for low cost applications

    NASA Astrophysics Data System (ADS)

    Iyore, Omokhodion David

    Polyvinylidene fluoride (PVDF) and its copolymers with trifluoroethylene, hexafluoropropylene and chlorotrifluoroethylene are the most widely investigated ferroelectric polymers, due to their relatively high electromechanical properties and potential to achieve high energy density. [Bauer, 2010; Zhou et al., 2009] The research community has focused primarily on melt pressed or extruded films of PVDF-based polymers to obtain the highest performance with energy density up to 25 Jcm-3. [Zhou et al., 2009] Solution processing offers an inexpensive, low temperature alternative, which is also easily integrated with flexible electronics. This dissertation focuses on the fabrication of solution-based polyvinylidene fluoride-hexafluoropropylene metal-insulator-metal capacitors on flexible substrates using a photolithographic process. Capacitors were optimized for maximum energy density, high dielectric strength and low leakage current density. It is demonstrated that with the right choice of solvent, electrodes, spin-casting and annealing conditions, high energy density thin film capacitors can be fabricated repeatably and reproducibly. The high electric field dielectric constants were measured and the reliabilities of the polymer capacitors were also evaluated via time-zero breakdown and time-dependent breakdown techniques. Chapter 1 develops the motivation for this work and provides a theoretical overview of dielectric materials, polarization, leakage current and dielectric breakdown. Chapter 2 is a literature review of polymer-based high energy density dielectrics and covers ferroelectric polymers, highlighting PVDF and some of its derivatives. Chapter 3 summarizes some preliminary experimental work and presents materials and electrical characterization that support the rationale for materials selection and process development. Chapter 4 discusses the fabrication of solution-processed PVDF-HFP and modification of its properties by photo-crosslinking. It is followed by a

  1. Two spinning ways for precession dynamo.

    PubMed

    Cappanera, L; Guermond, J-L; Léorat, J; Nore, C

    2016-04-01

    It is numerically demonstrated by means of a magnetohydrodynamic code that precession can trigger dynamo action in a cylindrical container. Fixing the angle between the spin and the precession axis to be 1/2π, two limit configurations of the spinning axis are explored: either the symmetry axis of the cylinder is parallel to the spin axis (this configuration is henceforth referred to as the axial spin case), or it is perpendicular to the spin axis (this configuration is referred to as the equatorial spin case). In both cases, the centro-symmetry of the flow breaks when the kinetic Reynolds number increases. Equatorial spinning is found to be more efficient in breaking the centro-symmetry of the flow. In both cases, the average flow in the reference frame of the mantle converges to a counter-rotation with respect to the spin axis as the Reynolds number grows. We find a scaling law for the average kinetic energy in term of the Reynolds number in the axial spin case. In the equatorial spin case, the unsteady asymmetric flow is shown to be capable of sustaining dynamo action in the linear and nonlinear regimes. The magnetic field is mainly dipolar in the equatorial spin case, while it is is mainly quadrupolar in the axial spin case.

  2. A high-field adiabatic fast passage ultracold neutron spin flipper for the UCNA experiment.

    PubMed

    Holley, A T; Broussard, L J; Davis, J L; Hickerson, K; Ito, T M; Liu, C-Y; Lyles, J T M; Makela, M; Mammei, R R; Mendenhall, M P; Morris, C L; Mortensen, R; Pattie, R W; Rios, R; Saunders, A; Young, A R

    2012-07-01

    The UCNA collaboration is making a precision measurement of the β asymmetry (A) in free neutron decay using polarized ultracold neutrons (UCN). A critical component of this experiment is an adiabatic fast passage neutron spin flipper capable of efficient operation in ambient magnetic fields on the order of 1 T. The requirement that it operate in a high field necessitated the construction of a free neutron spin flipper based, for the first time, on a birdcage resonator. The design, construction, and initial testing of this spin flipper prior to its use in the first measurement of A with UCN during the 2007 run cycle of the Los Alamos Neutron Science Center's 800 MeV proton accelerator is detailed. These studies determined the flipping efficiency of the device, averaged over the UCN spectrum present at the location of the spin flipper, to be ̅ε=0.9985(4).

  3. Entanglement witnesses in spin models

    NASA Astrophysics Data System (ADS)

    Tóth, Géza

    2005-01-01

    We construct entanglement witnesses using fundamental quantum operators of spin models which contain two-particle interactions and have a certain symmetry. By choosing the Hamiltonian as such an operator, our method can be used for detecting entanglement by energy measurement. We apply this method to the Heisenberg model in a cubic lattice with a magnetic field, the XY model, and other familiar spin systems. Our method provides a temperature bound for separable states for systems in thermal equilibrium. We also study the Bose-Hubbard model and relate its energy minimum for separable states to the minimum obtained from the Gutzwiller ansatz.

  4. Inverse spin Hall and spin rectification effects in NiFe/FeMn exchange-biased thin films

    NASA Astrophysics Data System (ADS)

    Garcia, W. J. S.; Seeger, R. L.; da Silva, R. B.; Harres, A.

    2017-11-01

    Materials presenting high spin-orbit coupling are able to convert spin currents in charge currents. The phenomenon, known as inverse spin Hall effect, promises to revolutionize spintronic technology enabling the electrical detection of spin currents. It has been observed in a variety of systems, usually non-magnetic metals. We study the voltage emerging in exchange biased Ta/NiFe/FeMn/Ta thin films near the ferromagnetic resonance. Measured signals are related to both inverse spin Hall and spin rectification effects, and two distinct protocols were employed to separate their contributions.The curve shift due to the exchange bias effect may enable high frequency applications without an external applied magnetic field.

  5. Endohedral Metallofullerene as Molecular High Spin Qubit: Diverse Rabi Cycles in Gd2@C79N.

    PubMed

    Hu, Ziqi; Dong, Bo-Wei; Liu, Zheng; Liu, Jun-Jie; Su, Jie; Yu, Changcheng; Xiong, Jin; Shi, Di-Er; Wang, Yuanyuan; Wang, Bing-Wu; Ardavan, Arzhang; Shi, Zujin; Jiang, Shang-Da; Gao, Song

    2018-01-24

    An anisotropic high-spin qubit with long coherence time could scale the quantum system up. It has been proposed that Grover's algorithm can be implemented in such systems. Dimetallic aza[80]fullerenes M 2 @C 79 N (M = Y or Gd) possess an unpaired electron located between two metal ions, offering an opportunity to manipulate spin(s) protected in the cage for quantum information processing. Herein, we report the crystallographic determination of Gd 2 @C 79 N for the first time. This molecular magnet with a collective high-spin ground state (S = 15/2) generated by strong magnetic coupling (J Gd-Rad = 350 ± 20 cm -1 ) has been unambiguously validated by magnetic susceptibility experiments. Gd 2 @C 79 N has quantum coherence and diverse Rabi cycles, allowing arbitrary superposition state manipulation between each adjacent level. The phase memory time reaches 5 μs at 5 K by dynamic decoupling. This molecule fulfills the requirements of Grover's searching algorithm proposed by Leuenberger and Loss.

