Science.gov

Sample records for high genetic divergence

  1. Genetic and phenotypic divergence between low- and high-altitude populations of two recently diverged cinnamon teal subspecies.

    PubMed

    Wilson, Robert E; Peters, Jeffrey L; McCracken, Kevin G

    2013-01-01

    Spatial variation in the environment can lead to divergent selection between populations occupying different parts of a species' range, and ultimately lead to population divergence. The colonization of new areas can thus facilitate divergence in beneficial traits, yet with little differentiation at neutral genetic markers. We investigated genetic and phenotypic patterns of divergence between low- and high-altitude populations of cinnamon teal inhabiting normoxic and hypoxic regions in the Andes and adjacent lowlands of South America. Cinnamon teal showed strong divergence in body size (PC1; P(ST) = 0.56) and exhibited significant frequency differences in a single nonsynonymous α-hemoglobin amino acid polymorphism (Asn/Ser-α9; F(ST) = 0.60) between environmental extremes, despite considerable admixture of mtDNA and intron loci (F(ST) = 0.004-0.168). Inferences of strong population segregation were further supported by the observation of few mismatched individuals in either environmental extreme. Coalescent analyses indicated that the highlands were most likely colonized from lowland regions but following divergence, gene flow has been asymmetric from the highlands into the lowlands. Multiple selection pressures associated with high-altitude habitats, including cold and hypoxia, have likely shaped morphological and genetic divergence within South American cinnamon teal populations. PMID:23289570

  2. Constrained body shape among highly genetically divergent allopatric lineages of the supralittoral isopod Ligia occidentalis (Oniscidea).

    PubMed

    Santamaria, Carlos A; Mateos, Mariana; DeWitt, Thomas J; Hurtado, Luis A

    2016-03-01

    Multiple highly divergent lineages have been identified within Ligia occidentalis sensu lato, a rocky supralittoral isopod distributed along a ~3000 km latitudinal gradient that encompasses several proposed marine biogeographic provinces and ecoregions in the eastern Pacific. Highly divergent lineages have nonoverlapping geographic distributions, with distributional limits that generally correspond with sharp environmental changes. Crossbreeding experiments suggest postmating reproductive barriers exist among some of them, and surveys of mitochondrial and nuclear gene markers do not show evidence of hybridization. Populations are highly isolated, some of which appear to be very small; thus, the effects of drift are expected to reduce the efficiency of selection. Large genetic divergences among lineages, marked environmental differences in their ranges, reproductive isolation, and/or high isolation of populations may have resulted in morphological differences in L. occidentalis, not detected yet by traditional taxonomy. We used landmark-based geometric morphometric analyses to test for differences in body shape among highly divergent lineages of L. occidentalis, and among populations within these lineages. We analyzed a total of 492 individuals from 53 coastal localities from the southern California Bight to Central Mexico, including the Gulf of California. We conducted discriminant function analyses (DFAs) on body shape morphometrics to assess morphological variation among genetically differentiated lineages and their populations. We also tested for associations between phylogeny and morphological variation, and whether genetic divergence is correlated to multivariate morphological divergence. We detected significant differences in body shape among highly divergent lineages, and among populations within these lineages. Nonetheless, neither lineages nor populations can be discriminated on the basis of body shape, because correct classification rates of cross

  3. Ecological opportunities and specializations shaped genetic divergence in a highly mobile marine top predator

    PubMed Central

    Louis, Marie; Fontaine, Michael C.; Spitz, Jérôme; Schlund, Erika; Dabin, Willy; Deaville, Rob; Caurant, Florence; Cherel, Yves; Guinet, Christophe; Simon-Bouhet, Benoit

    2014-01-01

    Environmental conditions can shape genetic and morphological divergence. Release of new habitats during historical environmental changes was a major driver of evolutionary diversification. Here, forces shaping population structure and ecotype differentiation (‘pelagic’ and ‘coastal’) of bottlenose dolphins in the North-east Atlantic were investigated using complementary evolutionary and ecological approaches. Inference of population demographic history using approximate Bayesian computation indicated that coastal populations were likely founded by the Atlantic pelagic population after the Last Glacial Maxima probably as a result of newly available coastal ecological niches. Pelagic dolphins from the Atlantic and the Mediterranean Sea likely diverged during a period of high productivity in the Mediterranean Sea. Genetic differentiation between coastal and pelagic ecotypes may be maintained by niche specializations, as indicated by stable isotope and stomach content analyses, and social behaviour. The two ecotypes were only weakly morphologically segregated in contrast to other parts of the World Ocean. This may be linked to weak contrasts between coastal and pelagic habitats and/or a relatively recent divergence. We suggest that ecological opportunity to specialize is a major driver of genetic and morphological divergence. Combining genetic, ecological and morphological approaches is essential to understanding the population structure of mobile and cryptic species. PMID:25297864

  4. Ecological opportunities and specializations shaped genetic divergence in a highly mobile marine top predator.

    PubMed

    Louis, Marie; Fontaine, Michael C; Spitz, Jérôme; Schlund, Erika; Dabin, Willy; Deaville, Rob; Caurant, Florence; Cherel, Yves; Guinet, Christophe; Simon-Bouhet, Benoit

    2014-11-22

    Environmental conditions can shape genetic and morphological divergence. Release of new habitats during historical environmental changes was a major driver of evolutionary diversification. Here, forces shaping population structure and ecotype differentiation ('pelagic' and 'coastal') of bottlenose dolphins in the North-east Atlantic were investigated using complementary evolutionary and ecological approaches. Inference of population demographic history using approximate Bayesian computation indicated that coastal populations were likely founded by the Atlantic pelagic population after the Last Glacial Maxima probably as a result of newly available coastal ecological niches. Pelagic dolphins from the Atlantic and the Mediterranean Sea likely diverged during a period of high productivity in the Mediterranean Sea. Genetic differentiation between coastal and pelagic ecotypes may be maintained by niche specializations, as indicated by stable isotope and stomach content analyses, and social behaviour. The two ecotypes were only weakly morphologically segregated in contrast to other parts of the World Ocean. This may be linked to weak contrasts between coastal and pelagic habitats and/or a relatively recent divergence. We suggest that ecological opportunity to specialize is a major driver of genetic and morphological divergence. Combining genetic, ecological and morphological approaches is essential to understanding the population structure of mobile and cryptic species. PMID:25297864

  5. Foraging segregation and genetic divergence between geographically proximate colonies of a highly mobile seabird

    USGS Publications Warehouse

    Wiley, Anne E.; Welch, Andreanna J.; Ostrom, P.H.; James, Helen F.; Stricker, C.A.; Fleischer, R.C.; Gandhi, H.; Adams, J.; Ainley, D.G.; Duvall, F.; Holmes, N.; Hu, D.; Judge, S.; Penniman, J.; Swindle, K.A.

    2012-01-01

    Foraging segregation may play an important role in the maintenance of animal diversity, and is a proposed mechanism for promoting genetic divergence within seabird species. However, little information exists regarding its presence among seabird populations. We investigated genetic and foraging divergence between two colonies of endangered Hawaiian petrels (Pterodroma sandwichensis) nesting on the islands of Hawaii and Kauai using the mitochondrial Cytochrome b gene and carbon, nitrogen and hydrogen isotope values (?? 13C, ?? 15N and ??D, respectively) of feathers. Genetic analyses revealed strong differentiation between colonies on Hawaii and Kauai, with ?? ST = 0. 50 (p < 0. 0001). Coalescent-based analyses gave estimates of <1 migration event per 1,000 generations. Hatch-year birds from Kauai had significantly lower ?? 13C and ?? 15N values than those from Hawaii. This is consistent with Kauai birds provisioning chicks with prey derived from near or north of the Hawaiian Islands, and Hawaii birds provisioning young with prey from regions of the equatorial Pacific characterized by elevated ?? 15N values at the food web base. ?? 15N values of Kauai and Hawaii adults differed significantly, indicating additional foraging segregation during molt. Feather ??D varied from -69 to 53???. This variation cannot be related solely to an isotopically homogeneous ocean water source or evaporative water loss. Instead, we propose the involvement of salt gland excretion. Our data demonstrate the presence of foraging segregation between proximately nesting seabird populations, despite high species mobility. This ecological diversity may facilitate population coexistence, and its preservation should be a focus of conservation strategies. ?? 2011 Springer-Verlag (outside the USA).

  6. Foraging segregation and genetic divergence between geographically proximate colonies of a highly mobile seabird.

    PubMed

    Wiley, Anne E; Welch, Andreanna J; Ostrom, Peggy H; James, Helen F; Stricker, Craig A; Fleischer, Robert C; Gandhi, Hasand; Adams, Josh; Ainley, David G; Duvall, Fern; Holmes, Nick; Hu, Darcy; Judge, Seth; Penniman, Jay; Swindle, Keith A

    2012-01-01

    Foraging segregation may play an important role in the maintenance of animal diversity, and is a proposed mechanism for promoting genetic divergence within seabird species. However, little information exists regarding its presence among seabird populations. We investigated genetic and foraging divergence between two colonies of endangered Hawaiian petrels (Pterodroma sandwichensis) nesting on the islands of Hawaii and Kauai using the mitochondrial Cytochrome b gene and carbon, nitrogen and hydrogen isotope values (δ(13)C, δ(15)N and δD, respectively) of feathers. Genetic analyses revealed strong differentiation between colonies on Hawaii and Kauai, with Φ(ST) = 0.50 (p < 0.0001). Coalescent-based analyses gave estimates of <1 migration event per 1,000 generations. Hatch-year birds from Kauai had significantly lower δ(13)C and δ(15)N values than those from Hawaii. This is consistent with Kauai birds provisioning chicks with prey derived from near or north of the Hawaiian Islands, and Hawaii birds provisioning young with prey from regions of the equatorial Pacific characterized by elevated δ(15)N values at the food web base. δ(15)N values of Kauai and Hawaii adults differed significantly, indicating additional foraging segregation during molt. Feather δD varied from -69 to 53‰. This variation cannot be related solely to an isotopically homogeneous ocean water source or evaporative water loss. Instead, we propose the involvement of salt gland excretion. Our data demonstrate the presence of foraging segregation between proximately nesting seabird populations, despite high species mobility. This ecological diversity may facilitate population coexistence, and its preservation should be a focus of conservation strategies. PMID:21837410

  7. High-dimensional variance partitioning reveals the modular genetic basis of adaptive divergence in gene expression during reproductive character displacement.

    PubMed

    McGraw, Elizabeth A; Ye, Yixin H; Foley, Brad; Chenoweth, Stephen F; Higgie, Megan; Hine, Emma; Blows, Mark W

    2011-11-01

    Although adaptive change is usually associated with complex changes in phenotype, few genetic investigations have been conducted on adaptations that involve sets of high-dimensional traits. Microarrays have supplied high-dimensional descriptions of gene expression, and phenotypic change resulting from adaptation often results in large-scale changes in gene expression. We demonstrate how genetic analysis of large-scale changes in gene expression generated during adaptation can be accomplished by determining high-dimensional variance partitioning within classical genetic experimental designs. A microarray experiment conducted on a panel of recombinant inbred lines (RILs) generated from two populations of Drosophila serrata that have diverged in response to natural selection, revealed genetic divergence in 10.6% of 3762 gene products examined. Over 97% of the genetic divergence in transcript abundance was explained by only 12 genetic modules. The two most important modules, explaining 50% of the genetic variance in transcript abundance, were genetically correlated with the morphological traits that are known to be under selection. The expression of three candidate genes from these two important genetic modules was assessed in an independent experiment using qRT-PCR on 430 individuals from the panel of RILs, and confirmed the genetic association between transcript abundance and morphological traits under selection. PMID:22023580

  8. Genetic divergence of common bean cultivars.

    PubMed

    Veloso, J S; Silva, W; Pinheiro, L R; Dos Santos, J B; Fonseca, N S; Euzebio, M P

    2015-01-01

    The aim of this study was to evaluate genetic divergence in the 'Carioca' (beige with brown stripes) common bean cultivar used by different institutions and in 16 other common bean cultivars used in the Rede Cooperativa de Pesquisa de Feijão (Cooperative Network of Common Bean Research), by using simple sequence repeats associated with agronomic traits that are highly distributed in the common bean genome. We evaluated 22 polymorphic loci using bulks containing DNA from 30 plants. There was genetic divergence among the Carioca cultivar provided by the institutions. Nevertheless, there was lower divergence among them than among the other cultivars. The cultivar used by Instituto Agronômico do Paraná was the most divergent in relation to the Carioca samples. The least divergence was observed among the samples used by Universidade Federal de Lavras and by Embrapa Arroz e Feijão. Of all the cultivars, 'CNFP 10104' and 'BRSMG Realce' showed the greatest dissimilarity. The cultivars were separated in two groups of greatest similarity using the Structure software. Genetic variation among cultivars was greater than the variation within or between the groups formed. This fact, together with the high estimate of heterozygosity observed and the genetic divergence of the samples of the Carioca cultivar in relation to the original provided by Instituto Agronômico de Campinas, indicates a mixture of cultivars. The high divergence among cultivars provides potential for the utilization of this genetic variability in plant breeding. PMID:26400359

  9. COMPARATIVE GENOMIC AND POPULATION GENETIC ANALYSES INDICATE HIGHLY POROUS GENOMES AND HIGH LEVELS OF GENE FLOW BETWEEN DIVERGENT HELIANTHUS SPECIES

    PubMed Central

    Kane, Nolan C.; King, Matthew G.; Barker, Michael S.; Raduski, Andrew; Karrenberg, Sophie; Yatabe, Yoko; Knapp, Steven J.; Rieseberg, Loren H.

    2009-01-01

    While speciation can be found in the presence of gene flow, it is not clear what impact this gene flow has on genome- and range-wide patterns of differentiation. Here we examine gene flow across the entire range of the common sunflower, H. annuus, its historically allopatric sister species H. argophyllus and a more distantly related, sympatric relative H. petiolaris. Analysis of genotypes at 26 microsatellite loci in 1015 individuals from across the range of the three species showed substantial introgression between geographically proximal populations of H. annuus and H. petiolaris, limited introgression between H. annuus and H. argophyllus, and essentially no gene flow between the allopatric pair, H. argophyllus and H. petiolaris. Analysis of sequence divergence levels among the three species in 1420 orthologs identified from EST databases identified a subset of loci showing extremely low divergence between H. annuus and H. petiolaris and extremely high divergence between the sister species H. annuus and H. argophyllus, consistent with introgression between H. annuus and H. petiolaris at these loci. Thus, at many loci, the allopatric sister species are more genetically divergent than the more distantly related sympatric species, which have exchanged genes across much of the genome while remaining morphologically and ecologically distinct. PMID:19473382

  10. Genetic isolation and morphological divergence mediated by high-energy rapids in two cichlid genera from the lower Congo rapids

    PubMed Central

    2010-01-01

    Background It is hypothesized that one of the mechanisms promoting diversification in cichlid fishes in the African Great Lakes has been the well-documented pattern of philopatry along shoreline habitats leading to high levels of genetic isolation among populations. However lake habitats are not the only centers of cichlid biodiversity - certain African rivers also contain large numbers of narrowly endemic species. Patterns of isolation and divergence in these systems have tended to be overlooked and are not well understood. Results We examined genetic and morphological divergence among populations of two narrowly endemic cichlid species, Teleogramma depressum and Lamprologus tigripictilis, from a 100 km stretch of the lower Congo River using both nDNA microsatellites and mtDNA markers along with coordinate-based morphological techniques. In L. tigripictilis, the strongest genetic break was concordant with measurable phenotypic divergence but no morphological disjunction was detected for T. depressum despite significant differentiation at mtDNA and nDNA microsatellite markers. Conclusions The genetic markers revealed patterns of philopatry and estimates of genetic isolation that are among the highest reported for any African cichlid species over a comparable geographic scale. We hypothesize that the high levels of philopatry observed are generated and maintained by the extreme hydrology of the lower Congo River. PMID:20482864

  11. Differences in foraging ecology align with genetically divergent ecotypes of a highly mobile marine top predator.

    PubMed

    Jeglinski, Jana W E; Wolf, Jochen B W; Werner, Christiane; Costa, Daniel P; Trillmich, Fritz

    2015-12-01

    Foraging differentiation within a species can contribute to restricted gene flow between ecologically different groups, promoting ecological speciation. Galapagos sea lions (Zalophus wollebaeki) show genetic and morphological divergence between the western and central archipelago, possibly as a result of an ecologically mediated contrast in the marine habitat. We use global positioning system (GPS) data, time-depth recordings (TDR), stable isotope and scat data to compare foraging habitat characteristics, diving behaviour and diet composition of Galapagos sea lions from a western and a central colony. We consider both juvenile and adult life stages to assess the potential role of ontogenetic shifts that can be crucial in shaping foraging behaviour and habitat choice for life. We found differences in foraging habitat use, foraging style and diet composition that aligned with genetic differentiation. These differences were consistent between juvenile and adult sea lions from the same colony, overriding age-specific behavioural differences. Our study contributes to an understanding of the complex interaction of ecological condition, plastic behavioural response and genetic make-up of interconnected populations. PMID:26307593

  12. The estimation of genetic divergence

    NASA Technical Reports Server (NTRS)

    Holmquist, R.; Conroy, T.

    1981-01-01

    Consideration is given to the criticism of Nei and Tateno (1978) of the REH (random evolutionary hits) theory of genetic divergence in nucleic acids and proteins, and to their proposed alternative estimator of total fixed mutations designated X2. It is argued that the assumption of nonuniform amino acid or nucleotide substitution will necessarily increase REH estimates relative to those made for a model where each locus has an equal likelihood of fixing mutations, thus the resulting value will not be an overestimation. The relative values of X2 and measures calculated on the basis of the PAM and REH theories for the number of nucleotide substitutions necessary to explain a given number of observed amino acid differences between two homologous proteins are compared, and the smaller values of X2 are attributed to (1) a mathematical model based on the incorrect assumption that an entire structural gene is free to fix mutations and (2) the assumptions of different numbers of variable codons for the X2 and REH calculations. Results of a repeat of the computer simulations of Nei and Tateno are presented which, in contrast to the original results, confirm the REH theory. It is pointed out that while a negative correlation is observed between estimations of the fixation intensity per varion and the number of varions for a given pair of sequences, the correlation between the two fixation intensities and varion numbers of two different pairs of sequences need not be negative. Finally, REH theory is used to resolve a paradox concerning the high rate of covarion turnover and the nature of general function sites as permanent covarions.

  13. Genetic Divergence in Mandible Form in Relation to Molecular Divergence in Inbred Mouse Strains

    PubMed Central

    Atchley, W. R.; Newman, S.; Cowley, D. E.

    1988-01-01

    Genetic divergence in the form of the mandible is examined in ten inbred strains of mice. Several univariate and multivariate genetic distance estimates are given for the morphological data and these estimates are compared to measures of genealogical and molecular divergence. Highly significant divergence occurs among the ten strains in all 11 mandible traits considered individually and simultaneously. Genealogical relationship among strains is highly correlated with genetic divergence in single locus molecular traits. However, the concordance between genealogical relationship and multivariate genetic divergence in morphology is much more complex. Whether there is a significant correlation between morphological divergence and genealogy depends upon the method of analysis and the particular genetic distance statistic being employed. PMID:3220250

  14. The mitochondrial genomes of Campodea fragilis and C. lubbocki(Hexapoda: Diplura): high genetic divergence in a morphologically uniformtaxon

    SciTech Connect

    Podsiadlowski, L.; Carapelli, A.; Nardi, F.; Dallai, R.; Koch,M.; Boore, J.L.; Frati, F.

    2005-12-01

    Mitochondrial genomes from two dipluran hexapods of the genus Campodea have been sequenced. Gene order is the same as in most other hexapods and crustaceans. Secondary structures of tRNAs reveal specific structural changes in tRNA-C, tRNA-R, tRNA-S1 and tRNA-S2. Comparative analyses of nucleotide and amino acid composition, as well as structural features of both ribosomal RNA subunits, reveal substantial differences among the analyzed taxa. Although the two Campodea species are morphologically highly uniform, genetic divergence is larger than expected, suggesting a long evolutionary history under stable ecological conditions.

  15. High genetic divergence in miniature breeds of Japanese native chickens compared to Red Junglefowl, as revealed by microsatellite analysis.

    PubMed

    Tadano, R; Nishibori, M; Imamura, Y; Matsuzaki, M; Kinoshita, K; Mizutani, M; Namikawa, T; Tsudzuki, M

    2008-02-01

    A wide diversity of domesticated chicken breeds exist due to artificial selection on the basis of human interests. Miniature variants (bantams) are eminently illustrative of the large changes from ancestral junglefowls. In this report, the genetic characterization of seven Japanese miniature chicken breeds and varieties, together with institute-kept Red Junglefowl, was conducted by means of typing 40 microsatellites located on 21 autosomes. We drew focus to genetic differentiation between the miniature chicken breeds and Red Junglefowl in particular. A total of 305 alleles were identified: 27 of these alleles (8.9%) were unique to the Red Junglefowl with high frequencies (>20%). Significantly high genetic differences (F(ST)) were obtained between Red Junglefowl and all other breeds with a range of 0.3901-0.5128. Individual clustering (constructed from combinations of the proportion of shared alleles and the neighbour-joining method) indicated high genetic divergence among breeds including Red Junglefowl. There were also individual assignments on the basis of the Bayesian and distance-based approaches. The microsatellite differences in the miniature chicken breeds compared to the presumed wild ancestor reflected the phenotypic diversity among them, indicating that each of these miniature chicken breeds is a unique gene pool. PMID:18254737

  16. Shared language, diverging genetic histories: high-resolution analysis of Y-chromosome variability in Calabrian and Sicilian Arbereshe.

    PubMed

    Sarno, Stefania; Tofanelli, Sergio; De Fanti, Sara; Quagliariello, Andrea; Bortolini, Eugenio; Ferri, Gianmarco; Anagnostou, Paolo; Brisighelli, Francesca; Capelli, Cristian; Tagarelli, Giuseppe; Sineo, Luca; Luiselli, Donata; Boattini, Alessio; Pettener, Davide

    2016-04-01

    The relationship between genetic and linguistic diversification in human populations has been often explored to interpret some specific issues in human history. The Albanian-speaking minorities of Sicily and Southern Italy (Arbereshe) constitute an important portion of the ethnolinguistic variability of Italy. Their linguistic isolation from neighboring Italian populations and their documented migration history, make such minorities particularly effective for investigating the interplay between cultural, geographic and historical factors. Nevertheless, the extent of Arbereshe genetic relationships with the Balkan homeland and the Italian recipient populations has been only partially investigated. In the present study we address the genetic history of Arbereshe people by combining highly resolved analyses of Y-chromosome lineages and extensive computer simulations. A large set of slow- and fast-evolving molecular markers was typed in different Arbereshe communities from Sicily and Southern Italy (Calabria), as well as in both the putative Balkan source and Italian sink populations. Our results revealed that the considered Arbereshe groups, despite speaking closely related languages and sharing common cultural features, actually experienced diverging genetic histories. The estimated proportions of genetic admixture confirm the tight relationship of Calabrian Arbereshe with modern Albanian populations, in accordance with linguistic hypotheses. On the other hand, population stratification and/or an increased permeability of linguistic and geographic barriers may be hypothesized for Sicilian groups, to account for their partial similarity with Greek populations and their higher levels of local admixture. These processes ultimately resulted in the differential acquisition or preservation of specific paternal lineages by the present-day Arbereshe communities. PMID:26130483

  17. Shared language, diverging genetic histories: high-resolution analysis of Y-chromosome variability in Calabrian and Sicilian Arbereshe

    PubMed Central

    Sarno, Stefania; Tofanelli, Sergio; De Fanti, Sara; Quagliariello, Andrea; Bortolini, Eugenio; Ferri, Gianmarco; Anagnostou, Paolo; Brisighelli, Francesca; Capelli, Cristian; Tagarelli, Giuseppe; Sineo, Luca; Luiselli, Donata; Boattini, Alessio; Pettener, Davide

    2016-01-01

    The relationship between genetic and linguistic diversification in human populations has been often explored to interpret some specific issues in human history. The Albanian-speaking minorities of Sicily and Southern Italy (Arbereshe) constitute an important portion of the ethnolinguistic variability of Italy. Their linguistic isolation from neighboring Italian populations and their documented migration history, make such minorities particularly effective for investigating the interplay between cultural, geographic and historical factors. Nevertheless, the extent of Arbereshe genetic relationships with the Balkan homeland and the Italian recipient populations has been only partially investigated. In the present study we address the genetic history of Arbereshe people by combining highly resolved analyses of Y-chromosome lineages and extensive computer simulations. A large set of slow- and fast-evolving molecular markers was typed in different Arbereshe communities from Sicily and Southern Italy (Calabria), as well as in both the putative Balkan source and Italian sink populations. Our results revealed that the considered Arbereshe groups, despite speaking closely related languages and sharing common cultural features, actually experienced diverging genetic histories. The estimated proportions of genetic admixture confirm the tight relationship of Calabrian Arbereshe with modern Albanian populations, in accordance with linguistic hypotheses. On the other hand, population stratification and/or an increased permeability of linguistic and geographic barriers may be hypothesized for Sicilian groups, to account for their partial similarity with Greek populations and their higher levels of local admixture. These processes ultimately resulted in the differential acquisition or preservation of specific paternal lineages by the present-day Arbereshe communities. PMID:26130483

  18. Genetic Structure Is Associated with Phenotypic Divergence in Floral Traits and Reproductive Investment in a High-Altitude Orchid from the Iron Quadrangle, Southeastern Brazil

    PubMed Central

    Leles, Bruno; Chaves, Anderson V.; Russo, Philip; Batista, João A. N.; Lovato, Maria Bernadete

    2015-01-01

    Knowledge of the role of Neotropical montane landscapes in shaping genetic connectivity and local adaptation is essential for understanding the evolutionary processes that have shaped the extraordinary species diversity in these regions. In the present study, we examined the landscape genetics, estimated genetic diversity, and explored genetic relationships with morphological variability and reproductive strategies in seven natural populations of Cattleya liliputana (Orchidaceae). Nuclear microsatellite markers were used for genetic analyses. Spatial Bayesian clustering and population-based analyses revealed significant genetic structuring and high genetic diversity (He = 0.733 ± 0.03). Strong differentiation was found between populations over short spatial scales (FST = 0.138, p < 0.001), reflecting the landscape discontinuity and isolation. Monmonier´s maximum difference algorithm, Bayesian analysis on STRUCTURE and principal component analysis identified one major genetic discontinuity between populations. Divergent genetic groups showed phenotypic divergence in flower traits and reproductive strategies. Increased sexual reproductive effort was associated with rock outcrop type and may be a response to adverse conditions for growth and vegetative reproduction. Here we discuss the effect of restricted gene flow, local adaptation and phenotypic plasticity as drivers of population differentiation in Neotropical montane rock outcrops. PMID:25756994

  19. Genetic divergence predicts reproductive isolation in damselflies.

    PubMed

    Sánchez-Guillén, R A; Córdoba-Aguilar, A; Cordero-Rivera, A; Wellenreuther, M

    2014-01-01

    Reproductive isolation is the defining characteristic of a biological species, and a common, but often untested prediction is a positive correlation between reproductive isolation and genetic divergence. Here, we test for this correlation in odonates, an order characterized by strong sexual selection. First, we measure reproductive isolation and genetic divergence in eight damselfly genera (30 species pairs) and test for a positive correlation. Second, we estimate the genetic threshold preventing hybrid formation and empirically test this threshold using wild populations of species within the Ischnura genus. Our results indicate a positive and strong correlation between reproductive isolation and genetic distance using both mitochondrial and nuclear genes cytochrome oxidase II (COII: r = 0.781 and 18S-28S: r = 0.658). Hybridization thresholds range from -0.43 to 1.78% for COII and -0.052-0.71% for 18S-28S, and both F1 -hybrids and backcrosses were detected in wild populations of two pairs of Ischnura species with overlapping thresholds. Our study suggests that threshold values are suitable to identify species prone to hybridization and that positive isolation-divergence relationships are taxonomically widespread. PMID:24192316

  20. Genetics of ecological divergence during speciation

    PubMed Central

    Arnegard, Matthew E.; McGee, Matthew D.; Matthews, Blake; Marchinko, Kerry B.; Conte, Gina L.; Kabir, Sahriar; Bedford, Nicole; Bergek, Sara; Chan, Yingguang Frank; Jones, Felicity C.; Kingsley, David M.; Peichel, Catherine L.; Schluter, Dolph

    2014-01-01

    Ecological differences often evolve early in speciation as divergent natural selection drives adaptation to distinct ecological niches, leading ultimately to reproductive isolation. Though this process is a major generator of biodiversity, its genetic basis remains poorly understood. Here we investigate the genetic architecture of niche differentiation in a sympatric species pair of threespine stickleback fish by mapping the environment-dependent effects of phenotypic traits on hybrid feeding and performance under semi-natural conditions. We show that multiple, unlinked loci act largely additively to determine position along the major niche axis separating these recently diverged species. We also find that functional mismatch between phenotypic traits reduces growth of some stickleback hybrids beyond that expected from an intermediate phenotype, suggesting a role for epistasis between the underlying genes. This functional mismatch might lead to hybrid incompatibilities that are analogous to those underlying intrinsic reproductive isolation but that depend on the ecological context. PMID:24909991

  1. High divergent 2D grating

    NASA Astrophysics Data System (ADS)

    Wang, Jin; Ma, Jianyong; Zhou, Changhe

    2014-11-01

    A 3×3 high divergent 2D-grating with period of 3.842μm at wavelength of 850nm under normal incidence is designed and fabricated in this paper. This high divergent 2D-grating is designed by the vector theory. The Rigorous Coupled Wave Analysis (RCWA) in association with the simulated annealing (SA) is adopted to calculate and optimize this 2D-grating.The properties of this grating are also investigated by the RCWA. The diffraction angles are more than 10 degrees in the whole wavelength band, which are bigger than the traditional 2D-grating. In addition, the small period of grating increases the difficulties of fabrication. So we fabricate the 2D-gratings by direct laser writing (DLW) instead of traditional manufacturing method. Then the method of ICP etching is used to obtain the high divergent 2D-grating.

  2. Genetic divergence of tomato ringspot virus.

    PubMed

    Rivera, Lucia; Zamorano, Alan; Fiore, Nicola

    2016-05-01

    Tomato ringspot virus (ToRSV) has been detected in Chile, causing economically important diseases in a wide range of hosts. A ToRSV isolate was obtained from raspberry cv Heritage (Rasp-CL) showing leaf yellowing and stunting. The complete genome of Rasp-CL was sequenced by deep sequencing. The Rasp-CL RNA1 sequence shared 97.4 % nucleotide sequence identity with divergent RNA1 of isolate Rasp1-2014, while Rasp-CL RNA2 showed high divergence from all four isolates available in the database, sharing only 63.9-72.7 % nucleotide sequence identity. This difference was mainly based on the X4 coding region, which has been reported to be a high-variability region. Moreover, based on differences in the X4 region, three Rasp-CL RNA2 variants of different length were identified in the same host. One putative recombination event was identified between the Rasp-CL and GYV-2014 X4 genes. Phylogenetic analysis suggested that ToRSV isolates with currently available sequences form three distinct groups. Our results suggest that, for an accurate phylogenetic classification of ToRSV, it is necessary to obtain sequences of both RNAs. This is the first report of a complete ToRSV genome sequence from South America. PMID:26846512

  3. Biochemical analysis of encapsulated and non-encapsulated species of Trichinella (Nematoda, Trichinellidae) from cold- and warm-blooded animals reveals a high genetic divergence in the genus.

    PubMed

    La Rosa, Giuseppe; Marucci, Gianluca; Pozio, Edoardo

    2003-12-01

    Multilocus enzyme electrophoresis was used to analyse genetic variation in the genus Trichinella. Twenty-eight isolates belonging to eight species and six genotypes were analysed for 12 enzyme systems, producing 19 different phenotypes. According to Jaccard's similarity index, the isolates clustered into two main groups, specifically, encapsulated species/genotypes and non-encapsulated species/genotypes. Furthermore, the non-encapsulated species clustered into two other groups: the species infecting mammals and birds ( Trichinella pseudospiralis) and those infecting mammals and reptiles ( Trichinella papuaeand Trichinella zimbabwensis). The encapsulated species/genotypes, which only infect mammals, clustered into four main groups: the cosmopolitan species Trichinella spiralis, the species/genotypes of the temperate regions ( Trichinella britovi, Trichinella murrelli, Trichinella T8, and Trichinella T9), the species/genotype of the arctic region ( Trichinella nativa and Trichinella T6), and the equatorial species Trichinella nelsoni. These results are consistent with biological, epidemiological, and molecular data, which show a high genetic divergence in this genus. PMID:14557876

  4. Nested Levels of Adaptive Divergence: The Genetic Basis of Craniofacial Divergence and Ecological Sexual Dimorphism

    PubMed Central

    Parsons, Kevin J.; Wang, Jason; Anderson, Graeme; Albertson, R. Craig

    2015-01-01

    Exemplary systems for adaptive divergence are often characterized by their large degrees of phenotypic variation. This variation represents the outcome of generations of diversifying selection. However, adaptive radiations can also contain a hierarchy of differentiation nested within them where species display only subtle phenotypic differences that still have substantial effects on ecology, function, and ultimately fitness. Sexual dimorphisms are also common in species displaying adaptive divergence and can be the result of differential selection between sexes that produce ecological differences between sexes. Understanding the genetic basis of subtle variation (between certain species or sexes) is therefore important for understanding the process of adaptive divergence. Using cichlids from the dramatic adaptive radiation of Lake Malawi, we focus on understanding the genetic basis of two aspects of relatively subtle phenotypic variation. This included a morphometric comparison of the patterns of craniofacial divergence between two ecologically similar species in relation to the larger adaptive radiation of Malawi, and male–female morphological divergence between their F2 hybrids. We then genetically map craniofacial traits within the context of sex and locate several regions of the genome that contribute to variation in craniofacial shape that is relevant to sexual dimorphism within species and subtle divergence between closely related species, and possibly to craniofacial divergence in the Malawi radiation as a whole. To enhance our search for candidate genes we take advantage of population genomic data and a genetic map that is anchored to the cichlid genome to determine which genes within our QTL regions are associated with SNPs that are alternatively fixed between species. This study provides a holistic understanding of the genetic underpinnings of adaptive divergence in craniofacial shape. PMID:26038365

  5. Extensive genetic divergence among Diptychus maculatus populations in northwest China

    NASA Astrophysics Data System (ADS)

    Meng, Wei; Yang, Tianyan; Hai, Sa; Ma, Yanwu; Cai, Lingang; Ma, Xufa; Gao, Tianxiang; Guo, Yan

    2015-05-01

    D. maculates is a kind of specialized Schizothoracinae fish has been locally listed as a protected animal in Xinjiang Province, China. Ili River located in north of Tianshan Mountain and Tarim River located in north of Qinghai-Tibetan Plateau were two main distribution areas of this fish. To investigate the genetic diversity and genetic structure of D. maculates, four populations from Tarim River system and two populations from Ili River system were collected in this study. A 570-bp sequence of the control region was obtained for 105 specimens. Twenty-four haplotypes were detected from six populations, only Kunes River population and Kashi River population shared haplotypes with each other. For all the populations examined, the haplotype diversity ( h) was 0.904 8±0.012 6, nucleotide diversity (π) was 0.027 9±0.013 9, and the average number of pairwise nucleotide differences ( k) was 15.878 3±7.139 1. The analysis of molecular variance (AMOVA) showed that 86.31% of the total genetic variation was apportioned among populations, and the variation within sampled populations was 13.69%. Genetic differences among sampled populations were highly significant. F st statistical test indicated that all populations were significantly divergent from each other ( P<0.01). The largest F st value was between Yurungkash River population and Muzat River population, while the smallest F st value was between Kunes River population and Kashi River population. NJ phylogenetic tree of D-loop haplotypes revealed two main clades. The neutrality test and mismatch distribution analysis suggested that the fish had went through a recent population expansion. The uplift of Tianshan Mountain and movement of Qinghai-Tibetan Plateau might contribute to the wide genetic divergence of D. maculates in northwest China.

  6. Riverscape genetics identifies replicated ecological divergence across an Amazonian ecotone.

    PubMed

    Cooke, Georgina M; Landguth, Erin L; Beheregaray, Luciano B

    2014-07-01

    Ecological speciation involves the evolution of reproductive isolation and niche divergence in the absence of a physical barrier to gene flow. The process is one of the most controversial topics of the speciation debate, particularly in tropical regions. Here, we investigate ecologically based divergence across an Amazonian ecotone in the electric fish, Steatogenys elegans. We combine phylogenetics, genome scans, and population genetics with a recently developed individual-based evolutionary landscape genetics approach that incorporates selection. This framework is used to assess the relative contributions of geography and divergent natural selection between environments as biodiversity drivers. We report on two closely related and sympatric lineages that exemplify how divergent selection across a major Amazonian aquatic ecotone (i.e., between rivers with markedly different hydrochemical properties) may result in replicated ecologically mediated speciation. The results link selection across an ecological gradient with reproductive isolation and we propose that assortative mating based on water color may be driving the divergence. Divergence resulting from ecologically driven selection highlights the importance of considering environmental heterogeneity in studies of speciation in tropical regions. Furthermore, we show that framing ecological speciation in a spatially explicit evolutionary landscape genetics framework provides an important first step in exploring a wide range of the potential effects of spatial dependence in natural selection. PMID:24641091

  7. Genetic constraints predict evolutionary divergence in Dalechampia blossoms

    PubMed Central

    Bolstad, Geir H.; Hansen, Thomas F.; Pélabon, Christophe; Falahati-Anbaran, Mohsen; Pérez-Barrales, Rocío; Armbruster, W. Scott

    2014-01-01

    If genetic constraints are important, then rates and direction of evolution should be related to trait evolvability. Here we use recently developed measures of evolvability to test the genetic constraint hypothesis with quantitative genetic data on floral morphology from the Neotropical vine Dalechampia scandens (Euphorbiaceae). These measures were compared against rates of evolution and patterns of divergence among 24 populations in two species in the D. scandens species complex. We found clear evidence for genetic constraints, particularly among traits that were tightly phenotypically integrated. This relationship between evolvability and evolutionary divergence is puzzling, because the estimated evolvabilities seem too large to constitute real constraints. We suggest that this paradox can be explained by a combination of weak stabilizing selection around moving adaptive optima and small realized evolvabilities relative to the observed additive genetic variance. PMID:25002700

  8. Genetic constraints predict evolutionary divergence in Dalechampia blossoms.

    PubMed

    Bolstad, Geir H; Hansen, Thomas F; Pélabon, Christophe; Falahati-Anbaran, Mohsen; Pérez-Barrales, Rocío; Armbruster, W Scott

    2014-08-19

    If genetic constraints are important, then rates and direction of evolution should be related to trait evolvability. Here we use recently developed measures of evolvability to test the genetic constraint hypothesis with quantitative genetic data on floral morphology from the Neotropical vine Dalechampia scandens (Euphorbiaceae). These measures were compared against rates of evolution and patterns of divergence among 24 populations in two species in the D. scandens species complex. We found clear evidence for genetic constraints, particularly among traits that were tightly phenotypically integrated. This relationship between evolvability and evolutionary divergence is puzzling, because the estimated evolvabilities seem too large to constitute real constraints. We suggest that this paradox can be explained by a combination of weak stabilizing selection around moving adaptive optima and small realized evolvabilities relative to the observed additive genetic variance. PMID:25002700

  9. Genetic, Ecological and Morphological Divergence between Populations of the Endangered Mexican Sheartail Hummingbird (Doricha eliza)

    PubMed Central

    Licona-Vera, Yuyini; Ornelas, Juan Francisco

    2014-01-01

    The Mexican Sheartail (Doricha eliza), an endangered hummingbird, is endemic to Mexico where two populations have a disjunct distribution. One population is distributed along the northern tip of the Yucatan Peninsula whereas the other is mostly restricted to central Veracruz. Despite their disjunct distribution, previous work has failed to detect morphological or behavioral differences between these populations. Here we use variation in morphology, mtDNA and nuDNA sequences to determine the degree of morphological and molecular divergence between populations, their divergence time, and historical demography. We use species distribution modeling and niche divergence tests to infer the relative roles of vicariance and dispersal in driving divergence in the genus. Our Bayesian and maximum likelihood phylogenetic analyses revealed that Doricha eliza populations form a monophyletic clade and support their sister relationship with D. enicura. We found marked genetic differentiation, with reciprocal monophyly of haplotypes and highly restricted gene flow, supporting a history of isolation over the last 120,000 years. Genetic divergence between populations is consistent with the lack of overlap in environmental space and slight morphological differences between males. Our findings indicate that the divergence of the Veracruz and Yucatan populations is best explained by a combination of a short period of isolation exacerbated by subsequent divergence in climate conditions, and that rather than vicariance, the two isolated ranges of D. eliza are the product of recent colonization and divergence in isolation. PMID:24992589

  10. Genetic, ecological and morphological divergence between populations of the endangered Mexican Sheartail hummingbird (Doricha eliza).

    PubMed

    Licona-Vera, Yuyini; Ornelas, Juan Francisco

    2014-01-01

    The Mexican Sheartail (Doricha eliza), an endangered hummingbird, is endemic to Mexico where two populations have a disjunct distribution. One population is distributed along the northern tip of the Yucatan Peninsula whereas the other is mostly restricted to central Veracruz. Despite their disjunct distribution, previous work has failed to detect morphological or behavioral differences between these populations. Here we use variation in morphology, mtDNA and nuDNA sequences to determine the degree of morphological and molecular divergence between populations, their divergence time, and historical demography. We use species distribution modeling and niche divergence tests to infer the relative roles of vicariance and dispersal in driving divergence in the genus. Our Bayesian and maximum likelihood phylogenetic analyses revealed that Doricha eliza populations form a monophyletic clade and support their sister relationship with D. enicura. We found marked genetic differentiation, with reciprocal monophyly of haplotypes and highly restricted gene flow, supporting a history of isolation over the last 120,000 years. Genetic divergence between populations is consistent with the lack of overlap in environmental space and slight morphological differences between males. Our findings indicate that the divergence of the Veracruz and Yucatan populations is best explained by a combination of a short period of isolation exacerbated by subsequent divergence in climate conditions, and that rather than vicariance, the two isolated ranges of D. eliza are the product of recent colonization and divergence in isolation. PMID:24992589

  11. The Kalash genetic isolate: ancient divergence, drift, and selection.

    PubMed

    Ayub, Qasim; Mezzavilla, Massimo; Pagani, Luca; Haber, Marc; Mohyuddin, Aisha; Khaliq, Shagufta; Mehdi, Syed Qasim; Tyler-Smith, Chris

    2015-05-01

    The Kalash represent an enigmatic isolated population of Indo-European speakers who have been living for centuries in the Hindu Kush mountain ranges of present-day Pakistan. Previous Y chromosome and mitochondrial DNA markers provided no support for their claimed Greek descent following Alexander III of Macedon's invasion of this region, and analysis of autosomal loci provided evidence of a strong genetic bottleneck. To understand their origins and demography further, we genotyped 23 unrelated Kalash samples on the Illumina HumanOmni2.5M-8 BeadChip and sequenced one male individual at high coverage on an Illumina HiSeq 2000. Comparison with published data from ancient hunter-gatherers and European farmers showed that the Kalash share genetic drift with the Paleolithic Siberian hunter-gatherers and might represent an extremely drifted ancient northern Eurasian population that also contributed to European and Near Eastern ancestry. Since the split from other South Asian populations, the Kalash have maintained a low long-term effective population size (2,319-2,603) and experienced no detectable gene flow from their geographic neighbors in Pakistan or from other extant Eurasian populations. The mean time of divergence between the Kalash and other populations currently residing in this region was estimated to be 11,800 (95% confidence interval = 10,600-12,600) years ago, and thus they represent present-day descendants of some of the earliest migrants into the Indian sub-continent from West Asia. PMID:25937445

  12. Integration of Genetic and Phenotypic Data in 48 Lineages of Philippine Birds Shows Heterogeneous Divergence Processes and Numerous Cryptic Species

    PubMed Central

    Campbell, Kyle K.; Braile, Thomas

    2016-01-01

    The Philippine Islands are one of the most biologically diverse archipelagoes in the world. Current taxonomy, however, may underestimate levels of avian diversity and endemism in these islands. Although species limits can be difficult to determine among allopatric populations, quantitative methods for comparing phenotypic and genotypic data can provide useful metrics of divergence among populations and identify those that merit consideration for elevation to full species status. Using a conceptual approach that integrates genetic and phenotypic data, we compared populations among 48 species, estimating genetic divergence (p-distance) using the mtDNA marker ND2 and comparing plumage and morphometrics of museum study skins. Using conservative speciation thresholds, pairwise comparisons of genetic and phenotypic divergence suggested possible species-level divergences in more than half of the species studied (25 out of 48). In speciation process space, divergence routes were heterogeneous among taxa. Nearly all populations that surpassed high genotypic divergence thresholds were Passeriformes, and non-Passeriformes populations surpassed high phenotypic divergence thresholds more commonly than expected by chance. Overall, there was an apparent logarithmic increase in phenotypic divergence with respect to genetic divergence, suggesting the possibility that divergence among these lineages may initially be driven by divergent selection in this allopatric system. Also, genetic endemism was high among sampled islands. Higher taxonomy affected divergence in genotype and phenotype. Although broader lineage, genetic, phenotypic, and numeric sampling is needed to further explore heterogeneity among divergence processes and to accurately assess species-level diversity in these taxa, our results support the need for substantial taxonomic revisions among Philippine birds. The conservation implications are profound. PMID:27442510

  13. Integration of Genetic and Phenotypic Data in 48 Lineages of Philippine Birds Shows Heterogeneous Divergence Processes and Numerous Cryptic Species.

    PubMed

    Campbell, Kyle K; Braile, Thomas; Winker, Kevin

    2016-01-01

    The Philippine Islands are one of the most biologically diverse archipelagoes in the world. Current taxonomy, however, may underestimate levels of avian diversity and endemism in these islands. Although species limits can be difficult to determine among allopatric populations, quantitative methods for comparing phenotypic and genotypic data can provide useful metrics of divergence among populations and identify those that merit consideration for elevation to full species status. Using a conceptual approach that integrates genetic and phenotypic data, we compared populations among 48 species, estimating genetic divergence (p-distance) using the mtDNA marker ND2 and comparing plumage and morphometrics of museum study skins. Using conservative speciation thresholds, pairwise comparisons of genetic and phenotypic divergence suggested possible species-level divergences in more than half of the species studied (25 out of 48). In speciation process space, divergence routes were heterogeneous among taxa. Nearly all populations that surpassed high genotypic divergence thresholds were Passeriformes, and non-Passeriformes populations surpassed high phenotypic divergence thresholds more commonly than expected by chance. Overall, there was an apparent logarithmic increase in phenotypic divergence with respect to genetic divergence, suggesting the possibility that divergence among these lineages may initially be driven by divergent selection in this allopatric system. Also, genetic endemism was high among sampled islands. Higher taxonomy affected divergence in genotype and phenotype. Although broader lineage, genetic, phenotypic, and numeric sampling is needed to further explore heterogeneity among divergence processes and to accurately assess species-level diversity in these taxa, our results support the need for substantial taxonomic revisions among Philippine birds. The conservation implications are profound. PMID:27442510

  14. Genetic Variability and Divergence in Grayling, THYMALLUS ARCTICUS

    PubMed Central

    Lynch, J. C.; Vyse, E. R.

    1979-01-01

    In North America there are two disjunct forms of grayling, Montana and arctic, which have been separated for approximately 75,000 to 100,000 years. Electrophoretic analysis of thirty-six protein loci in these forms has revealed: (1) levels of gene duplication comparable to other salmonids, (2) a level of heterozygosity similar to other salmonids, (3) a fast and a slow evolving set of proteins, and (4) no obvious relationship between genetic variability and enzyme function. The genetic divergence between these populations may warrant subspecific designations for these two forms. PMID:499766

  15. [Genetic differentiation of Caucasian wood mice: comparison of isozymic, chromosomal and molecular divergence].

    PubMed

    Chelomina, G N; Pavlenko, M V; Kartavtseva, I V; Boeskorov, G G; Liapunova, E A; Vorontsov, N N

    1998-02-01

    Data on the complex genetic analysis of three sympatric species of Caucasian wood mice, Apodemus ponticus, A. fulvipectus, and A. uralensis are presented. A high degree of genetic differentiation at the isozymic, karyological and molecular (nuclear DNA) levels was revealed. The genetic distances between each pair of species varied significantly within a wide range depending on the analyzed level of the organization of genetic material. Mean values of genetic divergence from one species to another were also variable. These findings indicated that evolution of chromosomes was slower than that of isozymes, and the degree of species divergence was similar on cytogenetic and molecular levels. They also suggested that the rates of species evolution could vary in different phyletic lineages and on different levels of organization. Some phyletic lineages of Apodemus could be distinguished by different directions of evolution. PMID:9589852

  16. Clonal selection drives genetic divergence of metastatic medulloblastoma.

    PubMed

    Wu, Xiaochong; Northcott, Paul A; Dubuc, Adrian; Dupuy, Adam J; Shih, David J H; Witt, Hendrik; Croul, Sidney; Bouffet, Eric; Fults, Daniel W; Eberhart, Charles G; Garzia, Livia; Van Meter, Timothy; Zagzag, David; Jabado, Nada; Schwartzentruber, Jeremy; Majewski, Jacek; Scheetz, Todd E; Pfister, Stefan M; Korshunov, Andrey; Li, Xiao-Nan; Scherer, Stephen W; Cho, Yoon-Jae; Akagi, Keiko; MacDonald, Tobey J; Koster, Jan; McCabe, Martin G; Sarver, Aaron L; Collins, V Peter; Weiss, William A; Largaespada, David A; Collier, Lara S; Taylor, Michael D

    2012-02-23

    Medulloblastoma, the most common malignant paediatric brain tumour, arises in the cerebellum and disseminates through the cerebrospinal fluid in the leptomeningeal space to coat the brain and spinal cord. Dissemination, a marker of poor prognosis, is found in up to 40% of children at diagnosis and in most children at the time of recurrence. Affected children therefore are treated with radiation to the entire developing brain and spinal cord, followed by high-dose chemotherapy, with the ensuing deleterious effects on the developing nervous system. The mechanisms of dissemination through the cerebrospinal fluid are poorly studied, and medulloblastoma metastases have been assumed to be biologically similar to the primary tumour. Here we show that in both mouse and human medulloblastoma, the metastases from an individual are extremely similar to each other but are divergent from the matched primary tumour. Clonal genetic events in the metastases can be demonstrated in a restricted subclone of the primary tumour, suggesting that only rare cells within the primary tumour have the ability to metastasize. Failure to account for the bicompartmental nature of metastatic medulloblastoma could be a major barrier to the development of effective targeted therapies. PMID:22343890

  17. The Kalash Genetic Isolate: Ancient Divergence, Drift, and Selection

    PubMed Central

    Ayub, Qasim; Mezzavilla, Massimo; Pagani, Luca; Haber, Marc; Mohyuddin, Aisha; Khaliq, Shagufta; Mehdi, Syed Qasim; Tyler-Smith, Chris

    2015-01-01

    The Kalash represent an enigmatic isolated population of Indo-European speakers who have been living for centuries in the Hindu Kush mountain ranges of present-day Pakistan. Previous Y chromosome and mitochondrial DNA markers provided no support for their claimed Greek descent following Alexander III of Macedon's invasion of this region, and analysis of autosomal loci provided evidence of a strong genetic bottleneck. To understand their origins and demography further, we genotyped 23 unrelated Kalash samples on the Illumina HumanOmni2.5M-8 BeadChip and sequenced one male individual at high coverage on an Illumina HiSeq 2000. Comparison with published data from ancient hunter-gatherers and European farmers showed that the Kalash share genetic drift with the Paleolithic Siberian hunter-gatherers and might represent an extremely drifted ancient northern Eurasian population that also contributed to European and Near Eastern ancestry. Since the split from other South Asian populations, the Kalash have maintained a low long-term effective population size (2,319–2,603) and experienced no detectable gene flow from their geographic neighbors in Pakistan or from other extant Eurasian populations. The mean time of divergence between the Kalash and other populations currently residing in this region was estimated to be 11,800 (95% confidence interval = 10,600−12,600) years ago, and thus they represent present-day descendants of some of the earliest migrants into the Indian sub-continent from West Asia. PMID:25937445

  18. Adaptive divergence despite strong genetic drift: genomic analysis of the evolutionary mechanisms causing genetic differentiation in the island fox (Urocyon littoralis).

    PubMed

    Funk, W Chris; Lovich, Robert E; Hohenlohe, Paul A; Hofman, Courtney A; Morrison, Scott A; Sillett, T Scott; Ghalambor, Cameron K; Maldonado, Jesus E; Rick, Torben C; Day, Mitch D; Polato, Nicholas R; Fitzpatrick, Sarah W; Coonan, Timothy J; Crooks, Kevin R; Dillon, Adam; Garcelon, David K; King, Julie L; Boser, Christina L; Gould, Nicholas; Andelt, William F

    2016-05-01

    The evolutionary mechanisms generating the tremendous biodiversity of islands have long fascinated evolutionary biologists. Genetic drift and divergent selection are predicted to be strong on islands and both could drive population divergence and speciation. Alternatively, strong genetic drift may preclude adaptation. We conducted a genomic analysis to test the roles of genetic drift and divergent selection in causing genetic differentiation among populations of the island fox (Urocyon littoralis). This species consists of six subspecies, each of which occupies a different California Channel Island. Analysis of 5293 SNP loci generated using Restriction-site Associated DNA (RAD) sequencing found support for genetic drift as the dominant evolutionary mechanism driving population divergence among island fox populations. In particular, populations had exceptionally low genetic variation, small Ne (range = 2.1-89.7; median = 19.4), and significant genetic signatures of bottlenecks. Moreover, islands with the lowest genetic variation (and, by inference, the strongest historical genetic drift) were most genetically differentiated from mainland grey foxes, and vice versa, indicating genetic drift drives genome-wide divergence. Nonetheless, outlier tests identified 3.6-6.6% of loci as high FST outliers, suggesting that despite strong genetic drift, divergent selection contributes to population divergence. Patterns of similarity among populations based on high FST outliers mirrored patterns based on morphology, providing additional evidence that outliers reflect adaptive divergence. Extremely low genetic variation and small Ne in some island fox populations, particularly on San Nicolas Island, suggest that they may be vulnerable to fixation of deleterious alleles, decreased fitness and reduced adaptive potential. PMID:26992010

  19. Leaf morphological and genetic divergence in populations of Drimys (Winteraceae) in Chile.

    PubMed

    Jara-Arancio, P; Carmona, M R; Correa, C; Squeo, F A; Arancio, G

    2012-01-01

    The genus Drimys is distributed in Chile from semi-arid zones to sub-Antarctic forests; there are three species of this tree, D. andina, D. confertifolia and D. winteri, the latter with varieties chilensis and winteri. Northern populations are found in small disjunct natural refuges, specifically mountain cloud forests and the bottom of ravines. The size and continuity of populations are greater in the south, where wetter conditions prevail. Morphological differences between populations have been observed, particularly between the northern populations of Fray Jorge and Talinay. This observation, led to the following questions: a) what is the level of morphological and genetic divergence among the populations of Drimys in Chile? and b) do the populations from Fray Jorge/Talinay, currently classified as D. winteri var. chilensis, differ genetically from the other populations of this variety? To answer these questions, we collected leaf samples from 37 populations of all Chilean Drimys, performed leaf morphology analysis and estimated genetic divergence using RAPD markers. We found a high degree of leaf morphological and genetic divergence between the populations of Fray Jorge/Talinay and the other Chilean species of Drimys. The morphological and genetic divergence among varieties of D. winteri was greater than that among the species of Drimys, which may indicate problems with their taxonomic classification. PMID:22370890

  20. The extent and genetic basis of phenotypic divergence in life history traits in Mimulus guttatus

    PubMed Central

    Friedman, Jannice; Twyford, Alex D; Willis, John H; Blackman, Benjamin K

    2015-01-01

    Differential natural selection acting on populations in contrasting environments often results in adaptive divergence in multivariate phenotypes. Multivariate trait divergence across populations could be caused by selection on pleiotropic alleles or through many independent loci with trait-specific effects. Here, we assess patterns of association between a suite of traits contributing to life history divergence in the common monkey flower, Mimulus guttatus, and examine the genetic architecture underlying these correlations. A common garden survey of 74 populations representing annual and perennial strategies from across the native range revealed strong correlations between vegetative and reproductive traits. To determine whether these multitrait patterns arise from pleiotropic or independent loci, we mapped QTLs using an approach combining high-throughput sequencing with bulk segregant analysis on a cross between populations with divergent life histories. We find extensive pleiotropy for QTLs related to flowering time and stolon production, a key feature of the perennial strategy. Candidate genes related to axillary meristem development colocalize with the QTLs in a manner consistent with either pleiotropic or independent QTL effects. Further, these results are analogous to previous work showing pleiotropy-mediated genetic correlations within a single population of M. guttatus experiencing heterogeneous selection. Our findings of strong multivariate trait associations and pleiotropic QTLs suggest that patterns of genetic variation may determine the trajectory of adaptive divergence. PMID:25403267

  1. Toxic hydrogen sulfide and dark caves: phenotypic and genetic divergence across two abiotic environmental gradients in Poecilia mexicana.

    PubMed

    Tobler, Michael; Dewitt, Thomas J; Schlupp, Ingo; García de León, Francisco J; Herrmann, Roger; Feulner, Philine G D; Tiedemann, Ralph; Plath, Martin

    2008-10-01

    Divergent natural selection drives evolutionary diversification. It creates phenotypic diversity by favoring developmental plasticity within populations or genetic differentiation and local adaptation among populations. We investigated phenotypic and genetic divergence in the livebearing fish Poecilia mexicana along two abiotic environmental gradients. These fish typically inhabit nonsulfidic surface rivers, but also colonized sulfidic and cave habitats. We assessed phenotypic variation among a factorial combination of habitat types using geometric and traditional morphometrics, and genetic divergence using quantitative and molecular genetic analyses. Fish in caves (sulfidic or not) exhibited reduced eyes and slender bodies. Fish from sulfidic habitats (surface or cave) exhibited larger heads and longer gill filaments. Common-garden rearing suggested that these morphological differences are partly heritable. Population genetic analyses using microsatellites as well as cytochrome b gene sequences indicate high population differentiation over small spatial scale and very low rates of gene flow, especially among different habitat types. This suggests that divergent environmental conditions constitute barriers to gene flow. Strong molecular divergence over short distances as well as phenotypic and quantitative genetic divergence across habitats in directions classic to fish ecomorphology suggest that divergent selection is structuring phenotypic variation in this system. PMID:18637957

  2. Genetic diversity in curtoviruses: a highly divergent strain of Beet mild curly top virus associated with an outbreak of curly top disease in pepper in Mexico.

    PubMed

    Chen, L-F; Vivoda, E; Gilbertson, R L

    2011-04-01

    A full-length curtovirus genome was PCR-amplified and cloned from peppers in Mexico with symptoms of curly top disease. The cloned DNA of this isolate, MX-P24, replicated in Nicotiana tabacum protoplasts and was infectious in N. benthamiana plants. Sequence analysis revealed that the MX-P24 isolate had a typical curtovirus genome organization and was most similar to beet mild curly top virus (BMCTV). However, sequence identities were at the threshold value for establishment of a new curtovirus species. To further investigate the biological properties of MX-P24, an agroinoculation system was generated. Agroinoculated shepherd's purse plants developed typical curly top symptoms, and virus from these plants was transmissible by the beet leafhopper (Circulifer tenellus). The host range of MX-P24 was similar to that of BMCTV, with curly top symptoms induced in common bean, pepper, pumpkin, shepherd's purse and tomato plants and mild or no symptoms induced in sugar beet plants. Together, these results indicate that MX-P24 is a highly divergent strain of BMCTV associated with an outbreak of curly top disease in peppers in Mexico. PMID:21193937

  3. Phenotypic and genetic divergence within a single whitefish form - detecting the potential for future divergence.

    PubMed

    Hirsch, Philipp Emanuel; Eckmann, Reiner; Oppelt, Claus; Behrmann-Godel, Jasminca

    2013-12-01

    Human-induced nutrient input can change the selection regime and lead to the loss of biodiversity. For example, eutrophication caused speciation reversal in polymorphic whitefish populations through a flattening of littoral-pelagic selection gradients. We investigated the current state of phenotypic and genetic diversity in whitefish (Coregonus macrophthalmus) in a newly restored lake whose nutrient load has returned to pre-eutrophication levels and found that whitefish spawning at different depths varied phenotypically and genetically: individuals spawning at shallower depth had fewer gill rakers, faster growth, and a morphology adapted to benthic feeding, and they showed higher degrees of diet specialization than deeper spawning individuals. Microsatellite analyses complemented the phenotype analyses by demonstrating reproductive isolation along different spawning depths. Our results indicate that whitefish still retain or currently regain phenotypic and genetic diversity, which was lost during eutrophication. Hence, the population documented here has a potential for future divergence because natural selection can target phenotypes specialized along re-established littoral-pelagic selection gradients. The biodiversity, however, will have better chances to return if managers acknowledge the evolutionary potential within the local whitefish and adapt fishing and stocking measures. PMID:24478795

  4. Comparative Genomics of a Helicobacter pylori Isolate from a Chinese Yunnan Naxi Ethnic Aborigine Suggests High Genetic Divergence and Phage Insertion

    PubMed Central

    You, Yuanhai; He, Lihua; Zhang, Maojun; Zhang, Jianzhong

    2015-01-01

    Helicobacter pylori is a common pathogen correlated with several severe digestive diseases. It has been reported that isolates associated with different geographic areas, different diseases and different individuals might have variable genomic features. Here, we describe draft genomic sequences of H. pylori strains YN4-84 and YN1-91 isolated from patients with gastritis from the Naxi and Han populations of Yunnan, China, respectively. The draft sequences were compared to 45 other publically available genomes, and a total of 1059 core genes were identified. Genes involved in restriction modification systems, type four secretion system three (TFS3) and type four secretion system four (TFS4), were identified as highly divergent. Both YN4-84 and YN1-91 harbor intact cag pathogenicity island (cagPAI) and have EPIYA-A/B/D type at the carboxyl terminal of cagA. The vacA gene type is s1m2i1. Another major finding was a 32.5-kb prophage integrated in the YN4-84 genome. The prophage shares most of its genes (30/33) with Helicobacter pylori prophage KHP30. Moreover, a 1,886 bp transposable sequence (IS605) was found in the prophage. Our results imply that the Naxi ethnic minority isolate YN4-84 and Han isolate YN1-91 belong to the hspEAsia subgroup and have diverse genome structure. The genome has been extensively modified in several regions involved in horizontal DNA transfer. The important roles played by phages in the ecology and microevolution of H. pylori were further emphasized. The current data will provide valuable information regarding the H. pylori genome based on historic human migrations and population structure. PMID:25799515

  5. User Profile Creation Using Genetic Algorithm with Kullback Leibler Divergence

    NASA Astrophysics Data System (ADS)

    Hidekazu, Yanagimoto; Sigeru, Omatu

    In this paper we propose a user profile creation method using the Kullback Leibler divergence. To cope with information flood, many information filtering systems have been developed up to now. In the information filtering systems it is important to create a user profile which represents user's interests correctly. Since almost all information filtering systems are developed with techniques of information retrieval, machine learning, and pattern recognition, they often use a linear function as a discriminant function. To classify information in the field of document classification more precisely, the systems have been reported which use a non-linear function as a discriminant function. The proposed method is to use the Kullback Leibler divergence as a discriminant function which denotes to user's interest in the information filtering system. To identify an optimal discriminat function with documents which a user evaluates, we use the real-coded genetic algorithm. We compare the present method with the other one using a linear discriminant function and confirm the effectiveness of the proposing method.

  6. Phylogeny of the Highly Divergent Echinosteliales (Amoebozoa).

    PubMed

    Kretzschmar, Martin; Kuhnt, Andreas; Bonkowski, Michael; Fiore-Donno, Anna Maria

    2016-07-01

    Myxomycetes or plasmodial slime molds are widespread and very common soil amoebae with the ability to form macroscopic fruiting bodies. Even if their phylogenetic position as a monophyletic group in Amoebozoa is well established, their internal relationships are still not entirely resolved. At the base of the most intensively studied dark-spored clade lies the order Echinosteliales, whose highly divergent small subunit ribosomal (18S) RNA genes represent a challenge for phylogenetic reconstructions. This is because they are characterized by unusually long variable helices of unknown secondary structure and a high inter- and infraspecific divergence. Current classification recognizes two families: the monogeneric Echinosteliaceae and the Clastodermataceae with the genera Barbeyella and Clastoderma. To better resolve the phylogeny of the Echinosteliales, we obtained three new small subunit ribosomal (18S) RNA gene sequences of Clastoderma and Echinostelium corynophorum. Our phylogenetic analyses suggested the polyphyly of the family Clastodermataceae, as Barbeyella was more closely related to Echinostelium arboreum than to Clastoderma, while Clastoderma debaryanum was the earliest branching clade in Echinosteliales. We also found that E. corynophorum was the closest relative of the enigmatic Semimorula liquescens, a stalkless-modified Echinosteliales. We discuss possible evolutionary pathways in dark-spored Myxomycetes and propose a taxonomic update. PMID:26663217

  7. Genetic divergence for high-molecular weight glutenin subunits (HMW-GS) in indigenous landraces and commercial cultivars of bread wheat of Pakistan.

    PubMed

    Yasmeen, F; Khurshid, H; Ghafoor, A

    2015-01-01

    Wheat flour quality is an important consideration in the breeding and development of new cultivars. A strong association between high-molecular weight glutenin subunits (HMW-GS) and bread making quality has resulted in the widespread utilization of HMW-GS in wheat breeding. In this study, we analyzed 242 lines of wheat, including landraces from the provinces of Punjab and Baluchistan, as well as the commercial varieties of Pakistan, to determine allelic variation in the Glu-A1, Glu-B1, and Glu-D1 loci encoding HMW-GS. Higher genetic diversity was observed for HMW-GS in landraces from Baluchistan, followed by landraces collected from Punjab and then commercial varieties. Rare and uncommon subunits were observed in Glu-B1, whereas Glu-A1 was less polymorphic. However, Glu-B1 was the highest contributor to overall diversity (78%), with a total of 31 rare alleles, followed by Glu-D1 (20%) with the high quality 5+10 allele and other variants. Commercial cultivars possessed favorable alleles, potentially from indirect selection for wheat flour quality by the breeders; however, this indirect selection has decreased the pedigree base of commercial cultivars. The allelic combinations, including 2*, 5+10, and 17+18, showing high quality scores were frequent among landraces, indicating their usefulness in future crop improvement and breeding programs. PMID:25966257

  8. Epistasis and the Genetic Divergence of Photoperiodism between Populations of the Pitcher-Plant Mosquito, Wyeomyia Smithii

    PubMed Central

    Hard, J. J.; Bradshaw, W. E.; Holzapfel, C. M.

    1992-01-01

    Parallel crosses between each of two southern (ancestral) and one northern (derived) population of the pitcher-plant mosquito, Wyeomyia smithii, were made to determine the genetic components of population divergence in critical photoperiod, a phenological trait that measures adaptation to seasonality along a climatic gradient. Joint scaling tests were used to analyze means and variances of first- and second-generation hybrids in order to determine whether nonadditive genetic variance, especially epistatic variance, contributed to divergence in critical photoperiod. In both crosses, digenic epistatic effects were highly significant, indicating that genetic divergence cannot have resulted solely from differences in additively acting loci. For one cross that could be tested directly for such effects, higher order epistasis and/or linkage did not contribute to the divergence of critical photoperiod between the constituent populations. PMID:1353737

  9. Epistasis and the genetic divergence of photoperiodism between populations of the pitcher-plant mosquito, Wyeomyia smithii.

    PubMed

    Hard, J J; Bradshaw, W E; Holzapfel, C M

    1992-06-01

    Parallel crosses between each of two southern (ancestral) and one northern (derived) population of the pitcher-plant mosquito, Wyeomyia smithii, were made to determine the genetic components of population divergence in critical photoperiod, a phenological trait that measures adaptation to seasonality along a climatic gradient. Joint scaling tests were used to analyze means and variances of first- and second-generation hybrids in order to determine whether nonadditive genetic variance, especially epistatic variance, contributed to divergence in critical photoperiod. In both crosses, digenic epistatic effects were highly significant, indicating that genetic divergence cannot have resulted solely from differences in additively acting loci. For one cross that could be tested directly for such effects, higher order epistasis and/or linkage did not contribute to the divergence of critical photoperiod between the constituent populations. PMID:1353737

  10. Predictors for reproductive isolation in a ring species complex following genetic and ecological divergence

    PubMed Central

    2011-01-01

    Background Reproductive isolation (RI) is widely accepted as an important "check point" in the diversification process, since it defines irreversible evolutionary trajectories. Much less consensus exists about the processes that might drive RI. Here, we employ a formal quantitative analysis of genetic interactions at several stages of divergence within the ring species complex Ensatina eschscholtzii in order to assess the relative contribution of genetic and ecological divergence for the development of RI. Results By augmenting previous genetic datasets and adding new ecological data, we quantify levels of genetic and ecological divergence between populations and test how they correlate with a restriction of genetic admixture upon secondary contact. Our results indicate that the isolated effect of ecological divergence between parental populations does not result in reproductively isolated taxa, even when genetic transitions between parental taxa are narrow. Instead, processes associated with overall genetic divergence are the best predictors of reproductive isolation, and when parental taxa diverge in nuclear markers we observe a complete cessation of hybridization, even to sympatric occurrence of distinct evolutionary lineages. Although every parental population has diverged in mitochondrial DNA, its degree of divergence does not predict the extent of RI. Conclusions These results show that in Ensatina, the evolutionary outcomes of ecological divergence differ from those of genetic divergence. While evident properties of taxa may emerge via ecological divergence, such as adaptation to local environment, RI is likely to be a byproduct of processes that contribute to overall genetic divergence, such as time in geographic isolation, rather than being a direct outcome of local adaptation. PMID:21733173

  11. Genetic Divergence of an Avian Endemic on the Californian Channel Islands

    PubMed Central

    Wilson, Amy G.; Chan, Yvonne; Taylor, Sabrina S.; Arcese, Peter

    2015-01-01

    The Californian Channel Islands are near–shore islands with high levels of endemism, but extensive habitat loss has contributed to the decline or extinction of several endemic taxa. A key parameter for understanding patterns of endemism and demography in island populations is the magnitude of inter–island dispersal. This paper estimates the extent of migration and genetic differentiation in three extant and two extinct populations of Channel Island song sparrows (Melospiza melodia graminea). Inter–island differentiation was substantial (G''ST: 0.14–0.37), with San Miguel Island having the highest genetic divergence and lowest migration rates. Santa Rosa and Santa Cruz Island populations were less diverged with higher migration rates. Genetic signals of past population declines were detected in all of the extant populations. The Channel Island populations were significantly diverged from mainland populations of M. m. heermanni (G''ST: 0.30–0.64). Ten mtDNA haplotypes were recovered across the extant and extinct Channel Island population samples. Two of the ten haplotypes were shared between the Northern and Southern Channel Islands, with one of these haplotypes being detected on the Californian mainland. Our results suggest that there is little contemporary migration between islands, consistent with early explanations of avian biogeography in the Channel Islands, and that song sparrow populations on the northern Channel Islands are demographically independent. PMID:26308717

  12. Comparative Landscape Genetics of Three Closely Related Sympatric Hesperid Butterflies with Diverging Ecological Traits

    PubMed Central

    Engler, Jan O.; Balkenhol, Niko; Filz, Katharina J.; Habel, Jan C.; Rödder, Dennis

    2014-01-01

    To understand how landscape characteristics affect gene flow in species with diverging ecological traits, it is important to analyze taxonomically related sympatric species in the same landscape using identical methods. Here, we present such a comparative landscape genetic study involving three closely related Hesperid butterflies of the genus Thymelicus that represent a gradient of diverging ecological traits. We analyzed landscape effects on their gene flow by deriving inter-population connectivity estimates based on different species distribution models (SDMs), which were calculated from multiple landscape parameters. We then used SDM output maps to calculate circuit-theoretic connectivity estimates and statistically compared these estimates to actual genetic differentiation in each species. We based our inferences on two different analytical methods and two metrics of genetic differentiation. Results indicate that land use patterns influence population connectivity in the least mobile specialist T. acteon. In contrast, populations of the highly mobile generalist T. lineola were panmictic, lacking any landscape related effect on genetic differentiation. In the species with ecological traits in between those of the congeners, T. sylvestris, climate has a strong impact on inter-population connectivity. However, the relative importance of different landscape factors for connectivity varies when using different metrics of genetic differentiation in this species. Our results show that closely related species representing a gradient of ecological traits also show genetic structures and landscape genetic relationships that gradually change from a geographical macro- to micro-scale. Thus, the type and magnitude of landscape effects on gene flow can differ strongly even among closely related species inhabiting the same landscape, and depend on their relative degree of specialization. In addition, the use of different genetic differentiation metrics makes it possible to

  13. Geographical and Genetic Divergence Among Papaya ringspot virus Populations Within Hainan Province, China.

    PubMed

    Zhao, Hui; Jia, Rui Zong; Zhang, Yu-Liang; Zhu, Yun Judy; Zeng, Hui-Cai; Kong, Hua; McCafferty, Heather; Guo, An-Ping; Peng, Ming

    2016-08-01

    Papaya ringspot virus (PRSV) severely affects the global papaya industry. Transgenic papaya has been proven to have effective resistance to PRSV isolates from Hawaii, Thailand, Taiwan, and other countries. However, those transgenic cultivars failed to show resistance to Hainan Island isolates. Some 76 PRSV samples, representative of all traditional papaya planting areas across five cities (Wen Chang, n = 13; Cheng Mai, n = 14; Chang Jiang, n = 11; Le Dong, n = 25; and San Ya, n = 13) within Hainan Province, were investigated. Results revealed three genetic diversity groups (Hainan I, II, and III) that correlated with geographical distribution. Frequent mutations among PRSV isolates from Hainan were also observed. The high genetic divergence in PRSV isolates from Hainan is likely to be the cause of the failure of genetically modified papaya that targets sequence-specific virus. PMID:27070425

  14. Niche Divergence versus Neutral Processes: Combined Environmental and Genetic Analyses Identify Contrasting Patterns of Differentiation in Recently Diverged Pine Species

    PubMed Central

    Moreno-Letelier, Alejandra; Ortíz-Medrano, Alejandra; Piñero, Daniel

    2013-01-01

    Background and Aims Solving relationships of recently diverged taxa, poses a challenge due to shared polymorphism and weak reproductive barriers. Multiple lines of evidence are needed to identify independently evolving lineages. This is especially true of long-lived species with large effective population sizes, and slow rates of lineage sorting. North American pines are an interesting group to test this multiple approach. Our aim is to combine cytoplasmic genetic markers with environmental information to clarify species boundaries and relationships of the species complex of Pinus flexilis, Pinus ayacahuite, and Pinus strobiformis. Methods Mitochondrial and chloroplast sequences were combined with previously obtained microsatellite data and contrasted with environmental information to reconstruct phylogenetic relationships of the species complex. Ecological niche models were compared to test if ecological divergence is significant among species. Key Results and Conclusion Separately, both genetic and ecological evidence support a clear differentiation of all three species but with different topology, but also reveal an ancestral contact zone between P. strobiformis and P. ayacahuite. The marked ecological differentiation of P. flexilis suggests that ecological speciation has occurred in this lineage, but this is not reflected in neutral markers. The inclusion of environmental traits in phylogenetic reconstruction improved the resolution of internal branches. We suggest that combining environmental and genetic information would be useful for species delimitation and phylogenetic studies in other recently diverged species complexes. PMID:24205167

  15. Microsatellite markers reveal genetic divergence among wild and cultured populations of Chinese sucker Myxocyprinus asiaticus.

