Science.gov

Sample records for high kinetic energy

  1. High-energy interactions in kinetic inductance detectors arrays

    NASA Astrophysics Data System (ADS)

    D'Addabbo, A.; Calvo, M.; Goupy, J.; Benoit, A.; Bourrion, O.; Catalano, A.; Macias-Perez, J. F.; Monfardini, A.

    2014-07-01

    The impacts of Cosmic Rays on the detectors are a key problem for space-based missions. We are studying the effects of such interactions on arrays of Kinetic Inductance Detectors (KID), in order to adapt this technology for use on board of satellites. Before proposing a new technology such as the Kinetic Inductance Detectors for a space-based mission, the problem of the Cosmic Rays that hit the detectors during in-flight operation has to be studied in detail. We present here several tests carried out with KID exposed to radioactive sources, which we use to reproduce the physical interactions induced by primary Cosmic Rays, and we report the results obtained adopting different solutions in terms of substrate materials and array geometries. We conclude by outlining the main guidelines to follow for fabricating KID for spacebased applications.

  2. Kinetic-energy transfer in highly-charged-ion collisions with carbon

    NASA Astrophysics Data System (ADS)

    Lake, R. E.; Arista, N. R.

    2015-11-01

    We present an accurate theoretical model for the charge dependence of kinetic energy transferred in collisions between slow highly charged ions (HCIs) and the atoms in a carbon solid. The model is in excellent agreement with experimental kinetic-energy-loss data for carbon nanomembrane and thin carbon foil targets. This study fills a notable gap in the literature of charged-particle energy loss in the regime of low incident velocity (vp≲2.188 ×106 m/s) where charge states greatly exceed the equilibrium values.

  3. Modeling of High Kinetic Energy Plasma Jets for Fusion Applications

    NASA Astrophysics Data System (ADS)

    Bogatu, I. N.; Galkin, S. A.; Kim, J. S.

    2006-10-01

    We used semi-analytical models for high velocity (>200 km/s) and density (>10^17 cm-3) plasma jets to describe the acceleration in coaxial electrodes geometry, the collision, and plasma liner implosion, assuming that jets have merged into a spherical or cylindrical shell. The results are compared with experimental data and are being used for guiding LSP and MACH2 codes simulation and for optimization. The simplest model which uses the adiabatic invariant for oscillator revealed the basic relation between the velocity and the parameters of the plasma accelerator. Plasma slug model was extended for including friction and mass addition by electrode erosion. A simple model of blow-by instability by using the canting angle of the plasma current was formulated. As plasma jets collision at high interfacial Mach number generates shock fronts, we analyzed their possible consequences on the merging process and liner formation. The structure of the spherical shell liner during adiabatic implosion and the effect of the shock wave generated at void closure on the confinement time were also investigated.

  4. Kinetic energy of throughfall in a highly diverse forest ecosystem in the humid subtropics

    NASA Astrophysics Data System (ADS)

    Geißler, Christian; Kühn, Peter; Scholten, Thomas

    2010-05-01

    conditions. Most of the energy is supposed to be absorbed by shrubs, herbs and the litter layer. For some species in the shrub and herb layer throughfall drops are crucial for seed dispersal (Nakanishi 2002). A higher kinetic energy of throughfall should be advantageous for seed dispersal and probably support biodiversity. Further, it is shown that the variability of kinetic energy in forests varies among the age of the forest stand which can be related to the forest structure. In our case there is a high variability in young forests (< 30 years) due to selective logging (some older trees were left out) and gaps in the tree layer. Old forests (> 80 years) also have a high variability in kinetic energy. There, external influences like snow and wind break result in a fragmentary tree layer which allows less erosive rainfall to reach the forest floor. Medium aged forests are more homogenous regarding canopy closure or tree heights. Generally, the variability of kinetic energy in forests is increasing with the amount of rainfall. Moreover, it is shown that the kinetic energy of throughfall is species specific. For the investigated tree species the values range between 24.41 J m-2 mm-1 (Daphniphyllum oldhamii) and 33.24 J m-2 mm-1 (Schima superba) while the concurrent rainfall in the open field has an average kinetic energy of 6.75 J m-2 mm-1. Leaf size and canopy architecture are supposed to be two of the controlling variables for specific species. These results give implications for afforestation measures and are important input variables for modeling of erosion processes. Chapman, G., 1948. Size of raindrops and their striking force at the soil surface in a Red Pine plantation. Transactions - American Geophysical Union, 29: 664-670. Ellison, W.D., 1947. Soil Erosion Studies - Part II. Agricultural Engineering, 28: 197-201. Geißler, C., Kühn, P., Böhnke, M., Bruelheide, H., Shi, X., Scholten, T., under review: Measuring splash erosion potential under vegetation using sand

  5. Kinetic energy and scalar spectra in high Rayleigh number axially homogeneous buoyancy driven turbulence

    NASA Astrophysics Data System (ADS)

    Pawar, Shashikant S.; Arakeri, Jaywant H.

    2016-06-01

    Kinetic energy and scalar spectra from the measurements in high Rayleigh number axially homogeneous buoyancy driven turbulent flow are presented. Kinetic energy and concentration (scalar) spectra are obtained from the experiments wherein density difference is created using brine and fresh water and temperature spectra are obtained from the experiments in which heat is used. Scaling of the frequency spectra of lateral and longitudinal velocity near the tube axis is closer to the Kolmogorov-Obukhov scaling, while the scalar spectra show some evidence of dual scaling, Bolgiano-Obukhov scaling followed by Obukhov-Corrsin scaling. These scalings are also observed in the corresponding second order spatial structure functions of velocity and concentration fluctuations.

  6. High temperature materials synthesis without heat: Oxide layer growth on electronic materials using high-kinetic-energy atomic oxygen

    SciTech Connect

    Hoffbauer, M.A.; Cross, J.B.; Archuleta, F.A.

    1996-04-01

    This is the final report of a three-year, Laboratory-Directed Research and Development (LDRD) project at the Los Alamos National Laboratory (LANL). The authors examined thin-film materials-synthesis processes in which chemical reactions are initiated using high-kinetic-energy neutral atomic species instead of high temperatures. The research is aimed at producing device-quality insulating oxide layers on semiconductor materials. Thick, uniform, and fully oxidized insulating layers of unprecedented quality are formed on gallium arsenide by exposure of wafer substrates to a high kinetic-energy ({approximately}3eV) neutral atomic-oxygen beam. The nonthermal oxidation process does not disrupt the crystalline order of the substrate and no detectable elemental arsenic is produced at the oxide/gallium arsenide interface.

  7. Quantifying the Nucleation and Growth Kinetics of Microwave Nanochemistry Enabled by in Situ High-Energy X-ray Scattering.

    PubMed

    Liu, Qi; Gao, Min-Rui; Liu, Yuzi; Okasinski, John S; Ren, Yang; Sun, Yugang

    2016-01-13

    The fast reaction kinetics presented in the microwave synthesis of colloidal silver nanoparticles was quantitatively studied, for the first time, by integrating a microwave reactor with in situ X-ray diffraction at a high-energy synchrotron beamline. Comprehensive data analysis reveals two different types of reaction kinetics corresponding to the nucleation and growth of the Ag nanoparticles. The formation of seeds (nucleation) follows typical first-order reaction kinetics with activation energy of 20.34 kJ/mol, while the growth of seeds (growth) follows typical self-catalytic reaction kinetics. Varying the synthesis conditions indicates that the microwave colloidal chemistry is independent of concentration of surfactant. These discoveries reveal that the microwave synthesis of Ag nanoparticles proceeds with reaction kinetics significantly different from the synthesis present in conventional oil bath heating. The in situ X-ray diffraction technique reported in this work is promising to enable further understanding of crystalline nanomaterials formed through microwave synthesis. PMID:26625184

  8. High order magnetic optics for high dynamic range proton radiography at a kinetic energy 800 MeV

    DOE PAGESBeta

    Sjue, Sky K. L.; Morris, Christopher L.; Merrill, Frank Edward; Mariam, Fesseha Gebre; Saunders, Alexander

    2016-01-14

    Flash radiography with 800 MeV kinetic energy protons at Los Alamos National Laboratory is an important experimental tool for investigations of dynamic material behavior driven by high explosives or pulsed power. The extraction of quantitative information about density fields in a dynamic experiment from proton generated images requires a high fidelity model of the protonimaging process. It is shown that accurate calculations of the transmission through the magnetic lens system require terms beyond second order for protons far from the tune energy. The approach used integrates the correlated multiple Coulomb scattering distribution simultaneously over the collimator and the image plane.more » Furthermore, comparison with a series of static calibrationimages demonstrates the model’s accurate reproduction of both the transmission and blur over a wide range of tune energies in an inverse identity lens that consists of four quadrupole electromagnets.« less

  9. High order magnetic optics for high dynamic range proton radiography at a kinetic energy of 800 MeV.

    PubMed

    Sjue, S K L; Mariam, F G; Merrill, F E; Morris, C L; Saunders, A

    2016-01-01

    Flash radiography with 800 MeV kinetic energy protons at Los Alamos National Laboratory is an important experimental tool for investigations of dynamic material behavior driven by high explosives or pulsed power. The extraction of quantitative information about density fields in a dynamic experiment from proton generated images requires a high fidelity model of the proton imaging process. It is shown that accurate calculations of the transmission through the magnetic lens system require terms beyond second order for protons far from the tune energy. The approach used integrates the correlated multiple Coulomb scattering distribution simultaneously over the collimator and the image plane. Comparison with a series of static calibration images demonstrates the model's accurate reproduction of both the transmission and blur over a wide range of tune energies in an inverse identity lens that consists of four quadrupole electromagnets. PMID:26827356

  10. High order magnetic optics for high dynamic range proton radiography at a kinetic energy of 800 MeV

    NASA Astrophysics Data System (ADS)

    Sjue, S. K. L.; Mariam, F. G.; Merrill, F. E.; Morris, C. L.; Saunders, A.

    2016-01-01

    Flash radiography with 800 MeV kinetic energy protons at Los Alamos National Laboratory is an important experimental tool for investigations of dynamic material behavior driven by high explosives or pulsed power. The extraction of quantitative information about density fields in a dynamic experiment from proton generated images requires a high fidelity model of the proton imaging process. It is shown that accurate calculations of the transmission through the magnetic lens system require terms beyond second order for protons far from the tune energy. The approach used integrates the correlated multiple Coulomb scattering distribution simultaneously over the collimator and the image plane. Comparison with a series of static calibration images demonstrates the model's accurate reproduction of both the transmission and blur over a wide range of tune energies in an inverse identity lens that consists of four quadrupole electromagnets.

  11. Anomalous dissipation and kinetic-energy distribution in pipes at very high Reynolds numbers.

    PubMed

    Chen, Xi; Wei, Bo-Bo; Hussain, Fazle; She, Zhen-Su

    2016-01-01

    A symmetry-based theory is developed for the description of (streamwise) kinetic energy K in turbulent pipes at extremely high Reynolds numbers (Re's). The theory assumes a mesolayer with continual deformation of wall-attached eddies which introduce an anomalous dissipation, breaking the exact balance between production and dissipation. An outer peak of K is predicted above a critical Re of 10^{4}, in good agreement with experimental data. The theory offers an alternative explanation for the recently discovered logarithmic distribution of K. The concept of anomalous dissipation is further supported by a significant modification of the k-ω equation, yielding an accurate prediction of the entire K profile. PMID:26871016

  12. Impact Fragmentation and Crushing of Concrete and Other Solids Due to Kinetic Energy of High Shear Strain Rate

    NASA Astrophysics Data System (ADS)

    Bazant, Zdenek; Kirane, Kedar

    While numerous studies have dealt with dynamic crack propagation, they have not led to a macroscopic continuum model usable in FE analysis. Recent work on such a model is reviewed. The key idea is that comminution under high-rate shear is driven by the release local kinetic (rather than strain) energy of the shear strain rate field in forming finite-size fragments. At strain rates >103/s, this energy exceeds the maximum possible elastic strain energy by orders of magnitude. It is found that the particle size scales as the -2/3 power of the shear strain rate and as the 2/3 power of interface fracture energy, and the released and dissipated kinetic energy as the 2/3 power of the shear strain rate. These results explain the long debated phenomenon of ``dynamic overstress''. In FE simulations, this kinetic energy of strain rate field can be dissipated either by equivalent viscosity or by the work of increased strength limits. In simulating the impact of missiles into concrete walls, both approaches give nearly equivalent results. A dimensionless indicator of the comminution intensity is also formulated. The theory was inspired by noting that the local kinetic energy of shear strain rate plays a role analogous to the local kinetic energy of eddies in turbulent flow.

  13. High energy efficiency and high power density proton exchange membrane fuel cells: Electrode kinetics and mass transport

    NASA Technical Reports Server (NTRS)

    Srinivasan, Supramaniam; Velev, Omourtag A.; Parthasathy, Arvind; Manko, David J.; Appleby, A. John

    1991-01-01

    The development of proton exchange membrane (PEM) fuel cell power plants with high energy efficiencies and high power densities is gaining momentum because of the vital need of such high levels of performance for extraterrestrial (space, underwater) and terrestrial (power source for electric vehicles) applications. Since 1987, considerable progress has been made in achieving energy efficiencies of about 60 percent at a current density of 200 mA/sq cm and high power densities (greater than 1 W/sq cm) in PEM fuel cells with high (4 mg/sq cm) or low (0.4 mg/sq cm) platinum loadings in electrodes. The following areas are discussed: (1) methods to obtain these high levels of performance with low Pt loading electrodes - by proton conductor impregnation into electrodes, localization of Pt near front surface; (2) a novel microelectrode technique which yields electrode kinetic parameters for oxygen reduction and mass transport parameters; (3) demonstration of lack of water transport from anode to cathode; (4) modeling analysis of PEM fuel cell for comparison with experimental results and predicting further improvements in performance; and (5) recommendations of needed research and development for achieving the above goals.

  14. Impact comminution of solids due to local kinetic energy of high shear strain rate: I. Continuum theory and turbulence analogy

    NASA Astrophysics Data System (ADS)

    Bažant, Zdeněk P.; Caner, Ferhun C.