  6. Extra-large remnant recoil velocities and spins from near-extremal-Bowen-York-spin black-hole binaries

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Dain, Sergio; Max Planck Institute for Gravitational Physics; Lousto, Carlos O.

    2008-07-15

    We evolve equal-mass, equal-spin black-hole binaries with specific spins of a/m{sub H}{approx}0.925, the highest spins simulated thus far and nearly the largest possible for Bowen-York black holes, in a set of configurations with the spins counteraligned and pointing in the orbital plane, which maximizes the recoil velocities of the merger remnant, as well as a configuration where the two spins point in the same direction as the orbital angular momentum, which maximizes the orbital hangup effect and remnant spin. The coordinate radii of the individual apparent horizons in these cases are very small and the simulations require very high centralmore » resolutions (h{approx}M/320). We find that these highly spinning holes reach a maximum recoil velocity of {approx}3300 km s{sup -1} (the largest simulated so far) and, for the hangup configuration, a remnant spin of a/m{sub H}{approx}0.922. These results are consistent with our previous predictions for the maximum recoil velocity of {approx}4000 km s{sup -1} and remnant spin; the latter reinforcing the prediction that cosmic censorship is not violated by merging highly spinning black-hole binaries. We also numerically solve the initial data for, and evolve, a single maximal-Bowen-York-spin black hole, and confirm that the 3-metric has an O(r{sup -2}) singularity at the puncture, rather than the usual O(r{sup -4}) singularity seen for nonmaximal spins.« less

  7. Localizable entanglement in antiferromagnetic spin chains

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Jin, B.-Q.; Korepin, V.E.

    2004-06-01

    Antiferromagnetic spin chains play an important role in condensed matter and statistical mechanics. Recently XXX spin chain was discussed in relation to information theory. Here we consider localizable entanglement. It is how much entanglement can be localized on two spins by performing local measurements on other individual spins (in a system of many interacting spins). We consider the ground state of antiferromagnetic spin chain. We study localizable entanglement [represented by concurrence] between two spins. It is a function of the distance. We start with isotropic spin chain. Then we study effects of anisotropy and magnetic field. We conclude that anisotropymore » increases the localizable entanglement. We discovered high sensitivity to a magnetic field in cases of high symmetry. We also evaluated concurrence of these two spins before the measurement to illustrate that the measurement raises the concurrence.« less

  8. Entangled spins and ghost-spins

    NASA Astrophysics Data System (ADS)

    Jatkar, Dileep P.; Narayan, K.

    2017-09-01

    We study patterns of quantum entanglement in systems of spins and ghost-spins regarding them as simple quantum mechanical toy models for theories containing negative norm states. We define a single ghost-spin as in [20] as a 2-state spin variable with an indefinite inner product in the state space. We find that whenever the spin sector is disentangled from the ghost-spin sector (both of which could be entangled within themselves), the reduced density matrix obtained by tracing over all the ghost-spins gives rise to positive entanglement entropy for positive norm states, while negative norm states have an entanglement entropy with a negative real part and a constant imaginary part. However when the spins are entangled with the ghost-spins, there are new entanglement patterns in general. For systems where the number of ghost-spins is even, it is possible to find subsectors of the Hilbert space where positive norm states always lead to positive entanglement entropy after tracing over the ghost-spins. With an odd number of ghost-spins however, we find that there always exist positive norm states with negative real part for entanglement entropy after tracing over the ghost-spins.

  9. Investigations of modifications to improve the spin resistance of a high-wing, single-engine, light airplane

    NASA Technical Reports Server (NTRS)

    Manuel, G. S.; Dicarlo, D. J.; Stough, H. P., III; Brown, P. W.; Stuever, R. A.

    1989-01-01

    A general aviation aircraft with drooped leading edge modifications for improvement of lateral stability at high angles of attack has been flight tested in combination with a ventral fin which improves directional stability. The two modifications were assessed in light of spin-resistance criteria proposed for incorporation into FAA certification regulations. The configuration combining outboard wing leading-edge droop and a ventral fin yielded a substantial increase in spin resistance, but fell short of all requirements encompassed by the proposed spin-resistance criteria.

  10. Spin forming development

    NASA Astrophysics Data System (ADS)

    Gates, W. G.

    1982-05-01

    Bendix product applications require the capability of fabricating heavy gage, high strength materials. Five commercial sources have been identified that have the capability of spin forming metal thicknesses greater than 9.5 mm and four equipment manufacturers produce machines with this capability. Twelve assemblies selected as candidates for spin forming applications require spin forming of titanium, 250 maraging steel, 17-4 pH stainless steel, Nitronic 40 steel, 304 L stainless steel, and 6061 aluminum. Twelve parts have been cold spin formed from a 250 maraging steel 8.1 mm wall thickness machine preform, and six have been hot spin formed directly from 31.8-mm-thick flat plate. Thirty-three Ti-6Al-4V titanium alloy parts and 26 17-4 pH stainless steel parts have been hot spin formed directly from 31.8-mm-thick plate. Hot spin forming directly from plate has demonstrated the feasibility and favorable economics of this fabrication technique for Bendix applications.

  11. Spin Current Noise of the Spin Seebeck Effect and Spin Pumping

    NASA Astrophysics Data System (ADS)

    Matsuo, M.; Ohnuma, Y.; Kato, T.; Maekawa, S.

    2018-01-01

    We theoretically investigate the fluctuation of a pure spin current induced by the spin Seebeck effect and spin pumping in a normal-metal-(NM-)ferromagnet(FM) bilayer system. Starting with a simple ferromagnet-insulator-(FI-)NM interface model with both spin-conserving and non-spin-conserving processes, we derive general expressions of the spin current and the spin-current noise at the interface within second-order perturbation of the FI-NM coupling strength, and estimate them for a yttrium-iron-garnet-platinum interface. We show that the spin-current noise can be used to determine the effective spin carried by a magnon modified by the non-spin-conserving process at the interface. In addition, we show that it provides information on the effective spin of a magnon, heating at the interface under spin pumping, and spin Hall angle of the NM.

