Science.gov

Sample records for high fidelity system

  1. High-Fidelity Simulations of Multiphysics Systems

    NASA Astrophysics Data System (ADS)

    Ham, Frank

    2014-11-01

    A pacing theme in the high-fidelity simulations of multi-physics flows is the continual push towards constitutive models that reflect the underlying physics more closely than ever before. At the same time, to impact the design and understanding of real fluidic devices, these models must ultimately be developed in the setting of a highly flexible computational infrastructure capable of both massive parallelism and geometric flexibility. This theme is illustrated using two multi-physics simulations that provide new incite into the behavior of complex fluidic devices. In the first, a novel unstructured Volume-of-Fluid (VoF) method is applied to simulate the liquid fuel atomization processes in a complex high shear nozzle typical of realistic gas turbine injectors. The simulation make aggressive use of directional grid adaptation to support the local resolution of critical instability mechanisms associated with the atomization process. In a companion example, the prediction of flow field and noise in a subsonic jet is linked critically to modeling and resolution of the nozzle boundary layers.

  2. ARTEMIS: a high-fidelity NTW system simulation

    NASA Astrophysics Data System (ADS)

    Pollack, Ann F.; Chrysostomou, Andreas K.

    2001-09-01

    The Navy Theator Wide (NTW) Program is in the concept design stage. As the NTW Mission Technical Direction Agent, the Johns Hopkins University Applied Physics Laboratory (JHU/APL) is responsible for independent evaluation of system design concepts and technical approaches. To support this capability, JHU/APL has developed an integrated end-to-end simulation. The APL Area/Theater Engagement Missile-Ship Simulation - Theater Version (ARTEMIS-T) is built upon existing high-fidelity simulations of the NTW system components interfaced using the distributed High Level Architecture (HLA) developed by the Defense Modeling and Simulation Office (DMSO). Integration of these high-fidelity component simulations allows dynamic modeling of the closed-loop interactions crucial to an overall system understanding. ARTEMIS provides a tool for use throughout the program life-cycle, from requirements definition and design verification to flight test performance prediction to evaluation of new algorithms and technologies within a complete system setting.

  3. High fidelity microelectromechanical system electrodynamic micro-speaker characterization

    NASA Astrophysics Data System (ADS)

    Sturtzer, E.; Shahosseini, I.; Pillonnet, G.; Lefeuvre, E.; Lemarquand, G.

    2013-06-01

    This paper deals with the heterogeneous characterization of a microelectromechanical system (MEMS) electrodynamic micro-speaker. This MEMS micro-speaker consists of an optimized silicon structure based on a very light but very stiff membrane. The mobile part is suspended using soft suspension beams, also made of silicon, which enable large out-of-plane displacement. The electromagnetic motor is composed of a micro-assembly permanent ring magnet and of a deposit mobile planar coil fixed on the top of the silicon membrane. Previous publications have presented the MEMS as theoretically able to produce high fidelity and high efficiency over a wide bandwidth. The present study intends to validate the electrical, the mechanical, and the acoustic performance improvements. The characterization of the microfabricated micro-speaker showed that the electric impedance is flat over the entire audio bandwidth. Some results validates the performance improvements in terms of audio quality as compared to state of the art of the MEMS micro-speakers, such as the high out-of-plane membrane displacement over ±400 μm, the 80 dBSPL sound pressure level at 10 cm, the 2% maximal distortion level, and the useful bandwidth from 335 Hz to cutoff frequency.

  4. High-speed and high-fidelity system and method for collecting network traffic

    DOEpatents

    Weigle, Eric H.

    2010-08-24

    A system is provided for the high-speed and high-fidelity collection of network traffic. The system can collect traffic at gigabit-per-second (Gbps) speeds, scale to terabit-per-second (Tbps) speeds, and support additional functions such as real-time network intrusion detection. The present system uses a dedicated operating system for traffic collection to maximize efficiency, scalability, and performance. A scalable infrastructure and apparatus for the present system is provided by splitting the work performed on one host onto multiple hosts. The present system simultaneously addresses the issues of scalability, performance, cost, and adaptability with respect to network monitoring, collection, and other network tasks. In addition to high-speed and high-fidelity network collection, the present system provides a flexible infrastructure to perform virtually any function at high speeds such as real-time network intrusion detection and wide-area network emulation for research purposes.

  5. High Fidelity System Simulation of Multiple Components in Support of the UEET Program

    NASA Technical Reports Server (NTRS)

    Plybon, Ronald C.; VanDeWall, Allan; Sampath, Rajiv; Balasubramaniam, Mahadevan; Mallina, Ramakrishna; Irani, Rohinton

    2006-01-01

    The High Fidelity System Simulation effort has addressed various important objectives to enable additional capability within the NPSS framework. The scope emphasized High Pressure Turbine and High Pressure Compressor components. Initial effort was directed at developing and validating intermediate fidelity NPSS model using PD geometry and extended to high-fidelity NPSS model by overlaying detailed geometry to validate CFD against rig data. Both "feedforward" and feedback" approaches of analysis zooming was employed to enable system simulation capability in NPSS. These approaches have certain benefits and applicability in terms of specific applications "feedback" zooming allows the flow-up of information from high-fidelity analysis to be used to update the NPSS model results by forcing the NPSS solver to converge to high-fidelity analysis predictions. This apporach is effective in improving the accuracy of the NPSS model; however, it can only be used in circumstances where there is a clear physics-based strategy to flow up the high-fidelity analysis results to update the NPSS system model. "Feed-forward" zooming approach is more broadly useful in terms of enabling detailed analysis at early stages of design for a specified set of critical operating points and using these analysis results to drive design decisions early in the development process.

  6. High Fidelity System Modeling for High Quality Image Reconstruction in Clinical CT

    PubMed Central

    Do, Synho; Karl, William Clem; Singh, Sarabjeet; Kalra, Mannudeep; Brady, Tom; Shin, Ellie; Pien, Homer

    2014-01-01

    Today, while many researchers focus on the improvement of the regularization term in IR algorithms, they pay less concern to the improvement of the fidelity term. In this paper, we hypothesize that improving the fidelity term will further improve IR image quality in low-dose scanning, which typically causes more noise. The purpose of this paper is to systematically test and examine the role of high-fidelity system models using raw data in the performance of iterative image reconstruction approach minimizing energy functional. We first isolated the fidelity term and analyzed the importance of using focal spot area modeling, flying focal spot location modeling, and active detector area modeling as opposed to just flying focal spot motion. We then compared images using different permutations of all three factors. Next, we tested the ability of the fidelity terms to retain signals upon application of the regularization term with all three factors. We then compared the differences between images generated by the proposed method and Filtered-Back-Projection. Lastly, we compared images of low-dose in vivo data using Filtered-Back-Projection, Iterative Reconstruction in Image Space, and the proposed method using raw data. The initial comparison of difference maps of images constructed showed that the focal spot area model and the active detector area model also have significant impacts on the quality of images produced. Upon application of the regularization term, images generated using all three factors were able to substantially decrease model mismatch error, artifacts, and noise. When the images generated by the proposed method were tested, conspicuity greatly increased, noise standard deviation decreased by 90% in homogeneous regions, and resolution also greatly improved. In conclusion, the improvement of the fidelity term to model clinical scanners is essential to generating higher quality images in low-dose imaging. PMID:25390888

  7. Advances in coupled safety modeling using systems analysis and high-fidelity methods.

    SciTech Connect

    Fanning, T. H.; Thomas, J. W.; Nuclear Engineering Division

    2010-05-31

    The potential for a sodium-cooled fast reactor to survive severe accident initiators with no damage has been demonstrated through whole-plant testing in EBR-II and FFTF. Analysis of the observed natural protective mechanisms suggests that they would be characteristic of a broad range of sodium-cooled fast reactors utilizing metal fuel. However, in order to demonstrate the degree to which new, advanced sodium-cooled fast reactor designs will possess these desired safety features, accurate, high-fidelity, whole-plant dynamics safety simulations will be required. One of the objectives of the advanced safety-modeling component of the Reactor IPSC is to develop a science-based advanced safety simulation capability by utilizing existing safety simulation tools coupled with emerging high-fidelity modeling capabilities in a multi-resolution approach. As part of this integration, an existing whole-plant systems analysis code has been coupled with a high-fidelity computational fluid dynamics code to assess the impact of high-fidelity simulations on safety-related performance. With the coupled capabilities, it is possible to identify critical safety-related phenomenon in advanced reactor designs that cannot be resolved with existing tools. In this report, the impact of coupling is demonstrated by evaluating the conditions of outlet plenum thermal stratification during a protected loss of flow transient. Outlet plenum stratification was anticipated to alter core temperatures and flows predicted during natural circulation conditions. This effect was observed during the simulations. What was not anticipated, however, is the far-reaching impact that resolving thermal stratification has on the whole plant. The high temperatures predicted at the IHX inlet due to thermal stratification in the outlet plenum forces heat into the intermediate system to the point that it eventually becomes a source of heat for the primary system. The results also suggest that flow stagnation in the

  8. High-fidelity modeling and simulation for wideband receiving system development

    NASA Astrophysics Data System (ADS)

    Wu, Chen; Young, Anne

    2013-05-01

    Research experience has shown that it is expensive to design, build and test a RF/microwave system that is comprised of various RF/microwave components. In order to mitigate the problem, High-Fidelity Modeling and Simulation (HFM&S) is a practical approach that includes high-fidelity behavioural model (HFBM) of the receiving system and scenarios embedded with different Concept of Operations (CONOPS). HFM&S is also an essential way to develop receiving system specifications that can be used for system validation and verification. This paper presents the HFBM of a wideband digital receiver using Matlab/Simulink and the RF Toolbox/SimRF, and the use of the model to build a multi-channel receiving system that has a linear antenna array. The receiving system is installed on an UAV to intercept a ground-based emitter signal in a scenario that is built in Systems Tool Kit. Through the design and build of the UAV receiver and its deployment in a scenario, this paper demonstrates the following: what is meant by HFBM of a system and how it can simulate real hardware; how signal integrity in the HFM&S can be and should be retained; why amplitude and phase are important for signal waveform level M&S why the modern high performance computing technology should be used for signal waveform level M&S and

  9. High fidelity nuclear energy system optimization towards an environmentally benign, sustainable, and secure energy source.

    SciTech Connect

    Tsvetkov, Pavel Valeryevich; Rodriguez, Salvador B.; Ames, David E., II; Rochau, Gary Eugene

    2010-10-01

    A new high-fidelity integrated system method and analysis approach was developed and implemented for consistent and comprehensive evaluations of advanced fuel cycles leading to minimized Transuranic (TRU) inventories. The method has been implemented in a developed code system integrating capabilities of Monte Carlo N - Particle Extended (MCNPX) for high-fidelity fuel cycle component simulations. In this report, a Nuclear Energy System (NES) configuration was developed to take advantage of used fuel recycling and transmutation capabilities in waste management scenarios leading to minimized TRU waste inventories, long-term activities, and radiotoxicities. The reactor systems and fuel cycle components that make up the NES were selected for their ability to perform in tandem to produce clean, safe, and dependable energy in an environmentally conscious manner. The diversity in performance and spectral characteristics were used to enhance TRU waste elimination while efficiently utilizing uranium resources and providing an abundant energy source. A computational modeling approach was developed for integrating the individual models of the NES. A general approach was utilized allowing for the Integrated System Model (ISM) to be modified in order to provide simulation for other systems with similar attributes. By utilizing this approach, the ISM is capable of performing system evaluations under many different design parameter options. Additionally, the predictive capabilities of the ISM and its computational time efficiency allow for system sensitivity/uncertainty analysis and the implementation of optimization techniques.

  10. Developing Capture Mechanisms and High-Fidelity Dynamic Models for the MXER Tether System

    NASA Technical Reports Server (NTRS)

    Canfield, Steven L.

    2007-01-01

    A team consisting of collaborators from Tennessee Technological University (TTU), Marshall Space Flight Center, BD Systems, and the University of Delaware (herein called the TTU team) conducted specific research and development activities in MXER tether systems during the base period of May 15, 2004 through September 30, 2006 under contract number NNM04AB13C. The team addressed two primary topics related to the MXER tether system: 1) Development of validated high-fidelity dynamic models of an elastic rotating tether and 2) development of feasible mechanisms to enable reliable rendezvous and capture. This contractor report will describe in detail the activities that were performed during the base period of this cycle-2 MXER tether activity and will summarize the results of this funded activity. The primary deliverables of this project were the quad trap, a robust capture mechanism proposed, developed, tested, and demonstrated with a high degree of feasibility and the detailed development of a validated high-fidelity elastic tether dynamic model provided through multiple formulations.

  11. The use of high fidelity CAD models as the basis for training on complex systems

    NASA Technical Reports Server (NTRS)

    Miller, Kellie; Tanner, Steve

    1993-01-01

    During the design phases of large and complex systems such as NASA's Space Station Freedom (SSF), there are few, if any physical prototypes built. This is often due to their expense and the realization that the design is likely to change. This poses a problem for training, maintainability, and operations groups who are tasked to lay the foundation of plans for using these systems. The Virtual Reality and Visualization Laboratory at the Boeing Advanced Computing Group's Huntsville facility is supporting the use of high fidelity, detailed design models that are generated during the initial design phases, for use in training, maintainability and operations exercises. This capability was used in its non-immersive form to great effect at the SSF Critical Design Review (CDR) during February, 1993. Allowing the user to move about within a CAD design supports many efforts, including training and scenario study. We will demonstrate via a video of the Maintainability SSF CDR how this type of approach can be used and why it is so effective in conveying large amounts of information quickly and concisely. We will also demonstrate why high fidelity models are so important for this type of training system and how it's immersive aspects may be exploited as well.

  12. Overview of High-Fidelity Modeling Activities in the Numerical Propulsion System Simulations (NPSS) Project

    NASA Technical Reports Server (NTRS)

    Veres, Joseph P.

    2002-01-01

    A high-fidelity simulation of a commercial turbofan engine has been created as part of the Numerical Propulsion System Simulation Project. The high-fidelity computer simulation utilizes computer models that were developed at NASA Glenn Research Center in cooperation with turbofan engine manufacturers. The average-passage (APNASA) Navier-Stokes based viscous flow computer code is used to simulate the 3D flow in the compressors and turbines of the advanced commercial turbofan engine. The 3D National Combustion Code (NCC) is used to simulate the flow and chemistry in the advanced aircraft combustor. The APNASA turbomachinery code and the NCC combustor code exchange boundary conditions at the interface planes at the combustor inlet and exit. This computer simulation technique can evaluate engine performance at steady operating conditions. The 3D flow models provide detailed knowledge of the airflow within the fan and compressor, the high and low pressure turbines, and the flow and chemistry within the combustor. The models simulate the performance of the engine at operating conditions that include sea level takeoff and the altitude cruise condition.

  13. High-fidelity composite adiabatic passage in nonlinear two-level systems

    NASA Astrophysics Data System (ADS)

    Dou, Fu-Quan; Cao, Hui; Liu, Jie; Fu, Li-Bin

    2016-04-01

    We investigate the composite adiabatic passage (CAP) reported by B. T. Torosov et al. [Phys. Rev. Lett. 106, 233001 (2011), 10.1103/PhysRevLett.106.233001] in a nonlinear two-level system in which the level energies depend on the occupation of the levels, representing a mean-field type of interaction between the particles. A high-fidelity, fast, and robust quantum manipulation is achieved in the system. We consider the effect of interparticle interaction and find that it tends to increase the number of the pulse sequences. The CAP technique can suppress the nonadiabatic oscillations below the quantum-information benchmark 10-4, as long as there exist sufficiently long composite sequences. We analyze the robustness against the variations in the field parameters. The difference between the nonlinear and linear systems on the CAP technique is also discussed.

  14. High-Fidelity Lattice Physics Capabilities of the SCALE Code System Using TRITON

    SciTech Connect

    DeHart, Mark D

    2007-01-01

    Increasing complexity in reactor designs suggests a need to reexamine of methods applied in spent-fuel characterization. The ability to accurately predict the nuclide composition of depleted reactor fuel is important in a wide variety of applications. These applications include, but are not limited to, the design, licensing, and operation of commercial/research reactors and spent-fuel transport/storage systems. New complex design projects such as space reactors and Generation IV power reactors also require calculational methods that provide accurate prediction of the isotopic inventory. New high-fidelity physics methods will be required to better understand the physics associated with both evolutionary and revolutionary reactor concepts as they depart from traditional and well-understood light-water reactor designs. The TRITON sequence of the SCALE code system provides a powerful, robust, and rigorous approach for reactor physics analysis. This paper provides a detailed description of TRITON in terms of its key components used in reactor calculations.

  15. Development of an image capturing system for the reproduction of high-fidelity color

    NASA Astrophysics Data System (ADS)

    Ejaz, Tahseen; Shoichi, Yokoi; Horiuchi, Tomohiro; Yokota, Tetsuya; Takaya, Masanori; Ohashi, Gosuke; Shimodaira, Yoshifumi

    2005-01-01

    An image capturing system for the reproduction of high-fidelity color color was developed and a set of three optical filters were designed for this purpose. Simulation was performed on the SOCS database containing the spectral reflectance data of various objects in the range of wavelength of 400nm ~ 700nm in order to calculate the CIELAB color difference ΔEab. The average color difference was found to be 1.049. The camera was mounted with the filters and color photographs of all the 24 color patches of the Macbeth chart were taken. The measured tristimulus values of the patches were compared with those of the digital images captured by the camera. The average ΔEab was found to be 5.916.

  16. Development of an image capturing system for the reproduction of high-fidelity color

    NASA Astrophysics Data System (ADS)

    Ejaz, Tahseen; Shoichi, Yokoi; Horiuchi, Tomohiro; Yokota, Tetsuya; Takaya, Masanori; Ohashi, Gosuke; Shimodaira, Yoshifumi

    2004-12-01

    An image capturing system for the reproduction of high-fidelity color color was developed and a set of three optical filters were designed for this purpose. Simulation was performed on the SOCS database containing the spectral reflectance data of various objects in the range of wavelength of 400nm ~ 700nm in order to calculate the CIELAB color difference ΔEab. The average color difference was found to be 1.049. The camera was mounted with the filters and color photographs of all the 24 color patches of the Macbeth chart were taken. The measured tristimulus values of the patches were compared with those of the digital images captured by the camera. The average ΔEab was found to be 5.916.

  17. Nuclear fuel cycle system simulation tool based on high-fidelity component modeling

    SciTech Connect

    Ames, David E.

    2014-02-01

    The DOE is currently directing extensive research into developing fuel cycle technologies that will enable the safe, secure, economic, and sustainable expansion of nuclear energy. The task is formidable considering the numerous fuel cycle options, the large dynamic systems that each represent, and the necessity to accurately predict their behavior. The path to successfully develop and implement an advanced fuel cycle is highly dependent on the modeling capabilities and simulation tools available for performing useful relevant analysis to assist stakeholders in decision making. Therefore a high-fidelity fuel cycle simulation tool that performs system analysis, including uncertainty quantification and optimization was developed. The resulting simulator also includes the capability to calculate environmental impact measures for individual components and the system. An integrated system method and analysis approach that provides consistent and comprehensive evaluations of advanced fuel cycles was developed. A general approach was utilized allowing for the system to be modified in order to provide analysis for other systems with similar attributes. By utilizing this approach, the framework for simulating many different fuel cycle options is provided. Two example fuel cycle configurations were developed to take advantage of used fuel recycling and transmutation capabilities in waste management scenarios leading to minimized waste inventories.

  18. Development of high-fidelity multiphysics system for light water reactor analysis

    NASA Astrophysics Data System (ADS)

    Magedanz, Jeffrey W.

    There has been a tendency in recent years toward greater heterogeneity in reactor cores, due to the use of mixed-oxide (MOX) fuel, burnable absorbers, and longer cycles with consequently higher fuel burnup. The resulting asymmetry of the neutron flux and energy spectrum between regions with different compositions causes a need to account for the directional dependence of the neutron flux, instead of the traditional diffusion approximation. Furthermore, the presence of both MOX and high-burnup fuel in the core increases the complexity of the heat conduction. The heat transfer properties of the fuel pellet change with irradiation, and the thermal and mechanical expansion of the pellet and cladding strongly affect the size of the gap between them, and its consequent thermal resistance. These operational tendencies require higher fidelity multi-physics modeling capabilities, and this need is addressed by the developments performed within this PhD research. The dissertation describes the development of a High-Fidelity Multi-Physics System for Light Water Reactor Analysis. It consists of three coupled codes -- CTF for Thermal Hydraulics, TORT-TD for Neutron Kinetics, and FRAPTRAN for Fuel Performance. It is meant to address these modeling challenges in three ways: (1) by resolving the state of the system at the level of each fuel pin, rather than homogenizing entire fuel assemblies, (2) by using the multi-group Discrete Ordinates method to account for the directional dependence of the neutron flux, and (3) by using a fuel-performance code, rather than a Thermal Hydraulics code's simplified fuel model, to account for the material behavior of the fuel and its feedback to the hydraulic and neutronic behavior of the system. While the first two are improvements, the third, the use of a fuel-performance code for feedback, constitutes an innovation in this PhD project. Also important to this work is the manner in which such coupling is written. While coupling involves combining

  19. High fidelity nuclear energy system optimization towards an environmentally benign, sustainable, and secure energy source.

    SciTech Connect

    Tsvetkov, Pavel Valeryevich; Rodriguez, Salvador B.; Ames, David E., II; Rochau, Gary Eugene

    2009-09-01

    The impact associated with energy generation and utilization is immeasurable due to the immense, widespread, and myriad effects it has on the world and its inhabitants. The polar extremes are demonstrated on the one hand, by the high quality of life enjoyed by individuals with access to abundant reliable energy sources, and on the other hand by the global-scale environmental degradation attributed to the affects of energy production and use. Thus, nations strive to increase their energy generation, but are faced with the challenge of doing so with a minimal impact on the environment and in a manner that is self-reliant. Consequently, a revival of interest in nuclear energy has followed, with much focus placed on technologies for transmuting nuclear spent fuel. The performed research investigates nuclear energy systems that optimize the destruction of nuclear waste. In the context of this effort, nuclear energy system is defined as a configuration of nuclear reactors and corresponding fuel cycle components. The proposed system has unique characteristics that set it apart from other systems. Most notably the dedicated High-Energy External Source Transmuter (HEST), which is envisioned as an advanced incinerator used in combination with thermal reactors. The system is configured for examining environmentally benign fuel cycle options by focusing on minimization or elimination of high level waste inventories. Detailed high-fidelity exact-geometry models were developed for representative reactor configurations. They were used in preliminary calculations with Monte Carlo N-Particle eXtented (MCNPX) and Standardized Computer Analysis for Licensing Evaluation (SCALE) code systems. The reactor models have been benchmarked against existing experimental data and design data. Simulink{reg_sign}, an extension of MATLAB{reg_sign}, is envisioned as the interface environment for constructing the nuclear energy system model by linking the individual reactor and fuel component sub

  20. Development of a High Fidelity System Analysis Code for Generation IV Reactors

    SciTech Connect

    Hongbin Zhang; Vincent Mousseau; Haihua Zhao

    2008-06-01

    Traditional nuclear reactor system analysis codes such as RELAP and TRAC employ an operator split methodology. In this approach, each of the physics (fluid flow, heat conduction and neutron diffusion) is solved separately and the coupling terms are done explicitly. This approach limits accuracy (first order in time at best) and makes the codes slow in running since the explicit coupling imposes stability restrictions on the time step size. These codes have been extensively tested and validated for the existing LWRs. However, for GEN IV nuclear reactor designs which tend to have long lasting transients resulting from passive safety systems, the performance is questionable and modern high fidelity simulation tools will be required. The requirement for accurate predictability is the motivation for a large scale overhaul of all of the models and assumptions in transient nuclear reactor safety simulation software. At INL we have launched an effort with the long term goal of developing a high fidelity system analysis code that employs modern physical models, numerical methods, and computer science for transient safety analysis of GEN IV nuclear reactors. Modern parallel solution algorithms will be employed through utilizing the nonlinear solution software package PETSc developed by Argonne National Laboratory. The physical models to be developed will have physically realistic length scales and time scales. The solution algorithm will be based on the physics-based preconditioned Jacobian-free Newton-Krylov solution methods. In this approach all of the physical models are solved implicitly and simultaneously in a single nonlinear system. This includes the coolant flow, nonlinear heat conduction, neutron kinetics, and thermal radiation, etc. Including modern physical models and accurate space and time discretizations will allow the simulation capability to be second order accurate in space and in time. This paper presents the current status of the development efforts as

  1. Applications of fidelity measures to complex quantum systems.

    PubMed

    Wimberger, Sandro

    2016-06-13

    We revisit fidelity as a measure for the stability and the complexity of the quantum motion of single-and many-body systems. Within the context of cold atoms, we present an overview of applications of two fidelities, which we call static and dynamical fidelity, respectively. The static fidelity applies to quantum problems which can be diagonalized since it is defined via the eigenfunctions. In particular, we show that the static fidelity is a highly effective practical detector of avoided crossings characterizing the complexity of the systems and their evolutions. The dynamical fidelity is defined via the time-dependent wave functions. Focusing on the quantum kicked rotor system, we highlight a few practical applications of fidelity measurements in order to better understand the large variety of dynamical regimes of this paradigm of a low-dimensional system with mixed regular-chaotic phase space. PMID:27140967

  2. A high-fidelity airbus benchmark for system fault detection and isolation and flight control law clearance

    NASA Astrophysics Data System (ADS)

    Goupil, Ph.; Puyou, G.

    2013-12-01

    This paper presents a high-fidelity generic twin engine civil aircraft model developed by Airbus for advanced flight control system research. The main features of this benchmark are described to make the reader aware of the model complexity and representativeness. It is a complete representation including the nonlinear rigid-body aircraft model with a full set of control surfaces, actuator models, sensor models, flight control laws (FCL), and pilot inputs. Two applications of this benchmark in the framework of European projects are presented: FCL clearance using optimization and advanced fault detection and diagnosis (FDD).

  3. RF/microwave system high-fidelity modeling and simulation: application to airborne multi-channel receiver system for angle of arrival estimation

    NASA Astrophysics Data System (ADS)

    Wu, Chen; Rajan, Sreeraman; Young, Anne; O'Regan, Christina

    2014-06-01

    In this paper, a high-fidelity RF modeling and simulation framework is demonstrated to model an airborne multi-channel receiver system that is used to estimate the angle of arrival (AoA) of received signals from a stationary emitter. The framework is based on System Tool Kit (STK®), Matlab and SystemVue®. The SystemVue-based multi-channel receiver estimates the AoA of incoming signals using adjacent channel amplitude and phase comparisons, and it estimates the Doppler frequency shift of the aircraft by processing the transmitted and received signals. The estimated AoA and Doppler frequency are compared with the ground-truth data provided by STK to validate the efficacy of the modeling process. Unlike other current RF electronic warfare simulation frameworks, the received signal described herein is formed using the received power, the propagation delay and the transmitted waveform, and does not require information such as Doppler frequency shift or radial velocity of the moving platform from the scenario; hence, the simulation is more computationally efficient. In addition, to further reduce the overall modeling and simulation time, since the high-fidelity model computation is costly, the high-fidelity electronic system model is evoked only when the received power is higher than a predetermined threshold.

  4. High-fidelity, 160 fs, 5 μJ pulses from an integrated Yb-fiber laser system with a fiber stretcher matching a simple grating compressor.

    PubMed

    Fernández, A; Jespersen, K; Zhu, L; Grüner-Nielsen, L; Baltuška, A; Galvanauskas, A; Verhoef, A J

    2012-03-01

    Although femtosecond microjoule Yb-fiber systems are attractive because of a straightforward power scalability, they inherently suffer from a lowered pulse fidelity as a result of complex dispersion and nonlinearity management. Here, we present an integrated Yb-fiber system delivering high-fidelity microjoule pulses compressible down to 160 fs. The system uses a dispersion compensating fiber stretcher that is specially designed to match the dispersion of a 1480 lines/mm grating compressor. Performance analysis suggests the further possibility of scaling the pulse energy to tens of microjoules without pulse quality deterioration using this dispersion management scheme. PMID:22378441

  5. High fidelity nanohole enhanced Raman spectroscopy.

    SciTech Connect

    Bahns, J. T.; Guo, Q.; Gray, S. K.; Jaeger, H. M.; Chen, L.; Montgomery, J. M.; Univ. of Chicago

    2009-01-01

    Surface enhanced Raman spectroscopy (SERS) is a sensitive technique that can even detect single molecules. However, in many SERS applications, the strongly inhomogeneous distribution of intense local fields makes it very difficult for a quantitive assessment of the fidelity, or reproducibility of the signal, which limits the application of SERS. Herein, we report the development of exceptionally high-fidelity hole-enhanced Raman spectroscopy (HERS) from ordered, 2D hexagonal nanohole arrays. We take the fidelity f to be a measure of the percent deviation of the Raman peaks from measurement to measurement. Overall, area averaged fidelities for 12 gold array samples ranged from f {approx} 2-15% for HERS using aqueous R6G molecules. Furthermore, intensity modulations of the enhanced Raman spectra were measured for the first time as a function of polarization angle. The best of these measurements, which focus on static laser spots on the sample, could be consistent with even higher fidelities than the area-averaged results. Nanohole arrays in silver provided supporting polarization measurements and a more complete enhanced Raman fingerprint for phenylalanine molecules. We also carried out finite-difference time-domain calculations to assist in the interpretation of the experiments, identifying the polarization dependence as possibly arising from hole-hole interactions. Our results represent a step toward making quantitative and reproducible enhanced Raman measurements possible and also open new avenues for a large-scale source of highly uniform hot spots.

  6. Design and Optimization of Large Accelerator Systems through High-Fidelity Electromagnetic Simulations

    SciTech Connect

    Ng, Cho; Akcelik, Volkan; Candel, Arno; Chen, Sheng; Ge, Lixin; Kabel, Andreas; Lee, Lie-Quan; Li, Zenghai; Prudencio, Ernesto; Schussman, Greg; Uplenchwar1, Ravi; Xiao1, Liling; Ko1, Kwok; Austin, T.; Cary, J.R.; Ovtchinnikov, S.; Smith, D.N.; Werner, G.R.; Bellantoni, L.; /SLAC /TechX Corp. /Fermilab

    2008-08-01

    SciDAC1, with its support for the 'Advanced Computing for 21st Century Accelerator Science and Technology' (AST) project, witnessed dramatic advances in electromagnetic (EM) simulations for the design and optimization of important accelerators across the Office of Science. In SciDAC2, EM simulations continue to play an important role in the 'Community Petascale Project for Accelerator Science and Simulation' (ComPASS), through close collaborations with SciDAC CETs/Institutes in computational science. Existing codes will be improved and new multi-physics tools will be developed to model large accelerator systems with unprecedented realism and high accuracy using computing resources at petascale. These tools aim at targeting the most challenging problems facing the ComPASS project. Supported by advances in computational science research, they have been successfully applied to the International Linear Collider (ILC) and the Large Hadron Collider (LHC) in High Energy Physics (HEP), the JLab 12-GeV Upgrade in Nuclear Physics (NP), as well as the Spallation Neutron Source (SNS) and the Linac Coherent Light Source (LCLS) in Basic Energy Sciences (BES).

  7. Physics and Psychophysics of High-Fidelity Sound. Part III: The Components of a Sound-Reproducing System: Amplifiers and Loudspeakers.

    ERIC Educational Resources Information Center

    Rossing, Thomas D.

    1980-01-01

    Described are the components for a high-fidelity sound-reproducing system which focuses on various program sources, the amplifier, and loudspeakers. Discussed in detail are amplifier power and distortion, air suspension, loudspeaker baffles and enclosures, bass-reflex enclosure, drone cones, rear horn and acoustic labyrinth enclosures, horn…

  8. The use of high-fidelity human patient simulation and the introduction of new anesthesia delivery systems.

    PubMed

    Dalley, Paul; Robinson, Brian; Weller, Jennifer; Caldwell, Catherine

    2004-12-01

    New anesthesia delivery systems are becoming increasingly complex. Although equipment is involved in a large proportion of intraoperative anesthesia problems (most also involving human error), the current methods of introducing new equipment into clinical practice have not been well studied. We designed a randomized, controlled, prospective study to investigate an alternative method of introducing new anesthesia equipment. Fifteen anesthesiology trainees were randomized to either the standard introduction to a Drager Fabius GS anesthesia delivery machine plus simulated clinical use of the new machine in a high-fidelity human patient simulator (HPS) (Group 1) or to the standard introduction alone (Group 2). We used a questionnaire to seek their opinion on the new equipment, and responses showed that both groups were comparable in their reported confidence to use the new equipment safely. All trainees were then tested in two simulated anesthetic crises with the new machine. Performance was analyzed in terms of time to resolve the emergency, by using analysis of videos by an independent rater. Group 1 resolved both crises significantly faster. HPS allowed us to detect design features that were common sources of error. PMID:15562063

  9. The High Fidelity Plasma Speaker

    NASA Astrophysics Data System (ADS)

    McGall, James

    2014-10-01

    A plasma speaker is a device that uses ionized gas as the driving source of sound production, rather than the traditional magnetic coil and membrane setup found on a standard speaker. Similar to how lightning produces sound, or even a small static shock, a plasma speaker uses a modulating electric arc between two electrodes to produce sound. An electric circuit is built that allows the variance of the high voltage electric potential to be controlled by a 3.5 mm standard audio headphone jack, allowing sound energy to be transferred from the plasma to the air by means of pulse width modulation. For my summer project I have built two different models of plasma speakers and am working on a third. The speaker benefits from having a nearly massless driver, and I hypothesize that it should show a response rate faster than that of a traditional speaker and a decreased impulse response while having the drawbacks of inefficiency and a low maximum decibel output. The speakers are currently being optimized with magnetic stabilization of the plasma and will be tested soon for impulse response, frequency generation, efficiency, and audio coloration. Bridges for SUCCESS Grant at Salisbury University under Ph.D. Matthew Bailey.

  10. High-Fidelity Piezoelectric Audio Device

    NASA Technical Reports Server (NTRS)

    Woodward, Stanley E.; Fox, Robert L.; Bryant, Robert G.

    2003-01-01

    ModalMax is a very innovative means of harnessing the vibration of a piezoelectric actuator to produce an energy efficient low-profile device with high-bandwidth high-fidelity audio response. The piezoelectric audio device outperforms many commercially available speakers made using speaker cones. The piezoelectric device weighs substantially less (4 g) than the speaker cones which use magnets (10 g). ModalMax devices have extreme fabrication simplicity. The entire audio device is fabricated by lamination. The simplicity of the design lends itself to lower cost. The piezoelectric audio device can be used without its acoustic chambers and thereby resulting in a very low thickness of 0.023 in. (0.58 mm). The piezoelectric audio device can be completely encapsulated, which makes it very attractive for use in wet environments. Encapsulation does not significantly alter the audio response. Its small size (see Figure 1) is applicable to many consumer electronic products, such as pagers, portable radios, headphones, laptop computers, computer monitors, toys, and electronic games. The audio device can also be used in automobile or aircraft sound systems.

  11. Finding the Needle in the Haystack: High-Fidelity Models of Planetary Systems for Simulating Exoplanet Observations

    NASA Astrophysics Data System (ADS)

    Lincowski, Andrew; Roberge, Aki; Stark, Christopher C.; Wilkins, Ashlee N.; Nesvold, Erika; Haystacks Team

    2015-01-01

    Future missions to characterize exoplanets will require instruments tailored to the problem of finding a habitable exoplanet: suppressing the bright star while still directly observing planets at small angular separations. This problem is compounded by interplanetary dust, which will likely be a significant source of astrophysical background noise. Instrument parameters must be constrained with detailed performance simulations, which must then be analyzed to determine if the instruments are capable of discerning the desired exoplanet characteristics. One valuable characteristic is the mass of the planet. A constraint on a planet's mass can quickly show if it is likely to be a rocky terrestrial planet, which may have the potential to form life as we know it. Unfortunately, it is difficult to measure the masses of small planets with traditional indirect techniques (e.g. radial velocity).A planet's gravitational effects on nearby interplanetary dust (or 'exozodi') can be more easily observed than the planet itself. A single observation of a planetary disk could constrain the mass of an exoplanet if the dust distribution varies sufficiently to be distinguished by future instruments. The NASA Haystacks team (PI: A. Roberge) has completed preliminary high-fidelity spectral image cubes of our entire Solar System at visible and near-infrared wavelengths, including star & planet spectra and scattered light from dust. In addition to these models, we present new planetary system architectures designed to test whether we can distinguish between mini-Neptune-mass planets and Earth-mass planets by their effects on the dust structure. These spectral image cubes will be processed through instrument simulators, allowing comparison of known disk structure with simulated observations of the disk. The results will help inform future exoplanet telescope missions in development (e.g. WFIRST/AFTA and ATLAST).Spectral image cubes will be available for download from a NASA website once

  12. Geometry Control System for Exploratory Shape Optimization Applied to High-Fidelity Aerodynamic Design of Unconventional Aircraft

    NASA Astrophysics Data System (ADS)

    Gagnon, Hugo

    This thesis represents a step forward to bring geometry parameterization and control on par with the disciplinary analyses involved in shape optimization, particularly high-fidelity aerodynamic shape optimization. Central to the proposed methodology is the non-uniform rational B-spline, used here to develop a new geometry generator and geometry control system applicable to the aerodynamic design of both conventional and unconventional aircraft. The geometry generator adopts a component-based approach, where any number of predefined but modifiable (parametric) wing, fuselage, junction, etc., components can be arbitrarily assembled to generate the outer mold line of aircraft geometry. A unique Python-based user interface incorporating an interactive OpenGL windowing system is proposed. Together, these tools allow for the generation of high-quality, C2 continuous (or higher), and customized aircraft geometry with fast turnaround. The geometry control system tightly integrates shape parameterization with volume mesh movement using a two-level free-form deformation approach. The framework is augmented with axial curves, which are shown to be flexible and efficient at parameterizing wing systems of arbitrary topology. A key aspect of this methodology is that very large shape deformations can be achieved with only a few, intuitive control parameters. Shape deformation consumes a few tenths of a second on a single processor and surface sensitivities are machine accurate. The geometry control system is implemented within an existing aerodynamic optimizer comprising a flow solver for the Euler equations and a sequential quadratic programming optimizer. Gradients are evaluated exactly with discrete-adjoint variables. The algorithm is first validated by recovering an elliptical lift distribution on a rectangular wing, and then demonstrated through the exploratory shape optimization of a three-pronged feathered winglet leading to a span efficiency of 1.22 under a height

  13. A Parallel, High-Fidelity Radar Model

    NASA Astrophysics Data System (ADS)

    Horsley, M.; Fasenfest, B.

    2010-09-01

    Accurate modeling of Space Surveillance sensors is necessary for a variety of applications. Accurate models can be used to perform trade studies on sensor designs, locations, and scheduling. In addition, they can be used to predict system-level performance of the Space Surveillance Network to a collision or satellite break-up event. A high fidelity physics-based radar simulator has been developed for Space Surveillance applications. This simulator is designed in a modular fashion, where each module describes a particular physical process or radar function (radio wave propagation & scattering, waveform generation, noise sources, etc.) involved in simulating the radar and its environment. For each of these modules, multiple versions are available in order to meet the end-users needs and requirements. For instance, the radar simulator supports different atmospheric models in order to facilitate different methods of simulating refraction of the radar beam. The radar model also has the capability to use highly accurate radar cross sections generated by the method of moments, accelerated by the fast multipole method. To accelerate this computationally expensive model, it is parallelized using MPI. As a testing framework for the radar model, it is incorporated into the Testbed Environment for Space Situational Awareness (TESSA). TESSA is based on a flexible, scalable architecture, designed to exploit high-performance computing resources and allow physics-based simulation of the SSA enterprise. In addition to the radar models, TESSA includes hydrodynamic models of satellite intercept and debris generation, orbital propagation algorithms, optical brightness calculations, optical system models, object detection algorithms, orbit determination algorithms, simulation analysis and visualization tools. Within this framework, observations and tracks generated by the new radar model are compared to results from a phenomenological radar model. In particular, the new model will be

  14. High-Fidelity Roadway Modeling and Simulation

    NASA Technical Reports Server (NTRS)

    Wang, Jie; Papelis, Yiannis; Shen, Yuzhong; Unal, Ozhan; Cetin, Mecit

    2010-01-01

    Roads are an essential feature in our daily lives. With the advances in computing technologies, 2D and 3D road models are employed in many applications, such as computer games and virtual environments. Traditional road models were generated by professional artists manually using modeling software tools such as Maya and 3ds Max. This approach requires both highly specialized and sophisticated skills and massive manual labor. Automatic road generation based on procedural modeling can create road models using specially designed computer algorithms or procedures, reducing the tedious manual editing needed for road modeling dramatically. But most existing procedural modeling methods for road generation put emphasis on the visual effects of the generated roads, not the geometrical and architectural fidelity. This limitation seriously restricts the applicability of the generated road models. To address this problem, this paper proposes a high-fidelity roadway generation method that takes into account road design principles practiced by civil engineering professionals, and as a result, the generated roads can support not only general applications such as games and simulations in which roads are used as 3D assets, but also demanding civil engineering applications, which requires accurate geometrical models of roads. The inputs to the proposed method include road specifications, civil engineering road design rules, terrain information, and surrounding environment. Then the proposed method generates in real time 3D roads that have both high visual and geometrical fidelities. This paper discusses in details the procedures that convert 2D roads specified in shape files into 3D roads and civil engineering road design principles. The proposed method can be used in many applications that have stringent requirements on high precision 3D models, such as driving simulations and road design prototyping. Preliminary results demonstrate the effectiveness of the proposed method.

  15. Status report on multigroup cross section generation code development for high-fidelity deterministic neutronics simulation system.

    SciTech Connect

    Yang, W. S.; Lee, C. H.

    2008-05-16

    Under the fast reactor simulation program launched in April 2007, development of an advanced multigroup cross section generation code was initiated in July 2007, in conjunction with the development of the high-fidelity deterministic neutron transport code UNIC. The general objectives are to simplify the existing multi-step schemes and to improve the resolved and unresolved resonance treatments. Based on the review results of current methods and the fact that they have been applied successfully to fast critical experiment analyses and fast reactor designs for last three decades, the methodologies of the ETOE-2/MC{sup 2}-2/SDX code system were selected as the starting set of methodologies for multigroup cross section generation for fast reactor analysis. As the first step for coupling with the UNIC code and use in a parallel computing environment, the MC{sup 2}-2 code was updated by modernizing the memory structure and replacing old data management package subroutines and functions with FORTRAN 90 based routines. Various modifications were also made in the ETOE-2 and MC{sup 2}-2 codes to process the ENDF/B-VII.0 data properly. Using the updated ETOE-2/MC{sup 2}-2 code system, the ENDF/B-VII.0 data was successfully processed for major heavy and intermediate nuclides employed in sodium-cooled fast reactors. Initial verification tests of the MC{sup 2}-2 libraries generated from ENDF/B-VII.0 data were performed by inter-comparison of twenty-one group infinite dilute total cross sections obtained from MC{sup 2}-2, VIM, and NJOY. For almost all nuclides considered, MC{sup 2}-2 cross sections agreed very well with those from VIM and NJOY. Preliminary validation tests of the ENDF/B-VII.0 libraries of MC{sup 2}-2 were also performed using a set of sixteen fast critical benchmark problems. The deterministic results based on MC{sup 2}-2/TWODANT calculations were in good agreement with MCNP solutions within {approx}0.25% {Delta}{rho}, except a few small LANL fast assemblies

  16. High-Fidelity Flash Lidar Model Development

    NASA Technical Reports Server (NTRS)

    Hines, Glenn D.; Pierrottet, Diego F.; Amzajerdian, Farzin

    2014-01-01

    NASA's Autonomous Landing and Hazard Avoidance Technologies (ALHAT) project is currently developing the critical technologies to safely and precisely navigate and land crew, cargo and robotic spacecraft vehicles on and around planetary bodies. One key element of this project is a high-fidelity Flash Lidar sensor that can generate three-dimensional (3-D) images of the planetary surface. These images are processed with hazard detection and avoidance and hazard relative navigation algorithms, and then are subsequently used by the Guidance, Navigation and Control subsystem to generate an optimal navigation solution. A complex, high-fidelity model of the Flash Lidar was developed in order to evaluate the performance of the sensor and its interaction with the interfacing ALHAT components on vehicles with different configurations and under different flight trajectories. The model contains a parameterized, general approach to Flash Lidar detection and reflects physical attributes such as range and electronic noise sources, and laser pulse temporal and spatial profiles. It also provides the realistic interaction of the laser pulse with terrain features that include varying albedo, boulders, craters slopes and shadows. This paper gives a description of the Flash Lidar model and presents results from the Lidar operating under different scenarios.

  17. High-fidelity flash lidar model development

    NASA Astrophysics Data System (ADS)

    Hines, Glenn D.; Pierrottet, Diego F.; Amzajerdian, Farzin

    2014-06-01

    NASA's Autonomous Landing and Hazard Avoidance Technologies (ALHAT) project is currently developing the critical technologies to safely and precisely navigate and land crew, cargo and robotic spacecraft vehicles on and around planetary bodies. One key element of this project is a high-fidelity Flash Lidar sensor that can generate three-dimensional (3-D) images of the planetary surface. These images are processed with hazard detection and avoidance and hazard relative navigation algorithms, and then are subsequently used by the Guidance, Navigation and Control subsystem to generate an optimal navigation solution. A complex, high-fidelity model of the Flash Lidar was developed in order to evaluate the performance of the sensor and its interaction with the interfacing ALHAT components on vehicles with different configurations and under different flight trajectories. The model contains a parameterized, general approach to Flash Lidar detection and reflects physical attributes such as range and electronic noise sources, and laser pulse temporal and spatial profiles. It also provides the realistic interaction of the laser pulse with terrain features that include varying albedo, boulders, craters slopes and shadows. This paper gives a description of the Flash Lidar model and presents results from the Lidar operating under different scenarios.

  18. Linear digital imaging system fidelity analysis

    NASA Technical Reports Server (NTRS)

    Park, Stephen K.

    1989-01-01

    The combined effects of imaging gathering, sampling and reconstruction are analyzed in terms of image fidelity. The analysis is based upon a standard end-to-end linear system model which is sufficiently general so that the results apply to most line-scan and sensor-array imaging systems. Shift-variant sampling effects are accounted for with an expected value analysis based upon the use of a fixed deterministic input scene which is randomly shifted (mathematically) relative to the sampling grid. This random sample-scene phase approach has been used successfully by the author and associates in several previous related papers.

  19. High fidelity simulations of infrared imagery with animated characters

    NASA Astrophysics Data System (ADS)

    Näsström, F.; Persson, A.; Bergström, D.; Berggren, J.; Hedström, J.; Allvar, J.; Karlsson, M.

    2012-06-01

    High fidelity simulations of IR signatures and imagery tend to be slow and do not have effective support for animation of characters. Simplified rendering methods based on computer graphics methods can be used to overcome these limitations. This paper presents a method to combine these tools and produce simulated high fidelity thermal IR data of animated people in terrain. Infrared signatures for human characters have been calculated using RadThermIR. To handle multiple character models, these calculations use a simplified material model for the anatomy and clothing. Weather and temperature conditions match the IR-texture used in the terrain model. The calculated signatures are applied to the animated 3D characters that, together with the terrain model, are used to produce high fidelity IR imagery of people or crowds. For high level animation control and crowd simulations, HLAS (High Level Animation System) has been developed. There are tools available to create and visualize skeleton based animations, but tools that allow control of the animated characters on a higher level, e.g. for crowd simulation, are usually expensive and closed source. We need the flexibility of HLAS to add animation into an HLA enabled sensor system simulation framework.

  20. Status report on high fidelity reactor simulation.

    SciTech Connect

    Palmiotti, G.; Smith, M.; Rabiti, C.; Lewis, E.; Yang, W.; Leclere,M.; Siegel, A.; Fischer, P.; Kaushik, D.; Ragusa, J.; Lottes, J.; Smith, B.

    2006-12-11

    This report presents the effort under way at Argonne National Laboratory toward a comprehensive, integrated computational tool intended mainly for the high-fidelity simulation of sodium-cooled fast reactors. The main activities carried out involved neutronics, thermal hydraulics, coupling strategies, software architecture, and high-performance computing. A new neutronics code, UNIC, is being developed. The first phase involves the application of a spherical harmonics method to a general, unstructured three-dimensional mesh. The method also has been interfaced with a method of characteristics. The spherical harmonics equations were implemented in a stand-alone code that was then used to solve several benchmark problems. For thermal hydraulics, a computational fluid dynamics code called Nek5000, developed in the Mathematics and Computer Science Division for coupled hydrodynamics and heat transfer, has been applied to a single-pin, periodic cell in the wire-wrap geometry typical of advanced burner reactors. Numerical strategies for multiphysics coupling have been considered and higher-accuracy efficient methods proposed to finely simulate coupled neutronic/thermal-hydraulic reactor transients. Initial steps have been taken in order to couple UNIC and Nek5000, and simplified problems have been defined and solved for testing. Furthermore, we have begun developing a lightweight computational framework, based in part on carefully selected open source tools, to nonobtrusively and efficiently integrate the individual physics modules into a unified simulation tool.

  1. Random ambience using high fidelity images

    NASA Astrophysics Data System (ADS)

    Abu, Nur Azman; Sahib, Shahrin

    2011-06-01

    Most of the secure communication nowadays mandates true random keys as an input. These operations are mostly designed and taken care of by the developers of the cryptosystem. Due to the nature of confidential crypto development today, pseudorandom keys are typically designed and still preferred by the developers of the cryptosystem. However, these pseudorandom keys are predictable, periodic and repeatable, hence they carry minimal entropy. True random keys are believed to be generated only via hardware random number generators. Careful statistical analysis is still required to have any confidence the process and apparatus generates numbers that are sufficiently random to suit the cryptographic use. In this underlying research, each moment in life is considered unique in itself. The random key is unique for the given moment generated by the user whenever he or she needs the random keys in practical secure communication. An ambience of high fidelity digital image shall be tested for its randomness according to the NIST Statistical Test Suite. Recommendation on generating a simple 4 megabits per second random cryptographic keys live shall be reported.

  2. A generalized fidelity amplitude for open systems.

    PubMed

    Gorin, T; Moreno, H J; Seligman, T H

    2016-06-13

    We consider a central system which is coupled via dephasing to an open system, i.e. an intermediate system which in turn is coupled to another environment. Considering the intermediate and far environment as one composite system, the coherences in the central system are given in the form of fidelity amplitudes for a certain perturbed echo dynamics in the composite environment. On the basis of the Born-Markov approximation, we derive a master equation for the reduction of that dynamics to the intermediate system alone. In distinction to an earlier paper (Moreno et al 2015 Phys. Rev. A 92, 030104. (doi:10.1103/PhysRevA.92.030104)), where we discussed the stabilizing effect of the far environment on the decoherence in the central system, we focus here on the possibility of using the measurable coherences in the central system for probing the open quantum dynamics in the intermediate system. We illustrate our results for the case of chaotic dynamics in the near environment, where we compare random matrix simulations with our analytical result. PMID:27140969

  3. A proposal of monitoring and forecasting system for crustal activity in and around Japan using a large-scale high-fidelity finite element simulation codes

    NASA Astrophysics Data System (ADS)

    Hori, T.; Ichimura, T.

    2015-12-01

    Here we propose a system for monitoring and forecasting of crustal activity, especially great interplate earthquake generation and its preparation processes in subduction zone. Basically, we model great earthquake generation as frictional instability on the subjecting plate boundary. So, spatio-temporal variation in slip velocity on the plate interface should be monitored and forecasted. Although, we can obtain continuous dense surface deformation data on land and partly at the sea bottom, the data obtained are not fully utilized for monitoring and forecasting. It is necessary to develop a physics-based data analysis system including (1) a structural model with the 3D geometry of the plate interface and the material property such as elasticity and viscosity, (2) calculation code for crustal deformation and seismic wave propagation using (1), (3) inverse analysis or data assimilation code both for structure and fault slip using (1)&(2). To accomplish this, it is at least necessary to develop highly reliable large-scale simulation code to calculate crustal deformation and seismic wave propagation for 3D heterogeneous structure. Actually, Ichimura et al. (2014, SC14) has developed unstructured FE non-linear seismic wave simulation code, which achieved physics-based urban earthquake simulation enhanced by 10.7 BlnDOF x 30 K time-step. Ichimura et al. (2013, GJI) has developed high fidelity FEM simulation code with mesh generator to calculate crustal deformation in and around Japan with complicated surface topography and subducting plate geometry for 1km mesh. Further, for inverse analyses, Errol et al. (2012, BSSA) has developed waveform inversion code for modeling 3D crustal structure, and Agata et al. (2015, this meeting) has improved the high fidelity FEM code to apply an adjoint method for estimating fault slip and asthenosphere viscosity. Hence, we have large-scale simulation and analysis tools for monitoring. Furthermore, we are developing the methods for

  4. Paleomagnetic recording fidelity of nonideal magnetic systems

    PubMed Central

    Muxworthy, Adrian R; Krása, David; Williams, Wyn; Almeida, Trevor P

    2014-01-01

    A suite of near-identical magnetite nanodot samples produced by electron-beam lithography have been used to test the thermomagnetic recording fidelity of particles in the 74–333 nm size range; the grain size range most commonly found in rocks. In addition to controlled grain size, the samples had identical particle spacings, meaning that intergrain magnetostatic interactions could be controlled. Their magnetic hysteresis parameters were indicative of particles thought not to be ideal magnetic recorders; however, the samples were found to be excellent thermomagnetic recorders of the magnetic field direction. They were also found to be relatively good recorders of the field intensity in a standard paleointensity experiment. The samples' intensities were all within ∼15% of the expected answer and the mean of the samples within 3% of the actual field. These nonideal magnetic systems have been shown to be reliable records of the geomagnetic field in terms of both direction and intensity even though their magnetic hysteresis characteristics indicate less than ideal magnetic grains. Key Points Nonideal magnetic systems accurately record field direction Weak-field remanences more stable than strong-field remanences PMID:26300699

  5. The Need for High Fidelity Lunar Regolith Simulants

    NASA Technical Reports Server (NTRS)

    Gaier, James R.

    2007-01-01

    The case is made for the need to have high fidelity lunar regolith simulants to verify the performance of structures and mechanisms to be used on the lunar surface. Minor constituents will in some cases have major consequences. Small amounts of sulfur in the regolith can poison catalysts, and metallic iron on the surface of nano-sized dust particles may cause a dramatic increase in its toxicity. So the definition of a high fidelity simulant is application dependent. For example, in situ resource utilization will require high fidelity in chemistry, meaning careful attention to the minor components and phases; but some other applications, such as the abrasive effects on suit fabrics, might be relatively insensitive to minor component chemistry. The lunar environment itself will change the surface chemistry of the simulant, so to have a high fidelity simulant at must be used in a high fidelity simulated environment to get a high fidelity simulation. Research must be conducted to determine how sensitive technologies will be to minor components and environmental factors before they can be dismissed as unimportant.

  6. High fidelity wireless network evaluation for heterogeneous cognitive radio networks

    NASA Astrophysics Data System (ADS)

    Ding, Lei; Sagduyu, Yalin; Yackoski, Justin; Azimi-Sadjadi, Babak; Li, Jason; Levy, Renato; Melodia, Tammaso

    2012-06-01

    We present a high fidelity cognitive radio (CR) network emulation platform for wireless system tests, measure- ments, and validation. This versatile platform provides the configurable functionalities to control and repeat realistic physical channel effects in integrated space, air, and ground networks. We combine the advantages of scalable simulation environment with reliable hardware performance for high fidelity and repeatable evaluation of heterogeneous CR networks. This approach extends CR design only at device (software-defined-radio) or lower-level protocol (dynamic spectrum access) level to end-to-end cognitive networking, and facilitates low-cost deployment, development, and experimentation of new wireless network protocols and applications on frequency- agile programmable radios. Going beyond the channel emulator paradigm for point-to-point communications, we can support simultaneous transmissions by network-level emulation that allows realistic physical-layer inter- actions between diverse user classes, including secondary users, primary users, and adversarial jammers in CR networks. In particular, we can replay field tests in a lab environment with real radios perceiving and learning the dynamic environment thereby adapting for end-to-end goals over distributed spectrum coordination channels that replace the common control channel as a single point of failure. CR networks offer several dimensions of tunable actions including channel, power, rate, and route selection. The proposed network evaluation platform is fully programmable and can reliably evaluate the necessary cross-layer design solutions with configurable op- timization space by leveraging the hardware experiments to represent the realistic effects of physical channel, topology, mobility, and jamming on spectrum agility, situational awareness, and network resiliency. We also provide the flexibility to scale up the test environment by introducing virtual radios and establishing seamless signal

  7. Experimental quantum error correction with high fidelity

    NASA Astrophysics Data System (ADS)

    Zhang, Jingfu; Gangloff, Dorian; Moussa, Osama; Laflamme, Raymond

    2011-09-01

    More than ten years ago a first step toward quantum error correction (QEC) was implemented [Phys. Rev. Lett.PRLTAO0031-900710.1103/PhysRevLett.81.2152 81, 2152 (1998)]. The work showed there was sufficient control in nuclear magnetic resonance to implement QEC, and demonstrated that the error rate changed from ɛ to ˜ɛ2. In the current work we reproduce a similar experiment using control techniques that have been since developed, such as the pulses generated by gradient ascent pulse engineering algorithm. We show that the fidelity of the QEC gate sequence and the comparative advantage of QEC are appreciably improved. This advantage is maintained despite the errors introduced by the additional operations needed to protect the quantum states.

  8. Experimental quantum error correction with high fidelity

    SciTech Connect

    Zhang Jingfu; Gangloff, Dorian; Moussa, Osama; Laflamme, Raymond

    2011-09-15

    More than ten years ago a first step toward quantum error correction (QEC) was implemented [Phys. Rev. Lett. 81, 2152 (1998)]. The work showed there was sufficient control in nuclear magnetic resonance to implement QEC, and demonstrated that the error rate changed from {epsilon} to {approx}{epsilon}{sup 2}. In the current work we reproduce a similar experiment using control techniques that have been since developed, such as the pulses generated by gradient ascent pulse engineering algorithm. We show that the fidelity of the QEC gate sequence and the comparative advantage of QEC are appreciably improved. This advantage is maintained despite the errors introduced by the additional operations needed to protect the quantum states.

  9. The Need for High Fidelity Lunar Regolith Simulants

    NASA Technical Reports Server (NTRS)

    Gaier, James R.

    2008-01-01

    The case is made for the need to have high fidelity lunar regolith simulants to verify the performance of structures, mechanisms, and processes to be used on the lunar surface. Minor constituents will in some cases have major consequences. Small amounts of sulfur in the regolith can poison catalysts, and metallic iron on the surface of nano-sized dust particles may cause a dramatic increase in its toxicity. So the definition of a high fidelity simulant is application-dependent. For example, in situ resource utilization will require high fidelity in chemistry, meaning careful attention to the minor components and phases; but some other applications, such as the abrasive effects on suit fabrics, might be relatively insensitive to minor component chemistry while abrasion of some metal components may be highly dependent on trace components. The lunar environment itself will change the surface chemistry of the simulant, so to have a high fidelity simulant it must be used in a high fidelity simulated environment to get an accurate simulation. Research must be conducted to determine how sensitive technologies will be to minor components and environmental factors before they can be dismissed as unimportant.

  10. High-Fidelity Coding with Correlated Neurons

    PubMed Central

    da Silveira, Rava Azeredo; Berry, Michael J.

    2014-01-01

    Positive correlations in the activity of neurons are widely observed in the brain. Previous studies have shown these correlations to be detrimental to the fidelity of population codes, or at best marginally favorable compared to independent codes. Here, we show that positive correlations can enhance coding performance by astronomical factors. Specifically, the probability of discrimination error can be suppressed by many orders of magnitude. Likewise, the number of stimuli encoded—the capacity—can be enhanced more than tenfold. These effects do not necessitate unrealistic correlation values, and can occur for populations with a few tens of neurons. We further show that both effects benefit from heterogeneity commonly seen in population activity. Error suppression and capacity enhancement rest upon a pattern of correlation. Tuning of one or several effective parameters can yield a limit of perfect coding: the corresponding pattern of positive correlation leads to a ‘lock-in’ of response probabilities that eliminates variability in the subspace relevant for stimulus discrimination. We discuss the nature of this pattern and we suggest experimental tests to identify it. PMID:25412463

  11. Using interference for high fidelity quantum state transfer in optomechanics

    NASA Astrophysics Data System (ADS)

    Wang, Ying-Dan; Clerk, Aashish A.

    2012-02-01

    We present a theoretical study of a two-cavity optomechanical system (e.g. a single mechanical resonator coupled to both a microwave and an optical cavity), investigating how interference can be used to perform mechanically-mediated quantum state transfer between the two cavities. We show that this optomechanical system possesses an effective ``mechanically-dark'' mode which is immune to mechanical dissipation; utilizing this feature allows highly efficient transfer of intra-cavity states, as well as of itinerant photon states. Simple analytic expressions for the fidelity of transferring both Gaussian and non-Gaussian states are provided. Our work has relevance to ongoing experimental efforts in quantum optomechanics (e.g., C. A. Regal and K. W. Lehnert, J. Phys.: Conf. Ser. 264, 012025 (2011); A. H. Safavi-Naeini and O. Painter, New J. Phys. 13, 013017 (2011)).

  12. Is high fidelity human patient (mannequin) simulation, simulation of learning?

    PubMed

    McGarry, Denise; Cashin, Andrew; Fowler, Cathrine

    2014-08-01

    This paper explores the application of evaluation of high fidelity human patient (mannequin) simulation emerging in nursing education. The ramifications for use in mental health nursing are examined. A question is posed: Is high fidelity human patient (mannequin) simulation limited to being a "simulation of learning"? Explicit research that traces learning outcomes from mannequin, to clinical practice and hence consumer outcomes, is absent in mental health. Piecing together research from psychology addressing cognitive load theory and considering the capacity for learners to imitate desired behaviour without experiencing deep learning, the possibility is real that simulation of learning is the outcome of high fidelity human patient (mannequin) simulation applications to mental health nursing. PMID:24837517

  13. High-fidelity polarization storage in a gigahertz bandwidth quantum memory

    NASA Astrophysics Data System (ADS)

    England, D. G.; Michelberger, P. S.; Champion, T. F. M.; Reim, K. F.; Lee, K. C.; Sprague, M. R.; Jin, X.-M.; Langford, N. K.; Kolthammer, W. S.; Nunn, J.; Walmsley, I. A.

    2012-06-01

    We demonstrate a dual-rail optical Raman memory inside a polarization interferometer; this enables us to store polarization-encoded information at GHz bandwidths in a room-temperature atomic ensemble. By performing full process tomography on the system, we measure up to 97 ± 1% process fidelity for the storage and retrieval process. At longer storage times, the process fidelity remains high, despite a loss of efficiency. The fidelity is 86 ± 4% for 1.5 μs storage time, which is 5000 times the pulse duration. Hence, high fidelity is combined with a large time-bandwidth product. This high performance, with an experimentally simple setup, demonstrates the suitability of the Raman memory for integration into large-scale quantum networks.

  14. High-fidelity linear optical quantum computing with polarization encoding

    SciTech Connect

    Spedalieri, Federico M.; Lee, Hwang; Dowling, Jonathan P.

    2006-01-15

    We show that the KLM scheme [Knill, Laflamme, and Milburn, Nature 409, 46 (2001)] can be implemented using polarization encoding, thus reducing the number of path modes required by half. One of the main advantages of this new implementation is that it naturally incorporates a loss detection mechanism that makes the probability of a gate introducing a non-detected error, when non-ideal detectors are considered, dependent only on the detector dark-count rate and independent of its efficiency. Since very low dark-count rate detectors are currently available, a high-fidelity gate (probability of error of order 10{sup -6} conditional on the gate being successful) can be implemented using polarization encoding. The detector efficiency determines the overall success probability of the gate but does not affect its fidelity. This can be applied to the efficient construction of optical cluster states with very high fidelity for quantum computing.

  15. High fidelity quantum memory via dynamical decoupling: theory and experiment

    NASA Astrophysics Data System (ADS)

    Peng, Xinhua; Suter, Dieter; Lidar, Daniel A.

    2011-08-01

    Quantum information processing requires overcoming decoherence—the loss of 'quantumness' due to the inevitable interaction between the quantum system and its environment. One approach towards a solution is quantum dynamical decoupling—a method employing strong and frequent pulses applied to the qubits. Here we report on the first experimental test of the concatenated dynamical decoupling (CDD) scheme, which invokes recursively constructed pulse sequences. Using nuclear magnetic resonance, we demonstrate a near order of magnitude improvement in the decay time of stored quantum states. In conjunction with recent results on high fidelity quantum gates using CDD, our results suggest that quantum dynamical decoupling should be used as a first layer of defense against decoherence in quantum information processing implementations, and can be a stand-alone solution in the right parameter regime.

  16. Performance and workload effects for full versus partial automation in a high-fidelity multi-task system

    NASA Astrophysics Data System (ADS)

    Scallen, Stephen Francis

    This thesis evaluated theoretical predictions concerning performance and workload effects of the implementation of adaptive allocation. Five experiments are reported in which adaptive allocation was implemented in a multiple task aviation simulation with component tracking, monitoring, and target identification sub-tasks. Experiments 1 and 2 empirically determined input values for the tracking task which produced controlled levels of tracking difficulty. Experiment 3 exposed pilots and non pilots to single, dual, and multiple task combinations under independent and linked sub-tasks configurations. Results indicated that performance on all sub-tasks was sensitive to the number of concurrent tasks and further indicated that the non-linked system configuration contributed to reduced pilot efficiency. Experiment 4 implemented adaptive allocation for the tracking sub-task based on a model which identified an increase in tracking error during the initial presentation of a target. During initial target presentation, tracking control was either fully or partially allocated to the system for a brief period, after which full control was returned. Results indicated performance benefits on all tasks for both full and partial adaptive allocation strategies and confirmed that an independent task configuration may underestimate pilot efficiency. Experiment 5 extended the implementation of adaptive allocation to include adaptive display layout. It compared functional grouping of sub-tasks displays based on principles of perceptual and processing proximity. Results provided support for the implementation of adaptive display design in general but failed to support the specific layouts derived from the proximity conception.

  17. High-fidelity teleportation between light and atoms

    SciTech Connect

    Hammerer, K.; Polzik, E. S.; Cirac, J. I.

    2006-12-15

    We show how high-fidelity quantum teleportation of light to atoms can be achieved in the same setup as was used in the recent experiment [J. Sherson et al., Nature 443, 557, 2006], where such an interspecies quantum state transfer was demonstrated for the first time. Our improved protocol takes advantage of the rich multimode entangled structure of the state of atoms and scattered light and requires simple postprocessing of homodyne detection signals and squeezed light in order to achieve fidelities up to 90% (85%) for teleportation of coherent (qubit) states under realistic experimental conditions. The remaining limitation is due to atomic decoherence and light losses.

  18. Aerothermal Anchoring of CBAERO Using High Fidelity CFD

    NASA Technical Reports Server (NTRS)

    Kinney, David J.

    2007-01-01

    The Configuration Based Aerodynamics (CBAERO) software package is used to predict the convective and radiative heating environments for the Crew Exploration Vehicle (CEV). A limited number of high fidelity CFD solutions are used to "anchor" the engineering level estimates obtained using CBAERO.

  19. High Fidelity: Investing in Evaluation Training. Ask the Team

    ERIC Educational Resources Information Center

    Fetters, Jenni

    2013-01-01

    High-quality training is a crucial investment in establishing and maintaining implementation fidelity as well as building educators' trust in the new process. Training approaches for educator evaluation vary both in format (i.e., how it's delivered) and content (i.e., what is provided). Train-the-trainer sessions, online professional learning…

  20. Carbonate minerals as high fidelity recorders of the longevity and scale of the aqueous system within CM carbonaceous chondrite parent bodies

    NASA Astrophysics Data System (ADS)

    Lee, M.; Lindgren, P.; Sofe, M. R.

    2011-12-01

    by Fe,Ni sulphides and Mg,Fe phyllosilicates. The good correspondence between the complexity of the record of carbonate, silicate and sulphide mineralization of CMs and their degree of aqueous alteration shows that the carbonates preserve a high fidelity record of parent body evolution. The greater variety of carbonate minerals present in the highly altered CMs shows that solution compositions changed significantly during alteration and as mineral sequences and compositions vary little on the centimeter scale, water/rock ratios must have been high. The challenge remains to reconcile such a dynamic aqueous system with evidence from bulk meteorite compositions for little or no fluid flow.

  1. High-fidelity phototaxis in biflagellate algae

    NASA Astrophysics Data System (ADS)

    Leptos, Kyriacos; Chioccioli, Maurizio; Furlan, Silvano; Pesci, Adriana; Goldstein, Raymond

    2015-11-01

    The single-cell alga Chlamydomonas reinhardtii is a motile biflagellate that can swim towards light for its photosynthetic requirements, a behavior referred to as phototaxis. The cell responds upon light stimulation through its rudimentary eye - the eyespot - by changing the beating amplitude of its two flagella accordingly - a process called the photoresponse. All this occurs in a coordinated fashion as Chlamydomonas spins about its body axis while swimming, thus experiencing oscillating intensities of light. We use high-speed video microscopy to measure the flagellar dynamics of the photoresponse on immobilized cells and interpret the results with a mathematical model of adaptation similar to that used previously for Volvox. These results are incorporated into a model of phototactic steering to yield trajectories that are compared to those obtained by three-dimensional tracking. Implications of these results for the evolution of multicellularity in the Volvocales are discussed.

  2. Engineering High-Fidelity Residue Separations for Selective Harvest

    SciTech Connect

    Kevin L. Kenney; Christopher T. Wright; Reed L. Hoskinson; J. Rochard Hess; David J. Muth, Jr.

    2006-07-01

    Composition and pretreatment studies of corn stover and wheat stover anatomical fractions clearly show that some corn and wheat stover anatomical fractions are of higher value than others as a biofeedstock. This premise, along with soil sustainability and erosion control concerns, provides the motivation for the selective harvest concept for separating and collecting the higher value residue fractions in a combine during grain harvest. This study recognizes the analysis of anatomical fractions as theoretical feedstock quality targets, but not as practical targets for developing selective harvest technologies. Rather, practical quality targets were established that identified the residue separation requirements of a selective harvest combine. Data are presented that shows that a current grain combine is not capable of achieving the fidelity of residue fractionation established by the performance targets. However, using a virtual engineering approach, based on an understanding of the fluid dynamics of the air stream separation, the separation fidelity can be significantly improved without significant changes to the harvester design. A virtual engineering model of a grain combine was developed and used to perform simulations of the residue separator performance. The engineered residue separator was then built into a selective harvest test combine, and tests performed to evaluate the separation fidelity. Field tests were run both with and without the residue separator installed in the test combine, and the chaff and straw residue streams were collected during harvest of Challis soft white spring wheat. The separation fidelity accomplished both with and without the residue separator was quantified by laboratory screening analysis. The screening results showed that the engineered baffle separator did a remarkable job of effecting high-fidelity separation of the straw and chaff residue streams, improving the chaff stream purity and increasing the straw stream yield.

  3. Small convolution kernels for high-fidelity image restoration

    NASA Technical Reports Server (NTRS)

    Reichenbach, Stephen E.; Park, Stephen K.