    PubMed

    Cheng, W W; Wang, D Q; Wang, C Y; Du, H; Wei, Q W

    2016-01-01

    Studies of genetic diversity and genetic population structure are critical for the conservation and management of endangered species. The Chinese sucker Myxocyprinus asiaticus is a vulnerable monotypic species in China, which is at a risk of decline owing to fluctuations in effective population size and other demographic and environmental factors. We screened 11 microsatellite loci in 214 individuals to assess genetic differentiation in both wild and cultured populations. The single extant wild population had a higher number of alleles (13) than the cultured populations (average 7.3). High levels of genetic diversity, expressed as observed and expected heterozygosity (HO = 0.771, HE = 0.748, respectively), were found in both wild and cultured populations. We also report significant differentiation among wild and cultured populations (global FST = 0.023, P < 0.001). Both STRUCTURE analysis and neighbor-joining tree revealed three moderately divergent primary genetic clusters: the wild Yangtze population and the Sichuan population were each identified as an individual cluster, with the remaining populations clustered together. Twenty-two samples collected from the Yangtze River were assigned to the cultured population, demonstrating the efficacy of artificial propagation to avoid drastic reduction in the population size of M. asiaticus. These genetic data support the endangered status of the M. asiaticus and have implications for conservation management planning. PMID:27173283

  16. Genetic Divergence across Habitats in the Widespread Coral Seriatopora hystrix and Its Associated Symbiodinium

    PubMed Central

    Bongaerts, Pim; Riginos, Cynthia; Ridgway, Tyrone; Sampayo, Eugenia M.; van Oppen, Madeleine J. H.; Englebert, Norbert; Vermeulen, Francisca; Hoegh-Guldberg, Ove

    2010-01-01

    Background Coral reefs are hotspots of biodiversity, yet processes of diversification in these ecosystems are poorly understood. The environmental heterogeneity of coral reef environments could be an important contributor to diversification, however, evidence supporting ecological speciation in corals is sparse. Here, we present data from a widespread coral species that reveals a strong association of host and symbiont lineages with specific habitats, consistent with distinct, sympatric gene pools that are maintained through ecologically-based selection. Methodology/Principal Findings Populations of a common brooding coral, Seriatopora hystrix, were sampled from three adjacent reef habitats (spanning a ∼30 m depth range) at three locations on the Great Barrier Reef (n = 336). The populations were assessed for genetic structure using a combination of mitochondrial (putative control region) and nuclear (three microsatellites) markers for the coral host, and the ITS2 region of the ribosomal DNA for the algal symbionts (Symbiodinium). Our results show concordant genetic partitioning of both the coral host and its symbionts across the different habitats, independent of sampling location. Conclusions/Significance This study demonstrates that coral populations and their associated symbionts can be highly structured across habitats on a single reef. Coral populations from adjacent habitats were found to be genetically isolated from each other, whereas genetic similarity was maintained across similar habitat types at different locations. The most parsimonious explanation for the observed genetic partitioning across habitats is that adaptation to the local environment has caused ecological divergence of distinct genetic groups within S. hystrix. PMID:20523735

  17. Independent Axes of Genetic Variation and Parallel Evolutionary Divergence Of Opercle Bone Shape in Threespine Stickleback

    PubMed Central

    Kimmel, Charles B.; Cresko, William A.; Phillips, Patrick C.; Ullmann, Bonnie; Currey, Mark; von Hippel, Frank; Kristjánsson, Bjarni K.; Gelmond, Ofer; McGuigan, Katrina

    2014-01-01

    Evolution of similar phenotypes in independent populations is often taken as evidence of adaptation to the same fitness optimum. However, the genetic architecture of traits might cause evolution to proceed more often toward particular phenotypes, and less often toward others, independently of the adaptive value of the traits. Freshwater populations of Alaskan threespine stickleback have repeatedly evolved the same distinctive opercle shape after divergence from an oceanic ancestor. Here we demonstrate that this pattern of parallel evolution is widespread, distinguishing oceanic and freshwater populations across the Pacific Coast of North America and Iceland. We test whether this parallel evolution reflects genetic bias by estimating the additive genetic variance– covariance matrix (G) of opercle shape in an Alaskan oceanic (putative ancestral) population. We find significant additive genetic variance for opercle shape and that G has the potential to be biasing, because of the existence of regions of phenotypic space with low additive genetic variation. However, evolution did not occur along major eigenvectors of G, rather it occurred repeatedly in the same directions of high evolvability. We conclude that the parallel opercle evolution is most likely due to selection during adaptation to freshwater habitats, rather than due to biasing effects of opercle genetic architecture. PMID:22276538

  18. Genetic divergence and units for conservation in the Komodo dragon Varanus komodoensis

    PubMed Central

    Ciofi, C.; Beaumont, M. A.; Swingland, I. R.; Bruford, M. W.

    1999-01-01

    In the past decade much attention has focused on the role that genetics can play in the formation of management strategies in conservation. Here, we describe genetic diversity in the world's largest lizard, the Komodo dragon (Varanus komodoensis), examining the evolutionary relationships and population genetic history of the four islands in south-east Indonesia, which form the vast majority of its range. We identify distinct genetic groups for conservation. The population on the island of Komodo shows by far the largest values of genetic divergence and is proposed that it should be a separate conservation management unit. Other populations, surviving either on small islands with substantially reduced genetic variability, or in isolated patches, are identified as particularly vulnerable to stochastic threats and habitat loss. Our results provide an example of how data defining intraspecific levels of genetic divergence can provide information to help management plans, ensure the maintenance of genetic variability across populations and identify evolutionary potential within endangered species.

  19. Transcriptome, genetic editing, and microRNA divergence substantiate sympatric speciation of blind mole rat, Spalax.

    PubMed

    Li, Kexin; Wang, Liuyang; Knisbacher, Binyamin A; Xu, Qinqin; Levanon, Erez Y; Wang, Huihua; Frenkel-Morgenstern, Milana; Tagore, Satabdi; Fang, Xiaodong; Bazak, Lily; Buchumenski, Ilana; Zhao, Yang; Lövy, Matěj; Li, Xiangfeng; Han, Lijuan; Frenkel, Zeev; Beiles, Avigdor; Cao, Yi Bin; Wang, Zhen Long; Nevo, Eviatar

    2016-07-01

    Incipient sympatric speciation in blind mole rat, Spalax galili, in Israel, caused by sharp ecological divergence of abutting chalk-basalt ecologies, has been proposed previously based on mitochondrial and whole-genome nuclear DNA. Here, we present new evidence, including transcriptome, DNA editing, microRNA, and codon usage, substantiating earlier evidence for adaptive divergence in the abutting chalk and basalt populations. Genetic divergence, based on the previous and new evidence, is ongoing despite restricted gene flow between the two populations. The principal component analysis, neighbor-joining tree, and genetic structure analysis of the transcriptome clearly show the clustered divergent two mole rat populations. Gene-expression level analysis indicates that the population transcriptome divergence is displayed not only by soil divergence but also by sex. Gene ontology enrichment of the differentially expressed genes from the two abutting soil populations highlights reproductive isolation. Alternative splicing variation of the two abutting soil populations displays two distinct splicing patterns. L-shaped FST distribution indicates that the two populations have undergone divergence with gene flow. Transcriptome divergent genes highlight neurogenetics and nutrition characterizing the chalk population, and energetics, metabolism, musculature, and sensory perception characterizing the abutting basalt population. Remarkably, microRNAs also display divergence between the two populations. The GC content is significantly higher in chalk than in basalt, and stress-response genes mostly prefer nonoptimal codons. The multiple lines of evidence of ecological-genomic and genetic divergence highlight that natural selection overrules the gene flow between the two abutting populations, substantiating the sharp ecological chalk-basalt divergence driving sympatric speciation. PMID:27339131

  20. Using multi-locus allelic sequence data to estimate genetic divergence among four Lilium (Liliaceae) cultivars.

    PubMed

    Shahin, Arwa; Smulders, Marinus J M; van Tuyl, Jaap M; Arens, Paul; Bakker, Freek T

    2014-01-01

    Next Generation Sequencing (NGS) may enable estimating relationships among genotypes using allelic variation of multiple nuclear genes simultaneously. We explored the potential and caveats of this strategy in four genetically distant Lilium cultivars to estimate their genetic divergence from transcriptome sequences using three approaches: POFAD (Phylogeny of Organisms from Allelic Data, uses allelic information of sequence data), RAxML (Randomized Accelerated Maximum Likelihood, tree building based on concatenated consensus sequences) and Consensus Network (constructing a network summarizing among gene tree conflicts). Twenty six gene contigs were chosen based on the presence of orthologous sequences in all cultivars, seven of which also had an orthologous sequence in Tulipa, used as out-group. The three approaches generated the same topology. Although the resolution offered by these approaches is high, in this case there was no extra benefit in using allelic information. We conclude that these 26 genes can be widely applied to construct a species tree for the genus Lilium. PMID:25368628

  1. Comparison of morphological and genetic analyses reveals cryptic divergence and morphological plasticity in Stylophora (Cnidaria, Scleractinia)

    NASA Astrophysics Data System (ADS)

    Stefani, Fabrizio; Benzoni, F.; Yang, S.-Y.; Pichon, M.; Galli, P.; Chen, C. A.

    2011-12-01

    A combined morphological and genetic study of the coral genus Stylophora investigated species boundaries in the Gulf of Aden, Yemen. Two mitochondrial regions, including the hypervariable IGS9 spacer and the control region, and a fragment of rDNA were used for phylogenetic analysis. Results were compared by multivariate analysis on the basis of branch morphology and corallite morphometry. Two species were clearly discriminated by both approaches. The first species was characterised by small corallites and a low morphological variability and was ascribed to a new geographical record of Stylophora madagascarensis on the basis of its phylogenetic distinction and its morphological similarity to the type material. The second species was characterised by larger corallite size and greater morphological variability and was ascribed to Stylophora pistillata. The analysis was extended to the intrageneric level for other S. pistillata populations from the Red Sea and the Pacific Ocean. Strong internal divergence was evident in the genus Sty lophora. S. pistillata populations were split into two highly divergent Red Sea/Gulf of Aden and western Pacific lineages with significant morphological overlap, which suggests they represent two distinct cryptic species. The combined use of morphological and molecular approaches, so far proved to be a powerful tool for the re-delineation of species boundaries in corals, provided novel evidence of cryptic divergence in this group of marine metazoans.

  2. Contrasting Patterns of Genetic Differentiation among Blackcaps (Sylvia atricapilla) with Divergent Migratory Orientations in Europe

    PubMed Central

    Mettler, Raeann; Schaefer, H. Martin; Chernetsov, Nikita; Fiedler, Wolfgang; Hobson, Keith A.; Ilieva, Mihaela; Imhof, Elisabeth; Johnsen, Arild; Renner, Swen C.; Rolshausen, Gregor; Serrano, David; Wesołowski, Tomasz; Segelbacher, Gernot

    2013-01-01

    Migratory divides are thought to facilitate behavioral, ecological, and genetic divergence among populations with different migratory routes. However, it is currently contentious how much genetic divergence is needed to maintain distinct migratory behavior across migratory divides. Here we investigate patterns of neutral genetic differentiation among Blackcap (Sylvia atricapilla) populations with different migratory strategies across Europe. We compare the level of genetic divergence of populations migrating to southwestern (SW) or southeastern (SE) wintering areas with birds wintering in the British Isles following a recently established northwesterly (NW) migration route. The migratory divide between SW and SE wintering areas can be interpreted as a result of a re-colonization process after the last glaciation. Thus we predicted greater levels of genetic differentiation among the SW/SE populations. However, a lack of genetic differentiation was found between SW and SE populations, suggesting that interbreeding likely occurs among Blackcaps with different migratory orientations across a large area; therefore the SW/SE migratory divide can be seen as diffuse, broad band and is, at best, a weak isolating barrier. Conversely, weak, albeit significant genetic differentiation was evident between NW and SW migrants breeding sympatrically in southern Germany, suggesting a stronger isolating mechanism may be acting in this population. Populations located within/near the SW/SE contact zone were the least genetically divergent from NW migrants, confirming NW migrants likely originated from within the contact zone. Significant isolation-by-distance was found among eastern Blackcap populations (i.e. SE migrants), but not among western populations (i.e. NW and SW migrants), revealing different patterns of genetic divergence among Blackcap populations in Europe. We discuss possible explanations for the genetic structure of European Blackcaps and how gene flow influences the

  3. Population Structure, Genetic Variation, and Linkage Disequilibrium in Perennial Ryegrass Populations Divergently Selected for Freezing Tolerance

    PubMed Central

    Kovi, Mallikarjuna Rao; Fjellheim, Siri; Sandve, Simen R.; Larsen, Arild; Rudi, Heidi; Asp, Torben; Kent, Matthew Peter; Rognli, Odd Arne

    2015-01-01

    Low temperature is one of the abiotic stresses seriously affecting the growth of perennial ryegrass (Lolium perenne L.), and freezing tolerance is a complex trait of major agronomical importance in northern and central Europe. Understanding the genetic control of freezing tolerance would aid in the development of cultivars of perennial ryegrass with improved adaptation to frost. The plant material investigated in this study was an experimental synthetic population derived from pair-crosses among five European perennial ryegrass genotypes, representing adaptations to a range of climatic conditions across Europe. A total number of 80 individuals (24 of High frost [HF]; 29 of Low frost [LF], and 27 of Unselected [US]) from the second generation of the two divergently selected populations and an unselected (US) control population were genotyped using 278 genome-wide SNPs derived from perennial ryegrass transcriptome sequences. Our studies investigated the genetic diversity among the three experimental populations by analysis of molecular variance and population structure, and determined that the HF and LF populations are very divergent after selection for freezing tolerance, whereas the HF and US populations are more similar. Linkage disequilibrium (LD) decay varied across the seven chromosomes and the conspicuous pattern of LD between the HF and LF population confirmed their divergence in freezing tolerance. Furthermore, two Fst outlier methods; finite island model (fdist) by LOSITAN and hierarchical structure model using ARLEQUIN, both detected six loci under directional selection. These outlier loci are most probably linked to genes involved in freezing tolerance, cold adaptation, and abiotic stress. These six candidate loci under directional selection for freezing tolerance might be potential marker resources for breeding perennial ryegrass cultivars with improved freezing tolerance. PMID:26617611

  4. Evaluation of genetic divergence among clones of conilon coffee after scheduled cycle pruning.

    PubMed

    Dalcomo, J M; Vieira, H D; Ferreira, A; Lima, W L; Ferrão, R G; Fonseca, A F A; Ferrão, M A G; Partelli, F L

    2015-01-01

    Coffea canephora genotypes from the breeding program of Instituto Capixaba de Pesquisa e Extensão Rural were evaluated, and genetic diversity was estimated with the aim of future improvement strategies. From an initial group of 55 genotypes, 18 from the region of Castelo, ES, were selected, and three clones of the cultivars "Vitória" and "robusta tropical." Upon completion of the scheduled cycle pruning, 17 morphoagronomic traits were measured in the 22 genotypes selected. The principal components method was used to evaluate the contributions relative to the traits. The genetic dissimilarity matrix was obtained through Mahalanobis generalized distance, and genotypes were grouped using the hierarchical method based on the mean of the distances. The most promising clones of Avaliação Castelo were AC02, AC03, AC12, AC13, AC22, AC24, AC26, AC27, AC28, AC29, AC30, AC35, AC36, AC37, AC39, AC40, AC43, and AC46. These methods detected high genetic variability, grouping, by similarity, the genotypes in five groups. The trait that contributed the least to genetic divergence was the number of leaves in plagiotropic branches; however, this was not eliminated, because discarding it altered the groups. There are superior genotypes with potential for use in the next stages of the breeding program, aimed at both the composition of clonal variety and hybridizations. PMID:26634507

  5. Mouse consomic strains: Exploiting genetic divergence between Mus m. musculus and Mus m. domesticus subspecies

    PubMed Central

    Gregorová, Sona; Divina, Petr; Storchova, Radka; Trachtulec, Zdenek; Fotopulosova, Vladana; Svenson, Karen L.; Donahue, Leah Rae; Paigen, Beverly; Forejt, Jiri

    2008-01-01

    Consomic (chromosome substitution) strains (CSs) represent the most recent addition to the mouse genetic resources aimed to geneticaly analyze complex trait loci (QTLs). In this study, we report the development of a set of 28 mouse intersubspecific CSs. In each CS, we replaced a single chromosome of the C57BL/6J (B6) inbred strain (mostly Mus m. domesticus) with its homolog from the PWD/Ph inbred strain of the Mus m. musculus subspecies. These two progenitor subspecies diverged less than 1 million years ago and accumulated a large number of genetic differences that constitute a rich resource of genetic variation for QTL analyses. Altogether, the 18 consomic, nine subconsomic, and one conplastic strain covered all 19 autosomes, X and Y sex chromosomes, and mitochondrial DNA. Most CSs had significantly lower reproductive fitness compared with the progenitor strains. CSs homosomic for chromosomes 10 and 11, and the C57BL/6J-Chr X males, failed to reproduce and were substituted by less affected subconsomics carrying either a proximal, central, or distal part of the respective chromosome. A genome-wide scan of 965 DNA markers revealed 99.87% purity of the B6 genetic background. Thirty-three nonsynonymous substitutions were uncovered in the protein-coding regions of the mitochondrial DNA of the B6.PWD-mt conplastic strain. A pilot-phenotyping experiment project revealed a high number of variations among B6.PWD consomics. PMID:18256238

  6. Marked genetic divergence among sky island populations of Sedum lanceolatum (Crassulaceae) in the Rocky Mountains.

    PubMed

    Dechaine, Eric G; Martin, Andrew P

    2005-03-01

    Climate change during the Quaternary played an important role in the differentiation and evolution of plants. A prevailing hypothesis is that alpine and arctic species survived glacial periods in refugia at the periphery of glaciers. Though the Rocky Mountains, south of the southernmost extent of continental ice, served as an important glacial refuge, little is known about how climate cycles influenced populations within this region. We inferred the phylogeography of Sedum lanceolatum (Crassulaceae) within the Rocky Mountain refugium to assess how this high-elevation plant responded to glacial cycles. We sequenced 884 base pairs (bp) of cpDNA intergenic spacers (tRNA-L to tRNA-F and tRNA-S to tRNA-G) for 333 individuals from 18 alpine populations. Our highly variable markers allowed us to infer that populations persisted across the latitudinal range throughout the climate cycles, exhibited significant genetic structure, and experienced cycles of range expansion and fragmentation. Genetic differentiation in S. lanceolatum was most likely a product of short-distance elevational migration in response to climate change, low seed dispersal, and vegetative reproduction. To the extent that Sedum is a good model system, paleoclimatic cycles were probably a major factor preserving genetic variation and promoting divergence in high-elevation flora of the Rocky Mountains. PMID:21652425

  7. Adaptive Genetic Divergence along Narrow Environmental Gradients in Four Stream Insects

    PubMed Central

    Watanabe, Kozo; Kazama, So; Omura, Tatsuo; Monaghan, Michael T.

    2014-01-01

    A central question linking ecology with evolutionary biology is how environmental heterogeneity can drive adaptive genetic divergence among populations. We examined adaptive divergence of four stream insects from six adjacent catchments in Japan by combining field measures of habitat and resource components with genome scans of non-neutral Amplified Fragment Length Polymorphism (AFLP) loci. Neutral genetic variation was used to measure gene flow and non-neutral genetic variation was used to test for adaptive divergence. We identified the environmental characteristics contributing to divergence by comparing genetic distances at non-neutral loci between sites with Euclidean distances for each of 15 environmental variables. Comparisons were made using partial Mantel tests to control for geographic distance. In all four species, we found strong evidence for non-neutral divergence along environmental gradients at between 6 and 21 loci per species. The relative contribution of these environmental variables to each species' ecological niche was quantified as the specialization index, S, based on ecological data. In each species, the variable most significantly correlated with genetic distance at non-neutral loci was the same variable along which each species was most narrowly distributed (i.e., highest S). These were gradients of elevation (two species), chlorophyll-a, and ammonia-nitrogen. This adaptive divergence occurred in the face of ongoing gene flow (Fst = 0.01–0.04), indicating that selection was strong enough to overcome homogenization at the landscape scale. Our results suggest that adaptive divergence is pronounced, occurs along different environmental gradients for different species, and may consistently occur along the narrowest components of species' niche. PMID:24681871

  8. Genetic diversity, recombination, and divergence in animal associated Penicillium dipodomyis.

    PubMed

    Henk, Daniel A; Fisher, Matthew C

    2011-01-01

    Penicillium dipodomyis is thought to be an exclusively asexual fungus associated with Kangaroo Rats, Dipodomys species, and is unique among Penicillium species in growing at 37°C but producing no known toxins. Lack of recombination within P. dipodomyis would result in limited adaptive flexibility but possibly enhance local adaptation and host selection via maintenance of favourable genotypes. Here, analysis of DNA sequence data from five protein-coding genes shows that recombination occurs within P. dipodomyis on a small spatial scale. Furthermore, detection of mating-type alleles supports outcrossing and a sexual cycle in P. dipodomyis. P. dipodomyis was a weaker competitor in in vitro assays with other Penicillium species found in association with Kanagaroo rats. Bayesian species level analysis suggests that the P. dipodomyis lineage diverged from closely related species also found in cheek pouches of Kangaroo Rats and their stored seeds about 11 million years ago, a similar divergence time as Dipodomys from its sister rodent taxa. PMID:21850241

  9. Genetic Diversity, Recombination, and Divergence in Animal Associated Penicillium dipodomyis

    PubMed Central

    Henk, Daniel A.; Fisher, Matthew C.

    2011-01-01

    Penicillium dipodomyis is thought to be an exclusively asexual fungus associated with Kangaroo Rats, Dipodomys species, and is unique among Penicillium species in growing at 37°C but producing no known toxins. Lack of recombination within P. dipodomyis would result in limited adaptive flexibility but possibly enhance local adaptation and host selection via maintenance of favourable genotypes. Here, analysis of DNA sequence data from five protein-coding genes shows that recombination occurs within P. dipodomyis on a small spatial scale. Furthermore, detection of mating-type alleles supports outcrossing and a sexual cycle in P. dipodomyis. P. dipodomyis was a weaker competitor in in vitro assays with other Penicillium species found in association with Kanagaroo rats. Bayesian species level analysis suggests that the P. dipodomyis lineage diverged from closely related species also found in cheek pouches of Kangaroo Rats and their stored seeds about 11 million years ago, a similar divergence time as Dipodomys from its sister rodent taxa. PMID:21850241

  10. Effectiveness of managed gene flow in reducing genetic divergence associated with captive breeding.

    PubMed

    Waters, Charles D; Hard, Jeffrey J; Brieuc, Marine S O; Fast, David E; Warheit, Kenneth I; Waples, Robin S; Knudsen, Curtis M; Bosch, William J; Naish, Kerry A

    2015-12-01

    Captive breeding has the potential to rebuild depressed populations. However, associated genetic changes may decrease restoration success and negatively affect the adaptive potential of the entire population. Thus, approaches that minimize genetic risks should be tested in a comparative framework over multiple generations. Genetic diversity in two captive-reared lines of a species of conservation interest, Chinook salmon (Oncorhynchus tshawytscha), was surveyed across three generations using genome-wide approaches. Genetic divergence from the source population was minimal in an integrated line, which implemented managed gene flow by using only naturally-born adults as captive broodstock, but significant in a segregated line, which bred only captive-origin individuals. Estimates of effective number of breeders revealed that the rapid divergence observed in the latter was largely attributable to genetic drift. Three independent tests for signatures of adaptive divergence also identified temporal change within the segregated line, possibly indicating domestication selection. The results empirically demonstrate that using managed gene flow for propagating a captive-reared population reduces genetic divergence over the short term compared to one that relies solely on captive-origin parents. These findings complement existing studies of captive breeding, which typically focus on a single management strategy and examine the fitness of one or two generations. PMID:26640521

  11. Effectiveness of managed gene flow in reducing genetic divergence associated with captive breeding

    PubMed Central

    Waters, Charles D; Hard, Jeffrey J; Brieuc, Marine S O; Fast, David E; Warheit, Kenneth I; Waples, Robin S; Knudsen, Curtis M; Bosch, William J; Naish, Kerry A

    2015-01-01

    Captive breeding has the potential to rebuild depressed populations. However, associated genetic changes may decrease restoration success and negatively affect the adaptive potential of the entire population. Thus, approaches that minimize genetic risks should be tested in a comparative framework over multiple generations. Genetic diversity in two captive-reared lines of a species of conservation interest, Chinook salmon (Oncorhynchus tshawytscha), was surveyed across three generations using genome-wide approaches. Genetic divergence from the source population was minimal in an integrated line, which implemented managed gene flow by using only naturally-born adults as captive broodstock, but significant in a segregated line, which bred only captive-origin individuals. Estimates of effective number of breeders revealed that the rapid divergence observed in the latter was largely attributable to genetic drift. Three independent tests for signatures of adaptive divergence also identified temporal change within the segregated line, possibly indicating domestication selection. The results empirically demonstrate that using managed gene flow for propagating a captive-reared population reduces genetic divergence over the short term compared to one that relies solely on captive-origin parents. These findings complement existing studies of captive breeding, which typically focus on a single management strategy and examine the fitness of one or two generations. PMID:26640521

  12. The genetics of divergence and reproductive isolation between ecotypes of Panicum hallii

    PubMed Central

    Lowry, David B; Hernandez, Kyle; Taylor, Samuel H; Meyer, Eli; Logan, Tierney L; Barry, Kerrie W; Chapman, Jarrod A; Rokhsar, Daniel S; Schmutz, Jeremy; Juenger, Thomas E

    2015-01-01

    The process of plant speciation often involves the evolution of divergent ecotypes in response to differences in soil water availability between habitats. While the same set of traits is frequently associated with xeric/mesic ecotype divergence, it is unknown whether those traits evolve independently or if they evolve in tandem as a result of genetic colocalization either by pleiotropy or genetic linkage. The self-fertilizing C4 grass species Panicum hallii includes two major ecotypes found in xeric (var. hallii) or mesic (var. filipes) habitats. We constructed the first linkage map for P. hallii by genotyping a reduced representation genomic library of an F2 population derived from an intercross of var. hallii and filipes. We then evaluated the genetic architecture of divergence between these ecotypes through quantitative trait locus (QTL) mapping. Overall, we mapped QTLs for nine morphological traits that are involved in the divergence between the ecotypes. QTLs for five key ecotype-differentiating traits all colocalized to the same region of linkage group five. Leaf physiological traits were less divergent between ecotypes, but we still mapped five physiological QTLs. We also discovered a two-locus Dobzhansky–Muller hybrid incompatibility. Our study suggests that ecotype-differentiating traits may evolve in tandem as a result of genetic colocalization. PMID:25252269

  13. The genetics of divergence and reproductive isolation between ecotypes of Panicum hallii.

    PubMed

    Lowry, David B; Hernandez, Kyle; Taylor, Samuel H; Meyer, Eli; Logan, Tierney L; Barry, Kerrie W; Chapman, Jarrod A; Rokhsar, Daniel S; Schmutz, Jeremy; Juenger, Thomas E

    2015-01-01

    The process of plant speciation often involves the evolution of divergent ecotypes in response to differences in soil water availability between habitats. While the same set of traits is frequently associated with xeric/mesic ecotype divergence, it is unknown whether those traits evolve independently or if they evolve in tandem as a result of genetic colocalization either by pleiotropy or genetic linkage. The self-fertilizing C4 grass species Panicum hallii includes two major ecotypes found in xeric (var. hallii) or mesic (var. filipes) habitats. We constructed the first linkage map for P. hallii by genotyping a reduced representation genomic library of an F2 population derived from an intercross of var. hallii and filipes. We then evaluated the genetic architecture of divergence between these ecotypes through quantitative trait locus (QTL) mapping. Overall, we mapped QTLs for nine morphological traits that are involved in the divergence between the ecotypes. QTLs for five key ecotype-differentiating traits all colocalized to the same region of linkage group five. Leaf physiological traits were less divergent between ecotypes, but we still mapped five physiological QTLs. We also discovered a two-locus Dobzhansky-Muller hybrid incompatibility. Our study suggests that ecotype-differentiating traits may evolve in tandem as a result of genetic colocalization. PMID:25252269

  14. Evolutionary Insights from a Genetically Divergent Hantavirus Harbored by the European Common Mole (Talpa europaea)

    PubMed Central

    Kang, Hae Ji; Bennett, Shannon N.; Sumibcay, Laarni; Arai, Satoru; Hope, Andrew G.; Mocz, Gabor; Song, Jin-Won; Cook, Joseph A.; Yanagihara, Richard

    2009-01-01

    Background The discovery of genetically distinct hantaviruses in shrews (Order Soricomorpha, Family Soricidae) from widely separated geographic regions challenges the hypothesis that rodents (Order Rodentia, Family Muridae and Cricetidae) are the primordial reservoir hosts of hantaviruses and also predicts that other soricomorphs harbor hantaviruses. Recently, novel hantavirus genomes have been detected in moles of the Family Talpidae, including the Japanese shrew mole (Urotrichus talpoides) and American shrew mole (Neurotrichus gibbsii). We present new insights into the evolutionary history of hantaviruses gained from a highly divergent hantavirus, designated Nova virus (NVAV), identified in the European common mole (Talpa europaea) captured in Hungary. Methodology/Principal Findings Pair-wise alignment and comparison of the full-length S- and L-genomic segments indicated moderately low sequence similarity of 54–65% and 46–63% at the nucleotide and amino acid levels, respectively, between NVAV and representative rodent- and soricid-borne hantaviruses. Despite the high degree of sequence divergence, the predicted secondary structure of the NVAV nucleocapsid protein exhibited the characteristic coiled-coil domains at the amino-terminal end, and the L-segment motifs, typically found in hantaviruses, were well conserved. Phylogenetic analyses, using maximum-likelihood and Bayesian methods, showed that NVAV formed a distinct clade that was evolutionarily distant from all other hantaviruses. Conclusions Newly identified hantaviruses harbored by shrews and moles support long-standing virus-host relationships and suggest that ancestral soricomorphs, rather than rodents, may have been the early or original mammalian hosts. PMID:19582155

  15. Segmenting the human genome based on states of neutral genetic divergence.

    PubMed

    Kuruppumullage Don, Prabhani; Ananda, Guruprasad; Chiaromonte, Francesca; Makova, Kateryna D

    2013-09-01

    Many studies have demonstrated that divergence levels generated by different mutation types vary and covary across the human genome. To improve our still-incomplete understanding of the mechanistic basis of this phenomenon, we analyze several mutation types simultaneously, anchoring their variation to specific regions of the genome. Using hidden Markov models on insertion, deletion, nucleotide substitution, and microsatellite divergence estimates inferred from human-orangutan alignments of neutrally evolving genomic sequences, we segment the human genome into regions corresponding to different divergence states--each uniquely characterized by specific combinations of divergence levels. We then parsed the mutagenic contributions of various biochemical processes associating divergence states with a broad range of genomic landscape features. We find that high divergence states inhabit guanine- and cytosine (GC)-rich, highly recombining subtelomeric regions; low divergence states cover inner parts of autosomes; chromosome X forms its own state with lowest divergence; and a state of elevated microsatellite mutability is interspersed across the genome. These general trends are mirrored in human diversity data from the 1000 Genomes Project, and departures from them highlight the evolutionary history of primate chromosomes. We also find that genes and noncoding functional marks [annotations from the Encyclopedia of DNA Elements (ENCODE)] are concentrated in high divergence states. Our results provide a powerful tool for biomedical data analysis: segmentations can be used to screen personal genome variants--including those associated with cancer and other diseases--and to improve computational predictions of noncoding functional elements. PMID:23959903

  16. A rapid, strong, and convergent genetic response to urban habitat fragmentation in four divergent and widespread vertebrates

    USGS Publications Warehouse

    Delaney, Kathleen Semple; Riley, Seth P.D.; Fisher, Robert N.

    2010-01-01

    Background: Urbanization is a major cause of habitat fragmentation worldwide. Ecological and conservation theory predicts many potential impacts of habitat fragmentation on natural populations, including genetic impacts. Habitat fragmentation by urbanization causes populations of animals and plants to be isolated in patches of suitable habitat that are surrounded by non-native vegetation or severely altered vegetation, asphalt, concrete, and human structures. This can lead to genetic divergence between patches and in turn to decreased genetic diversity within patches through genetic drift and inbreeding. Methodology/Principal Findings: We examined population genetic patterns using microsatellites in four common vertebrate species, three lizards and one bird, in highly fragmented urban southern California. Despite significant phylogenetic, ecological, and mobility differences between these species, all four showed similar and significant reductions in gene flow over relatively short geographic and temporal scales. For all four species, the greatest genetic divergence was found where development was oldest and most intensive. All four animals also showed significant reduction in gene flow associated with intervening roads and freeways, the degree of patch isolation, and the time since isolation. Conclusions/Significance: Despite wide acceptance of the idea in principle, evidence of significant population genetic changes associated with fragmentation at small spatial and temporal scales has been rare, even in smaller terrestrial vertebrates, and especially for birds. Given the striking pattern of similar and rapid effects across four common and widespread species, including a volant bird, intense urbanization may represent the most severe form of fragmentation, with minimal effective movement through the urban matrix.

  17. Genetic surfing, not allopatric divergence, explains spatial sorting of mitochondrial haplotypes in venomous coralsnakes.

    PubMed

    Streicher, Jeffrey W; McEntee, Jay P; Drzich, Laura C; Card, Daren C; Schield, Drew R; Smart, Utpal; Parkinson, Christopher L; Jezkova, Tereza; Smith, Eric N; Castoe, Todd A

    2016-07-01

    Strong spatial sorting of genetic variation in contiguous populations is often explained by local adaptation or secondary contact following allopatric divergence. A third explanation, spatial sorting by stochastic effects of range expansion, has been considered less often though theoretical models suggest it should be widespread, if ephemeral. In a study designed to delimit species within a clade of venomous coralsnakes, we identified an unusual pattern within the Texas coral snake (Micrurus tener): strong spatial sorting of divergent mitochondrial (mtDNA) lineages over a portion of its range, but weak sorting of these lineages elsewhere. We tested three alternative hypotheses to explain this pattern-local adaptation, secondary contact following allopatric divergence, and range expansion. Collectively, near panmixia of nuclear DNA, the signal of range expansion associated sampling drift, expansion origins in the Gulf Coast of Mexico, and species distribution modeling suggest that the spatial sorting of divergent mtDNA lineages within M. tener has resulted from genetic surfing of standing mtDNA variation-not local adaptation or allopatric divergence. Our findings highlight the potential for the stochastic effects of recent range expansion to mislead estimations of population divergence made from mtDNA, which may be exacerbated in systems with low vagility, ancestral mtDNA polymorphism, and male-biased dispersal. PMID:27251954

  18. Genetic divergence among sweet corn lines estimated by microsatellite markers.

    PubMed

    Lopes, A D; Scapim, C A; Mangolin, C A; Machado, M F P S

    2014-01-01

    The purpose of this study was to analyze the genetic diversity of 15 sugary-1 sweet corn lines by microsatellite markers. One hundred pairs of simple sequence repeat primers that were mapped for field corn were tested. Of these primers, 15% were polymorphic, and all were selected for the evaluation. These primers identified a total of 39 alleles among the 15 loci that were evaluated. The number of alleles per locus in the genotypes ranged from 2 to 4, with an average of 2.60 alleles per locus; the highest number of alleles was observed at the loci Bnlg1083, Umc1241, and Umc1590. The occurrence of null alleles at locus Umc1363 was evident only in line DN44. The proportion of polymorphic loci was the highest in lines DN17.1 and DN6 (73.33%), whereas lines DN47, DN23, and DN28 were more monomorphic than other lines. The loci Bnlg1083 and Umc1506 were polymorphic in 8 and 7 lines, respectively, indicating that these loci might be effective and promising for the identification of polymorphism in other sweet corn lines. The genetic diversity calculated by Rogers' genetic distances indicated the lowest genetic similarity between lines DN9 and DN28 (0.7603) and the highest similarity between lines DN19 and DN6 (0.3724). The dendrogram obtained by the unweighted pair-group method based on arithmetic averages indicated the formation of 4 major groups, showing the crossing of the genotypes DN19 and DN6 with DN8 as a possible alternative for the expression of heterozygosis. PMID:25511025

  19. Parallel genetic divergence among coastal-marine ecotype pairs of European anchovy explained by differential introgression after secondary contact.

    PubMed

    Le Moan, A; Gagnaire, P-A; Bonhomme, F

    2016-07-01

    Ecophenotypic differentiation among replicate ecotype pairs within a species complex is often attributed to independent outcomes of parallel divergence driven by adaptation to similar environmental contrasts. However, the extent to which parallel phenotypic and genetic divergence patterns have emerged independently is increasingly questioned by population genomic studies. Here, we document the extent of genetic differentiation within and among two geographic replicates of the coastal and marine ecotypes of the European anchovy (Engraulis encrasicolus) gathered from Atlantic and Mediterranean locations. Using a genome-wide data set of RAD-derived SNPs, we show that habitat type (marine vs. coastal) is the most important component of genetic differentiation among populations of anchovy. By analysing the joint allele frequency spectrum of each coastal-marine ecotype pair, we show that genomic divergence patterns between ecotypes can be explained by a postglacial secondary contact following a long period of allopatric isolation (c. 300 kyrs). We found strong support for a model including heterogeneous migration among loci, suggesting that secondary gene flow has eroded past differentiation at different rates across the genome. Markers experiencing reduced introgression exhibited strongly correlated differentiation levels among Atlantic and Mediterranean regions. These results support that partial reproductive isolation and parallel genetic differentiation among replicate pairs of anchovy ecotypes are largely due to a common divergence history prior to secondary contact. They moreover provide comprehensive insights into the origin of a surprisingly strong fine-scale genetic structuring in a high gene flow marine fish, which should improve stock management and conservation actions. PMID:27027737

  20. A cryptic species of Aphis gossypii (Hemiptera: Aphididae) complex revealed by genetic divergence and different host plant association.

    PubMed

    Lee, Y; Lee, W; Lee, S; Kim, H

    2015-02-01

    Three cryptic species, Aphis gossypii, Aphis glycines, and Aphis rhamnicola sp. nov., are recognized as sharing buckthorn plant, Rhamnus spp. as primary hosts. These aphid species have morphological similarities; however, there are significant genetic differences between the three cryptic species. Based on the high level of genetic divergence and the different secondary host association, we described a new species, Aphis rhamnicola sp. nov., for apterous and alate vivipara, fundatrix, ovipara, and gynopara, including diagnostic key for the host sharing species in the genus Aphis. PMID:25413997

  1. Genetic divergence between Melipona quadrifasciata Lepeletier (Hymenoptera, Apidae) populations

    PubMed Central

    Tavares, Mara Garcia; Pietrani, Nathalia Teixeira; de Castro Durvale, Maxwell; Resende, Helder Canto; de Oliveira Campos, Lucio Antonio

    2013-01-01

    Melipona quadrifasciata is a stingless bee widely found throughout the Brazilian territory, with two recognized subspecies, M. quadrifasciata anthidioides, that exhibits interrupted metasomal stripes, and M. quadrifasciata quadrifasciata, with continuous metasomal stripes. This study aimed to estimate the genetic variability of these subspecies. For this purpose, 127 colonies from 15 Brazilian localities were analyzed, using nine species-specific microsatellite primers. At these loci, the number of alleles ranged from three to 15 (mean: 7.2), and the observed heterozygosity (Ho) ranged from 0.03–0.21, while the expected heterozygosity (He) ranged from 0.23–0.47. The genetic distances among populations ranged from 0.03–0.45. The FST multilocus value (0.23) indicated that the populations sampled were structured, and the clustering analysis showed the formation of two subgroups and two more distant populations. The first group contained the subspecies M. quadrifasciata quadrifasciata, and the other, the subspecies M. quadrifasciata anthidioides and the two M. quadrifasciata populations with continuous metasomal stripes from northern Minas Gerais. These results confirmed that the yellow metasomal stripes alone are not a good means for correctly identifying the different subspecies of M. quadrifasciata. PMID:23569416

  2. Red and white Chinook salmon: genetic divergence and mate choice.

    PubMed

    Lehnert, Sarah J; Pitcher, Trevor E; Devlin, Robert H; Heath, Daniel D

    2016-03-01

    Chinook salmon (Oncorhynchus tshawytscha) exhibit extreme differences in coloration of skin, eggs and flesh due to genetic polymorphisms affecting carotenoid deposition, where colour can range from white to bright red. A sympatric population of red and white Chinook salmon occurs in the Quesnel River, British Columbia, where frequencies of each phenotype are relatively equal. In our study, we examined evolutionary mechanisms responsible for the maintenance of the morphs, where we first tested whether morphs were reproductively isolated using microsatellite genotyping, and second, using breeding trials in seminatural spawning channels, we tested whether colour assortative mate choice could be operating to maintain the polymorphism in nature. Next, given extreme difference in carotenoid assimilation and the importance of carotenoids to immune function, we examined mate choice and selection between colour morphs at immune genes (major histocompatibility complex genes: MHC I-A1 and MHC II-B1). In our study, red and white individuals were found to interbreed, and under seminatural conditions, some degree of colour assortative mate choice (71% of matings) was observed. We found significant genetic differences at both MHC genes between morphs, but no evidence of MHC II-B1-based mate choice. White individuals were more heterozygous at MHC II-B1 compared with red individuals, and morphs showed significant allele frequency differences at MHC I-A1. Although colour assortative mate choice is likely not a primary mechanism maintaining the polymorphisms in the population, our results suggest that selection is operating differentially at immune genes in red and white Chinook salmon, possibly due to differences in carotenoid utilization. PMID:26836978

  3. A highly divergent 33 kDa Cryptosporidium parvum antigen

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Previous studies comparing the genome sequences of Cryptosporidium parvum with C. hominis identified a number of highly divergent genes that might reflect positive selection for host specificity. In the present study, a C. parvum sequence, namely cgd8-5370, whose amino acid sequence differs appreci...

  4. Contemporary habitat discontinuity and historic glacial ice drive genetic divergence in Chilean kelp

    PubMed Central

    2010-01-01

    Background South America's western coastline, extending in a near-straight line across some 35 latitudinal degrees, presents an elegant setting for assessing both contemporary and historic influences on cladogenesis in the marine environment. Southern bull-kelp (Durvillaea antarctica) has a broad distribution along much of the Chilean coast. This species represents an ideal model taxon for studies of coastal marine connectivity and of palaeoclimatic effects, as it grows only on exposed rocky coasts and is absent from beaches and ice-affected shores. We expected that, along the central Chilean coast, D. antarctica would show considerable phylogeographic structure as a consequence of the isolating effects of distance and habitat discontinuities. In contrast, we hypothesised that further south - throughout the region affected by the Patagonian Ice Sheet at the Last Glacial Maximum (LGM) - D. antarctica would show relatively little genetic structure, reflecting postglacial recolonisation. Results Mitochondrial (COI) and chloroplast (rbcL) DNA analyses of D. antarctica from 24 Chilean localities (164 individuals) revealed two deeply divergent (4.5 - 6.1% for COI, 1.4% for rbcL) clades from the centre and south of the country, with contrasting levels and patterns of genetic structure. Among populations from central Chile (32° - 44°S), substantial phylogeographic structure was evident across small spatial scales, and a significant isolation-by-distance effect was observed. Genetic disjunctions in this region appear to correspond to the presence of long beaches. In contrast to the genetic structure found among central Chilean populations, samples from the southern Chilean Patagonian region (49° - 56°S) were genetically homogeneous and identical to a haplotype recently found throughout the subantarctic region. Conclusions Southern (Patagonian) Chile has been recolonised by D. antarctica relatively recently, probably since the LGM. The inferred trans-oceanic ancestry of

  5. Microsatellite analysis of genetic divergence among populations of giant Galápagos tortoises.

    PubMed

    Ciofi, Claudio; Milinkovitch, Michel C; Gibbs, James P; Caccone, Adalgisa; Powell, Jeffrey R

    2002-11-01

    Giant Galápagos tortoises represent an interesting model for the study of patterns of genetic divergence and adaptive differentiation related to island colonization events. Recent mitochondrial DNA work elucidated the evolutionary history of the species and helped to clarify aspects of nomenclature. We used 10 microsatellite loci to assess levels of genetic divergence among and within island populations. In particular, we described the genetic structure of tortoises on the island of Isabela, where discrimination of different taxa is still subject of debate. Individual island populations were all genetically distinct. The island of Santa Cruz harboured two distinct populations. On Isabela, populations of Volcan Wolf, Darwin and Alcedo were significantly different from each other. On the other hand, Volcan Wolf showed allelic similarity with the island of Santiago. On Southern Isabela, lower genetic divergence was found between Northeast Sierra Negra and Volcan Alcedo, while patterns of gene flow were recorded among tortoises of Cerro Azul and Southeast Sierra Negra. These tortoises have endured heavy exploitation during the last three centuries and recently attracted much concern due to the current number of stochastic and deterministic threats to extant populations. Our study complements previous investigation based on mtDNA diversity and provides further information that may help devising tortoise management plans. PMID:12406238

  6. Genetic Variation of North American Triatomines (Insecta: Hemiptera: Reduviidae): Initial Divergence between Species and Populations of Chagas Disease Vector

    PubMed Central

    Espinoza, Bertha; Martínez-Ibarra, Jose Alejandro; Villalobos, Guiehdani; De La Torre, Patricia; Laclette, Juan Pedro; Martínez-Hernández, Fernando

    2013-01-01

    The triatomines vectors of Trypanosoma cruzi are principal factors in acquiring Chagas disease. For this reason, increased knowledge of domestic transmission of T. cruzi and control of its insect vectors is necessary. To contribute to genetic knowledge of North America Triatominae species, we studied genetic variations and conducted phylogenetic analysis of different triatomines species of epidemiologic importance. Our analysis showed high genetic variations between different geographic populations of Triatoma mexicana, Meccus longipennis, M. mazzottii, M. picturatus, and T. dimidiata species, suggested initial divergence, hybridation, or classifications problems. In contrast, T. gerstaeckeri, T. bolivari, and M. pallidipennis populations showed few genetics variations. Analysis using cytochrome B and internal transcribed spacer 2 gene sequences indicated that T. bolivari is closely related to the Rubrofasciata complex and not to T. dimidiata. Triatoma brailovskyi and T. gerstaeckeri showed a close relationship with Dimidiata and Phyllosoma complexes. PMID:23249692

  7. Assortative mating but no evidence of genetic divergence in a species characterized by a trophic polymorphism.

    PubMed

    Colborne, S F; Garner, S R; Longstaffe, F J; Neff, B D

    2016-03-01

    Disruptive selection is a process that can result in multiple subgroups within a population, which is referred to as diversification. Foraging-related diversification has been described in many taxa, but many questions remain about the contribution of such diversification to reproductive isolation and potentially sympatric speciation. Here, we use stable isotope analysis of diet and morphological analysis of body shape to examine phenotypic divergence between littoral and pelagic foraging ecomorphs in a population of pumpkinseed sunfish (Lepomis gibbosus). We then examine reproductive isolation between ecomorphs by comparing the isotopic compositions of nesting males to eggs from their nests (a proxy for maternal diet) and use nine microsatellite loci to examine genetic divergence between ecomorphs. Our data support the presence of distinct foraging ecomorphs in this population and indicate that there is significant positive assortative mating based on diet. We did not find evidence of genetic divergence between ecomorphs, however, indicating that isolation is either relatively recent or is not strong enough to result in genetic divergence at the microsatellite loci. Based on our findings, pumpkinseed sunfish represent a system in which to further explore the mechanisms by which natural and sexual selection contribute to diversification, prior to the occurrence of sympatric speciation. PMID:26688005

  8. The effects of Medieval dams on genetic divergence and demographic history in brown trout populations

    PubMed Central

    2014-01-01

    Background Habitat fragmentation has accelerated within the last century, but may have been ongoing over longer time scales. We analyzed the timing and genetic consequences of fragmentation in two isolated lake-dwelling brown trout populations. They are from the same river system (the Gudenå River, Denmark) and have been isolated from downstream anadromous trout by dams established ca. 600–800 years ago. For reference, we included ten other anadromous populations and two hatchery strains. Based on analysis of 44 microsatellite loci we investigated if the lake populations have been naturally genetically differentiated from anadromous trout for thousands of years, or have diverged recently due to the establishment of dams. Results Divergence time estimates were based on 1) Approximate Bayesian Computation and 2) a coalescent-based isolation-with-gene-flow model. Both methods suggested divergence times ca. 600–800 years bp, providing strong evidence for establishment of dams in the Medieval as the factor causing divergence. Bayesian cluster analysis showed influence of stocked trout in several reference populations, but not in the focal lake and anadromous populations. Estimates of effective population size using a linkage disequilibrium method ranged from 244 to > 1,000 in all but one anadromous population, but were lower (153 and 252) in the lake populations. Conclusions We show that genetic divergence of lake-dwelling trout in two Danish lakes reflects establishment of water mills and impassable dams ca. 600–800 years ago rather than a natural genetic population structure. Although effective population sizes of the two lake populations are not critically low they may ultimately limit response to selection and thereby future adaptation. Our results demonstrate that populations may have been affected by anthropogenic disturbance over longer time scales than normally assumed. PMID:24903056

  9. Coupling genetic and ecological-niche models to examine how past population distributions contribute to divergence.

    PubMed

    Knowles, L Lacey; Carstens, Bryan C; Keat, Marcia L

    2007-06-01

    Understanding the impact of climate-induced distributional shifts on species divergence, like those accompanying the Pleistocene glacial cycles [1, 2], requires tools that explicitly incorporate the geographic configuration of past distributions into analyses of genetic differentiation. Depending on the historical distribution of species, genetic differences may accumulate among ancestral source populations, but there is long-standing debate whether displacements into glacial refugia promoted divergence. Here we integrate coalescent-based genetic models [3, 4] with ecological-niche modeling [5, 6] to generate expectations for patterns of genetic variation based on an inferred past distribution of a species. Reconstruction of the distribution of a montane grasshopper species during the last glacial maximum suggests that Melanoplus marshalli populations from the sky islands of Colorado and Utah were likely colonized from multiple ancestral source populations. The genetic analyses provide compelling evidence that the historical distribution of M. marshalli-namely, spatial separation of multiple refugia-was conducive to genetic differentiation. The coupling of genetic and ecological-niche modeling provides a new and flexible tool for integrating paleoenvironmental details into species-specific predictions of population structure that can increase our understanding of why the glacial cycles promoted speciation in some taxa and yet inhibited diversification in others [7, 8]. PMID:17475496

  10. An integrative method for delimiting cohesion species: finding the population-species interface in a group of Californian trapdoor spiders with extreme genetic divergence and geographic structuring.

    PubMed

    Bond, Jason E; Stockman, Amy K

    2008-08-01

    Here we present an objective, repeatable approach to delineating species when populations are divergent and highly structured geographically using the Californian trapdoor spider species complex Aptostichus atomarius Simon as a model system. This system is particularly difficult because under strict criteria of geographical concordance coupled with estimates of genetic divergence, an unrealistic number of population lineages would qualify as species (20 to 60). Our novel phylogeographic approach, which is generally applicable but particularly relevant to highly structured systems, uses genealogical exclusivity to establish a topological framework to examine lineages for genetic and ecological exchangeability in an effort to delimit cohesion species. Both qualitative assessments of habitat and niche-based distribution modeling are employed to evaluate selective regime and ecological interchangeability among genetic lineages; adaptive divergence among populations is weighted more heavily than simple geographical concordance. Based on these analyses we conclude that five cohesion species should be recognized, three of which are new to science. PMID:18686196

  11. Genetic divergence disclosing a rapid prehistorical dispersion of Native Americans in Central and South America.

    PubMed

    He, Yungang; Wang, Wei R; Li, Ran; Wang, Sijia; Jin, Li

    2012-01-01

    An accurate estimate of the divergence time between Native Americans is important for understanding the initial entry and early dispersion of human beings in the New World. Current methods for estimating the genetic divergence time of populations could seriously depart from a linear relationship with the true divergence for multiple populations of a different population size and significant population expansion. Here, to address this problem, we propose a novel measure to estimate the genetic divergence time of populations. Computer simulation revealed that the new measure maintained an excellent linear correlation with the population divergence time in complicated multi-population scenarios with population expansion. Utilizing the new measure and microsatellite data of 21 Native American populations, we investigated the genetic divergences of the Native American populations. The results indicated that genetic divergences between North American populations are greater than that between Central and South American populations. None of the divergences, however, were large enough to constitute convincing evidence supporting the two-wave or multi-wave migration model for the initial entry of human beings into America. The genetic affinity of the Native American populations was further explored using Neighbor-Net and the genetic divergences suggested that these populations could be categorized into four genetic groups living in four different ecologic zones. The divergence of the population groups suggests that the early dispersion of human beings in America was a multi-step procedure. Further, the divergences suggest the rapid dispersion of Native Americans in Central and South Americas after a long standstill period in North America. PMID:22970308

  12. Genetic Divergence Disclosing a Rapid Prehistorical Dispersion of Native Americans in Central and South America

    PubMed Central

    He, Yungang; Wang, Wei R.; Li, Ran; Wang, Sijia; Jin, Li

    2012-01-01

    An accurate estimate of the divergence time between Native Americans is important for understanding the initial entry and early dispersion of human beings in the New World. Current methods for estimating the genetic divergence time of populations could seriously depart from a linear relationship with the true divergence for multiple populations of a different population size and significant population expansion. Here, to address this problem, we propose a novel measure to estimate the genetic divergence time of populations. Computer simulation revealed that the new measure maintained an excellent linear correlation with the population divergence time in complicated multi-population scenarios with population expansion. Utilizing the new measure and microsatellite data of 21 Native American populations, we investigated the genetic divergences of the Native American populations. The results indicated that genetic divergences between North American populations are greater than that between Central and South American populations. None of the divergences, however, were large enough to constitute convincing evidence supporting the two-wave or multi-wave migration model for the initial entry of human beings into America. The genetic affinity of the Native American populations was further explored using Neighbor-Net and the genetic divergences suggested that these populations could be categorized into four genetic groups living in four different ecologic zones. The divergence of the population groups suggests that the early dispersion of human beings in America was a multi-step procedure. Further, the divergences suggest the rapid dispersion of Native Americans in Central and South Americas after a long standstill period in North America. PMID:22970308

  13. Immediate Genetic and Epigenetic Changes in F1 Hybrids Parented by Species with Divergent Genomes in the Rice Genus (Oryza)

    PubMed Central

    Sun, Shuai; Wang, Jie; Jiang, Tingting; Cao, Shuai; Josiah, Samuel Manthi; Pang, Jinsong; Lin, Xiuyun; Liu, Bao

    2015-01-01

    Background Inter-specific hybridization occurs frequently in higher plants, and represents a driving force of evolution and speciation. Inter-specific hybridization often induces genetic and epigenetic instabilities in the resultant homoploid hybrids or allopolyploids, a phenomenon known as genome shock. Although genetic and epigenetic consequences of hybridizations between rice subspecies (e.g., japonica and indica) and closely related species sharing the same AA genome have been extensively investigated, those of inter-specific hybridizations between more remote species with different genomes in the rice genus, Oryza, remain largely unknown. Methodology/Principal Findings We investigated the immediate chromosomal and molecular genetic/epigenetic instability of three triploid F1 hybrids produced by inter-specific crossing between species with divergent genomes of Oryza by genomic in situ hybridization (GISH) and molecular marker analysis. Transcriptional and transpositional activity of several transposable elements (TEs) and methylation stability of their flanking regions were also assessed. We made the following principle findings: (i) all three triploid hybrids are stable in both chromosome number and gross structure; (ii) stochastic changes in both DNA sequence and methylation occurred in individual plants of all three triploid hybrids, but in general methylation changes occurred at lower frequencies than genetic changes; (iii) alteration in DNA methylation occurred to a greater extent in genomic loci flanking potentially active TEs than in randomly sampled loci; (iv) transcriptional activation of several TEs commonly occurred in all three hybrids but transpositional events were detected in a genetic context-dependent manner. Conclusions/Significance Artificially constructed inter-specific hybrids of remotely related species with divergent genomes in genus Oryza are chromosomally stable but show immediate and highly stochastic genetic and epigenetic

  14. Genetic divergence is more tightly related to call variation than landscape features in the Amazonian frogs Physalaemus petersi and P. freibergi.

    PubMed

    Funk, W C; Cannatella, D C; Ryan, M J

    2009-09-01

    Behavioural isolation from divergence in male advertisement calls and female preferences is hypothesized to cause genetic divergence and speciation in the Amazonian frogs Physalaemus petersi and P. freibergi, yet the importance of call variation and landscape features in genetic divergence is unresolved. We tested for correlations between genetic divergence at microsatellite loci and (1) call variables; and (2) landscape variables among 10 populations of these frogs. Genetic divergence was not correlated with geographical distance, rivers or elevation. There was a strong positive relationship, however, between genetic divergence and inter-population differences in one call variable, whine dominant frequency. Effective population sizes varied among sites (range = 15-846) and were often small, suggesting that genetic drift could influence call evolution. Evidence for fine-scale genetic structure within sites was also found. Our results support the hypothesis that behavioural isolation from divergence in male calls and female preferences causes genetic divergence and speciation. PMID:19583696

  15. Selection and geographic isolation influence hummingbird speciation: genetic, acoustic and morphological divergence in the wedge-tailed sabrewing (Campylopterus curvipennis)

    PubMed Central

    2011-01-01

    Background Mesoamerica is one of the most threatened biodiversity hotspots in the world, yet we are far from understanding the geologic history and the processes driving population divergence and speciation for most endemic taxa. In species with highly differentiated populations selective and/or neutral factors can induce rapid changes to traits involved in mate choice, promoting reproductive isolation between allopatric populations that can eventually lead to speciation. We present the results of genetic differentiation, and explore drift and selection effects in promoting acoustic and morphological divergence among populations of Campylopterus curvipennis, a lekking hummingbird with an extraordinary vocal variability across Mesoamerica. Results Analyses of two mitochondrial genes and ten microsatellite loci genotyped for 160 individuals revealed the presence of three lineages with no contemporary gene flow: C. c. curvipennis, C. c. excellens, and C. c. pampa disjunctly distributed in the Sierra Madre Oriental, the Tuxtlas region and the Yucatan Peninsula, respectively. Sequence mtDNA and microsatellite data were congruent with two diversification events: an old vicariance event at the Isthmus of Tehuantepec (c. 1.4 Ma), and a more recent Pleistocene split, isolating populations in the Tuxtlas region. Hummingbirds of the excellens group were larger, and those of the pampa group had shorter bills, and lineages that have been isolated the longest shared fewer syllables and differed in spectral and temporal traits of a shared syllable. Coalescent simulations showed that fixation of song types has occurred faster than expected under neutrality but the null hypothesis that morphological divergence resulted from drift was not rejected. Conclusions Our phylogeographic analyses uncovered the presence of three Mesoamerican wedge-tailed sabrewing lineages, which diverged at different time scales. These results highlight the importance of the Isthmus of Tehuantepec and more

  16. Genetic signatures of intermediate divergence: population history of Old and New World Holarctic ravens (Corvus corax).

    PubMed

    Omland, Kevin E; Baker, Jason M; Peters, Jeffrey L

    2006-03-01

    Many studies of phylogeography, speciation, and species limits restrict their focus to a narrow issue: gene tree monophyly. However, reciprocal monophyly does not provide an ideal touchstone criterion of any aspect of evolutionary divergence. There is a continuum of divergence stages as isolated populations go from initial allele frequency differences to well-differentiated species. Studying intermediate stages of divergence will increase our understanding of geographical speciation, species limits, and conservation priorities. We develop a conceptual framework and terminology for thinking about the stages of 'intermediate polyphyly'. The Holarctic clade of common ravens (Corvus corax), found throughout much of Eurasia and North America, provides a case study of these stages of intermediate divergence. We used coalescent, phylogenetic, and population genetic methods to investigate the history and current status of this Old World-New World distribution using 107 mitochondrial control region sequences. Phylogenetically, New World and Old World samples are intermixed. However, most samples are grouped into small subclades that are restricted to either the New World or the Old World, and only one haplotype is shared between the hemispheres. Analysis of moleculalr variance (amova) results reflect this low haplotype sharing between hemispheres (Phi(ST) = 0.13, P < 0.01). Isolation with Migration (im) coalescent results suggest a sustained period of divergence between the hemispheres and low levels of maternal gene flow. Although there has not been sufficient time to evolve reciprocal monophyly and some gene flow may occur, New World and Old World ravens are genetically quite distinct. We use this example to demonstrate these early stages of divergence as populations go from sharing only internal haplotypes, to sharing no haplotypes, to having population specific subclades. Studies of phylogeography, speciation and systematics will benefit from increased attention to

  17. Genetic divergence of physiological-quality traits of seeds in a population of peppers.

    PubMed

    Pessoa, A M S; Barroso, P A; do Rêgo, E R; Medeiros, G D A; Bruno, R L A; do Rêgo, M M

    2015-01-01

    Brazil has a great diversity of Capsicum peppers that can be used in breeding programs. The objective of this study was to evaluate genetic variation in traits related to the physiological quality of seeds of Capsicum annuum L. in a segregating F2 population and its parents. A total of 250 seeds produced by selfing in the F1 generation resulting from crosses between UFPB 77.3 and UFPB 76 were used, with 100 seeds of both parents used as additional controls, totaling 252 genotypes. The seeds were germinated in gerboxes containing substrate blotting paper moistened with distilled water. Germination and the following vigor tests were evaluated: first count, germination velocity index, and root and shoot lengths. Data were subjected to analysis of variance, and means were compared by Scott and Knott's method at 1% probability. Tocher's clustering based on Mahalanobis distance and canonical variable analysis with graphic dispersion of genotypes were performed, and genetic parameters were estimated. All variables were found to be significant by the F test (P ≤ 0.01) and showed high heritability and a CVg/CVe ratio higher than 1.0, indicating genetic differences among genotypes. Parents (genotypes 1 and 2) formed distinct groups in all clustering methods. Genotypes 3, 104, 153, and 232 were found to be the most divergent according to Tocher's clustering method, and this was mainly due to early germination, which was observed on day 14, and would therefore be selected. Understanding the phenotypic variability among these 252 genotypes will serve as a basis for continuing the breeding program within this family. PMID:26505398

  18. Internal Performance of Several Divergent-Shroud Ejector Nozzles with High Divergence Angles

    NASA Technical Reports Server (NTRS)

    Trout, Arthur M.; Papell, S. Stephen; Povolny, John H.

    1957-01-01

    Nine divergent-shroud ejector configurations were investigated to determine the effect of shroud divergence angle on ejector internal performance. Unheated dry air was used for both the primary and secondary flows. The decrease in the design-point thrust coefficient with increasing flow divergence angle (angle measured from primary exit to shroud exit) followed very closely a simple relation involving the cosine of the angle. This indicates that design-point thrust performance for divergent-shroud ejectors can be predicted with reasonable accuracy within the range investigated. The decrease in design-point thrust coefficient due to increasing the flow divergence engle from 120deg to 30deg (half-singles) was approximately 6 percent. Ejector air-handling characteristics and the primary-nozzle flow coefficient were not significantly affected by change in shroud divergence angle.

  19. Lack of genetic differentiation between monarch butterflies with divergent migration destinations.

    PubMed

    Lyons, Justine I; Pierce, Amanda A; Barribeau, Seth M; Sternberg, Eleanore D; Mongue, Andrew J; De Roode, Jacobus C

    2012-07-01

    Monarch butterflies are best known for their spectacular annual migration from eastern North America to Mexico. Monarchs also occur in the North American states west of the Rocky Mountains, from where they fly shorter distances to the California Coast. Whether eastern and western North American monarchs form one genetic population or are genetically differentiated remains hotly debated, and resolution of this debate is essential to understand monarch migration patterns and to protect this iconic insect species. We studied the genetic structure of North American migratory monarch populations, as well as nonmigratory populations in Hawaii and New Zealand. Our results show that eastern and western migratory monarchs form one admixed population and that monarchs from Hawaii and New Zealand have genetically diverged from North American butterflies. These findings suggest that eastern and western monarch butterflies maintain their divergent migrations despite genetic mixing. The finding that eastern and western monarchs form one genetic population also suggests that the conservation of overwintering sites in Mexico is crucial for the protection of monarchs in both eastern and western North America. PMID:22574833

  20. Genetic Divergence between Camellia sinensis and Its Wild Relatives Revealed via Genome-Wide SNPs from RAD Sequencing

    PubMed Central

    Liu, Hong-Wei; Wu, Jun-Lan; Li, Zheng-Guo; Zhang, Liang; Jian, Jian-Bo; Li, Ye-Yun; Tai, Yu-Ling; Zhang, Jing; Zhang, Zheng-Zhu; Jiang, Chang-Jun; Xia, Tao; Wan, Xiao-Chun

    2016-01-01

    Tea is one of the most popular beverages across the world and is made exclusively from cultivars of Camellia sinensis. Many wild relatives of the genus Camellia that are closely related to C. sinensis are native to Southwest China. In this study, we first identified the distinct genetic divergence between C. sinensis and its wild relatives and provided a glimpse into the artificial selection of tea plants at a genome-wide level by analyzing 15,444 genomic SNPs that were identified from 18 cultivated and wild tea accessions using a high-throughput genome-wide restriction site-associated DNA sequencing (RAD-Seq) approach. Six distinct clusters were detected by phylogeny inferrence and principal component and genetic structural analyses, and these clusters corresponded to six Camellia species/varieties. Genetic divergence apparently indicated that C. taliensis var. bangwei is a semi-wild or transient landrace occupying a phylogenetic position between those wild and cultivated tea plants. Cultivated accessions exhibited greater heterozygosity than wild accessions, with the exception of C. taliensis var. bangwei. Thirteen genes with non-synonymous SNPs exhibited strong selective signals that were suggestive of putative artificial selective footprints for tea plants during domestication. The genome-wide SNPs provide a fundamental data resource for assessing genetic relationships, characterizing complex traits, comparing heterozygosity and analyzing putatitve artificial selection in tea plants. PMID:26962860

  1. Microgeographic Patterns of Genetic Divergence and Adaptation across Environmental Gradients in Boechera stricta (Brassicaceae).

    PubMed

    Anderson, Jill T; Perera, Nadeesha; Chowdhury, Bashira; Mitchell-Olds, Thomas

    2015-10-01

    Abiotic and biotic conditions often vary continuously across the landscape, imposing divergent selection on local populations. We used a provenance trial approach to examine microgeographic variation in local adaptation in Boechera stricta (Brassicaceae), a perennial forb native to the Rocky Mountains. In montane ecosystems, environmental conditions change considerably over short spatial scales, such that neighboring populations can be subject to different selective pressures. Using accessions from southern (Colorado) and northern (Idaho) populations, we characterized spatial variation in genetic similarity via microsatellite markers. We then transplanted genotypes from multiple local populations into common gardens in both regions. Continuous variation in local adaptation emerged for several components of fitness. In Idaho, genotypes from warmer environments (low-elevation or south-facing sites) were poorly adapted to the north-facing garden. In high- and low-elevation Colorado gardens, susceptibility to insect herbivory increased with source elevation. In the high-elevation Colorado garden, germination success peaked for genotypes that evolved at elevations similar to that of the garden and decreased for genotypes from higher and lower elevations. We also found evidence for local maladaptation in survival and fecundity components of fitness in the low-elevation Colorado garden. This approach is a first step in predicting how global change could affect evolutionary dynamics. PMID:26656218

  2. Genetic Analysis of Substrain Divergence in Non-Obese Diabetic (NOD) Mice.

    PubMed

    Simecek, Petr; Churchill, Gary A; Yang, Hyuna; Rowe, Lucy B; Herberg, Lieselotte; Serreze, David V; Leiter, Edward H

    2015-05-01

    The non-obese diabetic (NOD) mouse is a polygenic model for type 1 diabetes that is characterized by insulitis, a leukocytic infiltration of the pancreatic islets. During ~35 years since the original inbred strain was developed in Japan, NOD substrains have been established at different laboratories around the world. Although environmental differences among NOD colonies capable of impacting diabetes incidence have been recognized, differences arising from genetic divergence have not been analyzed previously. We use both mouse diversity array and whole-exome capture sequencing platforms to identify genetic differences distinguishing five NOD substrains. We describe 64 single-nucleotide polymorphisms, and two short indels that differ in coding regions of the five NOD substrains. A 100-kb deletion on Chromosome 3 distinguishes NOD/ShiLtJ and NOD/ShiLtDvs from three other substrains, whereas a 111-kb deletion in the Icam2 gene on Chromosome 11 is unique to the NOD/ShiLtDvs genome. The extent of genetic divergence for NOD substrains is compared with similar studies for C57BL6 and BALB/c substrains. As mutations are fixed to homozygosity by continued inbreeding, significant differences in substrain phenotypes are to be expected. These results emphasize the importance of using embryo freezing methods to minimize genetic drift within substrains and of applying appropriate genetic nomenclature to permit substrain recognition when one is used. PMID:25740934

  3. Evolutionary divergence of the genetic architecture underlying photoperiodism in the pitcher-plant mosquito, Wyeomyia smithii.

    PubMed

    Lair, K P; Bradshaw, W E; Holzapfel, C M

    1997-12-01

    We determine the contribution of composite additive, dominance, and epistatic effects to the genetic divergence of photoperiodic response along latitudinal, altitudinal, and longitudinal gradients in the pitcher-plant mosquito, Wyeomyia smithii. Joint scaling tests of crosses between populations showed widespread epistasis as well as additive and dominance differences among populations. There were differences due to epistasis between an alpine population in North Carolina and populations in Florida, lowland North Carolina, and Maine. Longitudinal displacement resulted in differences due to epistasis between Florida and Alabama populations separated by 300 km but not between Maine and Wisconsin populations separated by 2000 km. Genetic differences between New Jersey and Ontario did not involve either dominance or epistasis and we estimated the minimum number of effective factors contributing to a difference in mean critical photoperiod of 5 SD between them as nE = 5. We propose that the genetic similarity of populations within a broad northern region is due to their more recent origin since recession of the Laurentide Ice Sheet and that the unique genetic architecture of each population is the result of both mutation and repeated migration-founder-flush episodes during the dispersal of W. smithii in North America. Our results suggest that differences in composite additive and dominance effects arise early in the genetic divergence of populations while differences due to epistasis accumulate after more prolonged isolation. PMID:9409843

  4. Evolutionary Divergence of the Genetic Architecture Underlying Photoperiodism in the Pitcher-Plant Mosquito, Wyeomyia Smithii

    PubMed Central

    Lair, K. P.; Bradshaw, W. E.; Holzapfel, C. M.

    1997-01-01

    We determine the contribution of composite additive, dominance, and epistatic effects to the genetic divergence of photoperiodic response along latitudinal, altitudinal, and longitudinal gradients in the pitcher-plant mosquito, Wyeomyia smithii. Joint scaling tests of crosses between populations showed wide-spread epistasis as well as additive and dominance differences among populations. There were differences due to epistasis between an alpine population in North Carolina and populations in Florida, lowland North Carolina, and Maine. Longitudinal displacement resulted in differences due to epistasis between Florida and Alabama populations separated by 300 km but not between Maine and Wisconsin populations separated by 2000 km. Genetic differences between New Jersey and Ontario did not involve either dominance or epistasis and we estimated the minimum number of effective factors contributing to a difference in mean critical photoperiod of 5 SD between them as n(E) = 5. We propose that the genetic similarity of populations within a broad northern region is due to their more recent origin since recession of the Laurentide Ice Sheet and that the unique genetic architecture of each population is the result of both mutation and repeated migration-founder-flush episodes during the dispersal of W. smithii in North America. Our results suggest that differences in composite additive and dominance effects arise early in the genetic divergence of populations while differences due to epistasis accumulate after more prolonged isolation. PMID:9409843

  5. Genetic landscapes GIS Toolbox: tools to map patterns of genetic divergence and diversity.

    USGS Publications Warehouse

    Vandergast, Amy G.; Perry, William M.; Lugo, Roberto V.; Hathaway, Stacie A.

    2011-01-01

    The Landscape Genetics GIS Toolbox contains tools that run in the Geographic Information System software, ArcGIS, to map genetic landscapes and to summarize multiple genetic landscapes as average and variance surfaces. These tools can be used to visualize the distribution of genetic diversity across geographic space and to study associations between patterns of genetic diversity and geographic features or other geo-referenced environmental data sets. Together, these tools create genetic landscape surfaces directly from tables containing genetic distance or diversity data and sample location coordinates, greatly reducing the complexity of building and analyzing these raster surfaces in a Geographic Information System.

  6. Divergent pattern of nuclear genetic diversity across the range of the Afromontane Prunus africana mirrors variable climate of African highlands

    PubMed Central

    Kadu, Caroline A. C.; Konrad, Heino; Schueler, Silvio; Muluvi, Geoffrey M.; Eyog-Matig, Oscar; Muchugi, Alice; Williams, Vivienne L.; Ramamonjisoa, Lolona; Kapinga, Consolatha; Foahom, Bernard; Katsvanga, Cuthbert; Hafashimana, David; Obama, Crisantos; Geburek, Thomas

    2013-01-01

    Background and Aims Afromontane forest ecosystems share a high similarity of plant and animal biodiversity, although they occur mainly on isolated mountain massifs throughout the continent. This resemblance has long provoked questions on former wider distribution of Afromontane forests. In this study Prunus africana (one of the character trees of Afromontane forests) is used as a model for understanding the biogeography of this vegetation zone. Methods Thirty natural populations from nine African countries covering a large part of Afromontane regions were analysed using six nuclear microsatellites. Standard population genetic analysis as well as Bayesian and maximum likelihood models were used to infer genetic diversity, population differentiation, barriers to gene flow, and recent and all migration among populations. Key Results Prunus africana exhibits strong divergence among five main Afromontane regions: West Africa, East Africa west of the Eastern Rift Valley (ERV), East Africa east of the ERV, southern Africa and Madagascar. The strongest divergence was evident between Madagascar and continental Africa. Populations from West Africa showed high similarity with East African populations west of the ERV, whereas populations east of the ERV are closely related to populations of southern Africa, respectively. Conclusions The observed patterns indicate divergent population history across the continent most likely associated to Pleistocene changes in climatic conditions. The high genetic similarity between populations of West Africa with population of East Africa west of the ERV is in agreement with faunistic and floristic patterns and provides further evidence for a historical migration route. Contrasting estimates of recent and historical gene flow indicate a shift of the main barrier to gene flow from the Lake Victoria basin to the ERV, highlighting the dynamic environmental and evolutionary history of the region. PMID:23250908

  7. Genetic diversity and divergence among freshwater mussel (Anodonta) populations in the Bonneville Basin of Utah.

    PubMed

    Mock, K E; Brim-Box, J C; Miller, M P; Downing, M E; Hoeh, W R

    2004-05-01

    Populations of the freshwater mussel genus Anodonta appear to be in a state of rapid decline in western North America, following a trend that unfortunately seems to be prevalent among these animals (Mollusca: Unionoida). Here we describe the patterns of molecular divergence and diversity among Anodonta populations in the Bonneville Basin, a large sub-basin of the Great Basin in western North America. Using amplified fragment length polymorphism (AFLP) analysis, we found a striking lack of nuclear diversity within some of these populations, along with a high degree of structuring among populations (FST = 0.61), suggesting post-Pleistocene isolation, due either to a long-term loss of hydrologic connectivity among populations or to more recent fish introductions. We also found evidence of recent hybridization in one of these populations, possibly mediated by fish-stocking practices. Using mitochondrial sequence data, we compared the Bonneville Basin populations to Anodonta in several other drainages in western North America. We found a general lack of resolution in these phylogenetic reconstructions, although there was a tendency for the Bonneville Basin Anodonta (tentatively A. californiensis) to cluster with A. oregonensis from the adjacent Lahontan Basin in Nevada. We recommend further investigation of anthropogenic factors that may be contributing to the decline of western Anodonta and a broad-scale analysis and synthesis of genetic and morphological variation among Anodonta in western North America. PMID:15078447

  8. Genetic and morphological divergence in three strains of brook trout Salvelinus fontinalis commonly stocked in Lake Superior.

    PubMed

    McKinney, Garrett J; Varian, Anna; Scardina, Julie; Nichols, Krista M

    2014-01-01

    Fitness related traits often show spatial variation across populations of widely distributed species. Comparisons of genetic variation among populations in putatively neutral DNA markers and in phenotypic traits susceptible to selection (QST FST analysis) can be used to determine to what degree differentiation among populations can be attributed to selection or genetic drift. Traditionally, QST FST analyses require a large number of populations to achieve sufficient statistical power; however, new methods have been developed that allow QST FST comparisons to be conducted on as few as two populations if their pedigrees are informative. This study compared genetic and morphological divergence in three strains of brook trout Salvelinus fontinalis that were historically or currently used for stocking in the Lake Superior Basin. Herein we examined if morphological divergence among populations showed temporal variation, and if divergence could be attributed to selection or was indistinguishable from genetic drift. Multivariate QST FST analysis showed evidence for divergent selection between populations. Univariate analyses suggests that the pattern observed in the multivariate analyses was largely driven by divergent selection for length and weight, and moreover by divergence between the Assinica strain and each of the Iron River and Siskiwit strains rather than divergent selection between each population pair. While it could not be determined if divergence was due to natural selection or inadvertent artificial selection in hatcheries, selected differences were consistent with patterns of domestication commonly found in salmonids. PMID:25479612

  9. What drivers phenotypic divergence in Leymus chinensis (Poaceae) on large-scale gradient, climate or genetic differentiation?

    NASA Astrophysics Data System (ADS)

    Yuan, Shan; Ma, Linna; Guo, Chengyuan; Wang, Renzhong

    2016-05-01

    Elucidating the driving factors among-population divergence is an important task in evolutionary biology, however the relative contribution from natural selection and neutral genetic differentiation has been less debated. A manipulation experiment was conducted to examine whether the phenotypic divergence of Leymus chinensis depended on climate variations or genetic differentiations at 18 wild sites along a longitudinal gradient from 114 to 124°E in northeast China and at common garden condition of transplantation. Demographical, morphological and physiological phenotypes of 18 L. chinensis populations exhibited significant divergence along the gradient, but these divergent variations narrowed significantly at the transplantation. Moreover, most of the phenotypes were significantly correlated with mean annual precipitation and temperature in wild sites, suggesting that climatic variables played vital roles in phenotypic divergence of the species. Relative greater heterozygosity (HE), genotype evenness (E) and Shannon-Wiener diversity (I) in western group of populations suggested that genetic differentiation also drove phenotypic divergence of the species. However, neutral genetic differentiation (FST = 0.041) was greatly lower than quantitative differentiation (QST = 0.199), indicating that divergent selection/climate variable was the main factor in determining the phenotypic divergence of the species along the large-scale gradient.

  10. What drivers phenotypic divergence in Leymus chinensis (Poaceae) on large-scale gradient, climate or genetic differentiation?

    PubMed Central

    Yuan, Shan; Ma, Linna; Guo, Chengyuan; Wang, Renzhong

    2016-01-01

    Elucidating the driving factors among-population divergence is an important task in evolutionary biology, however the relative contribution from natural selection and neutral genetic differentiation has been less debated. A manipulation experiment was conducted to examine whether the phenotypic divergence of Leymus chinensis depended on climate variations or genetic differentiations at 18 wild sites along a longitudinal gradient from 114 to 124°E in northeast China and at common garden condition of transplantation. Demographical, morphological and physiological phenotypes of 18 L. chinensis populations exhibited significant divergence along the gradient, but these divergent variations narrowed significantly at the transplantation. Moreover, most of the phenotypes were significantly correlated with mean annual precipitation and temperature in wild sites, suggesting that climatic variables played vital roles in phenotypic divergence of the species. Relative greater heterozygosity (HE), genotype evenness (E) and Shannon-Wiener diversity (I) in western group of populations suggested that genetic differentiation also drove phenotypic divergence of the species. However, neutral genetic differentiation (FST = 0.041) was greatly lower than quantitative differentiation (QST = 0.199), indicating that divergent selection/climate variable was the main factor in determining the phenotypic divergence of the species along the large-scale gradient. PMID:27195668

  11. [Genetic divergence of chars of the genus Salvelinus from Kronotsky Lake (Kamchatka Peninsula)].