  12. Matrix product states for su(2) invariant quantum spin chains

    NASA Astrophysics Data System (ADS)

    Zadourian, Rubina; Fledderjohann, Andreas; Klümper, Andreas

    2016-08-01

    A systematic and compact treatment of arbitrary su(2) invariant spin-s quantum chains with nearest-neighbour interactions is presented. The ground-state is derived in terms of matrix product states (MPS). The fundamental MPS calculations consist of taking products of basic tensors of rank 3 and contractions thereof. The algebraic su(2) calculations are carried out completely by making use of Wigner calculus. As an example of application, the spin-1 bilinear-biquadratic quantum chain is investigated. Various physical quantities are calculated with high numerical accuracy of up to 8 digits. We obtain explicit results for the ground-state energy, entanglement entropy, singlet operator correlations and the string order parameter. We find an interesting crossover phenomenon in the correlation lengths.

  13. A complete measurement of spin-observables for intermediate-energy inclusive quasielastic polarized proton scattering from 12C

    NASA Astrophysics Data System (ADS)

    Chan, C.; Drake, T. E.; Abegg, R.; Frekers, D.; Häusser, O.; Hicks, K.; Hutcheon, D. A.; Lee, L.; Miller, C. A.; Schubank, R.; Yen, S.

    1990-04-01

    The complete set of Wolfenstein parameters, the polarization, the asymmetry of scattering and the unpolarized double-differential cross section are presented for inclusive quasielastic proton scattering from 12C at a central momentum transfer of q = 1.9 fm -1 and incident energies of 290 and 420 MeV. The spin observables D0, Dx, Dy and Dz as well as the longitudinal-to-transverse ratio of spin-flip probabilities are extracted from the data. Across the quasielastic continuum, the experimental data is compared to the variations expected from a single-scattering Fermi-gas approximation using the free NN amplitudes. Medium effects are evident in the pronounced quenching of the polarization parameter relative to the free value.

  14. Overload control of artificial gravity facility using spinning tether system for high eccentricity transfer orbits

    NASA Astrophysics Data System (ADS)

    Gou, Xing-wang; Li, Ai-jun; Tian, Hao-chang; Wang, Chang-qing; Lu, Hong-shi

    2018-06-01

    As the major part of space life supporting systems, artificial gravity requires further study before it becomes mature. Spinning tether system is a good alternative solution to provide artificial gravity for the whole spacecraft other than additional devices, and its longer tether length could significantly reduce spinning velocity and thus enhance comfortability. An approximated overload-based feedback method is proposed to provide estimated spinning velocity signals for controller, so that gravity level could be accurately controlled without complicated GPS modules. System behavior in high eccentricity transfer orbits is also studied to give a complete knowledge of the spinning stabilities. The application range of the proposed method is studied in various orbit cases and spinning velocities, indicating that it is accurate and reliable for most of the mission phases especially for the final constant gravity level phase. In order to provide stable gravity level for transfer orbit missions, a sliding mode controller based on estimated angular signals is designed for closed-loop control. Numerical results indicate that the combination of overload-based feedback and sliding mode controller could satisfy most of the long-term artificial gravity missions. It is capable of forming flexible gravity environment in relatively good accuracy even in the lowest possible orbital radiuses and high eccentricity orbits of crewed space missions. The proposed scheme provides an effective tether solution for the artificial gravity construction in interstellar travel.

  15. Electric dipole spin resonance in a quantum spin dimer system driven by magnetoelectric coupling

    NASA Astrophysics Data System (ADS)

    Kimura, Shojiro; Matsumoto, Masashige; Akaki, Mitsuru; Hagiwara, Masayuki; Kindo, Koichi; Tanaka, Hidekazu

    2018-04-01

    In this Rapid Communication, we propose a mechanism for electric dipole active spin resonance caused by spin-dependent electric polarization in a quantum spin gapped system. This proposal was successfully confirmed by high-frequency electron spin resonance (ESR) measurements of the quantum spin dimer system KCuCl3. ESR measurements by an illuminating linearly polarized electromagnetic wave reveal that the optical transition between the singlet and triplet states in KCuCl3 is driven by an ac electric field. The selection rule of the observed transition agrees with the calculation by taking into account spin-dependent electric polarization. We suggest that spin-dependent electric polarization is effective in achieving fast control of quantum spins by an ac electric field.

  16. Interaction modifiers in artificial spin ices

    DOE PAGES

    Ostman, Erik; Stopfel, Henry; Chioar, Ioan -Augustin; ...

    2018-02-12

    The modification of geometry and interactions in two-dimensional magnetic nanosystems has enabled a range of studies addressing the magnetic order, collective low-energy dynamics and emergent magnetic properties in, for example, artificial spin-ice structures. The common denominator of all these investigations is the use of Ising-like mesospins as building blocks, in the form of elongated magnetic islands. Here, we introduce a new approach: single interaction modifiers, using slave mesospins in the form of discs, within which the mesospin is free to rotate in the disc plane1. We show that by placing these on the vertices of square artificial spin-ice arrays andmore » varying their diameter, it is possible to tailor the strength and the ratio of the interaction energies. We demonstrate the existence of degenerate ice-rule-obeying states in square artificial spin-ice structures, enabling the exploration of thermal dynamics in a spin-liquid manifold. Furthermore, we even observe the emergence of flux lattices on larger length scales, when the energy landscape of the vertices is reversed. In conclusion, the work highlights the potential of a design strategy for two-dimensional magnetic nano-architectures, through which mixed dimensionality of mesospins can be used to promote thermally emergent mesoscale magnetic states.« less

  17. Interaction modifiers in artificial spin ices

    NASA Astrophysics Data System (ADS)

    Ã-stman, Erik; Stopfel, Henry; Chioar, Ioan-Augustin; Arnalds, Unnar B.; Stein, Aaron; Kapaklis, Vassilios; Hjörvarsson, Björgvin

    2018-04-01

    The modification of geometry and interactions in two-dimensional magnetic nanosystems has enabled a range of studies addressing the magnetic order1-6, collective low-energy dynamics7,8 and emergent magnetic properties5, 9,10 in, for example, artificial spin-ice structures. The common denominator of all these investigations is the use of Ising-like mesospins as building blocks, in the form of elongated magnetic islands. Here, we introduce a new approach: single interaction modifiers, using slave mesospins in the form of discs, within which the mesospin is free to rotate in the disc plane11. We show that by placing these on the vertices of square artificial spin-ice arrays and varying their diameter, it is possible to tailor the strength and the ratio of the interaction energies. We demonstrate the existence of degenerate ice-rule-obeying states in square artificial spin-ice structures, enabling the exploration of thermal dynamics in a spin-liquid manifold. Furthermore, we even observe the emergence of flux lattices on larger length scales, when the energy landscape of the vertices is reversed. The work highlights the potential of a design strategy for two-dimensional magnetic nano-architectures, through which mixed dimensionality of mesospins can be used to promote thermally emergent mesoscale magnetic states.