    1991-01-01

    An algorithm is developed for computing the mean-square-optimal values for small, image-restoration kernels. The algorithm is based on a comprehensive, end-to-end imaging system model that accounts for the important components of the imaging process: the statistics of the scene, the point-spread function of the image-gathering device, sampling effects, noise, and display reconstruction. Subject to constraints on the spatial support of the kernel, the algorithm generates the kernel values that restore the image with maximum fidelity, that is, the kernel minimizes the expected mean-square restoration error. The algorithm is consistent with the derivation of the spatially unconstrained Wiener filter, but leads to a small, spatially constrained kernel that, unlike the unconstrained filter, can be efficiently implemented by convolution. Simulation experiments demonstrate that for a wide range of imaging systems these small kernels can restore images with fidelity comparable to images restored with the unconstrained Wiener filter.

  4. High-Fidelity Simulation for Advanced Cardiac Life Support Training

    PubMed Central

    Davis, Lindsay E.; Storjohann, Tara D.; Spiegel, Jacqueline J.; Beiber, Kellie M.

    2013-01-01

    Objective. To determine whether a high-fidelity simulation technique compared with lecture would produce greater improvement in advanced cardiac life support (ACLS) knowledge, confidence, and overall satisfaction with the training method. Design. This sequential, parallel-group, crossover trial randomized students into 2 groups distinguished by the sequence of teaching technique delivered for ACLS instruction (ie, classroom lecture vs high-fidelity simulation exercise). Assessment. Test scores on a written examination administered at baseline and after each teaching technique improved significantly from baseline in all groups but were highest when lecture was followed by simulation. Simulation was associated with a greater degree of overall student satisfaction compared with lecture. Participation in a simulation exercise did not improve pharmacy students’ knowledge of ACLS more than attending a lecture, but it was associated with improved student confidence in skills and satisfaction with learning and application. Conclusions. College curricula should incorporate simulation to complement but not replace lecture for ACLS education. PMID:23610477

  5. High-fidelity simulation and safety: an integrative review.

    PubMed

    Shearer, Jennifer E

    2013-01-01

    Previous reviews of simulation relating to critical thinking and efficacy called for more research on the effects of simulation and safety. Safety, as a skill performance outcome of high-fidelity simulation, is reviewed. Data included studies of nursing education that linked safety dimensions with high-fidelity simulation at all student levels. Only primary sources published since 2007 were included. This integrative review evaluates data using scores to assign value to the evidence, analyzes data within categories defined as safety behaviors, and compares evidence using a matrix of factors and outcomes. Definitions of safety and measurement tools are critiqued. Findings reveal that simulation-enhanced clinical experiences may decrease medication errors. Any evidence about perceived improvement in safer communication has not been translated into practice. Knowledge and attitudes of safety may be improved with simulation, depending on the students' educational levels. More comparative studies are needed to support theoretical models of simulation. PMID:23181458

  6. Simulation System Fidelity Assessment at the Vertical Motion Simulator

    NASA Technical Reports Server (NTRS)

    Beard, Steven D.; Reardon, Scott E.; Tobias, Eric L.; Aponso, Bimal L.

    2013-01-01

    Fidelity is a word that is often used but rarely understood when talking about groundbased simulation. Assessing the cueing fidelity of a ground based flight simulator requires a comparison to actual flight data either directly or indirectly. Two experiments were conducted at the Vertical Motion Simulator using the GenHel UH-60A Black Hawk helicopter math model that was directly compared to flight data. Prior to the experiment the simulator s motion and visual system frequency responses were measured, the aircraft math model was adjusted to account for the simulator motion system delays, and the motion system gains and washouts were tuned for the individual tasks. The tuned motion system fidelity was then assessed against the modified Sinacori criteria. The first experiments showed similar handling qualities ratings (HQRs) to actual flight for a bob-up and sidestep maneuvers. The second experiment showed equivalent HQRs between flight and simulation for the ADS33 slalom maneuver for the two pilot participants. The ADS33 vertical maneuver HQRs were mixed with one pilot rating the flight and simulation the same while the second pilot rated the simulation worse. In addition to recording HQRs on the second experiment, an experimental Simulation Fidelity Rating (SFR) scale developed by the University of Liverpool was tested for applicability to engineering simulators. A discussion of the SFR scale for use on the Vertical Motion Simulator is included in this paper.

  7. Optical metrology for high fidelity LCD-TV

    NASA Astrophysics Data System (ADS)

    Becker, Michael E.; Kosmowski, Bogdan B.

    2006-02-01

    The current status of optical metrology of LCD (Liquid Crystal Display) is reviewed in general and shortcomings of characterization of the visual performance of LCD-screens when high visual fidelity is a prime issue are described. We introduce instrumentation, procedures and evaluations for assessment of the visual properties of LCD-TV screens as a solid basis for a clear and objective rating of their performance. Identification of visual artifacts, color and gray-scale fidelity over the complete viewing-cone and under realistic ambient illumination as well as balanced response times between gray-levels are topics of this paper. A novel approach for scanning of the viewing-directions with simultaneous acquisition of 9 spectra is introduced as a solution for the dilemma of speed of measurement and colorimetric precision.

  8. High Fidelity Tape Transfer Printing Based On Chemically Induced Adhesive Strength Modulation

    NASA Astrophysics Data System (ADS)

    Sim, Kyoseung; Chen, Song; Li, Yuhang; Kammoun, Mejdi; Peng, Yun; Xu, Minwei; Gao, Yang; Song, Jizhou; Zhang, Yingchun; Ardebili, Haleh; Yu, Cunjiang

    2015-11-01

    Transfer printing, a two-step process (i.e. picking up and printing) for heterogeneous integration, has been widely exploited for the fabrication of functional electronics system. To ensure a reliable process, strong adhesion for picking up and weak or no adhesion for printing are required. However, it is challenging to meet the requirements of switchable stamp adhesion. Here we introduce a simple, high fidelity process, namely tape transfer printing(TTP), enabled by chemically induced dramatic modulation in tape adhesive strength. We describe the working mechanism of the adhesion modulation that governs this process and demonstrate the method by high fidelity tape transfer printing several types of materials and devices, including Si pellets arrays, photodetector arrays, and electromyography (EMG) sensors, from their preparation substrates to various alien substrates. High fidelity tape transfer printing of components onto curvilinear surfaces is also illustrated.

  9. High Fidelity Tape Transfer Printing Based On Chemically Induced Adhesive Strength Modulation

    PubMed Central

    Sim, Kyoseung; Chen, Song; Li, Yuhang; Kammoun, Mejdi; Peng, Yun; Xu, Minwei; Gao, Yang; Song, Jizhou; Zhang, Yingchun; Ardebili, Haleh; Yu, Cunjiang

    2015-01-01

    Transfer printing, a two-step process (i.e. picking up and printing) for heterogeneous integration, has been widely exploited for the fabrication of functional electronics system. To ensure a reliable process, strong adhesion for picking up and weak or no adhesion for printing are required. However, it is challenging to meet the requirements of switchable stamp adhesion. Here we introduce a simple, high fidelity process, namely tape transfer printing(TTP), enabled by chemically induced dramatic modulation in tape adhesive strength. We describe the working mechanism of the adhesion modulation that governs this process and demonstrate the method by high fidelity tape transfer printing several types of materials and devices, including Si pellets arrays, photodetector arrays, and electromyography (EMG) sensors, from their preparation substrates to various alien substrates. High fidelity tape transfer printing of components onto curvilinear surfaces is also illustrated. PMID:26553110

  10. High Fidelity Tape Transfer Printing Based On Chemically Induced Adhesive Strength Modulation.

    PubMed

    Sim, Kyoseung; Chen, Song; Li, Yuhang; Kammoun, Mejdi; Peng, Yun; Xu, Minwei; Gao, Yang; Song, Jizhou; Zhang, Yingchun; Ardebili, Haleh; Yu, Cunjiang

    2015-01-01

    Transfer printing, a two-step process (i.e. picking up and printing) for heterogeneous integration, has been widely exploited for the fabrication of functional electronics system. To ensure a reliable process, strong adhesion for picking up and weak or no adhesion for printing are required. However, it is challenging to meet the requirements of switchable stamp adhesion. Here we introduce a simple, high fidelity process, namely tape transfer printing (TTP), enabled by chemically induced dramatic modulation in tape adhesive strength. We describe the working mechanism of the adhesion modulation that governs this process and demonstrate the method by high fidelity tape transfer printing several types of materials and devices, including Si pellets arrays, photodetector arrays, and electromyography (EMG) sensors, from their preparation substrates to various alien substrates. High fidelity tape transfer printing of components onto curvilinear surfaces is also illustrated. PMID:26553110

  11. High-fidelity dispersive readout using squeezed light. Part II

    NASA Astrophysics Data System (ADS)

    Kamal, Archana; Didier, Nicolas; Boutin, Samuel; Gustavsson, Simon; Kerman, Andrew J.; Oliver, William D.; Orlando, Terry P.; Blais, Alexandre; Clerk, Aashish A.

    2015-03-01

    Protocols employing squeezed radiation for quantum measurement have been realized in a gamut of systems. The central idea is to squeeze noise associated with the measured observable to enhance the signal-to-noise ratio (SNR) beyond the standard shot noise limit of detection. A similar strategy may be exploited to achieve fast, high-fidelity dispersive readout of superconducting qubits. Nonetheless, most of the reported schemes would require small dispersive shifts and/or encode information in vacuum fluctuations of the output quadrature, limiting their applicability in circuit-QED (cQED). In this talk, I will present further details on a new scheme using two-mode squeezing to dramatically enhance SNR in cQED measurement, in a setup where the qubit couples to two readout modes. I will discuss how the scheme is not limited to small dispersive couplings, and how it is robust even against various imperfections. Details on implementation of this protocol in practical cQED setups will also be discussed. This work was sponsored by the Army Research Office (ARO) and by the Assistant Secretary of Defense for Research & Engineering (ASDR&E). Opinions, interpretations, conclusions and recommendations are those of the author and are not necessarily endorsed by the United States Government

  12. Composite pulses for high-fidelity population inversion in optically dense, inhomogeneously broadened atomic ensembles

    NASA Astrophysics Data System (ADS)

    Demeter, Gabor

    2016-02-01

    We derive composite pulse sequences that achieve high-fidelity excitation of two-state systems in an optically dense, inhomogeneously broadened ensemble. The composite pulses are resistant to distortions due to the backaction of the medium they propagate in and are able to create high-fidelity inversion to optical depths α z >10 . They function well with smooth pulse shapes used for coherent control of optical atomic transitions in quantum computation and communication. They are an intermediary solution between single π -pulse excitation schemes and adiabatic passage schemes, being far more error tolerant than the former but still considerably faster than the latter.

  13. High-fidelity quantum state evolution in imperfect photonic integrated circuits

    NASA Astrophysics Data System (ADS)

    Mower, Jacob; Harris, Nicholas C.; Steinbrecher, Gregory R.; Lahini, Yoav; Englund, Dirk

    2015-09-01

    We propose and analyze the design of a programmable photonic integrated circuit for high-fidelity quantum computation and simulation. We demonstrate that the reconfigurability of our design allows us to overcome two major impediments to quantum optics on a chip: it removes the need for a full fabrication cycle for each experiment and allows for compensation of fabrication errors using numerical optimization techniques. Under a pessimistic fabrication model for the silicon-on-insulator process, we demonstrate a dramatic fidelity improvement for the linear optics controlled-not and controlled-phase gates and, showing the scalability of this approach, the iterative phase estimation algorithm built from individually optimized gates. We also propose and simulate an experiment that the programmability of our system would enable: a statistically robust study of the evolution of entangled photons in disordered quantum walks. Overall, our results suggest that existing fabrication processes are sufficient to build a quantum photonic processor capable of high-fidelity operation.

  14. Designing High Fidelity Simulation to Maximize Student Registered Nursing Decision-Making Ability

    ERIC Educational Resources Information Center

    Deckers, Cathleen

    2011-01-01

    The current healthcare environment is a complex system of patients, procedures, and equipment that strives to deliver safe and effective medical care. High fidelity simulation provides healthcare educators with a tool to create safety conscious practitioners utilizing an environment that replicates practice without risk to patients. Using HFS…

  15. Demonstration of deterministic and high fidelity squeezing of quantum information

    SciTech Connect

    Yoshikawa, Jun-ichi; Takei, Nobuyuki; Furusawa, Akira; Hayashi, Toshiki; Akiyama, Takayuki; Huck, Alexander; Andersen, Ulrik L.

    2007-12-15

    By employing a recent proposal [R. Filip, P. Marek, and U.L. Andersen, Phys. Rev. A 71, 042308 (2005)] we experimentally demonstrate a universal, deterministic, and high-fidelity squeezing transformation of an optical field. It relies only on linear optics, homodyne detection, feedforward, and an ancillary squeezed vacuum state, thus direct interaction between a strong pump and the quantum state is circumvented. We demonstrate three different squeezing levels for a coherent state input. This scheme is highly suitable for the fault-tolerant squeezing transformation in a continuous variable quantum computer.

  16. Installing the Communities that Care Prevention System: Implementation Progress and Fidelity in a Randomized Controlled Trial

    ERIC Educational Resources Information Center

    Quinby, Rose K.; Hanson, Koren; Brooke-Weiss, Blair; Arthur, Michael W.; Hawkins, J. David; Fagan, Abigail A.

    2008-01-01

    This article describes the degree to which high fidelity implementation of the Communities That Care (CTC) prevention operating system was reached during the first 18 months of intervention in 12 communities in the Community Youth Development Study, a 5-year group randomized controlled trial designed to test the efficacy of the CTC system. CTC…

  17. High Fidelity of Base Paring by 2-Selenothymidine in DNA

    SciTech Connect

    Hassan, A.; Sheng, J; Zhang, W; Huang, Z

    2010-01-01

    The base pairs are the contributors to the sequence-dependent recognition of nucleic acids, genetic information storage, and high fidelity of DNA polymerase replication. However, the wobble base pairing, where T pairs with G instead of A, reduces specific base-pairing recognition and compromises the high fidelity of the enzymatic polymerization. Via the selenium atomic probing at the 2-position of thymidine, we have investigated the wobble discrimination by manipulating the steric and electronic effects at the 2-exo position, providing a unique chemical strategy to enhance the base pair specificity. We report here the first synthesis of the novel 2-Se-thymidine ({sup Se}T) derivative, its phosphoramidite, and the Se-DNAs. Our biophysical and structural studies of the 2-Se-T DNAs reveal that the bulky 2-Se atom with a weak hydrogen-bonding ability can largely increase mismatch discriminations (including T/G wobble and T/C mismatched base pairs) while maintaining the {sup Se}T/A virtually identical to the native T/A base pair. The 2-Se atom bulkiness and the electronic effect are probably the main factors responsible for the discrimination against the formation of the wobble {sup Se}T/G base pair. Our investigations provide a potential novel tool to investigate the specific recognition of base pairs, which is the basis of high fidelity during replication, transcription, and translation. Furthermore, this Se-atom-specific substitution and probing are useful for X-ray crystal structure and function studies of nucleic acids.

  18. High-fidelity numerical simulation of the dynamic beam equation

    SciTech Connect

    Mattsson, Ken Stiernström, Vidar

    2015-04-01

    A high-fidelity finite difference approximation of the dynamic beam equation is derived. Different types of well-posed boundary conditions are analysed. The boundary closures are based on the summation-by-parts (SBP) framework and the boundary conditions are imposed using a penalty (SAT) technique, to guarantee linear stability. The resulting SBP–SAT approximation leads to fully explicit time integration. The accuracy and stability properties of the newly derived SBP–SAT approximations are demonstrated for both 1-D and 2-D problems.

  19. Simulation Basics: How to Conduct a High-Fidelity Simulation.

    PubMed

    Willhaus, Janet

    2016-02-01

    Well-planned and conducted health care simulation scenarios provide opportunities for staff development in areas such as communication, patient care, and teamwork. Consideration of resources, the location for the training, preparation of learners, and use of either a high-fidelity mannequin or a trained actor (eg, a standardized patient) are all part of the operational attentions needed to conduct a simulation training scenario. In order for participants to meet training objectives, the execution of the simulation session must be both planned and purposeful. PMID:26909456

  20. High-fidelity geometric modeling for biomedical applications

    SciTech Connect

    Yu, Zeyun; Holst, Michael J.; Andrew McCammon, J.

    2008-07-01

    We describe a combination of algorithms for high fidelity geometric modeling and mesh generation. Although our methods and implementations are application-neutral, our primary target application is multiscale biomedical models that range in scales across the molecular, cellular, and organ levels. Our software toolchain implementing these algorithms is general in the sense that it can take as input a molecule in PDB/PQR forms, a 3D scalar volume, or a user-defined triangular surface mesh that may have very low quality. The main goal of our work presented is to generate high quality and smooth surface triangulations from the aforementioned inputs, and to reduce the mesh sizes by mesh coarsening. Tetrahedral meshes are also generated for finite element analysis in biomedical applications. Experiments on a number of bio-structures are demonstrated, showing that our approach possesses several desirable properties: feature-preservation, local adaptivity, high quality, and smoothness (for surface meshes). The availability of this software toolchain will give researchers in computational biomedicine and other modeling areas access to higher-fidelity geometric models.

  1. Enhancing pediatric clinical competency with high-fidelity simulation.

    PubMed

    Birkhoff, Susan D; Donner, Carol

    2010-09-01

    In today's tertiary pediatric hospital setting, the increased complexity of patient care demands seamless coordination and collaboration among multidisciplinary team members. In an effort to enhance patient safety, clinical competence, and teamwork, simulation-based learning has become increasingly integrated into pediatric clinical practice as an innovative educational strategy. The simulated setting provides a risk-free environment where learners can incorporate cognitive, psychomotor, and affective skill acquisition without fear of harming patients. One pediatric university hospital in Southeastern Pennsylvania has enhanced the traditional American Heart Association (AHA) Pediatric Advanced Life Support (PALS) course by integrating high-fidelity simulation into skill acquisition, while still functioning within the guidelines and framework of the AHA educational standards. However, very little research with reliable standardized testing methods has been done to measure the effect of simulation-based learning. This article discusses the AHA guidelines for PALS, evaluation of PALS and nursing clinical competencies, communication among a multidisciplinary team, advantages and disadvantages of simulation, incorporation of high-fidelity simulation into pediatric practice, and suggestions for future practice. PMID:20506930

  2. High Fidelity Simulation of Primary Atomization in Diesel Engine Sprays

    NASA Astrophysics Data System (ADS)

    Ivey, Christopher; Bravo, Luis; Kim, Dokyun

    2014-11-01

    A high-fidelity numerical simulation of jet breakup and spray formation from a complex diesel fuel injector at ambient conditions has been performed. A full understanding of the primary atomization process in fuel injection of diesel has not been achieved for several reasons including the difficulties accessing the optically dense region. Due to the recent advances in numerical methods and computing resources, high fidelity simulations of atomizing flows are becoming available to provide new insights of the process. In the present study, an unstructured un-split Volume-of-Fluid (VoF) method coupled to a stochastic Lagrangian spray model is employed to simulate the atomization process. A common rail fuel injector is simulated by using a nozzle geometry available through the Engine Combustion Network. The working conditions correspond to a single orifice (90 μm) JP-8 fueled injector operating at an injection pressure of 90 bar, ambient condition at 29 bar, 300 K filled with 100% nitrogen with Rel = 16,071, Wel = 75,334 setting the spray in the full atomization mode. The experimental dataset from Army Research Lab is used for validation in terms of spray global parameters and local droplet distributions. The quantitative comparison will be presented and discussed. Supported by Oak Ridge Associated Universities and the Army Research Laboratory.

  3. Patterns of communication in high-fidelity simulation.

    PubMed

    Anderson, Judy K; Nelson, Kimberly

    2015-01-01

    High-fidelity simulation is commonplace in nursing education. However, critical thinking, decision making, and psychomotor skills scenarios are emphasized. Scenarios involving communication occur in interprofessional or intraprofessional settings. The importance of effective nurse-patient communication is reflected in statements from the American Nurses Association and Quality and Safety Education for Nurses, and in the graduate outcomes of most nursing programs. This qualitative study examined the patterns of communication observed in video recordings of a medical-surgical scenario with 71 senior students in a baccalaureate program. Thematic analysis revealed patterns of (a) focusing on tasks, (b) communicating-in-action, and (c) being therapeutic. Additional categories under the patterns included missing opportunities, viewing the "small picture," relying on informing, speaking in "medical tongues," offering choices…okay?, feeling uncomfortable, and using therapeutic techniques. The findings suggest the importance of using high-fidelity simulation to develop expertise in communication. In addition, the findings reinforce the recommendation to prioritize communication aspects of scenarios and debriefing for all simulations. PMID:25545143

  4. Rapid high-fidelity visualisation of multispectral 3D mapping

    NASA Astrophysics Data System (ADS)

    Tudor, Philip M.; Christy, Mark

    2011-06-01

    Mobile LIDAR scanning typically provides captured 3D data in the form of 3D 'Point Clouds'. Combined with colour imagery these data produce coloured point clouds or, if further processed, polygon-based 3D models. The use of point clouds is simple and rapid, but visualisation can appear ghostly and diffuse. Textured 3D models provide high fidelity visualisation, but their creation is time consuming, difficult to automate and can modify key terrain details. This paper describes techniques for the visualisation of fused multispectral 3D data that approach the visual fidelity of polygon-based models with the rapid turnaround and detail of 3D point clouds. The general approaches to data capture and data fusion are identified as well as the central underlying mathematical transforms, data management and graphics processing techniques used to support rapid, interactive visualisation of very large multispectral 3D datasets. Performance data with respect to real-world 3D mapping as well as illustrations of visualisation outputs are included.

  5. High Fidelity Simulations of Unsteady Flow through Turbopumps and Flowliners

    NASA Technical Reports Server (NTRS)

    Kiris, Cetin C.; Kwak, dochan; Chan, William; Housman, Jeff

    2006-01-01

    High fidelity computations were carried out to analyze the orbiter LH2 feedline flowliner. Computations were performed on the Columbia platform which is a 10,240-processor supercluster consisting of 20 Altix nodes with 512 processor each. Various computational models were used to characterize the unsteady flow features in the turbopump, including the orbiter Low-Pressure-Fuel-Turbopump (LPFTP) inducer, the orbiter manifold and a test article used to represent the manifold. Unsteady flow originating from the orbiter LPFTP inducer is one of the major contributors to the high frequency cyclic loading that results in high cycle fatigue damage to the gimbal flowliners just upstream of the LPFTP. The flow fields for the orbiter manifold and representative test article are computed and analyzed for similarities and differences. The incompressible Navier-Stokes flow solver INS3D, based on the artificial compressibility method, was used to compute the flow of liquid hydrogen in each test article.

  6. High-Fidelity Measurements of Long-Lived Flux Qubits

    NASA Astrophysics Data System (ADS)

    Hover, David; Macklin, Chris; O'Brien, Kevin; Sears, Adam; Yoder, Jonilyn; Gudmundsen, Ted; Kerman, Jamie; Bolkhovsky, Vladimir; Tolpygo, Sergey; Fitch, George; Weir, Terry; Kamal, Archana; Gustavsson, Simon; Yan, Fei; Birenbaum, Jeff; Siddiqi, Irfan; Orlando, Terry; Clarke, John; Oliver, Will

    2015-03-01

    We report on high-fidelity dispersive measurements of a long-lived flux qubit using a Josephson superconducting traveling wave parametric amplifier (JTWPA). A capacitively shunted flux qubit that incorporates high-Q MBE aluminum will have longer relaxation and dephasing times when compared to a conventional flux qubit, while also maintaining the large anharmonicity necessary for complex gate operations. The JTWPA relies on a Josephson junction embedded transmission line to deliver broadband, nonreciprocal gain with large dynamic range. This research was funded in part by the Office of the Director of National Intelligence (ODNI), Intelligence Advanced Research Projects Activity (IARPA); and by the Assistant Secretary of Defense for Research & Engineering under Air Force Contract number FA8721-05-C-0002. All statements of fact, opinion or conclusions contained herein are those of the authors and should not be construed as representing the official views or policies of

  7. Process to Create High-Fidelity Lunar Dust Simulants

    NASA Technical Reports Server (NTRS)

    Gustafson, Robert

    2010-01-01

    A method was developed to create high-fidelity lunar dust simulants that better match the unique properties of lunar dust than the existing simulants. The new dust simulant is designed to more closely approximate the size, morphology, composition, and other important properties of lunar dust (including the presence of nanophase iron). A two-step process is required to create this dust simulant. The first step is to prepare a feedstock material that contains a high percentage of agglutinate-like particles with iron globules (including nanophase iron). The raw material selected must have the proper mineralogical composition. In the second processing step, the feedstock material from the first step is jet-milled to reduce the particle size to a range consistent with lunar dust.

  8. Automating Initial Guess Generation for High Fidelity Trajectory Optimization Tools

    NASA Technical Reports Server (NTRS)

    Villa, Benjamin; Lantoine, Gregory; Sims, Jon; Whiffen, Gregory

    2013-01-01

    Many academic studies in spaceflight dynamics rely on simplified dynamical models, such as restricted three-body models or averaged forms of the equations of motion of an orbiter. In practice, the end result of these preliminary orbit studies needs to be transformed into more realistic models, in particular to generate good initial guesses for high-fidelity trajectory optimization tools like Mystic. This paper reviews and extends some of the approaches used in the literature to perform such a task, and explores the inherent trade-offs of such a transformation with a view toward automating it for the case of ballistic arcs. Sample test cases in the libration point regimes and small body orbiter transfers are presented.

  9. Adaptive resolution refinement for high-fidelity continuum parameterizations

    SciTech Connect

    Anderson, J.W.; Khamayseh, A.; Jean, B.A.

    1996-10-01

    This paper describes an algorithm the adaptively samples a parametric continuum so that a fidelity metric is satisfied. Using the divide-and-conquer strategy of adaptive sampling eliminates the guesswork of traditional uniform parameterization techniques. The space and time complexity of parameterization are increased in a controllable manner so that a desired fidelity is obtained.

  10. Observational Requirements for High-Fidelity Reverberation Mapping

    NASA Technical Reports Server (NTRS)

    Horne, Keith; Peterson, Bradley M.; Collier, Stefan J.; Netzer, Hagai

    2004-01-01

    We present a series of simulations to demonstrate that high-fidelity velocity-delay maps of the emission-line regions in active galactic nuclei can be obtained from time-resolved spectrophotometric data sets like those that will arise from the proposed Kronos satellite. While previous reverberation-mapping experiments have established the size scale R of the broad emission-line regions from the mean time delay tau = R/c between the line and continuum variations and have provided strong evidence for supermassive black holes, the detailed structure and kinematics of the broad-line region remain ambiguous and poorly constrained. Here we outline the technical improvements that will be required to successfully map broad-line regions by reverberation techniques. For typical AGN continuum light curves, characterized by power-law power spectra P (f) is proportional to f(exp -alpha) with a = -1.5 +/- 0.5, our simulations show that a small UV/optical spectrometer like Kronos will clearly distinguish between currently viable alternative kinematic models. From spectra sampled at time intervals Delta t and sustained for a total duration T(sub dur), we can reconstruct high-fidelity velocity-delay maps with velocity resolution comparable to that of the spectra, and delay resolution Delta tau approx. 2 Delta t, provided T(sub dur) exceeds the broad-line region light crossing time by at least a factor of three. Even very complicated kinematical models, such as a Keplerian flow with superimposed spiral wave pattern, are resolved in maps from our simulated Kronos datasets. Reverberation mapping with Kronos data is therefore likely deliver the first clear maps of the geometry and kinematics in the broad emission-line regions 1-100 microarcseconds from supermassive black holes.

  11. High-Fidelity Simulation as an Experiential Model for Teaching Root Cause Analysis

    PubMed Central

    Quraishi, Sadeq A.; Kimatian, Stephen J.; Murray, W. Bosseau; Sinz, Elizabeth H.

    2011-01-01

    Purpose The purpose of this study was to assess the effectiveness of high-fidelity simulation for teaching root cause analysis (RCA) in graduate medical education. Methods Thirty clinical anesthesiology-1 through clinical anesthesiology-3 residents were randomly assigned to 2 groups: group A participants received a 10-minute lecture on RCA and participated in a simulation exercise where a medical error occurs, and group B participants received the 10-minute lecture on RCA only. Participants completed baseline, postintervention, and 6-month follow-up assessments, and they were evaluated on their attitude toward as well as understanding of RCA and “systems-based” care. Results All 30 residents completed the surveys. Baseline attitudes and knowledge scores were similar between groups. Postintervention knowledge scores were also similar between groups; however, group B was significantly more skeptical (P < .001) about the use of RCA and “systems improvement” strategies. Six months later, group A demonstrated retained knowledge scores and unchanged attitude, whereas group B demonstrated significantly worse knowledge scores (P  =  .001) as well as continued skepticism toward a systems-based approach (P < .001) to medical error reduction. Conclusion High-fidelity simulation in conjunction with focused didactics is an effective strategy for teaching RCA and systems theory in graduate medical education. Our findings also suggest that there is greater retention of knowledge and increased positive attitude toward systems improvement when focused didactics are coupled with a high-fidelity simulation exercise. PMID:23205203

  12. High fidelity chemistry and radiation modeling for oxy -- combustion scenarios

    NASA Astrophysics Data System (ADS)

    Abdul Sater, Hassan A.

    To account for the thermal and chemical effects associated with the high CO2 concentrations in an oxy-combustion atmosphere, several refined gas-phase chemistry and radiative property models have been formulated for laminar to highly turbulent systems. This thesis examines the accuracies of several chemistry and radiative property models employed in computational fluid dynamic (CFD) simulations of laminar to transitional oxy-methane diffusion flames by comparing their predictions against experimental data. Literature review about chemistry and radiation modeling in oxy-combustion atmospheres considered turbulent systems where the predictions are impacted by the interplay and accuracies of the turbulence, radiation and chemistry models. Thus, by considering a laminar system we minimize the impact of turbulence and the uncertainties associated with turbulence models. In the first section of this thesis, an assessment and validation of gray and non-gray formulations of a recently proposed weighted-sum-of-gray gas model in oxy-combustion scenarios was undertaken. Predictions of gas, wall temperatures and flame lengths were in good agreement with experimental measurements. The temperature and flame length predictions were not sensitive to the radiative property model employed. However, there were significant variations between the gray and non-gray model radiant fraction predictions with the variations in general increasing with decrease in Reynolds numbers possibly attributed to shorter flames and steeper temperature gradients. The results of this section confirm that non-gray model predictions of radiative heat fluxes are more accurate than gray model predictions especially at steeper temperature gradients. In the second section, the accuracies of three gas-phase chemistry models were assessed by comparing their predictions against experimental measurements of temperature, species concentrations and flame lengths. The chemistry was modeled employing the Eddy

  13. High-fidelity qubit measurement with a microwave-photon counter

    NASA Astrophysics Data System (ADS)

    Govia, Luke C. G.; Pritchett, Emily J.; Xu, Canran; Plourde, B. L. T.; Vavilov, Maxim G.; Wilhelm, Frank K.; McDermott, R.

    2014-12-01

    High-fidelity, efficient quantum nondemolition readout of quantum bits is integral to the goal of quantum computation. As superconducting circuits approach the requirements of scalable, universal fault tolerance, qubit readout must also meet the demand of simplicity to scale with growing system size. Here we propose a fast, high-fidelity, scalable measurement scheme based on the state-selective ring-up of a cavity followed by photodetection with the recently introduced Josephson photomultiplier (JPM), a current-biased Josephson junction. This scheme maps qubit state information to the binary digital output of the JPM, circumventing the need for room-temperature heterodyne detection and offering the possibility of a cryogenic interface to superconducting digital control circuitry. Numerics show that measurement contrast in excess of 95% is achievable in a measurement time of 140 ns. We discuss perspectives to scale this scheme to enable readout of multiple qubit channels with a single JPM.

  14. High fidelity, radiation tolerant analog-to-digital converters

    NASA Technical Reports Server (NTRS)

    Wang, Charles Chang-I (Inventor); Linscott, Ivan Richard (Inventor); Inan, Umran S. (Inventor)

    2012-01-01

    Techniques for an analog-to-digital converter (ADC) using pipeline architecture includes a linearization technique for a spurious-free dynamic range (SFDR) over 80 deciBels. In some embodiments, sampling rates exceed a megahertz. According to a second approach, a switched-capacitor circuit is configured for correct operation in a high radiation environment. In one embodiment, the combination yields high fidelity ADC (>88 deciBel SFDR) while sampling at 5 megahertz sampling rates and consuming <60 milliWatts. Furthermore, even though it is manufactured in a commercial 0.25-.mu.m CMOS technology (1 .mu.m=12.sup.-6 meters), it maintains this performance in harsh radiation environments. Specifically, the stated performance is sustained through a highest tested 2 megarad(Si) total dose, and the ADC displays no latchup up to a highest tested linear energy transfer of 63 million electron Volts square centimeters per milligram at elevated temperature (131 degrees C.) and supply (2.7 Volts, versus 2.5 Volts nominal).

  15. High-fidelity simulation for continuing education in nurse anesthesia.

    PubMed

    Cannon-Diehl, M Roseann; Rugari, Susan M; Jones, Terri S

    2012-06-01

    Simulation represents a true paradigm shift in teaching and learning that has revolutionized healthcare education. However, few continuing education opportunities for anesthesia providers exist using simulation of any type. This article explores the usefulness of high-fidelity simulation (HFS) as a valuable tool for continuing education and reports the results of a needs assessment conducted among 22 practicing nurse anesthetists. The questions related to their exposure to HFS and asked them to rank their experience with 11 anesthesia events. Next, respondents were asked to rank a similar list of anesthesia events that would be useful for continuing education using simulation. Of participants, 71% ranked advanced cardiac life support scenarios, anesthesia machine mishaps, and malignant hyperthermia as highly effective choices for using HFS. Eighty-one percent of participants identified that they envision simulation as a valuable tool to assess competency, but respondents had mixed written responses when asked if simulation should be used for recertification. This needs assessment represents a beginning, grassroots attempt to establish nurse anesthetists' perceptions related to using HFS as a tool for continuing education. PMID:22848980

  16. Computer-Based versus High-Fidelity Mannequin Simulation in Developing Clinical Judgment in Nursing Education

    ERIC Educational Resources Information Center

    Howard, Beverly J.

    2013-01-01

    The purpose of this study was to determine if students learn clinical judgment as effectively using computer-based simulations as when using high-fidelity mannequin simulations. There was a single research questions for this study: What is the difference in clinical judgment between participants completing high-fidelity human simulator mannequin…

  17. Room temperature high-fidelity holonomic single-qubit gate on a solid-state spin

    PubMed Central

    Arroyo-Camejo, Silvia; Lazariev, Andrii; Hell, Stefan W.; Balasubramanian, Gopalakrishnan

    2014-01-01

    At its most fundamental level, circuit-based quantum computation relies on the application of controlled phase shift operations on quantum registers. While these operations are generally compromised by noise and imperfections, quantum gates based on geometric phase shifts can provide intrinsically fault-tolerant quantum computing. Here we demonstrate the high-fidelity realization of a recently proposed fast (non-adiabatic) and universal (non-Abelian) holonomic single-qubit gate, using an individual solid-state spin qubit under ambient conditions. This fault-tolerant quantum gate provides an elegant means for achieving the fidelity threshold indispensable for implementing quantum error correction protocols. Since we employ a spin qubit associated with a nitrogen-vacancy colour centre in diamond, this system is based on integrable and scalable hardware exhibiting strong analogy to current silicon technology. This quantum gate realization is a promising step towards viable, fault-tolerant quantum computing under ambient conditions. PMID:25216026

  18. Room temperature high-fidelity holonomic single-qubit gate on a solid-state spin.

    PubMed

    Arroyo-Camejo, Silvia; Lazariev, Andrii; Hell, Stefan W; Balasubramanian, Gopalakrishnan

    2014-01-01

    At its most fundamental level, circuit-based quantum computation relies on the application of controlled phase shift operations on quantum registers. While these operations are generally compromised by noise and imperfections, quantum gates based on geometric phase shifts can provide intrinsically fault-tolerant quantum computing. Here we demonstrate the high-fidelity realization of a recently proposed fast (non-adiabatic) and universal (non-Abelian) holonomic single-qubit gate, using an individual solid-state spin qubit under ambient conditions. This fault-tolerant quantum gate provides an elegant means for achieving the fidelity threshold indispensable for implementing quantum error correction protocols. Since we employ a spin qubit associated with a nitrogen-vacancy colour centre in diamond, this system is based on integrable and scalable hardware exhibiting strong analogy to current silicon technology. This quantum gate realization is a promising step towards viable, fault-tolerant quantum computing under ambient conditions. PMID:25216026

  19. Framework for Multidisciplinary Analysis, Design, and Optimization with High-Fidelity Analysis Tools

    NASA Technical Reports Server (NTRS)

    Orr, Stanley A.; Narducci, Robert P.

    2009-01-01

    A plan is presented for the development of a high fidelity multidisciplinary optimization process for rotorcraft. The plan formulates individual disciplinary design problems, identifies practical high-fidelity tools and processes that can be incorporated in an automated optimization environment, and establishes statements of the multidisciplinary design problem including objectives, constraints, design variables, and cross-disciplinary dependencies. Five key disciplinary areas are selected in the development plan. These are rotor aerodynamics, rotor structures and dynamics, fuselage aerodynamics, fuselage structures, and propulsion / drive system. Flying qualities and noise are included as ancillary areas. Consistency across engineering disciplines is maintained with a central geometry engine that supports all multidisciplinary analysis. The multidisciplinary optimization process targets the preliminary design cycle where gross elements of the helicopter have been defined. These might include number of rotors and rotor configuration (tandem, coaxial, etc.). It is at this stage that sufficient configuration information is defined to perform high-fidelity analysis. At the same time there is enough design freedom to influence a design. The rotorcraft multidisciplinary optimization tool is built and substantiated throughout its development cycle in a staged approach by incorporating disciplines sequentially.

  20. High Fidelity Failure Analysis for a Composite Fuselage Section

    NASA Technical Reports Server (NTRS)

    Li, Jain; Davila, Carlos G.; Chen, Tzi-Kang

    2001-01-01

    A high fidelity delamination failure analysis was developed by combining a local failure analysis with a global full-scale finite element structural analysis to address strength and delamination failure in a single package. The methodology was demonstrated through a local three-dimensional pull-off failure analysis and a geometrically nonlinear structural analysis of a five-foot composite helicopter fuselage section. Pull-off specimens were used to identify potential debonding failure of co-cured skin-stringer/frame fuselage structures. An investigation of the failed pull-off specimens was performed to determine the location of the failure initiation. Three-dimensional strain energy release rate analysis indicates that the delamination initiation and growth is controlled by Mode 1 opening mode. The bending moment at the delamination tip was identified as the crucial factor controlling the failure. The geometrically nonlinear structural analysis of a five-foot composite fuselage section was performed using a detailed finite element model. Loads were applied along the periphery of the subcomponent using displacement fields generated from solutions of a full-vehicle model.

  1. Supporting the lecturer to deliver high-fidelity simulation.

    PubMed

    Dowie, Iwan; Phillips, Cheryl

    In response to a shortage of clinical practice placements for pre-registration nurses and midwives, nursing faculties have been examining alternative ways to support students to develop their clinical skills, with simulation being one of the more popular methods. In a nursing context, simulation is often used to replicate a clinical setting, such as a hospital ward or the patient's home. Some universities have introduced clinical suites that enable replication of clinical environments and offer the use of human patient simulators to mimic patient-focused scenarios. This article describes a small informal review that aimed to identify how lecturers felt about simulation in one faculty using high-fidelity simulated scenarios to inform the development of a subsequent research study. The results indicate that although many staff use simulation and believe it is a beneficial approach to learning, many also lack confidence and do not feel sufficiently prepared in its use. Most participants felt that the development of a simulation module for lecturers would increase their confidence. PMID:21905378

  2. The Creation of a CPU Timer for High Fidelity Programs

    NASA Technical Reports Server (NTRS)

    Dick, Aidan A.

    2011-01-01

    Using C and C++ programming languages, a tool was developed that measures the efficiency of a program by recording the amount of CPU time that various functions consume. By inserting the tool between lines of code in the program, one can receive a detailed report of the absolute and relative time consumption associated with each section. After adapting the generic tool for a high-fidelity launch vehicle simulation program called MAVERIC, the components of a frequently used function called "derivatives ( )" were measured. Out of the 34 sub-functions in "derivatives ( )", it was found that the top 8 sub-functions made up 83.1% of the total time spent. In order to decrease the overall run time of MAVERIC, a launch vehicle simulation program, a change was implemented in the sub-function "Event_Controller ( )". Reformatting "Event_Controller ( )" led to a 36.9% decrease in the total CPU time spent by that sub-function, and a 3.2% decrease in the total CPU time spent by the overarching function "derivatives ( )".

  3. High-fidelity state detection and tomography of a single-ion Zeeman qubit

    NASA Astrophysics Data System (ADS)

    Keselman, A.; Glickman, Y.; Akerman, N.; Kotler, S.; Ozeri, R.

    2011-07-01

    We demonstrate high-fidelity Zeeman qubit state detection in a single trapped 88Sr+ ion. Qubit readout is performed by shelving one of the qubit states to a metastable level using a narrow linewidth diode laser at 674 nm, followed by state-selective fluorescence detection. The average fidelity reached for the readout of the qubit state is 0.9989(1). We then measure the fidelity of state tomography, averaged over all possible single-qubit states, which is 0.9979(2). We also fully characterize the detection process using quantum process tomography. This readout fidelity is compatible with recent estimates of the detection error threshold required for fault-tolerant computation, whereas high-fidelity state tomography opens the way for high-precision quantum process tomography.

  4. Computer image generation: Reconfigurability as a strategy in high fidelity space applications

    NASA Technical Reports Server (NTRS)

    Bartholomew, Michael J.

    1989-01-01

    The demand for realistic, high fidelity, computer image generation systems to support space simulation is well established. However, as the number and diversity of space applications increase, the complexity and cost of computer image generation systems also increase. One strategy used to harmonize cost with varied requirements is establishment of a reconfigurable image generation system that can be adapted rapidly and easily to meet new and changing requirements. The reconfigurability strategy through the life cycle of system conception, specification, design, implementation, operation, and support for high fidelity computer image generation systems are discussed. The discussion is limited to those issues directly associated with reconfigurability and adaptability of a specialized scene generation system in a multi-faceted space applications environment. Examples and insights gained through the recent development and installation of the Improved Multi-function Scene Generation System at Johnson Space Center, Systems Engineering Simulator are reviewed and compared with current simulator industry practices. The results are clear; the strategy of reconfigurability applied to space simulation requirements provides a viable path to supporting diverse applications with an adaptable computer image generation system.

  5. A high fidelity real-time simulation of a small turboshaft engine

    NASA Technical Reports Server (NTRS)

    Ballin, Mark G.

    1988-01-01

    A high-fidelity component-type model and real-time digital simulation of the General Electric T700-GE-700 turboshaft engine were developed for use with current generation real-time blade-element rotor helicopter simulations. A control system model based on the specification fuel control system used in the UH-60A Black Hawk helicopter is also presented. The modeling assumptions and real-time digital implementation methods particular to the simulation of small turboshaft engines are described. The validity of the simulation is demonstrated by comparison with analysis-oriented simulations developed by the manufacturer, available test data, and flight-test time histories.

  6. High-fidelity gates in quantum dot spin qubits

    PubMed Central

    Koh, Teck Seng; Coppersmith, S. N.; Friesen, Mark

    2013-01-01

    Several logical qubits and quantum gates have been proposed for semiconductor quantum dots controlled by voltages applied to top gates. The different schemes can be difficult to compare meaningfully. Here we develop a theoretical framework to evaluate disparate qubit-gating schemes on an equal footing. We apply the procedure to two types of double-dot qubits: the singlet–triplet and the semiconducting quantum dot hybrid qubit. We investigate three quantum gates that flip the qubit state: a DC pulsed gate, an AC gate based on logical qubit resonance, and a gate-like process known as stimulated Raman adiabatic passage. These gates are all mediated by an exchange interaction that is controlled experimentally using the interdot tunnel coupling g and the detuning ϵ, which sets the energy difference between the dots. Our procedure has two steps. First, we optimize the gate fidelity (f) for fixed g as a function of the other control parameters; this yields an that is universal for different types of gates. Next, we identify physical constraints on the control parameters; this yields an upper bound that is specific to the qubit-gate combination. We show that similar gate fidelities should be attainable for singlet-triplet qubits in isotopically purified Si, and for hybrid qubits in natural Si. Considerably lower fidelities are obtained for GaAs devices, due to the fluctuating magnetic fields ΔB produced by nuclear spins. PMID:24255105

  7. High fidelity readout of a transmon qubit using a superconducting low-inductance undulatory galvanometer microwave amplifier

    NASA Astrophysics Data System (ADS)

    Liu, Yanbing; Srinivasan, Srikanth J.; Hover, D.; Zhu, Shaojiang; McDermott, R.; Houck, A. A.

    2014-11-01

    We report high-fidelity, quantum non-demolition, single-shot readout of a superconducting transmon qubit using a dc-biased superconducting low-inductance undulatory galvanometer (SLUG) amplifier. The SLUG improves the system signal-to-noise ratio by 6.5 dB in a 20 MHz window compared with a bare high electron mobility transistor amplifier. An optimal cavity drive pulse is chosen using a genetic search algorithm, leading to a maximum combined readout and preparation fidelity of 91.9% with a measurement time of {{T}meas}=200 ns. Using post-selection to remove preparation errors caused by heating, we realize a combined preparation and readout fidelity of 94.3%.

  8. High fidelity replication of surface texture and geometric form of a high aspect ratio aerodynamic test component

    NASA Astrophysics Data System (ADS)

    Walton, Karl; Fleming, Leigh; Goodhand, Martin; Racasan, Radu; Zeng, Wenhan

    2016-06-01

    This paper details, assesses and validates a technique for the replication of a titanium wind tunnel test aerofoil in polyurethane resin. Existing resin replication techniques are adapted to overcome the technical difficulties associated with casting a high aspect ratio component. The technique is shown to have high replication fidelity over all important length-scales. The blade chord was accurate to 0.02%, and the maximum blade thickness was accurate to 2.5%. Important spatial and amplitude areal surface texture parameter were accurate to within 2%. Compared to an existing similar system using correlation areal parameters the current technique is shown to have lower fidelity and this difference is discussed. The current technique was developed for the measurement of boundary layer flow ‘laminar to turbulent’ transition for gas turbine compressor blade profiles and this application is illustrated.

  9. Novel approaches to high fidelity qubit state measurement in circuit quantum electrodynamics

    NASA Astrophysics Data System (ADS)

    Ginossar, Eran

    2011-03-01

    Qubit state measurement (`readout') in solid state systems is an open problem, which is currently the subject of intensive experimental and theoretical research. Achieving high fidelity in a single-shot measurement is an interesting quantum control problem, as well as an important component for the successful implementation of quantum information protocols. For superconducting qubits we can distinguish between linear dispersive and nonlinear methods, the latter relying on the bistability of a nonlinear resonator. In the context of circuit quantum electrodynamics, the transmon qubit is strongly coupled to a linear resonator and described by a generalized Jaynes-Cummings model (JCM) with external drive and dissipation. Recent novel approaches to achieve high-fidelity readout in the dispersive regime rely on the intrinsic nonlinearity of the JCM and its ultimate linearity in the high excitation regime. In the degenerate regime we rely on the photon blockade and precise transient dynamics of the system. This regime presents a theoretical challenge and the driven damped JCM model exhibits a dynamical phase transition. Another proposed approach extends the Josephson Bifurcation Amplifier and employs the dynamical effects of frequency chirping of the drive on the coupled qubit-resonator system. We will discuss the physics of these different regimes and describe the readout schemes which have been demonstrated by recent experiments and quantum simulations, as well as the role of quantum fluctuations and optimal control.

  10. Physics and Psychophysics of High-Fidelity Sound. Part 1: Perception of Sound and Music.

    ERIC Educational Resources Information Center

    Rossing, Thomas D.

    1979-01-01

    Presents the first of a series of articles that discuss the perception of sound and music. This series of articles is intended to provide an introduction to the broad subject of high-fidelity sound recording and reproduction. (HM)

  11. High-Fidelity Simulation for Neonatal Nursing Education: An Integrative Review of the Literature.

    PubMed

    Cooper, Allyson

    2015-01-01

    The lack of safe avenues to develop neonatal nursing competencies using human subjects leads to the notion that simulation education for neonatal nurses might be an ideal form of education. This integrative literature review compares traditional, teacher-centered education with high-fidelity simulation education for neonatal nurses. It examines the theoretical frameworks used in neonatal nursing education and outlines the advantages of this type of training, including improving communication and teamwork; providing an innovative pedagogical approach; and aiding in skill acquisition, confidence, and participant satisfaction. The importance of debriefing is also examined. High-fidelity simulation is not without disadvantages, including its significant cost, the time associated with training, the need for very complex technical equipment, and increased faculty resource requirements. Innovative uses of high-fidelity simulation in neonatal nursing education are suggested. High-fidelity simulation has great potential but requires additional research to fully prove its efficacy. PMID:26803016

  12. Cultured High-Fidelity Three-Dimensional Human Urogenital Tract Carcinomas and Process

    NASA Technical Reports Server (NTRS)

    Goodwin, Thomas J. (Inventor); Prewett, Tacey L. (Inventor); Spaulding, Glenn F. (Inventor); Wolf, David A. (Inventor)

    1998-01-01

    Artificial high-fidelity three-dimensional human urogenital tract carcinomas are propagated under in vitro-microgravity conditions from carcinoma cells. Artificial high-fidelity three-dimensional human urogenital tract carcinomas are also propagated from a coculture of normal urogenital tract cells inoculated with carcinoma cells. The microgravity culture conditions may be microgravity or simulated microgravity created in a horizontal rotating wall culture vessel.

  13. Creation of a Rapid High-Fidelity Aerodynamics Module for a Multidisciplinary Design Environment

    NASA Technical Reports Server (NTRS)

    Srinivasan, Muktha; Whittecar, William; Edwards, Stephen; Mavris, Dimitri N.

    2012-01-01

    In the traditional aerospace vehicle design process, each successive design phase is accompanied by an increment in the modeling fidelity of the disciplinary analyses being performed. This trend follows a corresponding shrinking of the design space as more and more design decisions are locked in. The correlated increase in knowledge about the design and decrease in design freedom occurs partly because increases in modeling fidelity are usually accompanied by significant increases in the computational expense of performing the analyses. When running high fidelity analyses, it is not usually feasible to explore a large number of variations, and so design space exploration is reserved for conceptual design, and higher fidelity analyses are run only once a specific point design has been selected to carry forward. The designs produced by this traditional process have been recognized as being limited by the uncertainty that is present early on due to the use of lower fidelity analyses. For example, uncertainty in aerodynamics predictions produces uncertainty in trajectory optimization, which can impact overall vehicle sizing. This effect can become more significant when trajectories are being shaped by active constraints. For example, if an optimal trajectory is running up against a normal load factor constraint, inaccuracies in the aerodynamic coefficient predictions can cause a feasible trajectory to be considered infeasible, or vice versa. For this reason, a trade must always be performed between the desired fidelity and the resources available. Apart from this trade between fidelity and computational expense, it is very desirable to use higher fidelity analyses earlier in the design process. A large body of work has been performed to this end, led by efforts in the area of surrogate modeling. In surrogate modeling, an up-front investment is made by running a high fidelity code over a Design of Experiments (DOE); once completed, the DOE data is used to create a

  14. Extensible Adaptable Simulation Systems: Supporting Multiple Fidelity Simulations in a Common Environment

    NASA Technical Reports Server (NTRS)

    McLaughlin, Brian J.; Barrett, Larry K.

    2012-01-01

    Common practice in the development of simulation systems is meeting all user requirements within a single instantiation. The Joint Polar Satellite System (JPSS) presents a unique challenge to establish a simulation environment that meets the needs of a diverse user community while also spanning a multi-mission environment over decades of operation. In response, the JPSS Flight Vehicle Test Suite (FVTS) is architected with an extensible infrastructure that supports the operation of multiple observatory simulations for a single mission and multiple mission within a common system perimeter. For the JPSS-1 satellite, multiple fidelity flight observatory simulations are necessary to support the distinct user communities consisting of the Common Ground System development team, the Common Ground System Integration & Test team, and the Mission Rehearsal Team/Mission Operations Team. These key requirements present several challenges to FVTS development. First, the FVTS must ensure all critical user requirements are satisfied by at least one fidelity instance of the observatory simulation. Second, the FVTS must allow for tailoring of the system instances to function in diverse operational environments from the High-security operations environment at NOAA Satellite Operations Facility (NSOF) to the ground system factory floor. Finally, the FVTS must provide the ability to execute sustaining engineering activities on a subset of the system without impacting system availability to parallel users. The FVTS approach of allowing for multiple fidelity copies of observatory simulations represents a unique concept in simulator capability development and corresponds to the JPSS Ground System goals of establishing a capability that is flexible, extensible, and adaptable.

  15. Development of High Fidelity, Fuel-Like Thermal Simulators for Non-Nuclear Testing

    SciTech Connect

    Bragg-Sitton, Shannon M.; Dickens, Ricky; Adams, Mike; Davis, Joe; Kapernick, Richard

    2007-01-30

    Non-nuclear testing can be a valuable tool in the development of a space nuclear power or propulsion system. In a non-nuclear test bed, electric heaters are used to simulate the heat from nuclear fuel. Work at the NASA Marshall Space Flight Center seeks to develop high fidelity thermal simulators that not only match the static power profile that would be observed in an operating, fueled nuclear reactor, but also match the dynamic fuel pin performance during feasible transients. Comparison between the fuel pins and thermal simulators is made at the outer fuel clad surface, which corresponds to the outer sheath surface in the thermal simulator. The thermal simulators that are currently being developed are designed to meet the geometric and power requirements of a proposed surface power reactor design, accommodate testing of various axial power profiles, and incorporate imbedded instrumentation. Static and dynamic fuel pin performances for a proposed reactor design have been determined using SINDA/FLUINT thermal analysis software, and initial comparison has been made between the expected nuclear performance and the performance of conceptual thermal simulator designs. Through a series of iterative analysis, a conceptual high fidelity design will be developed, followed by engineering design, fabrication, and testing to validate the overall design process. Although the resulting thermal simulator will be designed for a specific reactor concept, establishing this rigorous design process will assist in streamlining the thermal simulator development for other reactor concepts. This paper presents the current status of high fidelity thermal simulator design relative to a SNAP derivative reactor design that could be applied for Lunar surface power.

  16. Multidisciplinary High-Fidelity Analysis and Optimization of Aerospace Vehicles. Part 2; Preliminary Results

    NASA Technical Reports Server (NTRS)

    Walsh, J. L.; Weston, R. P.; Samareh, J. A.; Mason, B. H.; Green, L. L.; Biedron, R. T.

    2000-01-01

    An objective of the High Performance Computing and Communication Program at the NASA Langley Research Center is to demonstrate multidisciplinary shape and sizing optimization of a complete aerospace vehicle configuration by using high-fidelity finite-element structural analysis and computational fluid dynamics aerodynamic analysis in a distributed, heterogeneous computing environment that includes high performance parallel computing. A software system has been designed and implemented to integrate a set of existing discipline analysis codes, some of them computationally intensive, into a distributed computational environment for the design of a high-speed civil transport configuration. The paper describes both the preliminary results from implementing and validating the multidisciplinary analysis and the results from an aerodynamic optimization. The discipline codes are integrated by using the Java programming language and a Common Object Request Broker Architecture compliant software product. A companion paper describes the formulation of the multidisciplinary analysis and optimization system.

  17. High-fidelity teleportation beyond the no-cloning limit and entanglement swapping for continuous variables.

    PubMed

    Takei, Nobuyuki; Yonezawa, Hidehiro; Aoki, Takao; Furusawa, Akira

    2005-06-10

    We experimentally demonstrate continuous-variable quantum teleportation beyond the no-cloning limit. We teleport a coherent state and achieve the fidelity of 0.70 +/- 0.02 that surpasses the no-cloning limit of 2/3. Surpassing the limit is necessary to transfer the nonclassicality of an input quantum state. By using our high-fidelity teleporter, we demonstrate entanglement swapping, namely, teleportation of quantum entanglement, as an example of transfer of nonclassicality. PMID:16090375

  18. High Fidelity Simulations of Large-Scale Wireless Networks (Plus-Up)

    SciTech Connect

    Onunkwo, Uzoma

    2015-11-01

    Sandia has built a strong reputation in scalable network simulation and emulation for cyber security studies to protect our nation’s critical information infrastructures. Georgia Tech has preeminent reputation in academia for excellence in scalable discrete event simulations, with strong emphasis on simulating cyber networks. Many of the experts in this field, such as Dr. Richard Fujimoto, Dr. George Riley, and Dr. Chris Carothers, have strong affiliations with Georgia Tech. The collaborative relationship that we intend to immediately pursue is in high fidelity simulations of practical large-scale wireless networks using ns-3 simulator via Dr. George Riley. This project will have mutual benefits in bolstering both institutions’ expertise and reputation in the field of scalable simulation for cyber-security studies. This project promises to address high fidelity simulations of large-scale wireless networks. This proposed collaboration is directly in line with Georgia Tech’s goals for developing and expanding the Communications Systems Center, the Georgia Tech Broadband Institute, and Georgia Tech Information Security Center along with its yearly Emerging Cyber Threats Report. At Sandia, this work benefits the defense systems and assessment area with promise for large-scale assessment of cyber security needs and vulnerabilities of our nation’s critical cyber infrastructures exposed to wireless communications.

  19. Multidisciplinary High-Fidelity Analysis and Optimization of Aerospace Vehicles. Part 1; Formulation

    NASA Technical Reports Server (NTRS)

    Walsh, J. L.; Townsend, J. C.; Salas, A. O.; Samareh, J. A.; Mukhopadhyay, V.; Barthelemy, J.-F.

    2000-01-01

    An objective of the High Performance Computing and Communication Program at the NASA Langley Research Center is to demonstrate multidisciplinary shape and sizing optimization of a complete aerospace vehicle configuration by using high-fidelity, finite element structural analysis and computational fluid dynamics aerodynamic analysis in a distributed, heterogeneous computing environment that includes high performance parallel computing. A software system has been designed and implemented to integrate a set of existing discipline analysis codes, some of them computationally intensive, into a distributed computational environment for the design of a highspeed civil transport configuration. The paper describes the engineering aspects of formulating the optimization by integrating these analysis codes and associated interface codes into the system. The discipline codes are integrated by using the Java programming language and a Common Object Request Broker Architecture (CORBA) compliant software product. A companion paper presents currently available results.

  20. High-fidelity readout scheme for rare-earth solid-state quantum computing

    NASA Astrophysics Data System (ADS)

    Walther, A.; Rippe, L.; Yan, Y.; Karlsson, J.; Serrano, D.; Nilsson, A. N.; Bengtsson, S.; Kröll, S.

    2015-08-01

    We propose and analyze a high-fidelity readout scheme for a single-instance approach to quantum computing in rare-earth-ion-doped crystals. The scheme is based on using different elements as qubit and readout ions, where the readout ions are doped into the material at a much lower concentration than the qubit ions. It is shown that by allowing the qubit ion sitting closest to a readout ion to act as a readout buffer, the readout error can be reduced by more than an order of magnitude. The scheme is shown to be robust against certain experimental variations, such as varying detection efficiencies, and we use the scheme to predict the attainable quantum fidelity of a controlled not (cnot) gate in these solid-state systems. In addition, we discuss the potential scalability of the protocol to larger qubit systems. The results are based on parameters which we believe are experimentally feasible with current technology and which can be simultaneously realized.

  1. The design and implementation of a high-fidelity Raman imaging microscope.

    PubMed

    Goldstein, S R; Kidder, L H; Herne, T M; Levin, I W; Lewis, E N

    1996-10-01

    We describe a Raman imaging microscope that produces high-fidelity, large format Raman images and Raman spectra from samples as small as 1 micron in size. Laser illumination is delivered to the object by means of an infinity corrected microscope objective, either by a galvanometer scanning system or a widefield fibre optic. Wavelength selection of Raman scattered emission is achieved by an acousto-optic tunable filter (AOTF), which maintains image fidelity and provides either continuous or random wavelength selection. The collimated AOTF output is imaged first by a tube lens and then by a projection lens onto a cooled silicon CCD array. Instrument features, including factors that determine the system's spatial and spectral resolution, and design considerations are discussed in detail. Images and spectra of test objects and samples that demonstrate the capability of this imaging spectrometer are presented. The potential of intrinsic chemical imaging is discussed in terms of its use in the analyses of a variety of chemical and biological samples. PMID:8923757

  2. Clusters of specialized detector cells provide sensitive and high fidelity receptor signaling in the intact endothelium

    PubMed Central

    Wilson, Calum; Saunter, Christopher D.; Girkin, John M.; McCarron, John G.

    2016-01-01

    Agonist-mediated signaling by the endothelium controls virtually all vascular functions. Because of the large diversity of agonists, each with varying concentrations, background noise often obscures individual cellular signals. How the endothelium distinguishes low-level fluctuations from noise and decodes and integrates physiologically relevant information remains unclear. Here, we recorded changes in intracellular Ca2+ concentrations in response to acetylcholine in areas encompassing hundreds of endothelial cells from inside intact pressurized arteries. Individual cells responded to acetylcholine with a concentration-dependent increase in Ca2+ signals spanning a single order of magnitude. Interestingly, however, intercellular response variation extended over 3 orders of magnitude of agonist concentration, thus crucially enhancing the collective bandwidth of endothelial responses to agonists. We also show the accuracy of this collective mode of detection is facilitated by spatially restricted clusters of comparably sensitive cells arising from heterogeneous receptor expression. Simultaneous stimulation of clusters triggered Ca2+ signals that were transmitted to neighboring cells in a manner that scaled with agonist concentration. Thus, the endothelium detects agonists by acting as a distributed sensing system. Specialized clusters of detector cells, analogous to relay nodes in modern communication networks, integrate populationwide inputs, and enable robust noise filtering for efficient high-fidelity signaling.—Wilson, C., Saunter, C. D., Girkin, J. M., McCarron, J. G. Clusters of specialized detector cells provide sensitive and high fidelity receptor signaling in the intact endothelium. PMID:26873937

  3. Development of High Fidelity, Fuel-Like Thermal Simulators for Non-Nuclear Testing

    NASA Technical Reports Server (NTRS)

    Bragg-Sitton, S. M.; Farmer, J.; Dixon, D.; Kapernick, R.; Dickens, R.; Adams, M.

    2007-01-01

    Non-nuclear testing can be a valuable tool in development of a space nuclear power or propulsion system. In a non-nuclear test bed, electric heaters are used to simulate the heat from nuclear fuel. Work at the NASA Marshall Space Flight Center seeks to develop high fidelity thermal simulators that not only match the static power profile that would be observed in an operating, fueled nuclear reactor, but to also match the dynamic fuel pin performance during feasible transients. Comparison between the fuel pins and thermal simulators is made at the fuel clad surface, which corresponds to the sheath surface in the thermal simulator. Static and dynamic fuel pin performance was determined using SINDA-FLUINT analysis, and the performance of conceptual thermal simulator designs was compared to the expected nuclear performance. Through a series of iterative analysis, a conceptual high fidelity design will be developed, followed by engineering design, fabrication, and testing to validate the overall design process. Although the resulting thermal simulator will be designed for a specific reactor concept, establishing this rigorous design process will assist in streamlining the thermal simulator development for other reactor concepts.

  4. Clusters of specialized detector cells provide sensitive and high fidelity receptor signaling in the intact endothelium.

    PubMed

    Wilson, Calum; Saunter, Christopher D; Girkin, John M; McCarron, John G

    2016-05-01

    Agonist-mediated signaling by the endothelium controls virtually all vascular functions. Because of the large diversity of agonists, each with varying concentrations, background noise often obscures individual cellular signals. How the endothelium distinguishes low-level fluctuations from noise and decodes and integrates physiologically relevant information remains unclear. Here, we recorded changes in intracellular Ca(2+) concentrations in response to acetylcholine in areas encompassing hundreds of endothelial cells from inside intact pressurized arteries. Individual cells responded to acetylcholine with a concentration-dependent increase in Ca(2+) signals spanning a single order of magnitude. Interestingly, however, intercellular response variation extended over 3 orders of magnitude of agonist concentration, thus crucially enhancing the collective bandwidth of endothelial responses to agonists. We also show the accuracy of this collective mode of detection is facilitated by spatially restricted clusters of comparably sensitive cells arising from heterogeneous receptor expression. Simultaneous stimulation of clusters triggered Ca(2+) signals that were transmitted to neighboring cells in a manner that scaled with agonist concentration. Thus, the endothelium detects agonists by acting as a distributed sensing system. Specialized clusters of detector cells, analogous to relay nodes in modern communication networks, integrate populationwide inputs, and enable robust noise filtering for efficient high-fidelity signaling.-Wilson, C., Saunter, C. D., Girkin, J. M., McCarron, J. G. Clusters of specialized detector cells provide sensitive and high fidelity receptor signaling in the intact endothelium. PMID:26873937

  5. High Fidelity Thermal Simulators for Non-Nuclear Testing: Analysis and Initial Results

    NASA Technical Reports Server (NTRS)

    Bragg-Sitton, Shannon M.; Dickens, Ricky; Dixon, David

    2007-01-01

    Non-nuclear testing can be a valuable tool in the development of a space nuclear power system, providing system characterization data and allowing one to work through various fabrication, assembly and integration issues without the cost and time associated with a full ground nuclear test. In a non-nuclear test bed, electric heaters are used to simulate the heat from nuclear fuel. Testing with non-optimized heater elements allows one to assess thermal, heat transfer, and stress related attributes of a given system, but fails to demonstrate the dynamic response that would be present in an integrated, fueled reactor system. High fidelity thermal simulators that match both the static and the dynamic fuel pin performance that would be observed in an operating, fueled nuclear reactor can vastly increase the value of non-nuclear test results. With optimized simulators, the integration of thermal hydraulic hardware tests with simulated neutronie response provides a bridge between electrically heated testing and fueled nuclear testing, providing a better assessment of system integration issues, characterization of integrated system response times and response characteristics, and assessment of potential design improvements' at a relatively small fiscal investment. Initial conceptual thermal simulator designs are determined by simple one-dimensional analysis at a single axial location and at steady state conditions; feasible concepts are then input into a detailed three-dimensional model for comparison to expected fuel pin performance. Static and dynamic fuel pin performance for a proposed reactor design is determined using SINDA/FLUINT thermal analysis software, and comparison is made between the expected nuclear performance and the performance of conceptual thermal simulator designs. Through a series of iterative analyses, a conceptual high fidelity design can developed. Test results presented in this paper correspond to a "first cut" simulator design for a potential

  6. SPARTAN: A High-Fidelity Simulation for Automated Rendezvous and Docking Applications

    NASA Technical Reports Server (NTRS)

    Turbe, Michael A.; McDuffie, James H.; DeKock, Brandon K.; Betts, Kevin M.; Carrington, Connie K.

    2007-01-01

    bd Systems (a subsidiary of SAIC) has developed the Simulation Package for Autonomous Rendezvous Test and ANalysis (SPARTAN), a high-fidelity on-orbit simulation featuring multiple six-degree-of-freedom (6DOF) vehicles. SPARTAN has been developed in a modular fashion in Matlab/Simulink to test next-generation automated rendezvous and docking guidance, navigation,and control algorithms for NASA's new Vision for Space Exploration. SPARTAN includes autonomous state-based mission manager algorithms responsible for sequencing the vehicle through various flight phases based on on-board sensor inputs and closed-loop guidance algorithms, including Lambert transfers, Clohessy-Wiltshire maneuvers, and glideslope approaches The guidance commands are implemented using an integrated translation and attitude control system to provide 6DOF control of each vehicle in the simulation. SPARTAN also includes high-fidelity representations of a variety of absolute and relative navigation sensors that maybe used for NASA missions, including radio frequency, lidar, and video-based rendezvous sensors. Proprietary navigation sensor fusion algorithms have been developed that allow the integration of these sensor measurements through an extended Kalman filter framework to create a single optimal estimate of the relative state of the vehicles. SPARTAN provides capability for Monte Carlo dispersion analysis, allowing for rigorous evaluation of the performance of the complete proposed AR&D system, including software, sensors, and mechanisms. SPARTAN also supports hardware-in-the-loop testing through conversion of the algorithms to C code using Real-Time Workshop in order to be hosted in a mission computer engineering development unit running an embedded real-time operating system. SPARTAN also contains both runtime TCP/IP socket interface and post-processing compatibility with bdStudio, a visualization tool developed by bd Systems, allowing for intuitive evaluation of simulation results. A

  7. High Fidelity Virtual Environments: Does Shader Quality or Higher Polygon Count Models Increase Presence and Learning

    NASA Astrophysics Data System (ADS)

    Horton, Scott

    This research study investigated the effects of high fidelity graphics on both learning and presence, or the "sense of being there," inside a Virtual Learning Environment (VLE). Four versions of a VLE on the subject of the element mercury were created, each with a different combination of high and low fidelity polygon models and high and low fidelity shaders. A total of 76 college age (18+ years of age) participants were randomly assigned to one of the four conditions. The participants interacted with the VLE and then completed several posttest measures on learning, presence, and attitudes towards the VLE experience. Demographic information was also collected, including age, computer gameplay experience, number of virtual environments interacted with, gender and time spent in this virtual environment. The data was analyzed as a 2 x 2 between subjects ANOVA. The main effects of shader fidelity and polygon fidelity were both non-significant for both learning and all presence subscales inside the VLE. In addition, there was no significant interaction between shader fidelity and model fidelity. However, there were two significant results on the supplementary variables. First, gender was found to have a significant main effect on all the presence subscales. Females reported higher average levels of presence than their male counterparts. Second, gameplay hours, or the number of hours a participant played computer games per week, also had a significant main effect on participant score on the learning measure. The participants who reported playing 15+ hours of computer games per week, the highest amount of time in the variable, had the highest score as a group on the mercury learning measure while those participants that played 1-5 hours per week had the lowest scores.

  8. Challenges in the development of high-fidelity LWR core neutronics tools

    SciTech Connect

    Smith, K.; Forget, B.

    2013-07-01

    Modern computing has made possible the solution of extremely large-scale reactor simulations, and the literature has numerous examples of high-resolution methods (often Monte Carlo) applied to full-core reactor problems. However, there are currently no examples in the literature of application of such 'High-Fidelity' or 'First Principles' methods to operating Light Water Reactor (LWR) analysis. This paper seeks to remind code developers, project managers, and analysts of the many important aspects of LWR simulation that must be incorporated to produce truly high-fidelity analysis tools. The authors offer a monetary prize to the first person (or group) that successfully solves a new two-cycle operational PWR depletion benchmark problem using high-fidelity tools and demonstrates acceptable accuracy by comparison with measured operational plant data (open source) provided to the reactor analysis community. (authors)

  9. A low complexity, low spur digital IF conversion circuit for high-fidelity GNSS signal playback

    NASA Astrophysics Data System (ADS)

    Su, Fei; Ying, Rendong

    2016-01-01

    A low complexity high efficiency and low spur digital intermediate frequency (IF) conversion circuit is discussed in the paper. This circuit is key element in high-fidelity GNSS signal playback instrument. We analyze the spur performance of a finite state machine (FSM) based numerically controlled oscillators (NCO), by optimization of the control algorithm, a FSM based NCO with 3 quantization stage can achieves 65dB SFDR in the range of the seventh harmonic. Compare with traditional lookup table based NCO design with the same Spurious Free Dynamic Range (SFDR) performance, the logic resource require to implemented the NCO is reduced to 1/3. The proposed design method can be extended to the IF conversion system with good SFDR in the range of higher harmonic components by increasing the quantization stage.