    PubMed

    Salmenkova, E A; Omel'chenko, V T; Radchenko, O A; Gordeeva, N V; Rubtsova, G a; Romanov, N S

    2005-08-01

    Chars from the genus Salvelinus, inhabiting lakes and lake-river systems, belong to morphologically and ecologically different forms whose taxonomic status is under dispute. In the present work, we have examined genetic variation and divergence in various chars from the Kronotsky lake basin: the lacustrine chars (white, nose, and long-head) and Dolly Varden char Salvelinus malma. The study was conducted using analysis of allozyme and microsatellite loci, myogens, RAPD, and restriction analysis of two mtDNA segments. The estimates of heterozygoisty at allozyme and microsatellite loci were similar to the corresponding parameters in populations of northern Dolly Varden and Arctic char. Heterozygote deficit was recorded in both samples of individual forms, and in the combined sample of all chars from Kronotsky Lake. For both markers, appreciable genetic differentiation among the samples of different char forms was found, which was comparable to that among the spatially isolated populations of northern Dolly Varden. This result indicates reproductive isolation among the char forms examined. However, this isolation is not complete, because no fixed differences between the forms by any of the genetic systems analyzed was found. The genetic differentiation among different forms of lacustrine chars, which corresponds to the interpopulation rather than interspecies level, is thought to be explained by their comparatively recent divergence. PMID:16161631

  12. Genetic divergence in morphology-performance mapping between Misty Lake and inlet stickleback.

    PubMed

    Hendry, A P; Hudson, K; Walker, J A; Räsänen, K; Chapman, L J

    2011-01-01

    Different environments should select for different aspects of organismal performance, which should lead to correlated divergence in morphological traits that influence performance. The result should be genetic divergence in aspects of performance, morphology and associations ('maps') between morphology and performance. Testing this hypothesis requires quantifying performance and morphology in multiple populations after controlling for environmental differences, but this is rarely attempted. We used a common-garden experiment to examine morphology and several aspects of swimming performance within and between the lake and inlet populations of threespine stickleback (Gasterosteus aculeatus) from the Misty system, Vancouver Island, Canada. Controlling for body size, lake stickleback had shallower bodies, larger caudal fins and smaller pelvic girdles. With or without morphological covariates, lake stickleback showed greater performance in both sustained and burst swimming. In contrast, inlet stickleback showed greater manoeuverability than did lake stickleback in some analyses. Morphology-performance relationships were decoupled when considering variation within vs. between populations. Moreover, morphology-performance mapping differed between the two populations. Based on these observations, we advance a hypothesis for why populations adapting to different environments should show adaptive genetic divergence in morphology-performance mapping. PMID:21091565

  13. Fine-grained adaptive divergence in an amphibian: genetic basis of phenotypic divergence and the role of nonrandom gene flow in restricting effective migration among wetlands.

    PubMed

    Richter-Boix, Alex; Quintela, María; Kierczak, Marcin; Franch, Marc; Laurila, Anssi

    2013-03-01

    Adaptive ecological differentiation among sympatric populations is promoted by environmental heterogeneity, strong local selection and restricted gene flow. High gene flow, on the other hand, is expected to homogenize genetic variation among populations and therefore prevent local adaptation. Understanding how local adaptation can persist at the spatial scale at which gene flow occurs has remained an elusive goal, especially for wild vertebrate populations. Here, we explore the roles of natural selection and nonrandom gene flow (isolation by breeding time and habitat choice) in restricting effective migration among local populations and promoting generalized genetic barriers to neutral gene flow. We examined these processes in a network of 17 breeding ponds of the moor frog Rana arvalis, by combining environmental field data, a common garden experiment and data on variation in neutral microsatellite loci and in a thyroid hormone receptor (TRβ) gene putatively under selection. We illustrate the connection between genotype, phenotype and habitat variation and demonstrate that the strong differences in larval life history traits observed in the common garden experiment can result from adaptation to local pond characteristics. Remarkably, we found that haplotype variation in the TRβ gene contributes to variation in larval development time and growth rate, indicating that polymorphism in the TRβ gene is linked with the phenotypic variation among the environments. Genetic distance in neutral markers was correlated with differences in breeding time and environmental differences among the ponds, but not with geographical distance. These results demonstrate that while our study area did not exceed the scale of gene flow, ecological barriers constrained gene flow among contrasting habitats. Our results highlight the roles of strong selection and nonrandom gene flow created by phenological variation and, possibly, habitat preferences, which together maintain genetic and

  14. Genetic divergence of peripherally disjunct populations of the gastropod Batillariella estuarina in the Houtman Abrolhos Islands, Western Australia.

    PubMed

    Pudovskis, M S; Johnson, M S; Black, R

    2001-11-01

    Geographically disjunct populations are unusual in marine species, but the Houtman Abrolhos Islands, Western Australia, provide opportunities to study highly disjunct peripheral isolates of several species. The intertidal snail Batillariella estuarina occurs in isolated tidal ponds in the Abrolhos Islands, where it is at its northern limit, disjunct from mainland populations by 600-900 km. The species is thus disjunct both geographically and among the peripherally isolated populations in the Abrolhos Islands. Comparisons of allozymes at 11 polymorphic loci were made among populations from 10 ponds in the Abrolhos Islands and six sites from relatively continuous tidal flats at Albany, 900 km away, the nearest major set of populations. Among all 16 populations, subdivision was high (FST = 0.455). Although there were subtle differences between the geographical regions, the large majority of divergence occurred among the isolated ponds in the Abrolhos (FST = 0.441), and divergence on the tidal flats at Albany was only moderate (FST = 0.085). Characteristic of peripheral isolates, the pond populations have less polymorphism and fewer alleles than the more connected populations at Albany. Combined with evidence of genetic divergence in the gastropods Bembicium vittatum and Austrocochlea constricta, which have very similar geographical distributions to that of B. estuarina, these results indicate the potential evolutionary significance of peripherally isolated marine populations in the unusual habitats of the Abrolhos Islands. PMID:11883876

  15. Genetic divergence and molecular phylogenetics of Puntius spp. based on the mitochondrial cytochrome b gene.

    PubMed

    Pallavi; Goswami, M; Nautiyal, P; Malakar, A K; Nagpure, N S

    2012-12-01

    Puntius is an important genus of freshwater food and ornamental fish belonging to the family Cyprinidae. A total of 60 samples from twelve species of the genus Puntius were collected from eight sampling sites of eight Indian Rivers. Twelve species of Puntius (P. chola, P. sophore, P. filamentosus, P. fasciatus, P. vittatus, P. chelynoides, P. gonionotus, P. denisonii, P. ticto, P. gelius, P. conchonius and P. sarana) were investigated using 60 partial sequences of the mitochondrial cytochrome b (Cyt b, 1096 bp) gene to estimate genetic divergence and to establish the phylogenetic relationship. The average intraspecies diversity was estimated as 0.002, whereas the average interspecies diversity was estimated as 0.177. The sequence analysis of the Cyt b gene revealed four distinct groups, which are genetically distinct species and exhibited identical phylogenetic relationship. The present study validated the utility of the Cyt b gene in genetic diversity and phylogenetic studies. PMID:22943631

  16. Deep genetic divergence in giant red shrimp Aristaeomorpha foliacea (Risso, 1827) across a wide distributional range

    NASA Astrophysics Data System (ADS)

    Fernández, M. V.; Heras, S.; Maltagliati, F.; Roldán, M. I.

    2013-02-01

    The giant red shrimp, Aristaeomorpha foliacea, is a commercially important species in the Mediterranean Sea (MED), Mozambique Channel (MOZ), and north western Australia (AUS). 685 bp of the mitochondrial COI gene was sequenced in 317 individuals from six Mediterranean and two Indian Ocean localities. Genetic diversity estimates of Indian Ocean samples were higher than those of MED counterparts. AMOVA, phylogenetic tree, haplotype network and Bayesian assignment analyses detected three haplogroups, corresponding to MED, MOZ and AUS, separated by three and 38 mutational steps, respectively. Within MED shallow genetic divergence between populations was dependent on local oceanographical characteristics. Mismatch distribution analysis and neutrality tests provided a consistent indication of past population expansion in each region considered. Our results provide the first evidence of genetic structure in A. foliacea and suggest a scenario of allopatric speciation within the Indian Ocean that, however needs deeper examination.

  17. Alignment-free microbial phylogenomics under scenarios of sequence divergence, genome rearrangement and lateral genetic transfer

    PubMed Central

    Bernard, Guillaume; Chan, Cheong Xin; Ragan, Mark A.

    2016-01-01

    Alignment-free (AF) approaches have recently been highlighted as alternatives to methods based on multiple sequence alignment in phylogenetic inference. However, the sensitivity of AF methods to genome-scale evolutionary scenarios is little known. Here, using simulated microbial genome data we systematically assess the sensitivity of nine AF methods to three important evolutionary scenarios: sequence divergence, lateral genetic transfer (LGT) and genome rearrangement. Among these, AF methods are most sensitive to the extent of sequence divergence, less sensitive to low and moderate frequencies of LGT, and most robust against genome rearrangement. We describe the application of AF methods to three well-studied empirical genome datasets, and introduce a new application of the jackknife to assess node support. Our results demonstrate that AF phylogenomics is computationally scalable to multi-genome data and can generate biologically meaningful phylogenies and insights into microbial evolution. PMID:27363362

  18. Comparative Genomic Hybridizations Reveal Genetic Regions within the Mycobacterium avium Complex That Are Divergent from Mycobacterium avium subsp. paratuberculosis Isolates†

    PubMed Central

    Paustian, Michael L.; Kapur, Vivek; Bannantine, John P.

    2005-01-01

    Mycobacterium avium subsp. paratuberculosis is genetically similar to other members of the Mycobacterium avium complex (MAC), some of which are nonpathogenic and widespread in the environment. We have utilized an M. avium subsp. paratuberculosis whole-genome microarray representing over 95% of the predicted coding sequences to examine the genetic conservation among 10 M. avium subsp. paratuberculosis isolates, two isolates each of Mycobacterium avium subsp. silvaticum and Mycobacterium avium subsp. avium, and a single isolate each of both Mycobacterium intracellulare and Mycobacterium smegmatis. Genomic DNA from each isolate was competitively hybridized with DNA from M. avium subsp. paratuberculosis K10, and open reading frames (ORFs) were classified as present, divergent, or intermediate. None of the M. avium subsp. paratuberculosis isolates had ORFs classified as divergent. The two M. avium subsp. avium isolates had 210 and 135 divergent ORFs, while the two M. avium subsp. silvaticum isolates examined had 77 and 103 divergent ORFs. Similarly, 130 divergent ORFs were identified in M. intracellulare. A set of 97 ORFs were classified as divergent or intermediate in all of the nonparatuberculosis MAC isolates tested. Many of these ORFs are clustered together on the genome in regions with relatively low average GC content compared with the entire genome and contain mobile genetic elements. One of these regions of sequence divergence contained genes homologous to a mammalian cell entry (mce) operon. Our results indicate that closely related MAC mycobacteria can be distinguished from M. avium subsp. paratuberculosis by multiple clusters of divergent ORFs. PMID:15774884

  19. Rapid genetic divergence in response to 15 years of simulated climate change.

    PubMed

    Ravenscroft, Catherine H; Whitlock, Raj; Fridley, Jason D

    2015-11-01

    Genetic diversity may play an important role in allowing individual species to resist climate change, by permitting evolutionary responses. Our understanding of the potential for such responses to climate change remains limited, and very few experimental tests have been carried out within intact ecosystems. Here, we use amplified fragment length polymorphism (AFLP) data to assess genetic divergence and test for signatures of evolutionary change driven by long-term simulated climate change applied to natural grassland at Buxton Climate Change Impacts Laboratory (BCCIL). Experimental climate treatments were applied to grassland plots for 15 years using a replicated and spatially blocked design and included warming, drought and precipitation treatments. We detected significant genetic differentiation between climate change treatments and control plots in two coexisting perennial plant study species (Festuca ovina and Plantago lanceolata). Outlier analyses revealed a consistent signature of selection associated with experimental climate treatments at individual AFLP loci in P. lanceolata, but not in F. ovina. Average background differentiation at putatively neutral AFLP loci was close to zero, and genomewide genetic structure was associated neither with species abundance changes (demography) nor with plant community-level responses to long-term climate treatments. Our results demonstrate genetic divergence in response to a suite of climatic environments in reproductively mature populations of two perennial plant species and are consistent with an evolutionary response to climatic selection in P. lanceolata. These genetic changes have occurred in parallel with impacts on plant community structure and may have contributed to the persistence of individual species through 15 years of simulated climate change at BCCIL. PMID:26311135

  20. Neutral and Adaptive Drivers of Microgeographic Genetic Divergence within Continuous Populations: The Case of the Neotropical Tree Eperua falcata (Aubl.)

    PubMed Central

    Brousseau, Louise; Foll, Matthieu; Scotti-Saintagne, Caroline; Scotti, Ivan

    2015-01-01

    Background In wild plant populations, genetic divergence within continuous stands is common, sometimes at very short geographical scales. While restrictions to gene flow combined with local inbreeding and genetic drift may cause neutral differentiation among subpopulations, microgeographical variations in environmental conditions can drive adaptive divergence through natural selection at some targeted loci. Such phenomena have recurrently been observed in plant populations occurring across sharp environmental boundaries, but the interplay between selective processes and neutral genetic divergence has seldom been studied. Methods We assessed the extent of within-stand neutral and environmentally-driven divergence in the Neotropical tree Eperua falcate Aubl. (Fabaceae) through a genome-scan approach. Populations of this species grow in dense stands that cross the boundaries between starkly contrasting habitats. Within-stand phenotypic and candidate-gene divergence have already been proven, making this species a suitable model for the study of genome-wide microgeographic divergence. Thirty trees from each of two habitats (seasonally flooded swamps and well-drained plateaus) in two separate populations were genotyped using thousands of AFLPs markers. To avoid genotyping errors and increase marker reliability, each sample was genotyped twice and submitted to a rigorous procedure for data cleaning, which resulted in 1196 reliable and reproducible markers. Results Despite the short spatial distances, we detected within-populations genetic divergence, probably caused by neutral processes, such as restrictions in gene flow. Moreover, habitat-structured subpopulations belonging to otherwise continuous stands also diverge in relation to environmental variability and habitat patchiness: we detected convincing evidence of divergent selection at the genome-wide level and for a fraction of the analyzed loci (comprised between 0.25% and 1.6%). Simulations showed that the levels of

  1. Genetic Divergence in Domesticated and Non-Domesticated Gene Regions of Barley Chromosomes

    PubMed Central

    Yan, Songxian; Sun, Dongfa; Sun, Genlou

    2015-01-01

    Little is known about the genetic divergence in the chromosomal regions with domesticated and non-domesticated genes. The objective of our study is to examine the effect of natural selection on shaping genetic diversity of chromosome region with domesticated and non-domesticated genes in barley using 110 SSR markers. Comparison of the genetic diversity loss between wild and cultivated barley for each chromosome showed that chromosome 5H had the highest divergence of 35.29%, followed by 3H, 7H, 4H, 2H, 6H. Diversity ratio was calculated as (diversity of wild type – diversity of cultivated type)/diversity of wild type×100%. It was found that diversity ratios of the domesticated regions on 5H, 1H and 7H were higher than those of non-domesticated regions. Diversity ratio of the domesticated region on 2H and 4H is similar to that of non-domesticated region. However, diversity ratio of the domesticated region on 3H is lower than that of non-domesticated region. Averaged diversity among six chromosomes in domesticated region was 33.73% difference between wild and cultivated barley, and was 27.56% difference in the non-domesticated region. The outcome of this study advances our understanding of the evolution of crop chromosomes. PMID:25812037

  2. Divergence genetics analysis reveals historical population genetic processes leading to contrasting phylogeographic patterns in co-distributed species.

    PubMed

    McGovern, Tamara M; Keever, Carson C; Saski, Christopher A; Hart, Michael W; Marko, Peter B

    2010-11-01

    Coalescent samplers are computational time machines for inferring the historical demographic genetic processes that have given rise to observable patterns of spatial genetic variation among contemporary populations. We have used traditional characterizations of population structure and coalescent-based inferences about demographic processes to reconstruct the population histories of two co-distributed marine species, the frilled dog whelk, Nucella lamellosa, and the bat star, Patiria miniata. Analyses of population structure were consistent with previous work in both species except that additional samples of N. lamellosa showed a larger regional genetic break on Vancouver Island (VI) rather than between the southern Alexander Archipelago as in P. miniata. Our understanding of the causes, rather than just the patterns, of spatial genetic variation was dramatically improved by coalescent analyses that emphasized variation in population divergence times. Overall, gene flow was greater in bat stars (planktonic development) than snails (benthic development) but spatially homogeneous within species. In both species, these large phylogeographic breaks corresponded to relatively ancient divergence times between populations rather than regionally restricted gene flow. Although only N. lamellosa shows a large break on VI, population separation times on VI are congruent between species, suggesting a similar response to late Pleistocene ice sheet expansion. The absence of a phylogeographic break in P. miniata on VI can be attributed to greater gene flow and larger effective population size in this species. Such insights put the relative significance of gene flow into a more comprehensive historical biogeographic context and have important implications for conservation and landscape genetic studies that emphasize the role of contemporary gene flow and connectivity in shaping patterns of population differentiation. PMID:21040048

  3. [Pathogenicity and genetic divergence of two isolates of microsporidia Nosema bombycis].

    PubMed

    WANG, Min; XU, Jin-Shan; WANG, Lin-Ling; ZHANG, Xiao-Yan; ZHOU, Ze-Yang

    2009-11-01

    Microsporidia Nosema bombycis is a fungal pathogen that causes epidemic pebrine disease in Bombyx mori. Two N. bombycis isolates were obtained from two areas in China and showed different pathogenicity after Spodoptera frugiperda Sf9 cell cultivation. The regions of rDNAs from different isolates were analyzed, suggesting no relationship between the genetic divergence and their geographic distributions. Further analysis showed that several copies of SSU rDNA units in N. bombycis were interrupted by a MITE-like transposon, indicating the complexity of genomic structure in Nosema bombycis. PMID:19933093

  4. A genomic investigation of the putative contact zone between divergent Brown Creeper (Certhia americana) lineages: chromosomal patterns of genetic differentiation.

    PubMed

    Manthey, Joseph D; Robbins, Mark B; Moyle, Robert G

    2016-02-01

    Sky islands, or montane forest separated by different lowland habitats, are highly fragmented regions that potentially limit gene flow between isolated populations. In the sky islands of the Madrean Archipelago (Arizona, USA), various taxa display different phylogeographic patterns, from unrestricted gene flow among sky islands to complex patterns with multiple distinct lineages. Using genomic-level approaches allows the investigation of differential patterns of gene flow, selection, and genetic differentiation among chromosomes and specific genomic regions between sky island populations. Here, we used thousands of SNPs to investigate the putative contact zone of divergent Brown Creeper (Certhia americana) lineages in the Madrean Archipelago sky islands. We found the two lineages to be completely allopatric (during the breeding season) with a lack of hybridization and gene flow between lineages and no genetic structure among sky islands within lineages. Additionally, the two lineages inhabit different climatic and ecosystem conditions and have many local primary song dialects in the southern Arizona mountain ranges. We identified a positive relationship between genetic differentiation and chromosome size, but the sex chromosome (Z) was not found to be an outlier. Differential patterns of genetic differentiation per chromosome may be explained by genetic drift--possibly in conjunction with non-random mating and non-random gene flow--due to variance in recombination rates among chromosomes. PMID:26794151

  5. A highly divergent picornavirus in an amphibian, the smooth newt (Lissotriton vulgaris)

    PubMed Central

    Boros, Ákos; Tóth, Zoltán; Gia Phan, Tung; Delwart, Eric; Pankovics, Péter

    2015-01-01

    Genetically highly divergent picornavirus (Newt/2013/HUN, KP770140) was detected using viral metagenomics in faecal samples of free-living smooth newts (Lissotriton vulgaris). Newt picornavirus was identified by reverse transcription-polymerase chain reaction (RT-PCR) in six (25 %) of the 24 samples originating from individuals caught in two out of the six investigated natural ponds in Hungary. The first picornavirus in amphibians expands the host range of members of the Picornaviridae, and opens a new research field in picornavirus evolution in lower vertebrates. Newt picornavirus represents a novel species in a novel genus within the family Picornaviridae, provisionally named genus Ampivirus (amphibian picornavirus). PMID:26018961

  6. A highly divergent picornavirus in an amphibian, the smooth newt (Lissotriton vulgaris).

    PubMed

    Reuter, Gábor; Boros, Ákos; Tóth, Zoltán; Gia Phan, Tung; Delwart, Eric; Pankovics, Péter

    2015-09-01

    Genetically highly divergent picornavirus (Newt/2013/HUN, KP770140) was detected using viral metagenomics in faecal samples of free-living smooth newts (Lissotriton vulgaris). Newt picornavirus was identified by reverse transcription-polymerase chain reaction (RT-PCR) in six (25 %) of the 24 samples originating from individuals caught in two out of the six investigated natural ponds in Hungary. The first picornavirus in amphibians expands the host range of members of the Picornaviridae, and opens a new research field in picornavirus evolution in lower vertebrates. Newt picornavirus represents a novel species in a novel genus within the family Picornaviridae, provisionally named genus Ampivirus (amphibian picornavirus). PMID:26018961

  7. Genetic divergence between Pseudoplatystoma corruscans and Pseudoplatystoma reticulatum (Siluriformes: Pimelodidae) in the Paraná River Basin.

    PubMed

    Bignotto, T S; Prioli, A J; Prioli, S M A P; Maniglia, T C; Boni, T A; Lucio, L C; Gomes, V N; Prioli, R A; Oliveira, A V; Júlio, H F; Prioli, L M

    2009-06-01

    Pseudoplatystoma corruscans (Spix and Agassiz, 1829) and Pseudoplatystoma reticulatum (Eingenmann and Eigenmann, 1889) are large migratory catfishes of high biological importance and great commercial value in South America. Because fertile crossbreeds can be artificially produced in hatcheries, a high genetic proximity between these two Pimelodidae species is conceivable. Possible escape of crossbred specimens from pisciculture stations is a serious environmental concern. Despite their importance, knowledge of P. corruscans and P. reticulatum biology, ecology, population diversity and genetics is limited. In the present work, the genetic divergence between P. corruscans and P. reticulatum populations from the Paraná River Basin was analyzed on the basis of polymorphisms in ISSR fragments and in the hypervariable sequence of the mitochondrial DNA (mtDNA) control region. Estimates of intraspecific haplotype (h > 0.5) and nucleotide diversities (pi < 0.01) indicate that P. corruscans and P. reticulatum have survived a historical population decline, followed by a demographic expansion. The interspecific polymorphisms within the mtDNA control region and ISSR fragments were suitable as diagnostic molecular markers and could be used to discriminate the two species. A unique Pseudoplatystoma specimen, captured in the Upper Paraná River Floodplain, was identified by these DNA diagnostic markers as a hybrid P. reticulatum x P. corruscans, which possibly escaped from pisciculture. The integrity of the natural population of P. corruscans in the Upper Paraná River is at risk of genetic introgression or homogenization due to the presence of hybrids and the transposition of P. reticulatum upstream through the Canal da Piracema at Itaipu Dam. Data presented herein improve the understanding of the genetic relatedness between P. corruscans and P. reticulatum and represent potential tools for future programs of conservation and surveillance of genetic introgression events and the

  8. The genetic basis of divergent pigment patterns in juvenile threespine sticklebacks

    PubMed Central

    Greenwood, A K; Jones, F C; Chan, Y F; Brady, S D; Absher, D M; Grimwood, J; Schmutz, J; Myers, R M; Kingsley, D M; Peichel, C L

    2011-01-01

    Animal pigment patterns are important for a range of functions, including camouflage and communication. Repeating pigment patterns, such as stripes, bars and spots have been of particular interest to developmental and theoretical biologists, but the genetic basis of natural variation in such patterns is largely unexplored. In this study, we identify a difference in a periodic pigment pattern among juvenile threespine sticklebacks (Gasterosteus aculeatus) from different environments. Freshwater sticklebacks exhibit prominent vertical bars that visually break up the body shape, but sticklebacks from marine populations do not. We hypothesize that these distinct pigment patterns are tuned to provide crypsis in different habitats. This phenotypic difference is widespread and appears in most of the freshwater populations that we sampled. We used quantitative trait locus (QTL) mapping in freshwater–marine F2 hybrids to elucidate the genetic architecture underlying divergence in this pigmentation pattern. We identified two QTL that were significantly associated with variation in barring. Interestingly, these QTL were associated with two distinct aspects of the pigment pattern: melanophore number and overall pigment level. We compared the QTL locations with positions of known pigment candidate genes in the stickleback genome. We also identified two major QTL for juvenile body size, providing new insights into the genetic basis of juvenile growth rates in natural populations. In summary, although there is a growing literature describing simple genetic bases for adaptive coloration differences, this study emphasizes that pigment patterns can also possess a more complex genetic architecture. PMID:21304547

  9. Genetic interactions of separase regulatory subunits reveal the diverged Drosophila Cenp-C homolog

    PubMed Central

    Heeger, Sebastian; Leismann, Oliver; Schittenhelm, Ralf; Schraidt, Oliver; Heidmann, Stefan; Lehner, Christian F.

    2005-01-01

    Faithful transmission of genetic information during mitotic divisions depends on bipolar attachment of sister kinetochores to the mitotic spindle and on complete resolution of sister-chromatid cohesion immediately before the metaphase-to-anaphase transition. Separase is thought to be responsible for sister-chromatid separation, but its regulation is not completely understood. Therefore, we have screened for genetic loci that modify the aberrant phenotypes caused by overexpression of the regulatory separase complex subunits Pimples/securin and Three rows in Drosophila. An interacting gene was found to encode a constitutive centromere protein. Characterization of its centromere localization domain revealed the presence of a diverged CENPC motif. While direct evidence for an involvement of this Drosophila Cenp-C homolog in separase activation at centromeres could not be obtained, in vivo imaging clearly demonstrated that it is required for normal attachment of kinetochores to the spindle. PMID:16140985

  10. Assessment of genetic divergence among coffee genotypes by Ward-MLM procedure in association with mixed models.

    PubMed

    Rodrigues, W P; Vieira, H D; Teodoro, P E; Partelli, F L; Barbosa, D H S G

    2016-01-01

    Mixed linear models have been used for the analysis of the genetic diversity and provided further accurate results in crops such as eucalyptus, castor, and sugarcane. However, to date, research that combined this analysis with Ward-MLM procedure has not been reported. Therefore, the aim of the present study was to identify divergent coffee genotypes by Ward-MLM procedure, in association with the mixed-decision models. The experiment was initiated in February 2007, in the northwestern Rio de Janeiro State. The 25 evaluated genotypes were grown with a spacing of 2.5 x 0.8 m, in a randomized block design, with 5 replications, containing 8 plants each. The following agronomic traits were evaluated: plant height, stem diameter, plagiotropic branch number, and productivity. Four measurements were performed for each character from 2009 to 2012, between May and July. Data were analyzed using REML/BLUP analysis and Ward- MLM procedure. The Ward-MLM procedure in association with mixed linear models demonstrated the genetic variability among the studied coffee genotypes. We identified two groups of most divergent coffee genotypes, which can be combined by crossings and selections in order to obtain genotypes with high productivity and variability. PMID:27173347

  11. Comparative Genetic Analysis of Mycobacterium ulcerans and Mycobacterium marinum Reveals Evidence of Recent Divergence

    PubMed Central

    Stinear, Timothy P.; Jenkin, Grant A.; Johnson, Paul D. R.; Davies, John K.

    2000-01-01

    Previous studies of the 16S rRNA genes from Mycobacterium ulcerans and Mycobacterium marinum have suggested a very close genetic relationship between these species (99.6% identity). However, these organisms are phenotypically distinct and cause diseases with very different pathologies. To investigate this apparent paradox, we compared 3,306 nucleotides from the partial sequences of eight housekeeping and structural genes derived from 18 M. ulcerans strains and 22 M. marinum strains. This analysis confirmed the close genetic relationship inferred from the 16S rRNA data, with nucleotide sequence identity ranging from 98.1 to 99.7%. The multilocus sequence analysis also confirmed previous genotype studies of M. ulcerans that have identified distinct genotypes within a geographical region. Single isolates of both M. ulcerans and M. marinum that were shown by the sequence analysis to be the most closely related were then selected for further study. One- and two-dimensional pulsed-field gel electrophoresis was employed to compare the architecture and size of the genome from each species. Genome sizes of approximately 4.4 and 4.6 Mb were obtained for M. ulcerans and M. marinum, respectively. Significant macrorestriction fragment polymorphism was observed between the species. However, hybridization analysis of DNA cleaved with more frequently cutting enzymes identified significant preservation of the flanking sequence at seven of the eight loci sequenced. The exception was the 16S rRNA locus. Two high-copy-number insertion sequences, IS2404 and IS2606, have recently been reported in M. ulcerans, and significantly, these elements are not present in M. marinum. Hybridization of the AseI restriction fragments from M. ulcerans with IS2404 and IS2606 indicated widespread genome distribution for both of these repeated sequences. Taken together, these data strongly suggest that M. ulcerans has recently diverged from M. marinum by the acquisition and concomitant loss of DNA in a

  12. Evidence for an intrinsic factor promoting landscape genetic divergence in Madagascan leaf-litter frogs

    PubMed Central

    Wollenberg Valero, Katharina C.

    2015-01-01

    The endemic Malagasy frog radiations are an ideal model system to study patterns and processes of speciation in amphibians. Large-scale diversity patterns of these frogs, together with other endemic animal radiations, led to the postulation of new and the application of known hypotheses of species diversification causing diversity patterns in this biodiversity hotspot. Both extrinsic and intrinsic factors have been studied in a comparative framework, with extrinsic factors usually being related to the physical environment (landscape, climate, river catchments, mountain chains), and intrinsic factors being clade-specific traits or constraints (reproduction, ecology, morphology, physiology). Despite some general patterns emerging from such large-scale comparative analyses, it became clear that the mechanism of diversification in Madagascar may vary among clades, and may be a multifactorial process. In this contribution, I test for intrinsic factors promoting population-level divergence within a clade of terrestrial, diurnal leaf-litter frogs (genus Gephyromantis) that has previously been shown to diversify according to extrinsic factors. Landscape genetic analyses of the microendemic species Gephyromantis enki and its widely distributed, larger sister species Gephyromantis boulengeri over a rugged landscape in the Ranomafana area shows that genetic variance of the smaller species cannot be explained by landscape resistance alone. Both topographic and riverine barriers are found to be important in generating this divergence. This case study yields additional evidence for the probable importance of body size in lineage diversification. PMID:26136766

  13. On the origin of Lake Malawi cichlid species: A population genetic analysis of divergence

    PubMed Central

    Won, Yong-Jin; Sivasundar, Arjun; Wang, Yong; Hey, Jody

    2005-01-01

    The cichlid fishes of Lake Malawi are famously diverse. However, phylogenetic and population genetic studies of their history have been difficult because of the great amount of genetic variation that is shared between species. We apply a recently developed method for fitting the “isolation with migration” divergence model to a data set of specially designed compound loci to develop portraits of cichlid species divergence. Outgroup sequences from a cichlid from Lake Tanganyika permit model parameter estimates in units of years and effective population sizes. Estimated speciation times range from 1,000 to 17,000 years for species in the genus Tropheops. These exceptionally recent dates suggest that Malawi cichlids as a group experience a very active and dynamic diversification process. Current effective population size estimates range form 2,000 to near 40,000, and to >120,000 for estimates of ancestral population sizes. It appears that very recent speciation and gene flow are among the reasons why it has been difficult to discern the phylogenetic history of Malawi cichlids. PMID:15851665

  14. On the origin of Lake Malawi cichlid species: a population genetic analysis of divergence.

    PubMed

    Won, Yong-Jin; Sivasundar, Arjun; Wang, Yong; Hey, Jody

    2005-05-01

    The cichlid fishes of Lake Malawi are famously diverse. However, phylogenetic and population genetic studies of their history have been difficult because of the great amount of genetic variation that is shared between species. We apply a recently developed method for fitting the "isolation with migration" divergence model to a data set of specially designed compound loci to develop portraits of cichlid species divergence. Outgroup sequences from a cichlid from Lake Tanganyika permit model parameter estimates in units of years and effective population sizes. Estimated speciation times range from 1,000 to 17,000 years for species in the genus Tropheops. These exceptionally recent dates suggest that Malawi cichlids as a group experience a very active and dynamic diversification process. Current effective population size estimates range form 2,000 to near 40,000, and to >120,000 for estimates of ancestral population sizes. It appears that very recent speciation and gene flow are among the reasons why it has been difficult to discern the phylogenetic history of Malawi cichlids. PMID:15851665

  15. A continuum of genetic divergence from sympatric host races to species in the pea aphid complex

    PubMed Central

    Peccoud, Jean; Ollivier, Anthony; Plantegenest, Manuel; Simon, Jean-Christophe

    2009-01-01

    Sympatric populations of insects adapted to different host plants, i.e., host races, are good models to investigate how natural selection can promote speciation in the face of ongoing gene flow. However, host races are documented in very few model systems and their gradual evolution into good species, as assumed under a Darwinian view of species formation, lacks strong empirical support. We aim at resolving this uncertainty by investigating host specialization and gene flow among populations of the pea aphid complex, Acyrthosiphon pisum. Genetic markers and tests of host plant specificity indicate the existence of at least 11 well-distinguished sympatric populations associated with different host plants in Western Europe. Population assignment tests show variable migration and hybridization rates among sympatric populations, delineating 8 host races and 3 possible species. Notably, hybridization correlates negatively with genetic differentiation, forming a continuum of population divergence toward virtually complete speciation. The pea aphid complex thus illustrates how ecological divergence can be sustained among many hybridizing populations and how insect host races blend into species by gradual reduction of gene flow. PMID:19380742

  16. Genetic divergence, range expansion and possible homoploid hybrid speciation among pine species in Northeast China.

    PubMed

    Ren, G-P; Abbott, R J; Zhou, Y-F; Zhang, L-R; Peng, Y-L; Liu, J-Q

    2012-05-01

    Although homoploid hybrid speciation in plants is probably more common than previously realized, there are few well-documented cases of homoploid hybrid origin in conifers. We examined genetic divergence between two currently widespread pines in Northeast China, Pinus sylvestris var. mongolica and Pinus densiflora, and also whether two narrowly distributed pines in the same region, Pinus funebris and Pinus takahasii, might have originated from the two widespread species by homoploid hybrid speciation. Our results, based on population genetic analysis of chloroplast (cp), mitochondrial (mt) DNA, and nuclear gene sequence variation, showed that the two widespread species were divergent for both cp- and mtDNA variation, and also for haplotype variation at two of eight nuclear gene loci surveyed. Our analysis further indicated that P. sylvestris var. mongolica and P. densiflora remained allopatric during the most severe Quaternary glacial period that occurred in Northeast China, but subsequently exhibited rapid range expansions. P. funebris and P. takahasii, were found to contain a mixture of chlorotypes and nuclear haplotypes that distinguish P. sylvestris var. mongolica and P. densiflora, in support of the hypothesis that they possibly originated via homoploid hybrid speciation following secondary contact and hybridization between P. sylvestris var. mongolica and P. densiflora. PMID:22187083

  17. High Points of Human Genetics

    ERIC Educational Resources Information Center

    Stern, Curt

    1975-01-01

    Discusses such high points of human genetics as the study of chromosomes, somatic cell hybrids, the population formula: the Hardy-Weinberg Law, biochemical genetics, the single-active X Theory, behavioral genetics and finally how genetics can serve humanity. (BR)

  18. Highly local environmental variability promotes intrapopulation divergence of quantitative traits: an example from tropical rain forest trees

    PubMed Central

    Brousseau, Louise; Bonal, Damien; Cigna, Jeremy; Scotti, Ivan

    2013-01-01

    Background and Aims In habitat mosaics, plant populations face environmental heterogeneity over short geographical distances. Such steep environmental gradients can induce ecological divergence. Lowland rainforests of the Guiana Shield are characterized by sharp, short-distance environmental variations related to topography and soil characteristics (from waterlogged bottomlands on hydromorphic soils to well-drained terra firme on ferralitic soils). Continuous plant populations distributed along such gradients are an interesting system to study intrapopulation divergence at highly local scales. This study tested (1) whether conspecific populations growing in different habitats diverge at functional traits, and (2) whether they diverge in the same way as congeneric species having different habitat preferences. Methods Phenotypic differentiation was studied within continuous populations occupying different habitats for two congeneric, sympatric, and ecologically divergent tree species (Eperua falcata and E. grandiflora, Fabaceae). Over 3000 seeds collected from three habitats were germinated and grown in a common garden experiment, and 23 morphological, biomass, resource allocation and physiological traits were measured. Key Results In both species, seedling populations native of different habitats displayed phenotypic divergence for several traits (including seedling growth, biomass allocation, leaf chemistry, photosynthesis and carbon isotope composition). This may occur through heritable genetic variation or other maternally inherited effects. For a sub-set of traits, the intraspecific divergence associated with environmental variation coincided with interspecific divergence. Conclusions The results indicate that mother trees from different habitats transmit divergent trait values to their progeny, and suggest that local environmental variation selects for different trait optima even at a very local spatial scale. Traits for which differentiation within species

  19. Genetic divergence and isolation by thermal environment in geothermal populations of an aquatic invertebrate.

    PubMed

    Johansson, M P; Quintela, M; Laurila, A

    2016-09-01

    Temperature is one of the most influential forces of natural selection impacting all biological levels. In the face of increasing global temperatures, studies over small geographic scales allowing investigations on the effects of gene flow are of great value for understanding thermal adaptation. Here, we investigated genetic population structure in the freshwater gastropod Radix balthica originating from contrasting thermal habitats in three areas of geothermal activity in Iceland. Snails from 32 sites were genotyped at 208 AFLP loci. Five AFLPs were identified as putatively under divergent selection in Lake Mývatn, a geothermal lake with an almost 20 °C difference in mean temperature across a distance of a few kilometres. In four of these loci, variation across all study populations was correlated with temperature. We found significant population structure in neutral markers both within and between the areas. Cluster analysis using neutral markers classified the sites mainly by geography, whereas analyses using markers under selection differentiated the sites based on temperature. Isolation by distance was stronger in the neutral than in the outlier loci. Pairwise differences based on outlier FST were significantly correlated with temperature at different spatial scales, even after correcting for geographic distance or neutral pairwise FST differences. In general, genetic variation decreased with increasing environmental temperature, possibly suggesting that natural selection had reduced the genetic diversity in the warm origin sites. Our results emphasize the influence of environmental temperature on the genetic structure of populations and suggest local thermal adaptation in these geothermal habitats. PMID:27208484

  20. Genetic divergence among extant and extirpated colonies of an endangered pelagic seabird, the Hawaiian petrel

    NASA Astrophysics Data System (ADS)

    Welch, A. J.; Fleischer, R. C.; James, H. F.

    2010-12-01

    It is important to consider both the temporal and spatial dimensions of variability in ecology and evolution. Given the potentially great dispersal capabilities and long generation times of pelagic seabirds, genetic diversity in these species seems likely to be homogeneously distributed and relatively static over time. Investigating temporal and spatial processes involved in the ecology and evolution of seabird populations is important to island ecosystem sustainability, as they play a significant role in transferring marine derived nutrients to terrestrial oceanic ecosystems. Additionally, many seabird species are threatened by extinction due to increasing mortality both at land and at sea. Here we investigate population divergence of the endemic and endangered Hawaiian petrel (Pterodroma sandwichensis). We examined four extant colonies on the islands of Hawaii, Maui, Lanai and Kauai, and employed ancient DNA techniques to study a prehistorically extirpated colony on Oahu, and a historically large, but likely extirpated, colony on the island of Molokai. Analyses of sequences of the mitochondrial cytochrome b gene as well as nuclear microsatellite markers indicate substantial differentiation (global Φst of 0.38, p < 0.0001). Significant divergence was found among each pair of the six islands except between Oahu and Molokai (Φst = 0.10, p = 0.07). However, this could result from low power due to the limited availability of amplifiable samples, especially for the hot, low elevation colony formerly present on Oahu. The largest differentiation occurred between the islands of Lanai and Kauai (Φst = 0.58, p < 0.0001). These results suggest that despite their great dispersal capabilities, spatially proximate colonies of the Hawaiian petrel are not genetically homogenous. Additionally, the extirpation of large colonies, such as those on Oahu and Molokai, could result in loss of a substantial amount of genetic diversity. Future work should further investigate temporal

  1. Quaternary origin and genetic divergence of the endemic cactus Mammillaria pectinifera in a changing landscape in the Tehuacán Valley, Mexico.

    PubMed

    Cornejo-Romero, A; Medina-Sánchez, J; Hernández-Hernández, T; Rendón-Aguilar, B; Valverde, P L; Zavala-Hurtado, A; Rivas-Arancibia, S P; Pérez-Hernández, M A; López-Ortega, G; Jiménez-Sierra, C; Vargas-Mendoza, C F

    2014-01-01

    The endemic Mexican cactus, Mammillaria pectinifera, shows low dispersal capabilities and isolated populations within the highly dissected landscape of Tehuacán Valley. These characteristics can restrict gene flow and act upon the genetic divergence and speciation in arid plants. We conducted a phylogeographic study to determine if the origin, current distribution, and genetic structure of M. pectinifera were driven by Quaternary geomorphic processes. Sequences of the plastids psbA-trnH and trnT-trnL obtained from 66 individuals from seven populations were used to estimate genetic diversity. Population differentiation was assessed by an analysis of molecular variance. We applied a stepwise phylogenetic calibration test to determine whether species origin and genetic divergence among haplotypes were temporally concordant with recognizable episodes of geomorphic evolution. The combination of plastid markers yielded six haplotypes, with high levels of haplotype diversity (h = 0.622) and low nucleotide diversity (π = 0.00085). The populations were found to be genetically structured (F(ST) = 0.682; P < 0.00001), indicating that geographic isolation and limited dispersal were the primary causes of genetic population differentiation. The estimated origin and divergence time among haplotypes were 0.017-2.39 and 0.019-1.237 mya, respectively, which correlates with Pleistocene tectonics and erosion events, supporting a hypothesis of geomorphically-driven geographical isolation. Based on a Bayesian skyline plot, these populations showed long term demographic stability, indicating that persistence in confined habitats has been the main response of this species to landscape changes. We conclude that the origin and haplotype divergence of M. pectinifera were a response to local Quaternary geomorphic evolution. PMID:24446289

  2. Divergent Thinking and Creative Ideation of High School Students

    ERIC Educational Resources Information Center

    Ramzan, Shaikh Imran; Perveen, Shaheen

    2011-01-01

    Divergent thinking is an integral process in creativity. Openness to experience is a personality trait that relates to divergent thinking and, therefore, is hypothesized to be related to creative performance among the students. The effects of openness to experience are likely to be partially mediated by an individual's attitude toward divergent…

  3. Convergence and non-convergence in ecological, phenotypic, and genetic divergence across replicate population pairs of lake and stream stickleback

    PubMed Central

    Kaeuffer, Renaud; Peichel, Catherine L.; Bolnick, Daniel I.; Hendry, Andrew P.

    2015-01-01

    Convergent (or parallel) evolution provides strong evidence for a deterministic role of natural selection: similar phenotypes evolve when independent populations colonize similar environments. In reality, however, independent populations in similar environments always show some differences: some non-convergent evolution is present. It is therefore important to explicitly quantify the convergent and non-convergent aspects of trait variation, and to investigate the ecological and genetic explanations for each. We performed such an analysis for threespine stickleback (Gasterosteus aculeatus) populations inhabiting lake and stream habitats in independent watersheds. Morphological traits differed in the degree to which lake-stream divergence was convergent across watersheds. Some aspects of this variation were correlated with ecological variables related to diet, presumably reflecting the strength and specifics of divergent selection. Furthermore, a genetic scan revealed some markers that diverged between lakes and streams in many of the watersheds and some that diverged in only a few watersheds. Moreover, some of the lake-stream divergence in genetic markers was associated within some of the lake-stream divergence in morphological traits. Our results suggest that convergent evolution, and deviations from it, are primarily the result of natural selection, which corresponds in only some respect to the dichotomous habitat classifications frequently used in such studies. PMID:22276537

  4. Genetic divergence among populations and accessions of the spineless peach palm from Pampa Hermosa landrace used in the heart-of-palm agribusiness in Brazil.

    PubMed

    Alves-Pereira, Alessandro; Clement, Charles R; Picanço-Rodrigues, Doriane

    2012-04-01

    Although originally domesticated for its fruit, exploitation of the peach palm (Bactris gasipaes Kunth) in the production of gourmet heart-of-palm has also become an important activity, hence the need for improved material for large-scale production, on employing the Pampa Hermosa landrace as the seed source. In this study 11 microsatellite markers were used to evaluate genetic divergence among 96 elite plants representing four populations of spineless peach palm from the above cited source. Genetic variability was high (H(T) = 0.82). The low levels of divergence [F(ST) (0.023), G(ST)' (0.005)] and the high number of migrants (Nm - 3.8 to 52.2) indicated significant interpopulation gene flow. Some of the plants presented high levels of genetic divergence, but the plants were grouped independently of their geographic origins. When combined with morpho-agronomic evaluation, the results found could substantially contribute towards mounting an efficient tool for obtaining superior genotypes with wide genetic variability for improvement programs. PMID:22888298

  5. Genetic divergence among populations and accessions of the spineless peach palm from Pampa Hermosa landrace used in the heart-of-palm agribusiness in Brazil

    PubMed Central

    Alves-Pereira, Alessandro; Clement, Charles R.; Picanço-Rodrigues, Doriane

    2012-01-01

    Although originally domesticated for its fruit, exploitation of the peach palm (Bactris gasipaes Kunth) in the production of gourmet heart-of-palm has also become an important activity, hence the need for improved material for large-scale production, on employing the Pampa Hermosa landrace as the seed source. In this study 11 microsatellite markers were used to evaluate genetic divergence among 96 elite plants representing four populations of spineless peach palm from the above cited source. Genetic variability was high (HT = 0.82). The low levels of divergence [FST (0.023), GST’ (0.005)] and the high number of migrants (Nm - 3.8 to 52.2) indicated significant interpopulation gene flow. Some of the plants presented high levels of genetic divergence, but the plants were grouped independently of their geographic origins. When combined with morpho-agronomic evaluation, the results found could substantially contribute towards mounting an efficient tool for obtaining superior genotypes with wide genetic variability for improvement programs. PMID:22888298

  6. The roles of genetic drift and natural selection in quantitative trait divergence along an altitudinal gradient in Arabidopsis thaliana

    PubMed Central

    Luo, Y; Widmer, A; Karrenberg, S

    2015-01-01

    Understanding how natural selection and genetic drift shape biological variation is a central topic in biology, yet our understanding of the agents of natural selection and their target traits is limited. We investigated to what extent selection along an altitudinal gradient or genetic drift contributed to variation in ecologically relevant traits in Arabidopsis thaliana. We collected seeds from 8 to 14 individuals from each of 14 A. thaliana populations originating from sites between 800 and 2700 m above sea level in the Swiss Alps. Seed families were grown with and without vernalization, corresponding to winter-annual and summer-annual life histories, respectively. We analyzed putatively neutral genetic divergence between these populations using 24 simple sequence repeat markers. We measured seven traits related to growth, phenology and leaf morphology that are rarely reported in A. thaliana and performed analyses of altitudinal clines, as well as overall QST-FST comparisons and correlation analyses among pair-wise QST, FST and altitude of origin differences. Multivariate analyses suggested adaptive differentiation along altitude in the entire suite of traits, particularly when expressed in the summer-annual life history. Of the individual traits, a decrease in rosette leaf number in the vegetative state and an increase in leaf succulence with increasing altitude could be attributed to adaptive divergence. Interestingly, these patterns relate well to common within- and between-species trends of smaller plant size and thicker leaves at high altitude. Our results thus offer exciting possibilities to unravel the underlying mechanisms for these conspicuous trends using the model species A. thaliana. PMID:25293874

  7. Deep Genetic Divergence between Disjunct Refugia in the Arctic-Alpine King’s Crown, Rhodiola integrifolia (Crassulaceae)

    PubMed Central

    DeChaine, Eric G.; Forester, Brenna R.; Schaefer, Hanno; Davis, Charles C.

    2013-01-01

    Despite the strength of climatic variability at high latitudes and upper elevations, we still do not fully understand how plants in North America that are distributed between Arctic and alpine areas responded to the environmental changes of the Quaternary. To address this question, we set out to resolve the evolutionary history of the King’s Crown, Rhodiola integrifolia using multi-locus population genetic and phylogenetic analyses in combination with ecological niche modeling. Our population genetic analyses of multiple anonymous nuclear loci revealed two major clades within R. integrifolia that diverged from each other ~ 700 kya: one occurring in Beringia to the north (including members of subspecies leedyi and part of subspecies integrifolia), and the other restricted to the Southern Rocky Mountain refugium in the south (including individuals of subspecies neomexicana and part of subspecies integrifolia). Ecological niche models corroborate our hypothesized locations of refugial areas inferred from our phylogeographic analyses and revealed some environmental differences between the regions inhabited by its two subclades. Our study underscores the role of geographic isolation in promoting genetic divergence and the evolution of endemic subspecies in R. integrifolia. Furthermore, our phylogenetic analyses of the plastid spacer region trnL-F demonstrate that among the native North American species, R. integrifolia and R. rhodantha are more closely related to one another than either is to R. rosea. An understanding of these historic processes lies at the heart of making informed management decisions regarding this and other Arctic-alpine species of concern in this increasingly threatened biome. PMID:24282505

  8. The influence of gene flow and drift on genetic and phenotypic divergence in two species of Zosterops in Vanuatu

    PubMed Central

    Clegg, Sonya M.; Phillimore, Albert B.

    2010-01-01

    Colonization of an archipelago sets the stage for adaptive radiation. However, some archipelagos are home to spectacular radiations, while others have much lower levels of diversification. The amount of gene flow among allopatric populations is one factor proposed to contribute to this variation. In island colonizing birds, selection for reduced dispersal ability is predicted to produce changing patterns of regional population genetic structure as gene flow-dominated systems give way to drift-mediated divergence. If this transition is important in facilitating phenotypic divergence, levels of genetic and phenotypic divergence should be associated. We consider population genetic structure and phenotypic divergence among two co-distributed, congeneric (Genus: Zosterops) bird species inhabiting the Vanuatu archipelago. The more recent colonist, Z. lateralis, exhibits genetic patterns consistent with a strong influence of distance-mediated gene flow. However, complex patterns of asymmetrical gene flow indicate variation in dispersal ability or inclination among populations. The endemic species, Z. flavifrons, shows only a partial transition towards a drift-mediated system, despite a long evolutionary history on the archipelago. We find no strong evidence that gene flow constrains phenotypic divergence in either species, suggesting that levels of inter-island gene flow do not explain the absence of a radiation across this archipelago. PMID:20194170

  9. Host association drives genetic divergence in the bed bug, Cimex lectularius.

    PubMed

    Booth, Warren; Balvín, Ondřej; Vargo, Edward L; Vilímová, Jitka; Schal, Coby

    2015-03-01

    Genetic differentiation may exist among sympatric populations of a species due to long-term associations with alternative hosts (i.e. host-associated differentiation). While host-associated differentiation has been documented in several phytophagus insects, there are far fewer cases known in animal parasites. The bed bug, Cimex lectularius, a wingless insect, represents a potential model organism for elucidating the processes involved in host-associated differentiation in animal parasites with relatively limited mobility. In conjunction with the expansion of modern humans from Africa into Eurasia, it has been speculated that bed bugs extended their host range from bats to humans in their shared cave domiciles throughout Eurasia. C. lectularius that associate with humans have a cosmopolitan distribution, whereas those associated with bats occur across Europe, often in human-built structures. We assessed genetic structure and gene flow within and among populations collected in association with each host using mtDNA, microsatellite loci and knock-down resistance gene variants. Both nuclear and mitochondrial data support a lack of significant contemporary gene flow between host-specific populations. Within locations human-associated bed bug populations exhibit limited genetic diversity and elevated levels of inbreeding, likely due to human-mediated movement, infrequent additional introduction events per infestation, and pest control. In contrast, populations within bat roosts exhibit higher genetic diversity and lower levels of relatedness, suggesting populations are stable with temporal fluctuations due to host dispersal and bug mortality. In concert with previously published evidence of morphological and behavioural differentiation, the genetic data presented here suggest C. lectularius is currently undergoing lineage divergence through host association. PMID:25611460

  10. Deep genetic structure and ecological divergence in a widespread human commensal toad.

    PubMed

    Wogan, Guinevere O U; Stuart, Bryan L; Iskandar, Djoko T; McGuire, Jimmy A

    2016-01-01

    The Asian common toad (Duttaphrynus melanostictus) is a human commensal species that occupies a wide variety of habitats across tropical Southeast Asia. We test the hypothesis that genetic variation in D. melanostictus is weakly associated with geography owing to natural and human-mediated dispersal facilitated by its commensal nature. Phylogenetic and population genetic analyses of mitochondrial and nuclear DNA sequence variation, and predictive species distribution modelling, unexpectedly recovered three distinct evolutionary lineages that differ genetically and ecologically, corresponding to the Asian mainland, coastal Myanmar and the Sundaic islands. The persistence of these three divergent lineages, despite ample opportunities for recent human-mediated and geological dispersal, suggests that D. melanostictus actually consists of multiple species, each having narrower geographical ranges and ecological niches, and higher conservation value, than is currently recognized. These findings also have implications for the invasion potential of this human commensal elsewhere, such as in its recently introduced ranges on the islands of Borneo, Sulawesi, Seram and Madagascar. PMID:26763213

  11. Genetic divergence and gene flow among Mesorhizobium strains nodulating the shrub legume Caragana.

    PubMed

    Ji, Zhaojun; Yan, Hui; Cui, Qingguo; Wang, Entao; Chen, Wenxin; Chen, Wenfeng

    2015-05-01

    Although the biogeography of rhizobia has been investigated extensively, little is known about the adaptive molecular evolution of rhizobia influenced by soil environments and selected by legumes. In this study, microevolution of Mesorhizobium strains nodulating Caragana in a semi-fixing desert belt in northern China was investigated. Five core genes-atpD, glnII, gyrB, recA, and rpoB, six heat-shock factor genes-clpA, clpB, dnaK, dnaJ, grpE, and hlsU, and five nodulation genes-nodA, nodC, nodD, nodG, and nodP, of 72 representative mesorhizobia were studied in order to determine their genetic variations. A total of 21 genospecies were defined based on the average nucleotide identity (ANI) of concatenated core genes using a threshold of 96% similarity, and by the phylogenetic analyses of the core/heat-shock factor genes. Significant genetic divergence was observed among the genospecies in the semi-fixing desert belt (areas A-E) and Yunnan province (area F), which was closely related to the environmental conditions and geographic distance. Gene flow occurred more frequently among the genospecies in areas A-E, and three sites in area B, than between area F and the other five areas. Recombination occurred among strains more frequently for heat-shock factor genes than the other genes. The results conclusively showed that the Caragana-associated mesorhizobia had divergently evolved according to their geographic distribution, and have been selected not only by the environmental conditions but also by the host plants. PMID:25864639

  12. The population genetics of the origin and divergence of the Drosophila simulans complex species.

    PubMed Central

    Kliman, R M; Andolfatto, P; Coyne, J A; Depaulis, F; Kreitman, M; Berry, A J; McCarter, J; Wakeley, J; Hey, J

    2000-01-01

    The origins and divergence of Drosophila simulans and close relatives D. mauritiana and D. sechellia were examined using the patterns of DNA sequence variation found within and between species at 14 different genes. D. sechellia consistently revealed low levels of polymorphism, and genes from D. sechellia have accumulated mutations at a rate that is approximately 50% higher than the same genes from D. simulans. At synonymous sites, D. sechellia has experienced a significant excess of unpreferred codon substitutions. Together these observations suggest that D. sechellia has had a reduced effective population size for some time, and that it is accumulating slightly deleterious mutations as a result. D. simulans and D. mauritiana are both highly polymorphic and the two species share many polymorphisms, probably since the time of common ancestry. A simple isolation speciation model, with zero gene flow following incipient species separation, was fitted to both the simulans/mauritiana divergence and the simulans/sechellia divergence. In both cases the model fit the data quite well, and the analyses revealed little evidence of gene flow between the species. The exception is one gene copy at one locus in D. sechellia, which closely resembled other D. simulans sequences. The overall picture is of two allopatric speciation events that occurred quite near one another in time. PMID:11102384

  13. Genetic hitchhiking associated with life history divergence and colonization of North America in the European corn borer moth.

    PubMed

    Dopman, Erik B

    2011-05-01

    A primary goal for evolutionary biology is to reveal the genetic basis for adaptive evolution and reproductive isolation. Using Z and E pheromone strains the European corn borer (ECB) moth, I address this problem through multilocus analyses of DNA polymorphism. I find that the locus Triose phosphate isomerase (Tpi) is a statistically significant outlier in coalescent simulations of demographic histories of population divergence, including strict allopatric isolation, restricted migration, secondary contact, and population growth or decline. This result corroborates a previous QTL study that identified the Tpi chromosomal region as a repository for gene(s) contributing to divergence in life history. Patterns of nucleotide polymorphism at Tpi suggest a recent selective sweep and genetic hitchhiking associated with colonization of North America from Europe ~200 generations ago. These results indicate that gene genealogies initially diverge during speciation because of selective sweeps, but differential introgression may play a role in the maintenance of differentiation for sympatric populations. PMID:21104111

  14. Incipient Speciation by Sexual Isolation in Drosophila Melanogaster: Extensive Genetic Divergence without Reinforcement

    PubMed Central

    Hollocher, H.; Ting, C. T.; Wu, M. L.; Wu, C. I.

    1997-01-01

    The collection of Drosophila melanogaster from Zimbabwe and nearby regions (the Z-type) yield females who would not mate with the cosmopolitan D. melanogaster males (the M-type). To dissect the genetic basis of this sexual isolation, we constructed 16 whole-chromosome substitution lines between two standard Z-and M-lines. The results were as follows: (1) All substitution lines appear normal in viability and fertility in both sexes, indicating no strong postmating isolation. (2) The genes for the behaviors are mapped to all three major chromosomes with the same ranking and comparable magnitude of effects for both sexes: III > II >> X >/= 0 (III, II and X designate the effects of the three chromosomes). The results suggest less evolution on the X than on autosomes at loci of sexual behavior. (3) The genes for ``Z-maleness'' are many and somewhat redundant. Whole-chromosome effects for Z-maleness appear nearly additive and show little dominance. (4) In contrast, ``Z-femaleness'' has less redundancy as partial genotypes never exhibit full phenotypic effects. Epistatic interactions and incomplete dominance can sometimes be detected. (5) The extensive genetic divergence underlying sexual isolation has evolved in the absence of detectable reduction in hybrid fitnesses. Sexual selection has apparently been a driving force of multiple facets of speciation at the nascent stage without reinforcement. PMID:9383062

  15. High inbreeding, limited recombination and divergent evolutionary patterns between two sympatric morel species in China

    PubMed Central

    Du, Xi-Hui; Zhao, Qi; Xu, Jianping; Yang, Zhu L.

    2016-01-01

    As highly prized, popular mushrooms, morels are widely distributed in the northern hemisphere, with China as a modern centre of speciation and diversity. Overharvesting of morels has caused concern over how to effectively preserve their biological and genetic diversity. However, little is known about their population biology and life cycle. In this study, we selected two sympatric phylogenetic species, Mel-13 (124 collections from 11 geographical locations) and Morchella eohespera (156 collections from 14 geographical locations), using fragments of 4 DNA sequences, to analyse their genetic structure. Our results indicated significant differentiation among geographic locations in both species, whereas no obvious correlation between genetic and geographic distance was identified in either species. M. eohespera exhibited a predominantly clonal population structure with limited recombination detected in only 1 of the 14 geographic locations. In contrast, relatively frequent recombination was identified in 6 of the 11 geographic locations of Mel-13. Our analysis indicated that the sympatric species Mel-13 and M. eohespera might have divergent evolutionary patterns, with the former showing signatures of recent population expansion and the latter being relatively stable. Interestingly, we found no heterozygosity but strong evidence for genealogical incongruence, indicating a high level of inbreeding and hybridisation among morel species. PMID:26928176

  16. Genetic divergence, population structure and historical demography of rare springsnails (Pyrgulopsis) in the lower Colorado River basin.

    PubMed

    Hurt, Carla R

    2004-05-01

    Springsnails of the genus Pyrgulopsis are the most diverse group of freshwater gastropods in North America and current estimates show that Pyrgulopsis contains ~120 different species, many of which are at risk of extinction. Some factors contributing to their exceptional diversity include poor dispersal ability and extreme habitat specificity based on water availability, chemistry and depth. Most taxa exhibit high degrees of endemism, with many species occurring only in a single spring or seep, making springsnails ideal for studies of speciation and population structure. Here I present data from a survey of genetic variation at the mitochondrial gene cytochrome oxidase I from 37 populations and over 1000 individuals belonging to 16 species of Pyrgulopsis distributed throughout the lower Colorado River basin. High levels of interspecific sequence divergence indicate that Pyrgulopsis may have colonized this region multiple times beginning in the late Miocene (~6 Ma); earlier than previous estimates based on fossil evidence. Estimates of nucleotide diversity differ greatly among species and may reflect differences in demographic processes. These results are used to identify factors contributing to radiation of species in this region. The implications of this evolutionary history and genetic variation are discussed in relation to future management and conservation. PMID:15078454

  17. Morphological characterization and assessment of genetic variability, character association, and divergence in soybean mutants.

    PubMed

    Malek, M A; Rafii, Mohd Y; Shahida Sharmin Afroz, Most; Nath, Ujjal Kumar; Mondal, M Monjurul Alam

    2014-01-01

    Genetic diversity is important for crop improvement. An experiment was conducted during 2011 to study genetic variability, character association, and genetic diversity among 27 soybean mutants and four mother genotypes. Analysis of variance revealed significant differences among the mutants and mothers for nine morphological traits. Eighteen mutants performed superiorly to their mothers in respect to seed yield and some morphological traits including yield attributes. Narrow differences between phenotypic and genotypic coefficients of variation (PCV and GCV) for most of the characters revealed less environmental influence on their expression. High values of heritability and genetic advance with high GCV for branch number, plant height, pod number, and seed weight can be considered as favorable attributes for soybean improvement through phenotypic selection and high expected genetic gain can be achieved. Pod and seed number and maturity period appeared to be the first order traits for higher yield and priority should be given in selection due to their strong associations and high magnitudes of direct effects on yield. Cluster analysis grouped 31 genotypes into five groups at the coefficient value of 235. The mutants/genotypes from cluster I and cluster II could be used for hybridization program with the mutants of clusters IV and V in order to develop high yielding mutant-derived soybean varieties for further improvement. PMID:25197722

  18. Morphological Characterization and Assessment of Genetic Variability, Character Association, and Divergence in Soybean Mutants

    PubMed Central

    Malek, M. A.; Rafii, Mohd Y.; Shahida Sharmin Afroz, Most.; Nath, Ujjal Kumar; Mondal, M. Monjurul Alam

    2014-01-01

    Genetic diversity is important for crop improvement. An experiment was conducted during 2011 to study genetic variability, character association, and genetic diversity among 27 soybean mutants and four mother genotypes. Analysis of variance revealed significant differences among the mutants and mothers for nine morphological traits. Eighteen mutants performed superiorly to their mothers in respect to seed yield and some morphological traits including yield attributes. Narrow differences between phenotypic and genotypic coefficients of variation (PCV and GCV) for most of the characters revealed less environmental influence on their expression. High values of heritability and genetic advance with high GCV for branch number, plant height, pod number, and seed weight can be considered as favorable attributes for soybean improvement through phenotypic selection and high expected genetic gain can be achieved. Pod and seed number and maturity period appeared to be the first order traits for higher yield and priority should be given in selection due to their strong associations and high magnitudes of direct effects on yield. Cluster analysis grouped 31 genotypes into five groups at the coefficient value of 235. The mutants/genotypes from cluster I and cluster II could be used for hybridization program with the mutants of clusters IV and V in order to develop high yielding mutant-derived soybean varieties for further improvement. PMID:25197722

  19. The Puzzle of Italian Rice Origin and Evolution: Determining Genetic Divergence and Affinity of Rice Germplasm from Italy and Asia

    PubMed Central

    Jiang, Zhuxi; Basso, Barbara; Sala, Francesco; Spada, Alberto; Grassi, Fabrizio; Lu, Bao-Rong

    2013-01-01

    The characterization of genetic divergence and relationships of a set of germplasm is essential for its efficient applications in crop breeding and understanding of the origin/evolution of crop varieties from a given geographical region. As the largest rice producing country in Europe, Italy holds rice germplasm with abundant genetic diversity. Although Italian rice varieties and the traditional ones in particular have played important roles in rice production and breeding, knowledge concerning the origin and evolution of Italian traditional varieties is still limited. To solve the puzzle of Italian rice origin, we characterized genetic divergence and relationships of 348 rice varieties from Italy and Asia based on the polymorphisms of microsatellite fingerprints. We also included common wild rice O. rufipogon as a reference in the characterization. Results indicated relatively rich genetic diversity (He = 0.63-0.65) in Italian rice varieties. Further analyses revealed a close genetic relationship of the Italian traditional varieties with those from northern China, which provides strong genetic evidence for tracing the possible origin of early established rice varieties in Italy. These findings have significant implications for the rice breeding programs, in which appropriate germplasm can be selected from a given region and utilized for transferring unique genetic traits based on its genetic diversity and evolutionary relationships. PMID:24265814

  20. Stimulating Divergent Thinking in Junior High Career Education.

    ERIC Educational Resources Information Center

    Ranke, Charlotte; Champoux, Ellen M.

    1981-01-01

    Describes a middle school career-oriented teaching unit with emphasis on teaching for divergent thinking. The unit provides hands-on opportunities for eighth-grade students to explore careers using the knowledge and skills developed in their home economics class. The careers are restaurant management, hospitality service, and interior design. (CT)

  1. Morphological and genetic divergence in Swedish postglacial stickleback (Pungitius pungitius) populations

    PubMed Central

    2011-01-01

    Background An important objective of evolutionary biology is to understand the processes that govern phenotypic variation in natural populations. We assessed patterns of morphological and genetic divergence among coastal and inland lake populations of nine-spined stickleback in northern Sweden. Coastal populations are either from the Baltic coast (n = 5) or from nearby coastal lakes (n = 3) that became isolated from the Baltic Sea (< 100 years before present, ybp). Inland populations are from freshwater lakes that became isolated from the Baltic approximately 10,000 ybp; either single species lakes without predators (n = 5), or lakes with a recent history of predation (n = 5) from stocking of salmonid predators (~50 ybp). Results Coastal populations showed little variation in 11 morphological traits and had longer spines per unit of body length than inland populations. Inland populations were larger, on average, and showed greater morphological variation than coastal populations. A principal component analysis (PCA) across all populations revealed two major morphological axes related to spine length (PC1, 47.7% variation) and body size (PC2, 32.9% variation). Analysis of PCA scores showed marked similarity in coastal (Baltic coast and coastal lake) populations. PCA scores indicate that inland populations with predators have higher within-group variance in spine length and lower within-group variance in body size than inland populations without predators. Estimates of within-group PST (a proxy for QST) from PCA scores are similar to estimates of FST for coastal lake populations but PST >FST for Baltic coast populations. PST >FST for PC1 and PC2 for inland predator and inland no predator populations, with the exception that PST genetic variation within and between groups suggesting that these populations experience similar

  2. Mitochondrial Involvement in Vertebrate Speciation? The Case of Mito-nuclear Genetic Divergence in Chameleons

    PubMed Central

    Bar-Yaacov, Dan; Hadjivasiliou, Zena; Levin, Liron; Barshad, Gilad; Zarivach, Raz; Bouskila, Amos; Mishmar, Dan

    2015-01-01

    Compatibility between the nuclear (nDNA) and mitochondrial (mtDNA) genomes is important for organismal health. However, its significance for major evolutionary processes such as speciation is unclear, especially in vertebrates. We previously identified a sharp mtDNA-specific sequence divergence between morphologically indistinguishable chameleon populations (Chamaeleo chamaeleon recticrista) across an ancient Israeli marine barrier (Jezreel Valley). Because mtDNA introgression and gender-based dispersal were ruled out, we hypothesized that mtDNA spatial division was maintained by mito-nuclear functional compensation. Here, we studied RNA-seq generated from each of ten chameleons representing the north and south populations and identified candidate nonsynonymous substitutions (NSSs) matching the mtDNA spatial distribution. The most prominent NSS occurred in 14 nDNA-encoded mitochondrial proteins. Increased chameleon sample size (N = 70) confirmed the geographic differentiation in POLRMT, NDUFA5, ACO1, LYRM4, MARS2, and ACAD9. Structural and functionality evaluation of these NSSs revealed high functionality. Mathematical modeling suggested that this mito-nuclear spatial divergence is consistent with hybrid breakdown. We conclude that our presented evidence and mathematical model underline mito-nuclear interactions as a likely role player in incipient speciation in vertebrates. PMID:26590214

  3. Divergent Operons and the Genetic Structure of the Maltose B Region in ESCHERICHIA COLI K12

    PubMed Central

    Hofnung, Maurice

    1974-01-01

    Complementation and polarity suppression data are interpreted in terms of the genetic structure of the maltose B region. It is proposed that this region comprises two divergent operons. One operon includes malK, a cistron involved in maltose permeation, and lamB the only known cistron specifically involved in λ receptor synthesis. The other operon includes malJ1 and malJ2 which are most probably two different cistrons, both involved in maltose permeation*. It is further assumed that expression of the two operons is controlled by malT, the positive regulatory gene of the maltose system, located in the malA region. The target(s) for the action of the malT product is (are) most likely to be located between malJ1 and malK. There is an indication that the two operons might overlap in the region of their promoters. The structure of such an overlap as well as the possible function of the products of the different cistrons in malB are briefly discussed. PMID:4595640

  4. Widespread utility of highly informative AFLP molecular markers across divergent shark species.

    PubMed

    Zenger, Kyall R; Stow, Adam J; Peddemors, Victor; Briscoe, David A; Harcourt, Robert G

    2006-01-01

    Population numbers of many shark species are declining rapidly around the world. Despite the commercial and conservation significance, little is known on even the most fundamental aspects of their population biology. Data collection that relies on direct observation can be logistically challenging with sharks. Consequently, molecular methods are becoming increasingly important to obtain knowledge that is critical for conservation and management. Here we describe an amplified fragment length polymorphism method that can be applied universally to sharks to identify highly informative genome-wide polymorphisms from 12 primer pairs. We demonstrate the value of our method on 15 divergent shark species within the superorder Galeomorphii, including endangered species which are notorious for low levels of genetic diversity. Both the endangered sand tiger shark (Carcharodon taurus, N = 18) and the great white shark (Carcharodon carcharias, N = 7) displayed relatively high levels of allelic diversity. A total of 59 polymorphic loci (H(e) = 0.373) and 78 polymorphic loci (H(e) = 0.316) were resolved in C. taurus and C. carcharias, respectively. Results from other sharks (e.g., Orectolobus ornatus, Orectolobus sp., and Galeocerdo cuvier) produced remarkably high numbers of polymorphic loci (106, 94, and 86, respectively) from a limited sample size of only 2. A major constraint to obtaining much needed genetic data from sharks is the time-consuming process of developing molecular markers. Here we demonstrate the general utility of a technique that provides large numbers of informative loci in sharks. PMID:17150982

  5. Population differentiation determined from putative neutral and divergent adaptive genetic markers in Eulachon (Thaleichthys pacificus, Osmeridae), an anadromous Pacific smelt.

    PubMed

    Candy, John R; Campbell, Nathan R; Grinnell, Matthew H; Beacham, Terry D; Larson, Wesley A; Narum, Shawn R

    2015-11-01

    Twelve eulachon (Thaleichthys pacificus, Osmeridae) populations ranging from Cook Inlet, Alaska and along the west coast of North America to the Columbia River were examined by restriction-site-associated DNA (RAD) sequencing to elucidate patterns of neutral and adaptive variation in this high geneflow species. A total of 4104 single-nucleotide polymorphisms (SNPs) were discovered across the genome, with 193 putatively adaptive SNPs as determined by F(ST) outlier tests. Estimates of population structure in eulachon with the putatively adaptive SNPs were similar, but provided greater resolution of stocks compared with a putatively neutral panel of 3911 SNPs or previous estimates with 14 microsatellites. A cline of increasing measures of genetic diversity from south to north was found in the adaptive panel, but not in the neutral markers (SNPs or microsatellites). This may indicate divergent selective pressures in differing freshwater and marine environments between regional eulachon populations and that these adaptive diversity patterns not seen with neutral markers could be a consideration when determining genetic boundaries for conservation purposes. Estimates of effective population size (N(e)) were similar with the neutral SNP panel and microsatellites and may be utilized to monitor population status for eulachon where census sizes are difficult to obtain. Greater differentiation with the panel of putatively adaptive SNPs provided higher individual assignment accuracy compared to the neutral panel or microsatellites for stock identification purposes. This study presents the first SNPs that have been developed for eulachon, and analyses with these markers highlighted the importance of integrating genome-wide neutral and adaptive genetic variation for the applications of conservation and management. PMID:25737187

  6. The genetic basis of photoperiodism and its evolutionary divergence among populations of the pitcher-plant mosquito, Wyeomyia smithii.

    PubMed

    Hard, J J; Bradshaw, W E; Holzapfel, C M

    1993-09-01

    We measured the additive genetic variance within populations and the composite additive, dominance, and epistatic effects contributing to differentiation of photoperiodic response between two southern (ancestral) and each of four progressively more northern (derived) populations of the pitcher-plant mosquito, Wyeomyia smithii. Critical photoperiod and its additive genetic variance but not its heritability increased with latitude. Directional selection on critical photoperiod during the northward divergence of W. smithii has therefore not eroded the additive genetic variance underlying this trait. Joint scaling tests of crosses between populations showed that epistatic effects, especially additive x additive and dominance x dominance interactions, overwhelm composite additive and dominance effects on critical photoperiod. The presence of substantial epistasis suggests that multiple founder events during the northward divergence of W. smithii may have been responsible for the release of progressively greater additive genetic variance in derived populations, despite directional and stabilizing selection to reduce it. If epistasis makes a similar contribution to the genetic differentiation of populations in other species, then current models of adaptive evolution that consider only additive genetic variation and covariation within populations may be of limited value in predicting how natural populations differentiate in life history. PMID:19425986

  7. Genetic and phylogenetic divergence of feline immunodeficiency virus in the puma (Puma concolor).

    PubMed

    Carpenter, M A; Brown, E W; Culver, M; Johnson, W E; Pecon-Slattery, J; Brousset, D; O'Brien, S J

    1996-10-01

    Feline immunodeficiency virus (FIV) is a lentivirus which causes an AIDS-like disease in domestic cats (Felis catus). A number of other felid species, including the puma (Puma concolor), carry a virus closely related to domestic cat FIV. Serological testing revealed the presence of antibodies to FIV in 22% of 434 samples from throughout the geographic range of the puma. FIV-Pco pol gene sequences isolated from pumas revealed extensive sequence diversity, greater than has been documented in the domestic cat. The puma sequences formed two highly divergent groups, analogous to the clades which have been defined for domestic cat and lion (Panthera leo) FIV. The puma clade A was made up of samples from Florida and California, whereas clade B consisted of samples from other parts of North America, Central America, and Brazil. The difference between these two groups was as great as that reported among three lion FIV clades. Within puma clades, sequence variation is large, comparable to between-clade differences seen for domestic cat clades, allowing recognition of 15 phylogenetic lineages (subclades) among puma FIV-Pco. Large sequence divergence among isolates, nearly complete species monophyly, and widespread geographic distribution suggest that FIV-Pco has evolved within the puma species for a long period. The sequence data provided evidence for vertical transmission of FIV-Pco from mothers to their kittens, for coinfection of individuals by two different viral strains, and for cross-species transmission of FIV from a domestic cat to a puma. These factors may all be important for understanding the epidemiology and natural history of FIV in the puma. PMID:8794304

  8. Genetic and phylogenetic divergence of feline immunodeficiency virus in the puma (Puma concolor).

    PubMed Central

    Carpenter, M A; Brown, E W; Culver, M; Johnson, W E; Pecon-Slattery, J; Brousset, D; O'Brien, S J

    1996-01-01

    Feline immunodeficiency virus (FIV) is a lentivirus which causes an AIDS-like disease in domestic cats (Felis catus). A number of other felid species, including the puma (Puma concolor), carry a virus closely related to domestic cat FIV. Serological testing revealed the presence of antibodies to FIV in 22% of 434 samples from throughout the geographic range of the puma. FIV-Pco pol gene sequences isolated from pumas revealed extensive sequence diversity, greater than has been documented in the domestic cat. The puma sequences formed two highly divergent groups, analogous to the clades which have been defined for domestic cat and lion (Panthera leo) FIV. The puma clade A was made up of samples from Florida and California, whereas clade B consisted of samples from other parts of North America, Central America, and Brazil. The difference between these two groups was as great as that reported among three lion FIV clades. Within puma clades, sequence variation is large, comparable to between-clade differences seen for domestic cat clades, allowing recognition of 15 phylogenetic lineages (subclades) among puma FIV-Pco. Large sequence divergence among isolates, nearly complete species monophyly, and widespread geographic distribution suggest that FIV-Pco has evolved within the puma species for a long period. The sequence data provided evidence for vertical transmission of FIV-Pco from mothers to their kittens, for coinfection of individuals by two different viral strains, and for cross-species transmission of FIV from a domestic cat to a puma. These factors may all be important for understanding the epidemiology and natural history of FIV in the puma. PMID:8794304

  9. Distinguishing noise from signal in patterns of genomic divergence in a highly polymorphic avian radiation.

    PubMed

    Campagna, Leonardo; Gronau, Ilan; Silveira, Luís Fábio; Siepel, Adam; Lovette, Irby J

    2015-08-01

    Recently diverged taxa provide the opportunity to search for the genetic basis of the phenotypes that distinguish them. Genomic scans aim to identify loci that are diverged with respect to an otherwise weakly differentiated genetic background. These loci are candidates for being past targets of selection because they behave differently from the rest of the genome that has either not yet differentiated or that may cross species barriers through introgressive hybridization. Here we use a reduced-representation genomic approach to explore divergence among six species of southern capuchino seedeaters, a group of recently radiated sympatric passerine birds in the genus Sporophila. For the first time in these taxa, we discovered a small proportion of markers that appeared differentiated among species. However, when assessing the significance of these signatures of divergence, we found that similar patterns can also be recovered from random grouping of individuals representing different species. A detailed demographic inference indicates that genetic differences among Sporophila species could be the consequence of neutral processes, which include a very large ancestral effective population size that accentuates the effects of incomplete lineage sorting. As these neutral phenomena can generate genomic scan patterns that mimic those of markers involved in speciation and phenotypic differentiation, they highlight the need for caution when ascertaining and interpreting differentiated markers between species, especially when large numbers of markers are surveyed. Our study provides new insights into the demography of the southern capuchino radiation and proposes controls to distinguish signal from noise in similar genomic scans. PMID:26175196

  10. Dopamine pathway is highly diverged in primate species that differ markedly in social behavior.

    PubMed

    Bergey, Christina M; Phillips-Conroy, Jane E; Disotell, Todd R; Jolly, Clifford J

    2016-05-31

    In the endeavor to associate genetic variation with complex traits, closely related taxa are particularly fruitful for understanding the neurophysiological and genetic underpinnings of species-specific attributes. Similarity to humans has motivated research into nonhuman primate models, yet few studies of wild primates have investigated immediate causal factors of evolutionarily diverged social behaviors. Neurotransmitter differences have been invoked to explain the distinct behavioral suites of two baboon species in Awash, Ethiopia, which differ markedly in social behavior despite evolutionary propinquity. With this natural experiment, we test the hypothesis that genomic regions associated with monoamine neurotransmitters would be highly differentiated, and we identify a dopamine pathway as an outlier, highlighting the system as a potential cause of species-specific social behaviors. Dopamine levels and resultant variation in impulsivity were likely under differential selection in the species due to social system structure differences, with either brash or circumspect social behavior advantageous to secure mating opportunities depending on the social backdrop. Such comparative studies into the causes of the behavioral agendas that create and interact with social systems are of particular interest, and differences in temperament related to boldness and associated with dopamine variation likely played important roles in the evolution of all social, behaviorally complex animals, including baboons and humans. PMID:27140612

  11. Increased population sampling confirms low genetic divergence among Pteropus (Chiroptera: Pteropodidae) fruit bats of Madagascar and other western Indian Ocean islands

    PubMed Central

    Chan, Lauren M.; Goodman, Steven M.; Nowak, Michael D.; Weisrock, David W.; Yoder, Anne D.