  18. Interaction modifiers in artificial spin ices

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Ostman, Erik; Stopfel, Henry; Chioar, Ioan -Augustin

    The modification of geometry and interactions in two-dimensional magnetic nanosystems has enabled a range of studies addressing the magnetic order, collective low-energy dynamics and emergent magnetic properties in, for example, artificial spin-ice structures. The common denominator of all these investigations is the use of Ising-like mesospins as building blocks, in the form of elongated magnetic islands. Here, we introduce a new approach: single interaction modifiers, using slave mesospins in the form of discs, within which the mesospin is free to rotate in the disc plane1. We show that by placing these on the vertices of square artificial spin-ice arrays andmore » varying their diameter, it is possible to tailor the strength and the ratio of the interaction energies. We demonstrate the existence of degenerate ice-rule-obeying states in square artificial spin-ice structures, enabling the exploration of thermal dynamics in a spin-liquid manifold. Furthermore, we even observe the emergence of flux lattices on larger length scales, when the energy landscape of the vertices is reversed. In conclusion, the work highlights the potential of a design strategy for two-dimensional magnetic nano-architectures, through which mixed dimensionality of mesospins can be used to promote thermally emergent mesoscale magnetic states.« less

  19. Activation of coherent lattice phonon following ultrafast molecular spin-state photo-switching: A molecule-to-lattice energy transfer

    PubMed Central

    Marino, A.; Cammarata, M.; Matar, S. F.; Létard, J.-F.; Chastanet, G.; Chollet, M.; Glownia, J. M.; Lemke, H. T.; Collet, E.

    2015-01-01

    We combine ultrafast optical spectroscopy with femtosecond X-ray absorption to study the photo-switching dynamics of the [Fe(PM-AzA)2(NCS)2] spin-crossover molecular solid. The light-induced excited spin-state trapping process switches the molecules from low spin to high spin (HS) states on the sub-picosecond timescale. The change of the electronic state (<50 fs) induces a structural reorganization of the molecule within 160 fs. This transformation is accompanied by coherent molecular vibrations in the HS potential and especially a rapidly damped Fe-ligand breathing mode. The time-resolved studies evidence a delayed activation of coherent optical phonons of the lattice surrounding the photoexcited molecules. PMID:26798836

  20. Spin morphologies and heat dissipation in spherical assemblies of magnetic nanoparticles

    NASA Astrophysics Data System (ADS)

    Anand, Manish; Carrey, Julian; Banerjee, Varsha

    2016-09-01

    Aggregates of magnetic nanoparticles (MNPs) exhibit unusual properties due to the interplay of small system size and long-range dipole-dipole interactions. Using the micromagnetic simulation software oommf, we study the spin morphologies and heat dissipation in micron-size spherical assemblies of MNPs. In particular, we examine the sensitivity of these properties to the dipolar strength, manipulated by the interparticle separation. As oommf is not designed for such a study, we have incorporated a novel scaling protocol for this purpose. We believe that it is essential for all studies where volume fractions are varied. Our main results are as follows: (i) Dense assemblies exhibit strong dipolar effects which yield local magnetic order in the core but not on the surface, where moments are randomly oriented. (ii) The probability distribution of ground-state energy exhibits a long high-energy tail for surface spins in contrast to small tails for the core spins. Consequently, there is a wide variation in the energy of surface spins but not the core spins. (iii) There is strong correlation between ground-state energy and heating properties on application of an oscillating magnetic field h (t ) =hocos2 π f t : the particles in the core heat uniformly, while those on the surface exhibit a wide range from cold to intensely hot. (iv) Specific choices of ho and f yield characteristic spatial heat distributions, e.g., hot surface and cold core, or vice versa. (iv) For all values of ho and f that we consider, heating was maximum at a specific volume fraction. These results are especially relevant in the context of contemporary applications such as hyperthermia and chemotherapy, and also for novel materials such as smart polymer beads and superspin glasses.

  1. High-pressure phase transitions of Fe 3-xTi xO 4 solid solution up to 60 GPa correlated with electronic spin transition

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Yamanaka, Takamitsu; Kyono, Atsushi; Nakamoto, Yuki

    2013-06-12

    The structural phase transition of the titanomagnetite (Fe 3–xTi xO 4) solid solution under pressures up to 60 GPa has been clarified by single-crystal and powder diffraction studies using synchrotron radiation and a diamond-anvil cell. Present Rietveld structure refinements of the solid solution prove that the prefered cation distribution is based on the crystal field preference rather than the magnetic spin ordering in the solid solution. The Ti-rich phases in 0.734 ≤ x ≤1.0 undergo a phase transformation from the cubic spinel of Fd3m to the tetragonal spinel structure of I4 1/amd with c/a < 1.0. The transition is drivenmore » by a Jahn-Teller effect of IVFe 2+ (3d 6) on the tetrahedral site. The c/a < 1 ratio is induced by lifting of the degeneracy of the e orbitals by raising the d x2-y2 orbital below the energy of the d z2 orbital. The distortion characterized by c/a < 1 is more pronounced with increasing Ti content in the Fe 3–xTi xO 4 solid solutions and with increasing pressure. An X-ray emission experiment of Fe 2TiO 4 at high pressures confirms the spin transition of FeKβ from high spin to intermediate spin (IS) state. The high spin (HS)-to-low spin (LS) transition starts at 14 GPa and the IS state gradually increases with compression. The VIFe 2+ in the octahedral site is more prone for the HS-to-LS transition, compared with Fe 2+ in the fourfold- or eightfold-coordinated site. The transition to the orthorhombic post-spinel structure with space group Cmcm has been confirmed in the whole compositional range of Fe 3–xTi xO 4. The transition pressure decreases from 25 GPa (x = 0.0) to 15 GPa (x = 1.0) with increasing Ti content. There are two cation sites in the orthorhombic phase: M1 and M2 sites of eightfold and sixfold coordination, respectively. Fe 2+ and Ti 4+ are disordered on the M2 site. This structural change is accelerated at higher pressures due to the spin transition of Fe 2+ in the octahedral site. This is because the ionic radius