  10. An Automatic Medium to High Fidelity Low-Thrust Global Trajectory Toolchain; EMTG-GMAT

    NASA Technical Reports Server (NTRS)

    Beeson, Ryne T.; Englander, Jacob A.; Hughes, Steven P.; Schadegg, Maximillian

    2015-01-01

    Solving the global optimization, low-thrust, multiple-flyby interplanetary trajectory problem with high-fidelity dynamical models requires an unreasonable amount of computational resources. A better approach, and one that is demonstrated in this paper, is a multi-step process whereby the solution of the aforementioned problem is solved at a lower-fidelity and this solution is used as an initial guess for a higher-fidelity solver. The framework presented in this work uses two tools developed by NASA Goddard Space Flight Center: the Evolutionary Mission Trajectory Generator (EMTG) and the General Mission Analysis Tool (GMAT). EMTG is a medium to medium-high fidelity low-thrust interplanetary global optimization solver, which now has the capability to automatically generate GMAT script files for seeding a high-fidelity solution using GMAT's local optimization capabilities. A discussion of the dynamical models as well as thruster and power modeling for both EMTG and GMAT are given in this paper. Current capabilities are demonstrated with examples that highlight the toolchains ability to efficiently solve the difficult low-thrust global optimization problem with little human intervention.

  11. High-fidelity cataract surgery simulation and third world blindness.

    PubMed

    Singh, Ajay; Strauss, Glenn H

    2015-04-01

    The burden of global cataract blindness continues to rise, because the number of surgical ophthalmologists is insufficient, and they are unevenly distributed. There is an urgent need to train surgeons quickly and comprehensively in high-quality, low-cost cataract removal techniques. The authors suggest manual small-incision cataract surgery as a safe alternative to phacoemulsification cataract surgery in the developing world. They discuss the development of a novel, full-immersion, physics-based surgical training simulator as the centerpiece of a scalable, comprehensive training system for manual small-incision cataract surgery. PMID:24996918

  12. High-Fidelity Cataract Surgery Simulation and Third World Blindness

    PubMed Central

    Singh, Ajay

    2015-01-01

    The burden of global cataract blindness continues to rise, because the number of surgical ophthalmologists is insufficient, and they are unevenly distributed. There is an urgent need to train surgeons quickly and comprehensively in high-quality, low-cost cataract removal techniques. The authors suggest manual small-incision cataract surgery as a safe alternative to phacoemulsification cataract surgery in the developing world. They discuss the development of a novel, full-immersion, physics-based surgical training simulator as the centerpiece of a scalable, comprehensive training system for manual small-incision cataract surgery. PMID:24996918

  13. Use of High Fidelity Methods in Multidisciplinary Optimization-A Preliminary Survey

    NASA Technical Reports Server (NTRS)

    Guruswamy, Guru P.; Kwak, Dochan (Technical Monitor)

    2002-01-01

    Multidisciplinary optimization is a key element of design process. To date multidiscipline optimization methods that use low fidelity methods are well advanced. Optimization methods based on simple linear aerodynamic equations and plate structural equations have been applied to complex aerospace configurations. However, use of high fidelity methods such as the Euler/ Navier-Stokes for fluids and 3-D (three dimensional) finite elements for structures has begun recently. As an activity of Multidiscipline Design Optimization Technical Committee (MDO TC) of AIAA (American Institute of Aeronautics and Astronautics), an effort was initiated to assess the status of the use of high fidelity methods in multidisciplinary optimization. Contributions were solicited through the members MDO TC committee. This paper provides a summary of that survey.

  14. Design of High-Fidelity Testing Framework for Secure Electric Grid Control

    SciTech Connect

    Yoginath, Srikanth B; Perumalla, Kalyan S

    2014-01-01

    A solution methodology and implementation components are presented that can uncover unwanted, unintentional or unanticipated effects on electric grids from changes to actual electric grid control software. A new design is presented to leapfrog over the limitations of current modeling and testing techniques for cyber technologies in electric grids. We design a fully virtualized approach in which actual, unmodified operational software under test is enabled to interact with simulated surrogates of electric grids. It enables the software to influence the (simulated) grid operation and vice versa in a controlled, high fidelity environment. Challenges in achieving such capability include achieving low-overhead time control mechanisms in hypervisor schedulers, network capture and time-stamping, translation of network packets emanating from grid software into discrete events of virtual grid models, translation back from virtual sensors/actuators into data packets to control software, and transplanting the entire system onto an accurately and efficiently maintained virtual-time plane.

  15. High-Fidelity Simulation Meets Athletic Training Education: An Innovative Collaborative Teaching Project

    ERIC Educational Resources Information Center

    Palmer, Elizabeth; Edwards, Taylor; Racchini, James

    2014-01-01

    High-fidelity simulation is frequently used in nursing education to provide students with simulated experiences prior to and throughout clinical coursework that involves direct patient care. These high-tech exercises take advantage of the benefits of a standardized patient or mock patient encounter, while eliminating some of the drawbacks…

  16. A high-throughput assay for the comprehensive profiling of DNA ligase fidelity.

    PubMed

    Lohman, Gregory J S; Bauer, Robert J; Nichols, Nicole M; Mazzola, Laurie; Bybee, Joanna; Rivizzigno, Danielle; Cantin, Elizabeth; Evans, Thomas C

    2016-01-29

    DNA ligases have broad application in molecular biology, from traditional cloning methods to modern synthetic biology and molecular diagnostics protocols. Ligation-based detection of polynucleotide sequences can be achieved by the ligation of probe oligonucleotides when annealed to a complementary target sequence. In order to achieve a high sensitivity and low background, the ligase must efficiently join correctly base-paired substrates, while discriminating against the ligation of substrates containing even one mismatched base pair. In the current study, we report the use of capillary electrophoresis to rapidly generate mismatch fidelity profiles that interrogate all 256 possible base-pair combinations at a ligation junction in a single experiment. Rapid screening of ligase fidelity in a 96-well plate format has allowed the study of ligase fidelity in unprecedented depth. As an example of this new method, herein we report the ligation fidelity of Thermus thermophilus DNA ligase at a range of temperatures, buffer pH and monovalent cation strength. This screen allows the selection of reaction conditions that maximize fidelity without sacrificing activity, while generating a profile of specific mismatches that ligate detectably under each set of conditions. PMID:26365241

  17. A high-throughput assay for the comprehensive profiling of DNA ligase fidelity

    PubMed Central

    Lohman, Gregory J. S.; Bauer, Robert J.; Nichols, Nicole M.; Mazzola, Laurie; Bybee, Joanna; Rivizzigno, Danielle; Cantin, Elizabeth; Evans, Thomas C.

    2016-01-01

    DNA ligases have broad application in molecular biology, from traditional cloning methods to modern synthetic biology and molecular diagnostics protocols. Ligation-based detection of polynucleotide sequences can be achieved by the ligation of probe oligonucleotides when annealed to a complementary target sequence. In order to achieve a high sensitivity and low background, the ligase must efficiently join correctly base-paired substrates, while discriminating against the ligation of substrates containing even one mismatched base pair. In the current study, we report the use of capillary electrophoresis to rapidly generate mismatch fidelity profiles that interrogate all 256 possible base-pair combinations at a ligation junction in a single experiment. Rapid screening of ligase fidelity in a 96-well plate format has allowed the study of ligase fidelity in unprecedented depth. As an example of this new method, herein we report the ligation fidelity of Thermus thermophilus DNA ligase at a range of temperatures, buffer pH and monovalent cation strength. This screen allows the selection of reaction conditions that maximize fidelity without sacrificing activity, while generating a profile of specific mismatches that ligate detectably under each set of conditions. PMID:26365241

  18. High fidelity modeling of thermal relaxation and dissociation of oxygen

    NASA Astrophysics Data System (ADS)

    Andrienko, Daniil A.; Boyd, Iain D.

    2015-11-01

    A master equation study of vibrational relaxation and dissociation of oxygen is conducted using state-specific O2-O transition rates, generated by extensive trajectory simulations. Both O2-O and O2-O2 collisions are concurrently simulated in the evolving nonequilibrium gas system under constant heat bath conditions. The forced harmonic oscillator model is incorporated to simulate the state-to-state relaxation of oxygen in O2-O2 collisions. The system of master equations is solved to simulate heating and cooling flows. The present study demonstrates the importance of atom-diatom collisions due to the extremely efficient energy randomization in the intermediate O3 complex. It is shown that the presence of atomic oxygen has a significant impact on vibrational relaxation time at temperatures observed in hypersonic flow. The population of highly-excited O2 vibrational states is affected by the amount of atomic oxygen when modeling the relaxation under constant heat bath conditions. A model of coupled state-to-state vibrational relaxation and dissociation of oxygen is also discussed.

  19. High fidelity modeling of thermal relaxation and dissociation of oxygen

    SciTech Connect

    Andrienko, Daniil A. Boyd, Iain D.

    2015-11-15

    A master equation study of vibrational relaxation and dissociation of oxygen is conducted using state-specific O{sub 2}–O transition rates, generated by extensive trajectory simulations. Both O{sub 2}–O and O{sub 2}–O{sub 2} collisions are concurrently simulated in the evolving nonequilibrium gas system under constant heat bath conditions. The forced harmonic oscillator model is incorporated to simulate the state-to-state relaxation of oxygen in O{sub 2}–O{sub 2} collisions. The system of master equations is solved to simulate heating and cooling flows. The present study demonstrates the importance of atom-diatom collisions due to the extremely efficient energy randomization in the intermediate O{sub 3} complex. It is shown that the presence of atomic oxygen has a significant impact on vibrational relaxation time at temperatures observed in hypersonic flow. The population of highly-excited O{sub 2} vibrational states is affected by the amount of atomic oxygen when modeling the relaxation under constant heat bath conditions. A model of coupled state-to-state vibrational relaxation and dissociation of oxygen is also discussed.

  20. High fidelity qubit readout with the superconducting low-inductance undulatory galvanometer microwave amplifier

    NASA Astrophysics Data System (ADS)

    Hover, D.; Zhu, S.; Thorbeck, T.; Ribeill, G. J.; Sank, D.; Kelly, J.; Barends, R.; Martinis, John M.; McDermott, R.

    2014-04-01

    We describe the high fidelity dispersive measurement of a superconducting qubit using a microwave amplifier based on the Superconducting Low-inductance Undulatory Galvanometer (SLUG). The SLUG preamplifier achieves gain of 19 dB and yields a signal-to-noise ratio improvement of 9 dB over a state-of-the-art HEMT amplifier. We demonstrate a separation fidelity of 99% at 700 ns compared to 59% with the HEMT alone. The SLUG displays a large dynamic range, with an input saturation power corresponding to 700 photons in the readout cavity.

  1. High fidelity qubit readout with the superconducting low-inductance undulatory galvanometer microwave amplifier

    SciTech Connect

    Hover, D.; Zhu, S.; Thorbeck, T.; Ribeill, G. J.; McDermott, R.; Sank, D.; Kelly, J.; Barends, R.; Martinis, John M.

    2014-04-14

    We describe the high fidelity dispersive measurement of a superconducting qubit using a microwave amplifier based on the Superconducting Low-inductance Undulatory Galvanometer (SLUG). The SLUG preamplifier achieves gain of 19 dB and yields a signal-to-noise ratio improvement of 9 dB over a state-of-the-art HEMT amplifier. We demonstrate a separation fidelity of 99% at 700 ns compared to 59% with the HEMT alone. The SLUG displays a large dynamic range, with an input saturation power corresponding to 700 photons in the readout cavity.

  2. Amplified light storage with high fidelity based on electromagnetically induced transparency in rubidium atomic vapor

    NASA Astrophysics Data System (ADS)

    Zhou, Wei; Wang, Gang; Tang, Guoyu; Xue, Yan

    2016-06-01

    By using slow and stored light based on electromagnetically induced transparency (EIT), we theoretically realize the storage of optical pulses with enhanced efficiency and high fidelity in ensembles of warm atoms in 85Rb vapor cells. The enhancement of storage efficiency is achieved by introducing a pump field beyond three-level configuration to form a N-type scheme, which simultaneously inhibits the undesirable four-wave mixing effect while preserves its fidelity. It is shown that the typical storage efficiency can be improved from 29% to 53% with the application of pump field. Furthermore, we demonstrate that this efficiency decreases with storage time and increases over unity with optical depth.

  3. The Validity and Incremental Validity of Knowledge Tests, Low-Fidelity Simulations, and High-Fidelity Simulations for Predicting Job Performance in Advanced-Level High-Stakes Selection

    ERIC Educational Resources Information Center

    Lievens, Filip; Patterson, Fiona

    2011-01-01

    In high-stakes selection among candidates with considerable domain-specific knowledge and experience, investigations of whether high-fidelity simulations (assessment centers; ACs) have incremental validity over low-fidelity simulations (situational judgment tests; SJTs) are lacking. Therefore, this article integrates research on the validity of…

  4. Progress in the Utilization of High-Fidelity Simulation in Basic Science Education

    ERIC Educational Resources Information Center

    Helyer, Richard; Dickens, Peter

    2016-01-01

    High-fidelity patient simulators are mainly used to teach clinical skills and remain underutilized in teaching basic sciences. This article summarizes our current views on the use of simulation in basic science education and identifies pitfalls and opportunities for progress.

  5. Becoming a High-Fidelity--"Super"--Imitator: What Are the Contributions of Social and Individual Learning?

    ERIC Educational Resources Information Center

    Subiaul, Francys; Patterson, Eric M.; Schilder, Brian; Renner, Elizabeth; Barr, Rachel

    2015-01-01

    In contrast to other primates, human children's imitation performance goes from low to high fidelity soon after infancy. Are such changes associated with the development of other forms of learning? We addressed this question by testing 215 children (26-59 months) on two social conditions (imitation, emulation)--involving a demonstration--and two…

  6. The Effects of Utilizing High-Fidelity Simulation in Medical Residency Programs

    ERIC Educational Resources Information Center

    Saleta, Jennifer M.

    2012-01-01

    The purpose of this study was to examine the effects of utilizing high-fidelity simulation on the team performance, perceived level of learning, and satisfaction of resident physicians in a simulated cardiac resuscitation scenario. This study was significant because it filled a gap in the literature about how methods of education impact healthcare…

  7. Exploring Interprofessional Education through a High-Fidelity Human Patient Simulation Scenario: A Mixed Methods Study

    ERIC Educational Resources Information Center

    Rossler, Kelly Lynn

    2013-01-01

    High-fidelity human patient simulation has emerged as a valuable medium to reinforce educational content within programs of nursing. As simulation learning experiences have been identified as augmenting both didactic lecture content and clinical learning, these experiences have expanded to incorporate interprofessional education. Review of…

  8. Developing High-Fidelity Health Care Simulation Scenarios: A Guide for Educators and Professionals

    ERIC Educational Resources Information Center

    Alinier, Guillaume

    2011-01-01

    The development of appropriate scenarios is critical in high-fidelity simulation training. They need to be developed to address specific learning objectives, while not preventing other learning points from emerging. Buying a patient simulator, finding a volunteer to act as the patient, or even obtaining ready-made scenarios from another simulation…

  9. Debriefing after High-Fidelity Simulation and Knowledge Retention: A Quasi-Experimental Study

    ERIC Educational Resources Information Center

    Olson, Susan L.

    2013-01-01

    High-fidelity simulation (HFS) use in nursing education has been a frequent research topic in recent years. Previous research included studies on the use of HFS with nursing students, focusing on their feelings of self-confidence and anxiety. However, research focused specifically on the debriefing portion of HFS was limited. This quantitative,…

  10. High-Fidelity Patient Simulators to Expose Undergraduate Students to the Clinical Relevance of Physiology Concepts

    ERIC Educational Resources Information Center

    Harris, David M.; Bellew, Christine; Cheng, Zixi J.; Cendán, Juan C.; Kibble, Jonathan D.

    2014-01-01

    The use of high-fidelity patient simulators (HFPSs) has expanded throughout medical, nursing, and allied health professions education in the last decades. These manikins can be programmed to represent pathological states and are used to teach clinical skills as well as clinical reasoning. First, the students are typically oriented either to the…

  11. Structural Basis of High-Fidelity DNA Synthesis by Yeast DNA Polymerase δ

    SciTech Connect

    Swan, M.; Johnson, R; Prakash, L; Prakash, S; Aggarwal, A

    2009-01-01

    DNA polymerase ? (Pol ?) has a crucial role in eukaryotic replication. Now the crystal structure of the yeast DNA Pol ? catalytic subunit in complex with template primer and incoming nucleotide is presented at 2.0-A resolution, providing insight into its high fidelity and a framework to understand the effects of mutations involved in tumorigenesis.

  12. Assessing the significance of fidelity as a figure of merit in quantum state reconstruction of discrete and continuous-variable systems

    NASA Astrophysics Data System (ADS)

    Mandarino, Antonio; Bina, Matteo; Porto, Carmen; Cialdi, Simone; Olivares, Stefano; Paris, Matteo G. A.

    2016-06-01

    We experimentally address the significance of fidelity as a figure of merit in quantum state reconstruction of discrete (DV) and continuous-variable (CV) quantum optical systems. In particular, we analyze the use of fidelity in quantum homodyne tomography of CV states and maximum-likelihood polarization tomography of DV ones, focusing attention on nonclassicality, entanglement, and quantum discord as a function of fidelity to a target state. Our findings show that high values of fidelity, despite well quantifying geometrical proximity in the Hilbert space, may be obtained for states displaying opposite physical properties, e.g., quantum or semiclassical features. In particular, we analyze in detail the quantum-to-classical transition for squeezed thermal states of a single-mode optical system and for Werner states of a two-photon polarization qubit system.

  13. System Performance and Policymaking in West European Education: Effectiveness, Efficiency, Responsiveness, and Fidelity

    ERIC Educational Resources Information Center

    Coombs, Fred S.; Luschen, Gunther

    1976-01-01

    One cannot gauge or understand the performance of an educational system by examining the output of that system alone. Presents and discusses four constructs--effectiveness, efficiency, responsiveness, and fidelity--which relate the output of an educational system to the important educational, economic, political and social factors which influence…

  14. Evolution Properties of Atomic Fidelity in the Combined Multi-Atom-Cavity Field System

    NASA Astrophysics Data System (ADS)

    Wang, Ju-Xia; Zhang, Xiao-Juan; Zhang, Xiu-Xing

    2015-06-01

    The atom fidelity is investigated in a system consisting of Mtwo-level atoms and M single-mode fields by use of complete quantum theory and numerical evaluation method. The influences of various system parameters on the evolution of atomic fidelity are studied. The results show that the atomic fidelity evolves in a Rabi oscillation manner. The oscillation frequency is mainly modulated by the coupling strength between atoms and light field, the atomic transition probabilities and the average photon numbers. Other factors hardly impact on the atomic fidelity. The present results may provide a useful approach to the maintenance of the atomic fidelity in the atom cavity field systems. Supported by the National Nature Science Foundation of China under Grant No. 11304230, Nature Science Foundation of Shaanxi Province under Grant No. 2013JM1006, the Project of Education Department of Shaanxi Provincial Government under Grant No. 2013JK0634, the Special Subject Construction of Weinan Normal University under Grant Nos. 14TSXK06 and 15ZRRC14

  15. In-Group Ostracism Increases High-Fidelity Imitation in Early Childhood.

    PubMed

    Watson-Jones, Rachel E; Whitehouse, Harvey; Legare, Cristine H

    2016-01-01

    The Cyberball paradigm was used to examine the hypothesis that children use high-fidelity imitation as a reinclusion behavior in response to being ostracized by in-group members. Children (N = 176; 5- to 6-year-olds) were either included or excluded by in- or out-group members and then shown a video of an in-group or an out-group member enacting a social convention. Participants who were excluded by their in-group engaged in higher-fidelity imitation than those who were included by their in-group. Children who were included by an out-group and those who were excluded by an out-group showed no difference in imitative fidelity. Children ostracized by in-group members also displayed increased anxiety relative to children ostracized by out-group members. The data are consistent with the proposal that high-fidelity imitation functions as reinclusion behavior in the context of in-group ostracism. PMID:26573906

  16. Test Before You Fly - High Fidelity Planetary Environment Simulation

    NASA Technical Reports Server (NTRS)

    Craven, Paul; Ramachandran, Narayanan; Vaughn, Jason; Schneider, Todd; Nehls, Mary

    2012-01-01

    The lunar surface environment will present many challenges to the survivability of systems developed for long duration lunar habitation and exploration of the lunar, or any other planetary, surface. Obstacles will include issues pertaining especially to the radiation environment (solar plasma and electromagnetic radiation) and lunar regolith dust. The Planetary Environments Chamber is one piece of the MSFC capability in Space Environmental Effects Test and Analysis. Comprised of many unique test systems, MSFC has the most complete set of SEE test capabilities in one location allowing examination of combined space environmental effects without transporting already degraded, potentially fragile samples over long distances between tests. With this system, the individual and combined effects of the lunar radiation and regolith environment on materials, sub-systems, and small systems developed for the lunar return can be investigated. This combined environments facility represents a unique capability to NASA, in which tests can be tailored to any one aspect of the lunar environment (radiation, temperature, vacuum, regolith) or to several of them combined in a single test.

  17. High-fidelity simulation in the nonmedical domain: practices and potential transferable competencies for the medical field

    PubMed Central

    Carron, Pierre-Nicolas; Trueb, Lionel; Yersin, Bertrand

    2011-01-01

    Simulation is a promising pedagogical tool in the area of medical education. High- fidelity simulators can reproduce realistic environments or clinical situations. This allows for the practice of teamwork and communication skills, thereby enhancing reflective reasoning and experiential learning. Use of high-fidelity simulators is not limited to the medical and aeronautical fields, but has developed in a large number of nonmedical organizations as well. The techniques and pedagogical tools which have evolved through the use of nonmedical simulations serve not only as teaching examples but also as avenues which can help further the evolution of the concept of high-fidelity simulation in the field of medicine. This paper presents examples of high-fidelity simulations in the military, maritime, and aeronautical fields. We compare the implementation of high-fidelity simulation in the medical and nonmedical domains, and discuss the possibilities and limitations of simulators in medicine, based on recent nonmedical applications. PMID:23745086

  18. A High-Fidelity Batch Simulation Environment for Integrated Batch and Piloted Air Combat Simulation Analysis

    NASA Technical Reports Server (NTRS)

    Goodrich, Kenneth H.; McManus, John W.; Chappell, Alan R.

    1992-01-01

    A batch air combat simulation environment known as the Tactical Maneuvering Simulator (TMS) is presented. The TMS serves as a tool for developing and evaluating tactical maneuvering logics. The environment can also be used to evaluate the tactical implications of perturbations to aircraft performance or supporting systems. The TMS is capable of simulating air combat between any number of engagement participants, with practical limits imposed by computer memory and processing power. Aircraft are modeled using equations of motion, control laws, aerodynamics and propulsive characteristics equivalent to those used in high-fidelity piloted simulation. Databases representative of a modern high-performance aircraft with and without thrust-vectoring capability are included. To simplify the task of developing and implementing maneuvering logics in the TMS, an outer-loop control system known as the Tactical Autopilot (TA) is implemented in the aircraft simulation model. The TA converts guidance commands issued by computerized maneuvering logics in the form of desired angle-of-attack and wind axis-bank angle into inputs to the inner-loop control augmentation system of the aircraft. This report describes the capabilities and operation of the TMS.

  19. High fidelity, low cost moulage as a valid simulation tool to improve burns education.

    PubMed

    Pywell, M J; Evgeniou, E; Highway, K; Pitt, E; Estela, C M

    2016-06-01

    Simulation allows the opportunity for repeated practice in controlled, safe conditions. Moulage uses materials such as makeup to simulate clinical presentations. Moulage fidelity can be assessed by face validity (realism) and content validity (appropriateness). The aim of this project is to compare the fidelity of professional moulage to non-professional moulage in the context of a burns management course. Four actors were randomly assigned to a professional make-up artist or a course faculty member for moulage preparation such that two actors were in each group. Participants completed the actor-based burn management scenarios and answered a ten-question Likert-scale questionnaire on face and content validity. Mean scores and a linear mixed effects model were used to compare professional and non-professional moulage. Cronbach's alpha assessed internal consistency. Twenty participants experienced three out of four scenarios and at the end of the course completed a total of 60 questionnaires. Professional moulage had higher average ratings for face (4.30 v 3.80; p=0.11) and content (4.30 v 4.00; p=0.06) validity. Internal consistency of face (α=0.91) and content (α=0.85) validity questions was very good. The fidelity of professionally prepared moulage, as assessed by content validity, was higher than non-professionally prepared moulage. We have shown that using professional techniques and low cost materials we can prepare quality high fidelity moulage simulations. PMID:26810642

  20. Direct assessment of transcription fidelity by high-resolution RNA sequencing

    PubMed Central

    Imashimizu, Masahiko; Oshima, Taku; Lubkowska, Lucyna; Kashlev, Mikhail

    2013-01-01

    Cancerous and aging cells have long been thought to be impacted by transcription errors that cause genetic and epigenetic changes. Until now, a lack of methodology for directly assessing such errors hindered evaluation of their impact to the cells. We report a high-resolution Illumina RNA-seq method that can assess noncoded base substitutions in mRNA at 10−4–10−5 per base frequencies in vitro and in vivo. Statistically reliable detection of changes in transcription fidelity through ∼103 nt DNA sites assures that the RNA-seq can analyze the fidelity in a large number of the sites where errors occur. A combination of the RNA-seq and biochemical analyses of the positions for the errors revealed two sequence-specific mechanisms that increase transcription fidelity by Escherichia coli RNA polymerase: (i) enhanced suppression of nucleotide misincorporation that improves selectivity for the cognate substrate, and (ii) increased backtracking of the RNA polymerase that decreases a chance of error propagation to the full-length transcript after misincorporation and provides an opportunity to proofread the error. This method is adoptable to a genome-wide assessment of transcription fidelity. PMID:23925128

  1. Bioelectric Control of a 757 Class High Fidelity Aircraft Simulation

    NASA Technical Reports Server (NTRS)

    Jorgensen, Charles; Wheeler, Kevin; Stepniewski, Slawomir; Norvig, Peter (Technical Monitor)

    2000-01-01

    This paper presents results of a recent experiment in fine grain Electromyographic (EMG) signal recognition, We demonstrate bioelectric flight control of 757 class simulation aircraft landing at San Francisco International Airport. The physical instrumentality of a pilot control stick is not used. A pilot closes a fist in empty air and performs control movements which are captured by a dry electrode array on the arm, analyzed and routed through a flight director permitting full pilot outer loop control of the simulation. A Vision Dome immersive display is used to create a VR world for the aircraft body mechanics and flight changes to pilot movements. Inner loop surfaces and differential aircraft thrust is controlled using a hybrid neural network architecture that combines a damage adaptive controller (Jorgensen 1998, Totah 1998) with a propulsion only based control system (Bull & Kaneshige 1997). Thus the 757 aircraft is not only being flown bioelectrically at the pilot level but also demonstrates damage adaptive neural network control permitting adaptation to severe changes in the physical flight characteristics of the aircraft at the inner loop level. To compensate for accident scenarios, the aircraft uses remaining control surface authority and differential thrust from the engines. To the best of our knowledge this is the first time real time bioelectric fine-grained control, differential thrust based control, and neural network damage adaptive control have been integrated into a single flight demonstration. The paper describes the EMG pattern recognition system and the bioelectric pattern recognition methodology.

  2. High Fidelity Probe and Mitigation of Mirror Thermal Fluctuations

    NASA Astrophysics Data System (ADS)

    Chalermsongsak, Tara

    Thermal noise arising from mechanical loss in high reflective dielectric coatings is a significant source of noise in precision optical measurements. In particular, Advanced LIGO, a large scale interferometer aiming to observed gravitational wave, is expected to be limited by coating thermal noise in the most sensitive region around 30-300 Hz. Various theoretical calculations for predicting coating Brownian noise have been proposed. However, due to the relatively limited knowledge of the coating material properties, an accurate approximation of the noise cannot be achieved. A testbed that can directly observed coating thermal noise close to Advanced LIGO band will serve as an indispensable tool to verify the calculations, study material properties of the coating, and estimate the detector's performance. This dissertation reports a setup that has sensitivity to observe wide band (10Hz to 1kHz) thermal noise from fused silica/tantala coating at room temperature from fixed-spacer Fabry-Perot cavities. Important fundamental noises and technical noises associated with the setup are discussed. The coating loss obtained from the measurement agrees with results reported in the literature. The setup serves as a testbed to study thermal noise in high reflective mirrors from different materials. One example is a heterostructure of Al xGa1-xAs (AlGaAs). An optimized design to minimize thermo-optic noise in the coating is proposed and discussed in this work.

  3. Modeling methods for high-fidelity rotorcraft flight mechanics simulation

    NASA Technical Reports Server (NTRS)

    Mansur, M. Hossein; Tischler, Mark B.; Chaimovich, Menahem; Rosen, Aviv; Rand, Omri

    1992-01-01

    The cooperative effort being carried out under the agreements of the United States-Israel Memorandum of Understanding is discussed. Two different models of the AH-64 Apache Helicopter, which may differ in their approach to modeling the main rotor, are presented. The first model, the Blade Element Model for the Apache (BEMAP), was developed at Ames Research Center, and is the only model of the Apache to employ a direct blade element approach to calculating the coupled flap-lag motion of the blades and the rotor force and moment. The second model was developed at the Technion-Israel Institute of Technology and uses an harmonic approach to analyze the rotor. The approach allows two different levels of approximation, ranging from the 'first harmonic' (similar to a tip-path-plane model) to 'complete high harmonics' (comparable to a blade element approach). The development of the two models is outlined and the two are compared using available flight test data.

  4. High-Fidelity Coupled Monte-Carlo/Thermal-Hydraulics Calculations

    NASA Astrophysics Data System (ADS)

    Ivanov, Aleksandar; Sanchez, Victor; Ivanov, Kostadin

    2014-06-01

    Monte Carlo methods have been used as reference reactor physics calculation tools worldwide. The advance in computer technology allows the calculation of detailed flux distributions in both space and energy. In most of the cases however, those calculations are done under the assumption of homogeneous material density and temperature distributions. The aim of this work is to develop a consistent methodology for providing realistic three-dimensional thermal-hydraulic distributions by coupling the in-house developed sub-channel code SUBCHANFLOW with the standard Monte-Carlo transport code MCNP. In addition to the innovative technique of on-the fly material definition, a flux-based weight-window technique has been introduced to improve both the magnitude and the distribution of the relative errors. Finally, a coupled code system for the simulation of steady-state reactor physics problems has been developed. Besides the problem of effective feedback data interchange between the codes, the treatment of temperature dependence of the continuous energy nuclear data has been investigated.

  5. High Fidelity Simulations of Large-Scale Wireless Networks

    SciTech Connect

    Onunkwo, Uzoma; Benz, Zachary

    2015-11-01

    The worldwide proliferation of wireless connected devices continues to accelerate. There are 10s of billions of wireless links across the planet with an additional explosion of new wireless usage anticipated as the Internet of Things develops. Wireless technologies do not only provide convenience for mobile applications, but are also extremely cost-effective to deploy. Thus, this trend towards wireless connectivity will only continue and Sandia must develop the necessary simulation technology to proactively analyze the associated emerging vulnerabilities. Wireless networks are marked by mobility and proximity-based connectivity. The de facto standard for exploratory studies of wireless networks is discrete event simulations (DES). However, the simulation of large-scale wireless networks is extremely difficult due to prohibitively large turnaround time. A path forward is to expedite simulations with parallel discrete event simulation (PDES) techniques. The mobility and distance-based connectivity associated with wireless simulations, however, typically doom PDES and fail to scale (e.g., OPNET and ns-3 simulators). We propose a PDES-based tool aimed at reducing the communication overhead between processors. The proposed solution will use light-weight processes to dynamically distribute computation workload while mitigating communication overhead associated with synchronizations. This work is vital to the analytics and validation capabilities of simulation and emulation at Sandia. We have years of experience in Sandia’s simulation and emulation projects (e.g., MINIMEGA and FIREWHEEL). Sandia’s current highly-regarded capabilities in large-scale emulations have focused on wired networks, where two assumptions prevent scalable wireless studies: (a) the connections between objects are mostly static and (b) the nodes have fixed locations.

  6. Attenuation of Human Enterovirus 71 High-Replication-Fidelity Variants in AG129 Mice

    PubMed Central

    Meng, Tao

    2014-01-01

    ABSTRACT In a screen for ribavirin resistance, a novel high-fidelity variant of human enterovirus 71 (EV71) with the single amino acid change L123F in its RNA-dependent RNA polymerase (RdRp or 3D) was identified. Based on the crystal structure of EV71 RdRp, L123 locates at the entrance of the RNA template binding channel, which might form a fidelity checkpoint. EV71 RdRp-L123F variants generated less progeny in a guanidine resistance assay and virus populations with lower mutation frequencies in cell culture passage due to their higher replication fidelity. However, compared with wild-type viruses, they did not show growth defects. In vivo infections further revealed that high-fidelity mutations L123F and G64R (previously reported) negatively impacted EV71 fitness and greatly reduced viral pathogenicity alone or together in AG129 mice. Interestingly, a variant with double mutations, RG/B4-G64R/L123F (where RG/B4 is an EV71 genotype B4 virus constructed by reverse genetics [RG])showed higher fidelity in vitro and less virulence in vivo than any one of the above two single mutants. The 50% lethal dose (LD50) of the double mutant increased more than 500 times compared with the LD50 of wild-type RG/B4 in mice. The results indicated that these high-fidelity variants exhibited an attenuated pathogenic phenotype in vivo and offer promise as a live attenuated EV71 vaccine. IMPORTANCE The error-prone nature of the RNA-dependent RNA polymerase (RdRp) of RNA viruses during replication results in quasispecies and aids survival of virus populations under a wide range of selective pressures. Virus variants with higher replication fidelity exhibit lower genetic diversity and attenuated pathogenicity in vivo. Here, we identified a novel high-fidelity mutation L123F in the RdRp of human enterovirus 71 (EV71). We further elucidated that EV71 variants with the RdRp-L123F mutation and/or the previously identified high-fidelity mutation RdRp-G64R were attenuated in an AG129 mouse model

  7. A High-Fidelity Simulation of a Generic Commercial Aircraft Engine and Controller

    NASA Technical Reports Server (NTRS)

    May, Ryan D.; Csank, Jeffrey; Lavelle, Thomas M.; Litt, Jonathan S.; Guo, Ten-Huei

    2010-01-01

    A new high-fidelity simulation of a generic 40,000 lb thrust class commercial turbofan engine with a representative controller, known as CMAPSS40k, has been developed. Based on dynamic flight test data of a highly instrumented engine and previous engine simulations developed at NASA Glenn Research Center, this non-proprietary simulation was created especially for use in the development of new engine control strategies. C-MAPSS40k is a highly detailed, component-level engine model written in MATLAB/Simulink (The MathWorks, Inc.). Because the model is built in Simulink, users have the ability to use any of the MATLAB tools for analysis and control system design. The engine components are modeled in C-code, which is then compiled to allow faster-than-real-time execution. The engine controller is based on common industry architecture and techniques to produce realistic closed-loop transient responses while ensuring that no safety or operability limits are violated. A significant feature not found in other non-proprietary models is the inclusion of transient stall margin debits. These debits provide an accurate accounting of the compressor surge margin, which is critical in the design of an engine controller. This paper discusses the development, characteristics, and capabilities of the C-MAPSS40k simulation

  8. Terascale High-Fidelity Simulations of Turbulent Combustion with Detailed Chemistry: Spray Simulations

    SciTech Connect

    Rutland, Christopher J.

    2009-04-26

    The Terascale High-Fidelity Simulations of Turbulent Combustion (TSTC) project is a multi-university collaborative effort to develop a high-fidelity turbulent reacting flow simulation capability utilizing terascale, massively parallel computer technology. The main paradigm of the approach is direct numerical simulation (DNS) featuring the highest temporal and spatial accuracy, allowing quantitative observations of the fine-scale physics found in turbulent reacting flows as well as providing a useful tool for development of sub-models needed in device-level simulations. Under this component of the TSTC program the simulation code named S3D, developed and shared with coworkers at Sandia National Laboratories, has been enhanced with new numerical algorithms and physical models to provide predictive capabilities for turbulent liquid fuel spray dynamics. Major accomplishments include improved fundamental understanding of mixing and auto-ignition in multi-phase turbulent reactant mixtures and turbulent fuel injection spray jets.

  9. Rotorcraft brownout mitigation through flight path optimization using a high fidelity rotorcraft simulation model

    NASA Astrophysics Data System (ADS)

    Alfred, Jillian Samantha

    Brownout conditions often occur during approach, landing, and take off in a desert environment and involve the entrainment and mobilization of loose sediment and dust into the rotor flow field. For this research, a high fidelity flight dynamics model is used to perform a study on brownout mitigation through operational means of flight path. In order for the high fidelity simulation to model an approach profile, a method for following specific profiles was developed. An optimization study was then performed using this flight dynamics model in a comprehensive brownout simulation. The optimization found a local shallow optimum approach and a global steep optimum approach minimized the intensity of the resulting brownout clouds. These results were consistent previous mitigation studies and operational methods. The results also demonstrated that the addition of a full rotorcraft model into the brownout simulation changed the characteristics of the velocity flow field, and hence changing the character of the brownout cloud that was produced.

  10. Experimental demonstration of high fidelity entanglement distribution over decoherence channels via qubit transduction

    PubMed Central

    Lim, Hyang-Tag; Hong, Kang-Hee; Kim, Yoon-Ho

    2015-01-01

    Quantum coherence and entanglement, which are essential resources for quantum information, are often degraded and lost due to decoherence. Here, we report a proof-of-principle experimental demonstration of high fidelity entanglement distribution over decoherence channels via qubit transduction. By unitarily switching the initial qubit encoding to another, which is insensitive to particular forms of decoherence, we have demonstrated that it is possible to avoid the effect of decoherence completely. In particular, we demonstrate high-fidelity distribution of photonic polarization entanglement over quantum channels with two types of decoherence, amplitude damping and polarization-mode dispersion, via qubit transduction between polarization qubits and dual-rail qubits. These results represent a significant breakthrough in quantum communication over decoherence channels as the protocol is input-state independent, requires no ancillary photons and symmetries, and has near-unity success probability. PMID:26487083

  11. Band-selective shaped pulse for high fidelity quantum control in diamond

    SciTech Connect

    Chang, Yan-Chun; Xing, Jian; Liu, Gang-Qin; Jiang, Qian-Qing; Li, Wu-Xia; Zhang, Fei-Hao; Gu, Chang-Zhi; Pan, Xin-Yu; Long, Gui-Lu

    2014-06-30

    High fidelity quantum control of qubits is crucially important for realistic quantum computing, and it becomes more challenging when there are inevitable interactions between qubits. We introduce a band-selective shaped pulse, refocusing BURP (REBURP) pulse, to cope with the problems. The electron spin of nitrogen-vacancy centers in diamond is flipped with high fidelity by the REBURP pulse. In contrast with traditional rectangular pulses, the shaped pulse has almost equal excitation effect in a sharply edged region (in frequency domain). So the three sublevels of host {sup 14}N nuclear spin can be flipped accurately simultaneously, while unwanted excitations of other sublevels (e.g., of a nearby {sup 13}C nuclear spin) is well suppressed. Our scheme can be used for various applications such as quantum metrology, quantum sensing, and quantum information process.

  12. High-fidelity simulation and the development of clinical judgment: students' experiences.

    PubMed

    Lasater, Kathie

    2007-06-01

    Nursing education programs across the country are making major capital investments in alternative learning strategies, such as human patient simulators; yet, little research exists to affirm this new innovation. At the same time, nursing programs must become even more effective in the development of students' clinical judgment to better prepare graduates to take on increasingly complex care management. This qualitative study examined the experiences of students in one nursing program's first term of using high-fidelity simulation as part of its regular curriculum. On the basis of these experiences, it seems that high-fidelity simulation has potential to support and affect the development of clinical judgment in nursing students and to serve as a value-added adjunct to their clinical practica. PMID:17580739

  13. Experimental demonstration of high fidelity entanglement distribution over decoherence channels via qubit transduction.

    PubMed

    Lim, Hyang-Tag; Hong, Kang-Hee; Kim, Yoon-Ho

    2015-01-01

    Quantum coherence and entanglement, which are essential resources for quantum information, are often degraded and lost due to decoherence. Here, we report a proof-of-principle experimental demonstration of high fidelity entanglement distribution over decoherence channels via qubit transduction. By unitarily switching the initial qubit encoding to another, which is insensitive to particular forms of decoherence, we have demonstrated that it is possible to avoid the effect of decoherence completely. In particular, we demonstrate high-fidelity distribution of photonic polarization entanglement over quantum channels with two types of decoherence, amplitude damping and polarization-mode dispersion, via qubit transduction between polarization qubits and dual-rail qubits. These results represent a significant breakthrough in quantum communication over decoherence channels as the protocol is input-state independent, requires no ancillary photons and symmetries, and has near-unity success probability. PMID:26487083

  14. Band-selective shaped pulse for high fidelity quantum control in diamond

    NASA Astrophysics Data System (ADS)

    Chang, Yan-Chun; Xing, Jian; Zhang, Fei-Hao; Liu, Gang-Qin; Jiang, Qian-Qing; Li, Wu-Xia; Gu, Chang-Zhi; Long, Gui-Lu; Pan, Xin-Yu

    2014-06-01

    High fidelity quantum control of qubits is crucially important for realistic quantum computing, and it becomes more challenging when there are inevitable interactions between qubits. We introduce a band-selective shaped pulse, refocusing BURP (REBURP) pulse, to cope with the problems. The electron spin of nitrogen-vacancy centers in diamond is flipped with high fidelity by the REBURP pulse. In contrast with traditional rectangular pulses, the shaped pulse has almost equal excitation effect in a sharply edged region (in frequency domain). So the three sublevels of host 14N nuclear spin can be flipped accurately simultaneously, while unwanted excitations of other sublevels (e.g., of a nearby 13C nuclear spin) is well suppressed. Our scheme can be used for various applications such as quantum metrology, quantum sensing, and quantum information process.

  15. Ultrafast high-fidelity initialization of a quantum-dot spin qubit without magnetic fields

    NASA Astrophysics Data System (ADS)

    Mar, Jonathan D.; Baumberg, Jeremy J.; Xu, Xiulai; Irvine, Andrew C.; Williams, David A.

    2014-12-01

    We demonstrate the initialization of a single quantum-dot hole spin with high fidelity (lower bound >97 %), on picosecond time scales, and without the need for magnetic fields. Using the initialization scheme based on rapid electric-field ionization of a resonantly excited exciton, this is achieved by employing a self-assembled quantum dot with a low conduction-to-valence band offset ratio, allowing control of the relative electron and hole tunneling rates over three orders of magnitude. This large difference in tunneling rates could permit spin-storage efficiencies >99.5 % by fast-switching to a low electric-field condition. Our results may provide a practical route towards ultrafast high-fidelity initialization of individual quantum-dot hole spins for the implementation of quantum error correction in a scalable spin-based quantum computer.

  16. High-fidelity projective read-out of a solid-state spin quantum register.

    PubMed

    Robledo, Lucio; Childress, Lilian; Bernien, Hannes; Hensen, Bas; Alkemade, Paul F A; Hanson, Ronald

    2011-09-29

    Initialization and read-out of coupled quantum systems are essential ingredients for the implementation of quantum algorithms. Single-shot read-out of the state of a multi-quantum-bit (multi-qubit) register would allow direct investigation of quantum correlations (entanglement), and would give access to further key resources such as quantum error correction and deterministic quantum teleportation. Although spins in solids are attractive candidates for scalable quantum information processing, their single-shot detection has been achieved only for isolated qubits. Here we demonstrate the preparation and measurement of a multi-spin quantum register in a low-temperature solid-state system by implementing resonant optical excitation techniques originally developed in atomic physics. We achieve high-fidelity read-out of the electronic spin associated with a single nitrogen-vacancy centre in diamond, and use this read-out to project up to three nearby nuclear spin qubits onto a well-defined state. Conversely, we can distinguish the state of the nuclear spins in a single shot by mapping it onto, and subsequently measuring, the electronic spin. Finally, we show compatibility with qubit control: we demonstrate initialization, coherent manipulation and single-shot read-out in a single experiment on a two-qubit register, using techniques suitable for extension to larger registers. These results pave the way for a test of Bell's inequalities on solid-state spins and the implementation of measurement-based quantum information protocols. PMID:21937989

  17. High-fidelity DNA histograms in neoplastic progression in Barrett's esophagus.

    PubMed

    Yu, Chenggong; Zhang, Xiaoqi; Huang, Qin; Klein, Michael; Goyal, Raj K

    2007-05-01

    This study describes the high-fidelity DNA histograms in different stages of neoplastic progression to Barrett's adenocarcinoma (BAC). High-fidelity DNA histograms were obtained with image cytometry on sections, and were classified based on DNA index values of the peaks into diploid, mild aneuploid, moderate aneuploid and severe aneuploid. Heterogeneity index (HI) representing cells with different DNA content and the 5N exceeding cell fraction were determined. One hundred and eighty-seven cases, including 34 normal gastrointestinal mucosa (control), 66 Barrett's-specialized intestinal metaplasia (SIM), 22 low-grade dysplasia (LGD), 22 high-grade dysplasia (HGD) and 43 BAC were investigated. Controls showed sharp diploid peaks with HI values less than 13, and no 5N exceeding nuclei. SIM showed a spectrum of histograms including diploid, mild aneuploid and moderate aneuploid histograms. The frequency and severity of aneuploidy increased with worsening histological grades of dysplasia. All BAC cases were aneuploid, with moderate or severe aneuploidy. Marked elevated HI values (>20) and 5N exceeding fractions (>5%) were found in 5%, 32%, 50% and 88% of cases with SIM, LGD, HGD and BAC, respectively. The high-fidelity DNA histograms suggest that (1) Barrett's SIM may already be dysplastic in nature, and all BAC may be markedly aneuploid; and (2) elevated cellular DNA heterogeneity and 5N fractions may be markers of progressive chromosomal changes and 'unstable aneuploidy' that identifies progressive lesions. PMID:17310216

  18. Demonstration of a High-Fidelity Predictive/Preview Display Technique for Telerobotic Servicing in Space

    NASA Technical Reports Server (NTRS)

    Kim, Won S.; Bejczy, Antal K.

    1993-01-01

    A highly effective predictive/preview display technique for telerobotic servicing in space under several seconds communication time delay has been demonstrated on a large laboratory scale in May 1993, involving the Jet Propulsion Laboratory as the simulated ground control station and, 2500 miles away, the Goddard Space Flight Center as the simulated satellite servicing set-up. The technique is based on a high-fidelity calibration procedure that enables a high-fidelity overlay of 3-D graphics robot arm and object models over given 2-D TV camera images of robot arm and objects. To generate robot arm motions, the operator can confidently interact in real time with the graphics models of the robot arm and objects overlaid on an actual camera view of the remote work site. The technique also enables the operator to generate high-fidelity synthetic TV camera views showing motion events that are hidden in a given TV camera view or for which no TV camera views are available. The positioning accuracy achieved by this technique for a zoomed-in camera setting was about +/-5 mm, well within the allowable +/-12 mm error margin at the insertion of a 45 cm long tool in the servicing task.

  19. Using High-Fidelity Simulation and Eye Tracking to Characterize EHR Workflow Patterns among Hospital Physicians

    PubMed Central

    Doberne, Julie W.; He, Ze; Mohan, Vishnu; Gold, Jeffrey A.; Marquard, Jenna; Chiang, Michael F.

    2015-01-01

    Modern EHR systems are complex, and end-user behavior and training are highly variable. The need for clinicians to access key clinical data is a critical patient safety issue. This study used a mixed methods approach employing a high-fidelity EHR simulation environment, eye and screen tracking, surveys, and semi-structured interviews to characterize typical EHR usage by hospital physicians (hospitalists) as they encounter a new patient. The main findings were: 1) There were strong similarities across the groups in the information types the physicians looked at most frequently, 2) While there was no overall difference in case duration between the groups, we observed two distinct workflow types between the groups with respect to gathering information in the EHR and creating a note, and 3) A majority of the case time was devoted to note composition in both groups. This has implications for EHR interface design and raises further questions about what individual user workflows exist in the EHR. PMID:26958287

  20. Fluid/Structure Interaction Studies of Aircraft Using High Fidelity Equations on Parallel Computers

    NASA Technical Reports Server (NTRS)

    Guruswamy, Guru; VanDalsem, William (Technical Monitor)

    1994-01-01

    Abstract Aeroelasticity which involves strong coupling of fluids, structures and controls is an important element in designing an aircraft. Computational aeroelasticity using low fidelity methods such as the linear aerodynamic flow equations coupled with the modal structural equations are well advanced. Though these low fidelity approaches are computationally less intensive, they are not adequate for the analysis of modern aircraft such as High Speed Civil Transport (HSCT) and Advanced Subsonic Transport (AST) which can experience complex flow/structure interactions. HSCT can experience vortex induced aeroelastic oscillations whereas AST can experience transonic buffet associated structural oscillations. Both aircraft may experience a dip in the flutter speed at the transonic regime. For accurate aeroelastic computations at these complex fluid/structure interaction situations, high fidelity equations such as the Navier-Stokes for fluids and the finite-elements for structures are needed. Computations using these high fidelity equations require large computational resources both in memory and speed. Current conventional super computers have reached their limitations both in memory and speed. As a result, parallel computers have evolved to overcome the limitations of conventional computers. This paper will address the transition that is taking place in computational aeroelasticity from conventional computers to parallel computers. The paper will address special techniques needed to take advantage of the architecture of new parallel computers. Results will be illustrated from computations made on iPSC/860 and IBM SP2 computer by using ENSAERO code that directly couples the Euler/Navier-Stokes flow equations with high resolution finite-element structural equations.

  1. The incorporation of high fidelity simulation training into hemodialysis nursing education: an Australian unit's experience.

    PubMed

    Dunbar-Reid, Kylie; Sinclair, Peter M; Hudson, Denis

    2011-01-01

    A high-fidelity hemodialysis simulation program has been introduced and evaluated in a Far North Queensland dialysis unit. This program engages and challenges hemodialysis staff across the learning continuum. It provides a realistic, safe, and controlled learning environment for nurses to develop essential hemodialysis competencies while posing no threat to patient safety. This teaching method combined with clinical experience is a positive step forward in meeting future educational needs of the renal workforce. PMID:22338939

  2. Terascale High-Fidelity Simulations of Turbulent Combustion with Detailed Chemistry

    SciTech Connect

    Raghurama Reddy; Roberto Gomez; Junwoo Lim; Yang Wang; Sergiu Sanielevici

    2004-10-15

    This SciDAC project enabled a multidisciplinary research consortium to develop a high fidelity direct numerical simulation (DNS) software package for the simulation of turbulent reactive flows. Within this collaboration, the authors, based at CMU's Pittsburgh Supercomputing Center (PSC), focused on extensive new developments in Sandia National Laboratories' "S3D" software to address more realistic combustion features and geometries while exploiting Terascale computational possibilities. This work significantly advances the state-of-the-art of DNS of turbulent reacting flows.

  3. SOWFA Super-Controller: A High-Fidelity Tool for Evaluating Wind Plant Control Approaches

    SciTech Connect

    Fleming, P.; Gebraad, P.; van Wingerden, J. W.; Lee, S.; Churchfield, M.; Scholbrock, A.; Michalakes, J.; Johnson, K.; Moriarty, P.

    2013-01-01

    This paper presents a new tool for testing wind plant controllers in the Simulator for Offshore Wind Farm Applications (SOWFA). SOWFA is a high-fidelity simulator for the interaction between wind turbine dynamics and the fluid flow in a wind plant. The new super-controller testing environment in SOWFA allows for the implementation of the majority of the wind plant control strategies proposed in the literature.

  4. GIS Data Based Automatic High-Fidelity 3D Road Network Modeling

    NASA Technical Reports Server (NTRS)

    Wang, Jie; Shen, Yuzhong

    2011-01-01

    3D road models are widely used in many computer applications such as racing games and driving simulations_ However, almost all high-fidelity 3D road models were generated manually by professional artists at the expense of intensive labor. There are very few existing methods for automatically generating 3D high-fidelity road networks, especially those existing in the real world. This paper presents a novel approach thai can automatically produce 3D high-fidelity road network models from real 2D road GIS data that mainly contain road. centerline in formation. The proposed method first builds parametric representations of the road centerlines through segmentation and fitting . A basic set of civil engineering rules (e.g., cross slope, superelevation, grade) for road design are then selected in order to generate realistic road surfaces in compliance with these rules. While the proposed method applies to any types of roads, this paper mainly addresses automatic generation of complex traffic interchanges and intersections which are the most sophisticated elements in the road networks

  5. High-Fidelity Buckling Analysis of Composite Cylinders Using the STAGS Finite Element Code

    NASA Technical Reports Server (NTRS)

    Hilburger, Mark W.

    2014-01-01

    Results from previous shell buckling studies are presented that illustrate some of the unique and powerful capabilities in the STAGS finite element analysis code that have made it an indispensable tool in structures research at NASA over the past few decades. In particular, prototypical results from the development and validation of high-fidelity buckling simulations are presented for several unstiffened thin-walled compression-loaded graphite-epoxy cylindrical shells along with a discussion on the specific methods and user-defined subroutines in STAGS that are used to carry out the high-fidelity simulations. These simulations accurately account for the effects of geometric shell-wall imperfections, shell-wall thickness variations, local shell-wall ply-gaps associated with the fabrication process, shell-end geometric imperfections, nonuniform applied end loads, and elastic boundary conditions. The analysis procedure uses a combination of nonlinear quasi-static and transient dynamic solution algorithms to predict the prebuckling and unstable collapse response characteristics of the cylinders. Finally, the use of high-fidelity models in the development of analysis-based shell-buckling knockdown (design) factors is demonstrated.

  6. Development and evaluation of a high-fidelity canine patient simulator for veterinary clinical training.

    PubMed

    Fletcher, Daniel J; Militello, Roberta; Schoeffler, Gretchen L; Rogers, Catherine L

    2012-01-01

    High-fidelity human patient simulators have been used for decades in medical education to provide opportunities for students to practice technical skills, diagnostic and therapeutic planning, and communication skills in a safe environment. A high-fidelity canine patient simulator (CPS) was developed using components from a human patient simulator and a low-fidelity foam core canine mannequin. Ninety-six veterinary students participated in cardiopulmonary arrest scenarios in groups of three to five students. Afterwards, participants were asked to complete an anonymous online survey describing their experiences. A total of 70 students (73%) completed the survey. All of the students (100%) felt that the simulator session expanded their cardiopulmonary resuscitation (CPR) knowledge base, and 97% responded that their skills and abilities had improved. Students also expressed positive opinions about the CPS, with 89% agreeing or strongly agreeing that the CPS was realistic and 73% agreeing or strongly agreeing that the scenarios generated emotions similar to real clinical situations. Most participants (98.5%) agreed or strongly agreed that the simulator was an engaging learning experience. Students commonly commented that the simulations allowed them to practice communication and teamwork skills and were more effective than paper-based, problem-oriented learning opportunities and lecture. Students also commented that they wanted more opportunities to participate in simulation exercises. These results suggest that high-fidelity veterinary simulation is an engaging educational methodology that addresses some limitations of other forms of problem-based learning. More studies are needed to quantitatively determine the effectiveness of this novel veterinary educational technology in comparison with more traditional approaches. PMID:22433738

  7. High-fidelity gate operations for quantum computing beyond dephasing time limits

    NASA Astrophysics Data System (ADS)

    Souza, Alexandre M.; Sarthour, Roberto S.; Oliveira, Ivan S.; Suter, Dieter

    2015-12-01

    The implementation of quantum gates with fidelities that exceed the threshold for reliable quantum computing requires robust gates whose performance is not limited by the precision of the available control fields. The performance of these gates also should not be affected by the noisy environment of the quantum register. Here we use randomized benchmarking of quantum gate operations to compare the performance of different families of gates that compensate errors in the control field amplitudes and decouple the system from the environmental noise. We obtain average fidelities of up to 99.8%, which exceeds the threshold value for some quantum error correction schemes as well as the expected limit from the dephasing induced by the environment.

  8. High-fidelity continuous-variable quantum teleportation toward multistep quantum operations

    SciTech Connect

    Yukawa, Mitsuyoshi; Furusawa, Akira; Benichi, Hugo

    2008-02-15

    The progress in quantum operations of continuous-variable (CV) schemes can be reduced to that in CV quantum teleportation. The fidelity of quantum teleportation of an optical setup is limited by the finite degree of quantum correlation that can be prepared with a pair of finitely squeezed states. Reports of improvement of squeezing level have appeared recently, and we adopted the improved methods in our experimental system of quantum teleportation. As a result, we teleported a coherent state with a fidelity F=0.83{+-}0.01, which is better than any other figures reported to date, to our knowledge. In this paper, we introduce a measure n{sub s}, the number of teleportations expected to be carried out sequentially. Our result corresponds to n{sub s}=5.0{+-}0.4. It suggests that our improvement would enable us to proceed toward more advanced quantum operations involving multiple steps.

  9. High-Fidelity Qubit Measurement using a Superconducting Low-Inductance Undulatory Galvanometer Microwave Amplifier

    NASA Astrophysics Data System (ADS)

    Thorbeck, Ted; Hover, David; Zhu, Shaojiang; Ribeill, Guilhem; Sank, Daniel; Barends, Rami; Martinis, John; McDermott, Robert

    2014-03-01

    We describe a high-fidelity dispersive measurement of a superconducting Xmon qubit using a microwave amplifier based on the Superconducting Low-inductance Undulatory Galvanometer (SLUG). We will show a qubit measurement fidelity of 99% in 700 ns with the SLUG, compared to 60% without the SLUG. The SLUG amplifier has a gain of 19 dB at 6.6 GHZ. It also improves the signal-to-noise ratio by 9 dB, compared the same circuit without the SLUG. Also, the SLUG amplifier has a large dynamic range, with an input saturation power corresponding to around 600 photons in the readout cavity. All of these properties make the SLUG a promising microwave amplifier for more complex quantum circuits.

  10. Simulation Manikin Modifications for High-Fidelity Training of Advanced Airway Procedures.

    PubMed

    Hirsch, Jan; Generoso, Jose R; Latoures, Renee; Acar, Yahya; Fidler, Richard L

    2016-05-01

    Thoracic anesthesia procedures are challenging to master during anesthesia training. A Laerdal ALS Simulator® manikin was modified by adding a bronchial tree module to create fidelity to the fourth generation. After modification, placement of endotracheal tubes up to 8.0 mm is possible by direct laryngoscopy, video laryngoscopy, and fiberoptically; in addition, it allows fiberoptically guided insertion of endobronchial blockers. Insertion of left and right 35-Fr double-lumen tubes permits double- and single-lung ventilation with continuous positive airway pressure and positive end-expiratory pressure. This anatomical modification created a high-fidelity training tool for thoracic anesthesia that has been incorporated into educational curricula for anesthesia. PMID:26752178

  11. High-fidelity single-shot three-qubit gates via machine learning

    NASA Astrophysics Data System (ADS)

    Zahedinejad, Ehsan; Ghosh, Joydip; Sanders, Barry C.

    Three-qubit quantum gates play a crucial role in quantum error correction and quantum information processing. Here I discuss how to generate policies for quantum control to design three-qubit gates namely, Toffoli, Controlled-Not-Not and Fredkin gates for an architecture of nearest-neighbor-coupled superconducting artificial atoms. The resulted fidelity for each gate is above the 99.9% which is the threshold fidelity for fault-tolerant quantum computing. We test our policy in the presence of decoherence-induced noise as well as show its robustness under random external noise. The three-qubit gates are designed via our machine learning algorithm called Subspace-Selective Self-Adaptive Differential Evolution (SuSSADE). NSERC, AITF and University of Calgarys Eyes High Fellowship Program.

  12. The Importance of Water for High Fidelity Information Processing and for Life

    NASA Technical Reports Server (NTRS)

    Hoehler, Tori M.; Pohorille, Andrew

    2011-01-01

    Is water an absolute prerequisite for life? Life depends on a variety of non-covalent interactions among molecules, the nature of which is determined as much by the solvent in which they occur as by the molecules themselves. Catalysis and information processing, two essential functions of life, require non-covalent molecular recognition with very high specificity. For example, to correctly reproduce a string consisting of 600,000 units of information (e.g ., 600 kilobases, equivalent to the genome of the smallest free living terrestrial organisms) with a 90% success rate requires specificity > 107 : 1 for the target molecule vs. incorrect alternatives. Such specificity requires (i) that the correct molecular association is energetically stabilized by at least 40 kJ/mol relative to alternatives, and (ii) that the system is able to sample among possible states (alternative molecular associations) rapidly enough to allow the system to fall under thermodynamic control and express the energetic stabilization. We argue that electrostatic interactions are required to confer the necessary energetic stabilization vs. a large library of molecular alternatives, and that a solvent with polarity and dielectric properties comparable to water is required for the system to sample among possible states and express thermodynamic control. Electrostatic associations can be made in non-polar solvents, but the resulting complexes are too stable to be "unmade" with sufficient frequency to confer thermodynamic control on the system. An electrostatic molecular complex representing 3 units of information (e.g., 3 base pairs) with specificity > 107 per unit has a stability in non-polar solvent comparable to that of a carbon-carbon bond at room temperature. These considerations suggest that water, or a solvent with properties very like water, is necessary to support high-fidelity information processing, and can therefore be considered a critical prerequisite for life.

  13. Controlled tunneling-induced dephasing of Rabi rotations for high-fidelity hole spin initialization

    NASA Astrophysics Data System (ADS)

    Ardelt, P.-L.; Simmet, T.; Müller, K.; Dory, C.; Fischer, K. A.; Bechtold, A.; Kleinkauf, A.; Riedl, H.; Finley, J. J.

    2015-09-01

    We report the subpicosecond initialization of a single heavy hole spin in a self-assembled quantum dot with >98.5 % fidelity and without external magnetic field. Using an optically addressable charge and spin storage device we tailor the relative electron and hole tunneling escape time scales from the dot and simultaneously achieve high-fidelity initialization, long hole storage times, and high-efficiency readout via a photocurrent signal. We measure electric-field-dependent Rabi oscillations of the neutral and charged exciton transitions in the ultrafast tunneling regime and demonstrate that tunneling-induced dephasing (TID) of excitonic Rabi rotations is the major source for the intensity damping of Rabi oscillations in the low Rabi frequency, low temperature regime. Our results are in very good quantitative agreement with quantum-optical simulations revealing that TID can be used to precisely measure tunneling escape times and extract changes in the Coulomb binding energies for different charge configurations of the quantum dot. Finally, we demonstrate that for subpicosecond electron tunneling escape, TID of a coherently driven exciton transition facilitates ultrafast hole spin initialization with near-unity fidelity.

  14. Visualization of Brain Microstructure Through Spherical Harmonics Illumination of High Fidelity Spatio-Angular Fields.

    PubMed

    Bista, Sujal; Zhuo, Jiachen; Gullapalli, Rao P; Varshney, Amitabh

    2014-12-01

    Diffusion kurtosis imaging (DKI) is gaining rapid adoption in the medical imaging community due to its ability to measure the non-Gaussian property of water diffusion in biological tissues. Compared to traditional diffusion tensor imaging (DTI), DKI can provide additional details about the underlying microstructural characteristics of the neural tissues. It has shown promising results in studies on changes in gray matter and mild traumatic brain injury where DTI is often found to be inadequate. The DKI dataset, which has high-fidelity spatio-angular fields, is difficult to visualize. Glyph-based visualization techniques are commonly used for visualization of DTI datasets; however, due to the rapid changes in orientation, lighting, and occlusion, visually analyzing the much more higher fidelity DKI data is a challenge. In this paper, we provide a systematic way to manage, analyze, and visualize high-fidelity spatio-angular fields from DKI datasets, by using spherical harmonics lighting functions to facilitate insights into the brain microstructure. PMID:26356965

  15. High fidelity simulation of nucleate boiling and transition to critical heat flux on enhanced structures

    NASA Astrophysics Data System (ADS)

    Yazdani, Miad; Alahyari, Abbas; Radcliff, Thomas; Soteriou, Marios

    2015-11-01

    Surface enhancement is often is the primary approach for improved heat transfer performance of two-phase thermal systems particularly when they operate in nucleate boiling regime. This paper exploits the modeling capability developed by Yazdani et al. for simulation of nucleate boiling and transition to critical heat flux to study the nucleation phenomenon on various enhanced structures. The multi-scale of two-phase flow associated with boiling phenomena is addressed through combination of deterministic CFD for the macro-scale transport, asymptotic based representation of micro-layer, and stochastic representation of surface roughness so as to allow a high-fidelity simulation of boiling on an arbitrary surface. In addition, given the excessive complexity of surface structures often used for enhancement of boiling heat transfer, a phase-field-based method is developed to generate the structures where the numerical parameters in the phase-field model determine the topology of a given structure. The ``generated'' structure is then embedded into the two-phase flow model through virtual boundary method for the boiling simulation. The model is validated against experimental data for the boiling curve and the critical heat flux as well as nucleation and bubble dynamics characteristics.

  16. High-Fidelity Two-Qubit Gates in a Surface Ion Trap

    NASA Astrophysics Data System (ADS)

    Lobser, Daniel; Blain, Matthew; Blume-Kohout, Robin; Fortier, Kevin; Mizrahi, Jonathan; Nielsen, Erik; Rudinger, Kenneth; Sterk, Jonathan; Stick, Daniel; Maunz, Peter

    2016-05-01

    Microfabricated surface traps are capable of supporting a variety of exotic trapping geometries and provide a scalable system for trapped ion Quantum Information Processing (QIP). However, the feasibility of using surface traps for QIP has long been a point of contention because the close proximity of the ions to trap electrodes increases heating rates and might lead to laser-induced charging of the trap. As surface traps continue to evolve at a remarkable rate, their performance is rapidly approaching that of macroscopic electrode traps. Using Sandia's High-Optical-Access surface trap, we demonstrate robust single-qubit gates, both laser- and microwave-based. Our gates are accurately characterized by Gate Set Tomography (GST) and we report the first diamond norm measurements near the fault-tolerance threshold. Extending these techniques, we've realized a Mølmer-Sørensen two-qubit gate that is stable for several hours. This stability has allowed us to perform the first GST measurements of a two-qubit gate, yielding a process fidelity of 99.58(6)%. This work was supported by the Laboratory Directed Research and Development (LDRD) program at Sandia National Laboratories.

  17. High-fidelity simulations for clean and efficient combustion of alternative fuels

    NASA Astrophysics Data System (ADS)

    Oefelein, J. C.; Chen, J. H.; Sankaran, R.

    2009-07-01

    There is an urgent and growing demand for high-fidelity simulations that capture complex turbulence-chemistry interactions in propulsion and power systems, and in particular, that capture and discriminate the effects of fuel variability. This project addresses this demand using the Large Eddy Simulation (LES) technique (led by Oefelein) and the Direct Numerical Simulation (DNS) technique (led by Chen). In particular, we are conducting research under the INCITE program that is tightly coupled with funded projects established under the DOE Basic Energy Sciences and Energy Efficiency and Renewable Energy programs that will provide the foundational science required to develop a predictive modeling capability for design of advanced engines for transportation. Application of LES provides the formal ability to treat the full range of multidimensional time and length scales that exist in turbulent reacting flows in a computationally feasible manner and thus provides a way to simulate reacting flow phenomena in complex internal-combustion engine geometries at device relevant conditions. Application of DNS provides a way to study fundamental issues related to small-scale combustion processes in canonical configurations to understand dynamics that occur over a range of reactive-diffusive scales. Here we describe the challenges and present representative examples of the types of simulations each respective tool has been used for as part of the INCITE program. We focus on recent experiences on the Oak Ridge National Laboratory (ORNL) National Center for Computational Sciences (NCCS) Cray-XT Platform (i.e., Jaguar).

  18. Network-aware scalable video monitoring system for emergency situations with operator-managed fidelity control

    NASA Astrophysics Data System (ADS)

    Al Hadhrami, Tawfik; Nightingale, James M.; Wang, Qi; Grecos, Christos

    2014-05-01

    In emergency situations, the ability to remotely monitor unfolding events using high-quality video feeds will significantly improve the incident commander's understanding of the situation and thereby aids effective decision making. This paper presents a novel, adaptive video monitoring system for emergency situations where the normal communications network infrastructure has been severely impaired or is no longer operational. The proposed scheme, operating over a rapidly deployable wireless mesh network, supports real-time video feeds between first responders, forward operating bases and primary command and control centers. Video feeds captured on portable devices carried by first responders and by static visual sensors are encoded in H.264/SVC, the scalable extension to H.264/AVC, allowing efficient, standard-based temporal, spatial, and quality scalability of the video. A three-tier video delivery system is proposed, which balances the need to avoid overuse of mesh nodes with the operational requirements of the emergency management team. In the first tier, the video feeds are delivered at a low spatial and temporal resolution employing only the base layer of the H.264/SVC video stream. Routing in this mode is designed to employ all nodes across the entire mesh network. In the second tier, whenever operational considerations require that commanders or operators focus on a particular video feed, a `fidelity control' mechanism at the monitoring station sends control messages to the routing and scheduling agents in the mesh network, which increase the quality of the received picture using SNR scalability while conserving bandwidth by maintaining a low frame rate. In this mode, routing decisions are based on reliable packet delivery with the most reliable routes being used to deliver the base and lower enhancement layers; as fidelity is increased and more scalable layers are transmitted they will be assigned to routes in descending order of reliability. The third tier

  19. The Kepler End-to-End Model: Creating High-Fidelity Simulations to Test Kepler Ground Processing

    NASA Technical Reports Server (NTRS)

    Bryson, Stephen T.; Jenkins, Jon M.; Peters, Dan J.; Tenenbaum, Peter P.; Klaus, Todd C.; Gunter, Jay P.; Cote, Miles T.; Caldwell, Douglas A.

    2010-01-01

    The Kepler mission is designed to detect the transit of Earth-like planets around Sun-like stars by observing 100,000 stellar targets. Developing and testing the Kepler ground-segment processing system, in particular the data analysis pipeline, requires high-fidelity simulated data. This simulated data is provided by the Kepler End-to-End Model (ETEM). ETEM simulates the astrophysics of planetary transits and other phenomena, properties of the Kepler spacecraft and the format of the downlinked data. Major challenges addressed by ETEM include the rapid production of large amounts of simulated data, extensibility and maintainability.