    2011-01-01

    Fruit bats of the genus Pteropus occur throughout the Austral-Asian region west to islands off the eastern coast of Africa. Recent phylogenetic analyses of Pteropus from the western Indian Ocean found low sequence divergence and poor phylogenetic resolution among several morphologically defined species. We reexamine the phylogenetic relationships of these taxa by using multiple individuals per species. In addition, we estimate population genetic structure in two well-sampled taxa occurring on Madagascar and the Comoro Islands (P. rufus and P. seychellensis comorensis). Despite finding a similar pattern of low sequence divergence among species, increased sampling provides insight into the phylogeographic history of western Indian Ocean Pteropus, uncovering high levels of gene flow within species. PMID:21479256

  12. Genetically divergent strains of simian immunodeficiency virus use CCR5 as a coreceptor for entry.

    PubMed Central

    Chen, Z; Zhou, P; Ho, D D; Landau, N R; Marx, P A

    1997-01-01

    Entry of human immunodeficiency virus type 1 (HIV-1) requires CD4 and one of a family of related seven-transmembrane-domain coreceptors. Macrophage-tropic HIV-1 isolates are generally specific for CCR5, a receptor for the CC chemokines RANTES, MIP-1alpha, and MIP-1beta, while T-cell line-tropic viruses tend to use CXCR4 (also known as fusin, LESTR, or HUMSTR). Like HIV-1, simian immunodeficiency virus (SIV) requires CD4 on the target cell surface; however, whether it also requires a coreceptor is not known. We report here that several genetically divergent SIV isolates, including SIVmac, SIVsmSL92a, SIVsmLib-1, and SIVcpzGAB, can use human and rhesus CCR5 for entry. CXCR4 did not facilitate entry of any of the simian viruses tested, nor did any of the other known chemokine receptors. Moreover, SIVmac251 that had been extensively passaged in a human transformed T-cell line retained its use of CCR5. Rhesus and human CCR5 differed at only eight amino acid residues, four of which were in regions of the receptor that could be exposed, two in the amino-terminal extracellular region and two in the second extracellular loop. The human coreceptor was as active as the simian for SIV entry. In addition, HIV-1 was able to use the rhesus homologs of the human coreceptors, CCR5 and CXCR4. The SIV strains tested were specific for CCR5 regardless of whether they were able to replicate in transformed T-cell lines or macrophages and whether they were phenotypically syncytium inducing or noninducing in MT-2 cells. However, SIV replication was not restricted to cells expressing CCR5. SIV strains replicated efficiently in the human transformed lymphoid cell line CEMx174, which does not express detectable amounts of transcripts of CCR5. SIV also replicated in human peripheral blood mononuclear cells that were genetically deficient in CCR5. These findings indicated that, in addition to CCR5, SIV can use one or more unknown coreceptors that are expressed on human PBMCs and CEMx174 cells

  13. Molecular genetic and quantitative trait divergence associated with recent homoploid hybrid speciation: a study of Senecio squalidus (Asteraceae).

    PubMed

    Brennan, A C; Barker, D; Hiscock, S J; Abbott, R J

    2012-02-01

    Hybridization is increasingly seen as a trigger for rapid evolution and speciation. To quantify and qualify divergence associated with recent homoploid hybrid speciation, we compared quantitative trait (QT) and molecular genetic variation between the homoploid hybrid species Senecio squalidus and its parental species, S. aethnensis and S. chrysanthemifolius, and also their naturally occurring Sicilian hybrids. S. squalidus originated and became invasive in the United Kingdom following the introduction of hybrid plants from Mount Etna, Sicily, about 300 years ago. We recorded considerable molecular genetic differentiation between S. squalidus and its parents and their Sicilian hybrids in terms of both reduced genetic diversity and altered allele frequencies, potentially due to the genetic bottleneck associated with introduction to the United Kingdom. S. squalidus is also distinct from its parents and Sicilian hybrids for QTs, but less so than for molecular genetic markers. We suggest that this is due to resilience of polygenic QTs to changes in allele frequency or lack of selection for hybrid niche divergence in geographic isolation. While S. squalidus is intermediate or parental-like for most QTs, some trangressively distinct traits were observed, which might indicate emerging local adaptation in its invasive range. This study emphasizes the important contribution of founder events and geographic isolation to successful homoploid hybrid speciation. PMID:21829224

  14. Molecular genetic and quantitative trait divergence associated with recent homoploid hybrid speciation: a study of Senecio squalidus (Asteraceae)

    PubMed Central

    Brennan, A C; Barker, D; Hiscock, S J; Abbott, R J

    2012-01-01

    Hybridization is increasingly seen as a trigger for rapid evolution and speciation. To quantify and qualify divergence associated with recent homoploid hybrid speciation, we compared quantitative trait (QT) and molecular genetic variation between the homoploid hybrid species Senecio squalidus and its parental species, S. aethnensis and S. chrysanthemifolius, and also their naturally occurring Sicilian hybrids. S. squalidus originated and became invasive in the United Kingdom following the introduction of hybrid plants from Mount Etna, Sicily, about 300 years ago. We recorded considerable molecular genetic differentiation between S. squalidus and its parents and their Sicilian hybrids in terms of both reduced genetic diversity and altered allele frequencies, potentially due to the genetic bottleneck associated with introduction to the United Kingdom. S. squalidus is also distinct from its parents and Sicilian hybrids for QTs, but less so than for molecular genetic markers. We suggest that this is due to resilience of polygenic QTs to changes in allele frequency or lack of selection for hybrid niche divergence in geographic isolation. While S. squalidus is intermediate or parental-like for most QTs, some trangressively distinct traits were observed, which might indicate emerging local adaptation in its invasive range. This study emphasizes the important contribution of founder events and geographic isolation to successful homoploid hybrid speciation. PMID:21829224

  15. East-west genetic differentiation in Musk Ducks (Biziura lobata) of Australia suggests late Pleistocene divergence at the Nullarbor Plain

    USGS Publications Warehouse

    Guay, P.-J.; Chesser, R.T.; Mulder, R.A.; Afton, A.D.; Paton, D.C.; McCracken, K.G.

    2010-01-01

    Musk Ducks (Biziura lobata) are endemic to Australia and occur as two geographically isolated populations separated by the Nullarbor Plain, a vast arid region in southern Australia. We studied genetic variation in Musk Duck populations at coarse (eastern versus western Australia) and fine scales (four sites within eastern Australia). We found significant genetic structure between eastern and western Australia in the mtDNA control region (??ST = 0. 747), one nuclear intron (??ST = 0.193) and eight microsatellite loci (FST = 0.035). In contrast, there was little genetic structure between Kangaroo Island and adjacent mainland regions within eastern Australia. One small population of Musk Ducks in Victoria (Lake Wendouree) differed from both Kangaroo Island and the remainder of mainland eastern Australia, possibly due to genetic drift exacerbated by inbreeding and small population size. The observed low pairwise distance between the eastern and western mtDNA lineages (0.36%) suggests that they diverged near the end of the Pleistocene, a period characterised by frequent shifts between wet and arid conditions in central Australia. Our genetic results corroborate the display call divergence and Mathews' (Austral Avian Record 2:83-107, 1914) subspecies classification, and confirm that eastern and western populations of Musk Duck are currently isolated from each other. ?? 2010 Springer Science+Business Media B.V.

  16. Development of microsatellite markers in the branched broomrape Phelipanche ramosa L. (Pomel) and evidence for host-associated genetic divergence.

    PubMed

    Le Corre, Valérie; Reibel, Carole; Gibot-Leclerc, Stéphanie

    2014-01-01

    Phelipanche ramosa is a parasitic plant that infects numerous crops worldwide. In Western Europe it recently expanded to a new host crop, oilseed rape, in which it can cause severe yield losses. We developed 13 microsatellite markers for P. ramosa using next-generation 454 sequencing data. The polymorphism at each locus was assessed in a sample of 96 individuals collected in France within 6 fields cultivated with tobacco, hemp or oilseed rape. Two loci were monomorphic. At the other 11 loci, the number of alleles and the expected heterozygosity ranged from 3 to 6 and from 0.31 to 0.60, respectively. Genetic diversity within each cultivated field was very low. The host crop from which individuals were collected was the key factor structuring genetic variation. Individuals collected on oilseed rape were strongly differentiated from individuals collected on hemp or tobacco, which suggests that P. ramosa infecting oilseed rape forms a genetically diverged race. The microsatellites we developed will be useful for population genetics studies and for elucidating host-associated genetic divergence in P. ramosa. PMID:24419096

  17. Genetic and environmental contributions to variation and population divergence in a broad-spectrum foliar defence of Eucalyptus tricarpa

    PubMed Central

    Andrew, Rose L.; Wallis, Ian R.; Harwood, Chris E.; Foley, William J.

    2010-01-01

    Background and Aims Both environmental and genetic effects contribute to phenotypic variation within and among populations. Genetic differentiation of quantitative traits among populations has been shown in many species, yet it can also be accompanied by other genetic changes, such as divergence in phenotypic plasticity and in genetic variance. Sideroxylonal (a formylated phloroglucinol compound or FPC) is an important chemical defence in eucalypts. The effect of environmental variation on its production is a critical gap in our understanding of its genetics and evolution. Methods The stability of genetic variation in sideroxylonal was assessed within and among populations of Eucalyptus tricarpa in three replicated provenance/progeny trials. The covariance structure of the data was also modelled to test whether genetic variances were consistent among populations and Fain's test was applied for major gene effects. Key Results A significant genotype × environment interaction occurred at the level of population, and was related to temperature range and seasonality in source populations. Within-population genetic variation was not affected by genotype × environment effects or different sampling years. However, within-population genetic variance for sideroxylonal concentration differed significantly among source populations. Regression of family variance on family mean suggested that this trait is subject to major gene effects, which could explain the observed differences in genetic variances among populations. Conclusions These results highlight the importance of replicated common-garden experiments for understanding the genetic basis of population differences. Genotype × environment interactions are unlikely to impede evolution or responses to artificial selection on sideroxylonal, but the lack of genetic variation in some populations may be a constraint. The results are broadly consistent with localized selection on foliar defence and illustrate that

  18. Ecological and genetic divergence between two lineages of Middle American túngara frogs Physalaemus (= Engystomops) pustulosus

    PubMed Central

    2010-01-01

    Background Uncovering how populations of a species differ genetically and ecologically is important for understanding evolutionary processes. Here we combine population genetic methods (microsatellites) with phylogenetic information (mtDNA) to define genetic population clusters of the wide-spread Neotropical túngara frog (Physalaemus pustulosus). We measure gene flow and migration within and between population clusters and compare genetic diversity between population clusters. By applying ecological niche modeling we determine whether the two most divergent genetic groups of the túngara frog (1) inhabit different habitats, and (2) are separated geographically by unsuitable habitat across a gap in the distribution. Results Most population structure is captured by dividing all sample localities into two allopatric genetic lineages. The Northern genetic lineage (NW Costa Rica) is genetically homogenous while the Southern lineage (SW Costa Rica and Panama) is sub-divided into three population clusters by both microsatellite and mtDNA analyses. Gene flow is higher within the Northern lineage than within the Southern lineage, perhaps due to increased landscape heterogeneity in the South. Niche modeling reveals differences in suitable habitat between the Northern and Southern lineages: the Northern lineage inhabits dry/pine-oak forests, while the Southern lineage is confined to tropical moist forests. Both lineages seem to have had little movement across the distribution gap, which persisted during the last glacial maximum. The lack of movement was more pronounced for the Southern lineage than for the Northern lineage. Conclusions This study confirms the finding of previous studies that túngara frogs diverged into two allopatric genetic lineages north and south of the gap in the distribution in central Costa Rica several million years ago. The allopatric distribution is attributed to unsuitable habitat and probably other unknown ecological factors present across the

  19. Quantitative genetic inheritance of morphological divergence in a lake-stream stickleback ecotype pair: implications for reproductive isolation.

    PubMed

    Berner, D; Kaeuffer, R; Grandchamp, A-C; Raeymaekers, J A M; Räsänen, K; Hendry, A P

    2011-09-01

    Ecological selection against hybrids between populations occupying different habitats might be an important component of reproductive isolation during the initial stages of speciation. The strength and directionality of this barrier to gene flow depends on the genetic architecture underlying divergence in ecologically relevant phenotypes. We here present line cross analyses of inheritance for two key foraging-related morphological traits involved in adaptive divergence between stickleback ecotypes residing parapatrically in lake and stream habitats within the Misty Lake watershed (Vancouver Island, Canada). One main finding is the striking genetic dominance of the lake phenotype for body depth. Selection associated with this phenotype against first- and later-generation hybrids should therefore be asymmetric, hindering introgression from the lake to the stream population but not vice versa. Another main finding is that divergence in gill raker number is inherited additively and should therefore contribute symmetrically to reproductive isolation. Our study suggests that traits involved in adaptation might contribute to reproductive isolation qualitatively differently, depending on their mode of inheritance. PMID:21649765

  20. Genetically and environmentally mediated divergence in lateral line morphology in the Trinidadian guppy (Poecilia reticulata).

    PubMed

    Fischer, Eva K; Soares, Daphne; Archer, Kathryn R; Ghalambor, Cameron K; Hoke, Kim L

    2013-08-15

    Fish and other aquatic vertebrates use their mechanosensory lateral line to detect objects and motion in their immediate environment. Differences in lateral line morphology have been extensively characterized among species; however, intraspecific variation remains largely unexplored. In addition, little is known about how environmental factors modify development of lateral line morphology. Predation is one environmental factor that can act both as a selective pressure causing genetic differences between populations, and as a cue during development to induce plastic changes. Here, we test whether variation in the risk of predation within and among populations of Trinidadian guppies (Poecilia reticulata) influences lateral line morphology. We compared neuromast arrangement in wild-caught guppies from distinct high- and low-predation population pairs to examine patterns associated with differences in predation pressure. To distinguish genetic and environmental influences, we compared neuromast arrangement in guppies from different source populations reared with and without exposure to predator chemical cues. We found that the distribution of neuromasts across the body varies between populations based on both genetic and environmental factors. To the best of our knowledge, this study is the first to demonstrate variation in lateral line morphology based on environmental exposure to an ecologically relevant stimulus. PMID:23619409

  1. Genetic divergence in populations of Lutzomyia ayacuchensis, a vector of Andean-type cutaneous leishmaniasis, in Ecuador and Peru.

    PubMed

    Kato, Hirotomo; Cáceres, Abraham G; Gomez, Eduardo A; Mimori, Tatsuyuki; Uezato, Hiroshi; Hashiguchi, Yoshihisa

    2015-01-01

    Haplotype and gene network analyses were performed on mitochondrial cytochrome oxidase I and cytochrome b gene sequences of Lutzomyia (Lu.) ayacuchensis populations from Andean areas of Ecuador and southern Peru where the sand fly species transmit Leishmania (Leishmania) mexicana and Leishmania (Viannia) peruviana, respectively, and populations from the northern Peruvian Andes, for which transmission of Leishmania by Lu. ayacuchensis has not been reported. The haplotype analyses showed higher intrapopulation genetic divergence in northern Peruvian Andes populations and less divergence in the southern Peru and Ecuador populations, suggesting that a population bottleneck occurred in the latter populations, but not in former ones. Importantly, both haplotype and phylogenetic analyses showed that populations from Ecuador consisted of clearly distinct clusters from southern Peru, and the two populations were separated from those of northern Peru. PMID:25312337

  2. Genetic and morphological divergence among Cooper's Hawk (Accipiter cooperii) populations breeding in north-central and western North America

    USGS Publications Warehouse

    Sonsthagen, Sarah A.; Rosenfield, Robert N.; Bielefeldt, John; Murphy, Robert K.; Stewart, Andrew C.; Stout, William C.; Driscoll, Timothy G.; Bozek, Michael A.; Sloss, Brian L.; Talbot, Sandra L.

    2012-01-01

    Cooper's Hawk (Accipiter cooperii) populations breeding in the northern portion of the species' range exhibit variation in morphological traits that conforms to predictions based on differences in prey size, tree stand density, and migratory behavior. We examined genetic structure and gene flow and compared divergence at morphological traits (PST) and genetic markers (FST) to elucidate mechanisms (selection or genetic drift) that promote morphological diversification among Cooper's Hawk populations. Cooper's Hawks appear to conform to the genetic pattern of an east-west divide. Populations in British Columbia are genetically differentiated from north-central populations (Wisconsin, Minnesota, and North Dakota; pairwise microsatellite FST= 0.031-0.050; mitochondrial DNA ΦST = 0.177-0.204), which suggests that Cooper's Hawks were restricted to at least two Pleistocene glacial refugia. The strength of the Rocky Mountains—Great Plains area as a barrier to dispersal is further supported by restricted gene-flow rates between British Columbia and other sampled breeding populations. Divergence in morphological traits (PST) was also observed across study areas, but with British Columbia and North Dakota differentiated from Wisconsin and Minnesota, a pattern not predicted on the basis of FST and ΦST interpopulation estimates. Comparison of PSTand FSTestimates suggests that heterogeneous selection may be acting on Cooper's Hawks in the northern portion of their distribution, which is consistent with hypotheses that variation in prey mass and migratory behavior among populations may be influencing overall body size and wing chord. We were unable to distinguish between the effects of genetic drift and selection on tail length in the study populations.

  3. Exploring Genetic Divergence in a Species-Rich Insect Genus Using 2790 DNA Barcodes

    PubMed Central

    Lin, Xiaolong; Stur, Elisabeth; Ekrem, Torbjørn

    2015-01-01

    DNA barcoding using a fragment of the mitochondrial cytochrome c oxidase subunit 1 gene (COI) has proven to be successful for species-level identification in many animal groups. However, most studies have been focused on relatively small datasets or on large datasets of taxonomically high-ranked groups. We explore the quality of DNA barcodes to delimit species in the diverse chironomid genus Tanytarsus (Diptera: Chironomidae) by using different analytical tools. The genus Tanytarsus is the most species-rich taxon of tribe Tanytarsini (Diptera: Chironomidae) with more than 400 species worldwide, some of which can be notoriously difficult to identify to species-level using morphology. Our dataset, based on sequences generated from own material and publicly available data in BOLD, consist of 2790 DNA barcodes with a fragment length of at least 500 base pairs. A neighbor joining tree of this dataset comprises 131 well separated clusters representing 121 morphological species of Tanytarsus: 77 named, 16 unnamed and 28 unidentified theoretical species. For our geographically widespread dataset, DNA barcodes unambiguously discriminate 94.6% of the Tanytarsus species recognized through prior morphological study. Deep intraspecific divergences exist in some species complexes, and need further taxonomic studies using appropriate nuclear markers as well as morphological and ecological data to be resolved. The DNA barcodes cluster into 120–242 molecular operational taxonomic units (OTUs) depending on whether Objective Clustering, Automatic Barcode Gap Discovery (ABGD), Generalized Mixed Yule Coalescent model (GMYC), Poisson Tree Process (PTP), subjective evaluation of the neighbor joining tree or Barcode Index Numbers (BINs) are used. We suggest that a 4–5% threshold is appropriate to delineate species of Tanytarsus non-biting midges. PMID:26406595

  4. Argument in High School Genetics.

    ERIC Educational Resources Information Center

    Jimenez-Aleixandre, M. Pilar; Bugallo-Rodriguez, Anxela

    This paper reports on a case study focusing on the development of students' capacity to develop and assess arguments in the context of instruction in high school genetics. It is part of a wider project whose goals were: (1) the identification of the conditions for argument (and in general scientific reasoning) to occur in science classrooms; (2)…

  5. Population divergence and gene flow in an endangered and highly mobile seabird

    PubMed Central

    Welch, A J; Fleischer, R C; James, H F; Wiley, A E; Ostrom, P H; Adams, J; Duvall, F; Holmes, N; Hu, D; Penniman, J; Swindle, K A

    2012-01-01

    Seabirds are highly vagile and can disperse up to thousands of kilometers, making it difficult to identify the factors that promote isolation between populations. The endemic Hawaiian petrel (Pterodroma sandwichensis) is one such species. Today it is endangered, and known to breed only on the islands of Hawaii, Maui, Lanai and Kauai. Historical records indicate that a large population formerly bred on Molokai as well, but this population has recently been extirpated. Given the great dispersal potential of these petrels, it remains unclear if populations are genetically distinct and which factors may contribute to isolation between them. We sampled petrels from across their range, including individuals from the presumably extirpated Molokai population. We sequenced 524 bp of mitochondrial DNA, 741 bp from three nuclear introns, and genotyped 18 microsatellite loci in order to examine the patterns of divergence in this species and to investigate the potential underlying mechanisms. Both mitochondrial and nuclear data sets indicated significant genetic differentiation among all modern populations, but no differentiation was found between historic samples from Molokai and modern birds from Lanai. Population-specific nonbreeding distribution and strong natal philopatry may reduce gene flow between populations. However, the lack of population structure between extirpated Molokai birds and modern birds on Lanai indicates that there was substantial gene flow between these populations and that petrels may be able to overcome barriers to dispersal prior to complete extirpation. Hawaiian petrel populations could be considered distinct management units, however, the dwindling population on Hawaii may require translocation to prevent extirpation in the near future. PMID:22434012

  6. Population divergence and gene flow in an endangered and highly mobile seabird.

    PubMed

    Welch, A J; Fleischer, R C; James, H F; Wiley, A E; Ostrom, P H; Adams, J; Duvall, F; Holmes, N; Hu, D; Penniman, J; Swindle, K A

    2012-07-01

    Seabirds are highly vagile and can disperse up to thousands of kilometers, making it difficult to identify the factors that promote isolation between populations. The endemic Hawaiian petrel (Pterodroma sandwichensis) is one such species. Today it is endangered, and known to breed only on the islands of Hawaii, Maui, Lanai and Kauai. Historical records indicate that a large population formerly bred on Molokai as well, but this population has recently been extirpated. Given the great dispersal potential of these petrels, it remains unclear if populations are genetically distinct and which factors may contribute to isolation between them. We sampled petrels from across their range, including individuals from the presumably extirpated Molokai population. We sequenced 524 bp of mitochondrial DNA, 741 bp from three nuclear introns, and genotyped 18 microsatellite loci in order to examine the patterns of divergence in this species and to investigate the potential underlying mechanisms. Both mitochondrial and nuclear data sets indicated significant genetic differentiation among all modern populations, but no differentiation was found between historic samples from Molokai and modern birds from Lanai. Population-specific nonbreeding distribution and strong natal philopatry may reduce gene flow between populations. However, the lack of population structure between extirpated Molokai birds and modern birds on Lanai indicates that there was substantial gene flow between these populations and that petrels may be able to overcome barriers to dispersal prior to complete extirpation. Hawaiian petrel populations could be considered distinct management units, however, the dwindling population on Hawaii may require translocation to prevent extirpation in the near future. PMID:22434012

  7. The effects of locus number, genetic divergence, and genotyping error on the utility of dominant markers for hybrid identification

    PubMed Central

    Sovic, Michael G; Kubatko, Laura S; Fuerst, Paul A

    2014-01-01

    In surveys of hybrid zones, dominant genetic markers are often used to identify individuals of hybrid origin and assign these individuals to one of several potential hybrid classes. Quantitative analyses that address the statistical power of dominant markers in such inference are scarce. In this study, dominant genotype data were simulated to evaluate the effects of, first, the number of loci analyzed, second, the magnitude of differentiation between the markers scored in the groups that are hybridizing, and third, the level of genotyping error associated with the data when assigning individuals to various parental and hybrid categories. The overall performance of the assignment methods was relatively modest at the lowest level of divergence examined (Fst ˜ 0.4), but improved substantially at higher levels of differentiation (Fst ˜ 0.67 or 0.8). The effect of genotyping error was dependent on the level of divergence between parental taxa, with larger divergences tempering the effects of genotyping error. These results highlight the importance of considering the effects of each of the variables when assigning individuals to various parental and hybrid categories, and can help guide decisions regarding the number of loci employed in future hybridization studies to achieve the power and level of resolution desired. PMID:24634730

  8. Testing founder effect speciation: Divergence population genetics of the Spoonbills Platalea regia and Pl. minor (Threskiornithidae, Aves)

    USGS Publications Warehouse

    Yeung, Carol K.L.; Tsai, Pi-Wen; Chesser, R. Terry; Lin, Rong-Chien; Yao, Cheng-Te; Tian, Xiu-Hua; Li, Shou-Hsien

    2011-01-01

    Although founder effect speciation has been a popular theoretical model for the speciation of geographically isolated taxa, its empirical importance has remained difficult to evaluate due to the intractability of past demography, which in a founder effect speciation scenario would involve a speciational bottleneck in the emergent species and the complete cessation of gene flow following divergence. Using regression-weighted approximate Bayesian computation, we tested the validity of these two fundamental conditions of founder effect speciation in a pair of sister species with disjunct distributions: the royal spoonbill Platalea regia in Australasia and the black-faced spoonbill Pl. minor in eastern Asia. When compared with genetic polymorphism observed at 20 nuclear loci in the two species, simulations showed that the founder effect speciation model had an extremely low posterior probability (1.55 × 10-8) of producing the extant genetic pattern. In contrast, speciation models that allowed for postdivergence gene flow were much more probable (posterior probabilities were 0.37 and 0.50 for the bottleneck with gene flow and the gene flow models, respectively) and postdivergence gene flow persisted for a considerable period of time (more than 80% of the divergence history in both models) following initial divergence (median = 197,000 generations, 95% credible interval [CI]: 50,000-478,000, for the bottleneck with gene flow model; and 186,000 generations, 95% CI: 45,000-477,000, for the gene flow model). Furthermore, the estimated population size reduction in Pl. regia to 7,000 individuals (median, 95% CI: 487-12,000, according to the bottleneck with gene flow model) was unlikely to have been severe enough to be considered a bottleneck. Therefore, these results do not support founder effect speciation in Pl. regia but indicate instead that the divergence between Pl. regia and Pl. minor was probably driven by selection despite continuous gene flow. In this light, we

  9. Highly syntenic and yet divergent: a tale of two Theilerias.

    PubMed

    Weir, William; Sunter, Jack; Chaussepied, Marie; Skilton, Robert; Tait, Andrew; de Villiers, Etienne P; Bishop, Richard; Shiels, Brian; Langsley, Gordon

    2009-07-01

    The published genomic sequences of the two major host-transforming Theileria species of cattle represent a rich resource of information that has allowed novel bioinformatic and experimental studies into these important apicomplexan parasites. Since their publication in 2005, the genomes of T. annulata and T. parva have been utilised for a diverse range of applications, ranging from candidate antigen discovery to the identification of genetic markers for population analysis. This has led to advancements in the quest for a sub-unit vaccine, while providing a greater understanding of variation among parasite populations in the field. The unique ability of these Theileria species to induce host cell transformation is the subject of considerable scientific interest and the availability of full genomic sequences has provided new insights into this area of research. This article reviews the data underlying published comparative analyses, focussing on the general features of gene expression, the major Tpr/Tar multi-copy gene family and a re-examination of the predicted macroschizont secretome. Codon usage between the Theileria species is reviewed in detail, as this underpins ongoing comparative studies investigating selection at the intra- and inter-species level. The TashAT/TpshAT family of genes, conserved between T. annulata and T. parva, encodes products targeted to the host nucleus and has been implicated in contributing to the transformed bovine phenotype. Species-specific expansion and diversification at this critical locus is discussed with reference to the availability, in the near future, of genomic datasets which are based on non-transforming Theileria species. PMID:19460310

  10. Complete Genome Sequences of Three Historically Important, Spatiotemporally Distinct, and Genetically Divergent Strains of Zika Virus: MR-766, P6-740, and PRVABC-59

    PubMed Central

    Yun, Sang-Im; Song, Byung-Hak; Frank, Jordan C.; Julander, Justin G.; Polejaeva, Irina A.; Davies, Christopher J.; White, Kenneth L.

    2016-01-01

    Here, we report the 10,807-nucleotide-long consensus RNA genome sequences of three spatiotemporally distinct and genetically divergent Zika virus strains, with the functionality of their genomic sequences substantiated by reverse genetics: MR-766 (African lineage, Uganda, 1947), P6-740 (Asian lineage, Malaysia, 1966), and PRVABC-59 (Asian lineage-derived American strain, Puerto Rico, 2015). PMID:27540058

  11. Complete Genome Sequences of Three Historically Important, Spatiotemporally Distinct, and Genetically Divergent Strains of Zika Virus: MR-766, P6-740, and PRVABC-59.

    PubMed

    Yun, Sang-Im; Song, Byung-Hak; Frank, Jordan C; Julander, Justin G; Polejaeva, Irina A; Davies, Christopher J; White, Kenneth L; Lee, Young-Min

    2016-01-01

    Here, we report the 10,807-nucleotide-long consensus RNA genome sequences of three spatiotemporally distinct and genetically divergent Zika virus strains, with the functionality of their genomic sequences substantiated by reverse genetics: MR-766 (African lineage, Uganda, 1947), P6-740 (Asian lineage, Malaysia, 1966), and PRVABC-59 (Asian lineage-derived American strain, Puerto Rico, 2015). PMID:27540058

  12. Genetic divergence in natural populations of bronze featherback, Notopterus notopterus (Osteoglossiformes: Notopteridae) from five Indian rivers, analyzed through mtDNA ATPase6/8 regions☆

    PubMed Central

    Gupta, Arti; Lal, Kuldeep K.; Mohindra, Vindhya; Singh, Rajeev K.; Punia, Peyush; Dwivedi, Arvind K.; Gupta, B.K.; Luhariya, Rupesh K.; Masih, Prachi; Mishra, R.M.; Jena, J.K.

    2013-01-01

    The present study characterized 842 bp fragment of mitochondrial ATP synthase 6 and 8 (ATPase6/8) genes in Notopterus notopterus. In all, 97 samples of N. notopterus were collected from five distant rivers; viz Satluj, Gomti, Yamuna, Brahmaputra and Mahanadi representing 4 river basins in India. The analysis of variation revealed presence of 23 haplotypes in ATPase6/8 gene with haplotype diversity (Hd) of 0.899 and nucleotide diversity (π) of 0.00336. The within population variation which was 41.78% of the total variation of 58.22% was found among population. The Fst value of 0.582 (P < 0.05) of the total population was found significant. The results concluded that the polymorphism in ATPase6/8 gene is a potential marker that is important for determining genetic divergence of wild N. notopterus populations. The findings reveal common ancestry of mahanadi population with the populations in rivers of Indo-Gangetic region. However, long evolutionary isolation must be responsible for the high genetic divergence between N. notopterus in Mahanadi and other regions. PMID:25606374

  13. Genetic divergence in natural populations of bronze featherback, Notopterus notopterus (Osteoglossiformes: Notopteridae) from five Indian rivers, analyzed through mtDNA ATPase6/8 regions.

    PubMed

    Gupta, Arti; Lal, Kuldeep K; Mohindra, Vindhya; Singh, Rajeev K; Punia, Peyush; Dwivedi, Arvind K; Gupta, B K; Luhariya, Rupesh K; Masih, Prachi; Mishra, R M; Jena, J K

    2013-12-01

    The present study characterized 842 bp fragment of mitochondrial ATP synthase 6 and 8 (ATPase6/8) genes in Notopterus notopterus. In all, 97 samples of N. notopterus were collected from five distant rivers; viz Satluj, Gomti, Yamuna, Brahmaputra and Mahanadi representing 4 river basins in India. The analysis of variation revealed presence of 23 haplotypes in ATPase6/8 gene with haplotype diversity (Hd) of 0.899 and nucleotide diversity (π) of 0.00336. The within population variation which was 41.78% of the total variation of 58.22% was found among population. The Fst value of 0.582 (P < 0.05) of the total population was found significant. The results concluded that the polymorphism in ATPase6/8 gene is a potential marker that is important for determining genetic divergence of wild N. notopterus populations. The findings reveal common ancestry of mahanadi population with the populations in rivers of Indo-Gangetic region. However, long evolutionary isolation must be responsible for the high genetic divergence between N. notopterus in Mahanadi and other regions. PMID:25606374

  14. RNA-Seq Analysis of Abdominal Fat in Genetically Fat and Lean Chickens Highlights a Divergence in Expression of Genes Controlling Adiposity, Hemostasis, and Lipid Metabolism

    PubMed Central

    Resnyk, Christopher W.; Chen, Chuming; Huang, Hongzhan; Wu, Cathy H.; Simon, Jean; Le Bihan-Duval, Elisabeth; Duclos, Michel J.; Cogburn, Larry A.

    2015-01-01

    Genetic selection for enhanced growth rate in meat-type chickens (Gallus domesticus) is usually accompanied by excessive adiposity, which has negative impacts on both feed efficiency and carcass quality. Enhanced visceral fatness and several unique features of avian metabolism (i.e., fasting hyperglycemia and insulin insensitivity) mimic overt symptoms of obesity and related metabolic disorders in humans. Elucidation of the genetic and endocrine factors that contribute to excessive visceral fatness in chickens could also advance our understanding of human metabolic diseases. Here, RNA sequencing was used to examine differential gene expression in abdominal fat of genetically fat and lean chickens, which exhibit a 2.8-fold divergence in visceral fatness at 7 wk. Ingenuity Pathway Analysis revealed that many of 1687 differentially expressed genes are associated with hemostasis, endocrine function and metabolic syndrome in mammals. Among the highest expressed genes in abdominal fat, across both genotypes, were 25 differentially expressed genes associated with de novo synthesis and metabolism of lipids. Over-expression of numerous adipogenic and lipogenic genes in the FL chickens suggests that in situ lipogenesis in chickens could make a more substantial contribution to expansion of visceral fat mass than previously recognized. Distinguishing features of the abdominal fat transcriptome in lean chickens were high abundance of multiple hemostatic and vasoactive factors, transporters, and ectopic expression of several hormones/receptors, which could control local vasomotor tone and proteolytic processing of adipokines, hemostatic factors and novel endocrine factors. Over-expression of several thrombogenic genes in abdominal fat of lean chickens is quite opposite to the pro-thrombotic state found in obese humans. Clearly, divergent genetic selection for an extreme (2.5–2.8-fold) difference in visceral fatness provokes a number of novel regulatory responses that govern

  15. RNA-Seq Analysis of Abdominal Fat in Genetically Fat and Lean Chickens Highlights a Divergence in Expression of Genes Controlling Adiposity, Hemostasis, and Lipid Metabolism.

    PubMed

    Resnyk, Christopher W; Chen, Chuming; Huang, Hongzhan; Wu, Cathy H; Simon, Jean; Le Bihan-Duval, Elisabeth; Duclos, Michel J; Cogburn, Larry A

    2015-01-01

    Genetic selection for enhanced growth rate in meat-type chickens (Gallus domesticus) is usually accompanied by excessive adiposity, which has negative impacts on both feed efficiency and carcass quality. Enhanced visceral fatness and several unique features of avian metabolism (i.e., fasting hyperglycemia and insulin insensitivity) mimic overt symptoms of obesity and related metabolic disorders in humans. Elucidation of the genetic and endocrine factors that contribute to excessive visceral fatness in chickens could also advance our understanding of human metabolic diseases. Here, RNA sequencing was used to examine differential gene expression in abdominal fat of genetically fat and lean chickens, which exhibit a 2.8-fold divergence in visceral fatness at 7 wk. Ingenuity Pathway Analysis revealed that many of 1687 differentially expressed genes are associated with hemostasis, endocrine function and metabolic syndrome in mammals. Among the highest expressed genes in abdominal fat, across both genotypes, were 25 differentially expressed genes associated with de novo synthesis and metabolism of lipids. Over-expression of numerous adipogenic and lipogenic genes in the FL chickens suggests that in situ lipogenesis in chickens could make a more substantial contribution to expansion of visceral fat mass than previously recognized. Distinguishing features of the abdominal fat transcriptome in lean chickens were high abundance of multiple hemostatic and vasoactive factors, transporters, and ectopic expression of several hormones/receptors, which could control local vasomotor tone and proteolytic processing of adipokines, hemostatic factors and novel endocrine factors. Over-expression of several thrombogenic genes in abdominal fat of lean chickens is quite opposite to the pro-thrombotic state found in obese humans. Clearly, divergent genetic selection for an extreme (2.5-2.8-fold) difference in visceral fatness provokes a number of novel regulatory responses that govern

  16. Phylogeography, genetic structure and population divergence time of cheetahs in Africa and Asia: evidence for long-term geographic isolates

    PubMed Central

    Charruau, P; Fernandes, C; Orozco-terWengel, P; Peters, J; Hunter, L; Ziaie, H; Jourabchian, A; Jowkar, H; Schaller, G; Ostrowski, S; Vercammen, P; Grange, T; Schlötterer, C; Kotze, A; Geigl, E-M; Walzer, C; Burger, P A

    2011-01-01

    The cheetah (Acinonyx jubatus) has been described as a species with low levels of genetic variation. This has been suggested to be the consequence of a demographic bottleneck 10 000–12 000 years ago (ya) and also led to the assumption that only small genetic differences exist between the described subspecies. However, analysing mitochondrial DNA and microsatellites in cheetah samples from most of the historic range of the species we found relatively deep phylogeographic breaks between some of the investigated populations, and most of the methods assessed divergence time estimates predating the postulated bottleneck. Mitochondrial DNA monophyly and overall levels of genetic differentiation support the distinctiveness of Northern-East African cheetahs (Acinonyx jubatus soemmeringii). Moreover, combining archaeozoological and contemporary samples, we show that Asiatic cheetahs (Acinonyx jubatus venaticus) are unambiguously separated from African subspecies. Divergence time estimates from mitochondrial and nuclear data place the split between Asiatic and Southern African cheetahs (Acinonyx jubatus jubatus) at 32 000–67 000 ya using an average mammalian microsatellite mutation rate and at 4700–44 000 ya employing human microsatellite mutation rates. Cheetahs are vulnerable to extinction globally and critically endangered in their Asiatic range, where the last 70–110 individuals survive only in Iran. We demonstrate that these extant Iranian cheetahs are an autochthonous monophyletic population and the last representatives of the Asiatic subspecies A. j. venaticus. We advocate that conservation strategies should consider the uncovered independent evolutionary histories of Asiatic and African cheetahs, as well as among some African subspecies. This would facilitate the dual conservation priorities of maintaining locally adapted ecotypes and genetic diversity. PMID:21214655

  17. Phylogeography, genetic structure and population divergence time of cheetahs in Africa and Asia: evidence for long-term geographic isolates.

    PubMed

    Charruau, P; Fernandes, C; Orozco-Terwengel, P; Peters, J; Hunter, L; Ziaie, H; Jourabchian, A; Jowkar, H; Schaller, G; Ostrowski, S; Vercammen, P; Grange, T; Schlötterer, C; Kotze, A; Geigl, E-M; Walzer, C; Burger, P A

    2011-02-01

    The cheetah (Acinonyx jubatus) has been described as a species with low levels of genetic variation. This has been suggested to be the consequence of a demographic bottleneck 10 000-12 000 years ago (ya) and also led to the assumption that only small genetic differences exist between the described subspecies. However, analysing mitochondrial DNA and microsatellites in cheetah samples from most of the historic range of the species we found relatively deep phylogeographic breaks between some of the investigated populations, and most of the methods assessed divergence time estimates predating the postulated bottleneck. Mitochondrial DNA monophyly and overall levels of genetic differentiation support the distinctiveness of Northern-East African cheetahs (Acinonyx jubatus soemmeringii). Moreover, combining archaeozoological and contemporary samples, we show that Asiatic cheetahs (Acinonyx jubatus venaticus) are unambiguously separated from African subspecies. Divergence time estimates from mitochondrial and nuclear data place the split between Asiatic and Southern African cheetahs (Acinonyx jubatus jubatus) at 32 000-67 000 ya using an average mammalian microsatellite mutation rate and at 4700-44 000 ya employing human microsatellite mutation rates. Cheetahs are vulnerable to extinction globally and critically endangered in their Asiatic range, where the last 70-110 individuals survive only in Iran. We demonstrate that these extant Iranian cheetahs are an autochthonous monophyletic population and the last representatives of the Asiatic subspecies A. j. venaticus. We advocate that conservation strategies should consider the uncovered independent evolutionary histories of Asiatic and African cheetahs, as well as among some African subspecies. This would facilitate the dual conservation priorities of maintaining locally adapted ecotypes and genetic diversity. PMID:21214655

  18. Divergence of East Asians and Europeans Estimated Using Male- and Female-Specific Genetic Markers

    PubMed Central

    Tateno, Yoshio; Komiyama, Tomoyoshi; Katoh, Toru; Munkhbat, Batmunkh; Oka, Akira; Haida, Yuko; Kobayashi, Hiroyuki; Tamiya, Gen; Inoko, Hidetoshi

    2014-01-01

    To study the male and female lineages of East Asian and European humans, we have sequenced 25 short tandem repeat markers on 453 Y-chromosomes and collected sequences of 72 complete mitochondrial genomes to construct independent phylogenetic trees for male and female lineages. The results indicate that East Asian individuals fall into two clades, one that includes East Asian individuals only and a second that contains East Asian and European individuals. Surprisingly, the European individuals did not form an independent clade, but branched within in the East Asians. We then estimated the divergence time of the root of the European clade as ∼41,000 years ago. These data indicate that, contrary to traditional views, Europeans diverged from East Asians around that time. We also address the origin of the Ainu lineage in northern Japan. PMID:24589501

  19. Insulin-like signaling (IIS) responses to temperature, genetic background, and growth variation in garter snakes with divergent life histories.

    PubMed

    Reding, Dawn M; Addis, Elizabeth A; Palacios, Maria G; Schwartz, Tonia S; Bronikowski, Anne M

    2016-07-01

    The insulin/insulin-like signaling pathway (IIS) has been shown to mediate life history trade-offs in mammalian model organisms, but the function of this pathway in wild and non-mammalian organisms is understudied. Populations of western terrestrial garter snakes (Thamnophis elegans) around Eagle Lake, California, have evolved variation in growth and maturation rates, mortality senescence rates, and annual reproductive output that partition into two ecotypes: "fast-living" and "slow-living". Thus, genes associated with the IIS network are good candidates for investigating the mechanisms underlying ecological divergence in this system. We reared neonates from each ecotype for 1.5years under two thermal treatments. We then used qPCR to compare mRNA expression levels in three tissue types (brain, liver, skeletal muscle) for four genes (igf1, igf2, igf1r, igf2r), and we used radioimmunoassay to measure plasma IGF-1 and IGF-2 protein levels. Our results show that, in contrast to most mammalian model systems, igf2 mRNA and protein levels exceed those of igf1 and suggest an important role for igf2 in postnatal growth in reptiles. Thermal rearing treatment and recent growth had greater impacts on IGF levels than genetic background (i.e., ecotype), and the two ecotypes responded similarly. This suggests that observed ecotypic differences in field measures of IGFs may more strongly reflect plastic responses in different environments than evolutionary divergence. Future analyses of additional components of the IIS pathway and sequence divergence between the ecotypes will further illuminate how environmental and genetic factors influence the endocrine system and its role in mediating life history trade-offs. PMID:27181752

  20. Divergent genetic mechanisms underlie reversals to radial floral symmetry from diverse zygomorphic flowered ancestors

    PubMed Central

    Zhang, Wenheng; Steinmann, Victor W.; Nikolov, Lachezar; Kramer, Elena M.; Davis, Charles C.

    2013-01-01

    Malpighiaceae possess flowers with a unique bilateral symmetry (zygomorphy), which is a hypothesized adaptation associated with specialization on neotropical oil bee pollinators. Gene expression of two representatives of the CYC2 lineage of floral symmetry TCP genes, CYC2A and CYC2B, demarcate the adaxial (dorsal) region of the flower in the characteristic zygomorphic flowers of most Malpighiaceae. Several clades within the family, however, have independently lost their specialized oil bee pollinators and reverted to radial flowers (actinomorphy) like their ancestors. Here, we investigate CYC2 expression associated with four independent reversals to actinomorphy. We demonstrate that these reversals are always associated with alteration of the highly conserved CYC2 expression pattern observed in most New World (NW) Malpighiaceae. In NW Lasiocarpus and Old World (OW) Microsteria, the expression of CYC2-like genes has expanded to include the ventral region of the corolla. Thus, the pattern of gene expression in these species has become radialized, which is comparable to what has been reported in the radial flowered legume clade Cadia. In striking contrast, in NW Psychopterys and OW Sphedamnocarpus, CYC2-like expression is entirely absent or at barely detectable levels. This is more similar to the pattern of CYC2 expression observed in radial flowered Arabidopsis. These results collectively indicate that, regardless of geographic distribution, reversals to similar floral phenotypes in this large tropical angiosperm clade have evolved via different genetic changes from an otherwise highly conserved developmental program. PMID:23970887

  1. Genetic continuity across a deeply divergent linguistic contact zone in North Maluku, Indonesia

    PubMed Central

    2011-01-01

    Background The islands of North Maluku, Indonesia occupy a central position in the major prehistoric dispersal streams that shaped the peoples of Island Southeast Asia and the Pacific. Within this region a linguistic contact zone exists where speakers of Papuan and Austronesian languages reside in close proximity. Here we use population genetic data to assess the extent to which North Maluku populations experienced admixture of Asian genetic material, and whether linguistic boundaries reflect genetic differentiation today. Results Autosomal and X-linked markers reveal overall Asian admixture of 67% in North Maluku, demonstrating a substantial contribution of genetic material into the region from Asia. We observe no evidence of population structure associated with ethnicity or language affiliation. Conclusions Our data support a model of widespread Asian admixture in North Maluku, likely mediated by the expansion of Austronesian-speaking peoples into the region during the mid Holocene. In North Maluku there is no genetic differentiation in terms of Austronesian- versus Papuan-speakers, suggesting extensive gene flow across linguistic boundaries. In a regional context, our results illuminate a major genetic divide at the Molucca Sea, between the islands of Sulawesi and North Maluku. West of this divide, populations exhibit predominantly Asian ancestry, with very little contribution of Papuan genetic material. East of the Molucca Sea, populations show diminished rates of Asian admixture and substantial persistence of Papuan genetic diversity. PMID:22098696

  2. High Divergence of the Precursor Peptides in Combinatorial Lanthipeptide Biosynthesis

    PubMed Central

    2015-01-01

    Lanthionine-containing peptides (lanthipeptides) are a rapidly growing family of polycyclic peptide natural products belonging to the large class of ribosomally synthesized and post-translationally modified peptides (RiPPs). These compounds are widely distributed in taxonomically distant species, and their biosynthetic systems and biological activities are diverse. A unique example of lanthipeptide biosynthesis is the prochlorosin synthetase ProcM from the marine cyanobacterium Prochlorococcus MIT9313, which transforms up to 29 different precursor peptides (ProcAs) into a library of lanthipeptides called prochlorosins (Pcns) with highly diverse sequences and ring topologies. Here, we show that many ProcM-like enzymes from a variety of bacteria have the capacity to carry out post-translational modifications on highly diverse precursor peptides, providing new examples of natural combinatorial biosynthesis. We also demonstrate that the leader peptides come from different evolutionary origins, suggesting that the combinatorial biosynthesis is tied to the enzyme and not a specific type of leader peptide. For some precursor peptides encoded in the genomes, the leader peptides apparently have been truncated at the N-termini, and we show that these N-terminally truncated peptides are still substrates of the enzymes. Consistent with this hypothesis, we demonstrate that about two-thirds of the ProcA N-terminal sequence is not essential for ProcM activity. Our results also highlight the potential of exploring this class of natural products by genome mining and bioengineering. PMID:25244001

  3. Comparative Genetics of Seed Size Traits in Divergent Cereal Lineages Represented by Sorghum (Panicoidae) and Rice (Oryzoidae)

    PubMed Central

    Zhang, Dong; Li, Jingping; Compton, Rosana O.; Robertson, Jon; Goff, Valorie H.; Epps, Ethan; Kong, Wenqian; Kim, Changsoo; Paterson, Andrew H.

    2015-01-01

    Seed size is closely related to fitness of wild plants, and its modification has been a key recurring element in domestication of seed/grain crops. In sorghum, a genomic and morphological model for panicoid cereals, a rich history of research into the genetics of seed size is reflected by a total of 13 likelihood intervals determined by conventional QTL (linkage) mapping in 11 nonoverlapping regions of the genome. To complement QTL data and investigate whether the discovery of seed size QTL is approaching “saturation,” we compared QTL data to GWAS for seed mass, seed length, and seed width studied in 354 accessions from a sorghum association panel (SAP) that have been genotyped at 265,487 SNPs. We identified nine independent GWAS-based “hotspots” for seed size associations. Targeted resequencing near four association peaks with the most notable linkage disequilibrium provides further support of the role(s) of these regions in the genetic control of sorghum seed size and identifies two candidate causal variants with nonsynonymous mutations. Of nine GWAS hotspots in sorghum, seven have significant correspondence with rice QTL intervals and known genes for components of seed size on orthologous chromosomes. Identifying intersections between positional and association genetic data are a potentially powerful means to mitigate constraints associated with each approach, and nonrandom correspondence of sorghum (panicoid) GWAS signals to rice (oryzoid) QTL adds a new dimension to the ability to leverage genetic data about this important trait across divergent plants. PMID:25834216

  4. Genetic control of the environmental variance for birth weight in seven generations of a divergent selection experiment in mice.

    PubMed

    Formoso-Rafferty, N; Cervantes, I; Ibáñez-Escriche, N; Gutiérrez, J P

    2016-06-01

    Data from seven generations of a divergent selection experiment designed for environmental variability of birth weight were analysed to estimate genetic parameters and to explore signs of selection response. A total of 10 783 birth weight records from 638 females and 1127 litters in combination with 10 007 pedigree records were used. Each record of birth weight was assigned to the mother of the pup in a heteroscedastic model, and after seven generations of selection, evidence of success in the selection process was shown. A Bayesian analysis showed that success of the selection process started from the first generation for birth weight and from the second generation for its environmental variability. Genetic parameters were estimated across generations. However, only from the third generation onwards were the records useful to consider the results to be reliable. The results showed a consistent positive and low genetic correlation between the birth weight trait and its environmental variability, which could allow an independent selection process. This study has demonstrated that the genetic control of the birth weight environmental variability is possible in mice. Nevertheless, before the results are applied directly in farm animals, it would be worth confirming any other implications on other important traits, such as robustness, longevity and welfare. PMID:26150168

  5. Comparative Genetics of Seed Size Traits in Divergent Cereal Lineages Represented by Sorghum (Panicoidae) and Rice (Oryzoidae).

    PubMed

    Zhang, Dong; Li, Jingping; Compton, Rosana O; Robertson, Jon; Goff, Valorie H; Epps, Ethan; Kong, Wenqian; Kim, Changsoo; Paterson, Andrew H

    2015-06-01

    Seed size is closely related to fitness of wild plants, and its modification has been a key recurring element in domestication of seed/grain crops. In sorghum, a genomic and morphological model for panicoid cereals, a rich history of research into the genetics of seed size is reflected by a total of 13 likelihood intervals determined by conventional QTL (linkage) mapping in 11 nonoverlapping regions of the genome. To complement QTL data and investigate whether the discovery of seed size QTL is approaching "saturation," we compared QTL data to GWAS for seed mass, seed length, and seed width studied in 354 accessions from a sorghum association panel (SAP) that have been genotyped at 265,487 SNPs. We identified nine independent GWAS-based "hotspots" for seed size associations. Targeted resequencing near four association peaks with the most notable linkage disequilibrium provides further support of the role(s) of these regions in the genetic control of sorghum seed size and identifies two candidate causal variants with nonsynonymous mutations. Of nine GWAS hotspots in sorghum, seven have significant correspondence with rice QTL intervals and known genes for components of seed size on orthologous chromosomes. Identifying intersections between positional and association genetic data are a potentially powerful means to mitigate constraints associated with each approach, and nonrandom correspondence of sorghum (panicoid) GWAS signals to rice (oryzoid) QTL adds a new dimension to the ability to leverage genetic data about this important trait across divergent plants. PMID:25834216

  6. Divergence Free High Order Filter Methods for the Compressible MHD Equations

    NASA Technical Reports Server (NTRS)

    Yea, H. C.; Sjoegreen, Bjoern

    2003-01-01

    The generalization of a class of low-dissipative high order filter finite difference methods for long time wave propagation of shock/turbulence/combustion compressible viscous gas dynamic flows to compressible MHD equations for structured curvilinear grids has been achieved. The new scheme is shown to provide a natural and efficient way for the minimization of the divergence of the magnetic field numerical error. Standard diver- gence cleaning is not required by the present filter approach. For certain MHD test cases, divergence free preservation of the magnetic fields has been achieved.

  7. High-power narrow-vertical-divergence photonic band crystal laser diodes with optimized epitaxial structure

    SciTech Connect

    Liu, Lei; Qu, Hongwei; Liu, Yun; Zhang, Yejin; Zheng, Wanhua; Wang, Yufei; Qi, Aiyi

    2014-12-08

    900 nm longitudinal photonic band crystal (PBC) laser diodes with optimized epitaxial structure are fabricated. With a same calculated fundamental-mode divergence, stronger mode discrimination is achieved by a quasi-periodic index modulation in the PBC waveguide than a periodic one. Experiments show that the introduction of over 5.5 μm-thick PBC waveguide contributes to only 10% increment of the internal loss for the laser diodes. For broad area PBC lasers, output powers of 5.75 W under continuous wave test and over 10 W under quasi-continuous wave test are reported. The vertical divergence angles are 10.5° at full width at half maximum and 21.3° with 95% power content, in conformity with the simulated angles. Such device shows a prospect for high-power narrow-vertical-divergence laser emission from single diode laser and laser bar.

  8. Genetic divergence and biology of adaptation inCicer arietinum L.

    PubMed

    Dani, R G; Murty, B R

    1985-07-01

    The role of 19 structural, developmental and biochemical traits in relation to specific adaptation was analysed in a set of 17 diverse lines with quantified adaptation, representing contemporary cultivars and land races of chickpea (Cicer arietinum L.), using multivariate analysis. Significant varietal variation was observed for most characters, particularly for the activity of the enzyme nitrate reductase (NR) and protein content in the plant. The distance analysis (D(2)-statistic) revealed that seed size and pod number and their associated attributes were important forces of divergence. The additional forces of divergence were NR activity at the flower initiation stage, yield components such as number of primary and secondary branches, and other features such as plant habit and duration of flowering. The principal component analysis revealed some similarities and also differences from the distance analysis. Leaf size, days to flower initiation, seed size and, to some extent, NR activity at flower initiation stage, were important in the first vector. Developmental traits such as chlorophyll depth, NR activity at the pod initiation and grain filling stages, and the percent protein content in the plant at flower initiation were important in the second vector. In general, the clustering pattern was not related to the geographical origin, seed colour, size of regression coefficient for yield, or deviation from linearity. The importance of the developmental and biochemical attributes in the divergence of cultivated chickpea, such as days to flower initiation, duration of flowering, NR activity and the rates of protein accumulation in developing seeds, and in adaptation, suggests the critical role of these attributes. NR activity at the flower initiation stage would appear to have a major role in the domestication of this crop and its intra-specific differentiation, as an increased seed size could not have been possible without better nutrient uptake and utilization

  9. Genetic divergence between Mexican Opuntia accessions inferred by polymerase chain reaction-restriction fragment length polymorphism analysis.

    PubMed

    Samah, S; Valadez-Moctezuma, E; Peláez-Luna, K S; Morales-Manzano, S; Meza-Carrera, P; Cid-Contreras, R C

    2016-01-01

    Molecular methods are powerful tools in characterizing and determining relationships between plants. The aim of this study was to study genetic divergence between 103 accessions of Mexican Opuntia. To accomplish this, polymerase chain reaction (PCR)-restriction fragment length polymorphism analysis of three chloroplast intergenic spacers (atpB-rbcL, trnL-trnF, and psbA-trnH), one chloroplast gene (ycf1), two nuclear genes (ppc and PhyC), and one mitochondrial gene (cox3) was conducted. The amplified products from all the samples had very similar molecular sizes, and there were only very small differences between the undigested PCR amplicons for all regions, with the exception of ppc. We obtained 5850 bp from the seven regions, and 136 fragments were detected with eight enzymes, 37 of which (27.2%) were polymorphic. We found that 40% of the fragments from the chloroplast regions were polymorphic, 9.8% of the bands detected in the nuclear genes were polymorphic, and 20% of the bands in the mitochondrial locus were polymorphic. trnL-trnF and psbA-trnH were the most variable regions. The Nei and Li/Dice distance was very short, and ranged from 0 to 0.12; indeed, 77 of the 103 genotypes had the same genetic profile. All the xoconostle accessions (acidic fruits) were grouped together without being separated from three genotypes of prickly pear (sweet fruits). We assume that the genetic divergence between prickly pears and xoconostles is very low, and question the number of Opuntia species currently considered in Mexico. PMID:27323120

  10. Highly Divergent Mitochondrial ATP Synthase Complexes in Tetrahymena thermophila

    PubMed Central

    Balabaskaran Nina, Praveen; Dudkina, Natalya V.; Kane, Lesley A.; van Eyk, Jennifer E.; Boekema, Egbert J.; Mather, Michael W.; Vaidya, Akhil B.

    2010-01-01

    The F-type ATP synthase complex is a rotary nano-motor driven by proton motive force to synthesize ATP. Its F1 sector catalyzes ATP synthesis, whereas the Fo sector conducts the protons and provides a stator for the rotary action of the complex. Components of both F1 and Fo sectors are highly conserved across prokaryotes and eukaryotes. Therefore, it was a surprise that genes encoding the a and b subunits as well as other components of the Fo sector were undetectable in the sequenced genomes of a variety of apicomplexan parasites. While the parasitic existence of these organisms could explain the apparent incomplete nature of ATP synthase in Apicomplexa, genes for these essential components were absent even in Tetrahymena thermophila, a free-living ciliate belonging to a sister clade of Apicomplexa, which demonstrates robust oxidative phosphorylation. This observation raises the possibility that the entire clade of Alveolata may have invented novel means to operate ATP synthase complexes. To assess this remarkable possibility, we have carried out an investigation of the ATP synthase from T. thermophila. Blue native polyacrylamide gel electrophoresis (BN-PAGE) revealed the ATP synthase to be present as a large complex. Structural study based on single particle electron microscopy analysis suggested the complex to be a dimer with several unique structures including an unusually large domain on the intermembrane side of the ATP synthase and novel domains flanking the c subunit rings. The two monomers were in a parallel configuration rather than the angled configuration previously observed in other organisms. Proteomic analyses of well-resolved ATP synthase complexes from 2-D BN/BN-PAGE identified orthologs of seven canonical ATP synthase subunits, and at least 13 novel proteins that constitute subunits apparently limited to the ciliate lineage. A mitochondrially encoded protein, Ymf66, with predicted eight transmembrane domains could be a substitute for the subunit a

  11. Deep genetic divergences among Indo-Pacific populations of the coral reef sponge Leucetta chagosensis (Leucettidae): Founder effects, vicariance, or both?

    PubMed Central

    2008-01-01

    Background An increasing number of studies demonstrate that genetic differentiation and speciation in the sea occur over much smaller spatial scales than previously appreciated given the wide distribution range of many morphologically defined coral reef invertebrate species and the presumed dispersal-enhancing qualities of ocean currents. However, knowledge about the processes that lead to population divergence and speciation is often lacking despite being essential for the understanding, conservation, and management of marine biodiversity. Sponges, a highly diverse, ecologically and economically important reef-invertebrate taxon, exhibit spatial trends in the Indo-West Pacific that are not universally reflected in other marine phyla. So far, however, processes generating those unexpected patterns are not understood. Results We unraveled the phylogeographic structure of the widespread Indo-Pacific coral reef sponge Leucetta chagosensis across its known geographic range using two nuclear markers: the rDNA internal transcribed spacers (ITS 1&2) and a fragment of the 28S gene, as well as the second intron of the ATP synthetase beta subunit-gene (ATPSb-iII). This enabled the detection of several deeply divergent clades congruent over both loci, one containing specimens from the Indian Ocean (Red Sea and Maldives), another one from the Philippines, and two other large and substructured NW Pacific and SW Pacific clades with an area of overlap in the Great Barrier Reef/Coral Sea. Reciprocally monophyletic populations were observed from the Philippines, Red Sea, Maldives, Japan, Samoa, and Polynesia, demonstrating long-standing isolation. Populations along the South Equatorial Current in the south-western Pacific showed isolation-by-distance effects. Overall, the results pointed towards stepping-stone dispersal with some putative long-distance exchange, consistent with expectations from low dispersal capabilities. Conclusion We argue that both founder and vicariance events

  12. Genetic divergence of sugarcane varieties collected in the region of Lavras, Minas Gerais, Brazil.

    PubMed

    Cesar, L E V; Bruzi, A T; Nunes, J A R; Andrade, L A de B; Lopes, M F; Sales, L R; Mourão, M M

    2015-01-01

    Genetic diversity among local accessions and varieties subsidize plant breeding programs, allowing the utilization of existing variability in plants that have already adapted to local climate conditions. An alternative to studying genetic variability is the study of diversity. The aim of this research was to study genetic diversity among sugarcane accessions and varieties used for the production of craft-distilled cachaça (distilled sugarcane alcohol) in the region of Lavras, Minas Gerais, Brazil. Using a one-way design, an experiment was conducted in the municipality of Perdões, Minas Gerais to evaluate 35 regional accessions derived from germplasm collection expeditions and four varieties. Using morphological descriptions of 46 multicategorical sugarcane characteristics, dissimilarity and Tocher cluster method analyses were performed. Based on the results, it was concluded that genetic diversity exists among the accessions evaluated for the target traits. PMID:26535718

  13. [Genetic divergence and allozymic variability in mice of the genus Apodemus s. lato (Muridae, Rodentia)].

    PubMed

    Mezhzherin, S V; Zykov, A E

    1991-01-01

    Genetic variability of 36 presumed loci was examined in 5 species of subgenus Sylvaemus (sylvaticus, flavicollis, microps, falzfeini, ponticus) and in 3 species of the subgenus Apodemus s. str. (agrarius, peninsulae, speciosus) from different geographic regions of the USSR. Taxonomic status and species affiliation of A. s. chorassanicus from Turkmenia and A. s. tscherga from Altay have been established: the former is identical to A. falzfeini from the Ukraine, the latter is identical to A. microps. Genus Apodemus s. lato can be divided into two different geni (Apodemus s. str. and Sylvaemus) on the basis of genetic distance between them (D = 1,518). Genetic differentiation within subgenus Sylvaemus is 0.311, within subgenus Apodemus s. str. is 1,011. The observed differences in genetic heterozygosity between species (H varies from 0 to 0.067) are, probably, due to the historical events which take place in the formation of areas of these species. PMID:1796503

  14. Global expression profiling reveals genetic programs underlying the developmental divergence between mouse and human embryogenesis

    PubMed Central

    2013-01-01

    Background Mouse has served as an excellent model for studying human development and diseases due to its similarity to human. Advances in transgenic and knockout studies in mouse have dramatically strengthened the use of this model and significantly improved our understanding of gene function during development in the past few decades. More recently, global gene expression analyses have revealed novel features in early embryogenesis up to gastrulation stages and have indeed provided molecular evidence supporting the conservation in early development in human and mouse. On the other hand, little information is known about the gene regulatory networks governing the subsequent organogenesis. Importantly, mouse and human development diverges during organogenesis. For instance, the mouse embryo is born around the end of organogenesis while in human the subsequent fetal period of ongoing growth and maturation of most organs spans more than 2/3 of human embryogenesis. While two recent studies reported the gene expression profiles during human organogenesis, no global gene expression analysis had been done for mouse organogenesis. Results Here we report a detailed analysis of the global gene expression profiles from egg to the end of organogenesis in mouse. Our studies have revealed distinct temporal regulation patterns for genes belonging to different functional (Gene Ontology or GO) categories that support their roles during organogenesis. More importantly, comparative analyses identify both conserved and divergent gene regulation programs in mouse and human organogenesis, with the latter likely responsible for the developmental divergence between the two species, and further suggest a novel developmental strategy during vertebrate evolution. Conclusions We have reported here the first genome-wide gene expression analysis of the entire mouse embryogenesis and compared the transcriptome atlas during mouse and human embryogenesis. Given our earlier observation that genes

  15. Enhanced biofilm formation and multi-host transmission evolve from divergent genetic backgrounds in Campylobacter jejuni.

    PubMed

    Pascoe, Ben; Méric, Guillaume; Murray, Susan; Yahara, Koji; Mageiros, Leonardos; Bowen, Ryan; Jones, Nathan H; Jeeves, Rose E; Lappin-Scott, Hilary M; Asakura, Hiroshi; Sheppard, Samuel K

    2015-11-01

    Multicellular biofilms are an ancient bacterial adaptation that offers a protective environment for survival in hostile habitats. In microaerophilic organisms such as Campylobacter, biofilms play a key role in transmission to humans as the bacteria are exposed to atmospheric oxygen concentrations when leaving the reservoir host gut. Genetic determinants of biofilm formation differ between species, but little is known about how strains of the same species achieve the biofilm phenotype with different genetic backgrounds. Our approach combines genome-wide association studies with traditional microbiology techniques to investigate the genetic basis of biofilm formation in 102 Campylobacter jejuni isolates. We quantified biofilm formation among the isolates and identified hotspots of genetic variation in homologous sequences that correspond to variation in biofilm phenotypes. Thirteen genes demonstrated a statistically robust association including those involved in adhesion, motility, glycosylation, capsule production and oxidative stress. The genes associated with biofilm formation were different in the host generalist ST-21 and ST-45 clonal complexes, which are frequently isolated from multiple host species and clinical samples. This suggests the evolution of enhanced biofilm from different genetic backgrounds and a possible role in colonization of multiple hosts and transmission to humans. PMID:26373338

  16. Genetic divergence along the speciation continuum: the transition from host race to species in rhagoletis (Diptera: tephritidae).

    PubMed

    Powell, Thomas H Q; Hood, Glen R; Murphy, Mason O; Heilveil, Jeffrey S; Berlocher, Stewart H; Nosil, Patrik; Feder, Jeffrey L

    2013-09-01

    Studies of related populations varying in their degrees of reproductive isolation can provide insights into speciation. Here, the transition from partially isolated host races to more fully separated sibling species is investigated by comparing patterns of genetic differentiation between recently evolved (∼150 generations) apple and ancestral hawthorn-infesting populations of Rhagoletis pomonella to their sister taxon, the undescribed flowering dogwood fly attacking Cornus florida. No fixed or diagnostic private alleles differentiating the three populations were found at any of 23 microsatellites and 10 allozymes scored. Nevertheless, allele frequency differences were sufficient across loci for flowering dogwood fly populations from multiple localities to form a diagnosable genotypic cluster distinct from apple and hawthorn flies, indicative of species status. Genome-wide patterns of differentiation were correlated between the host races and species pair comparisons along the majority of chromosomes, suggesting that similar disruptive selection pressures affect most loci. However, differentiation was more pronounced, with some additional regions showing elevated divergence, for the species pair comparison. Our results imply that Rhagoletis sibling species such as the flowering dogwood fly represent host races writ large, with the transition to species status primarily resulting from increased divergence of the same regions separating apple and hawthorn flies. PMID:24033167

  17. Genetic Influences on Alcohol Use Behaviors Have Diverging Developmental Trajectories: A Prospective Study among Male and Female Twins

    PubMed Central

    Meyers, Jacquelyn L.; Salvatore, Jessica E.; Vuoksimaa, Eero; Korhonen, Tellervo; Pulkkinen, Lea; Rose, Richard J.; Kaprio, Jaakko; Dick, Danielle M.

    2014-01-01

    intoxication frequency were greater among 14 and 17 year old females with twin brothers. Conclusions We found divergent developmental trajectories for alcohol-specific and externalizing behavior-related genetic influences on alcohol use behaviors; in early adolescence, genetic influences on alcohol use behaviors are largely non-specific, and later in adolescence and young adulthood, alcohol specific genetic influences on alcohol use are more influential. Importantly, within these overall trajectories, several interesting sex differences emerged. We found that the relationship between genetic risk and problematic drinking across development is moderated by the individual’s sex and his/her co-twin’s sex. AUD-GR influenced adolescent alcohol outcomes in females more than in males and by age 22, EXT-GR influenced AD criteria more for males than females. In addition, the association between genetic risk and intoxication frequency was greater among 14 and 17 year old females with male co-twins. PMID:25421521

  18. The Complete Sequence of the Acacia ligulata Chloroplast Genome Reveals a Highly Divergent clpP1 Gene

    PubMed Central

    Williams, Anna V.; Boykin, Laura M.; Howell, Katharine A.; Nevill, Paul G.; Small, Ian

    2015-01-01

    Legumes are a highly diverse angiosperm family that include many agriculturally important species. To date, 21 complete chloroplast genomes have been sequenced from legume crops confined to the Papilionoideae subfamily. Here we report the first chloroplast genome from the Mimosoideae, Acacia ligulata, and compare it to the previously sequenced legume genomes. The A. ligulata chloroplast genome is 158,724 bp in size, comprising inverted repeats of 25,925 bp and single-copy regions of 88,576 bp and 18,298 bp. Acacia ligulata lacks the inversion present in many of the Papilionoideae, but is not otherwise significantly different in terms of gene and repeat content. The key feature is its highly divergent clpP1 gene, normally considered essential in chloroplast genomes. In A. ligulata, although transcribed and spliced, it probably encodes a catalytically inactive protein. This study provides a significant resource for further genetic research into Acacia and the Mimosoideae. The divergent clpP1 gene suggests that Acacia will provide an interesting source of information on the evolution and functional diversity of the chloroplast Clp protease complex. PMID:25955637

  19. Candidate loci reveal genetic differentiation between temporally divergent migratory runs of Chinook salmon (Oncorhynchus tshawytscha)

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Local adaptation is a dynamic process driven by selection that can vary both in space and time. One important temporal adaptation for migratory animals is the timing of migration and breeding within a reproductive season. Anadromous salmon are excellent subjects for studying the genetic basis of t...

  20. Gene flow from an adaptively divergent source causes rescue through genetic and demographic factors in two wild populations of Trinidadian guppies.

    PubMed

    Fitzpatrick, Sarah W; Gerberich, Jill C; Angeloni, Lisa M; Bailey, Larissa L; Broder, Emily D; Torres-Dowdall, Julian; Handelsman, Corey A; López-Sepulcre, Andrés; Reznick, David N; Ghalambor, Cameron K; Chris Funk, W

    2016-08-01

    Genetic rescue, an increase in population growth owing to the infusion of new alleles, can aid the persistence of small populations. Its use as a management tool is limited by a lack of empirical data geared toward predicting effects of gene flow on local adaptation and demography. Experimental translocations provide an ideal opportunity to monitor the demographic consequences of gene flow. In this study we take advantage of two experimental introductions of Trinidadian guppies to test the effects of gene flow on downstream native populations. We individually marked guppies from the native populations to monitor population dynamics for 3 months before and 26 months after gene flow. We genotyped all individuals caught during the first 17 months at microsatellite loci to classify individuals by their genetic ancestry: native, immigrant, F1 hybrid, F2 hybrid, or backcross. Our study documents a combination of demographic and genetic rescue over multiple generations under fully natural conditions. Within both recipient populations, we found substantial and long-term increases in population size that could be attributed to high survival and recruitment caused by immigration and gene flow from the introduction sites. Our results suggest that low levels of gene flow, even from a divergent ecotype, can provide a substantial demographic boost to small populations, which may allow them to withstand environmental stochasticity. PMID:27468306

  1. Geographic isolation drives divergence of uncorrelated genetic and song variation in the Ruddy-capped Nightingale-Thrush (Catharus frantzii; Aves: Turdidae).

    PubMed

    Ortiz-Ramírez, Marco F; Andersen, Michael J; Zaldívar-Riverón, Alejandro; Ornelas, Juan Francisco; Navarro-Sigüenza, Adolfo G

    2016-01-01

    Montane barriers influence the evolutionary history of lineages by promoting isolation of populations. The effects of these historical processes are evident in patterns of differentiation among extant populations, which are often expressed as genetic and behavioral variation between populations. We investigated the effects of geographic barriers on the evolutionary history of a Mesoamerican bird by studying patterns of genetic and vocal variation in the Ruddy-capped Nightingale-Thrush (Turdidae: Catharus frantzii), a non-migratory oscine bird that inhabits montane forests from central Mexico to Panama. We reconstructed the phylogeographic history and estimated divergence times between populations using Bayesian and maximum likelihood methods. We found strong support for the existence of four mitochondrial lineages of C. frantzii corresponding to isolated mountain ranges: Sierra Madre Oriental; Sierra Madre del Sur; the highlands of Chiapas, Guatemala, and El Salvador; and the Talamanca Cordillera. Vocal features in C. frantzii were highly variable among the four observed clades, but vocal variation and genetic variation were uncorrelated. Song variation in C. frantzii suggests that sexual selection and cultural drift could be important factors driving song differentiation in C. frantzii. PMID:26302950

  2. Antigenic and genetic characterization of a divergent African virus, Ikoma lyssavirus

    PubMed Central

    Horton, Daniel L.; Banyard, Ashley C.; Marston, Denise A.; Wise, Emma; Selden, David; Nunez, Alejandro; Hicks, Daniel; Lembo, Tiziana; Cleaveland, Sarah; Peel, Alison J.; Kuzmin, Ivan V.; Rupprecht, Charles E.

    2014-01-01

    In 2009, a novel lyssavirus (subsequently named Ikoma lyssavirus, IKOV) was detected in the brain of an African civet (Civettictis civetta) with clinical rabies in the Serengeti National Park of Tanzania. The degree of nucleotide divergence between the genome of IKOV and those of other lyssaviruses predicted antigenic distinction from, and lack of protection provided by, available rabies vaccines. In addition, the index case was considered likely to be an incidental spillover event, and therefore the true reservoir of IKOV remained to be identified. The advent of sensitive molecular techniques has led to a rapid increase in the discovery of novel viruses. Detecting viral sequence alone, however, only allows for prediction of phenotypic characteristics and not their measurement. In the present study we describe the in vitro and in vivo characterization of IKOV, demonstrating that it is (1) pathogenic by peripheral inoculation in an animal model, (2) antigenically distinct from current rabies vaccine strains and (3) poorly neutralized by sera from humans and animals immunized against rabies. In a laboratory mouse model, no protection was elicited by a licensed rabies vaccine. We also investigated the role of bats as reservoirs of IKOV. We found no evidence for infection among 483 individuals of at least 13 bat species sampled across sites in the Serengeti and Southern Kenya. PMID:24496827

  3. Antigenic and genetic characterization of a divergent African virus, Ikoma lyssavirus.

    PubMed

    Horton, Daniel L; Banyard, Ashley C; Marston, Denise A; Wise, Emma; Selden, David; Nunez, Alejandro; Hicks, Daniel; Lembo, Tiziana; Cleaveland, Sarah; Peel, Alison J; Kuzmin, Ivan V; Rupprecht, Charles E; Fooks, Anthony R

    2014-05-01

    In 2009, a novel lyssavirus (subsequently named Ikoma lyssavirus, IKOV) was detected in the brain of an African civet (Civettictis civetta) with clinical rabies in the Serengeti National Park of Tanzania. The degree of nucleotide divergence between the genome of IKOV and those of other lyssaviruses predicted antigenic distinction from, and lack of protection provided by, available rabies vaccines. In addition, the index case was considered likely to be an incidental spillover event, and therefore the true reservoir of IKOV remained to be identified. The advent of sensitive molecular techniques has led to a rapid increase in the discovery of novel viruses. Detecting viral sequence alone, however, only allows for prediction of phenotypic characteristics and not their measurement. In the present study we describe the in vitro and in vivo characterization of IKOV, demonstrating that it is (1) pathogenic by peripheral inoculation in an animal model, (2) antigenically distinct from current rabies vaccine strains and (3) poorly neutralized by sera from humans and animals immunized against rabies. In a laboratory mouse model, no protection was elicited by a licensed rabies vaccine. We also investigated the role of bats as reservoirs of IKOV. We found no evidence for infection among 483 individuals of at least 13 bat species sampled across sites in the Serengeti and Southern Kenya. PMID:24496827

  4. Functional Divergence of Hsp90 Genetic Interactions in Biofilm and Planktonic Cellular States

    PubMed Central

    Cowen, Leah E.

