Science.gov

Sample records for high heat-load slits

  1. Precision optical slit for high heat load or ultra high vacuum

    DOEpatents

    Andresen, N.C.; DiGennaro, R.S.; Swain, T.L.

    1995-01-24

    This invention relates generally to slits used in optics that must be precisely aligned and adjusted. The optical slits of the present invention are useful in x-ray optics, x-ray beam lines, optical systems in which the entrance slit is critical for high wavelength resolution. The invention is particularly useful in ultra high vacuum systems where lubricants are difficult to use and designs which avoid the movement of metal parts against one another are important, such as monochromators for high wavelength resolution with ultra high vacuum systems. The invention further relates to optical systems in which temperature characteristics of the slit materials is important. The present invention yet additionally relates to precision slits wherein the opposing edges of the slit must be precisely moved relative to a center line between the edges with each edge retaining its parallel orientation with respect to the other edge and/or the center line. 21 figures.

  2. Precision optical slit for high heat load or ultra high vacuum

    DOEpatents

    Andresen, Nord C.; DiGennaro, Richard S.; Swain, Thomas L.

    1995-01-01

    This invention relates generally to slits used in optics that must be precisely aligned and adjusted. The optical slits of the present invention are useful in x-ray optics, x-ray beam lines, optical systems in which the entrance slit is critical for high wavelength resolution. The invention is particularly useful in ultra high vacuum systems where lubricants are difficult to use and designs which avoid the movement of metal parts against one another are important, such as monochrometers for high wavelength resolution with ultra high vacuum systems. The invention further relates to optical systems in which temperature characteristics of the slit materials is important. The present invention yet additionally relates to precision slits wherein the opposing edges of the slit must be precisely moved relative to a center line between the edges with each edge retaining its parallel orientation with respect to the other edge and/or the center line.

  3. Design of high heat load white-beam slits for wiggler/undulator beamlines at the Advanced Photon Source

    SciTech Connect

    Shu, D.; Tcheskidov, V.; Nian, T.; Haeffner, D.R.; Alp, E.E.; Ryding, D.; Collins, J.; Li, Y.; Kuzay, T.M.

    1994-12-01

    A set of horizontal and vertical white-beam slits has been designed for the Advanced Photon Source wiggler/undulator beamlines at Argonne National Laboratory. While this slit set can handle the high heat flux from on e APS undulator source, it has large enough aperture to be compatible with a wiggler source also. A grazing-incidence, knife-edge configuration has been used in the design to eliminate downstream X-ray scattering. Enhanced heat transfer technology has been used in the water-cooling system. A unique stepping parallelogram driving structure provides precise vertical slit motion with large optical aperture. The full design detail is presented in this paper.

  4. High heat load synchrotron optics

    SciTech Connect

    Mills, D.M.

    1992-08-01

    Third generation synchrotron radiation sources currently being constructed worldwide will produce x-ray beams of unparalleled power and power density these high heat fluxes coupled with the stringent dimensional requirements of the x-ray optical components pose a prodigious challenge to designers of x-ray optical elements, specifically x-ray mirrors and crystal monochromators. Although certain established techniques for the cooling of high heat flux components can be directly applied to this problem, the thermal management of high heat load x-ray optical components has several unusual aspects that may ultimately lead to unique solutions. This manuscript attempts to summarize the various approaches currently being applied to this undertaking and to point out the areas of research that require further development.

  5. APS high heat load monochromator

    SciTech Connect

    Lee, W.K.; Mills, D.

    1993-02-01

    This document contains the design specifications of the APS high heat load (HHL) monochromator and associated accessories as of February 1993. It should be noted that work is continuing on many parts of the monochromator including the mechanical design, crystal cooling designs, etc. Where appropriate, we have tried to add supporting documentation, references to published papers, and calculations from which we based our decisions. The underlying philosophy behind performance specifications of this monochromator was to fabricate a device that would be useful to as many APS users as possible, that is, the design should be as generic as possible. In other words, we believe that this design will be capable of operating on both bending magnet and ID beamlines (with the appropriate changes to the cooling and crystals) with both flat and inclined crystal geometries and with a variety of coolants. It was strongly felt that this monochromator should have good energy scanning capabilities over the classical energy range of about 4 to 20 keywith Si (111) crystals. For this reason, a design incorporating one rotation stage to drive both the first and second crystals was considered most promising. Separate rotary stages for the first and second crystals can sometimes provide more flexibility in their capacities to carry heavy loads (for heavily cooled first crystals or sagittal benders of second crystals), but their tuning capabilities were considered inferior to the single axis approach.

  6. Workshop on high heat load x-ray optics

    SciTech Connect

    Not Available

    1990-01-01

    A workshop on High Heat Load X-Ray Optics'' was held at Argonne National Laboratory on August 3--5, 1989. The object of this workshop was to discuss recent advances in the art of cooling x-ray optics subject to high heat loads from synchrotron beams. The cooling of the first optical element in the intense photon beams that will be produced in the next generation of synchrotron sources is recognized as one of the major challenges that must be faced before one will be able to use these very intense beams in future synchrotron experiments. Considerable advances have been made in this art during the last few years, but much work remains to be done before the heating problem can be said to be completely solved. Special emphasis was placed on recent cooling experiments and detailed finite element'' and finite difference'' calculations comparing experiment with theory and extending theory to optimize performance.

  7. Performance of an optimally contact-cooled high-heat-load mirror at the APS.

    SciTech Connect

    Cai, Z.; Khounsary, A.; Lai, B.; McNulty, I.; Yun, W.

    1998-11-18

    X-ray undulator beamlines at third-generation synchrotrons facilities use either a monochromator or a mirror as the first optical element. In this paper, the thermal and optical performance of an optimally designed contact-cooled high-heat-load x-ray mirror used as the first optical element on the 2ID undulator beamline at the Advanced Photon Source (APS) is reported. It is shown that this simple and economical mirror design can comfortably handle the high heat load of undulator beamlines and provide good performance with long-term reliability and ease of operation. Availability and advantages of such mirrors can make the mirror-first approach to high-heat-load beamline design an attractive alternative to monochromator-first beamlines in many circumstances.

  8. Improved monochromator design for high heat load beamlines at CHESS

    SciTech Connect

    Smolenski, K.; Pahl, R.; Doing, P.; Conolly, C.; Clark, B.; Ehen, J.; Shen, Q.

    1996-09-01

    The use of water-cooling channels in silicon x-ray monochromators for the Cornell High Energy Synchrotron Source (CHESS) high power wiggler beamlines has been studied by finite element analysis. The efficiency from channels of different dimensions, ranging from 25 mm to 2 mm width and 5 mm depth, has been calculated. The new crystals are designed to replace the indirect cooled monochromators currently used at CHESS wiggler stations. At typical operation parameters of 150 mA electron current at 5.3 GeV and a gap of 40 mm, the 24-pole wiggler at CHESS provides an x-ray beam with a total power of 2.7 kW at the monochromator. Procedures have been developed for fabrication of internally cooled crystals using a silver-glass dye attach paste. Tests of a new crystal with a conventional x-ray source revealed very small amounts of residual strain. Experiments with synchrotron radiation are scheduled in the near future. {copyright} {ital 1996 American Institute of Physics.}

  9. Temperature calculations of heat loads in rotating target wheels exposed to high beam currents.

    SciTech Connect

    Greene, J. P.; Gabor, R.; Neubauer, J.

    2000-11-29

    In heavy-ion physics, high beam currents can eventually melt or destroy the target. Tightly focused beams on stationary targets of modest melting point will exhibit short lifetimes. Defocused or wobbled beams are employed to enhance target survival. Rotating targets using large diameter wheels can help overcome target melting and allow for higher beam currents to be used in experiments. The purpose of the calculations in this work is to try and predict the safe maximum beam currents which produce heat loads below the melting point of the target material.

  10. Phase change based cooling for high burst mode heat loads with temperature regulation above the phase change temperature

    SciTech Connect

    The United States of America as represented by the United States Department of Energy

    2009-12-15

    An apparatus and method for transferring thermal energy from a heat load is disclosed. In particular, use of a phase change material and specific flow designs enables cooling with temperature regulation well above the fusion temperature of the phase change material for medium and high heat loads from devices operated intermittently (in burst mode). Exemplary heat loads include burst mode lasers and laser diodes, flight avionics, and high power space instruments. Thermal energy is transferred from the heat load to liquid phase change material from a phase change material reservoir. The liquid phase change material is split into two flows. Thermal energy is transferred from the first flow via a phase change material heat sink. The second flow bypasses the phase change material heat sink and joins with liquid phase change material exiting from the phase change material heat sink. The combined liquid phase change material is returned to the liquid phase change material reservoir. The ratio of bypass flow to flow into the phase change material heat sink can be varied to adjust the temperature of the liquid phase change material returned to the liquid phase change material reservoir. Varying the flowrate and temperature of the liquid phase change material presented to the heat load determines the magnitude of thermal energy transferred from the heat load.

  11. High heat load crystal cooling strategies for an APS wiggler beamline

    SciTech Connect

    Beno, M.A.; Knapp, G.S.; Engbretson, M.

    1997-07-01

    High energy wigglers produce extremely high total powers. For example, the insertion device for one beamline of the Basic Energy Sciences Synchrotron Research Center (BESSRC) is an elliptical multipole wiggler (EMPW) which can generate circularly polarized X-rays on axis and produces a total power of {approximately}8 kW. This insertion device will be used to simultaneously provide x-rays to three branch lines, a branch equipped with a normal double crystal monochromator feeding a scattering and spectroscopy station, and two branches with single-bounce horizontally deflecting monochromators for Compton scattering and High Energy Diffraction. The crystal optics for this type of device require substantially different heat load solutions than those used for undulator beamlines. We will discuss how the beam is split and shared among the beamline branch lines and present the crystal cooling strategies employed for both the double-crystal monochromator and horizontally deflecting single-bounce monochromators.

  12. Improved High-Heat-Load Graphite Filter Design At CHESS Wiggler Beamlines

    SciTech Connect

    Savino, James J.; Shen Qun; Strieter, Gretchen; Fontes, Ernest; Pauling, Alan K.

    2004-05-12

    Conductively cooled highly-oriented pyrolytic graphite (HOPG) filters have been used at CHESS wiggler beamlines to protect downstream beryllium windows under high heat loads. In the past beam currents above 350 mA have caused excessively high temperatures on the existing HOPG filters, resulting in rapid sublimation of the graphite and drastic shortening of filter lifetimes. A new filter design which eliminates some drawbacks of the existing design is described. The new design utilizes a slotted water jet, which cools a thin, 'compliant' graphite-copper braze joint. Heat-transfer enhancements should enable an installed filter to survive beam currents of 450 mA. Optimization of design features and analysis results are discussed.

  13. The cryogenic cooling program in high-heat-load optics at the Advanced Photon Source

    SciTech Connect

    Rogers, C.S.

    1993-07-01

    This paper describes some of the aspects of the cryogenic optics program at the Advanced Photon Source (APS). A liquid-nitrogen-cooled, high-vacuum, double crystal monochromator is being fabricated at Argonne National Laboratory (ANL). A pumping system capable of delivering a variable flow rate of up to 10 gallons per minute of pressurized liquid nitrogen and removing 5 kilowatts of x-ray power is also being constructed. This specialized pumping system and monochromator will be used to test the viability of cryogenically cooled, high-heat-load synchrotron optics. It has been determined that heat transfer enhancement will be required for optics used with APS insertion devices. An analysis of a porous-matrix-enhanced monochromator crystal is presented. For the particular case investigated, a heat transfer enhancement factor of 5 to 6 was calculated.

  14. Thermal-contact-conductance measurement for high-heat-load optics components at SPring-8

    NASA Astrophysics Data System (ADS)

    Takeuchi, T.; Tanaka, M.; Senba, Y.; Ohashi, H.; Goto, S.

    2011-09-01

    Thermal contact in water-cooling or cryogenic cooling-cooling condition is used for forming a high-heat-load component at the synchrotron radiation beamline. In SPring-8, for example, cryogenic cooling is used for silicon monochromator crystal with an indium insertion metal at the interface between a copper block and a silicon crystal. To reduce the strain on the silicon crystal with a low contact pressure and a high thermal conductivity, we require a silicon-indium-copper system and an alternative insertion material such as a graphite foil. To measure the thermal contact conductance in a quick measurement cycle under various thermal-contact conditions, we improve the thermal-contact-conductance measurement system in terms of the setup facilitation, precise temperature measurement, and thermal insulation around a sample.

  15. Contact-cooled U-monochromators for high heat load x-ray beamlines

    SciTech Connect

    Khounsary, A.; Yun, W.; Trakhtenberg, E.; Xu, S.; Assoufid, L.; Lee, W.K.

    1996-12-31

    This paper describes the design, expected performance, and preliminary test results of a contact-cooled monochromator for use on high heat load x-ray beamlines. The monochromator has a cross section in the shape of the letter U. This monochromator should be suitable for handing heat fluxes up to 5 W/square millimeter. As such, for the present application, it is compatible with the best internally cooled crystal monochromators. There are three key features in the design of this monochromator. First, it is contact cooled, thereby eliminating fabrication of cooling channels, bonding, and undesirable strains in the monochromator due to coolant-manifold-to-crystal-interface. Second, by illuminating the entire length of the crystal and extracting the central part of the reflected beam, sharp slope changes in the beam profile and thus slope errors are avoided. Last, by appropriate cooling of the crystal, tangential slope error can be substantially reduced.

  16. Contact-cooled U-monochromators for high heat load x-ray beamlines

    SciTech Connect

    Khounsary, A.; Yun, W.; Trakhtenberg, E.; Xu, S.; Assoufid, L.; Lee, W.K.

    1996-12-31

    This paper describes the design, expected performance, and preliminary test results of a contact-cooled monochromator for use on high heat load x-ray beamlines. The monochromator has a cross section in the shape of the letter U. This monochromator should be suitable for handling heat fluxes up to 5 W/mm{sup 2}. As such, for the present application, it is compatible with the best internally cooled silicon crystal monochromators operating at room temperature. There are three key features in the design of this monochromator. First, it is contact cooled, thereby eliminating fabrication of cooling channels, bonding, and undesirable strains in the monochromator due to coolant-manifold-to-crystal-interface. Second, by illuminating the entire length of the crystal and extracting the central part of the reflected beam, sharp slope changes in the beam profile and thus slope errors are avoided. Last, by selecting appropriate crystal geometry and cooling locations, tangential slope error can be substantially reduced.

  17. Surface modifications of W divertor components for EAST during exposure to high heat loads with He

    NASA Astrophysics Data System (ADS)

    Li, C.; Greuner, H.; Yuan, Y.; Zhao, S. X.; Luo, G. N.; Böswirth, B.; Fu, B. Q.; Jia, Y. Z.; Liu, X.; Liu, W.

    2015-08-01

    Flat-type W/Cu plasma-facing components have been developed for the new generation divertor of the Chinese Experimental Advanced Superconducting Tokamak. Surface modifications of such actively water-cooled W components following short and long pulse high heat loading coupled with He particle loads with fluence of 3 × 1022 m-2 have been investigated. An adiabatically loaded W block was investigated as a comparison and exposed to short pulse loads. Blistering was observed on all sample surfaces, but was less pronounced on the components than on the W block, due to the significant lower surface temperature caused by active cooling. For components, longer pulse loads gave rise to a rougher surface. Furthermore, most blisters on components are found to be less than 1 μm in diameter, with just a very few blisters larger than 1 μm, observed only in some near <1 1 1> grains.

  18. Liquid gallium metal cooling for optical elements with high heat loads

    NASA Astrophysics Data System (ADS)

    Smither, Robert K.; Forster, George A.; Kot, Christian A.; Kuzay, Tuncer M.

    1988-04-01

    The intense photon beams from the insertion devices of the Argonne Advanced Photon Source (APS) will have very high total powers, which in some cases will exceed 10 kW, spread over a few cm 2. These high heat loads will require special cooling methods for the optical elements to preserve the quality of the photon beam. A set of finite element analysis calculations were made in three dimensions to determine the temperature distributions and thermal stresses in a single crystal of silicon with heat loads of 2-20 kW. Different geometric arrangements and different cooling fluids (water, gallium, oil, Na, etc.) were considered. These data were then used in a second set of calculations to determine the distortion of the surface of the crystal and the change in the crystal plane spacing for different parts of the surface. The best heat transfer, smallest surface distortions and smallest temperature gradients on the surface of the crystals were obtained when the cooling fluid was allowed to flow through channels in the crystal. The two best fluids for room temperature operation were found to be water and liquid gallium metal. In all cases tried, the variation in temperature across the face of the crystal and the distortion of the surface was at least a factor of two less for the gallium cooling case than for the water cooling case. The water cooling was effective only for very high flow rates. These high flow rates can cause vibrations in the diffraction crystal and in its mount that can seriously degrade the quality of the diffracted photon beam. When the flow rates were decreased the gallium cooling became 3-10 times more effective. This very efficient cooling and the very low vapor pressure for liquid gallium (less than 10 -12 Torr at 100°C) make liquid gallium a very attractive cooling fluid for high vacuum synchrotron applications. A small electromagnetic induction pump for liquid Ga was built to test this cooling method. A pumping volume of 100 cm 3/s was achieved

  19. Progress In The Development Of A New High Heat Load X-Ray Tube

    NASA Astrophysics Data System (ADS)

    Iversen, Arthur H.; Whitaker, Stephen

    1988-06-01

    The ongoing development of a new class of liquid cooled rotating anode x-ray tubes capable of high average and high peak power is discussed. Tube performance is characterized by zero wait-times between exposures and essentially no derating from peak instantaneous ratings for any arbitrary exposure sequence. The results of a successful program, which demonstrated proof of principle of the novel heat transfer surface will be described. The design and physics of the heat transfer surface of an experimental tube under construction will be reviewed. Potential benefits of this new tube include higher patient throughput in CT and certain fluoroscopic modalities, and possible longer tube life than conventional designs. New high average power techniques such as slit scanning, energy subtraction, x-ray spectrum optimization and special scatter rejection methods would become more clinically practical.

  20. Heat transfer issues in high-heat-load synchrotron x-ray beams

    SciTech Connect

    Khounsary, A.M.; Mills, D.M.

    1994-09-01

    In this paper, a short description of the synchrotron radiation x-ray sources and the associated power loads is given, followed by a brief description of typical synchrotron components and their heat load. It is emphasized that the design goals for most of these components is to limit (a) temperature, (b) stresses, or (c) strains in the system. Each design calls for a different geometry, material selection, and cooling scheme. Cooling schemes that have been utilized so far are primarily single phase and include simple macrochannel cooling, microchannel cooling, contact cooling, pin-post cooling, porous-flow cooling, jet cooling, etc. Water, liquid metals, and various cryogenic coolants have been used. Because the trend in x-ray beam development is towards brighter (i.e., more powerful) beams and assuming that no radical changes in the design of x-ray generating machines occurs in the next few years, it is fair to state that the utilization of various effective cooling schemes and, in particular, two-phase flow (e.g., subcooled boiling) warrants further investigation. This, however, requires a thorough examination of stability and reliability of two-phase flows for high-heat-flux components operating in ultrahigh vacuum with stringent reliability requirements.

  1. Tungsten joining with copper alloy and its high heat load performance

    NASA Astrophysics Data System (ADS)

    Liu, Xiang; Lian, Youyun; Chen, Lei; Cheng, Zengkui; Chen, Jiming; Duan, Xuru; Song, Jioupeng; Yu, Yang

    2014-12-01

    W-CuCrZr joining technology by using low activation Cu-Mn filler metal was developed at Southwestern Institute of Physics (SWIP) for the manufacturing of divertor components of fusion experiment devices. In addition, a fast W coating technology by chemical vapor deposition (CVD) was also developed and CVD-W/CuCrZr and CVD-W/C mockups with a W coating thickness of 2 mm were prepared. In order to assess their high heat flux (HHF) performances, a 60 kW Electron-beam Material testing Scenario (EMS-60) equipped with a 150 keV electron beam welding gun was constructed at SWIP. Experimental results indicated that brazed W/CuCrZr mockups can withstand 8 MW/m2 heat flux for 1000 cycles without visible damages and CVD-W/CuCrZr mockups with W-Cu gradient interface can survive 1000 cycles under 11 MW/m2 heat flux. An ultrasonic inspection method for non-destructive tests (NDT) of brazed W/CuCrZr mockups was established and 2 mm defect can be detected. Infinite element analysis and heat load tests indicated that 5 mm defect had less noticeable influence on the heat transfer.

  2. Diamond for high-heat-load synchrotron x-ray applications

    SciTech Connect

    Lee, Wah-Keat

    1994-12-31

    Synchrotron facilities worldwide provide scientists with useful radiation in the ultraviolet to the x-ray regime. Third-generation synchrotron sources win deliver photon fluxes in the 10{sup 15} photons/s/0.1%BW range, with brilliance on the order of 10{sup 18} photons/s/0.1%BW/mrad{sup 2}/mm{sup 2}. Along with the increase in flux and brilliance is an increase in the power and power densities of the x-ray beam. Depending on the particular insertion device, the x-ray beam can have total power in excess of 10 kW and peak power, density of more than 400 W/mm{sup 2}. Such high heat loads are a major challenge in the design and fabrication of x-ray beamline components. The superior thermal and mechanical properties of diamond make it a good candidate as material in these components. Single crystal diamonds can be used as x-ray monochromators, while polycrystalline or CVD diamonds can be used in a variety of ways on the front-end beamline components. This paper discusses the issues regarding the feasibility of using diamond in third-generation synchrotron beamline components.

  3. Potential Remedies for the High Synchrotron-Radiation-Induced Heat Load for Future Highest-Energy-Proton Circular Colliders.

    PubMed

    Cimino, R; Baglin, V; Schäfers, F

    2015-12-31

    We propose a new method for handling the high synchrotron radiation (SR) induced heat load of future circular hadron colliders (like FCC-hh). FCC-hh are dominated by the production of SR, which causes a significant heat load on the accelerator walls. Removal of such a heat load in the cold part of the machine, as done in the Large Hadron Collider, will require more than 100 MW of electrical power and a major cooling system. We studied a totally different approach, identifying an accelerator beam screen whose illuminated surface is able to forward reflect most of the photons impinging onto it. Such a reflecting beam screen will transport a significant part of this heat load outside the cold dipoles. Then, in room temperature sections, it could be more efficiently dissipated. Here we will analyze the proposed solution and address its full compatibility with all other aspects an accelerator beam screen must fulfill to keep under control beam instabilities as caused by electron cloud formation, impedance, dynamic vacuum issues, etc. If experimentally fully validated, a highly reflecting beam screen surface will provide a viable and solid solution to be eligible as a baseline design in FCC-hh projects to come, rendering them more cost effective and sustainable. PMID:26764998

  4. Potential Remedies for the High Synchrotron-Radiation-Induced Heat Load for Future Highest-Energy-Proton Circular Colliders

    NASA Astrophysics Data System (ADS)

    Cimino, R.; Baglin, V.; Schäfers, F.

    2015-12-01

    We propose a new method for handling the high synchrotron radiation (SR) induced heat load of future circular hadron colliders (like FCC-hh). FCC-hh are dominated by the production of SR, which causes a significant heat load on the accelerator walls. Removal of such a heat load in the cold part of the machine, as done in the Large Hadron Collider, will require more than 100 MW of electrical power and a major cooling system. We studied a totally different approach, identifying an accelerator beam screen whose illuminated surface is able to forward reflect most of the photons impinging onto it. Such a reflecting beam screen will transport a significant part of this heat load outside the cold dipoles. Then, in room temperature sections, it could be more efficiently dissipated. Here we will analyze the proposed solution and address its full compatibility with all other aspects an accelerator beam screen must fulfill to keep under control beam instabilities as caused by electron cloud formation, impedance, dynamic vacuum issues, etc. If experimentally fully validated, a highly reflecting beam screen surface will provide a viable and solid solution to be eligible as a baseline design in FCC-hh projects to come, rendering them more cost effective and sustainable.

  5. Performance of cryogenically cooled, high-heat-load silicon crystal monochromators with porous media augmentation

    SciTech Connect

    Rogers, C.S.; Mills, D.M.; Assoufid, L.; Graber, T.

    1996-09-01

    The performance of two Si crystal x-ray monochromators internally cooled with liquid nitrogen was tested on the F2-wiggler beamline at the Cornell High Energy Synchrotron Source (CHESS). Both crystals were (111)-oriented blocks of rectangular cross section having identical dimensions. Seven 6.4-mm-diameter coolant channels were drilled through the crystals along the beam direction. In one of the crystals, porous Cu mesh inserts were bonded into the channels to enhance the heat transfer. The channels of the second crystal were left as drilled. Symmetric, double-crystal rocking curves were recorded simultaneously for both the first and third order reflections at 8 and 24 keV. The power load on the cooled crystal was adjusted by varying the horizontal beam size using slits. The measured Si(333) rocking curve of the unenhanced crystal at 24 keV at low power was 1.9 arcsec FWHM. The theoretical width is 0.63 arcsec. The difference is due to residual fabrication and mounting strain. For a maximum incident power of 601 W and an average power density of about 10 W/mm{sup 2}, the rocking curve was 2.7 arcsec. The rocking curve width for the enhanced crystal at low power was 2.4 arcsec. At a maximum incident power of 1803 W and an average power density of about 19 W/mm{sup 2}, the rocking curve width was 2.2 arcsec FWHM. The use of porous mesh augmentation is a simple, but very effective, means to improve the performance of cryogenically cooled Si monochromators exposed to high power x-ray beams. {copyright} {ital 1996 American Institute of Physics.}

  6. Pink-Beam, Highly-Accurate Compact Water Cooled Slits

    SciTech Connect

    Lyndaker, Aaron; Deyhim, Alex; Jayne, Richard; Waterman, Dave; Caletka, Dave; Steadman, Paul; Dhesi, Sarnjeet

    2007-01-19

    Advanced Design Consulting, Inc. (ADC) has designed accurate compact slits for applications where high precision is required. The system consists of vertical and horizontal slit mechanisms, a vacuum vessel which houses them, water cooling lines with vacuum guards connected to the individual blades, stepper motors with linear encoders, limit (home position) switches and electrical connections including internal wiring for a drain current measurement system. The total slit size is adjustable from 0 to 15 mm both vertically and horizontally. Each of the four blades are individually controlled and motorized. In this paper, a summary of the design and Finite Element Analysis of the system are presented.

  7. A Si/Glass Bulk-Micromachined Cryogenic Heat Exchanger for High Heat Loads: Fabrication, Test, and Application Results

    PubMed Central

    Zhu, Weibin; White, Michael J.; Nellis, Gregory F.; Klein, Sanford A.; Gianchandani, Yogesh B.

    2010-01-01

    This paper reports on a micromachined Si/glass stack recuperative heat exchanger with in situ temperature sensors. Numerous high-conductivity silicon plates with integrated platinum resistance temperature detectors (Pt RTDs) are stacked, alternating with low-conductivity Pyrex spacers. The device has a 1 × 1-cm2 footprint and a length of up to 3.5 cm. It is intended for use in Joule–Thomson (J–T) coolers and can sustain pressure exceeding 1 MPa. Tests at cold-end inlet temperatures of 237 K–252 K show that the heat exchanger effectiveness is 0.9 with 0.039-g/s helium mass flow rate. The integrated Pt RTDs present a linear response of 0.26%–0.30%/K over an operational range of 205 K–296 K but remain usable at lower temperatures. In self-cooling tests with ethane as the working fluid, a J–T system with the heat exchanger drops 76.1 K below the inlet temperature, achieving 218.7 K for a pressure of 835.8 kPa. The system reaches 200 K in transient state; further cooling is limited by impurities that freeze within the flow stream. In J–T self-cooling tests with an external heat load, the system reaches 239 K while providing 1 W of cooling. In all cases, there is an additional parasitic heat load estimated at 300–500 mW. PMID:20490284

  8. High resolution hyperspectral imaging with a high throughput virtual slit

    NASA Astrophysics Data System (ADS)

    Gooding, Edward A.; Gunn, Thomas; Cenko, Andrew T.; Hajian, Arsen R.

    2016-05-01

    Hyperspectral imaging (HSI) device users often require both high spectral resolution, on the order of 1 nm, and high light-gathering power. A wide entrance slit assures reasonable étendue but degrades spectral resolution. Spectrometers built using High Throughput Virtual Slit™ (HTVS) technology optimize both parameters simultaneously. Two remote sensing use cases that require high spectral resolution are discussed. First, detection of atmospheric gases with intrinsically narrow absorption lines, such as hydrocarbon vapors or combustion exhaust gases such as NOx and CO2. Detecting exhaust gas species with high precision has become increasingly important in the light of recent events in the automobile industry. Second, distinguishing reflected daylight from emission spectra in the visible and NIR (VNIR) regions is most easily accomplished using the Fraunhofer absorption lines in solar spectra. While ground reflectance spectral features in the VNIR are generally quite broad, the Fraunhofer lines are narrow and provide a signature of intrinsic vs. extrinsic illumination. The High Throughput Virtual Slit enables higher spectral resolution than is achievable with conventional spectrometers by manipulating the beam profile in pupil space. By reshaping the instrument pupil with reflective optics, HTVS-equipped instruments create a tall, narrow image profile at the exit focal plane, typically delivering 5X or better the spectral resolution achievable with a conventional design.

  9. High-heat-load studies of silicon and diamond monochromators using the APS/CHESS prototype undulator

    SciTech Connect

    Mills, D.M.; Lee, W.K.; Smither, R.K.; Fernandez, P.B.

    1994-09-16

    The results of the latest high-heat-load studies made on the APS/CHESS prototype undulator are summarized. Four different crystals were tested: two slotted, symmetrically cut silicon crystals and a core-drilled, asymmetrically cut silicon crystal and a diamond crystal that was jet cooled using water. The purpose of the silicon crystal tests was to reevaluate the surface power loading at which appreciable degradation of the diffraction efficiency was observed. The diamond tests, allotted only a brief period of time during the testing period, were our first attempt at using diamonds for high-heat-flux x-ray monochromators and were performed primarily to gain first-hand experience with diamond monochromators. Measurements with the silicon crystal at 5 keV reconfirmed our previous measurements of performance degradation at around 4-6 watts/mm{sup 2} using liquid gallium with slotted coolant channels. A value of only 2 watts/mm{sup 2} was observed to cause a degradation of the diffraction performance at 15 keV with the same crystals due to the increased sensitivity to strain because of the reduced Darwin widths. The performance of the asymmetric crystal, with its core-drilled coolant channels, was not found to be as good as that of the slotted crystals. This was probably due to poorer heat transfer properties of the core-drilled geometry in combination with the narrowing of the rocking curves because of the asymmetric cut. Fabrication issues for construction of the gallium-cooled crystals is also discussed. Although the diamonds were only successfully tested at low total power the results were very encouraging and motivated us to accelerate our program on the use of diamonds for high-heat-load monochromators.

  10. Advantages of the in-situ LTP distortion profile test on high-heat-load mirrors and applications

    SciTech Connect

    Qian, S.; Jark, W.; Sostero, G.; Gambitta, A.; Mazzolini, F.; Savoia, A.

    1996-12-31

    The first in-situ distortion profile measurement of a high heat load mirror by use of the penta-prism LTP is presented. A maximum height distortion of 0.47 micron in tangential direction over a length of 180 mm was measured for an internally water-cooled mirror of a undulator beam line at ELETTRA while exposed to a total emitted power of 600 W (undulator gap 30 mm and current 180 mA). The experiment has an accuracy and repeatability of 0.04 micron. The test schematic and the test equipment are presented. Two measuring methods to scan a penta-prism being installed either outside or inside the vacuum chamber are introduced. Advantages and some possible applications of adopting the penta-prism LTP to make the in-situ profile test are explained.

  11. High-performance hyperspectral imaging using virtual slit optics

    NASA Astrophysics Data System (ADS)

    Behr, Bradford B.; Bismilla, Yusuf; Cenko, Andrew T.; DesRoches, Brandon; Meade, Jeffrey T.; Munro, Elizabeth A.; Slaa, Jared; Hajian, Arsen R.

    2014-05-01

    Tornado Spectral Systems (TSS) has developed High Throughput Virtual Slit (HTVS) technology that improves the performance of spectrometers by factors of several while maintaining system size. In the simplest configuration, the HTVS allows optical designers to remove the lossy slit from a spectrometer, greatly increasing throughput without a loss of resolution. This is especially useful in many standoff applications, where every photon matters. TSS has tested multiple configurations of HTVS spectral sensing and spectral imaging technology, including standoff sensing, point scan imaging, long-slit pushbroom imaging and similar configurations. The HTVS throughput-resolution advantage allows us to increase scanning speed, decrease system size, decrease aperture, decrease source intensity requirements or some combination of all four. HTVS technology expands the realm of viable spectral imaging applications. We discuss the applicability of this technology to spectral imaging and standoff sensing and present experimental results from several prototype and production spectrometers.

  12. High-performance hyperspectral imaging using virtual slit optics

    NASA Astrophysics Data System (ADS)

    Behr, Bradford B.; Meade, Jeffrey T.; Hajian, Arsen R.; Cenko, Andrew T.

    2013-05-01

    The High Throughput Virtual Slit (or HTVS) is a new optical technology which can significantly increase the throughput and resolution of a dispersive spectrometer. The HTVS is able to preserve spectrometer étendue, mitigating photon losses normally associated with a slit. Originally implemented in multimode fiber-input spectrometers, HTVS has now been shown to be broadly applicable to a wide variety of spatially scanning hyperspectral imagers and standoff sensors, enhancing their performance and unlocking new application areas. In essence, the anamorphic elements of the HTVS optical system provide a means to decouple the spatial (iFOV) and spectral resolution of nearly any HSI system. In some scenarios, HTVS can be used to achieve better spectral resolution with the same input slit width. Alternatively, the slit can be widened (to increase the collected signal) while maintaining the same spectral resolution. This newfound flexibility in optimizing critical performance parameters not only improves the performance of HSI systems in existing remote sensing contexts, but also opens up numerous new application areas which were previously inaccessible to hyperspectral techniques. This method adds substantial value to existing HSI designs, particularly in applications involving targets with large spatial extent and requiring high spectral resolution (e.g. standoff Raman spectroscopy). We present recent experimental results from our prototype HTVS pushbroom imager and discuss case studies of standoff Raman detection of hazardous materials, passive detection of faint narrowband and monochromatic sources, and optimal disentangling of target spectral signatures from the solar spectrum under daytime illumination.