  20. A cost effective and high fidelity fluoroscopy simulator using the Image-Guided Surgery Toolkit (IGSTK)

    NASA Astrophysics Data System (ADS)

    Gong, Ren Hui; Jenkins, Brad; Sze, Raymond W.; Yaniv, Ziv

    2014-03-01

    The skills required for obtaining informative x-ray fluoroscopy images are currently acquired while trainees provide clinical care. As a consequence, trainees and patients are exposed to higher doses of radiation. Use of simulation has the potential to reduce this radiation exposure by enabling trainees to improve their skills in a safe environment prior to treating patients. We describe a low cost, high fidelity, fluoroscopy simulation system. Our system enables operators to practice their skills using the clinical device and simulated x-rays of a virtual patient. The patient is represented using a set of temporal Computed Tomography (CT) images, corresponding to the underlying dynamic processes. Simulated x-ray images, digitally reconstructed radiographs (DRRs), are generated from the CTs using ray-casting with customizable machine specific imaging parameters. To establish the spatial relationship between the CT and the fluoroscopy device, the CT is virtually attached to a patient phantom and a web camera is used to track the phantom's pose. The camera is mounted on the fluoroscope's intensifier and the relationship between it and the x-ray source is obtained via calibration. To control image acquisition the operator moves the fluoroscope as in normal operation mode. Control of zoom, collimation and image save is done using a keypad mounted alongside the device's control panel. Implementation is based on the Image-Guided Surgery Toolkit (IGSTK), and the use of the graphics processing unit (GPU) for accelerated image generation. Our system was evaluated by 11 clinicians and was found to be sufficiently realistic for training purposes.

  1. Effects of High-Fidelity Human Patient Simulation Experience on Self-Efficacy, Motivation and Learning of First Semester Associate Degree Nursing Students

    ERIC Educational Resources Information Center

    Kuznar, Kathleen A.

    2009-01-01

    One of the newest methodologies in nursing education is high-fidelity human patient simulation (HPS). Many nursing educators have embraced the method as it offers a strategy to facilitate cognitive, affective, and psychomotor outcomes. Despite their popularity, however, HPS systems are costly and, in an era of cost containment and tuition…

  2. Fidelity decay and entropy production in many-particle systems after random interaction quench

    NASA Astrophysics Data System (ADS)

    Haldar, Sudip Kumar; Chavda, N. D.; Vyas, Manan; Kota, V. K. B.

    2016-04-01

    We analyze the effect of spin degree of freedom on fidelity decay and entropy production of a many-particle fermionic (bosonic) system in a mean-field, quenched by a random two-body interaction preserving many-particle spin S. The system Hamiltonian is represented by embedded Gaussian orthogonal ensemble (EGOE) of random matrices (for time-reversal and rotationally invariant systems) with one plus two-body interactions preserving S for fermions/bosons. EGOE are paradigmatic models to study the dynamical transition from integrability to chaos in interacting many-body quantum systems. A simple general picture, in which the variances of the eigenvalue density play a central role, is obtained for describing the short-time dynamics of fidelity decay and entropy production. Using some approximations, an EGOE formula for the time (t sat) for the onset of saturation of entropy, is also derived. These analytical EGOE results are in good agreement with numerical calculations. Moreover, both fermion and boson systems show significant spin dependence on the relaxation dynamics of the fidelity and entropy.

  3. Click Reaction on Solid Phase Enables High Fidelity Synthesis of Nucleobase-Modified DNA.

    PubMed

    Tolle, Fabian; Rosenthal, Malte; Pfeiffer, Franziska; Mayer, Günter

    2016-03-16

    The post-synthetic functionalization of nucleic acids via click chemistry (CuAAC) has seen tremendous implementation, extending the applicability of nucleobase-modified nucleic acids in fields like fluorescent labeling, nanotechnology, and in vitro selection. However, the production of large quantities of high-density functionalized material via solid phase synthesis has been hampered by oxidative by-product formation associated with the alkaline workup conditions. Herein, we describe a rapid and cost-effective protocol for the high fidelity large-scale production of nucleobase-modified nucleic acids, exemplified with a recently described nucleobase-modified aptamer. PMID:26850226

  4. Development of a High Fidelity Dynamic Module of the Advanced Resistive Exercise Device (ARED) Using Adams

    NASA Technical Reports Server (NTRS)

    Humphreys, B. T.; Thompson, W. K.; Lewandowski, B. E.; Cadwell, E. E.; Newby, N. J.; Fincke, R. S.; Sheehan, C.; Mulugeta, L.

    2012-01-01

    NASA's Digital Astronaut Project (DAP) implements well-vetted computational models to predict and assess spaceflight health and performance risks, and enhance countermeasure development. DAP provides expertise and computation tools to its research customers for model development, integration, or analysis. DAP is currently supporting the NASA Exercise Physiology and Countermeasures (ExPC) project by integrating their biomechanical models of specific exercise movements with dynamic models of the devices on which the exercises were performed. This presentation focuses on the development of a high fidelity dynamic module of the Advanced Resistive Exercise Device (ARED) on board the ISS. The ARED module, illustrated in the figure below, was developed using the Adams (MSC Santa Ana, California) simulation package. The Adams package provides the capabilities to perform multi rigid body, flexible body, and mixed dynamic analyses of complex mechanisms. These capabilities were applied to accurately simulate: Inertial and mass properties of the device such as the vibration isolation system (VIS) effects and other ARED components, Non-linear joint friction effects, The gas law dynamics of the vacuum cylinders and VIS components using custom written differential state equations, The ARED flywheel dynamics, including torque limiting clutch. Design data from the JSC ARED Engineering team was utilized in developing the model. This included solid modeling geometry files, component/system specifications, engineering reports and available data sets. The Adams ARED module is importable into LifeMOD (Life Modeler, Inc., San Clemente, CA) for biomechanical analyses of different resistive exercises such as squat and dead-lift. Using motion capture data from ground test subjects, the ExPC developed biomechanical exercise models in LifeMOD. The Adams ARED device module was then integrated with the exercise subject model into one integrated dynamic model. This presentation will describe the

  5. Automatic 3D high-fidelity traffic interchange modeling using 2D road GIS data

    NASA Astrophysics Data System (ADS)

    Wang, Jie; Shen, Yuzhong

    2011-03-01

    3D road models are widely used in many computer applications such as racing games and driving simulations. However, almost all high-fidelity 3D road models were generated manually by professional artists at the expense of intensive labor. There are very few existing methods for automatically generating 3D high-fidelity road networks, especially for those existing in the real world. Real road network contains various elements such as road segments, road intersections and traffic interchanges. Among them, traffic interchanges present the most challenges to model due to their complexity and the lack of height information (vertical position) of traffic interchanges in existing road GIS data. This paper proposes a novel approach that can automatically produce 3D high-fidelity road network models, including traffic interchange models, from real 2D road GIS data that mainly contain road centerline information. The proposed method consists of several steps. The raw road GIS data are first preprocessed to extract road network topology, merge redundant links, and classify road types. Then overlapped points in the interchanges are detected and their elevations are determined based on a set of level estimation rules. Parametric representations of the road centerlines are then generated through link segmentation and fitting, and they have the advantages of arbitrary levels of detail with reduced memory usage. Finally a set of civil engineering rules for road design (e.g., cross slope, superelevation) are selected and used to generate realistic road surfaces. In addition to traffic interchange modeling, the proposed method also applies to other more general road elements. Preliminary results show that the proposed method is highly effective and useful in many applications.

  6. Evaluating Intervention Fidelity: An Example from a High-Intensity Interval Training Study

    PubMed Central

    Taylor, Kathryn L.; Weston, Matthew; Batterham, Alan M.

    2015-01-01

    Aim Intervention fidelity refers to the degree to which an experimental manipulation has been implemented as intended, but simple, robust methods for quantifying fidelity have not been well documented. Therefore, we aim to illustrate a rigorous quantitative evaluation of intervention fidelity, using data collected during a high-intensity interval training intervention. Design Single-group measurement study. Methods Seventeen adolescents (mean age ± standard deviation [SD] 14.0 ± 0.3 years) attended a 10-week high-intensity interval training intervention, comprising two exercise sessions per week. Sessions consisted of 4-7 45-s maximal effort repetitions, interspersed with 90-s rest. We collected heart rate data at 5-s intervals and recorded the peak heart rate for each repetition. The high-intensity exercise criterion was ≥90% of individual maximal heart rate. For each participant, we calculated the proportion of total exercise repetitions exceeding this threshold. A linear mixed model was applied to properly separate the variability in peak heart rate between- and within-subjects. Results are presented both as intention to treat (including missed sessions) and per protocol (only participants with 100% attendance; n=8). Results For intention to treat, the median (interquartile range) proportion of repetitions meeting the high-intensity criterion was 58% (42% to 68%). The mean peak heart rate was 85% of maximal, with a between-subject SD of 7.8 (95% confidence interval 5.4 to 11.3) percentage points and a within-subject SD of 15.1 (14.6 to 15.6) percentage points. For the per protocol analysis, the median proportion of high-intensity repetitions was 68% (47% to 86%). The mean peak heart rate was 91% of maximal, with between- and within-subject SDs of 3.1 (-1.3 to 4.6) and 3.4 (3.2 to 3.6) percentage points, respectively. Conclusions Synthesising information on exercise session attendance and compliance (exercise intensity) quantifies the intervention dose and

  7. Creating NDA working standards through high-fidelity spent fuel modeling

    SciTech Connect

    Skutnik, Steven E; Gauld, Ian C; Romano, Catherine E; Trellue, Holly

    2012-01-01

    The Next Generation Safeguards Initiative (NGSI) is developing advanced non-destructive assay (NDA) techniques for spent nuclear fuel assemblies to advance the state-of-the-art in safeguards measurements. These measurements aim beyond the capabilities of existing methods to include the evaluation of plutonium and fissile material inventory, independent of operator declarations. Testing and evaluation of advanced NDA performance will require reference assemblies with well-characterized compositions to serve as working standards against which the NDA methods can be benchmarked and for uncertainty quantification. To support the development of standards for the NGSI spent fuel NDA project, high-fidelity modeling of irradiated fuel assemblies is being performed to characterize fuel compositions and radiation emission data. The assembly depletion simulations apply detailed operating history information and core simulation data as it is available to perform high fidelity axial and pin-by-pin fuel characterization for more than 1600 nuclides. The resulting pin-by-pin isotopic inventories are used to optimize the NDA measurements and provide information necessary to unfold and interpret the measurement data, e.g., passive gamma emitters, neutron emitters, neutron absorbers, and fissile content. A key requirement of this study is the analysis of uncertainties associated with the calculated compositions and signatures for the standard assemblies; uncertainties introduced by the calculation methods, nuclear data, and operating information. An integral part of this assessment involves the application of experimental data from destructive radiochemical assay to assess the uncertainty and bias in computed inventories, the impact of parameters such as assembly burnup gradients and burnable poisons, and the influence of neighboring assemblies on periphery rods. This paper will present the results of high fidelity assembly depletion modeling and uncertainty analysis from independent

  8. High-Fidelity Universal Gate Set for 9Be+ Ion Qubits

    NASA Astrophysics Data System (ADS)

    Gaebler, J. P.; Tan, T. R.; Lin, Y.; Wan, Y.; Bowler, R.; Keith, A. C.; Glancy, S.; Coakley, K.; Knill, E.; Leibfried, D.; Wineland, D. J.

    2016-08-01

    We report high-fidelity laser-beam-induced quantum logic gates on magnetic-field-insensitive qubits comprised of hyperfine states in 9Be+ ions with a memory coherence time of more than 1 s. We demonstrate single-qubit gates with an error per gate of 3.8 (1 )×10-5 . By creating a Bell state with a deterministic two-qubit gate, we deduce a gate error of 8 (4 )×10-4. We characterize the errors in our implementation and discuss methods to further reduce imperfections towards values that are compatible with fault-tolerant processing at realistic overhead.

  9. High-Fidelity Universal Gate Set for ^{9}Be^{+} Ion Qubits.

    PubMed

    Gaebler, J P; Tan, T R; Lin, Y; Wan, Y; Bowler, R; Keith, A C; Glancy, S; Coakley, K; Knill, E; Leibfried, D; Wineland, D J

    2016-08-01

    We report high-fidelity laser-beam-induced quantum logic gates on magnetic-field-insensitive qubits comprised of hyperfine states in ^{9}Be^{+} ions with a memory coherence time of more than 1 s. We demonstrate single-qubit gates with an error per gate of 3.8(1)×10^{-5}. By creating a Bell state with a deterministic two-qubit gate, we deduce a gate error of 8(4)×10^{-4}. We characterize the errors in our implementation and discuss methods to further reduce imperfections towards values that are compatible with fault-tolerant processing at realistic overhead. PMID:27541451

  10. High-Fidelity Micromechanics Model Developed for the Response of Multiphase Materials

    NASA Technical Reports Server (NTRS)

    Aboudi, Jacob; Pindera, Marek-Jerzy; Arnold, Steven M.

    2002-01-01

    A new high-fidelity micromechanics model has been developed under funding from the NASA Glenn Research Center for predicting the response of multiphase materials with arbitrary periodic microstructures. The model's analytical framework is based on the homogenization technique, but the method of solution for the local displacement and stress fields borrows concepts previously employed in constructing the higher order theory for functionally graded materials. The resulting closed-form macroscopic and microscopic constitutive equations, valid for both uniaxial and multiaxial loading of periodic materials with elastic and inelastic constitutive phases, can be incorporated into a structural analysis computer code. Consequently, this model now provides an alternative, accurate method.

  11. We have a high-fidelity simulator, now what? Making the most of simulators.

    PubMed

    Leigh, Gwen; Hurst, Helen

    2008-01-01

    High-fidelity simulators are becoming the tool of choice in preparing today's nursing students for the clinical setting. Many colleges of nursing have purchased these simulators but they remain unused partly due to the reluctance of faculty learning to operate them. The College of Nursing and Allied Health Professions at the University of Louisiana at Lafayette has three simulation labs with 6 SimMans, 8 Nursing Kelly VitalSims, 4 Simbabies, and 2 NOELLE birthing simulators. This article describes methods to maximize the use of simulators, dispel reservations of faculty, and provides hints on how to build successful scenarios and how to encourage their use. PMID:18976230

  12. High-fidelity AFM scanning stage based on multilayer ceramic capacitors.

    PubMed

    Chen, Jian; Zhang, Lian Sheng; Feng, Zhi Hua

    2016-05-01

    A kind of multilayer ceramic capacitors (MLCCs) has been verified to have good micro-actuating properties, thus making them good candidates for nano-positioning. In this paper, we successfully employed the MLCCs as lateral scanners for a tripod scanning stage. The MLCC-based lateral scanners display hysteresis under 1.5% and a nonlinearity less than 2% even with the simplest open-loop voltage drive. The developed scanning stage was integrated into a commercial AFM to evaluate its imaging performance. Experimental results showed that sample images with high fidelities were obtained. SCANNING 38:184-190, 2016. © 2015 Wiley Periodicals, Inc. PMID:26367125

  13. Suppressing Leakage in High Fidelity Single Qubit Gates for Superconducting Qubits

    NASA Astrophysics Data System (ADS)

    Chen, Z.; Kelly, J.; Quintana, C.; Barends, R.; Campbell, B.; Chen, Y.; Chiaro, B.; Dunsworth, A.; Fowler, A. G.; Lucero, E.; Jeffrey, E.; Megrant, A.; Mutus, J.; Neeley, M.; Neill, C.; O'Malley, P. J. J.; Roushan, P.; Sank, D.; Vainsencher, A.; Wenner, J.; White, T.; Korotkov, A. N.; Martinis, J. M.

    Recent results show that superconducting qubits are approaching the threshold for fault tolerant quantum error correction. However, leakage into non-qubit states remains a significant hurdle because leakage errors are highly detrimental for error correction schemes such as the surface code. I will demonstrate that with a simple addition to DRAG pulse shaping, leakage can be suppressed to the 10-5 level while simultaneously maintaining 10-3 gate fidelity. I will also show that the remaining leakage errors are due to heating of the qubit, suggesting further avenues for improvement. The work was supported by Google Inc., and by the NSFGRF under Grant No. DGE 1144085.

  14. High-fidelity rapid ground-state loading of an ultracold gas into an optical lattice.

    PubMed

    Masuda, Shumpei; Nakamura, Katsuhiro; del Campo, Adolfo

    2014-08-01

    A protocol is proposed for the rapid coherent loading of a Bose-Einstein condensate into the ground state of an optical lattice, without residual excitation associated with the breakdown of adiabaticity. The driving potential required to assist the rapid loading is derived using the fast-forward technique, and generates the ground state in any desired short time. We propose an experimentally feasible loading scheme using a bichromatic lattice potential, which approximates the fast-forward driving potential with high fidelity. PMID:25148323

  15. High-fidelity frequency down-conversion of visible entangled photon pairs with superconducting single-photon detectors

    SciTech Connect

    Ikuta, Rikizo; Kato, Hiroshi; Kusaka, Yoshiaki; Yamamoto, Takashi; Imoto, Nobuyuki; Miki, Shigehito; Yamashita, Taro; Terai, Hirotaka; Wang, Zhen; Fujiwara, Mikio; Sasaki, Masahide; Koashi, Masato

    2014-12-04

    We experimentally demonstrate a high-fidelity visible-to-telecommunicationwavelength conversion of a photon by using a solid-state-based difference frequency generation. In the experiment, one half of a pico-second visible entangled photon pair at 780 nm is converted to a 1522-nm photon. Using superconducting single-photon detectors with low dark count rates and small timing jitters, we observed a fidelity of 0.93±0.04 after the wavelength conversion.

  16. Research on characteristic spectrum extracting and matching for high-fidelity reproduction.

    PubMed

    Yang, Sheng-wei; Liu, Zhen; Wu, Ming-guang; Zhang, Zhen-jie

    2014-06-01

    Reconstructing the spectrum rapidly and accurately is the key to the research on high-fidelity reproduction. A characteristic spectrum extracting and matching method for high-fidelity printing is proposed aiming at the problem of complex conversion between spectrum and ink combination caused by multi-color. The method filters and extracts feature bands of primary ink through derivative spectrum, and a characteristic spectrum multi-threshold coding method is proposed. Considering the problem of subarea judgment in hi-fi printing, an average derivative spectrum is taken as characteristic spectrum of each subarea and a spectrum matching method between target spectrum and average derivative spectrum of sub-spaces is proposed. The results show that the feature bands extracted can represent spectral characteristic of primary color significantly and the precision of color conversion model based on feature bands is higher than the model based on full bands. The spectrum matching method can achieve a high accuracy in sub-space judgments and greatly improve the efficiency of color convention. The spectrum extracting and matching method has the high practicability. PMID:25358178

  17. Mixed-Species Logic Gates and High-Fidelity Universal Gate Set for Trapped-Ion Qubits

    NASA Astrophysics Data System (ADS)

    Tan, Ting Rei

    2016-05-01

    Precision control over hybrid physical systems at the quantum level is important for the realization of many quantum-based technologies. For trapped-ions, a hybrid system formed of different species introduces extra degrees of freedom that can be exploited to expand and refine the control of the system. We demonstrate an entangling gate between two atomic ions of different elements that can serve as an important building block of quantum information processing (QIP), quantum networking, precision spectroscopy, metrology, and quantum simulation. An entangling geometric phase gate between a 9 Be+ ion and a 25 Mg+ ion is realized through an effective spin-spin interaction generated by state-dependent forces. A mixed-species Bell state is thereby created with a fidelity of 0 . 979(1) . We use the gate to construct a SWAP gate that interchanges the quantum states of the two dissimilar qubits. We also report a high-fidelity universal gate set for 9 Be+ ion qubits, achieved through a combination of improved laser beam quality and control, improved state preparation, and reduced electric potential noise on trap electrodes. Supported by Office of the Director of National Intelligence (ODNI) Intelligence Advanced Research Projects Activity (IARPA), ONR, and the NIST Quantum Information Program.

  18. A high-quality high-fidelity visualization of the September 11 attack on the World Trade Center.

    PubMed

    Rosen, Paul; Popescu, Voicu; Hoffmann, Christoph; Irfanoglu, Ayhan

    2008-01-01

    In this application paper, we describe the efforts of a multidisciplinary team towards producing a visualization of the September 11 Attack on the North Tower of New York's World Trade Center. The visualization was designed to meet two requirements. First, the visualization had to depict the impact with high fidelity, by closely following the laws of physics. Second, the visualization had to be eloquent to a nonexpert user. This was achieved by first designing and computing a finite-element analysis (FEA) simulation of the impact between the aircraft and the top 20 stories of the building, and then by visualizing the FEA results with a state-of-the-art commercial animation system. The visualization was enabled by an automatic translator that converts the simulation data into an animation system 3D scene. We built upon a previously developed translator. The translator was substantially extended to enable and control visualization of fire and of disintegrating elements, to better scale with the number of nodes and number of states, to handle beam elements with complex profiles, and to handle smoothed particle hydrodynamics liquid representation. The resulting translator is a powerful automatic and scalable tool for high-quality visualization of FEA results. PMID:18467766

  19. High-Fidelity Replica Molding of Glassy Liquid Crystalline Polymer Microstructures.

    PubMed

    Zhao, Hangbo; Wie, Jeong Jae; Copic, Davor; Oliver, C Ryan; Orbaek White, Alvin; Kim, Sanha; Hart, A John

    2016-03-01

    Liquid crystalline polymers have recently been engineered to exhibit complex macroscopic shape adaptivity, including optically- and thermally driven bending, self-sustaining oscillation, torsional motion, and three-dimensional folding. Miniaturization of these novel materials is of great interest for both fundamental study of processing conditions and for the development of shape-changing microdevices. Here, we present a scalable method for high-fidelity replica molding of glassy liquid crystalline polymer networks (LCNs), by vacuum-assisted replica molding, along with magnetic field-induced control of the molecular alignment. We find that an oxygen-free environment is essential to establish high-fidelity molding with low surface roughness. Identical arrays of homeotropic and polydomain LCN microstructures are fabricated to assess the influence of molecular alignment on the elastic modulus (E = 1.48 GPa compared to E = 0.54 GPa), and side-view imaging is used to quantify the reversible thermal actuation of individual LCN micropillars by high-resolution tracking of edge motion. The methods and results from this study will be synergistic with future advances in liquid crystalline polymer chemistry, and could enable the scalable manufacturing of stimuli-responsive surfaces for applications including microfluidics, tunable optics, and surfaces with switchable wetting and adhesion. PMID:26943057

  20. High-fidelity readout and control of a nuclear spin qubit in silicon.

    PubMed

    Pla, Jarryd J; Tan, Kuan Y; Dehollain, Juan P; Lim, Wee H; Morton, John J L; Zwanenburg, Floris A; Jamieson, David N; Dzurak, Andrew S; Morello, Andrea

    2013-04-18

    Detection of nuclear spin precession is critical for a wide range of scientific techniques that have applications in diverse fields including analytical chemistry, materials science, medicine and biology. Fundamentally, it is possible because of the extreme isolation of nuclear spins from their environment. This isolation also makes single nuclear spins desirable for quantum-information processing, as shown by pioneering studies on nitrogen-vacancy centres in diamond. The nuclear spin of a (31)P donor in silicon is very promising as a quantum bit: bulk measurements indicate that it has excellent coherence times and silicon is the dominant material in the microelectronics industry. Here we demonstrate electrical detection and coherent manipulation of a single (31)P nuclear spin qubit with sufficiently high fidelities for fault-tolerant quantum computing. By integrating single-shot readout of the electron spin with on-chip electron spin resonance, we demonstrate quantum non-demolition and electrical single-shot readout of the nuclear spin with a readout fidelity higher than 99.8 percent-the highest so far reported for any solid-state qubit. The single nuclear spin is then operated as a qubit by applying coherent radio-frequency pulses. For an ionized (31)P donor, we find a nuclear spin coherence time of 60 milliseconds and a one-qubit gate control fidelity exceeding 98 percent. These results demonstrate that the dominant technology of modern electronics can be adapted to host a complete electrical measurement and control platform for nuclear-spin-based quantum-information processing. PMID:23598342

  1. Relations between quantum correlations, purity and teleportation fidelity for the two-qubit Heisenberg XYZ system

    NASA Astrophysics Data System (ADS)

    Qin, Meng; Li, Yan-Biao; Wu, Fang-Ping

    2014-07-01

    Quantifying and understanding quantum correlations may give a direct reply for many issues regarding the interesting behaviors of quantum system. To explore the quantum correlations in quantum teleportation, we have used a two-qubit Heisenberg XYZ system with spin-orbit interaction as a quantum channel to teleport an unknown state. By using different measures and standard teleportation protocols, we have derived the analytical expressions for quantum discord, entanglement of formation, purity, and maximal teleportation fidelity of the system. We compare their different characteristics and analyze the relationships between these quantities.

  2. Construction of a reusable, high-fidelity model to enhance extracorporeal membrane oxygenation training through simulation.

    PubMed

    Thompson, Jess L; Grisham, Lisa M; Scott, Jeanne; Mogan, Chris; Prescher, Hannes; Biffar, David; Jarred, John; Meyer, Robyn J; Hamilton, Allan J

    2014-04-01

    Initiation of extracorporeal membrane oxygenation (ECMO) is stressful, especially for inexperienced extracorporeal life support providers. The main objective of this study was to create a novel, reusable mannequin for high-fidelity simulation of ECMO initiation. We modified a Laerdal neonatal mannequin (SimNewB; Stavanger, Norway) so that it could be used to simulate an ECMO initiation. A simulation of a neonatal patient suffering from meconium aspiration was performed in the pediatric intensive care unit, and participants included new extracorporeal life support specialists in addition to the composition of the clinical ECMO team. A total of 17 individuals participated in the neonatal ECMO initiation simulation. Questionnaire results showed that 88% of participants felt better prepared to assist in an ECMO initiation after the simulation. All participants (100%) agreed that the modified mannequin and the environment were realistic and that this simulation helps teamwork and communication in future initiations of ECMO. Simulation can be used for the prevention, identification, and reduction of anxiety-related crisis situations that novice providers may infrequently encounter during routine clinical use of mechanical circulatory support. Use of a reusable, high-fidelity mannequin may be beneficial for effective team training of complex pediatric ECMO-related procedures. PMID:24675629

  3. Incorporating Non-Linear Sorption into High Fidelity Subsurface Reactive Transport Models

    NASA Astrophysics Data System (ADS)

    Matott, L. S.; Rabideau, A. J.; Allen-King, R. M.

    2014-12-01

    A variety of studies, including multiple NRC (National Research Council) reports, have stressed the need for simulation models that can provide realistic predictions of contaminant behavior during the groundwater remediation process, most recently highlighting the specific technical challenges of "back diffusion and desorption in plume models". For a typically-sized remediation site, a minimum of about 70 million grid cells are required to achieve desired cm-level thickness among low-permeability lenses responsible for driving the back-diffusion phenomena. Such discretization is nearly three orders of magnitude more than is typically seen in modeling practice using public domain codes like RT3D (Reactive Transport in Three Dimensions). Consequently, various extensions have been made to the RT3D code to support efficient modeling of recently proposed dual-mode non-linear sorption processes (e.g. Polanyi with linear partitioning) at high-fidelity scales of grid resolution. These extensions have facilitated development of exploratory models in which contaminants are introduced into an aquifer via an extended multi-decade "release period" and allowed to migrate under natural conditions for centuries. These realistic simulations of contaminant loading and migration provide high fidelity representation of the underlying diffusion and sorption processes that control remediation. Coupling such models with decision support processes is expected to facilitate improved long-term management of complex remediation sites that have proven intractable to conventional remediation strategies.

  4. Concept and modeling analysis of a high fidelity multimode deformable mirror.

    PubMed

    Zhou, Chao; Li, Yun; Wang, Anding; Xing, Tingwen

    2015-06-10

    Conventional deformable mirrors (DM) cannot meet the requirement of aberration controlling for advanced lithography tools. This paper illustrates an approach using the property that deformation of a thin plate is similar to optical modes to realize a high fidelity multimode deformable mirror whose deformation has characteristics of optical aberration modes. The way to arrange actuators is also examined. In this paper, a 36-actuator deformable mirror is taken as an example to generate low-order Zernike modes. The result shows that this DM generates the fourth fringe Zernike mode (Z4) defocus, and primary aberration Z5-Z8 with an error less than 0.5%, generates the fifth-order aberration Z10-Z14, and generates the seventh-order aberration Z17-Z20 with an error less than 1.1%. The high fidelity replication of the Zernike mode indicates that the DM satisfies the demand of controlling aberrations corresponding to the first 20 Zernike modes in an advanced lithography tool. PMID:26192845

  5. A practical discrete-adjoint method for high-fidelity compressible turbulence simulations

    NASA Astrophysics Data System (ADS)

    Vishnampet, Ramanathan; Bodony, Daniel J.; Freund, Jonathan B.

    2015-03-01

    Methods and computing hardware advances have enabled accurate predictions of complex compressible turbulence phenomena, such as the generation of jet noise that motivates the present effort. However, limited understanding of underlying physical mechanisms restricts the utility of such predictions since they do not, by themselves, indicate a route to design improvements. Gradient-based optimization using adjoints can circumvent the flow complexity to guide designs, though this is predicated on the availability of a sufficiently accurate solution of the forward and adjoint systems. These are challenging to obtain, since both the chaotic character of the turbulence and the typical use of discretizations near their resolution limits in order to efficiently represent its smaller scales will amplify any approximation errors made in the adjoint formulation. Formulating a practical exact adjoint that avoids such errors is especially challenging if it is to be compatible with state-of-the-art simulation methods used for the turbulent flow itself. Automatic differentiation (AD) can provide code to calculate a nominally exact adjoint, but existing general-purpose AD codes are inefficient to the point of being prohibitive for large-scale turbulence simulations. Here, we analyze the compressible flow equations as discretized using the same high-order workhorse methods used for many high-fidelity compressible turbulence simulations, and formulate a practical space-time discrete-adjoint method without changing the basic discretization. A key step is the definition of a particular discrete analog of the continuous norm that defines our cost functional; our selection leads directly to an efficient Runge-Kutta-like scheme, though it would be just first-order accurate if used outside the adjoint formulation for time integration, with finite-difference spatial operators for the adjoint system. Its computational cost only modestly exceeds that of the flow equations. We confirm that its

  6. A practical discrete-adjoint method for high-fidelity compressible turbulence simulations

    SciTech Connect

    Vishnampet, Ramanathan; Bodony, Daniel J.; Freund, Jonathan B.

    2015-03-15

    Methods and computing hardware advances have enabled accurate predictions of complex compressible turbulence phenomena, such as the generation of jet noise that motivates the present effort. However, limited understanding of underlying physical mechanisms restricts the utility of such predictions since they do not, by themselves, indicate a route to design improvements. Gradient-based optimization using adjoints can circumvent the flow complexity to guide designs, though this is predicated on the availability of a sufficiently accurate solution of the forward and adjoint systems. These are challenging to obtain, since both the chaotic character of the turbulence and the typical use of discretizations near their resolution limits in order to efficiently represent its smaller scales will amplify any approximation errors made in the adjoint formulation. Formulating a practical exact adjoint that avoids such errors is especially challenging if it is to be compatible with state-of-the-art simulation methods used for the turbulent flow itself. Automatic differentiation (AD) can provide code to calculate a nominally exact adjoint, but existing general-purpose AD codes are inefficient to the point of being prohibitive for large-scale turbulence simulations. Here, we analyze the compressible flow equations as discretized using the same high-order workhorse methods used for many high-fidelity compressible turbulence simulations, and formulate a practical space–time discrete-adjoint method without changing the basic discretization. A key step is the definition of a particular discrete analog of the continuous norm that defines our cost functional; our selection leads directly to an efficient Runge–Kutta-like scheme, though it would be just first-order accurate if used outside the adjoint formulation for time integration, with finite-difference spatial operators for the adjoint system. Its computational cost only modestly exceeds that of the flow equations. We confirm that

  7. High Resolution/High Fidelity Seismic Imaging and Parameter Estimation for Geological Structure and Material Characterization

    SciTech Connect

    Ru-Shan Wu; Xiao-Bi Xie

    2008-06-08

    Our proposed work on high resolution/high fidelity seismic imaging focused on three general areas: (1) development of new, more efficient, wave-equation-based propagators and imaging conditions, (2) developments towards amplitude-preserving imaging in the local angle domain, in particular, imaging methods that allow us to estimate the reflection as a function of angle at a layer boundary, and (3) studies of wave inversion for local parameter estimation. In this report we summarize the results and progress we made during the project period. The report is divided into three parts, totaling 10 chapters. The first part is on resolution analysis and its relation to directional illumination analysis. The second part, which is composed of 6 chapters, is on the main theme of our work, the true-reflection imaging. True-reflection imaging is an advanced imaging technology which aims at keeping the image amplitude proportional to the reflection strength of the local reflectors or to obtain the reflection coefficient as function of reflection-angle. There are many factors which may influence the image amplitude, such as geometrical spreading, transmission loss, path absorption, acquisition aperture effect, etc. However, we can group these into two categories: one is the propagator effect (geometric spreading, path losses); the other is the acquisition-aperture effect. We have made significant progress in both categories. We studied the effects of different terms in the true-amplitude one-way propagators, especially the terms including lateral velocity variation of the medium. We also demonstrate the improvements by optimizing the expansion coefficients in different terms. Our research also includes directional illumination analysis for both the one-way propagators and full-wave propagators. We developed the fast acquisition-aperture correction method in the local angle-domain, which is an important element in the true-reflection imaging. Other developments include the super

  8. PCR-Based Seamless Genome Editing with High Efficiency and Fidelity in Escherichia coli

    PubMed Central

    Liu, Yilan; Yang, Maohua; Chen, Jinjin; Yan, Daojiang; Cheng, Wanwan; Wang, Yanyan; Thygesen, Anders; Chen, Ruonan; Xing, Jianmin; Wang, Qinhong; Ma, Yanhe

    2016-01-01

    Efficiency and fidelity are the key obstacles for genome editing toolboxes. In the present study, a PCR-based tandem repeat assisted genome editing (TRAGE) method with high efficiency and fidelity was developed. The design of TRAGE is based on the mechanism of repair of spontaneous double-strand breakage (DSB) via replication fork reactivation. First, cat-sacB cassette flanked by tandem repeat sequence was integrated into target site in chromosome assisted by Red enzymes. Then, for the excision of the cat-sacB cassette, only subculturing is needed. The developed method was successfully applied for seamlessly deleting, substituting and inserting targeted genes using PCR products. The effects of different manipulations including sucrose addition time, subculture times in LB with sucrose and stages of inoculation on the efficiency were investigated. With our recommended procedure, seamless excision of cat-sacB cassette can be realized in 48 h efficiently. We believe that the developed method has great potential for seamless genome editing in E. coli. PMID:27019283

  9. Assessment of high-fidelity collision models in the direct simulation Monte Carlo method

    NASA Astrophysics Data System (ADS)

    Weaver, Andrew B.

    Advances in computer technology over the decades has allowed for more complex physics to be modeled in the DSMC method. Beginning with the first paper on DSMC in 1963, 30,000 collision events per hour were simulated using a simple hard sphere model. Today, more than 10 billion collision events can be simulated per hour for the same problem. Many new and more physically realistic collision models such as the Lennard-Jones potential and the forced harmonic oscillator model have been introduced into DSMC. However, the fact that computer resources are more readily available and higher-fidelity models have been developed does not necessitate their usage. It is important to understand how such high-fidelity models affect the output quantities of interest in engineering applications. The effect of elastic and inelastic collision models on compressible Couette flow, ground-state atomic oxygen transport properties, and normal shock waves have therefore been investigated. Recommendations for variable soft sphere and Lennard-Jones model parameters are made based on a critical review of recent ab-initio calculations and experimental measurements of transport properties.

  10. High-Fidelity Entangling Gates for Two-Electron Spin Qubits

    NASA Astrophysics Data System (ADS)

    Cerfontaine, Pascal; Mehl, Sebastian; Divincenzo, David P.; Bluhm, Hendrik

    High fidelity gate operations for manipulating individual and multiple qubits are a prerequisite for fault-tolerant quantum information processing. Recently, we have shown that single-qubit gates for singlet-triplet qubits in GaAs can be pulse-engineered to reduce systematic errors and mitigate magnetic field fluctuations from the abundant nuclear spins, leading to experimentally demonstrated gate fidelities of 98.5%. We expect that a similar approach will be successful for two-qubit gates. We now describe short gating sequences for exchange-based two-qubit gates, showing that gate infidelities below 0.1% can be reached in realistic quantum dot setups. Additionally, we perform numerical pulse optimization to fully take the experimentally important imperfections into account, minimizing systematic errors and noise sensitivity. Since transferring the optimal control pulses to an experimental setting will inevitably incur systematic errors, we discuss how these errors can be calibrated on the experiment Supported by the Alexander von Humboldt Foundation, Alfried Krupp von Bohlen und Halbach Foundation, DFG Grant BL 1197/2- 1, and the Deutsche Telekom Foundation.

  11. High Fidelity Simulations for Unsteady Flow Through the Orbiter LH2 Feedline Flowliner

    NASA Technical Reports Server (NTRS)

    Kiris, Cetin C.; Kwak, Dochan; Chan, William; Housman, Jeffrey

    2005-01-01

    High fidelity computations were carried out to analyze the orbiter M2 feedline flowliner. Various computational models were used to characterize the unsteady flow features in the turbopump, including the orbiter Low-Pressure-Fuel-Turbopump (LPFTP) inducer, the orbiter manifold and a test article used to represent the manifold. Unsteady flow originating from the orbiter LPFTP inducer is one of the major contributors to the high frequency cyclic loading that results in high cycle fatigue damage to the gimbal flowliners just upstream of the LPFTP. The flow fields for the orbiter manifold and representative test article are computed and analyzed for similarities and differences. An incompressible Navier-Stokes flow solver INS3D, based on the artificial compressibility method, was used to compute the flow of liquid hydrogen in each test article.

  12. Fabrication of high fidelity, high index three-dimensional photonic crystals using a templating approach

    NASA Astrophysics Data System (ADS)

    Xu, Yongan

    In this dissertation, we demonstrate the fabrication of high fidelity 3D photonic crystal through polymer template fabrication, backfilling and template removal to obtain high index inversed inorganic photonic crystals (PCs). Along the line, we study the photoresist chemistry to minimize the shrinkage, backfilling strategies for complete infiltration, and template removal at high and low temperatures to minimize crack-formation. Using multibeam interference lithography (MBIL), we fabricate diamond-like photonic structures from commercially available photoresist, SU-8, epoxy functionalized polyhedral oligomeric silsesquioxane (POSS), and narrowly distributed poly(glycidyl methacrylate)s (PGMA). The 3D structure from PGMA shows the lowest shrinkage in the [111] direction, 18%, compared to those fabricated from the SU-8 (41%) and POSS (48%) materials under the same conditions. To fabricate a photonic crystal with large and complete photonic bandgap, it often requires backfilling of high index inorganic materials into a 3D polymer template. We have studied different backfilling methods to create three different types of high index, inorganic 3D photonic crystals. Using SU-8 structures as templates, we systematically study the electrodeposition technique to create inversed 3D titania crystals. We find that 3D SU-8 template is completely infiltrated with titania sol-gel through a two-stage process: a conformal coating of a thin layer of films occurs at the early electrodeposition stage (< 60 min), followed by bottom-up deposition. After calcination at 500°C to remove the polymer template, inversed 3D titania crystals are obtained. The optical properties of the 3D photonic crystals characterized at various processing steps matches with the simulated photonic bandgaps (PBGs) and the SEM observation, further supporting the complete filling by the wet chemistry. Since both PGMA and SU-8 decompose at a temperature above 400°C, leading to the formation of defects and cracks

  13. High-fidelity transfer and storage of photon states in a single nuclear spin

    NASA Astrophysics Data System (ADS)

    Yang, Sen; Wang, Ya; Rao, D. D. Bhaktavatsala; Hien Tran, Thai; Momenzadeh, Ali S.; Markham, M.; Twitchen, D. J.; Wang, Ping; Yang, Wen; Stöhr, Rainer; Neumann, Philipp; Kosaka, Hideo; Wrachtrup, Jörg

    2016-08-01

    Long-distance quantum communication requires photons and quantum nodes that comprise qubits for interaction with light and good memory capabilities, as well as processing qubits for the storage and manipulation of photons. Owing to the unavoidable photon losses, robust quantum communication over lossy transmission channels requires quantum repeater networks. A necessary and highly demanding prerequisite for these networks is the existence of quantum memories with long coherence times to reliably store the incident photon states. Here we demonstrate the high-fidelity (∼98%) coherent transfer of a photon polarization state to a single solid-state nuclear spin that has a coherence time of over 10 s. The storage process is achieved by coherently transferring the polarization state of a photon to an entangled electron–nuclear spin state of a nitrogen–vacancy centre in diamond. The nuclear spin-based optical quantum memory demonstrated here paves the way towards an absorption-based quantum repeater network.

  14. Molecular dipolar crystals as high-fidelity quantum memory for hybrid quantum computing

    NASA Astrophysics Data System (ADS)

    Rabl, P.; Zoller, P.

    2007-10-01

    We study collective excitations of rotational and spin states of an ensemble of polar molecules, which are prepared in a dipolar crystalline phase, as a candidate for a high-fidelity quantum memory. While dipolar crystals are formed in the high-density limit of cold clouds of polar molecules under one- and two-dimensional trapping conditions, the crystalline structure protects the molecular qubits from detrimental effects of short-range collisions. We calculate the lifetime of the quantum memory by identifying the dominant decoherence mechanisms, and estimate their effects on gate operations, when a molecular ensemble qubit is transferred to a superconducting strip line cavity (circuit QED). In the case of rotational excitations coupled by dipole-dipole interactions we identify phonons as the main limitation of the lifetime of qubits. We study specific setups and conditions, where the coupling to the phonon modes is minimized. Detailed results are presented for a one-dimensional dipolar chain.

  15. Improvements of ModalMax High-Fidelity Piezoelectric Audio Device

    NASA Technical Reports Server (NTRS)

    Woodard, Stanley E.

    2005-01-01

    ModalMax audio speakers have been enhanced by innovative means of tailoring the vibration response of thin piezoelectric plates to produce a high-fidelity audio response. The ModalMax audio speakers are 1 mm in thickness. The device completely supplants the need to have a separate driver and speaker cone. ModalMax speakers can perform the same applications of cone speakers, but unlike cone speakers, ModalMax speakers can function in harsh environments such as high humidity or extreme wetness. New design features allow the speakers to be completely submersed in salt water, making them well suited for maritime applications. The sound produced from the ModalMax audio speakers has sound spatial resolution that is readily discernable for headset users.

  16. Evaluating the impact of scenario-based high-fidelity patient simulation on academic metrics of student success.

    PubMed

    Sportsman, Susan; Schumacker, Randall E; Hamilton, Patti

    2011-01-01

    Despite the ongoing nursing shortage, nurse educators are responsible for preparing students to practice in highly complex health care systems. As nurse educators explore new learning strategies to support an increase in student admissions, they must also evaluate the impact of these strategies on the quality of the educational experience. The study reported here evaluated the impact of scenario-based, high-fidelity patient simulation used to increase student admissions in an associate degree and baccalaureate nursing program in north-central Texas upon students' sense of their own clinical competence, graduating grade point average (GPA), and performance on standardized exit examinations. These are measures commonly used by nurse educators as metrics of success. PMID:21923008

  17. Digital spall radiograph analysis system: Report on simulated three- dimensional digital spall image reconstruction fidelity

    SciTech Connect

    Harris, C.L.

    1990-01-01

    This report describes progress on work to develop a cost effective, rapid response system for measuring momentum and kinetic energy of spall for the Advanced Technology Assessment Center (ATAC) Armor/Anti-Armor (A{sup 3}) program at Los Alamos National Laboratory. The system will exploit data contained in two sets of simultaneous co-planar flash radiographs taken along the center line of anticipated spall motion. Data contained in each set (which is proportional to the mass and z- number of the spall material intersected by the exposing x-ray at each point) is digitized and used to construct a three dimensional model (called the reconstructed spall image) that approximates the original spall cloud. From the model the mass of spall fragments is computed. The two sets of radiographs, separated in time, represent the spall configuration at two instants of time. Spall fragments from the first instant are matched with those from the second instant to determine velocity. Evaluation of the fidelity of candidate reconstruction algorithms is the highest priority task in this development program for the obvious reason that the efficacy of the projected spall analysis system depends upon the fidelity of the reconstruction techniques. The purpose of this document is to report the results of analysis of the fidelity of best reconstruction procedure (for one radiograph set) investigated to date. The reconstruction procedure uses data from four simultaneous radiographs representing two sides and two diagonals of a cube. The procedure makes use of an available space algorithm, two probabilistic devices (a mass placement probability heuristic, and a mass clumping heuristic), and a stochastic procedure for mass that cannot be placed by the algorithm or either of the heuristics. The procedure is fully described in the body of the report.

  18. Using "The Burns Suite" as a Novel High Fidelity Simulation Tool for Interprofessional and Teamwork Training.

    PubMed

    Sadideen, Hazim; Wilson, David; Moiemen, Naiem; Kneebone, Roger

    2016-01-01

    Educational theory highlights the importance of contextualized simulation for effective learning. The authors recently published the concept of "The Burns Suite" (TBS) as a novel tool to advance the delivery of burns education for residents/clinicians. Effectively, TBS represents a low-cost, high-fidelity, portable, immersive simulation environment. Recently, simulation-based team training (SBTT) has been advocated as a means to improve interprofessional practice. The authors aimed to explore the role of TBS in SBTT. A realistic pediatric burn resuscitation scenario was designed based on "advanced trauma and life support" and "emergency management of severe burns" principles, refined utilizing expert opinion through cognitive task analysis. The focus of this analysis was on nontechnical and interpersonal skills of clinicians and nurses within the scenario, mirroring what happens in real life. Five-point Likert-type questionnaires were developed for face and content validity. Cronbach's alpha was calculated for scale reliability. Semistructured interviews captured responses for qualitative thematic analysis allowing for data triangulation. Twenty-two participants completed TBS resuscitation scenario. Mean face and content validity ratings were high (4.4 and 4.7 respectively; range 4-5). The internal consistency of questions was high. Qualitative data analysis revealed two new themes. Participants reported that the experience felt particularly authentic because the simulation had high psychological and social fidelity, and there was a demand for such a facility to be made available to improve nontechnical skills and interprofessional relations. TBS provides a realistic, novel tool for SBTT, addressing both nontechnical and interprofessional team skills. Recreating clinical challenge is crucial to optimize SBTT. With a better understanding of the theories underpinning simulation and interprofessional education, future simulation scenarios can be designed to provide

  19. Development and verification of a high-fidelity computational fluid dynamics model of canine nasal airflow.

    PubMed

    Craven, Brent A; Paterson, Eric G; Settles, Gary S; Lawson, Michael J

    2009-09-01

    The canine nasal cavity contains a complex airway labyrinth, dedicated to respiratory air conditioning, filtering of inspired contaminants, and olfaction. The small and contorted anatomical structure of the nasal turbinates has, to date, precluded a proper study of nasal airflow in the dog. This study describes the development of a high-fidelity computational fluid dynamics (CFD) model of the canine nasal airway from a three-dimensional reconstruction of high-resolution magnetic resonance imaging scans of the canine anatomy. Unstructured hexahedral grids are generated, with large grid sizes ((10-100) x 10(6) computational cells) required to capture the details of the nasal airways. High-fidelity CFD solutions of the nasal airflow for steady inspiration and expiration are computed over a range of physiological airflow rates. A rigorous grid refinement study is performed, which also illustrates a methodology for verification of CFD calculations on complex unstructured grids in tortuous airways. In general, the qualitative characteristics of the computed solutions for the different grid resolutions are fairly well preserved. However, quantitative results such as the overall pressure drop and even the regional distribution of airflow in the nasal cavity are moderately grid dependent. These quantities tend to converge monotonically with grid refinement. Lastly, transient computations of canine sniffing were carried out as part of a time-step study, demonstrating that high temporal accuracy is achievable using small time steps consisting of 160 steps per sniff period. Here we demonstrate that acceptable numerical accuracy (between approximately 1% and 15%) is achievable with practical levels of grid resolution (approximately 100 x 10(6) computational cells). Given the popularity of CFD as a tool for studying flow in the upper airways of humans and animals, based on this work we recommend the necessity of a grid dependence study and quantification of numerical error when

  20. High Fidelity Simulations of Plume Impingement to the International Space Station

    NASA Technical Reports Server (NTRS)

    Lumpkin, Forrest E., III; Marichalar, Jeremiah; Stewart, Benedicte D.

    2012-01-01

    With the retirement of the Space Shuttle, the United States now depends on recently developed commercial spacecraft to supply the International Space Station (ISS) with cargo. These new vehicles supplement ones from international partners including the Russian Progress, the European Autonomous Transfer Vehicle (ATV), and the Japanese H-II Transfer Vehicle (HTV). Furthermore, to carry crew to the ISS and supplement the capability currently provided exclusively by the Russian Soyuz, new designs and a refinement to a cargo vehicle design are in work. Many of these designs include features such as nozzle scarfing or simultaneous firing of multiple thrusters resulting in complex plumes. This results in a wide variety of complex plumes impinging upon the ISS. Therefore, to ensure safe "proximity operations" near the ISS, the need for accurate and efficient high fidelity simulation of plume impingement to the ISS is as high as ever. A capability combining computational fluid dynamics (CFD) and the Direct Simulation Monte Carlo (DSMC) techniques has been developed to properly model the large density variations encountered as the plume expands from the high pressure in the combustion chamber to the near vacuum conditions at the orbiting altitude of the ISS. Details of the computational tools employed by this method, including recent software enhancements and the best practices needed to achieve accurate simulations, are discussed. Several recent examples of the application of this high fidelity capability are presented. These examples highlight many of the real world, complex features of plume impingement that occur when "visiting vehicles" operate in the vicinity of the ISS.

  1. High-fidelity spatially resolved multiphoton counting for quantum imaging applications.

    PubMed

    Chrapkiewicz, Radosław; Wasilewski, Wojciech; Banaszek, Konrad

    2014-09-01

    We present a method for spatially resolved multiphoton counting based on an intensified camera with the retrieval of multimode photon statistics fully accounting for nonlinearities in the detection process. The scheme relies on one-time quantum tomographic calibration of the detector. Faithful, high-fidelity reconstruction of single- and two-mode statistics of multiphoton states is demonstrated for coherent states and their statistical mixtures. The results consistently exhibit classical values of the Mandel parameter and the noise reduction factor in contrast to raw statistics of camera photo-events. Detector operation is reliable for illumination levels up to the average of one detected photon per an event area-substantially higher than in previous approaches to characterize quantum statistical properties of light with spatial resolution. PMID:25166081

  2. The centricity of presence in scenario-based high fidelity human patient simulation: a model.

    PubMed

    Dunnington, Renee M

    2015-01-01

    Enhancing immersive presence has been shown to have influence on learning outcomes in virtual types of simulation. Scenario-based human patient simulation, a mixed reality form, may pose unique challenges for inducing the centricity of presence among participants in simulation. A model for enhancing the centricity of presence in scenario-based human patient simulation is presented here. The model represents a theoretical linkage among the interaction of pedagogical, individual, and group factors that influence the centricity of presence among participants in simulation. Presence may have an important influence on the learning experiences and learning outcomes in scenario-based high fidelity human patient simulation. This report is a follow-up to an article published in 2014 by the author where connections were made to the theoretical basis of presence as articulated by nurse scholars. PMID:25520467

  3. Surrogate Modeling of High-Fidelity Fracture Simulations for Real-Time Residual Strength Predictions

    NASA Technical Reports Server (NTRS)

    Spear, Ashley D.; Priest, Amanda R.; Veilleux, Michael G.; Ingraffea, Anthony R.; Hochhalter, Jacob D.

    2011-01-01

    A surrogate model methodology is described for predicting in real time the residual strength of flight structures with discrete-source damage. Starting with design of experiment, an artificial neural network is developed that takes as input discrete-source damage parameters and outputs a prediction of the structural residual strength. Target residual strength values used to train the artificial neural network are derived from 3D finite element-based fracture simulations. A residual strength test of a metallic, integrally-stiffened panel is simulated to show that crack growth and residual strength are determined more accurately in discrete-source damage cases by using an elastic-plastic fracture framework rather than a linear-elastic fracture mechanics-based method. Improving accuracy of the residual strength training data would, in turn, improve accuracy of the surrogate model. When combined, the surrogate model methodology and high-fidelity fracture simulation framework provide useful tools for adaptive flight technology.

  4. Surrogate Modeling of High-Fidelity Fracture Simulations for Real-Time Residual Strength Predictions

    NASA Technical Reports Server (NTRS)

    Spear, Ashley D.; Priest, Amanda R.; Veilleux, Michael G.; Ingraffea, Anthony R.; Hochhalter, Jacob D.

    2011-01-01

    A surrogate model methodology is described for predicting, during flight, the residual strength of aircraft structures that sustain discrete-source damage. Starting with design of experiment, an artificial neural network is developed that takes as input discrete-source damage parameters and outputs a prediction of the structural residual strength. Target residual strength values used to train the artificial neural network are derived from 3D finite element-based fracture simulations. Two ductile fracture simulations are presented to show that crack growth and residual strength are determined more accurately in discrete-source damage cases by using an elastic-plastic fracture framework rather than a linear-elastic fracture mechanics-based method. Improving accuracy of the residual strength training data does, in turn, improve accuracy of the surrogate model. When combined, the surrogate model methodology and high fidelity fracture simulation framework provide useful tools for adaptive flight technology.

  5. Collective efficacy in a high-fidelity simulation of an airline operations center

    NASA Astrophysics Data System (ADS)

    Jinkerson, Shanna

    This study investigated the relationships between collective efficacy, teamwork, and team performance. Participants were placed into teams, where they worked together in a high-fidelity simulation of an airline operations center. Each individual was assigned a different role to represent different jobs within an airline (Flight Operations Coordinator, Crew Scheduling, Maintenance, Weather, Flight Scheduling, or Flight Planning.) Participants completed a total of three simulations with an After Action Review between each. Within this setting, both team performance and teamwork behaviors were shown to be positively related to expectations for subsequent performance (collective efficacy). Additionally, teamwork and collective efficacy were not shown to be concomitantly related to subsequent team performance. A chi-square test was used to evaluate existence of performance spirals, and they were not supported. The results of this study were likely impacted by lack of power, as well as a lack of consistency across the three simulations.

  6. Structural basis of high-fidelity DNA synthesis by yeast DNA polymerase [delta

    SciTech Connect

    Swan, Michael K.; Johnson, Robert E.; Prakash, Louise; Prakash, Satya; Aggarwal, Aneel K.

    2009-09-25

    DNA polymerase {delta} (Pol {delta}) is a high-fidelity polymerase that has a central role in replication from yeast to humans. We present the crystal structure of the catalytic subunit of yeast Pol {delta} in ternary complex with a template primer and an incoming nucleotide. The structure, determined at 2.0-{angstrom} resolution, catches the enzyme in the act of replication, revealing how the polymerase and exonuclease domains are juxtaposed relative to each other and how a correct nucleotide is selected and incorporated. The structure also reveals the 'sensing' interactions near the primer terminus, which signal a switch from the polymerizing to the editing mode. Taken together, the structure provides a chemical basis for the bulk of DNA synthesis in eukaryotic cells and a framework for understanding the effects of cancer-causing mutations in Pol {delta}.

  7. Theoretical framing of high-fidelity simulation with Carper's fundamental patterns of knowing in nursing.

    PubMed

    McGovern, Barb; Lapum, Jennifer; Clune, Laurie; Martin, Lori Schindel

    2013-01-01

    Many nursing programs integrate high-fidelity simulation(HFS) into the curriculum. The manikins used are modeled to resemble humans and are programmed to talk and reproduce physiological functions via computer interfaces.When HFS design negates a theoretical framework consistent with the interpersonal and relational nature of nursing,it can problematically focus simulation on psychomotor skills and the physical body. This article highlights a theorized approach to HFS design informed by Carper's seminal work on the fundamental patterns of knowing in nursing(i.e., empirics, esthetics, personal knowing, and ethics). It also describes how a team of Canadian nurse educators adopted these patterns of knowing as a theoretical lens to frame scenarios, learning objectives, and debriefing probes in the context of maternal and newborn assessment. Institutions and practitioners can draw on Carper's work to facilitate focusing on the whole person and expanding the epistemological underpinnings of HFS in nursing and other disciplines. PMID:23244195

  8. High-Fidelity Reproduction of Spatiotemporal Visual Signals for Retinal Prosthesis

    PubMed Central

    Jepson, Lauren H.; Hottowy, Pawel; Weiner, Geoffrey A.; Dabrowski, Władys1aw; Litke, Alan M.; Chichilnisky, E.J.

    2015-01-01

    SUMMARY Natural vision relies on spatiotemporal patterns of electrical activity in the retina. We investigated the feasibility of veridically reproducing such patterns with epiretinal prostheses. Multielectrode recordings and visual and electrical stimulation were performed on populations of identified ganglion cells in isolated peripheral primate retina. Electrical stimulation patterns were designed to reproduce recorded waves of activity elicited by a moving visual stimulus. Electrical responses in populations of ON parasol cells exhibited high spatial and temporal precision, matching or exceeding the precision of visual responses measured in the same cells. Computational readout of electrical and visual responses produced similar estimates of stimulus speed, confirming the fidelity of electrical stimulation for biologically relevant visual signals. These results suggest the possibility of producing rich spatiotemporal patterns of retinal activity with a prosthesis and that temporal multiplexing may aid in reproducing the neural code of the retina. PMID:24910077

  9. Reducing Aviation Weather-Related Accidents Through High-Fidelity Weather Information Distribution and Presentation

    NASA Technical Reports Server (NTRS)

    Stough, H. Paul, III; Shafer, Daniel B.; Schaffner, Philip R.; Martzaklis, Konstantinos S.

    2000-01-01

    In February 1997, the US President announced a national goal to reduce the fatal accident rate for aviation by 80% within ten years. The National Aeronautics and Space Administration established the Aviation Safety Program to develop technologies needed to meet this aggressive goal. Because weather has been identified (is a causal factor in approximately 30% of all aviation accidents, a project was established for the development of technologies that will provide accurate, time and intuitive information to pilots, dispatchers, and air traffic controllers to enable the detection and avoidance of atmospheric hazards. This project addresses the weather information needs of general, corporate, regional, and transport aircraft operators. An overview and status of research and development efforts for high-fidelity weather information distribution and presentation is discussed with emphasis on weather information in the cockpit.

  10. Controllable high-fidelity quantum state transfer and entanglement generation in circuit QED

    PubMed Central

    Xu, Peng; Yang, Xu-Chen; Mei, Feng; Xue, Zheng-Yuan

    2016-01-01

    We propose a scheme to realize controllable quantum state transfer and entanglement generation among transmon qubits in the typical circuit QED setup based on adiabatic passage. Through designing the time-dependent driven pulses applied on the transmon qubits, we find that fast quantum sate transfer can be achieved between arbitrary two qubits and quantum entanglement among the qubits also can also be engineered. Furthermore, we numerically analyzed the influence of the decoherence on our scheme with the current experimental accessible systematical parameters. The result shows that our scheme is very robust against both the cavity decay and qubit relaxation, the fidelities of the state transfer and entanglement preparation process could be very high. In addition, our scheme is also shown to be insensitive to the inhomogeneous of qubit-resonator coupling strengths. PMID:26804326

  11. High-Fidelity Modeling for Health Monitoring in Honeycomb Sandwich Structures

    NASA Technical Reports Server (NTRS)

    Luchinsky, Dimitry G.; Hafiychuk, Vasyl; Smelyanskiy, Vadim; Tyson, Richard W.; Walker, James L.; Miller, Jimmy L.

    2011-01-01

    High-Fidelity Model of the sandwich composite structure with real geometry is reported. The model includes two composite facesheets, honeycomb core, piezoelectric actuator/sensors, adhesive layers, and the impactor. The novel feature of the model is that it includes modeling of the impact and wave propagation in the structure before and after the impact. Results of modeling of the wave propagation, impact, and damage detection in sandwich honeycomb plates using piezoelectric actuator/sensor scheme are reported. The results of the simulations are compared with the experimental results. It is shown that the model is suitable for analysis of the physics of failure due to the impact and for testing structural health monitoring schemes based on guided wave propagation.

  12. Tracking Large Area Mangrove Deforestation with Time-Series of High Fidelity MODIS Imagery

    NASA Astrophysics Data System (ADS)

    Rahman, A. F.; Dragoni, D.; Didan, K.

    2011-12-01

    Mangrove forests are important coastal ecosystems of the tropical and subtropical regions. These forests provide critical ecosystem services, fulfill important socio-economic and environmental functions, and support coastal livelihoods. But these forest are also among the most vulnerable ecosystems, both to anthropogenic disturbance and climate change. Yet, there exists no map or published study showing detailed spatiotemporal trends of mangrove deforestation at local to regional scales. There is an immediate need of producing such detailed maps to further study the drivers, impacts and feedbacks of anthropogenic and climate factors on mangrove deforestation, and to develop local and regional scale adaptation/mitigation strategies. In this study we use a time-series of high fidelity imagery from NASA's Moderate Resolution Imaging Spectroradiometer (MODIS) for tracking changes in the greenness of mangrove forests of Kalimantan Island of Indonesia. A novel method of filtering satellite data for cloud, aerosol, and view angle effects was used to produce high fidelity MODIS time-series images at 250-meter spatial resolution and three-month temporal resolution for the period of 2000-2010. Enhanced Vegetation Index 2 (EVI2), a measure of vegetation greenness, was calculated from these images for each pixel at each time interval. Temporal variations in the EVI2 of each pixel were tracked as a proxy to deforestaton of mangroves using the statistical method of change-point analysis. Results of these change detection were validated using Monte Carlo simulation, photographs from Google-Earth, finer spatial resolution images from Landsat satellite, and ground based GIS data.

  13. Orbit Stability of OSIRIS-REx in the Vicinity of Bennu Using a High-Fidelity Solar Radiation Model

    NASA Technical Reports Server (NTRS)

    Williams, Trevor; Hughes, Kyle; Mashiku, Alinda; Longuski, James

    2015-01-01

    The OSIRIS-REx mission (Origins Spectral Interpretation Resource Identification Security Regolith EXPlorer) is an asteroid sample return mission to Bennu (RQ36) that is scheduled to launch in 2016. The planned science operations precluding the small retrieval involve operations in terminator orbits (orbit plane is perpendicular to the sun). Over longer durations the solar radiation pressure (SRP) perturbs the orbit causing it to precess. Our work involves: modeling high fidelity SRP model to capture the perturbations during attitude changes; design a stable orbit from the high fidelity models to analyze the stability over time.

  14. Fast, high-fidelity, all-optical and dynamically-controlled polarization gate using room-temperature atomic vapor

    SciTech Connect

    Li, Runbing; Zhu, Chengjie; Deng, L.; Hagley, E. W.

    2014-10-20

    We demonstrate a fast, all-optical polarization gate in a room-temperature atomic medium. Using a Polarization-Selective-Kerr-Phase-Shift (PSKPS) technique, we selectively write a π phase shift to one circularly-polarized component of a linearly-polarized input signal field. The output signal field maintains its original strength but acquires a 90° linear polarization rotation, demonstrating fast, high-fidelity, dynamically-controlled polarization gate operation. The intensity of the polarization-switching field used in this PKSPK-based polarization gate operation is only 2 mW/cm{sup 2}, which would be equivalent to 0.5 nW of light power (λ = 800 nm) confined in a typical commercial photonic hollow-core fiber. This development opens a realm of possibilities for potential future extremely low light level telecommunication and information processing systems.

  15. A Multi-Level Parallelization Concept for High-Fidelity Multi-Block Solvers

    NASA Technical Reports Server (NTRS)

    Hatay, Ferhat F.; Jespersen, Dennis C.; Guruswamy, Guru P.; Rizk, Yehia M.; Byun, Chansup; Gee, Ken; VanDalsem, William R. (Technical Monitor)

    1997-01-01

    The integration of high-fidelity Computational Fluid Dynamics (CFD) analysis tools with the industrial design process benefits greatly from the robust implementations that are transportable across a wide range of computer architectures. In the present work, a hybrid domain-decomposition and parallelization concept was developed and implemented into the widely-used NASA multi-block Computational Fluid Dynamics (CFD) packages implemented in ENSAERO and OVERFLOW. The new parallel solver concept, PENS (Parallel Euler Navier-Stokes Solver), employs both fine and coarse granularity in data partitioning as well as data coalescing to obtain the desired load-balance characteristics on the available computer platforms. This multi-level parallelism implementation itself introduces no changes to the numerical results, hence the original fidelity of the packages are identically preserved. The present implementation uses the Message Passing Interface (MPI) library for interprocessor message passing and memory accessing. By choosing an appropriate combination of the available partitioning and coalescing capabilities only during the execution stage, the PENS solver becomes adaptable to different computer architectures from shared-memory to distributed-memory platforms with varying degrees of parallelism. The PENS implementation on the IBM SP2 distributed memory environment at the NASA Ames Research Center obtains 85 percent scalable parallel performance using fine-grain partitioning of single-block CFD domains using up to 128 wide computational nodes. Multi-block CFD simulations of complete aircraft simulations achieve 75 percent perfect load-balanced executions using data coalescing and the two levels of parallelism. SGI PowerChallenge, SGI Origin 2000, and a cluster of workstations are the other platforms where the robustness of the implementation is tested. The performance behavior on the other computer platforms with a variety of realistic problems will be included as this on

  16. Validation of High-Fidelity CFD Simulations for Rocket Injector Design

    NASA Technical Reports Server (NTRS)

    Tucker, P. Kevin; Menon, Suresh; Merkle, Charles L.; Oefelein, Joseph C.; Yang, Vigor

    2008-01-01

    Computational fluid dynamics (CFD) has the potential to improve the historical rocket injector design process by evaluating the sensitivity of performance and injector-driven thermal environments to the details of the injector geometry and key operational parameters. Methodical verification and validation efforts on a range of coaxial injector elements have shown the current production CFD capability must be improved in order to quantitatively impact the injector design process. This paper documents the status of a focused effort to compare and understand the predictive capabilities and computational requirements of a range of CFD methodologies on a set of single element injector model problems. The steady Reynolds-Average Navier-Stokes (RANS), unsteady Reynolds-Average Navier-Stokes (URANS) and three different approaches using the Large Eddy Simulation (LES) technique were used to simulate the initial model problem, a single element coaxial injector using gaseous oxygen and gaseous hydrogen propellants. While one high-fidelity LES result matches the experimental combustion chamber wall heat flux very well, there is no monotonic convergence to the data with increasing computational tool fidelity. Systematic evaluation of key flow field regions such as the flame zone, the head end recirculation zone and the downstream near wall zone has shed significant, though as of yet incomplete, light on the complex, underlying causes for the performance level of each technique. 1 Aerospace Engineer and Combustion CFD Team Leader, MS ER42, NASA MSFC, AL 35812, Senior Member, AIAA. 2 Professor and Director, Computational Combustion Laboratory, School of Aerospace Engineering, 270 Ferst Dr., Atlanta, GA 30332, Associate Fellow, AIAA. 3 Reilly Professor of Engineering, School of Mechanical Engineering, 585 Purdue Mall, West Lafayette, IN 47907, Fellow, AIAA. 4 Principal Member of Technical Staff, Combustion Research Facility, 7011 East Avenue, MS9051, Livermore, CA 94550, Associate

  17. High-fidelity simulations of moving and flexible airfoils at low Reynolds numbers

    NASA Astrophysics Data System (ADS)

    Visbal, Miguel R.; Gordnier, Raymond E.; Galbraith, Marshall C.

    2009-05-01

    The present paper highlights results derived from the application of a high-fidelity simulation technique to the analysis of low-Reynolds-number transitional flows over moving and flexible canonical configurations motivated by small natural and man-made flyers. This effort addresses three separate fluid dynamic phenomena relevant to small fliers, including: laminar separation and transition over a stationary airfoil, transition effects on the dynamic stall vortex generated by a plunging airfoil, and the effect of flexibility on the flow structure above a membrane airfoil. The specific cases were also selected to permit comparison with available experimental measurements. First, the process of transition on a stationary SD7003 airfoil section over a range of Reynolds numbers and angles of attack is considered. Prior to stall, the flow exhibits a separated shear layer which rolls up into spanwise vortices. These vortices subsequently undergo spanwise instabilities, and ultimately breakdown into fine-scale turbulent structures as the boundary layer reattaches to the airfoil surface. In a time-averaged sense, the flow displays a closed laminar separation bubble which moves upstream and contracts in size with increasing angle of attack for a fixed Reynolds number. For a fixed angle of attack, as the Reynolds number decreases, the laminar separation bubble grows in vertical extent producing a significant increase in drag. For the lowest Reynolds number considered ( Re c = 104), transition does not occur over the airfoil at moderate angles of attack prior to stall. Next, the impact of a prescribed high-frequency small-amplitude plunging motion on the transitional flow over the SD7003 airfoil is investigated. The motion-induced high angle of attack results in unsteady separation in the leading edge and in the formation of dynamic-stall-like vortices which convect downstream close to the airfoil. At the lowest value of Reynolds number ( Re c = 104), transition effects are

  18. High-fidelity simulations of moving and flexible airfoils at low Reynolds numbers

    NASA Astrophysics Data System (ADS)

    Visbal, Miguel R.; Gordnier, Raymond E.; Galbraith, Marshall C.

    The present paper highlights results derived from the application of a high-fidelity simulation technique to the analysis of low-Reynolds-number transitional flows over moving and flexible canonical configurations motivated by small natural and man-made flyers. This effort addresses three separate fluid dynamic phenomena relevant to small fliers, including: laminar separation and transition over a stationary airfoil, transition effects on the dynamic stall vortex generated by a plunging airfoil, and the effect of flexibility on the flow structure above a membrane airfoil. The specific cases were also selected to permit comparison with available experimental measurements. First, the process of transition on a stationary SD7003 airfoil section over a range of Reynolds numbers and angles of attack is considered. Prior to stall, the flow exhibits a separated shear layer which rolls up into spanwise vortices. These vortices subsequently undergo spanwise instabilities, and ultimately breakdown into fine-scale turbulent structures as the boundary layer reattaches to the airfoil surface. In a timeaveraged sense, the flow displays a closed laminar separation bubble which moves upstream and contracts in size with increasing angle of attack for a fixed Reynolds number. For a fixed angle of attack, as the Reynolds number decreases, the laminar separation bubble grows in vertical extent producing a significant increase in drag. For the lowest Reynolds number considered (Re_c = 10^4), transition does not occur over the airfoil at moderate angles of attack prior to stall. Next, the impact of a prescribed high-frequency small-amplitude plunging motion on the transitional flow over the SD7003 airfoil is investigated. The motioninduced high angle of attack results in unsteady separation in the leading edge and in the formation of dynamic-stalllike vortices which convect downstream close to the airfoil. At the lowest value of Reynolds number (Re_c = 10^4), transition effects are

  19. Modeling of energy transfer in hypersonic shocks using high fidelity models

    NASA Astrophysics Data System (ADS)

    Zhu, Tong

    shock speeds above 9 km/s. High fidelity models for simulating both the dissociation and relaxation processes in N+N2 and N2+N2 systems are also investigated. Relaxation cross sections are computed and the 99 bin method shows good agreement between the bin-to-bin and state specific relaxation cross sections for both N-N2 and N2-N2 relaxation. These relaxation cross sections are then implemented separately in 0D DSMC isothermal relaxation cases. For both cases, the rotational and vibrational temperatures relax to the equilibrium heat bath temperature. For N-N 2 relaxations, the rotational temperature relaxes faster than the vibrational temperature at relatively low translational temperature and at a very similar rate to the vibrational temperature at relatively high temperature. These are in qualitative agreement with the observation of earlier experiments. The one-dimensional binning method and associated cross sections by Parsons et al. are implemented in DSMC simulations and the results are compared with those using the traditional TCE and LB models. For shock conditions similar to those in the experiments of Gorelov, it is found that the MD-QCT chemical reaction model predicts more dissociation and faster relaxation of the vibrational temperature. In the higher speed shock condition of the experiment by Fujita, the use of MD-QCT databases for both chemical reaction and internal energy predicts more dissociation in the downstream of the shock but slower relaxation of the rotational temperature. Also the rotational temperature in the shock region is in somewhat better agreement with the experiment of Fujita.