    2015-01-01

    Candida albicans is among the most prevalent opportunistic fungal pathogens. Its capacity to cause life-threatening bloodstream infections is associated with the ability to form biofilms, which are intrinsically drug resistant reservoirs for dispersal. A key regulator of biofilm drug resistance and dispersal is the molecular chaperone Hsp90, which stabilizes many signal transducers. We previously identified 226 C. albicans Hsp90 genetic interactors under planktonic conditions, of which 56 are involved in transcriptional regulation. Six of these transcriptional regulators have previously been implicated in biofilm formation, suggesting that Hsp90 genetic interactions identified in planktonic conditions may have functional significance in biofilms. Here, we explored the relationship between Hsp90 and five of these transcription factor genetic interactors: BCR1, MIG1, TEC1, TUP1, and UPC2. We deleted each transcription factor gene in an Hsp90 conditional expression strain, and assessed biofilm formation and morphogenesis. Strikingly, depletion of Hsp90 conferred no additional biofilm defect in the mutants. An interaction was observed in which deletion of BCR1 enhanced filamentation upon reduction of Hsp90 levels. Further, although Hsp90 modulates expression of TEC1, TUP1, and UPC2 in planktonic conditions, it has no impact in biofilms. Lastly, we probed for physical interactions between Hsp90 and Tup1, whose WD40 domain suggests that it might interact with Hsp90 directly. Hsp90 and Tup1 formed a stable complex, independent of temperature or developmental state. Our results illuminate a physical interaction between Hsp90 and a key transcriptional regulator of filamentation and biofilm formation, and suggest that Hsp90 has distinct genetic interactions in planktonic and biofilm cellular states. PMID:26367740

  5. Allopatric speciation in ticks: genetic and reproductive divergence between geographic strains of Rhipicephalus (Boophilus) microplus

    PubMed Central

    Labruna, Marcelo B; Naranjo, Victoria; Mangold, Atilio J; Thompson, Carolina; Estrada-Peña, Agustín; Guglielmone, Alberto A; Jongejan, Frans; de la Fuente, José

    2009-01-01

    Background The cattle tick, Rhipicephalus (Boophilus) microplus, economically impact cattle industry in tropical and subtropical regions of the world. The morphological and genetic differences among R. microplus strains have been documented in the literature, suggesting that biogeographical and ecological separation may have resulted in boophilid ticks from America/Africa and those from Australia being different species. To test the hypothesis of the presence of different boophilid species, herein we performed a series of experiments to characterize the reproductive performance of crosses between R. microplus from Australia, Africa and America and the genetic diversity of strains from Australia, Asia, Africa and America. Results The results showed that the crosses between Australian and Argentinean or Mozambican strains of boophilid ticks are infertile while crosses between Argentinean and Mozambican strains are fertile. These results showed that tick strains from Africa (Mozambique) and America (Argentina) are the same species, while ticks from Australia may actually represent a separate species. The genetic analysis of mitochondrial 12S and 16S rDNA and microsatellite loci were not conclusive when taken separately, but provided evidence that Australian tick strains were genetically different from Asian, African and American strains. Conclusion The results reported herein support the hypothesis that at least two different species share the name R. microplus. These species could be redefined as R. microplus (Canestrini, 1887) (for American and African strains) and probably the old R. australis Fuller, 1899 (for Australian strains), which needs to be redescribed. However, experiments with a larger number of tick strains from different geographic locations are needed to corroborate these results. PMID:19243585

  6. Is isolation by adaptation driving genetic divergence among proximate Dolly Varden char populations?

    PubMed

    Bond, Morgan H; Crane, Penelope A; Larson, Wesley A; Quinn, Tom P

    2014-06-01

    Numerous studies of population genetics in salmonids and other anadromous fishes have revealed that population structure is generally organized into geographic hierarchies (isolation by distance), but significant structure can exist in proximate populations due to varying selective pressures (isolation by adaptation). In Chignik Lakes, Alaska, anadromous Dolly Varden char (Salvelinus malma) spawn in nearly all accessible streams throughout the watershed, including those draining directly to an estuary, Chignik Lagoon, into larger rivers, and into lakes. Collections of Dolly Varden fry from 13 streams throughout the system revealed low levels of population structure among streams emptying into freshwater. However, much stronger genetic differentiation was detected between streams emptying into freshwater and streams flowing directly into estuarine environments. This fine-scale reproductive isolation without any physical barriers to migration is likely driven by differences in selection pressures across freshwater and estuarine environments. Estuary tributaries had fewer larger, older juveniles, suggesting an alternative life history of smolting and migration to the marine environment at a much smaller size than occurs in the other populations. Therefore, genetic data were consistent with a scenario where isolation by adaptation occurs between populations of Dolly Varden in the study system, and ecological data suggest that this isolation may partially be a result of a novel Dolly Varden life history of seawater tolerance at a smaller size than previously recognized. PMID:25360283

  7. Insight Into Genomic Changes Accompanying Divergence: Genetic Linkage Maps and Synteny of Lucania goodei and L. parva Reveal a Robertsonian Fusion

    PubMed Central

    Berdan, Emma L.; Kozak, Genevieve M.; Ming, Ray; Rayburn, A. Lane; Kiehart, Ryan; Fuller, Rebecca C.

    2014-01-01

    Linkage maps are important tools in evolutionary genetics and in studies of speciation. We performed a karyotyping study and constructed high-density linkage maps for two closely related killifish species, Lucania parva and L. goodei, that differ in salinity tolerance and still hybridize in their contact zone in Florida. Using SNPs from orthologous EST contigs, we compared synteny between the two species to determine how genomic architecture has shifted with divergence. Karyotyping revealed that L. goodei possesses 24 acrocentric chromosomes (1N) whereas L. parva possesses 23 chromosomes (1N), one of which is a large metacentric chromosome. Likewise, high-density single-nucleotide polymorphism−based linkage maps indicated 24 linkage groups for L. goodei and 23 linkage groups for L. parva. Synteny mapping revealed two linkage groups in L. goodei that were highly syntenic with the largest linkage group in L. parva. Together, this evidence points to the largest linkage group in L. parva being the result of a chromosomal fusion. We further compared synteny between Lucania with the genome of a more distant teleost relative medaka (Oryzias latipes) and found good conservation of synteny at the chromosomal level. Each Lucania LG had a single best match with each medaka chromosome. These results provide the groundwork for future studies on the genetic architecture of reproductive isolation and salinity tolerance in Lucania and other Fundulidae. PMID:24898707

  8. Genetic Diversity and Divergence in Populations of the Threatened Grassland Perennial Vincetoxicum atratum (Apocynaceae-Asclepiadoideae) in Japan.

    PubMed

    Yamashiro, Tadashi; Yamashiro, Asuka; Inoue, Masahito; Maki, Masayuki

    2016-09-01

    We examined the genetic diversity and structure in populations of the endangered grassland herb Vincetoxicum atratum using 11 polymorphic microsatellite loci. Although the populations were small and disconnected, our molecular data indicated that the species maintains relatively high levels of genetic diversity and connectivity among populations. Population clustering analyses detected 2 to 3 clusters and most of the populations of V. atratum comprised admixture of these genetic clusters. These admixtures likely formed during the process of colonizing habitats that had been disturbed by human activities. However, STRUCTURE clustering detected low-admixtures in populations occurring in rocky maritime sites, which may not be suitable for agriculture/rangeland activities. High genetic diversity and population connectivity suggested that loss of the remaining populations by grassland reduction might be an immediate threat for this species. Small grasslands populations managed by local farmers need appropriate conservation practices. Although our results showed genetic diversity and gene flow among populations of V. atratum were high, it is possible that this resulted from the historical continuous distribution of the species. To examine this hypothesis, further periodical monitoring of the genetic diversity and the genetic differentiation for the species is needed for a conservation action of the species. PMID:27271115

  9. Interaction of landscape and life history attributes on genetic diversity, neutral divergence and gene flow in a pristine community of salmonids.

    PubMed

    Gomez-Uchida, Daniel; Knight, Thomas W; Ruzzante, Daniel E

    2009-12-01

    Landscape genetics holds promise for the forecasting of spatial patterns of genetic diversity based on key environmental features. Yet, the degree to which inferences based on single species can be extended to whole communities is not fully understood. We used a pristine and spatially structured community of three landlocked salmonids (Salvelinus fontinalis, Salmo salar, and Salvelinus alpinus) from Gros Morne National Park (Newfoundland, Canada) to test several predictions on the interacting effects of landscape and life history variation on genetic diversity, neutral divergence, and gene flow (m, migration rate). Landscape factors consistently influenced multispecies genetic patterns: (i) waterfalls created strong dichotomies in genetic diversity and divergence between populations above and below them in all three salmonids; (ii) contemporary m decreased with waterway distance in all three species, while neutral genetic divergence (theta) increased with waterway distance, albeit in only two taxa; (iii) river flow generally produced downstream-biased m between populations when waterfalls separated these, but not otherwise. In contrast, we expected differential life history to result in a hierarchy of neutral divergence (S. salar > S. fontinalis > S. alpinus) based on disparities in dispersal abilities and population size from previous mark-recapture studies. Such hierarchy additionally matched varying degrees of spatial genetic structure among species revealed through individual-based analyses. We conclude that, whereas key landscape attributes hold power to predict multispecies genetic patterns in equivalent communities, they are likely to interact with species-specific life history attributes such as dispersal, demography, and ecology, which will in turn affect holistic conservation strategies. PMID:19878451

  10. COMT Genetic Reduction Produces Sexually Divergent Effects on Cortical Anatomy and Working Memory in Mice and Humans.

    PubMed

    Sannino, Sara; Gozzi, Alessandro; Cerasa, Antonio; Piras, Fabrizio; Scheggia, Diego; Managò, Francesca; Damiano, Mario; Galbusera, Alberto; Erickson, Lucy C; De Pietri Tonelli, Davide; Bifone, Angelo; Tsaftaris, Sotirios A; Caltagirone, Carlo; Weinberger, Daniel R; Spalletta, Gianfranco; Papaleo, Francesco

    2015-09-01

    Genetic variations in catechol-O-methyltransferase (COMT) that modulate cortical dopamine have been associated with pleiotropic behavioral effects in humans and mice. Recent data suggest that some of these effects may vary among sexes. However, the specific brain substrates underlying COMT sexual dimorphisms remain unknown. Here, we report that genetically driven reduction in COMT enzyme activity increased cortical thickness in the prefrontal cortex (PFC) and postero-parieto-temporal cortex of male, but not female adult mice and humans. Dichotomous changes in PFC cytoarchitecture were also observed: reduced COMT increased a measure of neuronal density in males, while reducing it in female mice. Consistent with the neuroanatomical findings, COMT-dependent sex-specific morphological brain changes were paralleled by divergent effects on PFC-dependent working memory in both mice and humans. These findings emphasize a specific sex-gene interaction that can modulate brain morphological substrates with influence on behavioral outcomes in healthy subjects and, potentially, in neuropsychiatric populations. PMID:24658585

  11. Investigation of genetic divergence and polymorphism of nuclear DNA in species and populations of domestic and wild sheep

    SciTech Connect

    Mel`nikova, M.N.; Grechko, V.V.; Mednikov, B.M.

    1995-08-01

    Genetic divergence in repetitive sequences of nuclear DNA of wild and domestic sheep was studied by general restriction endonuclease mapping (i.e., the taxonoprint method). The PCR RAPD method with one and two arbitrary primers was also used to analyze the nuclear DNA polymorphism in some other regions. The taxonoprint method, performed using six endonucleases, showed specificity and virtually complete similarity in the patterns of repetitive DNA sequences of two wild forms, argali and moufflon, and five domestic sheep breeds. Central Asian breeds, Kazakh fine-fleeced, karakuk, ghissar, and eadeelbay, and an English breed, Lincoln, were examined. The results confirm the opinion that wild and domestic sheep may be considered one polytypic species. The PCR-RAPD method, both with one and two arbitrary primers, revealed a closer similarity of all the sheep breeds examined when aragali, rather than with moufflon, was used. These results indicate that the domestication area of sheep was much more broader than was earlier presumed. Otherwise, hybridizations of domestic and wild forms could occasionally occur in the area of their coexistence. The amplification patterns of PCR-RAPD products are the most promising population genetic markers. 27 refs., 4 figs., 7 tabs.

  12. Genetically Divergent Types of the Wheat Leaf Fungus Puccinia triticina in Ethiopia, a Center of Tetraploid Wheat Diversity.

    PubMed

    Kolmer, J A; Acevedo, M A

    2016-04-01

    Collections of Puccinia triticina, the wheat leaf rust fungus, were obtained from tetraploid and hexaploid wheat in the central highlands of Ethiopia, and a smaller number from Kenya, from 2011 to 2013, in order to determine the genetic diversity of this wheat pathogen in a center of host diversity. Single-uredinial isolates were derived and tested for virulence phenotype to 20 lines of Thatcher wheat that differ for single leaf rust resistance genes and for molecular genotypes with 10 simple sequence repeat (SSR) primers. Nine virulence phenotypes were described among the 193 isolates tested for virulence. Phenotype BBBQJ, found only in Ethiopia, was predominantly collected from tetraploid wheat. Phenotype EEEEE, also found only in Ethiopia, was exclusively collected from tetraploid wheat and was avirulent to the susceptible hexaploid wheat 'Thatcher'. Phenotypes MBDSS and MCDSS, found in both Ethiopia and Kenya, were predominantly collected from common wheat. Phenotypes CCMSS, CCPSS, and CBMSS were found in Ethiopia from common wheat at low frequency. Phenotypes TCBSS and TCBSQ were found on durum wheat and common wheat in Kenya. Four groups of distinct SSR genotypes were described among the 48 isolates genotyped. Isolates with phenotypes BBBQJ and EEEEE were in two distinct SSR groups, and isolates with phenotypes MBDSS and MCDSS were in a third group. Isolates with CCMSS, CCPSS, CBMSS, TCBSS, and TCBSQ phenotypes were in a fourth SSR genotype group. The diverse host environment of Ethiopia has selected and maintained a genetically divergent population of P. triticina. PMID:26756826

  13. Shallow genetic and morphological divergence among seaperches in the South Pacific (family Scorpaenidae; genus Helicolenus).

    PubMed

    Smith, P J; Struthers, C D; Paulin, C D; McVeagh, S M; Daley, R K

    2009-04-01

    The phylogenetic relationships among populations of seaperch, Helicolenus spp., in the south-west Pacific were examined with mtDNA markers. Parts of the cytochrome b gene [459 base pair (bp)] and the control region (448 bp) were sequenced in 58 specimens from the south-west Pacific and four specimens of Helicolenus lengerichi from Chile. Only one clade was recognized in New Zealand coastal waters, despite a wide range of colour morphs. This clade also occurred in the mid Tasman Sea on the Norfolk Ridge and around Tasmania and Victoria. A second sympatric clade was identified around Tasmania and Victoria and to the west of New Zealand. A third allopatric clade was identified to the north of New Zealand and in deep water on the Chatham Rise and a fourth clade on the Foundation Seamounts and the Louisville Ridge. Helicolenus lengerichi from Chile formed a fifth clade. Assuming a molecular clock, the clades were estimated to have diverged c. 0.7-2.6 million years ago. Only two clades, around Tasmania and Victoria, were separated using morphology, colour (in live) and dorsal-fin soft ray counts and were confirmed as Helicolenus percoides and Helicolenus barathri. Two characters, orbit diameter and colour variation, previously used to identify two species in New Zealand waters were unreliable characters for species discrimination. Principle component analyses of 11 morphological measures from 67 individuals did not delineate the clades. A canonical discriminant analysis was able to separate four of the five clades, but mean discriminate probabilities were low (77.6%), except for the five Chilean specimens of H. lengerichi (100%). PMID:20735622

  14. Genetically divergent methicillin-resistant Staphylococcus aureus and sec-dependent mastitis of dairy goats in Taiwan

    PubMed Central

    2012-01-01

    Background Widespread in the environment, Staphylococcus spp. infect animals and humans as normal flora or pathogens. By extending our recent report of multi-drug resistant (MDR) S. aureus in dairy goats, this study investigated the staphylococcal infection and characterized the MDR-S. aureus and methicillin-resistant S. aureus (MRSA) isolates collected from goats in 2008 to elucidate the appearance of MRSA in goats and the mastitis associated staphylococcus enterotoxin (SE) types. A total of 555 samples were collected from six goat parts and three environmental sources among four dairy goat farms in southern Taiwan. Coagulase-positive and negative Staphylococcus spp. (CPS and CNS, respectively) were also identified. Furthermore, predominant SE genes of nine enterotoxin genes sea through sej along with antimicrobial resistance and genetic variations were determined. Results In total, 137 staphylococcal strains were identified and found predominantly in milk, and in the vagina, anus, and nasal cavity. The most prevalent species was S. lentus, followed by S. aureus, S. epidermidis, and S. xylosus. Enterotoxin genes were not identified in any CNS isolates, however sec and see were identified only in S. aureus associated with mastitis in goat. In compared to the isolates from 2006 to 2007, 27 S. aureus isolates from 2008 were found to be more resistant to ampicillin, cephalothin, oxacillin, oxytetracycline, penicillin G, and tetracycline. Eleven MRSA isolates were identified and belonged to SCCmec type III (nine isolates) as the major type and SCCmec type II (two isolates). These MRSA isolates revealed pulse-field gel electrophoresis (PFGE) pattern A (five isolates), C (one isolate), and D (one isolate) of human isolates. The other two isolates without pulsotypes belonged to ST59. Conclusion The prevalence and infection sites of CNS differed from those of CPS. Genetic analyses indicated that genetic divergence, possible zoonotic transfer of MRSA, and the involvement of

  15. Intrabreed Stratification Related to Divergent Selection Regimes in Purebred Dogs May Affect the Interpretation of Genetic Association Studies

    PubMed Central

    Chang, Melanie L.; Yokoyama, Jennifer S.; Branson, Nick; Dyer, Donna J.; Hitte, Christophe; Overall, Karen L.

    2009-01-01

    Until recently, canine genetic research has not focused on population structure within breeds, which may confound the results of case–control studies by introducing spurious correlations between phenotype and genotype that reflect population history. Intrabreed structure may exist when geographical origin or divergent selection regimes influence the choices of potential mates for breeding dogs. We present evidence for intrabreed stratification from a genome-wide marker survey in a sample of unrelated dogs. We genotyped 76 Border Collies, 49 Australian Shepherds, 17 German Shepherd Dogs, and 17 Portuguese Water Dogs for our primary analyses using Affymetrix Canine v2.0 single-nucleotide polymorphism (SNP) arrays. Subsets of autosomal markers were examined using clustering algorithms to facilitate assignment of individuals to populations and estimation of the number of populations represented in the sample. SNPs passing stringent quality control filters were employed for explicitly phylogenetic analyses reconstructing relationships between individuals using maximum parsimony and Bayesian methods. We used simulation studies to explore the possible effects of intrabreed stratification on genome-wide association studies. These analyses demonstrate significant stratification in at least one of our primary breeds of interest, the Border Collie. Demographic and pedigree data suggest that this population substructure may result from geographic isolation or divergent selection regimes practiced by breeders with different breeding program goals. Simulation studies indicate that such stratification could result in false discovery rates significant enough to confound genome-wide association analyses. Intrabreed stratification should be accounted for when designing and interpreting the results of case–control association studies using purebred dogs.

  16. Genetic characterization of a core collection of flax (Linum usitatissimum L.) suitable for association mapping studies and evidence of divergent selection between fiber and linseed types

    PubMed Central

    2013-01-01

    Background Flax is valued for its fiber, seed oil and nutraceuticals. Recently, the fiber industry has invested in the development of products made from linseed stems, making it a dual purpose crop. Simultaneous targeting of genomic regions controlling stem fiber and seed quality traits could enable the development of dual purpose cultivars. However, the genetic diversity, population structure and linkage disequilibrium (LD) patterns necessary for association mapping (AM) have not yet been assessed in flax because genomic resources have only recently been developed. We characterized 407 globally distributed flax accessions using 448 microsatellite markers. The data was analyzed to assess the suitability of this core collection for AM. Genomic scans to identify candidate genes selected during the divergent breeding process of fiber flax and linseed were conducted using the whole genome shotgun sequence of flax. Results Combined genetic structure analysis assigned all accessions to two major groups with six sub-groups. Population differentiation was weak between the major groups (FST = 0.094) and for most of the pairwise comparisons among sub-groups. The molecular coancestry analysis indicated weak relatedness (mean = 0.287) for most individual pairs. Abundant genetic diversity was observed in the total panel (5.32 alleles per locus), and some sub-groups showed a high proportion of private alleles. The average genome-wide LD (r2) was 0.036, with a relatively fast decay of 1.5 cM. Genomic scans between fiber flax and linseed identified candidate genes involved in cell-wall biogenesis/modification, xylem identity and fatty acid biosynthesis congruent with genes previously identified in flax and other plant species. Conclusions Based on the abundant genetic diversity, weak population structure and relatedness and relatively fast LD decay, we concluded that this core collection is suitable for AM studies targeting multiple agronomic and quality traits aiming at

  17. A conserved spiral structure for highly diverged phage tail assembly chaperones.

    PubMed

    Pell, Lisa G; Cumby, Nichole; Clark, Teresa E; Tuite, Ashleigh; Battaile, Kevin P; Edwards, Aled M; Chirgadze, Nickolay Y; Davidson, Alan R; Maxwell, Karen L

    2013-07-24

    Tail assembly chaperones (TACs) are a family of proteins likely required for the morphogenesis of all long-tailed phages. In this study, we determined the crystal structure of gp13, the TAC of phage HK97. This structure is similar to that of the TAC from the Lactococcus phage p2 and two unannotated structures of likely TACs encoded in prophage-derived regions of Bacillus subtilis and Bacillus stearothermophilus. Despite the high sequence divergence of these proteins, gp13 forms a ring structure with similar dimensions to the spirals observed in the crystal lattices of these other proteins. Remarkably, these similar quaternary structures are formed through very different interprotomer interactions. We present functional data supporting the biological relevance of these spiral structures and propose that spiral formation has been the primary requirement for these proteins during evolution. This study presents an unusual example of diverged protein sequences and oligomerization mechanisms in the presence of conserved quaternary structure. PMID:23542344

  18. Biological and molecular characterization of a highly divergent johnsongrass mosaic virus isolate from Pennisetum purpureum.

    PubMed

    Silva, Karina N; Melo, Fernando L; Orílio, Anelise F; Nagata, Tatsuya; Silva, Marilia S; Fernandes, Celso D; Fragoso, Rodrigo R; Dessaune, Suelen N; Resende, Renato O

    2016-07-01

    The complete genome sequence (9,865 nucleotides) of a highly divergent johnsongrass mosaic virus isolate (JGMV-CNPGL) was determined using Illumina sequencing. This isolate infected 10 genotypes of gramineous plants including maize. A comparative analysis of the complete genome showed 80 % nucleotide (nt) sequence identity (86 % amino acid (aa) sequence identity) to a johnsongrass mosaic virus isolate from Australia. The coat protein (CP) identity values, however, were lower than those for the whole genome (78 % and 80 % for nt and aa, respectively) and were close to the species demarcation values (77 % nt and 80 % aa). Unexpectedly, the amino-terminal portion of CP of JGMV-CNPGL showed only 38 % sequence identity to other JGMV isolates. The biological implications of this sequence divergence remain to be elucidated. PMID:27101070

  19. Genetic divergence of Chikungunya virus plaque variants from the Comoros Island (2005).

    PubMed

    Wasonga, Caroline; Inoue, Shingo; Rumberia, Cecilia; Michuki, George; Kimotho, James; Ongus, Juliette R; Sang, Rosemary; Musila, Lillian

    2015-12-01

    Chikungunya virus (CHIKV) from a human sample collected during the 2005 Chikungunya outbreak in the Comoros Island, showed distinct and reproducible large (L2) and small (S7) plaques which were characterized in this study. The parent strain and plaque variants were analysed by in vitro growth kinetics in different cell lines and their genetic similarity assessed by whole genome sequencing, comparative sequence alignment and phylogenetic analysis. In vitro growth kinetic assays showed similar growth patterns of both plaque variants in Vero cells but higher viral titres of S7 compared to L2 in C6/36 cells. Amino acids (AA) alignments of the CHIKV plaque variants and S27 African prototype strain, showed 30 AA changes in the non-structural proteins (nsP) and 22 AA changes in the structural proteins. Between L2 and S7, only two AAs differences were observed. A missense substitution (C642Y) of L2 in the nsP2, involving a conservative AA substitution and a nonsense substitution (R524X) of S7 in the nsP3, which has been shown to enhance O'nyong-nyong virus infectivity and dissemination in Anopheles mosquitoes. The phenotypic difference observed in plaque size could be attributed to one of these AA substitutions. Phylogenetic analysis showed that the parent strain and its variants clustered closely together with each other and with Indian Ocean CHIKV strains indicating circulation of isolates with close evolutionary relatedness in the same outbreak. These observations pave way for important functional studies to understand the significance of the identified genetic changes in virulence and viral transmission in mosquito and mammalian hosts. PMID:26347221

  20. Imprints from genetic drift and mutation imply relative divergence times across marine transition zones in a pan-European small pelagic fish (Sprattus sprattus)

    PubMed Central

    Limborg, M T; Hanel, R; Debes, P V; Ring, A K; André, C; Tsigenopoulos, C S; Bekkevold, D

    2012-01-01

    Geographic distributions of most temperate marine fishes are affected by postglacial recolonisation events, which have left complex genetic imprints on populations of marine species. This study investigated population structure and demographic history of European sprat (Sprattus sprattus L.) by combining inference from both mtDNA and microsatellite genetic markers throughout the species' distribution. We compared effects from genetic drift and mutation for both genetic markers in shaping genetic differentiation across four transition zones. Microsatellite markers revealed significant isolation by distance and a complex population structure across the species′ distribution (overall θST=0.038, P<0.01). Across transition zones markers indicated larger effects of genetic drift over mutations in the northern distribution of sprat contrasting a stronger relative impact of mutation in the species' southern distribution in the Mediterranean region. These results were interpreted to reflect more recent divergence times between northern populations in accordance with previous findings. This study demonstrates the usefulness of comparing inference from different markers and estimators of divergence for phylogeographic and population genetic studies in species with weak genetic structure, as is the case in many marine species. PMID:22549515

  1. Detecting and Characterizing the Highly Divergent Plastid Genome of the Nonphotosynthetic Parasitic Plant Hydnora visseri (Hydnoraceae)

    PubMed Central

    Naumann, Julia; Der, Joshua P.; Wafula, Eric K.; Jones, Samuel S.; Wagner, Sarah T.; Honaas, Loren A.; Ralph, Paula E.; Bolin, Jay F.; Maass, Erika; Neinhuis, Christoph; Wanke, Stefan; dePamphilis, Claude W.

    2016-01-01

    Plastid genomes of photosynthetic flowering plants are usually highly conserved in both structure and gene content. However, the plastomes of parasitic and mycoheterotrophic plants may be released from selective constraint due to the reduction or loss of photosynthetic ability. Here we present the greatly reduced and highly divergent, yet functional, plastome of the nonphotosynthetic holoparasite Hydnora visseri (Hydnoraceae, Piperales). The plastome is 27 kb in length, with 24 genes encoding ribosomal proteins, ribosomal RNAs, tRNAs, and a few nonbioenergetic genes, but no genes related to photosynthesis. The inverted repeat and the small single copy region are only approximately 1.5 kb, and intergenic regions have been drastically reduced. Despite extreme reduction, gene order and orientation are highly similar to the plastome of Piper cenocladum, a related photosynthetic plant in Piperales. Gene sequences in Hydnora are highly divergent and several complementary approaches using the highest possible sensitivity were required for identification and annotation of this plastome. Active transcription is detected for all of the protein-coding genes in the plastid genome, and one of two introns is appropriately spliced out of rps12 transcripts. The whole-genome shotgun read depth is 1,400× coverage for the plastome, whereas the mitochondrial genome is covered at 40× and the nuclear genome at 2×. Despite the extreme reduction of the genome and high sequence divergence, the presence of syntenic, long transcriptionally active open-reading frames with distant similarity to other plastid genomes and a high plastome stoichiometry relative to the mitochondrial and nuclear genomes suggests that the plastome remains functional in H. visseri. A four-stage model of gene reduction, including the potential for complete plastome loss, is proposed to account for the range of plastid genomes in nonphotosynthetic plants. PMID:26739167

  2. Convergence and divergence of genetic and modular networks between diabetes and breast cancer

    PubMed Central

    Zhang, Xiaoxu; Zhang, Yingying; Yu, Yanan; Liu, Jun; Yuan, Ye; Zhao, Yijun; Li, Haixia; Wang, Jie; Wang, Zhong

    2015-01-01

    Diabetes mellitus (DM) and breast cancer (BC) can simultaneously occur in the same patient populations, but the molecular relationship between them remains unknown. In this study, we constructed genetic networks and used modularized analysis approaches to investigate the multi-dimensional characteristics of two diseases and one disease subtype. A text search engine (Agilent Literature Search 2.71) and MCODE software were applied to validate potential subnetworks and to divide the modules, respectively. A total of 793 DM-related genes, 386 type 2 diabetes (T2DM) genes and 873 BC-related genes were identified from the Online Mendelian Inheritance in Man database. For DM and BC, a total of 99 overlapping genes, 9 modules, 29 biological processes and 7 pathways were identified. Meanwhile, for T2DM and BC, 56 overlapping genes, 5 modules, 20 biological processes and 12 pathways were identified. Based on the Gene Ontology functional enrichment analysis of the top 10 non-overlapping modules of the two diseases, 10 biological functions and 5 pathways overlapped between them. The glycosphingolipid and lysosome pathways verified molecular mechanisms of cell death related to both DM and BC. We also identified new biological functions of dopamine receptors and four signalling pathways (Parkinson's disease, Alzheimer's disease, Huntington's disease and long-term depression) related to both diseases; these warrant further investigation. Our results illustrate the landscape of the novel molecular substructures between DM and BC, which may support a new model for complex disease classification and rational therapies for multiple diseases. PMID:25752479

  3. Divergent Evolution Paths of Different Genetic Families in the Penna Model

    NASA Astrophysics Data System (ADS)

    Sitarz, Mikołaj; Maksymowicz, Andrzej

    We present some simulations results of population growth and evolution, using the standard asexual Penna model, with individuals characterized by a string of bits representing a genome containing some possible mutations. After about 20 000 simulation steps, when only a few genetic families are still present from among rich variety of families at the beginning of the simulation game, strong peaks in mutation distribution functions are observed. This known effect is due to evolution rules with hereditary mechanism. The birth and death balance in the simulation game also leads to elimination of families specified by different genomes. The number of families G(t) versus time t follow the power law, G∝tn. Our results show the power coefficient exponent n is changing with time. Starting from about -1, smoothly achieves about -2 after hundreds of steps, and finally has semi-smooth transition to 0, when only one family exists in the environment. This is in contrast with constant n about -1 as found, for example, in Ref. 1. We suspect that this discrepancy may be due to two different time scales in simulations — initial stages follow the n ≈ -1 law, yet for large number of simulation steps we get n ≈ -2, provided the random initial population was sufficiently big to allow for still reliable statistical analysis. The n ≈ -1 evolution stage seems to be associated with the Verhulst mechanism of population elimination due to the limited environmental capacity — when the standard evolution rules were modified, we observed a plateau (n =0) in the power law in short time scale, again followed by n ≈ -2 law for longer times. The modified model uses birth rate controlled by the current population instead of the standard Verhulst death factor.

  4. Patterns of genetic diversity and candidate genes for ecological divergence in a homoploid hybrid sunflower, Helianthus anomalus

    PubMed Central

    SAPIR, YUVAL; MOODY, MICHAEL L.; BROUILLETTE, LARRY C.; DONOVAN, LISA A.; RIESEBERG, LOREN H.

    2008-01-01

    Natural hybridization accompanied by a shift in niche preference by hybrid genotypes can lead to hybrid speciation. Natural selection may cause the fixation of advantageous alleles in the ecologically diverged hybrids, and the loci experiencing selection should exhibit a reduction in allelic diversity relative to neutral loci. Here, we analyzed patterns of genetic diversity at 59 microsatellite loci associated with expressed sequence tags (ESTs) in a homoploid hybrid sunflower species, Helianthus anomalus. We used two indices, ln RV and ln RH, to compare variation and heterozygosity (respectively) at each locus between the hybrid species and its two parental species, H. annuus and H. petiolaris. Mean values of ln RV and ln RH were significantly lower than zero, which implies that H. anomalus experienced a population bottleneck during its recent evolutionary history. After correcting for the apparent bottleneck, we found six loci with a significant reduction in variation or with heterozygosity in the hybrid species, compared to one or both of the parental species. These loci should be viewed as a ranked list of candidate loci, pending further sequencing and functional analyses. Sequence data were generated for two of the candidate loci, but population genetics tests failed to detect deviations from neutral evolution at either locus. Nonetheless, a greater than eight-fold excess of nonsynonymous substitutions was found near a putative N-myristoylation motif at the second locus (HT998), and likelihood-based models indicated that the protein has been under selection in H. anomalus in the past and, perhaps, in one or both parental species. Finally, our data suggest that selective sweeps may have united populations of H. anomalus isolated by a mountain range, indicating that even low gene-flow species may be held together by the spread of advantageous alleles. PMID:17944850

  5. Muscle specific differences in the regulation of myogenic differentiation in chickens genetically selected for divergent growth rates

    PubMed Central

    Al-Musawi, Sara L.; Lock, Francesca; Simbi, Biggy H.; Bayol, Stéphanie A.M.; Stickland, Neil C.

    2011-01-01

    With the human population predicted to reach 9 billion by 2050, increasing food supplies while maintaining adequate standards of animal welfare has become a global priority. In the poultry industry, broilers are genetically selected for greater pectoral but not leg muscularity yield leading to leg disorders and thereby welfare issues. It is known that the pectoralis major of broilers contains more muscle fibres of larger diameters than egg-layers but little is known about the leg gastrocnemius muscle cellular characteristics. As muscle fibre numbers are set by hatch, the molecular regulation of myogenesis was investigated in pectoral (selected) and gastrocnemius (unselected) muscles of chick embryos to help explain diverging post-hatch phenotypes. Results showed that broilers were more active from embryonic day (ED) 8 and heavier from ED12 to 18 than layers. The pectoral muscle of broilers exhibited increased myoblast proliferation on ED15 (raised myonuclei, MyoD and PCNA) followed by increased differentiation from ED16 (raised myogenin, IGF-I) leading to increased muscle fibre hyperplasia and mass by ED18 compared to layers. In the gastrocnemius muscle of broilers, cell proliferation was also raised up to ED15 accompanied by increased PCNA, MyoD and IGF-I mRNAs. However, from ED16, myogenin and IGF-I mRNAs were similar to that of layers and PCNA was reduced leading to similar fibre area, nuclei numbers and muscle mass at ED18. We conclude that genetic selection for enhanced post-hatch pectoral muscle growth has altered the temporal expression of IGF-I and thereby myogenin transcription affecting cellular characteristics and mass by hatch in a muscle specific manner. These observations should help develop intervention strategies aimed at improving leg muscle strength and thereby animal welfare to meet growing consumer demand. PMID:21723031

  6. Multi-locus DNA sequencing of Toxoplasma gondii isolated from Brazilian pigs identifies genetically divergent strains

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Five Toxoplasma gondii isolates (TgPgBr1-5) were isolated from hearts and brains of pigs freshly purchased at the market of Campos dos Goytacazes, Northern Rio de Janeiro State, Brazil. Four of the five isolates were highly pathogenic in mice. Four genotypes were identified. Multi-locus DNA sequenci...

  7. Phylogenetic relationships, genetic divergence, historical biogeography and conservation of an endangered gecko, Goniurosaurus kuroiwae (Squamata: Eublepharidae), from the Central Ryukyus, Japan.

    PubMed

    Honda, Masanao; Kurita, Takaki; Toda, Mamoru; Ota, Hidetoshi

    2014-05-01

    The Kuroiwa's eyelid gecko Goniurosaurus kuroiwae is an endangered species in a state of relict endemism in the Central Ryukyus, Japan, and is divided into five subspecies. We analyzed variations in sequence data for approximately 1900 base positions of mitochondrial 12S and 16S rRNA, and cytochrome b genes from samples representing all recognized subspecies of G. kuroiwae together with those from congeneric species in order to test the relevant previous phylogenetic hypotheses and discuss biogeographical implications in the degree and pattern of genetic divergence within G. kuroiwae. Our results, while confirming a previous molecular phylogenetic hypothesis proposed on the basis of much smaller data set, negate the relationships hypothesized on morphological grounds by explicitly supporting: 1) the primary dichotomy, with substantial genetic divergence, between G. k. splendens from the Amami Island Group and the remaining subspecies all from the Okinawa Island Group; and 2) the presence of at least six independent lineages within the latter, indicating non-monophyly for two of the subspecies, G. k. kuroiwae and G. k. orientalis, in the current taxonomic definitions. The marked genetic divergence between populations of the two island groups seems to have initiated in the middle Miocene, i.e., prior to formation of straits that have consistently been separating these two island groups since the early Pleistocene. All populations of G. kuroiwae are regarded as endangered from the viewpoint of conservation genetics. PMID:24832904

  8. Multi-locus DNA sequencing of Toxoplasma gondii isolated from Brazilian pigs identifies genetically divergent strains

    PubMed Central

    Frazão-Teixeira, E.; Sundar, N.; Dubey, J. P.; Grigg, M. E.; de Oliveira, F. C. R.

    2010-01-01

    Five Toxoplasma gondii isolates (TgPgBr1–5) were isolated from hearts and brains of pigs freshly purchased at the market of Campos dos Goytacazes, Northern Rio de Janeiro State, Brazil. Four of the five isolates were highly pathogenic in mice. Four genotypes were identified. Multi-locus PCR-DNA sequencing showed that each strain possessed a unique combination of archetypal and novel alleles not previously described in South America. The data suggest that different strains circulate in pigs destined for human consumption from those previously isolated from cats and chickens in Brazil. Further, multi-locus PCR-RFLP analyses failed to accurately genotype the Brazilian isolates due to the high presence of atypical alleles. This is the first report of multi-locus DNA sequencing of T. gondii isolates in pigs from Brazil. PMID:21051148

  9. The Genetic Architecture of Adaptations to High Altitude in Ethiopia

    PubMed Central

    Alkorta-Aranburu, Gorka; Beall, Cynthia M.; Witonsky, David B.; Gebremedhin, Amha; Pritchard, Jonathan K.; Di Rienzo, Anna

    2012-01-01

    Although hypoxia is a major stress on physiological processes, several human populations have survived for millennia at high altitudes, suggesting that they have adapted to hypoxic conditions. This hypothesis was recently corroborated by studies of Tibetan highlanders, which showed that polymorphisms in candidate genes show signatures of natural selection as well as well-replicated association signals for variation in hemoglobin levels. We extended genomic analysis to two Ethiopian ethnic groups: Amhara and Oromo. For each ethnic group, we sampled low and high altitude residents, thus allowing genetic and phenotypic comparisons across altitudes and across ethnic groups. Genome-wide SNP genotype data were collected in these samples by using Illumina arrays. We find that variants associated with hemoglobin variation among Tibetans or other variants at the same loci do not influence the trait in Ethiopians. However, in the Amhara, SNP rs10803083 is associated with hemoglobin levels at genome-wide levels of significance. No significant genotype association was observed for oxygen saturation levels in either ethnic group. Approaches based on allele frequency divergence did not detect outliers in candidate hypoxia genes, but the most differentiated variants between high- and lowlanders have a clear role in pathogen defense. Interestingly, a significant excess of allele frequency divergence was consistently detected for genes involved in cell cycle control and DNA damage and repair, thus pointing to new pathways for high altitude adaptations. Finally, a comparison of CpG methylation levels between high- and lowlanders found several significant signals at individual genes in the Oromo. PMID:23236293

  10. Population genetic structure of Bellamya aeruginosa (Mollusca: Gastropoda: Viviparidae) in China: weak divergence across large geographic distances.

    PubMed

    Gu, Qian H; Husemann, Martin; Ding, Baoqing; Luo, Zhi; Xiong, Bang X

    2015-11-01

    Bellamya aeruginosa is a widely distributed Chinese freshwater snail that is heavily harvested, and its natural habitats are under severe threat due to fragmentation and loss. We were interested whether the large geographic distances between populations and habitat fragmentation have led to population differentiation and reduced genetic diversity in the species. To estimate the genetic diversity and population structure of B. aeruginosa, 277 individuals from 12 populations throughout its distribution range across China were sampled: two populations were sampled from the Yellow River system, eight populations from the Yangtze River system, and two populations from isolated plateau lakes. We used seven microsatellite loci and mitochondrial cytochrome oxidase I sequences to estimate population genetic parameters and test for demographic fluctuations. Our results showed that (1) the genetic diversity of B. aeruginosa was high for both markers in most of the studied populations and effective population sizes appear to be large, (2) only very low and mostly nonsignificant levels of genetic differentiation existed among the 12 populations, gene flow was generally high, and (3) relatively weak geographic structure was detected despite large geographic distances between populations. Further, no isolation by linear or stream distance was found among populations within the Yangtze River system and no signs of population bottlenecks were detected. Gene flow occurred even between far distant populations, possibly as a result of passive dispersal during flooding events, zoochoric dispersal, and/or anthropogenic translocations explaining the lack of stronger differentiation across large geographic distances. The high genetic diversity of B. aeruginosa and the weak population differentiation are likely the results of strong gene flow facilitated by passive dispersal and large population sizes suggesting that the species currently is not of conservation concern. PMID:26640670

  11. DNA Barcode Detects High Genetic Structure within Neotropical Bird Species

    PubMed Central

    Tavares, Erika Sendra; Gonçalves, Priscila; Miyaki, Cristina Yumi; Baker, Allan J.

    2011-01-01

    Background Towards lower latitudes the number of recognized species is not only higher, but also phylogeographic subdivision within species is more pronounced. Moreover, new genetically isolated populations are often described in recent phylogenies of Neotropical birds suggesting that the number of species in the region is underestimated. Previous COI barcoding of Argentinean bird species showed more complex patterns of regional divergence in the Neotropical than in the North American avifauna. Methods and Findings Here we analyzed 1,431 samples from 561 different species to extend the Neotropical bird barcode survey to lower latitudes, and detected even higher geographic structure within species than reported previously. About 93% (520) of the species were identified correctly from their DNA barcodes. The remaining 41 species were not monophyletic in their COI sequences because they shared barcode sequences with closely related species (N = 21) or contained very divergent clusters suggestive of putative new species embedded within the gene tree (N = 20). Deep intraspecific divergences overlapping with among-species differences were detected in 48 species, often with samples from large geographic areas and several including multiple subspecies. This strong population genetic structure often coincided with breaks between different ecoregions or areas of endemism. Conclusions The taxonomic uncertainty associated with the high incidence of non-monophyletic species and discovery of putative species obscures studies of historical patterns of species diversification in the Neotropical region. We showed that COI barcodes are a valuable tool to indicate which taxa would benefit from more extensive taxonomic revisions with multilocus approaches. Moreover, our results support hypotheses that the megadiversity of birds in the region is associated with multiple geographic processes starting well before the Quaternary and extending to more recent geological periods

  12. High-performance nonequilibrium-plasma magnetohydrodynamic electrical power generator using slightly divergent channel configuration: II. Experiment

    NASA Astrophysics Data System (ADS)

    Murakami, Tomoyuki; Okuno, Yoshihiro

    2008-06-01

    We describe experiments carried out to evaluate a newly developed high-performance nonequilibrium-plasma magnetohydrodynamic (MHD) electrical power generator equipped with a slightly divergent supersonic channel. The slightly divergent generator and a similar-scale highly divergent generator are evaluated in shock-tube experiments. The effects of electrical conductivity control and magnetic flux density control on the generator operation are investigated, and Hall voltage-Hall current characteristics, plasma-fluid behaviour and plasma structures are described. The slightly divergent channel configuration and the application of high- and uniform-density magnetic flux overcome the disadvantages of the generator due to its compactness, and markedly improves its performance. The ratio of isentropic efficiency to enthalpy extraction ratio and the power output density are outstanding compared with previous MHD power generators. The experimental results are supported by the numerically simulated results. This paper is the second part of a duology.

  13. Evidence for deep regulatory similarities in early developmental programs across highly diverged insects.

    PubMed

    Kazemian, Majid; Suryamohan, Kushal; Chen, Jia-Yu; Zhang, Yinan; Samee, Md Abul Hassan; Halfon, Marc S; Sinha, Saurabh

    2014-09-01

    Many genes familiar from Drosophila development, such as the so-called gap, pair-rule, and segment polarity genes, play important roles in the development of other insects and in many cases appear to be deployed in a similar fashion, despite the fact that Drosophila-like "long germband" development is highly derived and confined to a subset of insect families. Whether or not these similarities extend to the regulatory level is unknown. Identification of regulatory regions beyond the well-studied Drosophila has been challenging as even within the Diptera (flies, including mosquitoes) regulatory sequences have diverged past the point of recognition by standard alignment methods. Here, we demonstrate that methods we previously developed for computational cis-regulatory module (CRM) discovery in Drosophila can be used effectively in highly diverged (250-350 Myr) insect species including Anopheles gambiae, Tribolium castaneum, Apis mellifera, and Nasonia vitripennis. In Drosophila, we have successfully used small sets of known CRMs as "training data" to guide the search for other CRMs with related function. We show here that although species-specific CRM training data do not exist, training sets from Drosophila can facilitate CRM discovery in diverged insects. We validate in vivo over a dozen new CRMs, roughly doubling the number of known CRMs in the four non-Drosophila species. Given the growing wealth of Drosophila CRM annotation, these results suggest that extensive regulatory sequence annotation will be possible in newly sequenced insects without recourse to costly and labor-intensive genome-scale experiments. We develop a new method, Regulus, which computes a probabilistic score of similarity based on binding site composition (despite the absence of nucleotide-level sequence alignment), and demonstrate similarity between functionally related CRMs from orthologous loci. Our work represents an important step toward being able to trace the evolutionary history of gene

  14. Evidence for Deep Regulatory Similarities in Early Developmental Programs across Highly Diverged Insects

    PubMed Central

    Zhang, Yinan; Samee, Md. Abul Hassan; Halfon, Marc S.; Sinha, Saurabh

    2014-01-01

    Many genes familiar from Drosophila development, such as the so-called gap, pair-rule, and segment polarity genes, play important roles in the development of other insects and in many cases appear to be deployed in a similar fashion, despite the fact that Drosophila-like “long germband” development is highly derived and confined to a subset of insect families. Whether or not these similarities extend to the regulatory level is unknown. Identification of regulatory regions beyond the well-studied Drosophila has been challenging as even within the Diptera (flies, including mosquitoes) regulatory sequences have diverged past the point of recognition by standard alignment methods. Here, we demonstrate that methods we previously developed for computational cis-regulatory module (CRM) discovery in Drosophila can be used effectively in highly diverged (250–350 Myr) insect species including Anopheles gambiae, Tribolium castaneum, Apis mellifera, and Nasonia vitripennis. In Drosophila, we have successfully used small sets of known CRMs as “training data” to guide the search for other CRMs with related function. We show here that although species-specific CRM training data do not exist, training sets from Drosophila can facilitate CRM discovery in diverged insects. We validate in vivo over a dozen new CRMs, roughly doubling the number of known CRMs in the four non-Drosophila species. Given the growing wealth of Drosophila CRM annotation, these results suggest that extensive regulatory sequence annotation will be possible in newly sequenced insects without recourse to costly and labor-intensive genome-scale experiments. We develop a new method, Regulus, which computes a probabilistic score of similarity based on binding site composition (despite the absence of nucleotide-level sequence alignment), and demonstrate similarity between functionally related CRMs from orthologous loci. Our work represents an important step toward being able to trace the evolutionary

  15. Assessing genetic divergence in interspecific hybrids of Aechmea gomosepala and A. recurvata var. recurvata using inflorescence characteristics and sequence-related amplified polymorphism markers.

    PubMed

    Zhang, F; Ge, Y Y; Wang, W Y; Shen, X L; Yu, X Y

    2012-01-01

    Conventional hybridization and selection techniques have aided the development of new ornamental crop cultivars. However, little information is available on the genetic divergence of bromeliad hybrids. In the present study, we investigated the genetic variability in interspecific hybrids of Aechmea gomosepala and A. recurvata var. recurvata using inflorescence characteristics and sequence-related amplified polymorphism (SRAP) markers. The morphological analysis showed that the putative hybrids were intermediate between both parental species with respect to inflorescence characteristics. The 16 SRAP primer combinations yield 265 bands, among which 154 (57.72%) were polymorphic. The genetic similarity was an average of 0.59 and ranged from 0.21 to 0.87, indicating moderate genetic divergence among the hybrids. The unweighted pair group method with arithmetic average (UPGMA)-based cluster analysis distinguished the hybrids from their parents with a genetic distance coefficient of 0.54. The cophenetic correlation was 0.93, indicating a good fit between the dendrogram and the original distance matrix. The two-dimensional plot from the principal coordinate analysis showed that the hybrids were intermediately dispersed between both parents, corresponding to the results of the UPGMA cluster and the morphological analysis. These results suggest that SRAP markers could help to identify breeders, characterize F(1) hybrids of bromeliads at an early stage, and expedite genetic improvement of bromeliad cultivars. PMID:23079994

  16. Genetic Structure and Demographic History Should Inform Conservation: Chinese Cobras Currently Treated as Homogenous Show Population Divergence

    PubMed Central

    Lin, Long-Hui; Qu, Yan-Fu; Li, Hong; Zhou, Kai-Ya; Ji, Xiang

    2012-01-01

    An understanding of population structure and genetic diversity is crucial for wildlife conservation and for determining the integrity of wildlife populations. The vulnerable Chinese cobra (Naja atra) has a distribution from the mouth of the Yangtze River down to northern Vietnam and Laos, within which several large mountain ranges and water bodies may influence population structure. We combined 12 microsatellite loci and 1117 bp of the mitochondrial cytochrome b gene to explore genetic structure and demographic history in this species, using 269 individuals from various localities in Mainland China and Vietnam. High levels of genetic variation were identified for both mtDNA and microsatellites. mtDNA data revealed two main (Vietnam + southern China + southwestern China; eastern + southeastern China) and one minor (comprising only two individuals from the westernmost site) clades. Microsatellite data divided the eastern + southeastern China clade further into two genetic clusters, which include individuals from the eastern and southeastern regions, respectively. The Luoxiao and Nanling Mountains may be important barriers affecting the diversification of lineages. In the haplotype network of cytchrome b, many haplotypes were represented within a “star” cluster and this and other tests suggest recent expansion. However, microsatellite analyses did not yield strong evidence for a recent bottleneck for any population or genetic cluster. The three main clusters identified here should be considered as independent management units for conservation purposes. The release of Chinese cobras into the wild should cease unless their origin can be determined, and this will avoid problems arising from unnatural homogenization. PMID:22558439

  17. Effects of inter and intraspecific diversity and genetic divergence of aquatic fungal communities on leaf litter decomposition-a microcosm experiment.

    PubMed

    Andrade, Ricardo; Pascoal, Cláudia; Cássio, Fernanda

    2016-07-01

    Freshwater fungi play a key role in plant litter decomposition and have been used to investigate the relationships between biodiversity and ecosystem functioning in streams. Although there is evidence of positive effects of biodiversity on ecosystem processes, particularly on biomass produced, some studies have shown that neutral or negative effects may occur. We manipulated the composition and the number of species and genotypes in aquatic fungal assemblages creating different levels of genetic divergence to assess effects of fungal diversity on biomass produced and leaf decomposition. Generally, diversity effects on fungal biomass produced were positive, suggesting complementarity between species, but in assemblages with more species positive diversity effects were reduced. Genotype diversity and genetic divergence had net positive effects on leaf mass loss, but in assemblages with higher diversity leaf decomposition decreased. Our results highlight the importance of considering multiple biodiversity measures when investigating the relationship between biodiversity and ecosystem functioning. PMID:27183974

  18. A highly divergent Encephalomyocarditis virus isolated from nonhuman primates in Singapore

    PubMed Central

    2013-01-01

    Background In 2001 and 2002, fatal myocarditis resulted in the sudden deaths of four, two adult and two juvenile, orang utans out of a cohort of 26 in the Singapore Zoological Gardens. Methods Of the four orang utans that underwent post-mortem examination, virus isolation was performed from the tissue homogenates of the heart and lung obtained from the two juvenile orang utans in Vero cell cultures. The tissue culture fluid was examined using electron microscopy. Reverse transcription and polymerase chain reaction with Encephalomyocarditis virus (EMCV)-specific primers targeting the gene regions of VP3/VP1 and 3D polymerase (3Dpol) confirmed the virus genus and species. The two EMCV isolates were sequenced and phylogenetic analyses of the virus genes performed. Serological testing on other animal species in the Singapore Zoological Gardens was also conducted. Results Electron microscopy of the two EMCV isolates, designated Sing-M100-02 and Sing-M105-02, revealed spherical viral particles of about 20 to 30 nm, consistent with the size and morphology of members belonging to the family Picornaviridae. In addition, infected-Vero cells showed positive immunoflorescence staining with antiserum to EMCV. Sequencing of the viral genome showed that the two EMCV isolates were 99.9% identical at the nucleotide level, indicating a similar source of origin. When compared with existing EMCV sequences in the VP1 and 3Dpol gene regions, the nucleotide divergence were at a maximum of 38.8% and 23.6% respectively, while the amino acid divergence were at a maximum of 33.9% and 11.3% respectively. Phylogenetic analyses of VP1 and 3Dpol genes further grouped the Sing-M100-02 and Sing-M105-02 isolates to themselves, away from existing EMCV lineages. This strongly suggested that Sing-M100-02 and Sing-M105-02 isolates are highly divergent variants of EMCV. Apart from the two deceased orang utans, a serological survey conducted among other zoo animals showed that a number of other animal

  19. An automated optimization tool for high-dose-rate (HDR) prostate brachytherapy with divergent needle pattern.

    PubMed

    Borot de Battisti, M; Maenhout, M; Denis de Senneville, B; Hautvast, G; Binnekamp, D; Lagendijk, J J W; van Vulpen, M; Moerland, M A

    2015-10-01

    Focal high-dose-rate (HDR) for prostate cancer has gained increasing interest as an alternative to whole gland therapy as it may contribute to the reduction of treatment related toxicity. For focal treatment, optimal needle guidance and placement is warranted. This can be achieved under MR guidance. However, MR-guided needle placement is currently not possible due to space restrictions in the closed MR bore. To overcome this problem, a MR-compatible, single-divergent needle-implant robotic device is under development at the University Medical Centre, Utrecht: placed between the legs of the patient inside the MR bore, this robot will tap the needle in a divergent pattern from a single rotation point into the tissue. This rotation point is just beneath the perineal skin to have access to the focal prostate tumor lesion. Currently, there is no treatment planning system commercially available which allows optimization of the dose distribution with such needle arrangement. The aim of this work is to develop an automatic inverse dose planning optimization tool for focal HDR prostate brachytherapy with needle insertions in a divergent configuration. A complete optimizer workflow is proposed which includes the determination of (1) the position of the center of rotation, (2) the needle angulations and (3) the dwell times. Unlike most currently used optimizers, no prior selection or adjustment of input parameters such as minimum or maximum dose or weight coefficients for treatment region and organs at risk is required. To test this optimizer, a planning study was performed on ten patients (treatment volumes ranged from 8.5 cm(3)to 23.3 cm(3)) by using 2-14 needle insertions. The total computation time of the optimizer workflow was below 20 min and a clinically acceptable plan was reached on average using only four needle insertions. PMID:26378657

  20. An automated optimization tool for high-dose-rate (HDR) prostate brachytherapy with divergent needle pattern

    NASA Astrophysics Data System (ADS)

    Borot de Battisti, M.; Maenhout, M.; de Senneville, B. Denis; Hautvast, G.; Binnekamp, D.; Lagendijk, J. J. W.; van Vulpen, M.; Moerland, M. A.

    2015-10-01

    Focal high-dose-rate (HDR) for prostate cancer has gained increasing interest as an alternative to whole gland therapy as it may contribute to the reduction of treatment related toxicity. For focal treatment, optimal needle guidance and placement is warranted. This can be achieved under MR guidance. However, MR-guided needle placement is currently not possible due to space restrictions in the closed MR bore. To overcome this problem, a MR-compatible, single-divergent needle-implant robotic device is under development at the University Medical Centre, Utrecht: placed between the legs of the patient inside the MR bore, this robot will tap the needle in a divergent pattern from a single rotation point into the tissue. This rotation point is just beneath the perineal skin to have access to the focal prostate tumor lesion. Currently, there is no treatment planning system commercially available which allows optimization of the dose distribution with such needle arrangement. The aim of this work is to develop an automatic inverse dose planning optimization tool for focal HDR prostate brachytherapy with needle insertions in a divergent configuration. A complete optimizer workflow is proposed which includes the determination of (1) the position of the center of rotation, (2) the needle angulations and (3) the dwell times. Unlike most currently used optimizers, no prior selection or adjustment of input parameters such as minimum or maximum dose or weight coefficients for treatment region and organs at risk is required. To test this optimizer, a planning study was performed on ten patients (treatment volumes ranged from 8.5 cm3to 23.3 cm3) by using 2-14 needle insertions. The total computation time of the optimizer workflow was below 20 min and a clinically acceptable plan was reached on average using only four needle insertions.

  1. Investigating the effects of Pleistocene events on genetic divergence within Richardsonius balteatus, a widely distributed western North American minnow

    PubMed Central

    2014-01-01

    Background Biogeographers seek to understand the influences of global climate shifts and geologic changes to the landscape on the ecology and evolution of organisms. Across both longer and shorter timeframes, the western North American landscape has experienced dynamic transformations related to various geologic processes and climatic oscillations, including events as recently as the Last Glacial Maximum (LGM; ~20 Ka) that have impacted the evolution of the North American biota. Redside shiner is a cyprinid species that is widely distributed throughout western North America. The species’ native range includes several well-documented Pleistocene refugia. Here we use mitochondrial DNA sequence data to assess phylogeography, and to test two biogeographic hypotheses regarding post-glacial colonization by redside shiner: 1) Redside shiner entered the Bonneville Basin at the time of the Bonneville Flood (Late Pleistocene; 14.5 Ka), and 2) redside shiner colonized British Columbia post-glacially from a single refugium in the Upper Columbia River drainage. Results Genetic diversification in redside shiner began in the mid to late Pleistocene, but was not associated with LGM. Different clades of redside shiner were distributed in multiple glacial age refugia, and each clade retains a signature of population expansion, with clades having secondary contact in some areas. Conclusions Divergence times between redside shiner populations in the Bonneville Basin and the Upper Snake/Columbia River drainage precedes the Bonneville Flood, thus it is unlikely that redside shiner invaded the Bonneville Basin during this flooding event. All but one British Columbia population of redside shiner are associated with the Upper Columbia River drainage with the lone exception being a population near the coast, suggesting that the province as a whole was colonized from multiple refugia, but the inland British Columbia redside shiner populations are affiliated with a refugium in the Upper

  2. INDUCTION OF APOMIXIS BY OUTCROSSING BETWEEN GENETICALLY DIVERGENT ENTITIES OF CALOGLOSSA LEPRIEURII (CERAMIALES, RHODOPHYTA) AND EVIDENCE OF HYBRID APOMICTS IN NATURE(1).

    PubMed

    Kamiya, Mitsunobu; West, John A; Hara, Yoshiaki

    2011-08-01

    Our previous study revealed that apomixis, recycling of tetrasporophytes, can be generated through outcrossing between genetically divergent entities of Caloglossa monosticha M. Kamiya, though such apomicts have never been found in nature. In the case of C. leprieurii (Mont.) G. Martens, the most widespread species in this genus, many apomictic strains have been isolated worldwide, but it is unknown whether these apomicts evolved through an outcrossing process similar to that in C. monosticha. In this study, heterogeneity of the apomicts and their sexual relatives as well as their evolutionary relationships was examined using the nuclear-encoded actin gene and plastid-encoded RUBISCO spacer region. Thirteen out of 18 apomictic strains were heterogeneous and contained divergent actin alleles, whereas only two out of 23 sexual strains were heterogeneous. The five homogeneous apomicts were genetically identical, or quite similar, to the sexual strains isolated from adjacent sites. Furthermore, three of the five homogeneous apomicts frequently produced tetraspores that grew into gametophytes, while all the heterogeneous apomicts never generated gametophytes. Apomictic strains from Florida were allotriploid, and each of the three actin sequences was closely related to those of sexual strains from Florida, Peru, and Mexico/Guatemala. In crossing tests, obligate apomixis was generated through the outcrossing between the male from Madagascar and the female from the northwestern Atlantic. These results suggest that outcrossing between genetically divergent sexual entities is one factor that induces apomixis in C. leprieurii. PMID:27020011

  3. Implications of High Molecular Divergence of Nuclear rRNA and Phylogenetic Structure for the Dinoflagellate Prorocentrum (Dinophyceae, Prorocentrales).

    PubMed

    Boopathi, Thangavelu; Faria, Daphne Georgina; Cheon, Ju-Yong; Youn, Seok Hyun; Ki, Jang-Seu

    2015-01-01

    The small and large nuclear subunit molecular phylogeny of the genus Prorocentrum demonstrated that the species are dichotomized into two clades. These two clades were significantly different (one-factor ANOVA, p < 0.01) with patterns compatible for both small and large subunit Bayesian phylogenetic trees, and for a larger taxon sampled dinoflagellate phylogeny. Evaluation of the molecular divergence levels showed that intraspecies genetic variations were significantly low (t-test, p < 0.05), than those for interspecies variations (> 2.9% and > 26.8% dissimilarity in the small and large subunit [D1/D2], respectively). Based on the calculated molecular divergence, the genus comprises two genetically distinct groups that should be considered as two separate genera, thereby setting the pace for major systematic changes for the genus Prorocentrum sensu Dodge. Moreover, the information presented in this study would be useful for improving species identification, detection of novel clades from environmental samples. PMID:25594436

  4. An Endangered Arboreal Specialist, the Western Ringtail Possum (Pseudocheirus occidentalis), Shows a Greater Genetic Divergence across a Narrow Artificial Waterway than a Major Road.

    PubMed

    Yokochi, Kaori; Kennington, Winn Jason; Bencini, Roberta

    2016-01-01

    The fragmentation of habitats by roads and other artificial linear structures can have a profound effect on the movement of arboreal species due to their strong fidelity to canopies. Here, we used 12 microsatellite DNA loci to investigate the fine-scale spatial genetic structure and the effects of a major road and a narrow artificial waterway on a population of the endangered western ringtail possum (Pseudocheirus occidentalis) in Busselton, Western Australia. Using spatial autocorrelation analysis, we found positive genetic structure in continuous habitat over distances up to 600 m. These patterns are consistent with the sedentary nature of P. occidentalis and highlight their vulnerability to the effects of habitat fragmentation. Pairwise relatedness values and Bayesian cluster analysis also revealed significant genetic divergences across an artificial waterway, suggesting that it was a barrier to gene flow. By contrast, no genetic divergences were detected across the major road. While studies often focus on roads when assessing the effects of artificial linear structures on wildlife, this study provides an example of an often overlooked artificial linear structure other than a road that has a significant impact on wildlife dispersal leading to genetic subdivision. PMID:26784921

  5. An Endangered Arboreal Specialist, the Western Ringtail Possum (Pseudocheirus occidentalis), Shows a Greater Genetic Divergence across a Narrow Artificial Waterway than a Major Road

    PubMed Central

    Yokochi, Kaori

    2016-01-01

    The fragmentation of habitats by roads and other artificial linear structures can have a profound effect on the movement of arboreal species due to their strong fidelity to canopies. Here, we used 12 microsatellite DNA loci to investigate the fine-scale spatial genetic structure and the effects of a major road and a narrow artificial waterway on a population of the endangered western ringtail possum (Pseudocheirus occidentalis) in Busselton, Western Australia. Using spatial autocorrelation analysis, we found positive genetic structure in continuous habitat over distances up to 600 m. These patterns are consistent with the sedentary nature of P. occidentalis and highlight their vulnerability to the effects of habitat fragmentation. Pairwise relatedness values and Bayesian cluster analysis also revealed significant genetic divergences across an artificial waterway, suggesting that it was a barrier to gene flow. By contrast, no genetic divergences were detected across the major road. While studies often focus on roads when assessing the effects of artificial linear structures on wildlife, this study provides an example of an often overlooked artificial linear structure other than a road that has a significant impact on wildlife dispersal leading to genetic subdivision. PMID:26784921

  6. Isolation and partial characterization of a highly divergent lineage of hantavirus from the European mole (Talpa europaea).

    PubMed

    Gu, Se Hun; Kumar, Mukesh; Sikorska, Beata; Hejduk, Janusz; Markowski, Janusz; Markowski, Marcin; Liberski, Paweł P; Yanagihara, Richard

    2016-01-01

    Genetically distinct hantaviruses have been identified in five species of fossorial moles (order Eulipotyphla, family Talpidae) from Eurasia and North America. Here, we report the isolation and partial characterization of a highly divergent hantavirus, named Nova virus (NVAV), from lung tissue of a European mole (Talpa europaea), captured in central Poland in August 2013. Typical hantavirus-like particles, measuring 80-120 nm in diameter, were found in NVAV-infected Vero E6 cells by transmission electron microscopy. Whole-genome sequences of the isolate, designated NVAV strain Te34, were identical to that amplified from the original lung tissue, and phylogenetic analysis of the full-length L, M and S segments, using maximum-likelihood and Bayesian methods, showed that NVAV was most closely related to hantaviruses harbored by insectivorous bats, consistent with an ancient evolutionary origin. Infant Swiss Webster mice, inoculated with NVAV by the intraperitoneal route, developed weight loss and hyperactivity, beginning at 16 days, followed by hind-limb paralysis and death. High NVAV RNA copies were detected in lung, liver, kidney, spleen and brain by quantitative real-time RT-PCR. Neuropathological examination showed astrocytic and microglial activation and neuronal loss. The first mole-borne hantavirus isolate will facilitate long-overdue studies on its infectivity and pathogenic potential in humans. PMID:26892544

  7. Isolation and partial characterization of a highly divergent lineage of hantavirus from the European mole (Talpa europaea)

    PubMed Central

    Gu, Se Hun; Kumar, Mukesh; Sikorska, Beata; Hejduk, Janusz; Markowski, Janusz; Markowski, Marcin; Liberski, Paweł P.; Yanagihara, Richard

    2016-01-01

    Genetically distinct hantaviruses have been identified in five species of fossorial moles (order Eulipotyphla, family Talpidae) from Eurasia and North America. Here, we report the isolation and partial characterization of a highly divergent hantavirus, named Nova virus (NVAV), from lung tissue of a European mole (Talpa europaea), captured in central Poland in August 2013. Typical hantavirus-like particles, measuring 80–120 nm in diameter, were found in NVAV-infected Vero E6 cells by transmission electron microscopy. Whole-genome sequences of the isolate, designated NVAV strain Te34, were identical to that amplified from the original lung tissue, and phylogenetic analysis of the full-length L, M and S segments, using maximum-likelihood and Bayesian methods, showed that NVAV was most closely related to hantaviruses harbored by insectivorous bats, consistent with an ancient evolutionary origin. Infant Swiss Webster mice, inoculated with NVAV by the intraperitoneal route, developed weight loss and hyperactivity, beginning at 16 days, followed by hind-limb paralysis and death. High NVAV RNA copies were detected in lung, liver, kidney, spleen and brain by quantitative real-time RT-PCR. Neuropathological examination showed astrocytic and microglial activation and neuronal loss. The first mole-borne hantavirus isolate will facilitate long-overdue studies on its infectivity and pathogenic potential in humans. PMID:26892544

  8. High levels of effective long-distance dispersal may blur ecotypic divergence in a rare terrestrial orchid

    PubMed Central

    2014-01-01

    Background Gene flow and adaptive divergence are key aspects of metapopulation dynamics and ecological speciation. Long-distance dispersal is hard to detect and few studies estimate dispersal in combination with adaptive divergence. The aim of this study was to investigate effective long-distance dispersal and adaptive divergence in the fen orchid (Liparis loeselii (L.) Rich.). We used amplified fragment length polymorphism (AFLP)-based assignment tests to quantify effective long-distance dispersal at two different regions in Northwest Europe. In addition, genomic divergence between fen orchid populations occupying two distinguishable habitats, wet dune slacks and alkaline fens, was investigated by a genome scan approach at different spatial scales (continental, landscape and regional) and based on 451 AFLP loci. Results We expected that different habitats would contribute to strong divergence and restricted gene flow resulting in isolation-by-adaptation. Instead, we found remarkably high levels of effective long-distance seed dispersal and low levels of adaptive divergence. At least 15% of the assigned individuals likely originated from among-population dispersal events with dispersal distances up to 220 km. Six (1.3%) ‘outlier’ loci, potentially reflecting local adaptation to habitat-type, were identified with high statistical support. Of these, only one (0.22%) was a replicated outlier in multiple independent dune-fen population comparisons and thus possibly reflecting truly parallel divergence. Signals of adaptation in response to habitat type were most evident at the scale of individual populations. Conclusions The findings of this study suggest that the homogenizing effect of effective long-distance seed dispersal may overwhelm divergent selection associated to habitat type in fen orchids in Northwest Europe. PMID:24998243

  9. Construction and Immunogenicity Evaluation of Recombinant Influenza A Viruses Containing Chimeric Hemagglutinin Genes Derived from Genetically Divergent Influenza A H1N1 Subtype Viruses

    PubMed Central

    McCormick, Kara; Jiang, Zhiyong; Zhu, Longchao; Lawson, Steven R.; Langenhorst, Robert; Ransburgh, Russell; Brunick, Colin; Tracy, Miranda C.; Hurtig, Heather R.; Mabee, Leah M.; Mingo, Mark; Li, Yanhua; Webby, Richard J.

    2015-01-01

    Background and Objectives Influenza A viruses cause highly contagious diseases in a variety of hosts, including humans and pigs. To develop a vaccine that can be broadly effective against genetically divergent strains of the virus, in this study we employed molecular breeding (DNA shuffling) technology to create a panel of chimeric HA genes. Methods and Results Each chimeric HA gene contained genetic elements from parental swine influenza A viruses that had a history of zoonotic transmission, and also from a 2009 pandemic virus. Each parental virus represents a major phylogenetic clade of influenza A H1N1 viruses. Nine shuffled HA constructs were initially screened for immunogenicity in mice by DNA immunization, and one chimeric HA (HA-129) was expressed on both a A/Puerto Rico/8/34 backbone with mutations associated with a live, attenuated phenotype (PR8LAIV-129) and a A/swine/Texas/4199-2/98 backbone (TX98-129). When delivered to mice, the PR8LAIV-129 induced antibodies against all four parental viruses, which was similar to the breadth of immunity observed when HA-129 was delivered as a DNA vaccine. This chimeric HA was then tested as a candidate vaccine in a nursery pig model, using inactivated TX98-129 virus as the backbone. The results demonstrate that pigs immunized with HA-129 developed antibodies against all four parental viruses, as well as additional primary swine H1N1 influenza virus field isolates. Conclusion This study established a platform for creating novel genes of influenza viruses using a molecular breeding approach, which will have important applications toward future development of broadly protective influenza virus vaccines. PMID:26061265

  10. The relationship between parental genetic or phenotypic divergence and progeny variation in the maize nested association mapping population

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The choice of populations for quantitative genetics experiments impacts inferences about genetic architecture and prospective selection gains. Plant breeding and quantitative genetics studies are often conducted in one or a few among many possible biparental families. Trait genotypic variation withi...

  11. Y-chromosome analysis reveals genetic divergence and new founding native lineages in Athapaskan- and Eskimoan-speaking populations

    PubMed Central

    Dulik, Matthew C.; Owings, Amanda C.; Gaieski, Jill B.; Vilar, Miguel G.; Andre, Alestine; Lennie, Crystal; Mackenzie, Mary Adele; Kritsch, Ingrid; Snowshoe, Sharon; Wright, Ruth; Martin, James; Gibson, Nancy; Andrews, Thomas D.; Schurr, Theodore G.; Adhikarla, Syama; Adler, Christina J.; Balanovska, Elena; Balanovsky, Oleg; Bertranpetit, Jaume; Clarke, Andrew C.; Comas, David; Cooper, Alan; Der Sarkissian, Clio S. I.; GaneshPrasad, ArunKumar; Haak, Wolfgang; Haber, Marc; Hobbs, Angela; Javed, Asif; Jin, Li; Kaplan, Matthew E.; Li, Shilin; Martínez-Cruz, Begoña; Matisoo-Smith, Elizabeth A.; Melé, Marta; Merchant, Nirav C.; Mitchell, R. John; Parida, Laxmi; Pitchappan, Ramasamy; Platt, Daniel E.; Quintana-Murci, Lluis; Renfrew, Colin; Lacerda, Daniela R.; Royyuru, Ajay K.; Santos, Fabrício R.; Soodyall, Himla; Soria Hernanz, David F.; Swamikrishnan, Pandikumar; Tyler-Smith, Chris; Santhakumari, Arun Varatharajan; Vieira, Pedro Paulo; Wells, R. Spencer; Zalloua, Pierre A.; Ziegle, Janet S.

    2012-01-01

    For decades, the peopling of the Americas has been explored through the analysis of uniparentally inherited genetic systems in Native American populations and the comparison of these genetic data with current linguistic groupings. In northern North America, two language families predominate: Eskimo-Aleut and Na-Dene. Although the genetic evidence from nuclear and mtDNA loci suggest that speakers of these language families share a distinct biological origin, this model has not been examined using data from paternally inherited Y chromosomes. To test this hypothesis and elucidate the migration histories of Eskimoan- and Athapaskan-speaking populations, we analyzed Y-chromosomal data from Inuvialuit, Gwich’in, and Tłįchǫ populations living in the Northwest Territories of Canada. Over 100 biallelic markers and 19 chromosome short tandem repeats (STRs) were genotyped to produce a high-resolution dataset of Y chromosomes from these groups. Among these markers is an SNP discovered in the Inuvialuit that differentiates them from other Aboriginal and Native American populations. The data suggest that Canadian Eskimoan- and Athapaskan-speaking populations are genetically distinct from one another and that the formation of these groups was the result of two population expansions that occurred after the initial movement of people into the Americas. In addition, the population history of Athapaskan speakers is complex, with the Tłįchǫ being distinct from other Athapaskan groups. The high-resolution biallelic data also make clear that Y-chromosomal diversity among the first Native Americans was greater than previously recognized. PMID:22586127

  12. Playing RNase P Evolution: Swapping the RNA Catalyst for a Protein Reveals Functional Uniformity of Highly Divergent Enzyme Forms

    PubMed Central

    Weber, Christoph; Hartig, Andreas; Hartmann, Roland K.; Rossmanith, Walter

    2014-01-01

    The RNase P family is a diverse group of endonucleases responsible for the removal of 5′ extensions from tRNA precursors. The diversity of enzyme forms finds its extremes in the eukaryal nucleus where RNA-based catalysis by complex ribonucleoproteins in some organisms contrasts with single-polypeptide enzymes in others. Such structural contrast suggests associated functional differences, and the complexity of the ribonucleoprotein was indeed proposed to broaden the enzyme's functionality beyond tRNA processing. To explore functional overlap and differences between most divergent forms of RNase P, we replaced the nuclear RNase P of Saccharomyces cerevisiae, a 10-subunit ribonucleoprotein, with Arabidopsis thaliana PRORP3, a single monomeric protein. Surprisingly, the RNase P-swapped yeast strains were viable, displayed essentially unimpaired growth under a wide variety of conditions, and, in a certain genetic background, their fitness even slightly exceeded that of the wild type. The molecular analysis of the RNase P-swapped strains showed a minor disturbance in tRNA metabolism, but did not point to any RNase P substrates or functions beyond that. Altogether, these results indicate the full functional exchangeability of the highly dissimilar enzymes. Our study thereby establishes the RNase P family, with its combination of structural diversity and functional uniformity, as an extreme case of convergent evolution. It moreover suggests that the apparently gratuitous complexity of some RNase P forms is the result of constructive neutral evolution rather than reflecting increased functional versatility. PMID:25101763

  13. Effect of slow energy releasing on divergent detonation of Insensitive High Explosives

    NASA Astrophysics Data System (ADS)

    Hu, Xiaomian; Pan, Hao; Huang, Yong; Wu, Zihui

    2014-03-01

    There exists a slow energy releasing (SER) process in the slow reaction zone located behind the detonation wave due to the carbon cluster in the detonation products of Insensitive High Explosives (IHEs), and the process will affect the divergent detonation wave's propagation and the driving process of the explosives. To study the potential effect, a new artificial burn model including the SER process based on the programmed burn model is proposed in the paper. Quasi-steady analysis of the new model indicates that the nonlinearity of the detonation speed as a function of front curvature owes to the significant change of the reaction rate and the reaction zone length at the sonic state. What's more, in simulating the detonation of IHE JB-9014, the new model including the slow reaction can predict a slower jump-off velocity, in good agreement with the result of the test.

  14. Innate-like functions of natural killer T cell subsets result from highly divergent gene programs.

    PubMed

    Engel, Isaac; Seumois, Grégory; Chavez, Lukas; Samaniego-Castruita, Daniela; White, Brandie; Chawla, Ashu; Mock, Dennis; Vijayanand, Pandurangan; Kronenberg, Mitchell

    2016-06-01

    Natural killer T cells (NKT cells) have stimulatory or inhibitory effects on the immune response that can be attributed in part to the existence of functional subsets of NKT cells. These subsets have been characterized only on the basis of the differential expression of a few transcription factors and cell-surface molecules. Here we have analyzed purified populations of thymic NKT cell subsets at both the transcriptomic level and epigenomic level and by single-cell RNA sequencing. Our data indicated that despite their similar antigen specificity, the functional NKT cell subsets were highly divergent populations with many gene-expression and epigenetic differences. Therefore, the thymus 'imprints' distinct gene programs on subsets of innate-like NKT cells that probably impart differences in proliferative capacity, homing, and effector functions. PMID:27089380

  15. Micro-cone targets for producing high energy and low divergence particle beams

    DOEpatents

    Le Galloudec, Nathalie

    2013-09-10

    The present invention relates to micro-cone targets for producing high energy and low divergence particle beams. In one embodiment, the micro-cone target includes a substantially cone-shaped body including an outer surface, an inner surface, a generally flat and round, open-ended base, and a tip defining an apex. The cone-shaped body tapers along its length from the generally flat and round, open-ended base to the tip defining the apex. In addition, the outer surface and the inner surface connect the base to the tip, and the tip curves inwardly to define an outer surface that is concave, which is bounded by a rim formed at a juncture where the outer surface meets the tip.