  13. Heat Loads at High Temperature Protection Diodes for a Mercury Mission

    NASA Astrophysics Data System (ADS)

    Reul, S.; Zimmermann, W.; Strobl, G. F. X.; La Roche, G.; Baur, C.

    2008-09-01

    In the frame of the BepiColombo project (see Fig. 1) the solar generators have to withstand the environment near Mercury. Thus all components must withstand an solar irradiation of 10 solar constants or 13.67 kW/m2;. Due to manoeuvres it can happen, that e.g. solar cells will be shadowed or all cell interconnections can fail. To prevent the solar cells from operating in reverse a high temperature protection shunt diode is foreseen for each GaInP/GaInAs/Ge solar cell. This paper reports about first computations of the temperature distributions for different load cases with useful assumptions for the generator structure, sizes/shapes, etc. Also the main temperature influencing parameter and some useful consequences for a high temperature design of a solar generator and Si-diodes will be discussed. The work is part of the ESA contract 19739/06/NL/JD. The Si-diode layout is proposed by AZUR SPACE solar power, Heilbronn.

  14. High heat load performance of an inclined crystal monochromator with liquid gallium cooling on the CHESS-ANL undulator

    SciTech Connect

    Macrander, A.T.; Lee, W.K.; Smither, R.K.; Mills, D.M.; Rogers, S.; Khounsary, A.

    1991-11-01

    Results for the performance of a novel double crystal monochromator subjected to high heat loads from an APS prototype undulator at the Cornell High Energy Synchrotron Source (CHESS) are presented. The monochromator was designed to achieve symmetric diffraction from asymmetric planes to spread out the beam footprint thereby lowering the incident power density. Both crystals had (111) oriented surfaces and were arranged such that the beam was diffracted from the (11{bar 1}) planes at 5 KeV. Rocking curves with minimal distortion were obtained at a ring electron current of 96 mA. This corresponded to 370 Watts total power and an peak power density of 48 Watts/mm{sup 2} normal to the incident beam. These results are compared to data obtained from the same crystals in the standard geometry (diffracting planes parallel to surface). The footprint area in the inclined case was three times that of the standard case. We also obtained rocking curve data for the {l_brace}333{r_brace} reflection at 15 KeV for both standard and inclined cases, and these data also showed a minimal distortion for the inclined case. In addition, thermal data were obtained via infrared pyrometry. Not only the diffraction data but also the thermal data revealed a dramatically improved performance for the inclined crystal case.

  15. Limitations of liquid nitrogen cooling of high heat load x-ray monochromators

    NASA Astrophysics Data System (ADS)

    Khounsary, Ali; Strons, Philip; Kujala, Naresh; Macrander, Albert

    2012-10-01

    X-ray monochromators, made of single crystals or multilayer coatings, are the most common optical components on many synchrotron beamlines. They intercept the broad-spectrum x-ray (white or pink) beams generated by the radiation source and absorb all but select narrow spectral bands of x-rays, which are diffracted according to Bragg's Law. With some incident beam power in the kW range, minimizing thermally induced deformation detrimental to the performance of the device necessitates the design of optimally cooled monochromators. Monochromator substrate designs have evolved, in parallel with thermal loads of the incident beams, from simple blocks with no cooling, to water cooled (both contact -cooled and internally cooled), and to cryogenically cooled designs where the undesirable thermal distortions are kept in check by operating in a temperature range where the thermomechanical properties of the substrate materials are favorable. Fortuitously, single-crystal silicon at cryogenic temperatures has an exceptionally favorable combination of high thermal conductivity and low thermal expansion coefficient. With further increases in x-ray beam power, partly as a result of the upgrades to the existing synchrotron facilities, the question arises as to the ultimate limits of liquid-nitrogen-cooled silicon monochromators' ability to handle the increased thermal load. In this paper, we describe the difficulties and begin the investigation by using a simple geometric model for a monochromator and obtain analytical solutions for the temperature field. The temperature can be used as a proxy for thermally induced deformation. The significant role of the nonlinear material properties of silicon is examined.

  16. High-heat-load synchrotron tests of room-temperature, silicon crystal monochromators at the CHESS F-2 wiggler station

    SciTech Connect

    Lee, W.K.; Fernandez, P.B.; Graber, T.; Assoufid, L.

    1995-09-08

    This note summarizes the results of the single crystal monochromator high-heat-load tests performed at the CHESS F-2 wiggler station. The results from two different cooling geometries are presented: (1) the ``pin-post`` crystal and (2) the ``criss-cross`` crystal. The data presented were taken in August 1993 (water-cooled pin-post) and in April 1995 (water- and gallium-cooled pin-post crystal and gallium-cooled criss-cross crystal). The motivation for trying these cooling (or heat exchanger) geometries is to improve the heat transfer efficiency over that of the conventional slotted crystals. Calculations suggest that the pin-post or the microchannel design can significantly improve the thermal performance of the crystal. The pin-post crystal used here was fabricated by Rocketdyne Albuquerque Operations. From the performance of the conventional slotted crystals, it was thought that increased turbulence in the flow pattern may also enhance the heat transfer. The criss-cross crystal was a simple attempt to achieve the increased flow turbulence. The criss-cross crystal was partly fabricated in-house (cutting, etching and polishing) and bonded by RAO. Finally, a performance comparison among all the different room temperature silicon monochromators that have been tested by the APS is presented. The data includes measurements with the slotted crystal and the core-drilled crystals. Altogether, the data presented here were taken at the CHESS F-2 wiggler station between 1991 and 1995.

  17. Thermo-mechanical properties of silicon, germanium, diamond, beryllium and silicon carbide for high heat load x-ray optics applications

    NASA Astrophysics Data System (ADS)

    Hedayat, Ali; Khounsary, Ali; Mashayek, Farzad

    2012-10-01

    Increased thermal power of the x-ray beams produced at synchrotron radiation facilities such as the Advanced Photon Source at Argonne National Laboratory requires improvements in the thermal management of the components with which the beams interact. Crystals of silicon, germanium, diamond, beryllium, and silicon carbide are important substrate materials in this regard. Accurate physical, thermal, and mechanical properties of these materials, especially at cryogenic temperatures, are needed in the analysis and design of high heat load x-ray components. In this paper, we present a collection of the relevant data, and include curve fits, when possible, for ease of use in the analysis.

  18. Large-surface-area diamond (111) crystal plates for applications in high-heat-load wavefront-preserving X-ray crystal optics.

    PubMed

    Stoupin, Stanislav; Antipov, Sergey; Butler, James E; Kolyadin, Alexander V; Katrusha, Andrey

    2016-09-01

    Fabrication and results of high-resolution X-ray topography characterization of diamond single-crystal plates with large surface area (10 mm × 10 mm) and (111) crystal surface orientation for applications in high-heat-load X-ray crystal optics are reported. The plates were fabricated by laser-cutting of the (111) facets of diamond crystals grown using high-pressure high-temperature methods. The intrinsic crystal quality of a selected 3 mm × 7 mm crystal region of one of the studied samples was found to be suitable for applications in wavefront-preserving high-heat-load crystal optics. Wavefront characterization was performed using sequential X-ray diffraction topography in the pseudo plane wave configuration and data analysis using rocking-curve topography. The variations of the rocking-curve width and peak position measured with a spatial resolution of 13 µm × 13 µm over the selected region were found to be less than 1 µrad. PMID:27577765

  19. A novel ultra-high performance liquid chromatography method for the rapid determination of β-lactoglobulin as heat load indicator in commercial milk samples.

    PubMed

    Boitz, Lisa I; Fiechter, Gregor; Seifried, Reinhold K; Mayer, Helmut K

    2015-03-20

    The level of undenatured acid-soluble β-lactoglobulin can be used as an indicator to assess the heat load applied to liquid milk, thus further allowing the discrimination between milk originating from different thermal production processes. In this work, a new UHPLC method for the rapid determination of bovine β-lactoglobulin in 1.8min only (total runtime 3min) is presented using simple UV detection at 205nm. Separation selectivity for possibly co-eluting other major whey proteins (bovine serum albumin, lactoferrin, α-lactalbumin, immunoglobulin G) was verified, and the method validated for the analysis of liquid milk samples regarding linearity (20-560μg/mL, R(2)>0.99), instrumentation precision (RSDs<2.8%), limits of detection and quantification (7 and 23mg/L milk), repeatability of sample work-up (RSDs≤2.6%) and method recovery (103%). In total, 71 commercial liquid milk samples produced using different preservation techniques (e.g., thermal or mechanical treatment), hence featuring different applied heat loads, were profiled for their intrinsic undenatured acid-soluble β-lactoglobulin levels. As expected, pasteurized milk showed the highest concentrations clearly above 3000mg/L due to pasteurization being the mildest thermal treatment, while in contrast, ultra-high temperature heated milk featured the lowest amounts (<200mg/L). For extended shelf life (ESL) milk, quite diverse levels were determined ranging from ∼100 up to 4000mg/L, thus clearly illustrating variable applied heat loads and impacts on the "nativeness" of milk essentially due to the fact that the production technologies used for ESL milk may differ significantly, and are currently not regulated in the EU. PMID:25700725

  20. Evolution of tungsten degradation under combined high cycle edge-localized mode and steady-state heat loads

    NASA Astrophysics Data System (ADS)

    Loewenhoff, Th; Bürger, A.; Linke, J.; Pintsuk, G.; Schmidt, A.; Singheiser, L.; Thomser, C.

    2011-12-01

    Combined thermal shock and steady-state heat loads (SSHLs) can have an impact on divertor materials and are therefore important for lifetime estimations and evaluations of operational thresholds of divertor components in future fusion devices such as ITER. This paper discusses the results of tests performed in the electron beam facility JUDITH 2 (Forschungszentrum Jülich, Germany) on actively cooled tungsten specimens, loaded with edge-localized mode-like thermal shocks (pulse duration 0.48 ms, power densities 0.14-0.55 GW m-2, frequency 25 Hz and up to 1000 000 pulses) either with or without an additional SSHL of 10 MW m-2. The material showed no damage at 0.14 GW m-2 (independent of the SSHL) for up to 250 000 pulses. At a power density of 0.27 GW m-2 (without SSHL), surface roughening occurred at 100 000 pulses, developing into a crack network at 1000 000 pulses. In general, the additional SSHL resulted in an earlier (in terms of pulse number) and more severe material degradation.

  1. Modifications to improve entrance slit thermal stability for grasshopper monochromators

    NASA Astrophysics Data System (ADS)

    Wallace, Daniel J.; Rogers, Gregory C.; Crossley, Sherry L.

    1994-08-01

    As new monochromators are designed for high-flux storage rings, computer modeling and thermal engineering can be done to process increased heat loads and achieve mechanical stability. Several older monochromators, such as the Mark 2 and Mark 5 Grasshopper monochromators, which were designed in 1974, have thermal instabilities in their entrance slit mechanisms. The Grasshoppers operating with narrow slits experience closure of the entrance slit from thermal expansion. In extreme cases, the thermal expansion of the precision components has caused permanent mechanical damage, leaving the slit uncalibrated and/or inoperable. For the Mark 2 and Mark 5 Grasshopper monochromators at the Synchrotron Radiation Center, the original 440 stainless steel entrance slit jaws were retrofitted with an Invar (low expansion Fe, Ni alloy) slit jaw. To transfer the heat from the critical components, two flexible heat straps of Cu were attached. These changes allow safe operation with a 10 μm entrance slit width where the previous limit was 30 μm. After an initial 2 min equilibration, the slit remains stable to 10%, with 100 mA of beam current. Additional improvements in slit thermal stability are planned for a third Grasshopper.

  2. Investigation of high thermal contact conductance at low contact pressure for high-heat-load optical elements of synchrotron radiation

    NASA Astrophysics Data System (ADS)

    Takeuchi, T.; Tanaka, M.; Ohashi, H.; Goto, S.

    2013-09-01

    We measured the thermal-contact-conductance (TCC) of indirect cooling components in synchrotron radiation beamlines. To reduce the strain on the optical element, we explored conditions for insertion materials with a high TCC in region with low contact pressures of 0.1-1.0 MPa. We examined the TCC at the interface between oxygen-free copper (OFC) and insertion materials such as indium, graphite, and gold foil. The TCC depended on the hardness and thickness of the insertion material. Thin indium (20 μm thick) showed the highest TCC. Nickel and gold passivation on the OFC surface reduced the TCC to 30% of that for the bare OFC. Future work will involve exploring the passivation conditions of OFC for higher TCC is and measuring the TCC under cryogenic-cooling conditions.

  3. Prediction of fatigue life of high-heat-load components made of oxygen-free copper by comparing with Glidcop

    PubMed Central

    Takahashi, Sunao; Sano, Mutsumi; Watanabe, Atsuo; Kitamura, Hideo

    2013-01-01

    Following a successful study on the prediction of fatigue life of high-heat-load components made of Glidcop, the thermal limitation of oxygen-free copper (OFC), which is used more commonly than Glidcop, has been studied. In addition to its general mechanical properties, the low-cycle-fatigue (LCF) and creep properties of OFC were investigated in detail and compared with those of Glidcop. The breaking mode of OFC, which was observed to be completely different from that of Glidcop in a fatigue fracture experiment, clarified the importance of considering the creep–fatigue interaction. An additional LCF test with compressive strain holding was conducted so that the creep–fatigue life diagram for out-of-phase thermal fatigue could be obtained on the basis of the strain-range partitioning method. The life predicted from elasto-plastic creep analysis agreed well with that determined from the void ratio estimated in the fatigue fracture experiment. PMID:23254657

  4. Prediction of fatigue life of high-heat-load components made of oxygen-free copper by comparing with Glidcop.

    PubMed

    Takahashi, Sunao; Sano, Mutsumi; Watanabe, Atsuo; Kitamura, Hideo

    2013-01-01

    Following a successful study on the prediction of fatigue life of high-heat-load components made of Glidcop, the thermal limitation of oxygen-free copper (OFC), which is used more commonly than Glidcop, has been studied. In addition to its general mechanical properties, the low-cycle-fatigue (LCF) and creep properties of OFC were investigated in detail and compared with those of Glidcop. The breaking mode of OFC, which was observed to be completely different from that of Glidcop in a fatigue fracture experiment, clarified the importance of considering the creep-fatigue interaction. An additional LCF test with compressive strain holding was conducted so that the creep-fatigue life diagram for out-of-phase thermal fatigue could be obtained on the basis of the strain-range partitioning method. The life predicted from elasto-plastic creep analysis agreed well with that determined from the void ratio estimated in the fatigue fracture experiment. PMID:23254657

  5. White beam slits and pink beam slits for the hard x-ray nanoprobe beamline at the Advanced Photon Source.

    SciTech Connect

    Benson, C.; Jaski, Y.; Maser, J.; Powers, T.; Schmidt, O.; Rossi, E.

    2007-01-01

    A new type of slit has been designed for use in the hard x-ray nanoprobe beamline at the Advanced Photon Source (APS). The design incorporates monolithic GlidCop slit bodies mounted to commercially available x-y drive systems. Long, tapered apertures with adjacent water-cooling channels intercept the x-ray beam, removing the high heat load produced by two collinear APS undulators. The apertures are L-shaped and provide both horizontal and vertical slits. The beam-defining edges, positioned at the end of the tapered surfaces, consist of two sets of tungsten blades. These blades produce an exit beam with sharp corners and assure a clean cut-off for the white beam edges. The slit assembly is designed to allow overlap of the slit edges to stop the beam. The white beam slit design accommodates 3100 W of total power with a peak power density of 763 W/mm2. The pink beam slit design accommodates 400 W of total power with a peak power density of 180 W/mm2. Detailed thermal analyses were performed to verify the slits accuracy under full beam loading. The new concept allows beamline operations to 180 mA with a simplified design approach.

  6. White Beam Slits and Pink Beam Slits for the Hard X-ray Nanoprobe Beamline at the Advanced Photon Source

    SciTech Connect

    Benson, C.; Jaski, Y.; Powers, T.; Schmidt, O.; Rossi, E.; Maser, J.

    2007-01-19

    A new type of slit has been designed for use in the hard x-ray nanoprobe beamline at the Advanced Photon Source (APS). The design incorporates monolithic GlidCop slit bodies mounted to commercially available x-y drive systems. Long, tapered apertures with adjacent water-cooling channels intercept the x-ray beam, removing the high heat load produced by two collinear APS undulators. The apertures are L-shaped and provide both horizontal and vertical slits. The beam-defining edges, positioned at the end of the tapered surfaces, consist of two sets of tungsten blades. These blades produce an exit beam with sharp corners and assure a clean cut-off for the white beam edges. The slit assembly is designed to allow overlap of the slit edges to stop the beam.The white beam slit design accommodates 3100 W of total power with a peak power density of 763 W/mm2. The pink beam slit design accommodates 400 W of total power with a peak power density of 180 W/mm2. Detailed thermal analyses were performed to verify the slits' accuracy under full beam loading. The new concept allows beamline operations to 180 mA with a simplified design approach.

  7. White Beam Slits and Pink Beam Slits for the Hard X-ray Nanoprobe Beamline at the Advanced Photon Source

    NASA Astrophysics Data System (ADS)

    Benson, C.; Jaski, Y.; Maser, J.; Powers, T.; Schmidt, O.; Rossi, E.

    2007-01-01

    A new type of slit has been designed for use in the hard x-ray nanoprobe beamline at the Advanced Photon Source (APS). The design incorporates monolithic GlidCop slit bodies mounted to commercially available x-y drive systems. Long, tapered apertures with adjacent water-cooling channels intercept the x-ray beam, removing the high heat load produced by two collinear APS undulators. The apertures are L-shaped and provide both horizontal and vertical slits. The beam-defining edges, positioned at the end of the tapered surfaces, consist of two sets of tungsten blades. These blades produce an exit beam with sharp corners and assure a clean cut-off for the white beam edges. The slit assembly is designed to allow overlap of the slit edges to stop the beam. The white beam slit design accommodates 3100 W of total power with a peak power density of 763 W/mm2. The pink beam slit design accommodates 400 W of total power with a peak power density of 180 W/mm2. Detailed thermal analyses were performed to verify the slits' accuracy under full beam loading. The new concept allows beamline operations to 180 mA with a simplified design approach.

  8. Effect of high-flux H/He plasma exposure on tungsten damage due to transient heat loads

    NASA Astrophysics Data System (ADS)

    De Temmerman, G.; Morgan, T. W.; van Eden, G. G.; de Kruif, T.; Wirtz, M.; Matejicek, J.; Chraska, T.; Pitts, R. A.; Wright, G. M.

    2015-08-01

    The thermal shock behaviour of tungsten exposed to high-flux plasma is studied using a high-power laser. The cases of laser-only, sequential laser and hydrogen (H) plasma and simultaneous laser plus H plasma exposure are studied. H plasma exposure leads to an embrittlement of the material and the appearance of a crack network originating from the centre of the laser spot. Under simultaneous loading, significant surface melting is observed. In general, H plasma exposure lowers the heat flux parameter (FHF) for the onset of surface melting by ∼25%. In the case of He-modified (fuzzy) surfaces, strong surface deformations are observed already after 1000 laser pulses at moderate FHF = 19 MJ m-2 s-1/2, and a dense network of fine cracks is observed. These results indicate that high-fluence ITER-like plasma exposure influences the thermal shock properties of tungsten, lowering the permissible transient energy density beyond which macroscopic surface modifications begin to occur.

  9. Improved Program For Calculation Of Heat-Load Multiplier

    NASA Technical Reports Server (NTRS)

    D'Valentine, Mark

    1995-01-01

    PRM1940 computer program computes heat-load multiplier for use in Power Balance Model (PBM) computer program which calculates hundreds of operating parameters of main engine of space shuttle from relatively few measurement data. PRM1940 is stand-alone program which incorporates only those PBM calculations necessary to compute heat-load multiplier. Developed to accelerate and partly automate calculation of heat-load multiplier. Although programs specific to space shuttle application, also of interest to engineers concerned with monitoring of conditions in turbines, chemical-processing plants, and other high-temperature flow machinery.

  10. Apodization in high-contrast long-slit spectroscopy. Closer, deeper, fainter, cooler

    NASA Astrophysics Data System (ADS)

    Vigan, A.; N'Diaye, M.; Dohlen, K.

    2013-07-01

    The spectroscopy of faint planetary-mass companions to nearby stars is one of the main challenges that new-generation high-contrast spectro-imagers are going to face. However, the high contrast ratio between main-sequence stars and young planets makes it difficult to extract a companion spectrum that is not biased by the signal from the star. In a previous work we demonstrated that coupling long-slit spectroscopy (LSS) and classical Lyot coronagraphy (CLC) to form a long-slit coronagraph (LSC) allows low-mass companions to be properly characterized when combined with an innovative a posteriori data analysis methods based on the spectral deconvolution (SD). However, the presence of a slit in the coronagraphic focal plane induces a complex distribution of energy in the Lyot pupil plane that cannot be easily masked with a binary Lyot stop, creating strong diffraction residuals at close angular separation. To alleviate this concern, we propose to use a pupil apodization to suppress diffraction, creating an apodized long-slit coronagraph (ALSC). We show that this concept allows looking at a closer separation from the star, at deeper contrast, which enables the characterization of fainter substellar companions. After describing how the apodization was optimized, we demonstrate its advantages with respect to the CLC in the context of SPHERE/IRDIS LSS mode at low resolution with a 0.12'' slit and 0.18'' coronagraphic mask. We performed different sets of simulations with and without aberrations, and with and without a slit to demonstrate that the apodization is a more appropriate concept for LSS, at the expense of a significantly reduced throughput (37%) compared to the LSC. Then we performed detailed end-to-end simulations of the LSC and the ALSC that include realistic levels of aberrations to obtain several datasets representing 1 h of integration time on stars of spectral type A0 to M0 located at 10 pc. We inserted the spectra of planetary companions at different

  11. Heat Load Estimator for Smoothing Pulsed Heat Loads on Supercritical Helium Loops

    NASA Astrophysics Data System (ADS)

    Hoa, C.; Lagier, B.; Rousset, B.; Bonnay, P.; Michel, F.

    Superconducting magnets for fusion are subjected to large variations of heat loads due to cycling operation of tokamaks. The cryogenic system shall operate smoothly to extract the pulsed heat loads by circulating supercritical helium into the coils and structures. However the value of the total heat loads and its temporal variation are not known before the plasma scenario starts. A real-time heat load estimator is of interest for the process control of the cryogenic system in order to anticipate the arrival of pulsed heat loads to the refrigerator and finally to optimize the operation of the cryogenic system. The large variation of the thermal loads affects the physical parameters of the supercritical helium loop (pressure, temperature, mass flow) so those signals can be used for calculating instantaneously the loads deposited into the loop. The methodology and algorithm are addressed in the article for estimating the heat load deposition before it reaches the refrigerator. The CEA patented process control has been implemented in a Programmable Logic Controller (PLC) and has been successfully validated on the HELIOS test facility at CEA Grenoble. This heat load estimator is complementary to pulsed load smoothing strategies providing an estimation of the optimized refrigeration power. It can also effectively improve the process control during the transient between different operating modes by adjusting the refrigeration power to the need. This way, the heat load estimator participates to the safe operation of the cryogenic system.

  12. Development and Preliminary Testing of a High Precision Long Stroke Slit Change Mechanism for the SPICE Instrument

    NASA Technical Reports Server (NTRS)

    Paciotti, Gabriel; Humphries, Martin; Rottmeier, Fabrice; Blecha, Luc

    2014-01-01

    In the frame of ESA's Solar Orbiter scientific mission, Almatech has been selected to design, develop and test the Slit Change Mechanism of the SPICE (SPectral Imaging of the Coronal Environment) instrument. In order to guaranty optical cleanliness level while fulfilling stringent positioning accuracies and repeatability requirements for slit positioning in the optical path of the instrument, a linear guiding system based on a double flexible blade arrangement has been selected. The four different slits to be used for the SPICE instrument resulted in a total stroke of 16.5 mm in this linear slit changer arrangement. The combination of long stroke and high precision positioning requirements has been identified as the main design challenge to be validated through breadboard models testing. This paper presents the development of SPICE's Slit Change Mechanism (SCM) and the two-step validation tests successfully performed on breadboard models of its flexible blade support system. The validation test results have demonstrated the full adequacy of the flexible blade guiding system implemented in SPICE's Slit Change Mechanism in a stand-alone configuration. Further breadboard test results, studying the influence of the compliant connection to the SCM linear actuator on an enhanced flexible guiding system design have shown significant enhancements in the positioning accuracy and repeatability of the selected flexible guiding system. Preliminary evaluation of the linear actuator design, including a detailed tolerance analyses, has shown the suitability of this satellite roller screw based mechanism for the actuation of the tested flexible guiding system and compliant connection. The presented development and preliminary testing of the high-precision long-stroke Slit Change Mechanism for the SPICE Instrument are considered fully successful such that future tests considering the full Slit Change Mechanism can be performed, with the gained confidence, directly on a

  13. Positive-ion injector cryogenic heat load

    SciTech Connect

    Zinkann, G.P.; Specht, J.R.; Kedzie, M.; Wiemerslage, G.

    1995-08-01

    A project to improve the temperature profile of the nitrogen heat shield on the PII linac cryostats began. The goal of the project is to reduce the liquid nitrogen consumption and the quiescent cryostat heat load to the helium refrigeration system. In March 1994 additional heat shield components were installed in one PII cryostat. A significant improvement in the quiescent helium system heat load of approximately 10 watts was observed and some improvement in liquid nitrogen consumption was also noted. We plan to extend these improvements to the remaining two cryostats in the next year as access time can be scheduled.

  14. Review of Scaled Penning H- Surface Plasma Source with Slit Emitters for High Duty Factor Linacs

    NASA Astrophysics Data System (ADS)

    Sherman, Joseph D.; Ingalls, William B.; Rouleau, Gary; Smith, H. Vernon

    2002-12-01

    The Penning H- surface plasma source (SPS) has been used at Rutherford Appleton Laboratory (RAL) for 20 years to provide the required H- beams for charge-exchange injection into the 800-MeV proton synchrotron on the ISIS spallation neutron source. The RAL source is based on the first H- Penning SPS operated at Los Alamos. Since that original technology exchange, Los Alamos has developed scaled-up versions of the Penning H- SPS with the goal of extending the H- beam duty factor (df) while maintaining high beam brightness. A 250-mA H- beam with rms normalized emittance of <0.3 (πmm-mrad) in both transverse planes has been extracted from a 4X scaled Penning source at a discharge df of 0.5%. Using discharge scaling laws and the 250 mA H- current results, it is predicted that a 4X Penning H- SPS with a slit emitter would be capable of producing >100-mA, low emittance H- beams in the 5% df range. A source with these parameters would be suitable for the European Spallation Source (ESS) and other high-power proton driver projects.

  15. High Amplitude Acoustic Behavior of a Slit-Orifice Backed by a Cavity

    NASA Technical Reports Server (NTRS)

    Ahuja, K. K.; Gaeta, R. J., Jr.; DAgostino, M.

    2000-01-01

    The objective of this study was to acquire detailed acoustic data and limited flow visualization data for numerical validation of a new model of sound absorption by a very narrow rectangular slit backed by a cavity. The sound absorption model is that being developed by Dr. C. K. W. Tam of Florida State University. This report documents normal incidence impedance measurements of a singular rectangular slit orifice with no mean flow. All impedance measurements are made within a 1.12 inch (28.5 mm) diameter impedance tube using the two-microphone method for several frequencies in the range 1000 - 6000Hz and incident sound pressure levels in the range 130 - 150 dB. In the interest of leaving the analysis of the data to the developers of more advanced Analytical and computational models of sound absorption by narrow slits, we authors have refrained from giving our own explanations of the observed results, although many of the observed results can be explained using the classical understanding of sound absorption by orifices.

  16. High Amplitude Acoustic Behavior of a Slit-Orifice Backed by a Cavity

    NASA Technical Reports Server (NTRS)

    Ahuja, K. K.; Gaeta, R. J., Jr.; DAgostino, M.; Jones, Mike (Technical Monitor)

    2000-01-01

    The objective of the study reported here was to acquire detailed acoustic data and limited and flow visualization data for numerical validation a new model of sound absorption by a very narrow rectangular slit backed by a cavity. The sound absorption model is being developed by Dr. C. K. W. Tam of Florida State University. This report documents normal incidence impedance measurements of a singular rectangular slit orifice with no mean flow. All impedance measurements are made within a 1.12 inch (28.5 mm) diameter impedance tube using the two-microphone method for several frequencies in the range 1000-6000Hz and incident sound pressure levels in the range 130 - 150 dB. In the interest of leaving the analysis of the data to the developers of more advanced analytical and computational models of sound absorption by narrow slits, we have refrained from giving our own explanations of the observed results, although many of the observed results can be explained using the classical explanations of sound absorption by orifices.

  17. Classical two-slit interference effects in double photoionization of molecular hydrogen at high energies

    SciTech Connect

    Horner, Daniel A.; Miyabe, Shungo; Rescigno, Thomas N; McCurdy, C. William; Morales, Felipe; Martin, Fernando

    2008-07-06

    Recent experiments on double photoionization of H$_2$ with photon energies between 160 and 240 eV have revealed body-frame angular distributions that suggest classical two-slit interference effects may be present when one electron carries most of the available energy and the second electron is not observed. We report precise quantum mechanical calculations that reproduce the experimental findings. They reveal that the interpretation in terms of classical diffraction is only appropriate atsubstantially higher photon energies. At the energies considered in the experiment we offer an alternative explanation based on the mixing of two non-diffractive contributions by circularly polarized light.

  18. Design analysis of a composite L5-80 slit for x-ray beamlines at the Advanced Photon Source

    SciTech Connect

    Nian, H.L.T.; Kuzay, T.M.; Shu, D.

    1996-12-31

    White-beam slits are precision high-heat-load devices used on beamlines of the Advanced Photon Source (APS) to trim and shape the incoming x-rays beam before the beam is transmitted to other optical components. At the APS, the insertion devices that generate the x-ray are very powerful. For example, the heat flux associated with an x- ray beam generated by Undulator A will be on the order of 207 W/mm{sup 2} at the L5-80 slit location (about 27.5 m away from the insertion device) at normal incidence. The total power is about 5.3 kW. The optical slits with micron-level precision are very challenging to design under such heat flux and total power considerations. A novel three-metal composite slit has been designed to meet the diverse thermal, structural, and precision requirements. A closed form solution, and a commercial code, ANSYS, have been used for the analysis of the optimized design for the slit set.

  19. Analyzing Design Heating Loads in Superinsulated Buildings

    SciTech Connect

    Arena, Lois

    2015-06-01

    Super-insulated homes offer many benefits including improved comfort, reduced exterior noise penetration, lower energy bills, and the ability to withstand power and fuel outages under much more comfortable conditions than a typical home. While these homes aren't necessarily constructed with excessive mass in the form of concrete floors and walls, the amount of insulation and the increase in the thickness of the building envelope can lead to a mass effect, resulting in the structures ability to store much more heat than a code built home. This results in a very low thermal inertia making the building much less sensitive to drastic temperature swings thereby decreasing the peak heating load demand. During the winter of 2013/2014, CARB monitored the energy use of three homes in climate zone 6 in an attempt to evaluate the accuracy of two different mechanical system sizing methods for low load homes. Based on the results, it is recommended that internal and solar gains be included and some credit for thermal inertia be used in sizing calculations for super insulated homes.

  20. Estimation of heat load in waste tanks using average vapor space temperatures

    SciTech Connect

    Crowe, R.D.; Kummerer, M.; Postma, A.K.

    1993-12-01

    This report describes a method for estimating the total heat load in a high-level waste tank with passive ventilation. This method relates the total heat load in the tank to the vapor space temperature and the depth of waste in the tank. Q{sub total} = C{sub f} (T{sub vapor space {minus}} T{sub air}) where: C{sub f} = Conversion factor = (R{sub o}k{sub soil}{sup *}area)/(z{sub tank} {minus} z{sub surface}); R{sub o} = Ratio of total heat load to heat out the top of the tank (function of waste height); Area = cross sectional area of the tank; k{sub soil} = thermal conductivity of soil; (z{sub tank} {minus} z{sub surface}) = effective depth of soil covering the top of tank; and (T{sub vapor space} {minus} T{sub air}) = mean temperature difference between vapor space and the ambient air at the surface. Three terms -- depth, area and ratio -- can be developed from geometrical considerations. The temperature difference is measured for each individual tank. The remaining term, the thermal conductivity, is estimated from the time-dependent component of the temperature signals coming from the periodic oscillations in the vapor space temperatures. Finally, using this equation, the total heat load for each of the ferrocyanide Watch List tanks is estimated. This provides a consistent way to rank ferrocyanide tanks according to heat load.

  1. Role of fuel chemical properties on combustor radiative heat load

    NASA Technical Reports Server (NTRS)

    Rosfjord, T. J.

    1984-01-01

    In an attempt to rigorously study the fuel chemical property influence on combustor radiative heat load, United Technologies Research Center (UTRC) has conducted an experimental program using 25 test fuels. The burner was a 12.7-cm dia cylindrical device fueled by a single pressure-atomizing injector. Fuel physical properties were de-emphasized by selecting injectors which produced high-atomized, and hence rapidly-vaporizing sprays. The fuels were specified to cover the following wide ranges of chemical properties; hydrogen, 9.1 to 15- (wt) pct; total aromatics, 0 to 100 (vol) pct; and naphthalene, 0 to 30 (vol) pct. They included standard fuels, specialty products and fuel blends. Fuel naphthalene content exhibited the strongest influence on radiation of the chemical properties investigated. Smoke point was a good global indicator of radiation severity.

  2. Role of fuel chemical properties on combustor radiative heat load

    NASA Technical Reports Server (NTRS)

    Rosfjord, T. J.

    1984-01-01

    In an attempt to rigorously study the fuel chemical property influence on combustor radiative heat load, UTRC has conducted an experimental program using 25 test fuels. The burner was a 12.7-cm dia cylindrical device fueled by a single pressure-atomizing injector. Fuel physical properties were de-emphasized by selecting injectors which produced highly-atomized, and hence rapidly-vaporizing sprays. The fuels were specified to cover the following wide ranges of chemical properties: hydrogen, 9.1 to 15- (wt) pct; total aromatics, 0 to 100 (vol) pct; and naphthalene, 0 to 30 (vol) pct. They included standard fuels, specialty products and fuel blends. Fuel naphthalene content exhibited the strongest influence on radiation of the chemical properties investigated. Smoke point was a good global indicator of radiation severity.