    2014-03-01

    The modeling of high velocity impact into brittle or quasibrittle solids is hampered by the unavailability of a constitutive model capturing the effects of material comminution into very fine particles. The present objective is to develop such a model, usable in finite element programs. The comminution at very high strain rates can dissipate a large portion of the kinetic energy of an impacting missile. The spatial derivative of the energy dissipated by comminution gives a force resisting the penetration, which is superposed on the nodal forces obtained from the static constitutive model in a finite element program. The present theory is inspired partly by Grady's model for expansive comminution due to explosion inside a hollow sphere, and partly by analogy with turbulence. In high velocity turbulent flow, the energy dissipation rate gets enhanced by the formation of micro-vortices (eddies) which dissipate energy by viscous shear stress. Similarly, here it is assumed that the energy dissipation at fast deformation of a confined solid gets enhanced by the release of kinetic energy of the motion associated with a high-rate shear strain of forming particles. For simplicity, the shape of these particles in the plane of maximum shear rate is considered to be regular hexagons. The particle sizes are assumed to be distributed according to the Schuhmann power law. The condition that the rate of release of the local kinetic energy must be equal to the interface fracture energy yields a relation between the particle size, the shear strain rate, the fracture energy and the mass density. As one experimental justification, the present theory agrees with Grady's empirical observation that, in impact events, the average particle size is proportional to the (-2/3) power of the shear strain rate. The main characteristic of the comminution process is a dimensionless number Ba (Eq. (37)) representing the ratio of the local kinetic energy of shear strain rate to the maximum possible

  15. Comminution of solids caused by kinetic energy of high shear strain rate, with implications for impact, shock, and shale fracturing

    PubMed Central

    Bažant, Zdeněk P.; Caner, Ferhun C.

    2013-01-01

    Although there exists a vast literature on the dynamic comminution or fragmentation of rocks, concrete, metals, and ceramics, none of the known models suffices for macroscopic dynamic finite element analysis. This paper outlines the basic idea of the macroscopic model. Unlike static fracture, in which the driving force is the release of strain energy, here the essential idea is that the driving force of comminution under high-rate compression is the release of the local kinetic energy of shear strain rate. The density of this energy at strain rates >1,000/s is found to exceed the maximum possible strain energy density by orders of magnitude, making the strain energy irrelevant. It is shown that particle size is proportional to the −2/3 power of the shear strain rate and the 2/3 power of the interface fracture energy or interface shear stress, and that the comminution process is macroscopically equivalent to an apparent shear viscosity that is proportional (at constant interface stress) to the −1/3 power of this rate. A dimensionless indicator of the comminution intensity is formulated. The theory was inspired by noting that the local kinetic energy of shear strain rate plays a role analogous to the local kinetic energy of eddies in turbulent flow. PMID:24218624

  16. Laser sustained discharge nozzle apparatus for the production of an intense beam of high kinetic energy atomic species

    DOEpatents

    Cross, Jon B.; Cremers, David A.

    1988-01-01

    Laser sustained discharge apparatus for the production of intense beams of high kinetic energy atomic species. A portion of the plasma resulting from a laser sustained continuous optical discharge which generates energetic atomic species from a gaseous source thereof is expanded through a nozzle into a region of low pressure. The expanded plasma contains a significant concentration of the high kinetic energy atomic species which may be used to investigate the interaction of surfaces therewith. In particular, O-atoms having velocities in excess of 3.5 km/s can be generated for the purpose of studying their interaction with materials in order to develop protective materials for spacecraft which are exposed to such energetic O-atoms during operation in low earth orbit.

  17. Laser sustained discharge nozzle apparatus for the production of an intense beam of high kinetic energy atomic species

    DOEpatents

    Cross, J.B.; Cremers, D.A.

    1986-01-10

    Laser sustained discharge apparatus for the production of intense beams of high kinetic energy atomic species is described. A portion of the plasma resulting from a laser sustained continuous optical discharge which generates energetic atomic species from a gaseous source thereof is expanded through a nozzle into a region of low pressure. The expanded plasma contains a significant concentration of the high kinetic energy atomic species which may be used to investigate the interaction of surfaces therewith. In particular, O-atoms having velocities in excess of 3.5 km/s can be generated for the purpose of studying their interaction with materials in order to develop protective materials for spacecraft which are exposed to such energetic O-atoms during operation in low earth orbit.

  18. Electron-emission processes in highly charged Ar and Xe ions impinging on highly ordered pyrolytic graphite at energies just above the kinetic threshold

    NASA Astrophysics Data System (ADS)

    Bodewits, E.; Hoekstra, R.; Dobes, K.; Aumayr, F.

    2014-11-01

    At keV energies, many electronic processes contribute to the emission of secondary electrons in the interaction of highly charged ions on surfaces. To unravel contributions resulting from isolated hollow atoms in front of the surface or embedded in the electron gas of the target, heavy highly charged Ar and Xe ions are collided on highly ordered pyrolytic graphite (HOPG). A light target material as HOPG assures straight-line trajectories in the subsurface range. By a systematic change of incidence angle and energy of low-charged Ar and Xe ions, the kinetic electron emission component is determined. Separating out the kinetic energy contribution for the highly charged ions yields pure potential-energy-driven secondary-electron yields. From these yields it is concluded that in contrast to metallic targets, only a small fraction of the secondary electrons stem from above the surface. The lack of above-surface emission is likely due to the semimetallic electronic structure of HOPG. The subsurface emission is found to scale with the increase in binding energy of the inner-shell hole when incrementing the charge state of the projectile Ar or Xe ions.

  19. High Kinetic Energy Penetrator Shielding and High Wear Resistance Materials Fabricated with Boron Nitride Nanotubes (BNNTS) and BNNT Polymer Composites

    NASA Technical Reports Server (NTRS)

    Kang, Jin Ho (Inventor); Park, Cheol (Inventor); Sauti, Godfrey (Inventor); Smith, Michael W. (Inventor); Jordan, Kevin C. (Inventor); Lowther, Sharon E. (Inventor); Bryant, Robert George (Inventor)

    2015-01-01

    Boron nitride nanotubes (BNNTs), boron nitride nanoparticles (BNNPs), carbon nanotubes (CNTs), graphites, or combinations, are incorporated into matrices of polymer, ceramic or metals. Fibers, yarns, and woven or nonwoven mats of BNNTs are used as toughening layers in penetration resistant materials to maximize energy absorption and/or high hardness layers to rebound or deform penetrators. They can be also used as reinforcing inclusions combining with other polymer matrices to create composite layers like typical reinforcing fibers such as Kevlar.RTM., Spectra.RTM., ceramics and metals. Enhanced wear resistance and usage time are achieved by adding boron nitride nanomaterials, increasing hardness and toughness. Such materials can be used in high temperature environments since the oxidation temperature of BNNTs exceeds 800.degree. C. in air. Boron nitride based composites are useful as strong structural materials for anti-micrometeorite layers for spacecraft and space suits, ultra strong tethers, protective gear, vehicles, helmets, shields and safety suits/helmets for industry.

  20. The kinetic to potential energy ratio and spectral separability from high-resolution balloon soundings near the Andes Mountains

    NASA Astrophysics Data System (ADS)

    de la Torre, A.; Alexander, P.; Giraldez, A.

    The ratio R between the spectral kinetic and potential energies as a function of vertical wavenumber has been calculated from high-resolution data obtained with open stratospheric balloons near the Andes Mountains. Two segments of altitude in the troposphere and stratosphere respectively were analyzed. The ratio values are larger in both the troposphere and stratosphere than those predicted from the separability of wavenumber and frequency spectra. A comparison was made with previous statistical results from soundings over flat terrain extending up to log m (cy/m) = -2.0. Our calculations prolong this interval to -2.0 ≤ log m ≤ -0.7. In the stratosphere, a remarkable similarity between that earlier work and ours is observed. This also happens in the troposphere, but only up to log m = -1.4. As suggested by the other authors, the enhanced R values might be explained by the propagation of inertial gravity waves generated in the mountain relief (this is supported by rotational spectra calculated here). Previous evidence in favor of spectral separability obtained by other authors has been extended here for larger wavenumbers by the observed constancy of the ratio between the temperature and vertical velocity spectra. In both the troposphere and the stratosphere, this ratio appears to be fairly uniform and similar to previous results obtained by other authors at lower resolution.

  1. High Voltage-Cylinder Sector Analyzer 300/15: a cylindrical sector analyzer for electron kinetic energies up to 15 keV.

    PubMed

    Rubio-Zuazo, J; Escher, M; Merkel, M; Castro, G R

    2010-04-01

    We have developed an energy analyzer, High Voltage-Cylinder Sector Analyzer 300/15, for electron kinetic energies up to 15 keV. It is especially suited for hard x-ray photoelectron spectroscopy, but also for ultraviolet and soft x-ray photoelectron spectroscopy (ultraviolet photoemission spectroscopy, x-ray photoemission spectroscopy), Auger electron spectroscopy, and reflection high energy electron spectroscopy. The analyzer is based on a cylinder sector with 90 degrees deflection, 300 mm slit-to-slit distance, and a four-element pre-retarding lens system with 50 mm sample-to-lens distance. The result is a very compact design of the analyzer that is easily integrated into a multipurpose experiment with different techniques. A low noise/low drift electronics is capable of continuous energy scans from 0 to 15 keV using nonlinear lens curves. The first analyzer is allocated at the Spanish CRG SpLine beamline at the ESRF at an end station where simultaneous surface x-ray diffraction is possible. The analyzer is operated routinely since 2006 up to 15 keV electron kinetic energy, expanding the achievable electron kinetic energy range compared to other commercial analyzers. In this work we present a detailed description of the developed electron analyzer. The analyzer capabilities, in terms of energy resolution and transmission, are shown by using an electron gun, an ultraviolet-discharge lamp, and hard x-ray synchrotron radiation as excitation sources. PMID:20441333

  2. High-kinetic-energy photoemission spectroscopy of Ni at 1s : 6-eV satellite at 4 eV

    NASA Astrophysics Data System (ADS)

    Karis, O.; Svensson, S.; Rusz, J.; Oppeneer, P. M.; Gorgoi, M.; Schäfers, F.; Braun, W.; Eberhardt, W.; Mårtensson, N.

    2008-12-01

    Electron correlations are responsible for many profound phenomena in solid-state physics. A classical example is the 6-eV satellite in the photoelectron spectrum of Ni. Until now the satellite structure has only been investigated at the L shell and more shallow levels. Here we report a high-kinetic-energy photoemission spectroscopy (HIKE) investigation of Ni metal. We present 1s and 2p photoelectron spectra, obtained using excitation energies up to 12.6 keV. Our investigation demonstrates that the energy position of the satellite relative to the main line is different for the 1s and the 2p levels. In combination with electronic structure calculations, we show that this energy shift is attributed to unique differences in the core-valence coupling for the K and L2,3 shells in 3d transition metals, resulting in different screening of the core holes.

  3. How ambiguous is the local kinetic energy?

    PubMed

    Anderson, James S M; Ayers, Paul W; Hernandez, Juan I Rodriguez

    2010-08-26

    The local kinetic energy and the closely related local electronic stress tensor are commonly used to elucidate chemical bonding patterns, especially for covalent bonds. We use three different approaches-transformation properties of the stress tensor, quasiprobability distributions, and the virial theorem from density-functional theory-to clarify the inherent ambiguity in these quantities, discussing the implications for analyses based on the local kinetic energy and stress tensor. An expansive-but not universal-family of local kinetic energy forms that includes the most common choices and is suitable for both chemical-bonding and atoms-in-molecule analysis is derived. A family of local electronic stress tensors is also derived. Several local kinetic energy functions that are mathematically justified, but unlikely to be conceptually useful, are derived. The implications of these forms for atoms-in-molecule analysis are discussed. PMID:20586467

  4. Kinetic energy budgets in areas of convection

    NASA Technical Reports Server (NTRS)

    Fuelberg, H. E.

    1979-01-01

    Synoptic scale budgets of kinetic energy are computed using 3 and 6 h data from three of NASA's Atmospheric Variability Experiments (AVE's). Numerous areas of intense convection occurred during the three experiments. Large kinetic energy variability, with periods as short as 6 h, is observed in budgets computed over each entire experiment area and over limited volumes that barely enclose the convection and move with it. Kinetic energy generation and transport processes in the smaller volumes are often a maximum when the enclosed storms are near peak intensity, but the nature of the various energy processes differs between storm cases and seems closely related to the synoptic conditions. A commonly observed energy budget for peak storm intensity indicates that generation of kinetic energy by cross-contour flow is the major energy source while dissipation to subgrid scales is the major sink. Synoptic scale vertical motion transports kinetic energy from lower to upper levels of the atmosphere while low-level horizontal flux convergence and upper-level horizontal divergence also occur. Spatial fields of the energy budget terms show that the storm environment is a major center of energy activity for the entire area.

  5. Analysis of Flow Cytometry DNA Damage Response Protein Activation Kinetics Following X-rays and High Energy Iron Nuclei Exposure

    SciTech Connect

    Universities Space Research Association; Chappell, Lori J.; Whalen, Mary K.; Gurai, Sheena; Ponomarev, Artem; Cucinotta, Francis A.; Pluth, Janice M.

    2010-12-15

    We developed a mathematical method to analyze flow cytometry data to describe the kinetics of {gamma}H2AX and pATF2 phosphorylations ensuing various qualities of low dose radiation in normal human fibroblast cells. Previously reported flow cytometry kinetic results for these DSB repair phospho-proteins revealed that distributions of intensity were highly skewed, severely limiting the detection of differences in the very low dose range. Distributional analysis reveals significant differences between control and low dose samples when distributions are compared using the Kolmogorov-Smirnov test. Radiation quality differences are found in the distribution shapes and when a nonlinear model is used to relate dose and time to the decay of the mean ratio of phosphoprotein intensities of irradiated samples to controls. We analyzed cell cycle phase and radiation quality dependent characteristic repair times and residual phospho-protein levels with these methods. Characteristic repair times for {gamma}H2AX were higher following Fe nuclei as compared to X-rays in G1 cells (4.5 {+-} 0.46 h vs 3.26 {+-} 0.76 h, respectively), and in S/G2 cells (5.51 {+-} 2.94 h vs 2.87 {+-} 0.45 h, respectively). The RBE in G1 cells for Fe nuclei relative to X-rays for {gamma}H2AX was 2.05 {+-} 0.61 and 5.02 {+-} 3.47, at 2 h and 24-h postirradiation, respectively. For pATF2, a saturation effect is observed with reduced expression at high doses, especially for Fe nuclei, with much slower characteristic repair times (>7 h) compared to X-rays. RBEs for pATF2 were 0.66 {+-} 0.13 and 1.66 {+-} 0.46 at 2 h and 24 h, respectively. Significant differences in {gamma}H2AX and pATF2 levels comparing irradiated samples to control were noted even at the lowest dose analyzed (0.05 Gy) using these methods of analysis. These results reveal that mathematical models can be applied to flow cytometry data to uncover important and subtle differences following exposure to various qualities of low dose radiation.

  6. Quantum kinetic energy densities: An operational approach

    SciTech Connect

    Muga, J.G.; Seidel, D.; Hegerfeldt, G.C.

    2005-04-15

    We propose and investigate a procedure to measure, at least in principle, a positive quantum version of the local kinetic energy density. This procedure is based, under certain idealized limits, on the detection rate of photons emitted by moving atoms which are excited by a localized laser beam. The same type of experiment, but in different limits, can also provide other non-positive-definite versions of the kinetic energy density. A connection with quantum arrival time distributions is discussed.

  7. Kinetic energy budgets during the life cycle of intense convective activity

    NASA Technical Reports Server (NTRS)

    Fuelberg, H. E.; Scoggins, J. R.