  16. Epigenetic rather than genetic factors may explain phenotypic divergence between coastal populations of diploid and tetraploid Limonium spp. (Plumbaginaceae) in Portugal

    PubMed Central

    2013-01-01

    Background The genus Limonium Miller comprises annual and perennial halophytes that can produce sexual and/or asexual seeds (apomixis). Genetic and epigenetic (DNA methylation) variation patterns were investigated in populations of three phenotypically similar putative sexual diploid species (L. nydeggeri, L. ovalifolium, L. lanceolatum), one sexual tetraploid species (L. vulgare) and two apomict tetraploid species thought to be related (L. dodartii, L. multiflorum). The extent of morphological differentiation between these species was assessed using ten diagnostic morphometric characters. Results A discriminant analysis using the morphometric variables reliably assigns individuals into their respective species groups. We found that only modest genetic and epigenetic differentiation was revealed between species by Methylation Sensitive Amplification Polymorphism (MSAP). However, whilst there was little separation possible between ploidy levels on the basis of genetic profiles, there was clear and pronounced interploidy discrimination on the basis of epigenetic profiles. Here we investigate the relative contribution of genetic and epigenetic factors in explaining the complex phenotypic variability seen in problematic taxonomic groups such as Limonium that operate both apomixis and sexual modes of reproduction. Conclusions Our results suggest that epigenetic variation might be one of the drivers of the phenotypic divergence between diploid and tetraploid taxa and discuss that intergenome silencing offers a plausible mechanistic explanation for the observed phenotypic divergence between these microspecies. These results also suggest that epigenetic profiling offer an additional tool to infer ploidy level in stored specimens and that stable epigenetic change may play an important role in apomict evolution and species recognition. PMID:24314092

  17. Brain fiber architecture, genetics, and intelligence: a high angular resolution diffusion imaging (HARDI) study.

    PubMed

    Chiang, Ming-Chang; Barysheva, Marina; Lee, Agatha D; Madsen, Sarah; Klunder, Andrea D; Toga, Arthur W; Mcmahon, Katie L; de Zubicaray, Greig I; Meredith, Matthew; Wright, Margaret J; Srivastava, Anuj; Balov, Nikolay; Thompson, Paul M

    2008-01-01

    We developed an analysis pipeline enabling population studies of HARDI data, and applied it to map genetic influences on fiber architecture in 90 twin subjects. We applied tensor-driven 3D fluid registration to HARDI, resampling the spherical fiber orientation distribution functions (ODFs) in appropriate Riemannian manifolds, after ODF regularization and sharpening. Fitting structural equation models (SEM) from quantitative genetics, we evaluated genetic influences on the Jensen-Shannon divergence (JSD), a novel measure of fiber spatial coherence, and on the generalized fiber anisotropy (GFA) a measure of fiber integrity. With random-effects regression, we mapped regions where diffusion profiles were highly correlated with subjects' intelligence quotient (IQ). Fiber complexity was predominantly under genetic control, and higher in more highly anisotropic regions; the proportion of genetic versus environmental control varied spatially. Our methods show promise for discovering genes affecting fiber connectivity in the brain. PMID:18979850

  18. Genetic divergence between populations of feral and domestic forms of a mosquito disease vector assessed by transcriptomics

    PubMed Central

    2015-01-01

    Culex pipiens, an invasive mosquito and vector of West Nile virus in the US, has two morphologically indistinguishable forms that differ dramatically in behavior and physiology. Cx. pipiens form pipiens is primarily a bird-feeding temperate mosquito, while the sub-tropical Cx. pipiens form molestus thrives in sewers and feeds on mammals. Because the feral form can diapause during the cold winters but the domestic form cannot, the two Cx. pipiens forms are allopatric in northern Europe and, although viable, hybrids are rare. Cx. pipiens form molestus has spread across all inhabited continents and hybrids of the two forms are common in the US. Here we elucidate the genes and gene families with the greatest divergence rates between these phenotypically diverged mosquito populations, and discuss them in light of their potential biological and ecological effects. After generating and assembling novel transcriptome data for each population, we performed pairwise tests for nonsynonymous divergence (Ka) of homologous coding sequences and examined gene ontology terms that were statistically over-represented in those sequences with the greatest divergence rates. We identified genes involved in digestion (serine endopeptidases), innate immunity (fibrinogens and α-macroglobulins), hemostasis (D7 salivary proteins), olfaction (odorant binding proteins) and chitin binding (peritrophic matrix proteins). By examining molecular divergence between closely related yet phenotypically divergent forms of the same species, our results provide insights into the identity of rapidly-evolving genes between incipient species. Additionally, we found that families of signal transducers, ATP synthases and transcription regulators remained identical at the amino acid level, thus constituting conserved components of the Cx. pipiens proteome. We provide a reference with which to gauge the divergence reported in this analysis by performing a comparison of transcriptome sequences from conspecific

  19. Genetic divergence between populations of feral and domestic forms of a mosquito disease vector assessed by transcriptomics.

    PubMed

    Price, Dana C; Fonseca, Dina M

    2015-01-01

    Culex pipiens, an invasive mosquito and vector of West Nile virus in the US, has two morphologically indistinguishable forms that differ dramatically in behavior and physiology. Cx. pipiens form pipiens is primarily a bird-feeding temperate mosquito, while the sub-tropical Cx. pipiens form molestus thrives in sewers and feeds on mammals. Because the feral form can diapause during the cold winters but the domestic form cannot, the two Cx. pipiens forms are allopatric in northern Europe and, although viable, hybrids are rare. Cx. pipiens form molestus has spread across all inhabited continents and hybrids of the two forms are common in the US. Here we elucidate the genes and gene families with the greatest divergence rates between these phenotypically diverged mosquito populations, and discuss them in light of their potential biological and ecological effects. After generating and assembling novel transcriptome data for each population, we performed pairwise tests for nonsynonymous divergence (Ka) of homologous coding sequences and examined gene ontology terms that were statistically over-represented in those sequences with the greatest divergence rates. We identified genes involved in digestion (serine endopeptidases), innate immunity (fibrinogens and α-macroglobulins), hemostasis (D7 salivary proteins), olfaction (odorant binding proteins) and chitin binding (peritrophic matrix proteins). By examining molecular divergence between closely related yet phenotypically divergent forms of the same species, our results provide insights into the identity of rapidly-evolving genes between incipient species. Additionally, we found that families of signal transducers, ATP synthases and transcription regulators remained identical at the amino acid level, thus constituting conserved components of the Cx. pipiens proteome. We provide a reference with which to gauge the divergence reported in this analysis by performing a comparison of transcriptome sequences from conspecific

  20. Mitogenomics of 'Old World Acraea' butterflies reveals a highly divergent 'Bematistes'.

    PubMed

    Timmermans, M J T N; Lees, D C; Thompson, M J; Sáfián, Sz; Brattström, O

    2016-04-01

    Afrotropical Acraeini butterflies provide a fascinating potential model system to contrast with the Neotropical Heliconiini, yet their phylogeny remains largely unexplored by molecular methods and their generic level nomenclature is still contentious. To test the potential of mitogenomes in a simultaneous analysis of the radiation, we sequenced the full mitochondrial genomes of 19 African species. Analyses show the potential of mitogenomic phylogeny reconstruction in this group. Inferred relationships are largely congruent with a previous multilocus study. We confirm a monophyletic Telchinia to include the Asiatic Pareba with a complicated paraphylum, traditional (sub)genus Acraea, toward the base. The results suggest that several proposed subgenera and some species groups within Telchinia are not monophyletic, while two other (sub)genera could possibly be combined. Telchinia was recovered without strong support as sister to the potentially interesting system of distasteful model butterflies known as Bematistes, a name that is suppressed in some treatments. Surprisingly, we find that this taxon has remarkably divergent mitogenomes and unexpected synapomorphic tRNA rearrangements. These gene order changes, combined with evidence for deviating dN/dS ratios and evidence for episodal diversifying selection, suggest that the ancestral Bematistes mitogenome has had a turbulent past. Our study adds genetic support for treating this clade as a distinct genus, while the alternative option, adopted by some authors, of Acraea being equivalent to Acraeini merely promotes redundancy. We pave the way for more detailed mitogenomic and multi-locus molecular analyses which can determine how many genera are needed (possibly at least six) to divide Acraeini into monophyletic groups that also facilitate communication about their biology. PMID:26724404

  1. Thinking positively: The genetics of high intelligence

    PubMed Central

    Shakeshaft, Nicholas G.; Trzaskowski, Maciej; McMillan, Andrew; Krapohl, Eva; Simpson, Michael A.; Reichenberg, Avi; Cederlöf, Martin; Larsson, Henrik; Lichtenstein, Paul; Plomin, Robert

    2015-01-01

    High intelligence (general cognitive ability) is fundamental to the human capital that drives societies in the information age. Understanding the origins of this intellectual capital is important for government policy, for neuroscience, and for genetics. For genetics, a key question is whether the genetic causes of high intelligence are qualitatively or quantitatively different from the normal distribution of intelligence. We report results from a sibling and twin study of high intelligence and its links with the normal distribution. We identified 360,000 sibling pairs and 9000 twin pairs from 3 million 18-year-old males with cognitive assessments administered as part of conscription to military service in Sweden between 1968 and 2010. We found that high intelligence is familial, heritable, and caused by the same genetic and environmental factors responsible for the normal distribution of intelligence. High intelligence is a good candidate for “positive genetics” — going beyond the negative effects of DNA sequence variation on disease and disorders to consider the positive end of the distribution of genetic effects. PMID:25593376

  2. Limited genetic divergence among Australian alpine Poa tussock grasses coupled with regional structuring points to ongoing gene flow and taxonomic challenges

    PubMed Central

    Griffin, Philippa C.; Hoffmann, Ary A.

    2014-01-01

    Background and Aims While molecular approaches can often accurately reconstruct species relationships, taxa that are incompletely differentiated pose a challenge even with extensive data. Such taxa are functionally differentiated, but may be genetically differentiated only at small and/or patchy regions of the genome. This issue is considered here in Poa tussock grass species that dominate grassland and herbfields in the Australian alpine zone. Methods Previously reported tetraploidy was confirmed in all species by sequencing seven nuclear regions and five microsatellite markers. A Bayesian approach was used to co-estimate nuclear and chloroplast gene trees with an overall dated species tree. The resulting species tree was used to examine species structure and recent hybridization, and intertaxon fertility was tested by experimental crosses. Key Results Species tree estimation revealed Poa gunnii, a Tasmanian endemic species, as sister to the rest of the Australian alpine Poa. The taxa have radiated in the last 0·5–1·2 million years and the non-gunnii taxa are not supported as genetically distinct. Recent hybridization following past species divergence was also not supported. Ongoing gene flow is suggested, with some broad-scale geographic structure within the group. Conclusions The Australian alpine Poa species are not genetically distinct despite being distinguishable phenotypically, suggesting recent adaptive divergence with ongoing intertaxon gene flow. This highlights challenges in using conventional molecular taxonomy to infer species relationships in recent, rapid radiations. PMID:24607721

  3. A genome-wide approach to screen for genetic variants in broilers (Gallus gallus) with divergent feed conversion ratio.

    PubMed

    Shah, Tejas M; Patel, Namrata V; Patel, Anand B; Upadhyay, Maulik R; Mohapatra, Amitbikram; Singh, Krishna M; Deshpande, Sunil D; Joshi, Chaitanya G

    2016-08-01

    Feed conversion ratio (FCR) is an economically important trait in broilers and feed accounts for a significant proportion of the costs involved in broiler production. To explore the contribution of functional variants to FCR trait, we analyzed coding and non-coding single-nucleotide variants (SNVs) across the genome by exome sequencing in seven pairs of full-sibs broilers with divergent FCR and with a sequence coverage at an average depth of fourfold. We identified 192,119 high-quality SNVs, including 30,380 coding SNVs (cSNVs) in the experimental population. We discovered missense SNVs in PGM2, NOX4, TGFBR3, and TMX4, and synonymous SNVs in TSNAX, ITA, HSP90B1, and COL18A1 associated with FCR. Haplotype analyses of genome-wide significant SNVs in PGM2, PHKG1, DGKZ, and SOD2 were also observed with suggestive evidence of haplotype association with FCR. Single-variant and FCR QTL-related genes-based association analyses of SNVs identified newly associated genes for FCR in the regions subjected to targeted exome sequencing. The top seven SNVs were next evaluated in independent replication data sets where SNV chr. 3: 13,990,160 (c. 961G>C) at TMX4 was replicated (p < 0.05). Collectively, we have detected SNVs associated with FCR in broiler as well as identification of SNVs in known FCR QTL region. These findings should facilitate the discovery of causative variants for FCR and contribute to marker-assisted selection. PMID:27174137

  4. Interspecific Comparison of the Transformer Gene of Drosophila Reveals an Unusually High Degree of Evolutionary Divergence

    PubMed Central

    O'Neil, M. T.; Belote, J. M.

    1992-01-01

    The transformer (tra) gene of Drosophila melanogaster occupies an intermediate position in the regulatory pathway controlling all aspects of somatic sexual differentiation. The female-specific expression of this gene's function is regulated by the Sex lethal (Sxl) gene, through a mechanism involving sex-specific alternative splicing of tra pre-mRNA. The tra gene encodes a protein that is thought to act in conjunction with the transformer-2 (tra-2) gene product to control the sex-specific processing of doublesex (dsx) pre-mRNA. The bifunctional dsx gene carries out opposite functions in the two sexes, repressing female differentiation in males and repressing male differentiation in females. Here we report the results from an evolutionary approach to investigate tra regulation and function, by isolating the tra-homologous genes from selected Drosophila species, and then using the interpecific DNA sequence comparisons to help identify regions of functional significance. The tra-homologous genes from two Sophophoran subgenus species, Drosophila simulans and Drosophila erecta, and two Drosophila subgenus species, Drosophila hydei and Drosophila virilis, were cloned, sequenced and compared to the D. melanogaster tra gene. This comparison reveals an unusually high degree of evolutionary divergence among the tra coding sequences. These studies also highlight a highly conserved sequence within intron one that probably defines a cis-acting regulator of the sex-specific alternative splicing event. PMID:1592233

  5. Divergent dielectric characteristics in cascaded high-K gate stacks with reverse gradient bandgap structures

    NASA Astrophysics Data System (ADS)

    Tsai, Meng-Chen; Cheng, Po-Hsien; Lee, Min-Hung; Lin, Hsin-Chih; Chen, Miin-Jang

    2016-07-01

    The characteristics of cascaded high-K gate stacks with reverse dielectric sequence, TiO2/ZrO2/Al2O3 and Al2O3/ZrO2/ TiO2, on the Si substrate were investigated. The reverse sequence with different gradient bandgap structure gives rise to distinct conduction pathways, resulting in significant divergence of the leakage current density (J g) and the capacitance equivalent thickness (CET). The trapping sites in the high-permittivity TiO2 layer dominate the leakage current paths and strongly impact the conductance and the capacitance of the cascaded high-K gate stacks. Thus, a low CET of 1.05 nm and a low J g of ∼5  ×  10–4 A cm‑2 were achieved due to effective suppression of the leakage current through the traps of TiO2 in the cascaded TiO2/ZrO2/Al2O3 gate stack. In addition, the TiO2 layer gets crystallized in the cascaded TiO2/ZrO2/Al2O3 structure to achieve a higher capacitance because of the intermixing between TiO2 and ZrO2 due to the different reactivity of the precursors for Ti and Zr. This study demonstrates a way to effectively incorporate the high permittivity and low-bandgap materials, such as TiO2, into high-K gate stacks, to further improve device scaling.

  6. Genetic divergence in wild population of endangered yellowtail catfish Pangasius pangasius (Hamilton-Buchanan, 1822) revealed by mtDNA.

    PubMed

    Mohindra, Vindhya; Singh, Rajeev K; Kumar, Rajesh; Sah, R S; Lal, Kuldeep K

    2015-04-01

    Pangasius pangasius, an endangered freshwater fish species, is an important component of capture fishery from Indian rivers. Samples collected through commercial catches from three riverine populations were analyzed with cytb (307 bp) and ATPase6&8 (842 bp) regions for population variation and differentiation. The sequences of the both the mitochondrial regions revealed high haplotype and low nucleotide diversity. Shallow genetic diversity based on ATPase6&8 was observed, however its haplotypes network clearly indicated two distinct mitochondrial lineages. Mismatch distribution suggested population bottlenecks followed by expansion in Mahanadi population. The present study indicated the ATPase6&8 to be a potential mitochondrial marker for studying the population sub-structuring in the wild population of P. pangasius. PMID:24409876

  7. Highly Divergent Integration Profile of Adeno-Associated Virus Serotype 5 Revealed by High-Throughput Sequencing

    PubMed Central

    Janovitz, Tyler; Oliveira, Thiago; Sadelain, Michel

    2014-01-01

    ABSTRACT Adeno-associated virus serotype 5 (AAV-5) is a human parvovirus that infects a high percentage of the population. It is the most divergent AAV, the DNA sequence cleaved by the viral endonuclease is distinct from all other described serotypes and, uniquely, AAV-5 does not cross-complement the replication of other serotypes. In contrast to the well-characterized integration of AAV-2, no published studies have investigated the genomic integration of AAV-5. In this study, we analyzed more than 660,000 AAV-5 integration junctions using high-throughput integrant capture sequencing of infected human cells. The integration activity of AAV-5 was 99.7% distinct from AAV-2 and favored intronic sequences. Genome-wide integration was highly correlated with viral replication protein binding and endonuclease sites, and a 39-bp consensus integration motif was revealed that included these features. Algorithmic scanning identified 126 AAV-5 hot spots, the largest of which encompassed 3.3% of all integration events. The unique aspects of AAV-5 integration may provide novel tools for biotechnology and gene therapy. IMPORTANCE Viral integration into the host genome is an important aspect of virus host cell biology. Genomic integration studies of the small single-stranded AAVs have largely focused on site preferential integration of AAV-2, which depends on the viral replication protein (Rep). We have now established the first genome wide integration profile of the highly divergent AAV-5 serotype. Using integrant capture sequencing, more than 600,000 AAV-5 integration junctions in human cells were analyzed. AAV-5 integration hot spots were 99.7% distinct from AAV-2. Integration favored intronic sequences, occurred on all chromosomes, and integration hot spot distribution was correlated with human genomic GAGC repeats and transcriptional activity. These features support expansion of AAV-5 based vectors for gene transfer considerations. PMID:24335317

  8. Minimizing the angular divergence of high-order harmonics by truncating the truncated Bessel beam

    NASA Astrophysics Data System (ADS)

    Ye, Peng; Teng, Hao; He, Xin-Kui; Zhong, Shi-Yang; Wang, Li-Feng; Zhan, Min-Jie; Zhang, Wei; Yun, Chen-Xia; Wei, Zhi-Yi

    2014-12-01

    We have experimentally investigated high-order-harmonic generation driven by a few-cycle truncated Bessel (TB) laser beam which propagates through optical elements of finite aperture sizes. The TB beam was first investigated by Nisoli et al. [Phys. Rev. Lett. 88, 033902 (2002), 10.1103/PhysRevLett.88.033902], who assumed an infinite size for the optical elements so they concluded that the phase and intensity of the laser field oscillate dramatically around the laser focus in space. However, in all real experiments, the optical elements are always finite in size and would further truncate the TB beam, and so the oscillations would dwindle substantially. In this paper we take the finite size of the optical elements into account. We find that the further truncated TB beam has two intensity peaks around the focus. In front of the second peak position the curvatures of the laser phase front and the atomic-dipole phase front have the same absolute values but opposite signs, so the generated harmonic has a flat wavefront and hence a minimized angular divergence. In addition, at this position the pump intensity is not much less than its maximal value. This result is of significant importance in practical applications due to the finite aperture size of all real optical elements.

  9. A Low Order and a High Order Solution for a Converging-Diverging Nozzle Problem

    NASA Technical Reports Server (NTRS)

    Goodrich, John W.

    2000-01-01

    The Computational Aeroacoustics Workshops on Benchmark problems are conducted in order to generate solutions with a variety of methods for problems that are chosen both to be representative of significant and relevant acoustic phenomena. It is generally recognized that CAA applications require the resolution in time and in space of solution details over a significantly broader range of scales than typical computational fluid dynamics applications. These requirements are forcing the development of new methodologies for CAA applications. This paper presents numerical results from a third and a seventh order algorithm for the propagation of an acoustic signal through a converging-diverging nozzle. These two algorithms are members of a new family of high accuracy methods that have the same order accuracy in both space and time, and are an extension of previous work for linearized Euler equations to fully nonlinear time dependent problems. The simulations are all with the fully nonlinear quasi-1D Euler equations for the total solution, which includes both the fluid dynamics and the acoustics. The acoustic solution is obtained from the time dependent nonlinear solution by subtracting the steady solution.

  10. Comparative Epigenomic Profiling of the DNA Methylome in Mouse and Zebrafish Uncovers High Interspecies Divergence

    PubMed Central

    Zhang, Chi; Hoshida, Yujin; Sadler, Kirsten C.

    2016-01-01

    The DNA methylation landscape is dynamically patterned during development and distinct methylation patterns distinguish healthy from diseased cells. However, whether tissue-specific methylation patterns are conserved across species is not known. We used comparative methylome analysis of base-resolution DNA methylation profiles from the liver and brain of mouse and zebrafish generated by reduced representation bisulfite sequencing to identify the conserved and divergent aspects of the methylome in these commonly used vertebrate model organisms. On average, 24% of CpGs are methylated in mouse livers and the pattern of methylation was highly concordant among four male mice from two different strains. The same level of methylation (24.2%) was identified in mouse brain. In striking contrast, zebrafish had 63 and 70% of CpG methylation in the liver and brain, respectively. This is attributed, in part, to the higher percentage of the zebrafish genome occupied by transposable elements (52% vs. 45% in mice). Thus, the species identity was more significant in determining methylome patterning than was the similarity in organ function. Conserved features of the methylome across tissues and species was the exclusion of methylation from promoters and from CpG islands near transcription start sites, and the clustering of methylated CpGs in gene bodies and intragenic regions. These data suggest that DNA methylation reflects species-specific genome structure, and supports the notion that DNA methylation in non-promoter regions may contribute to genome evolution. PMID:27379160

  11. A novel, highly divergent ssDNA virus identified in Brazil infecting apple, pear and grapevine.

    PubMed

    Basso, Marcos Fernando; da Silva, José Cleydson Ferreira; Fajardo, Thor Vinícius Martins; Fontes, Elizabeth Pacheco Batista; Zerbini, Francisco Murilo

    2015-12-01

    Fruit trees of temperate and tropical climates are of great economical importance worldwide and several viruses have been reported affecting their productivity and longevity. Fruit trees of different Brazilian regions displaying virus-like symptoms were evaluated for infection by circular DNA viruses. Seventy-four fruit trees were sampled and a novel, highly divergent, monopartite circular ssDNA virus was cloned from apple, pear and grapevine trees. Forty-five complete viral genomes were sequenced, with a size of approx. 3.4 kb and organized into five ORFs. Deduced amino acid sequences showed identities in the range of 38% with unclassified circular ssDNA viruses, nanoviruses and alphasatellites (putative Replication-associated protein, Rep), and begomo-, curto- and mastreviruses (putative coat protein, CP, and movement protein, MP). A large intergenic region contains a short palindromic sequence capable of forming a hairpin-like structure with the loop sequence TAGTATTAC, identical to the conserved nonanucleotide of circoviruses, nanoviruses and alphasatellites. Recombination events were not detected and phylogenetic analysis showed a relationship with circo-, nano- and geminiviruses. PCR confirmed the presence of this novel ssDNA virus in field plants. Infectivity tests using the cloned viral genome confirmed its ability to infect apple and pear tree seedlings, but not Nicotiana benthamiana. The name "Temperate fruit decay-associated virus" (TFDaV) is proposed for this novel virus. PMID:26186890

  12. A highly divergent gene cluster in honey bees encodes a novel silk family

    PubMed Central

    Sutherland, Tara D.; Campbell, Peter M.; Weisman, Sarah; Trueman, Holly E.; Sriskantha, Alagacone; Wanjura, Wolfgang J.; Haritos, Victoria S.

    2006-01-01

    The pupal cocoon of the domesticated silk moth Bombyx mori is the best known and most extensively studied insect silk. It is not widely known that Apis mellifera larvae also produce silk. We have used a combination of genomic and proteomic techniques to identify four honey bee fiber genes (AmelFibroin1–4) and two silk-associated genes (AmelSA1 and 2). The four fiber genes are small, comprise a single exon each, and are clustered on a short genomic region where the open reading frames are GC-rich amid low GC intergenic regions. The genes encode similar proteins that are highly helical and predicted to form unusually tight coiled coils. Despite the similarity in size, structure, and composition of the encoded proteins, the genes have low primary sequence identity. We propose that the four fiber genes have arisen from gene duplication events but have subsequently diverged significantly. The silk-associated genes encode proteins likely to act as a glue (AmelSA1) and involved in silk processing (AmelSA2). Although the silks of honey bees and silkmoths both originate in larval labial glands, the silk proteins are completely different in their primary, secondary, and tertiary structures as well as the genomic arrangement of the genes encoding them. This implies independent evolutionary origins for these functionally related proteins. PMID:17065612

  13. Genetic divergence analysis of the Common Barn Owl Tyto alba (Scopoli, 1769) and the Short-eared Owl Asio flammeus (Pontoppidan, 1763) from southern Chile using COI sequence

    PubMed Central

    Colihueque, Nelson; Gantz, Alberto; Rau, Jaime Ricardo; Parraguez, Margarita

    2015-01-01

    Abstract In this paper new mitochondrial COI sequences of Common Barn Owl Tyto alba (Scopoli, 1769) and Short-eared Owl Asio flammeus (Pontoppidan, 1763) from southern Chile are reported and compared with sequences from other parts of the World. The intraspecific genetic divergence (mean p-distance) was 4.6 to 5.5% for the Common Barn Owl in comparison with specimens from northern Europe and Australasia and 3.1% for the Short-eared Owl with respect to samples from north America, northern Europe and northern Asia. Phylogenetic analyses revealed three distinctive groups for the Common Barn Owl: (i) South America (Chile and Argentina) plus Central and North America, (ii) northern Europe and (iii) Australasia, and two distinctive groups for the Short-eared Owl: (i) South America (Chile and Argentina) and (ii) north America plus northern Europe and northern Asia. The level of genetic divergence observed in both species exceeds the upper limit of intraspecific comparisons reported previously for Strigiformes. Therefore, this suggests that further research is needed to assess the taxonomic status, particularly for the Chilean populations that, to date, have been identified as belonging to these species through traditional taxonomy. PMID:26668551

  14. Genetic divergence and evolutionary relationship in Fejervarya cancrivora from Indonesia and other Asian countries inferred from allozyme and MtDNA sequence analyses.

    PubMed

    Kurniawan, Nia; Islam, Mohammed Mafizul; Djong, Tjong Hon; Igawa, Takeshi; Daicus, M Belabut; Yong, Hoi Sen; Wanichanon, Ratanasate; Khan, Md Mukhlesur Rahman; Iskandar, Djoko T; Nishioka, Midori; Sumida, Masayuki

    2010-03-01

    To elucidate genetic divergence and evolutionary relationship in Fejervarya cancrivora from Indonesia and other Asian countries, allozyme and molecular analyses were carried out using 131 frogs collected from 24 populations in Indonesia, Thailand, Bangladesh, Malaysia, and the Philippines. In the allozymic survey, seventeen enzymatic loci were examined for 92 frogs from eight representative localities. The results showed that F. cancrivora is subdivided into two main groups, the mangrove type and the large- plus Pelabuhan ratu types. The average Nel's genetic distance between the two groups was 0.535. Molecular phylogenetic trees based on nucleotide sequences of the 16S rRNA and Cyt b genes and constructed with the ML, MP, NJ, and BI methods also showed that the individuals of F. cancrivora analyzed comprised two clades, the mangrove type and the large plus Pelabuhan ratu / Sulawesi types, the latter further split into two subclades, the large type and the Pelabuhan ratu / Sulawesi type. The geographical distribution of individuals of the three F. cancrivora types was examined. Ten Individuals from Bangladesh, Thailand, and the Philippines represented the mangrove type; 34 Individuals from Malaysia and Indonesia represented the large type; and 11 individuals from Indonesia represented the Pelabuhan ratu / Sulawesi type. Average sequence divergences among the three types were 5.78-10.22% for the 16S and 12.88-16.38% for Cyt b. Our results suggest that each of the three types can be regarded as a distinct species. PMID:20192690

  15. Genetic divergence analysis of the Common Barn Owl Tyto alba (Scopoli, 1769) and the Short-eared Owl Asio flammeus (Pontoppidan, 1763) from southern Chile using COI sequence.

    PubMed

    Colihueque, Nelson; Gantz, Alberto; Rau, Jaime Ricardo; Parraguez, Margarita

    2015-01-01

    In this paper new mitochondrial COI sequences of Common Barn Owl Tyto alba (Scopoli, 1769) and Short-eared Owl Asio flammeus (Pontoppidan, 1763) from southern Chile are reported and compared with sequences from other parts of the World. The intraspecific genetic divergence (mean p-distance) was 4.6 to 5.5% for the Common Barn Owl in comparison with specimens from northern Europe and Australasia and 3.1% for the Short-eared Owl with respect to samples from north America, northern Europe and northern Asia. Phylogenetic analyses revealed three distinctive groups for the Common Barn Owl: (i) South America (Chile and Argentina) plus Central and North America, (ii) northern Europe and (iii) Australasia, and two distinctive groups for the Short-eared Owl: (i) South America (Chile and Argentina) and (ii) north America plus northern Europe and northern Asia. The level of genetic divergence observed in both species exceeds the upper limit of intraspecific comparisons reported previously for Strigiformes. Therefore, this suggests that further research is needed to assess the taxonomic status, particularly for the Chilean populations that, to date, have been identified as belonging to these species through traditional taxonomy. PMID:26668551

  16. Linkage Maps of the dwarf and Normal Lake Whitefish (Coregonus clupeaformis) Species Complex and Their Hybrids Reveal the Genetic Architecture of Population Divergence

    PubMed Central

    Rogers, S. M.; Isabel, N.; Bernatchez, L.

    2007-01-01

    Elucidating the genetic architecture of population divergence may reveal the evolution of reproductive barriers and the genomic regions implicated in the process. We assembled genetic linkage maps for the dwarf and Normal lake whitefish species complex and their hybrids. A total of 877 AFLP loci and 30 microsatellites were positioned. The homology of mapped loci between families supported the existence of 34 linkage groups (of 40n expected) exhibiting 83% colinearity among linked loci between these two families. Classes of AFLP markers were not randomly distributed among linkage groups. Both AFLP and microsatellites exhibited deviations from Mendelian expectations, with 30.4% exhibiting significant segregation distortion across 28 linkage groups of the four linkage maps in both families (P < 0.00001). Eight loci distributed over seven homologous linkage groups were significantly distorted in both families and the level of distortion, when comparing homologous loci of the same phase between families, was correlated (Spearman R = 0.378, P = 0.0021). These results suggest that substantial divergence incurred during allopatric glacial separation and subsequent sympatric ecological specialization has resulted in several genomic regions that are no longer complementary between dwarf and Normal populations issued from different evolutionary glacial lineages. PMID:17110497

  17. Detecting adaptive trait loci in nonmodel systems: divergence or admixture mapping?

    PubMed

    Crawford, Jacob E; Nielsen, Rasmus

    2013-12-01

    Mapping adaptive trait loci (ATL) underlying ecological divergence is an essential step towards understanding the processes that generate phenotypic diversity. Technological advances have made it possible to sequence exomes in nonmodel systems, providing an efficient means of analysing functional genetic variants. Divergence scans of genetic markers for outlier loci, or 'divergence mapping', have been used to map locally adapted genes, but this approach is likely to be underpowered when background divergence is elevated. Genotype-phenotype association tests in admixed populations, or 'admixture mapping', may provide a useful approach for mapping locally adapted loci when neutral divergence is high. To determine the power and limits of divergence mapping, we simulated exomes containing a single ATL across two parental populations of varying neutral divergence, estimated divergence and quantified the power to identify the ATL. We found that divergence mapping had very high power when background FST is <0.2, but decreased dramatically above this level. To evaluate the utility of admixture mapping, we simulated exomes from admixed populations, then simulated phenotypes, conducted genotype-phenotype association tests and found that even two generations of random mating after admixture could provide high mapping power in scenarios where pure divergence mapping was ineffective (FST = 0.35). Moreover, admixture mapping had high power across all levels of divergence after 20 generations since admixture. Together with high-throughput exome sequencing, admixture mapping could be used to map ATL in systems such as Heliconius butterflies or Gryllus crickets when experimental design and analytical approach are chosen accordingly. PMID:24128338

  18. Adaptive divergence in experimental populations of Pseudomonas fluorescens. I. Genetic and phenotypic bases of wrinkly spreader fitness.

    PubMed Central

    Spiers, Andrew J; Kahn, Sophie G; Bohannon, John; Travisano, Michael; Rainey, Paul B

    2002-01-01

    A central feature of all adaptive radiations is morphological divergence, but the phenotypic innovations that are responsible are rarely known. When selected in a spatially structured environment, populations of the bacterium Pseudomonas fluorescens rapidly diverge. Among the divergent morphs is a mutant type termed "wrinkly spreader" (WS) that colonizes a new niche through the formation of self-supporting biofilms. Loci contributing to the primary phenotypic innovation were sought by screening a WS transposon library for niche-defective (WS(-)) mutants. Detailed analysis of one group of mutants revealed an operon of 10 genes encoding enzymes necessary to produce a cellulose-like polymer (CLP). WS genotypes overproduce CLP and overproduction of the polymer is necessary for the distinctive morphology of WS colonies; it is also required for biofilm formation and to maximize fitness in spatially structured microcosms, but overproduction of CLP alone is not sufficient to cause WS. A working model predicts that modification of cell cycle control of CLP production is an important determinant of the phenotypic innovation. Analysis of >30 kb of DNA encoding traits required for expression of the WS phenotype, including a regulatory locus, has not revealed the mutational causes, indicating a complex genotype-phenotype map. PMID:12019221

  19. Genetic divergence between Atlantic and Indo-Pacific stocks of bigeye tuna (Thunnus obesus) and admixture around South Africa.

    PubMed

    Chow, S; Okamoto, H; Miyabe, N; Hiramatsu, K; Barut, N

    2000-02-01

    Two mitochondrial DNA segments of the bigeye tuna (Thunnus obesus) were amplified by polymerase chain reaction (PCR), and restriction fragment length polymorphism (RFLP) analyses of these segments were used for the genetic stock study. The variation in a segment flanking the ATPase and COIII genes was low; only two genotypes (alpha and beta) were detected by RsaI digestion. Yet a large difference in the genotype distribution was observed between ocean basin samples. The alpha type predominated in four Atlantic samples, where 178 of 244 individuals were the alpha type. In contrast, only one of 195 individuals collected in the Indo-Pacific was the alpha type? The frequency of the alpha type varied considerably from 0 to 80% among seven samples collected off the Cape of Good Hope. The variation found in the other segment, containing the D-loop region, was much higher; two endonucleases (DpnII and RsaI) detected five genotypes each and 15 composite genotypes. A highly significant difference in genotype frequencies was observed between the Atlantic and Indo-Pacific samples, but no heterogeneity was observed among the four Atlantic or among four Indo-Pacific samples. These results clearly indicate that not only gene flow, but also fish migration, between the Atlantic and Indian Oceans are severely restricted, and that fishes from these distinct stocks are intermingling around South Africa. The simple and diagnostic genetic marker found in this study can be used to estimate mixing ratios between Atlantic and Indian stocks around South Africa. PMID:10672166

  20. High-performance nonequilibrium-plasma magnetohydrodynamic electrical power generator using slightly divergent channel configuration: I. Calculation

    NASA Astrophysics Data System (ADS)

    Murakami, Tomoyuki; Okuno, Yoshihiro

    2008-06-01

    We describe quasi-three-dimensional numerical simulations of a high-performance nonequilibrium-plasma magnetohydrodynamic (MHD) electrical power generator using a slightly divergent configuration. The slightly divergent generator provides greater isentropic efficiency (IE) than a highly divergent generator when an identical enthalpy extraction ratio (EER) is obtained. The inherent feature of a small divergent geometry is clarified; MHD energy conversion is accompanied by less entropy production as well as less gas expansion. The orientation of the performance improvement on an IE-EER map is consistent with the theoretically predicted orientation, which is formulated using an algebraic method based on classical thermodynamic results for supersonic compressible fluid dynamics. The power-generating performance indicators, IE and EER, are clearly determined by modified magnetic flux density, that is, the square of magnetic flux density divided by total inflow pressure. A virtual operating condition for a practical closed-cycle MHD system is proposed considering the relationships between the applied magnetic flux density, the total inflow pressure and the total pressure gradient throughout the generator. This paper is the first part of a duology.

  1. A Human Monoclonal Antibody with Neutralizing Activity against Highly Divergent Influenza Subtypes

    PubMed Central

    Solforosi, Laura; Moreno, Guisella J.; Gubareva, Larisa V.; Mishin, Vasiliy; Di Pietro, Andrea; Vicenzi, Elisa; Siccardi, Antonio G.; Clementi, Massimo; Burioni, Roberto

    2011-01-01

    The interest in broad-range anti-influenza A monoclonal antibodies (mAbs) has recently been strengthened by the identification of anti-hemagglutinin (HA) mAbs endowed with heterosubtypic neutralizing activity to be used in the design of “universal” prophylactic or therapeutic tools. However, the majority of the single mAbs described to date do not bind and neutralize viral isolates belonging to highly divergent subtypes clustering into the two different HA-based influenza phylogenetic groups: the group 1 including, among others, subtypes H1, H2, H5 and H9 and the group 2 including, among others, H3 subtype. Here, we describe a human mAb, named PN-SIA28, capable of binding and neutralizing all tested isolates belonging to phylogenetic group 1, including H1N1, H2N2, H5N1 and H9N2 subtypes and several isolates belonging to group 2, including H3N2 isolates from the first period of the 1968 pandemic. Therefore, PN-SIA28 is capable of neutralizing isolates belonging to subtypes responsible of all the reported pandemics, as well as other subtypes with pandemic potential. The region recognized by PN-SIA28 has been identified on the stem region of HA and includes residues highly conserved among the different influenza subtypes. A deep characterization of PN-SIA28 features may represent a useful help in the improvement of available anti-influenza therapeutic strategies and can provide new tools for the development of universal vaccinal strategies. PMID:22162996

  2. Diverging Plant and Ecosystem Strategies in Response to Climate Change in the High Arctic

    NASA Astrophysics Data System (ADS)

    Maseyk, K. S.; Welker, J. M.; Czimczik, C. I.; Lupascu, M.; Lett, C.; Seibt, U. H.

    2014-12-01

    Increasing summer precipitation means Arctic growing seasons are becoming wetter as well as warmer, but the effect of these coupled changes on tundra ecosystem functioning remains largely unknown. We have determined how warmer and wetter summers affect coupled carbon-water cycling in a High Arctic polar semi-desert ecosystem in NW Greenland. Measurements of ecosystem CO2 and water fluxes throughout the growing season and leaf ecophysiological traits (gas exchange, morphology, leaf chemistry) were made at a long-term climate change experiment. After 9 years of exposure to warmer (+ 4°C) and / or wetter (+ 50% precipitation) treatments, we found diverging plant strategies between the responses to warming with or without an increase in summer precipitation. Warming alone resulted in an increase in leaf nitrogen, mesophyll conductance and leaf-mass per area and higher rates of leaf-level photosynthesis, but with warming and wetting combined leaf traits remain largely unchanged. However, total leaf area increased with warming plus wetting but was unchanged with warming alone. The combined effect of these leaf trait and canopy adjustments is a decrease in ecosystem water-use efficiency (the ratio of net productivity to evapotranspiration) with warming only, but a substantial increase with combined warming and wetting. We conclude that increasing summer precipitation will alter tundra ecohydrological responses to warming; that leaf-level changes in ecophysiological traits have an upward cascading consequence for ecosystem and land surface-climate interactions; and the current relative resistance of High Arctic ecosystems to warming may mask biochemical and carbon cycling changes already underway.

  3. Turnip curly top virus, a highly divergent geminivirus infecting turnip in Iran.

    PubMed

    Briddon, Rob W; Heydarnejad, Jahangir; Khosrowfar, Fakhrosadat; Massumi, Hossain; Martin, Darren P; Varsani, Arvind

    2010-09-01

    From 2006 onwards turnip crops in Fars province, Iran, have been noted with unusual leaf curling and vein swelling symptoms which are characteristic of the leafhopper-transmitted viruses of the genus Curtovirus (family Geminiviridae). Rolling circle amplification was used to clone viruses from five turnip isolates exhibiting leaf curl symptoms. Analysis of the sequences showed them to have >93% sequence identity and to be distinct from all other geminiviruses previously characterised. Analysis of the sequence of this virus, for which we propose the name Turnip curly top virus (TCTV), showed it to have a genome arrangement in the complementary-sense similar to that of curtoviruses (consisting of four overlapping genes) but only two open reading frames in the virion-sense (the curtoviruses encode three). The complementary-sense genes are homologous to those of curtoviruses but show little sequence identity to their curtovirus homologs, with the exception of the product of the C4 open reading frame (ORF) which shows approximately 70.6% amino acid sequence identity to the C4 of the North American curtoviruses, Pepper curly top virus and Beet mild curly top virus. For curtoviruses the C4 protein is a symptom determinant, which likely explains the similarity of TCTV symptoms to those of curtoviruses. In the virion-sense the predicted product of the V2 ORF of TCTV shows no significant similarity with any proteins in the databases whereas the product of the V1 ORF (encoding the coat protein [CP] of geminiviruses) shows low levels of sequence identity to the CPs of curtoviruses. These findings show TCTV to be a highly divergent geminivirus with similarities to viruses of the genus curtovirus. The significance of these findings, particularly the taxonomic implications are discussed. PMID:20566344

  4. Divergence-free MHD on unstructured meshes using high order finite volume schemes based on multidimensional Riemann solvers

    NASA Astrophysics Data System (ADS)

    Balsara, Dinshaw S.; Dumbser, Michael

    2015-10-01

    Several advances have been reported in the recent literature on divergence-free finite volume schemes for Magnetohydrodynamics (MHD). Almost all of these advances are restricted to structured meshes. To retain full geometric versatility, however, it is also very important to make analogous advances in divergence-free schemes for MHD on unstructured meshes. Such schemes utilize a staggered Yee-type mesh, where all hydrodynamic quantities (mass, momentum and energy density) are cell-centered, while the magnetic fields are face-centered and the electric fields, which are so useful for the time update of the magnetic field, are centered at the edges. Three important advances are brought together in this paper in order to make it possible to have high order accurate finite volume schemes for the MHD equations on unstructured meshes. First, it is shown that a divergence-free WENO reconstruction of the magnetic field can be developed for unstructured meshes in two and three space dimensions using a classical cell-centered WENO algorithm, without the need to do a WENO reconstruction for the magnetic field on the faces. This is achieved via a novel constrained L2-projection operator that is used in each time step as a postprocessor of the cell-centered WENO reconstruction so that the magnetic field becomes locally and globally divergence free. Second, it is shown that recently-developed genuinely multidimensional Riemann solvers (called MuSIC Riemann solvers) can be used on unstructured meshes to obtain a multidimensionally upwinded representation of the electric field at each edge. Third, the above two innovations work well together with a high order accurate one-step ADER time stepping strategy, which requires the divergence-free nonlinear WENO reconstruction procedure to be carried out only once per time step. The resulting divergence-free ADER-WENO schemes with MuSIC Riemann solvers give us an efficient and easily-implemented strategy for divergence-free MHD on

  5. Genetic differentiation, niche divergence, and the origin and maintenance of the disjunct distribution in the Blossomcrown Anthocephala floriceps (Trochilidae).

    PubMed

    Lozano-Jaramillo, María; Rico-Guevara, Alejandro; Cadena, Carlos Daniel

    2014-01-01

    Studies of the origin and maintenance of disjunct distributions are of special interest in biogeography. Disjunct distributions can arise following extinction of intermediate populations of a formerly continuous range and later maintained by climatic specialization. We tested hypotheses about how the currently disjunct distribution of the Blossomcrown (Anthocephala floriceps), a hummingbird species endemic to Colombia, arose and how is it maintained. By combining molecular data and models of potential historical distributions we evaluated: (1) the timing of separation between the two populations of the species, (2) whether the disjunct distribution could have arisen as a result of fragmentation of a formerly widespread range due to climatic changes, and (3) if the disjunct distribution might be currently maintained by specialization of each population to different climatic conditions. We found that the two populations are reciprocally monophyletic for mitochondrial and nuclear loci, and that their divergence occurred ca. 1.4 million years before present (95% credibility interval 0.7-2.1 mybp). Distribution models based on environmental data show that climate has likely not been suitable for a fully continuous range over the past 130,000 years, but the potential distribution 6,000 ybp was considerably larger than at present. Tests of climatic divergence suggest that significant niche divergence between populations is a likely explanation for the maintenance of their disjunct ranges. However, based on climate the current range of A. floriceps could potentially be much larger than it currently is, suggesting other ecological or historical factors have influenced it. Our results showing that the distribution of A. floriceps has been discontinous for a long period of time and that populations exhibit different climatic niches have taxonomic and conservation implications. PMID:25251766

  6. Genetic Differentiation, Niche Divergence, and the Origin and Maintenance of the Disjunct Distribution in the Blossomcrown Anthocephala floriceps (Trochilidae)

    PubMed Central

    Lozano-Jaramillo, María; Rico-Guevara, Alejandro; Cadena, Carlos Daniel

    2014-01-01

    Studies of the origin and maintenance of disjunct distributions are of special interest in biogeography. Disjunct distributions can arise following extinction of intermediate populations of a formerly continuous range and later maintained by climatic specialization. We tested hypotheses about how the currently disjunct distribution of the Blossomcrown (Anthocephala floriceps), a hummingbird species endemic to Colombia, arose and how is it maintained. By combining molecular data and models of potential historical distributions we evaluated: (1) the timing of separation between the two populations of the species, (2) whether the disjunct distribution could have arisen as a result of fragmentation of a formerly widespread range due to climatic changes, and (3) if the disjunct distribution might be currently maintained by specialization of each population to different climatic conditions. We found that the two populations are reciprocally monophyletic for mitochondrial and nuclear loci, and that their divergence occurred ca. 1.4 million years before present (95% credibility interval 0.7–2.1 mybp). Distribution models based on environmental data show that climate has likely not been suitable for a fully continuous range over the past 130,000 years, but the potential distribution 6,000 ybp was considerably larger than at present. Tests of climatic divergence suggest that significant niche divergence between populations is a likely explanation for the maintenance of their disjunct ranges. However, based on climate the current range of A. floriceps could potentially be much larger than it currently is, suggesting other ecological or historical factors have influenced it. Our results showing that the distribution of A. floriceps has been discontinous for a long period of time and that populations exhibit different climatic niches have taxonomic and conservation implications. PMID:25251766

  7. Genetic divergence and diversity in the Mona and Virgin Islands Boas, Chilabothrus monensis (Epicrates monensis) (Serpentes: Boidae), West Indian snakes of special conservation concern.

    PubMed

    Rodríguez-Robles, Javier A; Jezkova, Tereza; Fujita, Matthew K; Tolson, Peter J; García, Miguel A

    2015-07-01

    Habitat fragmentation reduces the extent and connectivity of suitable habitats, and can lead to changes in population genetic structure. Limited gene flow among isolated demes can result in increased genetic divergence among populations, and decreased genetic diversity within demes. We assessed patterns of genetic variation in the Caribbean boa Chilabothrus monensis (Epicrates monensis) using two mitochondrial and seven nuclear markers, and relying on the largest number of specimens of these snakes examined to date. Two disjunct subspecies of C. monensis are recognized: the threatened C. m. monensis, endemic to Mona Island, and the rare and endangered C. m. granti, which occurs on various islands of the Puerto Rican Bank. Mitochondrial and nuclear markers revealed unambiguous genetic differences between the taxa, and coalescent species delimitation methods indicated that these snakes likely are different evolutionary lineages, which we recognize at the species level, C. monensis and C. granti. All examined loci in C. monensis (sensu stricto) are monomorphic, which may indicate a recent bottleneck event. Each population of C. granti exclusively contains private mtDNA haplotypes, but five of the seven nuclear genes assayed are monomorphic, and nucleotide diversity is low in the two remaining markers. The faster pace of evolution of mtDNA possibly reflects the present-day isolation of populations of C. granti, whereas the slower substitution rate of nuDNA may instead mirror the relatively recent episodes of connectivity among the populations facilitated by the lower sea level during the Pleistocene. The small degree of overall genetic variation in C. granti suggests that demes of this snake could be managed as a single unit, a practice that would significantly increase their effective population size. PMID:25837733

  8. siVirus: web-based antiviral siRNA design software for highly divergent viral sequences

    PubMed Central

    Naito, Yuki; Ui-Tei, Kumiko; Nishikawa, Toru; Takebe, Yutaka; Saigo, Kaoru

    2006-01-01

    siVirus () is a web-based online software system that provides efficient short interfering RNA (siRNA) design for antiviral RNA interference (RNAi). siVirus searches for functional, off-target minimized siRNAs targeting highly conserved regions of divergent viral sequences. These siRNAs are expected to resist viral mutational escape, since their highly conserved targets likely contain structurally/functionally constrained elements. siVirus will be a useful tool for designing optimal siRNAs targeting highly divergent pathogens, including human immunodeficiency virus (HIV), hepatitis C virus (HCV), influenza virus and SARS coronavirus, all of which pose enormous threats to global human health. PMID:16845046

  9. Assessment of Host-Associated Genetic Differentiation among Phenotypically Divergent Populations of a Coral-Eating Gastropod across the Caribbean

    PubMed Central

    Johnston, Lyza; Miller, Margaret W.; Baums, Iliana B.

    2012-01-01

    Host-associated adaptation is emerging as a potential driver of population differentiation and speciation for marine organisms with major implications for ecosystem structure and function. Coralliophila abbreviata are corallivorous gastropods that live and feed on most of the reef-building corals in the tropical western Atlantic and Caribbean. Populations of C. abbreviata associated with the threatened acroporid corals, Acropora palmata and A. cervicornis, display different behavioral, morphological, demographic, and life-history characteristics than those that inhabit other coral host taxa, indicating that host-specific selective forces may be acting on C. abbreviata. Here, we used newly developed polymorphic microsatellite loci and mitochondrial cytochrome b sequence data to assess the population genetic structure, connectivity, and demographic history of C. abbreviata populations from three coral host taxa (A. palmata, Montastraea spp., Mycetophyllia spp.) and six geographic locations across the Caribbean. Analysis of molecular variance provided some evidence of weak and possibly geographically variable host-associated differentiation but no evidence of differentiation among sampling locations or major oceanographic regions, suggesting high gene flow across the Caribbean. Phylogenetic network and Bayesian clustering analyses supported a hypothesis of a single panmictic population as individuals failed to cluster by host or sampling location. Demographic analyses consistently supported a scenario of population expansion during the Pleistocene, a time of major carbonate reef development in the region. Although further study is needed to fully elucidate the interactive effects of host-associated selection and high gene flow in this system, our results have implications for local and regional community interactions and impact of predation on declining coral populations. PMID:23133600

  10. Genetic Divergence between Freshwater and Marine Morphs of Alewife (Alosa pseudoharengus): A ‘Next-Generation’ Sequencing Analysis

    PubMed Central

    Czesny, Sergiusz; Epifanio, John; Michalak, Pawel

    2012-01-01

    Alewife Alosa pseudoharengus, a small clupeid fish native to Atlantic Ocean, has recently (∼150 years ago) invaded the North American Great Lakes and despite challenges of freshwater environment its populations exploded and disrupted local food web structures. This range expansion has been accompanied by dramatic changes at all levels of organization. Growth rates, size at maturation, or fecundity are only a few of the most distinct morphological and life history traits that contrast the two alewife morphs. A question arises to what extent these rapidly evolving differences between marine and freshwater varieties result from regulatory (including phenotypic plasticity) or structural mutations. To gain insights into expression changes and sequence divergence between marine and freshwater alewives, we sequenced transcriptomes of individuals from Lake Michigan and Atlantic Ocean. Population specific single nucleotide polymorphisms were rare but interestingly occurred in sequences of genes that also tended to show large differences in expression. Our results show that the striking phenotypic divergence between anadromous and lake alewives can be attributed to massive regulatory modifications rather than coding changes. PMID:22438868

  11. Genetic divergence and phylogeographic relationships among european perch (Perca fluviatilis) populations reflect glacial refugia and postglacial colonization.

    PubMed

    Nesbø, C L; Fossheim, T; Vollestad, L A; Jakobsen, K S

    1999-09-01

    We used the widely distributed freshwater fish, perch (Perca fluviatilis), to investigate the postglacial colonization routes of freshwater fishes in Europe. Genetic variability within and among drainages was assessed using mitochondrial DNA (mtDNA) D-loop sequencing and RAPD markers from 55 populations all over Europe as well as one Siberian population. High level of structuring for both markers was observed among drainages and regions, while little differentiation was seen within drainages and regions. Phylogeographic relationships among European perch were determined from the distribution of 35 mtDNA haplotypes detected in the samples. In addition to a distinct southern European group, which includes a Greek and a southern Danubian population, three major groups of perch are observed: the western European drainages, the eastern European drainages including the Siberian population, and Norwegian populations from northern Norway, and western side of Oslofjord. Our data suggest that present perch populations in western and northern Europe were colonized from three main refugia, located in southeastern, northeastern and western Europe. In support of this, nested cladistic analysis of mtDNA clade and nested clade distances suggested historical range expansion as the main factor determining geographical distribution of haplotypes. The Baltic Sea has been colonized from all three refugia, and northeastern Europe harbours descendants from both eastern European refugia. In the upper part of the Danube lineages from the western European and the southern European refugia meet. The southern European refugium probably did not contribute to the recolonization of other western and northern European drainages after the last glaciation. However, phylogenetic analyses suggest that the southern European mtDNA lineage is the most ancient, and therefore likely to be the founder of all present perch lineages. The colonization routes used by perch probably also apply to other

  12. Emission of High-Energy Ions in the SHOTGUN III Divergent Gas-Puff Z-Pinch Experiment

    NASA Astrophysics Data System (ADS)

    TAKASUGI, Keiichi; IWATA, Masayuki; NISHIO, Mineyuki

    2016-03-01

    Ion pinhole measurements of high-energy ions were conducted on the divergent gas-puff z-pinch plasma. Two types of ions, 1.7 - 2.5 MeV and 0.1 - 0.7 MeV, were observed. The former was observed only on the axis. The latter showed quite different characteristics between positive and negative discharges. These ions were considered to be accelerated by inductive electric field generated by the pinch.

  13. Divergent selection on, but no genetic conflict over, female and male timing and rate of reproduction in a human population

    PubMed Central

    Bolund, Elisabeth; Bouwhuis, Sandra; Pettay, Jenni E.; Lummaa, Virpi

    2013-01-01

    The sexes often have different phenotypic optima for important life-history traits, and because of a largely shared genome this can lead to a conflict over trait expression. In mammals, the obligate costs of reproduction are higher for females, making reproductive timing and rate especially liable to conflict between the sexes. While studies from wild vertebrates support such sexual conflict, it remains unexplored in humans. We used a pedigreed human population from preindustrial Finland to estimate sexual conflict over age at first and last reproduction, reproductive lifespan and reproductive rate. We found that the phenotypic selection gradients differed between the sexes. We next established significant heritabilities in both sexes for all traits. All traits, except reproductive rate, showed strongly positive intersexual genetic correlations and were strongly genetically correlated with fitness in both sexes. Moreover, the genetic correlations with fitness were almost identical in men and women. For reproductive rate, the intersexual correlation and the correlation with fitness were weaker but again similar between the sexes. Thus, in this population, an apparent sexual conflict at the phenotypic level did not reflect an underlying genetic conflict over the studied reproductive traits. These findings emphasize the need for incorporating genetic perspectives into studies of human life-history evolution. PMID:24107531

  14. Enhanced biofilm formation and multi‐host transmission evolve from divergent genetic backgrounds in C ampylobacter jejuni

    PubMed Central

    Pascoe, Ben; Méric, Guillaume; Murray, Susan; Yahara, Koji; Mageiros, Leonardos; Bowen, Ryan; Jones, Nathan H.; Jeeves, Rose E.; Lappin‐Scott, Hilary M.; Asakura, Hiroshi

    2015-01-01

    Summary Multicellular biofilms are an ancient bacterial adaptation that offers a protective environment for survival in hostile habitats. In microaerophilic organisms such as C ampylobacter, biofilms play a key role in transmission to humans as the bacteria are exposed to atmospheric oxygen concentrations when leaving the reservoir host gut. Genetic determinants of biofilm formation differ between species, but little is known about how strains of the same species achieve the biofilm phenotype with different genetic backgrounds. Our approach combines genome‐wide association studies with traditional microbiology techniques to investigate the genetic basis of biofilm formation in 102 C ampylobacter jejuni isolates. We quantified biofilm formation among the isolates and identified hotspots of genetic variation in homologous sequences that correspond to variation in biofilm phenotypes. Thirteen genes demonstrated a statistically robust association including those involved in adhesion, motility, glycosylation, capsule production and oxidative stress. The genes associated with biofilm formation were different in the host generalist ST‐21 and ST‐45 clonal complexes, which are frequently isolated from multiple host species and clinical samples. This suggests the evolution of enhanced biofilm from different genetic backgrounds and a possible role in colonization of multiple hosts and transmission to humans. PMID:26373338

  15. Contrasting the Chromosomal Organization of Repetitive DNAs in Two Gryllidae Crickets with Highly Divergent Karyotypes

    PubMed Central

    Palacios-Gimenez, Octavio M.; Carvalho, Carlos Roberto; Ferrari Soares, Fernanda Aparecida; Cabral-de-Mello, Diogo C.

    2015-01-01

    A large percentage of eukaryotic genomes consist of repetitive DNA that plays an important role in the organization, size and evolution. In the case of crickets, chromosomal variability has been found using classical cytogenetics, but almost no information concerning the organization of their repetitive DNAs is available. To better understand the chromosomal organization and diversification of repetitive DNAs in crickets, we studied the chromosomes of two Gryllidae species with highly divergent karyotypes, i.e., 2n(♂) = 29,X0 (Gryllus assimilis) and 2n = 9, neo-X1X2Y (Eneoptera surinamensis). The analyses were performed using classical cytogenetic techniques, repetitive DNA mapping and genome-size estimation. Conserved characteristics were observed, such as the occurrence of a small number of clusters of rDNAs and U snDNAs, in contrast to the multiple clusters/dispersal of the H3 histone genes. The positions of U2 snDNA and 18S rDNA are also conserved, being intermingled within the largest autosome. The distribution and base-pair composition of the heterochromatin and repetitive DNA pools of these organisms differed, suggesting reorganization. Although the microsatellite arrays had a similar distribution pattern, being dispersed along entire chromosomes, as has been observed in some grasshopper species, a band-like pattern was also observed in the E. surinamensis chromosomes, putatively due to their amplification and clustering. In addition to these differences, the genome of E. surinamensis is approximately 2.5 times larger than that of G. assimilis, which we hypothesize is due to the amplification of repetitive DNAs. Finally, we discuss the possible involvement of repetitive DNAs in the differentiation of the neo-sex chromosomes of E. surinamensis, as has been reported in other eukaryotic groups. This study provided an opportunity to explore the evolutionary dynamics of repetitive DNAs in two non-model species and will contribute to the understanding of

  16. Contrasting the Chromosomal Organization of Repetitive DNAs in Two Gryllidae Crickets with Highly Divergent Karyotypes.

    PubMed

    Palacios-Gimenez, Octavio M; Carvalho, Carlos Roberto; Ferrari Soares, Fernanda Aparecida; Cabral-de-Mello, Diogo C

    2015-01-01

    A large percentage of eukaryotic genomes consist of repetitive DNA that plays an important role in the organization, size and evolution. In the case of crickets, chromosomal variability has been found using classical cytogenetics, but almost no information concerning the organization of their repetitive DNAs is available. To better understand the chromosomal organization and diversification of repetitive DNAs in crickets, we studied the chromosomes of two Gryllidae species with highly divergent karyotypes, i.e., 2n(♂) = 29,X0 (Gryllus assimilis) and 2n = 9, neo-X1X2Y (Eneoptera surinamensis). The analyses were performed using classical cytogenetic techniques, repetitive DNA mapping and genome-size estimation. Conserved characteristics were observed, such as the occurrence of a small number of clusters of rDNAs and U snDNAs, in contrast to the multiple clusters/dispersal of the H3 histone genes. The positions of U2 snDNA and 18S rDNA are also conserved, being intermingled within the largest autosome. The distribution and base-pair composition of the heterochromatin and repetitive DNA pools of these organisms differed, suggesting reorganization. Although the microsatellite arrays had a similar distribution pattern, being dispersed along entire chromosomes, as has been observed in some grasshopper species, a band-like pattern was also observed in the E. surinamensis chromosomes, putatively due to their amplification and clustering. In addition to these differences, the genome of E. surinamensis is approximately 2.5 times larger than that of G. assimilis, which we hypothesize is due to the amplification of repetitive DNAs. Finally, we discuss the possible involvement of repetitive DNAs in the differentiation of the neo-sex chromosomes of E. surinamensis, as has been reported in other eukaryotic groups. This study provided an opportunity to explore the evolutionary dynamics of repetitive DNAs in two non-model species and will contribute to the understanding of

  17. Theoretical foundations for quantitative paleogenetics. III - The molecular divergence of nucleic acids and proteins for the case of genetic events of unequal probability

    NASA Technical Reports Server (NTRS)

    Holmquist, R.; Pearl, D.

    1980-01-01

    Theoretical equations are derived for molecular divergence with respect to gene and protein structure in the presence of genetic events with unequal probabilities: amino acid and base compositions, the frequencies of nucleotide replacements, the usage of degenerate codons, the distribution of fixed base replacements within codons and the distribution of fixed base replacements among codons. Results are presented in the form of tables relating the probabilities of given numbers of codon base changes with respect to the original codon for the alpha hemoglobin, beta hemoglobin, myoglobin, cytochrome c and parvalbumin group gene families. Application of the calculations to the rabbit alpha and beta hemoglobin mRNAs and proteins indicates that the genes are separated by about 425 fixed based replacements distributed over 114 codon sites, which is a factor of two greater than previous estimates. The theoretical results also suggest that many more base replacements are required to effect a given gene or protein structural change than previously believed.

  18. High-flux low-divergence positron beam generation from ultra-intense laser irradiated a tapered hollow target

    SciTech Connect

    Liu, Jian-Xun; Ma, Yan-Yun; Zhao, Jun; Yu, Tong-Pu Yang, Xiao-Hu; Gan, Long-Fei; Zhang, Guo-Bo; Yan, Jian-Feng; Zhuo, Hong-Bin; Liu, Jin-Jin; Zhao, Yuan; Kawata, Shigeo

    2015-10-15

    By using two-dimensional particle-in-cell simulations, we demonstrate high-flux dense positrons generation by irradiating an ultra-intense laser pulse onto a tapered hollow target. By using a laser with an intensity of 4 × 10{sup 23 }W/cm{sup 2}, it is shown that the Breit-Wheeler process dominates the positron production during the laser-target interaction and a positron beam with a total number >10{sup 15} is obtained, which is increased by five orders of magnitude than in the previous work at the same laser intensity. Due to the focusing effect of the transverse electric fields formed in the hollow cone wall, the divergence angle of the positron beam effectively decreases to ∼15° with an effective temperature of ∼674 MeV. When the laser intensity is doubled, both the positron flux (>10{sup 16}) and temperature (963 MeV) increase, while the divergence angle gets smaller (∼13°). The obtained high-flux low-divergence positron beam may have diverse applications in science, medicine, and engineering.

  19. High-flux low-divergence positron beam generation from ultra-intense laser irradiated a tapered hollow target

    NASA Astrophysics Data System (ADS)

    Liu, Jian-Xun; Ma, Yan-Yun; Zhao, Jun; Yu, Tong-Pu; Yang, Xiao-Hu; Gan, Long-Fei; Zhang, Guo-Bo; Yan, Jian-Feng; Zhuo, Hong-Bin; Liu, Jin-Jin; Zhao, Yuan; Kawata, Shigeo

    2015-10-01

    By using two-dimensional particle-in-cell simulations, we demonstrate high-flux dense positrons generation by irradiating an ultra-intense laser pulse onto a tapered hollow target. By using a laser with an intensity of 4 × 1023 W/cm2, it is shown that the Breit-Wheeler process dominates the positron production during the laser-target interaction and a positron beam with a total number >1015 is obtained, which is increased by five orders of magnitude than in the previous work at the same laser intensity. Due to the focusing effect of the transverse electric fields formed in the hollow cone wall, the divergence angle of the positron beam effectively decreases to ˜15° with an effective temperature of ˜674 MeV. When the laser intensity is doubled, both the positron flux (>1016) and temperature (963 MeV) increase, while the divergence angle gets smaller (˜13°). The obtained high-flux low-divergence positron beam may have diverse applications in science, medicine, and engineering.

  20. Genetically divergent types of the wheat leaf fungus Puccinia triticina in Ethiopia, a center of tetraploid wheat diversity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Collections of Puccinia triticina, the wheat leaf rust fungus, were obtained from tetraploid and hexaploid wheat in the central highlands of Ethiopia, and a smaller number from Kenya from 2011 to 2013, in order to determine the genetic diversity of this wheat pathogen in a center of host diversity. ...

  1. Untangling the hybrid nature of modern pig genomes: a mosaic derived from biogeographically distinct and highly divergent Sus scrofa populations

    PubMed Central

    Bosse, Mirte; Megens, Hendrik-Jan; Madsen, Ole; Frantz, Laurent A.F.; Paudel, Yogesh; Crooijmans, Richard P.M.A.; Groenen, Martien A.M.

    2014-01-01

    The merging of populations after an extended period of isolation and divergence is a common phenomenon, in natural settings as well as due to human interference. Individuals with such hybrid origins contain genomes that essentially form a mosaic of different histories and demographies. Pigs are an excellent model species to study hybridization because European and Asian wild boars diverged ~1.2 Mya and pigs were domesticated independently in Europe and Asia. During the Industrial Revolution in England, pigs were imported from China to improve the local pigs. This study utilizes the latest genomics tools to identify the origin of haplotypes in European domesticated pigs that are descendant from Asian and European populations. Our results reveal fine-scale haplotype structure representing different ancient demographic events, as well as a mosaic composition of those distinct histories due to recently introgressed haplotypes in the pig genome. As a consequence, nucleotide diversity in the genome of European domesticated pigs is higher when at least one haplotype of Asian origin is present, and haplotype length correlates negatively with recombination frequency and nucleotide diversity. Another consequence is that the inference of past effective population size is influenced by the background of the haplotypes in an individual, but we demonstrate that by careful sorting based on the origin of haplotypes both distinct demographic histories can be reconstructed. Future detailed mapping of the genomic distribution of variation will enable a targeted approach to increase genetic diversity of captive and wild populations, thus facilitating conservation efforts in the near future. PMID:24863459

  2. Untangling the hybrid nature of modern pig genomes: a mosaic derived from biogeographically distinct and highly divergent Sus scrofa populations.

    PubMed

    Bosse, Mirte; Megens, Hendrik-Jan; Madsen, Ole; Frantz, Laurent A F; Paudel, Yogesh; Crooijmans, Richard P M A; Groenen, Martien A M

    2014-08-01

    The merging of populations after an extended period of isolation and divergence is a common phenomenon, in natural settings as well as due to human interference. Individuals with such hybrid origins contain genomes that essentially form a mosaic of different histories and demographies. Pigs are an excellent model species to study hybridization because European and Asian wild boars diverged ~1.2 Mya, and pigs were domesticated independently in Europe and Asia. During the Industrial Revolution in England, pigs were imported from China to improve the local pigs. This study utilizes the latest genomics tools to identify the origin of haplotypes in European domesticated pigs that are descendant from Asian and European populations. Our results reveal fine-scale haplotype structure representing different ancient demographic events, as well as a mosaic composition of those distinct histories due to recently introgressed haplotypes in the pig genome. As a consequence, nucleotide diversity in the genome of European domesticated pigs is higher when at least one haplotype of Asian origin is present, and haplotype length correlates negatively with recombination frequency and nucleotide diversity. Another consequence is that the inference of past effective population size is influenced by the background of the haplotypes in an individual, but we demonstrate that by careful sorting based on the origin of haplotypes, both distinct demographic histories can be reconstructed. Future detailed mapping of the genomic distribution of variation will enable a targeted approach to increase genetic diversity of captive and wild populations, thus facilitating conservation efforts in the near future. PMID:24863459

  3. Light-dependent chlorophyll f synthase is a highly divergent paralog of PsbA of photosystem II.

    PubMed

    Ho, Ming-Yang; Shen, Gaozhong; Canniffe, Daniel P; Zhao, Chi; Bryant, Donald A

    2016-08-26

    Chlorophyll f (Chl f) permits some cyanobacteria to expand the spectral range for photosynthesis by absorbing far-red light. We used reverse genetics and heterologous expression to identify the enzyme for Chl f synthesis. Null mutants of "super-rogue" psbA4 genes, divergent paralogs of psbA genes encoding the D1 core subunit of photosystem II, abolished Chl f synthesis in two cyanobacteria that grow in far-red light. Heterologous expression of the psbA4 gene, which we rename chlF, enables Chl f biosynthesis in Synechococcus sp. PCC 7002. Because the reaction requires light, Chl f synthase is probably a photo-oxidoreductase that employs catalytically useful Chl a molecules, tyrosine YZ, and plastoquinone (as does photosystem II) but lacks a Mn4Ca1O5 cluster. Introduction of Chl f biosynthesis into crop plants could expand their ability to use solar energy. PMID:27386923

  4. The Drosophila bag of marbles Gene Interacts Genetically with Wolbachia and Shows Female-Specific Effects of Divergence

    PubMed Central

    Flores, Heather A.; Bubnell, Jaclyn E.; Aquadro, Charles F.; Barbash, Daniel A.

    2015-01-01

    Many reproductive proteins from diverse taxa evolve rapidly and adaptively. These proteins are typically involved in late stages of reproduction such as sperm development and fertilization, and are more often functional in males than females. Surprisingly, many germline stem cell (GSC) regulatory genes, which are essential for the earliest stages of reproduction, also evolve adaptively in Drosophila. One example is the bag of marbles (bam) gene, which is required for GSC differentiation and germline cyst development in females and for regulating mitotic divisions and entry to spermatocyte differentiation in males. Here we show that the extensive divergence of bam between Drosophila melanogaster and D. simulans affects bam function in females but has no apparent effect in males. We further find that infection with Wolbachia pipientis, an endosymbiotic bacterium that can affect host reproduction through various mechanisms, partially suppresses female sterility caused by bam mutations in D. melanogaster and interacts differentially with bam orthologs from D. melanogaster and D. simulans. We propose that the adaptive evolution of bam has been driven at least in part by the long-term interactions between Drosophila species and Wolbachia. More generally, we suggest that microbial infections of the germline may explain the unexpected pattern of evolution of several GSC regulatory genes. PMID:26291077

  5. Genetic Divergence among Regions Containing the Vulnerable Great Desert Skink (Liopholis kintorei) in the Australian Arid Zone.

    PubMed

    Dennison, Siobhan; McAlpin, Steve; Chapple, David G; Stow, Adam J

    2015-01-01

    Knowledge of genetic structure and patterns of connectivity is valuable for implementation of effective conservation management. The arid zone of Australia contains a rich biodiversity, however this has come under threat due to activities such as altered fire regimes, grazing and the introduction of feral herbivores and predators. Suitable habitats for many species can be separated by vast distances, and despite an apparent lack of current geographical barriers to dispersal, habitat specialisation, which is exhibited by many desert species, may limit connectivity throughout this expansive region. We characterised the genetic structure and differentiation of the great desert skink (Liopholis kintorei), which has a patchy, but widespread distribution in the western region of the Australian arid zone. As a species of cultural importance to local Aboriginal groups and nationally listed as Vulnerable, it is a conservation priority for numerous land managers in central Australia. Analysis of mitochondrial ND4 sequence data and ten nuclear microsatellite loci across six sampling localities through the distribution of L. kintorei revealed considerable differentiation among sites, with mitochondrial FST and microsatellite F'ST ranging from 0.047-0.938 and 0.257-0.440, respectively. The extent of differentiation suggests three main regions that should be managed separately, in particular the southeastern locality of Uluru. Current genetic delineation of these regions should be maintained if future intervention such as translocation or captive breeding is to be undertaken. PMID:26061141

  6. Genetic Divergence among Regions Containing the Vulnerable Great Desert Skink (Liopholis kintorei) in the Australian Arid Zone

    PubMed Central

    Dennison, Siobhan; McAlpin, Steve; Chapple, David G.; Stow, Adam J.

    2015-01-01

    Knowledge of genetic structure and patterns of connectivity is valuable for implementation of effective conservation management. The arid zone of Australia contains a rich biodiversity, however this has come under threat due to activities such as altered fire regimes, grazing and the introduction of feral herbivores and predators. Suitable habitats for many species can be separated by vast distances, and despite an apparent lack of current geographical barriers to dispersal, habitat specialisation, which is exhibited by many desert species, may limit connectivity throughout this expansive region. We characterised the genetic structure and differentiation of the great desert skink (Liopholis kintorei), which has a patchy, but widespread distribution in the western region of the Australian arid zone. As a species of cultural importance to local Aboriginal groups and nationally listed as Vulnerable, it is a conservation priority for numerous land managers in central Australia. Analysis of mitochondrial ND4 sequence data and ten nuclear microsatellite loci across six sampling localities through the distribution of L. kintorei revealed considerable differentiation among sites, with mitochondrial FST and microsatellite F′ST ranging from 0.047-0.938 and 0.257-0.440, respectively. The extent of differentiation suggests three main regions that should be managed separately, in particular the southeastern locality of Uluru. Current genetic delineation of these regions should be maintained if future intervention such as translocation or captive breeding is to be undertaken. PMID:26061141

  7. Genetic Variation and Divergence of Genes Involved in Leaf Adaxial-Abaxial Polarity Establishment in Brassica rapa.

    PubMed

    Liang, Jianli; Liu, Bo; Wu, Jian; Cheng, Feng; Wang, Xiaowu

    2016-01-01

    Alterations in leaf adaxial-abaxial (ad-ab) polarity are one of the main factors that influence leaf curvature. In Chinese cabbage, leaf incurvature is an essential prerequisite to the formation of a leafy head. Identifying ad-ab patterning genes and investigating their genetic variation may facilitate elucidation of the mechanisms underlying leaf incurvature during head formation. Comparative genomic analysis of 45 leaf ad-ab patterning genes in Brassica rapa based on 26 homologs of Arabidopsis thaliana indicated that these genes underwent expansion and were retained after whole genome triplication (WGT). We also assessed the nucleotide diversity and selection footprints of these 45 genes in a collection of 94 Brassica rapa accessions that were composed of heading and non-heading morphotypes. Six of the 45 genes showed significant negative Tajima's D indices and nucleotide diversity reduction in heading accessions compared to those in non-heading accessions, indicating that they underwent purifying selection. Further testing of the BrARF3.1 gene, which was one of the selection signals from a larger collection, confirmed that purifying selection did occur. Our results provide genetic evidence that ad-ab patterning genes are involved in leaf incurvature, which is associated with formation of a leafy head, as well as promote an understanding of the genetic mechanism underlying leafy head formation in Chinese cabbage. PMID:26904064

  8. Regional DNA methylation differences between humans and chimpanzees are associated with genetic changes, transcriptional divergence and disease genes.

    PubMed

    Fukuda, Kei; Ichiyanagi, Kenji; Yamada, Yoichi; Go, Yasuhiro; Udono, Toshifumi; Wada, Seitaro; Maeda, Toshiyuki; Soejima, Hidenobu; Saitou, Naruya; Ito, Takashi; Sasaki, Hiroyuki

    2013-07-01

    Changes in gene expression have been proposed to have an important role in the evolutionary changes in phenotypes. Interspecific changes in gene expression can result not only from genetic changes in regulatory regions but also from epigenetic changes in such regions. Here we report the identification of genomic regions showing differences in DNA methylation between humans and chimpanzees (termed S-DMRs for species-specific differentially methylated regions) on chromosomes 21 and 22. These regional methylation differences are frequently associated with genes, including those relevant to a disease, such as Alzheimer's disease, diabetes mellitus or cancer. Methylation differences are often correlated with changes in promoter activity or alternative splicing. Comparative studies including other great ape species provide evidence for the contribution of genetic changes to some of these S-DMRs. Genetic changes responsible for the S-DMRs include gain or loss of CTCF-binding site and changes in CpG density in microsatellite repeats. Our results suggest that DNA methylation changes, often caused by small sequence changes, contribute to transcriptional and phenotypic diversification in hominid evolution. PMID:23739127

  9. Genetic Variation and Divergence of Genes Involved in Leaf Adaxial-Abaxial Polarity Establishment in Brassica rapa

    PubMed Central

    Liang, Jianli; Liu, Bo; Wu, Jian; Cheng, Feng; Wang, Xiaowu

    2016-01-01

    Alterations in leaf adaxial-abaxial (ad-ab) polarity are one of the main factors that influence leaf curvature. In Chinese cabbage, leaf incurvature is an essential prerequisite to the formation of a leafy head. Identifying ad-ab patterning genes and investigating their genetic variation may facilitate elucidation of the mechanisms underlying leaf incurvature during head formation. Comparative genomic analysis of 45 leaf ad-ab patterning genes in Brassica rapa based on 26 homologs of Arabidopsis thaliana indicated that these genes underwent expansion and were retained after whole genome triplication (WGT). We also assessed the nucleotide diversity and selection footprints of these 45 genes in a collection of 94 Brassica rapa accessions that were composed of heading and non-heading morphotypes. Six of the 45 genes showed significant negative Tajima's D indices and nucleotide diversity reduction in heading accessions compared to those in non-heading accessions, indicating that they underwent purifying selection. Further testing of the BrARF3.1 gene, which was one of the selection signals from a larger collection, confirmed that purifying selection did occur. Our results provide genetic evidence that ad-ab patterning genes are involved in leaf incurvature, which is associated with formation of a leafy head, as well as promote an understanding of the genetic mechanism underlying leafy head formation in Chinese cabbage. PMID:26904064

  10. Control of lateral divergence in high-power, broad-area photonic crystal lasers

    NASA Astrophysics Data System (ADS)

    Rong, Jiamin; Xing, Enbo; Wang, Lijie; Shu, Shili; Tian, Sicong; Tong, Cunzhu; Wang, Lijun

    2016-07-01

    One-dimensional photonic bandgap crystal (PBC) lasers have demonstrated ultra-low vertical divergence and record brightness; however, their future development is limited by their lateral beam quality. In this paper, a fishbone microstructure is proposed to control the lateral modes in broad-area PBC lasers. The findings reveal that the introduction of the microstructure improves the full width at half maximum of the lateral far field by 22.2% and increases the output power to a small extent. The detailed measurements show that the lateral beam parameter product decreases by 15.9%.