  3. Particle transport and heat loads in NIO1

    NASA Astrophysics Data System (ADS)

    Fonnesu, N.; Cavenago, M.; Serianni, G.; Veltri, P.

    2016-02-01

    NIO1 is a compact radio frequency ion source designed to generate a 60 kV-135 mA hydrogen negative ion beam and it aims at continuous operation, which implies a detailed thermo-mechanical analysis of the beam-facing components, in particular, the accelerator grids. A 3D analysis of the entire NIO1 beam has been performed for the first time with a fully 3D version of EAMCC, a relativistic particle tracking code for the calculation of the grid power deposition induced by particle impacts. According to the results presented in this paper, secondary and co-extracted electrons cause a non-negligible heat load on the grids, where different high-power density regions, within reasonable sustainable standard limits, are calculated.

  4. Particle transport and heat loads in NIO1.

    PubMed

    Fonnesu, N; Cavenago, M; Serianni, G; Veltri, P

    2016-02-01

    NIO1 is a compact radio frequency ion source designed to generate a 60 kV-135 mA hydrogen negative ion beam and it aims at continuous operation, which implies a detailed thermo-mechanical analysis of the beam-facing components, in particular, the accelerator grids. A 3D analysis of the entire NIO1 beam has been performed for the first time with a fully 3D version of EAMCC, a relativistic particle tracking code for the calculation of the grid power deposition induced by particle impacts. According to the results presented in this paper, secondary and co-extracted electrons cause a non-negligible heat load on the grids, where different high-power density regions, within reasonable sustainable standard limits, are calculated. PMID:26932077

  5. Increased levels of FFA during passive heat loading after a 2-week repeated heat load in Koreans

    NASA Astrophysics Data System (ADS)

    Lee, Jeong Beom; Kim, Tae Wook

    2015-04-01

    The purpose of this study was to determine whether repeated heat load is closely related to circulating levels of free fatty acids (FFA) during repeated passive heat loading (PHL), defined as immersion of the lower body up to an umbilical level in hot water, 42 ± 0.5 °C (three times/week, 30 min/day) for 2 weeks. There were significant correlations between mean body temperature and FFA before and after repeated heat load ( p < 0.001, respectively), and the level of FFA was significantly higher after repeated heat load during PHL ( p < 0.01). The threshold of mean body temperature for lipolysis was lowered by repeated heat load and enhanced lipolysis during PHL. However, caution is needed for diabetic individuals.

  6. Detailed heat load calculations for the conceptual design of the Advanced Neutron Source reactor

    SciTech Connect

    Wemple, C.A.

    1993-12-01

    A very detailed MCNP model of the Advanced Neutron Source reactor has been developed at Idaho National Engineering Laboratory. All reactor components inside the reflector vessel were included, and al components were highly segmented. Specific heat loads (watts per gram) have been calculated for each segment in the model, and system-integrated total powers are compared with the design value for the total reactor fission power. The calculated results agree very well with the design values. Axial profiles of the heat loads are provided for all components of the reactor. Individual segment statistical uncertainties were limited wherever possible, and the heat loads for all important reflector components have a standard deviation below 5%.

  7. Slit-Robo signaling.

    PubMed

    Blockus, Heike; Chédotal, Alain

    2016-09-01

    Slits are secreted proteins that bind to Roundabout (Robo) receptors. Slit-Robo signaling is best known for mediating axon repulsion in the developing nervous system. However, in recent years the functional repertoire of Slits and Robo has expanded tremendously and Slit-Robo signaling has been linked to roles in neurogenesis, angiogenesis and cancer progression among other processes. Likewise, our mechanistic understanding of Slit-Robo signaling has progressed enormously. Here, we summarize new insights into Slit-Robo evolutionary and system-dependent diversity, receptor-ligand interactions, signaling crosstalk and receptor activation. PMID:27578174

  8. Precision white-beam slit design for high power density x-ray undulator beamlines at the Advanced Photon Source

    SciTech Connect

    Shu, D.; Brite, C.; Nian, T.

    1994-12-01

    A set of precision horizontal and vertical white-beam slits has been designed for the Advanced Photon Source (APS) X-ray undulator beamlines at Argonne National Laboratory. There are several new design concepts applied in this slit set, including: grazing-incidence knife-edge configuration to minimize the scattering of X-rays downstream, enhanced heat transfer tubing to provide water cooling, and a second slit to eliminate the thermal distortion on the slit knife edge. The novel aspect of this design is the use of two L-shaped knife-edge assemblies, which are manipulated by two precision X-Z stepping linear actuators. The principal and structural details of the design for this slit set are presented in this paper.

  9. Heat-load simulator for heat sink design

    NASA Technical Reports Server (NTRS)

    Dunleavy, A. M.; Vaughn, T. J.

    1968-01-01

    Heat-load simulator is fabricated from 1/4-inch aluminum plate with a contact surface equal in dimensions and configuration to those of the electronic installation. The method controls thermal output to simulate actual electronic component thermal output.

  10. Heat loading limits for solid transuranic wastes storage

    SciTech Connect

    Spatz, T.L.

    1993-07-01

    Heat loading limits have been established for four storage configurations of TRU wastes. The calculations were performed assuming the worst case scenario whereby all the heat generated within a drum was generated within one ``cut`` and that this cut was located in the very center of the drum. Poly-boxes containing one HEPA filter were assumed to have a uniform heat generation throughout the filter. The maximum allowable temperatures were based on the materials in the containers. A comparison between the drum center temperature for a uniform heat load distribution and for the center temperature when the heat load is confined to one cut in the center of the drum is also illustrated. This comparison showed that the heat load of a particular drum can be more than doubled by distributing the sources of heat uniformly throughout the container.

  11. Detection of High-Frequency Oscillations and Damping from Multi-slit Spectroscopic Observations of the Corona

    NASA Astrophysics Data System (ADS)

    Samanta, T.; Singh, J.; Sindhuja, G.; Banerjee, D.

    2016-01-01

    During the total solar eclipse of 11 July 2010, multi-slit spectroscopic observations of the solar corona were performed from Easter Island, Chile. To search for high-frequency waves, observations were taken at a high cadence in the green line at 5303 Å that is due to [Fe xiv] and the red line at 6374 Å that is due to [Fe x]. The data were analyzed to study the periodic variations in intensity, Doppler velocity, and line width using wavelet analysis. The data with high spectral and temporal resolution enabled us to study the rapid dynamical changes within coronal structures. We find that at certain locations, each parameter shows significant oscillation with periods ranging from 6 - 25 s. For the first time, we were able to detect damping of high-frequency oscillations with periods of about 10 s. If the observed damped oscillations are due to magnetohydrodynamic waves, then they can contribute significantly to the heating of the corona. From a statistical study we try to characterize the nature of the observed oscillations while considering the distribution of power in different line parameters.

  12. Scaling STI's sapphire cryocooler for applications requiring higher heat loads

    NASA Astrophysics Data System (ADS)

    Karandikar, Abhijit; Fiedler, Andreas

    2012-06-01

    Superconductor Technologies Inc. (STI) developed the Sapphire cryocooler specifically for the SuperLink® product; a high performance superconducting Radio Frequency (RF) front-end receiver used by wireless carriers such as Verizon Wireless and AT&T to improve network cell coverage and data speeds. STI has built and deployed over 6,000 systems operating 24 hours a day (24/7), 7 days a week in the field since 1999. Sapphire is an integrated free piston Stirling cycle cryocooler with a cooling capacity of 5 Watts at 77 Kelvin (K) with less than 100 Watts (W) input power. It has a field-proven Mean Time Between Failure (MTBF) of well over 1 million hours, requires zero maintenance and has logged over 250 million cumulative runtime hours. The Sapphire cooler is built on a scalable technology platform, enabling the design of machines with cooling capacities greater than 1 kilowatt (kW). This scalable platform also extends the same outstanding attributes as the Sapphire cooler, namely high reliability, zero maintenance, and compact size - all at a competitive cost. This paper will discuss emerging applications requiring higher heat loads and these attributes, describe Sapphire, and show a preliminary concept of a scaled machine with a 100 W cooling capacity.

  13. Spallation neutron source cryomodule heat loads and thermal design

    SciTech Connect

    E. F. Daly; V. Ganni; C. H. Rode; W. J. Schneider; K. M. Wilson; M. A. Wiseman

    2002-05-10

    When complete, the Spallation Neutron Source (SNS) will provide a 1 GeV, 2 MW beam for experiments. One portion of the machine's linac consists of over 80 Superconducting Radio Frequency (SRF) 805 MHz cavities housed in a minimum of 23 cryomodules operating at a saturation temperature of 2.1 K. Minimization of the total heat load is critical to machine performance and for efficient operation of the system. The total heat load of the cryomodules consists of the fixed static load and the dynamic load, which is proportional to the cavity performance. The helium refrigerator supports mainly the cryomodule loads and to a lesser extent the distribution system loads. The estimated heat loads and calculated thermal performance are discussed along with two unique features of this design: the helium heat exchanger housed in the cryomodule return end can and the helium gas cooled fundamental power coupler.

  14. Virtual slit scanning microscopy.

    PubMed

    Fiolka, Reto; Stemmer, Andreas; Belyaev, Yury

    2007-12-01

    We present a novel slit scanning confocal microscope with a CCD camera image sensor and a virtual slit aperture for descanning that can be adjusted during post-processing. A very efficient data structure and mathematical criteria for aligning the virtual aperture guarantee the ease of use. We further introduce a method to reduce the anisotropic lateral resolution of slit scanning microscopes. System performance is evaluated against a spinning disk confocal microscope on identical specimens. The virtual slit scanning microscope works as the spinning disk type and outperforms on thick specimens. PMID:17891411

  15. Voltage divider based on submicron slits in a high Tc superconducting film and two bicrystal grain boundaries

    NASA Astrophysics Data System (ADS)

    Kaplunenko, V. K.; Ivanov, Z. G.; Stepantsov, E. A.; Claeson, T.; Wikborg, E.

    1995-07-01

    Experiments on a model of rapid single flux quantum (RSFQ) flip-flop cell, based on high-Tc (HTS) Josephson junctions show that it can operate as a voltage divider at frequency up to 400 GHz. The junctions were formed in YBaCuO film, deposited on novel Y-ZrO2 bicrystals with two asymmetric 32° grain boundaries, about 10 μm apart, and allow a new design of RSFQ logic based on a single HTS layer. Small inductances (≂10 pH) were made as narrow, submicron size slits. The junction widths were between 4 and 10 μm and for ten junctions located close to the tested circuits, the linear critical current densities at T=4.4 K were 10.7 μA/μm±50% for one grain boundary and 8.3 μA/μm±50% for the other one. IcRn was about 1 mV±50%. A current density of half the expected value meant that the test circuit did not act as an ideal flip-flop down to the lowest frequency. As a voltage divider it gave a half value division up to 0.82 mV at T=4.4 K and to 0.4 mV at 30 K.

  16. Analysis of hot streak effects on turbine rotor heat load

    SciTech Connect

    Shang, T.; Epstein, A.H.

    1997-07-01

    The influence of inlet hot streak temperature distortion on turbine blade heat load was explored on a transonic axial flow turbine stage test article using a three-dimensional, multiblade row unsteady Euler code. The turbine geometry was the same as that used for a recently reported testing of hot streak influence. Emphasis was placed on elucidating the physical and mechanisms by which hot streaks affect turbine durability. It was found that temperature distortion significantly increases both blade surface heat load nonuniformity and total blade heat load by as much as 10--30% (mainly in the pressure surface), and that the severity of this influence is a strong function of turbine geometry and flow conditions. Three physical mechanisms were identified that drive the heat load nonuniformity: buoyancy, wake convection (the Kerrebrock-Mikolajczak effect), and rotor-stator interactions. The latter can generate significant nonuniformity of the time-averaged relative frame rotor inlet temperature distribution. Dependence of these effects on turbine design variables was investigated to shed light on the design space, which minimizes the adverse effects of hot streaks.

  17. Analytical Study on Multi-stream Heat Exchanger Include Longitudinal Heat Conduction and Parasitic Heat Loads

    NASA Astrophysics Data System (ADS)

    Zhu, Weiping; Xie, Xiujuan; Yang, Huihui; Li, Laifeng; Gong, Linghui

    High performance heat exchangers are critical component in many cryogenic systems and its performance is typically very sensitive to longitudinal heat conduction, parasitic heat loads and property variations. This paper gives an analytical study on 1-D model for multi-stream parallel-plate fin heat exchanger by using the method of decoupling transformations. The results obtained in the present paper are valuable for the reference on optimization for heat exchanger design.

  18. Slit-lamp exam

    MedlinePlus

    ... to light for a few hours after the exam if dilating drops are used. ... The slit lamp exam may detect many diseases of the eye, including: Clouding of the lens of the eye ( cataract ) Injury to the ...

  19. Numerical Simulation of Wall Heat Load in Combustor Flow

    NASA Astrophysics Data System (ADS)

    Panara, D.; Hase, M.; Krebs, W.; Noll, B.

    2007-09-01

    Due to the major mechanism of NOx generation, there is generally a temperature trade off between improved cycle efficiency, material constraints and low NOx emission. The cycle efficiency is proportional to the highest cycle temperature, but unfortunately also the NOx production increases with increasing combustion temperature. For this reason, the modern combustion chamber design has been oriented towards lean premixed combustion system and more and more attention must be focused on the cooling air management. The challenge is to ensure sufficiently low temperature of the combustion liner with very low amount of film or effusion cooling air. Correct numerical prediction of temperature fields and wall heat load are therefore of critical interest in the modern combustion chamber design. Moreover, lean combustion technology has shown the appearance of thermo-acoustic instabilities which have to be taken into account in the simulation and, more in general, in the design of reliable combustion systems. In this framework, the present investigation addresses the capability of a commercial multiphysics code (ANSYS CFX) to correctly predict the wall heat load and the core flow temperature field in a scaled power generation combustion chamber with a simplified ceramic liner. Comparison are made with the experimental results from the ITS test rig at the University of Karlsruhe [1] and with a previous numerical campaign from [2]. In addition the effect of flow unsteadyness on the wall heat load is discussed showing some limitations of the traditional steady state flow thermal design.

  20. Daily simulations of urban heat load in Vienna for 2011

    NASA Astrophysics Data System (ADS)

    Hollosi, Brigitta; Zuvela-Aloise, Maja; Koch, Roland

    2014-05-01

    In this study, the dynamical urban climate model MUKLIMO3 (horizontal resolution of 100 m) is uni-directionally coupled with the operational weather forecast model ALARO-ALADIN of the ZAMG (horizontal resolution of 4.8 km) to simulate the development of the urban heat island in Vienna on a daily basis. The aim is to evaluate the performance of the urban climate model applied for climatological studies in a weather prediction mode. The focus of the investigation is on assessment of the urban heat load during day-time. We used the archived daily forecast data for the summer period in 2011 (April - October) as input data for the urban climate model. The high resolution simulations were initialized with vertical profiles of temperature and relative humidity and prevailing wind speed and direction in the rural area near the city in the early morning hours. The model output for hourly temperature and relative humidity has been evaluated against the monitoring data at 9 weather stations in the area of the city. Additionally, spatial gradients in temperature were evaluated by comparing the grid point values with the data collected during a mobile measuring campaign taken on a multi-vehicle bicycle tour on the 7th of July, 2011. The results show a good agreement with observations on a district scale. Particular challenge in the modeling approach is achieving robust and numerically stable model solutions for different weather situation. Therefore, we analyzed modeled wind patterns for different atmospheric conditions in the summer period. We found that during the calm hot days, due to the inhomogeneous surface and complex terrain, the local-scale temperature gradients can induce strong anomalies, which in turn could affect the circulation on a larger scale. However, these results could not be validated due to the lack of observations. In the following years extreme hot conditions are very likely to occur more frequently and with higher intensity. Combining urban climate

  1. The fundus slit lamp.

    PubMed

    Gellrich, Marcus-Matthias

    2015-01-01

    Fundus biomicroscopy with the slit lamp as it is practiced widely nowadays was not established until the 1980-es with the introduction of the Volk lenses +90 and +60D. Thereafter little progress has been made in retinal imaging with the slit lamp. It is the aim of this paper to fully exploit the potential of a video slit lamp for fundus documentation by using easily accessible additions. Suitable still images are easily retrieved from videorecordings of slit lamp examinations. The effects of changements in the slit lamp itself (slit beam and apertures) and its examination equipment (converging lenses from +40 to +90D) on quality and spectrum of fundus images are demonstrated. Imaging software is applied for reconstruction of larger fundus areas in a mosaic pattern (Hugin®) and to perform the flicker test in order to visualize changes in the same fundus area at different points of time (Power Point®). The three lenses +90/+60/+40D are a good choice for imaging the whole spectrum of retinal diseases. Displacement of the oblique slit light can be used to assess changes in the surface profile of the inner retina which occurs e.g. in macular holes or pigment epithelial detachment. The mosaic function in its easiest form (one strip macula adapted to one strip with the optic disc) provides an overview of the posterior pole comparable to a fundus camera's image. A reconstruction of larger fundus areas is feasible for imaging in vitreoretinal surgery or occlusive vessel disease. The flicker test is a fine tool for monitoring progressive glaucoma by changes in the optic disc, and it is also a valuable diagnostic tool in macular disease. Nearly all retinal diseases can be imaged with the slit lamp - irrespective whether they affect the posterior pole, mainly the optic nerve or the macula, the whole retina or only its periphery. Even a basic fundus controlled perimetry is possible. Therefore fundus videography with the slit lamp is a worthwhile approach especially for the

  2. Spatial light interference tomography (SLIT).

    PubMed

    Wang, Zhuo; Marks, Daniel L; Carney, Paul Scott; Millet, Larry J; Gillette, Martha U; Mihi, Agustin; Braun, Paul V; Shen, Zhen; Prasanth, Supriya G; Popescu, Gabriel

    2011-10-10

    We present spatial light interference tomography (SLIT), a label-free method for 3D imaging of transparent structures such as live cells. SLIT uses the principle of interferometric imaging with broadband fields and combines the optical gating due to the micron-scale coherence length with that of the high numerical aperture objective lens. Measuring the phase shift map associated with the object as it is translated through focus provides full information about the 3D distribution associated with the refractive index. Using a reconstruction algorithm based on the Born approximation, we show that the sample structure may be recovered via a 3D, complex field deconvolution. We illustrate the method with reconstructed tomographic refractive index distributions of microspheres, photonic crystals, and unstained living cells. PMID:21996999

  3. A matterless double slit

    NASA Astrophysics Data System (ADS)

    King, Ben; di Piazza, Antonino; Keitel, Christoph H.

    2010-02-01

    Double slits provide incoming particles with a choice. Those that survive passage through the slits have chosen from two possible paths, which interfere to distribute them in a wave-like manner. Such wave-particle duality continues to be challenged and investigated in a broad range of disciplines with electrons, neutrons, helium atoms, C60 fullerenes, Bose-Einstein condensates and biological molecules. All variants have hitherto involved material constituents. We present a matterless double-slit scenario in which photons generated from virtual electron-positron pair annihilation in head-on collisions of a probe laser field with two ultra-intense laser beams form a double-slit interference pattern. Such electromagnetic fields are predicted to induce material-like behaviour in vacuum, supporting elastic scattering between photons. Our double-slit scenario presents, on the one hand, a realizable method with which to observe photon-photon scattering and, on the other hand, demonstrates the possibility of both controlling light with light and non-locally investigating features of the quantum vacuum structure.

  4. Slit-Surface Electrospinning: A Novel Process Developed for High-Throughput Fabrication of Core-Sheath Fibers

    PubMed Central

    Yan, Xuri; Marini, John; Mulligan, Robert; Deleault, Abby; Sharma, Upma; Brenner, Michael P.; Rutledge, Gregory C.; Freyman, Toby; Pham, Quynh P.

    2015-01-01

    In this work, we report on the development of slit-surface electrospinning – a process that co-localizes two solutions along a slit surface to spontaneously emit multiple core-sheath cone-jets at rates of up to 1 L/h. To the best of our knowledge, this is the first time that production of electrospun core-sheath fibers has been scaled to this magnitude. Fibers produced in this study were defect-free (i.e. non-beaded) and core-sheath geometry was visually confirmed under scanning electron microscopy. The versatility of our system was demonstrated by fabrication of (1) fibers encapsulating a drug, (2) bicomponent fibers, (3) hollow fibers, and (4) fibers from a polymer that is not normally electrospinnable. Additionally, we demonstrate control of the process by modulating parameters such as flow rate, solution viscosity, and fixture design. The technological achievements demonstrated in this work significantly advance core-sheath electrospinning towards commercial and manufacturing viability. PMID:25938411

  5. Helium Refrigerator Design for Pulsed Heat Load in Tokamaks

    SciTech Connect

    Kuendig, A.; Schoenfeld, H.

    2006-04-27

    Nuclear fusion reactors of the Tokamak type will be operated in a pulsed mode requiring the helium refrigerator to remove periodically large heat loads in time steps of approximately one hour. What are the necessary steps for a refrigerator to cope with such load variations?A series of numerical simulations has been performed indicating the possibility of an active refrigerator control with low exergetic losses. A basic comparison is made between the largest existing refrigerator sizes and the size required to service for example the ITER requirements.

  6. SLIT ADJUSTMENT CLAMP

    DOEpatents

    McKenzie, K.R.

    1959-07-01

    An electrode support which permits accurate alignment and adjustment of the electrode in a plurality of planes and about a plurality of axes in a calutron is described. The support will align the slits in the electrode with the slits of an ionizing chamber so as to provide for the egress of ions. The support comprises an insulator, a leveling plate carried by the insulator and having diametrically opposed attaching screws screwed to the plate and the insulator and diametrically opposed adjusting screws for bearing against the insulator, and an electrode associated with the plate for adjustment therewith.

  7. The orthoptic slit lamp.

    PubMed

    Gellrich, Marcus-Matthias

    2013-12-01

    Recently we presented our concept of "videography with the slit lamp," which provides an imaging solution for nearly every pathological finding in ophthalmology. This paper deals with the changes that must be made to prepare the slit lamp for documenting squint. To achieve this goal we propose: 1. Changes in the observation system: minus lenses in front of the objective of the slit lamp to achieve a sharp image of both eyes (eg, -8 diopters [dpt] if the patient sits at a distance of 50 cm). 2. Changes in the illumination system: minimizing the narrowed angle between illumination and observation axis by holding a "recentration" prism of 14 dpt horizontally in front of the slit light. This procedure creates equally sufficient illumination of the patient's face and central corneal reflexes. 3. Recording clinical findings with a digital recorder. This enables us to identify binocular eye positions, which sometimes last only part of a second, eg, in latent or intermittent strabism. 4. Visualizing clinical findings by using Microsoft PowerPoint® to build up 9-gaze composites or adjust corneal reflexes on subsequent foils. Changes in binocular eye positions (eg, after surgery, but also during diagnostic covering) can be made visible by flickering between the foils to compare. PMID:24090104

  8. Electronic scanning-slit fluorography.

    PubMed

    Plenkovich, D

    1989-01-01

    Scattered radiation degrades contrast and signal-to-noise ratio of an x-ray image. If an image intensifier is used as the image receptor, scattering of light photons and electrons within the image intensifier, optical system, and video camera produces veiling glare. anti-scatter grids, air gaps, and paired scanning slits have been used for rejection of scattered radiation. However, none of these methods is effective against veiling glare, because veiling glare is generated after the radiation has passed through any of these anti-scatter devices. In chapter 1 is introduced an innovative approach for highly efficient rejection of both scattered radiation and veiling glare in digital fluorography. This method has been named electronic collimation, and the x-ray imaging technique based upon it is called electronic scanning-slit fluorography. It involves replacing paired fore and aft slits for scatter rejection with only one beam-defining tantalum fore aperture. As this aperture scans across the portion of the patient to be imaged, pulsed x-ray exposures produce images which are digitized and stored in the computer memory. Since the video signal within the projection of the aperture on the image intensifier is much more intense than behind the tantalum, one can discriminate electronically between these two signals and thus eliminate the unwanted x-ray scatter and veiling glare. Such electronic collimation does not require synchronization between the slit scanning and detector readout, which makes it much simpler than alternative methods and potentially adaptable to any digital fluorography system. Theoretical considerations relevant for the construction and evaluation of a prototype unit for electronic scanning slit fluorography are presented in Chapter 2. This chapter consists of four sections. In the first section 'Principles of image detection' the concepts of quantum efficiency and detective quantum efficiency (DQE) are introduced as the most meaningful way to

  9. Dual acting slit control mechanism

    NASA Technical Reports Server (NTRS)

    Struthoff, G. L. (Inventor)

    1980-01-01

    A dual acting control system for mass spectrometers is described, which permits adjustment of the collimating slit width and centering of the collimating slit while using only one vacuum penetration. Coaxial shafts, each with independent vacuum bellows are used to independently move the entire collimating assembly or to adjust the slit dimension through a parallelogram linkage.

  10. Interaction of the guidance molecule Slit with cellular receptors.

    PubMed

    Hohenester, E; Hussain, S; Howitt, J A

    2006-06-01

    Slits are large secreted glycoproteins characterized by an unusual tandem of four LRR (leucine-rich repeat) domains in their N-terminal half. Slit proteins were initially described as repulsive guidance cues in neural development, but it has become clear that they have additional important functions, for instance in the vasculature and immune system. Genetic studies have identified two types of cellular receptors for Slits: Robos (Roundabout) and the HS (heparan sulphate) proteoglycan syndecan. The intracellular signalling cascade downstream of Robo activation is slowly being elucidated, but the mechanism of transmembrane signalling by Robo has remained obscure. No active signalling role for syndecan has yet been demonstrated. Slit-HS interactions may be important for shaping the presumed Slit gradient or presenting Slit at its target cell surface. Recent studies have mapped the binding sites for Robos and HS/heparin to discrete Slit domains. Robos bind to the second LRR domain of Slit, whereas HS/heparin binds with very high affinity to the C-terminal portion of Slit. Slit activity is likely to be modulated by physiological proteolytic cleavage in the region separating the Robo and HS/heparin-binding sites. PMID:16709176

  11. Interaction of adhered metallic dust with transient plasma heat loads

    NASA Astrophysics Data System (ADS)

    Ratynskaia, S.; Tolias, P.; Bykov, I.; Rudakov, D.; De Angeli, M.; Vignitchouk, L.; Ripamonti, D.; Riva, G.; Bardin, S.; van der Meiden, H.; Vernimmen, J.; Bystrov, K.; De Temmerman, G.

    2016-06-01

    The first study of the interaction of metallic dust (tungsten, aluminum) adhered on tungsten substrates with transient plasma heat loads is presented. Experiments were carried out in the Pilot-PSI linear device with transient heat fluxes up to 550 MW m‑2 and in the DIII-D divertor tokamak. The central role of the dust-substrate contact area in heat conduction is highlighted and confirmed by heat transfer simulations. The experiments provide evidence of the occurrence of wetting-induced coagulation, a novel growth mechanism where cluster melting accompanied by droplet wetting leads to the formation of larger grains. The physical processes behind this mechanism are elucidated. The remobilization activity of the newly formed dust and the survivability of tungsten dust on hot surfaces are documented and discussed in the light of implications for ITER.

  12. Pushing high-heat-load optics to the limit

    SciTech Connect

    Fernandez, P. B.

    1999-11-08

    A cryogenically cooled silicon monochromator and a water-cooled diamond monochromator have been tested under twice the standard power load conditions at the Advanced Photon Source. Both monochromators performed satisfactorily under these extreme power loads (several hundred watts of incident power and up to 300 W/mm{sup 2} of incident normal peak power density). The experimental data and the parameters derived to predict the performance limits of the cryogenic silicon monochromator are presented.

  13. Response of NSTX Liquid Lithium divertor to High Heat Loads

    SciTech Connect

    Abrams, Tyler; Kallman, J; Kaitaa, R; Foley, E L; Grayd, T K; Kugel, H; Levinton, F; McLean, A G; Skinner, C H

    2012-07-18

    Samples of the NSTX Liquid Lithium Divertor (LLD) with and without an evaporative Li coating were directly exposed to a neutral beam ex-situ at a power of ~1.5 MW/m2 for 1-3 seconds. Measurements of front face and bulk sample temperature were obtained. Predictions of temperature evolution were derived from a 1D heat flux model. No macroscopic damage occurred when the "bare" sample was exposed to the beam but microscopic changes to the surface were observed. The Li-coated sample developed a lithium hydroxide (LiOH) coating, which did not change even when the front face temperature exceeded the pure Li melting point. These results are consistent with the lack of damage to the LLD surface and imply that heating alone may not expose pure liquid Li if the melting point of surface impurities is not exceeded. This suggests that flow and heat are needed for future PFCs requiring a liquid Li surface. __________________________________________________

  14. Note: Compact, two-dimension translatable slit aperture

    NASA Astrophysics Data System (ADS)

    Gao, R. S.; Thornberry, T. D.; McLaughlin, R. J.; Fahey, D. W.

    2013-11-01

    A compact, light-weight, two-dimension translatable slit aperture is described. The slit dimensions are scalable, allowing for wide application. With all metal construction, the device would be suitable for high temperature degassing and vacuum compatible. Alternatively, the main structure may be printed using a 3D printer for rapid prototyping and/or lighter weight. The precision of the slit movement is 0.014 mm.

  15. Heat load of a P-doped GaAs photocathode in SRF electron gun

    SciTech Connect

    Wang, E.; Ben-Zvi, I.; Kewisch, J.; Burrill, A.; Rao, T.; Wu, Q.; Jain, A.; Gupta, R.; Holmes, D.

    2010-05-23

    Many efforts were made over the last decades to develop a better polarized electron source for the high energy physics. Several laboratories operate DC guns with the Gallium-Arsenide photo-cathode, which yield a highly polarized electron beam. However, the beam's emittance might well be improved using a Superconducting RF electron gun, which delivers beams of higher brightness than DC guns does, because the field gradient at the cathode is higher. SRF guns with metal cathodes and CsTe cathodes have been tested successfully. To produce polarized electrons, a Gallium-Arsenide photo-cathode must be used: an experiment to do so in a superconducting RF gun is under way at BNL. Since the cathode will be normal conducting, the problem about the heat load stemming from the cathode arises. We present our measurements of the electrical resistance of GaAs at cryogenic temperatures, a prediction of the heat load and the verification by measuring the quality factor of the gun with and without cathode.

  16. Using a cold radiometer to measure heat loads and survey heat leaks

    SciTech Connect

    DiPirro, M.; Tuttle, J.; Hait, T.; Shirron, P.

    2014-01-29

    We have developed an inexpensive cold radiometer for use in thermal/vacuum chambers to measure heat loads, characterize emissivity and specularity of surfaces and to survey areas to evaluate stray heat loads. We report here the results of two such tests for the James Webb Space Telescope to measure heat loads and effective emissivities of 2 major pieces of optical ground support equipment that will be used in upcoming thermal vacuum testing of the Telescope.

  17. Using a Cold Radiometer to Measure Heat Loads and Survey Heat Leaks

    NASA Technical Reports Server (NTRS)

    DiPirro, M.; Tuttle, J.; Hait, T.; Shirron, P.

    2013-01-01

    We have developed an inexpensive cold radiometer for use in thermal/vacuum chambers to measure heat loads, characterize emissivity and specularity of surfaces and to survey areas to evaluate stray heat loads. We report here the results of two such tests for the James Webb Space Telescope to measure heat loads and effective emissivities of2 major pieces of optical ground support equipment that will be used in upcoming thermal vacuum testing of the Telescope.

  18. Using a Cold Radiometer to Measure Heat Loads and Survey Heat Leaks

    NASA Technical Reports Server (NTRS)

    Dipirro, M.; Tuttle, J.; Hait, T.; Shirron, P.

    2014-01-01

    We have developed an inexpensive cold radiometer for use in thermal/vacuum chambers to measure heat loads, characterize emissivity and specularity of surfaces and to survey areas to evaluate stray heat loads. We report here the results of two such tests for the James Webb Space Telescope to measure heat loads and effective emissivities of 2 major pieces of optical ground support equipment that will be used in upcoming thermal vacuum testing of the Telescope.

  19. Precision white-beam slit design for high power-density x-ray undulator beamlines at the Advanced Photon Source

    NASA Astrophysics Data System (ADS)

    Shu, D.; Brite, C.; Nian, T.; Yun, W.; Haeffner, D. R.; Alp, E. E.; Ryding, D.; Collins, J.; Li, Y.; Kuzay, T. M.

    1995-02-01

    A set of precision horizontal and vertical white-beam slits has been designed for the Advanced Photon Source x-ray undulator beamlines at Argonne National Laboratory. There are several new design concepts applied in this slit set, including a grazing-incidence knife-edge configuration to minimize the scattering of x rays downstream, enhanced heat transfer tubing to provide water cooling, and a secondary slit to eliminate the thermal distortion on the slit knife edge. The novel aspect of this design is the use of two L-shaped knife-edge assemblies, which are manipulated by two precision X-Z stepping linear actuators. The principal and structural details of the design for this slit set are presented in this paper.