    1978-01-01

    Synoptic-scale data at three- and six-hour intervals are employed to study the relationship between changing kinetic energy variables and the life cycles of two severe squall lines. The kinetic energy budgets indicate a high degree of kinetic energy generation, especially pronounced near the jet-stream level. Energy losses in the storm environment are due to the transfer of kinetic energy from grid to subgrid scales of motion; large-scale upward vertical motion carries aloft the kinetic energy generated by storm activity at lower levels. In general, the time of maximum storm intensity is also the time of maximum energy conversion and transport.

  8. Vortex stretching as a mechanism for quantum kinetic energy decay.

    PubMed

    Kerr, Robert M

    2011-06-01

    A pair of perturbed antiparallel quantum vortices, simulated using the three-dimensional Gross-Pitaevskii equations, is shown to be unstable to vortex stretching. This results in kinetic energy K(∇ψ) being converted into interaction energy E(I) and eventually local kinetic energy depletion that is similar to energy decay in a classical fluid, even though the governing equations are Hamiltonian and energy conserving. The intermediate stages include the generation of vortex waves, their deepening, multiple reconnections, the emission of vortex rings and phonons, and the creation of an approximately -5/3 kinetic energy spectrum at high wave numbers. All of the wave generation and reconnection steps follow from interactions between the two original vortices. A four vortex example is given to demonstrate that some of these steps might be general. PMID:21702604

  9. Turbulence kinetic energy equation for dilute suspensions

    NASA Technical Reports Server (NTRS)

    Abou-Arab, T. W.; Roco, M. C.

    1989-01-01

    A multiphase turbulence closure model is presented which employs one transport equation, namely the turbulence kinetic energy equation. The proposed form of this equation is different from the earlier formulations in some aspects. The power spectrum of the carrier fluid is divided into two regions, which interact in different ways and at different rates with the suspended particles as a function of the particle-eddy size ratio and density ratio. The length scale is described algebraically. A mass/time averaging procedure for the momentum and kinetic energy equations is adopted. The resulting turbulence correlations are modeled under less retrictive assumptions comparative to previous work. The closures for the momentum and kinetic energy equations are given. Comparisons of the predictions with experimental results on liquid-solid jet and gas-solid pipe flow show satisfactory agreement.

  10. Kinetic-energy-momentum tensor in electrodynamics

    NASA Astrophysics Data System (ADS)

    Sheppard, Cheyenne J.; Kemp, Brandon A.

    2016-01-01

    We show that the Einstein-Laub formulation of electrodynamics is invalid since it yields a stress-energy-momentum (SEM) tensor that is not frame invariant. Two leading hypotheses for the kinetic formulation of electrodynamics (Chu and Einstein-Laub) are studied by use of the relativistic principle of virtual power, mathematical modeling, Lagrangian methods, and SEM transformations. The relativistic principle of virtual power is used to demonstrate the field dynamics associated with energy relations within a relativistic framework. Lorentz transformations of the respective SEM tensors demonstrate the relativistic frameworks for each studied formulation. Mathematical modeling of stationary and moving media is used to illustrate the differences and discrepancies of specific proposed kinetic formulations, where energy relations and conservation theorems are employed. Lagrangian methods are utilized to derive the field kinetic Maxwell's equations, which are studied with respect to SEM tensor transforms. Within each analysis, the Einstein-Laub formulation violates special relativity, which invalidates the Einstein-Laub SEM tensor.

  11. Filamentary and hierarchical pictures - Kinetic energy criterion

    NASA Technical Reports Server (NTRS)

    Klypin, Anatoly A.; Melott, Adrian L.

    1992-01-01

    We present a new criterion for formation of second-generation filaments. The criterion called the kinetic energy ratio, KR, is based on comparison of peculiar velocities at different scales. We suggest that the clumpiness of the distribution in some cases might be less important than the 'coldness' or 'hotness' of the flow for formation of coherent structures. The kinetic energy ratio is analogous to the Mach number except for one essential difference. If at some scale KR is greater than 1, as estimated at the linear stage, then when fluctuations of this scale reach nonlinearity, the objects they produce must be anisotropic ('filamentary'). In the case of power-law initial spectra the kinetic ratio criterion suggests that the border line is the power-spectrum with the slope n = -1.

  12. Nonlocal kinetic-energy-density functionals

    SciTech Connect

    Garcia-Gonzalez, P.; Alvarellos, J.E.; Chacon, E. |

    1996-04-01

    In this paper we present nonlocal kinetic-energy functionals {ital T}[{ital n}] within the average density approximation (ADA) framework, which do not require any extra input when applied to any electron system and recover the exact kinetic energy and the linear response function of a homogeneous system. In contrast with previous ADA functionals, these present good behavior of the long-range tail of the exact weight function. The averaging procedure for the kinetic functional (averaging the Fermi momentum of the electron gas, instead of averaging the electron density) leads to a functional without numerical difficulties in the calculation of extended systems, and it gives excellent results when applied to atoms and jellium surfaces. {copyright} {ital 1996 The American Physical Society.}

  13. Electric Vehicles Mileage Extender Kinetic Energy Storage

    NASA Astrophysics Data System (ADS)

    Jivkov, Venelin; Draganov, Vutko; Stoyanova, Yana

    2015-03-01

    The proposed paper considers small urban vehicles with electric hybrid propulsion systems. Energy demands are examined on the basis of European drive cycle (NEUDC) and on an energy recuperation coefficient and are formulated for description of cycle energy transfers. Numerical simulation results show real possibilities for increasing in achievable vehicle mileage at the same energy levels of a main energy source - the electric battery. Kinetic energy storage (KES), as proposed to be used as an energy buffer and different structural schemes of the hybrid propulsion system are commented. Minimum energy levels for primary (the electric battery) and secondary (KES) sources are evaluated. A strategy for reduced power flows control is examined, and its impact on achievable vehicle mileage is investigated. Results show an additional increase in simulated mileage at the same initial energy levels.

  14. Excess kinetic energy dissipation in materials

    SciTech Connect

    Corrales, Louis R.; Chartier, Alain; Devanathan, Ram

    2005-01-12

    Molecular dynamics computer simulations are used to study the evolution of thermal spikes arising from PKAs in zircon and copper. The effects of thermostats employed to remove energy from the system is characterized and compared to the case where kinetic energy is not removed from the system. Strong effects on the trajectory of the collision sequence is found for zircon, but in contrast, little effects are found for copper.

  15. HIGH PRESSURE COAL COMBUSTON KINETICS PROJECT

    SciTech Connect

    Stefano Orsino

    2005-03-30

    As part of the U.S. Department of Energy (DoE) initiative to improve the efficiency of coal-fired power plants and reduce the pollution generated by these facilities, DOE has funded the High-Pressure Coal Combustion Kinetics (HPCCK) Projects. A series of laboratory experiments were conducted on selected pulverized coals at elevated pressures with the specific goals to provide new data for pressurized coal combustion that will help extend to high pressure and validate models for burnout, pollutant formation, and generate samples of solid combustion products for analyses to fill crucial gaps in knowledge of char morphology and fly ash formation. Two series of high-pressure coal combustion experiments were performed using SRI's pressurized radiant coal flow reactor. The first series of tests characterized the near burner flame zone (NBFZ). Three coals were tested, two high volatile bituminous (Pittsburgh No.8 and Illinois No.6), and one sub-bituminous (Powder River Basin), at pressures of 1, 2, and 3 MPa (10, 20, and 30 atm). The second series of experiments, which covered high-pressure burnout (HPBO) conditions, utilized a range of substantially longer combustion residence times to produce char burnout levels from 50% to 100%. The same three coals were tested at 1, 2, and 3 MPa, as well as at 0.2 MPa. Tests were also conducted on Pittsburgh No.8 coal in CO2 entrainment gas at 0.2, 1, and 2 MPa to begin establishing a database of experiments relevant to carbon sequestration techniques. The HPBO test series included use of an impactor-type particle sampler to measure the particle size distribution of fly ash produced under complete burnout conditions. The collected data have been interpreted with the help of CFD and detailed kinetics simulation to extend and validate devolatilization, char combustion and pollutant model at elevated pressure. A global NOX production sub-model has been proposed. The submodel reproduces the performance of the detailed chemical reaction

  16. A Note on Kinetic Energy, Dissipation and Enstrophy

    NASA Technical Reports Server (NTRS)

    Wu, Jie-Zhi; Zhou, Ye; Fan, Meng

    1998-01-01

    The dissipation rate of a Newtonian fluid with constant shear viscosity can be shown to include three constituents: dilatation, vorticity, and surface strain. The last one is found to make no contributions to the change of kinetic energy. These dissipation constituents arc used to identify typical compact turbulent flow structures at high Reynolds numbers. The incompressible version of the simplified kinetic-energy equation is then cast to a novel form, which is free from the work rate done by surface stresses but in which the full dissipation re-enters.

  17. On the total kinetic energy of our Galaxy

    NASA Astrophysics Data System (ADS)

    Ninkovic, Slobodan

    1992-03-01

    The total kinetic energy of the Galaxy is estimated from the potential energy by applying the virial theorem. The limits of the potential energy depend strongly on the value of the local escape velocity. They are estimated to be between (-7 and -1) x 10 exp 16 solar mass sq km/sec sq (escape velocity approximately between 450 km/s and 600 km/s). The specific kinetic energy of the Galaxy as a whole is most likely about 21,000 sq km/sec sq, being equally distributed among the subsystems, if the local escape velocity is near its lower limit; the higher the local escape velocity is, the higher is the specific kinetic energy of the Galaxy due to the influence of the dark corona. The specific kinetic energy of the dark corona tends to become equal to that of the Galaxy as a whole for very high values of the local escape velocity. For the purpose of estimating the total potential energy of the Galaxy, inter alia, a model of the Milky Way is developed which yields both the potential and the density analytically so that it is suitable for calculating the galactocentric orbits.

  18. Kinetics and energy states of nanoclusters in the initial stage of homogeneous condensation at high supersaturation degrees

    SciTech Connect

    Vorontsov, A. G.; Gel'chinskii, B. R.; Korenchenko, A. E.

    2012-11-15

    The condensation of metal vapor in an inert gas is studied by the molecular dynamics method. Two condensation regimes are investigated: with maintenance of partial pressure of the metal vapor and with a fixed number of metal atoms in the system. The main focus is the study of the cluster energy distribution over the degrees of freedom and mechanisms of the establishment of thermal equilibrium. It is shown that the internal temperature of a cluster considerably exceeds the buffer gas temperature and the thermal balance is established for a time considerably exceeding the nucleation time. It is found that, when the metal vapor concentration exceeds 0.1 of the argon concentration, the growth of clusters with the highest possible internal energy occurs, the condensation rate being determined only by the rate of heat removal from clusters.

  19. Exploring the interfacial structure of protein adsorbates and the kinetics of protein adsorption: an in situ high-energy X-ray reflectivity study.

    PubMed

    Evers, Florian; Shokuie, Kaveh; Paulus, Michael; Sternemann, Christian; Czeslik, Claus; Tolan, Metin

    2008-09-16

    The high energy X-ray reflectivity technique has been applied to study the interfacial structure of protein adsorbates and protein adsorption kinetics in situ. For this purpose, the adsorption of lysozyme at the hydrophilic silica-water interface has been chosen as a model system. The structure of adsorbed lysozyme layers was probed for various aqueous solution conditions. The effect of solution pH and lysozyme concentration on the interfacial structure was measured. Monolayer formation was observed for all cases except for the highest concentration. The adsorbed protein layers consist of adsorbed lysozyme molecules with side-on or end-on orientation. By means of time-dependent X-ray reflectivity scans, the time-evolution of adsorbed proteins was monitored as well. The results of this study demonstrate the capabilities of in situ X-ray reflectivity experiments on protein adsorbates. The great advantages of this method are the broad wave vector range available and the high time resolution. PMID:18715021

  20. Imperfect dark energy from kinetic gravity braiding

    SciTech Connect

    Deffayet, Cédric; Pujolàs, Oriol; Sawicki, Ignacy; Vikman, Alexander E-mail: oriol.pujolas@cern.ch E-mail: alexander.vikman@nyu.edu

    2010-10-01

    We introduce a large class of scalar-tensor models with interactions containing the second derivatives of the scalar field but not leading to additional degrees of freedom. These models exhibit peculiar features, such as an essential mixing of scalar and tensor kinetic terms, which we have named kinetic braiding. This braiding causes the scalar stress tensor to deviate from the perfect-fluid form. Cosmology in these models possesses a rich phenomenology, even in the limit where the scalar is an exact Goldstone boson. Generically, there are attractor solutions where the scalar monitors the behaviour of external matter. Because of the kinetic braiding, the position of the attractor depends both on the form of the Lagrangian and on the external energy density. The late-time asymptotic of these cosmologies is a de Sitter state. The scalar can exhibit phantom behaviour and is able to cross the phantom divide with neither ghosts nor gradient instabilities. These features provide a new class of models for Dark Energy. As an example, we study in detail a simple one-parameter model. The possible observational signatures of this model include a sizeable Early Dark Energy and a specific equation of state evolving into the final de-Sitter state from a healthy phantom regime.

  1. A Suggested Resource Unit on the Kinetic Theory of Gases and Associated Heat Energy Theory for the Use of Junior High School Teachers.

    ERIC Educational Resources Information Center

    Hansen, John R.

    The intent of this investigation was to design a resource unit to be used by junior high school science teachers to teach the concept of the kinetic theory of gases. The document was prepared to aid teachers with minimal preparation in physics. The research design consisted of three main subproblems: (1) the identification of the subtopics of the…

  2. Kinetic equilibria of very high- β plasmas

    NASA Astrophysics Data System (ADS)

    Steinhauer, Loren; TAE Team

    2015-11-01

    Plasma equilibria with many large ion orbits, such as an advanced beam-driven field-reversed configuration, are neither static (Grad-Shafranov) nor describable as a flowing, multi-fluid. A fully-kinetic treatment of the ions is essential for such high- β plasmas. A kinetic equilibrium is needed to properly support realistic stability and transport analyses, both of which are strongly affected by large-orbit ions. A hybrid equilibrium model has been developed with a fully-kinetic treatment of both thermal ions and a rapidly-rotating ``beam-ion'' component, such as produced by neutral beam injection, relevant to the C-2U experiments at TAE. It employs analytic Vlasov solutions in that the distribution depends only on the two constants of motion, the Hamiltonian (H) and the canonical angular momentum (Pθ) . Electrons are treated as a pressure-bearing fluid. Since realistic forms of f (H ,Pθ) are affected by collisions, f is limited to solutions of a simplified Fokker-Planck equation. Importantly, a kinetic end-loss condition applies to unconfined ions, using a particle sink at a rate consistent with Monte-Carlo-like simulations of end loss accounting for a strong end mirror.