  11. Genetic Divergence and Heritability of 42 Coloured Upland Rice Genotypes (Oryzasativa) as Revealed by Microsatellites Marker and Agro-Morphological Traits

    PubMed Central

    Ahmad, Faiz; Hanafi, Mohamed Musa; Hakim, Md Abdul; Rafii, Mohd Y.; Arolu, Ibrahim Wasiu; Akmar Abdullah, Siti Nor

    2015-01-01

    Coloured rice genotypes have greater nutritious value and consumer demand for these varieties is now greater than ever. The documentation of these genotypes is important for the improvement of the rice plant. In this study, 42 coloured rice genotypes were selected for determination of their genetic divergence using 25 simple sequence repeat (SSR) primers and 15 agro-morphological traits. Twenty-one out of the 25 SSR primers showed distinct, reproducible polymorphism. A dendrogram constructed using the SSR primers clustered the 42 coloured rice genotypes into 7 groups. Further, principle component analysis showed 75.28% of total variations were explained by the first—three components. All agro-morphological traits showed significant difference at the (p≤0.05) and (p≤0.01) levels. From the dendrogram constructed using the agro-morphological traits, all the genotypes were clustered into four distinct groups. Pearson’s correlation coefficient showed that among the 15 agro-morphological traits, the yield contributing factor had positive correlation with the number of tillers, number of panicles, and panicle length. The heritability of the 15 traits ranged from 17.68 to 99.69%. Yield per plant and harvest index showed the highest value for both heritability and genetic advance. The information on the molecular and agro-morphological traits can be used in rice breeding programmes to improve nutritional value and produce higher yields. PMID:26393807

  12. Divergence in morphology, but not habitat use, despite low genetic differentiation among insular populations of the lizard Anolis lemurinus in Honduras

    USGS Publications Warehouse

    Logan, M.L.; Montgomery, Chad E.; Boback, Scott M.; Reed, R.N.; Campbell, J.A.

    2012-01-01

    Studies of recently isolated populations are useful because observed differences can often be attributed to current environmental variation. Two populations of the lizard Anolis lemurinus have been isolated on the islands of Cayo Menor and Cayo Mayor in the Cayos Cochinos Archipelago of Honduras for less than 15 000 y. We measured 12 morphometric and 10 habitat-use variables on 220 lizards across these islands in 2 y, 2008 and 2009. The goals of our study were (1) to explore patterns of sexual dimorphism, and (2) to test the hypothesis that differences in environment among islands may have driven divergence in morphology and habitat use despite genetic homogeneity among populations. Although we found no differences among sexes in habitat use, males had narrower pelvic girdles and longer toe pads on both islands. Between islands, males differed in morphology, but neither males nor females differed in habitat use. Our data suggest that either recent selection has operated differentially on males despite low genetic dill'erentiation, or that they display phenotypic plasticity in response to environmental variation. We suggest that patterns may be driven by variation in intrapopulation density or differences in predator diversity among islands.

  13. Multi-Gene Analysis Reveals a Lack of Genetic Divergence between Calanus agulhensis and C. sinicus (Copepoda; Calanoida)

    PubMed Central

    Kozol, Robert; Blanco-Bercial, Leocadio; Bucklin, Ann

    2012-01-01

    The discrimination and taxonomic identification of marine species continues to pose a challenge despite the growing number of diagnostic metrics and approaches. This study examined the genetic relationship between two sibling species of the genus Calanus (Crustacea; Copepoda; Calanidae), C. agulhensis and C. sinicus, using a multi-gene analysis. DNA sequences were determined for portions of the mitochondrial cytochrome c oxidase I (mtCOI); nuclear citrate synthase (CS), and large subunit (28S) rRNA genes for specimens collected from the Sea of Japan and North East (NE) Pacific Ocean for C. sinicus and from the Benguela Current and Agulhas Bank, off South Africa, for C. agulhensis. For mtCOI, C. sinicus and C. agulhensis showed similar levels of haplotype diversity (Hd = 0.695 and 0.660, respectively) and nucleotide diversity (π = 0.003 and 0.002, respectively). Pairwise FST distances for mtCOI were significant only between C. agulhensis collected from the Agulhas and two C. sinicus populations: the Sea of Japan (FST = 0.152, p<0.01) and NE Pacific (FST = 0.228, p<0.005). Between the species, FST distances were low for both mtCOI (FST = 0.083, p = 0.003) and CS (FST = 0.050, p = 0.021). Large subunit (28S) rRNA showed no variation between the species. Our results provide evidence of the lack of genetic distinction of C. sinicus and C. agulhensis, raise questions of whether C. agulhensis warrants status as a distinct species, and indicate the clear need for more intensive and extensive ecological and genetic analysis. PMID:23118849

  14. Landscape genetics of high mountain frog metapopulations

    USGS Publications Warehouse

    Murphy, M.A.; Dezzani, R.; Pilliod, D.S.; Storfer, A.

    2010-01-01

    Explaining functional connectivity among occupied habitats is crucial for understanding metapopulation dynamics and species ecology. Landscape genetics has primarily focused on elucidating how ecological features between observations influence gene flow. Functional connectivity, however, may be the result of both these between-site (landscape resistance) landscape characteristics and at-site (patch quality) landscape processes that can be captured using network based models. We test hypotheses of functional connectivity that include both between-site and at-site landscape processes in metapopulations of Columbia spotted frogs (Rana luteiventris) by employing a novel justification of gravity models for landscape genetics (eight microsatellite loci, 37 sites, n = 441). Primarily used in transportation and economic geography, gravity models are a unique approach as flow (e.g. gene flow) is explained as a function of three basic components: distance between sites, production/attraction (e.g. at-site landscape process) and resistance (e.g. between-site landscape process). The study system contains a network of nutrient poor high mountain lakes where we hypothesized a short growing season and complex topography between sites limit R. luteiventris gene flow. In addition, we hypothesized production of offspring is limited by breeding site characteristics such as the introduction of predatory fish and inherent site productivity. We found that R. luteiventris connectivity was negatively correlated with distance between sites, presence of predatory fish (at-site) and topographic complexity (between-site). Conversely, site productivity (as measured by heat load index, at-site) and growing season (as measured by frost-free period between-sites) were positively correlated with gene flow. The negative effect of predation and positive effect of site productivity, in concert with bottleneck tests, support the presence of source-sink dynamics. In conclusion, gravity models provide a

  15. Landscape genetics of high mountain frog metapopulations.

    PubMed

    Murphy, Melanie A; Dezzani, R; Pilliod, D S; Storfer, A

    2010-09-01

    Explaining functional connectivity among occupied habitats is crucial for understanding metapopulation dynamics and species ecology. Landscape genetics has primarily focused on elucidating how ecological features between observations influence gene flow. Functional connectivity, however, may be the result of both these between-site (landscape resistance) landscape characteristics and at-site (patch quality) landscape processes that can be captured using network based models. We test hypotheses of functional connectivity that include both between-site and at-site landscape processes in metapopulations of Columbia spotted frogs (Rana luteiventris) by employing a novel justification of gravity models for landscape genetics (eight microsatellite loci, 37 sites, n = 441). Primarily used in transportation and economic geography, gravity models are a unique approach as flow (e.g. gene flow) is explained as a function of three basic components: distance between sites, production/attraction (e.g. at-site landscape process) and resistance (e.g. between-site landscape process). The study system contains a network of nutrient poor high mountain lakes where we hypothesized a short growing season and complex topography between sites limit R. luteiventris gene flow. In addition, we hypothesized production of offspring is limited by breeding site characteristics such as the introduction of predatory fish and inherent site productivity. We found that R. luteiventris connectivity was negatively correlated with distance between sites, presence of predatory fish (at-site) and topographic complexity (between-site). Conversely, site productivity (as measured by heat load index, at-site) and growing season (as measured by frost-free period between-sites) were positively correlated with gene flow. The negative effect of predation and positive effect of site productivity, in concert with bottleneck tests, support the presence of source-sink dynamics. In conclusion, gravity models provide a

  16. DNA profiling of Tilapia guinasana, a species endemic to a single sinkhole, to determine the genetic divergence between color forms.

    PubMed

    Nxomani, C; Ribbink, A J; Kirby, R

    1999-06-01

    Northwestern South Africa and Namibia contain a number of sinkholes in the dolomitic rock formations found in this area. These contain isolated populations of Tilapia. Most contain Tilapia sparmanii, but the one in Namibia, Guinas, is of particular interest as it contains the endemic species, Tilapia guinasana, which exhibits none sex-limited polychromatisms, which is unique for Tilapia. This sinkhole is under environmental threat, particularly as a result of being a recreational diving site. This study, using randomly amplified polymorphic DNA sequences (RAPDs), when analyzed using analysis of variance (ANOVA), shows that the colour forms of Tilapia guinasana are genetically distinct. This confirms previous evidence that assortative mating between color forms takes place. The various possible hypotheses for the occurrence and genetic stability of the color polymorphism are discussed. Further, a new hypothesis is put forward based on a need to maximize outbreeding in fully isolated population with no possibility of increase in size above the maximum and limited carrying capacity of the sinkhole. PMID:10435449

  17. Genetic and morphological divergences in the cosmopolitan deep-sea amphipod Eurythenes gryllus reveal a diverse abyss and a bipolar species.

    PubMed

    Havermans, Charlotte; Sonet, Gontran; d'Udekem d'Acoz, Cédric; Nagy, Zoltán T; Martin, Patrick; Brix, Saskia; Riehl, Torben; Agrawal, Shobhit; Held, Christoph

    2013-01-01

    Eurythenes gryllus is one of the most widespread amphipod species, occurring in every ocean with a depth range covering the bathyal, abyssal and hadal zones. Previous studies, however, indicated the existence of several genetically and morphologically divergent lineages, questioning the assumption of its cosmopolitan and eurybathic distribution. For the first time, its genetic diversity was explored at the global scale (Arctic, Atlantic, Pacific and Southern oceans) by analyzing nuclear (28S rDNA) and mitochondrial (COI, 16S rDNA) sequence data using various species delimitation methods in a phylogeographic context. Nine putative species-level clades were identified within E. gryllus. A clear distinction was observed between samples collected at bathyal versus abyssal depths, with a genetic break occurring around 3,000 m. Two bathyal and two abyssal lineages showed a widespread distribution, while five other abyssal lineages each seemed to be restricted to a single ocean basin. The observed higher diversity in the abyss compared to the bathyal zone stands in contrast to the depth-differentiation hypothesis. Our results indicate that, despite the more uniform environment of the abyss and its presumed lack of obvious isolating barriers, abyssal populations might be more likely to show population differentiation and undergo speciation events than previously assumed. Potential factors influencing species' origins and distributions, such as hydrostatic pressure, are discussed. In addition, morphological findings coincided with the molecular clades. Of all specimens available for examination, those of the bipolar bathyal clade seemed the most similar to the 'true' E. gryllus. We present the first molecular evidence for a bipolar distribution in a macro-benthic deep-sea organism. PMID:24086322

  18. Genetic and Morphological Divergences in the Cosmopolitan Deep-Sea Amphipod Eurythenes gryllus Reveal a Diverse Abyss and a Bipolar Species

    PubMed Central

    Havermans, Charlotte; Sonet, Gontran; d’Udekem d’Acoz, Cédric; Nagy, Zoltán T.; Martin, Patrick; Brix, Saskia; Riehl, Torben; Agrawal, Shobhit; Held, Christoph

    2013-01-01

    Eurythenes gryllus is one of the most widespread amphipod species, occurring in every ocean with a depth range covering the bathyal, abyssal and hadal zones. Previous studies, however, indicated the existence of several genetically and morphologically divergent lineages, questioning the assumption of its cosmopolitan and eurybathic distribution. For the first time, its genetic diversity was explored at the global scale (Arctic, Atlantic, Pacific and Southern oceans) by analyzing nuclear (28S rDNA) and mitochondrial (COI, 16S rDNA) sequence data using various species delimitation methods in a phylogeographic context. Nine putative species-level clades were identified within E. gryllus. A clear distinction was observed between samples collected at bathyal versus abyssal depths, with a genetic break occurring around 3,000 m. Two bathyal and two abyssal lineages showed a widespread distribution, while five other abyssal lineages each seemed to be restricted to a single ocean basin. The observed higher diversity in the abyss compared to the bathyal zone stands in contrast to the depth-differentiation hypothesis. Our results indicate that, despite the more uniform environment of the abyss and its presumed lack of obvious isolating barriers, abyssal populations might be more likely to show population differentiation and undergo speciation events than previously assumed. Potential factors influencing species’ origins and distributions, such as hydrostatic pressure, are discussed. In addition, morphological findings coincided with the molecular clades. Of all specimens available for examination, those of the bipolar bathyal clade seemed the most similar to the ‘true’ E. gryllus. We present the first molecular evidence for a bipolar distribution in a macro-benthic deep-sea organism. PMID:24086322

  19. Genetic High-Cholesterol Condition More Common Than Thought

    MedlinePlus

    ... nlm.nih.gov/medlineplus/news/fullstory_157755.html Genetic High-Cholesterol Condition More Common Than Thought Researchers ... the United States, she said. Rates of the genetic disorder vary based on racial/ethnic background, but ...

  20. Disjunct distribution of highly diverged mitochondrial lineage clade and population subdivision in a marine bivalve with pelagic larval dispersal.

    PubMed

    Luttikhuizen, P C; Drent, J; Baker, A J

    2003-08-01

    Mitochondrial DNA sequence data for 295 individuals of the marine bivalve Macoma balthica (L.) were collected from 10 sites across the European distribution, and from Alaska. The data were used to infer population subdivision history and estimate current levels of gene flow. Inferred historical biogeography was expected to be congruent with colonization of the Atlantic Ocean from the Pacific Ocean after the opening of the Bering Strait 3.5 Ma. In addition, the last glacial maximum, about 18000 years ago, was expected to have been responsible for most of the present-day distribution of molecular variation within Europe, because the area must have been recolonized after confinement to France and the south of the British Isles during the last glacial maximum. Current gene flow was hypothesized to be high, because the larvae of M. balthica spend 2-5 weeks drifting in the water column. The geographical distribution of one highly diverged haplotype clade was found to be disjunct and was encountered exclusively in samples from the Baltic Sea and Alaska. A molecular clock calibration for marine bivalve cytochrome-c-oxidase I dates this clade as having split off from the other haplotypes 9.8-39 Ma. Multiple colonizations of the Atlantic Ocean from the Pacific by M. balthica may explain the strong differences found between Baltic Sea and other European populations of this species. The sympatric occurrence of the highly diverged mitochondrial lineages in western parts of the Baltic Sea points to secondary admixture. With the use of coalescent analysis, population divergence times for French vs. other non-Baltic European populations ('Atlantic population assemblage') were estimated at a minimum of about 110000 years ago, well before the last glacial maximum 18000 years ago. Signatures of population divergence of M. balthica that appear to have originated during the Pleistocene have thus survived the last glacial maximum. Some of the populations within the Atlantic assemblage

  1. Analysis of TIR- and non-TIR-NBS-LRR disease resistance gene analogous in pepper: characterization, genetic variation, functional divergence and expression patterns

    PubMed Central

    2012-01-01

    Background Pepper (Capsicum annuum L.) is one of the most important vegetable crops worldwide. However, its yield and fruit quality can be severely threatened by several pathogens. The plant nucleotide-binding site (NBS)-leucine-rich repeat (LRR) gene family is the largest class of known disease resistance genes (R genes) effective against such pathogens. Therefore, the isolation and identification of such R gene homologues from pepper will provide a critical foundation for improving disease resistance breeding programs. Results A total of 78 R gene analogues (CaRGAs) were identified in pepper by degenerate PCR amplification and database mining. Phylogenetic tree analysis of the deduced amino acid sequences for 51 of these CaRGAs with typically conserved motifs ( P-loop, kinase-2 and GLPL) along with some known R genes from Arabidopsis and tomato grouped these CaRGAs into the non-Toll interleukin-1 receptor (TIR)-NBS-LRR (CaRGAs I to IV) and TIR-NBS-LRR (CaRGAs V to VII) subfamilies. The presence of consensus motifs (i.e. P-loop, kinase-2 and hydrophobic domain) is typical of the non-TIR- and TIR-NBS-LRR gene subfamilies. This finding further supports the view that both subfamilies are widely distributed in dicot species. Functional divergence analysis provided strong statistical evidence of altered selective constraints during protein evolution between the two subfamilies. Thirteen critical amino acid sites involved in this divergence were also identified using DIVERGE version 2 software. Analyses of non-synonymous and synonymous substitutions per site showed that purifying selection can play a critical role in the evolutionary processes of non-TIR- and TIR-NBS-LRR RGAs in pepper. In addition, four specificity-determining positions were predicted to be responsible for functional specificity. qRT-PCR analysis showed that both salicylic and abscisic acids induce the expression of CaRGA genes, suggesting that they may primarily be involved in defence responses by

  2. PhyPA: Phylogenetic method with pairwise sequence alignment outperforms likelihood methods in phylogenetics involving highly diverged sequences.

    PubMed

    Xia, Xuhua

    2016-09-01

    While pairwise sequence alignment (PSA) by dynamic programming is guaranteed to generate one of the optimal alignments, multiple sequence alignment (MSA) of highly divergent sequences often results in poorly aligned sequences, plaguing all subsequent phylogenetic analysis. One way to avoid this problem is to use only PSA to reconstruct phylogenetic trees, which can only be done with distance-based methods. I compared the accuracy of this new computational approach (named PhyPA for phylogenetics by pairwise alignment) against the maximum likelihood method using MSA (the ML+MSA approach), based on nucleotide, amino acid and codon sequences simulated with different topologies and tree lengths. I present a surprising discovery that the fast PhyPA method consistently outperforms the slow ML+MSA approach for highly diverged sequences even when all optimization options were turned on for the ML+MSA approach. Only when sequences are not highly diverged (i.e., when a reliable MSA can be obtained) does the ML+MSA approach outperforms PhyPA. The true topologies are always recovered by ML with the true alignment from the simulation. However, with MSA derived from alignment programs such as MAFFT or MUSCLE, the recovered topology consistently has higher likelihood than that for the true topology. Thus, the failure to recover the true topology by the ML+MSA is not because of insufficient search of tree space, but by the distortion of phylogenetic signal by MSA methods. I have implemented in DAMBE PhyPA and two approaches making use of multi-gene data sets to derive phylogenetic support for subtrees equivalent to resampling techniques such as bootstrapping and jackknifing. PMID:27377322

  3. A supergene determines highly divergent male reproductive morphs in the ruff.

    PubMed

    Küpper, Clemens; Stocks, Michael; Risse, Judith E; Dos Remedios, Natalie; Farrell, Lindsay L; McRae, Susan B; Morgan, Tawna C; Karlionova, Natalia; Pinchuk, Pavel; Verkuil, Yvonne I; Kitaysky, Alexander S; Wingfield, John C; Piersma, Theunis; Zeng, Kai; Slate, Jon; Blaxter, Mark; Lank, David B; Burke, Terry

    2016-01-01

    Three strikingly different alternative male mating morphs (aggressive 'independents', semicooperative 'satellites' and female-mimic 'faeders') coexist as a balanced polymorphism in the ruff, Philomachus pugnax, a lek-breeding wading bird. Major differences in body size, ornamentation, and aggressive and mating behaviors are inherited as an autosomal polymorphism. We show that development into satellites and faeders is determined by a supergene consisting of divergent alternative, dominant and non-recombining haplotypes of an inversion on chromosome 11, which contains 125 predicted genes. Independents are homozygous for the ancestral sequence. One breakpoint of the inversion disrupts the essential CENP-N gene (encoding centromere protein N), and pedigree analysis confirms the lethality of homozygosity for the inversion. We describe new differences in behavior, testis size and steroid metabolism among morphs and identify polymorphic genes within the inversion that are likely to contribute to the differences among morphs in reproductive traits. PMID:26569125

  4. Effect of high-power laser divergence on the plasma structural parameters during multiple filamentation in air

    NASA Astrophysics Data System (ADS)

    Geints, Yu. E.; Zemlyanov, A. A.

    2016-06-01

    Multiple filamentation of an infrared high-power laser pulse in air is considered. Based on the numerical solution to the unidirectional pulse propagation equation, the effect of radiation external focusing on the spatial structure of the plasma area produced in the filamentation region is studied. We show that the number of generated plasma channels in the beam wake and the density of their spatial distribution over the filamentation region depend on the initial divergence of laser radiation. We found that in a specific range of beam focusing the number of produced plasma channels could be minimized due to the formation of a consolidated thick plasma bunch at the beam axis.

  5. Antigenic and genetic diversity of highly pathogenic avian influenza A (H5N1) viruses isolated in Egypt.

    PubMed

    Balish, Amanda L; Davis, C Todd; Saad, Magdi D; El-Sayed, Nasr; Esmat, Hala; Tjaden, Jeffrey A; Earhart, Kenneth C; Ahmed, Lu'ay E; Abd El-Halem, Mohamed; Ali, Abdel Hakem M; Nassif, Samir A; El-Ebiary, Elham A; Taha, M; Aly, Mona M; Arafa, Abdelstattar; O'Neill, Eduardo; Xiyan, Xu; Cox, Nancy J; Donis, Ruben O; Klimov, Alexander I

    2010-03-01

    Highly pathogenic avian influenza A virus (H5N1) has diverged antigenically and genetically since its initial detection in Asia in 1997. Viruses belonging to clade 2.2 in particular have been reported in numerous countries with the majority occurring in Egypt. Previous reports identified antigenic similarities between viruses belonging to clade 2.2. However, poultry and human viruses isolated in northern Egypt during 2007 and 2008 were found to be antigenically distinct from other clade 2.2 viruses from this country. Genetic analysis of the hemagglutinin revealed a high degree of nucleotide and amino acid divergence. The antigenic changes in Egyptian viruses isolated during 2007-08 necessitated that two of these strains be considered as potential H5N1 pre-pandemic vaccine candidates. PMID:20521654

  6. Highly diverged homologs of Saccharomyces cerevisiae mitochondrial mRNA-specific translational activators have orthologous functions in other budding yeasts.

    PubMed Central

    Costanzo, M C; Bonnefoy, N; Williams, E H; Clark-Walker, G D; Fox, T D

    2000-01-01

    Translation of mitochondrially coded mRNAs in Saccharomyces cerevisiae depends on membrane-bound mRNA-specific activator proteins, whose targets lie in the mRNA 5'-untranslated leaders (5'-UTLs). In at least some cases, the activators function to localize translation of hydrophobic proteins on the inner membrane and are rate limiting for gene expression. We searched unsuccessfully in divergent budding yeasts for orthologs of the COX2- and COX3-specific translational activator genes, PET111, PET54, PET122, and PET494, by direct complementation. However, by screening for complementation of mutations in genes adjacent to the PET genes in S. cerevisiae, we obtained chromosomal segments containing highly diverged homologs of PET111 and PET122 from Saccharomyces kluyveri and of PET111 from Kluyveromyces lactis. All three of these genes failed to function in S. cerevisiae. We also found that the 5'-UTLs of the COX2 and COX3 mRNAs of S. kluyveri and K. lactis have little similarity to each other or to those of S. cerevisiae. To determine whether the PET111 and PET122 homologs carry out orthologous functions, we deleted them from the S. kluyveri genome and deleted PET111 from the K. lactis genome. The pet111 mutations in both species prevented COX2 translation, and the S. kluyveri pet122 mutation prevented COX3 translation. Thus, while the sequences of these translational activator proteins and their 5'-UTL targets are highly diverged, their mRNA-specific functions are orthologous. PMID:10757749

  7. On the Origin of Tibetans and Their Genetic Basis in Adapting High-Altitude Environments

    PubMed Central

    Zhang, Feng; Lin, Hongbin; Wang, Xumin; Wan, Ning; Ye, Zhenqing; Weng, Haiyu; Zhang, Lili; Li, Xin; Yan, Jiangwei; Wang, Panpan; Wu, Tingting; Cheng, Longfei; Wang, Jing; Wang, Duen-Mei; Ma, Xu; Yu, Jun

    2011-01-01

    Since their arrival in the Tibetan Plateau during the Neolithic Age, Tibetans have been well-adapted to extreme environmental conditions and possess genetic variation that reflect their living environment and migratory history. To investigate the origin of Tibetans and the genetic basis of adaptation in a rigorous environment, we genotyped 30 Tibetan individuals with more than one million SNP markers. Our findings suggested that Tibetans, together with the Yi people, were descendants of Tibeto-Burmans who diverged from ancient settlers of East Asia. The valleys of the Hengduan Mountain range may be a major migration route. We also identified a set of positively-selected genes that belong to functional classes of the embryonic, female gonad, and blood vessel developments, as well as response to hypoxia. Most of these genes were highly correlated with population-specific and beneficial phenotypes, such as high infant survival rate and the absence of chronic mountain sickness. PMID:21386899

  8. A New BSCS Project: Human Genetics Education for High School.

    ERIC Educational Resources Information Center

    Biological Sciences Curriculum Study Journal, 1980

    1980-01-01

    Described is the BSCS Center for Education in Human and Medical Genetics, established to design, develop, and evaluate an instructional module in human genetics for high school students. This module will be a self-contained curricular program and will provide individualized open-ended experiences which present basic genetics content in the context…

  9. Divergence Times and Phylogenetic Patterns of Sebacinales, a Highly Diverse and Widespread Fungal Lineage

    PubMed Central

    Garnica, Sigisfredo; Riess, Kai; Schön, Max E.; Oberwinkler, Franz; Setaro, Sabrina D.

    2016-01-01

    Patterns of geographic distribution and composition of fungal communities are still poorly understood. Widespread occurrence in terrestrial ecosystems and the unique richness of interactions of Sebacinales with plants make them a target group to study evolutionary events in the light of nutritional lifestyle. We inferred diversity patterns, phylogenetic structures and divergence times of Sebacinales with respect to their nutritional lifestyles by integrating data from fossil-calibrated phylogenetic analyses. Relaxed molecular clock analyses indicated that Sebacinales originated late Permian within Basidiomycota, and their split into Sebacinaceae and Serendipitaceae nom. prov. likely occurred during the late Jurassic and the early Cretaceous, coinciding with major diversifications of land plants. In Sebacinaceae, diversification of species with ectomycorrhizal lifestyle presumably started during the Paleocene. Lineage radiations of the core group of ericoid and cavendishioid mycorrhizal Sebacinales started probably in the Eocene, coinciding with diversification events of their hosts. The diversification of Sebacinales with jungermannioid interactions started during the Oligocene, and occurred much later than the diversification of their hosts. Sebacinales communities associated either with ectomycorrhizal plants, achlorophyllous orchids, ericoid and cavendishioid Ericaceae or liverworts were phylogenetically clustered and globally distributed. Major Sebacinales lineage diversifications started after the continents had drifted apart. We also briefly discuss dispersal patterns of extant Sebacinales. PMID:26938104

  10. The Complete Chloroplast Genome Sequences of Three Veroniceae Species (Plantaginaceae): Comparative Analysis and Highly Divergent Regions

    PubMed Central

    Choi, Kyoung Su; Chung, Myong Gi; Park, SeonJoo

    2016-01-01

    Previous studies of Veronica and related genera were weakly supported by molecular and paraphyletic taxa. Here, we report the complete chloroplast genome sequence of Veronica nakaiana and the related species Veronica persica and Veronicastrum sibiricum. The chloroplast genome length of V. nakaiana, V. persica, and V. sibiricum ranged from 150,198 bp to 152,930 bp. A total of 112 genes comprising 79 protein coding genes, 29 tRNA genes, and 4 rRNA genes were observed in three chloroplast genomes. The total number of SSRs was 48, 51, and 53 in V. nakaiana, V. persica, and V. sibiricum, respectively. Two SSRs (10 bp of AT and 12 bp of AATA) were observed in the same regions (rpoC2 and ndhD) in three chloroplast genomes. A comparison of coding genes and non-coding regions between V. nakaiana and V. persica revealed divergent sites, with the greatest variation occurring petD-rpoA region. The complete chloroplast genome sequence information regarding the three Veroniceae will be helpful for elucidating Veroniceae phylogenetic relationships. PMID:27047524

  11. Highly divergent dengue virus type 1 genotype sets a new distance record

    PubMed Central

    Pyke, Alyssa T.; Moore, Peter R.; Taylor, Carmel T.; Hall-Mendelin, Sonja; Cameron, Jane N.; Hewitson, Glen R.; Pukallus, Dennis S.; Huang, Bixing; Warrilow, David; van den Hurk, Andrew F.

    2016-01-01

    Dengue viruses (DENVs) are the leading cause of mosquito-borne viral disease of humans. They exist in both endemic and sylvatic ecotypes. In 2014, a viremic patient who had recently visited the rainforests of Brunei returned to Australia displaying symptoms consistent with DENV infection. A unique DENV strain was subsequently isolated from the patient, which we propose belongs to a new genotype within DENV serotype 1 (DENV-1). Bayesian evolutionary phylogenetic analysis suggests that the putative sylvatic DENV-1 Brunei 2014 (Brun2014) is the most divergent DENV-1 yet recorded and increases the time to the most recent common ancestor (MRCA) for DENV-1 from ≈120 years to ≈315 years. DENV-1 classification of the Brun2014 strain was further supported by monoclonal antibody serotyping data. Phenotypic characterization demonstrated that Brun2014 replication rates in mosquito cells and infection rates in Aedes aegypti mosquitoes were not significantly different from an epidemic DENV-1 strain. Given its ability to cause human illness and infect Ae. aegypti, potential urban spillover and clinical disease from further Brun2014 transmission cannot be discounted. PMID:26924208

  12. Divergence Times and Phylogenetic Patterns of Sebacinales, a Highly Diverse and Widespread Fungal Lineage.

    PubMed

    Garnica, Sigisfredo; Riess, Kai; Schön, Max E; Oberwinkler, Franz; Setaro, Sabrina D

    2016-01-01

    Patterns of geographic distribution and composition of fungal communities are still poorly understood. Widespread occurrence in terrestrial ecosystems and the unique richness of interactions of Sebacinales with plants make them a target group to study evolutionary events in the light of nutritional lifestyle. We inferred diversity patterns, phylogenetic structures and divergence times of Sebacinales with respect to their nutritional lifestyles by integrating data from fossil-calibrated phylogenetic analyses. Relaxed molecular clock analyses indicated that Sebacinales originated late Permian within Basidiomycota, and their split into Sebacinaceae and Serendipitaceae nom. prov. likely occurred during the late Jurassic and the early Cretaceous, coinciding with major diversifications of land plants. In Sebacinaceae, diversification of species with ectomycorrhizal lifestyle presumably started during the Paleocene. Lineage radiations of the core group of ericoid and cavendishioid mycorrhizal Sebacinales started probably in the Eocene, coinciding with diversification events of their hosts. The diversification of Sebacinales with jungermannioid interactions started during the Oligocene, and occurred much later than the diversification of their hosts. Sebacinales communities associated either with ectomycorrhizal plants, achlorophyllous orchids, ericoid and cavendishioid Ericaceae or liverworts were phylogenetically clustered and globally distributed. Major Sebacinales lineage diversifications started after the continents had drifted apart. We also briefly discuss dispersal patterns of extant Sebacinales. PMID:26938104

  13. Previously unknown and highly divergent ssDNA viruses populate the oceans

    PubMed Central

    Labonté, Jessica M; Suttle, Curtis A

    2013-01-01

    Single-stranded DNA (ssDNA) viruses are economically important pathogens of plants and animals, and are widespread in oceans; yet, the diversity and evolutionary relationships among marine ssDNA viruses remain largely unknown. Here we present the results from a metagenomic study of composite samples from temperate (Saanich Inlet, 11 samples; Strait of Georgia, 85 samples) and subtropical (46 samples, Gulf of Mexico) seawater. Most sequences (84%) had no evident similarity to sequenced viruses. In total, 608 putative complete genomes of ssDNA viruses were assembled, almost doubling the number of ssDNA viral genomes in databases. These comprised 129 genetically distinct groups, each represented by at least one complete genome that had no recognizable similarity to each other or to other virus sequences. Given that the seven recognized families of ssDNA viruses have considerable sequence homology within them, this suggests that many of these genetic groups may represent new viral families. Moreover, nearly 70% of the sequences were similar to one of these genomes, indicating that most of the sequences could be assigned to a genetically distinct group. Most sequences fell within 11 well-defined gene groups, each sharing a common gene. Some of these encoded putative replication and coat proteins that had similarity to sequences from viruses infecting eukaryotes, suggesting that these were likely from viruses infecting eukaryotic phytoplankton and zooplankton. PMID:23842650

  14. Previously unknown and highly divergent ssDNA viruses populate the oceans.

    PubMed

    Labonté, Jessica M; Suttle, Curtis A

    2013-11-01

    Single-stranded DNA (ssDNA) viruses are economically important pathogens of plants and animals, and are widespread in oceans; yet, the diversity and evolutionary relationships among marine ssDNA viruses remain largely unknown. Here we present the results from a metagenomic study of composite samples from temperate (Saanich Inlet, 11 samples; Strait of Georgia, 85 samples) and subtropical (46 samples, Gulf of Mexico) seawater. Most sequences (84%) had no evident similarity to sequenced viruses. In total, 608 putative complete genomes of ssDNA viruses were assembled, almost doubling the number of ssDNA viral genomes in databases. These comprised 129 genetically distinct groups, each represented by at least one complete genome that had no recognizable similarity to each other or to other virus sequences. Given that the seven recognized families of ssDNA viruses have considerable sequence homology within them, this suggests that many of these genetic groups may represent new viral families. Moreover, nearly 70% of the sequences were similar to one of these genomes, indicating that most of the sequences could be assigned to a genetically distinct group. Most sequences fell within 11 well-defined gene groups, each sharing a common gene. Some of these encoded putative replication and coat proteins that had similarity to sequences from viruses infecting eukaryotes, suggesting that these were likely from viruses infecting eukaryotic phytoplankton and zooplankton. PMID:23842650

  15. Genetic divergence and reproductive isolation in the genus Fejervarya (Amphibia: Anura) from Bangladesh inferred from morphological observations, crossing experiments, and molecular analyses.

    PubMed

    Islam, Mohammed Mafizul; Kurose, Naoko; Khan, Mdmukhlesur Rahman; Nishizawa, Toshitaka; Kuramoto, Mitsuru; Alam, Mohammad Shafiqul; Hasan, Mahmudul; Kurniawan, Nia; Nishioka, Midori; Sumida, Masayuki

    2008-11-01

    In the present study, morphological examinations, crossing experiments and molecular analyses were performed to elucidate the degree of genetic divergence and phylogenetic relationships within the genus Fejervarya from Bangladesh and other Asian countries. Morphological characteristics revealed that Fejervarya species from Bangladesh were divided into four distinct groups: large, medium, small, and mangrove types. Crossing experiments indicated the involvement of three reproductive isolating mechanisms: gametic isolation between the large type and mangrove type, hybrid inviability between the large type and two other types, and hybrid sterility between the medium and small types. Experimental results also indicated that these four types of frogs merit the status of individual species of Fejervarya . Molecular analyses based on mtDNA gene sequences showed that the Bangladesh Fejervarya species were largely divided into three groups: the mangrove type, large type, and others, with the last further subdivided into the medium and small types. Comparison with other Asian Fejervarya species revealed that the Bangladesh mangrove type (which resembled F. cancrivora in morphology) was closely related to F. cancrivora from India, Thailand, and the Philippines; the large type belonged to the F. iskandari group and closely resembled F. orissaensis ; the small type was included in the South Asian or Indian group, and was closest to F. syhadrensis from India and Sri Lanka, whereas the medium type was most closely related to F. limnocharis from Myanmar among all described species of this genus. PMID:19267620

  16. Student Problem Solving in High School Genetics.

    ERIC Educational Resources Information Center

    Stewart, James

    1983-01-01

    Describes set of specific steps (procedural knowledge) used when solving monohybrid/dihybrid cross problems and extent to which students could justify execution of each step in terms of their conceptual knowledge of genetics and meiosis. Implications for genetics instruction are discussed. (JN)

  17. How mechanisms of habitat preference evolve and promote divergence with gene flow

    PubMed Central

    Berner, Daniel

    2015-01-01

    Habitat preference may promote adaptive divergence and speciation, yet the conditions under which this is likely are insufficiently explored. We use individual-based simulations to study the evolution and consequence of habitat preference during divergence with gene flow, considering four different underlying genetically-based behavioral mechanisms: natal habitat imprinting, phenotype-dependent, competition-dependent, and direct genetic habitat preference. We find that the evolution of habitat preference generally requires initially high dispersal, is facilitated by asymmetry in population sizes between habitats, and is hindered by an increasing number of underlying genetic loci. Moreover, the probability of habitat preference to emerge and promote divergence differs greatly among the underlying mechanisms. Natal habitat imprinting evolves most easily and can allow full divergence in parameter ranges where no divergence is possible in the absence of habitat preference. The reason is that imprinting represents a one-allele mechanism of assortative mating linking dispersal behavior very effectively to local selection. At the other extreme, direct genetic habitat preference, a two-allele mechanism, evolves under restricted conditions only, and even then facilitates divergence weakly. Overall, our results indicate that habitat preference can be a strong reproductive barrier promoting divergence with gene flow, but that this is highly contingent on the underlying preference mechanism. PMID:26119841

  18. High genetic diversity declines towards the geographic range periphery of Adonis vernalis, a Eurasian dry grassland plant.

    PubMed

    Hirsch, H; Wagner, V; Danihelka, J; Ruprecht, E; Sánchez-Gómez, P; Seifert, M; Hensen, I

    2015-11-01

    Genetic diversity is important for species' fitness and evolutionary processes but our knowledge on how it varies across a species' distribution range is limited. The abundant centre hypothesis (ACH) predicts that populations become smaller and more isolated towards the geographic range periphery - a pattern that in turn should be associated with decreasing genetic diversity and increasing genetic differentiation. We tested this hypothesis in Adonis vernalis, a dry grassland plant with an extensive Eurasian distribution. Its life-history traits and distribution characteristics suggest a low genetic diversity that decreases and a high genetic differentiation that increases towards the range edge. We analysed AFLP fingerprints in 28 populations along a 4698-km transect from the geographic range core in Russia to the western range periphery in Central and Western Europe. Contrary to our expectation, our analysis revealed high genetic diversity (range of proportion of polymorphic bands = 56-81%, He = 0.168-0.238) and low genetic differentiation across populations (Φ(ST) = 0.18). However, in congruence with the genetic predictions of the ACH, genetic diversity decreased and genetic differentiation increased towards the range periphery. Spanish populations were genetically distinct, suggesting a divergent post-glacial history in this region. The high genetic diversity and low genetic differentiation in the remaining A. vernalis populations is surprising given the species' life-history traits and points to the possibility that the species has been widely distributed in the studied region or that it has migrated from a diverse source in an East-West direction, in the past. PMID:26122089

  19. Long range surface plasmon resonance with ultra-high penetration depth for self-referenced sensing and ultra-low detection limit using diverging beam approach

    SciTech Connect

    Isaacs, Sivan Abdulhalim, Ibrahim

    2015-05-11

    Using an insulator-metal-insulator structure with dielectric having refractive index (RI) larger than the analyte, long range surface plasmon (SP) resonance exhibiting ultra-high penetration depth is demonstrated for sensing applications of large bioentities at wavelengths in the visible range. Based on the diverging beam approach in Kretschmann-Raether configuration, one of the SP resonances is shown to shift in response to changes in the analyte RI while the other is fixed; thus, it can be used as a built in reference. The combination of the high sensitivity, high penetration depth and self-reference using the diverging beam approach in which a dark line is detected of the high sensitivity, high penetration depth, self-reference, and the diverging beam approach in which a dark line is detected using large number of camera pixels with a smart algorithm for sub-pixel resolution, a sensor with ultra-low detection limit is demonstrated suitable for large bioentities.

  20. Molecular characterization of a novel hepatitis E virus (HEV) strain obtained from a wild boar in Japan that is highly divergent from the previously recognized HEV strains.

    PubMed

    Takahashi, Masaharu; Nishizawa, Tsutomu; Nagashima, Shigeo; Jirintai, Suljid; Kawakami, Manri; Sonoda, Yoshihide; Suzuki, Tadahiro; Yamamoto, Shogo; Shigemoto, Kazuhiro; Ashida, Kozo; Sato, Yukihiro; Okamoto, Hiroaki

    2014-02-13

    Although a consensus classification system for hepatitis E virus (HEV) genotypes is currently unavailable, HEV variants (JBOAR135-Shiz09 and wbJOY_06) from wild boars (Sus scrofa leucomystax) have provisionally been classified into two novel genotypes (5 and 6). While performing a survey of HEV infections among 566 wild boars that were captured in Japan between January 2010 and August 2013, we found 24 boars (4.2%) with ongoing HEV infections: 13 had genotype 3 HEV, 10 had genotype 4 HEV and the remaining boar possessed a novel HEV variant (designated wbJNN_13). The entire wbJNN_13 genome comprised 7247 nucleotides excluding the poly(A) tail, and was highly divergent from known genotype 1 to 4 HEV isolates derived from humans, swine, wild boars, deer, mongoose and rabbits by 22.4-28.2%, JBOAR135-Shiz09 and wbJOY_06 by 19.6-21.9% and rat, ferret, bat and avian HEV isolates by 40.9-46.1% over the entire genome. Phylogenetic trees confirmed that wbJNN_13 is distantly related to all known HEV isolates. A Simplot analysis revealed no significant recombination among the existing HEV strains. These results indicate the presence of at least three genetic lineages of presumably boar-indigenous HEV strains. Further studies to fully understand the extent of the genomic heterogeneity of HEV variants infecting wild boars are warranted. PMID:24370869

  1. Competitive Interactions upon Secondary Contact Drive Elevational Divergence in Tropical Birds.

    PubMed

    Freeman, Benjamin G

    2015-10-01

    Tropical mountains harbor exceptionally high biodiversity, which is in part due to the marked elevational stratification of tropical biotas. However, the factors that influence the evolution of elevational distributions remain uncertain. I used a database of sister species of tropical montane birds from 41 families and three regions-the Neotropics, the Himalayas, and New Guinea-to test whether patterns of elevational divergence were consistent with (1) a stochastic process, (2) ecological sorting of elevational divergence that occurred in allopatry, or (3) elevational divergence driven by competitive interactions upon secondary contact. The stochastic and ecological sorting hypotheses predict that increased elevational divergence in sympatric sister species is explained by their greater evolutionary age, whereas the competitive interactions hypothesis predicts that elevational divergence is explained by geographical overlap. I found that genetic distances were unrelated to elevational divergence and that allopatric sister species occupied similar elevational distributions regardless of genetic distance in each region. Instead, sympatry was the only significant predictor of elevational divergence; regardless of evolutionary age, sympatric sister species had greater elevational divergence than allopatric sister species in each region, as predicted by the competitive interactions hypothesis. Importantly, this pattern occurred in all three geographic regions, which suggests that competition-driven elevational divergence upon secondary contact is a general process of community assembly in tropical montane avifaunas. PMID:26655571

  2. High-resolution mapping reveals hundreds of genetic incompatibilities in hybridizing fish species

    PubMed Central

    Schumer, Molly; Cui, Rongfeng; Powell, Daniel L; Dresner, Rebecca; Rosenthal, Gil G; Andolfatto, Peter

    2014-01-01

    Hybridization is increasingly being recognized as a common process in both animal and plant species. Negative epistatic interactions between genes from different parental genomes decrease the fitness of hybrids and can limit gene flow between species. However, little is known about the number and genome-wide distribution of genetic incompatibilities separating species. To detect interacting genes, we perform a high-resolution genome scan for linkage disequilibrium between unlinked genomic regions in naturally occurring hybrid populations of swordtail fish. We estimate that hundreds of pairs of genomic regions contribute to reproductive isolation between these species, despite them being recently diverged. Many of these incompatibilities are likely the result of natural or sexual selection on hybrids, since intrinsic isolation is known to be weak. Patterns of genomic divergence at these regions imply that genetic incompatibilities play a significant role in limiting gene flow even in young species. DOI: http://dx.doi.org/10.7554/eLife.02535.001 PMID:24898754

  3. Divergent compensatory responses to high-fat diet between C57BL6/J and C57BLKS/J inbred mouse strains

    PubMed Central

    Sims, Emily K.; Hatanaka, Masayuki; Morris, David L.; Tersey, Sarah A.; Kono, Tatsuyoshi; Chaudry, Zunaira Z.; Day, Kathleen H.; Moss, Dan R.; Stull, Natalie D.; Mirmira, Raghavendra G.

    2013-01-01

    Impaired glucose tolerance (IGT) and type 2 diabetes (T2DM) are polygenic disorders with complex pathophysiologies; recapitulating them with mouse models is challenging. Despite 70% genetic homology, C57BL/6J (BL6) and C57BLKS/J (BLKS) inbred mouse strains differ in response to diet- and genetic-induced obesity. We hypothesized these differences would yield insight into IGT and T2DM susceptibility and response to pharmacological therapies. To this end, male 8-wk-old BL6 and BLKS mice were fed normal chow (18% kcal from fat), high-fat diet (HFD; 42% kcal from fat), or HFD supplemented with the PPARγ agonist pioglitazone (PIO; 140 mg PIO/kg diet) for 16 wk. Assessments of body composition, glucose homeostasis, insulin production, and energy metabolism, as well as histological analyses of pancreata were undertaken. BL6 mice gained weight and adiposity in response to HFD, leading to peripheral insulin resistance that was met with increased β-cell proliferation and insulin production. By contrast, BLKS mice responded to HFD by restricting food intake and increasing activity. These behavioral responses limited weight gain and protected against HFD-induced glucose intolerance, which in this strain was primarily due to β-cell dysfunction. PIO treatment did not affect HFD-induced weight gain in BL6 mice, and decreased visceral fat mass, whereas in BLKS mice PIO increased total fat mass without improving visceral fat mass. Differences in these responses to HFD and effects of PIO reflect divergent human responses to a Western lifestyle and underscore the careful consideration needed when choosing mouse models of diet-induced obesity and diabetes treatment. PMID:24169046

  4. Virome Analysis of Amblyomma americanum, Dermacentor variabilis, and Ixodes scapularis Ticks Reveals Novel Highly Divergent Vertebrate and Invertebrate Viruses

    PubMed Central

    Williams, Simon Hedley; Sameroff, Stephen; Sanchez Leon, Maria; Jain, Komal; Lipkin, W. Ian

    2014-01-01

    ABSTRACT A wide range of bacterial pathogens have been identified in ticks, yet the diversity of viruses in ticks is largely unexplored. In the United States, Amblyomma americanum, Dermacentor variabilis, and Ixodes scapularis are among the principal tick species associated with pathogen transmission. We used high-throughput sequencing to characterize the viromes of these tick species and identified the presence of Powassan virus and eight novel viruses. These included the most divergent nairovirus described to date, two new clades of tick-borne phleboviruses, a mononegavirus, and viruses with similarity to plant and insect viruses. Our analysis revealed that ticks are reservoirs for a wide range of viruses and suggests that discovery and characterization of tick-borne viruses will have implications for viral taxonomy and may provide insight into tick-transmitted diseases. IMPORTANCE Ticks are implicated as vectors of a wide array of human and animal pathogens. To better understand the extent of tick-borne diseases, it is crucial to uncover the full range of microbial agents associated with ticks. Our current knowledge of the diversity of tick-associated viruses is limited, in part due to the lack of investigation of tick viromes. In this study, we examined the viromes of three tick species from the United States. We found that ticks are hosts to highly divergent viruses across several taxa, including ones previously associated with human disease. Our data underscore the diversity of tick-associated viruses and provide the foundation for further studies into viral etiology of tick-borne diseases. PMID:25056893

  5. Genetic analyses reveal unusually high diversity of infectious haematopoietic necrosis virus in rainbow trout aquaculture

    USGS Publications Warehouse

    Troyer, Ryan M.; LaPatra, Scott E.; Kurath, Gael

    2000-01-01

    Infectious haematopoietic necrosis virus (IHNV) is the most significant virus pathogen of salmon and trout in North America. Previous studies have shown relatively low genetic diversity of IHNV within large geographical regions. In this study, the genetic heterogeneity of 84 IHNV isolates sampled from rainbow trout (Oncorhynchus mykiss) over a 20 year period at four aquaculture facilities within a 12 mile stretch of the Snake River in Idaho, USA was investigated. The virus isolates were characterized using an RNase protection assay (RPA) and nucleotide sequence analyses. Among the 84 isolates analysed, 46 RPA haplotypes were found and analyses revealed a high level of genetic heterogeneity relative to that detected in other regions. Sequence analyses revealed up to 7·6% nucleotide divergence, which is the highest level of diversity reported for IHNV to date. Phylogenetic analyses identified four distinct monophyletic clades representing four virus lineages. These lineages were distributed across facilities, and individual facilities contained multiple lineages. These results suggest that co-circulating IHNV lineages of relatively high genetic diversity are present in the IHNV populations in this rainbow trout culture study site. Three of the four lineages exhibited temporal trends consistent with rapid evolution.

  6. Population Structure and Adaptive Divergence in a High Gene Flow Marine Fish: The Small Yellow Croaker (Larimichthys polyactis).

    PubMed

    Liu, Bing-Jian; Zhang, Bai-Dong; Xue, Dong-Xiu; Gao, Tian-Xiang; Liu, Jin-Xian

    2016-01-01

    The spatial distribution of genetic diversity has been long considered as a key component of policy development for management and conservation of marine fishes. However, unraveling the population genetic structure of migratory fish species is challenging due to high potential for gene flow. Despite the shallow population differentiation revealed by putatively neutral loci, the higher genetic differentiation with panels of putatively adaptive loci could provide greater resolution for stock identification. Here, patterns of population differentiation of small yellow croaker (Larimichthys polyactis) were investigated by genotyping 15 highly polymorphic microsatellites in 337 individuals of 15 geographic populations collected from both spawning and overwintering grounds. Outlier analyses indicated that the locus Lpol03 might be under directional selection, which showed a strong homology with Grid2 gene encoding the glutamate receptor δ2 protein (GluRδ2). Based on Lpol03, two distinct clusters were identified by both STRUCTURE and PCoA analyses, suggesting that there were two overwintering aggregations of L. polyactis. A novel migration pattern was suggested for L. polyactis, which was inconsistent with results of previous studies based on historical fishing yield statistics. These results provided new perspectives on the population genetic structure and migratory routes of L. polyactis, which could have significant implications for sustainable management and utilization of this important fishery resource. PMID:27100462

  7. Population Structure and Adaptive Divergence in a High Gene Flow Marine Fish: The Small Yellow Croaker (Larimichthys polyactis)

    PubMed Central

    Xue, Dong-Xiu; Gao, Tian-Xiang; Liu, Jin-Xian

    2016-01-01

    The spatial distribution of genetic diversity has been long considered as a key component of policy development for management and conservation of marine fishes. However, unraveling the population genetic structure of migratory fish species is challenging due to high potential for gene flow. Despite the shallow population differentiation revealed by putatively neutral loci, the higher genetic differentiation with panels of putatively adaptive loci could provide greater resolution for stock identification. Here, patterns of population differentiation of small yellow croaker (Larimichthys polyactis) were investigated by genotyping 15 highly polymorphic microsatellites in 337 individuals of 15 geographic populations collected from both spawning and overwintering grounds. Outlier analyses indicated that the locus Lpol03 might be under directional selection, which showed a strong homology with Grid2 gene encoding the glutamate receptor δ2 protein (GluRδ2). Based on Lpol03, two distinct clusters were identified by both STRUCTURE and PCoA analyses, suggesting that there were two overwintering aggregations of L. polyactis. A novel migration pattern was suggested for L. polyactis, which was inconsistent with results of previous studies based on historical fishing yield statistics. These results provided new perspectives on the population genetic structure and migratory routes of L. polyactis, which could have significant implications for sustainable management and utilization of this important fishery resource. PMID:27100462

  8. Massively parallel high-order combinatorial genetics in human cells

    PubMed Central

    Wong, Alan S L; Choi, Gigi C G; Cheng, Allen A; Purcell, Oliver; Lu, Timothy K

    2016-01-01

    The systematic functional analysis of combinatorial genetics has been limited by the throughput that can be achieved and the order of complexity that can be studied. To enable massively parallel characterization of genetic combinations in human cells, we developed a technology for rapid, scalable assembly of high-order barcoded combinatorial genetic libraries that can be quantified with high-throughput sequencing. We applied this technology, combinatorial genetics en masse (CombiGEM), to create high-coverage libraries of 1,521 two-wise and 51,770 three-wise barcoded combinations of 39 human microRNA (miRNA) precursors. We identified miRNA combinations that synergistically sensitize drug-resistant cancer cells to chemotherapy and/or inhibit cancer cell proliferation, providing insights into complex miRNA networks. More broadly, our method will enable high-throughput profiling of multifactorial genetic combinations that regulate phenotypes of relevance to biomedicine, biotechnology and basic science. PMID:26280411

  9. Reactive biomolecular divergence in genetically altered yeast cells and isolated mitochondria as measured by biocavity laser spectroscopy : a rapid diagnostic method for studying cellular responses to stress and disease.

    SciTech Connect

    Yaffe, Michael P.; Gourley, Paul Lee; Copeland, Robert Guild; McDonald, Anthony Eugene; Hendricks, Judy K.; Naviaux, Robert K.

    2006-12-01

    We report an analysis of four strains of baker's yeast (Saccharomyces cerevisiae) using biocavity laser spectroscopy. The four strains are grouped in two pairs (wild type and altered), in which one strain differs genetically at a single locus, affecting mitochondrial function. In one pair, the wild-type rho+ and a rho0 strain differ by complete removal of mitochondrial DNA (mtDNA). In the second pair, the wild-type rho+ and a rho- strain differ by knock-out of the nuclear gene encoding Cox4, an essential subunit of cytochrome c oxidase. The biocavity laser is used to measure the biophysical optic parameter Deltalambda, a laser wavelength shift relating to the optical density of cell or mitochondria that uniquely reflects its size and biomolecular composition. As such, Deltalambda is a powerful parameter that rapidly interrogates the biomolecular state of single cells and mitochondria. Wild-type cells and mitochondria produce Gaussian-like distributions with a single peak. In contrast, mutant cells and mitochondria produce leptokurtotic distributions that are asymmetric and highly skewed to the right. These distribution changes could be self-consistently modeled with a single, log-normal distribution undergoing a thousand-fold increase in variance of biomolecular composition. These features reflect a new state of stressed or diseased cells that we call a reactive biomolecular divergence (RBD) that reflects the vital interdependence of mitochondria and the nucleus.

  10. Depression and Substance Abuse in Two Divergent High School Cultures: A Quantitative and Qualitative Analysis.

    ERIC Educational Resources Information Center

    Way, Niobe; And Others

    1994-01-01

    Quantitative and qualitative methods explored the relationships among depression and substance use across suburban (164 students) and inner-city (242 students) high schools. Qualitative analyses suggest that quantitative differences in these relationships may be related to the meanings of depression and substance use in the cultural context. (SLD)

  11. Divergent modes of clonal spread and intraperitoneal mixing in high-grade serous ovarian cancer.

    PubMed

    McPherson, Andrew; Roth, Andrew; Laks, Emma; Masud, Tehmina; Bashashati, Ali; Zhang, Allen W; Ha, Gavin; Biele, Justina; Yap, Damian; Wan, Adrian; Prentice, Leah M; Khattra, Jaswinder; Smith, Maia A; Nielsen, Cydney B; Mullaly, Sarah C; Kalloger, Steve; Karnezis, Anthony; Shumansky, Karey; Siu, Celia; Rosner, Jamie; Chan, Hector Li; Ho, Julie; Melnyk, Nataliya; Senz, Janine; Yang, Winnie; Moore, Richard; Mungall, Andrew J; Marra, Marco A; Bouchard-Côté, Alexandre; Gilks, C Blake; Huntsman, David G; McAlpine, Jessica N; Aparicio, Samuel; Shah, Sohrab P

    2016-07-01

    We performed phylogenetic analysis of high-grade serous ovarian cancers (68 samples from seven patients), identifying constituent clones and quantifying their relative abundances at multiple intraperitoneal sites. Through whole-genome and single-nucleus sequencing, we identified evolutionary features including mutation loss, convergence of the structural genome and temporal activation of mutational processes that patterned clonal progression. We then determined the precise clonal mixtures comprising each tumor sample. The majority of sites were clonally pure or composed of clones from a single phylogenetic clade. However, each patient contained at least one site composed of polyphyletic clones. Five patients exhibited monoclonal and unidirectional seeding from the ovary to intraperitoneal sites, and two patients demonstrated polyclonal spread and reseeding. Our findings indicate that at least two distinct modes of intraperitoneal spread operate in clonal dissemination and highlight the distribution of migratory potential over clonal populations comprising high-grade serous ovarian cancers. PMID:27182968

  12. Seascape Genetics of a Globally Distributed, Highly Mobile Marine Mammal: The Short-Beaked Common Dolphin (Genus Delphinus)

    PubMed Central

    Amaral, Ana R.; Beheregaray, Luciano B.; Bilgmann, Kerstin; Boutov, Dmitri; Freitas, Luís; Robertson, Kelly M.; Sequeira, Marina; Stockin, Karen A.; Coelho, M. Manuela; Möller, Luciana M.

    2012-01-01

    Identifying which factors shape the distribution of intraspecific genetic diversity is central in evolutionary and conservation biology. In the marine realm, the absence of obvious barriers to dispersal can make this task more difficult. Nevertheless, recent studies have provided valuable insights into which factors may be shaping genetic structure in the world's oceans. These studies were, however, generally conducted on marine organisms with larval dispersal. Here, using a seascape genetics approach, we show that marine productivity and sea surface temperature are correlated with genetic structure in a highly mobile, widely distributed marine mammal species, the short-beaked common dolphin. Isolation by distance also appears to influence population divergence over larger geographical scales (i.e. across different ocean basins). We suggest that the relationship between environmental variables and population structure may be caused by prey behaviour, which is believed to determine common dolphins' movement patterns and preferred associations with certain oceanographic conditions. Our study highlights the role of oceanography in shaping genetic structure of a highly mobile and widely distributed top marine predator. Thus, seascape genetic studies can potentially track the biological effects of ongoing climate-change at oceanographic interfaces and also inform marine reserve design in relation to the distribution and genetic connectivity of charismatic and ecologically important megafauna. PMID:22319634

  13. Synthesis of carbon nanotubes by high current divergent anode-channel plasma torch

    NASA Astrophysics Data System (ADS)

    Amirov, R. H.; Isakaev, E. Kh; Shavelkina, M. B.; Shatalova, T. B.

    2014-11-01

    In this study we propose the high-performance technology to produce carbon nanotubes (CNT) in plasma jet reactor by means of a direct current plasma torch. This technology provides excellent opportunities to investigate a direct evaporation of materials and their subsequent condensation on the carbon surface. Experiments were carried out at the electric power of a plasma torch up to 30 kW. Helium and argon served as plasma gases. CNT synthesis at pyrolysis of soot was catalyzed by the metal disperse powders of Ni, Co, Y2O3. We applied x-ray diffraction and electronic microscopy to investigate the structure of obtained products. Also we utilize the thermogravimetric analysis to determine the phase structure of carbon nanomaterials. Using available experimental data we were able to sequentially scale the production process of CNT of desirable space structure. Finally we established that structural and morphological properties of CNT produced at evaporation of soot in the presence of high- percentage combined catalysts depend upon the catalyst structure.

  14. High levels of variation despite genetic fragmentation in populations of the endangered mountain pygmy-possum, Burramys parvus, in alpine Australia.

    PubMed

    Mitrovski, P; Heinze, D A; Broome, L; Hoffmann, A A; Weeks, A R

    2007-01-01

    In endangered mammals, levels of genetic variation are often low and this is accompanied by genetic divergence among populations. The mountain pygmy-possum (Burramys parvus) is an endangered marsupial restricted to the alpine region of Victoria and New South Wales, Australia. By scoring variation at eight microsatellite loci, we found that B. parvus populations exhibit high levels of genetic divergence and fall into three distinct groups from the northern, central and southern areas of the distribution of this species, consistent with previous assessments of mitochondrial DNA variation. F(ST) values between populations from these regions ranged from 0.19 to 0.54. Within the central area, there was further genetic fragmentation, and a linear association between genetic and geographical distance. This pattern is likely to reflect limited dispersal across barriers despite the fact that individual B. parvus can move several kilometres. Levels of genetic variation within populations were high with the exception of a southern population where there was evidence of inbreeding. From a conservation perspective, all three areas where B. parvus are found should be considered as separate gene pools; management of populations within these areas needs to take into account the low gene flow between populations, as well as threats posed by roads, resorts and other developments in the alpine region. The low genetic variability and inbreeding in the southern population is of particular concern given the high levels of variability in other B. parvus populations. PMID:17181722

  15. Localization of a highly divergent mammalian testicular alpha tubulin that is not detectable in brain.

    PubMed Central

    Hecht, N B; Distel, R J; Yelick, P C; Tanhauser, S M; Driscoll, C E; Goldberg, E; Tung, K S

    1988-01-01

    Sequence analysis of a mouse testicular alpha-tubulin partial cDNA, pRD alpha TT1, reveals an isotype that differs from both the somatic and the predominant testicular alpha tubulins at approximately 30% of the 212 amino acid residues determined. Although this mouse testicular cDNA retains the highly conserved sequence, Glu-Gly-Glu-Glu, found in the carboxyl termini of many alpha tubulins, the protein extends substantially beyond this sequence and does not terminate with a C-terminal tyrosine. Using rabbit antiserum prepared to a novel synthetic peptide predicted from this mouse testis alpha-tubulin cDNA, we have have detected by immunoblot and indirect immunofluorescence an antigenic epitope present in testicular alpha tubulin that is not detectable in brain alpha tubulins. We find that the antiserum specifically binds to the manchettes and meiotic spindles of the mouse testis but not with neural fibers or tubulin extracts of the adult mouse brain. These results demonstrate that at least one of the multiple alpha-tubulin isotypes of the mammalian testis is expressed and used in male germ cells but not in the brain. Images PMID:3352610

  16. Early divergence, broad distribution, and high diversity of animal chitin synthases.

    PubMed

    Zakrzewski, Anne-C; Weigert, Anne; Helm, Conrad; Adamski, Marcin; Adamska, Maja; Bleidorn, Christoph; Raible, Florian; Hausen, Harald

    2014-02-01

    Even though chitin is one of the most abundant biopolymers in nature, current knowledge on chitin formation is largely based only on data from fungi and insects. This study reveals unanticipated broad taxonomic distribution and extensive diversification of chitin synthases (CSs) in Metazoa, shedding new light on the relevance of chitin in animals and suggesting unforeseen complexity of chitin synthesis in many groups. We uncovered robust orthologs to insect type CSs in several representatives of deuterostomes, which generally are not thought to possess chitin. This suggests a broader distribution and function of chitin in this branch of the animal kingdom. We characterize a new CS type present not only in basal metazoans such as sponges and cnidarians but also in several bilaterian representatives. The most extensive diversification of CSs took place during emergence of lophotrochozoans, the third large group of protostomes next to arthropods and nematodes, resulting in coexistence of up to ten CS paralogs in molluscs. Independent fusion to different kinds of myosin motor domains in fungi and lophotrochozoans points toward high relevance of CS interaction with the cytoskeleton for fine-tuned chitin secretion. Given the fundamental role that chitin plays in the morphology of many animals, the here presented CS diversification reveals many evolutionary complexities. Our findings strongly suggest a very broad and multifarious occurrence of chitin and question an ancestral role as cuticular component. The molecular mechanisms underlying regulation of animal chitin synthesis are most likely far more complex and diverse than existing data from insects suggest. PMID:24443419

  17. Early Divergence, Broad Distribution, and High Diversity of Animal Chitin Synthases

    PubMed Central

    Zakrzewski, Anne-C.; Weigert, Anne; Helm, Conrad; Adamski, Marcin; Adamska, Maja; Bleidorn, Christoph; Raible, Florian; Hausen, Harald

    2014-01-01

    Even though chitin is one of the most abundant biopolymers in nature, current knowledge on chitin formation is largely based only on data from fungi and insects. This study reveals unanticipated broad taxonomic distribution and extensive diversification of chitin synthases (CSs) in Metazoa, shedding new light on the relevance of chitin in animals and suggesting unforeseen complexity of chitin synthesis in many groups. We uncovered robust orthologs to insect type CSs in several representatives of deuterostomes, which generally are not thought to possess chitin. This suggests a broader distribution and function of chitin in this branch of the animal kingdom. We characterize a new CS type present not only in basal metazoans such as sponges and cnidarians but also in several bilaterian representatives. The most extensive diversification of CSs took place during emergence of lophotrochozoans, the third large group of protostomes next to arthropods and nematodes, resulting in coexistence of up to ten CS paralogs in molluscs. Independent fusion to different kinds of myosin motor domains in fungi and lophotrochozoans points toward high relevance of CS interaction with the cytoskeleton for fine-tuned chitin secretion. Given the fundamental role that chitin plays in the morphology of many animals, the here presented CS diversification reveals many evolutionary complexities. Our findings strongly suggest a very broad and multifarious occurrence of chitin and question an ancestral role as cuticular component. The molecular mechanisms underlying regulation of animal chitin synthesis are most likely far more complex and diverse than existing data from insects suggest. PMID:24443419

  18. Rapid divergence and gene flow at high latitudes shape the history of Holarctic ground squirrels (Urocitellus).

    PubMed

    McLean, Bryan S; Jackson, Donavan J; Cook, Joseph A

    2016-09-01

    Across the animal tree of life, the prevalence and evolutionary role(s) of hybridization remain incompletely understood. Rapidly radiating clades can serve as important systems for investigating these issues; however, such groups are often characterized by additional, widespread sources of gene tree discordance (e.g., incomplete lineage sorting). In this paper, we employed a multilocus dataset, Bayesian gene tree inference, and multiple species tree reconstruction methods to infer phylogeny of Holarctic ground squirrels (Urocitellus). We tested phylogenetic hypotheses based on previous morphological, cytological and single-locus datasets, and began to parse the causes of pervasive gene tree discordance that was observed. There is widespread incomplete lineage sorting in Urocitellus, consistent with rapid diversification embedded within the larger radiation of marmotine ground squirrels. We also recovered strong support for 2 instances of mitonuclear discord due to ancient hybridization among members of the high-latitude parryii-richardsonii-elegans clade. These results add to a growing number of documented hybridization events in ground squirrels, suggesting their radiation is a fertile system for understanding the interplay of diversification and hybridization in animal evolution. PMID:27261251

  19. Countering beam divergence effects with focused segmented scintillators for high DQE megavoltage active matrix imagers

    NASA Astrophysics Data System (ADS)

    Liu, Langechuan; Antonuk, Larry E.; Zhao, Qihua; El-Mohri, Youcef; Jiang, Hao

    2012-08-01

    The imaging performance of active matrix flat-panel imagers designed for megavoltage imaging (MV AMFPIs) is severely constrained by relatively low x-ray detection efficiency, which leads to a detective quantum efficiency (DQE) of only ∼1%. Previous theoretical and empirical studies by our group have demonstrated the potential for addressing this constraint through the utilization of thick, two-dimensional, segmented scintillators with optically isolated crystals. However, this strategy is constrained by the degradation of high-frequency DQE resulting from spatial resolution loss at locations away from the central beam axis due to oblique incidence of radiation. To address this challenge, segmented scintillators constructed so that the crystals are individually focused toward the radiation source are proposed and theoretically investigated. The study was performed using Monte Carlo simulations of radiation transport to examine the modulation transfer function and DQE of focused segmented scintillators with thicknesses ranging from 5 to 60 mm. The results demonstrate that, independent of scintillator thickness, the introduction of focusing largely restores spatial resolution and DQE performance otherwise lost in thick, unfocused segmented scintillators. For the case of a 60 mm thick BGO scintillator and at a location 20 cm off the central beam axis, use of focusing improves DQE by up to a factor of ∼130 at non-zero spatial frequencies. The results also indicate relatively robust tolerance of such scintillators to positional displacements, of up to 10 cm in the source-to-detector direction and 2 cm in the lateral direction, from their optimal focusing position, which could potentially enhance practical clinical use of focused segmented scintillators in MV AMFPIs.

  20. Countering Beam Divergence Effects with Focused Segmented Scintillators for High DQE Megavoltage Active Matrix Imagers

    PubMed Central

    Liu, Langechuan; Antonuk, Larry E; Zhao, Qihua; El-Mohri, Youcef; Jiang, Hao

    2012-01-01

    The imaging performance of active matrix flat-panel imagers designed for megavoltage imaging (MV AMFPIs) is severely constrained by relatively low x-ray detection efficiency, which leads to a detective quantum efficiency (DQE) of only ~1%. Previous theoretical and empirical studies by our group have demonstrated the potential for addressing this constraint through utilization of thick, two-dimensional, segmented scintillators with optically isolated crystals. However, this strategy is constrained by degradation of high-frequency DQE resulting from spatial resolution loss at locations away from the central beam axis due to oblique incidence of radiation. To address this challenge, segmented scintillators constructed so that the crystals are individually focused toward the radiation source are proposed and theoretically investigated. The study was performed using Monte Carlo simulations of radiation transport to examine the modulation transfer function and DQE of focused segmented scintillators with thicknesses ranging from 5 to 60 mm. The results demonstrate that, independent of scintillator thickness, the introduction of focusing largely restores spatial resolution and DQE performance otherwise lost in thick, unfocused segmented scintillators. For the case of a 60 mm thick BGO scintillator and at a location 20 cm off the central beam axis, use of focusing improves DQE by up to a factor of ~130 at non-zero spatial frequencies. The results also indicate relatively robust tolerance of such scintillators to positional displacements, of up to 10 cm in the source-to-detector direction and 2 cm in the lateral direction, from their optimal focusing position, which could potentially enhance practical clinical use of focused segmented scintillators in MV AMFPIs. PMID:22854009

  1. High volume molecular genetic identification of single nucleotide polymorphisms using Genetic Bit Analysis Application to human genetic diagnosis

    SciTech Connect

    Boyce-Jacino, M.T.; Reynolds, J.; Nikiforov, T.

    1994-09-01

    The most common type of genetic disease-associated mutation is the single nucleotide polymorphism (SNP). Because most genetic diseases can be caused by multiple SNPs in the same gene, effective routine diagnosis of complex genetic diseases is dependent on a simple and reliable method of interrogating SNP sites. Molecular Tool`s solid phase assay capable of direct genotyping (single base sequencing) of SNP sites, Genetic Bit Analysis (GBA), involves hybridization-capture of a single-stranded PCR product to a sequence-specific, microtiter plate-bound oligonucleotide primer. The captured PCR product then acts as template for single-base extension of the capture primer across the polymorphic site, enabling direct determination of the base composition of the polymorphism through a simple colormetric assay. Genotyping in a high volume, semi-automated, processing system with a current capacity of 100 SNP interrogations per technician per day enables the screening of candidate mutations rapidly and cost-effectively, critically important to comprehensive genetic diagnosis. Using this gel-free technology, we have developed prototype diagnostic tests for CFTR and ApoE polymorphisms which enable direct sequencing of the polymorphic base at each site of interest. Routine clinical diagnosis of genetically complex diseases such as cystic fibrosis is dependent on this combination of robust biochemistry and simple format. Additionally, the ability to transfer the format and biochemistry to any disease gene of interest enables the broad application of this technology to clinical diagnostics, especially for genetically complex diseases.

  2. Contemporary Evolutionary Divergence for a Protected Species following Assisted Colonization

    PubMed Central

    Collyer, Michael L.; Heilveil, Jeffrey S.; Stockwell, Craig A.

    2011-01-01

    Background Contemporary evolution following assisted colonization may increase the probability of persistence for refuge populations established as a bet-hedge for protected species. Such refuge populations are considered “genetic replicates” that might be used for future re-colonization in the event of a catastrophe in the native site. Although maladaptive evolutionary divergence of captive populations is well recognized, evolutionary divergence of wild refuge populations may also occur on contemporary time scales. Thus, refuge populations may lose their “value” as true genetic replicates of the native population. Here, we show contemporary evolutionary divergence in body shape in an approximately 30-year old refuge population of the protected White Sands pupfish (Cyprinodon tularosa) resulting in a body-shape mismatch with its native environment. Methodology/Principal Findings Geometric morphometic data were collected from C. tularosa cultures raised in experimental mesocosms. Cultures were initiated with fish from the two native populations, plus hybrids, in high or low salinity treatments representing the salinities of the two native habitats. We found that body shape was heritable and that shape variation due to phenotypic plasticity was small compared to shape variation due to population source. C. tularosa from the high salinity population retained slender body shapes and fish from the low salinity population retained deep body shapes, irrespective of mesocosm salinity. These data suggest that the observed divergence of a recently established pupfish population was not explained by plasticity. An analysis of microsatellite variation indicated that no significant genetic drift occurred in the refuge population, further supporting the adaptive nature of changes in body shape. These lines of evidence suggest that body shape divergence of the refuge population reflects a case of contemporary evolution (over a 30-year period). Conclusions

  3. The Influence of Overcoming Fixation in Mathematics towards Divergent Thinking in Open-Ended Mathematics Problems on Japanese Junior High School Students.

    ERIC Educational Resources Information Center

    Imai, Toshihiro

    2000-01-01

    Aims to find the influence of overcoming fixation in mathematical problem-solving towards divergent thinking in open-ended mathematics problems. Presents findings from an investigation of Japanese junior high school students. Reports that students who can overcome fixation in mathematics can contribute varied and original ideas in open-ended…

  4. High genetic variability and polychromatism in Pachycoris torridus (Heteroptera: Scutelleridae).

    PubMed

    Souza-Firmino, T S; Alevi, K C C; Pereira, L L V; Souza, E R S; Júnior, F C S; Banho, C A; Carmo, G O; Itoyama, M M

    2015-01-01

    The stink bug Pachycoris torridus is listed among the most polyphagous insects in the world and it is a major pest of diverse crops, in particular the physic nut Jatropha curcas, which is used as a raw material for biodiesel production. A peculiar characteristic of this species is its high phenotypic variability, a characteristic that makes identification difficult: P. torridus has been described as a new species eight times. Thus, to aid in identification, genetic characterization of this insect was performed. We verified that, due to the high genetic variability of P. torridus, several genetic patterns exist that result in the same phenotype. PMID:26600488

  5. Population Genetic Structure of a Centipede Species with High Levels of Developmental Instability

    PubMed Central

    Fusco, Giuseppe; Leśniewska, Małgorzata; Congiu, Leonardo; Bertorelle, Giorgio

    2015-01-01

    European populations of the geophilomorph centipede Haplophilus subterraneus show a high proportion of individuals with morphological anomalies, suggesting high levels of developmental instability. The broad geographic distribution of this phenomenon seems to exclude local environmental causes, but the source of instability is still to be identified. The goal of the present study was to collect quantitative data on the occurrence of phenodeviants in different populations, along with data on the patterns of genetic variation within and between populations, in order to investigate possible association between developmental instability and genetic features. In a sample of 11 populations of H. subterraneus, distributed in western and central Europe, we looked for phenodeviants, in particular with respect to trunk morphology, and studied genetic variation through the genotyping of microsatellite loci. Overall, no support was found to the idea that developmental instability in H. subterraneus is related to a specific patterns of genetic variation, including inbreeding estimates. We identified a major genetic partition that subdivides French populations from the others, and a low divergence among northwestern areas, which are possibly related to the post-glacial recolonization from southern refugia and/or to recent anthropogenic soil displacements. A weak correlation between individual number of leg bearing segments and the occurrence of trunk anomalies seems to support a trade-off between these two developmental traits. These results, complemented by preliminary data on developmental stability in two related species, suggest that the phenomenon has not a simple taxonomic distribution, while it exhibits an apparent localization in central and eastern Europe. PMID:26029915

  6. Population genetic structure of a centipede species with high levels of developmental instability.

    PubMed

    Fusco, Giuseppe; Leśniewska, Małgorzata; Congiu, Leonardo; Bertorelle, Giorgio

    2015-01-01

    European populations of the geophilomorph centipede Haplophilus subterraneus show a high proportion of individuals with morphological anomalies, suggesting high levels of developmental instability. The broad geographic distribution of this phenomenon seems to exclude local environmental causes, but the source of instability is still to be identified. The goal of the present study was to collect quantitative data on the occurrence of phenodeviants in different populations, along with data on the patterns of genetic variation within and between populations, in order to investigate possible association between developmental instability and genetic features. In a sample of 11 populations of H. subterraneus, distributed in western and central Europe, we looked for phenodeviants, in particular with respect to trunk morphology, and studied genetic variation through the genotyping of microsatellite loci. Overall, no support was found to the idea that developmental instability in H. subterraneus is related to a specific patterns of genetic variation, including inbreeding estimates. We identified a major genetic partition that subdivides French populations from the others, and a low divergence among northwestern areas, which are possibly related to the post-glacial recolonization from southern refugia and/or to recent anthropogenic soil displacements. A weak correlation between individual number of leg bearing segments and the occurrence of trunk anomalies seems to support a trade-off between these two developmental traits. These results, complemented by preliminary data on developmental stability in two related species, suggest that the phenomenon has not a simple taxonomic distribution, while it exhibits an apparent localization in central and eastern Europe. PMID:26029915

  7. Study of plume behaviour of a convergent-divergent and aerospike nozzle at high altitudes using DSMC

    NASA Astrophysics Data System (ADS)

    Donbosco, Ferdin S.; Kumar, Rakesh

    2014-12-01

    The focus of this research endeavor is the numerical investigation of the aerospike nozzle design for aerospace applications, principally due to the design's inherent altitude compensation ability. Our concern is limited to the nozzle's performance at high altitudes and the rarefied atmospheres. The rarefied nature of the study has enabled the use of kinetic particle based methods. In the present work an in-house code based on Direct Simulation Monte Carlo (DSMC) is used to analyze the problem. In the first part of this work, the validity of the usage of DSMC for such a complex flow problem is established by comparison of results with experimental and computational data available in literature. In the second part of the work, the Method of characteristics is used to design an aerospike and convergent-divergent (CD) nozzle optimized for an altitude of 55 km. The parameters such as throat area and chamber conditions are maintained for both cases. In both studies, the exhaust gas is assumed to be Nitrogen at a temperature of 300 K thus, characterizing it as a cold flow analysis.