  20. Simultaneous multiplexed materials characterization using a high-precision hard X-ray micro-slit array.

    PubMed

    Zhang, Fan; Allen, Andrew J; Levine, Lyle E; Mancini, Derrick C; Ilavsky, Jan

    2015-05-01

    The needs both for increased experimental throughput and for in operando characterization of functional materials under increasingly realistic experimental conditions have emerged as major challenges across the whole of crystallography. A novel measurement scheme that allows multiplexed simultaneous measurements from multiple nearby sample volumes is presented. This new approach enables better measurement statistics or direct probing of heterogeneous structure, dynamics or elemental composition. To illustrate, the submicrometer precision that optical lithography provides has been exploited to create a multiplexed form of ultra-small-angle scattering based X-ray photon correlation spectroscopy (USAXS-XPCS) using micro-slit arrays fabricated by photolithography. Multiplexed USAXS-XPCS is applied to follow the equilibrium dynamics of a simple colloidal suspension. While the dependence of the relaxation time on momentum transfer, and its relationship with the diffusion constant and the static structure factor, follow previous findings, this measurements-in-parallel approach reduces the statistical uncertainties of this photon-starved technique to below those associated with the instrument resolution. More importantly, we note the potential of the multiplexed scheme to elucidate the response of different components of a heterogeneous sample under identical experimental conditions in simultaneous measurements. In the context of the X-ray synchrotron community, this scheme is, in principle, applicable to all in-line synchrotron techniques. Indeed, it has the potential to open a new paradigm for in operando characterization of heterogeneous functional materials, a situation that will be even further enhanced by the ongoing development of multi-bend achromat storage ring designs as the next evolution of large-scale X-ray synchrotron facilities around the world. PMID:25931081

  1. High-Resolution Infrared Spectroscopy Slit-Jet Cooled Hydroxymethyl Radical (CH_2OH): CH Symmetric Stretching Mode

    NASA Astrophysics Data System (ADS)

    Wang, Fang; Chang, Chih-Hsuan; Nesbitt, David

    2014-06-01

    Hydroxymethyl radical (CH_2OH) plays an important role in combustion and environmental chemistry as a reactive intermediate. Reisler's group published the first rotationally resolved spectroscopy of CH_2OH with determined band origins for fundamental CH symmetric stretch state, CH asymmetric stretch state and OH stretch state, respectively. Here CH_2OH was first studied via sub-Doppler infrared spectroscopy in a slit-jet supersonic discharge expansion source. Rotationally resolved direct absorption spectra in the CH symmetric stretching mode were recorded. As a result of the low rotational temperature and sub-Doppler linewidths, the tunneling splittings due to the large amplitude of COH torsion slightly complicate the spectra. Each of the ground vibration state and the CH symmetric stretch state includes two levels. One level, with a 3:1 nuclear spin statistic ratio for Ka=0+/Ka=1+, is labeled as ``+". The other tunneling level, labeled as ``-", has Ka=0-/Ka=1- states with 1:3 nuclear spin statistics. Except for the Ka=0+ ← 0+ band published before, more bands (Ka=1+ ← 1+, Ka=0- ← 0- and Ka=1- ← 1-) were identified. The assigned transitions were fit to a Watson A-reduced symmetric top Hamiltonian to improve the accuracy of the band origin of CH symmetric state. The rotational parameters for both ground and CH symmetric stretch state were well determined. L. Feng, J. Wei and H. Reisler, J. Phys. Chem. A, Vol. 108. M. A. Roberts, E. N. Sharp-Williams and D. J. Nesbitt, J. Phys. Chem. A 2013, 117, 7042-7049

  2. Simultaneous multiplexed materials characterization using a high-precision hard X-ray micro-slit array

    DOE PAGESBeta

    Zhang, Fan; Allen, Andrew J.; Levine, Lyle E.; Mancini, Derrick C.; Ilavsky, Jan

    2015-01-01

    Here, the needs both for increased experimental throughput and forin operandocharacterization of functional materials under increasingly realistic experimental conditions have emerged as major challenges across the whole of crystallography. A novel measurement scheme that allows multiplexed simultaneous measurements from multiple nearby sample volumes is presented. This new approach enables better measurement statistics or direct probing of heterogeneous structure, dynamics or elemental composition. To illustrate, the submicrometer precision that optical lithography provides has been exploited to create a multiplexed form of ultra-small-angle scattering based X-ray photon correlation spectroscopy (USAXS-XPCS) using micro-slit arrays fabricated by photolithography. Multiplexed USAXS-XPCS is applied to followmore » the equilibrium dynamics of a simple colloidal suspension. While the dependence of the relaxation time on momentum transfer, and its relationship with the diffusion constant and the static structure factor, follow previous findings, this measurements-in-parallel approach reduces the statistical uncertainties of this photon-starved technique to below those associated with the instrument resolution. More importantly, we note the potential of the multiplexed scheme to elucidate the response of different components of a heterogeneous sample underidenticalexperimental conditions in simultaneous measurements. Lastly, in the context of the X-ray synchrotron community, this scheme is, in principle, applicable to all in-line synchrotron techniques. Indeed, it has the potential to open a new paradigm for in operando characterization of heterogeneous functional materials, a situation that will be even further enhanced by the ongoing development of multi-bend achromat storage ring designs as the next evolution of large-scale X-ray synchrotron facilities around the world.« less

  3. Simultaneous multiplexed materials characterization using a high-precision hard X-ray micro-slit array

    SciTech Connect

    Zhang, Fan; Allen, Andrew J.; Levine, Lyle E.; Mancini, Derrick C.; Ilavsky, Jan

    2015-01-01

    Here, the needs both for increased experimental throughput and forin operandocharacterization of functional materials under increasingly realistic experimental conditions have emerged as major challenges across the whole of crystallography. A novel measurement scheme that allows multiplexed simultaneous measurements from multiple nearby sample volumes is presented. This new approach enables better measurement statistics or direct probing of heterogeneous structure, dynamics or elemental composition. To illustrate, the submicrometer precision that optical lithography provides has been exploited to create a multiplexed form of ultra-small-angle scattering based X-ray photon correlation spectroscopy (USAXS-XPCS) using micro-slit arrays fabricated by photolithography. Multiplexed USAXS-XPCS is applied to follow the equilibrium dynamics of a simple colloidal suspension. While the dependence of the relaxation time on momentum transfer, and its relationship with the diffusion constant and the static structure factor, follow previous findings, this measurements-in-parallel approach reduces the statistical uncertainties of this photon-starved technique to below those associated with the instrument resolution. More importantly, we note the potential of the multiplexed scheme to elucidate the response of different components of a heterogeneous sample underidenticalexperimental conditions in simultaneous measurements. Lastly, in the context of the X-ray synchrotron community, this scheme is, in principle, applicable to all in-line synchrotron techniques. Indeed, it has the potential to open a new paradigm for in operando characterization of heterogeneous functional materials, a situation that will be even further enhanced by the ongoing development of multi-bend achromat storage ring designs as the next evolution of large-scale X-ray synchrotron facilities around the world.

  4. Simultaneous multiplexed materials characterization using a high-precision hard X-ray micro-slit array

    PubMed Central

    Zhang, Fan; Allen, Andrew J.; Levine, Lyle E.; Mancini, Derrick C.; Ilavsky, Jan

    2015-01-01

    The needs both for increased experimental throughput and for in operando characterization of functional materials under increasingly realistic experimental conditions have emerged as major challenges across the whole of crystallography. A novel measurement scheme that allows multiplexed simultaneous measurements from multiple nearby sample volumes is presented. This new approach enables better measurement statistics or direct probing of heterogeneous structure, dynamics or elemental composition. To illustrate, the submicrometer precision that optical lithography provides has been exploited to create a multiplexed form of ultra-small-angle scattering based X-ray photon correlation spectroscopy (USAXS-XPCS) using micro-slit arrays fabricated by photolithography. Multiplexed USAXS-XPCS is applied to follow the equilibrium dynamics of a simple colloidal suspension. While the dependence of the relaxation time on momentum transfer, and its relationship with the diffusion constant and the static structure factor, follow previous findings, this measurements-in-parallel approach reduces the statistical uncertainties of this photon-starved technique to below those associated with the instrument resolution. More importantly, we note the potential of the multiplexed scheme to elucidate the response of different components of a heterogeneous sample under identical experimental conditions in simultaneous measurements. In the context of the X-ray synchrotron community, this scheme is, in principle, applicable to all in-line synchrotron techniques. Indeed, it has the potential to open a new paradigm for in operando characterization of heterogeneous functional materials, a situation that will be even further enhanced by the ongoing development of multi-bend achromat storage ring designs as the next evolution of large-scale X-ray synchrotron facilities around the world. PMID:25931081

  5. Recrystallization and grain growth induced by ELMs-like transient heat loads in deformed tungsten samples

    NASA Astrophysics Data System (ADS)

    Suslova, A.; El-Atwani, O.; Sagapuram, D.; Harilal, S. S.; Hassanein, A.

    2014-11-01

    Tungsten has been chosen as the main candidate for plasma facing components (PFCs) due to its superior properties under extreme operating conditions in future nuclear fusion reactors such as ITER. One of the serious issues for PFCs is the high heat load during transient events such as ELMs and disruption in the reactor. Recrystallization and grain size growth in PFC materials caused by transients are undesirable changes in the material, since the isotropic microstructure developed after recrystallization exhibits a higher ductile-to-brittle transition temperature which increases with the grain size, a lower thermal shock fatigue resistance, a lower mechanical strength, and an increased surface roughening. The current work was focused on careful determination of the threshold parameters for surface recrystallization, grain growth rate, and thermal shock fatigue resistance under ELM-like transient heat events. Transient heat loads were simulated using long pulse laser beams for two different grades of ultrafine-grained tungsten. It was observed that cold rolled tungsten demonstrated better power handling capabilities and higher thermal stress fatigue resistance compared to severely deformed tungsten. Higher recrystallization threshold, slower grain growth, and lower degree of surface roughening were observed in the cold rolled tungsten.

  6. Recrystallization and grain growth induced by ELMs-like transient heat loads in deformed tungsten samples.

    PubMed

    Suslova, A; El-Atwani, O; Sagapuram, D; Harilal, S S; Hassanein, A

    2014-01-01

    Tungsten has been chosen as the main candidate for plasma facing components (PFCs) due to its superior properties under extreme operating conditions in future nuclear fusion reactors such as ITER. One of the serious issues for PFCs is the high heat load during transient events such as ELMs and disruption in the reactor. Recrystallization and grain size growth in PFC materials caused by transients are undesirable changes in the material, since the isotropic microstructure developed after recrystallization exhibits a higher ductile-to-brittle transition temperature which increases with the grain size, a lower thermal shock fatigue resistance, a lower mechanical strength, and an increased surface roughening. The current work was focused on careful determination of the threshold parameters for surface recrystallization, grain growth rate, and thermal shock fatigue resistance under ELM-like transient heat events. Transient heat loads were simulated using long pulse laser beams for two different grades of ultrafine-grained tungsten. It was observed that cold rolled tungsten demonstrated better power handling capabilities and higher thermal stress fatigue resistance compared to severely deformed tungsten. Higher recrystallization threshold, slower grain growth, and lower degree of surface roughening were observed in the cold rolled tungsten. PMID:25366885

  7. Recrystallization and grain growth induced by ELMs-like transient heat loads in deformed tungsten samples

    PubMed Central

    Suslova, A.; El-Atwani, O.; Sagapuram, D.; Harilal, S. S.; Hassanein, A.

    2014-01-01

    Tungsten has been chosen as the main candidate for plasma facing components (PFCs) due to its superior properties under extreme operating conditions in future nuclear fusion reactors such as ITER. One of the serious issues for PFCs is the high heat load during transient events such as ELMs and disruption in the reactor. Recrystallization and grain size growth in PFC materials caused by transients are undesirable changes in the material, since the isotropic microstructure developed after recrystallization exhibits a higher ductile-to-brittle transition temperature which increases with the grain size, a lower thermal shock fatigue resistance, a lower mechanical strength, and an increased surface roughening. The current work was focused on careful determination of the threshold parameters for surface recrystallization, grain growth rate, and thermal shock fatigue resistance under ELM-like transient heat events. Transient heat loads were simulated using long pulse laser beams for two different grades of ultrafine-grained tungsten. It was observed that cold rolled tungsten demonstrated better power handling capabilities and higher thermal stress fatigue resistance compared to severely deformed tungsten. Higher recrystallization threshold, slower grain growth, and lower degree of surface roughening were observed in the cold rolled tungsten. PMID:25366885

  8. Reducing the Heat Load on the LCLS 120 Hz RF Gun with RF Pulse Shaping

    SciTech Connect

    Schmerge, J.

    2005-01-31

    The LCLS injector must operate at 120 Hz repetition frequency but to date the maximum operating frequency of an S-band rf gun has been 50 Hz. The high fields desired for the LCLS gun operation limit the repetition frequency due to thermal expansion causing rf detuning and field redistribution. One method of addressing the thermal loading problem is too reduce the power lost on the cavity walls by properly shaping the rf pulse incident on the gun. The idea is to reach the steady state field value in the gun faster than the time constant of the gun would allow when using a flat incident rf pulse. By increasing the incident power by about a factor of three and then decreasing the incident power when the field reaches the desired value in the gun, the field build up time can be decreased by more than a factor of three. Using this technique the heat load is also decreased by more than a factor of three. In addition the rf coupling coefficient can be increased from the typical critically coupled designs to an overcoupled design which also helps reduce the field build up time. Increasing the coupling coefficient from 1 to 2 reduces the heat load by another 25% and still limits the reflected power and coupling hole size to manageable levels.

  9. Experimental Investigation of Sublimator Performance at Transient Heat Loads

    NASA Technical Reports Server (NTRS)

    Sheth, Rubik B.; Stephen, Ryan A.; Leimkuehler, Thomas O.

    2011-01-01

    Sublimators have been used as heat rejection devices for a variety of space applications including the Apollo Lunar Module and the Extravehicular Mobility Unit (EMU). Sublimators typically operate with steady-state feedwater utilization at or near 100%. However, sublimators are currently being considered to operate in a cyclical topping mode, which represents a new mode of operation for sublimators. Sublimators can be used as a topper during mission phases such as low lunar or low earth orbit. In these mission phases, the sublimator will be repeatedly started and stopped during each orbit to provide supplemental heat rejection for the portion of the orbit where the radiative sink temperature exceeds the system setpoint temperature. This paper will summarize the effort put into understanding sublimator response under a transient heat load. The performance will be assessed by detailing the changes in feedwater utilization due to transient starts and stops during various feedwater timing scenarios. Sublimator start up utilization will be assessed as a possible relationship to transient performance of a sublimator. This paper will also provide recommendations for future sublimator designs and/or feedwater control.

  10. Numerical Model for Conduction-Cooled Current Lead Heat Loads

    SciTech Connect

    White, M.J.; Wang, X.L.; Brueck, H.D.; /DESY

    2011-06-10

    Current leads are utilized to deliver electrical power from a room temperature junction mounted on the vacuum vessel to a superconducting magnet located within the vacuum space of a cryostat. There are many types of current leads used at laboratories throughout the world; however, conduction-cooled current leads are often chosen for their simplicity and reliability. Conduction-cooled leads have the advantage of using common materials, have no superconducting/normal state transition, and have no boil-off vapor to collect. This paper presents a numerical model for conduction-cooled current lead heat loads. This model takes into account varying material and fluid thermal properties, varying thicknesses along the length of the lead, heat transfer in the circumferential and longitudinal directions, electrical power dissipation, and the effect of thermal intercepts. The model is validated by comparing the numerical model results to ideal cases where analytical equations are valid. In addition, the XFEL (X-Ray Free Electron Laser) prototype current leads are modeled and compared to the experimental results from testing at DESY's XFEL Magnet Test Stand (XMTS) and Cryomodule Test Bench (CMTB).

  11. Space Heating Load Estimation Procedure for CHP Systems sizing

    NASA Astrophysics Data System (ADS)

    Vocale, P.; Pagliarini, G.; Rainieri, S.

    2015-11-01

    Due to its environmental and energy benefits, the Combined Heat and Power (CHP) represents certainly an important measure to improve energy efficiency of buildings. Since the energy performance of the CHP systems strongly depends on the fraction of the useful cogenerated heat (i.e. the cogenerated heat that is actually used to meet building thermal demand), in building applications of CHP, it is necessary to know the space heating and cooling loads profile to optimise the system efficiency. When the heating load profile is unknown or difficult to calculate with a sufficient accuracy, as may occur for existing buildings, it can be estimated from the cumulated energy uses by adopting the loads estimation procedure (h-LEP). With the aim to evaluate the useful fraction of the cogenerated heat for different operating conditions in terms of buildings characteristics, weather data and system capacity, the h-LEP is here implemented with a single climate variable: the hourly average dry- bulb temperature. The proposed procedure have been validated resorting to the TRNSYS simulation tool. The results, obtained by considering a building for hospital use, reveal that the useful fraction of the cogenerated heat can be estimated with an average accuracy of ± 3%, within the range of operative conditions considered in the present study.

  12. Attosecond Double-Slit Experiment

    SciTech Connect

    Lindner, F.; Schaetzel, M.G.; Baltuska, A.; Goulielmakis, E.; Walther, H.; Krausz, F.; Milosevic, D.B.; Bauer, D.; Becker, W.; Paulus, G.G.

    2005-07-22

    A new scheme for a double-slit experiment in the time domain is presented. Phase-stabilized few-cycle laser pulses open one to two windows (slits) of attosecond duration for photoionization. Fringes in the angle-resolved energy spectrum of varying visibility depending on the degree of which-way information are measured. A situation in which one and the same electron encounters a single and a double slit at the same time is observed. The investigation of the fringes makes possible interferometry on the attosecond time scale. From the number of visible fringes, for example, one derives that the slits are extended over about 500 as.

  13. A virtual slit for atom optics and nanolithography

    NASA Astrophysics Data System (ADS)

    Chu, A. P.; Berggren, K. K.; Johnson, K. S.; Prentiss, M. G.

    1996-06-01

    We propose a simple `virtual slit' for atoms based on the position- and velocity-dependent optical pumping of atoms into an undetected internal state. We show how this slit can be used as a nanometre scale, high-contrast tool for atom lithography as well as a subrecoil collimator for atomic beams.

  14. Residential Variable-Capacity Heat Pumps Sized to Heating Loads

    SciTech Connect

    Munk, Jeffrey D.; Jackson, Roderick K.; Odukomaiya, Adewale; Gehl, Anthony C.

    2014-01-01

    Variable capacity heat pumps are an emerging technology offering significant energy savings potential and improved efficiency. With conventional single-speed systems, it is important to appropriately size heat pumps for the cooling load as over-sizing would result in cycling and insufficient latent capacity required for humidity control. These appropriately sized systems are often under-sized for the heating load and require inefficient supplemental electric resistance heat to meet the heating demand. Variable capacity heat pumps address these shortcomings by providing an opportunity to intentionally size systems for the dominant heating season load without adverse effects of cycling or insufficient dehumidification in the cooling season. This intentionally-sized system could result in significant energy savings in the heating season, as the need for inefficient supplemental electric resistance heat is drastically reduced. This is a continuation of a study evaluating the energy consumption of variable capacity heat pumps installed in two unoccupied research homes in Farragut, a suburb of Knoxville, Tennessee. In this particular study, space conditioning systems are intentionally sized for the heating season loads to provide an opportunity to understand and evaluate the impact this would have on electric resistance heat use and dehumidification. The results and conclusions drawn through this research are valid and specific for portions of the Southeastern and Midwestern United States falling in the mixed-humid climate zone. While other regions in the U.S. do not experience this type of climate, this work provides a basis for, and can help understand the implications of other climate zones on residential space conditioning energy consumption. The data presented here will provide a framework for fine tuning residential building EnergyPlus models that are being developed.

  15. Biphoton double-slit experiment

    SciTech Connect

    Brida, G.; Cagliero, E.; Falzetta, G.; Genovese, M.; Gramegna, M.; Predazzi, E.

    2003-09-01

    In this paper we present a double-slit experiment where two indistinguishable photons produced by type-I parametric down-conversion are each sent to a well-defined slit. Data about the diffraction and interference patterns for coincidences are presented and discussed. An analysis of these data allows a test of standard quantum mechanics against the de Broglie-Bohm theory.

  16. Using a slit lamp-mounted digital high-speed camera for dynamic observation of phakic lenses during eye movements: a pilot study

    PubMed Central

    Leitritz, Martin Alexander; Ziemssen, Focke; Bartz-Schmidt, Karl Ulrich; Voykov, Bogomil

    2014-01-01

    Purpose To evaluate a digital high-speed camera combined with digital morphometry software for dynamic measurements of phakic intraocular lens movements to observe kinetic influences, particularly in fast direction changes and at lateral end points. Materials and methods A high-speed camera taking 300 frames per second observed movements of eight iris-claw intraocular lenses and two angle-supported intraocular lenses. Standardized saccades were performed by the patients to trigger mass inertia with lens position changes. Freeze images with maximum deviation were used for digital software-based morphometry analysis with ImageJ. Results Two eyes from each of five patients (median age 32 years, range 28–45 years) without findings other than refractive errors were included. The high-speed images showed sufficient usability for further morphometric processing. In the primary eye position, the median decentrations downward and in a lateral direction were −0.32 mm (range −0.69 to 0.024) and 0.175 mm (range −0.37 to 0.45), respectively. Despite the small sample size of asymptomatic patients, we found a considerable amount of lens dislocation. The median distance amplitude during eye movements was 0.158 mm (range 0.02–0.84). There was a slight positive correlation (r=0.39, P<0.001) between the grade of deviation in the primary position and the distance increase triggered by movements. Conclusion With the use of a slit lamp-mounted high-speed camera system and morphometry software, observation and objective measurements of iris-claw intraocular lenses and angle-supported intraocular lenses movements seem to be possible. Slight decentration in the primary position might be an indicator of increased lens mobility during kinetic stress during eye movements. Long-term assessment by high-speed analysis with higher case numbers has to clarify the relationship between progressing motility and endothelial cell damage. PMID:25071365

  17. D0 Solenoid Upgrade Project: Heat Load Calculations for the Solenoid Chimney

    SciTech Connect

    Rucinski, R.; /Fermilab

    1993-05-26

    This engineering note documents the calculations done to determine the chimney heat loads. These heat load numbers were reported in the D0 solenoid upgrade design report. The heat loads to the LN2 circuit were done by Andrew Stefanik, RDIMechanical Systems group. They were part of his LN2 shield calculations dated 2/23/93. Pages 1 thru 3 of his calculations that apply to the chimney are attached. The heat loads to the LHe circuit were done originally on 12/16/92 and then revised on 12/23/92 to be more conservative. The raw calculations are attached. I include both the original 12/16 version and the 12/23 revised version to document the amount of conservativeness added.

  18. Artist: Ken Hodges Composite image explaining Objective and Motivation for Galileo Probe Heat Loads:

    NASA Technical Reports Server (NTRS)

    1981-01-01

    Artist: Ken Hodges Composite image explaining Objective and Motivation for Galileo Probe Heat Loads: Galileo Probe descending into Jupiters Atmosphere shows heat shield separation with parachute deployed. (Ref. JPL P-19180)

  19. Micromachined Slits for Imaging Spectrometers

    NASA Technical Reports Server (NTRS)

    Wilson, Daniel; Kenny, James; White, Victor

    2008-01-01

    Slits for imaging spectrometers can now be fabricated to a precision much greater than previously attainable. What makes this possible is a micromachining process that involves the use of microlithographic techniques.

  20. Heat Load Sharing in a Capillary Pumped Loop with Multiple Evaporators and Multiple Condensers

    NASA Technical Reports Server (NTRS)

    Ku, Jentung

    2005-01-01

    This paper describes the heat load sharing function among multiple parallel evaporators in a capillary pumped loop (CPL). In the normal mode of operation, the evaporators cool the instruments by absorbing the waste heat. When an instruments is turned off, the attached evaporator can keep it warm by receiving heat from other evaporators serving the operating instruments. This is referred to as heat load sharing. A theoretical basis of heat load sharing is given first. The fact that the wicks in the powered evaporators will develop capillary pressure to force the generated vapor to flow to cold locations where the pressure is lower leads to the conclusion that heat load sharing is an inherent function of a CPL with multiple evaporators. Heat load sharing has been verified with many CPLs in ground tests. Experimental results of the Capillary Pumped Loop 3 (CAPL 3) Flight Experiment are presented in this paper. Factors that affect the amount of heat being shared are discussed. Some constraints of heat load sharing are also addressed.

  1. Specific expression and methylation of SLIT1, SLIT2, SLIT3, and miR-218 in gastric cancer subtypes.

    PubMed

    Kim, Mirang; Kim, Jong-Hwan; Baek, Su-Jin; Kim, Seon-Young; Kim, Yong Sung

    2016-06-01

    SLIT has been suggested as a key regulator of cancer development and a promising therapeutic target for cancer treatment. Herein, we analyzed expression and methylation of SLIT1/SLIT2/SLIT3 in 11 gastric cancer cell lines, 96 paired gastric tumors and adjacent normal gastric tissues, and 250 gastric cancers provided by The Cancer Genome Atlas. Methylation of SLIT1/SLIT2/SLIT3 was found both in early gastric cancers, and in advanced gastric cancers. Even normal gastric tissue showed increased methylation of SLIT1 and SLIT3 that correlated with patient age. Furthermore, epigenetic inactivation of SLIT occurred in a gastric cancer subtype-dependent manner. SLIT2 and SLIT3 expression was reduced in Epstein-Barr virus-positive and microsatellite instability subtypes, but increased in the genomically stable subtype. Expression of miR‑218 correlated negatively with methylation of SLIT2 or SLIT3. These findings suggest that a molecular subtype-specific therapeutic strategy is needed for targeting SLITs and miR-218 in treatment of gastric cancer. PMID:27082735

  2. Apodization in high-contrast long-slit spectroscopy. II. Concept validation and first on-sky results with VLT/SPHERE

    NASA Astrophysics Data System (ADS)

    Vigan, A.; N'Diaye, M.; Dohlen, K.; Beuzit, J.-L.; Costille, A.; Caillat, A.; Baruffolo, A.; Blanchard, P.; Carle, M.; Ferrari, M.; Fusco, T.; Gluck, L.; Hugot, E.; Jaquet, M.; Langlois, M.; Le Mignant, D.; Llored, M.; Madec, F.; Mouillet, D.; Origné, A.; Puget, P.; Salasnich, B.; Sauvage, J.-F.

    2016-02-01

    Spectral characterization of young, giant exoplanets detected by direct imaging is one of the tasks of the new generation of high-contrast imagers. For this purpose, the VLT/SPHERE instrument includes a unique long-slit spectroscopy (LSS) mode coupled with Lyot coronagraphy in its infrared dual-band imager and spectrograph (IRDIS). The performance of this mode is intrinsically limited by the use of a non-optimal coronagraph, but in a previous work we demonstrated that it could be significantly improved at small inner-working angles using the stop-less Lyot coronagraph (SLLC). We now present the development, testing, and validation of the first SLLC prototype for VLT/SPHERE. Based on the transmission profile previously proposed, the prototype was manufactured using microdots technology and was installed inside the instrument in 2014. The transmission measurements agree well with the specifications, except in the very low transmissions (<5% in amplitude). The performance of the SLLC is tested in both imaging and spectroscopy using data acquired on the internal source. In imaging, we obtain a raw contrast gain of a factor 10 at 0.3'' and 5 at 0.5'' with the SLLC. Using data acquired with a focal-plane mask, we also demonstrate that no Lyot stop is required to reach the full performance, which validates the SLLC concept. Comparison with a realistic simulation model shows that we are currently limited by the internal phase aberrations of SPHERE. In spectroscopy, we obtain a gain of ~1 mag in a limited range of angular separations. Simulations show that although the main limitation comes from phase errors, the performance in the non-SLLC case is very close to the ultimate limit of the LSS mode. Finally, we obtain the very first on-sky data with the SLLC, which appear extremely promising for the future scientific exploitation of an apodized LSS mode in SPHERE.

  3. Numerical study of plasma generation process and internal antenna heat loadings in J-PARC RF negative ion source.

    PubMed

    Shibata, T; Nishida, K; Mochizuki, S; Mattei, S; Lettry, J; Hatayama, A; Ueno, A; Oguri, H; Ohkoshi, K; Ikegami, K; Takagi, A; Asano, H; Naito, F

    2016-02-01

    A numerical model of plasma transport and electromagnetic field in the J-PARC (Japan Proton Accelerator Research Complex) radio frequency ion source has been developed to understand the relation between antenna coil heat loadings and plasma production/transport processes. From the calculation, the local plasma density increase is observed in the region close to the antenna coil. Electrons are magnetized by the magnetic field line with absolute magnetic flux density 30-120 Gauss which leads to high local ionization rate. The results suggest that modification of magnetic configuration can be made to reduce plasma heat flux onto the antenna. PMID:26932010

  4. Behavior of graphite under heat load and in contact with a hydrogen plasma

    NASA Astrophysics Data System (ADS)

    Bohdansky, J.; Croessmann, C. D.; Linke, J.; McDonald, J. M.; Morse, D. H.; Pontau, A. E.; Watson, R. D.; Whitley, J. B.; Goebel, D. M.; Hirooka, Y.; Leung, K.; Conn, R. W.; Roth, J.; Ottenberger, W.; Kotzlowski, H. E.

    1987-05-01

    Graphite is extensively used in large tokamaks today. In these machines the material is exposed to vacuum, to intense heat loads, and to the edge plasma. The use of graphite in such machines, therefore, depends on the outgassing behavior, the heat shock resistance, and thermochemical properties in a hydrogen plasma. Investigations of these properties made at different laboratories are described here. Experiments conducted at Sandia National Laboratories (SNL), Livermore, and the Max-Planck-Institut für Plasmaphysik (IPP) in Garching showed that the outgassing behavior of fine-grain reactor-grade graphite and carbon fiber composites depends on the pretreatment (manufacturing and/or storage). However, after proper outgassing the samples tested behave similarly in the case of fine-grain graphite, but the outgassing remains high for the carbon fiber composites. Heat shock tests have been made with the Electron Beam Test System (EBTS) at SNL, Albuquerque. Directly cooled graphite samples (FE 159 graphite brazed onto Mo tubes) showed no failure at a heat load of 700 W/cm 2, 20 s; or 10 kW, 1 s. Thermal erosion due to sublimination and particle emission from the graphite surface was observed. This effect is related to the surface temperature and becomes significant at temperatures above 2500°K. Fourteen different types of graphite were tested; the main differences among these samples were the different surface temperatures obtained under the same heating conditions. Cracking due to heat shocks was observed in some of the samples, but none of the carbon fiber composites failed. Thermochemical properties have been tested in the PISCES plasma generator at UCLA for ion energies of around 100 eV. The formation of C-H compounds was observed spectroscopically at sample temperatures of around 600°C. However, this chemical reaction did not lead to erosion as observed in beam experiments but to a drastic change of the surface structure due to redeposition. Carbon-hydrogen lines

  5. Structural response of transient heat loading on a molybdenum surface exposed to low-energy helium ion irradiation

    NASA Astrophysics Data System (ADS)

    Sinclair, G.; Tripathi, J. K.; Diwakar, P. K.; Hassanein, A.

    2016-03-01

    The advancement of fusion reactor engineering is currently inhibited by the lack of knowledge surrounding the stability of plasma facing components (PFCs) in a tokamak environment. During normal operation, events of high heat loading occur periodically where large amounts of energy are imparted onto the PFC surface. Concurrently, irradiation by low-energy helium ions present in the fusion plasma can result in the synthesis of a fibre form nanostructure on the PFC surface, called ‘fuzz’. In order to understand how this heterogeneous structure evolves and deforms in response to transient heat loading, a pulsed Nd:YAG millisecond laser is used to simulate these events on a fuzz form molybdenum (Mo) surface. Performance was analysed by three metrics: nanostructure evolution, particle emission, and improvement in optical properties. Experiments performed at the upper end of the expected range for type-I edge-localized modes (ELMs) found that the helium-induced nanostructure completely disappears after 200 pulses of the laser at 1.5 MJ m-2. In situ mass loss measurements found that the amount of particles leaving the surface increases as energy density increases and the rate of emission increases with pulse count. Finally, optical properties assisted in providing a qualitative indication of fuzz density on the Mo surface; after 400 pulses at 1.5 MJ m-2, the optical reflectivity of the damaged surface is ~90% of that of a mirror polished Mo sample. These findings provide different results than previous studies done with tungsten (W), and further help illustrate the complicated nature of how transient events of high heat loading in a tokamak environment might impact the performance and lifetime of PFCs in ITER and future DEMO devices (Ueda et al 2014 Fusion Eng. Des. 89 901-6).

  6. Characterization of heat loads from mitigated and unmitigated vertical displacement events in DIII-D

    SciTech Connect

    Hollmann, E. M.; Moyer, R. A.; Commaux, N.; Jernigan, T. J.; Eidietis, N. W.; Humphreys, D. A.; Strait, E. J.; Wesley, J. C.; Lasnier, C. J.; Pitts, R. A.; Sugihara, M.; Watkins, J.

    2013-06-15

    Experiments have been conducted on the DIII-D tokamak to study the distribution and repeatability of heat loads and vessel currents resulting from vertical displacement events (VDEs). For unmitigated VDEs, the radiated power fraction appears to be of order 50%, with the remaining power dominantly conducted to the vessel walls. Shot-to-shot scatter in heat loads measured at one toroidal location is not large (<±50%), suggesting that toroidal asymmetries in conducted heat loads are not large. Conducted heat loads are clearly observed during the current quench (CQ) of both mitigated and unmitigated disruptions. Significant poloidal asymmetries in heat loads and radiated power are often observed in the experiments but are not yet understood. Energy dissipated resistively in the conducting walls during the CQ appears to be small (<5%). The mitigating effect of neon massive gas injection (MGI) as a function of MGI trigger delay has also been studied. Improved mitigation is observed as the MGI trigger delay is decreased. For sufficiently early MGI mitigation, close to 100% radiated energy and a reduction of roughly a factor 2 in vessel forces is achieved.

  7. Optical design of MWIR imaging spectrometer with a cold slit

    NASA Astrophysics Data System (ADS)

    Zhou, Shiyao; Wang, Yueming; Qian, Liqun; Yuan, Liyin; Wang, Jianyu

    2016-05-01

    MWIR imaging spectrometer is promising in detecting spectral signature of high temperature object such as jet steam, guided missile and explosive gas. This paper introduces an optical design of a MWIR imaging spectrometer with a cold slit sharply reducing the stray radiation from exterior environment and interior structure. The spectrometer is composed of a slit, a spherical prism as disperser, two concentric spheres and a correction lens. It has a real entrance pupil to match the objective and for setting the infrared cold shield near the slit and a real exit pupil to match the cold shield of the focal plane array (FPA). There are two cooled parts, one includes the aperture stop and slit, and the other is the exit pupil and the FPA with two specially positioned cooled shields. A detailed stray radiation analysis is represented which demonstrates the outstanding effect of this system in background radiation restraint.

  8. Tympanic temperature in confined beef cattle exposed to excessive heat load

    NASA Astrophysics Data System (ADS)

    Mader, T. L.; Gaughan, J. B.; Johnson, L. J.; Hahn, G. L.