  20. High-Fidelity Rapid Initialization and Read-Out of an Electron Spin via the Single Donor D- Charge State

    NASA Astrophysics Data System (ADS)

    Watson, T. F.; Weber, B.; House, M. G.; Büch, H.; Simmons, M. Y.

    2015-10-01

    We demonstrate high-fidelity electron spin read-out of a precision placed single donor in silicon via spin selective tunneling to either the D+ or D- charge state of the donor. By performing read-out at the stable two electron D0↔D- charge transition we can increase the tunnel rates to a nearby single electron transistor charge sensor by nearly 2 orders of magnitude, allowing faster qubit read-out (1 ms) with minimum loss in read-out fidelity (98.4%) compared to read-out at the D+↔D0 transition (99.6%). Furthermore, we show that read-out via the D- charge state can be used to rapidly initialize the electron spin qubit in its ground state with a fidelity of FI=99.8 %.

  1. High-fidelity teleportation of continuous-variable quantum states using delocalized single photons.

    PubMed

    Andersen, Ulrik L; Ralph, Timothy C

    2013-08-01

    Traditional continuous-variable teleportation can only approach unit fidelity in the limit of an infinite (and unphysical) amount of squeezing. We describe a new method for continuous-variable teleportation that approaches unit fidelity with finite resources. The protocol is not based on squeezed states as in traditional teleportation but on an ensemble of single photon entangled states. We characterize the teleportation scheme with coherent states, mesoscopic superposition states, and two-mode squeezed states and we find several situations in which near-unity teleportation fidelity can be obtained with modest resources. PMID:23952378

  2. High-fidelity interface tracking in compressible flows: Unlimited anchored adaptive level set

    NASA Astrophysics Data System (ADS)

    Nourgaliev, R. R.; Theofanous, T. G.

    2007-06-01

    The interface-capturing-fidelity issue of the level set method is addressed wholly within the Eulerian framework. Our aim is for a practical and efficient way to realize the expected benefits of grid resolution and high order schemes. Based on a combination of structured adaptive mesh refinement (SAMR), rather than quad/octrees, and on high-order spatial discretization, rather than the use of Lagrangian particles, our method is tailored to compressible flows, while it provides a potentially useful alternative to the particle level set (PLS) for incompressible flows. Interesting salient features of our method include (a) avoidance of limiting (in treating the Hamiltonian of the level set equation), (b) anchoring the level set in a manner that ensures no drift and no spurious oscillations of the zero level during PDE-reinitialization, and (c) a non-linear tagging procedure for defining the neighborhood of the interface subject to mesh refinement. Numerous computational results on a set of benchmark problems (strongly deforming, stretching and tearing interfaces) demonstrate that with this approach, implemented up to 11th order accuracy, the level set method becomes essentially free of mass conservation errors and also free of parasitic interfacial oscillations, while it is still highly efficient, and convenient for 3D parallel implementation. In addition, demonstration of performance in fully-coupled simulations is presented for multimode Rayleigh-Taylor instability (low-Mach number regime) and shock-induced, bubble-collapse (highly compressible regime).

  3. The Effect of High-Fidelity Cardiopulmonary Resuscitation (CPR) Simulation on Athletic Training Student Knowledge, Confidence, Emotions, and Experiences

    ERIC Educational Resources Information Center

    Tivener, Kristin Ann; Gloe, Donna Sue

    2015-01-01

    Context: High-fidelity simulation is widely used in healthcare for the training and professional education of students though literature of its application to athletic training education remains sparse. Objective: This research attempts to address a wide-range of data. This includes athletic training student knowledge acquisition from…

  4. The Effects of Moderate- and High-Fidelity Patient Simulator Use on Critical Thinking in Associate Degree Nursing Students

    ERIC Educational Resources Information Center

    Vieck, Jana

    2013-01-01

    The purpose of this study was to examine the impact of moderate- and high-fidelity patient simulator use on the critical thinking skills of associate degree nursing students. This quantitative study used a quasi-experimental design and the Health Sciences Reasoning Test (HSRT) to evaluate the critical thinking skills of third semester nursing…

  5. High fidelity quasi steady-state aerodynamic model effects on race vehicle performance predictions using multi-body simulation

    NASA Astrophysics Data System (ADS)

    Mohrfeld-Halterman, J. A.; Uddin, M.

    2016-07-01

    We described in this paper the development of a high fidelity vehicle aerodynamic model to fit wind tunnel test data over a wide range of vehicle orientations. We also present a comparison between the effects of this proposed model and a conventional quasi steady-state aerodynamic model on race vehicle simulation results. This is done by implementing both of these models independently in multi-body quasi steady-state simulations to determine the effects of the high fidelity aerodynamic model on race vehicle performance metrics. The quasi steady state vehicle simulation is developed with a multi-body NASCAR Truck vehicle model, and simulations are conducted for three different types of NASCAR race tracks, a short track, a one and a half mile intermediate track, and a higher speed, two mile intermediate race track. For each track simulation, the effects of the aerodynamic model on handling, maximum corner speed, and drive force metrics are analysed. The accuracy of the high-fidelity model is shown to reduce the aerodynamic model error relative to the conventional aerodynamic model, and the increased accuracy of the high fidelity aerodynamic model is found to have realisable effects on the performance metric predictions on the intermediate tracks resulting from the quasi steady-state simulation.

  6. Testing the Predictive Capability of the High-Fidelity Generalized Method of Cells Using an Efficient Reformulation

    NASA Technical Reports Server (NTRS)

    Arnold, Steven M. (Technical Monitor); Bansal, Yogesh; Pindera, Marek-Jerzy

    2004-01-01

    The High-Fidelity Generalized Method of Cells is a new micromechanics model for unidirectionally reinforced periodic multiphase materials that was developed to overcome the original model's shortcomings. The high-fidelity version predicts the local stress and strain fields with dramatically greater accuracy relative to the original model through the use of a better displacement field representation. Herein, we test the high-fidelity model's predictive capability in estimating the elastic moduli of periodic composites characterized by repeating unit cells obtained by rotation of an infinite square fiber array through an angle about the fiber axis. Such repeating unit cells may contain a few or many fibers, depending on the rotation angle. In order to analyze such multi-inclusion repeating unit cells efficiently, the high-fidelity micromechanics model's framework is reformulated using the local/global stiffness matrix approach. The excellent agreement with the corresponding results obtained from the standard transformation equations confirms the new model's predictive capability for periodic composites characterized by multi-inclusion repeating unit cells lacking planes of material symmetry. Comparison of the effective moduli and local stress fields with the corresponding results obtained from the original Generalized Method of Cells dramatically highlights the original model's shortcomings for certain classes of unidirectional composites.

  7. Using a High-Fidelity Patient Simulator with First-Year Medical Students to Facilitate Learning of Cardiovascular Function Curves

    ERIC Educational Resources Information Center

    Harris, David M.; Ryan, Kathleen; Rabuck, Cynthia

    2012-01-01

    Students are relying on technology for learning more than ever, and educators need to adapt to facilitate student learning. High-fidelity patient simulators (HFPS) are usually reserved for the clinical years of medical education and are geared to improve clinical decision skills, teamwork, and patient safety. Finding ways to incorporate HFPS into…

  8. Motivation and Technological Readiness in the Use of High-Fidelity Simulation: A Descriptive Comparative Study of Nurse Educators

    ERIC Educational Resources Information Center

    Duvall, Judy Jo

    2012-01-01

    There are many driving forces to increase the use of high-fidelity simulation (HFS) in nursing education, as well as many factors that may influence the implementation of this teaching strategy. These include the motivation of nurse educators to use HFS, the technological readiness of nurse educators to use HFS and the changing demographics of the…

  9. Faculty and Student Perceptions of Preparation for and Implementation of High Fidelity Simulation Experiences in Associate Degree Nursing Programs

    ERIC Educational Resources Information Center

    Conejo, Patricia E.

    2010-01-01

    High fidelity simulation technology is being used as an alternative way to expose students to complex patient care. Research has shown that simulation experiences can improve critical thinking skills and increase students' self-confidence (Jeffries & Rizzolo, 2006). The purpose of this study was to examine nurse educator and nursing student…

  10. Tomography of a high-fidelity spin-photon entangled state

    NASA Astrophysics Data System (ADS)

    McMahon, Peter; de Greve, Kristiaan; Yu, Leo; Pelc, Jason; Natarajan, Chandra; Kim, Na Young; Abe, Eisuke; Maier, Sebastian; Schneider, Christian; Kamp, Martin; Hoefling, Sven; Hadfield, Robert; Forchel, Alfred; Fejer, M. M.; Yamamoto, Yoshihisa

    2013-03-01

    The generation of entanglement between a quantum memory and a flying qubit is an important step towards building a quantum repeater node. Entanglement between a photon and a matter qubit has been demonstrated in several systems, including neutral atoms, trapped ions, NV centers and quantum dots. Quantum dots have a natural advantage that their radiative lifetimes are short, and therefore the rate of entanglement generation can be much faster than in other systems. We have recently demonstrated entanglement between an electron spin in a quantum dot, and the polarization of an emitted photon. In addition, the photon is converted to the low-loss 1550 nm band, which is important for implementing long-distance quantum communication systems. In this talk, I will present the reconstruction of the full density matrix of the entangled spin-photon state that we produce. We calculate the fidelity of the state from the density matrix, and conclude that it is > 90 % . This work was supported by the JSPS through its FIRST programme, NICT, NSF CCR-08 29694, NIST 60NANB9D9170, Special Coordination Funds for Promoting Science and Technology, and the State of Bavaria.

  11. High-fidelity simulation: Assessment of student nurses' team achievements of clinical judgment.

    PubMed

    Hallin, Karin; Bäckström, Britt; Häggström, Marie; Kristiansen, Lisbeth

    2016-07-01

    Nursing educators have the challenge of preparing nursing students to handle complex patient care situations in real life, but much remains unknown about the ability to make clinical judgments. In this study, high-fidelity simulation (HFS) was used at a Swedish university to find answers about pre-licensure nursing students' success in clinical judgment in terms of team ability and relationships with theoretical achievements, and personal and scenario circumstances. The matrix Lasater Clinical Judgment Rubric (LCJR) was used to analyze and score the students' ability in teams to notice, interpret and respond to complex care situations. Overall, the results showed the student teams in their first meeting with HFS in a complex care situation achieved low clinical judgment points; most teams were in the stages of Beginning and Developing. For attaining high team achievements the majority of the students in the team should theoretically be "high performance". Being observers and having HFS experience before nursing education was significant too. However, age, health care experience, and assistant nurse degrees were of secondary importance. Further research at universities regionally, nationally, and internationally is needed. PMID:27428686

  12. Investigating systematic individual differences in sleep-deprived performance on a high-fidelity flight simulator.

    PubMed

    Van Dongen, Hans P A; Caldwell, John A; Caldwell, J Lynn

    2006-05-01

    Laboratory research has revealed considerable systematic variability in the degree to which individuals' alertness and performance are affected by sleep deprivation. However, little is known about whether or not different populations exhibit similar levels of individual variability. In the present study, we examined individual variability in performance impairment due to sleep loss in a highly select population of militaryjet pilots. Ten active-duty F-117 pilots were deprived of sleep for 38 h and studied repeatedly in a high-fidelity flight simulator. Data were analyzed with a mixed-model ANOVA to quantify individual variability. Statistically significant, systematic individual differences in the effects of sleep deprivation were observed, even when baseline differences were accounted for. The findings suggest that highly select populations may exhibit individual differences in vulnerability to performance impairment from sleep loss just as the general population does. Thus, the scientific and operational communities' reliance on group data as opposed to individual data may entail substantial misestimation of the impact of job-related stressors on safety and performance. PMID:16956110

  13. Applications of constant denaturant capillary electrophoresis/high-fidelity polymerase chain reaction to human genetic analysis.

    PubMed

    Li-Sucholeiki, X C; Khrapko, K; André, P C; Marcelino, L A; Karger, B L; Thilly, W G

    1999-06-01

    Constant denaturant capillary electrophoresis (CDCE) permits high-resolution separation of single-base variations occurring in an approximately 100 bp isomelting DNA sequence based on their differential melting temperatures. By coupling CDCE for highly efficient enrichment of mutants with high-fidelity polymerase chain reaction (hifi PCR), we have developed an analytical approach to detecting point mutations at frequencies equal to or greater than 10(-6) in human genomic DNA. In this article, we present several applications of this approach in human genetic studies. We have measured the point mutational spectra of a 100 bp mitochondrial DNA sequence in human tissues and cultured cells. The observations have led to the conclusion that the primary causes of mutation in human mitochondrial DNA are spontaneous in origin. In the course of studying the mitochondrial somatic mutations, we have also identified several nuclear pseudogenes homologous to the analyzed mitochondrial DNA fragment. Recently, through developments of the means to isolate the desired target sequences from bulk genomic DNA and to increase the loading capacity of CDCE, we have extended the CDCE/hifi PCR approach to study a chemically induced mutational spectrum in a single-copy nuclear sequence. Future applications of the CDCE/hifi PCR approach to human genetic analysis include studies of somatic mitochondrial mutations with respect to aging, measurement of mutational spectra of nuclear genes in healthy human tissues and population screening for disease-associated single nucleotide polymorphisms (SNPs) in large pooled samples. PMID:10380762

  14. High Fidelity, Fuel-Like Thermal Simulators for Non-Nuclear Testing: Analysis and Initial Test Results

    NASA Technical Reports Server (NTRS)

    Bragg-Sitton, Shannon M.; Dickens, Ricky; Dixon, David; Kapernick, Richard

    2007-01-01

    Non-nuclear testing can be a valuable tool in the development of a space nuclear power system, providing system characterization data and allowing one to work through various fabrication, assembly and integration issues without the cost and time associated with a full ground nuclear test. In a non-nuclear test bed, electric heaters are used to simulate the heat from nuclear fuel. Testing with non-optimized heater elements allows one to assess thermal, heat transfer. and stress related attributes of a given system, but fails to demonstrate the dynamic response that would be present in an integrated, fueled reactor system. High fidelity thermal simulators that match both the static and the dynamic fuel pin performance that would be observed in an operating, fueled nuclear reactor can vastly increase the value of non-nuclear test results. With optimized simulators, the integration of thermal hydraulic hardware tests with simulated neutronic response provides a bridge between electrically heated testing and fueled nuclear testing. By implementing a neutronic response model to simulate the dynamic response that would be expected in a fueled reactor system, one can better understand system integration issues, characterize integrated system response times and response characteristics and assess potential design improvements at relatively small fiscal investment. Initial conceptual thermal simulator designs are determined by simple one-dimensional analysis at a single axial location and at steady state conditions; feasible concepts are then input into a detailed three-dimensional model for comparison to expected fuel pin performance. Static and dynamic fuel pin performance for a proposed reactor design is determined using SINDA/FLUINT thermal analysis software, and comparison is made between the expected nuclear performance and the performance of conceptual thermal simulator designs. Through a series of iterative analyses, a conceptual high fidelity design is developed

  15. Statistical abstraction of high-fidelity CO2 pressure histories in 2-D, uniform, cylindrical domains

    SciTech Connect

    Letellier, Bruce C; Sanzo, Dean L; Pawar, Rajesh J

    2010-01-01

    Long-term, deep, geologic sequestration of carbon dioxide (CO{sub 2}) is being evaluated as a world-wide strategy for limiting anthropogenic carbon emissions to the atmosphere. A key element of this evaluation is quantification of the ancillary risks associated with this fundamentally new linkage between the global energy economy and the subsurface ecosphere. Quantitative risk assessment methods traditionally enumerate operational scenarios and describe the multiple physical responses that may ensue from each scenario depending on the quality of information that is available to describe identified system dependencies. For example, multiplepoint injection of compressed CO{sub 2} into a geologic reservoir having a nominal stratigraphy will create a pressurized zone of liquid that migrates through the rock. Scenarios that postulate CO{sub 2} encountering previously undetected wells or natural fractures in the caprock that represent leakage paths to the surface must be treated in a probabilistic format that accommodates unknown details in the subsurface geology. Fluid pressure in the reservoir at the location of the potential transport path drives any potential leakage that might occur, so the spatial and temporal distribution of CO{sub 2} overpressure represents an important metric for numeric simulation. State-of-the-art geologic transport models like FEHM, TUFF, and ECLIPSE (Refs. 1, 2, 3) can accurately simulate multi phase gas migration in a fully characterized geologic domain. However, each simulation can require time periods ranging between minutes and hours to achieve acceptable numerical performance, so it is often impractical to link predictive physics models directly in a quantitative risk assessment that will require transport estimates for thousands of scenarios. When direct computation is not possible, a library of high-fidelity calculations can sometimes be distilled to a simplified statistical correlation that spans the variability in all relevant input

  16. Wavelet-based vector quantization for high-fidelity compression and fast transmission of medical images.

    PubMed

    Mitra, S; Yang, S; Kustov, V

    1998-11-01

    Compression of medical images has always been viewed with skepticism, since the loss of information involved is thought to affect diagnostic information. However, recent research indicates that some wavelet-based compression techniques may not effectively reduce the image quality, even when subjected to compression ratios up to 30:1. The performance of a recently designed wavelet-based adaptive vector quantization is compared with a well-known wavelet-based scalar quantization technique to demonstrate the superiority of the former technique at compression ratios higher than 30:1. The use of higher compression with high fidelity of the reconstructed images allows fast transmission of images over the Internet for prompt inspection by radiologists at remote locations in an emergency situation, while higher quality images follow in a progressive manner if desired. Such fast and progressive transmission can also be used for downloading large data sets such as the Visible Human at a quality desired by the users for research or education. This new adaptive vector quantization uses a neural networks-based clustering technique for efficient quantization of the wavelet-decomposed subimages, yielding minimal distortion in the reconstructed images undergoing high compression. Results of compression up to 100:1 are shown for 24-bit color and 8-bit monochrome medical images. PMID:9848058

  17. High-fidelity specialty mental health probation improves officer practices, treatment access, and rule compliance.

    PubMed

    Manchak, Sarah M; Skeem, Jennifer L; Kennealy, Patrick J; Louden, Jennifer Eno

    2014-10-01

    Many probation agencies in the United States assign offenders with mental illness to relatively small specialty caseloads supervised by officers with relevant training, rather than to large general caseloads. Specialty caseloads are designed to improve the process and outcomes of probation, largely by linking these probationers with psychiatric treatment and avoiding unnecessary violations. In this multimethod, longitudinal matched trial, we tested whether a prototypical specialty agency (n = 183) differed from a traditional agency (n = 176) in officers' practices, probationers' treatment access, and probationers' rule violations. The specialty agency yielded significantly (a) better officer practices (e.g., problem solving rather than sanction threats; higher quality relationships with probationers; more boundary spanning), (b) greater rates of treatment involvement, and (c) lower rates of violation reports than the traditional agency. Additionally, officers' use of sanctions and threats increased probationers' risk of incurring a probation violation, whereas high-quality officer-probationer relationships protected against this outcome. When implemented with fidelity, specialty mental health caseloads improved the supervision process for this high-need group. PMID:24749700

  18. Optimal control of fast and high-fidelity quantum gates with electron and nuclear spins of a nitrogen-vacancy center in diamond

    NASA Astrophysics Data System (ADS)

    Chou, Yi; Huang, Shang-Yu; Goan, Hsi-Sheng

    2015-05-01

    A negatively charged nitrogen-vacancy (NV) center in diamond has been recognized as a good solid-state qubit. A system consisting of the electronic spin of the NV center and hyperfine-coupled nitrogen and additionally nearby carbon nuclear spins can form a quantum register of several qubits for quantum information processing or as a node in a quantum repeater. Several impressive experiments on the hybrid electron and nuclear spin register have been reported, but fidelities achieved so far are not yet at or below the thresholds required for fault-tolerant quantum computation (FTQC). Using quantum optimal control theory based on the Krotov method, we show here that fast and high-fidelity single-qubit and two-qubit gates in the universal quantum gate set for FTQC, taking into account the effects of the leakage state, nearby noise qubits, and distant bath spins, can be achieved with errors less than those required by the threshold theorem of FTQC.

  19. A high-fidelity, six-degree-of-freedom batch simulation environment for tactical guidance research and evaluation

    NASA Technical Reports Server (NTRS)

    Goodrich, Kenneth H.

    1993-01-01

    A batch air combat simulation environment, the tactical maneuvering simulator (TMS), is presented. The TMS is a tool for developing and evaluating tactical maneuvering logics, but it can also be used to evaluate the tactical implications of perturbations to aircraft performance or supporting systems. The TMS can simulate air combat between any number of engagement participants, with practical limits imposed by computer memory and processing power. Aircraft are modeled using equations of motion, control laws, aerodynamics, and propulsive characteristics equivalent to those used in high-fidelity piloted simulations. Data bases representative of a modern high-performance aircraft with and without thrust-vectoring capability are included. To simplify the task of developing and implementing maneuvering logics in the TMS, an outer-loop control system, the tactical autopilot (TA), is implemented in the aircraft simulation model. The TA converts guidance commands by computerized maneuvering logics from desired angle of attack and wind-axis bank-angle inputs to the inner loop control augmentation system of the aircraft. The capabilities and operation of the TMS and the TA are described.

  20. Fast cavity-enhanced atom detection with low noise and high fidelity

    PubMed Central

    Goldwin, J.; Trupke, M.; Kenner, J.; Ratnapala, A.; Hinds, E.A.

    2011-01-01

    Cavity quantum electrodynamics describes the fundamental interactions between light and matter, and how they can be controlled by shaping the local environment. For example, optical microcavities allow high-efficiency detection and manipulation of single atoms. In this regime, fluctuations of atom number are on the order of the mean number, which can lead to signal fluctuations in excess of the noise on the incident probe field. Here we demonstrate, however, that nonlinearities and multi-atom statistics can together serve to suppress the effects of atomic fluctuations when making local density measurements on clouds of cold atoms. We measure atom densities below 1 per cavity mode volume near the photon shot-noise limit. This is in direct contrast to previous experiments where fluctuations in atom number contribute significantly to the noise. Atom detection is shown to be fast and efficient, reaching fidelities in excess of 97% after 10 μs and 99.9% after 30 μs. PMID:21829180

  1. Retention of Advanced Cardiac Life Support Knowledge and Skills Following High-Fidelity Mannequin Simulation Training

    PubMed Central

    Sen, Sanchita; Finn, Laura A.; Cawley, Michael J.

    2015-01-01

    Objective. To assess pharmacy students’ ability to retain advanced cardiac life support (ACLS) knowledge and skills within 120 days of previous high-fidelity mannequin simulation training. Design. Students were randomly assigned to rapid response teams of 5-6. Skills in ACLS and mannequin survival were compared between teams some members of which had simulation training 120 days earlier and teams who had not had previous training. Assessment. A checklist was used to record and assess performance in the simulations. Teams with previous simulation training (n=10) demonstrated numerical superiority to teams without previous training (n=12) for 6 out of 8 (75%) ACLS skills observed, including time calculating accurate vasopressor infusion rate (83 sec vs 113 sec; p=0.01). Mannequin survival was 37% higher for teams who had previous simulation training, but this result was not significant (70% vs 33%; p=0.20). Conclusion. Teams with students who had previous simulation training demonstrated numerical superiority in ACLS knowledge and skill retention within 120 days of previous training compared to those who had no previous training. Future studies are needed to add to the current evidence of pharmacy students’ and practicing pharmacists’ ACLS knowledge and skill retention. PMID:25741028

  2. On a High-Fidelity Hierarchical Approach to Buckling Load Calculations

    NASA Technical Reports Server (NTRS)

    Arbocz, Johann; Starnes, James H.; Nemeth, Michael P.

    2001-01-01

    As a step towards developing a new design philosophy, one that moves away from the traditional empirical approach used today in design towards a science-based design technology approach, a recent test series of 5 composite shells carried out by Waters at NASA Langley Research Center is used. It is shown how the hierarchical approach to buckling load calculations proposed by Arbocz et al can be used to perform an approach often called "high fidelity analysis", where the uncertainties involved in a design are simulated by refined and accurate numerical methods. The Delft Interactive Shell DEsign COde (short, DISDECO) is employed for this hierarchical analysis to provide an accurate prediction of the critical buckling load of the given shell structure. This value is used later as a reference to establish the accuracy of the Level-3 buckling load predictions. As a final step in the hierarchical analysis approach, the critical buckling load and the estimated imperfection sensitivity of the shell are verified by conducting an analysis using a sufficiently refined finite element model with one of the current generation two-dimensional shell analysis codes with the advanced capabilities needed to represent both geometric and material nonlinearities.

  3. High-fidelity Modeling of Local Effects of Damage for Derated Offshore Wind Turbines

    NASA Astrophysics Data System (ADS)

    Richards, Phillip W.; Griffith, D. Todd; Hodges, Dewey H.

    2014-06-01

    Offshore wind power production is an attractive clean energy option, but the difficulty of access can lead to expensive and rare opportunities for maintenance. As part of the Structural Health and Prognostics Management (SHPM) project at Sandia National Laboratories, smart loads management (controls) are investigated for their potential to increase the fatigue life of offshore wind turbine rotor blades. Derating refers to altering the rotor angular speed and blade pitch to limit power production and loads on the rotor blades. High- fidelity analysis techniques like 3D finite element modeling (FEM) should be used alongside beam models of wind turbine blades to characterize these control strategies in terms of their effect to mitigate fatigue damage and extend life of turbine blades. This study will consider a commonly encountered damage type for wind turbine blades, the trailing edge disbond, and show how FEM can be used to quantify the effect of operations and control strategies designed to extend the fatigue life of damaged blades. The Virtual Crack Closure Technique (VCCT) will be used to post-process the displacement and stress results to provide estimates of damage severity/criticality and provide a means to estimate the fatigue life under a given operations and control strategy.

  4. Buckling Load Calculations of the Isotropic Shell A-8 Using a High-Fidelity Hierarchical Approach

    NASA Technical Reports Server (NTRS)

    Arbocz, Johann; Starnes, James H.

    2002-01-01

    As a step towards developing a new design philosophy, one that moves away from the traditional empirical approach used today in design towards a science-based design technology approach, a test series of 7 isotropic shells carried out by Aristocrat and Babcock at Caltech is used. It is shown how the hierarchical approach to buckling load calculations proposed by Arbocz et al can be used to perform an approach often called 'high fidelity analysis', where the uncertainties involved in a design are simulated by refined and accurate numerical methods. The Delft Interactive Shell DEsign COde (short, DISDECO) is employed for this hierarchical analysis to provide an accurate prediction of the critical buckling load of the given shell structure. This value is used later as a reference to establish the accuracy of the Level-3 buckling load predictions. As a final step in the hierarchical analysis approach, the critical buckling load and the estimated imperfection sensitivity of the shell are verified by conducting an analysis using a sufficiently refined finite element model with one of the current generation two-dimensional shell analysis codes with the advanced capabilities needed to represent both geometric and material nonlinearities.

  5. High fidelity patient silicone simulation: a qualitative evaluation of nursing students' experiences.

    PubMed

    Reid-Searl, Kerry; Happell, Brenda; Vieth, Lea; Eaton, Anne

    2012-01-01

    Clinical experience is recognised as a source of fear and anxiety for undergraduate nursing students. Simulated learning experiences have been identified as potentially increasing confidence, however most techniques do not always reflect clinical reality or are too costly. The aim of the current study is to explore nursing students' perceptions of the use of High Fidelity Silicone Simulation, developed by one university academic to overcome these limitations. A simulated patient with a personal and medical history is developed and brought to life through wearing life-like silicone props including face, hands and torso. The academic is able to adapt responses to direct student learning. This paper presents the findings from a qualitative exploratory study of nursing students' responses to this technique. Twenty-one students in second or third year of the nursing program participated in one of three focus groups to discuss their experiences. Data were analysed using a thematic approach. Data analysis revealed three main themes: preparation for clinical reality, reducing fear/increasing confidence, and taking out of comfort zone. These findings suggest that this technique has the potential to increase nursing students' sense of preparedness for their clinical experience, thus reducing the negative impact of fear and apprehension. PMID:22774349

  6. Robust content-dependent high-fidelity watermark for tracking in digital cinema

    NASA Astrophysics Data System (ADS)

    Lubin, Jeffrey; Bloom, Jeffrey A.; Cheng, Hui

    2003-06-01

    Forensic digital watermarking is a promising tool in the fight against piracy of copyrighted motion imagery content, but to be effective it must be (1) imperceptibly embedded in high-definition motion picture source, (2) reliably retrieved, even from degraded copies as might result from camcorder capture and subsequent very-low-bitrate compression and distribution on the Internet, and (3) secure against unauthorized removal. No existing watermarking technology has yet to meet these three simultaneous requirements of fidelity, robustness, and security. We describe here a forensic watermarking approach that meets all three requirements. It is based on the inherent robustness and imperceptibility of very low spatiotemporal frequency watermark carriers, and on a watermark placement technique that renders jamming attacks too costly in picture quality, even if the attacker has complete knowledge of the embedding algorithm. The algorithm has been tested on HD Cinemascope source material exhibited in a digital cinema viewing room. The watermark is imperceptible, yet recoverable after exhibition capture with camcorders, and after the introduction of other distortions such as low-pass filtering, noise addition, geometric shifts, and the manipulation of brightness and contrast.

  7. Analysis of vehicle rollover dynamics using a high-fidelity model

    NASA Astrophysics Data System (ADS)

    Pawel Czechowicz, Maciej; Mavros, George

    2014-05-01

    Recent data show that 35% of fatal crashes in sport utility vehicles included vehicle rollover. At the same time, experimental testing to improve safety is expensive and dangerous. Therefore, multi-body simulation is used in this research to improve the understanding of rollover dynamics. The majority of previous work uses low-fidelity models. Here, a complex and highly nonlinear multi-body model with 165 degrees of freedom is correlated to vehicle kinematic and compliance (K&C) measurements. The Magic Formula tyre model is employed. Design of experiment methodology is used to identify tyre properties affecting vehicle rollover. A novel, statistical approach is used to link suspension K&C characteristics with rollover propensity. Research so far reveals that the tyre properties that have the greatest influence on vehicle rollover are friction coefficient, friction variation with load, camber stiffness and tyre vertical stiffness. Key K&C characteristics affecting rollover propensity are front and rear suspension rate, front roll stiffness, front camber gain, front and rear camber compliance and rear jacking force.

  8. Terascale High-Fidelity Simulations of Turbulent Combustion with Detailed Chemistry

    SciTech Connect

    Im, Hong G; Trouve, Arnaud; Rutland, Christopher J; Chen, Jacqueline H

    2012-08-13

    The TSTC project is a multi-university collaborative effort to develop a high-fidelity turbulent reacting flow simulation capability utilizing terascale, massively parallel computer technology. The main paradigm of our approach is direct numerical simulation (DNS) featuring highest temporal and spatial accuracy, allowing quantitative observations of the fine-scale physics found in turbulent reacting flows as well as providing a useful tool for development of sub-models needed in device-level simulations. The code named S3D, developed and shared with Chen and coworkers at Sandia National Laboratories, has been enhanced with new numerical algorithms and physical models to provide predictive capabilities for spray dynamics, combustion, and pollutant formation processes in turbulent combustion. Major accomplishments include improved characteristic boundary conditions, fundamental studies of auto-ignition in turbulent stratified reactant mixtures, flame-wall interaction, and turbulent flame extinction by water spray. The overarching scientific issue in our recent investigations is to characterize criticality phenomena (ignition/extinction) in turbulent combustion, thereby developing unified criteria to identify ignition and extinction conditions. The computational development under TSTC has enabled the recent large-scale 3D turbulent combustion simulations conducted at Sandia National Laboratories.

  9. Terascale High-Fidelity Simulations of Turbulent Combustion with Detailed Chemistry

    SciTech Connect

    Hong G. Im; Arnaud Trouve; Christopher J. Rutland; Jacqueline H. Chen

    2009-02-02

    The TSTC project is a multi-university collaborative effort to develop a high-fidelity turbulent reacting flow simulation capability utilizing terascale, massively parallel computer technology. The main paradigm of our approach is direct numerical simulation (DNS) featuring highest temporal and spatial accuracy, allowing quantitative observations of the fine-scale physics found in turbulent reacting flows as well as providing a useful tool for development of sub-models needed in device-level simulations. The code named S3D, developed and shared with Chen and coworkers at Sandia National Laboratories, has been enhanced with new numerical algorithms and physical models to provide predictive capabilities for spray dynamics, combustion, and pollutant formation processes in turbulent combustion. Major accomplishments include improved characteristic boundary conditions, fundamental studies of auto-ignition in turbulent stratified reactant mixtures, flame-wall interaction, and turbulent flame extinction by water spray. The overarching scientific issue in our recent investigations is to characterize criticality phenomena (ignition/extinction) in turbulent combustion, thereby developing unified criteria to identify ignition and extinction conditions. The computational development under TSTC has enabled the recent large-scale 3D turbulent combustion simulations conducted at Sandia National Laboratories.

  10. High Fidelity Computational Analysis of CO2 Trapping at Pore Scales

    NASA Astrophysics Data System (ADS)

    Kumar, Vinod

    2013-07-01

    High Fidelity Computational Analysis of CO2 Trapping at Pore Scales With an alarming rise in carbon dioxide (CO2) emission from anthropogenic sources, CO2 sequestration has become an attractive choice to mitigate the emission. Some popular storage media for CO2 are oil reservoirs, deep coal-bed, and deep oceanic-beds. These have been used for the long term CO2 storage. Due to special lowering viscosity and surface tension property of CO2, it has been widely used for enhanced oil recovery. The sites for CO2 sequestration or enhanced oil recovery mostly consist of porous rocks. Lack of knowledge of molecular mobility under confinement and molecule-surface interactions between CO2 and natural porous media results in generally governed by unpredictable absorption kinetics and total absorption capacity for injected fluids, and therefore, constitutes barriers to the deployment of this technology. Therefore, it is important to understand the flow dynamics of CO2 through the porous microstructures at the finest scale (pore-scale) to accurately predict the storage potential and long-term dynamics of the sequestered CO2 This report discusses about pore-network flow modeling approach using variational method and analyzes simulated results this method simulations at pore-scales for idealized network and using Berea Sandstone CT scanned images. Variational method provides a promising way to study the kinetic behavior and storage potential at the pore scale in the presence of other

  11. Analysis of Fiber Clustering in Composite Materials Using High-Fidelity Multiscale Micromechanics

    NASA Technical Reports Server (NTRS)

    Bednarcyk, Brett A.; Aboudi, Jacob; Arnold, Steven M.

    2015-01-01

    A new multiscale micromechanical approach is developed for the prediction of the behavior of fiber reinforced composites in presence of fiber clustering. The developed method is based on a coupled two-scale implementation of the High-Fidelity Generalized Method of Cells theory, wherein both the local and global scales are represented using this micromechanical method. Concentration tensors and effective constitutive equations are established on both scales and linked to establish the required coupling, thus providing the local fields throughout the composite as well as the global properties and effective nonlinear response. Two nondimensional parameters, in conjunction with actual composite micrographs, are used to characterize the clustering of fibers in the composite. Based on the predicted local fields, initial yield and damage envelopes are generated for various clustering parameters for a polymer matrix composite with both carbon and glass fibers. Nonlinear epoxy matrix behavior is also considered, with results in the form of effective nonlinear response curves, with varying fiber clustering and for two sets of nonlinear matrix parameters.

  12. Aeroacoustic Study of a High-Fidelity Aircraft Model. Part 2; Unsteady Surface Pressures

    NASA Technical Reports Server (NTRS)

    Khorrami, Mehdi R.; Neuhart, Danny H.

    2012-01-01

    In this paper, we present unsteady surface pressure measurements for an 18%-scale, semi-span Gulfstream aircraft model. This high-fidelity model is being used to perform detailed studies of airframe noise associated with main landing gear, flap components, and gear-flap interaction noise, as well as to evaluate novel noise reduction concepts. The aerodynamic segment of the tests, conducted in the NASA Langley Research Center 14- by 22-Foot Subsonic Tunnel, was completed in November 2010. To discern the characteristics of the surface pressure fluctuations in the vicinity of the prominent noise sources, unsteady sensors were installed on the inboard and outboard flap edges, and on the main gear wheels, struts, and door. Various configurations were tested, including flap deflections of 0?, 20?, and 39?, with and without the main landing gear. The majority of unsteady surface pressure measurements were acquired for the nominal landing configuration where the main gear was deployed and the flap was deflected 39?. To assess the Mach number variation of the surface pressure amplitudes, measurements were obtained at Mach numbers of 0.16, 0.20, and 0.24. Comparison of the unsteady surface pressures with the main gear on and off shows significant interaction between the gear wake and the inboard flap edge, resulting in higher amplitude fluctuations when the gear is present.

  13. High-fidelity national carbon mapping for resource management and REDD+

    PubMed Central

    2013-01-01

    Background High fidelity carbon mapping has the potential to greatly advance national resource management and to encourage international action toward climate change mitigation. However, carbon inventories based on field plots alone cannot capture the heterogeneity of carbon stocks, and thus remote sensing-assisted approaches are critically important to carbon mapping at regional to global scales. We advanced a high-resolution, national-scale carbon mapping approach applied to the Republic of Panama – one of the first UN REDD + partner countries. Results Integrating measurements of vegetation structure collected by airborne Light Detection and Ranging (LiDAR) with field inventory plots, we report LiDAR-estimated aboveground carbon stock errors of ~10% on any 1-ha land parcel across a wide range of ecological conditions. Critically, this shows that LiDAR provides a highly reliable replacement for inventory plots in areas lacking field data, both in humid tropical forests and among drier tropical vegetation types. We then scale up a systematically aligned LiDAR sampling of Panama using satellite data on topography, rainfall, and vegetation cover to model carbon stocks at 1-ha resolution with estimated average pixel-level uncertainty of 20.5 Mg C ha-1 nationwide. Conclusions The national carbon map revealed strong abiotic and human controls over Panamanian carbon stocks, and the new level of detail with estimated uncertainties for every individual hectare in the country sets Panama at the forefront in high-resolution ecosystem management. With this repeatable approach, carbon resource decision-making can be made on a geospatially explicit basis, enhancing human welfare and environmental protection. PMID:23866822

  14. About the prediction of Organic Rankine Cycles performances integrating local high-fidelity turbines simulation and uncertainties

    NASA Astrophysics Data System (ADS)

    Congedo, Pietro; de Santis, Dante; Geraci, Gianluca

    2014-11-01

    Organic Rankine Cycles (ORCs) are of key-importance when exploiting energy systems with a high efficiency. The variability of renewable heat sources makes more complex the global performance prediction of a cycle. The thermodynamic properties of the complex fluids used in the process are another source of uncertainty. The need for a predictive and robust simulation tool of ORCs remains strong. A high-order accurate Residual Distribution scheme has been recently developed for efficiently computing a turbine stage on unstructured grids, including advanced equations of state in order to take into account the complex fluids used in ORCs. Advantages in using high-order methods have been highlighted, in terms of number of degrees of freedom and computational time used, for computing the numerical solution with a greater accuracy compared to lower-order methods, even for shocked flows. The objective of this work is to quantify the numerical error with respect to the various sources of uncertainty of the ORC turbine, thus providing a very high-fidelity prediction in the coupled physical/stochastic space.

  15. Aeroacoustic Study of a High-Fidelity Aircraft Model: Part 1- Steady Aerodynamic Measurements

    NASA Technical Reports Server (NTRS)

    Khorrami, Mehdi R.; Hannon, Judith A.; Neuhart, Danny H.; Markowski, Gregory A.; VandeVen, Thomas

    2012-01-01

    In this paper, we present steady aerodynamic measurements for an 18% scale model of a Gulfstream air-craft. The high fidelity and highly-instrumented semi-span model was developed to perform detailed aeroacoustic studies of airframe noise associated with main landing gear/flap components and gear-flap interaction noise, as well as to evaluate novel noise reduction concepts. The aeroacoustic tests, being conducted in the NASA Langley Research Center 14- by 22-Foot Subsonic Tunnel, are split into two entries. The first entry, completed November 2010, was entirely devoted to the detailed mapping of the aerodynamic characteristics of the fabricated model. Flap deflections of 39?, 20?, and 0? with the main landing gear on and off were tested at Mach numbers of 0.16, 0.20, and 0.24. Additionally, for each flap deflection, the model was tested with the tunnel both in the closed-wall and open-wall (jet) modes. During this first entry, global forces (lift and drag) and extensive steady and unsteady surface pressure measurements were obtained. Preliminary analysis of the measured forces indicates that lift, drag, and stall characteristics compare favorably with Gulfstream?s high Reynolds number flight data. The favorable comparison between wind-tunnel and flight data allows the semi-span model to be used as a test bed for developing/evaluating airframe noise reduction concepts under a relevant environment. Moreover, initial comparison of the aerodynamic measurements obtained with the tunnel in the closed- and open-wall configurations shows similar aerodynamic behavior. This permits the acoustic and off-surface flow measurements, planned for the second entry, to be conducted with the tunnel in the open-jet mode.

  16. High-fidelity simulation and reduced-order modelling of integrally-actuated membrane wings with feedback control

    NASA Astrophysics Data System (ADS)

    Buoso, Stefano; Palacios, Rafael

    2016-04-01

    This work presents a numerical framework for the simulation and design of integrally actuated membrane wings with feedback control. The performance of the aeroelastic system are evaluated using a high-fidelity model. It consists in a fluid solver based on the direct numerical integration of the unsteady Navier-Stokes equations implicitly coupled with a geometrically non-linear dynamic structural model which has been calibrated using experimental data. The rate-dependent constitutive law for the dielectric elastomer considered for the integral wing actuation is based on a non-linear formulation. The framework also includes a methodology for the model reduction of the fully-coupled system. The resulting low-order description showed to retain the main system dynamics, and can therefore be used for the design of the control scheme for the wing. Results highlights the potential to achieve on-demand aerodynamics using the actuation concept proposed. In particular, it is shown that the wing aerodynamic performance is noticeably enhanced through the actuation and the disturbances on the lift in case of gusts can be reduced up to 60%.

  17. High Fidelity Symmetric Telecloning and Entanglement Distribution of Spin Quantum States by Weak Measurement and Reversal

    NASA Astrophysics Data System (ADS)

    Wang, Qiong; He, Zhi; Yao, Chun-Mei; Li, Wen-Juan

    2016-08-01

    We propose a physical realization of robust symmetric telecloning scheme for spin quantum states by employing the weak measurement and reversal (WMR) operation. Using proper WMR, the ultrahigh telecloning fidelity and long distance of quantum state transfer with certain success probability can be achieved. More interestingly, the lowest average telecloning fidelity can attain 80 %, which is almost independent of the spin chain length. We also study the properties of entanglement distribution via the spin chain for arbitrary two-qubit entangled pure states as inputs and find that the WMR operation indeed helps for protecting distributed entanglement.

  18. High-Fidelity Quantum Logic Gates Using Trapped-Ion Hyperfine Qubits

    NASA Astrophysics Data System (ADS)

    Ballance, C. J.; Harty, T. P.; Linke, N. M.; Sepiol, M. A.; Lucas, D. M.

    2016-08-01

    We demonstrate laser-driven two-qubit and single-qubit logic gates with respective fidelities 99.9(1)% and 99.9934(3)%, significantly above the ≈99 % minimum threshold level required for fault-tolerant quantum computation, using qubits stored in hyperfine ground states of calcium-43 ions held in a room-temperature trap. We study the speed-fidelity trade-off for the two-qubit gate, for gate times between 3.8 μ s and 520 μ s , and develop a theoretical error model which is consistent with the data and which allows us to identify the principal technical sources of infidelity.

  19. High Fidelity Modeling of Turbulent Mixing and Chemical Kinetics Interactions in a Post-Detonation Flow Field

    NASA Astrophysics Data System (ADS)

    Sinha, Neeraj; Zambon, Andrea; Ott, James; Demagistris, Michael

    2015-06-01

    Driven by the continuing rapid advances in high-performance computing, multi-dimensional high-fidelity modeling is an increasingly reliable predictive tool capable of providing valuable physical insight into complex post-detonation reacting flow fields. Utilizing a series of test cases featuring blast waves interacting with combustible dispersed clouds in a small-scale test setup under well-controlled conditions, the predictive capabilities of a state-of-the-art code are demonstrated and validated. Leveraging physics-based, first principle models and solving large system of equations on highly-resolved grids, the combined effects of finite-rate/multi-phase chemical processes (including thermal ignition), turbulent mixing and shock interactions are captured across the spectrum of relevant time-scales and length scales. Since many scales of motion are generated in a post-detonation environment, even if the initial ambient conditions are quiescent, turbulent mixing plays a major role in the fireball afterburning as well as in dispersion, mixing, ignition and burn-out of combustible clouds in its vicinity. Validating these capabilities at the small scale is critical to establish a reliable predictive tool applicable to more complex and large-scale geometries of practical interest.

  20. High fidelity simulation of non-synchronous vibration for aircraft engine fan/compressor

    NASA Astrophysics Data System (ADS)

    Im, Hong-Sik

    The objectives of this research are to develop a high fidelity simulation methodology for turbomachinery aeromechanical problems and to investigate the mechanism of non-synchronous vibration (NSV) of an aircraft engine axial compressor. A fully conservative rotor/stator sliding technique is developed to accurately capture the unsteadiness and interaction between adjacent blade rows. Phase lag boundary conditions (BC) based on the time shift (direct store) method and the Fourier series phase lag BC are implemented to take into account the effect of phase difference for a sector of annulus simulation. To resolve the nonlinear interaction between flow and vibrating blade structure, a fully coupled fluid-structure interaction (FSI) procedure that solves the structural modal equations and time accurate Navier-Stokes equations simultaneously is adopted. An advanced mesh deformation method that generates the blade tip block mesh moving with the blade displacement is developed to ensure the mesh quality. An efficient and low diffusion E-CUSP (LDE) scheme as a Riemann solver designed to minimize numerical dissipation is used with an improved hybrid RANS/LES turbulence strategy, delayed detached eddy simulation (DDES). High order accuracy (3rd and 5th order) weighted essentially non-oscillatory (WENO) schemes for inviscid flux and a conservative 2nd and 4th order viscous flux differencing are employed. Extensive validations are conducted to demonstrate high accuracy and robustness of the high fidelity FSI simulation methodology. The validated cases include: (1) DDES of NACA 0012 airfoil at high angle of attack with massive separation. The DDES accurately predicts the drag whereas the URANS model significantly over predicts the drag. (2) The AGARD Wing 445.6 flutter boundary is accurately predicted including the point at supersonic incoming flow. (3) NASA Rotor 67 validation for steady state speed line and radial profiles at peak efficiency point and near stall point. The

  1. Hi-Fi SELEX: A High-Fidelity Digital-PCR Based Therapeutic Aptamer Discovery Platform.

    PubMed

    Ouellet, Eric; Foley, Jonathan H; Conway, Edward M; Haynes, Charles

    2015-08-01

    Current technologies for aptamer discovery typically leverage the systematic evolution of ligands by exponential enrichment (SELEX) concept by recursively panning semi-combinatorial ssDNA or RNA libraries against a molecular target. The expectation is that this iterative selection process will be sufficiently stringent to identify a candidate pool of specific high-affinity aptamers. However, failure of this process to yield promising aptamers is common, due in part to (i) limitations in library designs, (ii) retention of non-specific aptamers during screening rounds, (iii) excessive accumulation of amplification artifacts, and (iv) the use of screening criteria (binding affinity) that does not reflect therapeutic activity. We report a new selection platform, High-Fidelity (Hi-Fi) SELEX, that introduces fixed-region blocking elements to safeguard the functional diversity of the library. The chemistry of the target-display surface and the composition of the equilibration solvent are engineered to strongly inhibit non-specific retention of aptamers. Partition efficiencies approaching 10(6) are thereby realized. Retained members are amplified in Hi-Fi SELEX by digital PCR in a manner that ensures both elimination of amplification artifacts and stoichiometric conversion of amplicons into the single-stranded library required for the next selection round. Improvements to aptamer selections are first demonstrated using human α-thrombin as the target. Three clinical targets (human factors IXa, X, and D) are then subjected to Hi-Fi SELEX. For each, rapid enrichment of ssDNA aptamers offering an order-nM mean equilibrium dissociation constant (Kd) is achieved within three selection rounds, as quantified by a new label-free qPCR assay reported here. Therapeutic candidates against factor D are identified. PMID:25727321

  2. HIGH-FIDELITY RADIO ASTRONOMICAL POLARIMETRY USING A MILLISECOND PULSAR AS A POLARIZED REFERENCE SOURCE

    SciTech Connect

    Van Straten, W.

    2013-01-15

    A new method of polarimetric calibration is presented in which the instrumental response is derived from regular observations of PSR J0437-4715 based on the assumption that the mean polarized emission from this millisecond pulsar remains constant over time. The technique is applicable to any experiment in which high-fidelity polarimetry is required over long timescales; it is demonstrated by calibrating 7.2 years of high-precision timing observations of PSR J1022+1001 made at the Parkes Observatory. Application of the new technique followed by arrival time estimation using matrix template matching yields post-fit residuals with an uncertainty-weighted standard deviation of 880 ns, two times smaller than that of arrival time residuals obtained via conventional methods of calibration and arrival time estimation. The precision achieved by this experiment yields the first significant measurements of the secular variation of the projected semimajor axis, the precession of periastron, and the Shapiro delay; it also places PSR J1022+1001 among the 10 best pulsars regularly observed as part of the Parkes Pulsar Timing Array (PPTA) project. It is shown that the timing accuracy of a large fraction of the pulsars in the PPTA is currently limited by the systematic timing error due to instrumental polarization artifacts. More importantly, long-term variations of systematic error are correlated between different pulsars, which adversely affects the primary objectives of any pulsar timing array experiment. These limitations may be overcome by adopting the techniques presented in this work, which relax the demand for instrumental polarization purity and thereby have the potential to reduce the development cost of next-generation telescopes such as the Square Kilometre Array.

  3. High-Fidelity Lagrangian Coherent Structures Analysis and DNS with Discontinuous-Galerkin Methods

    NASA Astrophysics Data System (ADS)

    Nelson, Daniel Alan Wendell

    High-fidelity numerical tools based on high-order Discontinuous-Galerkin (DG) methods and Lagrangian Coherent Structure (LCS) theory are developed and validated for the study of separated, vortex-dominated flows over complex geometry. The numerical framework couples prediction of separated turbulent flows using DG with time-dependent analysis of the flow through LCS and is intended for the development of separation control strategies for aerodynamic surfaces. The compressible viscous flow over a NACA 65-(1)412 airfoil is solved with a DG based Navier-Stokes solver in two and three dimensions. A method is presented in which high-order polynomial element edges adjacent to curved boundaries are matched to boundaries defined by non-smooth splines. Artificial surface roughness introduced by the piecewise-linear boundary approximation of straight-sided meshes results in the simulation of incorrect physics, including wake instabilities and spurious time-dependent modes. Spectral accuracy in the boundary approximation is not achieved for non-analytic boundary functions, particularly in high curvature regions. An algorithm is developed for the high-order computation of Finite-Time Lyapunov Exponent (FTLE) fields simultaneously and efficiently with two and three dimensional DG-based flow solvers. Fluid tracers are initialized at Gauss-Lobatto quadrature nodes within an element and form the high-order basis for a flow map at later time. Gradients of the flow map and FTLE are evaluated with DG operators. Multiple flow maps are determined from a single particle trace by remapping the flow map to the quadrature nodes on deformed mesh elements. For large integration times, excessive subdomain deformation deteriorates the interpolating conditioning. The conditioning provides information on the fluid deformation and identifies subdomains that contain LCS. An exponential filter smooths the flow map in highly deformed areas. The algorithm is tested on several benchmarks and is shown

  4. High-Fidelity Dynamic Modeling of Spacecraft in the Continuum--Rarefied Transition Regime

    NASA Astrophysics Data System (ADS)

    Turansky, Craig P.

    The state of the art of spacecraft rarefied aerodynamics seldom accounts for detailed rigid-body dynamics. In part because of computational constraints, simpler models based upon the ballistic and drag coefficients are employed. Of particular interest is the continuum-rarefied transition regime of Earth's thermosphere where gas dynamic simulation is difficult yet wherein many spacecraft operate. The feasibility of increasing the fidelity of modeling spacecraft dynamics is explored by coupling rarefied aerodynamics with rigid-body dynamics modeling similar to that traditionally used for aircraft in atmospheric flight. Presented is a framework of analysis and guiding principles which capitalize on the availability of increasing computational methods and resources. Aerodynamic force inputs for modeling spacecraft in two dimensions in a rarefied flow are provided by analytical equations in the free-molecular regime, and the direct simulation Monte Carlo method in the transition regime. The application of the direct simulation Monte Carlo method to this class of problems is examined in detail with a new code specifically designed for engineering-level rarefied aerodynamic analysis. Time-accurate simulations of two distinct geometries in low thermospheric flight and atmospheric entry are performed, demonstrating non-linear dynamics that cannot be predicted using simpler approaches. The results of this straightforward approach to the aero-orbital coupled-field problem highlight the possibilities for future improvements in drag prediction, control system design, and atmospheric science. Furthermore, a number of challenges for future work are identified in the hope of stimulating the development of a new subfield of spacecraft dynamics.

  5. High fidelity numerical simulation of airfoil thickness and kinematics effects on flapping airfoil propulsion

    NASA Astrophysics Data System (ADS)

    Yu, Meilin; Wang, Z. J.; Hu, Hui

    2013-10-01

    High-fidelity numerical simulations with the spectral difference (SD) method are carried out to investigate the unsteady flow over a series of oscillating NACA 4-digit airfoils. Airfoil thickness and kinematics effects on the flapping airfoil propulsion are highlighted. It is confirmed that the aerodynamic performance of airfoils with different thickness can be very different under the same kinematics. Distinct evolutionary patterns of vortical structures are analyzed to unveil the underlying flow physics behind the diverse flow phenomena associated with different airfoil thickness and kinematics and reveal the synthetic effects of airfoil thickness and kinematics on the propulsive performance. Thickness effects at various reduced frequencies and Strouhal numbers for the same chord length based Reynolds number (=1200) are then discussed in detail. It is found that at relatively small Strouhal number (=0.3), for all types of airfoils with the combined pitching and plunging motion (pitch angle 20°, the pitch axis located at one third of chord length from the leading edge, pitch leading plunge by 75°), low reduced frequency (=1) is conducive for both the thrust production and propulsive efficiency. Moreover, relatively thin airfoils (e.g. NACA0006) can generate larger thrust and maintain higher propulsive efficiency than thick airfoils (e.g. NACA0030). However, with the same kinematics but at relatively large Strouhal number (=0.45), it is found that airfoils with different thickness exhibit diverse trend on thrust production and propulsive efficiency, especially at large reduced frequency (=3.5). Results on effects of airfoil thickness based Reynolds numbers indicate that relative thin airfoils show superior propulsion performance in the tested Reynolds number range. The evolution of leading edge vortices and the interaction between the leading and trailing edge vortices play key roles in flapping airfoil propulsive performance.

  6. Characterization of Flap Edge Noise Radiation from a High-Fidelity Airframe Model

    NASA Technical Reports Server (NTRS)

    Humphreys, William M., Jr.; Khorrami, Mehdi R.; Lockhard, David P.; Neuhart, Dan H.; Bahr, Christopher J.

    2015-01-01

    The results of an experimental study of the noise generated by a baseline high-fidelity airframe model are presented. The test campaign was conducted in the open-jet test section of the NASA Langley 14- by 22-foot Subsonic Tunnel on an 18%-scale, semi-span Gulfstream airframe model incorporating a trailing edge flap and main landing gear. Unsteady surface pressure measurements were obtained from a series of sensors positioned along the two flap edges, and far field acoustic measurements were obtained using a 97-microphone phased array that viewed the pressure side of the airframe. The DAMAS array deconvolution method was employed to determine the locations and strengths of relevant noise sources in the vicinity of the flap edges and the landing gear. A Coherent Output Power (COP) spectral method was used to couple the unsteady surface pressures measured along the flap edges with the phased array output. The results indicate that outboard flap edge noise is dominated by the flap bulb seal cavity with very strong COP coherence over an approximate model-scale frequency range of 1 to 5 kHz observed between the array output and those unsteady pressure sensors nearest the aft end of the cavity. An examination of experimental COP spectra for the inboard flap proved inconclusive, most likely due to a combination of coherence loss caused by decorrelation of acoustic waves propagating through the thick wind tunnel shear layer and contamination of the spectra by tunnel background noise at lower frequencies. Directivity measurements obtained from integration of DAMAS pressure-squared values over defined geometric zones around the model show that the baseline flap and landing gear are only moderately directional as a function of polar emission angle.

  7. High-Fidelity Nonlinear Analysis of Compression-Loaded Composite Shells

    NASA Technical Reports Server (NTRS)

    Hilburger, Mark W.; Starnes, James H., Jr.

    2001-01-01

    The results of an experimental and analytical study of the effects of initial imperfections on the buckling and postbuckling response of unstiffened thin-walled compression-loaded graphite-epoxy cylindrical shells are presented. The shells considered in the study have four different shell-wall laminates and two different shell-radius-to-thickness ratios. The shell-wall laminates include two different orthotropic laminates and two different quasi-isotropic laminates. The shell-radius-to-thickness ratios include shell-radius-to-thickness ratios equal to 100 and 200. The results identify the effects of traditional and nontraditional initial imperfections on the nonlinear response characteristics and buckling loads of the shells. The traditional imperfections include the geometric shell-wall mid-surface imperfections that are commonly discussed in the literature on thin shell buckling. The nontraditional imperfections include shell-wall thickness variations, local shell-wall ply-gaps associated with the fabrication process, shell-end geometric imperfections, nonuniform applied end loads, and variations in the boundary conditions including the effects of elastic boundary conditions. A high-fidelity nonlinear shell analysis procedure that accurately accounts for the effects of these traditional and nontraditional imperfections on the nonlinear response characteristics and buckling loads of the shells is described. The analysis procedure includes a nonlinear static analysis that predicts the stable response characteristics of the shells, and a nonlinear transient analysis that predicts the unstable response characteristics. The results of a local shell-wall stress analysis used to estimate failure stresses are also described.

  8. Development and Testing of a Multimedia Internet-Based System for Fidelity and Monitoring of Multidimensional Treatment Foster Care

    PubMed Central

    Sprengelmeyer, Peter G; Davis, Betsy; Chamberlain, Patricia

    2012-01-01

    Background The fields of mental health, child welfare, and juvenile justice are jointly faced with the challenge of reducing the prevalence of antisocial behavior among adolescents. In the last 20 years, conduct disorders have moved from being considered intractable difficulties to having complex but available solutions. The treatments for even long-standing offending behavior among adolescents are now well documented and supported by a growing and compelling body of evidence. These empirically validated interventions are being widely disseminated, but the replication of the results from clinical trials in community settings has yet to be documented. The treatments, which produced impressive effects in a research context, are difficult to replicate without intensive monitoring of fidelity by the developers. Such monitoring is a barrier toward adoption; as the distance between the adopter and developer increases, so does cost. At the same time, states, communities, and agencies are under increasing pressure to implement those intervention services that have been shown to be most effective. The use of the Internet offers a potential solution in that existing reporting and data collection by clinicians can be subject to remote supervision. Such a system would have the potential to provide dissemination teams with more direct access to higher-quality data and would make adopters more likely to be able to implement services at the highest possible conformity to research protocols. Objective To create and test such an innovative system for use with the Multidimensional Treatment Foster Care (MTFC) program, which is an in-home treatment (alternative to a residential- or group-home setting) for antisocial youths. This research could advance the knowledge base about developing innovative infrastructures in community settings to disseminate empirically validated treatments. Methods The fidelity system was used and reviewed by parent and professional users: 20 foster parent

  9. Transparent crosslinked ultrashort peptide hydrogel dressing with high shape-fidelity accelerates healing of full-thickness excision wounds.

    PubMed

    Seow, Wei Yang; Salgado, Giorgiana; Lane, E Birgitte; Hauser, Charlotte A E

    2016-01-01

    Wound healing is a major burden of healthcare systems worldwide and hydrogel dressings offer a moist environment conducive to healing. We describe cysteine-containing ultrashort peptides that self-assemble spontaneously into hydrogels. After disulfide crosslinking, the optically-transparent hydrogels became significantly stiffer and exhibited high shape fidelity. The peptide sequence (LIVAGKC or LK6C) was then chosen for evaluation on mice with full-thickness excision wounds. Crosslinked LK6C hydrogels are handled easily with forceps during surgical procedures and offer an improvement over our earlier study of a non-crosslinked peptide hydrogel for burn wounds. LK6C showed low allergenic potential and failed to provoke any sensitivity when administered to guinea pigs in the Magnusson-Kligman maximization test. When applied topically as a dressing, the medium-infused LK6C hydrogel accelerated re-epithelialization compared to controls. The peptide hydrogel is thus safe for topical application and promotes a superior rate and quality of wound healing. PMID:27600999

  10. Transparent crosslinked ultrashort peptide hydrogel dressing with high shape-fidelity accelerates healing of full-thickness excision wounds

    PubMed Central

    Seow, Wei Yang; Salgado, Giorgiana; Lane, E. Birgitte; Hauser, Charlotte A. E.

    2016-01-01

    Wound healing is a major burden of healthcare systems worldwide and hydrogel dressings offer a moist environment conducive to healing. We describe cysteine-containing ultrashort peptides that self-assemble spontaneously into hydrogels. After disulfide crosslinking, the optically-transparent hydrogels became significantly stiffer and exhibited high shape fidelity. The peptide sequence (LIVAGKC or LK6C) was then chosen for evaluation on mice with full-thickness excision wounds. Crosslinked LK6C hydrogels are handled easily with forceps during surgical procedures and offer an improvement over our earlier study of a non-crosslinked peptide hydrogel for burn wounds. LK6C showed low allergenic potential and failed to provoke any sensitivity when administered to guinea pigs in the Magnusson-Kligman maximization test. When applied topically as a dressing, the medium-infused LK6C hydrogel accelerated re-epithelialization compared to controls. The peptide hydrogel is thus safe for topical application and promotes a superior rate and quality of wound healing. PMID:27600999

  11. An Airborne Observing Campaign of an Announced Small Asteroid Impact for High Fidelity Impact Modeling Validation

    NASA Astrophysics Data System (ADS)

    Jenniskens, P. M. M.; Grinstead, J. H.

    2015-12-01

    High fidelity modeling of an asteroid impact requires a known size, mass, shape, entry orientation, entry speed, entry angle, time and location of entry, and material properties of the impacting asteroid. Much of that information can be gathered from small asteroids on an impact trajectory with Earth while they are on approach, given sufficient warning time. That makes small asteroid impacts uniquely suited for collecting data to validate such models. One-meter sized asteroids impact Earth about once a week, 4-meter sized asteroids impact once a year. So far, only asteroid 2008 TC3 was observed in space, characterized prior to impact, and then recovered in part as meteorites on the ground. The next TC3-like impact could provide more warming time to study the impact in detail. Close to 70 percent of all asteroid impacts on Earth occur over the ocean. Hence, small asteroid impact observations require an instrumented airborne platform to take a multi-disciplined research team to the right location at the right time. From a safe 100-km distance, the impact would be observed low enough in the sky to study the process of fragmentation that dictates at which altitude the kinetic energy is deposited that can cause an airburst. Constraints on radiative heating, ablation rate, and fragmentation processes can be obtained from measuring the air plasma emission escaping the shock, elemental atom line emissions and excitation conditions, pressure broadening, and deceleration in the plane of the known trajectory. It is also possible to measure wake, lightcurve and air plasma emission line intensities early in flight that can be used to evaluate the presence of regolith and the internal cohesion of asteroids. The main element abundance (asteroid composition) can be measured for individual fragments, while CN-band emission can point to the presence of organic matter. Such information will help constrain the meteorite type if no meteorites can be recovered in an over

  12. High-Fidelity Resonator-Induced Phase Gate with Single-Mode Squeezing

    NASA Astrophysics Data System (ADS)

    Puri, Shruti; Blais, Alexandre

    2016-05-01

    We propose to increase the fidelity of two-qubit resonator-induced phase gates in circuit QED by the use of narrow-band single-mode squeezing. We show that there exists an optimal squeezing angle and strength that erases qubit "which-path" information leaking out of the cavity and thereby minimizes qubit dephasing during these gates. Our analytical results for the gate fidelity are in excellent agreement with numerical simulations of a cascaded master equation that takes into account the dynamics of the source of squeezed radiation. With realistic parameters, we find that it is possible to realize a controlled-phase gate with a gate time of 200 ns and average infidelity of 1 0-5.

  13. High-fidelity ac gate operations of a three-electron double quantum dot qubit

    NASA Astrophysics Data System (ADS)

    Wong, Clement H.

    2016-01-01

    Semiconductor quantum dots in silicon are promising qubits because of long spin coherence times and their potential for scalability. However, such qubits with complete electrical control and fidelities above the threshold for quantum error correction have not yet been achieved. We show theoretically that the threshold fidelity can be achieved with ac gate operation of the quantum dot hybrid qubit. Formed by three electrons in a double dot, this qubit is electrically controlled, does not require magnetic fields, and runs at gigahertz (GHz) gate speeds. We analyze the decoherence caused by 1 /f charge noise in this qubit, find parameters that minimize the charge noise dependence in the qubit frequency, and determine the optimal working points for ac gate operations that drive the detuning and tunnel coupling.

  14. A New Design for Airway Management Training with Mixed Reality and High Fidelity Modeling.

    PubMed

    Shen, Yunhe; Hananel, David; Zhao, Zichen; Burke, Daniel; Ballas, Crist; Norfleet, Jack; Reihsen, Troy; Sweet, Robert

    2016-01-01

    Restoring airway function is a vital task in many medical scenarios. Although various simulation tools have been available for learning such skills, recent research indicated that fidelity in simulating airway management deserves further improvements. In this study, we designed and implemented a new prototype for practicing relevant tasks including laryngoscopy, intubation and cricothyrotomy. A large amount of anatomical details or landmarks were meticulously selected and reconstructed from medical scans, and 3D-printed or molded to the airway intervention model. This training model was augmented by virtually and physically presented interactive modules, which are interoperable with motion tracking and sensor data feedback. Implementation results showed that this design is a feasible approach to develop higher fidelity airway models that can be integrated with mixed reality interfaces. PMID:27046605

  15. High-Fidelity Quantum Logic Gates Using Trapped-Ion Hyperfine Qubits.

    PubMed

    Ballance, C J; Harty, T P; Linke, N M; Sepiol, M A; Lucas, D M

    2016-08-01

    We demonstrate laser-driven two-qubit and single-qubit logic gates with respective fidelities 99.9(1)% and 99.9934(3)%, significantly above the ≈99% minimum threshold level required for fault-tolerant quantum computation, using qubits stored in hyperfine ground states of calcium-43 ions held in a room-temperature trap. We study the speed-fidelity trade-off for the two-qubit gate, for gate times between 3.8  μs and 520  μs, and develop a theoretical error model which is consistent with the data and which allows us to identify the principal technical sources of infidelity. PMID:27541450

  16. High-fidelity singlet-triplet S -T- qubits in inhomogeneous magnetic fields

    NASA Astrophysics Data System (ADS)

    Wong, Clement H.; Eriksson, M. A.; Coppersmith, S. N.; Friesen, Mark

    2015-07-01

    We propose an optimized set of quantum gates for a singlet-triplet qubit in a double quantum dot with two electrons utilizing the S -T- subspace. Qubit rotations are driven by the applied magnetic field and a field gradient provided by a micromagnet. We optimize the fidelity of this qubit as a function of the magnetic fields, taking advantage of "sweet spots" where the rotation frequencies are independent of the energy level detuning, providing protection against charge noise. We simulate gate operations and qubit rotations in the presence of quasistatic noise from charge and nuclear spins as well as leakage to nonqubit states. Our results show that, for silicon quantum dots, gate fidelities greater than 99 % should be realizable, for rotations about two nearly orthogonal axes.

  17. Experimental generation of a high-fidelity four-photon linear cluster state

    NASA Astrophysics Data System (ADS)

    Zhang, Chao; Huang, Yun-Feng; Liu, Bi-Heng; Li, Chuan-Feng; Guo, Guang-Can

    2016-06-01

    Cluster state plays a crucial role in one-way quantum computation. Here, we propose and experimentally demonstrate a scheme to prepare an ultrahigh-fidelity four-photon linear cluster state via a spontaneous parametric down-conversion process. The state fidelity is measured to be 0.9517 ±0.0027 . Our scheme can be directly extended to more photons to generate an N -qubit linear cluster state. Furthermore, our scheme is optimal for generating photonic linear cluster states in the sense of achieving the maximal success probability and having the simplest strategy. The key idea is that the photon pairs are prepared in some special nonmaximally entangled states instead of the normal Bell states. To generate a 2 N -qubit linear cluster state from N pairs of entangled photons, only (N -1 ) Hong-Ou-Mandel interferences are needed and a success probability of (1/4) N -1 is achieved.

  18. High-fidelity pulse density modulation in neuromorphic electric circuits utilizing natural heterogeneity

    NASA Astrophysics Data System (ADS)

    Utagawa, Akira; Asai, Tetsuya; Amemiya, Yoshihito

    Hospedales et al. have recently proposed a neural network model of the “vestibulo-ocular reflex” (VOR) in which a common input was given to multiple nonidentical spiking neurons that were exposed to uncorrelated temporal noise, and the output was represented by the sum of these neurons. Although the function of the VOR network is equivalent to pulse density modulation, the neurons' non-uniformity and temporal noises given to the neurons were shown to improve the output spike's fidelity to the analog input. In this paper, we propose a CMOS analog circuit for implementing the VOR network that exploits the non-uniformity of real MOS devices. Through extensive laboratory experiments using discrete MOS devices, we show that the output's fidelity to the input pulses is clearly improved by using multiple neuron circuits, in which the non-uniformity is naturally embedded into the devices.

  19. Geodetic Inversion Analysis Method of Coseismic Slip Distribution Using a Three-dimensional Finite Element High-fidelity Model

    NASA Astrophysics Data System (ADS)

    Agata, R.; Ichimura, T.; Hirahara, K.; Hori, T.; Hyodo, M.; Hori, M.