  2. All-optical observation and reconstruction of spin wave dispersion

    PubMed Central

    Hashimoto, Yusuke; Daimon, Shunsuke; Iguchi, Ryo; Oikawa, Yasuyuki; Shen, Ka; Sato, Koji; Bossini, Davide; Tabuchi, Yutaka; Satoh, Takuya; Hillebrands, Burkard; Bauer, Gerrit E. W.; Johansen, Tom H.; Kirilyuk, Andrei; Rasing, Theo; Saitoh, Eiji

    2017-01-01

    To know the properties of a particle or a wave, one should measure how its energy changes with its momentum. The relation between them is called the dispersion relation, which encodes essential information of the kinetics. In a magnet, the wave motion of atomic spins serves as an elementary excitation, called a spin wave, and behaves like a fictitious particle. Although the dispersion relation of spin waves governs many of the magnetic properties, observation of their entire dispersion is one of the challenges today. Spin waves whose dispersion is dominated by magnetostatic interaction are called pure-magnetostatic waves, which are still missing despite of their practical importance. Here, we report observation of the band dispersion relation of pure-magnetostatic waves by developing a table-top all-optical spectroscopy named spin-wave tomography. The result unmasks characteristics of pure-magnetostatic waves. We also demonstrate time-resolved measurements, which reveal coherent energy transfer between spin waves and lattice vibrations. PMID:28604690

  3. Universal spin-momentum locked optical forces

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Kalhor, Farid; Thundat, Thomas; Jacob, Zubin, E-mail: zjacob@purdue.edu

    2016-02-08

    Evanescent electromagnetic waves possess spin-momentum locking, where the direction of propagation (momentum) is locked to the inherent polarization of the wave (transverse spin). We study the optical forces arising from this universal phenomenon and show that the fundamental origin of recently reported non-trivial optical chiral forces is spin-momentum locking. For evanescent waves, we show that the direction of energy flow, the direction of decay, and the direction of spin follow a right hand rule for three different cases of total internal reflection, surface plasmon polaritons, and HE{sub 11} mode of an optical fiber. Furthermore, we explain how the recently reportedmore » phenomena of lateral optical force on chiral and achiral particles are caused by the transverse spin of the evanescent field and the spin-momentum locking phenomenon. Finally, we propose an experiment to identify the unique lateral forces arising from the transverse spin in the optical fiber and point to fundamental differences of the spin density from the well-known orbital angular momentum of light. Our work presents a unified view on spin-momentum locking and how it affects optical forces on chiral and achiral particles.« less

  4. Half-metallic superconducting triplet spin multivalves

    NASA Astrophysics Data System (ADS)

    Alidoust, Mohammad; Halterman, Klaus

    2018-02-01

    We study spin switching effects in finite-size superconducting multivalve structures. We examine F1F2SF3 and F1F2SF3F4 hybrids where a singlet superconductor (S) layer is sandwiched among ferromagnet (F) layers with differing thicknesses and magnetization orientations. Our results reveal a considerable number of experimentally viable spin-valve configurations that lead to on-off switching of the superconducting state. For S widths on the order of the superconducting coherence length ξ0, noncollinear magnetization orientations in adjacent F layers with multiple spin axes leads to a rich variety of triplet spin-valve effects. Motivated by recent experiments, we focus on samples where the magnetizations in the F1 and F4 layers exist in a fully spin-polarized half-metallic phase, and calculate the superconducting transition temperature, spatially and energy resolved density of states, and the spin-singlet and spin-triplet superconducting correlations. Our findings demonstrate that superconductivity in these devices can be completely switched on or off over a wide range of magnetization misalignment angles due to the generation of equal-spin and opposite-spin triplet pairings.

  5. Correlated impurities and intrinsic spin-liquid physics in the kagome material herbertsmithite

    DOE PAGES

    Han, Tian-Heng; Norman, M. R.; Wen, J. -J.; ...

    2016-08-18

    Low energy inelastic neutron scattering on single crystals of the kagome spin-liquid compound ZnCu 3(OD) 6Cl 2 (herbertsmithite) reveals in this paper antiferromagnetic correlations between impurity spins for energy transfers h(with stroke)ω < 0.8 meV (~ J/20). The momentum dependence differs significantly from higher energy scattering which arises from the intrinsic kagome spins. The low energy fluctuations are characterized by diffuse scattering near wave vectors (100) and (00 3/2), which is consistent with antiferromagnetic correlations between pairs of nearest-neighbor Cu impurities on adjacent triangular (Zn) interlayers. The corresponding impurity lattice resembles a simple cubic lattice in the dilute limit belowmore » the percolation threshold. Such an impurity model can describe prior neutron, NMR, and specific heat data. The low energy neutron data are consistent with the presence of a small spin gap (Δ ~ 0.7 meV) in the kagome layers, similar to that recently observed by NMR. Finally, the ability to distinguish the scattering due to Cu impurities from that of the planar kagome Cu spins provides an important avenue for probing intrinsic spin-liquid physics.« less

  6. Acoustically assisted spin-transfer-torque switching of nanomagnets: An energy-efficient hybrid writing scheme for non-volatile memory

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Biswas, Ayan K.; Bandyopadhyay, Supriyo; Atulasimha, Jayasimha

    We show that the energy dissipated to write bits in spin-transfer-torque random access memory can be reduced by an order of magnitude if a surface acoustic wave (SAW) is launched underneath the magneto-tunneling junctions (MTJs) storing the bits. The SAW-generated strain rotates the magnetization of every MTJs' soft magnet from the easy towards the hard axis, whereupon passage of a small spin-polarized current through a target MTJ selectively switches it to the desired state with > 99.99% probability at room temperature, thereby writing the bit. The other MTJs return to their original states at the completion of the SAW cycle.