    2010-11-01

    Angus crossbred yearling steers ( n = 168) were used to evaluate effects on performance and tympanic temperature (TT) of feeding additional potassium and sodium to steers exposed to excessive heat load (maximum daily ambient temperature exceeded 32°C for three consecutive days) during seasonal summer conditions. Steers were assigned one of four treatments: (1) control; (2) potassium supplemented (diet containing 2.10% KHCO3); (3) sodium supplemented (diet containing 1.10% NaCl); or (4) potassium and sodium supplemented (diet containing 2.10% KHCO3 and 1.10% NaCl). Overall, additional KHCO3 at the 2% level or NaCl at the 1% level did not improve performance or heat stress tolerance with these diet formulations. However, the addition of KHCO3 did enhance water intake. Independent of treatment effects, TT of cattle displaying high, moderate, or low levels of stress suggest that cattle that do not adequately cool down at night are prone to achieving greater body temperatures during a subsequent hot day. Cattle that are prone to get hot but can cool at night can keep average tympanic temperatures at or near those of cattle that tend to consistently maintain lower peak and mean body temperatures. In addition, during cooler and moderately hot periods, cattle change TT in a stair-step or incremental pattern, while under hot conditions, average TT of group-fed cattle moves in conjunction with ambient conditions, indicating that thermoregulatory mechanisms are at or near maximum physiological capacity.

  9. Slit observations and empirical calculations for HII regions

    NASA Astrophysics Data System (ADS)

    Fernandes, I. F.; Gruenwald, R.; Viegas, S. M.

    2005-12-01

    When analysing HII regions, a possible source of systematic error on empirically derived quantities, such as the gas temperature and the chemical composition, is the limited size of the slit used for the observations. In order to evaluate this type of systematic error, we use the photoionization code AANGABA to create a virtual photoionized region and mimic the effect of a slit observation. A grid of models was built varying the ionizing radiation spectrum emitted by a central stellar cluster, as well as the gas abundance. The calculated line surface brightness was then used to simulate slit observations and to derive empirical parameters using the usual methods described in the literature. Depending on the fraction of the object covered by the slit, the empirically derived physical parameters and chemical composition can be different from those obtained from observations of the whole object. This effect is mainly dependent on the age of the ionizing stellar cluster. The low-ionization lines, which originate in the outer layers of the ionized gas, are more sensitive to the size of the area covered by the slit than the high-ionization forbidden lines or recombination lines, because these lines are mainly produced closer to the inner radius of the nebula. For a slit covering 50 per cent or less of the total area, the measured [OIII], [OII] and [OI] line intensities are less than 78, 62 and 58 per cent of the total intensity for a young HII region (t < 3 Myr); for older objects the effect due to the slit is less significant. Regarding the temperature indicator T[OIII], the slit effects are small (usually less than 5 per cent) because this temperature is derived from [OIII] high-ionization lines. On the other hand, for the abundance (and temperature) indicator R23, which depends also on the [OII] line, the slit effect is slightly higher. Therefore, the systematic error due to slit observations on the O abundance is low, being usually less than 10 per cent, except for

  10. "Quantum Interference with Slits" Revisited

    ERIC Educational Resources Information Center

    Rothman, Tony; Boughn, Stephen

    2011-01-01

    Marcella has presented a straightforward technique employing the Dirac formalism to calculate single- and double-slit interference patterns. He claims that no reference is made to classical optics or scattering theory and that his method therefore provides a purely quantum mechanical description of these experiments. He also presents his…

  11. An analysis of representative heating load lines for residential HSPF ratings

    SciTech Connect

    Rice, C. Keith; Shen, Bo; Shrestha, Som S.

    2015-07-01

    This report describes an analysis to investigate representative heating loads for single-family detached homes using current EnergyPlus simulations (DOE 2014a). Hourly delivered load results are used to determine binned load lines using US Department of Energy (DOE) residential prototype building models (DOE 2014b) developed by Pacific Northwest National Laboratory (PNNL). The selected residential single-family prototype buildings are based on the 2006 International Energy Conservation Code (IECC 2006) in the DOE climate regions. The resulting load lines are compared with the American National Standards Institute (ANSI)/Air-Conditioning, Heating, and Refrigeration Institute (AHRI) Standard 210/240 (AHRI 2008) minimum and maximum design heating requirement (DHR) load lines of the heating seasonal performance factor (HSPF) ratings procedure for each region. The results indicate that a heating load line closer to the maximum DHR load line, and with a lower zero load ambient temperature, is more representative of heating loads predicted for EnergyPlus prototype residential buildings than the minimum DHR load line presently used to determine HSPF ratings. An alternative heating load line equation was developed and compared to binned load lines obtained from the EnergyPlus simulation results. The effect on HSPF of the alternative heating load line was evaluated for single-speed and two-capacity heat pumps, and an average HSPF reduction of 16% was found. The alternative heating load line relationship is tied to the rated cooling capacity of the heat pump based on EnergyPlus autosizing, which is more representative of the house load characteristics than the rated heating capacity. The alternative heating load line equation was found to be independent of climate for the six DOE climate regions investigated, provided an adjustable zero load ambient temperature is used. For Region IV, the default DOE climate region used for HSPF ratings, the higher load line results in an ~28

  12. Measurements of SCRF cavity dynamic heat load in horizontal test system

    SciTech Connect

    DeGraff, B.D.; Bossert, R.J.; Pei, L.; Soyars, W.M.; /Fermilab

    2009-11-01

    The Horizontal Test System (HTS) at Fermilab is currently testing fully assembled, dressed superconducting radio frequency (SCRF) cavities. These cavities are cooled in a bath of superfluid helium at 1.8K. Dissipated RF power from the cavities is a dynamic heat load on the cryogenic system. The magnitude of heat flux from these cavities into the helium is also an important variable for understanding cavity performance. Methods and hardware used to measure this dynamic heat load are presented. Results are presented from several cavity tests and testing accuracy is discussed.

  13. Effects of ventilation behaviour on indoor heat load based on test reference years

    NASA Astrophysics Data System (ADS)

    Rosenfelder, Madeleine; Koppe, Christina; Pfafferott, Jens; Matzarakis, Andreas

    2016-02-01

    Since 2003, most European countries established heat health warning systems to alert the population to heat load. Heat health warning systems are based on predicted meteorological conditions outdoors. But the majority of the European population spends a substantial amount of time indoors, and indoor thermal conditions can differ substantially from outdoor conditions. The German Meteorological Service (Deutscher Wetterdienst, DWD) extended the existing heat health warning system (HHWS) with a thermal building simulation model to consider heat load indoors. In this study, the thermal building simulation model is used to simulate a standardized building representing a modern nursing home, because elderly and sick people are most sensitive to heat stress. Different types of natural ventilation were simulated. Based on current and future test reference years, changes in the future heat load indoors were analyzed. Results show differences between the various ventilation options and the possibility to minimize the thermal heat stress during summer by using an appropriate ventilation method. Nighttime ventilation for indoor thermal comfort is most important. A fully opened window at nighttime and the 2-h ventilation in the morning and evening are more sufficient to avoid heat stress than a tilted window at nighttime and the 1-h ventilation in the morning and the evening. Especially the ventilation in the morning seems to be effective to keep the heat load indoors low. Comparing the results for the current and the future test reference years, an increase of heat stress on all ventilation types can be recognized.

  14. Analysis of the cryogenic system behavior for pulsed heat load in EAST

    SciTech Connect

    Hu, L. B.; Zhuang, M.; Zhou, Z. W.; Xia, G. H.

    2014-01-29

    EAST is the first full superconducting fusion device. The plasma is confined by the magnetic fields generated from a large set of superconducting magnets which are made of cable in-conduit conductor (CICC). In operation, these magnets suffer heat loads from thermal and nuclear radiation from the surrounding components and plasma as well as the eddy currents and the AC losses generated within the magnets, together with the heat conduction through supports and the resistive heat generated at the current lead transiting to room temperature. The cryogenic system of our EAST consists of a 2kW/4K helium refrigerator and a distribution system for the cooling of poloidal field (PF) and toroidal field (TF) coils, structures, thermal shields, buslines and current leads. Pulsed heat load is the main difference between the cryogenic system of a full superconducting Tokamak system and other large scale cryogenic systems. The cryogenic system operates in a pulsed heat loads mode requiring the helium refrigerator to remove periodically large heat loads in time. At the same time, the cryogenic system parameters such as helium cooling superconducting magnets, helium refrigerator and helium distribution system are changing. In this paper, the variation range of the parameters of superconducting magnets and refrigerator has been analyzed in the typical plasma discharge mode. The control scheme for the pulsed loads characteristics of the cryogenic system has been proposed, the implementation of which helps to smooth the pulse loads and to improve the stability of the operation of the cryogenic system.

  15. Dam heat load affects neonatal calves’ bacterial prevalence and innate immunity

    Technology Transfer Automated Retrieval System (TEKTRAN)

    Heat stress is known to suppress animal’s immunity, making them more susceptible to bacterial infections. In Indiana, field observations showed that calves have greater morbidity and mortality when they are born after a heat event. Objectives of this study were to determine whether heat load increas...

  16. [Physiological evaluation of clothing made of new material for protection against the solar heat load].

    PubMed

    Watanuki, S; Hiraoka, M; Doi, T; Kiyokawa, H

    1992-11-01

    The purpose of this study was to evaluate the effects of clothing made of a new material that is, the polyester staple containing the ceramics and to reflect the solar heat load on physiological responses during rest, exercise (50% VO2max) and recovery on a cycle ergometer. Six young female subjects exposed their back to an artificial solar heat load of an intensity of 680 kcal/m2/h with an air temperature of 30 degrees C. The data were compared to those obtained by wearing clothing made of cotton material. The results were as follows. The cardiac output and oxygen consumption obtained at the end of recovery were increased by solar heat load when the subjects wore cotton material. However, these values showed no significant increase when the subjects wore solar heat reflecting clothing. Furthermore, the cardiac output at the end of submaximal work and recovery were higher for the cotton material compared to the heat reflecting clothing in the solar heat load. The increase of cardiac output for the cotton material may show the increase of skin blood flow for the body heat dissipation. Those results suggest that the solar heat reflecting clothing may decrease the physiological strain like a blood redistribution for the body heat dissipation during exercise in summer sunlight. PMID:1476560

  17. A molecular mechanism for the heparan sulfate dependence of slit-robo signaling.

    PubMed

    Hussain, Sadaf-Ahmahni; Piper, Michael; Fukuhara, Noémi; Strochlic, Laure; Cho, Gian; Howitt, Jason A; Ahmed, Yassir; Powell, Andrew K; Turnbull, Jeremy E; Holt, Christine E; Hohenester, Erhard

    2006-12-22

    Slit is a large secreted protein that provides important guidance cues in the developing nervous system and in other organs. Signaling by Slit requires two receptors, Robo transmembrane proteins and heparan sulfate (HS) proteoglycans. How HS controls Slit-Robo signaling is unclear. Here we show that the second leucine-rich repeat domain (D2) of Slit, which mediates binding to Robo receptors, also contains a functionally important binding site for heparin, a highly sulfated variant of HS. Heparin markedly enhances the affinity of the Slit-Robo interaction in a solid-phase binding assay. Analytical gel filtration chromatography demonstrates that Slit D2 associates with a soluble Robo fragment and a heparin-derived oligosaccharide to form a ternary complex. Retinal growth cone collapse triggered by Slit D2 requires cell surface HS or exogenously added heparin. Mutation of conserved basic residues in the C-terminal cap region of Slit D2 reduces heparin binding and abolishes biological activity. We conclude that heparin/HS is an integral component of the minimal Slit-Robo signaling complex and serves to stabilize the relatively weak Slit-Robo interaction. PMID:17062560

  18. Beam heat load due to geometrical and resistive wall impedance in COLDDIAG

    NASA Astrophysics Data System (ADS)

    Casalbuoni, S.; Migliorati, M.; Mostacci, A.; Palumbo, L.; Spataro, B.

    2012-11-01

    One of the still open issues for the development of superconductive insertion devices is the understanding of the heat intake from the electron beam. With the aim of measuring the beam heat load to a cold bore and the hope to gain a deeper understanding in the underlying mechanisms, a cold vacuum chamber for diagnostics (COLDDIAG) was built. It is equipped with the following instrumentation: retarding field analyzers to measure the electron flux, temperature sensors to measure the beam heat load, pressure gauges, and mass spectrometers to measure the gas content. Possible beam heat load sources are: synchrotron radiation, wakefield effects due to geometrical and resistive wall impedance and electron/ion bombardment. The flexibility of the engineering design will allow the installation of the cryostat in different synchrotron light sources. COLDDIAG was first installed in the Diamond Light Source (DLS) in 2011. Due to a mechanical failure of the thermal transition of the cold liner, the cryostat had to be removed after one week of operation. After having implemented design changes in the thermal liner transition, COLDDIAG has been reinstalled in the DLS at the end of August 2012. In order to understand the beam heat load mechanism it is important to compare the measured COLDDIAG parameters with theoretical expectations. In this paper we report on the analytical and numerical computation of the COLDDIAG beam heat load due to coupling impedances deriving from unavoidable step transitions, ports used for pumping and diagnostics, surface roughness, and resistive wall. The results might have an important impact on future technological solutions to be applied to cold bore devices.

  19. Optical double-slit particle measuring system

    DOEpatents

    Tichenor, D.A.; Wang, J.C.F.; Hencken, K.R.

    1982-03-25

    A method for in situ measurement of particle size is described. The size information is obtained by scanning an image of the particle across a double-slit mask and observing the transmitted light. This method is useful when the particle size of primary interest is 3..mu..m and larger. The technique is well suited to applications in which the particles are non-spherical and have unknown refractive index. It is particularly well suited to high temperature environments in which the particle incandescence provides the light source.

  20. Optical double-slit particle measuring system

    DOEpatents

    Hencken, Kenneth R.; Tichenor, Daniel A.; Wang, James C. F.

    1984-01-01

    A method for in situ measurement of particle size is described. The size information is obtained by scanning an image of the particle across a double-slit mask and observing the transmitted light. This method is useful when the particle size of primary interest is 3 .mu.m and larger. The technique is well suited to applications in which the particles are non-spherical and have unknown refractive index. It is particularly well suited to high temperature environments in which the particle incandescence provides the light source.

  1. Inhibition of medulloblastoma cell invasion by Slit.

    PubMed

    Werbowetski-Ogilvie, T E; Seyed Sadr, M; Jabado, N; Angers-Loustau, A; Agar, N Y R; Wu, J; Bjerkvig, R; Antel, J P; Faury, D; Rao, Y; Del Maestro, R F

    2006-08-24

    Invasion of brain tumor cells has made primary malignant brain neoplasms among the most recalcitrant to therapeutic strategies. We tested whether the secreted protein Slit2, which guides the projection of axons and developing neurons, could modulate brain tumor cell invasion. Slit2 inhibited the invasion of medulloblastoma cells in a variety of in vitro models. The effect of Slit2 was inhibited by the Robo ectodomain. Time-lapse videomicroscopy indicated that Slit2 reduced medulloblastoma invasion rate without affecting cell direction or proliferation. Both medulloblastoma and glioma tumors express Robo1 and Slit2, but only medulloblastoma invasion is inhibited by recombinant Slit2 protein. Downregulation of activated Cdc42 may contribute to this differential response. Our findings reinforce the concept that neurodevelopmental cues such as Slit2 may provide insights into brain tumor invasion. PMID:16636676

  2. An Optimal Control Approach for an Overall Cryogenic Plant Under Pulsed Heat Loads

    NASA Astrophysics Data System (ADS)

    Palaćın, Luis Gómez; Bradu, Benjamin; Viñuela, Enrique Blanco; Maekawa, Ryuji; Chalifour, Michel

    This work deals with the optimal management of a cryogenic plant composed by parallel refrigeration plants, which provide supercritical helium to pulsed heat loads. First, a data reconciliation approach is proposed to estimate precisely the refrigerator variables necessary to deduce the efficiency of each refrigerator. Second, taking into account these efficiencies, an optimal operation of the system is proposed and studied. Finally, while minimizing the power consumption of the refrigerators, the control system maintains stable operation of the cryoplant under pulsed heat loads. The management of the refrigerators is carried out by an upper control layer, which balances the relative production of cooling power in each refrigerator. In addition, this upper control layer deals with the mitigation of malfunctions and faults in the system. The proposed approach has been validated using a dynamic model of the cryoplant developed with EcosimPro software, based on first principles (mass and energy balances) and thermo-hydraulic equations.

  3. Nuclear heat load calculations for the NBSR cold neutron source using MCNP

    SciTech Connect

    Blau, M. ); Rowe, J.M.; Williams, R.E. )

    1993-01-01

    A liquid-hydrogen (LH2) cold neutron source is being designed for installation in the 20-MW National Bureau of Standards reactor (NBSR) at National Institute of Standards and Technology to replace the D[sub 2]O-ice cold source currently in use. An accurate estimate of the heat deposited in the cold source is needed to ensure that it can be adequately cooled for successful operation. The heat load is caused by the interaction of neutrons and gamma rays with the cold moderator and the walls of the moderator chamber. The Monte Carlo code, MCNP (Version 4.2), was used to model the entire NBSR core and both the existing and the proposed cold sources. The model was used to calculate not only the heat load but also the reactivity and neutron gain of each source.

  4. Simple Formulas for Stagnation-Point Convective Heat Loads in Lunar Return

    NASA Technical Reports Server (NTRS)

    Grant, Frederick C.

    1961-01-01

    Simple formulas are given for the stagnation-point convective heat 1 loads in lunar return for two operational modes. The two modes of operation analyzed are typical of moderate heating and of nearly minimum heat loads, respectively. The values of the parameters in a simple two- parameter formula for the total-heat load are given in the lift-drag-ratio range of 0.2 to 1.0 and in the peak loading range of 2g to 10g. For vehicles having a lift-drag ratio near 0.5, which is typical of many proposed lunar return vehicles, the nominal mode had about 20 percent more absorption than the nearly minimum mode.

  5. Calculation of cracking under pulsed heat loads in tungsten manufactured according to ITER specifications

    NASA Astrophysics Data System (ADS)

    Arakcheev, A. S.; Skovorodin, D. I.; Burdakov, A. V.; Shoshin, A. A.; Polosatkin, S. V.; Vasilyev, A. A.; Postupaev, V. V.; Vyacheslavov, L. N.; Kasatov, A. A.; Huber, A.; Mertens, Ph; Wirtz, M.; Linsmeier, Ch; Kreter, A.; Löwenhoff, Th; Begrambekov, L.; Grunin, A.; Sadovskiy, Ya

    2015-12-01

    A mathematical model of surface cracking under pulsed heat load was developed. The model correctly describes a smooth brittle-ductile transition. The elastic deformation is described in a thin-heated-layer approximation. The plastic deformation is described with the Hollomon equation. The time dependence of the deformation and stresses is described for one heating-cooling cycle for a material without initial plastic deformation. The model can be applied to tungsten manufactured according to ITER specifications. The model shows that the stability of stress-relieved tungsten deteriorates when the base temperature increases. This proved to be a result of the close ultimate tensile and yield strengths. For a heat load of arbitrary magnitude a stability criterion was obtained in the form of condition on the relation of the ultimate tensile and yield strengths.

  6. Maximal Expression of the Evolutionarily Conserved Slit2 Gene Promoter Requires Sp1.

    PubMed

    Saunders, Jacquelyn; Wisidagama, D Roonalika; Morford, Travis; Malone, Cindy S

    2016-08-01

    Slit2 is a neural axon guidance and chemorepellent protein that stimulates motility in a variety of cell types. The role of Slit2 in neural development and neoplastic growth and migration has been well established, while the genetic mechanisms underlying regulation of the Slit2 gene have not. We identified the core and proximal promoter of Slit2 by mapping multiple transcriptional start sites, analyzing transcriptional activity, and confirming sequence homology for the Slit2 proximal promoter among a number of species. Deletion series and transient transfection identified the Slit2 proximal promoter as within 399 base pairs upstream of the start of transcription. A crucial region for full expression of the Slit2 proximal promoter lies between 399 base pairs and 296 base pairs upstream of the start of transcription. Computer modeling identified three transcription factor-binding consensus sites within this region, of which only site-directed mutagenesis of one of the two identified Sp1 consensus sites inhibited transcriptional activity of the Slit2 proximal promoter (-399 to +253). Bioinformatics analysis of the Slit2 proximal promoter -399 base pair to -296 base pair region shows high sequence conservation over twenty-two species, and that this region follows an expected pattern of sequence divergence through evolution. PMID:26456684

  7. Extreme Multi-Slit Spectroscopy with GMOX

    NASA Astrophysics Data System (ADS)

    Robberto, Massimo; Heckman, Tim; Gennaro, Mario; Deustua, Susana; MacKenty, John W.; Ninkov, Zoran; Becker, George; Bianchi, Luciana; Bellini, Andrea; Calamida, Annalisa; Kalirai, Jason; Lotz, Jennifer; Sabbi, Elena; Tumlinson, Jason; Smee, Stephen; Barkhouser, Robert

    2015-08-01

    GMOX is a wide-bandwidth, moderate-resolution, multi-object spectrograph recently selected in the last Gemini Instrument Feasibility Study phase for the next facility instrument (Gen4#3). It is designed to operate at the Multi-Conjugate AO system of Gemini South (GeMs), which delivers a 90"x90" AO corrected field of view with Strehl ratio as high as 0.3 in the K-band. GMOX uses two dichroics to split the field in three modules (Blue, Red, and IR) covering the full spectral range from U to K. Each module is equipped with a Digital Micromirror Devices (DMDs) of the latest generation providing 1.1 million randomly addressable slits. Each DMD feeds a spectroscopic channel at R=4000 and a parallel imaging channel for slit alignment, monitoring and ancillary science. Exploiting the exquisit optical quality of GeMs, GMOX reaches unparalleled sensitivity and spatial resolution in crowded fields; it will represent an ideal tool to advance our understanding of star clusters and stellar populations in our Galaxy and beyond.

  8. Influence of heating load on heat transfer characteristics in micro-pin-fin arrays

    NASA Astrophysics Data System (ADS)

    Guan, Ning; Luan, Tao; Jiang, Guilin; Liu, Zhi-Gang; Zhang, Cheng-Wu

    2016-02-01

    Experimental investigations were carried out to explore the convective heat transfer in micro pin-fins with different aspect ratios, and the influence of heating load on Nusselt numbers in micro pin-fins with liquid water as working fluid were investigated. The mechanism of convective heat transfer in micro pin-fins at different heating load were studied by 3-D numerical investigations, and the relationships of thermal physical properties change, the end wall effect and axial thermal conduction with Nu numbers in micro pin-fins were analysed. It was found that the thickness of boundary layer was decreased as much as 33.3 % attributed to the destructive effect of thermal physical properties change, and convective heat transfer in the micro pin-fin channel was more than 20 % enhanced by the flow disturbance caused by the increase of temperature difference. The discrepancy of Nu in micro pin-fin channel with different aspect ratios reached 34.59 %, and this discrepancy was reduced by the increase of heating load. The maximum value of impact factors of dynamic viscosity and thermal conductivity on the Nu in micro-pin-fins reached 25.02 and 7.68 %, respectively.

  9. Study on mitigation of pulsed heat load for ITER cryogenic system

    NASA Astrophysics Data System (ADS)

    Peng, N.; Xiong, L. Y.; Jiang, Y. C.; Tang, J. C.; Liu, L. Q.

    2015-03-01

    One of the key requirements for ITER cryogenic system is the mitigation of the pulsed heat load deposited in the magnet system due to magnetic field variation and pulsed DT neutron production. As one of the control strategies, bypass valves of Toroidal Field (TF) case helium loop would be adjusted to mitigate the pulsed heat load to the LHe plant. A quasi-3D time-dependent thermal-hydraulic analysis of the TF winding packs and TF case has been performed to study the behaviors of TF magnets during the reference plasma scenario with the pulses of 400 s burn and repetition time of 1800 s. The model is based on a 1D helium flow and quasi-3D solid heat conduction model. The whole TF magnet is simulated taking into account thermal conduction between winding pack and case which are cooled separately. The heat loads are given as input information, which include AC losses in the conductor, eddy current losses in the structure, thermal radiation, thermal conduction and nuclear heating. The simulation results indicate that the temperature variation of TF magnet stays within the allowable range when the smooth control strategy is active.

  10. Kinetic modeling of divertor heat load fluxes in the Alcator C-Mod and DIII-D tokamaks

    SciTech Connect

    Pankin, A. Y.; Rafiq, T.; Kritz, A. H.; Park, G. Y.; Chang, C. S.; Ku, S.; Brunner, D.; Hughes, J. W.; LaBombard, B.; Terry, J. L.; Groebner, R. J.

    2015-09-15

    The guiding-center kinetic neoclassical transport code, XGC0 [Chang et al., Phys. Plasmas 11, 2649 (2004)], is used to compute the heat fluxes and the heat-load width in the outer divertor plates of Alcator C-Mod and DIII-D tokamaks. The dependence of the width of heat-load fluxes on neoclassical effects, neutral collisions, and anomalous transport is investigated using the XGC0 code. The XGC0 code includes realistic X-point geometry, a neutral source model, the effects of collisions, and a diffusion model for anomalous transport. It is observed that the width of the XGC0 neoclassical heat-load is approximately inversely proportional to the total plasma current I{sub p.} The scaling of the width of the divertor heat-load with plasma current is examined for an Alcator C-Mod discharge and four DIII-D discharges. The scaling of the divertor heat-load width with plasma current is found to be weaker in the Alcator C-Mod discharge compared to scaling found in the DIII-D discharges. The effect of neutral collisions on the 1/I{sub p} scaling of heat-load width is shown not to be significant. Although inclusion of poloidally uniform anomalous transport results in a deviation from the 1/I{sub p} scaling, the inclusion of the anomalous transport that is driven by ballooning-type instabilities results in recovering the neoclassical 1/I{sub p} scaling. The Bohm or gyro-Bohm scalings of anomalous transport do not strongly affect the dependence of the heat-load width on plasma current. The inclusion of anomalous transport, in general, results in widening the width of neoclassical divertor heat-load and enhances the neoclassical heat-load fluxes on the divertor plates. Understanding heat transport in the tokamak scrape-off layer plasmas is important for strengthening the basis for predicting divertor conditions in ITER.

  11. Influence of the heater material on the critical heat load at boiling of liquids on surfaces with different sizes

    NASA Astrophysics Data System (ADS)

    Anokhina, E. V.

    2010-05-01

    Data on critical heat loads q cr for the saturated and unsaturated pool boiling of water and ethanol under atmospheric pressure are reported. It is found experimentally that the critical heat load does not necessarily coincide with the heat load causing burnout of the heater, which should be taken into account. The absolute values of q cr for the boiling of water and ethanol on copper surfaces 65, 80, 100, 120, and 200 μm in diameter; tungsten surface 100 μm in diameter; and nichrome surface 100 μm in diameter are obtained experimentally.

  12. A subset of chicken statoacoustic ganglion neurites are repelled by Slit1 and Slit2

    PubMed Central

    Battisti, Andrea C.; Fantetti, Kristen N.; Moyers, Bryan A.; Fekete, Donna M.

    2014-01-01

    Mechanosensory hair cells in the chicken inner ear are innervated by bipolar afferent neurons of the statoacoustic ganglion (SAG). During development, individual SAG neurons project their peripheral process to only one of eight distinct sensory organs. These neuronal subtypes may respond differently to guidance cues as they explore the periphery in search of their target. Previous gene expression data suggested that Slit repellants might channel SAG neurites into the sensory primordia, based on the presence of robo transcripts in the neurons and the confinement of slit transcripts to the flanks of the prosensory domains. This led to the prediction that excess Slit proteins would impede the outgrowth of SAG neurites. As predicted, axonal projections to the primordium of the anterior crista were reduced 2-3 days after electroporation of either slit1 or slit2 expression plasmids into the anterior pole of the otocyst on embryonic day 3 (E3). The posterior crista afferents, which normally grow through and adjacent to slit expression domains as they are navigating towards the posterior pole of the otocyst, did not show Slit responsiveness when similarly challenged by ectopic delivery of slit to their targets. The sensitivity to ectopic Slits shown by the anterior crista afferents was more the exception than the rule: responsiveness to Slits was not observed when the entire E4 SAG was challenged with Slits for 40 hours in vitro. The corona of neurites emanating from SAG explants was unaffected by the presence of purified human Slit1 and Slit2 in the culture medium. Reduced axon outgrowth from E8 olfactory bulbs cultured under similar conditions for 24 hours confirmed bioactivity of purified human Slits on chicken neurons. In summary, differential sensitivity to Slit repellents may influence the directional outgrowth of otic axons toward either the anterior or posterior otocyst. PMID:24456709

  13. SLIT: indications, follow-up, and management.

    PubMed

    Dávila, I; Navarro, A; Domínguez-Ortega, J; Alonso, A; Antolín-Amérigo, D; Diéguez, M C; González-Mancebo, E; Martíns, C; Martínez, C; Núñez, B; Prior, N; Rechel, M; Rosado, A; Ruiz-Hornillos, J; Sansosti, A; Torrecillas, M; Jerez, M J

    2014-01-01

    Specific sublingual immunotherapy (SLIT) has been proved to be a safe and effective approach in respiratory allergy. However, further research is required on aspects such as patient selection, use of optimal dosing, effects on asthma, long-term effects, and management of adverse reactions. In addition, the widely heterogeneous nature of studies on SLIT performed to date and the application of the criteria for subcutaneous immunotherapy make it difficult for the prescribing clinician to draw accurate and useful conclusions. Therefore, the QUASAR Group (QUality in the Administration of SLIT in Allergic Rhinitis), which comprises allergologists with broad clinical experience in SLIT, investigated the latest research findings and available data on this approach. Working parties were formed in 3 different categories: selection of candidates for SLIT, treatment efficacy, and adverse reactions. We performed a PubMed search for articles that were representative of each category and found 850. From these, we finally selected 266 articles, which were reviewed to retrieve data on SLIT. Evidence for each clinical question was graded according to the Oxford classification. The resulting text was evaluated on 3 occasions by all the members of the group until the final version was agreed upon. In this version, we review available evidence on SLIT, particularly with pollens, which is the subject of most articles. In areas where evidence is insufficient, an alternative agreed upon by the members of the QUASAR group is presented. Finally, we propose algorithms for selecting candidates for SLIT and for management of adverse events. PMID:25011377

  14. Acoustic transmission through compound subwavelength slit arrays

    NASA Astrophysics Data System (ADS)

    Ward, G. P.; Hibbins, A. P.; Sambles, J. R.; Smith, J. D.

    2016-07-01

    The angular dependence of the transmission of sound in air through four types of two-dimensional slit arrays formed of aluminium slats is explored, both experimentally and numerically. For a simple, subwavelength periodic slit array, it is well known that Fabry-Perot-like waveguide resonances, supported by the slit cavities, coupled to diffracted evanescent waves, result in enhanced acoustic transmission at frequencies determined by the length, width, and separation of each slit cavity. We demonstrate that altering the spacing or width of some of the slits to form a compound array (i.e., an array having a basis comprised of more than one slit) results in sharp dips in the transmission spectra, which may have a strong angular dependence. These features correspond to phase resonances, which have been studied extensively in the electromagnetic case. This geometry allows for additional near-field configurations compared to the simple array, whereby the field in adjacent cavities can be out of phase. Several types of compound slit arrays are investigated; one such structure is optimized to minimize the effect of boundary-layer loss mechanisms present in each slit cavity, thereby achieving a deep, sharp transmission minimum in a broad maximum.

  15. Simultaneous optimization of the cavity heat load and trip rates in linacs using a genetic algorithm

    NASA Astrophysics Data System (ADS)

    Terzić, Balša; Hofler, Alicia S.; Reeves, Cody J.; Khan, Sabbir A.; Krafft, Geoffrey A.; Benesch, Jay; Freyberger, Arne; Ranjan, Desh

    2014-10-01

    In this paper, a genetic algorithm-based optimization is used to simultaneously minimize two competing objectives guiding the operation of the Jefferson Lab's Continuous Electron Beam Accelerator Facility linacs: cavity heat load and radio frequency cavity trip rates. The results represent a significant improvement to the standard linac energy management tool and thereby could lead to a more efficient Continuous Electron Beam Accelerator Facility configuration. This study also serves as a proof of principle of how a genetic algorithm can be used for optimizing other linac-based machines.

  16. Divertor Target Heat Load Reduction by Electrical Biasing, and Application to COMPASS-D

    SciTech Connect

    Fielding, S J; Cohen, R H; Helander, P; Ryutov, D D

    2001-03-07

    A toroidally-asymmetric potential structure in the scrape-off layer (SOL) plasma may be formed by toroidally distributed electrical biasing of the divertor target tiles. The resulting ExB convective motions should increase the plasma radial transport in the SOL and thereby reduce the heat load at the divertor [1]. In this paper we develop theoretical modeling and describe the implementation of this concept to the COMPASS-D divertor. We show that strong magnetic shear near the X-point should cause significant squeezing of the convective cells preventing convection from penetrating above the X-point. This should result in reduced heat load at the divertor target without increasing the radial transport in the portion of the SOL in direct contact with the core plasma, potentially avoiding any confinement degradation. implementation of divertor biasing is in hand on COMPASS-D involving insulation of, and modifications to, the present divertor tiles. Calculations based on measured edge parameters suggest that modest currents {approx} 8 A/tile are required, at up to 150V, to drive the convection. A technical test is preceeding full bias experiments.

  17. Gyrokinetic study of edge blobs and divertor heat-load footprint

    NASA Astrophysics Data System (ADS)

    Chang, C.-S.; Ku, S.-H.; Churchill, M.; Zweben, S.

    2014-10-01

    In an attempt to better understand the complicated physics of the inter-related ``intermittent plasma objects (blobs)'' and divertor heat-load footprint, the full-function gyrokinetic PIC code XGC1 has been used in realistic diverted geometry. Neoclassical and turbulence physics are simulated together self-consistently in the presence of Monte Carlo neutral particles. Blobs are modeled here as electrostatic nonlinear turbulence phenomenon. It is found that the ``blobs'' are generated, together with the ``holes,'' around the steep density gradient region. XGC1 reasserts the previous findings that blobs move out convectively into the scrape-off layer, while the holes move inward toward plasma core. The measured radial width of the divertor heat load, mapped to the outer midplane, is found to be much less than the median radial size of the intermittent plasma objects, but is rather closer to the width of neoclassical orbit excursion from pedestal to divertor, yielding approximately the 1/Ip-type scaling found from our previous pure neoclassical simulation or a heuristic neoclassical argument by Goldston. However, it also shows some spreading by the intermittent turbulence. In ITER plasma edge, where the ion banana width at separatrix becomes negligibly small compared to the meso-scale blob size, blobs may saturate the 1/Ip scaling.