  3. Collisional energy transfer probabilities of highly excited molecules from kinetically controlled selective ionization (KCSI). II. The collisional relaxation of toluene: P(E',E) and moments of energy transfer for energies up to 50 000 cm-1

    NASA Astrophysics Data System (ADS)

    Lenzer, Thomas; Luther, Klaus; Reihs, Karsten; Symonds, Andrew C.

    2000-03-01

    Complete and detailed experimental transition probability density functions P(E',E) have been determined for the first time for collisions between a large, highly vibrationally excited molecule, toluene, and several bath gases. This was achieved by applying the method of kinetically controlled selective ionization (KCSI) (Paper I [J. Chem. Phys. 112, 4076 (2000), preceding article]). An optimum P(E',E) representation is recommended (monoexponential with a parametric exponent in the argument) which uses only three parameters and features a smooth behavior of all parameters for the entire set of bath gases. In helium, argon, and CO2 the P(E',E) show relatively increased amplitudes in the wings—large energy gaps |E'-E|—which can also be represented by a biexponential form. The fractional contribution of the second exponent in these biexponentials, which is directly related to the fraction of the so-called "supercollisions," is found to be very small (<0.1%). For larger colliders the second term disappears completely and the wings of P(E',E) have an even smaller amplitude than that provided by a monoexponential form. At such low levels, the second exponent is therefore of practically no relevance for the overall energy relaxation rate. All optimized P(E',E) representations show a marked linear energetic dependence of the (weak) collision parameter α1(E), which also results in an (approximately) linear dependence of <ΔE> and of the square root of <ΔE2>. The energy transfer parameters presented in this study form a new benchmark class in certainty and accuracy, e.g., with only 2%-7% uncertainty for our <ΔE> data below 25 000 cm-1. They should also form a reliable testground for future trajectory calculations and theories describing collisional energy transfer of polyatomic molecules.

  4. Evaluating rainfall kinetic energy - intensity relationships with observed disdrometric data

    NASA Astrophysics Data System (ADS)

    Angulo-Martinez, Marta; Begueria, Santiago; Latorre, Borja

    2016-04-01

    Rainfall kinetic energy is required for determining erosivity, the ability of rainfall to detach soil particles and initiate erosion. Its determination relay on the use of disdrometers, i.e. devices capable of measuring the drop size distribution and velocity of falling raindrops. In the absence of such devices, rainfall kinetic energy is usually estimated with empirical expressions relating rainfall energy and intensity. We evaluated the performance of 14 rainfall energy equations in estimating one-minute rainfall energy and event total energy, in comparison with observed data from 821 rainfall episodes (more than 100 thousand one-minute observations) by means of an optical disdrometer. In addition, two sources of bias when using such relationships were evaluated: i) the influence of using theoretical terminal raindrop fall velocities instead of measured values; and ii) the influence of time aggregation (rainfall intensity data every 5-, 10-, 15-, 30-, and 60-minutes). Empirical relationships did a relatively good job when complete events were considered (R2 > 0.82), but offered poorer results for within-event (one-minute resolution) variation. Also, systematic biases where large for many equations. When raindrop size distribution was known, estimating the terminal fall velocities by empirical laws produced good results even at fine time resolution. The influence of time aggregation was very high in the estimated kinetic energy, although linear scaling may allow empirical correction. This results stress the importance of considering all these effects when rainfall energy needs to be estimated from more standard precipitation records. , and recommends the use of disdrometer data to locally determine rainfall kinetic energy.

  5. Kinetic energy density dependent approximations to the exchange energy

    NASA Astrophysics Data System (ADS)

    Ernzerhof, Matthias; Scuseria, Gustavo E.

    1999-07-01

    Two nonempirical kinetic energy density dependent approximations are introduced. First, the local τ approximation (LTA) is proposed in which the exchange energy Ex depends only on a kinetic energy density τ. This LTA scheme appears to be complementary to the local spin density (LSD) approximation in the sense that its exchange contribution to the atomization energy ΔEx=Exatoms-Exmolecule is fairly accurate for systems where LSD fails. On the other hand, in cases where LSD works well LTA results for ΔEx are worse. Secondly, the τPBE approximation to Ex is developed which combines some of the advantages of LTA and of the Perdew-Burke-Ernzerhof (PBE) exchange functional. Like the PBE exchange functional, τPBE is free of empirical parameters. Furthermore, it yields improved atomization energies compared to the PBE approximation.

  6. Systems engineering analysis of kinetic energy weapon concepts

    SciTech Connect

    Senglaub, M.

    1996-06-01

    This study examines, from a systems engineering design perspective, the potential of kinetic energy weapons being used in the role of a conventional strategic weapon. Within the Department of Energy (DOE) complex, strategic weapon experience falls predominantly in the nuclear weapons arena. The techniques developed over the years may not be the most suitable methodologies for use in a new design/development arena. For this reason a more fundamental approach was pursued with the objective of developing an information base from which design decisions might be made concerning the conventional strategic weapon system concepts. The study examined (1) a number of generic missions, (2) the effects of a number of damage mechanisms from a physics perspective, (3) measures of effectiveness (MOE`s), and (4) a design envelope for kinetic energy weapon concepts. With the base of information a cut at developing a set of high-level system requirements was made, and a number of concepts were assessed against these requirements.

  7. On Kinetics Modeling of Vibrational Energy Transfer

    NASA Technical Reports Server (NTRS)

    Gilmore, John O.; Sharma, Surendra P.; Cavolowsky, John A. (Technical Monitor)

    1996-01-01

    Two models of vibrational energy exchange are compared at equilibrium to the elementary vibrational exchange reaction for a binary mixture. The first model, non-linear in the species vibrational energies, was derived by Schwartz, Slawsky, and Herzfeld (SSH) by considering the detailed kinetics of vibrational energy levels. This model recovers the result demanded at equilibrium by the elementary reaction. The second model is more recent, and is gaining use in certain areas of computational fluid dynamics. This model, linear in the species vibrational energies, is shown not to recover the required equilibrium result. Further, this more recent model is inconsistent with its suggested rate constants in that those rate constants were inferred from measurements by using the SSH model to reduce the data. The non-linear versus linear nature of these two models can lead to significant differences in vibrational energy coupling. Use of the contemporary model may lead to significant misconceptions, especially when integrated in computer codes considering multiple energy coupling mechanisms.

  8. Mechanisms affecting kinetic energies of laser-ablated materials

    SciTech Connect

    Chen, K.R. |; Leboeuf, J.N.; Wood, R.F.; Geohegan, D.B.; Donato, J.M.; Liu, C.L.; Puretzky, A.A.

    1995-12-31

    Laser materials processing techniques are expected to have a dramatic impact on materials science and engineering in the near future and beyond. One of the main laser materials processing techniques is Pulsed Laser Deposition (PLD) for thin film growth. While experimentalists search for optimal approaches for thin film growth with pulsed laser deposition (PLD), a systematic effort in theory and modeling of various processes during PLD is needed. The quality of film deposited depends critically on the range and profile of the kinetic energy and density of the ablated plume. While it is to the advantage of pulsed laser deposition to have high kinetic energy, plumes that are too energetic causes film damage. A dynamic source effect was found to accelerate the plume expansion velocity much higher than that from a conventional free expansion model. A self-similar theory and a hydrodynamic model are developed to study this effect, which may help to explain experimentally observed high front expansion velocity. Background gas can also affect the kinetic energies. High background gas may cause the ablated materials to go backward. Experimentally observed plume splitting is also discussed.

  9. Nontargeted Stressful Effects in Normal Human Fibroblast Cultures Exposed to Low Fluences of High Charge, High Energy (HZE) Particles: Kinetics of Biologic Responses and Significance of Secondary Radiations

    PubMed Central

    Gonon, Géraldine; Groetz, Jean-Emmanuel; de Toledo, Sonia M.; Howell, Roger W.; Fromm, Michel; Azzam, Edouard I.

    2014-01-01

    The induction of nontargeted stressful effects in cell populations exposed to low fluences of high charge (Z) and high energy (E) particles is relevant to estimates of the health risks of space radiation. We investigated the up-regulation of stress markers in confluent normal human fibroblast cultures exposed to 1,000 MeV/u iron ions [linear energy transfer (LET) ~151 keV/μm] or 600 MeV/u silicon ions (LET ~50 keV/μm) at mean absorbed doses as low as 0.2 cGy, wherein 1–3% of the cells were targeted through the nucleus by a primary particle. Within 24 h postirradiation, significant increases in the levels of phospho-TP53 (serine 15), p21Waf1 (CDKN1A), HDM2, phospho-ERK1/2, protein carbonylation and lipid peroxidation were detected, which suggested participation in the stress response of cells not targeted by primary particles. This was supported by in situ studies that indicated greater increases in 53BP1 foci formation, a marker of DNA damage. than expected from the number of primary particle traversals. The effect was expressed as early as 15 min after exposure, peaked at 1 h and decreased by 24 h. A similar tendency occurred after exposure of the cell cultures to 0.2 cGy of 3.7 MeV α particles (LET ~109 keV/μm) that targets ~1.6% of nuclei, but not after 0.2 cGy from 290 MeV/u carbon ions (LET ~13 keV/μm) by which, on average, ~13% of the nuclei were hit, which highlights the importance of radiation quality in the induced effect. Simulations with the FLUKA multi-particle transport code revealed that fragmentation products, other than electrons, in cell cultures exposed to HZE particles comprise <1% of the absorbed dose. Further, the radial spread of dose due to secondary heavy ion fragments is confined to approximately 10–20 μm. Thus, the latter are unlikely to significantly contribute to stressful effects in cells not targeted by primary HZE particles. PMID:23465079

  10. Kinetic energy factors in evaluation of athletes.

    PubMed

    Jones, Jason N; Priest, Joe W; Marble, Daniel K

    2008-11-01

    It is established that speed and agility are critical attributes of sports performance. Performance timing of runs during agility course testing can be used to estimate acceleration, speed, or quickness. The authors of this research effort also report the energy of motion, or kinetic energy of the athlete, which considers not only the speed but also the mass of the athlete. An electronic timer was used to determine total run times as well as split performance times during a new 60-yd "run-shuttle" test. This newly designed agility test takes advantage of the technological capabilities of a laser timing device. Separate times for each of four run segments were recorded and converted to average speeds (m x s(-1)) as well as a quantitative factor of merit defined as the "K-factor." The purpose of this study was to describe the effects of training and to compare athletes and teams using measures of time, speed, and kinetic energy. Results of the analysis of total time on the 60-yd run-shuttle provided evidence of the effectiveness of the training programs. Split times of segments within the 60-yd run-shuttle provided information not available from conventional agility tests. Average speeds and K-factors identified discriminating characteristics of otherwise similar athletes. Our findings support the conclusion that training programs and athletic performance may be evaluated using the 60-yd run-shuttle with laser timer system. Coaches and trainers may find practical application of this technology for American football, soccer, basketball, baseball/softball, track and field, and field hockey. PMID:18824932

  11. Physical insight into electromagnetic kinetic energy transducers and appropriate energy conditioning for enhanced micro energy harvesting

    NASA Astrophysics Data System (ADS)

    Leicht, Joachim; Hehn, Thorsten; Maurath, Dominic; Moranz, Christian; Manoli, Yiannos

    2013-12-01

    This paper proposes a new method for modeling electromagnetic kinetic energy transducers and gives analytical expressions that enable the design of efficient energy conditioning circuitry. The introduced transducer modeling approach achieves high accuracy without requiring a large set of parameters. The presented transducer characterization allows physical insight into fully assembled and packaged transducers in order to extract the required transducer model parameters without knowledge of the individual components. Moreover, the electromagnetic coupling, the parasitic damping, and the optimal load can be modeled with a dependence on the external excitation. Precise co-simulation with CMOS integrated energy conditioning circuitry is possible implementing this model in a circuit simulator.

  12. Mesoscale and macroscale kinetic energy fluxes from granular fabric evolution.

    PubMed

    Walker, David M; Tordesillas, Antoinette; Froyland, Gary

    2014-03-01

    Recent advances in high-resolution measurements means it is now possible to identify and track the local "fabric" or contact topology of individual grains in a deforming sand throughout loading history. These provide compelling impetus to the development of methods for inferring changes in the contact forces and energies at multiple spatiotemporal scales, using information on grain contacts alone. Here we develop a surrogate measure of the fluctuating kinetic energy based on changes in the local contact topology of individual grains. We demonstrate the method for dense granular materials under quasistatic biaxial shear. In these systems, the initially stable and solidlike response eventually gives way to liquidlike behavior and global failure. This crossover in mechanical behavior, akin to a phase transition, is marked by bursts of kinetic energy and frictional dissipation. Mechanisms underlying this release of energy include the buckling of major load-bearing structures known as force chains. These columns of grains represent major repositories for stored strain energy. Stored energy initially accumulates at all of the contacts along the force chain, but is released collectively when the chain overloads and buckles. The exact quantification of the buildup and release of energy in force chains, and the manner in which force chain buckling propagates in the sample (i.e., diffuse and systemwide versus localized into shear bands), requires detailed knowledge of contact forces. To date, however, the forces at grain contacts continue to elude measurement in natural granular materials like sand. Here, using data from computer simulations, we show that a proxy for the fluctuating kinetic energy in dense granular materials can be suitably constructed solely from the evolving properties of the grain's local contact topology. Our approach directly relates the evolution of fabric to energy flux and makes possible research into the propagation of failure from measurements of

  13. Mesoscale and macroscale kinetic energy fluxes from granular fabric evolution

    NASA Astrophysics Data System (ADS)

    Walker, David M.; Tordesillas, Antoinette; Froyland, Gary

    2014-03-01

    Recent advances in high-resolution measurements means it is now possible to identify and track the local "fabric" or contact topology of individual grains in a deforming sand throughout loading history. These provide compelling impetus to the development of methods for inferring changes in the contact forces and energies at multiple spatiotemporal scales, using information on grain contacts alone. Here we develop a surrogate measure of the fluctuating kinetic energy based on changes in the local contact topology of individual grains. We demonstrate the method for dense granular materials under quasistatic biaxial shear. In these systems, the initially stable and solidlike response eventually gives way to liquidlike behavior and global failure. This crossover in mechanical behavior, akin to a phase transition, is marked by bursts of kinetic energy and frictional dissipation. Mechanisms underlying this release of energy include the buckling of major load-bearing structures known as force chains. These columns of grains represent major repositories for stored strain energy. Stored energy initially accumulates at all of the contacts along the force chain, but is released collectively when the chain overloads and buckles. The exact quantification of the buildup and release of energy in force chains, and the manner in which force chain buckling propagates in the sample (i.e., diffuse and systemwide versus localized into shear bands), requires detailed knowledge of contact forces. To date, however, the forces at grain contacts continue to elude measurement in natural granular materials like sand. Here, using data from computer simulations, we show that a proxy for the fluctuating kinetic energy in dense granular materials can be suitably constructed solely from the evolving properties of the grain's local contact topology. Our approach directly relates the evolution of fabric to energy flux and makes possible research into the propagation of failure from measurements of

  14. High-Throughput Enzyme Kinetics Using Microarrays

    SciTech Connect

    Guoxin Lu; Edward S. Yeung

    2007-11-01

    We report a microanalytical method to study enzyme kinetics. The technique involves immobilizing horseradish peroxidase on a poly-L-lysine (PLL)- coated glass slide in a microarray format, followed by applying substrate solution onto the enzyme microarray. Enzyme molecules are immobilized on the PLL-coated glass slide through electrostatic interactions, and no further modification of the enzyme or glass slide is needed. In situ detection of the products generated on the enzyme spots is made possible by monitoring the light intensity of each spot using a scientific-grade charged-coupled device (CCD). Reactions of substrate solutions of various types and concentrations can be carried out sequentially on one enzyme microarray. To account for the loss of enzyme from washing in between runs, a standard substrate solution is used for calibration. Substantially reduced amounts of substrate solution are consumed for each reaction on each enzyme spot. The Michaelis constant K{sub m} obtained by using this method is comparable to the result for homogeneous solutions. Absorbance detection allows universal monitoring, and no chemical modification of the substrate is needed. High-throughput studies of native enzyme kinetics for multiple enzymes are therefore possible in a simple, rapid, and low-cost manner.