  8. Novel Virus Discovery and Genome Reconstruction from Field RNA Samples Reveals Highly Divergent Viruses in Dipteran Hosts

    PubMed Central

    Bass, David; Moureau, Gregory; Tang, Shuoya; McAlister, Erica; Culverwell, C. Lorna; Glücksman, Edvard; Wang, Hui; Brown, T. David K.; Gould, Ernest A.; Harbach, Ralph E.; de Lamballerie, Xavier; Firth, Andrew E.

    2013-01-01

    We investigated whether small RNA (sRNA) sequenced from field-collected mosquitoes and chironomids (Diptera) can be used as a proxy signature of viral prevalence within a range of species and viral groups, using sRNAs sequenced from wild-caught specimens, to inform total RNA deep sequencing of samples of particular interest. Using this strategy, we sequenced from adult Anopheles maculipennis s.l. mosquitoes the apparently nearly complete genome of one previously undescribed virus related to chronic bee paralysis virus, and, from a pool of Ochlerotatus caspius and Oc. detritus mosquitoes, a nearly complete entomobirnavirus genome. We also reconstructed long sequences (1503-6557 nt) related to at least nine other viruses. Crucially, several of the sequences detected were reconstructed from host organisms highly divergent from those in which related viruses have been previously isolated or discovered. It is clear that viral transmission and maintenance cycles in nature are likely to be significantly more complex and taxonomically diverse than previously expected. PMID:24260463

  9. Genetic engineering for high methionine grain legumes.

    PubMed

    Müntz, K; Christov, V; Saalbach, G; Saalbach, I; Waddell, D; Pickardt, T; Schieder, O; Wüstenhagen, T

    1998-08-01

    Methionine (Met) is the primary limiting essential amino acid in grain legumes. The imbalance in amino acid composition restricts their biological value (BV) to 55 to 75% of that of animal protein. So far improvement of the BV could not be achieved by conventional breeding. Therefore, genetic engineering was employed by several laboratories to resolve the problem. Three strategies have been followed. A) Engineering for increased free Met levels; B) engineering of endogenous storage proteins with increased numbers of Met residues; C) transfer of foreign genes encoding Met-rich proteins, e.g. the Brazil nut 2S albumin (BNA) and its homologue from sunflower, into grain legumes. The latter strategy turned out to be most promising. In all cases the gene was put under the control of a developmentally regulated seed specific promoter and transferred into grain legumes using the bacterial Agrobacterium tumefaciens-system. Integration into and copy numbers in the plant genome as well as Mendelian inheritance and gene dosage effects were verified. After correct precursor processing the mature 2S albumin was intracellularly deposited in protein bodies which are part of the vacuolar compartment. The foreign protein amounted to 5 to 10% of the total seed protein in the best transgenic lines of narbon bean (Vicia narbonensis L., used in the authors' laboratories), lupins (Lupinus angustifolius L., used in CSIRO, Australia), and soybean (Glycine max (L.) Merr., used by Pioneer Hi-Bred, Inc., USA). In the narbon bean the increase of Met was directly related to the amount of 2S albumin in the transgenic seeds, but in soybean it remained below the theoretically expected value. Nevertheless, trangenic soybean reached 100%, whereas narbon bean and lupins reached approximately 80% of the FAO-standard for nutritionally balanced food proteins. These results document that the Met problem of grain legumes can be resolved by genetic engineering. PMID:9739551

  10. Porcine astrovirus viremia and high genetic variability in pigs on large holdings in Croatia.

    PubMed

    Brnić, Dragan; Prpić, Jelena; Keros, Tomislav; Roić, Besi; Starešina, Vilim; Jemeršić, Lorena

    2013-03-01

    Astroviruses are emerging viral agents, primarily enteropathogenic in mammals, but recently have been acknowledged to have extra-intestinal implications in humans and mink. Porcine astrovirus is thought to be widely distributed and highly prevalent among pigs, nevertheless its clinical significance remains doubtful as it can be detected in diarrheic as well as in healthy pigs. Recent reports imply the immense genetic variability among porcine astrovirus strains with five distinct lineages being characterized so far. Herein, we report porcine astrovirus circulation in the blood of healthy pigs in different age categories bred on two large industrial holdings in Croatia, with viral RNA seroprevalence of 3.89%. These are the first extra-intestinal findings of astrovirus in pigs, indicating a more complex pathogenesis than previously thought. Partial polymerase sequences of serum-derived strains provisionally clustered into porcine astrovirus lineages 2 and 4, sharing high genetic identity with previously described porcine astrovirus strains. The results were supported by detecting porcine astrovirus strains in composite fecal samples, regardless of pig category or holding tested. Phylogenetic analysis of derived strains suggested the presence of porcine astrovirus lineages previously detected in pig sera with an additional highly genetically divergent lineage 5, reported for the first time in Europe. Moreover, the existence of possible sub lineages should not be excluded. The results obtained in the present study, contribute to knowledge of porcine astrovirus pathogenesis; even though it's possible clinical significance remains unclear. High fecal prevalence accompanied with vast genetic diversity on a relatively confined area, underscores the importance of pigs as porcine astrovirus reservoirs with eventual recombination events as a possible outcome. PMID:23313832

  11. Huangshan population of Chinese Zacco platypus (Teleostei, Cyprinidae) harbors diverse matrilines and high genetic diversity.

    PubMed

    Zheng, Xin; Zhou, Tian-Qi; Wan, Tao; Perdices, Anabel; Yang, Jin-Quan; Tang, Xin-Sheng; Wang, Zheng-Ping; Huang, Li-Qun; Huang, Song; He, Shun-Ping

    2016-03-18

    Six main mitochondrial DNA (mtDNA) lineages have been described in minnow (Zacco platypus) samples obtained from northern, western and southern China. Perdices et al. (2004) predicted that further sampling of other tributaries might discover more lineages of this species. In this study, we collected 26 Zacco platypus individuals in the Huangshan area of eastern China and determined the cytochrome b (cytb) sequence variations. Combined with reported data in GenBank, we identified ten matrilines (Zacco A-J) in a total of 169 samples, with relatively high molecular divergence found among them. The Huangshan population had the greatest genetic variation among all sampled regions and hosted six of the ten matrilines. Our results highlight the significance of the Huangshan area for the conservation of Zacco platypus. PMID:27029868

  12. Huangshan population of Chinese Zacco platypus (Teleostei, Cyprinidae) harbors diverse matrilines and high genetic diversity

    PubMed Central

    ZHENG, Xin; ZHOU, Tian-Qi; WAN, Tao; PERDICES, Anabel; YANG, Jin-Quan; TANG, Xin-Sheng; WANG, Zheng-Ping; HUANG, Li-Qun; HUANG, Song; HE, Shun-Ping

    2016-01-01

    Six main mitochondrial DNA (mtDNA) lineages have been described in minnow (Zacco platypus) samples obtained from northern, western and southern China. Perdices et al. (2004) predicted that further sampling of other tributaries might discover more lineages of this species. In this study, we collected 26 Zacco platypus individuals in the Huangshan area of eastern China and determined the cytochrome b (cytb) sequence variations. Combined with reported data in GenBank, we identified ten matrilines (Zacco A-J) in a total of 169 samples, with relatively high molecular divergence found among them. The Huangshan population had the greatest genetic variation among all sampled regions and hosted six of the ten matrilines. Our results highlight the significance of the Huangshan area for the conservation of Zacco platypus. PMID:27029868

  13. Is Gene Flow Promoting the Reversal of Pleistocene Divergence in the Mountain Chickadee (Poecile gambeli)?

    PubMed Central

    Manthey, Joseph D.; Klicka, John; Spellman, Garth M.

    2012-01-01

    The Pleistocene glacial cycles left a genetic legacy on taxa throughout the world; however, the persistence of genetic lineages that diverged during these cycles is dependent upon levels of gene flow and introgression. The consequences of secondary contact among taxa may reveal new insights into the history of the Pleistocene’s genetic legacy. Here, we use phylogeographic methods, using 20 nuclear loci from regional populations, to infer the consequences of secondary contact following divergence in the Mountain Chickadee (Poecile gambeli). Analysis of nuclear data identified two geographically-structured genetic groups, largely concordant with results from a previous mitochondrial DNA (mtDNA) study. Additionally, the estimated multilocus divergence times indicate a Pleistocene divergence, and are highly concordant with mtDNA. The previous mtDNA study showed a paucity of sympatry between clades, while nuclear patterns of gene flow show highly varied patterns between populations. The observed pattern of gene flow, from coalescent-based analyses, indicates southern populations in both clades exhibit little gene flow within or between clades, while northern populations are experiencing higher gene flow within and between clades. If this pattern were to persist, it is possible the historical legacy of Pleistocene divergence may be preserved in the southern populations only, and the northern populations would become a genetically diverse hybrid species. PMID:23152877

  14. Identification and Characterization of Highly Divergent Simian Foamy Viruses in a Wide Range of New World Primates from Brazil

    PubMed Central

    Muniz, Cláudia P.; Troncoso, Lian L.; Moreira, Miguel A.; Soares, Esmeralda A.; Pissinatti, Alcides; Bonvicino, Cibele R.; Seuánez, Héctor N.; Sharma, Bechan; Jia, Hongwei; Shankar, Anupama; Switzer, William M.; Santos, André F.; Soares, Marcelo A.

    2013-01-01

    Foamy viruses naturally infect a wide range of mammals, including Old World (OWP) and New World primates (NWP), which are collectively called simian foamy viruses (SFV). While NWP species in Central and South America are highly diverse, only SFV from captive marmoset, spider monkey, and squirrel monkey have been genetically characterized and the molecular epidemiology of SFV infection in NWPs remains unknown. We tested a large collection of genomic DNA (n  = 332) comprising 14 genera of NWP species for the presence of SFV polymerase (pol) sequences using generic PCR primers. Further molecular characterization of positive samples was carried out by LTR-gag and larger pol sequence analysis. We identified novel SFVs infecting nine NWP genera. Prevalence rates varied between 14–30% in different species for which at least 10 specimens were tested. High SFV genetic diversity among NWP up to 50% in LTR-gag and 40% in pol was revealed by intragenus and intrafamilial comparisons. Two different SFV strains infecting two captive yellow-breasted capuchins did not group in species-specific lineages but rather clustered with SFVs from marmoset and spider monkeys, indicating independent cross-species transmission events. We describe the first SFV epidemiology study of NWP, and the first evidence of SFV infection in wild NWPs. We also document a wide distribution of distinct SFVs in 14 NWP genera, including two novel co-speciating SFVs in capuchins and howler monkeys, suggestive of an ancient evolutionary history in NWPs for at least 28 million years. A high SFV genetic diversity was seen among NWP, yet these viruses seem able to jump between NWP species and even genera. Our results raise concerns for the risk of zoonotic transmission of NWP SFV to humans as these primates are regularly hunted for food or kept as pets in forest regions of South America. PMID:23844033

  15. Rates of genomic divergence in humans, chimpanzees and their lice

    PubMed Central

    Johnson, Kevin P.; Allen, Julie M.; Olds, Brett P.; Mugisha, Lawrence; Reed, David L.; Paige, Ken N.; Pittendrigh, Barry R.

    2014-01-01

    The rate of DNA mutation and divergence is highly variable across the tree of life. However, the reasons underlying this variation are not well understood. Comparing the rates of genetic changes between hosts and parasite lineages that diverged at the same time is one way to begin to understand differences in genetic mutation and substitution rates. Such studies have indicated that the rate of genetic divergence in parasites is often faster than that of their hosts when comparing single genes. However, the variation in this relative rate of molecular evolution across different genes in the genome is unknown. We compared the rate of DNA sequence divergence between humans, chimpanzees and their ectoparasitic lice for 1534 protein-coding genes across their genomes. The rate of DNA substitution in these orthologous genes was on average 14 times faster for lice than for humans and chimpanzees. In addition, these rates were positively correlated across genes. Because this correlation only occurred for substitutions that changed the amino acid, this pattern is probably produced by similar functional constraints across the same genes in humans, chimpanzees and their ectoparasites. PMID:24403325

  16. High genetic structuring of Tula hantavirus.

    PubMed

    Schmidt, Sabrina; Saxenhofer, Moritz; Drewes, Stephan; Schlegel, Mathias; Wanka, Konrad M; Frank, Raphael; Klimpel, Sven; von Blanckenhagen, Felix; Maaz, Denny; Herden, Christiane; Freise, Jona; Wolf, Ronny; Stubbe, Michael; Borkenhagen, Peter; Ansorge, Hermann; Eccard, Jana A; Lang, Johannes; Jourdain, Elsa; Jacob, Jens; Marianneau, Philippe; Heckel, Gerald; Ulrich, Rainer G

    2016-05-01

    Tula virus (TULV) is a vole-associated hantavirus with low or no pathogenicity to humans. In the present study, 686 common voles (Microtus arvalis), 249 field voles (Microtus agrestis) and 30 water voles (Arvicola spec.) were collected at 79 sites in Germany, Luxembourg and France and screened by RT-PCR and TULV-IgG ELISA. TULV-specific RNA and/or antibodies were detected at 43 of the sites, demonstrating a geographically widespread distribution of the virus in the studied area. The TULV prevalence in common voles (16.7 %) was higher than that in field voles (9.2 %) and water voles (10.0 %). Time series data at ten trapping sites showed evidence of a lasting presence of TULV RNA within common vole populations for up to 34 months, although usually at low prevalence. Phylogenetic analysis demonstrated a strong genetic structuring of TULV sequences according to geography and independent of the rodent species, confirming the common vole as the preferential host, with spillover infections to co-occurring field and water voles. TULV phylogenetic clades showed a general association with evolutionary lineages in the common vole as assessed by mitochondrial DNA sequences on a large geographical scale, but with local-scale discrepancies in the contact areas. PMID:26831932

  17. Differential expression of feeding-related hypothalamic neuropeptides in the first generation of quails divergently selected for low or high feed efficiency.

    PubMed

    Blankenship, Kaley; Gilley, Alex; Piekarski, Alissa; Orlowski, Sara; Greene, Elizabeth; Bottje, Walter; Anthony, Nicholas; Dridi, Sami

    2016-08-01

    Livestock and poultry sectors are facing a combination of challenges, including a substantial increase in global demand for high quality animal protein, general droughts and steady rise in animal feed cost. Thus feed efficiency (FE), which defines the animal's ability to convert feed into body weight, is a vital economic and agricultural trait. Genetic selection for FE has been largely used in chickens and has been applied without knowledge of the underlying molecular mechanisms. Although it has made tremendous progress (breast yield, growth rate, egg production), there have been a number of undesirable changes such as metabolic disorders. In the present study we divergently selected male and female quail for high and low FE and we aimed to characterize the molecular basis of these differences at the central level, with the long-term goal of maximizing FE and avoiding the unfavorable consequences. The FE phenotype in first generation quails seemed to be achieved by reduced feed intake in female and increased body weight gain in males. At the molecular level, we found that the expression of feeding-related hypothalamic genes is gender- and line-dependent. Indeed, the expression of NPY, POMC, CART, CRH, melanocortin system (MC1R, MC2R, MC4R, MC5R), ORX, mTOR and ACCα was significantly decreased, however ORXR1/2, AMPKα1, S6K1 and STAT1, 5 and 6 were increased in high compared to low FE males (P<0.05). These genes did not differ between the two female lines. ADPN gene expression was higher and its receptor Adip-R1 was lower in LFE compared to HFE females (P<0.05). In male however, although there was no difference in ADPN gene expression between the genotypes, Adip-R1 and Adip-R2 mRNA abundances were higher in the LFE compared to HFE line (P<0.05). This study identified several key central feeding-related genes that are differentially expressed between low and high FE male and female quails which might explain the differences in feed intake/body weight gain observed

  18. Rapid divergence and high diversity of miRNAs and miRNA targets in the Camelineae.

    PubMed

    Smith, Lisa M; Burbano, Hernán A; Wang, Xi; Fitz, Joffrey; Wang, George; Ural-Blimke, Yonca; Weigel, Detlef

    2015-02-01

    MicroRNAs (miRNAs) are short RNAs involved in gene regulation through translational inhibition and transcript cleavage. After processing from imperfect fold-back structures, miRNAs are incorporated into RNA-induced silencing complexes (RISCs) before targeting transcripts with varying degrees of complementarity. Some miRNAs are evolutionarily deep-rooted, and sequence complementarity with their targets is maintained through purifying selection. Both Arabidopsis and Capsella belong to the tribe Camelineae in the Brassicaceae, with Capsella rubella serving as an outgroup to the genus Arabidopsis. The genome sequence of C. rubella has recently been released, which allows characterization of its miRNA complement in comparison with Arabidopsis thaliana and Arabidopsis lyrata. Through next-generation sequencing, we identify high-confidence miRNA candidates specific to the C. rubella lineage. Only a few lineage-specific miRNAs have been studied for evolutionary constraints, and there have been no systematic studies of miRNA target diversity within or divergence between closely related plant species. Therefore we contrast sequence variation in miRNAs and their targets within A. thaliana, and between A. thaliana, A. lyrata and C. rubella. We document a surprising amount of small-scale variation in miRNA-target pairs, where many miRNAs are predicted to have species-specific targets in addition to ones that are shared between species. Our results emphasize that the transitive nature of many miRNA-target pairs can be observed even on a relatively short evolutionary time-scale, with non-random occurrences of differences in miRNAs and their complements in the miRNA precursors, the miRNA* sequences. PMID:25557441

  19. The genome sequence of Lone Star virus, a highly divergent bunyavirus found in the Amblyomma americanum tick.

    PubMed

    Swei, Andrea; Russell, Brandy J; Naccache, Samia N; Kabre, Beniwende; Veeraraghavan, Narayanan; Pilgard, Mark A; Johnson, Barbara J B; Chiu, Charles Y

    2013-01-01

    Viruses in the family Bunyaviridae infect a wide range of plant, insect, and animal hosts. Tick-borne bunyaviruses in the Phlebovirus genus, including Severe Fever with Thrombocytopenia Syndrome virus (SFTSV) in China, Heartland virus (HRTV) in the United States, and Bhanja virus in Eurasia and Africa have been associated with acute febrile illness in humans. Here we sought to characterize the growth characteristics and genome of Lone Star virus (LSV), an unclassified bunyavirus originally isolated from the lone star tick Amblyomma americanum. LSV was able to infect both human (HeLa) and monkey (Vero) cells. Cytopathic effects were seen within 72 h in both cell lines; vacuolization was observed in infected Vero, but not HeLa, cells. Viral culture supernatants were examined by unbiased deep sequencing and analysis using an in-house developed rapid computational pipeline for viral discovery, which definitively identified LSV as a phlebovirus. De novo assembly of the full genome revealed that LSV is highly divergent, sharing <61% overall amino acid identity with any other bunyavirus. Despite this sequence diversity, LSV was found by phylogenetic analysis to be part of a well-supported clade that includes members of the Bhanja group viruses, which are most closely related to SFSTV/HRTV. The genome sequencing of LSV is a critical first step in developing diagnostic tools to determine the risk of arbovirus transmission by A. americanum, a tick of growing importance given its expanding geographic range and competence as a disease vector. This study also underscores the power of deep sequencing analysis in rapidly identifying and sequencing the genomes of viruses of potential clinical and public health significance. PMID:23637969

  20. The Genome Sequence of Lone Star Virus, a Highly Divergent Bunyavirus Found in the Amblyomma americanum Tick

    PubMed Central

    Swei, Andrea; Russell, Brandy J.; Naccache, Samia N.; Kabre, Beniwende; Veeraraghavan, Narayanan; Pilgard, Mark A.; Johnson, Barbara J. B.; Chiu, Charles Y.

    2013-01-01

    Viruses in the family Bunyaviridae infect a wide range of plant, insect, and animal hosts. Tick-borne bunyaviruses in the Phlebovirus genus, including Severe Fever with Thrombocytopenia Syndrome virus (SFTSV) in China, Heartland virus (HRTV) in the United States, and Bhanja virus in Eurasia and Africa have been associated with acute febrile illness in humans. Here we sought to characterize the growth characteristics and genome of Lone Star virus (LSV), an unclassified bunyavirus originally isolated from the lone star tick Amblyomma americanum. LSV was able to infect both human (HeLa) and monkey (Vero) cells. Cytopathic effects were seen within 72 h in both cell lines; vacuolization was observed in infected Vero, but not HeLa, cells. Viral culture supernatants were examined by unbiased deep sequencing and analysis using an in-house developed rapid computational pipeline for viral discovery, which definitively identified LSV as a phlebovirus. De novo assembly of the full genome revealed that LSV is highly divergent, sharing <61% overall amino acid identity with any other bunyavirus. Despite this sequence diversity, LSV was found by phylogenetic analysis to be part of a well-supported clade that includes members of the Bhanja group viruses, which are most closely related to SFSTV/HRTV. The genome sequencing of LSV is a critical first step in developing diagnostic tools to determine the risk of arbovirus transmission by A. americanum, a tick of growing importance given its expanding geographic range and competence as a disease vector. This study also underscores the power of deep sequencing analysis in rapidly identifying and sequencing the genomes of viruses of potential clinical and public health significance. PMID:23637969

  1. High-intensity interval and endurance training are associated with divergent skeletal muscle adaptations in a rodent model of hypertension.

    PubMed

    Holloway, Tanya M; Bloemberg, Darin; da Silva, Mayne L; Quadrilatero, Joe; Spriet, Lawrence L

    2015-06-01

    Skeletal muscle is extremely adaptable to a variety of metabolic challenges, as both traditional moderate-intensity endurance (ET) and high-intensity interval training (HIIT) increases oxidative potential in a coordinated manner. Although these responses have been clearly demonstrated in healthy individuals, it remains to be determined whether both produce similar responses in the context of hypertension, one of the most prevalent and costly diseases worldwide. Therefore, in the current study, we used the Dahl sodium-sensitive rat, a model of hypertension, to determine the molecular responses to 4 wk of either ET or HIIT in the red (RG) and white gastrocnemius (WG) muscles. In the RG, both ET and HIIT increased the content of electron transport chain proteins and increased succinate dehydrogenase (SDH) content in type I fibers. Although both intensities of exercise shifted fiber type in RG (increased IIA, decreased IIX), only HIIT was associated with a reduction in endothelial nitric oxide synthase and an increase in HIF-1α proteins. In the WG, both ET and HIIT increased markers of the electron transport chain; however, HIIT decreased SDH content in a fiber-specific manner. ET increased type IIA, decreased IIB fibers, and increased capillarization, while, in contrast, HIIT increased the percentage of IIB fibers, decreased capillary-to-fiber ratios, decreased endothelial nitric oxide synthase, and increased hypoxia inducible factor-1α (HIF-1α) protein. Altogether, these data show that unlike in healthy animals, ET and HIIT have divergent effects in the skeletal muscle of hypertensive rats. This suggests ET may be optimal at improving the oxidative capacity of skeletal muscle in animals with hypertension. PMID:25855305

  2. "Islands of Divergence" in the Atlantic Cod Genome Represent Polymorphic Chromosomal Rearrangements.

    PubMed

    Sodeland, Marte; Jorde, Per Erik; Lien, Sigbjørn; Jentoft, Sissel; Berg, Paul R; Grove, Harald; Kent, Matthew P; Arnyasi, Mariann; Olsen, Esben Moland; Knutsen, Halvor

    2016-01-01

    In several species genetic differentiation across environmental gradients or between geographically separate populations has been reported to center at "genomic islands of divergence," resulting in heterogeneous differentiation patterns across genomes. Here, genomic regions of elevated divergence were observed on three chromosomes of the highly mobile fish Atlantic cod (Gadus morhua) within geographically fine-scaled coastal areas. The "genomic islands" extended at least 5, 9.5, and 13 megabases on linkage groups 2, 7, and 12, respectively, and coincided with large blocks of linkage disequilibrium. For each of these three chromosomes, pairs of segregating, highly divergent alleles were identified, with little or no gene exchange between them. These patterns of recombination and divergence mirror genomic signatures previously described for large polymorphic inversions, which have been shown to repress recombination across extensive chromosomal segments. The lack of genetic exchange permits divergence between noninverted and inverted chromosomes in spite of gene flow. For the rearrangements on linkage groups 2 and 12, allelic frequency shifts between coastal and oceanic environments suggest a role in ecological adaptation, in agreement with recently reported associations between molecular variation within these genomic regions and temperature, oxygen, and salinity levels. Elevated genetic differentiation in these genomic regions has previously been described on both sides of the Atlantic Ocean, and we therefore suggest that these polymorphisms are involved in adaptive divergence across the species distributional range. PMID:26983822

  3. Genetics

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Maintaining genetic variation in wild populations of Arctic organisms is fundamental to the long-term persistence of high latitude biodiversity. Variability is important because it provides options for species to respond to changing environmental conditions and novel challenges such as emerging path...

  4. High Spatial Genetic Structure and Genetic Diversity in Chinese Populations of Sitobion miscanthi (Hemiptera: Aphididae).

    PubMed

    Wang, Yongmo; Hereward, James P; Zhang, Guoan

    2016-02-01

    The wheat aphid, Sitobion miscanthi Takahashi, a serious wheat pest, was previously considered to be highly migratory and anholocyclic in China. We recorded 69 alleles and 346 multilocus genotypes among 708 aphid individuals from 12 populations in China using 5 microsatellite loci. This genotypic diversity indicates that at least some holocyclic lineages exist. Bayesian clustering analysis revealed that there are two differentiated genetic groups of S. misanthi, one northern and one southern, in China. Principal coordinates analysis of population genetic distance, pairwise F(ST)'s, and network analysis of individual minimum spanning distance also supported the division. Low levels of migration were detected between the northern and southern sampling sites, but the high genetic differentiation does not support the hypothesis S. miscanthi overwinters in the south and migrates to the north in the spring annually. PMID:26487744

  5. Shared Genetic Signals of Hypoxia Adaptation in Drosophila and in High-Altitude Human Populations

    PubMed Central

    Jha, Aashish R.; Zhou, Dan; Brown, Christopher D.; Kreitman, Martin; Haddad, Gabriel G.; White, Kevin P.

    2016-01-01

    The ability to withstand low oxygen (hypoxia tolerance) is a polygenic and mechanistically conserved trait that has important implications for both human health and evolution. However, little is known about the diversity of genetic mechanisms involved in hypoxia adaptation in evolving populations. We used experimental evolution and whole-genome sequencing in Drosophila melanogaster to investigate the role of natural variation in adaptation to hypoxia. Using a generalized linear mixed model we identified significant allele frequency differences between three independently evolved hypoxia-tolerant populations and normoxic control populations for approximately 3,800 single nucleotide polymorphisms. Around 50% of these variants are clustered in 66 distinct genomic regions. These regions contain genes that are differentially expressed between hypoxia-tolerant and normoxic populations and several of the differentially expressed genes are associated with metabolic processes. Additional genes associated with respiratory and open tracheal system development also show evidence of directional selection. RNAi-mediated knockdown of several candidate genes’ expression significantly enhanced survival in severe hypoxia. Using genomewide single nucleotide polymorphism data from four high-altitude human populations—Sherpas, Tibetans, Ethiopians, and Andeans, we found that several human orthologs of the genes under selection in flies are also likely under positive selection in all four high-altitude human populations. Thus, our results indicate that selection for hypoxia tolerance can act on standing genetic variation in similar genes and pathways present in organisms diverged by hundreds of millions of years. PMID:26576852

  6. Rapid divergence of ecotypes of an invasive plant

    PubMed Central

    Ray, Avik; Ray, Rajasri

    2014-01-01

    Invasive species demonstrate rapid evolution within a very short period of time allowing one to understand the underlying mechanism(s). Lantana camara, a highly invasive plant of the tropics and subtropics, has expanded its range and successfully established itself almost throughout India. In order to uncover the processes governing the invasion dynamics, 218 individuals from various locations across India were characterized with six microsatellites. By integrating genetic data with niche modelling, we examined the effect of drift and environmental selection on genetic divergence. We found multiple genetic clusters that were non-randomly distributed across space. Spatial autocorrelation revealed a strong fine-scale structure, i.e. isolation by distance. In addition, we obtained evidence of inhibitory effects of selection on gene flow, i.e. isolation by environmental distance. Perhaps, local adaptation in response to selection is offsetting gene flow and causing the populations to diverge. Niche models suggested that temperature and precipitation play a major role in the observed spatial distribution of this plant. Based on a non-random distribution of clusters, unequal gene flow among them and different bioclimatic niche requirements, we concluded that the emergence of ecotypes represented by two genetic clusters is underway. They may be locally adapted to specific climatic conditions, and perhaps at the very early stages of ecological divergence. PMID:25165061

  7. High-spatial-resolution velocity measurements derived using Local Divergence-Free Fitting of SuperDARN observations

    NASA Astrophysics Data System (ADS)

    Bristow, W. A.; Hampton, D. L.; Otto, A.

    2016-02-01

    A new technique for analysis of Super Dual Auroral Radar Network (SuperDARN) line-of-sight velocity observations enables resolving plasma convection with unprecedented spatial resolution. The technique, Local Divergence-Free Fitting (LDFF), can be used to produce maps with a spatial resolution that is determined by the resolution of the observations rather than an arbitrary fit order. Other techniques, which express the potential as a sum of harmonic functions, limit the number of functions in the expansion to the fit order. Doing so imposes a limit on the minimum size of features that will be represented in the results. The LDFF technique is not limited by this constraint. Rather, it is limited by the resolution of the observations and the amount of regularization required by the observed noise level, which generally allows finer-scale features to be represented. The LDFF technique is described and then applied to a synthetic data set to demonstrate its validity. Then high-resolution convection maps are presented from an interval during which auroral observations over Alaska showed poleward boundary intensifications (PBIs) and auroral streamers. Overlays of the convection vectors on the auroral images illustrate correspondence between flow features and the auroral luminosity. Detailed comparison between the flows and images showed that the PBIs originated from polar cap boundary arcs that extended away from midnight toward earlier local times. As the arcs extended they were accompanied by enhanced shear flow. The arcs intensified then moved equatorward becoming streamers. As the arcs moved, the region of shear flow followed their motion, indicating a pattern of field-aligned current associated with the moving arc. The observations are the most comprehensive and detailed known to the authors for such an interval and agree well with the expected plasma flows based upon magnetospheric simulations. Flow vectors generated for the interval by the spherical harmonic fit

  8. Optimizing hybrid assembly of next-generation sequence data from Enterococcus faecium: a microbe with highly divergent genome

    PubMed Central

    2012-01-01

    Background Sequencing of bacterial genomes became an essential approach to study pathogen virulence and the phylogenetic relationship among close related strains. Bacterium Enterococcus faecium emerged as an important nosocomial pathogen that were often associated with resistance to common antibiotics in hospitals. With highly divergent gene contents, it presented a challenge to the next generation sequencing (NGS) technologies featuring high-throughput and shorter read-length. This study was designed to investigate the properties and systematic biases of NGS technologies and evaluate critical parameters influencing the outcomes of hybrid assemblies using combinations of NGS data. Results A hospital strain of E. faecium was sequenced using three different NGS platforms: 454 GS-FLX, Illumina GAIIx, and ABI SOLiD4.0, to approximately 28-, 500-, and 400-fold coverage depth. We built a pipeline that merged contigs from each NGS data into hybrid assemblies. The results revealed that each single NGS assembly had a ceiling in continuity that could not be overcome by simply increasing data coverage depth. Each NGS technology displayed some intrinsic properties, i.e. base calling error, systematic bias, etc. The gaps and low coverage regions of each NGS assembly were associated with lower GC contents. In order to optimize the hybrid assembly approach, we tested with varying amount and different combination of NGS data, and obtained optimal conditions for assembly continuity. We also, for the first time, showed that SOLiD data could help make much improved assemblies of E. faecium genome using the hybrid approach when combined with other type of NGS data. Conclusions The current study addressed the difficult issue of how to most effectively construct a complete microbial genome using today's state of the art sequencing technologies. We characterized the sequence data and genome assembly from each NGS technologies, tested conditions for hybrid assembly with combinations of

  9. A universal mechanism generating clusters of differentiated loci during divergence-with-migration.

    PubMed

    Rafajlović, Marina; Emanuelsson, Anna; Johannesson, Kerstin; Butlin, Roger K; Mehlig, Bernhard

    2016-07-01

    Genome-wide patterns of genetic divergence reveal mechanisms of adaptation under gene flow. Empirical data show that divergence is mostly concentrated in narrow genomic regions. This pattern may arise because differentiated loci protect nearby mutations from gene flow, but recent theory suggests this mechanism is insufficient to explain the emergence of concentrated differentiation during biologically realistic timescales. Critically, earlier theory neglects an inevitable consequence of genetic drift: stochastic loss of local genomic divergence. Here, we demonstrate that the rate of stochastic loss of weak local differentiation increases with recombination distance to a strongly diverged locus and, above a critical recombination distance, local loss is faster than local "gain" of new differentiation. Under high migration and weak selection, this critical recombination distance is much smaller than the total recombination distance of the genomic region under selection. Consequently, divergence between populations increases by net gain of new differentiation within the critical recombination distance, resulting in tightly linked clusters of divergence. The mechanism responsible is the balance between stochastic loss and gain of weak local differentiation, a mechanism acting universally throughout the genome. Our results will help to explain empirical observations and lead to novel predictions regarding changes in genomic architectures during adaptive divergence. PMID:27196373

  10. Divergent ecological histories of two sister Antarctic krill species led to contrasted patterns of genetic diversity in their heat-shock protein (hsp70) arsenal.

    PubMed

    Papot, Claire; Cascella, Kévin; Toullec, Jean-Yves; Jollivet, Didier

    2016-03-01

    The Arctic and the Antarctic Peninsula are currently experiencing some of the most rapid rates of ocean warming on the planet. This raises the question of how the initial adaptation to extreme cold temperatures was put in place and whether or not directional selection has led to the loss of genetic variation at key adaptive systems, and thus polar species' (re)adaptability to higher temperatures. In the Southern Ocean, krill represents the most abundant fauna and is a critical member at the base of the Antarctic food web. To better understand the role of selection in shaping current patterns of polymorphisms, we examined genetic diversity of the cox-1 and hsp70 genes by comparing two closely related species of Euphausiid that differ in ecology. Results on mtcox-1 agreed with previous studies, indicating high and similar effective population sizes. However, a coalescent-based approach on hsp70 genes highlighted the role of positive selection and past demographic changes in their recent evolution. Firstly, some form of balancing selection was acting on the inducible isoform C, which reflected the maintenance of an ancestral adaptive polymorphism in both species. Secondly, E. crystallorophias seems to have lost most of its hsp70 diversity because of a population crash and/or directional selection to cold. Nonsynonymous diversities were always greater in E. superba, suggesting that it might have evolved under more heterogeneous conditions. This can be linked to species' ecology with E. superba living in more variable pelagic conditions, while E. crystallorophias is strictly associated with continental shelves and sea ice. PMID:27087928

  11. An Integrated Bioinformatics Analysis Reveals Divergent Evolutionary Pattern of Oil Biosynthesis in High- and Low-Oil Plants

    PubMed Central

    Zhang, Li; Wang, Shi-Bo; Li, Qi-Gang; Song, Jian; Hao, Yu-Qi; Zhou, Ling; Zheng, Huan-Quan; Dunwell, Jim M.; Zhang, Yuan-Ming

    2016-01-01

    Seed oils provide a renewable source of food, biofuel and industrial raw materials that is important for humans. Although many genes and pathways for acyl-lipid metabolism have been identified, little is known about whether there is a specific mechanism for high-oil content in high-oil plants. Based on the distinct differences in seed oil content between four high-oil dicots (20~50%) and three low-oil grasses (<3%), comparative genome, transcriptome and differential expression analyses were used to investigate this mechanism. Among 4,051 dicot-specific soybean genes identified from 252,443 genes in the seven species, 54 genes were shown to directly participate in acyl-lipid metabolism, and 93 genes were found to be associated with acyl-lipid metabolism. Among the 93 dicot-specific genes, 42 and 27 genes, including CBM20-like SBDs and GPT2, participate in carbohydrate degradation and transport, respectively. 40 genes highly up-regulated during seed oil rapid accumulation period are mainly involved in initial fatty acid synthesis, triacylglyceride assembly and oil-body formation, for example, ACCase, PP, DGAT1, PDAT1, OLEs and STEROs, which were also found to be differentially expressed between high- and low-oil soybean accessions. Phylogenetic analysis revealed distinct differences of oleosin in patterns of gene duplication and loss between high-oil dicots and low-oil grasses. In addition, seed-specific GmGRF5, ABI5 and GmTZF4 were predicted to be candidate regulators in seed oil accumulation. This study facilitates future research on lipid biosynthesis and potential genetic improvement of seed oil content. PMID:27159078

  12. Multilocus genotypic data reveal high genetic diversity and low population genetic structure of Iranian indigenous sheep.

    PubMed

    Vahidi, S M F; Faruque, M O; Falahati Anbaran, M; Afraz, F; Mousavi, S M; Boettcher, P; Joost, S; Han, J L; Colli, L; Periasamy, K; Negrini, R; Ajmone-Marsan, P

    2016-08-01

    Iranian livestock diversity is still largely unexplored, in spite of the interest in the populations historically reared in this country located near the Fertile Crescent, a major livestock domestication centre. In this investigation, the genetic diversity and differentiation of 10 Iranian indigenous fat-tailed sheep breeds were investigated using 18 microsatellite markers. Iranian breeds were found to host a high level of diversity. This conclusion is substantiated by the large number of alleles observed across loci (average 13.83, range 7-22) and by the high within-breed expected heterozygosity (average 0.75, range 0.72-0.76). Iranian sheep have a low level of genetic differentiation, as indicated by the analysis of molecular variance, which allocated a very small proportion (1.67%) of total variation to the between-population component, and by the small fixation index (FST  = 0.02). Both Bayesian clustering and principal coordinates analysis revealed the absence of a detectable genetic structure. Also, no isolation by distance was observed through comparison of genetic and geographical distances. In spite of high within-breed variation, signatures of inbreeding were detected by the FIS indices, which were positive in all and statistically significant in three breeds. Possible factors explaining the patterns observed, such as considerable gene flow and inbreeding probably due to anthropogenic activities in the light of population management and conservation programmes, are discussed. PMID:26953226

  13. Inferring species divergence times using pairwise sequential Markovian coalescent modelling and low-coverage genomic data.

    PubMed

    Cahill, James A; Soares, André E R; Green, Richard E; Shapiro, Beth

    2016-07-19

    Understanding when species diverged aids in identifying the drivers of speciation, but the end of gene flow between populations can be difficult to ascertain from genetic data. We explore the use of pairwise sequential Markovian coalescent (PSMC) modelling to infer the timing of divergence between species and populations. PSMC plots generated using artificial hybrid genomes show rapid increases in effective population size at the time when the two parent lineages diverge, and this approach has been used previously to infer divergence between human lineages. We show that, even without high coverage or phased input data, PSMC can detect the end of significant gene flow between populations by comparing the PSMC output from artificial hybrids to the output of simulations with known demographic histories. We then apply PSMC to detect divergence times among lineages within two real datasets: great apes and bears within the genus Ursus Our results confirm most previously proposed divergence times for these lineages, and suggest that gene flow between recently diverged lineages may have been common among bears and great apes, including up to one million years of continued gene flow between chimpanzees and bonobos after the formation of the Congo River.This article is part of the themed issue 'Dating species divergences using rocks and clocks'. PMID:27325835

  14. Genome-Wide Divergence in the West-African Malaria Vector Anopheles melas.

    PubMed

    Deitz, Kevin C; Athrey, Giridhar A; Jawara, Musa; Overgaard, Hans J; Matias, Abrahan; Slotman, Michel A

    2016-01-01

    Anopheles melas is a member of the recently diverged An. gambiae species complex, a model for speciation studies, and is a locally important malaria vector along the West-African coast where it breeds in brackish water. A recent population genetic study of An. melas revealed species-level genetic differentiation between three population clusters. An. melas West extends from The Gambia to the village of Tiko, Cameroon. The other mainland cluster, An. melas South, extends from the southern Cameroonian village of Ipono to Angola. Bioko Island, Equatorial Guinea An. melas populations are genetically isolated from mainland populations. To examine how genetic differentiation between these An. melas forms is distributed across their genomes, we conducted a genome-wide analysis of genetic differentiation and selection using whole genome sequencing data of pooled individuals (Pool-seq) from a representative population of each cluster. The An. melas forms exhibit high levels of genetic differentiation throughout their genomes, including the presence of numerous fixed differences between clusters. Although the level of divergence between the clusters is on a par with that of other species within the An. gambiae complex, patterns of genome-wide divergence and diversity do not provide evidence for the presence of pre- and/or postmating isolating mechanisms in the form of speciation islands. These results are consistent with an allopatric divergence process with little or no introgression. PMID:27466271

  15. Genome-Wide Divergence in the West-African Malaria Vector Anopheles melas

    PubMed Central

    Deitz, Kevin C.; Athrey, Giridhar A.; Jawara, Musa; Overgaard, Hans J.; Matias, Abrahan; Slotman, Michel A.

    2016-01-01

    Anopheles melas is a member of the recently diverged An. gambiae species complex, a model for speciation studies, and is a locally important malaria vector along the West-African coast where it breeds in brackish water. A recent population genetic study of An. melas revealed species-level genetic differentiation between three population clusters. An. melas West extends from The Gambia to the village of Tiko, Cameroon. The other mainland cluster, An. melas South, extends from the southern Cameroonian village of Ipono to Angola. Bioko Island, Equatorial Guinea An. melas populations are genetically isolated from mainland populations. To examine how genetic differentiation between these An. melas forms is distributed across their genomes, we conducted a genome-wide analysis of genetic differentiation and selection using whole genome sequencing data of pooled individuals (Pool-seq) from a representative population of each cluster. The An. melas forms exhibit high levels of genetic differentiation throughout their genomes, including the presence of numerous fixed differences between clusters. Although the level of divergence between the clusters is on a par with that of other species within the An. gambiae complex, patterns of genome-wide divergence and diversity do not provide evidence for the presence of pre- and/or postmating isolating mechanisms in the form of speciation islands. These results are consistent with an allopatric divergence process with little or no introgression. PMID:27466271

  16. Efficacy of a recombinant HVT-H5 vaccine against challenge with two genetically divergent Indonesian HPAI H5N1 strains.

    PubMed

    Soejoedono, Retno D; Murtini, Sri; Palya, Vilmos; Felföldi, Balázs; Mató, Tamás; Gardin, Yannick

    2012-12-01

    %, 75%, and 90% in Group 1, 2, and 3, respectively. Shedding of challenge virus was significantly lower in the vaccinated groups compared with controls in both experiments. Vaccinated birds developed hemagglutination inhibition antibody response to H5N1 by the time of challenge. These experiments confirmed that the rHVT-H5 vaccine applied alone or in combination with inactivated H5N1 vaccines could provide high level (> 80%) clinical protection against divergent HPAI H5N1 field isolates after single immunization by 4 wk of age and a significant reduction in the excretion of challenge virus. PMID:23402113

  17. Phylogenetic analysis of human influenza A/H3N2 viruses isolated in 2015 in Germany indicates significant genetic divergence from vaccine strains.

    PubMed

    Mostafa, Ahmed; Abdelwhab, El-Sayed M; Slanina, Heiko; Hussein, Mohamed A; Kuznetsova, Irina; Schüttler, Christian G; Ziebuhr, John; Pleschka, Stephan

    2016-06-01

    Infections by H3N2-type influenza A viruses (IAV) resulted in significant numbers of hospitalization in several countries in 2014-2015, causing disease also in vaccinated individuals and, in some cases, fatal outcomes. In this study, sequence analysis of H3N2 viruses isolated in Germany from 1998 to 2015, including eleven H3N2 isolates collected early in 2015, was performed. Compared to the vaccine strain A/Texas/50/2012 (H3N2), the 2015 strains from Germany showed up to 4.5 % sequence diversity in their HA1 protein, indicating substantial genetic drift. The data further suggest that two distinct phylogroups, 3C.2 and 3C.3, with 1.6-2.3 % and 0.3-2.4 % HA1 nucleotide and amino acid sequence diversity, respectively, co-circulated in Germany in the 2014/2015 season. Distinct glycosylation patterns and amino acid substitutions in the hemagglutinin and neuraminidase proteins were identified, possibly contributing to the unusually high number of H3N2 infections in this season and providing important information for developing vaccines that are effective against both genotypes. PMID:26973232

  18. Host Genetics and Environment Drive Divergent Responses of Two Resource Sharing Gall-Formers on Norway Spruce: A Common Garden Analysis

    PubMed Central

    Axelsson, E. Petter; Iason, Glenn R.; Julkunen-Tiitto, Riitta; Whitham, Thomas G.

    2015-01-01

    A central issue in the field of community genetics is the expectation that trait variation among genotypes play a defining role in structuring associated species and in forming community phenotypes. Quantifying the existence of such community phenotypes in two common garden environments also has important consequences for our understanding of gene-by-environment interactions at the community level. The existence of community phenotypes has not been evaluated in the crowns of boreal forest trees. In this study we address the influence of tree genetics on needle chemistry and genetic x environment interactions on two gall-inducing adelgid aphids (Adelges spp. and Sacchiphantes spp.) that share the same elongating bud/shoot niche. We examine the hypothesis that the canopies of different genotypes of Norway spruce (Picea abies L.) support different community phenotypes. Three patterns emerged. First, the two gallers show clear differences in their response to host genetics and environment. Whereas genetics significantly affected the abundance of Adelges spp. galls, Sacchiphantes spp. was predominately affected by the environment suggesting that the genetic influence is stronger in Adelges spp. Second, the among family variation in genetically controlled resistance was large, i.e. fullsib families differed as much as 10 fold in susceptibility towards Adelges spp. (0.57 to 6.2 galls/branch). Also, the distribution of chemical profiles was continuous, showing both overlap as well as examples of significant differences among fullsib families. Third, despite the predicted effects of host chemistry on galls, principal component analyses using 31 different phenolic substances showed only limited association with galls and a similarity test showed that trees with similar phenolic chemical characteristics, did not host more similar communities of gallers. Nonetheless, the large genetic variation in trait expression and clear differences in how community members respond to host

  19. Genetic studies of Gonatocerus metanotalis populations from Argentina uncover divergent clades: A prospective egg parasitoid candidate agent for the glassy-winged sharpshooter in California.

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Two molecular methods were utilized to genetically distinguish geographic populations of Gonatocerus metanotalis (Ogloblin) (Hymenoptera: Mymaridae) from Argentina and to begin to test the possibility that this South American species could exist as a cryptic species complex. Gonatocerus metanotalis...

  20. GENETIC CHARACTERIZATION OF GONATOCERUS TUBERCULIFEMUR FROM SOUTH AMERICA UNCOVERS DIVERGENT CLADES: PROSPECTIVE EGG PARASITOID CANDIDATE AGENT FOR THE GLASSY-WINGED SHARPSHOOTER IN CALIFORNIA

    Technology Transfer Automated Retrieval System (TEKTRAN)

    We genetically characterized the prospective South American egg parasitoid candidate agent, Gonatocerus tuberculifemur, of the glassy-winged sharsphooter (GWSS), Homalodisca vitripennis (Germar) [=H. coagulata (Say)] for a neoclassical biological control program in California. Two molecular methods...

  1. Evidence for divergence of response in Indica, Japonica, and wild rice to high CO2 × temperature interaction.

    PubMed

    Wang, Diane R; Bunce, James A; Tomecek, Martha B; Gealy, David; McClung, Anna; McCouch, Susan R; Ziska, Lewis H

    2016-07-01

    High CO2 and high temperature have an antagonistic interaction effect on rice yield potential and present a unique challenge to adapting rice to projected future climates. Understanding how the differences in response to these two abiotic variables are partitioned across rice germplasm accessions may be key to identifying potentially useful sources of resilient alleles for adapting rice to climate change. In this study, we evaluated eleven globally diverse rice accessions under controlled conditions at two carbon dioxide concentrations (400 and 600 ppm) and four temperature environments (29 °C day/21 °C night; 29 °C day/21 °C night with additional heat stress at anthesis; 34 °C day/26 °C night; and 34 °C day/26 °C night with additional heat stress at anthesis) for a suite of traits including five yield components, five growth characteristics, one phenological trait, and four photosynthesis-related measurements. Multivariate analyses of mean trait data from these eight treatments divide our rice panel into two primary groups consistent with the genetic classification of INDICA/INDICA-like and JAPONICA populations. Overall, we find that the productivity of plants grown under elevated [CO2 ] was more sensitive (negative response) to high temperature stress compared with that of plants grown under ambient [CO2 ] across this diversity panel. We report differential response to CO2 × temperature interaction for INDICA/INDICA-like and JAPONICA rice accessions and find preliminary evidence for the beneficial introduction of exotic alleles into cultivated rice genomic background. Overall, these results support the idea of using wild or currently unadapted gene pools in rice to enhance breeding efforts to secure future climate change adaptation. PMID:26959982

  2. Direct comparison of mice null for liver or intestinal fatty acid-binding proteins reveals highly divergent phenotypic responses to high fat feeding.

    PubMed

    Gajda, Angela M; Zhou, Yin Xiu; Agellon, Luis B; Fried, Susan K; Kodukula, Sarala; Fortson, Walter; Patel, Khamoshi; Storch, Judith

    2013-10-18

    The enterocyte expresses two fatty acid-binding proteins (FABP), intestinal FABP (IFABP; FABP2) and liver FABP (LFABP; FABP1). LFABP is also expressed in liver. Despite ligand transport and binding differences, it has remained uncertain whether these intestinally coexpressed proteins, which both bind long chain fatty acids (FA), are functionally distinct. Here, we directly compared IFABP(-/-) and LFABP(-/-) mice fed high fat diets containing long chain saturated or unsaturated fatty acids, reasoning that providing an abundance of dietary lipid would reveal unique functional properties. The results showed that mucosal lipid metabolism was indeed differentially modified, with significant decreases in FA incorporation into triacylglycerol (TG) relative to phospholipid (PL) in IFABP(-/-) mice, whereas LFABP(-/-) mice had reduced monoacylglycerol incorporation in TG relative to PL, as well as reduced FA oxidation. Interestingly, striking differences were found in whole body energy homeostasis; LFABP(-/-) mice fed high fat diets became obese relative to WT, whereas IFABP(-/-) mice displayed an opposite, lean phenotype. Fuel utilization followed adiposity, with LFABP(-/-) mice preferentially utilizing lipids, and IFABP(-/-) mice preferentially metabolizing carbohydrate for energy production. Changes in body weight and fat may arise, in part, from altered food intake; mucosal levels of the endocannabinoids 2-arachidonoylglycerol and arachidonoylethanolamine were elevated in LFABP(-/-), perhaps contributing to increased energy intake. This direct comparison provides evidence that LFABP and IFABP have distinct roles in intestinal lipid metabolism; differential intracellular functions in intestine and in liver, for LFABP(-/-) mice, result in divergent downstream effects at the systemic level. PMID:23990461

  3. Genetic dissection of independent and cooperative transcriptional activation by the LysR-type activator ThnR at close divergent promoters.

    PubMed

    Rivas-Marín, Elena; Floriano, Belén; Santero, Eduardo

    2016-01-01

    Regulation of tetralin biodegradation operons is one of the examples of unconventional LysR-type mediated transcriptional regulation. ThnR activates transcription from two divergent and closely located promoters PB and PC. Although ThnR activates each promoter independently, transcription from each one increases when both promoters are together. Mutational analysis of the intergenic region shows that cooperative transcription is achieved through formation of a ThnR complex when bound to its respective sites at each promoter, via formation of a DNA loop. Mutations also defined ThnR contact sites that are important for independent transcriptional activation at each promoter. A mutation at the PB promoter region, which abolishes its independent transcription, does not affect at all PB transcription in the presence of the divergent promoter PC, thus indicating that the complex formed via DNA loop can compensate for the deficiencies in the correct protein-DNA interaction at one of the promoters. Combination of mutations in both promoters identifies a region at PC that is not important for its independent transcription but it is essential for cooperative transcription from both promoters. This work provides new insights into the diversity and complexity of activation mechanisms used by the most abundant type of bacterial transcriptional regulators. PMID:27087658

  4. Genetic dissection of independent and cooperative transcriptional activation by the LysR-type activator ThnR at close divergent promoters

    PubMed Central

    Rivas-Marín, Elena; Floriano, Belén; Santero, Eduardo

    2016-01-01

    Regulation of tetralin biodegradation operons is one of the examples of unconventional LysR-type mediated transcriptional regulation. ThnR activates transcription from two divergent and closely located promoters PB and PC. Although ThnR activates each promoter independently, transcription from each one increases when both promoters are together. Mutational analysis of the intergenic region shows that cooperative transcription is achieved through formation of a ThnR complex when bound to its respective sites at each promoter, via formation of a DNA loop. Mutations also defined ThnR contact sites that are important for independent transcriptional activation at each promoter. A mutation at the PB promoter region, which abolishes its independent transcription, does not affect at all PB transcription in the presence of the divergent promoter PC, thus indicating that the complex formed via DNA loop can compensate for the deficiencies in the correct protein-DNA interaction at one of the promoters. Combination of mutations in both promoters identifies a region at PC that is not important for its independent transcription but it is essential for cooperative transcription from both promoters. This work provides new insights into the diversity and complexity of activation mechanisms used by the most abundant type of bacterial transcriptional regulators. PMID:27087658

  5. The Influence of Current Density and Magnetic Field Topography in Optimizing the Performance, Divergence, and Plasma Oscillations of High Specific Impulse Hall Thrusters

    NASA Technical Reports Server (NTRS)

    Hofer, Richard R.; Jankovsky, Robert S.

    2003-01-01

    Recent studies of xenon Hall thrusters have shown peak efficiencies at specific impulses of less than 3000 s. This was a consequence of modern Hall thruster magnetic field topographies, which have been optimized for 300 V discharges. On-going research at the NASA Glenn Research Center is investigating this behavior and methods to enhance thruster performance. To conduct these studies, a laboratory model Hall thruster that uses a pair of trim coils to tailor the magnetic field topography for high specific impulse operation has been developed. The thruster-the NASA-173Mv2 was tested to determine how current density and magnetic field topography affect performance, divergence, and plasma oscillations at voltages up to 1000 V. Test results showed there was a minimum current density and optimum magnetic field topography at which efficiency monotonically increased with voltage. At 1000 V, 10 milligrams per second the total specific impulse was 3390 s and the total efficiency was 60.8%. Plume divergence decreased at 400-1000 V, but increased at 300-400 V as the result of plasma oscillations. The dominant oscillation frequency steadily increased with voltage, from 14.5 kHz at 300 V, to 22 kHz at 1000 V. An additional oscillatory mode in the 80-90 kHz frequency range began to appear above 500 V. The use of trim coils to modify the magnetic field improved performance while decreasing plume divergence and the frequency and magnitude of plasma oscillations.

  6. Genetic Differentiation of Hypothalamus Parentally Biased Transcripts in Populations of the House Mouse Implicate the Prader–Willi Syndrome Imprinted Region as a Possible Source of Behavioral Divergence

    PubMed Central

    Lorenc, Anna; Linnenbrink, Miriam; Montero, Inka; Schilhabel, Markus B.; Tautz, Diethard

    2014-01-01

    Parentally biased expression of transcripts (genomic imprinting) in adult tissues, including the brain, can influence and possibly drive the evolution of behavioral traits. We have previously found that paternally determined cues are involved in population-specific mate choice decisions between two populations of the Western house mouse (Mus musculus domesticus). Here, we ask whether this could be mediated by genomically imprinted transcripts that are subject to fast differentiation between these populations. We focus on three organs that are of special relevance for mate choice and behavior: The vomeronasal organ (VNO), the hypothalamus, and the liver. To first identify candidate transcripts at a genome-wide scale, we used reciprocal crosses between M. m. domesticus and M. m. musculus inbred strains and RNA sequencing of the respective tissues. Using a false discovery cutoff derived from mock reciprocal cross comparisons, we find a total of 66 imprinted transcripts, 13 of which have previously not been described as imprinted. The largest number of imprinted transcripts were found in the hypothalamus; fewer were found in the VNO, and the least were found in the liver. To assess molecular differentiation and imprinting in the wild-derived M. m. domesticus populations, we sequenced the RNA of the hypothalamus from individuals of these populations. This confirmed the presence of the above identified transcripts also in wild populations and allowed us to search for those that show a high genetic differentiation between these populations. Our results identify the Ube3a–Snrpn imprinted region on chromosome 7 as a region that encompasses the largest number of previously not described transcripts with paternal expression bias, several of which are at the same time highly differentiated. For four of these, we confirmed their imprinting status via single nucleotide polymorphism-specific pyrosequencing assays with RNA from reciprocal crosses. In addition, we find the

  7. Genetic differentiation of hypothalamus parentally biased transcripts in populations of the house mouse implicate the Prader-Willi syndrome imprinted region as a possible source of behavioral divergence.

    PubMed

    Lorenc, Anna; Linnenbrink, Miriam; Montero, Inka; Schilhabel, Markus B; Tautz, Diethard

    2014-12-01

    Parentally biased expression of transcripts (genomic imprinting) in adult tissues, including the brain, can influence and possibly drive the evolution of behavioral traits. We have previously found that paternally determined cues are involved in population-specific mate choice decisions between two populations of the Western house mouse (Mus musculus domesticus). Here, we ask whether this could be mediated by genomically imprinted transcripts that are subject to fast differentiation between these populations. We focus on three organs that are of special relevance for mate choice and behavior: The vomeronasal organ (VNO), the hypothalamus, and the liver. To first identify candidate transcripts at a genome-wide scale, we used reciprocal crosses between M. m. domesticus and M. m. musculus inbred strains and RNA sequencing of the respective tissues. Using a false discovery cutoff derived from mock reciprocal cross comparisons, we find a total of 66 imprinted transcripts, 13 of which have previously not been described as imprinted. The largest number of imprinted transcripts were found in the hypothalamus; fewer were found in the VNO, and the least were found in the liver. To assess molecular differentiation and imprinting in the wild-derived M. m. domesticus populations, we sequenced the RNA of the hypothalamus from individuals of these populations. This confirmed the presence of the above identified transcripts also in wild populations and allowed us to search for those that show a high genetic differentiation between these populations. Our results identify the Ube3a-Snrpn imprinted region on chromosome 7 as a region that encompasses the largest number of previously not described transcripts with paternal expression bias, several of which are at the same time highly differentiated. For four of these, we confirmed their imprinting status via single nucleotide polymorphism-specific pyrosequencing assays with RNA from reciprocal crosses. In addition, we find the

  8. Post-glacial expansion and population genetic divergence of mangrove species Avicennia germinans (L.) Stearn and Rhizophora mangle L. along the Mexican coast.

    PubMed

    Sandoval-Castro, Eduardo; Dodd, Richard S; Riosmena-Rodríguez, Rafael; Enríquez-Paredes, Luis Manuel; Tovilla-Hernández, Cristian; López-Vivas, Juan Manuel; Aguilar-May, Bily; Muñiz-Salazar, Raquel

    2014-01-01

    Mangrove forests in the Gulf of California, Mexico represent the northernmost populations along the Pacific coast and thus they are likely to be source populations for colonization at higher latitudes as climate becomes more favorable. Today, these populations are relatively small and fragmented and prior research has indicated that they are poor in genetic diversity. Here we set out to investigate whether the low diversity in this region was a result of recent colonization, or fragmentation and genetic drift of once more extensive mangroves due to climatic changes in the recent past. By sampling the two major mangrove species, Rhizophora mangle and Avicennia germinans, along the Pacific and Atlantic coasts of Mexico, we set out to test whether concordant genetic signals could elucidate recent evolution of the ecosystem. Genetic diversity of both mangrove species showed a decreasing trend toward northern latitudes along the Pacific coast. The lowest levels of genetic diversity were found at the range limits around the Gulf of California and the outer Baja California peninsula. Lack of a strong spatial genetic structure in this area and recent northern gene flow in A. germinans suggest recent colonization by this species. On the other hand, lack of a signal of recent northern dispersal in R. mangle, despite the higher dispersal capability of this species, indicates a longer presence of populations, at least in the southern Gulf of California. We suggest that the longer history, together with higher genetic diversity of R. mangle at the range limits, likely provides a gene pool better able to colonize northwards under climate change than A. germinans. PMID:24699389

  9. Post-Glacial Expansion and Population Genetic Divergence of Mangrove Species Avicennia germinans (L.) Stearn and Rhizophora mangle L. along the Mexican Coast

    PubMed Central

    Sandoval-Castro, Eduardo; Dodd, Richard S.; Riosmena-Rodríguez, Rafael; Enríquez-Paredes, Luis Manuel; Tovilla-Hernández, Cristian; López-Vivas, Juan Manuel; Aguilar-May, Bily; Muñiz-Salazar, Raquel

    2014-01-01

    Mangrove forests in the Gulf of California, Mexico represent the northernmost populations along the Pacific coast and thus they are likely to be source populations for colonization at higher latitudes as climate becomes more favorable. Today, these populations are relatively small and fragmented and prior research has indicated that they are poor in genetic diversity. Here we set out to investigate whether the low diversity in this region was a result of recent colonization, or fragmentation and genetic drift of once more extensive mangroves due to climatic changes in the recent past. By sampling the two major mangrove species, Rhizophora mangle and Avicennia germinans, along the Pacific and Atlantic coasts of Mexico, we set out to test whether concordant genetic signals could elucidate recent evolution of the ecosystem. Genetic diversity of both mangrove species showed a decreasing trend toward northern latitudes along the Pacific coast. The lowest levels of genetic diversity were found at the range limits around the Gulf of California and the outer Baja California peninsula. Lack of a strong spatial genetic structure in this area and recent northern gene flow in A. germinans suggest recent colonization by this species. On the other hand, lack of a signal of recent northern dispersal in R. mangle, despite the higher dispersal capability of this species, indicates a longer presence of populations, at least in the southern Gulf of California. We suggest that the longer history, together with higher genetic diversity of R. mangle at the range limits, likely provides a gene pool better able to colonize northwards under climate change than A. germinans. PMID:24699389

  10. A hybrid genetic linkage map of two ecologically and morphologically divergent Midas cichlid fishes (Amphilophus spp.) obtained by massively parallel DNA sequencing (ddRADSeq).

    PubMed

    Recknagel, Hans; Elmer, Kathryn R; Meyer, Axel

    2013-01-01

    Cichlid fishes are an excellent model system for studying speciation and the formation of adaptive radiations because of their tremendous species richness and astonishing phenotypic diversity. Most research has focused on African rift lake fishes, although Neotropical cichlid species display much variability as well. Almost one dozen species of the Midas cichlid species complex (Amphilophus spp.) have been described so far and have formed repeated adaptive radiations in several Nicaraguan crater lakes. Here we apply double-digest restriction-site associated DNA sequencing to obtain a high-density linkage map of an interspecific cross between the benthic Amphilophus astorquii and the limnetic Amphilophus zaliosus, which are sympatric species endemic to Crater Lake Apoyo, Nicaragua. A total of 755 RAD markers were genotyped in 343 F(2) hybrids. The map resolved 25 linkage groups and spans a total distance of 1427 cM with an average marker spacing distance of 1.95 cM, almost matching the total number of chromosomes (n = 24) in these species. Regions of segregation distortion were identified in five linkage groups. Based on the pedigree of parents to F(2) offspring, we calculated a genome-wide mutation rate of 6.6 × 10(-8) mutations per nucleotide per generation. This genetic map will facilitate the mapping of ecomorphologically relevant adaptive traits in the repeated phenotypes that evolved within the Midas cichlid lineage and, as the first linkage map of a Neotropical cichlid, facilitate comparative genomic analyses between African cichlids, Neotropical cichlids and other teleost fishes. PMID:23316439

  11. A Hybrid Genetic Linkage Map of Two Ecologically and Morphologically Divergent Midas Cichlid Fishes (Amphilophus spp.) Obtained by Massively Parallel DNA Sequencing (ddRADSeq)

    PubMed Central

    Recknagel, Hans; Elmer, Kathryn R.; Meyer, Axel

    2013-01-01

    Cichlid fishes are an excellent model system for studying speciation and the formation of adaptive radiations because of their tremendous species richness and astonishing phenotypic diversity. Most research has focused on African rift lake fishes, although Neotropical cichlid species display much variability as well. Almost one dozen species of the Midas cichlid species complex (Amphilophus spp.) have been described so far and have formed repeated adaptive radiations in several Nicaraguan crater lakes. Here we apply double-digest restriction-site associated DNA sequencing to obtain a high-density linkage map of an interspecific cross between the benthic Amphilophus astorquii and the limnetic Amphilophus zaliosus, which are sympatric species endemic to Crater Lake Apoyo, Nicaragua. A total of 755 RAD markers were genotyped in 343 F2 hybrids. The map resolved 25 linkage groups and spans a total distance of 1427 cM with an average marker spacing distance of 1.95 cM, almost matching the total number of chromosomes (n = 24) in these species. Regions of segregation distortion were identified in five linkage groups. Based on the pedigree of parents to F2 offspring, we calculated a genome-wide mutation rate of 6.6 × 10−8 mutations per nucleotide per generation. This genetic map will facilitate the mapping of ecomorphologically relevant adaptive traits in the repeated phenotypes that evolved within the Midas cichlid lineage and, as the first linkage map of a Neotropical cichlid, facilitate comparative genomic analyses between African cichlids, Neotropical cichlids and other teleost fishes. PMID:23316439

  12. Evidence for divergence of response in Indica, Japonica, and wild rice to high CO2 x temperature interaction

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Evaluating variability of rice response to concurrent increases in CO2 and temperature forecasted for future climates is a prerequisite step towards characterizing the genetic architecture underlying this response. Expanding on previous single cultivar studies, we evaluated eleven biogeographically ...

  13. Genetics

    MedlinePlus

    Homozygous; Inheritance; Heterozygous; Inheritance patterns; Heredity and disease; Heritable; Genetic markers ... The chromosomes are made up of strands of genetic information called DNA. Each chromosome contains sections of ...

  14. Genetics

    MedlinePlus

    ... Inheritance; Heterozygous; Inheritance patterns; Heredity and disease; Heritable; Genetic markers ... The chromosomes are made up of strands of genetic information called DNA. Each chromosome contains sections of ...

  15. A Genetic Variant of Hepatitis B Virus Divergent from Known Human and Ape Genotypes Isolated from a Japanese Patient and Provisionally Assigned to New Genotype J▿ †

    PubMed Central

    Tatematsu, Kanako; Tanaka, Yasuhito; Kurbanov, Fuat; Sugauchi, Fuminaka; Mano, Shuhei; Maeshiro, Tatsuji; Nakayoshi, Tomokuni; Wakuta, Moriaki; Miyakawa, Yuzo; Mizokami, Masashi

    2009-01-01

    Hepatitis B virus (HBV) of a novel genotype (J) was recovered from an 88-year-old Japanese patient with hepatocellular carcinoma who had a history of residing in Borneo during the World War II. It was divergent from eight human (A to H) and four ape (chimpanzee, gorilla, gibbon, and orangutan) HBV genotypes, as well as from a recently proposed ninth human genotype I, by 9.9 to 16.5% of the entire genomic sequence and did not have evidence of recombination with any of the nine human genotypes and four nonhuman genotypes. Based on a comparison of the entire nucleotide sequence against 1,440 HBV isolates reported, HBV/J was nearest to the gibbon and orangutan genotypes (mean divergences of 10.9 and 10.7%, respectively). Based on a comparison of four open reading frames, HBV/J was closer to gibbon/orangutan genotypes than to human genotypes in the P and large S genes and closest to Australian aboriginal strains (HBV/C4) and orangutan-derived strains in the S gene, whereas it was closer to human than ape genotypes in the C gene. HBV/J shared a deletion of 33 nucleotides at the start of preS1 region with C4 and gibbon genotypes, had an S-gene sequence similar to that of C4, and expressed the ayw subtype. Efficient infection, replication, and antigen expression by HBV/J were experimentally established in two chimeric mice with the liver repopulated for human hepatocytes. The HBV DNA sequence recovered from infected mice was identical to that in the inoculum. Since HBV/J is positioned phylogenetically in between human and ape genotypes, it may help to trace the origin of HBV and merits further epidemiological surveys. PMID:19640977

  16. Untangling the evolutionary history of a highly polymorphic species: introgressive hybridization and high genetic structure in the desert cichlid fish Herichtys minckleyi.

    PubMed

    Magalhaes, Isabel S; Ornelas-Garcıa, Claudia Patricia; Leal-Cardin, Mariana; Ramírez, Tania; Barluenga, Marta

    2015-09-01

    Understanding the origin of biodiversity requires knowledge on the evolutionary processes that drive divergence and speciation, as well as on the processes constraining it. Intraspecific polymorphisms can provide insight into the mechanisms that generate and maintain phenotypic, behavioural and life history diversification, and can help us understand not only the processes that lead to speciation but also the processes that prevent local fixation of morphs. The 'desert cichlid' Herichtys minckleyi is a highly polymorphic species endemic to a biodiversity hotspot in northern Mexico, the Cuatro Ciénegas valley. This species is polymorphic in body shape and trophic apparatus, and eco-morphotypes coexist in small spring-fed lagoons across the valley. We investigated the genetic structure of these polymorphisms and their phylogeographic history by analysing the entire control region of the mitochondrial DNA and 10 nuclear microsatellite markers in several populations from different sites and morphs. We found two very divergent mitochondrial lineages that most likely predate the closing of the valley and are not associated with morphotypes or sites. One of these lineages is also found in the sister species Herichthys cyanoguttatus. Data from neutral microsatellite markers suggest that most lagoons or drainages constitute their own genetic cluster with sympatric eco-morphotypes forming panmictic populations. Alternative mechanisms such as phenotypic plasticity and a few loci controlled traits provide possible explanations for the sympatric coexistence of discrete nonoverlapping eco-morphotypes with apparent lack of barriers to gene flow within multiple lagoons and drainages. PMID:26175313

  17. Highly divergent 18S rRNA gene paralogs in a Cryptosporidium genotype from eastern chipmunks (Tamias striatus)1

    PubMed Central

    Stenger, Brianna L.S.; Clark, Mark E.; Kváč, Martin; Khan, Eakalak; Giddings, Catherine W.; Dyer, Neil W.; Schultz, Jessie L.; McEvoy, John M.

    2015-01-01

    Cryptosporidium is an apicomplexan parasite that causes the disease cryptosporidiosis in humans, livestock, and other vertebrates. Much of the knowledge on Cryptosporidium diversity is derived from 18S rRNA gene (18S rDNA) phylogenies. Eukaryote genomes generally have multiple 18S rDNA copies that evolve in concert, which is necessary for the accurate inference of phylogenetic relationships. However, 18S rDNA copies in some genomes evolve by a birth-and-death process that can result in sequence divergence among copies. Most notably, divergent 18S rDNA paralogs in the apicomplexan Plasmodium share only 89–95% sequence similarity, encode structurally distinct rRNA molecules, and are expressed at different life cycle stages. In the present study, Cryptosporidium 18S rDNA was amplified from 28/72 (38.9%) eastern chipmunks (Tamias striatus). Phylogenetic analyses showed the co-occurrence of two 18S rDNA types, Type A and Type B, in 26 chipmunks, and Type B clustered with a sequence previously identified as Cryptosporidium chipmunk genotype II. Types A and B had a sister group relationship but shared less than 93% sequence similarity. In contrast, actin and heat shock protein 70 gene sequences were homogeneous in samples with both Types A and B present. It was therefore concluded that Types A and B are divergent 18S rDNA paralogs in Cryptosporidium chipmunk genotype II. Substitution patterns in Types A and B were consistent with functionally constrained evolution; however, Type B evolved more rapidly than Type A and had a higher G+C content (46.3% versus 41.0%). Oocysts of Cryptosporidium chipmunk genotype II measured 4.17 μm (3.73–5.04 μm) × 3.94 μm (3.50–4.98 μm) with a length-to-width ratio of 1.06 ± 0.06 μm, and infection occurred naturally in the jejunum, cecum, and colon of eastern chipmunks. The findings of this study have implications for the use of 18S rDNA sequences to infer phylogenetic relationships. PMID:25772204

  18. Highly divergent 18S rRNA gene paralogs in a Cryptosporidium genotype from eastern chipmunks (Tamias striatus).

    PubMed

    Stenger, Brianna L S; Clark, Mark E; Kváč, Martin; Khan, Eakalak; Giddings, Catherine W; Dyer, Neil W; Schultz, Jessie L; McEvoy, John M

    2015-06-01

    Cryptosporidium is an apicomplexan parasite that causes the disease cryptosporidiosis in humans, livestock, and other vertebrates. Much of the knowledge on Cryptosporidium diversity is derived from 18S rRNA gene (18S rDNA) phylogenies. Eukaryote genomes generally have multiple 18S rDNA copies that evolve in concert, which is necessary for the accurate inference of phylogenetic relationships. However, 18S rDNA copies in some genomes evolve by a birth-and-death process that can result in sequence divergence among copies. Most notably, divergent 18S rDNA paralogs in the apicomplexan Plasmodium share only 89-95% sequence similarity, encode structurally distinct rRNA molecules, and are expressed at different life cycle stages. In the present study, Cryptosporidium 18S rDNA was amplified from 28/72 (38.9%) eastern chipmunks (Tamias striatus). Phylogenetic analyses showed the co-occurrence of two 18S rDNA types, Type A and Type B, in 26 chipmunks, and Type B clustered with a sequence previously identified as Cryptosporidium chipmunk genotype II. Types A and B had a sister group relationship but shared less than 93% sequence similarity. In contrast, actin and heat shock protein 70 gene sequences were homogeneous in samples with both Types A and B present. It was therefore concluded that Types A and B are divergent 18S rDNA paralogs in Cryptosporidium chipmunk genotype II. Substitution patterns in Types A and B were consistent with functionally constrained evolution; however, Type B evolved more rapidly than Type A and had a higher G+C content (46.3% versus 41.0%). Oocysts of Cryptosporidium chipmunk genotype II measured 4.17 μm (3.73-5.04 μm) × 3.94 μm (3.50-4.98 μm) with a length-to-width ratio of 1.06 ± 0.06 μm, and infection occurred naturally in the jejunum, cecum, and colon of eastern chipmunks. The findings of this study have implications for the use of 18S rDNA sequences to infer phylogenetic relationships. PMID:25772204

  19. Genetic divergence in the common bush-tanager Chlorospingus ophthalmicus (Aves: Emberizidae) throughout Mexican cloud forests: The role of geography, ecology and Pleistocene climatic fluctuations.

    PubMed

    Maldonado-Sánchez, Denisse; Gutiérrez-Rodríguez, Carla; Ornelas, Juan Francisco

    2016-06-01

    By integrating mitochondrial DNA (mtDNA), microsatellites and ecological niche modelling (ENM), we investigated the phylogeography of Mexican populations of the common bush-tanager Chlorospingus ophthalmicus to examine the relative role of geographical and ecological features, as well as Pleistocene climatic oscillations in driving the diversification. We sequenced mtDNA of individuals collected throughout the species range in Mexico and genotyped them at seven microsatellite loci. Phylogeographic, population genetics and coalescent methods were used to assess patterns of genetic structure, gene flow and demographic history. ENM was used to infer contractions and expansions at different time periods as well as differences in climatic conditions among lineages. The retrieved mitochondrial and microsatellite groups correspond with the fragmented cloud forest distribution in mountain ranges and morphotectonic provinces. Differing climatic conditions between mountain ranges were detected, and palaeodistribution modelling as well as demographic history analyses, indicated recent population expansions throughout the Sierra Madre Oriental (SMO). The marked genetic structure of C. ophthalmicus was promoted by the presence of ecological and geographical barriers that restricted the movement of individuals among mountain ranges. The SMO was mainly affected by Pleistocene climatic oscillations, with the moist forests model best fitting the displayed genetic patterns of populations in this mountain range. PMID:26988412

  20. epg-1 functions in autophagy-regulated processes and may encode a highly divergent Atg13 homolog in C. elegans.

    PubMed

    Tian, E; Wang, Fuxin; Han, Jinghua; Zhang, Hong

    2009-07-01

    Autophagy is an evolutionarily conserved intracellular catabolic system for degradation of long-lived proteins or damaged organelles. In this study, we have identified and characterized a new gene, epg-1, that plays a role in the autophagy pathway in C. elegans. Loss of function of epg-1 causes defects in various autophagy-regulated processes, including degradation of aggregate-prone proteins and optimal survival of animals during starvation. epg-1 encodes a novel protein that shows limited sequence similarity to the yeast autophagy protein Atg13. epg-1 displays a similar expression pattern to, and directly interacts with, the C. elegans Atg1 homolog UNC-51, suggesting that epg-1 encodes a divergent functional homolog of Atg13 in C. elegans. PMID:19377305