  18. DNA Partitioning in Confining Nanofluidic Slits

    NASA Astrophysics Data System (ADS)

    Greenier, Madeline; Levy, Stephen

    We measure the partitioning of double stranded DNA molecules in moderately and strongly confining nanofluidic slit-like structures. Using fluorescent microscopy, the free energy penalty of confinement is inferred by comparing the concentration of DNA molecules in adjoining slits of different depths. These depths range in size from several persistence lengths to the DNA molecule's radius of gyration. The partition coefficient is determined as a function of the slit depth, DNA contour length, and DNA topology. We compare our results to theory and Monte Carlo simulations that predict the loss of free energy for ideal and semiflexible excluded volume polymers confined between parallel plates.

  19. Semiconductor fabrication techniques for producing an ultra-flat reflective slit

    NASA Astrophysics Data System (ADS)

    Vandervelde, Thomas E.; Cabral, Michael J.; Wilson, John; Skrutskie, Michael

    2006-06-01

    The most difficult aspects in manufacturing a reflective slit substrate are achieving a precisely fabricated slit surrounded by an optically flat surface. A commonly used technique is to polish a metal substrate that has a slit cut by electric discharge machine (EDM) methods. This process can produce 'optically flat' surfaces; however, the EDM can produce a slit with edge roughness on the order of 10 microns and a RMS field roughness of ~1 micron. Here, we present a departure from these traditional methods and employ the advantages inherent in integrated circuit fabrication. By starting with a silicon wafer, we begin with a nearly atomically flat surface. In addition, the fabrication tools and methodologies employed are traditionally used for high precision applications: this allows for the placement and definition of the slit with high accuracy. If greater accuracy in slit definition is required, additional tools, such as a focused ion beam, are used to define the slit edge down to tens of nanometers. The deposition of gold, after that of a suitable bonding layer, in an ultra-high vacuum chamber creates a final surface without the need of polishing. Typical results yield a surface RMS-roughness of approximately 2nm. Most of the techniques and tools required for this process are commonly available at research universities and the cost to manufacture said mirrors is a small fraction of the purchase price of the traditional ones.

  20. Multilayer hexagonal silicon forming in slit nanopore

    PubMed Central

    He, Yezeng; Li, Hui; Sui, Yanwei; Qi, Jiqiu; Wang, Yanqing; Chen, Zheng; Dong, Jichen; Li, Xiongying

    2015-01-01

    The solidification of two-dimensional liquid silicon confined to a slit nanopore has been studied using molecular dynamics simulations. The results clearly show that the system undergoes an obvious transition from liquid to multilayer hexagonal film with the decrease of temperature, accompanied by dramatic change in potential energy, atomic volume, coordination number and lateral radial distribution function. During the cooling process, some hexagonal islands randomly appear in the liquid first, then grow up to grain nuclei, and finally connect together to form a complete polycrystalline film. Moreover, it is found that the quenching rate and slit size are of vital importance to the freezing structure of silicon film. The results also indicate that the slit nanopore induces the layering of liquid silicon, which further induces the slit size dependent solidification behavior of silicon film with different electrical properties. PMID:26435518

  1. Multilayer hexagonal silicon forming in slit nanopore.

    PubMed

    He, Yezeng; Li, Hui; Sui, Yanwei; Qi, Jiqiu; Wang, Yanqing; Chen, Zheng; Dong, Jichen; Li, Xiongying

    2015-01-01

    The solidification of two-dimensional liquid silicon confined to a slit nanopore has been studied using molecular dynamics simulations. The results clearly show that the system undergoes an obvious transition from liquid to multilayer hexagonal film with the decrease of temperature, accompanied by dramatic change in potential energy, atomic volume, coordination number and lateral radial distribution function. During the cooling process, some hexagonal islands randomly appear in the liquid first, then grow up to grain nuclei, and finally connect together to form a complete polycrystalline film. Moreover, it is found that the quenching rate and slit size are of vital importance to the freezing structure of silicon film. The results also indicate that the slit nanopore induces the layering of liquid silicon, which further induces the slit size dependent solidification behavior of silicon film with different electrical properties. PMID:26435518

  2. Impact of combined hydrogen plasma and transient heat loads on the performance of tungsten as plasma facing material

    NASA Astrophysics Data System (ADS)

    Wirtz, M.; Bardin, S.; Huber, A.; Kreter, A.; Linke, J.; Morgan, T. W.; Pintsuk, G.; Reinhart, M.; Sergienko, G.; Steudel, I.; De Temmerman, G.; Unterberg, B.

    2015-11-01

    Experiments were performed in three different facilities in order to investigate the impact of combined steady state deuterium plasma exposure and ELM-like thermal shock events on the performance of ultra high purity tungsten. The electron beam facility JUDITH 1 was used to simulate pure thermal loads. In addition the linear plasma devices PSI-2 and Pilot-PSI have been used for successive as well as simultaneous exposure where the transient heat loads were applied by a high energy laser and the pulsed plasma operation, respectively. The results show that the damage behaviour strongly depends on the loading conditions and the sequence of the particle and heat flux exposure. This is due to hydrogen embrittlement and/or a higher defect concentration in the tungsten near surface region due to supersaturation of hydrogen. The different results in terms of damage formation from both linear plasma devices indicate that also the plasma parameters such as particle energy, flux and fluence, plasma impurities and the pulse shape have a strong influence on the damage performance. In addition, the different loading methods such as the scanning with the electron beam in contrast to the homogeneous exposure by the laser leads to an faster increase of the surface roughness due to plastic deformation.

  3. Transient characteristics of a grooved water heat pipe with variable heat load

    NASA Technical Reports Server (NTRS)

    Jang, Jong Hoon

    1990-01-01

    The transient characteristics of a grooved water heat pipe were studied by using variable heat load. First, the effects of the property variations of the working fluid with temperature were investigated by operating the water heat pipe at several different temperatures. The experimental results show that, even for the same heat input profile and heat pipe configuration, the heat pipe transports more heat at higher temperature within the tested temperature range. Adequate liquid return to the evaporator due to decreasing viscosity of the working fluid permits continuous vaporization of water without dry-out. Second, rewetting of the evaporator was studied after the evaporator had experienced dry-out. To rewet the evaporator, the elevation of the condenser end was the most effective way. Without elevating the condenser end, rewetting is not straight-forward even with power turned off unless the heat pipe is kept at isothermal condition for sufficiently long time.

  4. Study of Nuclear Decay Data Contribution to Uncertainties in Heat Load Estimations for Spent Fuel Pools

    NASA Astrophysics Data System (ADS)

    Ferroukhi, H.; Leray, O.; Hursin, M.; Vasiliev, A.; Perret, G.; Pautz, A.

    2014-04-01

    At the Paul Scherrer Institut (PSI), a methodology for nuclear data uncertainty propagation in CASMO-5M (C5M) assembly calculations is under development. This paper presents a preliminary application of this methodology to C5M decay heat calculations. Applying a stochastic sampling method, nuclear decay data uncertainties are first propagated for the cooling phase only. Thereafter, the uncertainty propagation is enlarged to gradually account for cross-section as well as fission yield uncertainties during the depletion phase. On that basis, assembly heat load uncertainties as well as total uncertainty for the entire pool are quantified for cooling times up to one year. The relative contributions from the various types of nuclear data uncertainties are in this context also estimated.

  5. Experimental validation of advanced regulations for superconducting magnet cooling undergoing periodic heat loads

    NASA Astrophysics Data System (ADS)

    Lagier, B.; Rousset, B.; Hoa, C.; Bonnay, P.

    2014-01-01

    Superconducting magnets used in tokamaks undergo periodic heat load caused by cycling plasma operations inducing AC losses, neutrons fluxes and eddy currents in magnet structures. In the cryogenic system of JT60-SA tokamak, the Auxiliary Cold Box (ACB) distributes helium from the refrigerator to the cryogenic users and in particular to the superconducting magnets. ACB comprises a saturated helium bath with immersed heat exchangers, extracting heat from independent cooling loops. The supercritical helium flow in each cooling loop is driven by a cold circulator. In order to safely operate the refrigerator during plasma pulses, the interface between the ACB and the refrigerator shall be as stable as possible, with well-balanced bath inlet and outlet mass flows during cycling operation. The solution presented in this paper relies on a combination of regulations to smooth pulsed heat loads and to keep a constant refrigeration power during all the cycle. Two smoothing strategies are presented, both regulating the outlet mass flow of the bath: the first one using the bath as a thermal buffer and the second one storing energy in the loop by varying the cold circulator speed. The bath outlet mass flow is also controlled by an immersed resistive heater which enables a constant evaporation rate in the bath when power coming from the loops is decreasing. The refrigeration power is controlled so that the compensating power remains within an acceptable margin. Experimental validation is achieved using the HELIOS facility. This facility running at CEA Grenoble since 2010 is a scaled down model of the ACB bath and Central Solenoid magnet cooling loop of the JT60-SA tokamak. Test results show performances and robustness of the regulations.

  6. Experimental validation of advanced regulations for superconducting magnet cooling undergoing periodic heat loads

    SciTech Connect

    Lagier, B.; Rousset, B.; Hoa, C.; Bonnay, P.

    2014-01-29

    Superconducting magnets used in tokamaks undergo periodic heat load caused by cycling plasma operations inducing AC losses, neutrons fluxes and eddy currents in magnet structures. In the cryogenic system of JT60-SA tokamak, the Auxiliary Cold Box (ACB) distributes helium from the refrigerator to the cryogenic users and in particular to the superconducting magnets. ACB comprises a saturated helium bath with immersed heat exchangers, extracting heat from independent cooling loops. The supercritical helium flow in each cooling loop is driven by a cold circulator. In order to safely operate the refrigerator during plasma pulses, the interface between the ACB and the refrigerator shall be as stable as possible, with well-balanced bath inlet and outlet mass flows during cycling operation. The solution presented in this paper relies on a combination of regulations to smooth pulsed heat loads and to keep a constant refrigeration power during all the cycle. Two smoothing strategies are presented, both regulating the outlet mass flow of the bath: the first one using the bath as a thermal buffer and the second one storing energy in the loop by varying the cold circulator speed. The bath outlet mass flow is also controlled by an immersed resistive heater which enables a constant evaporation rate in the bath when power coming from the loops is decreasing. The refrigeration power is controlled so that the compensating power remains within an acceptable margin. Experimental validation is achieved using the HELIOS facility. This facility running at CEA Grenoble since 2010 is a scaled down model of the ACB bath and Central Solenoid magnet cooling loop of the JT60-SA tokamak. Test results show performances and robustness of the regulations.

  7. The role of Fabry–Perot resonance for a periodic array of gold nano-slits

    NASA Astrophysics Data System (ADS)

    Zhang, Siwen; Sun, Xiaodong; Wu, Feng; Yang, Jianing

    2016-06-01

    Comprehensive investigations of electromagnetic enhancement and transmittance by a periodic array of gold nano-slits are presented. Rigorous numerical data can be well predicted by a simple Fabry-Perot model. By virtue of the model, the role of Fabry-Perot resonance that enables giant electromagnetic enhancement and high transmittance by a gold nano-slit array is studied. Distinct impacts of array period and slit width on electromagnetic enhancement and those on transmittance are explored. Numerical results imply that contributions of electromagnetic enhancement and transmittance should be considered together in determining the actual enhanced effect of sample signals in surface-enhanced Raman scattering application.

  8. Slit-based supersonic microplasma jets: Scalable sources for nanostructured thin film deposition

    NASA Astrophysics Data System (ADS)

    Koh, T.; Chiles, I.; Gordon, M.

    2013-10-01

    Slit-based, hollow cathode microplasma jets operating in under-expanded supersonic flow were investigated as spray deposition sources to realize nanostructured metal oxide thin films. Design of the slit cathode, its operation (e.g., IV characteristics, fluorescence imaging of supersonic flow shock structures, etc.), and companion CuO nanowire deposition experiments are discussed. Overall, this work demonstrates that slit-based, flow-through microplasmas are a promising way to scale up hollow cathode discharges for large area deposition of thin films at high pressures (>10 Torr).

  9. Production of Slit2 LRR domains in mammalian cells for structural studies and the structure of human Slit2 domain 3.

    PubMed

    Morlot, Cecile; Hemrika, Wieger; Romijn, Roland A; Gros, Piet; Cusack, Stephen; McCarthy, Andrew A

    2007-09-01

    Slit2 and Roundabout 1 (Robo1) provide a key ligand-receptor interaction for the navigation of commissural neurons during the development of the central nervous system. Slit2 is a large multidomain protein containing an unusual domain organization of four tandem leucine-rich repeat (LRR) domains at its N-terminus. These domains are well known to mediate protein-protein interactions; indeed, the Robo1-binding region has been mapped to the concave face of the second LRR domain. It has also been shown that the fourth LRR domain may mediate Slit dimerization and that both the first and second domains can bind heparin. Thus, while roles have been ascribed for three of the LRR domains, there is still no known role for the third domain. Each of the four LRR domains from human Slit2 have now been successfully expressed in milligram quantities using expression in mammalian cells. Here, the crystallization of the second and third LRR domains and the structure of the third LRR domain are presented. This is the first structure of an LRR domain from human Slit2, which has an extra repeat compared with the Drosophila homologue. It is proposed that a highly conserved patch of surface residues on the concave face may mediate any protein-protein interactions involving this LRR domain, a result that will be useful in guiding further studies on Slit2. PMID:17704564

  10. Springback Prediction on Slit-Ring Test

    NASA Astrophysics Data System (ADS)

    Chen, Xiao Ming; Shi, Ming F.; Ren, Feng; Xia, Z. Cedric

    2005-08-01

    Advanced high strength steels (AHSS) are increasingly being used in the automotive industry to reduce vehicle weight while improving vehicle crash performance. One of the concerns in manufacturing is springback control after stamping. Although computer simulation technologies have been successfully applied to predict stamping formability, they still face major challenges in springback prediction, particularly for AHSS. Springback analysis is very complicated and involves large deformation problems in the forming stage and mechanical multiplying effect during the elastic recovery after releasing a part from the die. Therefore, the predictions are very sensitive to the simulation parameters used. It is very critical in springback simulation to choose an appropriate material model, element formulation and contact algorithm. In this study, a springback benchmark test, the slit ring cup, is used in the springback simulation with commercially available finite element analysis (FEA) software, LS-DYNA. The sensitivity of seven simulation variables on springback predictions was investigated, and a set of parameters with stable simulation results was identified. Final simulations using the selected set of parameters were conducted on six different materials including two AHSS steels, two conventional high strength steels, one mild steel and an aluminum alloy. The simulation results are compared with experimental measurements for all six materials and a favorable result is achieved. Simulation errors as compared against test results falls within 10%.

  11. Springback Prediction on Slit-Ring Test

    SciTech Connect

    Chen Xiaoming; Shi, Ming F.; Ren Feng; Xia, Z. Cedric

    2005-08-05

    Advanced high strength steels (AHSS) are increasingly being used in the automotive industry to reduce vehicle weight while improving vehicle crash performance. One of the concerns in manufacturing is springback control after stamping. Although computer simulation technologies have been successfully applied to predict stamping formability, they still face major challenges in springback prediction, particularly for AHSS. Springback analysis is very complicated and involves large deformation problems in the forming stage and mechanical multiplying effect during the elastic recovery after releasing a part from the die. Therefore, the predictions are very sensitive to the simulation parameters used. It is very critical in springback simulation to choose an appropriate material model, element formulation and contact algorithm. In this study, a springback benchmark test, the slit ring cup, is used in the springback simulation with commercially available finite element analysis (FEA) software, LS-DYNA. The sensitivity of seven simulation variables on springback predictions was investigated, and a set of parameters with stable simulation results was identified. Final simulations using the selected set of parameters were conducted on six different materials including two AHSS steels, two conventional high strength steels, one mild steel and an aluminum alloy. The simulation results are compared with experimental measurements for all six materials and a favorable result is achieved. Simulation errors as compared against test results falls within 10%.

  12. Long slit spectroscopy of NGC 5506

    NASA Technical Reports Server (NTRS)

    Stanga, R. M.; Maiolino, R.; Rodriguezespinosa, J. M.

    1993-01-01

    The galaxy NGC 5506 hosts an active nucleus, that presents characteristics that are intermediate between Sy1 and Sy2. We discuss long slit spectra of NGC 5506 in the ranges 4675-5475 A and 6300-7125 A, that were obtained at three different position angles, in Apr. 1991 at the WHT 4.2 m telescope. The peculiar kinematics of the emitting gas has already been observed by other researchers; following the model proposed by the other researchers, that the emitting gas is located in two cones, we determined the aperture of the cones. The data, moreover, support the hypothesis that the gas is receding from the nucleus. We modelled the intensity and the ratios of the emission lines, and verified that the active nucleus of NGC 5506 can be described as a Sy1 nucleus, with the UV-X source that is partially obscured to our line of sight. On the contrary, a good fraction of the interstellar gas of the galaxy is directly illuminated and photoionized by the central source. Our data show evidence of star formation close to the nucleus; we estimated the star formation rate, that is high with respect to 'normal' spirals, but not high enough to be comparable to star formation rates in a starburst galaxy.

  13. Mechanisms for photon sorting based on slit-groove arrays

    NASA Astrophysics Data System (ADS)

    Villate-Guío, F.; Martín-Moreno, L.; de León-Pérez, F.

    2015-01-01

    Mechanisms for one-dimensional photon sorting are theoretically studied in the framework of a coupled-mode method. The considered system is a nanopatterned structure composed of two different pixels drilled on the surface of a thin gold layer. Each pixel consists of a slit-groove array designed to squeeze a large fraction of the incident light into the central slit. The Double-Pixel is optimized to resolve two different frequencies in the near infrared. This system shows high transmission efficiencies and a small crosstalk. It is found that the response of the system strongly depends on the effective area shared by overlapping pixels. According to such degree of overlap, photon sorting can be achieved within three different regimes, which are discussed in detail. Optimal photon-sorting efficiencies are obtained for a moderate number of grooves that overlap with grooves of the neighbor pixel. These results could be applied to both optical and infrared detectors.

  14. Unwanted reflections during slit lamp assisted binocular indirect ophthalmoscopy

    NASA Astrophysics Data System (ADS)

    Sheehan, Matthew; Goncharov, Alexander

    2011-11-01

    Binocular indirect ophthalmoscopy is a routine ophthalmic examination procedure. Two different apparatus setups are commonly employed; the head/spectacle mounted designs of Schepens and slit lamp assisted ophthalmoscopy, both typically performed through a fundus lens of high positive power. It can be difficult for clinicians to avoid unwanted back reflections primarily emanating from the fundus lens and the pre-corneal tear film, particularly when initially learning the skills required to perform the examination. In this investigation the illumination system of a slit lamp was modified to include a variety of obscuration designs optically conjugate to surfaces responsible for creating unwanted reflections. The modified apparatus was then used to perform binocular indirect ophthalmoscopy on an artificial eye and on real eyes. Clinicians used questionnaires to score the appearance of reflections. The mean scores were similar across all trials, including the control unmodified trial, indicating general consensus that the modified illumination system provided no substantial effect on the perception of these unwanted reflections.

  15. Radiation energy transport through hydrodynamically evolving slits

    NASA Astrophysics Data System (ADS)

    Foster, J. M.; Graham, P.; Taylor, M.; Moore, A.; Sorce, C.; Reighard, A.; MacLaren, S.; Young, P.; Glendinning, G.; Blue, B.; Back, C.; Hund, J.

    2008-11-01

    Radiation transport through enclosed spaces with inwardly moving walls is a key component of the physics of laser-heated hohlraums. It arises in the cavity itself (where inward motion of the wall results in late-time stagnation of dense plasma on the hohlraum axis), and also in the laser-entry and diagnostic holes (where an understanding of hole-closure is important to hohlraum design and the interpretation of diagnostic data). To understand these phenomena better, we have carried out a series of experiments at the Omega laser facility. A laser-heated hohlraum is used to illuminate linear and annular slits machined in samples of solid-density tantalum and low-density, tantalum-oxide foam. Measurements of the transmitted energy are made indirectly (by measuring the temperature rise of a ``calorimeter'' hohlraum) and directly (by measuring the emission from the slit component, using a target in which the calorimeter hohlraum was omitted). The hydrodynamics is investigated by self-emission and absorption (backlighting) x-ray imaging of the closing slits. Simulations (using a 2-D Eulerian hydrocode) reproduce the overall energetics, the detail of the deceleration shock and axial stagnation region at the centre of the slit, and the complex shock interactions that occur at corners of the slits.

  16. Corneal astigmatism measuring module for slit lamps

    NASA Astrophysics Data System (ADS)

    Ventura, L.; Riul, C.; Sousa, S. J. F.; DeGroote, J. G. S.; Rosa Filho, A. B.; Oliveira, G. C. D.

    2006-06-01

    We have developed an automatic keratometer module for slit lamps that provides automatic measurements of the radii of the corneal curvature. The system projects 72 light spots displayed in a precise circle at the examined cornea. The displacement and deformation of the reflected image of these light spots are analysed providing the keratometry. Measurements in the range of 26.8-75 D can be obtained and a self-calibration system has been specially designed in order to keep the system calibrated. Infrared LEDs indicate automatically which eye is being examined. Volunteer patients (492) have been submitted to the system and the results show that our system has a high correlation factor with the commercially available manual keratometers and the keratometry measurements from a topographer. Our developed system is 95% in agreement with the corneal topographer (Humphrey—Atlas 995 CZM) and the manual keratometer (Topcon OM-4). The system's nominal precision is 0.05 mm for the radii of curvature and 1° for the associated axis. This research has been supported by Fundação de Apoio à Pesquisa do Estado de São Paulo (FAPESP).

  17. Two-Source Double-Slit Interference in Angle-Resolved High-Energy Above-Threshold Ionization Spectra of Diatoms

    SciTech Connect

    Okunishi, M.; Itaya, R.; Shimada, K.; Pruemper, G.; Ueda, K.; Busuladzic, M.; Gazibegovic-Busuladzic, A.; Milosevic, D. B.; Becker, W.

    2009-07-24

    When an electron from a diatomic molecule undergoes tunneling-rescattering ionization, a novel form of destructive interference can be realized that involves all four geometric orbits that are available to the electron when it is freed, because both ionization and rescattering may take place at the same or at different centers. We find experimentally and confirm theoretically that in orientation-averaged angle-resolved high-order above-threshold ionization spectra the corresponding destructive interference is visible for O{sub 2} but not for N{sub 2}. This effect is different from the suppression of ionization that is well known to occur for O{sub 2}.

  18. Impact of nonlinear 3D equilibrium response on edge topology and divertor heat load in Wendelstein 7-X

    NASA Astrophysics Data System (ADS)

    Suzuki, Y.; Geiger, J.

    2016-06-01

    The impact of the 3D equilibrium response on the plasma edge topology is studied. In Wendelstein 7-X, the island divertor concept is used to assess scenarios for quasi-steady-state operation. However, the boundary islands necessary for the island divertor are strongly susceptible to plasma beta and toroidal current density effects because of the low magnetic shear. The edge magnetic topology for quasi-steady-state operation scenarios is calculated with the HINT-code to study the accompanying changes of the magnetic field structures. Two magnetic configurations have been selected, which had been investigated in self consistent neoclassical transport simulations for low bootstrap current but which use the alternative natural island chains to the standard iota value of 1 (ι b   =  5/5, periodicity), namely, at high-iota (ι b   =  5/4) and at low-iota (ι b   =  5/6). For the high-iota configuration, the boundary islands are robust but the stochasticity around them is enhanced with beta. The addition of toroidal current densities enhances the stochasticity further. The increased stochasticity changes the footprints on in-vessel components with a direct impact on the corresponding heat loads. In the low-iota configuration the boundary islands used for the island divertor are dislocated radially due to the low shear and even show healing effects, i.e. the island width vanishes. In the latter case the plasma changes from divertor to limiter operation. To realize the predicted high-performance quasi-steady-state operation of the transport simulations, further adjustments of the magnetic configuration may be necessary to achieve a proper divertor compatibility of the scenarios.

  19. Nonstationary heat and mass transfer with a reduction of the heat load in a heat exchanger with twisted tubes

    NASA Astrophysics Data System (ADS)

    Dzyubenko, B. V.; Ashmantas, L. A.; Baggdonavichyus, A. B.; Segal', M. D.

    1988-04-01

    The results of an investigation of the nonstationary mixing of the heat-transfer agent accompanying the reduction of the heat load in a bundle of twisted tubes are presented, and a generalizing dependence for calculating the effective coefficient of diffusion is derived.

  20. Training package 1 for slitting data analysis

    SciTech Connect

    Prime, Michael Bruce

    2015-03-23

    This document and accompanying files are intended as a first training package on how to analyze slitting data. The end goal is to have Idaho National Laboratory (INL) personnel trained to analyze future slitting data taken in the INL Hot Cell on clad, Low-Enriched Uranium (LEU) fuel plates. This first data package will cover data analysis for a monolithic material (as compared to a layered material like the clad fuel plates). The additional issues for layered specimens will be covered in a future training package.

  1. Three-slit interference: A duality relation

    NASA Astrophysics Data System (ADS)

    Asad Siddiqui, Mohd; Qureshi, Tabish

    2015-08-01

    The issue of interference and which-way information is addressed in the context of three-slit interference experiments. A new path distinguishability DQ is introduced, based on unambiguous quantum state discrimination. An inequality connecting the interference visibility and path distinguishability, V + {2D_Qover 3- D_Q} ≤ 1, is derived which puts a bound on how much fringe visibility and which-way information can be simultaneously obtained. It is argued that this bound is tight. For two-slit interference, we derive a new duality relation which reduces to Englert's duality relation and the Greenberger-Yasin duality relation, in different limits.

  2. Rapid Prototyping of Nanofluidic Slits in a Silicone Bilayer

    PubMed Central

    Kole, Thomas P.; Liao, Kuo-Tang; Schiffels, Daniel; Ilic, B. Robert; Strychalski, Elizabeth A.; Kralj, Jason G.; Liddle, J. Alexander; Dritschilo, Anatoly; Stavis, Samuel M.

    2015-01-01

    This article reports a process for rapidly prototyping nanofluidic devices, particularly those comprising slits with microscale widths and nanoscale depths, in silicone. This process consists of designing a nanofluidic device, fabricating a photomask, fabricating a device mold in epoxy photoresist, molding a device in silicone, cutting and punching a molded silicone device, bonding a silicone device to a glass substrate, and filling the device with aqueous solution. By using a bilayer of hard and soft silicone, we have formed and filled nanofluidic slits with depths of less than 400 nm and aspect ratios of width to depth exceeding 250 without collapse of the slits. An important attribute of this article is that the description of this rapid prototyping process is very comprehensive, presenting context and details which are highly relevant to the rational implementation and reliable repetition of the process. Moreover, this process makes use of equipment commonly found in nanofabrication facilities and research laboratories, facilitating the broad adaptation and application of the process. Therefore, while this article specifically informs users of the Center for Nanoscale Science and Technology (CNST) at the National Institute of Standards and Technology (NIST), we anticipate that this information will be generally useful for the nanofabrication and nanofluidics research communities at large, and particularly useful for neophyte nanofabricators and nanofluidicists. PMID:26958449

  3. Rapid Prototyping of Nanofluidic Slits in a Silicone Bilayer.

    PubMed

    Kole, Thomas P; Liao, Kuo-Tang; Schiffels, Daniel; Ilic, B Robert; Strychalski, Elizabeth A; Kralj, Jason G; Liddle, J Alexander; Dritschilo, Anatoly; Stavis, Samuel M

    2015-01-01

    This article reports a process for rapidly prototyping nanofluidic devices, particularly those comprising slits with microscale widths and nanoscale depths, in silicone. This process consists of designing a nanofluidic device, fabricating a photomask, fabricating a device mold in epoxy photoresist, molding a device in silicone, cutting and punching a molded silicone device, bonding a silicone device to a glass substrate, and filling the device with aqueous solution. By using a bilayer of hard and soft silicone, we have formed and filled nanofluidic slits with depths of less than 400 nm and aspect ratios of width to depth exceeding 250 without collapse of the slits. An important attribute of this article is that the description of this rapid prototyping process is very comprehensive, presenting context and details which are highly relevant to the rational implementation and reliable repetition of the process. Moreover, this process makes use of equipment commonly found in nanofabrication facilities and research laboratories, facilitating the broad adaptation and application of the process. Therefore, while this article specifically informs users of the Center for Nanoscale Science and Technology (CNST) at the National Institute of Standards and Technology (NIST), we anticipate that this information will be generally useful for the nanofabrication and nanofluidics research communities at large, and particularly useful for neophyte nanofabricators and nanofluidicists. PMID:26958449

  4. Plasma facing materials performance under ITER-relevant mitigated disruption photonic heat loads

    NASA Astrophysics Data System (ADS)

    Klimov, N. S.; Putrik, A. B.; Linke, J.; Pitts, R. A.; Zhitlukhin, A. M.; Kuprianov, I. B.; Spitsyn, A. V.; Ogorodnikova, O. V.; Podkovyrov, V. L.; Muzichenko, A. D.; Ivanov, B. V.; Sergeecheva, Ya. V.; Lesina, I. G.; Kovalenko, D. V.; Barsuk, V. A.; Danilina, N. A.; Bazylev, B. N.; Giniyatulin, R. N.

    2015-08-01

    PFMs (Plasma-facing materials: ITER grade stainless steel, beryllium, and ferritic-martensitic steels) as well as deposited erosion products of PFCs (Be-like, tungsten, and carbon based) were tested in QSPA under photonic heat loads relevant to those expected from photon radiation during disruptions mitigated by massive gas injection in ITER. Repeated pulses slightly above the melting threshold on the bulk materials eventually lead to a regular, "corrugated" surface, with hills and valleys spaced by 0.2-2 mm. The results indicate that hill growth (growth rate of ∼1 μm per pulse) and sample thinning in the valleys is a result of melt-layer redistribution. The measurements on the 316L(N)-IG indicate that the amount of tritium absorbed by the sample from the gas phase significantly increases with pulse number as well as the modified layer thickness. Repeated pulses significantly below the melting threshold on the deposited erosion products lead to a decrease of hydrogen isotopes trapped during the deposition of the eroded material.

  5. Gyrokinetic simulation of edge blobs and divertor heat-load footprint

    NASA Astrophysics Data System (ADS)

    Chang, C. S.; Ku, S.; Hager, R.; Churchill, M.; D'Azevedo, E.; Worley, P.

    2015-11-01

    Gyrokinetic study of divertor heat-load width Lq has been performed using the edge gyrokinetic code XGC1. Both neoclassical and electrostatic turbulence physics are self-consistently included in the simulation with fully nonlinear Fokker-Planck collision operation and neutral recycling. Gyrokinetic ions and drift kinetic electrons constitute the plasma in realistic magnetic separatrix geometry. The electron density fluctuations from nonlinear turbulence form blobs, as similarly seen in the experiments. DIII-D and NSTX geometries have been used to represent today's conventional and tight aspect ratio tokamaks. XGC1 shows that the ion neoclassical orbit dynamics dominates over the blob physics in setting Lq in the sample DIII-D and NSTX plasmas, re-discovering the experimentally observed 1/Ip type scaling. Magnitude of Lq is in the right ballpark, too, in comparison with experimental data. However, in an ITER standard plasma, XGC1 shows that the negligible neoclassical orbit excursion effect makes the blob dynamics to dominate Lq. Differently from Lq 1mm (when mapped back to outboard midplane) as was predicted by simple-minded extrapolation from the present-day data, XGC1 shows that Lq in ITER is about 1 cm that is somewhat smaller than the average blob size. Supported by US DOE and the INCITE program.

  6. Multi-Objective Optimization of Heat Load and Run Time for CEBAF Linacs Using Genetic Algorithms

    NASA Astrophysics Data System (ADS)

    Reeves, Cody; Terzic, Balsa; Hofler, Alicia

    2014-09-01

    The Continuous Electron Beam Accelerator Facility (CEBAF) consists of two linear accelerators (Linacs) connected by arcs. Within each Linac, there are 200 niobium cavities that use superconducting radio frequency (SRF) to accelerate electrons. The gradients for the cavities are selected to optimize two competing objectives: heat load (the energy required to cool the cavities) and trip rate (how often the beam turns off within an hour). This results in a multidimensional, multi-objective, nonlinear system of equations that is not readily solved by analytical methods. This study improved a genetic algorithm (GA), which applies the concept of natural selection. The primary focus was making this GA more efficient to allow for more cost-effective solutions in the same amount of computation time. Two methods used were constraining the maximum value of the ob-jectives and also utilizing previously simulated solutions as the initial generation. A third method of interest involved refining the GA by combining the two objectives into a single weighted-sum objective, which collapses the set of optimal solutions into a single point. By combining these methods, the GA can be made 128 times as effective, reducing computation time from 30 min to 12 sec. This is crucial for when a cavity must be turned off, a new solution needs to be computed quickly. This work is of particular interest since it provides an efficient algorithm that can be easily adapted to any Linac facility.

  7. Measuring the Heat Load on the Flight ASTRO-H Soft Xray Spectrometer Dewar

    NASA Technical Reports Server (NTRS)

    DiPirro, M.; Shirron, P.; Yoshida, S.; Kanao, K.; Tsunematsu, S.; Fujimoto, R.; Sneiderman, G.; Kimball, M.; Ezoe, Y.; Ishikawa, K.; Takei, Y.; Mitsuda, K.; Kelley, R.