  7. High-spin studies: Recent results from the 8π spectrometer

    NASA Astrophysics Data System (ADS)

    Radford, D. C.; Galindo-Uribarri, A.; Hackman, G.; Janzen, V. P.; 8π Collaboration

    1993-05-01

    Selected highlights of recent high-spin nuclear-structure studies with the 8π spectrometer are presented. These include an extensive systematic study of high- j intruder bands in A ˜ 110 Sb, Sn and In nuclei; evidence for hyperdeformation, observed in the reaction 120Sn( 37Cl,px n) populating 152,153Dy; and the observation of a new superdeformed band in the N = 80 nucleus 142Sm. The design of "TRIGAM", a new HPGe-detector array proposed to replace the 8π spectrometer, is also presented.

  8. Structural Effects on the Spin Dynamics of Potential Molecular Qubits.

    PubMed

    Atzori, Matteo; Benci, Stefano; Morra, Elena; Tesi, Lorenzo; Chiesa, Mario; Torre, Renato; Sorace, Lorenzo; Sessoli, Roberta

    2018-01-16

    Control of spin-lattice magnetic relaxation is crucial to observe long quantum coherence in spin systems at reasonable temperatures. Such a control is most often extremely difficult to achieve, because of the coexistence of several relaxation mechanisms, that is direct, Raman, and Orbach. These are not always easy to relate to the energy states of the investigated system, because of the contribution to the relaxation of additional spin-phonon coupling phenomena mediated by intramolecular vibrations. In this work, we have investigated the effect of slight changes on the molecular structure of four vanadium(IV)-based potential spin qubits on their spin dynamics, studied by alternate current (AC) susceptometry. The analysis of the magnetic field dependence of the relaxation time correlates well with the low-energy vibrational modes experimentally detected by time-domain THz spectroscopy. This confirms and extends our preliminary observations on the role played by spin-vibration coupling in determining the fine structure of the spin-lattice relaxation time as a function of the magnetic field, for S = 1 / 2 potential spin qubits. This study represents a step forward in the use of low-energy vibrational spectroscopy as a prediction tool for the design of molecular spin qubits with long-lived quantum coherence. Indeed, quantum coherence times of ca. 4.0-6.0 μs in the 4-100 K range are observed for the best performing vanadyl derivatives identified through this multitechnique approach.

  9. Magnetoanisotropic spin-triplet Andreev reflection in ferromagnet-Ising superconductor junctions

    NASA Astrophysics Data System (ADS)

    Lv, Peng; Zhou, Yan-Feng; Yang, Ning-Xuan; Sun, Qing-Feng

    2018-04-01

    We theoretically study the electronic transport through a ferromagnet-Ising superconductor junction. A tight-binding Hamiltonian describing the Ising superconductor is presented. Then by combining the nonequilibrium Green's function method, the expressions of Andreev reflection coefficient and conductance are obtained. A strong magnetoanisotropic spin-triplet Andreev reflection is shown, and the magnetoanisotropic period is π instead of 2 π as in the conventional magnetoanisotropic system. We demonstrate a significant increase of the spin-triplet Andreev reflection for the single-band Ising superconductor. Furthermore, the dependence of the Andreev reflection on the incident energy and incident angle are also investigated. A complete Andreev reflection can occur when the incident energy is equal to the superconducting gap, regardless of the Fermi energy (spin polarization) of the ferromagnet. For the suitable oblique incidence, the spin-triplet Andreev reflection can be strongly enhanced. In addition, the conductance spectroscopies of both zero bias and finite bias are studied, and the influence of gate voltage, exchange energy, and spin-orbit coupling on the conductance spectroscopy are discussed in detail. The conductance exhibits a strong magnetoanisotropy with period π as the Andreev reflection coefficient. When the magnetization direction is parallel to the junction plane, a large conductance peak always emerges at the superconducting gap. This work offers a comprehensive and systematic study of the spin-triplet Andreev reflection and has an underlying application of π -periodic spin valve in spintronics.

  10. Laser photoelectron spectroscopy of MnH - and FeH - : Electronic structures of the metal hydrides, identification of a low-spin excited state of MnH, and evidence for a low-spin ground state of FeH

    NASA Astrophysics Data System (ADS)

    Stevens, Amy E.; Feigerle, C. S.; Lineberger, W. C.

    1983-05-01

    The laser photoelectron spectra of MnH- and MnD-, and FeH- and FeD- are reported. A qualitative description of the electronic structure of the low-spin and high-spin states of the metal hydrides is developed, and used to interpret the spectra. A diagonal transition in the photodetachment to the known high-spin, 7Σ+, ground state of MnH is observed. An intense off-diagonal transition to a state of MnH, at 1725±50 cm-1 excitation energy, is attributed to loss of an antibonding electron from MnH-, to yield a low-spin quintet state of MnH. For FeH- the photodetachment to the ground state is an off-diagonal transition, attributed to loss of the antibonding electron from FeH-, to yield a low-spin quartet ground state of FeH. A diagonal transition results in an FeH state at 1945±55 cm-1; this state of FeH is assigned as the lowest-lying high-spin sextet state of FeH. An additional excited state of MnH and two other excited states of FeH are observed. Excitation energies for all the states are reported; vibrational frequencies and bond lengths for the ions and several states of the neutrals are also determined from the spectra. The electron affinity of MnH is found to be 0.869±0.010 eV; and the electron affinity of FeH is determined to be 0.934±0.011 eV. Spectroscopic constants for the various deuterides are also reported.

  11. Spin polarization transfer by the radical pair mechanism

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Zarea, Mehdi, E-mail: m-zarea@northwestern.edu; Ratner, Mark A.; Wasielewski, Michael R.

    2015-08-07

    In a three-site representation, we study a spin polarization transfer from radical pair spins to a nearby electron or nuclear spin. The quantum dynamics of the radical pair spins is governed by a constant exchange interaction between the radical pair spins which have different Zeeman frequencies. Radical pair spins can recombine to the singlet ground state or to lower energy triplet states. It is then shown that the coherent dynamics of the radical pair induces spin polarization on the nearby third spin in the presence of a magnetic field. The spin polarization transfer depends on the difference between Zeeman frequencies,more » the singlet and triplet recombination rates, and on the exchange and dipole-dipole interactions between the different spins. In particular, the sign of the polarization depends on the exchange coupling between radical pair spins and also on the difference between singlet and triplet recombination rate constants.« less