    2013-12-01

    Many studies have focused on geodetic inversion analysis method of coseismic slip distribution with combination of observation data of coseismic crustal deformation on the ground and simplified crustal models such like analytical solution in elastic half-space (Okada, 1985). On the other hand, displacements on the seafloor or near trench axes due to actual earthquakes has been observed by seafloor observatories (e.g. the 2011 Tohoku-oki Earthquake (Tohoku Earthquake) (Sato et. al. 2011) (Kido et. al. 2011)). Also, some studies on tsunamis due to the Tohoku Earthquake indicate that large fault slips near the trench axis may have occurred. Those facts suggest that crustal models considering complex geometry and heterogeneity of the material property near the trench axis should be used for geodetic inversion analysis. Therefore, our group has developed a mesh generation method for finite element models of the Japanese Islands of higher fidelity and a fast crustal deformation analysis method for the models. Degree-of-freedom of the models generated by this method is about 150 million. In this research, the method is extended for inversion analyses of coseismic slip distribution. Since inversion analyses need computation of hundreds of slip response functions due to a unit fault slip assigned for respective divided cells on the fault, parallel computing environment is used. Plural crustal deformation analyses are simultaneously run in a Message Passing Interface (MPI) job. In the job, dynamic load balancing is implemented so that a better parallel efficiency is obtained. Submitting the necessary number of serial job of our previous method is also possible, but the proposed method needs less computation time, places less stress on file systems, and allows simpler job management. A method for considering the fault slip right near the trench axis is also developed. As the displacement distribution of unit fault slip for computing response function, 3rd order B

  20. High Fidelity Remanence Record from Plio-Pleistocene Reddish Sediments; a Start Toward Being a `Redbed'

    NASA Astrophysics Data System (ADS)

    Scott, G. R.; Gibert, L.

    2006-12-01

    Where can we go to study modern `redbeds'? This report considers the deposits from a single alluvial fan (Late Pliocene to Middle Pleistocene), in a semi-arid, mid-latitude, continental setting. Detailed magnetostratigraphy of these reddish/brownish/pinkish, conglomeratic siltstones (Baza Fm., Granada, Spain) show the following features: a record of all magnetochrons from Early Matuyama (C2r.1r) to Brunhes (C1n); a record of the short subchrons Gilsa (C1r.2r.5n) and intra-Jaramillo (C1r.1n.1r); passing the field tests- conglomerate/tilt block and bioturbation, even for the thin subzones; antipodal Normal and Reverse population means (γ=1°), both with 10° inclination shallowing; and elliptical population distributions with scattered values toward lower inclination. All these features indicate that these continental siltstones were deposited rapidly (average accumulation of 5cm/kyr) and underwent initial diagenesis within a few thousand years. The paleoenvironmental setting was in a middle to lower alluvial fan, in an aggrading, closed basin. The lateral migration and abandonment of the thalweg and overbank sheet flows allowed rapid colonization by grasses and modification by initial soil-forming processes. These immature B-horizon, cumulative paleosols have features that are partly pedogenic and partly sedimentologic. Indicators of immature (development truncated by burial) soil development are the lack of pedogenic carbonate nodules, unweathered limestone grains, and partial pedoturbation leaving relic sedimentary lamina. The large percentage of silt and clay is probably from the additional contribution of atmospheric dust. But, how will these beds (and their remanences) alter with time? Will late stage diagenesis convert these pale reddish brown (10R 5/4), consolidated silts into red (5R 5/4), hard siltstones? What will happen to the high fidelity remanence record after cementation, authigenesis, Ostwald ripening, and burial? And are there different paths to

  1. New method of optimizing writing parameters in electron beam lithography systems for throughput improvement considering patterning fidelity constraints

    NASA Astrophysics Data System (ADS)

    Ng, Hoi-Tou; Shen, Yu-Tian; Chen, Sheng-Yung; Liu, Chun-Hung; Ng, Philip C. W.; Tsai, Kuen-Yu

    2012-07-01

    Low-energy electron beam lithography is one of the promising next-generation lithography technology solutions for the 21-nm half-pitch node and beyond because of fewer proximity effects, higher resist sensitivity, and less substrate damage compared with high-energy electron beam lithography. To achieve high-throughput manufacturing, low-energy electron beam lithography systems with writing parameters of larger beam size, larger grid size, and lower dosage are preferred. However, electron shot noise can significantly increase critical dimension deviation and line edge roughness. Its influence on patterning prediction accuracy becomes nonnegligible. To effectively maximize throughput while meeting patterning fidelity requirements according to the International Technology Roadmap for Semiconductors, a new method is proposed in this work that utilizes a new patterning prediction algorithm to rigorously characterize the patterning variability caused by the shot noise and a mathematical optimization algorithm to determine optimal writing parameters. The new patterning prediction algorithm can achieve a proper trade-off between computational effort and patterning prediction accuracy. Effectiveness of the new method is demonstrated on a static random-access memory circuit. The corresponding electrical performance is analyzed by using a gate-slicing technique and publicly available transistor models. Numerical results show that a significant improvement in the static noise margin can be achieved.

  2. Perceived Barriers to the Use of High-Fidelity Hands-On Simulation Training for Contrast Reaction Management: Why Programs are Not Using It.

    PubMed

    Chinnugounder, Sankar; Hippe, Daniel S; Maximin, Suresh; O'Malley, Ryan B; Wang, Carolyn L

    2015-01-01

    Although subjective and objective benefits of high-fidelity simulation have been reported in medicine, there has been slow adoption in radiology. The purpose of our study was to identify the perceived barriers in the use of high-fidelity hands-on simulation for contrast reaction management training. An IRB exempt 32 questions online web survey was sent to 179 non-military radiology residency program directors listed in the Fellowship and Residency Electronic Interactive Database Access system (FREIDA). Survey questions included the type of contrast reaction management training, cost, time commitment of residents and faculty, and the reasons for not using simulation training. Responses from the survey were summarized as count (percentage), mean ± standard deviation (SD), or median (range). 84 (47%) of 179 programs responded, of which 88% offered CRM training. Most (72%) conducted the CRM training annually while only 4% conducted it more frequently. Didactic lecture was the most frequently used training modality (97%), followed by HFS (30%) and computer-based simulation (CBS) (19%); 5.5% used both HFS and CBS. Of the 51 programs that offer CRM training but do not use HFS, the most common reason reported was insufficient availability (41%). Other reported reasons included cost (33%), no access to simulation centers (33%), lack of trained faculty (27%) and time constraints (27%). Although high-fidelity hands-on simulation training is the best way to reproduce real-life contrast reaction scenarios, many institutions do not provide this training due to constraints such as cost, lack of access or insufficient availability of simulation labs, and lack of trained faculty. As a specialty, radiology needs to better address these barriers at both an institutional and national level. PMID:25939562

  3. Splicing fidelity

    PubMed Central

    Koodathingal, Prakash; Staley, Jonathan P.

    2013-01-01

    The spliceosome discriminates against suboptimal substrates, both during assembly and catalysis, thereby enhancing specificity during pre-mRNA splicing. Central to such fidelity mechanisms are a conserved subset of the DEAD- and DEAH-box ATPases, which belong to a superfamily of proteins that mediate RNP rearrangements in almost all RNA-dependent processes in the cell. Through an investigation of the mechanisms contributing to the specificity of 5′ splice site cleavage, two related reports, one from our lab and the other from the Cheng lab, have provided insights into fidelity mechanisms utilized by the spliceosome. In our work, we found evidence for a kinetic proofreading mechanism in splicing in which the DEAH-box ATPase Prp16 discriminates against substrates undergoing slow 5′ splice site cleavage. Additionally, our study revealed that discriminated substrates are discarded through a general spliceosome disassembly pathway, mediated by another DEAH-box ATPase Prp43. In their work, Tseng et al. described the underlying molecular events through which Prp16 discriminates against a splicing substrate during 5′ splice site cleavage. Here, we present a synthesis of these two studies and, additionally, provide the first biochemical evidence for discrimination of a suboptimal splicing substrate just prior to 5′ splice site cleavage. Together, these findings support a general mechanism for a ubiquitous superfamily of ATPases in enhancing specificity during RNA-dependent processes in the cell. PMID:23770752

  4. High Resolution/High Fidelity Seismic Imaging and Parameter Estimation for Geological Structure and Material Characterization

    SciTech Connect

    Ru-Shan Wu, Xiao-Bi Xie, Thorne Lay

    2005-06-06

    In this project, we develop new theories and methods for multi-domain one-way wave-equation based propagators, and apply these techniques to seismic modeling, seismic imaging, seismic illumination and model parameter estimation in 3D complex environments. The major progress of this project includes: (1) The development of the dual-domain wave propagators. We continue to improve the one-way wave-equation based propagators. Our target is making propagators capable of handling more realistic velocity models. A wide-angle propagator for transversely isotropic media with vertically symmetric axis (VTI) has been developed for P-wave modeling and imaging. The resulting propagator is accurate for large velocity perturbations and wide propagation angles. The thin-slab propagator for one-way elastic-wave propagation is further improved. With the introduction of complex velocities, the quality factors Qp and Qs have been incorporated into the thin-slab propagator. The resulting viscoelastic thin-slab propagator can handle elastic-wave propagation in models with intrinsic attenuations. We apply this method to complex models for AVO modeling, random media characterization and frequency-dependent reflectivity simulation. (2) Exploring the Information in the Local Angle Domain. Traditionally, the local angle information can only be extracted using the ray-based method. We develop a wave-equation based technique to process the local angle domain information. The approach can avoid the singularity problem usually linked to the high-frequency asymptotic method. We successfully apply this technique to seismic illumination and the resulting method provides a practical tool for three-dimensional full-volume illumination analysis in complex structures. The directional illumination also provides information for angle-domain imaging corrections. (3) Elastic-Wave Imaging. We develop a multicomponent elastic migration method. The application of the multicomponent one-way elastic propagator

  5. Next Generation Seismic Imaging; High Fidelity Algorithms and High-End Computing

    NASA Astrophysics Data System (ADS)

    Bevc, D.; Ortigosa, F.; Guitton, A.; Kaelin, B.

    2007-05-01

    uniquely powerful computing power of the MareNostrum supercomputer in Barcelona to realize the promise of RTM, incorporate it into daily processing flows, and to help solve exploration problems in a highly cost-effective way. Uniquely, the Kaleidoscope Project is simultaneously integrating software (algorithms) and hardware (Cell BE), steps that are traditionally taken sequentially. This unique integration of software and hardware will accelerate seismic imaging by several orders of magnitude compared to conventional solutions running on standard Linux Clusters.

  6. High-fidelity conical piezoelectric transducers and finite element models utilized to quantify elastic waves generated from ball collisions

    NASA Astrophysics Data System (ADS)

    McLaskey, Gregory C.; Glaser, Steven D.

    2009-03-01

    Experimental studies were performed using high-fidelity broadband Glaser-NIST conical transducers to quantify stress waves produced by the elastic collision of a tiny ball and a massive plate. These sensors are sensitive to surface-normal displacements down to picometers in amplitude, in a frequency range of 20 kHz to over 1 MHz. Both the collision and the resulting transient elastic waves are modeled with the finite element program ABAQUS and described theoretically through a marriage of the Hertz theory of contact and a full elastodynamic Green's function found using generalized ray theory. The calculated displacements were compared to those measured through the Glaser-NIST sensors.

  7. Toward high-fidelity subsonic jet noise prediction using petascale supercomputers

    NASA Astrophysics Data System (ADS)

    Martha, Chandra Sekhar

    The field of jet noise has become one of most active areas of research due to increasingly stringent aircraft noise regulations. A petascalable noise prediction tool-set based on the large eddy simulation (LES) technique is designed and implemented to improve the fidelity of subsonic jet noise predictions. Such tools are needed to help drive the design of quieter jets. The focus is to target computational performance and improved noise prediction fidelity through better matching experimental jet conditions and/or inclusion of the nozzle as part of the simulation. A communication-efficient SPIKE solver is used for spatial operations in conjunction with a non-overlapping multi-block topology based on a new concept of superblocks. These two choices have resulted in efficient scalability tested on up to 91,125 processors (or a theoretical speed of ˜1 petaflop/s). Other important optimizations include parallel file I/O and data buffering while gathering the acoustics. The noise from a Mach-0.9, isothermal jet is studied without and with a round nozzle. Production runs with up to first-ever one-billion-point simple-block topology grids without the nozzle and 125-million-point multi-block topology grids with the nozzle are performed. A vortex ring is used to excite the shear layers in the cases without the nozzle. The fine grid simulations with thinner shear layers have predicted higher sideline noise levels caused by the vortex ring and hence, established the need for nozzle inclusion. The problems of the centerline singularity and smaller time step size due to cylindrical grids have been addressed. A new, faster method based on a sinc filter is discussed for the time step issue in cylindrical grids. Two approaches are considered for nozzle inclusion by: 1) fully resolving the boundary layers at a lower Reynolds number; and 2) using a wall model to model the inner layer at the experimental Reynolds number. The wall-modeled cases exhibited numerical instabilities behind

  8. Design of a Genetically Stable High Fidelity Coxsackievirus B3 Polymerase That Attenuates Virus Growth in Vivo.

    PubMed

    McDonald, Seth; Block, Andrew; Beaucourt, Stéphanie; Moratorio, Gonzalo; Vignuzzi, Marco; Peersen, Olve B

    2016-07-01

    Positive strand RNA viruses replicate via a virally encoded RNA-dependent RNA polymerase (RdRP) that uses a unique palm domain active site closure mechanism to establish the canonical two-metal geometry needed for catalysis. This mechanism allows these viruses to evolutionarily fine-tune their replication fidelity to create an appropriate distribution of genetic variants known as a quasispecies. Prior work has shown that mutations in conserved motif A drastically alter RdRP fidelity, which can be either increased or decreased depending on the viral polymerase background. In the work presented here, we extend these studies to motif D, a region that forms the outer edge of the NTP entry channel where it may act as a nucleotide sensor to trigger active site closure. Crystallography, stopped-flow kinetics, quench-flow reactions, and infectious virus studies were used to characterize 15 engineered mutations in coxsackievirus B3 polymerase. Mutations that interfere with the transport of the metal A Mg(2+) ion into the active site had only minor effects on RdRP function, but the stacking interaction between Phe(364) and Pro(357), which is absolutely conserved in enteroviral polymerases, was found to be critical for processive elongation and virus growth. Mutating Phe(364) to tryptophan resulted in a genetically stable high fidelity virus variant with significantly reduced pathogenesis in mice. The data further illustrate the importance of the palm domain movement for RdRP active site closure and demonstrate that protein engineering can be used to alter viral polymerase function and attenuate virus growth and pathogenesis. PMID:27137934

  9. An Immersed Boundary - Adaptive Mesh Refinement solver (IB-AMR) for high fidelity fully resolved wind turbine simulations

    NASA Astrophysics Data System (ADS)

    Angelidis, Dionysios; Sotiropoulos, Fotis

    2015-11-01

    The geometrical details of wind turbines determine the structure of the turbulence in the near and far wake and should be taken in account when performing high fidelity calculations. Multi-resolution simulations coupled with an immersed boundary method constitutes a powerful framework for high-fidelity calculations past wind farms located over complex terrains. We develop a 3D Immersed-Boundary Adaptive Mesh Refinement flow solver (IB-AMR) which enables turbine-resolving LES of wind turbines. The idea of using a hybrid staggered/non-staggered grid layout adopted in the Curvilinear Immersed Boundary Method (CURVIB) has been successfully incorporated on unstructured meshes and the fractional step method has been employed. The overall performance and robustness of the second order accurate, parallel, unstructured solver is evaluated by comparing the numerical simulations against conforming grid calculations and experimental measurements of laminar and turbulent flows over complex geometries. We also present turbine-resolving multi-scale LES considering all the details affecting the induced flow field; including the geometry of the tower, the nacelle and especially the rotor blades of a wind tunnel scale turbine. This material is based upon work supported by the Department of Energy under Award Number DE-EE0005482 and the Sandia National Laboratories.

  10. Progress Toward Affordable High Fidelity Combustion Simulations Using Filtered Density Functions for Hypersonic Flows in Complex Geometries

    NASA Technical Reports Server (NTRS)

    Drozda, Tomasz G.; Quinlan, Jesse R.; Pisciuneri, Patrick H.; Yilmaz, S. Levent

    2012-01-01

    Significant progress has been made in the development of subgrid scale (SGS) closures based on a filtered density function (FDF) for large eddy simulations (LES) of turbulent reacting flows. The FDF is the counterpart of the probability density function (PDF) method, which has proven effective in Reynolds averaged simulations (RAS). However, while systematic progress is being made advancing the FDF models for relatively simple flows and lab-scale flames, the application of these methods in complex geometries and high speed, wall-bounded flows with shocks remains a challenge. The key difficulties are the significant computational cost associated with solving the FDF transport equation and numerically stiff finite rate chemistry. For LES/FDF methods to make a more significant impact in practical applications a pragmatic approach must be taken that significantly reduces the computational cost while maintaining high modeling fidelity. An example of one such ongoing effort is at the NASA Langley Research Center, where the first generation FDF models, namely the scalar filtered mass density function (SFMDF) are being implemented into VULCAN, a production-quality RAS and LES solver widely used for design of high speed propulsion flowpaths. This effort leverages internal and external collaborations to reduce the overall computational cost of high fidelity simulations in VULCAN by: implementing high order methods that allow reduction in the total number of computational cells without loss in accuracy; implementing first generation of high fidelity scalar PDF/FDF models applicable to high-speed compressible flows; coupling RAS/PDF and LES/FDF into a hybrid framework to efficiently and accurately model the effects of combustion in the vicinity of the walls; developing efficient Lagrangian particle tracking algorithms to support robust solutions of the FDF equations for high speed flows; and utilizing finite rate chemistry parametrization, such as flamelet models, to reduce

  11. Going-to-Scale with the Early Risers Conduct Problems Prevention Program: Use of a Comprehensive Implementation Support (CIS) System to Optimize Fidelity, Participation and Child Outcomes

    PubMed Central

    Bloomquist, Michael L.; August, Gerald J.; Lee, Susanne S.; Lee, Chih-Yuan S.; Realmuto, George M.; Klimes-Dougan, Bonnie

    2012-01-01

    The present study is a descriptive report of a comprehensive implementation support (CIS) service that was used to promote high levels of program fidelity in a going-to-scale intervention trial of the Early Risers conduct problems prevention program. The program was delivered across 27 geographically-dispersed, elementary school sites over a two-year period. In this study we examined the level of fidelity achieved by program implementers across intervention components, the rate of child and parent participation across intervention components, and proximal child outcomes targeted by the intervention across two years of programming. Results showed that over the two-year intervention period the program was implemented with high fidelity, participation rates were acceptable, and children made positive gains on target outcomes similar to those found in previous randomized controlled trials. The results suggest that implementation support services may be advantageous in the wide-scale implementation of prevention programs that aim to achieve high implementation fidelity. PMID:23266400

  12. Engineering description of the OMS/RCS/DAP modes used in the HP-9825A High Fidelity Relative Motion Program (HFRMP)

    NASA Technical Reports Server (NTRS)

    Wilson, S. W.

    1978-01-01

    Simplified mathematical models are reported for the space shuttle's Orbital Maneuvering System (OMS), Reaction Control System (RCS), and on-orbit Digital Autopilot (DAP) that have been incorporated in the High-Fidelity Relative Motion Program (HFRMP) for the HP-9825A desk-top calculator. Comparisons were made between data generated by the HFRMP and by the Space Shuttle Functional Simulator (SSFS), which models the cited shuttle systems in much greater detail. These data include propellant requirements for representative translational maneuvers, rotational maneuvers, and attitude maintenance options. Also included are data relating to on-orbit trajectory deviations induced by RCS translational cross coupling. Potential close-range stationkeeping problems that are suggested by HFRMP simulations of 80 millisecond (as opposed to 40 millisecond) DAP cycle effects are described. The principal function of the HFRMP is to serve as a flight design tool in the area of proximity operations.

  13. A high-fidelity approach towards heat transfer prediction of pool boiling

    NASA Astrophysics Data System (ADS)

    Yazdani, Miad; Alahyari, Abbas; Radcliff, Thomas

    2014-11-01

    A novel numerical approach is developed to simulate the multiscale problem of pool-boiling phase change with an unprecedented fidelity and cost. The particular focus is to predict the heat transfer coefficient of pool-boiling regime and its transition to critical heat flux on surfaces of arbitrary shape and roughness distribution. The large-scale of the phase change and bubble dynamics is addressed through employing off-the-shelf methods for interface tracking and interphase mass and energy transfer. The small-scale of the microlayer which forms at early stage of bubble nucleation is resolved through asymptotic approximation of the thin-film theory which provides a closed-form solution for the distribution of the micro-layer and its influence on the evaporation process. In addition, the surface roughness and its role in bubble nucleation and growth is represented based on thermodynamics of nucleation process which allows the simulation of pool boiling on any surface with known roughness and enhancement characteristics. The numerical model is validated for dynamics and hydrothermal characteristics of a single nucleated bubble on a flat surface against available literature data. In addition, the model's prediction of pool-boiling heat transfer coefficient is verified against reputable correlations for various roughness distributions and different surface alignment. Finally, the model is employed to demonstrate pool-boiling phenomenon on enhanced structures with reentrance cavities and to explore the effect of enhancement features on thermal and hydrodynamic characteristics of these surfaces.

  14. Mapping high-fidelity volume rendering for medical imaging to CPU, GPU and many-core architectures.

    PubMed

    Smelyanskiy, Mikhail; Holmes, David; Chhugani, Jatin; Larson, Alan; Carmean, Douglas M; Hanson, Dennis; Dubey, Pradeep; Augustine, Kurt; Kim, Daehyun; Kyker, Alan; Lee, Victor W; Nguyen, Anthony D; Seiler, Larry; Robb, Richard

    2009-01-01

    Medical volumetric imaging requires high fidelity, high performance rendering algorithms. We motivate and analyze new volumetric rendering algorithms that are suited to modern parallel processing architectures. First, we describe the three major categories of volume rendering algorithms and confirm through an imaging scientist-guided evaluation that ray-casting is the most acceptable. We describe a thread- and data-parallel implementation of ray-casting that makes it amenable to key architectural trends of three modern commodity parallel architectures: multi-core, GPU, and an upcoming many-core Intel architecture code-named Larrabee. We achieve more than an order of magnitude performance improvement on a number of large 3D medical datasets. We further describe a data compression scheme that significantly reduces data-transfer overhead. This allows our approach to scale well to large numbers of Larrabee cores. PMID:19834234

  15. A high-fidelity batch simulation environment for integrated batch and piloted air combat simulation analysis

    NASA Technical Reports Server (NTRS)

    Goodrich, Kenneth H.; Mcmanus, John W.; Chappell, Alan R.

    1992-01-01

    A batch air combat simulation environment known as the Tactical Maneuvering Simulator (TMS) is presented. The TMS serves as a tool for developing and evaluating tactical maneuvering logics and to evaluate the tactical implications of perturbations to aircraft performance or supporting systems. The TMS is capable of simulating air combat between any number of engagement participants, with practical limits imposed by computer memory and processing power. Aircraft are modeled using equations of motion, control laws, aerodynamics and propulsive characteristics, and databases representative of a modern high-performance aircraft with and without thrust-vectoring capability are included. A Tactical Autopilot is implemented in the aircraft simulation model to convert guidance commands issued by computerized maneuvering logics in the form of desired angle-of-attack and wind axis-bank angle into inputs to the inner-loop control augmentation system of the aircraft.

  16. High-fidelity rotor gap measurements in a short-duration turbine rig

    NASA Astrophysics Data System (ADS)

    Lavagnoli, Sergio; Paniagua, Guillermo; Tulkens, Maxime; Steiner, Alexander

    2012-02-01

    The distance between the tip of rotating airfoils and the stationary casing, i.e., the tip clearance, is a vital parameter to characterize turbomachinery performance. The larger the tip clearance, the lower the turbine efficiency due to the increased loss associated with the hot jet flowing through the gap without generating work. Following the increasing demands in efficiency, these small clearances must be surveyed to avoid mechanical rubbing. The appropriate design of control systems to adjust these small clearances requires a constant monitoring during the whole engine envelope. This paper describes the complete implementation of a high-frequency capacitive sensor on the shroud of a large transonic turbine stage. The presented system and data analysis procedure allow the accurate measurement of the tip clearance of each rotating airfoil. The measurement system performances are first assessed in a simplified test bench and uncertainty analysis is provided. The technique is demonstrated in an aero-propulsion turbine, tested in a short duration rig. The turbine facility has running times of less than 0.5 s, characterized by temperature and rotor speed transients, which requires particular in-situ sensor calibrations. Extensive running tip clearance measurements of the large aero-engine turbine stage validate the system concept and design.

  17. A Novel Acquisition Technique to Utilize Swan-Ganz Catheter data as a Surrogate for High-fidelity Micromanometry within the Right Ventricle and Pulmonary Circuit.

    PubMed

    Bachman, T N; Bursic, J J; Simon, M A; Champion, H C

    2013-06-01

    We explored the possibility of using conventional right-heart catheterization data, gathered both prospectively and retrospectively, as a surrogate for high-fidelity micro-manometery when analyzing systolic and diastolic RV function and calculating various ventricular and pulmonary hemodynamic parameters in the time domain. Right heart catheterizations were performed on 13 patients (7 female), who were suspected of having pulmonary hypertension. The procedure included use of both fluid-filled catheter and high-fidelity micromanometry to measure right ventricular and pulmonary arterial pressures. A digital data acquisition system was used to record micromanometer readings and data from the fluid-filled catheter system during prospective portion of the study. Retrospective data was obtained by direct digitization of screen captures taken by the conventional clinical system (fluid-filled catheter). From the 13 patients, 12-13 RV waveforms and 12 PA waveforms were acquired from each method. Basic measurements of heart rate, systolic pressure, diastolic pressure, dP/dt max, and dP/dt min were compared between micromanometry, direct acquisition from the PA catheter (voltage acquisition), and re-digitization of the hemodynamic waveforms (tracing). Correlation between Swan and tracing was stronger than that of Millar and Swan. SBP, followed by HR, has the strongest correlation of any parameter for all three methods, while DBP appears to be the weakest. Bland-Altman analysis shows all parameters to have minimal biases that are within clinical limits. Interoperator and intraoperator variability was minimal. Digital right-heart catheterization (RHC) data can be used as a surrogate for micromanometric data under ideal conditions for hemodynamic measures in the time domain. Pre-existing RHC data can be re-digitized for more rigorous hemodynamic analysis. PMID:25484997

  18. Benefits of a Unified LaSRS++ Simulation for NAS-Wide and High-Fidelity Modeling

    NASA Technical Reports Server (NTRS)

    Glaab, Patricia; Madden, Michael

    2014-01-01

    The LaSRS++ high-fidelity vehicle simulation was extended in 2012 to support a NAS-wide simulation mode. Since the initial proof-of-concept, the LaSRS++ NAS-wide simulation is maturing into a research-ready tool. A primary benefit of this new capability is the consolidation of the two modeling paradigms under a single framework to save cost, facilitate iterative concept testing between the two tools, and to promote communication and model sharing between user communities at Langley. Specific benefits of each type of modeling are discussed along with the expected benefits of the unified framework. Current capability details of the LaSRS++ NAS-wide simulations are provided, including the visualization tool, live data interface, trajectory generators, terminal routing for arrivals and departures, maneuvering, re-routing, navigation, winds, and turbulence. The plan for future development is also described.

  19. Fusion of psychiatric and medical high fidelity patient simulation scenarios: effect on nursing student knowledge, retention of knowledge, and perception.

    PubMed

    Kameg, Kirstyn M; Englert, Nadine Cozzo; Howard, Valerie M; Perozzi, Katherine J

    2013-12-01

    High fidelity patient simulation (HFPS) has become an increasingly popular teaching methodology in nursing education. To date, there have not been any published studies investigating HFPS scenarios incorporating medical and psychiatric nursing content. This study utilized a quasi-experimental design to assess if HFPS improved student knowledge and retention of knowledge utilizing three parallel 30-item Elsevier HESI(TM) Custom Exams. A convenience sample of 37 senior level nursing students participated in the study. The results of the study revealed the mean HESI test scores decreased following the simulation intervention although an analysis of variance (ANOVA) determined the difference was not statistically significant (p = .297). Although this study did not reveal improved student knowledge following the HFPS experiences, the findings did provide preliminary evidence that HFPS may improve knowledge in students who are identified as "at-risk." Additionally, students responded favorably to the simulations and viewed them as a positive learning experience. PMID:24274245

  20. Application of a High-Fidelity Icing Analysis Method to a Model-Scale Rotor in Forward Flight

    NASA Technical Reports Server (NTRS)

    Narducci, Robert; Orr, Stanley; Kreeger, Richard E.

    2012-01-01

    An icing analysis process involving the loose coupling of OVERFLOW-RCAS for rotor performance prediction and with LEWICE3D for thermal analysis and ice accretion is applied to a model-scale rotor for validation. The process offers high-fidelity rotor analysis for the noniced and iced rotor performance evaluation that accounts for the interaction of nonlinear aerodynamics with blade elastic deformations. Ice accumulation prediction also involves loosely coupled data exchanges between OVERFLOW and LEWICE3D to produce accurate ice shapes. Validation of the process uses data collected in the 1993 icing test involving Sikorsky's Powered Force Model. Non-iced and iced rotor performance predictions are compared to experimental measurements as are predicted ice shapes.

  1. Perceived benefits and challenges of repeated exposure to high fidelity simulation experiences of first degree accelerated bachelor nursing students.

    PubMed

    Kaddoura, Mahmoud; Vandyke, Olga; Smallwood, Christopher; Gonzalez, Kristen Mathieu

    2016-01-01

    This study explored perceptions of first-degree entry-level accelerated bachelor nursing students regarding benefits and challenges of exposure to multiple high fidelity simulation (HFS) scenarios, which has not been studied to date. These perceptions conformed to some research findings among Associate Degree, traditional non-accelerated, and second-degree accelerated Bachelor of Science in Nursing (BSN) students faced with one to two simulations. However, first-degree accelerated BSN students faced with multiple complex simulations perceived improvements on all outcomes, including critical thinking, confidence, competence, and theory-practice integration. On the negative side, some reported feeling overwhelmed by the multiple HFS scenarios. Evidence from this study supports HFS as an effective teaching and learning method for nursing students, along with valuable implications for many other fields. PMID:26260522

  2. Mystic: Implementation of the Static Dynamic Optimal Control Algorithm for High-Fidelity, Low-Thrust Trajectory Design

    NASA Technical Reports Server (NTRS)

    Whiffen, Gregory J.

    2006-01-01

    Mystic software is designed to compute, analyze, and visualize optimal high-fidelity, low-thrust trajectories, The software can be used to analyze inter-planetary, planetocentric, and combination trajectories, Mystic also provides utilities to assist in the operation and navigation of low-thrust spacecraft. Mystic will be used to design and navigate the NASA's Dawn Discovery mission to orbit the two largest asteroids, The underlying optimization algorithm used in the Mystic software is called Static/Dynamic Optimal Control (SDC). SDC is a nonlinear optimal control method designed to optimize both 'static variables' (parameters) and dynamic variables (functions of time) simultaneously. SDC is a general nonlinear optimal control algorithm based on Bellman's principal.

  3. Electrical control of quantum-dot fine-structure splitting for high-fidelity hole spin initialization

    NASA Astrophysics Data System (ADS)

    Mar, J. D.; Baumberg, J. J.; Xu, X. L.; Irvine, A. C.; Williams, D. A.

    2016-01-01

    We demonstrate electrical control of the neutral exciton fine-structure splitting in a single InAs/GaAs self-assembled quantum dot by significantly reducing the splitting to near zero through the application of a vertical electric field in the fast electron tunneling regime. This is verified by performing high-resolution photocurrent spectroscopy of the two fine-structure split exciton eigenstates as a function of reverse bias voltage. Using the qubit initialization scheme for a quantum-dot hole spin based on rapid electric-field ionization of a spin-polarized exciton, our results suggest a practical approach towards achieving qubit initialization with near-unity fidelity in the absence of magnetic fields.

  4. Minimally invasive endovascular stent-electrode array for high-fidelity, chronic recordings of cortical neural activity.

    PubMed

    Oxley, Thomas J; Opie, Nicholas L; John, Sam E; Rind, Gil S; Ronayne, Stephen M; Wheeler, Tracey L; Judy, Jack W; McDonald, Alan J; Dornom, Anthony; Lovell, Timothy J H; Steward, Christopher; Garrett, David J; Moffat, Bradford A; Lui, Elaine H; Yassi, Nawaf; Campbell, Bruce C V; Wong, Yan T; Fox, Kate E; Nurse, Ewan S; Bennett, Iwan E; Bauquier, Sébastien H; Liyanage, Kishan A; van der Nagel, Nicole R; Perucca, Piero; Ahnood, Arman; Gill, Katherine P; Yan, Bernard; Churilov, Leonid; French, Christopher R; Desmond, Patricia M; Horne, Malcolm K; Kiers, Lynette; Prawer, Steven; Davis, Stephen M; Burkitt, Anthony N; Mitchell, Peter J; Grayden, David B; May, Clive N; O'Brien, Terence J

    2016-03-01

    High-fidelity intracranial electrode arrays for recording and stimulating brain activity have facilitated major advances in the treatment of neurological conditions over the past decade. Traditional arrays require direct implantation into the brain via open craniotomy, which can lead to inflammatory tissue responses, necessitating development of minimally invasive approaches that avoid brain trauma. Here we demonstrate the feasibility of chronically recording brain activity from within a vein using a passive stent-electrode recording array (stentrode). We achieved implantation into a superficial cortical vein overlying the motor cortex via catheter angiography and demonstrate neural recordings in freely moving sheep for up to 190 d. Spectral content and bandwidth of vascular electrocorticography were comparable to those of recordings from epidural surface arrays. Venous internal lumen patency was maintained for the duration of implantation. Stentrodes may have wide ranging applications as a neural interface for treatment of a range of neurological conditions. PMID:26854476

  5. Applying the Five-Step Model of Fidelity Assessment to a Randomized Experiment of a High School STEM Intervention

    ERIC Educational Resources Information Center

    Kopp, Jason P.; Hulleman, Chris S.; Harackiewicz, Judith M.; Rozek, Chris

    2012-01-01

    Assessing fidelity of implementation is becoming increasingly important in education research, in particular as a tool for understanding variations in treatment effectiveness. Fidelity of implementation is defined as "the determination of how well an intervention is implemented in comparison with the original program design during an efficacy…

  6. Effect of High-Fidelity Ice Accretion Simulations on the Performance of a Full-Scale Airfoil Model

    NASA Technical Reports Server (NTRS)

    Broeren, Andy P.; Bragg, Michael B.; Addy, Harold E., Jr.; Lee, Sam; Moens, Frederic; Guffond, Didier

    2010-01-01

    The simulation of ice accretion on a wing or other surface is often required for aerodynamic evaluation, particularly at small scale or low-Reynolds number. While there are commonly accepted practices for ice simulation, there are no established and validated guidelines. The purpose of this article is to report the results of an experimental study establishing a high-fidelity, full-scale, iced-airfoil aerodynamic performance database. This research was conducted as a part of a larger program with the goal of developing subscale aerodynamic simulation methods for iced airfoils. Airfoil performance testing was carried out at the ONERA F1 pressurized wind tunnel using a 72-in. (1828.8-mm) chord NACA 23012 airfoil over a Reynolds number range of 4.5x10(exp 6) to 16.0 10(exp 6) and a Mach number range of 0.10 to 0.28. The high-fidelity, ice-casting simulations had a significant impact on the aerodynamic performance. A spanwise-ridge ice shape resulted in a maximum lift coefficient of 0.56 compared to the clean value of 1.85 at Re = 15.9x10(exp 6) and M = 0.20. Two roughness and streamwise shapes yielded maximum lift values in the range of 1.09 to 1.28, which was a relatively small variation compared to the differences in the ice geometry. The stalling characteristics of the two roughness and one streamwise ice simulation maintained the abrupt leading-edge stall type of the clean NACA 23012 airfoil, despite the significant decrease in maximum lift. Changes in Reynolds and Mach number over the large range tested had little effect on the iced-airfoil performance.

  7. Cavity ring-down spectrometer for high-fidelity molecular absorption measurements

    NASA Astrophysics Data System (ADS)

    Lin, H.; Reed, Z. D.; Sironneau, V. T.; Hodges, J. T.

    2015-08-01

    We present a cavity ring-down spectrometer which was developed for near-infrared measurements of laser absorption by atmospheric greenhouse gases. This system has several important attributes that make it possible to conduct broad spectral surveys and to determine line-by-line parameters with wide dynamic range, and high spectral resolution, sensitivity and accuracy. We demonstrate a noise-equivalent absorption coefficient of 4×10-12 cm-1 Hz-1/2 and a signal-to-noise ratio of 1.5×106:1 in an absorption spectrum of carbon monoxide. We also present high-resolution measurements of trace methane in air spanning more than 1.2 THz and having a frequency axing with an uncertainty less than 100 kHz. Finally, we discuss how this system enables stringent tests of advanced line shape models. To illustrate, we measured an air-broadened carbon dioxide transition over a wide pressure range and analyzed these data with a multi-spectrum fit of the partially correlated, quadratic speed-dependent Nelkin-Ghatak profile. We obtained a quality-of-fit parameter in the multispectrum fit equal to 36,000, thus quantifying small-but-measurable limitations of the model profile. This analysis showed that the line shape depends upon collisional narrowing, speed dependent effects and partial correlations between velocity- and phase-changing collisions.

  8. Fast and high-fidelity optical initialization of spin state of an electron in a semiconductor quantum dot using light-hole-trion states

    NASA Astrophysics Data System (ADS)

    Kumar, Parvendra; Nakajima, Takashi

    2016-07-01

    We theoretically show that under the Faraday geometry fast and high-fidelity optical initialization of electron spin (ES) state in a semiconductor quantum dot (SQD) can be realized by utilizing the light-hole (LH)-trion states. Initialization is completed within the time scale of ten nanoseconds with high fidelity, and the initialization laser pulse can be linearly, right-circularly, or left-circularly polarized. Moreover, we demonstrate that the time required for initialization can be further shortened down to a few hundreds of picoseconds if we introduce a pillar-microcavity to promote the relaxation of a LH-trion state towards the desired ES state through the Purcell effect. We also clarify the role of heavy-hole and light-hole mixing induced transitions on the fidelity of ES state initialization.

  9. High-fidelity gravity modeling applied to spacecraft trajectories and lunar interior analysis

    NASA Astrophysics Data System (ADS)

    Chappaz, Loic P. R.

    As the complexity and boldness of emerging mission proposals increase, and with the rapid evolution of the available computational capabilities, high-accuracy and high-resolution gravity models and the tools to exploit such models are increasingly attractive within the context of spaceflight mechanics, mission design and analysis, and planetary science in general. First, in trajectory design applications, a gravity representation for the bodies of interest is, in general, assumed and exploited to determine the motion of a spacecraft in any given system. The focus is the exploration of trajectories in the vicinity of a system comprised of two small irregular bodies. Within this context, the primary bodies are initially modeled as massive ellipsoids and tools to construct third-body trajectories are developed. However, these dynamical models are idealized representations of the actual dynamical regime and do not account for any perturbing effects. Thus, a robust strategy to maintain a spacecraft near reference third-body trajectories is constructed. Further, it is important to assess the perturbing effect that dominates the dynamics of the spacecraft in such a region as a function of the baseline orbit. Alternatively, the motion of the spacecraft around a given body may be known to extreme precision enabling the derivation of a very high-accuracy gravity field for that body. Such knowledge can subsequently be exploited to gain insight into specific properties of the body. The success of the NASA's GRAIL mission ensures that the highest resolution and most accurate gravity data for the Moon is now available. In the GRAIL investigation, the focus is on the specific task of detecting the presence and extent of subsurface features, such as empty lava tubes beneath the mare surface. In addition to their importance for understanding the emplacement of the mare flood basalts, open lava tubes are of interest as possible habitation sites safe from cosmic radiation and

  10. Breeding loggerhead marine turtles Caretta caretta in Dry Tortugas National Park, USA, show high fidelity to diverse habitats near nesting beaches

    USGS Publications Warehouse

    Hart, Kristen M.; Zawada, David G.; Sartain-Iverson, Autumn R.; Fujisaki, Ikuko

    2016-01-01

    We used satellite telemetry to identify in-water habitat used by individuals in the smallest North-west Atlantic subpopulation of adult nesting loggerhead turtles Caretta caretta during the breeding season. During 2010, 2011 and 2012 breeding periods, a total of 20 adult females used habitats proximal to nesting beaches with various levels of protection within Dry Tortugas National Park. We then used a rapid, high-resolution, digital imaging system to map habitat adjacent to nesting beaches, revealing the diversity and distribution of available benthic cover. Turtle behaviour showing measurable site-fidelity to these diverse habitats has implications for managing protected areas and human activities within them. Protecting diverse benthic areas adjacent to loggerhead turtle nesting beaches here and elsewhere could provide benefits for overall biodiversity conservation.

  11. High fidelity does not preclude colonization: range expansion of molting Black Brant on the Arctic coast of Alaska

    USGS Publications Warehouse

    Flint, Paul L.; Meixell, Brandt W.; Mallek, Edward J.

    2014-01-01

    High rates of site fidelity have been assumed to infer static distributions of molting geese in some cases. To test this assumption, we examined movements of individually marked birds to understand the underlying mechanisms of range expansion of molting Black Brant (Branta bernicla nigricans) on the Arctic Coastal Plain (ACP) of Alaska. The Teshekpuk Lake Special Area (TLSA) on the ACP was created to protect the primary molting area of Brant. When established in 1977, the TLSA was thought to include most, if not all, wetlands used by molting Brant on the ACP. From 2010 to 2013, we surveyed areas outside the TLSA and counted an average of 9800 Brant per year, representing 29–37% of all molting Brant counted on the ACP. We captured and banded molting Brant in 2011 and 2012 both within the TLSA and outside the TLSA at the Piasuk River Delta and Cape Simpson to assess movements of birds among areas across years. Estimates of movement rates out of the TLSA exceeded those into the TLSA, demonstrating overall directional dispersal. We found differences in sex and age ratios and proportions of adult females with brood patches, but no differences in mass dynamics for birds captured within and outside the TLSA. Overall fidelity rates to specific lakes (0.81, range = 0.49–0.92) were unchanged from comparable estimates obtained in the early 1990s. We conclude that Brant are dispersing from the TLSA into new molting areas while simultaneously redistributing within the TLSA, likely as a consequence of changes in relative habitat quality. Shifts in distribution resulted from colonization of new areas by young birds as well as low levels of directional dispersal of birds that previously molted in the TLSA. Based on combined counts, the overall number of molting Brant across the ACP has increased substantially.

  12. Development and Validation of a High Anatomical Fidelity FE Model for the Buttock and Thigh of a Seated Individual.

    PubMed

    Al-Dirini, Rami M A; Reed, Matthew P; Hu, Jingwen; Thewlis, Dominic

    2016-09-01

    Current practices for designing new cushions for seats depend on superficial measurements, such as pressure mapping, which do not provide sufficient information about the condition of sub-dermal tissues. Finite element (FE) modelling offers a unique alternative to integrate assessment of sub-dermal tissue condition into seat/cushion design and development processes. However, the development and validation of such FE models for seated humans requires accurate representation of the anatomy and material properties, which remain challenges that are yet to be addressed. This paper presents the development and validation of a detailed 3D FE model with high anatomical fidelity of the buttock and thigh, for a specific seated subject. The developed model consisted of 28 muscles, the pelvis, sacrum, femur, and one layer of inter-muscular fat, subcutaneous fat and skin. Validation against in vivo measurements from MRI data confirmed that the FE model can simulate the deformation of soft tissues under sitting loads with an accuracy of (mean ± SD) 4.7 ± 4.4 mm. Simulation results showed that the maximum strains (compressive, shear and von-Mises) on muscles (41, 110, 79%) were higher than fat tissues (21, 62, 41%). The muscles that experienced the highest mechanical loads were the gluteus maximus, adductor magnus and muscles in the posterior aspect of the thighs (biceps femoris, semitendinosus and semimembranosus muscles). The developed FE model contributes to the progression towards bio-fidelity in modelling the human body in seated postures by providing insight into the distribution of stresses/strains in individual muscles and inter-muscular fat in the buttock and thigh of seated individuals. Industrial applications for the developed FE model include improving the design of office and household furniture, automotive and airplane seats and wheelchairs as well as customisation and assessment of sporting and medical equipment to meet individual requirements. PMID:26857008

  13. Implementation Fidelity in Community-Based Interventions

    PubMed Central

    Breitenstein, Susan M.; Gross, Deborah; Garvey, Christine; Hill, Carri; Fogg, Louis; Resnick, Barbara

    2012-01-01

    Implementation fidelity is the degree to which an intervention is delivered as intended and is critical to successful translation of evidence-based interventions into practice. Diminished fidelity may be why interventions that work well in highly controlled trials may fail to yield the same outcomes when applied in real life contexts. The purpose of this paper is to define implementation fidelity and describe its importance for the larger science of implementation, discuss data collection methods and current efforts in measuring implementation fidelity in community-based prevention interventions, and present future research directions for measuring implementation fidelity that will advance implementation science. PMID:20198637

  14. An elastic/viscoelastic finite element analysis method for crustal deformation using a 3-D island-scale high-fidelity model

    NASA Astrophysics Data System (ADS)

    Ichimura, Tsuyoshi; Agata, Ryoichiro; Hori, Takane; Hirahara, Kazuro; Hashimoto, Chihiro; Hori, Muneo; Fukahata, Yukitoshi

    2016-07-01

    As a result of the accumulation of high-resolution observation data, 3-D high-fidelity crustal structure data for large domains are becoming available. However, it has been difficult to use such data to perform elastic/viscoelastic crustal deformation analyses in large domains with quality assurance of the numerical simulation that guarantees convergence of the numerical solution with respect to the discretization size because the costs of analysis are significantly high. This paper proposes a method of constructing a high-fidelity crustal structure finite element (FE) model using high-fidelity crustal structure data and fast FE analysis to reduce the costs of analysis (based on automatic FE model generation for parallel computation, OpenMP/MPI hybrid parallel computation on distributed memory computers, a geometric multigrid, variable preconditioning and multiple precision arithmetic). Using the proposed methods, we construct 10 billion degree-of-freedom high-fidelity crustal structure FE models for the entire Japan, and conduct elastic/viscoelastic crustal deformation analysis using this model with enough high accuracy of the numerical simulation.

  15. An Elastic/Viscoelastic Finite Element Analysis Method for Crustal Deformation using a 3D Island-scale High-fidelity Model

    NASA Astrophysics Data System (ADS)

    Ichimura, Tsuyoshi; Agata, Ryoichiro; Hori, Takane; Hirahara, Kazuro; Hashimoto, Chihiro; Hori, Muneo; Fukahata, Yukitoshi

    2016-04-01

    As a result of the accumulation of high-resolution observation data, three-dimensional high-fidelity crustal structure data for large domains are becoming available. However, it has been difficult to use such data to perform elastic/viscoelastic crustal deformation analyses in large domains with quality assurance of the numerical simulation that guarantees convergence of the numerical solution with respect to the discretisation size, because the costs of analysis are significantly high. This paper proposes a method of constructing a high-fidelity crustal structure finite element (FE) model using high-fidelity crustal structure data and fast FE analysis to reduce the costs of analysis (based on automatic FE model generation for parallel computation, OpenMP/MPI hybrid parallel computation on distributed memory computers, a geometric multigrid, variable preconditioning, and multiple precision arithmetic). Using the proposed methods, we construct 10 billion degree-of-freedom high-fidelity crustal structure FE models for the entire Japan, and conduct elastic/viscoelastic crustal deformation analysis using this model with enough high accuracy of the numerical simulation.

  16. Potential insight for drug discovery from high fidelity receptor-mediated transduction mechanisms in insects

    PubMed Central

    Raffa, Robert B.; Raffa, Kenneth F.

    2011-01-01

    Introduction There is a pervasive and growing concern about the small number of new pharmaceutical agents. There are many proposed explanations for this trend that do not involve the drug-discovery process per se, but the discovery process itself has also come under scrutiny. If the current paradigms are indeed not working, where are novel ideas to come from? Perhaps it is time to look to novel sources. Areas covered The receptor-signaling and 2nd-messenger transduction processes present in insects are quite similar to those in mammals (involving G proteins, ion channels, etc.). However, a review of these systems reveals an unprecedented degree of high potency and receptor selectivity to an extent greater than that modeled in most current drug-discovery approaches. Expert opinion A better understanding of insect receptor pharmacology could stimulate novel theoretical and practical ideas in mammalian pharmacology (drug discovery) and, conversely, the application of pharmacology and medicinal chemistry principles could stimulate novel advances in entomology (safer and more targeted control of pest species). PMID:21984882

  17. Fidelity approach in topological superconductors

    NASA Astrophysics Data System (ADS)

    Yao, Dao-Xin; Tian, Wen-Chuan; Huang, Guang-Yao; Wang, Zhi

    We study topological superconductivity in the spin-orbit coupling nanowire system by using the fidelity approach. The wire is modeled as a one layer lattice chain with Zeeman energy and spin-orbital coupling, which is in proximity to a multi-layer superconductor. In particular, we study the effects of disorders and find that the fidelity susceptibility has multiple peaks. It is revealed that one peak indicates the topological quantum phase transition, while other peaks are signaling the pinning of the Majorana bound states by disorders. Our study shows that fidelity and fidelity susceptibility are very useful to investigate the topological quantum phase transition in superconductors. This work is supported by NSFC-11574404, 11275279, and NBRPC-2012CB821400.

  18. A new meaning to 'flying the desk'. [high fidelity cockpit simulator

    NASA Technical Reports Server (NTRS)

    Sexton, G. A.

    1986-01-01

    A unique advanced transport flight station design is described. The various systems and displays of the design are described, including: the configuration; switches; tailored logic/artificial intelligence; primary flight controllers; front panel displays; primary flight/navigation display; engine power/status, approach charts, and weather display; the Advisory, Caution, and Warning System/Cockpit Display of Traffic Information display; checklist/functional systems display; head-up display; voice command and response system; Flight Management Computer system; and integrated communications/navigation system. The application of the flight station to military research is briefly discussed.

  19. Robust and portable capacity computing method for many finite element analyses of a high-fidelity crustal structure model aimed for coseismic slip estimation

    NASA Astrophysics Data System (ADS)

    Agata, Ryoichiro; Ichimura, Tsuyoshi; Hirahara, Kazuro; Hyodo, Mamoru; Hori, Takane; Hori, Muneo

    2016-09-01

    Computation of many Green's functions (GFs) in finite element (FE) analyses of crustal deformation is an essential technique in inverse analyses of coseismic slip estimations. In particular, analysis based on a high-resolution FE model (high-fidelity model) is expected to contribute to the construction of a community standard FE model and benchmark solution. Here, we propose a naive but robust and portable capacity computing method to compute many GFs using a high-fidelity model, assuming that various types of PC clusters are used. The method is based on the master-worker model, implemented using the Message Passing Interface (MPI), to perform robust and efficient input/output operations. The method was applied to numerical experiments of coseismic slip estimation in the Tohoku region of Japan; comparison of the estimated results with those generated using lower-fidelity models revealed the benefits of using a high-fidelity FE model in coseismic slip distribution estimation. Additionally, the proposed method computes several hundred GFs more robustly and efficiently than methods without the master-worker model and MPI.

  20. An Evaluation of Immediate Outcomes and Fidelity of a Drug Abuse Prevention Program in Continuation High Schools: Project towards No Drug Abuse (TND)

    ERIC Educational Resources Information Center

    Lisha, Nadra E.; Sun, Ping; Rohrbach, Louise A.; Spruijt-Metz, Donna; Unger, Jennifer B.; Sussman, Steve

    2012-01-01

    The present study provides an implementation fidelity, process, and immediate outcomes evaluation of Project Towards No Drug Abuse (TND), a drug prevention program targeting continuation high school youth (n = 1426) at risk for drug abuse. A total of 24 schools participated in three randomized conditions: TND Only, TND and motivational…

  1. Effects of High Fidelity Simulation on Knowledge Acquisition, Self-Confidence, and Satisfaction with Baccalaureate Nursing Students Using the Solomon-Four Research Design

    ERIC Educational Resources Information Center

    Hall, Rachel Mattson

    2013-01-01

    High Fidelity Simulation is a teaching strategy that is becoming well-entrenched in the world of nursing education and is rapidly expanding due to the challenges and demands of the health care environment. The problem addressed in this study is the conflicting research results regarding the effectiveness of HFS for students' knowledge acquisition…

  2. Asymmetric mRNA localization contributes to fidelity and sensitivity of spatially localized systems

    PubMed Central

    Weatheritt, Robert J.; Gibson, Toby J; Babu, M. Madan

    2014-01-01

    While many proteins are localized after translation, asymmetric-protein distribution is also achieved by translation after mRNA localization. Why are certain mRNA transported to a distal location and translated on-site? Here we undertake a systematic, genome-scale study of asymmetrically distributed protein and mRNA in mammalian cells. Our findings suggest that asymmetric-protein distribution by mRNA localization enhances interaction fidelity and signaling sensitivity. Proteins synthesized at distal locations frequently contain intrinsically disordered segments. These regions are generally rich in assembly-promoting modules and are often regulated by post-translational modification sites. Such proteins are tightly regulated but display distinct temporal dynamics upon stimulation with growth factors. Thus proteins synthesized on-site may rapidly alter proteome composition and act as dynamically regulated scaffolds to promote the formation of reversible cellular assemblies. Our observations are consistent across multiple mammalian species, cell types, and developmental stages suggesting that localized translation is a recurring feature of cell signaling and regulation. PMID:25150862

  3. Construction and Use of Resting 12-Lead High Fidelity ECG "SuperScores" in Screening for Heart Disease

    NASA Technical Reports Server (NTRS)

    Schlegel, T. T.; Arenare, B.; Greco, E. C.; DePalma, J. L.; Starc, V.; Nunez, T.; Medina, R.; Jugo, D.; Rahman, M.A.; Delgado, R.

    2007-01-01

    We investigated the accuracy of several conventional and advanced resting ECG parameters for identifying obstructive coronary artery disease (CAD) and cardiomyopathy (CM). Advanced high-fidelity 12-lead ECG tests (approx. 5-min supine) were first performed on a "training set" of 99 individuals: 33 with ischemic or dilated CM and low ejection fraction (EF less than 40%); 33 with catheterization-proven obstructive CAD but normal EF; and 33 age-/gender-matched healthy controls. Multiple conventional and advanced ECG parameters were studied for their individual and combined retrospective accuracies in detecting underlying disease, the advanced parameters falling within the following categories: 1) Signal averaged ECG, including 12-lead high frequency QRS (150-250 Hz) plus multiple filtered and unfiltered parameters from the derived Frank leads; 2) 12-lead P, QRS and T-wave morphology via singular value decomposition (SVD) plus signal averaging; 3) Multichannel (12-lead, derived Frank lead, SVD lead) beat-to-beat QT interval variability; 4) Spatial ventricular gradient (and gradient component) variability; and 5) Heart rate variability. Several multiparameter ECG SuperScores were derivable, using stepwise and then generalized additive logistic modeling, that each had 100% retrospective accuracy in detecting underlying CM or CAD. The performance of these same SuperScores was then prospectively evaluated using a test set of another 120 individuals (40 new individuals in each of the CM, CAD and control groups, respectively). All 12-lead ECG SuperScores retrospectively generated for CM continued to perform well in prospectively identifying CM (i.e., areas under the ROC curve greater than 0.95), with one such score (containing just 4 components) maintaining 100% prospective accuracy. SuperScores retrospectively generated for CAD performed somewhat less accurately, with prospective areas under the ROC curve typically in the 0.90-0.95 range. We conclude that resting 12-lead

  4. High-fidelity two-qubit gates via dynamical decoupling of local 1 /f noise at the optimal point

    NASA Astrophysics Data System (ADS)

    D'Arrigo, A.; Falci, G.; Paladino, E.

    2016-08-01

    We investigate the possibility of achieving high-fidelity universal two-qubit gates by supplementing optimal tuning of individual qubits with dynamical decoupling (DD) of local 1 /f noise. We consider simultaneous local pulse sequences applied during the gate operation and compare the efficiencies of periodic, Carr-Purcell, and Uhrig DD with hard π pulses along two directions (πz /y pulses). We present analytical perturbative results (Magnus expansion) in the quasistatic noise approximation combined with numerical simulations for realistic 1 /f noise spectra. The gate efficiency is studied as a function of the gate duration, of the number n of pulses, and of the high-frequency roll-off. We find that the gate error is nonmonotonic in n , decreasing as n-α in the asymptotic limit, α ≥2 , depending on the DD sequence. In this limit πz-Urhig is the most efficient scheme for quasistatic 1 /f noise, but it is highly sensitive to the soft UV cutoff. For small number of pulses, πz control yields anti-Zeno behavior, whereas πy pulses minimize the error for a finite n . For the current noise figures in superconducting qubits, two-qubit gate errors ˜10-6 , meeting the requirements for fault-tolerant quantum computation, can be achieved. The Carr-Purcell-Meiboom-Gill sequence is the most efficient procedure, stable for 1 /f noise with UV cutoff up to gigahertz.

  5. Multi-fidelity approach to dynamics model calibration

    NASA Astrophysics Data System (ADS)

    Absi, Ghina N.; Mahadevan, Sankaran

    2016-02-01

    This paper investigates the use of structural dynamics computational models with multiple levels of fidelity in the calibration of system parameters. Different types of models may be available for the estimation of unmeasured system properties, with different levels of physics fidelity, mesh resolution and boundary condition assumptions. In order to infer these system properties, Bayesian calibration uses information from multiple sources (including experimental data and prior knowledge), and comprehensively quantifies the uncertainty in the calibration parameters. Estimating the posteriors is done using Markov Chain Monte Carlo sampling, which requires a large number of computations, thus making the use of a high-fidelity model for calibration prohibitively expensive. On the other hand, use of a low-fidelity model could lead to significant error in calibration and prediction. Therefore, this paper develops an approach for model parameter calibration with a low-fidelity model corrected using higher fidelity simulations, and investigates the trade-off between accuracy and computational effort. The methodology is illustrated for a curved panel located in the vicinity of a hypersonic aircraft engine, subjected to acoustic loading. Two models (a frequency response analysis and a full time history analysis) are combined to calibrate the damping characteristics of the panel.

  6. High-Fidelity Simulation and Analysis of Ignition Regimes and Mixing Characteristics for Low Temperature Combustion Engine Application

    NASA Astrophysics Data System (ADS)

    Gupta, Saurabh

    Computational singular perturbation (CSP) technique is applied as an automated diagnostic tool to classify ignition regimes, especially spontaneous ignition front and deflagration in low temperature combustion (LTC) engine environments. Various model problems representing LTC are simulated using high-fidelity computation with detailed chemistry for hydrogen-air, and the simulation data are then analyzed by CSP. The active reaction zones are first identified by the locus of minimum number of fast exhausted time scales. Subsequently, the relative importance of transport and chemistry is determined in the region ahead of the reaction zone. A new index IT, defined as the sum of the absolute values of the importance indices of diffusion and convection of temperature to the slow dynamics of temperature, serves as a criterion to differentiate spontaneous ignition from deflagration regimes. The same strategy is then used to gain insights into classification of ignition regimes in n-heptane air mixtures. Parametric studies are conducted using high-fidelity simulations with detailed chemistry and transport. The mixture at non-NTC conditions shows initially a deflagration front which is subsequently transitioned into a spontaneous ignition front. For the mixtures at the NTC conditions which exhibit two-stage ignition behavior, the 1 st stage ignition front is found to be more likely in the deflagration regime. On the other hand, the 2nd stage ignition front occurs almost always in the spontaneous regime because the upstream mixture contains active radical species produced by the preceding 1st stage ignition front. The effects of differently correlated equivalence ratio stratification are also considered and the results are shown to be consistent with previous findings. 2D turbulent auto-ignition problems corresponding to NTC and non-NTC chemistry yield similar qualitative results. Finally, we look into the modeling of turbulent mixing, in particular, the

  7. Ultra-deep sequencing enables high-fidelity recovery of biodiversity for bulk arthropod samples without PCR amplification

    PubMed Central

    2013-01-01

    Background Next-generation-sequencing (NGS) technologies combined with a classic DNA barcoding approach have enabled fast and credible measurement for biodiversity of mixed environmental samples. However, the PCR amplification involved in nearly all existing NGS protocols inevitably introduces taxonomic biases. In the present study, we developed new Illumina pipelines without PCR amplifications to analyze terrestrial arthropod communities. Results Mitochondrial enrichment directly followed by Illumina shotgun sequencing, at an ultra-high sequence volume, enabled the recovery of Cytochrome c Oxidase subunit 1 (COI) barcode sequences, which allowed for the estimation of species composition at high fidelity for a terrestrial insect community. With 15.5 Gbp Illumina data, approximately 97% and 92% were detected out of the 37 input Operational Taxonomic Units (OTUs), whether the reference barcode library was used or not, respectively, while only 1 novel OTU was found for the latter. Additionally, relatively strong correlation between the sequencing volume and the total biomass was observed for species from the bulk sample, suggesting a potential solution to reveal relative abundance. Conclusions The ability of the new Illumina PCR-free pipeline for DNA metabarcoding to detect small arthropod specimens and its tendency to avoid most, if not all, false positives suggests its great potential in biodiversity-related surveillance, such as in biomonitoring programs. However, further improvement for mitochondrial enrichment is likely needed for the application of the new pipeline in analyzing arthropod communities at higher diversity. PMID:23587339

  8. Development and validation of the ASPIRE-VA coaching fidelity checklist (ACFC): a tool to help ensure delivery of high-quality weight management interventions.

    PubMed

    Damschroder, Laura J; Goodrich, David E; Kim, Hyungjin Myra; Holleman, Robert; Gillon, Leah; Kirsh, Susan; Richardson, Caroline R; Lutes, Lesley D

    2016-09-01

    Practical and valid instruments are needed to assess fidelity of coaching for weight loss. The purpose of this study was to develop and validate the ASPIRE Coaching Fidelity Checklist (ACFC). Classical test theory guided ACFC development. Principal component analyses were used to determine item groupings. Psychometric properties, internal consistency, and inter-rater reliability were evaluated for each subscale. Criterion validity was tested by predicting weight loss as a function of coaching fidelity. The final 19-item ACFC consists of two domains (session process and session structure) and five subscales (sets goals and monitor progress, assess and personalize self-regulatory content, manages the session, creates a supportive and empathetic climate, and stays on track). Four of five subscales showed high internal consistency (Cronbach alphas > 0.70) for group-based coaching; only two of five subscales had high internal reliability for phone-based coaching. All five sub-scales were positively and significantly associated with weight loss for group- but not for phone-based coaching. The ACFC is a reliable and valid instrument that can be used to assess fidelity and guide skill-building for weight management interventionists. PMID:27528526

  9. A novel craniotomy simulation system for evaluation of stereo-pair reconstruction fidelity and tracking

    NASA Astrophysics Data System (ADS)

    Yang, Xiaochen; Clements, Logan W.; Conley, Rebekah H.; Thompson, Reid C.; Dawant, Benoit M.; Miga, Michael I.

    2016-03-01

    Brain shift compensation using computer modeling strategies is an important research area in the field of image-guided neurosurgery (IGNS). One important source of available sparse data during surgery to drive these frameworks is deformation tracking of the visible cortical surface. Possible methods to measure intra-operative cortical displacement include laser range scanners (LRS), which typically complicate the clinical workflow, and reconstruction of cortical surfaces from stereo pairs acquired with the operating microscopes. In this work, we propose and demonstrate a craniotomy simulation device that permits simulating realistic cortical displacements designed to measure and validate the proposed intra-operative cortical shift measurement systems. The device permits 3D deformations of a mock cortical surface which consists of a membrane made of a Dragon Skin® high performance silicone rubber on which vascular patterns are drawn. We then use this device to validate our stereo pair-based surface reconstruction system by comparing landmark positions and displacements measured with our systems to those positions and displacements as measured by a stylus tracked by a commercial optical system. Our results show a 1mm average difference in localization error and a 1.2mm average difference in displacement measurement. These results suggest that our stereo-pair technique is accurate enough for estimating intra-operative displacements in near real-time without affecting the surgical workflow.

  10. Development of High Fidelity, Fuel-Like Thermal Simulators for Non-Nuclear Testing

    NASA Technical Reports Server (NTRS)

    Bragg-Sitton, Shannon; Dickens, Ricky; Dixon, David

    2007-01-01

    This viewgraph presentation reviews the development of a simulator for non-nuclear tests for the development of a space nuclear power system. The development of the Instrumented Thermal Simulator is to assist in developing an understanding of individual components and integrated system operation without the cost, time, safety concerns associated with nuclear testing. The presentation shows the design, the electrical integration, the hardware, and the assembly of the simulators. There are slides that show the test plan, the analysis, and the initial results.

  11. Air-dropped sensor network for real-time high-fidelity volcano monitoring

    USGS Publications Warehouse

    Song, W.-Z.; Huang, R.; Xu, M.; Ma, A.; Shirazi, B.; LaHusen, R.

    2009-01-01

    This paper presents the design and deployment experience of an air-dropped wireless sensor network for volcano hazard monitoring. The deployment of five stations into the rugged crater of Mount St. Helens only took one hour with a helicopter. The stations communicate with each other through an amplified 802.15.4 radio and establish a self-forming and self-healing multi-hop wireless network. The distance between stations is up to 2 km. Each sensor station collects and delivers real-time continuous seismic, infrasonic, lightning, GPS raw data to a gateway. The main contribution of this paper is the design and evaluation of a robust sensor network to replace data loggers and provide real-time long-term volcano monitoring. The system supports UTC-time synchronized data acquisition with 1ms accuracy, and is online configurable. It has been tested in the lab environment, the outdoor campus and the volcano crater. Despite the heavy rain, snow, and ice as well as gusts exceeding 120 miles per hour, the sensor network has achieved a remarkable packet delivery ratio above 99% with an overall system uptime of about 93.8% over the 1.5 months evaluation period after deployment. Our initial deployment experiences with the system have alleviated the doubts of domain scientists and prove to them that a low-cost sensor network system can support real-time monitoring in extremely harsh environments. Copyright 2009 ACM.

  12. Controlled high-fidelity navigation in the charge stability diagram of a double quantum dot.

    PubMed

    Coden, Diego S Acosta; Romero, Rodolfo H; Räsänen, Esa

    2015-03-25

    We propose an efficient control protocol for charge transfer in a double quantum dot. We consider numerically a two-dimensional model system, where the quantum dots are subjected to time-dependent electric fields corresponding to experimental gate voltages. Our protocol enables navigation in the charge stability diagram from a state to another through controllable variation of the fields. We show that the well-known adiabatic Landau-Zener transition-when supplemented with a time-dependent field tailored with optimal control theory-can remarkably improve the transition speed. The results also lead to a simple control scheme obtained from the experimental charge stability diagram that requires only a single parameter. Eventually, we can achieve the ultrafast performance of the composite pulse protocol that allows the system to be driven at the quantum speed limit. PMID:25738833

  13. High-Fidelity Simulations of Electrically-Charged Atomizing Diesel-Type Jets

    NASA Astrophysics Data System (ADS)

    Gaillard, Benoit; Owkes, Mark; van Poppel, Bret

    2015-11-01

    Combustion of liquid fuels accounts for over a third of the energy usage today. Improving efficiency of combustion systems is critical to meet the energy needs while limiting environmental impacts. Additionally, a shift away from traditional fossil fuels to bio-derived alternatives requires fuel injection systems that can atomize fuels with a wide range of properties. In this work, the potential benefits of electrically-charged atomization is investigated using numerical simulations. Particularly, the electrostatic forces on the hydrodynamic jet are quantified and the impact of the forces is analyzed by comparing simulations of Diesel-type jets at realistic flow conditions. The simulations are performed using a state-of-the-art numerical framework that globally conserves mass, momentum, and the electric charge density even at the gas-liquid interface where discontinuities exist.

  14. Controlled high-fidelity navigation in the charge stability diagram of a double quantum dot

    NASA Astrophysics Data System (ADS)

    Acosta Coden, Diego S.; Romero, Rodolfo H.; Räsänen, Esa

    2015-03-01

    We propose an efficient control protocol for charge transfer in a double quantum dot. We consider numerically a two-dimensional model system, where the quantum dots are subjected to time-dependent electric fields corresponding to experimental gate voltages. Our protocol enables navigation in the charge stability diagram from a state to another through controllable variation of the fields. We show that the well-known adiabatic Landau-Zener transition—when supplemented with a time-dependent field tailored with optimal control theory—can remarkably improve the transition speed. The results also lead to a simple control scheme obtained from the experimental charge stability diagram that requires only a single parameter. Eventually, we can achieve the ultrafast performance of the composite pulse protocol that allows the system to be driven at the quantum speed limit.

  15. Validation and verification of a high-fidelity computational model for a bounding robot's parallel actuated elastic spine

    NASA Astrophysics Data System (ADS)

    Pusey, Jason L.; Yoo, Jin-Hyeong

    2014-06-01

    We document the design and preliminary numerical simulation study of a high fidelity model of Canid, a recently introduced bounding robot. Canid is a free-standing, power-autonomous quadrupedal machine constructed from standard commercially available electromechanical and structural elements, incorporating compliant C-shaped legs like those of the decade old RHex design, but departing from that standard (and, to the best of our knowledge, from any prior) robot platform in its parallel actuated elastic spine. We have used a commercial modeling package to develop a finite-element model of the actuated, cable-driven, rigid-plate-reinforced harness for the carbon-fiber spring that joins the robot's fore- and hind-quarters. We compare a numerical model of this parallel actuated elastic spine with empirical data from preliminary physical experiments with the most important component of the spine assembly: the composite leaf spring. Specifically, we report our progress in tuning the mechanical properties of a standard modal approximation to a conventional compliant beam model whose boundary conditions represent constraints imposed by the actuated cable driven vertebral plates that comprise the active control affordance over the spine. We conclude with a brief look ahead at near-term future experiments that will compare predictions of this fitted composite spring model with data taken from the physical spine flexed in isolation from the actuated harness.

  16. Vibrons in finite size molecular lattices: a route for high-fidelity quantum state transfer at room temperature.

    PubMed

    Pouthier, Vincent

    2012-11-01

    A communication protocol is proposed in which vibron-mediated quantum state transfer takes place in a molecular lattice. We consider two distant molecular groups grafted on each side of the lattice. These groups form two quantum computers where vibrational qubits are implemented and received. The lattice defines the communication channel along which a vibron delocalizes and interacts with a phonon bath. Using quasi-degenerate perturbation theory, vibron-phonon entanglement is taken into account through the effective Hamiltonian concept. A vibron is thus dressed by a virtual phonon cloud whereas a phonon is clothed by virtual vibronic transitions. It is shown that three quasi-degenerate dressed states define the relevant paths followed by a vibron to tunnel between the computers. When the coupling between the computers and the lattice is judiciously chosen, constructive interference takes place between these paths. Phonon-induced decoherence is minimized and a high-fidelity quantum state transfer occurs over a broad temperature range. PMID:23044492

  17. High-fidelity multiphysics simulation of BWR assembly with coupled TORT-TD/CTF

    SciTech Connect

    Magedanz, J.; Perin, Y.; Avramova, M.; Pautz, A.; Puente-Espel, F.; Seubert, A.; Sureda, A.; Velkov, K.; Zwermann, W.