    2015-01-01

    The Soft Xray Spectrometer (SXS) instrument on-board the ASTRO-H X-ray mission is based on microcalorimeters operating at 50 mK. Low temperature is achieved by use of an adiabatic demagnetization refrigerator (ADR) cyclically operating up to a heat sink at either 1.2 K or 4.5 K. The 1.2 K heat sink is provided by a 40 liter superfluid helium dewar. The parasitic heat to the helium from supports, plumbing, wires, and radiation, and the cyclic heat dumped by the ADR operation determine the liquid helium lifetime. To measure this lifetime we have used various techniques to rapidly achieve thermal equilibrium and then measure the boil-off rate of the helium. We have measured a parasitic heat of 650 microwatts and a cyclic heat of 100 microwatts for a total of 750 microwatts. This closely matches the predicted heat load. Starting with a fill level at launch of more than 33 liters results in a lifetime of greater than 4 years for the liquid helium. The techniques and accuracy for this measurement will be explained in this paper.

  8. Affect of Air Leakage into a Thermal-Vacuum Chamber on Helium Refrigeration Heat Load

    NASA Technical Reports Server (NTRS)

    Garcia, Sam; Meagher, Daniel; Linza, Robert; Saheli, Fariborz; Vargas, Gerardo; Lauterbach, John; Reis, Carl; Ganni, Venkatarao (Rao); Homan, Jonathan

    2008-01-01

    NASA s Johnson Space Center (JSC) Building 32 houses two large thermal-vacuum chambers (Chamber A and Chamber B). Within these chambers are liquid nitrogen shrouds to provide a thermal environment and helium panels which operate at 20K to provide cryopumping. Some amount of air leakage into the chambers during tests is inevitable. This causes "air fouling" of the helium panel surfaces due to the components of the air that adhere to the panels. The air fouling causes the emittance of the helium panels to increase during tests. The increase in helium panel emittance increases the heat load on the helium refrigerator that supplies the 20K helium for those panels. Planning for thermal-vacuum tests should account for this increase to make sure that the helium refrigerator capacity will not be exceeded over the duration of a test. During a recent test conducted in Chamber B a known-size air leak was introduced to the chamber. Emittance change of the helium panels and the affect on the helium refrigerator was characterized. A description of the test and the results will be presented.

  9. Technology Solutions Case Study: Calculating Design Heating Loads for Superinsulated Buildings

    SciTech Connect

    2015-08-01

    Designing a superinsulated home has many benefits including improved comfort, reduced exterior noise penetration, lower energy bills, and the ability to withstand power and fuel outages under much more comfortable conditions than a typical home. Extremely low heating and cooling loads equate to much smaller HVAC equipment than conventionally required. Sizing the mechanical system to these much lower loads reduces first costs and the size of the distribution system needed. While these homes aren't necessarily constructed with excessive mass in the form of concrete floors and walls, the amount of insulation and the increase in the thickness of the building envelope can lead to a mass effect, resulting in the structures ability to store much more heat than a code built home. This results in a very low thermal inertia making the building much less sensitive to drastic temperature swings thereby decreasing the peak heating load demand. Alternative methods that take this inertia into account along with solar and internal gains result in smaller more appropriate design loads than those calculated using Manual J version 8. During the winter of 2013/2014, the Consortium for Advanced Residential Buildings team monitored the energy use of three homes in climate zone 6 in an attempt to evaluate the accuracy of two different mechanical system sizing methods for low load homes. Based on the results, it is recommended that internal and solar gains be included and some credit for thermal inertia be used in sizing calculations for superinsulated homes.

  10. Modeling of limiter heat loads and impurity transport in Wendelstein 7-X startup plasmas

    NASA Astrophysics Data System (ADS)

    Effenberg, Florian; Feng, Y.; Frerichs, H.; Schmitz, O.; Hoelbe, H.; Koenig, R.; Krychowiak, M.; Pedersen, T. S.; Bozhenkov, S.; Reiter, D.

    2015-11-01

    The quasi-isodynamic stellarator Wendelstein 7-X starts plasma operation in a limiter configuration. The field consists of closed magnetic flux surfaces avoiding magnetic islands in the plasma boundary. Because of the small size of the limiters and the absence of wall-protecting elements in this phase, limiter heat loads and impurity generation due to plasma surface interaction become a concern. These issues are studied with the 3D fluid plasma edge and kinetic neutral transport code EMC3-Eirene. It is shown that the 3D SOL consists of three separate helical magnetic flux bundles of different field line connection lengths. A density scan at input power of 4MW reveals a strong modulation of the plasma paramters with the connection length. The limiter peak heat fluxes drop from 14 MWm-2 down to 10 MWm-2 with raising the density from 1 ×1018m-3 to 1.9 ×1019m-3, accompanied by an increase of the heat flux channel widths λq. Radiative power losses can help to avoid thermal overloads of the limiters at the upper margin of the heating power. The power removal feasibility of the intrinsic carbon and other extrinsic light impurities via active gas injection is discussed as a preparation of this method for island divertor operation. Work supported in part by start up funds of the Department of Engineering Physics at the University of Wisconsin - Madison, USA and by the U.S. Department of Energy under grant DE-SC0013911.

  11. High Temperature Heat Rejection System for Large Heat Loads; Architecture and Trade Study Results

    NASA Astrophysics Data System (ADS)

    Nikitkin, Michael N.; Allen, Robert W.

    2005-02-01

    Recently, there has been significant interest within the aerospace community to develop space based nuclear power conversion technologies especially for exploring the outer planets of our solar system where the solar energy density is very low. Like all power conversion systems, nuclear power conversion systems operate at efficiencies <100% resulting in the need to reject waste heat to space. Several different HRSs (Heat Rejection Systems) potential designs have been identified for rejecting NEP (Nuclear Electric Power) waste heat and several of them for a CBC (Closed Brayton Cycle) power conversion system are described herein and the results of their initial analyses presented. The analyses presented were performed as part of an initial trade study to recommend a promising HRS for advancement of its TRL (Technical Readiness Level). The trade study effort has concluded that the most preferred HRS for the CBC is the system utilizing simple heat pipes directly connecting the heat source with the heat sink. This system was recommended to be a primary focus during the next phase of the HRS development program.

  12. High Temperature Heat Rejection System for Large Heat Loads; Architecture and Trade Study Results

    NASA Technical Reports Server (NTRS)

    Nilitkin, Michael N.; Allen, Robert W.

    2004-01-01

    To investigate space nuclear reactor technologies, NASA has awarded several contracts under Project Prometheus, the Nuclear Systems Program. The effort described in this paper was performed under one of those contracts (the Brayton NRA) . Like all power conversion systems, nuclear power conversion systems operate at efficiencies less than 100% resulting in the need to reject waste heat to space. Several different HRSs (Heat Rejection Systems) potential designs have been identified for rejecting NEP (Nuclear Electric Power) waste heat and several of them for a CBC (Closed Brayton Cycle) power conversion system are described herein and the results of their initial analyses presented. The analyses presented were performed as part of an initial trade study to recommend a promising HRS for advancement of its TRL.

  13. Cryogenic high-heat-load optics at the advanced photon source

    SciTech Connect

    Rogers, C.S.

    1997-06-01

    Cryogenically cooled silicon monochromators have found wide application at the Advanced Photon Source (APS) and other third-generation synchrotron radiation facilities. Currently, 17 insertion device beamlines at the APS are implementing cryogenic, silicon double-crystal monochromators (DCM) at the first optical element. Recently, several silicon crystal monochromators internally cooled with liquid nitrogen have been tested on the sector 1-ID undulator beamline at the APS. Rocking curves at various energies were measured simultaneously in first and third order from a Si(111) DCM in the Bragg reflection geometry at a fixed undulator gap of 11.1 mm. The crystal exhibited a sub-arc second thermal broadening of the rocking curve over a first order energy range from 6.0 to 17.0 keV up to a maximum incident power of 561 W in a 2.5 V x 2.0 H mm{sup 2} beam. It has been demonstrated that cryogenic silicon monochromators can handle the highest power beams from hard x-ray undulators at the APS without significant thermo-mechanical distortion.

  14. Experience with bulk tungsten test-limiters under high heat loads: melting and melt layer propagation

    NASA Astrophysics Data System (ADS)

    Sergienko, G.; Bazylev, B.; Hirai, T.; Huber, A.; Kreter, A.; Mertens, Ph; Nedospasov, A.; Philipps, V.; Pospieszczyk, A.; Rubel, M.; Samm, U.; Schweer, B.; Sundelin, P.; Tokar, M.; Wessel, E.

    2007-03-01

    The paper provides an overview of processes and underlying physics governing tungsten melt erosion in the fusion plasma environment. Experiments with three different bulk tungsten test-limiters were performed in TEXTOR: (i) thermally insulated solid plate fixed on a graphite roof-like limiter heated up by the plasma to the melting point, (ii) macro-brush of the ITER-relevant castellated structure and (iii) lamellae structure developed for the JET divertor. The main objectives were to determine the metal surface damage, the formation of the melt layer and its motion in the magnetic field. PHEMOBRID-3D and MEMOS-1.5D numerical codes were used to simulate the experiment with the roof-like test-limiter. Both experiments and simulation showed that the melting of tungsten can lead to a large material redistribution due to thermo-electron emission currents without ejection of molten material to the plasma.

  15. Inclined monochromator for high heat-load synchrotron x-ray radiation

    DOEpatents

    Khounsary, Ali M.

    1994-01-01

    A double crystal monochromator including two identical, parallel crystals, each of which is cut such that the normal to the diffraction planes of interest makes an angle less than 90 degrees with the surface normal. Diffraction is symmetric, regardless of whether the crystals are symmetrically or asymmetrically cut, enabling operation of the monochromator with a fixed plane of diffraction. As a result of the inclination of the crystal surface, an incident beam has a footprint area which is elongated both vertically and horizontally when compared to that of the conventional monochromator, reducing the heat flux of the incident beam and enabling more efficient surface cooling. Because after inclination of the crystal only a fraction of thermal distortion lies in the diffraction plane, slope errors and the resultant misorientation of the diffracted beam are reduced.

  16. Inclined monochromator for high heat-load synchrotron x-ray radiation

    DOEpatents

    Khounsary, A.M.

    1994-02-15

    A double crystal monochromator is described including two identical, parallel crystals, each of which is cut such that the normal to the diffraction planes of interest makes an angle less than 90 degrees with the surface normal. Diffraction is symmetric, regardless of whether the crystals are symmetrically or asymmetrically cut, enabling operation of the monochromator with a fixed plane of diffraction. As a result of the inclination of the crystal surface, an incident beam has a footprint area which is elongated both vertically and horizontally when compared to that of the conventional monochromator, reducing the heat flux of the incident beam and enabling more efficient surface cooling. Because after inclination of the crystal only a fraction of thermal distortion lies in the diffraction plane, slope errors and the resultant misorientation of the diffracted beam are reduced. 11 figures.

  17. Behaviour of Silicon-Doped CFC Limiter under High Heat Load in TEXTOR-94

    NASA Astrophysics Data System (ADS)

    Huber, A.; Philipps, V.; Hirai, T.; Kirschner, A.; Lehnen, M.; Pospieszczyk, A.; Schweer, B.; Sergienko, G.

    In order to study the impurity production, recycling and power deposition a Si doped CFC test limiter (NS31) was used in TEXTOR-94. The release of impurities (C, Si, O, Cr, CD radicals) was measured spectroscopically. A reduced methane production was found in the Si doped graphite when compared to a pure graphite limiter. A smaller decrease of the carbon fluxes could also be observed. The limiter contained about 1%-1.5% of Si, but a relative Si flux (Si/D) from the Si doped CFC surface between 0.12% and 0.4% has been measured. A chemical erosion of Si due to formation of SiDx has not been observed. Silicon evaporated from the surface at temperatures above 1500°C. This led to an increase of Si concentration and total radiation losses from the plasma. Surface analysis shows the formation of microcracks and holes on the plasma exposed limiter surface. The released Si was deposited in the vicinity of the tangency point of the limiter. Whereas a Si depletion was observed in the area of highest power loading with values reaching in and in-between fibres values of 0.03% and 0.02% respectively.

  18. Vibration measurements of high-heat-load monochromators for DESY PETRA III extension

    PubMed Central

    Kristiansen, Paw; Horbach, Jan; Döhrmann, Ralph; Heuer, Joachim

    2015-01-01

    The requirement for vibrational stability of beamline optics continues to evolve rapidly to comply with the demands created by the improved brilliance of the third-generation low-emittance storage rings around the world. The challenge is to quantify the performance of the instrument before it is installed at the beamline. In this article, measurement techniques are presented that directly and accurately measure (i) the relative vibration between the two crystals of a double-crystal monochromator (DCM) and (ii) the absolute vibration of the second-crystal cage of a DCM. Excluding a synchrotron beam, the measurements are conducted under in situ conditions, connected to a liquid-nitrogen cryocooler. The investigated DCM utilizes a direct-drive (no gearing) goniometer for the Bragg rotation. The main causes of the DCM vibration are found to be the servoing of the direct-drive goniometer and the flexibility in the crystal cage motion stages. It is found that the investigated DCM can offer relative pitch vibration down to 48 nrad RMS (capacitive sensors, 0–5 kHz bandwidth) and absolute pitch vibration down to 82 nrad RMS (laser interferometer, 0–50 kHz bandwidth), with the Bragg axis brake engaged. PMID:26134790

  19. Flow Through Surface Mounted Continuous Slits

    NASA Astrophysics Data System (ADS)

    Tariq, A.; Ali, M. A.; Gad-El-Hak, M.

    2014-11-01

    Ribs are used inside certain gas-turbine blades as passive devices to enhance heat transfer. Slits in those ribs are utilized to control the primary shear layer. The role of secondary flow through a continuous slit behind a surface mounted rib is investigated herein in a rectangular duct using hotwire anemometry and particle image velocimetry. Changing the open-area-ratio and the slit's location within the rib dominate the observed shear layer. The behavior of discrete Fourier modes of the velocity fluctuations generated by different configurations is explored. Two distinct flow mechanisms are observed in the rib's wake. Both mechanisms are explained on the basis of large-scale spectral peak in the shear layer. The results show the successful impact of changing the open-area-ratio by manipulating the small-scale vortices at the leeward corner of the rib, which is suspected to be the potential cause of surface ``hot spots'' in a variety of engineering devices with heat transfer. Eventually, the size and location of the slit are seen to be an additional parameter that can be used to control the fluid flow structures behind rib turbulators.

  20. Emittance formula for slits and pepper-pot measurement

    SciTech Connect

    Zhang, M.

    1996-10-01

    In this note, a rigid formula for slits and pepper-pot emittance measurement is derived. The derivation is based on the one- dimensional slit measurement setup. A mathematical generalization of the slit emittance formula to the pepper-pot measurement is discussed.

  1. Measuring Slit Width and Separation in a Diffraction Experiment

    ERIC Educational Resources Information Center

    Gan, K. K.; Law, A. T.

    2009-01-01

    We present a procedure for measuring slit width and separation in single- and double-slit diffraction experiments. Intensity spectra of diffracted laser light are measured with an optical sensor (PIN diode). Slit widths and separations are extracted by fitting to the measured spectra. We present a simple fitting procedure to account for the…

  2. Polish device for FOCCoS/PFS slit system

    NASA Astrophysics Data System (ADS)

    de Oliveira, Antonio Cesar; de Oliveira, Ligia Souza; de Arruda, Marcio V.; Souza Marrara, Lucas; dos Santos, Leandro Henrique; Ferreira, Décio; dos Santos, Jesulino Bispo; de Paiva Vilaça, Rodrigo; Rosa, Josimar Aparecido; Sodré Junior, Laerte; de Oliveira, Claudia Mendes

    2014-07-01

    The Fiber Optical Cable and Connector System, "FOCCoS", for the Prime Focus Spectrograph, "PFS", is responsible for transporting light from the Subaru Telescope focal plane to a set of four spectrographs. Each spectrograph will be fed by a convex curved slit with 616 optical fibers organized in a linear arrangement. The slit frontal surface is covered with a special dark composite, made with refractory oxide, which is able to sustain its properties with minimum quantities of abrasives during the polishing process; this stability is obtained This stability is obtained by the detachment of the refractory oxide nanoparticles, which then gently reinforce gently the polishing process and increase its the efficiency. The surface roughness measured in several samples after high performance polishing was about 0.01 microns. Furthermore, the time for obtaining a polished surface with this quality is about 10 times less than the time required for polishing a brass, glass or ceramic surface of the same size. In this paper, we describe the procedure developed for high quality polishing of this type of slit. The cylindrical polishing described here, uses cylindrical concave metal bases on which glass paper is based. The polishing process consists to use grid sequences of 30μm, 12μm, 9μm, 5μm, 3μm, 1μm and, finally, a colloidal silica on a chemical cloth. To obtain the maximum throughput, the surface of the fibers should be polished in such a way that they are optically flat and free from scratches. The optical fibers are inspected with a microscope at all stages of the polishing process to ensure high quality. The efficiency of the process may be improved by using a cylindrical concave composite base as a substrate suitable for diamond liquid solutions. Despite this process being completely by hand, the final result shows a very high quality.

  3. Measurement of heat load density profile on acceleration grid in MeV-class negative ion accelerator

    NASA Astrophysics Data System (ADS)

    Hiratsuka, Junichi; Hanada, Masaya; Kojima, Atsushi; Umeda, Naotaka; Kashiwagi, Mieko; Miyamoto, Kenji; Yoshida, Masafumi; Nishikiori, Ryo; Ichikawa, Masahiro; Watanabe, Kazuhiro; Tobari, Hiroyuki

    2016-02-01

    To understand the physics of the negative ion extraction/acceleration, the heat load density profile on the acceleration grid has been firstly measured in the ITER prototype accelerator where the negative ions are accelerated to 1 MeV with five acceleration stages. In order to clarify the profile, the peripheries around the apertures on the acceleration grid were separated into thermally insulated 34 blocks with thermocouples. The spatial resolution is as low as 3 mm and small enough to measure the tail of the beam profile with a beam diameter of ˜16 mm. It was found that there were two peaks of heat load density around the aperture. These two peaks were also clarified to be caused by the intercepted negative ions and secondary electrons from detailed investigation by changing the beam optics and gas density profile. This is the first experimental result, which is useful to understand the trajectories of these particles.

  4. Measurement of heat load density profile on acceleration grid in MeV-class negative ion accelerator.

    PubMed

    Hiratsuka, Junichi; Hanada, Masaya; Kojima, Atsushi; Umeda, Naotaka; Kashiwagi, Mieko; Miyamoto, Kenji; Yoshida, Masafumi; Nishikiori, Ryo; Ichikawa, Masahiro; Watanabe, Kazuhiro; Tobari, Hiroyuki

    2016-02-01

    To understand the physics of the negative ion extraction/acceleration, the heat load density profile on the acceleration grid has been firstly measured in the ITER prototype accelerator where the negative ions are accelerated to 1 MeV with five acceleration stages. In order to clarify the profile, the peripheries around the apertures on the acceleration grid were separated into thermally insulated 34 blocks with thermocouples. The spatial resolution is as low as 3 mm and small enough to measure the tail of the beam profile with a beam diameter of ∼16 mm. It was found that there were two peaks of heat load density around the aperture. These two peaks were also clarified to be caused by the intercepted negative ions and secondary electrons from detailed investigation by changing the beam optics and gas density profile. This is the first experimental result, which is useful to understand the trajectories of these particles. PMID:26932019

  5. Material ejection and surface morphology changes during transient heat loading of tungsten as plasma-facing component in fusion devices

    NASA Astrophysics Data System (ADS)

    Suslova, A.; El-Atwani, O.; Harilal, S. S.; Hassanein, A.

    2015-03-01

    We investigated the effect of edge-localized mode like transient heat events on pristine samples for two different grades of deformed tungsten with ultrafine and nanocrystalline grains as potential candidates for plasma-facing components. Pulses from a laser beam with durations ∼1 ms and operating in the near infrared wavelength were used for simulating transient heat loading in fusion devices. We specifically focused on investigating and analysis of different mechanisms for material removal from the sample surface under repetitive transient heat loads. Several techniques were applied for analysing different mechanisms leading to material removal from the W surface under repetitive transient heat loads which include witness plates for collected ejected material, and subsequent analysis using x-ray photoelectron spectroscopy and scanning electron microscopy, visible imaging using fast-gated camera, and evaluating thermal emission from the particles using optical emission spectroscopy. Our results show a significantly improved performance of polycrystalline cold-rolled tungsten compared to tungsten produced using an orthogonal machining process under repetitive transient loads for a wide range of the power densities.

  6. Enhanced nonresonant light transmission through subwavelength slits in metal.

    PubMed

    Pors, Anders; Nerkararyan, Khachatur V; Sahakyan, Khachik; Bozhevolnyi, Sergey I

    2016-01-15

    We analytically describe light transmission through a single subwavelength slit in a thin perfect electric conductor screen for the incident polarization being perpendicular to the slit, and derive simple, yet accurate, expressions for the average electric field in the slit and the transmission efficiency. The analytic results are consistent with full-wave numerical calculations and demonstrate that slits of widths ∼100  nm in real metals may feature nonresonant (i.e., broadband) field enhancements of ∼100 and transmission efficiency of ∼10 at infrared or terahertz frequencies, with the associated metasurface-like array of slits becoming transparent to the incident light. PMID:26766684

  7. Electron capture acceleration channel in a slit laser beam

    SciTech Connect

    Wang, P. X.; Scheid, W.; Ho, Y. K.

    2007-03-12

    Using numerical simulations, the authors find that the electrons can be captured and accelerated to high energies (GeV) in a slit laser beam with an intensity of I{lambda}{sup 2}{approx}10{sup 20} W/cm{sup 2} {mu}m{sup 2}, where {lambda} is the laser wavelength in units of {mu}m. The range of the optimum incident energy is very wide, even up to GeV. These results are of interest for experiments because the relatively low intensity can be achieved with present chirped pulse amplification technique and a wide range of incident energies means that a multistage acceleration is possible.

  8. [Purkinje images in slit lamp videography : Video article].

    PubMed

    Gellrich, M-M; Kandzia, C

    2016-09-01

    Reflexes that accompany every examination with the slit lamp are usually regarded as annoying and therefore do not receive much attention. In the video available online, clinical information "hidden" in the Purkinje images is analyzed according to our concept of slit lamp videography. In the first part of the video, the four Purkinje images which are reflections on the eye's optical surfaces are introduced for the phakic eye. In the pseudophakic eye, however, the refracting surfaces of the intraocular lens (IOL) have excellent optical properties and therefore form Purkinje images 3 and 4 of high quality. Especially the third Purkinje image from the anterior IOL surface, which is usually hardly visible in the phakic eye can be detected deep in the vitreous, enlarged through the eye's own optics like a magnifying glass. Its area of reflection can be used to visualize changes of the anterior segment at high contrast. The third Purkinje image carries valuable information about the anterior curvature and, thus, about the power of the IOL. If the same IOL type is implanted in a patient, often a difference between right and left of 0.5 diopter in its power can be detected by the difference in size of the respective third Purkinje image. In a historical excursion to the "prenatal phase" of the slit lamp in Uppsala, we show that our most important instrument in clinical work was originally designed for catoptric investigations (of specular reflections). Accordingly A. Gullstrand called it an ophthalmometric Nernst lamp. PMID:27558688

  9. Novel multi-slit large-volume air sampler.

    PubMed

    Buchanan, L M; Decker, H M; Frisque, D E; Phillips, C R; Dahlgren, C M

    1968-08-01

    Scientific investigators who are interested in the various facets of airborne transmission of disease in research laboratories and hospitals need a simple, continuous, high-volume sampling device that will recover a high percentage of viable microorganisms from the atmosphere. Such a device must sample a large quantity of air. It should effect direct transfer of the air into an all-purpose liquid medium in order to collect bacteria, viruses, rickettsia, and fungi, and it should be easy to use. A simple multi-slit impinger sampler that fulfills these requirements has been developed. It operates at an air-sampling rate of 500 liters/min, has a high collection efficiency, functions at a low pressure drop, and, in contrast to some earlier instruments, does not depend upon electrostatic precipitation at high voltages. When compared to the all-glass impinger, the multi-slit impinger sampler collected microbial aerosols of Serratia marcescens at 82% efficiency, and aerosols of Bacillus subtilis var. niger at 78% efficiency. PMID:4970892

  10. The mechanics of slitting and cutting webs

    NASA Astrophysics Data System (ADS)

    Meehan, Richard Raymond

    The quality of edges formed during cutting and slitting of thin polymer webs is important for many industrial applications. In order to control the edge quality of the separated material, it is necessary to understand cutting. A model is proposed and the mechanics of cutting are described. An apparatus was constructed to instrument, monitor and control the web slitting process. The slitting speed, tension in the web, blade sharpness and angle of cut were varied during tests. This allowed a quantitative understanding of the cutting mechanisms to be established. The results of the experiments showed the in-plane cutting forces were minimally affected by changes in rate or speed and independent of web tension for sharp blades. The angle of cut had a pronounced effect on the in-plane cutting forces and the stability of the cut. Further experimentation was designed to relate force to plastic deformation caused by a wedge indenting the edge surface of a polymer sample. These experiments clearly revealed the shape of the plastic deformation zone ahead of and around the wedges. Data from the experiments showed increasing cutting force with wedge displacement until the sample fractured. Plastic deformation of the samples was then examined in detail. The results showed out-of-plane plastic volume was equal to the volume displaced by the wedge. Samples also exhibited constant hardness during initial phases of wedge indenting. A finite element model concurred with the empirical plastic zone data. An innovative method was developed to take a dynamic "snapshot" of web displacement around the blade. The results clearly showed the web buckling ahead of the blade producing major instability during the cutting and slitting of thin webs. A finite element model supported the characteristics of the buckling phenomena observed in thin webs. An understanding of the interaction of cutting parameters and the buckling instability will allow quality web edges with minimal deformation and

  11. Characterization and verification of ACAM slit functions for trace-gas retrievals during the 2011 DISCOVER-AQ flight campaign

    NASA Astrophysics Data System (ADS)

    Liu, C.; Liu, X.; Kowalewski, M. G.; Janz, S. J.; González Abad, G.; Pickering, K. E.; Chance, K.; Lamsal, L. N.

    2015-02-01

    The Airborne Compact Atmospheric Mapper (ACAM), an ultraviolet/visible/near-infrared spectrometer, has been flown on board the NASA UC-12 aircraft during the Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) campaigns to provide remote sensing observations of tropospheric and boundary-layer pollutants from its radiance measurements. To assure the trace-gas retrieval from ACAM measurements we perform detailed characterization and verification of ACAM slit functions. The wavelengths and slit functions of ACAM measurements are characterized for the air-quality channel (~304-500 nm) through cross-correlation with a high-resolution solar irradiance reference spectrum after necessarily accounting for atmospheric gas absorption and the ring effect in the calibration process. The derived slit functions, assuming a hybrid combination of asymmetric Gaussian and top-hat slit functions, agree very well with the laboratory-measured slit functions. Comparisons of trace-gas retrievals between using derived and measured slit functions demonstrate that the cross-correlation technique can be reliably used to characterize slit functions for trace-gas retrievals.

  12. Characterization and verification of ACAM slit functions for trace gas retrievals during the 2011 DISCOVER-AQ flight campaign

    NASA Astrophysics Data System (ADS)

    Liu, C.; Liu, X.; Kowalewski, M. G.; Janz, S. J.; González Abad, G.; Pickering, K. E.; Chance, K.; Lamsal, L. N.

    2014-11-01

    The Airborne Compact Atmospheric Mapper (ACAM), an ultraviolet/visible/near-infrared spectrometer, has been flown on board the NASA UC-12 aircraft during the DISCOVER-AQ (Deriving Information on Surface Conditions from Column and Vertically Resolved Observations Relevant to Air Quality) campaigns to provide remote sensing observations of tropospheric and boundary layer pollutants from its radiance measurements. To improve the trace gas retrieval from ACAM measurements, we perform detailed characterization and verification of ACAM slit functions. The wavelengths and slit functions of ACAM measurements are characterized for the air quality channel (~304-500 nm) through cross-correlation with a high-resolution solar irradiance reference spectrum after necessarily accounting for atmospheric gas absorption and the Ring effect in the calibration process. The derived slit functions, assuming a hybrid combination of asymmetric Gaussian and top-hat slit functions, agree very well with the laboratory-measured slit functions. Comparisons of trace gas retrievals between using derived and measured slit functions demonstrate that the cross-correlation technique can be reliably used to characterize slit functions for trace gas retrievals.

  13. Slits Affect the Timely Migration of Neural Crest Cells via Robo Receptor

    PubMed Central

    Giovannone, Dion; Reyes, Michelle; Reyes, Rachel; Correa, Lisa; Martinez, Darwin; Ra, Hannah; Gomez, Gustavo; Kaiser, Josh; Ma, Le; Stein, Mary-Pat; de Bellard, Maria Elena

    2013-01-01

    SUMMARY Background Neural crest cells emerge by delamination from the dorsal neural tube and give rise to various components of the peripheral nervous system in vertebrate embryos. These cells change from non-motile into highly motile cells migrating to distant areas before further differentiation. Mechanisms controlling delamination and subsequent migration of neural crest cells are not fully understood. Slit2, a chemorepellant for axonal guidance that repels and stimulates motility of trunk neural crest cells away from the gut has recently been suggested to be a tumor suppressor molecule. The goal of this study was to further investigate the role of Slit2 in trunk neural crest cell migration by constitutive expression in neural crest cells. Results We found that Slit gain-of-function significantly impaired neural crest cell migration while Slit loss-of-function favored migration. In addition, we observed that the distribution of key cytoskeletal markers was disrupted in both gain and loss of function instances. Conclusions These findings suggest that Slit molecules might be involved in the processes that allow neural crest cells to begin migration and transitioning to a mesenchymal type. PMID:22689303

  14. Additional cooling and heating load improvements in seasonal performance modeling of room and central air conditioners and heat pumps. Topical report, Subtask 3. 2

    SciTech Connect

    Not Available

    1980-04-09

    The study focuses on improving the load modeling technique of Seasonal Performance Model (SPM) in order to estimate a more realistic load for seasonal analysis calculations on an hourly basis. A computer simulation program, Seasonal Performance Model Load (SPMLD), was used to calculate the cooling and heating loads for a typical residence in Caribou, Maine; Columbia, Missouri; and Fort Worth, Texas. The derivation of the SPMLD is described and changes made to improve cooling and heating load estimates are identified. (MCW)

  15. A new fiber slit assembly for the FOCES spectrograph

    NASA Astrophysics Data System (ADS)

    Kellermann, Hanna; Grupp, Frank; Brucalassi, Anna; Lang-Bardl, Florian; Franik, Christian; Hopp, Ulrich; Bender, Ralf

    2015-09-01

    After successful operation at the Calar Alto telescope until 2009, and extensive lab tests at the Munich University Observatory the high resolution Échelle spectrograph FOCES (Fiber Optics Cassegrain Échelle Spectrograph) is now about to be reinstalled at the 2 m Wendelstein Observatory in the German Alps. For this new phase of operation FOCES will be equipped with new components that will improve time stability and wavelength calibration. With these modifications FOCES will meet the requirements for performing precision radial velocity measurements on a competitive level. One of the key features of the upgraded spectrograph is the new calibration system, which uses a laser frequency comb as reference light source. Another aspect is the possibility to perform simultaneous wavelength calibration, while recording science data. For this purpose a new 4-fiber slit has been developed, which opens up the possibility to feed light from different sources at the same time through the entrance slit of the spectrograph. We present a detailed characterization of this new device, based on the results of extensive lab tests performed at the Munich University Observatory.

  16. Adaptive SPECT imaging with crossed-slit apertures

    PubMed Central

    Durko, Heather L.; Furenlid, Lars R.

    2015-01-01

    Preclinical single-photon emission computed tomography (SPECT) is an essential tool for studying the progression, response to treatment, and physiological changes in small animal models of human disease. The wide range of imaging applications is often limited by the static design of many preclinical SPECT systems. We have developed a prototype imaging system that replaces the standard static pinhole aperture with two sets of movable, keel-edged copper-tungsten blades configured as crossed (skewed) slits. These apertures can be positioned independently between the object and detector, producing a continuum of imaging configurations in which the axial and transaxial magnifications are not constrained to be equal. We incorporated a megapixel silicon double-sided strip detector to permit ultrahigh-resolution imaging. We describe the configuration of the adjustable slit aperture imaging system and discuss its application toward adaptive imaging, and reconstruction techniques using an accurate imaging forward model, a novel geometric calibration technique, and a GPU-based ultra-high-resolution reconstruction code. PMID:26190884

  17. The ascending trajectories performance and control to minimize the heat load for the transatmospheric aero-space planes

    NASA Astrophysics Data System (ADS)

    Barlow, J.; Al-Garni, A.

    The goal of airbreathing transatmospheric vehicle (TAV) ascending trajectory performance and control definition is the minimization of heat loads/unit area near the stagnation point, modeling the vehicle as a point-variable mass with drag polar and variable thrust. Initially, the present effort proceeds analytically to define the aerodynamic and thrust controls required for TAV transfer from one specified state to another, while satisfying such equality constraints as constant dynamic pressure and constant rate-of-climb. Extensive numerical optimization algorithms are then applied. An illustrative numerical example is presented.

  18. Narrow gaps for transmission through metallic structured gratings with subwavelength slits.

    PubMed

    Skigin, Diana C; Depine, Ricardo A

    2006-10-01

    Transmission dips in the response of metallic compound gratings formed by several wires and slits in each period have been recently reported for normal illumination. These anomalies are generated by a particular arrangement of the magnetic field phases inside the subwavelength slits, and they are characterized by a significant enhancement of the interior field. We investigate the microwave response of such systems under non-normal illumination and show that new phase modes appear in this configuration. Contrary to the effect produced by a defect in a photonic crystal, these systems exhibit forbidden channels within a permitted band. We also found that the appearance of these resonances is not highly dependent on the slits' width and thickness, even though these parameters modify the overall transmittance. PMID:17155191

  19. One-dimensional longitudinal-torsional vibration converter with multiple diagonally slitted parts

    PubMed

    Tsujino; Ueoka; Otoda; Fujimi

    2000-03-01

    For increasing the available vibration velocity of the one-dimensional longitudinal-torsional vibration converter, a new type of complex vibration converter with multiple slitted parts installed in the positions avoiding longitudinal nodal positions along the converter for decreasing the maximum vibration stress level at the vibration nodal part was studied. The free end of the converter vibrates in an elliptical or circular locus. Complex vibration systems with elliptical to circular or rectangular to square loci can be applied effectively for various high-power applications, including ultrasonic welding of metal or plastics, ultrasonic wire bonding of IC, LSI and electronic devices, and also ultrasonic motors. The converter with multiple slitted parts was improved in the vibration stress level and the quality factor compared with the converter with single slitted part. PMID:10829632

  20. Electronically tunable extraordinary optical transmission in graphene plasmonic ribbons coupled to subwavelength metallic slit arrays

    NASA Astrophysics Data System (ADS)

    Kim, Seyoon; Jang, Min Seok; Brar, Victor W.; Tolstova, Yulia; Mauser, Kelly W.; Atwater, Harry A.