  12. Electronic structure and reactivity of high-spin iron--alkyl- and--pterinperoxo complexes.

    PubMed

    Lehnert, Nicolai; Fujisawa, Kiyoshi; Solomon, Edward I

    2003-01-27

    The spectroscopic properties and electronic structure of the four-coordinate high-spin [FeIII(L3)(OOtBu)]+ complex (1; L3 = hydrotris(3-tert-butyl-5-isopropyl-1-pyrazolyl)borate; tBu = tert-butyl) are investigated and compared to the six-coordinated high-spin [Fe(6-Me3TPA)(OHx)(OOtBu)]x+ system (TPA = tris(2-pyridylmethyl)amine, x = 1 or 2) studied earlier [Lehnert, N.; Ho, R. Y. N.; Que, L., Jr.; Solomon, E. I. J. Am. Chem. Soc. 2001, 123, 12802-12816]. Complex 1 is characterized by Raman features at 889 and 830 cm-1 which are assigned to the O-O stretch (mixed with the symmetric C-C stretch) and a band at 625 cm-1 that corresponds to nu(Fe-O). The UV-vis spectrum shows a charge-transfer (CT) transition at 510 nm from the alkylperoxo pi v* (v = vertical to C-O-O plane) to a d orbital of Fe(III). A second CT is identified from MCD at 370 nm that is assigned to a transition from pi h* (h = horizontal to C-O-O plane) to an Fe(III) d orbital. For the TPA complex the pi v* CT is at 560 nm while the pi h* CT is to higher energy than 250 nm. These spectroscopic differences between four- and six-coordinate Fe(III)-OOR complexes are interpreted on the basis of their different ligand fields. In addition, the electronic structure of Fe-OOPtn complexes with the biologically relevant pterinperoxo ligand are investigated. Substitution of the tert-butyl group in 1 by pterin leads to the corresponding Fe(III)-OOPtn species (2), which shows a stronger electron donation from the peroxide to Fe(III) than 1. This is related to the lower ionization potential of pterin. Reduction of 2 by one electron leads to the Fe(II)-OOPtn complex (3), which is relevant as a model for potential intermediates in pterin-dependent hydroxylases. However, in the four-coordinate ligand field of 3, the additional electron is located in a nonbonding d orbital of iron. Hence, the pterinperoxo ligand is not activated for heterolytic cleavage of the O-O bond in this system. This is also evident from the

  13. A mononuclear iron(II) complex: cooperativity, kinetics and activation energy of the solvent-dependent spin transition.

    PubMed

    Bushuev, Mark B; Pishchur, Denis P; Logvinenko, Vladimir A; Gatilov, Yuri V; Korolkov, Ilya V; Shundrina, Inna K; Nikolaenkova, Elena B; Krivopalov, Viktor P

    2016-01-07

    The system [FeL2](BF4)2 (1)-EtOH-H2O (L is 4-(3,5-dimethyl-1H-pyrazol-1-yl)-2-(pyridin-2-yl)-6-methylpyrimidine) shows a complicated balance between the relative stabilities of solvatomorphs and polymorphs of the complex [FeL2](BF4)2. New solvatomorphs, 1(LS)·EtOH·H2O and β-1(LS)·xH2O, were isolated in this system. They were converted into four daughter phases, 1(A/LS), 1(D/LS), 1(E/LS)·yEtOH·zH2O and 1(F/LS). On thermal cycling in sealed ampoules, the phases 1(LS)·EtOH·H2O and β-1(LS)·xH2O transform into the anhydrous phase 1(A/LS). The hysteresis loop width for the (A/LS) ↔ (A/HS) spin transition depends on the water and ethanol contents in the ampoule and varies from ca. 30 K up to 145 K. The reproducible hysteresis loop of 145 K is the widest ever reported one for a spin crossover complex. The phase 1(A/LS) combines the outstanding spin crossover properties with thermal robustness allowing for multiple cycling in sealed ampoules without degradation. The kinetics of the 1(A/LS) → 1(A/HS) transition is sigmoidal which is indicative of strong cooperative interactions. The cooperativity of the 1(A/LS) → 1(A/HS) transition is related to the formation of a 2D supramolecular structure of the phase 1(A/LS). The activation energy for the spin transition is very high (hundreds of kJ mol(-1)). The kinetics of the 1(A/HS) → 1(A/LS) transition can either be sigmoidal or exponential depending on the water and ethanol contents in the ampoule. The phases 1(D/LS) and 1(F/LS) show gradual crossover, whereas the phase 1(E/LS)·yEtOH·yH2O shows a reversible hysteretic transition associated with the solvent molecule release and uptake.

  14. Quasiparticle breakdown in a quantum spin liquid.

    PubMed

    Stone, Matthew B; Zaliznyak, Igor A; Hong, Tao; Broholm, Collin L; Reich, Daniel H

    2006-03-09

    Much of modern condensed matter physics is understood in terms of elementary excitations, or quasiparticles--fundamental quanta of energy and momentum. Various strongly interacting atomic systems are successfully treated as a collection of quasiparticles with weak or no interactions. However, there are interesting limitations to this description: in some systems the very existence of quasiparticles cannot be taken for granted. Like unstable elementary particles, quasiparticles cannot survive beyond a threshold where certain decay channels become allowed by conservation laws; their spectrum terminates at this threshold. Such quasiparticle breakdown was first predicted for an exotic state of matter--super-fluid 4He at temperatures close to absolute zero, a quantum Bose liquid where zero-point atomic motion precludes crystallization. Here we show, using neutron scattering, that quasiparticle breakdown can also occur in a quantum magnet and, by implication, in other systems with Bose quasiparticles. We have measured spin excitations in a two-dimensional quantum magnet, piperazinium hexachlorodicuprate (PHCC), in which spin-1/2 copper ions form a non-magnetic quantum spin liquid, and find remarkable similarities with excitations in superfluid 4He. We observe a threshold momentum beyond which the quasiparticle peak merges with the two-quasiparticle continuum. It then acquires a finite energy width and becomes indistinguishable from a leading-edge singularity, so that excited states are no longer quasiparticles but occupy a wide band of energy. Our findings have important ramifications for understanding excitations with gapped spectra in many condensed matter systems, ranging from band insulators to high-transition-temperature superconductors.