    2012-07-01

    This paper describes the application of the coupled codes TORT-TD and CTF to the pin-by-pin modeling of a BWR fuel assembly with thermal-hydraulic feedback. TORT-TD, developed at GRS, is a time-dependent three dimensional discrete ordinates code. CTF is the PSU's improved version of the subchannel code COBRA-TF, which uses a two-fluid, three-field model to represent two-phase flow with entrained droplets, and is commonly applied to evaluate LWR safety margins. The coupled codes system TORT-TD/CTF, already applied to several PWR cases involving MOX, was adapted from PWR to BWR applications. The purpose of the research described in this paper is to verify the coupling for modeling two-phase flow at the pin cell level. Using an ATRIUM-10 assembly, the system's steady-state capabilities were tested on two cases: one without control blade insertion and another with partially inserted blades. The influence of the neutron absorber on local axial and radial parameters is presented. The description of an inlet flow reduction transient is an example for the time-dependent capability of the coupled system. (authors)

  18. High-Fidelity Down-Conversion Source for Secure Communications Using On-Demand Single Photons

    NASA Technical Reports Server (NTRS)

    Roberts, Tony

    2015-01-01

    AdvR, Inc., has built an efficient, fully integrated, waveguide-based source of spectrally uncorrelated photon pairs that will accelerate research and development (R&D) in the emerging field of quantum information science. Key to the innovation is the use of submicron periodically poled waveguides to produce counter propagating photon pairs, which is enabled by AdvR's patented segmented microelectrode poling technique. This novel device will provide a high brightness source of down-conversion pairs with enhanced spectral properties and low attenuation, and it will operate in the visible to the mid-infrared spectral region. A waveguide-based source of spectrally and spatially pure heralded photons will contribute to a wide range of NASA's advanced technology development efforts, including on-demand single photon sources for high-rate spaced-based secure communications.

  19. High-Fidelity Three-Dimensional Simulation of the GE90

    NASA Technical Reports Server (NTRS)

    Turner, Mark G.; Norris, Andrew; Veres, Josphe P.

    2004-01-01

    A full-engine simulation of the three-dimensional flow in the GE90 94B high-bypass ratio turbofan engine has been achieved. It would take less than 11 hr of wall clock time if starting from scratch through the exploitation of parallel processing. The simulation of the compressor components, the cooled high-pressure turbine, and the low-pressure turbine was performed using the APNASA turbomachinery flow code. The combustor flow and chemistry were simulated using the National Combustor Code (NCC). The engine simulation matches the engine thermodynamic cycle for a sea-level takeoff condition. The simulation is started at the inlet of the fan and progresses downstream. Comparisons with the cycle point are presented. A detailed look at the blockage in the turbomachinery is presented as one measure to assess and view the solution and the multistage interaction effects.

  20. Ground vibration tests of a high fidelity truss for verification of on orbit damage location techniques

    NASA Technical Reports Server (NTRS)

    Kashangaki, Thomas A. L.

    1992-01-01

    This paper describes a series of modal tests that were performed on a cantilevered truss structure. The goal of the tests was to assemble a large database of high quality modal test data for use in verification of proposed methods for on orbit model verification and damage detection in flexible truss structures. A description of the hardware is provided along with details of the experimental setup and procedures for 16 damage cases. Results from selected cases are presented and discussed. Differences between ground vibration testing and on orbit modal testing are also described.

  1. Predicting growth of graphene nanostructures using high-fidelity atomistic simulations

    SciTech Connect

    McCarty, Keven F.; Zhou, Xiaowang; Ward, Donald K.; Schultz, Peter A.; Foster, Michael E.; Bartelt, Norman Charles

    2015-09-01

    In this project we developed t he atomistic models needed to predict how graphene grows when carbon is deposited on metal and semiconductor surfaces. We first calculated energies of many carbon configurations using first principles electronic structure calculations and then used these energies to construct an empirical bond order potentials that enable s comprehensive molecular dynamics simulation of growth. We validated our approach by comparing our predictions to experiments of graphene growth on Ir, Cu and Ge. The robustness of ou r understanding of graphene growth will enable high quality graphene to be grown on novel substrates which will expand the number of potential types of graphene electronic devices.

  2. High-fidelity numerical simulation of solitons in the nerve axon

    NASA Astrophysics Data System (ADS)

    Mattsson, Ken; Werpers, Jonatan

    2016-01-01

    High-order accurate finite difference schemes are derived for a non-linear soliton model of nerve signal propagation in axons. Two types of well-posed boundary conditions are analysed. The boundary closures are based on the summation-by-parts (SBP) framework and the boundary conditions are imposed using a penalty (SAT) technique, to guarantee linear stability. The resulting SBP-SAT approximation is time-integrated with an explicit finite difference method. The accuracy and stability properties of the newly derived finite difference approximations are demonstrated for an analytic soliton solution.

  3. Proposal for High-Fidelity Quantum Simulation Using a Hybrid Dressed State

    NASA Astrophysics Data System (ADS)

    Cai, Jianming; Cohen, Itsik; Retzker, Alex; Plenio, Martin B.

    2015-10-01

    A fundamental goal of quantum technologies concerns the exploitation of quantum coherent dynamics for the realization of novel quantum applications such as quantum computing, quantum simulation, and quantum metrology. A key challenge on the way towards these goals remains the protection of quantum coherent dynamics from environmental noise. Here, we propose a concept of a hybrid dressed state from a pair of continuously driven systems. It allows sufficiently strong driving fields to suppress the effect of environmental noise while at the same time being insusceptible to both the amplitude and phase noise in the continuous driving fields. This combination of robust features significantly enhances coherence times under realistic conditions and at the same time provides new flexibility in Hamiltonian engineering that otherwise is not achievable. We demonstrate theoretically applications of our scheme for a noise-resistant analog quantum simulation in the well-studied physical systems of nitrogen-vacancy centers in diamond and of trapped ions. The scheme may also be exploited for quantum computation and quantum metrology.

  4. Proposal for High-Fidelity Quantum Simulation Using a Hybrid Dressed State.

    PubMed

    Cai, Jianming; Cohen, Itsik; Retzker, Alex; Plenio, Martin B

    2015-10-16

    A fundamental goal of quantum technologies concerns the exploitation of quantum coherent dynamics for the realization of novel quantum applications such as quantum computing, quantum simulation, and quantum metrology. A key challenge on the way towards these goals remains the protection of quantum coherent dynamics from environmental noise. Here, we propose a concept of a hybrid dressed state from a pair of continuously driven systems. It allows sufficiently strong driving fields to suppress the effect of environmental noise while at the same time being insusceptible to both the amplitude and phase noise in the continuous driving fields. This combination of robust features significantly enhances coherence times under realistic conditions and at the same time provides new flexibility in Hamiltonian engineering that otherwise is not achievable. We demonstrate theoretically applications of our scheme for a noise-resistant analog quantum simulation in the well-studied physical systems of nitrogen-vacancy centers in diamond and of trapped ions. The scheme may also be exploited for quantum computation and quantum metrology. PMID:26550857

  5. Assessing the Fidelity of Atmospheric Mercury Measurements Using a Commercial Speciation System

    NASA Astrophysics Data System (ADS)

    Luke, W. T.; Ren, X.; Kelley, P.; Olson, M.

    2014-12-01

    The Tekran mercury speciation system is the only commercially viable instrumentation for the routine measurement of mercury compounds in the atmosphere, and is widely deployed in mercury monitoring networks worldwide. To date, however, many key performance measures of the instrumentation have yet to be adequately addressed or documented. While a number of controlled experiments have been conducted in laboratory settings, issues of potential measurement artifacts, non-quantitative collection efficiencies of GOM species, humidity effects, etc. remain to be explored under field conditions. This presentation will address some issues surrounding the accuracy, reproducibility, and robustness of speciated mercury measurements made with the Tekran analytical instrumentation deployed at three AMNet sites operated by NOAA's Air Resources Laboratory: a coastal location (Grand Bay NERR, MS); an inland site in the Mid-Atlantic region (Beltsville, MD); and a high elevation site in the remote free troposphere (Mauna Loa Observatory, HI).

  6. Coupled high fidelity thermal hydraulics and neutronics for reactor safety simulations

    SciTech Connect

    Vincent A. Mousseau; Hongbin Zhang; Haihua Zhao

    2008-09-01

    This work is a continuation of previous work on the importance of accuracy in the simulation of nuclear reactor safety transients. This work is qualitative in nature and future work will be more quantitative. The focus of this work will be on a simplified single phase nuclear reactor primary. The transient of interest investigates the importance of accuracy related to passive (inherent) safety systems. The transient run here will be an Unprotected Loss of Flow (ULOF) transient. Here the coolant pump is turned off and the un’SCRAM’ed reactor transitions from forced to free convection (Natural circulation). Results will be presented that show the difference that the first order in time truncation physics makes on the transient. The purpose of this document is to illuminate a possible problem in traditional reactor simulation approaches. Detailed studies need to be done on each simulation code for each transient analyzed to determine if the first order truncation physics plays an important role.

  7. High-fidelity X-ray micro-tomography reconstruction of siderite-hosted Carboniferous arachnids

    PubMed Central

    Garwood, Russell; Dunlop, Jason A.; Sutton, Mark D.

    2009-01-01

    A new approach to maximize data recovery from siderite-hosted fossils is presented. Late Carboniferous trigonotarbids (Arachnida: Trigonotarbida) from Coseley, UK, were chosen to assess the potential of high-resolution X-ray micro-tomography (XMT). Three-dimensional computer reconstruction visualizes the animals at 20 µm or better resolution, resolving subtle and previously unseen details. Novel data recovered includes (possibly plesiomorphic) retention of endites on leg coxae of Cryptomartus hindi (Anthracomartidae) and highlights further similarities between this family and the Devonian Palaeocharinidae. Also revealed is a flattened body with robust anterior limbs, implying a hunting stance similar to modern crab spiders (Thomisidae). Eophrynus prestvicii (Eophrynidae) had more gracile limbs but a heavily ornamented body, with newly identified upward-pointing marginal spines on the opisthosoma. Its habitus is comparable with certain modern laniatorid harvestmen (Opiliones). These findings demonstrate the potential of XMT to revolutionize the study of siderite-hosted Coal Measures fossils. PMID:19656861

  8. High-fidelity numerical solution of the time-dependent Dirac equation

    SciTech Connect

    Almquist, Martin; Mattsson, Ken; Edvinsson, Tomas

    2014-04-01

    A stable high-order accurate finite difference method for the time-dependent Dirac equation is derived. Grid-convergence studies in 1-D and 3-D corroborate the analysis. The method is applied to time-resolved quantum tunneling where a comparison with the solution to the time-dependent Schrödinger equation in 1-D illustrates the differences between the two equations. In contrast to the conventional tunneling probability decay predicted by the Schrödinger equation, the Dirac equation exhibits Klein tunneling. Solving the time-dependent Dirac equation with a step potential in 3-D reveals that particle spin affects the tunneling process. The observed spin-dependent reflection allows for a new type of spin-selective measurements.

  9. Acquisition of Competencies by Medical Students in Neurological Emergency Simulation Environments Using High Fidelity Patient Simulators.

    PubMed

    Sánchez-Ledesma, M J; Juanes, J A; Sáncho, C; Alonso-Sardón, M; Gonçalves, J

    2016-06-01

    The training of medical students demands practice of skills in scenarios as close as possible to real ones that on one hand ensure acquisition of competencies, and on the other, avoid putting patients at risk. This study shows the practicality of using high definition mannequins (SimMan 3G) in scenarios of first attention in neurological emergencies so that medical students at the Faculty of Medicine of the University of Salamanca could acquire specific and transversal competencies. The repetition of activities in simulation environments significantly facilitates the acquisition of competencies by groups of students (p < 00.5). The greatest achievements refer to skills whereas the competencies that demand greater integration of knowledge seem to need more time or new sessions. This is what happens with the competencies related to the initial diagnosis, the requesting of tests and therapeutic approaches, which demand greater theoretical knowledge. PMID:27106583

  10. High-fidelity artifact correction for cone-beam CT imaging of the brain

    NASA Astrophysics Data System (ADS)

    Sisniega, A.; Zbijewski, W.; Xu, J.; Dang, H.; Stayman, J. W.; Yorkston, J.; Aygun, N.; Koliatsos, V.; Siewerdsen, J. H.

    2015-02-01

    CT is the frontline imaging modality for diagnosis of acute traumatic brain injury (TBI), involving the detection of fresh blood in the brain (contrast of 30-50 HU, detail size down to 1 mm) in a non-contrast-enhanced exam. A dedicated point-of-care imaging system based on cone-beam CT (CBCT) could benefit early detection of TBI and improve direction to appropriate therapy. However, flat-panel detector (FPD) CBCT is challenged by artifacts that degrade contrast resolution and limit application in soft-tissue imaging. We present and evaluate a fairly comprehensive framework for artifact correction to enable soft-tissue brain imaging with FPD CBCT. The framework includes a fast Monte Carlo (MC)-based scatter estimation method complemented by corrections for detector lag, veiling glare, and beam hardening. The fast MC scatter estimation combines GPU acceleration, variance reduction, and simulation with a low number of photon histories and reduced number of projection angles (sparse MC) augmented by kernel de-noising to yield a runtime of ~4 min per scan. Scatter correction is combined with two-pass beam hardening correction. Detector lag correction is based on temporal deconvolution of the measured lag response function. The effects of detector veiling glare are reduced by deconvolution of the glare response function representing the long range tails of the detector point-spread function. The performance of the correction framework is quantified in experiments using a realistic head phantom on a testbench for FPD CBCT. Uncorrected reconstructions were non-diagnostic for soft-tissue imaging tasks in the brain. After processing with the artifact correction framework, image uniformity was substantially improved, and artifacts were reduced to a level that enabled visualization of ~3 mm simulated bleeds throughout the brain. Non-uniformity (cupping) was reduced by a factor of 5, and contrast of simulated bleeds was improved from ~7 to 49.7 HU, in good agreement

  11. High-Fidelity Modelling Methodology of Light-Limited Photosynthetic Production in Microalgae.

    PubMed

    Bernardi, Andrea; Nikolaou, Andreas; Meneghesso, Andrea; Morosinotto, Tomas; Chachuat, Benoît; Bezzo, Fabrizio

    2016-01-01

    Reliable quantitative description of light-limited growth in microalgae is key to improving the design and operation of industrial production systems. This article shows how the capability to predict photosynthetic processes can benefit from a synergy between mathematical modelling and lab-scale experiments using systematic design of experiment techniques. A model of chlorophyll fluorescence developed by the authors [Nikolaou et al., J Biotechnol 194:91-99, 2015] is used as starting point, whereby the representation of non-photochemical-quenching (NPQ) process is refined for biological consistency. This model spans multiple time scales ranging from milliseconds to hours, thus calling for a combination of various experimental techniques in order to arrive at a sufficiently rich data set and determine statistically meaningful estimates for the model parameters. The methodology is demonstrated for the microalga Nannochloropsis gaditana by combining pulse amplitude modulation (PAM) fluorescence, photosynthesis rate and antenna size measurements. The results show that the calibrated model is capable of accurate quantitative predictions under a wide range of transient light conditions. Moreover, this work provides an experimental validation of the link between fluorescence and photosynthesis-irradiance (PI) curves which had been theoricized. PMID:27055271

  12. High-Fidelity Modelling Methodology of Light-Limited Photosynthetic Production in Microalgae

    PubMed Central

    Meneghesso, Andrea; Morosinotto, Tomas; Chachuat, Benoît; Bezzo, Fabrizio

    2016-01-01

    Reliable quantitative description of light-limited growth in microalgae is key to improving the design and operation of industrial production systems. This article shows how the capability to predict photosynthetic processes can benefit from a synergy between mathematical modelling and lab-scale experiments using systematic design of experiment techniques. A model of chlorophyll fluorescence developed by the authors [Nikolaou et al., J Biotechnol 194:91–99, 2015] is used as starting point, whereby the representation of non-photochemical-quenching (NPQ) process is refined for biological consistency. This model spans multiple time scales ranging from milliseconds to hours, thus calling for a combination of various experimental techniques in order to arrive at a sufficiently rich data set and determine statistically meaningful estimates for the model parameters. The methodology is demonstrated for the microalga Nannochloropsis gaditana by combining pulse amplitude modulation (PAM) fluorescence, photosynthesis rate and antenna size measurements. The results show that the calibrated model is capable of accurate quantitative predictions under a wide range of transient light conditions. Moreover, this work provides an experimental validation of the link between fluorescence and photosynthesis-irradiance (PI) curves which had been theoricized. PMID:27055271

  13. Development, sensitivity analysis, and uncertainty quantification of high-fidelity arctic sea ice models.

    SciTech Connect

    Peterson, Kara J.; Bochev, Pavel Blagoveston; Paskaleva, Biliana S.

    2010-09-01

    Arctic sea ice is an important component of the global climate system and due to feedback effects the Arctic ice cover is changing rapidly. Predictive mathematical models are of paramount importance for accurate estimates of the future ice trajectory. However, the sea ice components of Global Climate Models (GCMs) vary significantly in their prediction of the future state of Arctic sea ice and have generally underestimated the rate of decline in minimum sea ice extent seen over the past thirty years. One of the contributing factors to this variability is the sensitivity of the sea ice to model physical parameters. A new sea ice model that has the potential to improve sea ice predictions incorporates an anisotropic elastic-decohesive rheology and dynamics solved using the material-point method (MPM), which combines Lagrangian particles for advection with a background grid for gradient computations. We evaluate the variability of the Los Alamos National Laboratory CICE code and the MPM sea ice code for a single year simulation of the Arctic basin using consistent ocean and atmospheric forcing. Sensitivities of ice volume, ice area, ice extent, root mean square (RMS) ice speed, central Arctic ice thickness, and central Arctic ice speed with respect to ten different dynamic and thermodynamic parameters are evaluated both individually and in combination using the Design Analysis Kit for Optimization and Terascale Applications (DAKOTA). We find similar responses for the two codes and some interesting seasonal variability in the strength of the parameters on the solution.

  14. A Method for High Fidelity Optogenetic Control of Individual Pyramidal Neurons In vivo

    PubMed Central

    Cooper, Donald C.

    2013-01-01

    Optogenetic methods have emerged as a powerful tool for elucidating neural circuit activity underlying a diverse set of behaviors across a broad range of species. Optogenetic tools of microbial origin consist of light-sensitive membrane proteins that are able to activate (e.g., channelrhodopsin-2, ChR2) or silence (e.g., halorhodopsin, NpHR) neural activity ingenetically-defined cell types over behaviorally-relevant timescales. We first demonstrate a simple approach for adeno-associated virus-mediated delivery of ChR2 and NpHR transgenes to the dorsal subiculum and prelimbic region of the prefrontal cortex in rat. Because ChR2 and NpHR are genetically targetable, we describe the use of this technology to control the electrical activity of specific populations of neurons (i.e., pyramidal neurons) embedded in heterogeneous tissue with high temporal precision. We describe herein the hardware, custom software user interface, and procedures that allow for simultaneous light delivery and electrical recording from transduced pyramidal neurons in an anesthetized in vivo preparation. These light-responsive tools provide the opportunity for identifying the causal contributions of different cell types to information processing and behavior. PMID:24022017

  15. High fidelity digital inline holographic method for 3D flow measurements.

    PubMed

    Toloui, Mostafa; Hong, Jiarong

    2015-10-19

    Among all the 3D optical flow diagnostic techniques, digital inline holographic particle tracking velocimetry (DIH-PTV) provides the highest spatial resolution with low cost, simple and compact optical setups. Despite these advantages, DIH-PTV suffers from major limitations including poor longitudinal resolution, human intervention (i.e. requirement for manually determined tuning parameters during tracer field reconstruction and extraction), limited tracer concentration, and expensive computations. These limitations prevent this technique from being widely used for high resolution 3D flow measurements. In this study, we present a novel holographic particle extraction method with the goal of overcoming all the major limitations of DIH-PTV. The proposed method consists of multiple steps involving 3D deconvolution, automatic signal-to-noise ratio enhancement and thresholding, and inverse iterative particle extraction. The entire method is implemented using GPU-based algorithm to increase the computational speed significantly. Validated with synthetic particle holograms, the proposed method can achieve particle extraction rate above 95% with fake particles less than 3% and maximum position error below 1.6 particle diameter for holograms with particle concentration above 3000 particles/mm3. The applicability of the proposed method for DIH-PTV has been further validated using the experiment of laminar flow in a microchannel and the synthetic tracer flow fields generated using a DNS turbulent channel flow database. Such improvements will substantially enhance the implementation of DIH-PTV for 3D flow measurements and enable the potential commercialization of this technique. PMID:26480377

  16. High-fidelity spatial addressing of 43Ca+ qubits using near-field microwave control

    NASA Astrophysics Data System (ADS)

    Prado Lopes Aude Craik, Diana; Linke, Norbert; Allcock, David; Sepiol, Martin; Harty, Thomas; Ballance, Christopher; Stacey, Derek; Steane, Andrew; Lucas, David

    2016-05-01

    Individual addressing of qubits is essential for scalable quantum computation. Spatial addressing allows unlimited numbers of qubits to share the same frequency, whilst enabling arbitrary parallel operations. We present the latest experimental results obtained using a two-zone microfabricated surface trap designed to perform spatial, near-field microwave addressing of long-lived 43Ca+ ``atomic clock'' qubits held in separate trap zones (each of which feature four integrated microwave electrodes). Microwave near fields generated by multi-electrode chip ion traps are often difficult to faithfully simulate and a simple method of characterizing and testing trap chips before placement under ultra-high vacuum would significantly speed up trap design optimization. We describe a printed circuit board antenna for use in mapping microwave near-fields generated by ion-trap electrodes. The antenna is designed to measure fields down to 100 μ m away from trap electrodes and to be impedance matched at a desired spot frequency for an improved signal to noise ratio in field measurements. This work is supported by the US Army Research Office, EPSRC (UK) and the UK National Quantum Technologies Programme.

  17. Analysis of a transgenic Oct4 enhancer reveals high fidelity long-range chromosomal interactions

    PubMed Central

    Cai, Mingyang; Gao, Fan; Zhang, Peilin; An, Woojin; Shi, Jiandang; Wang, Kai; Lu, Wange

    2015-01-01

    Genome structure or nuclear organization has fascinated researchers investigating genome function. Recently, much effort has gone into defining relationships between specific genome structures and gene expression in pluripotent cells. We previously analyzed chromosomal interactions of the endogenous Oct4 distal enhancer in pluripotent cells. Here, we derive ES and iPS cells from a transgenic Oct4 distal enhancer reporter mouse. Using sonication-based Circularized Chromosome Conformation Capture (4C) coupled with next generation sequencing, we determined and compared the genome-wide interactome of the endogenous and transgenic Oct4 distal enhancers. Integrative genomic analysis indicated that the transgenic enhancer binds to a similar set of loci and shares similar key enrichment profiles with its endogenous counterpart. Both the endogenous and transgenic Oct4 enhancer interacting loci were enriched in the open nucleus compartment, which is associated with active histone marks (H3K4me1, H3K27ac, H3K4me3 and H3K9ac), active cis-regulatory sequences (DNA hypersensitivity sites (DHS)), 5-hydroxymethylcytosine (5-hmc), and early DNA replication domains. In addition, binding of some pluripotency-related transcription factors was consistently enriched in our 4C sites, and genes in those sites were generally more highly expressed. Overall, our work reveals critical features that may function in gene expression regulation in mouse pluripotent cells. PMID:26435056

  18. Evolving high fidelity climate sensor simulators to preserve climate data record continuity

    NASA Astrophysics Data System (ADS)

    Teague, Kelly K.; Smith, G. L.; Priestley, Kory

    2012-09-01

    Six CERES scanning radiometers have flown to date. The Proto-­-Flight Model flew aboard the Tropical Rainfall Measuring Mission spacecraft in November 1997. Two CERES instruments, Flight Models (FM) 1 and 2, are aboard the Terra spacecraft, which was launched in December 1999. Two more CERES instruments, FM-­-3 and FM-­-4, are on the Aqua spacecraft, which was placed in orbit in May 2002. These instruments continue to operate after providing over a decade of Earth Radiation Budget data. FM-­-5 is onboard the NPP spacecraft and launched in October 2011. FM-­-6 is being built for use on the JPPS spacecraft. A successor to these CERES instruments is presently in the definition stage. This paper describes the role of instrument simulators in the life cycle of the CERES instruments and how the simulators may be modified to better represent the instrument and its operations. NASA LaRC originally built the CERES instrument simulators. They were created to test CERES flight loads and view the resulting instrument response. The simulator's interface to the instrument processor and spacecraft bus enables the verification of all software modifications, which are uploaded to orbiting instruments. The simulators were recently redesigned to provide additional functionality, however not all instrument operations are completely replicated. The existing simulator software provides the necessary stubs to incorporate modifications and improvements. One possible upgrade is a simulation to imitate the CERES detector assembly. Another useful enhancement is fault injection into select instrument systems, to simulate operational failures and resolve anomaly situations. Many features could be added to the simulator, all of which can ultimately improve instrument performance.

  19. On the high fidelity simulation of chemical explosions and their interaction with solid particle clouds

    NASA Astrophysics Data System (ADS)

    Balakrishnan, Kaushik

    The flow field behind chemical explosions in multiphase environments is investigated using a robust, state-of-the-art simulation strategy that accounts for the thermodynamics, gas dynamics and fluid mechanics of relevance to the problem. Focus is laid on the investigation of blast wave propagation, growth of hydrodynamic instabilities behind explosive blasts, the mixing aspects behind explosions, the effects of afterburn and its quantification, and the role played by solid particles in these phenomena. In particular, the confluence and interplay of these different physical phenomena are explored from a fundamental perspective, and applied to the problem of chemical explosions. A solid phase solver suited for the study of high-speed, two-phase flows has been developed and validated. This solver accounts for the inter-phase mass, momentum and energy transfer through empirical laws, and ensures two-way coupling between the two phases, viz. solid particles and gas. For dense flow fields, i.e., when the solid volume fraction becomes non-negligible (˜60%), the finite volume method with a Godunov type shock-capturing scheme requires modifications to account for volume fraction gradients during the computation of cell interface gas fluxes. To this end, the simulation methodology is extended with the formulation of an Eulerian gas, Lagrangian solid approach, thereby ensuring that the so developed two-phase simulation strategy can be applied for both flow conditions, dilute and dense alike. Moreover, under dense loading conditions the solid particles inevitably collide, which is accounted for in the current research effort with the use of an empirical collision/contact model from literature. Furthermore, the post-detonation flow field consists of gases under extreme temperature and pressure conditions, necessitating the use of real gas equations of state in the multiphase model. This overall simulation strategy is then extended to the investigation of chemical explosions in

  20. Transatlantic medical education: preliminary data on distance-based high-fidelity human patient simulation training.

    PubMed

    von Lubitz, Dag K J E; Carrasco, Benjamin; Gabbrielli, Francesco; Ludwig, Timm; Levine, Howard; Patricelli, Frederic; Poirier, Caleb; Richir, Simon

    2003-01-01

    simulator was only remote (Italy). Confidence was also significantly improved. The trainees indicated the optimal frequency of distance training as one 2 hour-long session twice a month. In conclusion, simulation-based distance medical training proved to be a highly effective tool in improving emergency medical skills of junior physician trainees and, despite initial reservations, neither distance nor language and cultural differences posed significant obstacles. The present and historical data from our previous work confirm the concept of MED-ASP as a highly efficient tool in both national and international medical education and training. Moreover, we now validate for the first time the concept of simulation-based, fully interactive transatlantic medical ADL that we have proposed in our previous theoretical papers. The present experiments prove that training based on advanced technologies transcends barriers of distance, time, and national medical guidelines. Hence, international simulation-based distance training may ultimately provide the most realistic platform for a large-scale training of emergency medical personnel in less developed countries and in rural/remote regions of the globe. PMID:15455929

  1. High Fidelity Computer Models for Prospective Treatment Planning of RF Ablation with in vitro Experimental Correlation

    PubMed Central

    Fuentes, David; Cardan, Rex; Stafford, R. Jason; Yung, Joshua; Dodd, Gerald D.; Feng, Yusheng

    2010-01-01

    Purpose To evaluate the accuracy of computer simulation in predicting the thermal damage region produced by a radiofrequency (RF) ablation procedure in an in vitro perfused bovine liver model. The thermal dose end point in the liver model is used to quantitatively assess computer prediction for use in prospective treatment planning of RF ablation procedures. Materials and Methods Geometric details of the tri-cooled-tip electrode were modeled. The resistive heating of a pulsed voltage delivery was simulated in 4D using finite element methods (FEM) implemented on high performance parallel computing architectures. A range of physically realistic blood perfusion parameters, 3.6–53.6kg/s/m3 were considered in the computer model. An Arrhenius damage model was used to predict the thermal dose. Dice similarity coefficients (DSC) were the metric used to compare computational predictions to T1-weighted contrast enhanced images of the damage obtained from a RF procedure performed on an in vitro perfused bovine liver model. Results For a perfusion parameter greater than 16.3kg/s/m3, simulations predict the temporal evolution of the damaged volume is perfusion limited and will reach a maximum value. Over a range of physically meaningful perfusion values, 16.3–33.1kg/s/m3, the predicted thermal dose reaches the maximum damage volume within two minutes of the delivery and is in good agreement, DSC > 0.7, with experimental measurements obtained from the perfused liver model. Conclusions As measured by the computed volumetric DSC, computer prediction accuracy of the thermal dose shows good correlation with ablation lesions measured in vitro perfused bovine liver models over a range of physically realistic perfusion values. PMID:20920840

  2. High-fidelity simulation of compressible flows for hypersonic propulsion applications

    NASA Astrophysics Data System (ADS)

    Otis, Collin C.

    In the first part of this dissertation, the scalar filtered mass density function (SFMDF) methodology is implemented into the computer code US3D. The SFMDF is a sub-grid scale closure and is simulated via a Lagrangian Monte Carlo solver. US3D is an Eulerian finite volume code and has proven very effective for compressible flow simulations. The resulting SFMDF-US3D code is employed for large eddy simulation (LES) of compressible turbulent flows on unstructured meshes. Simulations are conducted of subsonic and supersonic flows. The consistency and accuracy of the simulated results are assessed along with appraisal of the overall performance of the methodology. In the second part of this dissertation, a new methodology is developed for accurate capturing of discontinuities in multi-block finite difference simulations of hyperbolic partial differential equations. The fourth-order energy-stable weighted essentially non-oscillatory (ESWENO) scheme on closed domains is combined with simultaneous approximation term (SAT) weak interface and boundary conditions. The capability of the methodology is demonstrated for accurate simulations in the presence of significant and abrupt changes in grid resolution between neighboring subdomains. Results are presented for the solutions of linear scalar hyperbolic wave equations and the Euler equations in one and two dimensions. Strong discontinuities are passed across subdomain interfaces without significant distortions. It is demonstrated that the methodology provides stable and accurate solutions even when large differences in the grid-spacing exist, whereas strong imposition of the interface conditions causes noticeable oscillations. Keywords: Large eddy simulation, filtered density function, turbulent reacting flows, multi-block finite difference schemes, high-order numerical methods, WENO shock-capturing, computational fluid dynamics.

  3. A high-fidelity method to analyze perturbation evolution in turbulent flows

    NASA Astrophysics Data System (ADS)

    Unnikrishnan, S.; Gaitonde, Datta V.

    2016-04-01

    turbulence closures. The method is illustrated by application to a well-validated Mach 1.3 jet. Specifically, the effects of turbulence on the jet lipline and core collapse regions on the near-acoustic field are isolated. The properties of the method, including linearity and effect of initial transients, are discussed. The results provide insight into how turbulence from different parts of the jet contribute to the observed dominance of low and high frequency content at shallow and sideline angles, respectively.

  4. On the high fidelity simulation of chemical explosions and their interaction with solid particle clouds

    NASA Astrophysics Data System (ADS)

    Balakrishnan, Kaushik

    The flow field behind chemical explosions in multiphase environments is investigated using a robust, state-of-the-art simulation strategy that accounts for the thermodynamics, gas dynamics and fluid mechanics of relevance to the problem. Focus is laid on the investigation of blast wave propagation, growth of hydrodynamic instabilities behind explosive blasts, the mixing aspects behind explosions, the effects of afterburn and its quantification, and the role played by solid particles in these phenomena. In particular, the confluence and interplay of these different physical phenomena are explored from a fundamental perspective, and applied to the problem of chemical explosions. A solid phase solver suited for the study of high-speed, two-phase flows has been developed and validated. This solver accounts for the inter-phase mass, momentum and energy transfer through empirical laws, and ensures two-way coupling between the two phases, viz. solid particles and gas. For dense flow fields, i.e., when the solid volume fraction becomes non-negligible (˜60%), the finite volume method with a Godunov type shock-capturing scheme requires modifications to account for volume fraction gradients during the computation of cell interface gas fluxes. To this end, the simulation methodology is extended with the formulation of an Eulerian gas, Lagrangian solid approach, thereby ensuring that the so developed two-phase simulation strategy can be applied for both flow conditions, dilute and dense alike. Moreover, under dense loading conditions the solid particles inevitably collide, which is accounted for in the current research effort with the use of an empirical collision/contact model from literature. Furthermore, the post-detonation flow field consists of gases under extreme temperature and pressure conditions, necessitating the use of real gas equations of state in the multiphase model. This overall simulation strategy is then extended to the investigation of chemical explosions in

  5. Acquisition, Retention, and Retraining: Effects of High and Low Fidelity in Training Devices. Technical Report 69-1.

    ERIC Educational Resources Information Center

    Grimsley, Douglas L.

    This study is the first in a series which was conducted under the name STRANGER III, and which was to examine trainee's long-term memory of motor skills. This phase examined the effects of varying fidelity of training devices on acquisition, retention, and reinstatement of ability to perform a 92-step procedural task. Three versions of the Section…

  6. Administrator Strategies that Support High Fidelity Implementation of the Pyramid Model for Promoting Social-Emotional Competence & Addressing Challenging Behavior

    ERIC Educational Resources Information Center

    Mincic, Melissa; Smith, Barbara J.; Strain, Phil

    2009-01-01

    Implementing the Pyramid Model with fidelity and achieving positive outcomes for children and their families requires that administrators understand their roles in the implementation process. Every administrative decision impacts program quality and sustainability. This Policy Brief underscores the importance of facilitative administrative…

  7. Using High-Fidelity Analysis Methods and Experimental Results to Account for the Effects of Imperfections on the Buckling Response of Composite Shell Structures

    NASA Technical Reports Server (NTRS)

    Starnes, James H., Jr.; Hilburger, Mark W.

    2003-01-01

    The results of an experimental and analytical study of the effects of initial imperfections on the buckling response of unstiffened thin-walled compression-loaded graphite-epoxy cylindrical shells are presented. The analytical results include the effects of traditional and nontraditional initial imperfections and uncertainties in the values of selected shell parameters on the buckling loads of the shells. The nonlinear structural analysis results correlate very well with the experimental results. The high-fidelity nonlinear analysis procedure used to generate the analytical results can also be used to form the basis of a new shell design procedure that could reduce the traditional dependence on empirical results in the shell design process. KEYWORDS: high-fidelity nonlinear structural analysis, composite shells, shell stability, initial imperfections

  8. Comparison of the Computational Efficiency of the Original Versus Reformulated High-Fidelity Generalized Method of Cells

    NASA Technical Reports Server (NTRS)

    Arnold, Steven M; Bednarcyk, Brett; Aboydi, Jacob

    2004-01-01

    The High-Fidelity Generalized Method of Cells (HFGMC) micromechanics model has recently been reformulated by Bansal and Pindera (in the context of elastic phases with perfect bonding) to maximize its computational efficiency. This reformulated version of HFGMC has now been extended to include both inelastic phases and imperfect fiber-matrix bonding. The present paper presents an overview of the HFGMC theory in both its original and reformulated forms and a comparison of the results of the two implementations. The objective is to establish the correlation between the two HFGMC formulations and document the improved efficiency offered by the reformulation. The results compare the macro and micro scale predictions of the continuous reinforcement (doubly-periodic) and discontinuous reinforcement (triply-periodic) versions of both formulations into the inelastic regime, and, in the case of the discontinuous reinforcement version, with both perfect and weak interfacial bonding. The results demonstrate that identical predictions are obtained using either the original or reformulated implementations of HFGMC aside from small numerical differences in the inelastic regime due to the different implementation schemes used for the inelastic terms present in the two formulations. Finally, a direct comparison of execution times is presented for the original formulation and reformulation code implementations. It is shown that as the discretization employed in representing the composite repeating unit cell becomes increasingly refined (requiring a larger number of sub-volumes), the reformulated implementation becomes significantly (approximately an order of magnitude at best) more computationally efficient in both the continuous reinforcement (doubly-periodic) and discontinuous reinforcement (triply-periodic) cases.

  9. Randomized controlled trial of high fidelity patient simulators compared to actor patients in a pandemic influenza drill scenario.

    PubMed

    Wallace, David; Gillett, Brian; Wright, Brian; Stetz, Jessica; Arquilla, Bonnie

    2010-07-01

    During disaster drills hospitals traditionally use actor victims. This has been criticized for underestimating true provider resource burden during surges; however, robotic patient simulators may better approximate the challenges of actual patient care. This study quantifies the disparity between the times required to resuscitate simulators and actors during a drill and compares the times required to perform procedures on simulator patients to published values for real patients. A randomized controlled trial was conducted during an influenza disaster drill. Twelve severe influenza cases were developed for inclusion in the study. Case scenarios were randomized to either human actor patients or simulator patients for drill integration. Clinical staff participating in the drill were blinded to the study objectives. The study was recorded by trained videographers and independently scored using a standardized form by two blinded attending physicians. All critical actions took longer to perform on simulator patients compared to actor patients. The median time to provide a definitive airway (8.9min vs. 3.2min, p=0.013), to initiate vasopressors through a central line (17.4min vs. 5.2min, p=0.01) and time to disposition (16.9min vs. 5.2min, p=0.01) were all significantly longer on simulator patients. Agreement between video reviewers was excellent, ranging between 0.95 and 1 for individual domain scores. Times required to perform procedures on simulators were similar to published results on real-world patients. Patient actors underestimate resource utilization in drills. Integration of high fidelity simulator patients is one way institutions can create more realistic challenges and better evaluate disaster scenario preparedness. PMID:20398993

  10. Curriculum Fidelity and Factors Affecting Fidelity in the Turkish Context

    ERIC Educational Resources Information Center

    Bumen, Nilay T.; Cakar, Esra; Yildiz, Derya G.

    2014-01-01

    Although a centralist education system is in place in Turkey, studies show that while implementing the curriculum developed by the Ministry of Education, teachers make changes based on their own preferences or depending on students. Curriculum fidelity can be defined as the degree to which teachers or stakeholders abide by a curriculum's…

  11. Optimal conditions for high-fidelity dispersive readout of a qubit with a photon-number-resolving detector

    NASA Astrophysics Data System (ADS)

    Sokolov, Andrii

    2016-03-01

    We determine the optimal parameters for a simple and efficient scheme of dispersive readout of a qubit. Depending on the qubit state (ground or excited), the resonance of a cavity is shifted either to the red or to the blue side. Qubit state is inferred by detecting the photon number transmitted through the cavity. It turns out that this kind of detection provides better measurement fidelity than the detection of the presence or absence of photons only. We show that radiating the cavity on either of the frequencies it shifts to results in a suboptimal measurement. The optimal frequency of the probe photons is determined, as well as the optimal ratio of the shift to the resonator leakage. It is shown that to maximize the fidelity of a long-lasting measurement, it is sufficient to use the parameters optimizing the signal-to-noise ratio in the photon count. One can reach 99% fidelity for a single-shot measurement in various physical realizations of the scheme.

  12. Enhancing the Design Process for Complex Space Systems through Early Integration of Risk and Variable-Fidelity Modeling

    NASA Technical Reports Server (NTRS)

    Mavris, Dimitri; Osburg, Jan

    2005-01-01

    An important enabler of the new national Vision for Space Exploration is the ability to rapidly and efficiently develop optimized concepts for the manifold future space missions that this effort calls for. The design of such complex systems requires a tight integration of all the engineering disciplines involved, in an environment that fosters interaction and collaboration. The research performed under this grant explored areas where the space systems design process can be enhanced: by integrating risk models into the early stages of the design process, and by including rapid-turnaround variable-fidelity tools for key disciplines. Enabling early assessment of mission risk will allow designers to perform trades between risk and design performance during the initial design space exploration. Entry into planetary atmospheres will require an increased emphasis of the critical disciplines of aero- and thermodynamics. This necessitates the pulling forward of EDL disciplinary expertise into the early stage of the design process. Radiation can have a large potential impact on overall mission designs, in particular for the planned nuclear-powered robotic missions under Project Prometheus and for long-duration manned missions to the Moon, Mars and beyond under Project Constellation. This requires that radiation and associated risk and hazards be assessed and mitigated at the earliest stages of the design process. Hence, RPS is another discipline needed to enhance the engineering competencies of conceptual design teams. Researchers collaborated closely with NASA experts in those disciplines, and in overall space systems design, at Langley Research Center and at the Jet Propulsion Laboratory. This report documents the results of this initial effort.

  13. High-fidelity simulation versus case-based discussion for teaching medical students in Brazil about pediatric emergencies

    PubMed Central

    Couto, Thomaz Bittencourt; Farhat, Sylvia C.L.; Geis, Gary L; Olsen, Orjan; Schvartsman, Claudio

    2015-01-01

    OBJECTIVE: To compare high-fidelity simulation with case-based discussion for teaching medical students about pediatric emergencies, as assessed by a knowledge post-test, a knowledge retention test and a survey of satisfaction with the method. METHODS: This was a non-randomized controlled study using a crossover design for the methods, as well as multiple-choice questionnaire tests and a satisfaction survey. Final-year medical students were allocated into two groups: group 1 participated in an anaphylaxis simulation and a discussion of a supraventricular tachycardia case, and conversely, group 2 participated in a discussion of an anaphylaxis case and a supraventricular tachycardia simulation. Students were tested on each theme at the end of their rotation (post-test) and 4–6 months later (retention test). RESULTS: Most students (108, or 66.3%) completed all of the tests. The mean scores for simulation versus case-based discussion were respectively 43.6% versus 46.6% for the anaphylaxis pre-test (p=0.42), 63.5% versus 67.8% for the post-test (p=0.13) and 61.5% versus 65.5% for the retention test (p=0.19). Additionally, the mean scores were respectively 33.9% versus 31.6% for the supraventricular tachycardia pre-test (p=0.44), 42.5% versus 47.7% for the post-test (p=0.09) and 41.5% versus 39.5% for the retention test (p=0.47). For both themes, there was improvement between the pre-test and the post-test (p<0.05), and no significant difference was observed between the post-test and the retention test (p>0.05). Moreover, the satisfaction survey revealed a preference for simulation (p<0.001). CONCLUSION: As a single intervention, simulation is not significantly different from case-based discussion in terms of acquisition and retention of knowledge but is superior in terms of student satisfaction. PMID:26106956

  14. Basics of Fidelity Bonding.

    ERIC Educational Resources Information Center

    Kahn, Steven P.

    Fidelity bonds are important for an agency to hold to protect itself against any financial loss that can result from dishonest acts by its employees. Three types of fidelity bonds are available to an agency: (1) public official bonds; (2) dishonesty bonds; and (3) faithful performance bonds. Public official bonds are required by state law to be…

  15. Site fidelity, mate fidelity, and breeding dispersal in American kestrels

    USGS Publications Warehouse

    Steenhof, K.; Peterson, B.E.

    2009-01-01

    We assessed mate fidelity, nest-box fidelity, and breeding dispersal distances of American Kestrels (falco sparverius) nesting in boxes in southwestern Idaho from 1990 through 2006. Seventy-seven percent of boxes had different males and 87% had different females where nest-box occupants were identified in consecutive years. High turnover rates were partly a result of box-switching. Forty-eight percent of males and 58% of females that nested within the study area in successive years used different boxes. The probability of changing boxes was unrelated to gender, nesting success in the prior year, or years of nesting experience. Breeding dispersal distances for birds that moved to different boxes averaged 2.2 km for males (max = 22 km) and 3.2 km for females (max = 32 km). Approximately 70% of birds that nested in consecutive years on the study area had a different mate in the second year. Mate fidelity was related to box fidelity but not to prior nesting success or years of nesting experience. Mate changes occurred 32% of the time when the previous mate was known to be alive and nesting in the area. Kestrels that switched mates and boxes did not improve or decrease their subsequent nesting success. Kestrels usually switched to mates with less experience and lower lifetime productivity than their previous mates. The costs of switching boxes and mates were low, and there were no obvious benefits to fidelity. The cost of "waiting" for a previous mate that might have died could be high in species with high annual mortality.

  16. Evaluating display fidelity and interaction fidelity in a virtual reality game.

    PubMed

    McMahan, Ryan P; Bowman, Doug A; Zielinski, David J; Brady, Rachael B

    2012-04-01

    In recent years, consumers have witnessed a technological revolution that has delivered more-realistic experiences in their own homes through high-definition, stereoscopic televisions and natural, gesture-based video game consoles. Although these experiences are more realistic, offering higher levels of fidelity, it is not clear how the increased display and interaction aspects of fidelity impact the user experience. Since immersive virtual reality (VR) allows us to achieve very high levels of fidelity, we designed and conducted a study that used a six-sided CAVE to evaluate display fidelity and interaction fidelity independently, at extremely high and low levels, for a VR first-person shooter (FPS) game. Our goal was to gain a better understanding of the effects of fidelity on the user in a complex, performance-intensive context. The results of our study indicate that both display and interaction fidelity significantly affect strategy and performance, as well as subjective judgments of presence, engagement, and usability. In particular, performance results were strongly in favor of two conditions: low-display, low-interaction fidelity (representative of traditional FPS games) and high-display, high-interaction fidelity (similar to the real world). PMID:22402690

  17. High fidelity simulation and analysis of liquid jet atomization in a gaseous crossflow at intermediate Weber numbers

    NASA Astrophysics Data System (ADS)

    Li, Xiaoyi; Soteriou, Marios C.

    2016-08-01

    Recent advances in numerical methods coupled with the substantial enhancements in computing power and the advent of high performance computing have presented first principle, high fidelity simulation as a viable tool in the prediction and analysis of spray atomization processes. The credibility and potential impact of such simulations, however, has been hampered by the relative absence of detailed validation against experimental evidence. The numerical stability and accuracy challenges arising from the need to simulate the high liquid-gas density ratio across the sharp interfaces encountered in these flows are key reasons for this. In this work we challenge this status quo by presenting a numerical model able to deal with these challenges, employing it in simulations of liquid jet in crossflow atomization and performing extensive validation of its results against a carefully executed experiment with detailed measurements in the atomization region. We then proceed to the detailed analysis of the flow physics. The computational model employs the coupled level set and volume of fluid approach to directly capture the spatiotemporal evolution of the liquid-gas interface and the sharp-interface ghost fluid method to stably handle high liquid-air density ratio. Adaptive mesh refinement and Lagrangian droplet models are shown to be viable options for computational cost reduction. Moreover, high performance computing is leveraged to manage the computational cost. The experiment selected for validation eliminates the impact of inlet liquid and gas turbulence and focuses on the impact of the crossflow aerodynamic forces on the atomization physics. Validation is demonstrated by comparing column surface wavelengths, deformation, breakup locations, column trajectories and droplet sizes, velocities, and mass rates for a range of intermediate Weber numbers. Analysis of the physics is performed in terms of the instability and breakup characteristics and the features of downstream

  18. New approach to color calibration of high fidelity color digital camera by using unique wide gamut color generator based on LED diodes

    NASA Astrophysics Data System (ADS)

    Kretkowski, M.; Shimodaira, Y.; Jabłoński, R.

    2008-11-01

    Development of a high accuracy color reproduction system requires certain instrumentation and reference for color calibration. Our research led to development of a high fidelity color digital camera with implemented filters that realize the color matching functions. The output signal returns XYZ values which provide absolute description of color. In order to produce XYZ output a mathematical conversion must be applied to CCD output values introducing a conversion matrix. The conversion matrix coefficients are calculated by using a color reference with known XYZ values and corresponding output signals from the CCD sensor under each filter acquisition from a certain amount of color samples. The most important feature of the camera is its ability to acquire colors from the complete theoretically visible color gamut due to implemented filters. However market available color references such as various color checkers are enclosed within HDTV gamut, which is insufficient for calibration in the whole operating color range. This led to development of a unique color reference based on LED diodes called the LED Color Generator (LED CG). It is capable of displaying colors in a wide color gamut estimated by chromaticity coordinates of 12 primary colors. The total amount of colors possible to produce is 25512. The biggest advantage is a possibility of displaying colors with desired spectral distribution (with certain approximations) due to multiple primary colors it consists. The average color difference obtained for test colors was found to be ▵E~0.78 for calibration with LED CG. The result is much better and repetitive in comparison with the Macbeth ColorCheckerTM which typically gives ▵E~1.2 and in the best case ▵E~0.83 with specially developed techniques.

  19. Teacher Fidelity to One Physical Education Curricular Model

    ERIC Educational Resources Information Center

    Kloeppel, Tiffany; Kulinna, Pamela Hodges; Stylianou, Michalis; van der Mars, Hans

    2013-01-01

    This study addressed teachers' fidelity to one Physical Education curricular model. The theoretical framework guiding this study included professional development and fidelity to curricular models. In this study, teachers' fidelity to the Dynamic Physical Education (DPE) curricular model was measured for high and nonsupport district groups.…

  20. Evaluating Fidelity to the Wraparound Service Model for Youth: Application of Item Response Theory to the Wraparound Fidelity Index

    PubMed Central

    Pullmann, Michael D.; Bruns, Eric J.; Sather, April K.

    2013-01-01

    The wraparound process is a mechanism for multi-system planning and care coordination for youth with serious emotional and behavioral problems. Fidelity monitoring is critical to effective implementation of evidence-based practices in children’s mental health, as it helps ensure that complex interventions like wraparound are implemented as intended. The 40-item Wraparound Fidelity Index, version 4 (WFI-4; Bruns, Burchard, Suter, Leverentz-Brady, & Force, 2004) is the most frequently used measure of fidelity to the wraparound process, but analysis of its psychometric properties is insufficient. An item response theory approach, Rasch partial credit models for ordered polytomous data, was used on ratings from 1,234 facilitators, 1,006 caregivers, and 221 team members, focused on 1,478 youths (55% male). Results indicated the WFI-4 measured a unidimensional construct, with little evidence of item bias and good item and model fit. However, the item information curve was skewed, with most people endorsing high-fidelity responses, and several items had duplicative location estimates. A reduced 20-item measure is proposed. Internal reliability estimates for scores from this reduced measure were approximately equivalent to the longer measure. However, both versions would benefit from additional items located in the highest-fidelity area of either version of the scale where scores by greater than half of our sample fall, but only three items are located. PMID:23544392

  1. The high fidelity of the cetacean stranding record: insights into measuring diversity by integrating taphonomy and macroecology

    PubMed Central

    Pyenson, Nicholas D.

    2011-01-01

    Stranded cetaceans have long intrigued naturalists because their causation has escaped singular explanations. Regardless of cause, strandings also represent a sample of the living community, although their fidelity has rarely been quantified. Using commensurate stranding and sighting records compiled from archived datasets representing nearly every major ocean basin, I demonstrated that the cetacean stranding record faithfully reflects patterns of richness and relative abundance in living communities, especially for coastlines greater than 2000 km and latitudinal gradients greater than 4°. Live–dead fidelity metrics from seven different countries indicated that strandings were almost always richer than live surveys; richness also increased with coastline length. Most death assemblages recorded the same ranked relative abundance as living communities, although this correlation decreased in strength and significance at coastline lengths greater than 15 000 km, highlighting the importance of sampling diversity at regional scales. Rarefaction analyses indicated that sampling greater than 10 years generally enhanced the completeness of death assemblages, although protracted temporal sampling did not substitute for sampling over longer coastlines or broader latitudes. Overall, this global live–dead comparison demonstrated that strandings almost always provided better diversity information about extant cetacean communities than live surveys; such archives are therefore relevant for macroecological and palaeobiological studies of cetacean community change through time. PMID:21525057

  2. Fidelity imaging for atomic force microscopy

    SciTech Connect

    Ghosal, Sayan Salapaka, Murti

    2015-01-05

    Atomic force microscopy is widely employed for imaging material at the nanoscale. However, real-time measures on image reliability are lacking in contemporary atomic force microscopy literature. In this article, we present a real-time technique that provides an image of fidelity for a high bandwidth dynamic mode imaging scheme. The fidelity images define channels that allow the user to have additional authority over the choice of decision threshold that facilitates where the emphasis is desired, on discovering most true features on the sample with the possible detection of high number of false features, or emphasizing minimizing instances of false detections. Simulation and experimental results demonstrate the effectiveness of fidelity imaging.

  3. Balancing Fidelity with Flexibility and Fit: What Do We Really Know about Fidelity of Implementation in Schools?

    ERIC Educational Resources Information Center

    Harn, Beth; Parisi, Danielle; Stoolmiller, Mike

    2013-01-01

    Treatment fidelity, or the application of an intervention as it is designed, is a critical issue for the successful implementation of evidence-based practices. Typically it is assumed that evidence-based practices implemented with high fidelity will result in improved outcomes, whereas low fidelity will lead to poorer outcomes. These assumptions…

  4. Is mate fidelity related to site fidelity? A comparative analysis in Ciconiiforms.

    PubMed

    Cézilly; Dubois; Pagel

    2000-06-01

    We tested for an association between divorce rate and site fidelity in 42 avian species belonging to the order Ciconiiforms, using comparative methods that account for the influences of phylogenetic relationships on the data. Our methods enabled us to detect evidence of correlated evolution and provided information on the temporal ordering of evolutionary changes in these two variables. We found a significant correlation between divorce rate and site fidelity, indicating that species with little or no site fidelity are more likely to divorce. Our data suggest that the coupled evolution of divorce and site fidelity can be summarized by three major events. The first event corresponds to a transition from species showing high divorce rate and low or no site fidelity to species that tended to reuse the same nests over consecutive breeding seasons. This was followed by a transition towards higher mate fidelity, with the preservation of pair bonds over consecutive breeding attempts. In a third stage, divorce rate and the rate of site fidelity varied, independently of each other. We discuss our results within the context of the ancestor species and the past environments in which the traits originated, and address the importance of the potential for individual recognition in shaping the observed patterns of covariation between mate fidelity and site fidelity in Ciconiiforms. Copyright 2000 The Association for the Study of Animal Behaviour. PMID:10877893

  5. How Fidelity Invests in Service Professionals.

    ERIC Educational Resources Information Center

    McColgan, Ellyn A.

    1997-01-01

    Fidelity Institutional Retirement Services Company reorganized, automated, and reengineered all systems related to service delivery. They created a model for the development of associates called Service Delivery University and committed each associate to 80 hours of development per year. (JOW)

  6. Comparing the effectiveness of video-assisted oral debriefing and oral debriefing alone on behaviors by undergraduate nursing students during high-fidelity simulation.

    PubMed

    Grant, Joan S; Dawkins, Denise; Molhook, Lori; Keltner, Norman L; Vance, David E

    2014-09-01

    Complex healthcare, less resources, high-level medical equipment, and fewer available clinical settings have led many health professionals to use simulation as a method to further augment educational experiences for nursing students. While debriefing is recommended in the literature as a key component of simulation, the optimal format in which to conduct debriefing is unknown. This pre- and posttest two-group randomized quasi-experimental design compared the effectiveness of video-assisted oral debriefing (VAOD) and oral debriefing alone (ODA) on behaviors of 48 undergraduate nursing students during high-fidelity simulation. Further, this study examined whether roles (e.g., team leader, medication nurse), type of scenarios (i.e., pulmonary and cardiac scenarios), and student simulation team membership (i.e., VAOD and ODA groups) influenced these behaviors. Behaviors observed in this study related to patient safety, communication among team members, basic- and problem-focused assessment, prioritization of care, appropriate interventions, and delegation to healthcare team members. Both human patient simulator practice and guidance using video-assisted oral debriefing and oral debriefing alone appeared to be comparable regarding behaviors, regardless of roles, type of scenarios, and student simulation team membership. These findings suggest that nurse educators may use either video-assisted oral debriefing or oral debriefing alone to debrief undergraduate nursing students during high-fidelity simulation. PMID:24929548

  7. Gate fidelity fluctuations and quantum process invariants

    SciTech Connect

    Magesan, Easwar; Emerson, Joseph; Blume-Kohout, Robin

    2011-07-15

    We characterize the quantum gate fidelity in a state-independent manner by giving an explicit expression for its variance. The method we provide can be extended to calculate all higher order moments of the gate fidelity. Using these results, we obtain a simple expression for the variance of a single-qubit system and deduce the asymptotic behavior for large-dimensional quantum systems. Applications of these results to quantum chaos and randomized benchmarking are discussed.

  8. Ground state fidelity from tensor network representations.

    PubMed

    Zhou, Huan-Qiang; Orús, Roman; Vidal, Guifre

    2008-02-29

    For any D-dimensional quantum lattice system, the fidelity between two ground state many-body wave functions is mapped onto the partition function of a D-dimensional classical statistical vertex lattice model with the same lattice geometry. The fidelity per lattice site, analogous to the free energy per site, is well defined in the thermodynamic limit and can be used to characterize the phase diagram of the model. We explain how to compute the fidelity per site in the context of tensor network algorithms, and demonstrate the approach by analyzing the two-dimensional quantum Ising model with transverse and parallel magnetic fields. PMID:18352611

  9. The fidelity of adaptive phototaxis

    NASA Astrophysics Data System (ADS)

    Drescher, Knut; Tuval, Idan; Goldstein, Raymond

    2010-03-01

    Along the evolutionary path from single cells to multicellular organisms with a central nervous system are species of intermediate complexity which move in ways suggesting high-level coordination, yet have none. Instead, organisms within this category possess many autonomous cells which are endowed with programs that have evolved to achieve concerted responses to environmental stimuli. We examine the main features of the program underlying high-fidelity phototaxis in colonial algae which spin about a body-fixed axis as they swim. Using micromanipulation and particle image velocimetry of flagella-driven flows in Volvox carteri, we show that there is an adaptive response at the single-cell level that displays a pronounced maximum in its frequency dependence for periodic light signals. Moreover, the natural rotational frequency of the colony is tuned to match this optimal response. A hydrodynamic model of phototactic steering further shows that the phototactic ability decreases dramatically when the colony does not spin at its natural frequency, a result confirmed by phototaxis assays in which colony rotation was slowed by increasing the fluid viscosity.

  10. Teleporting an unknown quantum state with unit fidelity and unit probability via a non-maximally entangled channel and an auxiliary system

    NASA Astrophysics Data System (ADS)

    Rashvand, Taghi

    2016-08-01

    We present a new scheme for quantum teleportation that one can teleport an unknown state via a non-maximally entangled channel with certainly, using an auxiliary system. In this scheme depending on the state of the auxiliary system, one can find a class of orthogonal vectors set as a basis which by performing von Neumann measurement in each element of this class Alice can teleport an unknown state with unit fidelity and unit probability. A comparison of our scheme with some previous schemes is given and we will see that our scheme has advantages that the others do not.

  11. Physiological Based Simulator Fidelity Design Guidance

    NASA Technical Reports Server (NTRS)

    Schnell, Thomas; Hamel, Nancy; Postnikov, Alex; Hoke, Jaclyn; McLean, Angus L. M. Thom, III

    2012-01-01

    The evolution of the role of flight simulation has reinforced assumptions in aviation that the degree of realism in a simulation system directly correlates to the training benefit, i.e., more fidelity is always better. The construct of fidelity has several dimensions, including physical fidelity, functional fidelity, and cognitive fidelity. Interaction of different fidelity dimensions has an impact on trainee immersion, presence, and transfer of training. This paper discusses research results of a recent study that investigated if physiological-based methods could be used to determine the required level of simulator fidelity. Pilots performed a relatively complex flight task consisting of mission task elements of various levels of difficulty in a fixed base flight simulator and a real fighter jet trainer aircraft. Flight runs were performed using one forward visual channel of 40 deg. field of view for the lowest level of fidelity, 120 deg. field of view for the middle level of fidelity, and unrestricted field of view and full dynamic acceleration in the real airplane. Neuro-cognitive and physiological measures were collected under these conditions using the Cognitive Avionics Tool Set (CATS) and nonlinear closed form models for workload prediction were generated based on these data for the various mission task elements. One finding of the work described herein is that simple heart rate is a relatively good predictor of cognitive workload, even for short tasks with dynamic changes in cognitive loading. Additionally, we found that models that used a wide range of physiological and neuro-cognitive measures can further boost the accuracy of the workload prediction.

  12. Fast food diet mouse: novel small animal model of NASH with ballooning, progressive fibrosis, and high physiological fidelity to the human condition

    PubMed Central

    Krishnan, Anuradha; Viker, Kimberly; Sanderson, Schuyler; Cazanave, Sophie; McConico, Andrea; Masuoko, Howard; Gores, Gregory

    2011-01-01

    Although there are small animal platforms that recapitulate some of the histological features of nonalcoholic fatty liver disease, there are no small animal models of nonalcoholic steatohepatitis (NASH) with consistent hepatocellular ballooning and progressive fibrosis that also exhibit fidelity to the human condition physiologically. We examined the metabolic and histological effects of a diet on the basis of the composition of “fast food” (high saturated fats, cholesterol, and fructose). Mice (n = 8 in each group) were assigned to diets as follows: 1) standard chow (SC), i.e., 13% energy as fat [1% saturated fatty acids (SFA)], 2) high fat (HF), i.e., 60% energy as fat (1% SFA), and 3) fast food (FF), i.e., 40% energy as fat (12% SFA, 2% cholesterol). All three diets were supplemented with high fructose. All diets produced obesity. The HF and FF diets produced insulin resistance. Liver histology was normal in animals fed the SC diet. Steatohepatitis with pronounced ballooning and progressive fibrosis (stage 2) was observed in mice fed the FF diet. Although the HF diet produced obesity, insulin resistance, and some steatosis; inflammation was minimal, and there was no increase in fibrosis. The FF diet produced a gene expression signature of increased fibrosis, inflammation, and endoplasmic reticulum stress and lipoapoptosis. A diet based on high cholesterol, high saturated fat, and high fructose recapitulates features of the metabolic syndrome and NASH with progressive fibrosis. This represents a novel small animal model of fibrosing NASH with high fidelity to the human condition. These results highlight the contribution of dietary composition to the development of nonalcoholic fatty liver disease and NASH. PMID:21836057

  13. Optical simulation for imaging reconnaissance and intelligence sensors OSIRIS: High fidelity sensor simulation test bed; Modified user`s manual

    SciTech Connect

    Abernathy, M.F.; Puccetti, M.G.

    1988-01-04

    The OSIRIS program is an imaging optical simulation program which has been developed to predict the output of space-borne sensor systems. The simulation is radiometrically precise and includes highly realistic laser, atmosphere, and earth background models, as well as detailed models of optical components. This system was developed by Rockwell Power Services for the Los Alamos National Laboratory. It is based upon the LARC (Los Alamos Radiometry Code, also by Rockwell), and uses a similar command structure and 3d coordinate system as LARC. At present OSIRIS runs on the Cray I computer under the CTSS operating s stem, and is stored in the OSIRIS root directory on LANL CTSS mass storage.

  14. Nuclear Energy Advanced Modeling and Simulation (NEAMS) waste Integrated Performance and Safety Codes (IPSC) : gap analysis for high fidelity and performance assessment code development.

    SciTech Connect

    Lee, Joon H.; Siegel, Malcolm Dean; Arguello, Jose Guadalupe, Jr.; Webb, Stephen Walter; Dewers, Thomas A.; Mariner, Paul E.; Edwards, Harold Carter; Fuller, Timothy J.; Freeze, Geoffrey A.; Jove-Colon, Carlos F.; Wang, Yifeng

    2011-03-01

    needed for repository modeling are severely lacking. In addition, most of existing reactive transport codes were developed for non-radioactive contaminants, and they need to be adapted to account for radionuclide decay and in-growth. The accessibility to the source codes is generally limited. Because the problems of interest for the Waste IPSC are likely to result in relatively large computational models, a compact memory-usage footprint and a fast/robust solution procedure will be needed. A robust massively parallel processing (MPP) capability will also be required to provide reasonable turnaround times on the analyses that will be performed with the code. A performance assessment (PA) calculation for a waste disposal system generally requires a large number (hundreds to thousands) of model simulations to quantify the effect of model parameter uncertainties on the predicted repository performance. A set of codes for a PA calculation must be sufficiently robust and fast in terms of code execution. A PA system as a whole must be able to provide multiple alternative models for a specific set of physical/chemical processes, so that the users can choose various levels of modeling complexity based on their modeling needs. This requires PA codes, preferably, to be highly modularized. Most of the existing codes have difficulties meeting these requirements. Based on the gap analysis results, we have made the following recommendations for the code selection and code development for the NEAMS waste IPSC: (1) build fully coupled high-fidelity THCMBR codes using the existing SIERRA codes (e.g., ARIA and ADAGIO) and platform, (2) use DAKOTA to build an enhanced performance assessment system (EPAS), and build a modular code architecture and key code modules for performance assessments. The key chemical calculation modules will be built by expanding the existing CANTERA capabilities as well as by extracting useful components from other existing codes.

  15. The Fidelity of Template-Directed Oligonucleotide Ligation and the Inevitability of Polymerase Function

    NASA Astrophysics Data System (ADS)

    James, Kenneth D.; Ellington, Andrew D.

    1999-08-01

    The first living systems may have employed template-directed oligonucleotide ligation for replication. The utility of oligonucleotide ligation as a mechanism for the origin and evolution of life is in part dependent on its fidelity. We have devised a method for evaluating ligation fidelity in which ligation substrates are selected from random sequence libraries. The fidelities of chemical and enzymatic ligation are compared under a variety of conditions. While reaction conditions can be found that promote high fidelity copying, departure from these conditions leads to error-prone copying. In particular, ligation reactions with shorter oligonucleotide substrates are less efficient but more faithful. These results support a model for origins in which there was selective pressure for template-directed oligonucleotide ligation to be gradually supplanted by mononucleotide polymerization.

  16. Using the Moon as a high-fidelity analogue environment to study biological and behavioral effects of long-duration space exploration

    NASA Astrophysics Data System (ADS)

    Goswami, Nandu; Roma, Peter G.; De Boever, Patrick; Clément, Gilles; Hargens, Alan R.; Loeppky, Jack A.; Evans, Joyce M.; Peter Stein, T.; Blaber, Andrew P.; Van Loon, Jack J. W. A.; Mano, Tadaaki; Iwase, Satoshi; Reitz, Guenther; Hinghofer-Szalkay, Helmut G.

    2012-12-01

    Due to its proximity to Earth, the Moon is a promising candidate for the location of an extra-terrestrial human colony. In addition to being a high-fidelity platform for research on reduced gravity, radiation risk, and circadian disruption, the Moon qualifies as an isolated, confined, and extreme (ICE) environment suitable as an analog for studying the psychosocial effects of long-duration human space exploration missions and understanding these processes. In contrast, the various Antarctic research outposts such as Concordia and McMurdo serve as valuable platforms for studying biobehavioral adaptations to ICE environments, but are still Earth-bound, and thus lack the low-gravity and radiation risks of space. The International Space Station (ISS), itself now considered an analog environment for long-duration missions, better approximates the habitable infrastructure limitations of a lunar colony than most Antarctic settlements in an altered gravity setting. However, the ISS is still protected against cosmic radiation by the Earth magnetic field, which prevents high exposures due to solar particle events and reduces exposures to galactic cosmic radiation. On Moon the ICE environments are strengthened, radiations of all energies are present capable of inducing performance degradation, as well as reduced gravity and lunar dust. The interaction of reduced gravity, radiation exposure, and ICE conditions may affect biology and behavior - and ultimately mission success - in ways the scientific and operational communities have yet to appreciate, therefore a long-term or permanent human presence on the Moon would ultimately provide invaluable high-fidelity opportunities for integrated multidisciplinary research and for preparations of a manned mission to Mars.

  17. Sequential kriging optimization using multiple-fidelity evaluations

    SciTech Connect

    Huang, Deng; Allen, T. T.; Notz, W. I.; Miller, R. A.

    2006-11-01

    When cost per evaluation on a system of interest is high, surrogate systems can provide cheaper but lower-fidelity information. In the proposed extension of the sequential kriging optimization method, surrogate systems are exploited to reduce the total evaluation cost. The method utilizes data on all systems to build a kriging metamodel that provides a global prediction of the objective function and a measure of prediction uncertainty. The location and fidelity level of the next evaluation are selected by maximizing an augmented expected improvement function, which is connected with the evaluation costs. The proposed method was applied to test functions from the literature and a metal-forming process design problem via finite element simulations. The method manifests sensible search patterns, robust performance, and appreciable reduction in total evaluation cost as compared to the original method.

  18. Sequential kriging optimization using multiple-fidelity evaluations

    SciTech Connect

    Huang, Deng; Allen, T. T.; Notz, W. I.; Miller, R. A.

    2006-05-23

    When cost per evaluation on a system of interest is high, surrogate systems can provide cheaper but lower-fidelity information. In the proposed extension of the sequential kriging optimization method, surrogate systems are exploited to reduce the total evaluation cost. The method utilizes data on all systems to build a kriging metamodel that provides a global prediction of the objective function and a measure of prediction uncertainty. The location and fidelity level of the next evaluation are selected by maximizing an augmented expected improvement function, which is connected with the evaluation costs. The proposed method was applied to test functions from the literature and a metal-forming process design problem via finite element simulations. The method manifests sensible search patterns, robust performance, and appreciable reduction in total evaluation cost as compared to the original method.

  19. A New View on Interstellar Dust - High Fidelity Studies of Interstellar Dust Analogue Tracks in Stardust Flight Spare Aerogel

    NASA Technical Reports Server (NTRS)

    Zolensky, Michael E.; Postberg F.; Allen, C.; Bajt, S.; Bechtel, H. A.; Borg, J.; Brenker, F.; Bridges, J.; Brownlee, D. E.; Bugiel, S.; Burchell, M.; Burghammer, M.; Butterworth, A. L.; Cloetens, P.; Davis, A. M.; Floss, C.; Flynn, G. J.; Frank, D.; Gainsforth, Z.

    2011-01-01

    In 2000 and 2002 the Stardust Mission exposed aerogel collector panels for a total of about 200 days to the stream of interstellar grains sweeping through the solar system. The material was brought back to Earth in 2006. The goal of this work is the laboratory calibration of the collection process by shooting high speed [5 - 30km/s] interstellar dust (ISD) analogues onto Stardust aerogel flight spares. This enables an investigation into both the morphology of impact tracks as well as any structural and chemical modification of projectile and collector material. First results indicate a different ISD flux than previously assumed for the Stardust collection period.

  20. A high-fidelity multiphysics model for the new solid oxide iron-air redox battery. part I: Bridging mass transport and charge transfer with redox cycle kinetics

    NASA Astrophysics Data System (ADS)

    Jin, Xinfang; Zhao, Xuan; Huang, Kevin

    2015-04-01

    A high-fidelity two-dimensional axial symmetrical multi-physics model is described in this paper as an effort to simulate the cycle performance of a recently discovered solid oxide metal-air redox battery (SOMARB). The model collectively considers mass transport, charge transfer and chemical redox cycle kinetics occurring across the components of the battery, and is validated by experimental data obtained from independent research. In particular, the redox kinetics at the energy storage unit is well represented by Johnson-Mehl-Avrami-Kolmogorov (JMAK) and Shrinking Core models. The results explicitly show that the reduction of Fe3O4 during the charging cycle limits the overall performance. Distributions of electrode potential, overpotential, Nernst potential, and H2/H2O-concentration across various components of the battery are also systematically investigated.

  1. An exploration of ruling relations and how they organize and regulate nursing education in the high-fidelity patient simulation laboratory.