  15. Droplet Kinetic Energy from Center-Pivot Sprinklers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The kinetic energy of discrete water drops impacting a bare soil surface is generally observed to lead to a drastic reduction in water infiltration rate due to soil surface seal formation. Under center-pivot sprinkler irrigation, kinetic energy transferred to the soil prior to crop canopy developmen...

  16. Determination of kinetic energy applied by center pivot sprinklers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The kinetic energy of discrete drops impacting a bare soil surface is generally observed to lead to a drastic reduction in water infiltration rate due to soil surface seal formation. Under center pivot sprinkler irrigation, kinetic energy transferred to the soil prior to crop canopy development can...

  17. The Kinetic Energy of a Rotating Figure Skater.

    ERIC Educational Resources Information Center

    Chen, Wei R.; Troelstra, Arne A.

    1998-01-01

    When a rotating figure skater's fully extended arms are pulled back toward the torso, the angular velocity is noticeably increased and the kinetic energy of the skater can also be shown to increase. Discusses the change of the kinetic energy during such a process, and the work necessary for such an increase is derived using a dynamic equilibrium…

  18. Kinetic energy budgets in areas of intense convection

    NASA Technical Reports Server (NTRS)

    Fuelberg, H. E.; Berecek, E. M.; Ebel, D. M.; Jedlovec, G. J.

    1980-01-01

    A kinetic energy budget analysis of the AVE-SESAME 1 period which coincided with the deadly Red River Valley tornado outbreak is presented. Horizontal flux convergence was found to be the major kinetic energy source to the region, while cross contour destruction was the major sink. Kinetic energy transformations were dominated by processes related to strong jet intrusion into the severe storm area. A kinetic energy budget of the AVE 6 period also is presented. The effects of inherent rawinsonde data errors on widely used basic kinematic parameters, including velocity divergence, vorticity advection, and kinematic vertical motion are described. In addition, an error analysis was performed in terms of the kinetic energy budget equation. Results obtained from downward integration of the continuity equation to obtain kinematic values of vertical motion are described. This alternate procedure shows promising results in severe storm situations.

  19. Decay and Spatial Diffusion of Turbulent Kinetic Energy In The Presence of a Linear Kinetic Energy Gradient

    NASA Astrophysics Data System (ADS)

    Meneveau, Charles

    2015-11-01

    A topic that elicited the interest of John Lumley is pressure transport in turbulence. In 1978 (JL, in Advances in Applied Mechanics, pages 123-176) he showed that pressure transport likely acts in the opposite direction to the spatial flux of kinetic energy due to triple velocity correlations. Here we examine a flow in which the interplay of turbulent decay and spatial transport is particularly relevant. Specifically, using a specially designed active grid and screens placed in the Corrsin wind tunnel, such a flow is realized. Data are acquired using X-wire thermal anemometry at different spanwise and downstream locations. In order to resolve the dissipation rate accurately, measurements are also acquired using the NSTAP probe developed and manufactured by Princeton researchers and kindly provided to us (M. Hultmark, Y. Fan, L. Smits). The results show power-law decay with downstream distance, with a decay exponent that becomes larger in the high kinetic energy side of the flow. Measurements of the dissipation enable us to obtain the spanwise gradient of the spatial flux. One possible explanation for the observations is upgrading transport of kinetic energy due to pressure-velocity correlations, although its magnitude required to close the budget appears very large. Absence of simultaneous pressure velocity measurement preclude us to fully elucidate the observed trends. In collaboration with Adrien Thormann, Johns Hopkins University. Financial support: National Science Foundation.

  20. Maximum kinetic energy considerations in proton stereotactic radiosurgery

    PubMed Central

    Sengbusch, Evan R.; Mackie, Thomas R.

    2016-01-01

    The purpose of this study was to determine the maximum proton kinetic energy required to treat a given percentage of patients eligible for stereotactic radiosurgery (SRS) with coplanar arc-based proton therapy, contingent upon the number and location of gantry angles used. Treatment plans from 100 consecutive patients treated with SRS at the University of Wisconsin Carbone Cancer Center between June of 2007 and March of 2010 were analyzed. For each target volume within each patient, in-house software was used to place proton pencil beam spots over the distal surface of the target volume from 51 equally-spaced gantry angles of up to 360°. For each beam spot, the radiological path length from the surface of the patient to the distal boundary of the target was then calculated along a ray from the gantry location to the location of the beam spot. This data was used to generate a maximum proton energy requirement for each patient as a function of the arc length that would be spanned by the gantry angles used in a given treatment. If only a single treatment angle is required, 100% of the patients included in the study could be treated by a proton beam with a maximum kinetic energy of 118 MeV. As the length of the treatment arc is increased to 90°, 180°, 270°, and 360°, the maximum energy requirement increases to 127, 145, 156, and 179 MeV, respectively. A very high percentage of SRS patients could be treated at relatively low proton energies if the gantry angles used in the treatment plan do not span a large treatment arc. Maximum proton kinetic energy requirements increase linearly with size of the treatment arc. PMID:21844866

  1. Turbulence generation through intense kinetic energy sources

    NASA Astrophysics Data System (ADS)

    Maqui, Agustin F.; Donzis, Diego A.

    2016-06-01

    Direct numerical simulations (DNS) are used to systematically study the development and establishment of turbulence when the flow is initialized with concentrated regions of intense kinetic energy. This resembles both active and passive grids which have been extensively used to generate and study turbulence in laboratories at different Reynolds numbers and with different characteristics, such as the degree of isotropy and homogeneity. A large DNS database was generated covering a wide range of initial conditions with a focus on perturbations with some directional preference, a condition found in active jet grids and passive grids passed through a contraction as well as a new type of active grid inspired by the experimental use of lasers to photo-excite the molecules that comprise the fluid. The DNS database is used to assert under what conditions the flow becomes turbulent and if so, the time required for this to occur. We identify a natural time scale of the problem which indicates the onset of turbulence and a single Reynolds number based exclusively on initial conditions which controls the evolution of the flow. It is found that a minimum Reynolds number is needed for the flow to evolve towards fully developed turbulence. An extensive analysis of single and two point statistics, velocity as well as spectral dynamics and anisotropy measures is presented to characterize the evolution of the flow towards realistic turbulence.

  2. Test of Relativistic Kinetic Energy Equation

    NASA Astrophysics Data System (ADS)

    Chaudhary, Bharat

    2014-03-01

    Kinetic energy of a body equals the work done on it by a force, constant or variable. Force is the time rate of change of momentum. Momentum is mass times velocity. According to special relativity mass and velocity both are variables. Therefore, the differentiation of their product (momentum) has two terms, both are variables. One term is the product of mass and acceleration. The other is of velocity and the rate of change of mass. They together equal the applied force. Since the force equals the sum of two variable terms, it also becomes a variable even if it was a constant earlier. Therefore it is a flaw. There are two more flaws in the force equation. They are found by putting the force equal to zero. When this is done, the acceleration doesn't become zero. This is physically incompatible and is therefore a flaw. The other flaw in the equation is found by integrating the right side terms and evaluating the constant of integration from the initial conditions. Then we get a term containing logarithm of zero that is undefined, therefore the expression so obtained is meaningless. Since it comes from the relativistic definition of force, therefore we conclude that this definition is wrong. Thus we find that there are three flaws in the relativistic definition of force. They all make the relativistic equation of force wrong.

  3. Army hypersonic compact kinetic-energy missile laser window design

    NASA Astrophysics Data System (ADS)

    Russell, Gerald W.; Cayson, Stephen C.; Jones, Michael M.; Carriger, Wendy; Mitchell, Robert R.; Strobel, Forrest A.; Rembert, Michael; Gibson, David A.

    2003-09-01

    The U.S. Army Aviation and Missile Command, Aviation and Missile Research, Engineering, and Development Center (AMRDEC) is currently developing the Compact Kinetic Energy Missile (CKEM) which achieves hypersonic velocities at sea level. The system incorporates guidance to the target and requires active guidance technology. CKEM's kinetic energy warhead requires an accurate guidance sub-system in order to achieve high probability of kills at long range. Due to the severity of the aerothermal environments, minimized reaction time for small time to target conditions, and the communication degrading effects of the missile's energetic boost motor, a state of the art guidance technique is being developed by the AMRDEC Missile Guidance Directorate called Side-Scatter Laser Beam Rider. This technology incorporates a 1.06 micron laser to receive an off-axis laser guidance link to communicate guidance information from the launch site to the missile. This concept requires the use of optical windows on board the missile for the missile-borne laser energy signal receivers. The current concept utilizes four rectangular windows at 90° increments around the missile. The peak velocity during flight can reach approximately 6300 ft/sec inducing severe aerothermal heating and highly transient thermal gradients. The Propulsion and Structures Directorate was tasked to design and experimentally validate the laser window. Additionally, flight tests were conducted to demonstrate the laser guidance technology. This paper will present the laser window design development process as well as aerothermal testing to induce flight like environments and assess worst case thermostructural conditions.

  4. A Detailed Level Kinetics Model of NO Vibrational Energy Distributions

    NASA Technical Reports Server (NTRS)

    Sharma, Surendra P.; Gilmore, John; Cavolowsky, John A. (Technical Monitor)

    1996-01-01

    Several contemporary problems have pointed to the desirability of a detailed level kinetics approach to modeling the distribution of vibrational energy in NO. Such a model is necessary when vibrational redistribution reactions are insufficient to maintain a Boltzmann distribution over the vibrational energy states. Recent calculations of the rate constant for the first reaction of the Zeldovich mechanism (N2 + O (goes to) NO + N) have suggested that the product NO is formed in high vibrational states. In shock layer flowfields, the product NO molecules may experience an insufficient number of collisions to establish a Boltzmann distribution over vibrational states, thus necessitating a level kinetics model. In other flows, such as expansions of high temperature air, fast, near-resonance vibrational energy exchanges with N2 and O2 may also require a level specific model for NO because of the relative rates of vibrational exchange and redistribution. The proposed report will integrate computational and experimental components to construct such a model for the NO molecule.

  5. Electron kinetic energies from vibrationally promoted surface exoemission: evidence for a vibrational autodetachment mechanism.

    PubMed

    LaRue, Jerry L; Schäfer, Tim; Matsiev, Daniel; Velarde, Luis; Nahler, N Hendrik; Auerbach, Daniel J; Wodtke, Alec M

    2011-12-22

    We report kinetic energy distributions of exoelectrons produced by collisions of highly vibrationally excited NO molecules with a low work function Cs dosed Au(111) surface. These measurements show that energy dissipation pathways involving nonadiabatic conversion of vibrational energy to electronic energy can result in electronic excitation of more than 3 eV, consistent with the available vibrational energy. We measured the dependence of the electron energy distributions on the translational and vibrational energy of the incident NO and find a clear positive correlation between final electron kinetic energy and initial vibrational excitation and a weak but observable inverse dependence of electron kinetic energy on initial translational energy. These observations are consistent with a vibrational autodetachment mechanism, where an electron is transferred to NO near its outer vibrational turning point and ejected near its inner vibrational turning point. Within the context of this model, we estimate the NO-to-surface distance for electron transfer. PMID:22112161

  6. Zero kinetic energy photoelectron spectroscopy of triphenylene

    NASA Astrophysics Data System (ADS)

    Harthcock, Colin; Zhang, Jie; Kong, Wei

    2014-06-01

    We report vibrational information of both the first electronically excited state and the ground cationic state of jet-cooled triphenylene via the techniques of resonantly enhanced multiphoton ionization (REMPI) and zero kinetic energy (ZEKE) photoelectron spectroscopy. The first excited electronic state S1 of the neutral molecule is of A1' symmetry and is therefore electric dipole forbidden in the D3h group. Consequently, there are no observable Franck-Condon allowed totally symmetric a1' vibrational bands in the REMPI spectrum. All observed vibrational transitions are due to Herzberg-Teller vibronic coupling to the E' third electronically excited state S3. The assignment of all vibrational bands as e' symmetry is based on comparisons with calculations using the time dependent density functional theory and spectroscopic simulations. When an electron is eliminated, the molecular frame undergoes Jahn-Teller distortion, lowering the point group to C2v and resulting in two nearly degenerate electronic states of A2 and B1 symmetry. Here we follow a crude treatment by assuming that all e' vibrational modes resolve into b2 and a1 modes in the C2v molecular frame. Some observed ZEKE transitions are tentatively assigned, and the adiabatic ionization threshold is determined to be 63 365 ± 7 cm-1. The observed ZEKE spectra contain a consistent pattern, with a cluster of transitions centered near the same vibrational level of the cation as that of the intermediate state, roughly consistent with the propensity rule. However, complete assignment of the detailed vibrational structure due to Jahn-Teller coupling requires much more extensive calculations, which will be performed in the future.

  7. Rainfall kinetic energy-intensity and rainfall momentum-intensity relationships for Cape Verde

    NASA Astrophysics Data System (ADS)

    Sanchez-Moreno, Juan Francisco; Mannaerts, Chris M.; Jetten, Victor; Löffler-Mang, Martin

    2012-08-01

    Momentum and kinetic energy of rainfall are widely used indices to describe erosivity, the ability of rainfall to detach soil particles and erode the landscape. An optical laser disdrometer was installed in Santiago Island, Cape Verde, between September 2008 and September 2010 to measure rainfall intensity and size distribution of raindrops. A total time series of 5129 observations of radar reflectivity, visibility, rainfall intensity and number of particles were gathered. Rainfall kinetic energy expenditure KEtime (J m-2 h-1), kinetic energy content KEmm (J m-2 mm-1) and momentum flux MtA (kg m s-1 m-2 s-1) were calculated and fitted to different known experimental equations. The best fit between rainfall intensity and kinetic energy expenditure, kinetic energy content and momentum were obtained with power-law equations. These equations were validated in two independent events corresponding to 2008 and 2009, producing high correlation coefficients. The results show that for Cape Verde, KEtime is a more appropriate index to relate with rainfall intensity, and that kinetic energy expenditure and momentum flux are interchangeable parameters for erosivity estimation. New relationships relating kinetic energy and rainfall intensity, and momentum and rainfall intensity were derived, which contribute to the characterization of rainfall originating from tropical depressions at lower latitudes.