  15. Thermal spin current generation and spin transport in Pt/magnetic-insulator/Py heterostructures

    NASA Astrophysics Data System (ADS)

    Chen, Ching-Tzu; Safranski, Christopher; Krivorotov, Ilya; Sun, Jonathan

    Magnetic insulators can transmit spin current via magnon propagation while blocking charge current. Furthermore, under Joule heating, magnon flow as a result of the spin Seeback effect can generate additional spin current. Incorporating magnetic insulators in a spin-orbit torque magnetoresistive memory device can potentially yield high switching efficiencies. Here we report the DC magneto-transport studies of these two effects in Pt/magnetic-insulator/Py heterostructures, using ferrimagnetic CoFexOy (CFO) and antiferromagnet NiO as the model magnetic insulators. We observe the presence and absence of the inverse spin-Hall signals from the thermal spin current in Pt/CFO/Py and Pt/NiO/Py structures. These results are consistent with our spin-torque FMR linewidths in comparison. We will also report investigations into the magnetic field-angle dependence of these observations.

  16. Valley- and spin-switch effects in molybdenum disulfide superconducting spin valve

    NASA Astrophysics Data System (ADS)

    Majidi, Leyla; Asgari, Reza

    2014-10-01

    We propose a hole-doped molybdenum disulfide (MoS2) superconducting spin valve (F/S/F) hybrid structure in which the Andreev reflection process is suppressed for all incoming waves with a determined range of the chemical potential in ferromagnetic (F) region and the cross-conductance in the right F region depends crucially on the configuration of magnetizations in the two F regions. Using the scattering formalism, we find that the transport is mediated purely by elastic electron cotunneling (CT) process in a parallel configuration and changes to the pure crossed Andreev reflection (CAR) process in the low-energy regime, without fixing of a unique parameter, by reversing the direction of magnetization in the right F region. This suggests both valley- and spin-switch effects between the perfect elastic CT and perfect CAR processes and makes the nonlocal charge current to be fully valley- and spin-polarized inside the right F region where the type of the polarizations can be changed by reversing the magnetization direction in the right F region. We further demonstrate that the presence of the strong spin-orbit interaction λ and an additional topological term (β ) in the Hamiltonian of MoS2 result in an enhancement of the charge conductance of the CT and CAR processes and make them to be present for long lengths of the superconducting region. Besides, we find that the thermal conductance of the structure with a small length of the highly doped superconducting region exhibits linear dependence on the temperature at low temperatures, whereas it enhances exponentially at higher temperatures. In particular, we demonstrate that the thermal conductance versus the strength of the exchange field (h ) in F region displays a maximum value at h <λ , which moves towards larger exchange fields by increasing the temperature.

  17. Field-induced spin splitting and anomalous photoluminescence circular polarization in C H3N H3Pb I3 films at high magnetic field

    NASA Astrophysics Data System (ADS)

    Zhang, Chuang; Sun, Dali; Yu, Zhi-Gang; Sheng, Chuan-Xiang; McGill, Stephen; Semenov, Dmitry; Vardeny, Zeev Valy

    2018-04-01

    The organic-inorganic hybrid perovskites show excellent optical and electrical properties for photovoltaic and a myriad of other optoelectronics applications. Using high-field magneto-optical measurements up to 17.5 T at cryogenic temperatures, we have studied the spin-dependent optical transitions in the prototype C H3N H3Pb I3 , which are manifested in the field-induced circularly polarized photoluminescence emission. The energy splitting between left and right circularly polarized emission bands is measured to be ˜1.5 meV at 17.5 T, from which we obtained an exciton effective g factor of ˜1.32. Also from the photoluminescence diamagnetic shift we estimate the exciton binding energy to be ˜17 meV at low temperature. Surprisingly, the corresponding field-induced circular polarization is "anomalous" in that the photoluminescence emission of the higher split energy band is stronger than that of the lower split band. This "reversed" intensity ratio originates from the combination of long electron spin relaxation time and hole negative g factor in C H3N H3Pb I3 , which are in agreement with a model based on the k.p effective-mass approximation.

  18. Wurtzite Spin-Lasers

    NASA Astrophysics Data System (ADS)

    Xu, Gaofeng; Faria Junior, Paulo E.; Sipahi, Guilherme M.; Zutic, Igor

    Lasers in which spin-polarized carriers are injected provide paths to different practical room temperature spintronic devices, not limited to magnetoresistive effects. While theoretical studies of such spin-lasers have focused on zinc-blende semiconductors as their active regions, the first electrically injected carriers at room temperature were recently demonstrated in GaN-based wurtzite semiconductors, recognized also for the key role as highly-efficient light emitting diodes. By focusing on a wurtzite quantum well-based spin-laser, we use accurate electronic structure calculations to develop a microscopic description for its lasing properties. We discuss important differences between wurtzite and zinc-blende spin-lasers.

  19. Large Magnetoresistance at High Bias Voltage in Double-layer Organic Spin Valves

    NASA Astrophysics Data System (ADS)

    Subedi, R. C.; Liang, S. H.; Geng, R.; Zhang, Q. T.; Lou, L.; Wang, J.; Han, X. F.; Nguyen, T. D.

    We report studies of magnetoresistance (MR) in double-layer organic spin valves (DOSV) using tris (8-hydroxyquinolinato) aluminum (Alq3) spacers. The device exhibits three distinct resistance levels depending on the relative magnetizations of the ferromagnetic electrodes. We observed a much weaker bias voltage dependence of MR in the device compared to that in the conventional organic spin valve (OSV). The MR magnitude reduces by the factor of two at 0.7 V bias voltage in the DOSV compared to 0.02 V in the conventional OSV. Remarkably, the MR magnitude reaches 0.3% at 6 V bias in the DOSVs, the largest MR response ever reported in OSVs at this bias. Our finding may have a significant impact on achieving high efficient bipolar OSVs strictly performed at high voltages. University of Georgia start-up fund, Ministry of Education, Singapore, National Natural Science Foundation of China.

  20. Spectral linewidth of spin-current nano-oscillators driven by nonlocal spin injection

    DOE Office of Scientific and Technical Information (OSTI.GOV)

    Demidov, V. E., E-mail: demidov@uni-muenster.de; Divinskiy, B.; Urazhdin, S.

    2015-11-16

    We study experimentally the auto-oscillation characteristics of magnetic nano-oscillators driven by pure spin currents generated by nonlocal spin injection. By combining micro-focus Brillouin light scattering spectroscopy with electronic microwave spectroscopy, we are able to simultaneously perform both the spatial and the high-resolution spectral analyses of auto-oscillations induced by spin current. We find that the devices exhibit a highly coherent dynamics with the spectral linewidth of a few megahertz at room temperature. This narrow linewidth can be achieved over a wide range of operational frequencies, demonstrating a significant potential of nonlocal oscillators for applications.