    PubMed

    Limoges, Jacqueline

    2010-03-01

    Recently, schools of nursing have adopted the use of high-fidelity human patient simulators in laboratory settings to teach nursing. Although numerous articles document the benefits of teaching undergraduate nursing students in this way, little attention has been paid to the discourses and texts organizing this approach. This institutional ethnography uses the critical feminist sociology of Dorothy E. Smith to examine the literature and interviews with Practical and Bachelor of Science in Nursing students, and their faculty about this experience. The research shows how discourses rationalize and sustain certain processes at the expense of others. For example, ruling discourses such as biomedicine, efficiency, and the relational ontology are activated to construct the simulation lab as part of nursing and nursing education. The analysis also highlights the intended and unintended effects of these discourses on nursing education and discusses how emphasizing nursing knowledges can make the simulation lab a positive place for learning. PMID:20137031

  2. A high-fidelity multiphysics model for the new solid oxide iron-air redox battery part I: Bridging mass transport and charge transfer with redox cycle kinetics

    SciTech Connect

    Jin, XF; Zhao, X; Huang, K

    2015-04-15

    A high-fidelity two-dimensional axial symmetrical multi-physics model is described in this paper as an effort to simulate the cycle performance of a recently discovered solid oxide metal-air redox battery (SOMARB). The model collectively considers mass transport, charge transfer and chemical redox cycle kinetics occurring across the components of the battery, and is validated by experimental data obtained from independent research. In particular, the redox kinetics at the energy storage unit is well represented by Johnson-Mehl-Avrami-Kolmogorov (JIVIAK) and Shrinking Core models. The results explicitly show that the reduction of Fe3O4 during the charging cycle limits the overall performance. Distributions of electrode potential, overpotential, Nernst potential, and H-2/H2O-concentration across various components of the battery are also systematically investigated. (C) 2015 Elsevier B.V. All rights reserved.

  3. Modeling for Fidelity: virtual mentorship by scientists fosters teacher self-efficacy and promotes implementation of novel high school biomedical curricula.

    PubMed

    Malanson, Katherine; Jacque, Berri; Faux, Russell; Meiri, Karina F

    2014-01-01

    This small-scale comparison case study evaluates the impact of an innovative approach to teacher professional development designed to promote implementation of a novel cutting edge high school neurological disorders curriculum. 'Modeling for Fidelity' (MFF) centers on an extended mentor relationship between teachers and biomedical scientists carried out in a virtual format in conjunction with extensive online educative materials. Four teachers from different diverse high schools in Massachusetts and Ohio who experienced MFF contextualized to a 6-week Neurological Disorders curriculum with the same science mentor were compared to a teacher who had experienced an intensive in-person professional development contextualized to the same curriculum with the same mentor. Fidelity of implementation was measured directly using an established metric and indirectly via student performance. The results show that teachers valued MFF, particularly the mentor relationship and were able to use it effectively to ensure critical components of the learning objectives were preserved. Moreover their students performed equivalently to those whose teacher had experienced intensive in-person professional development. Participants in all school settings demonstrated large (Cohen's d>2.0) and significant (p<0.0001 per-post) changes in conceptual knowledge as well as self-efficacy towards learning about neurological disorders (Cohen's d>1.5, p<0.0001 pre-post). The data demonstrates that the virtual mentorship format in conjunction with extensive online educative materials is an effective method of developing extended interactions between biomedical scientists and teachers that are scalable and not geographically constrained, facilitating teacher implementation of novel cutting-edge curricula. PMID:25551645

  4. Undergraduate nursing students' experiences when examining nursing skills in clinical simulation laboratories with high-fidelity patient simulators: A phenomenological research study.

    PubMed

    Sundler, Annelie J; Pettersson, Annika; Berglund, Mia

    2015-12-01

    Simulation has become a widely used and established pedagogy for teaching clinical nursing skills. Nevertheless, the evidence in favour of this pedagogical approach is weak, and more knowledge is needed in support of its use. The aim of this study was (a) to explore the experiences of undergraduate nursing students when examining knowledge, skills and competences in clinical simulation laboratories with high-fidelity patient simulators and (b) to analyse these students' learning experiences during the examination. A phenomenological approach was used, and qualitative interviews were conducted among 23 second-year undergraduate nursing students-17 women and 6 men. The findings revealed that, irrespective of whether they passed or failed the examination, it was experienced as a valuable assessment of the students' knowledge and skills. Even if the students felt that the examination was challenging, they described it as a learning opportunity. In the examination, the students were able to integrate theory with practice, and earlier established knowledge was scrutinised when reflecting on the scenarios. The examination added aspects to the students' learning that prepared them for the real world of nursing in a safe environment without risking patient safety. The study findings suggest that examinations in clinical simulation laboratories can be a useful teaching strategy in nursing education. The use of high-fidelity patient simulators made the examination authentic. The reflections and feedback on the scenario were described as significant for the students' learning. Undergraduate nursing students can improve their knowledge, understanding, competence and skills when such examinations are performed in the manner used in this study. PMID:25943280

  5. Proposal for high-speed and high-fidelity electron-spin initialization in a negatively charged quantum dot coupled to a microcavity in a weak external magnetic field

    SciTech Connect

    Majumdar, Arka; Lin Ziliang; Faraon, Andrei; Vuckovic, Jelena

    2010-08-15

    We describe a proposal for fast electron-spin initialization in a negatively charged quantum dot coupled to a microcavity without the need for a strong magnetic field. We employ two-photon excitation to access trion states that are spin forbidden by one-photon excitation. Our simulation shows a maximum initialization speed of 1.3 GHz and maximum fidelity of 99.7% with realistic system parameters.

  6. Towards a Better Understanding of Forest Biophysical Parameters - Combining High Fidelity Simulations, Airborne Waveform Lidar, and Terrestrial Lidar Sensing

    NASA Astrophysics Data System (ADS)

    van Aardt, J. A.; Kelbe, D.; Romanczyk, P.; van Leeuwen, M.; Cawse-Nicholson, K.; Krause, K.; Kampe, T. U.

    2015-12-01

    The science community has come a long way from traditional, 2D imaging approaches to the assessment of ecosystem structure, function and composition. For example, waveform- (wlidar) and terrestrial lidar systems (TLS) present us with exciting opportunities for detailed, accurate and precise, and scalable structural characterization of vegetation. wlidar and TLS generally can be regarded as complementary i.e., airborne wlidar typically digitizes the entire backscattered energy profile at high spatial and vertical resolutions, while TLS samples dense 3D point clouds of the bottom-up vegetation structure. Research teams at Rochester Institute of Technology (RIT) have been collaborating with the National Ecological Observation Network (NEON) to assess vegetation structure and variation in the Pacific-Southwest (San Joaquin Experimental Range and Soaproot Saddle sites, CA) and Northeast (Harvard Forest, MA) domains. The teams collected airborne small-footprint wlidar data and in-situ TLS data for these sites and is taking a two-tiered (top-down and bottom-up) approach to forest structural assessment. We will present our work where we (i) studied wlidar signal attenuation throughout the canopy in a simulation environment - the attenuation correction factor was linearly proportional to the sum of the area under the proceeding Gaussians - and (ii) used the fine-scale stem structure extracted via TLS to reconstruct complex, but realistic, 3D forest environments for refined simulation studies. These studies indicate that we can potentially assess vegetation canopies remotely using a vertically-stratified approach with wlidar and use rapid-scan TLS technology to calibrate models predicated upon synoptic airborne systems. Other outputs of our approaches can be used for typical forest inventory, ecological parameter extraction, and new algorithm validation.

  7. High fidelity remote sensing of snow properties from MODIS and the Airborne Snow Observatory: Snowflakes to Terabytes

    NASA Astrophysics Data System (ADS)

    Painter, T.; Mattmann, C. A.; Brodzik, M.; Bryant, A. C.; Goodale, C. E.; Hart, A. F.; Ramirez, P.; Rittger, K. E.; Seidel, F. C.; Zimdars, P. A.

    2012-12-01

    , robust inputs to water management models and systems of the future. In the push to better understand the physical and ecological processes of snowmelt and how they influence regional to global hydrologic and climatic cycles, these technologies and retrievals provide markedly improved detail. We have implemented a science computing facility anchored upon the open source Apache OODT data processing framework. Apache OODT provides adaptable, rapid, and effective workflow technologies that we leverage to execute 10s of thousands of MOD-DRFS and MODSCAG jobs in the Western US, Alaska, and High Asia, critical regions where snowmelt and runoff must be more accurately and precisely identified. Apache OODT also provides us data dissemination capabilities built upon the popular, open source WebDAV protocol that allow our system to disseminate over 20 TB of MOD-DRFS and MODSCAG to the decision making community. Our latest endeavor involves building out Apache OODT to support Geospatial exploration of our data, including providing a Leaflet.js based Map, Geoserver backed protocols, and seamless integration with our Apache OODT system. This framework provides the foundation for the ASO data system.

  8. Central dysmyelination reduces the temporal fidelity of synaptic transmission and the reliability of postsynaptic firing during high-frequency stimulation.

    PubMed

    Kim, Sei Eun; Turkington, Karl; Kushmerick, Christopher; Kim, Jun Hee

    2013-10-01

    Auditory brain stem circuits rely on fast, precise, and reliable neurotransmission to process auditory information. To determine the fundamental role of myelination in auditory brain stem function, we examined the evoked auditory brain stem response (ABR) from the Long Evans shaker (LES) rat, which lacks myelin due to a genetic deletion of myelin basic protein. In control rats, the ABR evoked by a click consisted of five well-defined waves (denoted waves I-V). In LES rats, waves I, IV, and V were present, but waves II and III were undetectable, indicating disrupted function in the earliest stages of central nervous system auditory processing. In addition, the developmental shortening of the interval between waves I and IV that normally occurs in control rats was arrested and resulted in a significant increase in the central conduction time in LES rats. In brain stem slices, action potential transmission between the calyx of Held terminals and the medial nucleus of the trapezoid body (MNTB) neurons was delayed and less reliable in LES rats, although the resting potential, threshold, input resistance, and length of the axon initial segment of the postsynaptic MNTB neurons were normal. The amplitude of glutamatergic excitatory postsynaptic currents (EPSCs) and the degree of synaptic depression during high-frequency stimulation were not different between LES rats and controls, but LES rats exhibited a marked slow component to the EPSC decay and a much higher rate of presynaptic failures. Together, these results indicate that loss of myelin disrupts brain stem auditory processing, increasing central conduction time and reducing the reliability of neurotransmission. PMID:23843435

  9. High Fidelity Non-Gravitational Force Models for Precise and Accurate Orbit Determination of TerraSAR-X

    NASA Astrophysics Data System (ADS)

    Hackel, Stefan; Montenbruck, Oliver; Steigenberger, -Peter; Eineder, Michael; Gisinger, Christoph

    Remote sensing satellites support a broad range of scientific and commercial applications. The two radar imaging satellites TerraSAR-X and TanDEM-X provide spaceborne Synthetic Aperture Radar (SAR) and interferometric SAR data with a very high accuracy. The increasing demand for precise radar products relies on sophisticated validation methods, which require precise and accurate orbit products. Basically, the precise reconstruction of the satellite’s trajectory is based on the Global Positioning System (GPS) measurements from a geodetic-grade dual-frequency receiver onboard the spacecraft. The Reduced Dynamic Orbit Determination (RDOD) approach utilizes models for the gravitational and non-gravitational forces. Following a proper analysis of the orbit quality, systematics in the orbit products have been identified, which reflect deficits in the non-gravitational force models. A detailed satellite macro model is introduced to describe the geometry and the optical surface properties of the satellite. Two major non-gravitational forces are the direct and the indirect Solar Radiation Pressure (SRP). Due to the dusk-dawn orbit configuration of TerraSAR-X, the satellite is almost constantly illuminated by the Sun. Therefore, the direct SRP has an effect on the lateral stability of the determined orbit. The indirect effect of the solar radiation principally contributes to the Earth Radiation Pressure (ERP). The resulting force depends on the sunlight, which is reflected by the illuminated Earth surface in the visible, and the emission of the Earth body in the infrared spectra. Both components of ERP require Earth models to describe the optical properties of the Earth surface. Therefore, the influence of different Earth models on the orbit quality is assessed within the presentation. The presentation highlights the influence of non-gravitational force and satellite macro models on the orbit quality of TerraSAR-X.

  10. Particle infectivity of HIV-1 full-length genome infectious molecular clones in a subtype C heterosexual transmission pair following high fidelity amplification and unbiased cloning

    SciTech Connect

    Deymier, Martin J.; Claiborne, Daniel T.; Ende, Zachary; Ratner, Hannah K.; Kilembe, William; Hunter, Eric

    2014-11-15

    The high genetic diversity of HIV-1 impedes high throughput, large-scale sequencing and full-length genome cloning by common restriction enzyme based methods. Applying novel methods that employ a high-fidelity polymerase for amplification and an unbiased fusion-based cloning strategy, we have generated several HIV-1 full-length genome infectious molecular clones from an epidemiologically linked transmission pair. These clones represent the transmitted/founder virus and phylogenetically diverse non-transmitted variants from the chronically infected individual's diverse quasispecies near the time of transmission. We demonstrate that, using this approach, PCR-induced mutations in full-length clones derived from their cognate single genome amplicons are rare. Furthermore, all eight non-transmitted genomes tested produced functional virus with a range of infectivities, belying the previous assumption that a majority of circulating viruses in chronic HIV-1 infection are defective. Thus, these methods provide important tools to update protocols in molecular biology that can be universally applied to the study of human viral pathogens. - Highlights: • Our novel methodology demonstrates accurate amplification and cloning of full-length HIV-1 genomes. • A majority of plasma derived HIV variants from a chronically infected individual are infectious. • The transmitted/founder was more infectious than the majority of the variants from the chronically infected donor.

  11. Particle infectivity of HIV-1 full-length genome infectious molecular clones in a subtype C heterosexual transmission pair following high fidelity amplification and unbiased cloning

    PubMed Central

    Deymier, Martin J.; Claiborne, Daniel T.; Ende, Zachary; Ratner, Hannah K.; Kilembe, William; Allen, Susan; Hunter, Eric

    2014-01-01

    The high genetic diversity of HIV-1 impedes high throughput, large-scale sequencing and full-length genome cloning by common restriction enzyme based methods. Applying novel methods that employ a high-fidelity polymerase for amplification and an unbiased fusion-based cloning strategy, we have generated several HIV-1 full-length genome infectious molecular clones from an epidemiologically linked transmission pair. These clones represent the transmitted/founder virus and phylogenetically diverse non-transmitted variants from the chronically infected individual's diverse quasispecies near the time of transmission. We demonstrate that, using this approach, PCR-induced mutations in full-length clones derived from their cognate single genome amplicons are rare. Furthermore, all eight non-transmitted genomes tested produced functional virus with a range of infectivities, belying the previous assumption that a majority of circulating viruses in chronic HIV-1 infection are defective. Thus, these methods provide important tools to update protocols in molecular biology that could be universally applied to the study of human viral pathogens. PMID:25243334

  12. Gaussian fidelity distorted by external fields

    NASA Astrophysics Data System (ADS)

    Santos, Jonas F. G.; Bernardini, Alex E.

    2016-03-01

    Gaussian state decoherence aspects due to interacting magnetic-like and gravitational fields are quantified through the quantum fidelity and Shannon entropy in the scope of the phase-space representation of elementary quantum systems. For Gaussian Wigner functions describing harmonic oscillator states, an interacting external field destroys the quantum fidelity and introduces a quantum beating behavior. Likewise, it introduces harmonic profiles for free particle systems. Some aspects of quantum decoherence for the quantum harmonic oscillator and for the free particle limit are also quantified through the Shannon entropy. For the gravitational quantum well, the effect of a magnetic-like field on the quantum fidelity is suppressed by the linear term of the gravitational potential. To conclude, one identifies a fine formal connection of the quantum decoherence aspects discussed here with the noncommutative quantum mechanics.

  13. Combining high fidelity simulations and real data for improved small-footprint waveform lidar assessment of vegetation structure (Invited)

    NASA Astrophysics Data System (ADS)

    van Aardt, J. A.; Wu, J.; Asner, G. P.

    2010-12-01

    Our understanding of vegetation complexity and biodiversity, from a remote sensing perspective, has evolved from 2D species diversity to also include 3D vegetation structural diversity. Attempts at using image-based approaches for structural assessment have met with reasonable success, but 3D remote sensing technologies, such as radar and light detection and ranging (lidar), are arguably more adept at sensing vegetation structure. While radar-derived structure metrics tend to break down at high biomass levels, novel waveform lidar systems present us with new opportunities for detailed and scalable structural characterization of vegetation. These sensors digitize the entire backscattered energy profile at high spatial and vertical resolutions and often at off-nadir angles. Research teams at Rochester Institute of Technology (RIT) and Carnegie Institution for Science have been using airborne data from the Carnegie Airborne Observatory (CAO) to assess vegetation structure and variation in savanna ecosystems in and around the Kruger National Park, South Africa. It quickly became evident that (i) pre-processing of small-footprint waveform data is a critical step prior to testing scientific hypotheses, (ii) a number of assumptions of how vegetation structure is expressed in these 3D signals need to be evaluated, and very importantly (iii) we need to re-evaluate our linkages between coarse in-field measurements, e.g., volume, biomass, leaf area index (LAI), and metrics derived from waveform lidar. Research has progressed to the stage where we have evaluated various pre-processing steps, e.g., convolution via the Wiener filter, Richardson-Lucy, and non-negative least squares algorithms, and the coupling of waveform voxels to tree structure in a simulation environment. This was done in the MODTRAN-based Digital Imaging and Remote Sensing Image Generation (DIRSIG) simulation environment, developed at RIT. We generated "truth" cross-section datasets of detailed virtual trees

  14. Toward the Effective and Efficient Measurement of Implementation Fidelity

    PubMed Central

    Schoenwald, Sonja K.; Garland, Ann F.; Chapman, Jason E.; Frazier, Stacy L.; Sheidow, Ashli J.; Southam-Gerow, Michael A.

    2011-01-01

    Implementation science in mental health is informed by other academic disciplines and industries. Conceptual and methodological territory charted in psychotherapy research is pertinent to two elements of the conceptual model of implementation posited by Aarons and colleagues (2010)—implementation fidelity and innovation feedback systems. Key characteristics of scientifically validated fidelity instruments, and of the feasibility of their use in routine care, are presented. The challenges of ensuring fidelity measurement methods are both effective (scientifically validated) and efficient (feasible and useful in routine care) are identified as are examples of implementation research attempting to balance these attributes of fidelity measurement. PMID:20957425

  15. Cooperative Clustering Digitizes Biochemical Signaling and Enhances its Fidelity.

    PubMed

    Roob, Edward; Trendel, Nicola; Rein Ten Wolde, Pieter; Mugler, Andrew

    2016-04-12

    Many membrane-bound molecules in cells form small clusters. It has been hypothesized that these clusters convert an analog extracellular signal into a digital intracellular signal and that this conversion increases signaling fidelity. However, the mechanism by which clusters digitize a signal and the subsequent effects on fidelity remain poorly understood. Here we demonstrate using a stochastic model of cooperative cluster formation that sufficient cooperation leads to digital signaling. We show that despite reducing the number of output states, which decreases fidelity, digitization also reduces noise in the system, which increases fidelity. The tradeoff between these effects leads to an optimal cluster size that agrees with experimental measurements. PMID:27074690

  16. Large-Scale Testing and High-Fidelity Simulation Capabilities at Sandia National Laboratories to Support Space Power and Propulsion

    SciTech Connect

    Dobranich, Dean; Blanchat, Thomas K.

    2008-01-21

    Sandia National Laboratories, as a Department of Energy, National Nuclear Security Agency, has major responsibility to ensure the safety and security needs of nuclear weapons. As such, with an experienced research staff, Sandia maintains a spectrum of modeling and simulation capabilities integrated with experimental and large-scale test capabilities. This expertise and these capabilities offer considerable resources for addressing issues of interest to the space power and propulsion communities. This paper presents Sandia's capability to perform thermal qualification (analysis, test, modeling and simulation) using a representative weapon system as an example demonstrating the potential to support NASA's Lunar Reactor System.

  17. High-fidelity target sequencing of individual molecules identified using barcode sequences: de novo detection and absolute quantitation of mutations in plasma cell-free DNA from cancer patients

    PubMed Central

    Kukita, Yoji; Matoba, Ryo; Uchida, Junji; Hamakawa, Takuya; Doki, Yuichiro; Imamura, Fumio; Kato, Kikuya

    2015-01-01

    Circulating tumour DNA (ctDNA) is an emerging field of cancer research. However, current ctDNA analysis is usually restricted to one or a few mutation sites due to technical limitations. In the case of massively parallel DNA sequencers, the number of false positives caused by a high read error rate is a major problem. In addition, the final sequence reads do not represent the original DNA population due to the global amplification step during the template preparation. We established a high-fidelity target sequencing system of individual molecules identified in plasma cell-free DNA using barcode sequences; this system consists of the following two steps. (i) A novel target sequencing method that adds barcode sequences by adaptor ligation. This method uses linear amplification to eliminate the errors introduced during the early cycles of polymerase chain reaction. (ii) The monitoring and removal of erroneous barcode tags. This process involves the identification of individual molecules that have been sequenced and for which the number of mutations have been absolute quantitated. Using plasma cell-free DNA from patients with gastric or lung cancer, we demonstrated that the system achieved near complete elimination of false positives and enabled de novo detection and absolute quantitation of mutations in plasma cell-free DNA. PMID:26126624

  18. High-fidelity target sequencing of individual molecules identified using barcode sequences: de novo detection and absolute quantitation of mutations in plasma cell-free DNA from cancer patients.

    PubMed

    Kukita, Yoji; Matoba, Ryo; Uchida, Junji; Hamakawa, Takuya; Doki, Yuichiro; Imamura, Fumio; Kato, Kikuya

    2015-08-01

    Circulating tumour DNA (ctDNA) is an emerging field of cancer research. However, current ctDNA analysis is usually restricted to one or a few mutation sites due to technical limitations. In the case of massively parallel DNA sequencers, the number of false positives caused by a high read error rate is a major problem. In addition, the final sequence reads do not represent the original DNA population due to the global amplification step during the template preparation. We established a high-fidelity target sequencing system of individual molecules identified in plasma cell-free DNA using barcode sequences; this system consists of the following two steps. (i) A novel target sequencing method that adds barcode sequences by adaptor ligation. This method uses linear amplification to eliminate the errors introduced during the early cycles of polymerase chain reaction. (ii) The monitoring and removal of erroneous barcode tags. This process involves the identification of individual molecules that have been sequenced and for which the number of mutations have been absolute quantitated. Using plasma cell-free DNA from patients with gastric or lung cancer, we demonstrated that the system achieved near complete elimination of false positives and enabled de novo detection and absolute quantitation of mutations in plasma cell-free DNA. PMID:26126624

  19. Measuring procedural fidelity in behavioural research.

    PubMed

    Ledford, Jennifer R; Gast, David L

    2014-01-01

    Procedural fidelity (PF) refers to the implementation of a research plan, as intended. Measuring PF should be done not to satisfy minimum requirements for publication but to provide useful information to implementers, researchers, and consumers of research. Measurement of PF requires careful consideration and planning, and should include: naming important steps to be completed in each condition, defining each step, choosing a measurement system, determining which analysis is beneficial, training observers, conducting observations, analysing fidelity and identifying discrepancies, and reporting adequate data for consumers. Careful measurement and reporting of PF data will lead to advances in determining which interventions are effective, for whom, and under what conditions. PMID:24286346

  20. A comparison of behind-the-ear high-fidelity linear hearing aids and two-channel compression aids, in the laboratory and in everyday life.

    PubMed

    Laurence, R F; Moore, B C; Glasberg, B R

    1983-02-01

    Eight patients suffering from sensorineural hearing losses with recruitment took part in a trial comparing their own hearing aids (or no aid if they did not normally wear one) with 'high-fidelity' linear aids and with aids incorporating two-channel syllabic compression. All aids were worn behind the ear. Speech intelligibility was measured both in quiet and in noise, and the patients were given questionnaires enquiring about the effectiveness of the aids in everyday situations. Both the intelligibility tests and the questionnaires indicated that the linear aids were substantially better than own/no aid, and the compressor aids were substantially better than the linear aids, allowing good speech discrimination over a wide range of sound levels. Six out of the eight patients derived significant benefit from being fitted with two aids rather than one. The use of directional microphones in the linear and compressor aids allowed a significant improvement for speech intelligibility in noise when the speech and noise were spatially separated. PMID:6860821

  1. The Structure of a High Fidelity DNA Polymerase Bound to a Mismatched Nucleotide Reveals an ;Ajar; Intermediate Conformation in the Nucleotide Selection Mechanism

    SciTech Connect

    Wu, Eugene Y.; Beese, Lorena S.

    2011-10-10

    To achieve accurate DNA synthesis, DNA polymerases must rapidly sample and discriminate against incorrect nucleotides. Here we report the crystal structure of a high fidelity DNA polymerase I bound to DNA primer-template caught in the act of binding a mismatched (dG:dTTP) nucleoside triphosphate. The polymerase adopts a conformation in between the previously established 'open' and 'closed' states. In this 'ajar' conformation, the template base has moved into the insertion site but misaligns an incorrect nucleotide relative to the primer terminus. The displacement of a conserved active site tyrosine in the insertion site by the template base is accommodated by a distinctive kink in the polymerase O helix, resulting in a partially open ternary complex. We suggest that the ajar conformation allows the template to probe incoming nucleotides for complementarity before closure of the enzyme around the substrate. Based on solution fluorescence, kinetics, and crystallographic analyses of wild-type and mutant polymerases reported here, we present a three-state reaction pathway in which nucleotides either pass through this intermediate conformation to the closed conformation and catalysis or are misaligned within the intermediate, leading to destabilization of the closed conformation.

  2. Measurement of Pressure Responses in a Physical Model of a Human Head with High Shape Fidelity Based on Ct/mri Data

    NASA Astrophysics Data System (ADS)

    Miyazaki, Yusuke; Tachiya, Hiroshi; Anata, Kenji; Hojo, Akihiro

    This study discusses a head injury mechanism in case of a human head subjected to impact, from results of impact experiments by using a physical model of a human head with high-shape fidelity. The physical model was constructed by using rapid prototyping technology from the three-dimensional CAD data, which obtained from CT/MRI images of a subject's head. As results of the experiments, positive pressure responses occurred at the impacted site, whereas negative pressure responses occurred at opposite the impacted site. Moreover, the absolute maximum value of pressure occurring at the frontal region of the intracranial space of the head model resulted in same or higher than that at the occipital site in each case that the impact force was imposed on frontal or occipital region. This result has not been showed in other study using simple shape physical models. And, the result corresponds with clinical evidences that brain contusion mainly occurs at the frontal part in each impact direction. Thus, physical model with accurate skull shape is needed to clarify the mechanism of brain contusion.

  3. Implantation and Recovery of Long-Term Archival Transceivers in a Migratory Shark with High Site Fidelity

    PubMed Central

    Haulsee, Danielle E.; Fox, Dewayne A.; Breece, Matthew W.; Clauss, Tonya M.; Oliver, Matthew J.

    2016-01-01

    We developed a long-term tagging method that can be used to understand species assemblages and social groupings associated with large marine fishes such as the Sand Tiger shark Carcharias taurus. We deployed internally implanted archival VEMCO Mobile Transceivers (VMTs; VEMCO Ltd. Nova Scotia, Canada) in 20 adult Sand Tigers, of which two tags were successfully recovered (10%). The recovered VMTs recorded 29,646 and 44,210 detections of telemetered animals respectively. To our knowledge, this is the first study to demonstrate a method for long-term (~ 1 year) archival acoustic transceiver tag implantation, retention, and recovery in a highly migratory marine fish. Results show low presumed mortality (n = 1, 5%), high VMT retention, and that non-lethal recovery after almost a year at liberty can be achieved for archival acoustic transceivers. This method can be applied to study the social interactions and behavioral ecology of large marine fishes. PMID:26849043

  4. BeamDyn: A High-Fidelity Wind Turbine Blade Solver in the FAST Modular Framework: Preprint

    SciTech Connect

    Wang, Q.; Sprague, M.; Jonkman, J.; Johnson, N.

    2015-01-01

    BeamDyn, a Legendre-spectral-finite-element implementation of geometrically exact beam theory (GEBT), was developed to meet the design challenges associated with highly flexible composite wind turbine blades. In this paper, the governing equations of GEBT are reformulated into a nonlinear state-space form to support its coupling within the modular framework of the FAST wind turbine computer-aided engineering (CAE) tool. Different time integration schemes (implicit and explicit) were implemented and examined for wind turbine analysis. Numerical examples are presented to demonstrate the capability of this new beam solver. An example analysis of a realistic wind turbine blade, the CX-100, is also presented as validation.

  5. High-fidelity solvent-resistant replica molding of hydrophobic polymer surfaces produced by femtosecond laser nanofabrication.

    PubMed

    De Marco, Carmela; Eaton, Shane M; Levi, Marinella; Cerullo, Giulio; Turri, Stefano; Osellame, Roberto

    2011-07-01

    We demonstrate that hydrophobic areas formed by femtosecond laser irradiation on poly(methyl methacrylate) (PMMA) and polystyrene (PS) polymer substrates can be faithfully replicated on samples of the same material via a solvent-resistant perfluoropolyether (PFPE) elastomer mold. The replicated PMMA and PS samples show nearly identical micro-nanoscale topography and hydrophobic wetting characteristics as the laser-patterned master substrates. This work combines the femtosecond laser capability of spatially tailoring the wettability with a high-resolution parallel replication method, offering the potential for the efficient production of microfluidic devices with selectively tailored flow behavior. PMID:21631121

  6. High-fidelity simulations of unsteady civil aircraft aerodynamics: stakes and perspectives. Application of zonal detached eddy simulation

    PubMed Central

    Deck, Sébastien; Gand, Fabien; Brunet, Vincent; Ben Khelil, Saloua

    2014-01-01

    This paper provides an up-to-date survey of the use of zonal detached eddy simulations (ZDES) for unsteady civil aircraft applications as a reflection on the stakes and perspectives of the use of hybrid methods in the framework of industrial aerodynamics. The issue of zonal or non-zonal treatment of turbulent flows for engineering applications is discussed. The ZDES method used in this article and based on a fluid problem-dependent zonalization is briefly presented. Some recent landmark achievements for conditions all over the flight envelope are presented, including low-speed (aeroacoustics of high-lift devices and landing gear), cruising (engine–airframe interactions), propulsive jets and off-design (transonic buffet and dive manoeuvres) applications. The implications of such results and remaining challenges in a more global framework are further discussed. PMID:25024411

  7. Comparing Effectiveness of High-Fidelity Human Patient Simulation vs Case-Based Learning in Pharmacy Education

    PubMed Central

    Ling Yap, Yen; Leng Lee, Wee; Chang Soh, Yee

    2014-01-01

    Objective. To determine whether human patient simulation (HPS) is superior to case-based learning (CBL) in teaching diabetic ketoacidosis (DKA) and thyroid storm (TS) to pharmacy students. Design. In this cross-over, open-label, single center, randomized control trial, final-year undergraduate pharmacy students enrolled in an applied therapeutics course were randomized to HPS or CBL groups. Pretest, posttest, knowledge retention tests, and satisfaction survey were administered to students. Assessment. One hundred seventy-four students participated in this study. The effect sizes attributable to HPS were larger than CBL in both cases. HPS groups performed significantly better in posttest and knowledge retention test compared to CBL groups pertaining to TS case (p<0.05). Students expressed high levels of satisfaction with HPS sessions. Conclusion. HPS was superior to CBL in teaching DKA and TS to final-year undergraduate pharmacy students. PMID:25386018

  8. High-fidelity simulations of unsteady civil aircraft aerodynamics: stakes and perspectives. Application of zonal detached eddy simulation.

    PubMed

    Deck, Sébastien; Gand, Fabien; Brunet, Vincent; Ben Khelil, Saloua

    2014-08-13

    This paper provides an up-to-date survey of the use of zonal detached eddy simulations (ZDES) for unsteady civil aircraft applications as a reflection on the stakes and perspectives of the use of hybrid methods in the framework of industrial aerodynamics. The issue of zonal or non-zonal treatment of turbulent flows for engineering applications is discussed. The ZDES method used in this article and based on a fluid problem-dependent zonalization is briefly presented. Some recent landmark achievements for conditions all over the flight envelope are presented, including low-speed (aeroacoustics of high-lift devices and landing gear), cruising (engine-airframe interactions), propulsive jets and off-design (transonic buffet and dive manoeuvres) applications. The implications of such results and remaining challenges in a more global framework are further discussed. PMID:25024411

  9. High-fidelity promoter profiling reveals widespread alternative promoter usage and transposon-driven developmental gene expression

    PubMed Central

    Batut, Philippe; Dobin, Alexander; Plessy, Charles; Carninci, Piero; Gingeras, Thomas R.

    2013-01-01

    Many eukaryotic genes possess multiple alternative promoters with distinct expression specificities. Therefore, comprehensively annotating promoters and deciphering their individual regulatory dynamics is critical for gene expression profiling applications and for our understanding of regulatory complexity. We introduce RAMPAGE, a novel promoter activity profiling approach that combines extremely specific 5′-complete cDNA sequencing with an integrated data analysis workflow, to address the limitations of current techniques. RAMPAGE features a streamlined protocol for fast and easy generation of highly multiplexed sequencing libraries, offers very high transcription start site specificity, generates accurate and reproducible promoter expression measurements, and yields extensive transcript connectivity information through paired-end cDNA sequencing. We used RAMPAGE in a genome-wide study of promoter activity throughout 36 stages of the life cycle of Drosophila melanogaster, and describe here a comprehensive data set that represents the first available developmental time-course of promoter usage. We found that >40% of developmentally expressed genes have at least two promoters and that alternative promoters generally implement distinct regulatory programs. Transposable elements, long proposed to play a central role in the evolution of their host genomes through their ability to regulate gene expression, contribute at least 1300 promoters shaping the developmental transcriptome of D. melanogaster. Hundreds of these promoters drive the expression of annotated genes, and transposons often impart their own expression specificity upon the genes they regulate. These observations provide support for the theory that transposons may drive regulatory innovation through the distribution of stereotyped cis-regulatory modules throughout their host genomes. PMID:22936248

  10. Intervention Fidelity in Special and General Education Research Journals

    ERIC Educational Resources Information Center

    Swanson, Elizabeth; Wanzek, Jeanne; Haring, Christa; Ciullo, Stephen; McCulley, Lisa

    2013-01-01

    Treatment fidelity reporting practices are described for journals that published general and special education intervention research with high impact factors from 2005 through 2009. The authors reviewed research articles, reported the proportion of intervention studies that described fidelity measurement, detailed the components of fidelity…

  11. Modeling for Fidelity: Virtual Mentorship by Scientists Fosters Teacher Self-Efficacy and Promotes Implementation of Novel High School Biomedical Curricula

    PubMed Central

    Malanson, Katherine; Jacque, Berri; Faux, Russell; Meiri, Karina F.

    2014-01-01

    This small-scale comparison case study evaluates the impact of an innovative approach to teacher professional development designed to promote implementation of a novel cutting edge high school neurological disorders curriculum. ‘Modeling for Fidelity’ (MFF) centers on an extended mentor relationship between teachers and biomedical scientists carried out in a virtual format in conjunction with extensive online educative materials. Four teachers from different diverse high schools in Massachusetts and Ohio who experienced MFF contextualized to a 6-week Neurological Disorders curriculum with the same science mentor were compared to a teacher who had experienced an intensive in-person professional development contextualized to the same curriculum with the same mentor. Fidelity of implementation was measured directly using an established metric and indirectly via student performance. The results show that teachers valued MFF, particularly the mentor relationship and were able to use it effectively to ensure critical components of the learning objectives were preserved. Moreover their students performed equivalently to those whose teacher had experienced intensive in-person professional development. Participants in all school settings demonstrated large (Cohen's d>2.0) and significant (p<0.0001 per-post) changes in conceptual knowledge as well as self-efficacy towards learning about neurological disorders (Cohen's d>1.5, p<0.0001 pre-post). The data demonstrates that the virtual mentorship format in conjunction with extensive online educative materials is an effective method of developing extended interactions between biomedical scientists and teachers that are scalable and not geographically constrained, facilitating teacher implementation of novel cutting-edge curricula. PMID:25551645

  12. Examining Model Fidelity via Shadowing Time

    NASA Astrophysics Data System (ADS)

    Du, H.; Smith, L. A.

    2014-12-01

    Fully fledged climate models provide the best available simulations for reflecting the future, yet we have scant insight into their fidelity, in particular as to the duration into the future at which the real world should be expected to evolve in a manner today's models cannot foresee. We know now that our best available models are not adequate for many sought after purposes. To throw some light on the maximum fidelity expected from a given generation of models, and thereby aid both policy making and model development, we can test the weaknesses of a model as a dynamical system to get an informed idea of its potential applicability at various lead times. Shadowing times reflect the duration on which a GCM reflects the observed dynamics of the Earth; extracting the shortcomings of the model which limit shadowing times allows informed speculation regarding the fidelity of the model in the future. More specifically, by identifying the reasons models cannot shadow we learn the relevant phenomena limiting model fidelity, we can then look at the time scales on which feedbacks on the system (which are not active in the model) are likely to result in model irrelevance. The methodology is developed in the "low dimensional laboratory" of relatively simple dynamical systems, for example Lorenz 95 systems. The results are presented in Lorenz 95 systems as well as GCMs. There are severe limits on the light shadowing experiments can shine on GCM predictions. Never the less, they appear to be one of the brightest lights we can shine to illuminate the likely fidelity of GCM extrapolations into the future.

  13. RTI Fidelity of Implementation Rubric

    ERIC Educational Resources Information Center

    National Center on Response to Intervention, 2014

    2014-01-01

    The Response to Intervention (RTI) Fidelity Rubric is for use by individuals who are responsible for monitoring school-level fidelity of RTI implementation. The rubric is aligned with the essential components of RTI and the infrastructure that is necessary for successful implementation. It is accompanied by a worksheet with guiding questions and…

  14. Three-Dimensional Engineered High Fidelity Normal Human Lung Tissue-Like Assemblies (TLA) as Targets for Human Respiratory Virus Infections

    NASA Technical Reports Server (NTRS)

    Goodwin, T. J.; Deatly, A. M.; Suderman, M. T.; Lin, Y.-H.; Chen, W.; Gupta, C. K.; Randolph, V. B.; Udem, S. A.

    2003-01-01

    Unlike traditional two-dimensional (2D) cell cultures, three-dimensional (3D) tissue-like assemblies (TLA) (Goodwin et aI, 1992, 1993, 2000 and Nickerson et aI. , 2001,2002) offer high organ fidelity with the potential to emulate the infective dynamics of viruses and bacteria in vivo. Thus, utilizing NASA micro gravity Rotating Wall Vessel (RWV) technology, in vitro human broncho-epithelial (HBE) TLAs were engineered to mimic in vivo tissue for study of human respiratory viruses. These 3D HBE TLAs were propagated from a human broncho-tracheal cell line with a mesenchymal component (HBTC) as the foundation matrix and either an adult human broncho-epithelial cell (BEAS-2B) or human neonatal epithelial cell (16HBE140-) as the overlying element. Resulting TLAs share several characteristic features with in vivo human respiratory epithelium including tight junctions, desmosomes and cilia (SEM, TEM). The presence of epithelium and specific lung epithelium markers furthers the contention that these HBE cells differentiate into TLAs paralleling in vivo tissues. A time course of infection of these 3D HBE TLAs with human respiratory syncytial virus (hRSV) wild type A2 strain, indicates that virus replication and virus budding are supported and manifested by increasing virus titer and detection of membrane-bound F and G glycoproteins. Infected 3D HBE TLAs remain intact for up to 12 days compared to infected 2D cultures that are destroyed in 2-3 days. Infected cells show an increased vacuolation and cellular destruction (by transmission electron microscopy) by day 9; whereas, uninfected cells remain robust and morphologically intact. Therefore, the 3D HBE TLAs mimic aspects of human respiratory epithelium providing a unique opportunity to analyze, for the first time, simulated in vivo viral infection independent of host immune response.

  15. Is High Fidelity Simulation the Most Effective Method for the Development of Non-Technical Skills in Nursing? A Review of the Current Evidence

    PubMed Central

    Lewis, Robin; Strachan, Alasdair; Smith, Michelle McKenzie

    2012-01-01

    Aim: To review the literature on the use of simulation in the development of non-technical skills in nursing Background: The potential risks to patients associated with learning 'at the bedside' are becoming increasingly unacceptable, and the search for innovative education and training methods that do not expose the patient to preventable errors continues. All the evidence shows that a significant proportion of adverse events in health care is caused by problems relating to the application of the 'non-technical' skills of communication, teamwork, leadership and decision-making. Results: Simulation is positively associated with significantly improved interpersonal communication skills at patient handover, and it has also been clearly shown to improve team behaviours in a wide variety of clinical contexts and clinical personnel, associated with improved team performance in the management of crisis situations. It also enables the effective development of transferable, transformational leadership skills, and has also been demonstrated to improve students' critical thinking and clinical reasoning in complex care situations, and to aid in the development of students' self-efficacy and confidence in their own clinical abilities. Conclusion: High fidelity simulation is able to provide participants with a learning environment in which to develop non-technical skills, that is safe and controlled so that the participants are able to make mistakes, correct those mistakes in real time and learn from them, without fear of compromising patient safety. Participants in simulation are also able to rehearse the clinical management of rare, complex or crisis situations in a valid representation of clinical practice, before practising on patients. PMID:22893783

  16. miR-155 Over-expression Promotes Genomic Instability by Reducing High-fidelity Polymerase Delta Expression and Activating Error-prone DSB Repair

    PubMed Central

    Czochor, Jennifer R.; Sulkowski, Parker; Glazer, Peter M.

    2016-01-01

    miR-155 is an oncogenic microRNA (miR) that is often over-expressed in cancer and is associated with poor prognosis. miR-155 can target several DNA repair factors including RAD51, MLH1, and MSH6, and its over-expression results in an increased mutation frequency in vitro, although the mechanism has yet to be fully understood. Here, we demonstrate that over-expression of miR-155 drives an increased mutation frequency both in vitro and in vivo, promoting genomic instability by affecting multiple DNA repair pathways. miR-155 over-expression causes a decrease in homologous recombination, but yields a concurrent increase in the error-prone non-homologous end-joining (NHEJ) pathway. Despite repressing established targets MLH1 and MSH6, the identified mutation pattern upon miR-155 over-expression does not resemble that of a mismatch repair-deficient background. Further investigation revealed that all four subunits of polymerase delta, a high-fidelity DNA replication and repair polymerase, are down-regulated at the mRNA level in the context of miR-155 over-expression. FOXO3a, a transcription factor and known target of miR-155, has one or more putative binding site(s) in the promoter of all four polymerase delta subunits. Finally, suppression of FOXO3a by miR-155 or by siRNA knockdown is sufficient to repress the expression of the catalytic subunit of polymerase delta, POLD1, at the protein level, indicating that FOXO3a contributes to the regulation of polymerase delta levels. PMID:26850462

  17. Multifractality in fidelity sequences of optimized Toffoli gates

    NASA Astrophysics Data System (ADS)

    Moqadam, Jalil Khatibi; Welter, Guilherme S.; Esquef, Paulo A. A.

    2016-07-01

    We analyze the multifractality in the fidelity sequences of several engineered Toffoli gates. Using quantum control methods, we consider several optimization problems whose global solutions realize the gate in a chain of three qubits with XY Heisenberg interaction. Applying a minimum number of control pulses assuring a fidelity above 99 % in the ideal case, we design stable gates that are less sensitive to variations in the interqubits couplings. The most stable gate has the fidelity above 91 % with variations about 0.1 %, for up to 10 % variation in the nominal couplings. We perturb the system by introducing a single source of 1 / f noise that affects all the couplings. In order to quantify the performance of the proposed optimized gates, we calculate the fidelity of a large set of optimized gates under prescribed levels of coupling perturbation. Then, we run multifractal analysis on the sequence of attained fidelities. This way, gate performance can be assessed beyond mere average results, since the chosen multifractality measure (the width of the multifractal spectrum) encapsulates into a single performance indicator the spread of fidelity values around the mean and the presence of outliers. The higher the value of the performance indicator the more concentrated around the mean the fidelity values are and rarer is the occurrence of outliers. The results of the multifractal analysis on the fidelity sequences demonstrate the effectiveness of the proposed optimized gate implementations, in the sense they are rendered less sensitive to variations in the interqubits coupling strengths.

  18. A new paradigm for variable-fidelity stochastic simulation and information fusion in fluid mechanics

    NASA Astrophysics Data System (ADS)

    Venturi, Daniele; Parussini, Lucia; Perdikaris, Paris; Karniadakis, George

    2015-11-01

    Predicting the statistical properties of fluid systems based on stochastic simulations and experimental data is a problem of major interest across many disciplines. Even with recent theoretical and computational advancements, no broadly applicable techniques exist that could deal effectively with uncertainty propagation and model inadequacy in high-dimensions. To address these problems, we propose a new paradigm for variable-fidelity stochastic modeling, simulation and information fusion in fluid mechanics. The key idea relies in employing recursive Bayesian networks and multi-fidelity information sources (e.g., stochastic simulations at different resolution) to construct optimal predictors for quantities of interest, e.g., the random temperature field in stochastic Rayleigh-Bénard convection. The object of inference is the quantity of interest at the highest possible level of fidelity, for which we can usually afford only few simulations. To compute the optimal predictors, we developed a multivariate recursive co-kriging approach that simultaneously takes into account variable fidelity in the space of models (e.g., DNS vs. potential flow solvers), as well as variable-fidelity in probability space. Numerical applications are presented and discussed. This research was supported by AFOSR and DARPA.

  19. Multi-fidelity construction of explicit boundaries: Application to aeroelasticity

    NASA Astrophysics Data System (ADS)

    Dribusch, Christoph

    SVM only requires classification of training samples as feasible or infeasible, the presence of discontinuities in the simulation results does not affect the proposed algorithm. For the same reason, multiple failure modes such as aeroelastic stability, maximum stress or geometric constraints, may be represented by a single SVM predictor. Often, multiple models are available to simulate a given design at different levels of fidelity and small improvements in accuracy may increase simulation cost by an order of magnitude. In many cases, a lower-fidelity model will classify a case correctly as feasible or infeasible. Therefore a multi-fidelity algorithm is proposed that takes advantage of lower-fidelity models when appropriate to minimize the overall computational burden of training the SVM. To this end, the algorithm combines the concepts of adaptive sampling and multi-fidelity analysis to iteratively select not only the training samples, but also the appropriate level of fidelity for evaluation. The proposed algorithm, referred to as multi-fidelity explicit design space decomposition (MF-EDSD), is demonstrated on various models of aeroelastic stability to either build the stability boundary and/or to perform design optimization. The aeroelastic models range from linear and nonlinear analytical models to commercial software (ZAERO) and represent divergence, flutter, and limit cycle oscillation instabilities. Additional analytical test problems have the advantage that the accuracy of the SVM predictor and the convergence to optimal designs are more easily verified. On the other hand the more sophisticated models demonstrate the applicability to real aerospace applications where the solutions are not known a priori. In conclusion, the presented MF-EDSD algorithm is well suited for approximating stability boundaries associated with aeroelastic instabilities in high-dimensional parameter spaces. The adaptive selection of training samples and use of multi-fidelity models

  20. Fidelity and fidelity susceptibility of pulses in dispersive media

    SciTech Connect

    Wang Ligang; Gu Shijian

    2009-07-15

    Motivated by the growing importance of the fidelity and fidelity susceptibility (FS) in quantum critical phenomena, we use these concepts to describe the pulse propagation inside the dispersive media. It is found that there is a dramatic change in the fidelity and the FS of the pulse at a critical propagation distance inside a dispersive medium, and whether such a dramatic change for a light pulse occurs or not strongly depends on both the dispersive strength of the media and the pulse property. We study in detail about the changes in the fidelity and the FS for both a smooth and a truncated Gaussian pulse through the abnormal and normal dispersive media, where the group velocities are well defined. Our results show that both the fidelity and the FS could be very useful to determine whether the pulse is completely distorted or not at the critical distance; therefore it would be very helpful to find the maximal effective propagation region of the pulse's group velocity, in terms of the changes in the pulse's fidelity and FS.

  1. Development of the MCNPX depletion capability: A Monte Carlo linked depletion method that automates the coupling between MCNPX and CINDER90 for high fidelity burnup calculations

    NASA Astrophysics Data System (ADS)

    Fensin, Michael Lorne

    Monte Carlo-linked depletion methods have gained recent interest due to the ability to more accurately model complex 3-dimesional geometries and better track the evolution of temporal nuclide inventory by simulating the actual physical process utilizing continuous energy coefficients. The integration of CINDER90 into the MCNPX Monte Carlo radiation transport code provides a high-fidelity completely self-contained Monte-Carlo-linked depletion capability in a well established, widely accepted Monte Carlo radiation transport code that is compatible with most nuclear criticality (KCODE) particle tracking features in MCNPX. MCNPX depletion tracks all necessary reaction rates and follows as many isotopes as cross section data permits in order to achieve a highly accurate temporal nuclide inventory solution. This work chronicles relevant nuclear history, surveys current methodologies of depletion theory, details the methodology in applied MCNPX and provides benchmark results for three independent OECD/NEA benchmarks. Relevant nuclear history, from the Oklo reactor two billion years ago to the current major United States nuclear fuel cycle development programs, is addressed in order to supply the motivation for the development of this technology. A survey of current reaction rate and temporal nuclide inventory techniques is then provided to offer justification for the depletion strategy applied within MCNPX. The MCNPX depletion strategy is then dissected and each code feature is detailed chronicling the methodology development from the original linking of MONTEBURNS and MCNP to the most recent public release of the integrated capability (MCNPX 2.6.F). Calculation results of the OECD/NEA Phase IB benchmark, H. B. Robinson benchmark and OECD/NEA Phase IVB are then provided. The acceptable results of these calculations offer sufficient confidence in the predictive capability of the MCNPX depletion method. This capability sets up a significant foundation, in a well established

  2. Optimization and Parallelization of the Thermal-Hydraulic Sub-channel Code CTF for High-Fidelity Multi-physics Applications

    SciTech Connect

    Salko, Robert K; Schmidt, Rodney; Avramova, Maria N

    2014-01-01

    This paper describes major improvements to the computational infrastructure of the CTF sub-channel code so that full-core sub-channel-resolved simulations can now be performed in much shorter run-times, either in stand-alone mode or as part of coupled-code multi-physics calculations. These improvements support the goals of the Department Of Energy (DOE) Consortium for Advanced Simulations of Light Water (CASL) Energy Innovation Hub to develop high fidelity multi-physics simulation tools for nuclear energy design and analysis. A set of serial code optimizations--including fixing computational inefficiencies, optimizing the numerical approach, and making smarter data storage choices--are first described and shown to reduce both execution time and memory usage by about a factor of ten. Next, a Single Program Multiple Data (SPMD) parallelization strategy targeting distributed memory Multiple Instruction Multiple Data (MIMD) platforms and utilizing domain-decomposition is presented. In this approach, data communication between processors is accomplished by inserting standard MPI calls at strategic points in the code. The domain decomposition approach implemented assigns one MPI process to each fuel assembly, with each domain being represented by its own CTF input file. The creation of CTF input files, both for serial and parallel runs, is also fully automated through use of a pre-processor utility that takes a greatly reduced set of user input over the traditional CTF input file. To run CTF in parallel, two additional libraries are currently needed; MPI, for inter-processor message passing, and the Parallel Extensible Toolkit for Scientific Computation (PETSc), which is leveraged to solve the global pressure matrix in parallel. Results presented include a set of testing and verification calculations and performance tests assessing parallel scaling characteristics up to a full core, sub-channel-resolved model of Watts Bar Unit 1 under hot full-power conditions (193 17x17

  3. Replication fidelity improvement of PMMA microlens array based on weight evaluation and optimization

    NASA Astrophysics Data System (ADS)

    Jiang, Bing-yan; Shen, Long-jiang; Peng, Hua-jiang; Yin, Xiang-lin

    2007-12-01

    High replication fidelity is a prerequisite of high quality plastic microlens array in injection molding. But, there's not an economical and practical method to evaluate and improve the replication fidelity until now. Based on part weight evaluation and optimization, this paper presents a new method of replication fidelity improvement. Firstly, a simplified analysis model of PMMA micro columns arrays (5×16) with 200μm diameter was set up. And then, Flow (3D) module of Moldflow MPI6.0 based on Navier-Stokes equations was used to calculate the weight of the micro columns arrays in injection molding. The effects of processing parameters (melt temperature, mold temperature, injection time, packing pressure and packing time) on the part weight were investigated in the simulations. The simulation results showed that the mold temperature and the injection time have important effects on the filling of micro columns; the optimal mold temperature and injection time for better replication fidelity could be determined by the curves of mold temperature vs part weight and injection time vs part weight. At last, the effects of processing parameters on part weight of micro columns array were studied experimentally. The experimental results showed that the increase of melt temperature and mold temperature can make the packing pressure transfer to micro cavity more effectively through runner system, and increase the part weight. From the observation results of the image measuring apparatus, it was discovered that the higher the part weight, the better the filling of the microstructures. In conclusion, part weight can be used to evaluate the replication fidelity of micro-feature structured parts primarily; which is an economical and practical method to improve the replication fidelity of microlens arrays based on weight evaluation and optimization.

  4. Measuring trainer fidelity in the transfer of suicide prevention training

    PubMed Central

    Cross, Wendi F.; Pisani, Anthony R.; Schmeelk-Cone, Karen; Xia, Yinglin; Tu, Xin; McMahon, Marcie; Munfakh, Jimmie Lou; Gould, Madelyn S.

    2014-01-01

    Background Finding effective and efficient models to train large numbers of suicide prevention interventionists, including ‘hotline’ crisis counselors, is a high priority. Train-the-trainer (TTT) models are widely used but understudied. Aims To assess the extent to which trainers following TTT delivered the Applied Suicide Intervention Skills Training (ASIST) program with fidelity, and to examine fidelity across two trainings and seven training segments. Methods We recorded and reliably rated trainer fidelity, defined as adherence to program content and competence of program delivery, for 34 newly trained ASIST trainers delivering the program to crisis center staff on two separate occasions. A total of 324 observations were coded. Trainer demographics were also collected. Results On average, trainers delivered two-thirds of the program. Previous training was associated with lower levels of trainer adherence to the program. 18% of trainers' observations were rated as solidly competent. Trainers did not improve fidelity from their first to second training. Significantly higher fidelity was found for lectures and lower fidelity was found for interactive training activities including asking about suicide and creating a safe plan. Conclusions We found wide variability in trainer fidelity to the ASIST program following TTT and few trainers had high levels of both adherence and competence. More research is needed to examine the cost-effectiveness of TTT models. PMID:24901061

  5. Individualized Clinical Coaching in the TLE TeachLivE Lab: Enhancing Fidelity of Implementation of System of Least Prompts among Novice Teachers of Students with Autism

    ERIC Educational Resources Information Center

    Vince Garland, Krista M.; Holden, Kara; Garland, Dennis Patrick

    2016-01-01

    One of the challenges facing educators who teach students with autism spectrum disorders is implementing evidence-based practices (EBPs) with fidelity. One EBP used to help such learners in acquiring targeted behavioral or academic skills is prompting. In this study, the authors examine the efficacy of individualized clinical coaching (ICC) of…

  6. Intervention Research: The Importance of Fidelity Measurement

    ERIC Educational Resources Information Center

    Wolery, Mark

    2011-01-01

    In this commentary, the issue of fidelity assessment is addressed as it relates to Strain and Bovey's article (2011). Four reasons are provided for measuring fidelity in intervention studies. Measuring fidelity (a) potentially allows investigators to document the findings were not due to the lack of fidelity in a study; (b) presents information…

  7. Methodology development for evaluation of selective-fidelity rotorcraft simulation

    NASA Technical Reports Server (NTRS)

    Lewis, William D.; Schrage, D. P.; Prasad, J. V. R.; Wolfe, Daniel

    1992-01-01

    This paper addressed the initial step toward the goal of establishing performance and handling qualities acceptance criteria for realtime rotorcraft simulators through a planned research effort to quantify the system capabilities of 'selective fidelity' simulators. Within this framework the simulator is then classified based on the required task. The simulator is evaluated by separating the various subsystems (visual, motion, etc.) and applying corresponding fidelity constants based on the specific task. This methodology not only provides an assessment technique, but also provides a technique to determine the required levels of subsystem fidelity for a specific task.

  8. Measuring Implementation Fidelity in a Community-Based Parenting Intervention

    PubMed Central

    Breitenstein, Susan M.; Fogg, Louis; Garvey, Christine; Hill, Carri; Resnick, Barbara; Gross, Deborah

    2012-01-01

    Background Establishing the feasibility and validity of implementation fidelity monitoring strategies is an important methodological step in implementing evidence-based interventions on a large scale. Objectives The objective of the study was to examine the reliability and validity of the Fidelity Checklist, a measure designed to assess group leader adherence and competence delivering a parent training intervention (the Chicago Parent Program) in child care centers serving low-income families. Method The sample included 9 parent groups (12 group sessions each), 12 group leaders, and 103 parents. Independent raters reviewed 106 audiotaped parent group sessions and coded group leaders’ fidelity on the Adherence and Competence Scales of the Fidelity Checklist. Group leaders completed self-report adherence checklists and a measure of parent engagement in the intervention. Parents completed measures of consumer satisfaction and child behavior. Results High interrater agreement (Adherence Scale = 94%, Competence Scale = 85%) and adequate intraclass correlation coefficients (Adherence Scale = .69, Competence Scale = .91) were achieved for the Fidelity Checklist. Group leader adherence changed over time, but competence remained stable. Agreement between group leader self-report and independent ratings on the Adherence Scale was 85%; disagreements were more frequently due to positive bias in group leader self-report. Positive correlations were found between group leader adherence and parent attendance and engagement in the intervention and between group leader competence and parent satisfaction. Although child behavior problems improved, improvements were not related to fidelity. Discussion The results suggest that the Fidelity Checklist is a feasible, reliable, and valid measure of group leader implementation fidelity in a group-based parenting intervention. Future research will be focused on testing the Fidelity Checklist with diverse and larger samples and generalizing

  9. Fidelity of the Integrated Force Method Solution

    NASA Technical Reports Server (NTRS)

    Hopkins, Dale; Halford, Gary; Coroneos, Rula; Patnaik, Surya

    2002-01-01

    The theory of strain compatibility of the solid mechanics discipline was incomplete since St. Venant's 'strain formulation' in 1876. We have addressed the compatibility condition both in the continuum and the discrete system. This has lead to the formulation of the Integrated Force Method. A dual Integrated Force Method with displacement as the primal variable has also been formulated. A modest finite element code (IFM/Analyzers) based on the IFM theory has been developed. For a set of standard test problems the IFM results were compared with the stiffness method solutions and the MSC/Nastran code. For the problems IFM outperformed the existing methods. Superior IFM performance is attributed to simultaneous compliance of equilibrium equation and compatibility condition. MSC/Nastran organization expressed reluctance to accept the high fidelity IFM solutions. This report discusses the solutions to the examples. No inaccuracy was detected in the IFM solutions. A stiffness method code with a small programming effort can be improved to reap the many IFM benefits when implemented with the IFMD elements. Dr. Halford conducted a peer-review on the Integrated Force Method. Reviewers' response is included.

  10. Gravity Modeling for Variable Fidelity Environments

    NASA Technical Reports Server (NTRS)

    Madden, Michael M.

    2006-01-01

    Aerospace simulations can model worlds, such as the Earth, with differing levels of fidelity. The simulation may represent the world as a plane, a sphere, an ellipsoid, or a high-order closed surface. The world may or may not rotate. The user may select lower fidelity models based on computational limits, a need for simplified analysis, or comparison to other data. However, the user will also wish to retain a close semblance of behavior to the real world. The effects of gravity on objects are an important component of modeling real-world behavior. Engineers generally equate the term gravity with the observed free-fall acceleration. However, free-fall acceleration is not equal to all observers. To observers on the sur-face of a rotating world, free-fall acceleration is the sum of gravitational attraction and the centrifugal acceleration due to the world's rotation. On the other hand, free-fall acceleration equals gravitational attraction to an observer in inertial space. Surface-observed simulations (e.g. aircraft), which use non-rotating world models, may choose to model observed free fall acceleration as the gravity term; such a model actually combines gravitational at-traction with centrifugal acceleration due to the Earth s rotation. However, this modeling choice invites confusion as one evolves the simulation to higher fidelity world models or adds inertial observers. Care must be taken to model gravity in concert with the world model to avoid denigrating the fidelity of modeling observed free fall. The paper will go into greater depth on gravity modeling and the physical disparities and synergies that arise when coupling specific gravity models with world models.

  11. Reduced fidelity in the Kitaev honeycomb model

    SciTech Connect

    Wang, Zhi; Ma, Tianxing; Gu, Shi-Jian; Lin, Hai-Qing

    2010-06-15

    We study reduced fidelity and reduced fidelity susceptibility in the Kitaev honeycomb model. It is shown that the nearest-two-site reduced fidelity susceptibility manifests itself as a peak at the quantum phase transition point, although the one-site reduced fidelity susceptibility vanishes. Our results directly reveal that the reduced fidelity susceptibility can be used to characterize the quantum phase transition in the Kitaev honeycomb model, which suggests that, despite its local nature, the reduced fidelity susceptibility is an accurate marker of the topological phase transition when it is properly chosen.

  12. Highly Autonomous Systems Workshop

    NASA Technical Reports Server (NTRS)

    Doyle, R.; Rasmussen, R.; Man, G.; Patel, K.

    1998-01-01

    It is our aim by launching a series of workshops on the topic of highly autonomous systems to reach out to the larger community interested in technology development for remotely deployed systems, particularly those for exploration.

  13. A binding free energy decomposition approach for accurate calculations of the fidelity of DNA polymerases

    PubMed Central

    Rucker, Robert; Oelschlaeger, Peter; Warshel, Arieh

    2010-01-01

    DNA polymerase β (pol β) is a small eukaryotic enzyme with the ability to repair short single-stranded DNA gaps that has found use as a model system for larger replicative DNA polymerases. For all DNA polymerases, the factors determining their catalytic power and fidelity are the interactions between the bases of the base pair, amino acids near the active site, and the two magnesium ions. In this report, we study effects of all three aspects on human pol β transition state (TS) binding free energies by reproducing a consistent set of experimentally determined data for different structures. Our calculations comprise the combination of four different base pairs (incoming pyrimidine nucleotides incorporated opposite both matched and mismatched purines) with four different pol β structures (wild type and three separate mutations of ionized residues to alanine). We decompose the incoming deoxynucleoside 5′-triphosphate-TS, and run separate calculations for the neutral base part and the highly charged triphosphate part, using different dielectric constants in order to account for the specific electrostatic environments. This new approach improves our ability to predict the effect of matched and mismatched base pairing and of mutations in DNA polymerases on fidelity and may be a useful tool in studying the potential of DNA polymerase mutations in the development of cancer. It also supports our point of view with regards to the origin of the structural control of fidelity, allowing for a quantified description of the fidelity of DNA polymerases. PMID:19842163

  14. Genetic fidelity and variability of micropropagated cassava plants (Manihot esculenta Crantz) evaluated using ISSR markers.

    PubMed

    Vidal, Á M; Vieira, L J; Ferreira, C F; Souza, F V D; Souza, A S; Ledo, C A S

    2015-01-01

    Molecular markers are efficient for assessing the genetic fidelity of various species of plants after in vitro culture. In this study, we evaluated the genetic fidelity and variability of micropropagated cassava plants (Manihot esculenta Crantz) using inter-simple sequence repeat markers. Twenty-two cassava accessions from the Embrapa Cassava & Fruits Germplasm Bank were used. For each accession, DNA was extracted from a plant maintained in the field and from 3 plants grown in vitro. For DNA amplification, 27 inter-simple sequence repeat primers were used, of which 24 generated 175 bands; 100 of those bands were polymorphic and were used to study genetic variability among accessions of cassava plants maintained in the field. Based on the genetic distance matrix calculated using the arithmetic complement of the Jaccard's index, genotypes were clustered using the unweighted pair group method using arithmetic averages. The number of bands per primer was 2-13, with an average of 7.3. For most micropropagated accessions, the fidelity study showed no genetic variation between plants of the same accessions maintained in the field and those maintained in vitro, confirming the high genetic fidelity of the micropropagated plants. However, genetic variability was observed among different accessions grown in the field, and clustering based on the dissimilarity matrix revealed 7 groups. Inter-simple sequence repeat markers were efficient for detecting the genetic homogeneity of cassava plants derived from meristem culture, demonstrating the reliability of this propagation system. PMID:26214457

  15. Dissecting chemical interactions governing RNA polymerase II transcriptional fidelity.

    PubMed

    Kellinger, Matthew W; Ulrich, Sébastien; Chong, Jenny; Kool, Eric T; Wang, Dong

    2012-05-16

    Maintaining high transcriptional fidelity is essential to life. For all eukaryotic organisms, RNA polymerase II (Pol II) is responsible for messenger RNA synthesis from the DNA template. Three key checkpoint steps are important in controlling Pol II transcriptional fidelity: nucleotide selection and incorporation, RNA transcript extension, and proofreading. Some types of DNA damage significantly reduce transcriptional fidelity. However, the chemical interactions governing each individual checkpoint step of Pol II transcriptional fidelity and the molecular basis of how subtle DNA base damage leads to significant losses of transcriptional fidelity are not fully understood. Here we use a series of "hydrogen bond deficient" nucleoside analogues to dissect chemical interactions governing Pol II transcriptional fidelity. We find that whereas hydrogen bonds between a Watson-Crick base pair of template DNA and incoming NTP are critical for efficient incorporation, they are not required for efficient transcript extension from this matched 3'-RNA end. In sharp contrast, the fidelity of extension is strongly dependent on the discrimination of an incorrect pattern of hydrogen bonds. We show that U:T wobble base interactions are critical to prevent extension of this mismatch by Pol II. Additionally, both hydrogen bonding and base stacking play important roles in controlling Pol II proofreading activity. Strong base stacking at the 3'-RNA terminus can compensate for loss of hydrogen bonds. Finally, we show that Pol II can distinguish very subtle size differences in template bases. The current work provides the first systematic evaluation of electrostatic and steric effects in controlling Pol II transcriptional fidelity. PMID:22509745

  16. First-Order Model Management With Variable-Fidelity Physics Applied to Multi-Element Airfoil Optimization

    NASA Technical Reports Server (NTRS)

    Alexandrov, N. M.; Nielsen, E. J.; Lewis, R. M.; Anderson, W. K.

    2000-01-01

    First-order approximation and model management is a methodology for a systematic use of variable-fidelity models or approximations in optimization. The intent of model management is to attain convergence to high-fidelity solutions with minimal expense in high-fidelity computations. The savings in terms of computationally intensive evaluations depends on the ability of the available lower-fidelity model or a suite of models to predict the improvement trends for the high-fidelity problem, Variable-fidelity models can be represented by data-fitting approximations, variable-resolution models. variable-convergence models. or variable physical fidelity models. The present work considers the use of variable-fidelity physics models. We demonstrate the performance of model management on an aerodynamic optimization of a multi-element airfoil designed to operate in the transonic regime. Reynolds-averaged Navier-Stokes equations represent the high-fidelity model, while the Euler equations represent the low-fidelity model. An unstructured mesh-based analysis code FUN2D evaluates functions and sensitivity derivatives for both models. Model management for the present demonstration problem yields fivefold savings in terms of high-fidelity evaluations compared to optimization done with high-fidelity computations alone.

  17. High performance systems

    SciTech Connect

    Vigil, M.B.

    1995-03-01

    This document provides a written compilation of the presentations and viewgraphs from the 1994 Conference on High Speed Computing given at the High Speed Computing Conference, {open_quotes}High Performance Systems,{close_quotes} held at Gleneden Beach, Oregon, on April 18 through 21, 1994.

  18. Image gathering and digital restoration for fidelity and visual quality

    NASA Technical Reports Server (NTRS)

    Huck, Friedrich O.; Alter-Gartenberg, Rachel; Rahman, Zia-Ur

    1991-01-01

    The fidelity and resolution of the traditional Wiener restorations given in the prevalent digital processing literature can be significantly improved when the transformations between the continuous and discrete representations in image gathering and display are accounted for. However, the visual quality of these improved restorations also is more sensitive to the defects caused by aliasing artifacts, colored noise, and ringing near sharp edges. In this paper, these visual defects are characterized, and methods for suppressing them are presented. It is demonstrated how the visual quality of fidelity-maximized images can be improved when (1) the image-gathering system is specifically designed to enhance the performance of the image-restoration algorithm, and (2) the Wiener filter is combined with interactive Gaussian smoothing, synthetic high edge enhancement, and nonlinear tone-scale transformation. The nonlinear transformation is used primarily to enhance the spatial details that are often obscurred when the normally wide dynamic range of natural radiance fields is compressed into the relatively narrow dynamic range of film and other displays.

  19. PEDOT Electrochemical Polymerization Improves Electrode Fidelity and Sensitivity

    PubMed Central

    Frost, Christopher M.; Wei, Benjamin; Baghmanli, Ziya; Cederna, Paul S.; Urbanchek, Melanie G.

    2015-01-01

    Background The goal of the authors is to restore fine motor control and sensation for high-arm amputees. They developed a regenerative peripheral nerve interface with the aim of attaining closed loop neural control by integrating directly with the amputee's residual motor and sensory peripheral nerves. PEDOT, poly(3,4-ethylenedioxythiophene), has both electrical and ionic conduction characteristics. This hybrid character could help bridge the salutatory conduction of the nervous system to an electrode. The purpose of this study was to determine whether electrodes polymerized with PEDOT have improved ability to both record and stimulate peripheral nerve action potentials. Methods Impedance spectroscopy and cyclic voltammetry were performed on electrodes before and after polymerization to measure electrode impedance and charge capacity. Both recording needle and bipolar stimulating electrodes were polymerized with PEDOT. Plain and PEDOT electrodes were tested using rat (n = 18) in situ nerve conduction studies. The peroneal nerve was stimulated using a bipolar electrode at multiple locations along the nerve. Action potentials were measured in the extensor digitorum longus muscle. Results Bench testing showed PEDOT electrodes had a higher charge capacity and lower impedance than plain electrodes, indicating significantly improved electrode fidelity. Nerve conduction testing indicated a significant reduction in the stimulus threshold for both PEDOT recording and PEDOT stimulatory electrodes when compared with plain electrodes, indicating an increase in sensitivity. Conclusions PEDOT electrochemical polymerization improves electrode fidelity. Electrodes that have been electropolymerized with PEDOT show improved sensitivity when recording or stimulating action potentials at the tissue–electrode interface. PMID:22456363

  20. 75 FR 60838 - American Fidelity Dual Strategy Fund, Inc. and American Fidelity Assurance Company; Notice of...

    Federal Register 2010, 2011, 2012, 2013, 2014

    2010-10-01

    ... COMMISSION American Fidelity Dual Strategy Fund, Inc. and American Fidelity Assurance Company; Notice of...: American Fidelity Dual Strategy Fund, Inc. (the ``Fund'') and American Fidelity Assurance Company (the... 73106. FOR FURTHER INFORMATION CONTACT: Lewis Reich, Senior Counsel, at (202) 551-6919, or...