  8. Kinetic energy principle and neoclassical toroidal torque in tokamaks

    SciTech Connect

    Park, Jong-Kyu

    2011-11-15

    It is shown that when tokamaks are perturbed, the kinetic energy principle is closely related to the neoclassical toroidal torque by the action invariance of particles. Especially when tokamaks are perturbed from scalar pressure equilibria, the imaginary part of the potential energy in the kinetic energy principle is equivalent to the toroidal torque by the neoclassical toroidal viscosity. A unified description therefore should be made for both physics. It is also shown in this case that the potential energy operator can be self-adjoint and thus the stability calculation can be simplified by minimizing the potential energy.

  9. Kinetic Energy Principle And Neoclassical Toroidal Torque In Tokamaks

    SciTech Connect

    Jong-Kyu Park

    2011-11-07

    It is shown that when tokamaks are perturbed the kinetic energy principle is closely related to the neoclassical toroidal torque by the action invariance of particles. Especially when tokamaks are perturbed from scalar pressure equilibria, the imaginary part of the potential energy in the kinetic energy principle is equivalent to the toroidal torque by the Neoclassical Toroidal Viscosity (NTV). A unified description therefore should be made for both physics. It is also shown in this case that the potential energy operator can be self-adjoint and thus the stability calculation can be simplified by minimizing the potential energy

  10. On the Linearly-Balanced Kinetic Energy Spectrum

    NASA Technical Reports Server (NTRS)

    Lu, Huei,-Iin; Robertson, F. R.

    1999-01-01

    It is well known that the earth's atmospheric motion can generally be characterized by the two dimensional quasi-geostrophic approximation, in which the constraints on global integrals of kinetic energy, entrophy and potential vorticity play very important roles in redistributing the wave energy among different scales of motion. Assuming the hypothesis of Kolmogrov's local isotropy, derived a -3 power law of the equilibrium two-dimensional kinetic energy spectrum that entails constant vorticity and zero energy flows from the energy-containing wave number up to the viscous cutoff. In his three dimensional quasi-geostrophic theory, showed that the spectrum function of the vertical scale turbulence - expressible in terms of the available potential energy - possesses the same power law as the two dimensional kinetic energy spectrum. As the slope of kinetic energy spectrum in the inertial range is theoretically related to the predictability of the synoptic scales (Lorenz, 1969), many general circulation models includes a horizontal diffusion to provide reasonable kinetic energy spectra, although the actual power law exhibited in the atmospheric general circulation is controversial. Note that in either the atmospheric modeling or the observational analyses, the proper choice of wave number Index to represent the turbulence scale Is the degree of the Legendre polynomial.

  11. Carbonate mineral dissolution kinetics in high pressure experiments

    NASA Astrophysics Data System (ADS)

    Dethlefsen, F.; Dörr, C.; Schäfer, D.; Ebert, M.

    2012-04-01

    The potential CO2 reservoirs in the North German Basin are overlain by a series of Mesozoic barrier rocks and aquifers and finally mostly by Tertiary and Quaternary close-to-surface aquifers. The unexpected rise of stored CO2 from its reservoir into close-to-surface aquifer systems, perhaps through a broken well casing, may pose a threat to groundwater quality because of the acidifying effect of CO2 dissolution in water. The consequences may be further worsening of the groundwater quality due to the mobilization of heavy metals. Buffer mechanisms counteracting the acidification are for instance the dissolution of carbonates. Carbonate dissolution kinetics is comparably fast and carbonates can be abundant in close-to-surface aquifers. The disadvantages of batch experiments compared to column experiments in order to determine rate constants are well known and have for instance been described by v. GRINSVEN and RIEMSDIJK (1992). Therefore, we have designed, developed, tested, and used a high-pressure laboratory column system to simulate aquifer conditions in a flow through setup within the CO2-MoPa project. The calcite dissolution kinetics was determined for CO2-pressures of 6, 10, and 50 bars. The results were evaluated by using the PHREEQC code with a 1-D reactive transport model, applying a LASAGA (1984) -type kinetic dissolution equation (PALANDRI and KHARAKA, 2004; eq. 7). While PALANDRI and KHARAKA (2004) gave calcite dissolution rate constants originating from batch experiments of log kacid = -0.3 and log kneutral = -5.81, the data of the column experiment were best fitted using log kacid = -2.3 and log kneutral = -7.81, so that the rate constants fitted using the lab experiment applying 50 bars pCO2 were approximately 100 times lower than according to the literature data. Rate constants of experiments performed at less CO2 pressure (pCO2 = 6 bars: log kacid = -1.78; log kneutral = -7.29) were only 30 times lower than literature data. These discrepancies in the

  12. High temperature heterogeneous reaction kinetics and mechanisms of tungsten oxidation

    NASA Astrophysics Data System (ADS)

    Sabourin, Justin L.

    energy systems. The primary application for this research topic is the migration of erosion processes in solid rocket motor nozzles. Since oxidation is the primary erosion mechanism of tungsten based nozzles, mitigation of this process through improved comprehension of the chemical mechanisms will increase performance of future rocket systems. In this dissertation, results of the high temperature reaction rates of bulk tungsten are studied using TG analysis in oxidizing atmospheres of O2, CO2, and H2O using helium (He) as an inert carrier gas. Isothermal reaction rates were determined at temperatures up to 1970 K, and oxidizing species partial pressures up to 64.6 torr. Kinetic parameters such as activation energies, frequency factors, and pressure exponents were determined for each reactive system. An important contribution of this work was quantifying the effects of carbon monoxide (CO) on the CO2 reaction, and hydrogen (H2) on the H2O reaction. In both cases the non-oxidizing species significantly reduced oxidation rates. Results have led to new interpretations and thought processes for limiting nozzle erosion in rocket motors. Combined with the TG analysis, as well as recent theoretical interpretations of reaction thermodynamics and kinetics, a new mechanism for tungsten and O2 oxidation has been developed using a one-dimensional numerical model of the TG flow reactor. Important chemical processes and species are also identified for reaction systems involving H2O and CO2. In the future, additional studies are needed to improve our understanding of these chemical species and processes so that more advanced kinetic mechanisms may be developed. In addition to a detailed analysis of high temperature tungsten corrosion processes, synthetic graphite corrosion processes are studied in detail as well. Details of these studies are presented in an attached appendix of this dissertation. These studies considered not only oxidation processes, but decomposition of synthetic

  13. Implementation of high throughput experimentation techniques for kinetic reaction testing.

    PubMed

    Nagy, Anton J

    2012-02-01

    Successful implementation of High throughput Experimentation (EE) tools has resulted in their increased acceptance as essential tools in chemical, petrochemical and polymer R&D laboratories. This article provides a number of concrete examples of EE systems, which have been designed and successfully implemented in studies, which focus on deriving reaction kinetic data. The implementation of high throughput EE tools for performing kinetic studies of both catalytic and non-catalytic systems results in a significantly faster acquisition of high-quality kinetic modeling data, required to quantitatively predict the behavior of complex, multistep reactions. PMID:21902639

  14. Energy scavenging strain absorber: application to kinetic dielectric elastomer generator

    NASA Astrophysics Data System (ADS)

    Jean-Mistral, C.; Beaune, M.; Vu-Cong, T.; Sylvestre, A.

    2014-03-01

    Dielectric elastomer generators (DEGs) are light, compliant, silent energy scavengers. They can easily be incorporated into clothing where they could scavenge energy from the human kinetic movements for biomedical applications. Nevertheless, scavengers based on dielectric elastomers are soft electrostatic generators requiring a high voltage source to polarize them and high external strain, which constitutes the two major disadvantages of these transducers. We propose here a complete structure made up of a strain absorber, a DEG and a simple electronic power circuit. This new structure looks like a patch, can be attached on human's wear and located on the chest, knee, elbow… Our original strain absorber, inspired from a sailing boat winch, is able to heighten the external available strain with a minimal factor of 2. The DEG is made of silicone Danfoss Polypower and it has a total area of 6cm per 2.5cm sustaining a maximal strain of 50% at 1Hz. A complete electromechanical analytical model was developed for the DEG associated to this strain absorber. With a poling voltage of 800V, a scavenged energy of 0.57mJ per cycle is achieved with our complete structure. The performance of the DEG can further be improved by enhancing the imposed strain, by designing a stack structure, by using a dielectric elastomer with high dielectric permittivity.

  15. The storm time evolution in the night side high altitude field aligned wave Poynting flux and its relation to low altitude downward electron kinetic energy flux at low latitudes

    NASA Astrophysics Data System (ADS)

    Thaller, Scott A.

    In this thesis we investigate the evolution of the wave and large scale Poynting flux on earth's night side at altitudes from the auroral acceleration regions to the near earth tail over the course of major geomagnetic storms. Specifically, we are examining the field aligned components of the Poynting flux which carries energy from the tail into the auroral acceleration regions and to the ionosphere, and the down going field aligned electron kinetic energy flux. During major storm Poynting flux, over the range of observed time scales (from 6-180 seconds, and 600 -7200 seconds) intensify significantly (between one and three orders of magnitude), even down to low latitudes (≤ 65o invariant latitude). Concurrently, over the same range of latitudes, but at low altitudes, the downward electron kinetic energy flux enhances by at least an order of magnitude. The wave Poynting flux is thus shown to be a significant energy transport mechanism at low latitudes during storms, which provides strong evidence that Alfven waves can be an important mechanism for auroral electron acceleration at low latitudes. This result is important, in part because low latitudes are on field lines mapping to the inner magnetosphere, and the nature of the energy transport processes associated with the near tail and inner magnetosphere are not yet fully understood. Most previous research on the Alfven wave powered aurora focused on the higher latitude regions of the auroral zone and plasma sheet boundary layer. Prior studies were also conducted with either localized spacecraft conjunctions or with long term statistical compilations. The study presented herein is the first to examine the wave Poynting flux evolution over the course of major storms, from pre-storm, main phase, and recovery phase, from a high altitude standpoint on an orbit by orbit basis and to compare this to the low altitude electron kinetic energy flux. We find that the latitudinal evolution of the intensities of the high

  16. Logarithmic entropy corrected holographic dark energy with nonminimal kinetic coupling

    NASA Astrophysics Data System (ADS)

    Amani, Ali R.; Sadeghi, J.; Farajollahi, H.; Pourali, M.

    2012-01-01

    In this paper, we have considered a cosmological model with the non--minimal kinetic coupling terms and investigated its cosmological implications with respect to the logarithmic entropy-- corrected holographic dark energy (LECHDE). The correspondence between LECHDE in flat FRW cosmology and the phantom dark energy model with the aim to interpret the current universe acceleration is also examined.

  17. Renormalizing the Kinetic Energy Operator in Elementary Quantum Mechanics

    ERIC Educational Resources Information Center

    Coutinho, F. A. B.; Amaku, M.

    2009-01-01

    In this paper, we consider solutions to the three-dimensional Schrodinger equation of the form [psi](r) = u(r)/r, where u(0) [is not equal to] 0. The expectation value of the kinetic energy operator for such wavefunctions diverges. We show that it is possible to introduce a potential energy with an expectation value that also diverges, exactly…

  18. Kinetic Energy Corrections for Slip-Stick Behavior in Brittle Adhesives

    NASA Technical Reports Server (NTRS)

    Macon, David J.; Anderson, Greg L.; McCool, Alex (Technical Monitor)

    2001-01-01

    Fracture mechanics is the study of the failure of a body that contains a flaw. In the energy balance approach to fracture mechanics, contributions from the external work and elastic strain energy are accounted for but rarely are corrections for the kinetic energy given. Under slip-stick conditions, part of the external work is expended as kinetic energy. The magnitude of this kinetic energy depends upon the shape of the crack. A specimen with a blunt crack will fail at a high load and the crack will catastrophically travel through the material until the kinetic energy is dissipated. Material with a sharp crack will fail at a lower load but will still be catastrophic in nature. A kinetic term is incorporated into the energy balance approach. This term accounts for the velocity of the crack after failure and how far the crack travels before arresting. This correction makes the shape of the initiation crack irrelevant. When applied to data generated by tapered double cantilever beam specimens under slip-stick conditions, the scatter in the measured critical strain energy release rate is significantly reduced.

  19. Fragmentation of water by ion impact: Kinetic energy release spectra

    SciTech Connect

    Rajput, Jyoti; Safvan, C. P.

    2011-11-15

    The fragmentation of isolated water molecules on collision with 450-keV Ar{sup 9+} has been studied using time-of-flight mass spectrometry employing multihit detection. The kinetic energy release spectrum for the dissociation of [H{sub 2}O]{sup 2+ White-Star} into (H{sup White-Star },H{sup +},O{sup +}) fragments has been measured where H{sup White-Star} is a neutral Rydberg hydrogen atom. Ab initio calculations are carried out for the lowest states of [H{sub 2}O]{sup q+} with q=2 and 3 to help interpret the kinetic energy release spectra.

  20. On the theoretical limits of detecting cyclic changes in cardiac high-energy phosphates and creatine kinase reaction kinetics using in vivo ³¹P MRS.