    2016-08-01

    Subwavelength metallic slit arrays have been shown to exhibit extraordinary optical transmission, whereby tunnelling surface plasmonic waves constructively interfere to create large forward light propagation. The intricate balancing needed for this interference to occur allows for resonant transmission to be highly sensitive to changes in the environment. Here we demonstrate that extraordinary optical transmission resonance can be coupled to electrostatically tunable graphene plasmonic ribbons to create electrostatic modulation of mid-infrared light. Absorption in graphene plasmonic ribbons situated inside metallic slits can efficiently block the coupling channel for resonant transmission, leading to a suppression of transmission. Full-wave simulations predict a transmission modulation of 95.7% via this mechanism. Experimental measurements reveal a modulation efficiency of 28.6% in transmission at 1,397 cm-1, corresponding to a 2.67-fold improvement over transmission without a metallic slit array. This work paves the way for enhancing light modulation in graphene plasmonics by employing noble metal plasmonic structures.

  1. Transmission resonances of metallic compound gratings with subwavelength slits.

    PubMed

    Skigin, Diana C; Depine, Ricardo A

    2005-11-18

    Transmission metallic gratings with subwavelength slits are known to produce enhanced transmitted intensity for certain resonant wavelengths. One of the mechanisms that produce these resonances is the excitation of waveguide modes inside the slits. We show that by adding slits to the period, the transmission maxima are widened and, simultaneously, this generates phase resonances that appear as sharp dips in the transmission response. These resonances are characterized by a significant enhancement of the interior field. PMID:16384182

  2. Approximation theory for boundary layer suction through individual slits

    NASA Technical Reports Server (NTRS)

    Walz, A.

    1979-01-01

    The basic concepts of influencing boundary layers are summarized, especially the prevention of flow detachment and the reduction of frictional resistance. A mathematical analysis of suction through a slit is presented with two parameters, for thickness and for shape of the boundary layer, being introduced to specify the flow's velocity profile behind the slit. An approximation of the shape parameter produces a useful formula, which can be used to determine the most favorable position of the slit. An aerodynamic example is given.

  3. Noseleaf pit in Egyptian slit-faced bat as a doubly curved reflector

    NASA Astrophysics Data System (ADS)

    Zhuang, Qiao; Wang, Xiao-Min; Li, Ming-Xuan; Mao, Jie; Wang, Fu-Xun

    2012-02-01

    Noseleaves in slit-faced bats have been hypothesized to affect the sonar beam. Using numerical methods, we show that the pit in the noseleaf of an Egyptian slit-faced bat has an effect on focusing the acoustic near field as well as shaping the radiation patterns and hence enhancing the directionality. The underlying physical mechanism suggested by the properties of the effect is that the pit acts as a doubly curved reflector. Thanks to the pit the beam shape is overall directional and more selectively widened at the high end of the biosonar frequency range to improve spatial coverage and detectability of targets.

  4. Theoretical investigation of maintaining the boundary layer of revolution laminar using suction slits in incompressible flow

    NASA Technical Reports Server (NTRS)

    Thiede, P.

    1978-01-01

    The transition of the laminar boundary layer into the turbulent state, which results in an increased drag, can be avoided by sucking of the boundary layer particles near the wall. The technically-interesting case of sucking the particles using individual slits is investigated for bodies of revolution in incompressible flow. The results of the variational calculations show that there is an optimum suction height, where the slot separations are maximum. Combined with favorable shaping of the body, it is possible to keep the boundary layer over bodies of revolution laminar at high Reynolds numbers using relatively few suction slits and small amounts of suction flow.

  5. Multi-slit mask fabrication on spherical electroformed shell substrates

    NASA Astrophysics Data System (ADS)

    O'Brien, Thomas P.; Eastman, Jason D.

    2006-06-01

    We discuss the application of modern precision electroforming technology to the fabrication of multi-slit masks used for multi-object spectroscopy. Electroforming technology is capable of producing very accurate compound curved thin metal shells using nickel or nickel-cobalt material. The curved slit masks can be fabricated to conform to a curved focal surface of spherical, conic, or arbitrary shape. A variety of optical coatings including gold and extremely low reflectivity copper oxide can be applied to the electroformed mask substrate prior to cutting slits. Precise rectangular slits and apertures of arbitrary shape are readily machined in the nickel materials using a three axis YAG laser machining system.

  6. Slit2 and Robo1 induce opposing effects on metastasis of hepatocellular carcinoma Sk-hep-1 cells.

    PubMed

    Yuan, Mingjing; Guo, Hui; Li, Jing; Sui, Chengzhi; Qin, Ying; Wang, Jingjing; Khan, Yasir Hayat; Ye, Liying; Xie, Fuan; Wang, Heng; Yuan, Li; Ye, Jun

    2016-07-01

    The neural guidance molecular, Slit2, and its cognate receptor, Robo1, play critical roles in the development of the nervous system, nevertheless, their functions are not limited to this system. Numerous studies have shown decreased Slit2 expression in a wide variety of cancers, highlighting its potential as a tumor suppressor. However, the Slit2/Robo1 signaling axis was reported to induce either suppressive or stimulatory effects on tumor growth and metastasis, depending on cellular context. There is a paucity of information on the effects of the Slit2/Robo1 signaling axis on the growth and metastasis of human hepatocellular carcinoma (HCC). Large-scale data mining of the Oncomine database has revealed heterogeneous expression of Slit2 in HCC. We screened the Sk-hep-1, a cell line showing a relatively high level of Slit2, and low level of Robo1 expression. After Slit2 knockdown and Robo1 overexpression in these cells, we found Slit2 and Robo1 exerted opposing effects on tumor growth and metastasis both in in vitro and in vivo models. Slit2 knockdown and Robo1 overexpression in Sk-hep-1 cells promoted tumor growth and metastasis, suggesting a negative and positive role for Slit2 and Robo1, respectively, in tumor progression. Robo1 overexpression upregulated matrix metalloproteinase (MMP)2, -9 and membrane-type1 MMP (MT1-MMP) expression, stimulated MMP2, but not MMP9 activation, and downregulated expression of TIMP1 and 2. The PI3K/Akt signaling pathway is of importance in regulating MMP2 expression in Sk-hep-1 cells, since Robo1 overexpression stimulated phosphorylation of Akt while the PI3K inhibitor LY294002, significantly inhibited the upregulation of MMP2 and also the enhanced cell invasion induced by Robo1 overexpression. We postulate that Robo1 promotes tumor invasion partly by the upregulation of MMP2 after activation of PI3K/Akt signaling pathway. Notably, Slit2 knockdown caused the upregulation of Robo1 expression both at the mRNA and protein levels

  7. Investigation of the impact of transient heat loads applied by laser irradiation on ITER-grade tungsten

    NASA Astrophysics Data System (ADS)

    Huber, A.; Arakcheev, A.; Sergienko, G.; Steudel, I.; Wirtz, M.; Burdakov, A. V.; Coenen, J. W.; Kreter, A.; Linke, J.; Mertens, Ph; Philipps, V.; Pintsuk, G.; Reinhart, M.; Samm, U.; Shoshin, A.; Schweer, B.; Unterberg, B.; Zlobinski, M.

    2014-04-01

    Cracking thresholds and crack patterns in tungsten targets after repetitive ITER-like edge localized mode (ELM) pulses have been studied in recent simulation experiments by laser irradiation. The tungsten specimens were tested under selected conditions to quantify the thermal shock response. A Nd:YAG laser capable of delivering up to 32 J of energy per pulse with a duration of 1 ms at the fundamental wavelength λ = 1064 nm has been used to irradiate ITER-grade tungsten samples with repetitive heat loads. The laser exposures were performed for targets at room temperature (RT) as well as for targets preheated to 400 °C to measure the effects of the ELM-like loading conditions on the formation and development of cracks. The magnitude of the heat loads was 0.19, 0.38, 0.76 and 0.90 MJ m-2 (below the melting threshold) with a pulse duration of 1 ms. The tungsten surface was analysed after 100 and 1000 laser pulses to investigate the influence of material modification by plasma exposures on the cracking threshold. The observed damage threshold for ITER-grade W lies between 0.38 and 0.76 GW m-2. Continued cycling up to 1000 pulses at RT results in enhanced erosion of crack edges and crack edge melting. At the base temperature of 400 °C, the formation of cracks is suppressed.

  8. Artificial Neural Networks: a viable tool to design heat load smoothing strategies for the ITER Toroidal Field coils

    NASA Astrophysics Data System (ADS)

    Froio, A.; Bonifetto, R.; Carli, S.; Quartararo, A.; Savoldi, L.; Zanino, R.

    2015-12-01

    In superconducting tokamaks, cryoplants provide the helium needed to cool the superconducting magnet systems. The evaluation of the heat load from the magnets to the cryoplant is fundamental for the design of the latter and the assessment of suitable strategies to smooth the heat load pulses induced by the pulsed plasma scenarios is crucial for the operation. Here, a simplified thermal-hydraulic model of an ITER Toroidal Field (TF) magnet, based on Artificial Neural Networks (ANNs), is developed and inserted into a detailed model of the ITER TF winding and casing cooling circuits based on the state-of-the-art 4C code, which also includes active controls. The low computational effort requested by such a model allows performing a fast parametric study, to identify the best smoothing strategy during standard plasma operation. The ANNs are trained using 4C simulations, and the predictive capabilities of the simplified model are assessed against 4C simulations, both with and without active smoothing, in terms of accuracy and computational time.

  9. Low-cost multi-vehicle air temperature measurements for heat load assessment in local-scale climate applications

    NASA Astrophysics Data System (ADS)

    Zuvela-Aloise, Maja; Weyss, Gernot; Aloise, Giulliano; Mifka, Boris; Löffelmann, Philemon; Hollosi, Brigitta; Nemec, Johana; Vucetic, Visnja

    2014-05-01

    In the recent years there has been a strong interest in exploring the potential of low-cost measurement devices as alternative source of meteorological monitoring data, especially in the urban areas where high-density observations become crucial for appropriate heat load assessment. One of the simple, but efficient approaches for gathering large amount of spatial data is through mobile measurement campaigns in which the sensors are attached to driving vehicles. However, non-standardized data collecting procedure, instrument quality, their response-time and design, variable device ventilation and radiation protection influence the reliability of the gathered data. We investigate what accuracy can be expected from the data collected through low-cost mobile measurements and whether the achieved quality of the data is sufficient for validation of the state-of-the-art local-scale climate models. We tested 5 types of temperature sensors and data loggers: Maxim iButton, Lascar EL-USB-2-LCD+ and Onset HOBO UX100-003 as market available devices and self-designed solar powered Arduino-based data loggers combined with the AOSONG AM2315 and Sensirion SHT21 temperature and humidity sensors. The devices were calibrated and tested in stationary mode at the Austrian Weather Service showing accuracy between 0.1°C and 0.8°C, which was mostly within the device specification range. In mobile mode, the best response-time was found for self-designed device with Arduino-based data logger and Sensirion SHT21 sensor. However, the device lacks the mechanical robustness and should be further improved for broad-range applications. We organized 4 measurement tours: two taking place in urban environment (Vienna, Austria in July 2011 and July 2013) and two in countryside with complex terrain of Mid-Adriatic islands (Hvar and Korcula, Croatia in August 2013). Measurements were taken on clear-sky, dry and hot days. We combined multiple devices attached to bicycle and cars with different

  10. Stowage and Deployment of Slit Tube Booms

    NASA Technical Reports Server (NTRS)

    Adams, Larry (Inventor); Turse, Dana (Inventor); Richardson, Doug (Inventor)

    2016-01-01

    A system comprising a boom having a first end, a longitudinal length, and a slit that extends along the longitudinal length of the boom; a drum having an elliptic cross section and a longitudinal length; an attachment mechanism coupled with the first end of the boom and the drum such that the boom and the drum are substantially perpendicular relative to one another; an inner shaft having a longitudinal length, the inner shaft disposed within the drum, the longitudinal length of the inner shaft is aligned substantially parallel with the longitudinal length of the drum, the inner shaft at least partially rotatable relative to the drum, and the inner shaft is at least partially rotatable with the drum; and at least two cords coupled with the inner shaft and portions of the boom near the first end of the boom.

  11. Single-Slit Diffraction and the Uncertainty Principle

    ERIC Educational Resources Information Center

    Rioux, Frank

    2005-01-01

    A theoretical analysis of single-slit diffraction based on the Fourier transform between coordinate and momentum space is presented. The transform between position and momentum is used to illuminate the intimate relationship between single-slit diffraction and uncertainty principle.

  12. Automatic multidiagnosis system for slit lamp

    NASA Astrophysics Data System (ADS)

    Ventura, Liliane; Chiaradia, Caio; Vieira Messias, Andre M.; Faria de Sousa, Sidney J.; Isaac, Flavio; Caetano, Cesar A. C.; Rosa Filho, Andre B.

    2001-06-01

    We have developed a system for several automatic diagnose in Slit Lamp in order to provide 04 additional measurements to the biomicroscope: (1) counting of the endothelial cells of donated corneas; (2) automatic keratometry; (3) corneal ulcer evaluation; (4) measurement of linear distances and areas of the ocular image. The system consists in a Slit Lamp, a beam-splitter, some optical components, a CCD detector, a frame grabber and a PC. The optical components attached to the beam-splitter are the same for all the functions, except for 1. For function 1, we have developed an optical system that magnifies the image 290X and a software that counts the cells interactively and automatically. Results are in good agreement with commercial specular microscopes (correlation coefficient is 0,98081). The automatic keratometry function is able to measure cylinders over 30 di and also irregular astigmatisms. The system consists of projecting a light ring at the patient's cornea and the further analysis of the deformation of the ring provides the radius of curvature as well as the axis of the astigmatism. The nominal precision is 0,005 mm for the curvature radius and 2 degree(s) for the axis component. The results are in good agreement with commercial systems (correlation coefficient of 0,99347). For function 3, the ulcer is isolated by the usual clinical ways and the image of the green area is automatically detected by the developed software in order to evaluate the evolution of the disease. Function 4 simply allows the clinician do any linear or area measurement of the ocular image. The system is a low cost multi evaluation equipment and it is being used in a public hospital in Brazil.

  13. Mobilizing slit lamp to the field: A new affordable solution.

    PubMed

    Farooqui, Javed Hussain; Jorgenson, Richard; Gomaa, Ahmed

    2015-11-01

    We are describing a simple and affordable design to pack and carry the slit lamp to the field. Orbis staff working on the Flying Eye Hospital (FEH) developed this design to facilitate mobilization of the slit lamp to the field during various FEH programs. The solution involves using a big toolbox, a central plywood apparatus, and foam. These supplies were cut to measure and used to support the slit lamp after being fitted snuggly in the box. This design allows easy and safe mobilization of the slit lamp to remote places. It was developed with the efficient use of space in mind and it can be easily reproduced in developing countries using same or similar supplies. Mobilizing slit lamp will be of great help for staff and institutes doing regular outreach clinical work. PMID:26669342

  14. Mobilizing slit lamp to the field: A new affordable solution

    PubMed Central

    Farooqui, Javed Hussain; Jorgenson, Richard; Gomaa, Ahmed

    2015-01-01

    We are describing a simple and affordable design to pack and carry the slit lamp to the field. Orbis staff working on the Flying Eye Hospital (FEH) developed this design to facilitate mobilization of the slit lamp to the field during various FEH programs. The solution involves using a big toolbox, a central plywood apparatus, and foam. These supplies were cut to measure and used to support the slit lamp after being fitted snuggly in the box. This design allows easy and safe mobilization of the slit lamp to remote places. It was developed with the efficient use of space in mind and it can be easily reproduced in developing countries using same or similar supplies. Mobilizing slit lamp will be of great help for staff and institutes doing regular outreach clinical work. PMID:26669342

  15. At What Level of Heat Load Are Age-Related Impairments in the Ability to Dissipate Heat Evident in Females?

    PubMed Central

    Stapleton, Jill M.; Poirier, Martin P.; Flouris, Andreas D.; Boulay, Pierre; Sigal, Ronald J.; Malcolm, Janine; Kenny, Glen P.

    2015-01-01

    Studies have reported that older females have impaired heat loss responses during work in the heat compared to young females. However, it remains unclear at what level of heat stress these differences occur. Therefore, we examined whole-body heat loss [evaporative (HE) and dry heat loss, via direct calorimetry] and changes in body heat storage (∆Hb, via direct and indirect calorimetry) in 10 young (23±4 years) and 10 older (58±5 years) females matched for body surface area and aerobic fitness (VO2peak) during three 30-min exercise bouts performed at incremental rates of metabolic heat production of 250 (Ex1), 325 (Ex2) and 400 (Ex3) W in the heat (40°C, 15% relative humidity). Exercise bouts were separated by 15 min of recovery. Since dry heat gain was similar between young and older females during exercise (p=0.52) and recovery (p=0.42), differences in whole-body heat loss were solely due to HE. Our results show that older females had a significantly lower HE at the end of Ex2 (young: 383±34 W; older: 343±39 W, p=0.04) and Ex3 (young: 437±36 W; older: 389±29 W, p=0.008), however no difference was measured at the end of Ex1 (p=0.24). Also, the magnitude of difference in the maximal level of HE achieved between the young and older females became greater with increasing heat loads (Ex1=10.2%, Ex2=11.6% and Ex3=12.4%). Furthermore, a significantly greater ∆Hb was measured for all heat loads for the older females (Ex1: 178±44 kJ; Ex2: 151±38 kJ; Ex3: 216±25 kJ, p=0.002) relative to the younger females (Ex1: 127±35 kJ; Ex2: 96±45 kJ; Ex3: 146±46 kJ). In contrast, no differences in HE or ∆Hb were observed during recovery (p>0.05). We show that older habitually active females have an impaired capacity to dissipate heat compared to young females during exercise-induced heat loads of ≥325 W when performed in the heat. PMID:25790024

  16. Scatter correction method for cone-beam CT based on interlacing-slit scan

    NASA Astrophysics Data System (ADS)

    Huang, Kui-Dong; Zhang, Hua; Shi, Yi-Kai; Zhang, Liang; Xu, Zhe

    2014-09-01

    Cone-beam computed tomography (CBCT) has the notable features of high efficiency and high precision, and is widely used in areas such as medical imaging and industrial non-destructive testing. However, the presence of the ray scatter reduces the quality of CT images. By referencing the slit collimation approach, a scatter correction method for CBCT based on the interlacing-slit scan is proposed. Firstly, according to the characteristics of CBCT imaging, a scatter suppression plate with interlacing slits is designed and fabricated. Then the imaging of the scatter suppression plate is analyzed, and a scatter correction calculation method for CBCT based on the image fusion is proposed, which can splice out a complete set of scatter suppression projection images according to the interlacing-slit projection images of the left and the right imaging regions in the scatter suppression plate, and simultaneously complete the scatter correction within the flat panel detector (FPD). Finally, the overall process of scatter suppression and correction is provided. The experimental results show that this method can significantly improve the clarity of the slice images and achieve a good scatter correction.

  17. Mitigation of upward and downward vertical displacement event heat loads with upper or lower massive gas injection in DIII-D

    SciTech Connect

    Hollmann, E. M.; Moyer, R. A.; Commaux, N.; Shiraki, D.; Eidietis, N. W.; Parks, P. B.; Lasnier, C. J.

    2015-10-15

    Intentionally triggered upward and downward vertical displacement events (VDEs) leading to disruptions were pre-emptively mitigated with neon massive gas injection (MGI) coming from either above or below the plasma. Global indicators of disruption mitigation effectiveness (conducted heat loads, radiated power, and vessel motion) do not show a clear improvement when mitigating with the gas jet located closer to the VDE impact area. A clear trend of improved mitigation is observed for earlier MGI timing relative to the VDE impact time. The plasma edge magnetic perturbation is seen to lock to a preferential phase during the VDE thermal quench, but this phase is not clearly matched by preliminary attempts to fit to the conducted heat load phase. Clear indications of plasma infra-red (IR) emission are observed both before and during the disruptions. This IR emission can affect calculation of disruption heat loads; here, the time decay of post-disruption IR signals is used to correct for this effect.

  18. Mitigation of upward and downward vertical displacement event heat loads with upper or lower massive gas injection in DIII-D

    SciTech Connect

    Hollmann, E. M.; Commaux, Nicolas J. C.; Eidietis, N. W.; Lasnier, C. J.; Moyer, R. A.; Parks, P. B.; Shiraki, Daisuke

    2015-10-12

    Intentionally triggered upward and downward vertical displacement events (VDEs) leading to disruptions were pre-emptively mitigated with neon massive gas injection (MGI) coming from either above or below the plasma. Global indicators of disruption mitigation effectiveness (conducted heat loads, radiated power, and vessel motion) do not show a clear improvement when mitigating with the gas jet located closer to the VDE impact area. A clear trend of improved mitigation is observed for earlier MGI timing relative to the VDE impact time. The plasma edge magnetic perturbation is seen to lock to a preferential phase during the VDE thermal quench, but this phase is not clearly matched by preliminary attempts to fit to the conducted heat load phase. Clear indications of plasma infra-red (IR) emission are observed both before and during the disruptions. Furthermore, this IR emission can affect calculation of disruption heat loads; here, the time decay of post-disruption IR signals is used to correct for this effect.

  19. Depth of field and improved resolution of slit-scan flow systems

    NASA Astrophysics Data System (ADS)

    Hausmann, Michael; Crone, Martin; Cremer, Christoph G.

    1996-12-01

    In a slit-scan flow cytometer particles specifically labelled by fluorochromes (e.g., cells, chromosomes) are aligned coaxially in a flow stream. One by another they pass a ribbon-like shaped laser beam with a diameter smaller than the particle length. Although several slit-scan flow systems have been developed during the last two decades, a complete description of the theory of optical resolution under the real experimental conditions used as well as a description how to overcome experimental limitations are missing. Often, resolution values are estimated under the assumption of ideal Gaussian beam propagation. These estimates suffer from a discrepancy to practical implementation, Here, some of these effects in slit-scan optics are discussed from a more theoretical point of view. In order to obtain an acceptable depth of field, a focal width around 2 micrometer appears to be an optimum under the regime of Gaussian beam propagation. However, in practice, effects due to thick lenses, finite apertures, chromatic aberrations, or the ellipticity of the laser beam overshadow this result and influence the laser beam shape. To further improve the resolution with a high depth of field, new concepts are required. Therefore, a combination of an interference fringe pattern of two coherent laser beams for excitation (fringe-scanning) with a slit-scan detection of the incoherent fluorescence light is introduced. Preliminary experiences of the first experimental realization are discussed.

  20. Contrast analysis of near-field scanning microscopy using a metal slit probe at millimeter wavelengths

    NASA Astrophysics Data System (ADS)

    Nozokido, Tatsuo; Ishino, Manabu; Seto, Ryosuke; Bae, Jongsuck

    2015-09-01

    We describe an analytical method for investigating the signal contrast obtained in near-field scanning microscopy using a metal slit probe. The probe has a slit-like aperture at the open end of a rectangular or a parallel plate waveguide. In our method, the electromagnetic field around the metal slit aperture at the probe tip is calculated from Maxwell's equations in the Fourier domain in order to derive the electrical admittance of a sample system consisting of layered dielectrics as seen from the probe tip. A simple two-port electrical circuit terminated by this admittance is then established to calculate the complex reflection coefficient of the probe as a signal. The validity of the method is verified at millimeter wavelengths by a full-wave high frequency 3-D finite element modeler and also by experiment. The signal contrast when varying the short dimension of the slit aperture, the separation between the probe tip and the sample, and the sample thickness are successfully explained in terms of the variation in the product of the admittance and the characteristic impedance of the waveguide at the probe tip. In particular, the cause of the local minimum in the signal intensity when varying the separation is clarified.

  1. An analytical algorithm for skew-slit imaging geometry with nonuniform attenuation correction

    SciTech Connect

    Huang Qiu; Zeng, Gengsheng L.

    2006-04-15

    The pinhole collimator is currently the collimator of choice in small animal single photon emission computed tomography (SPECT) imaging because it can provide high spatial resolution and reasonable sensitivity when the animal is placed very close to the pinhole. It is well known that if the collimator rotates around the object (e.g., a small animal) in a circular orbit to form a cone-beam imaging geometry with a planar trajectory, the acquired data are not sufficient for an exact artifact-free image reconstruction. In this paper a novel skew-slit collimator is mounted instead of the pinhole collimator in order to significantly reduce the image artifacts caused by the geometry. The skew-slit imaging geometry is a more generalized version of the pinhole imaging geometry. The multiple pinhole geometry can also be extended to the multiple-skew-slit geometry. An analytical algorithm for image reconstruction based on the tilted fan-beam inversion is developed with nonuniform attenuation compensation. Numerical simulation shows that the axial artifacts are evidently suppressed in the skew-slit images compared to the pinhole images and the attenuation correction is effective.

  2. Findings of pre-ELM structures through the observation of divertor heat load patterns at JET with applied n = 2 perturbation fields

    NASA Astrophysics Data System (ADS)

    Rack, M.; Sieglin, B.; Eich, T.; Pearson, J.; Liang, Y.; Balboa, I.; Jachmich, S.; Wingen, A.; Pamela, S. J. P.; EFDA Contributors, JET

    2014-07-01

    Resonant magnetic perturbation experiments at JET with the ITER-like wall have shown the formation of radially propagating pre-ELM structures in the heat flux profile on the outer divertor. These appear a few milliseconds before the major divertor heat load, caused by type-I edge-localized modes (ELMs). The formation of the pre-ELM structures is accompanied by an increase in the Dα emission. For some pronounced examples, the propagation appears to end at the positions where an increased heat load is seen during the ELM crash a few milliseconds later. These observations are presented and discussed along with a comparison of a thermoelectric edge currents model.

  3. A system for slit-lamp polaroid photography.

    PubMed

    Miller, D; Taube, J; Miller, R; Gleason, W; Babyn, P; Moon, J; Weiss, J N

    1981-05-01

    A system is described in which a SX-70, Alpha Model II, Polaroid, single lens reflex camera, and photoflash unit can be quickly and sturdily mounted to a slit lamp. Such a system can take sharp anterior segment prints of the eye at all slit-lamp magnifications, with white light and in the flourescein mode. The heart of the unit is the modification of an assembly initially designed to attach the camera to a light microscope. The small flash unit and power supply were designed specifically for slit lamp usage. Examples of "instant" photos of the anterior segment at different magnifications are presented. PMID:7266974

  4. A Computational and Experimental Study of Slit Resonators

    NASA Technical Reports Server (NTRS)

    Tam, C. K. W.; Ju, H.; Jones, M. G.; Watson, W. R.; Parrott, T. L.

    2003-01-01

    Computational and experimental studies are carried out to offer validation of the results obtained from direct numerical simulation (DNS) of the flow and acoustic fields of slit resonators. The test cases include slits with 90-degree corners and slits with 45-degree bevel angle housed inside an acoustic impedance tube. Three slit widths are used. Six frequencies from 0.5 to 3.0 kHz are chosen. Good agreement is found between computed and measured reflection factors. In addition, incident sound waves having white noise spectrum and a prescribed pseudo-random noise spectrum are used in subsequent series of tests. The computed broadband results are again found to agree well with experimental data. It is believed the present results provide strong support that DNS can eventually be a useful and accurate prediction tool for liner aeroacoustics. The usage of DNS as a design tool is discussed and illustrated by a simple example.

  5. Young's double-slit experiment in photonic crystals

    SciTech Connect

    Zhang, Lei; Koschny, Thomas; Soukoulis, Costas M.

    2012-10-01

    We present an experimental and numerical study of the transmission of a photonic crystal perforated by two sub-wavelength slits, separated by two wavelengths.The experimental near-field image of the double-slit design of the photonic crystal shows an interference pattern, which is analogous to Young’s experiment. This interference arises as a consequence of the excitation of surface states of the photonic crystals and agrees very well with the simulations.

  6. Construction of pre-slit system of Chinese SONG spectrograph

    NASA Astrophysics Data System (ADS)

    Gao, Pengfei; Hu, Zhongwen; Dai, Songxin

    2015-10-01

    The pre-slit system of Chinese SONG spectrograph is a multi-function unit. The main function is to direct the incoming light from the coudé path to the entrance slit of the spectrograph. The specific functions includes maintaining exit pupil stable, fast guiding and telescope focus corrections. The original optics of this pre-slit system were designed by Aarhus University in Denmark. We built the system and designed the software for it. This system holds a guide/slit-viewing camera, a pupil-viewing camera, two tip-tilt mirrors and its tip-tilt controllers. So it includes two sets of the fast-steering mirror systems applied to image tracking and correction. When this image tracking and correction systems is running, the real-time software algorithm will be presented and simulated simultaneously. From the images taken with camera, a closed loop signals are generated for the tip-tilt mirror to correct image motion. When the camera exposure time is 25ms,the correcting frequency of slit imge tip-tilt motion is about 30Hz. The correcting frequency of pupil imge tip-tilt motion is about 1Hz. In addition, a temperature control system surrounding the spectrograph is necessary to keep spectrograph at a constant temperature. The test results shows that the error is about +/-0.005°C in 69.4 hours. The results prove that the pre-slit system of Chinese SONG spectrograph is effective and feasible.

  7. Experimental study of ELM-like heat loading on beryllium under ITER operational conditions

    NASA Astrophysics Data System (ADS)

    Spilker, B.; Linke, J.; Pintsuk, G.; Wirtz, M.

    2016-02-01

    The experimental fusion reactor ITER, currently under construction in Cadarache, France, is transferring the nuclear fusion research to the power plant scale. ITER’s first wall (FW), armoured by beryllium, is subjected to high steady state and transient power loads. Transient events like edge localized modes not only deposit power densities of up to 1.0 GW m-2 for 0.2-0.5 ms in the divertor of the machine, but also affect the FW to a considerable extent. Therefore, a detailed study was performed, in which transient power loads with absorbed power densities of up to 1.0 GW m-2 were applied by the electron beam facility JUDITH 1 on beryllium specimens at base temperatures of up to 300 °C. The induced damage was evaluated by means of scanning electron microscopy and laser profilometry. As a result, the observed damage was highly dependent on the base temperatures and absorbed power densities. In addition, five different classes of damage, ranging from ‘no damage’ to ‘crack network plus melting’, were defined and used to locate the damage, cracking, and melting thresholds within the tested parameter space.

  8. Comparative thermoregulatory response to passive heat loading by exposure to radiofrequency radiation

    SciTech Connect

    Gordon, C.J.; Ali, J.S.

    1987-01-01

    Colonic and tail-skin temperature of the unrestrained Fischer rat were measured immediately after a 90-min exposure to 600-MHz radiofrequency radiation in a waveguide-type system. Ambient temperature (Ta) was maintained at either 20, 28, or 35 C. The specific absorption rate (SAR) in dimensions of W/kg was controlled at a constant level through a feedback control circuit. The SAR needed to elevate colonic and tail-skin temperature decreased with increasing Ta. For example, a 0.5 C elevation in colonic temperature occurred at SAR's of 4.3, 0.9, and 0.5 W/kg when Ta was maintained at 20, 28, and 35 C, respectively. Data from this study were combined with data from earlier studies to assess the impact of varying Ta on the thermogenic effect of RF radiation in different species. In species ranging in mass from 0.02 to 3.2 kg, a double logarithmic plot of body mass versus SAR needed to elevate colonic temperature by 0.5 C was linear and inverse with a high goodness of fit (r(2) = -0.94). The highly correlated allometric relationship shows that, as body mass decreases, the relative impact of Ta on the thermogenic effect of RF radiation increases.

  9. Program to develop a performance and heat load prediction system for multistage turbines

    NASA Technical Reports Server (NTRS)

    Sharma, OM

    1994-01-01

    Flows in low-aspect ratio turbines, such as the SSME fuel turbine, are three dimensional and highly unsteady due to the relative motion of adjacent airfoil rows and the circumferential and spanwise gradients in total pressure and temperature, The systems used to design these machines, however, are based on the assumption that the flow is steady. The codes utilized in these design systems are calibrated against turbine rig and engine data through the use of empirical correlations and experience factors. For high aspect ratio turbines, these codes yield reasonably accurate estimates of flow and temperature distributions. However, future design trends will see lower aspect ratio (reduced number of parts) and higher inlet temperature which will result in increased three dimensionality and flow unsteadiness in turbines. Analysis of recently acquired data indicate that temperature streaks and secondary flows generated in combustors and up-stream airfoils can have a large impact on the time-averaged temperature and angle distributions in downstream airfoil rows.

  10. Heat loads to divertor nearby components from secondary radiation evolved during plasma instabilities

    NASA Astrophysics Data System (ADS)

    Sizyuk, V.; Hassanein, A.

    2015-01-01

    A fundamental issue in tokamak operation related to power exhaust during plasma instabilities is the understanding of heat and particle transport from the core plasma into the scrape-off layer and to plasma-facing materials. During abnormal and disruptive operation in tokamaks, radiation transport processes play a critical role in divertor/edge-generated plasma dynamics and are very important in determining overall lifetimes of the divertor and nearby components. This is equivalent to or greater than the effect of the direct impact of escaped core plasma on the divertor plate. We have developed and implemented comprehensive enhanced physical and numerical models in the upgraded HEIGHTS package for simulating detailed photon and particle transport in the evolved edge plasma during various instabilities. The paper describes details of a newly developed 3D Monte Carlo radiation transport model, including optimization methods of generated plasma opacities in the full range of expected photon spectra. Response of the ITER divertor's nearby surfaces due to radiation from the divertor-developed plasma was simulated by using actual full 3D reactor design and magnetic configurations. We analyzed in detail the radiation emission spectra and compared the emission of both carbon and tungsten as divertor plate materials. The integrated 3D simulation predicted unexpectedly high damage risk to the open stainless steel legs of the dome structure in the current ITER design from the intense radiation during a disruption on the tungsten divertor plate.