    PubMed

    Weiss, Kilian; Bottomley, Paul A; Weiss, Robert G

    2015-06-01

    Adenosine triphosphate (ATP) is absolutely required to fuel normal cyclic contractions of the heart. The creatine kinase (CK) reaction is a major energy reserve reaction that rapidly converts creatine phosphate (PCr) to ATP during the cardiac cycle and at times of stress and ischemia, but is significantly impaired in conditions such as hypertrophy and heart failure. Because the magnitudes of possible in vivo cyclic changes in cardiac high-energy phosphates (HEPs) during the cardiac cycle are not well known from previous work, this study uses mathematical modeling to assess whether, and to what extent, cyclic variations in HEPs and in the rate of ATP synthesis through CK (CK flux) could exist in the human heart, and whether they could be measured with current in vivo (31)P MRS methods. Multi-site exchange models incorporating enzymatic rate equations were used to study the cyclic dynamics of the CK reaction, and Bloch equations were used to simulate (31)P MRS saturation transfer measurements of the CK reaction. The simulations show that short-term buffering of ATP by CK requires temporal variations over the cardiac cycle in the CK reaction velocities modeled by enzymatic rate equations. The maximum variation in HEPs in the normal human heart beating at 60 min(-1) was approximately 0.4 mM and proportional to the velocity of ATP hydrolysis. Such HEP variations are at or below the current limits of detection by in vivo (31)P MRS methods. Bloch equation simulations show that (31)P MRS saturation transfer estimates the time-averaged, pseudo-first-order forward rate constant, k(f,ap)', of the CK reaction, and that periodic short-term fluctuations in kf ' and CK flux are not likely to be detectable in human studies employing current in vivo (31)P MRS methods. PMID:25914379

  1. Kinetic energy of rainfall an important driver of soil erosion - how reliable are our estimates?

    NASA Astrophysics Data System (ADS)

    Wilken, Florian; Sommer, Michael; Fiener, Peter

    2016-04-01

    The most important process initiating interrill erosion is the detachment of soil particles via splash processes. Splash erosion intensity is depending on soil and rainfall characteristics. Rainfall characteristics are essentially determined by the drop size and fall velocity, leading to a specific kinetic energy of rainfall. In consequence, the kinetic energy of rain events is often directly or indirectly included in erosion models to calculate splash erosion. Therefore, rainfall kinetic energy is commonly derived by empirical functions (e.g. RUSLE; Renard et al. 1997) from available rainfall intensity measurements. The aim of this study is to analyze the event type-specific uncertainties inherent in these empirical functions purely based on rainfall intensity measurements. Therefore, we compare rainfall energies calculated from rainfall intensities measured with a standard tipping bucket rain gauge to rainfall energy measurements taken by laser distrometers. These allow to calculate rainfall kinetic energy from a spectrum of measured drop sizes and fall velocities. The study was carried out in NE-Germany in a test area with an average annual precipitation of approximately 500 mm dominated by intense convective precipitation. We compare one year of data from two laser distrometers and two tipping buckets installed at two locations about 1 km apart. Our results show distinct differences for high intensity events between the measuring techniques. We found notably higher rainfall kinetic energy for high intensity events measured by the laser distrometer compared to the tipping bucked derived kinetic energy. This points to a measurement bias of high erosive rainfall events which would be of particular relevance for erosion studies.

  2. Kinetic-energy release in CO dissociation caused by fast F4+ impact

    NASA Astrophysics Data System (ADS)

    Ben-Itzhak, I.; Ginther, S. G.; Krishnamurthi, Vidhya; Carnes, K. D.

    1995-01-01

    The dissociation of CO caused by 1-MeV/amu F4+ impact has been studied using the coincidence time-of-flight technique. The kinetic energy released during the dissociation of COQ+ into ion pairs Cq1+ and Oq+2 was determined from the measured difference in the times of flight of the two charged fragments. The kinetic-energy distributions of CO2+ dissociating into C+ and O+ as a result of different impinging projectiles have been compared. These distributions shift towards higher kinetic-energy release values with increasing strength of interaction. A single Gaussian kinetic-energy distribution is in good agreement with the highly charged CO dissociation, while for doubly and triply charged CO, additional Gaussians are needed. While the Coulomb-explosion model approximately predicts the most likely value of a measured distribution, the widths of all distributions are grossly underestimated by the model. The measured widths of the distributions can be explained only by invoking the existence of potential-energy curves of the multiply charged ions that have steeper and shallower slopes as compared to the Coulombic curve. The reflection method was used to calculate the kinetic-energy release for F4++CO-->CO2+* transitions to all known CO2+ states. The final kinetic-energy distribution was then fitted to the data in order to evaluate the weights of the different transitions. The calculated fit is in fair agreement with the measured one, although the high-energy tail of the measured distribution could not be accounted for, indicating that contributions from highly excited dissociating states or from curve crossings need to be included.

  3. Characterization of electron kinetics regime with electron energy probability functions in inductively coupled hydrogen plasmas

    NASA Astrophysics Data System (ADS)

    Kim, June Young; Cho, Won-Hwi; Dang, Jeong-Jeung; Chung, Kyoung-Jae; Hwang, Y. S.

    2016-02-01

    Electron kinetics regime is characterized with the evolution of electron energy probability functions (EEPFs) in inductively coupled hydrogen plasmas. Measurements on EEPFs are carried out with a radio-frequency-compensated single Langmuir probe at the center of a planar-type hydrogen plasma driven by 13.56 MHz wave frequency. Measured EEPFs deviate considerably from the Maxwellian distribution only at relatively high pressures (15-40 mTorr), and the effective electron temperature steeply decreases as the gas pressure increases. Such evolution of the EEPF shapes with pressures is discussed in the consideration of the electron energy relaxation length and various characteristic frequencies. It is found that the EEPFs show locally depleted electron energy distribution where the electron-molecule vibrational collision frequency exceeds the electron-electron collision frequency at the local kinetics regime, while the measured EEPF is not dependent on the vibrational collision frequency at the non-local kinetics regime. Variation of the EEPF shape with distance from the heating region at the local kinetics regime is also well explained in the context of the energy relaxation length and electron-molecule collision frequencies. This study indicates that the control of electron energy distribution should be carried out in the consideration of electron kinetic regime depending on the energy relaxation length for various hydrogen plasma sources.

  4. Unified Technical Concepts. Module 7: Potential and Kinetic Energy.

    ERIC Educational Resources Information Center

    Technical Education Research Center, Waco, TX.

    This concept module on potential and kinetic energy is one of thirteen modules that provide a flexible, laboratory-based physics instructional package designed to meet the specialized needs of students in two-year, postsecondary technical schools. Each of the thirteen concept modules discusses a single physics concept and how it is applied to each…

  5. Mass, Momentum and Kinetic Energy of a Relativistic Particle

    ERIC Educational Resources Information Center

    Zanchini, Enzo

    2010-01-01

    A rigorous definition of mass in special relativity, proposed in a recent paper, is recalled and employed to obtain simple and rigorous deductions of the expressions of momentum and kinetic energy for a relativistic particle. The whole logical framework appears as the natural extension of the classical one. Only the first, second and third laws of…

  6. Power spectral analysis of Jupiter’s clouds and kinetic energy from Cassini

    NASA Astrophysics Data System (ADS)

    Choi, David S.; Showman, Adam P.

    2011-12-01

    We present suggestive evidence for an inverse energy cascade within Jupiter’s atmosphere through a calculation of the power spectrum of its kinetic energy and its cloud patterns. Using Cassini observations, we composed full-longitudinal mosaics of Jupiter’s atmosphere at several wavelengths. We also utilized image pairs derived from these observations to generate full-longitudinal maps of wind vectors and atmospheric kinetic energy within Jupiter’s troposphere. We computed power spectra of the image mosaics and kinetic energy maps using spherical harmonic analysis. Power spectra of Jupiter’s cloud patterns imaged at certain wavelengths resemble theoretical spectra of two-dimensional turbulence, with power-law slopes near -5/3 and -3 at low and high wavenumbers, respectively. The slopes of the kinetic energy power spectrum are also near -5/3 at low wavenumbers. At high wavenumbers, however, the spectral slopes are relatively flatter than the theoretical prediction of -3. In addition, the image mosaic and kinetic energy power spectra differ with respect to the location of the transition in slopes. The transition in slope is near planetary wavenumber 70 for the kinetic energy spectra, but is typically above 200 for the image mosaic spectra. Our results also show the importance of calculating spectral slopes from full 2D velocity maps rather than 1D zonal mean velocity profiles, since at large wavenumbers the spectra differ significantly, though at low wavenumbers, the 1D zonal and full 2D kinetic energy spectra are practically indistinguishable. Furthermore, the difference between the image and kinetic energy spectra suggests some caution in the interpretation of power spectrum results solely from image mosaics and its significance for the underlying dynamics. Finally, we also report prominent variations in kinetic energy within the equatorial jet stream that appear to be associated with the 5 μm hotspots. Other eddies are present within the flow collar of

  7. Kinetic Energy Transport and the Amplitude Response of a Cylinder

    NASA Astrophysics Data System (ADS)

    Dong, P.; Wei, T.; Benaroya, H.

    1999-11-01

    The amplitude response of a low mass ratio cylinder has been examined from the perspective of integral kinetic energy tranposrt. This builds upon the work reported previously by Atsavapranee, et al. (1998) The objective of the work was to determine how energy is transferred to/from a cylinder as it vibrates in response to its own vortex shedding. The cylinder in this study was 2.54 cm in diameter and >100 cm long. It was attached at the bottom end by a leaf spring. Spatially and nearly temporally resolved DPIV measurements were used to compute terms in an integral form of the kinetic energy transport equation; this includes the rate of change of kinetic energy, flux terms, and the rate of viscous work done on the control volume boundaries. In this talk, the three different oscillation regimes will be revisited in light of the energy transport data. The modulation of the flow by the cylinder in the lock-in regime can be seen using this energy analysis. Similarly, one can also see how the cylinder's beating response can be understood in terms of energy transfer to/from the fluid.

  8. Complete and Partial Transfer of Energy in Bremsstrahlung Should Include Rotational and Vibrational Kinetic Energies

    NASA Astrophysics Data System (ADS)

    Brekke, Stewart

    2015-03-01

    In complete braking achievement the rotational and vibrational as well as the linear kinetic energies of the charged particle results in a photon: hν = 1 / 2 mv2 + 1 / 2 Iω2 + 1 / 2 kx2 . In partial transfer of kinetic energies of the deccelerating particle the resulting photon is hν = [(1 / 2 mv2) 1 +(1 / 2 Iω2) 1 +(1 / 2 kx2) 1 ] - [(1 / 2 mv2) 2 +(1 / 2 Iω2) 2 +(1 / 2 kx2) 2 ] . The linear kinetic energy of the charged particle is 1 / 2 mv2 , the rotational kinetic energy is 1 / 2 Iω2 and the vibrational kinetic energy is given by 1 / 2 kx2 .

  9. Evolution of turbulent kinetic energy in the presence of a uniform kinetic energy gradient without mean shear

    NASA Astrophysics Data System (ADS)

    Thormann, Adrien; Meneveau, Charles

    2014-11-01

    In this work we study grid turbulence with a initial uniform spatial gradient of kinetic energy of the form k ~ β (y -y0) , where y is the spanwise position, while having no mean-velocity shear. Therefore, there is no production but only dissipation and spatial transverse diffusion of turbulent kinetic energy. The experiment is performed with the use of an active grid and screens mounted upstream of the wind-tunnel's test section, iteratively designed to produce a uniform gradient of turbulent kinetic energy without mean velocity shear. Data are acquired using X-wire thermal anemometry at different spanwise and downstream locations. Profile measurements are used to quantify the constancy of the mean velocity and the linearity of the initial profile of kinetic energy. Measurements show that at all spanwise locations the decay in the streamwise direction follows a power-law but with exponents n (y) that depend upon the spanwise location. The results are consistent with a parameterization of decay of the form k /< u > 2 = β(x /xref) - n (y) (y -y0) / M . Results for the development of the integral length scale, and for velocity skewness and flatness factors, which show significant deviations from Gaussianity, are also presented. Research supported by NSF (CBET and CMMI), and Sardella chair at JHU.

  10. Kinetic-energy density functional: Atoms and shell structure

    SciTech Connect

    Garcia-Gonzalez, P.; Alvarellos, J.E.; Chacon, E. |

    1996-09-01

    We present a nonlocal kinetic-energy functional which includes an anisotropic average of the density through a symmetrization procedure. This functional allows a better description of the nonlocal effects of the electron system. The main consequence of the symmetrization is the appearance of a clear shell structure in the atomic density profiles, obtained after the minimization of the total energy. Although previous results with some of the nonlocal kinetic functionals have given incipient structures for heavy atoms, only our functional shows a clear shell structure for most of the atoms. The atomic total energies have a good agreement with the exact calculations. Discussion of the chemical potential and the first ionization potential in atoms is included. The functional is also extended to spin-polarized systems. {copyright} {ital 1996 The American Physical Society.}

  11. Split kinetic energy method for quantum systems with competing potentials

    SciTech Connect

    Mineo, H.; Chao, Sheng D.

    2012-09-15

    For quantum systems with competing potentials, the conventional perturbation theory often yields an asymptotic series and the subsequent numerical outcome becomes uncertain. To tackle such a kind of problems, we develop a general solution scheme based on a new energy dissection idea. Instead of dividing the potential energy into 'unperturbed' and 'perturbed' terms, a partition of the kinetic energy is performed. By distributing the kinetic energy term in part into each individual potential, the Hamiltonian can be expressed as the sum of the subsystem Hamiltonians with respective competing potentials. The total wavefunction is expanded by using a linear combination of the basis sets of respective subsystem Hamiltonians. We first illustrate the solution procedure using a simple system consisting of a particle under the action of double {delta}-function potentials. Next, this method is applied to the prototype systems of a charged harmonic oscillator in strong magnetic field and the hydrogen molecule ion. Compared with the usual perturbation approach, this new scheme converges much faster to the exact solutions for both eigenvalues and eigenfunctions. When properly extended, this new solution scheme can be very useful for dealing with strongly coupling quantum systems. - Highlights: Black-Right-Pointing-Pointer A new basis set expansion method is proposed. Black-Right-Pointing-Pointer Split kinetic energy method is proposed to solve quantum eigenvalue problems. Black-Right-Pointing-Pointer Significant improvement has been obtained in converging to exact results. Black-Right-Pointing-Pointer Extension of such methods is promising and discussed.

  12. HIGH PRESSURE COAL COMBUSTION KINETICS PROJECT

    SciTech Connect

    Chris Guenther, Ph.D.

    2003-01-28

    SRI has completed the NBFZ test program, made modification to the experimental furnace for the HPBO test. The NBFZ datasets provide the information NEA needs to simulate the combustion and fuel-N conversion with detailed chemical reaction mechanisms. BU has determined a linear swell of 1.55 corresponding to a volumetric increase of a factor of 3.7 and a decrease in char density by the same factor. These results are highly significant, and indicate significantly faster burnout at elevated pressure due to the low char density and large diameter.

  13. Plasmadynamics and ionization kinetics of thermionic energy conversion

    SciTech Connect

    Lawless, J.L. Jr.; Lam, S.H.

    1982-02-01

    To reduce the plasma arc-drop, thermionic energy conversion is studied with both analytical and numerical tools. Simplifications are made in both the plasmadynamic and ionization-recombination theories. These are applied to a scheme proposed presently using laser irradiation to enhance the ionization kinetics of the thermionic plasma and thereby reduce the arc-drop. It is also predicted that it is possible to generate the required laser light from a thermionic-type cesium plasma. The analysis takes advantage of theoretical simplifications derived for the ionization-recombination kinetics. It is shown that large laser ionization enhancements can occur and that collisional cesium recombination lasing is expected. To complement the kinetic theory, a numerical method is developed to solve the thermionic plasma dynamics. To combine the analysis of ionization-recombination kinetics with the plasma dynamics of thermionic conversion, a finite difference computer program is constructed. It is capable of solving for both unsteady and steady thermionic converter behavior including possible laser ionization enhancement or atomic recombination lasing. A proposal to improve thermionic converter performance using laser radiation is considered. In this proposed scheme, laser radiation impinging on a thermionic plasma enhances the ionization process thereby raising the plasma density and reducing the plasma arc-drop. A source for such radiation may possibly be a cesium recombination laser operating in a different thermionic converter. The possibility of this being an energy efficient process is discussed. (WHK)

  14. Exact kinetic energy enables accurate evaluation of weak interactions by the FDE-vdW method

    SciTech Connect

    Sinha, Debalina; Pavanello, Michele

    2015-08-28

    The correlation energy of interaction is an elusive and sought-after interaction between molecular systems. By partitioning the response function of the system into subsystem contributions, the Frozen Density Embedding (FDE)-vdW method provides a computationally amenable nonlocal correlation functional based on the adiabatic connection fluctuation dissipation theorem applied to subsystem density functional theory. In reproducing potential energy surfaces of weakly interacting dimers, we show that FDE-vdW, either employing semilocal or exact nonadditive kinetic energy functionals, is in quantitative agreement with high-accuracy coupled cluster calculations (overall mean unsigned error of 0.5 kcal/mol). When employing the exact kinetic energy (which we term the Kohn-Sham (KS)-vdW method), the binding energies are generally closer to the benchmark, and the energy surfaces are also smoother.

  15. Comparative theoretical kinetics and thermodynamics study on high-energy insensitive explosive 1,1-diamino-2,2-dinitroethene synthesis.

    PubMed

    Liu, Min-Hsien; Liu, Chuan-Wen

    2016-07-01

    Two synthesis methods were investigated in this study in order to explore feasible reaction pathways to obtain the target DADNE product: (1) the nitration of tetrahalogen ethene and (2) the reaction of acetamidine hydrochloride with dicarbonyl dichloride. Through theoretical simulation, the findings revealed that synthesis was possible, starting from acetamidine hydrochloride in a hydrated environment, followed by subsequent reaction routes via cyclization of the methoxy-substituted acetamidine anion intermediate with oxalyl chloride to form 2-methoxy-2-methyl-imidazolan-4,5-dione, acid-catalyzed synthesis of 2-methylene-imidazolan-4,5-dione, nitration using nitric acid to obtain 2-dinitromethylene-imidazolan-4,5-dione, and hydrolysis to produce 1,1-diamino-2,2-dinitroethene. A total energy of 1048.4 kJ mol(-1) was needed to carry out the reaction according to calculation of the energy barriers at each stage, as shown by the reaction profiles. PMID:27283445

  16. Effects of directed and kinetic energy weapons on spacecraft

    SciTech Connect

    Fraas, A P

    1986-12-01

    The characteristics of the various directed energy beams are reviewed, and their damaging effects on typical materials are examined for a wide range of energy pulse intensities and durations. Representative cases are surveyed, and charts are presented to indicate regions in which damage to spacecraft structures, particularly radiators for power plants, would be likely. The effects of kinetic energy weapons, such as bird-shot, are similarly examined. The charts are then applied to evaluate the effectiveness of various measures designed to reduce the vulnerability of spacecraft components, particularly nuclear electric power plants.

  17. Kinetic energy cascades in quasi-geostrophic convection

    NASA Astrophysics Data System (ADS)

    Hejda, P.; Reshetnyak, M.

    2012-04-01

    The rapid rotation of planets causes cyclonic thermal turbulence in their cores, which may generate the large-scale magnetic fields observed outside the planets. In spite of the recent progress in modeling planetary dynamos, the models cannot cover the enormous span of scales required for a realistic parameter set. Our contribution is devoted to the study of geostrophic convection by tools of the turbulent community. This approach helps understanding of the origin of kinetic transport in the system as well as of the locality of energy transfer. We investigate numerically a model of thermal convection in two geometries: Cartesian coordinates (rectangular box) and a spherical shell. For the 3D homogeneous isotropic turbulence (in the absence of rotation) there is a direct cascade of the kinetic energy from the large scales to the small scales, where dissipation takes place. The fluxes of kinetic energy are negative for large scales and positive for small scales, i.e. the large scales are donors and provide energy to the system, whereas the small scales absorb energy. The situation changes in 2D, where the cascade of kinetic energy is inverse: from the small to the large scales. Quasi-geostrophic flow is somewhere between 3D and 2D. In such a flow, one has still 3 dimensions, but the dependence of the fields on the vertical direction along the axis of rotation is degenerated. This flow is known by its columnar structures elongated along axis of rotation. The leading order wave number corresponds to the diameter of the columns. Two cascades of the energy (direct and inverse) thus take place simultaneously (Reshetnyak and Hejda, 2008; Hejda and Reshetnyak, 2009). The spherical geometry changes partly the previous picture. Near the onset of convection, the graph of spectra of kinetic energy of quasi-geostrophic flow has saw-like shape with the largest maximum corresponding to the diameter of the vertical columns. Increase of Rayleigh number leads to the filling of the

  18. Spectroscopy and kinetics of combustion gases at high temperatures

    SciTech Connect

    Hanson, R.K.; Bowman, C.T.

    1993-12-01

    This program involves two complementary activities: (1) development and application of cw ring dye laser absorption methods for sensitive detection of radical species and measurement of fundamental spectroscopic parameters at high temperatures; and (2) shock tube studies of reaction kinetics relevant to combustion. Species currently under investigation in the spectroscopic portion of the research include NO and CH{sub 3}; this has necessitated the continued operated at wavelengths in the range 210-230 nm. Shock tube studies of reaction kinetics currently are focussed on reactions involving CH{sub 3} radicals.

  19. Michaelis-Menten Kinetics and the Activation Energy Relate Soil Peroxidase Kinetics to the Lignin Chemistry

    NASA Astrophysics Data System (ADS)

    Triebwasser-Freese, D.; Tharayil, N.; Preston, C. M.; Gerard, P.

    2013-12-01

    Recently, it has been suggested that lignin exhibit a turnover rate of less than 6 years, suggesting that the enzymatic mechanisms mediating the decay of lignin are less understood. One factor that could be affecting the mean residence time of lignin in the soil is the catalytic efficiency of soil oxidoreductase enzymes. We characterized the spatial and seasonal transitions in the Michaelis-Menten kinetics and activation energy of the soil oxidoreductase enzyme, peroxidase, across three ecosystems of differing litter chemistries- pine, deciduous forest, and a cultivated field- and associate it to the soil lignin chemistries. To interpret the combined effect of Vmax and Km, the two parameters were integrated into one term which we defined as the catalytic efficiency. Generally, the peroxidases in pine soils exhibited the highest Vmax and Km, resulting in the lowest catalytic efficiency, followed by that in the deciduous soils. Meanwhile, the agricultural soils which exhibited the lowest Vmax and Km contained the highest catalytic efficiency of peroxidase. Through linear regression analysis of the kinetic parameters to the soil lignin chemistry, we discerned that the catalytic efficiency term best associated to the lignin monomer ratios (C/V, P/V, and SCV/V). The Activation Energy of peroxidase varied by depth, and seasons across the ecosystems. However, the Activation Energy of peroxidase did not relate to the lignin chemistry or quantity. Collectively, our results show that although the peroxidase Vmax and Km in the phenolic-poor soils are low, the degradation efficiency of peroxidases in this soils can be equivalent or exceed that of phenolic-rich soils. This study, through the characterization of Michaelis-Menten kinetics, provides a new insight into the mechanisms that could moderate the decomposition of lignin in soils.

  20. Translational and rotational excitation of the CO{sub 2}(00{sup 0}0) vibrationless state in the collisional quenching of highly vibrationally excited 2-methylpyrazine: Kinetics and dynamics of large energy transfers

    SciTech Connect

    Sevy, Eric T.; Rubin, Seth M.; Lin, Zhen; Flynn, George W.

    2000-09-22

    The relaxation of highly vibrationally excited methylpyrazine (C{sub 5}N{sub 2}H{sub 6}) by collisions with CO{sub 2} molecules has been investigated over the temperature range 243-364 K using diode laser transient absorption spectroscopy. Particular focus is placed on understanding both the dynamical features and the kinetics of collisions which are accompanied by large energy transfers into the CO{sub 2} rotational and translational degrees of freedom. Vibrationally hot methylpyrazine (E{sup '}=40 987 cm{sup -1}) was prepared by 248 nm excimer laser pumping, followed by rapid radiationless transitions to the ground electronic state. The nascent rotational population distributions (J=58-80) of the 00{sup 0}0 ground state of CO{sub 2} resulting from collisions with hot methylpyrazine were probed at short times following the excimer laser pulse. Doppler spectroscopy was used to measure the distributions of CO{sub 2} recoil velocities for individual rotational levels of the 00{sup 0}0 state. In addition, the temperature dependence of the state resolved, absolute rate constants for collisions populating high J states of CO{sub 2} was determined. The rotational population distributions, distributions of recoil velocities, and quenching rates for production of CO{sub 2} high J states (J=58-80) exhibit a very weak temperature dependence. The slight temperature dependence indicates that CO{sub 2} molecules which scatter into high J states of the ground vibrationless level originate from rotational levels near the mean of the precollision thermal rotational distribution. A gap law model is used to estimate the average initial rotational state and velocity of the CO{sub 2} bath, which allows for the calculation of the energy transfer magnitudes, {delta}E. The measured energy transfer probabilities which are indexed by final bath state are resorted as a function of {delta}E to create the energy transfer distribution function, P(E,E{sup '}) from E{sup '}-E{approx}1500-6000 cm

  1. High pressure thermal denaturation kinetics of whey proteins.

    PubMed

    Hinrichs, Jörg; Rademacher, Britta

    2004-11-01

    Pressure processing of foodstuff has been applied to produce or modify proteinaceous gel structures. In real pressure processing the treatment is non-isothermal, due to the adiabatic nature of the process and the heat loss from the product to the vessel. In order to estimate the effect of pressurization on milk constituents pressure and temperature dependent kinetics were determined separately from each other. In a detailed kinetic study whey protein isolate was treated under isobaric (200 to 800 MPa) and isothermal conditions (-2 to 70 degrees C), and the resulting degree of denaturation of beta-lactoglobulin A and B and alpha-lactalbumin was analysed. Kinetic parameters of denaturation were estimated using a one step non-linear regression method which allowed a global fit of the whole data set. The isobaric isothermal denaturation of beta-lactoglobulin and alpha-lactalbumin was found to follow third and second order kinetics, respectively. Isothermal pressure denaturation of both beta-lactoglobulin fractions do not differ significantly and were characterized by an activation volume decreasing with increasing temperature from -10 to about -30 ml mol(-1), which demonstrates that the denaturation rate is accelerated with increasing temperature. The activation energy of about 70 to 100 kJ mol(-1) obtained for beta-lactoglobulin A and B is not dependent to a great extent on the pressure which indicates that above 200 MPa denaturation rate is limited by the aggregation rate while pressure forces unfolding of the molecule. PMID:15605715

  2. Influence of the Richtmyer-Meshkov instability on the kinetic energy spectrum.

    SciTech Connect

    Weber, Christopher R.

    2010-09-01

    The fluctuating kinetic energy spectrum in the region near the Richtmyer-Meshkov instability (RMI) is experimentally investigated using particle image velocimetry (PIV). The velocity field is measured at a high spatial resolution in the light gas to observe the effects of turbulence production and dissipation. It is found that the RMI acts as a source of turbulence production near the unstable interface, where energy is transferred from the scales of the perturbation to smaller scales until dissipation. The interface also has an effect on the kinetic energy spectrum farther away by means of the distorted reflected shock wave. The energy spectrum far from the interface initially has a higher energy content than that of similar experiments with a flat interface. These differences are quick to disappear as dissipation dominates the flow far from the interface.

  3. An efficient chemical kinetics solver using high dimensional model representation

    SciTech Connect

    Shorter, J.A.; Ip, P.C.; Rabitz, H.A.

    1999-09-09

    A high dimensional model representation (HDMR) technique is introduced to capture the input-output behavior of chemical kinetic models. The HDMR expresses the output chemical species concentrations as a rapidly convergent hierarchical correlated function expansion in the input variables. In this paper, the input variables are taken as the species concentrations at time t{sub i} and the output is the concentrations at time t{sub i} + {delta}, where {delta} can be much larger than conventional integration time steps. A specially designed set of model runs is performed to determine the correlated functions making up the HDMR. The resultant HDMR can be used to (1) identify the key input variables acting independently or cooperatively on the output, and (2) create a high speed fully equivalent operational model (FEOM) serving to replace the original kinetic model and its differential equation solver. A demonstration of the HDMR technique is presented for stratospheric chemical kinetics. The FEOM proved to give accurate and stable chemical concentrations out to long times of many years. In addition, the FEOM was found to be orders of magnitude faster than a conventional stiff equation solver. This computational acceleration should have significance in many chemical kinetic applications.

  4. Enhanced propagation of rainfall kinetic energy in the UK

    NASA Astrophysics Data System (ADS)

    Diodato, Nazzareno; Bellocchi, Gianni

    2016-07-01

    A gridded 0.25° reconstruction of rainfall kinetic energy (RKE) over the UK, on the basis of pluviometric observations and reanalysis back to 1765, shows that autumn RKE doubled in 1991-2013 (˜2 MJ m-2) compared to 1948-1990 (˜1 MJ m-2). A shift eastward is underway, which includes southern and northern portions of the country. Analyzing the long-running England and Wales precipitation series, we conclude that it is likely that increased precipitation amounts associated with more frequent convective storms created conditions for higher energy events.

  5. Properties of the total kinetic energy balance in wall-bounded turbulent flows

    NASA Astrophysics Data System (ADS)

    Zhou, Ang; Klewicki, Joseph

    2015-11-01

    The properties of the total kinetic energy balance in turbulent boundary layer and channel flows are explored empirically. The total kinetic energy transport equation, which is the combination of mean and turbulent kinetic energy transport equations, is appropriately simplified for fully developed turbulent channel flow and the two-dimensional flat plate boundary layer. Different from the turbulence kinetic energy equation, a suitable grouping of terms is found that cleanly segregates the leading balances in the total energy equation. Available high-quality data reveal a four-layer structure for the energetics that is qualitatively different from the four-layer description of the mean dynamics [Wei et al. 2005, J. Fluid Mech. 522, 303]. The wall-normal widths of the layers exhibit significant Reynolds number dependencies, and these are empirically quantified. Present findings indicate that each of the four layers is characterized by a predominance of some of the terms in the governing equations. Particular significance is attached to the ratio of the sum of viscous diffusion and dissipation terms to the production/turbulent diffusion term, since these groupings allow the characterization of the layer widths. The third layer exhibits a complex leading order balance exchange that is described in detail.

  6. Single-point kinetic energy density functionals: A pointwise kinetic energy density analysis and numerical convergence investigation

    NASA Astrophysics Data System (ADS)

    Xia, Junchao; Carter, Emily A.

    2015-01-01

    We present a comprehensive study of single-point kinetic energy density functionals (KEDFs) to be used in orbital-free density functional theory (DFT) calculations. We first propose a form of KEDFs based on a pointwise Kohn-Sham (KS) kinetic energy density (KED) and electron localization function (ELF) analysis. We find that the ELF and modified enhancement factor have a very strong and transferable correlation with the reduced density in various bulk metals. The non-self-consistent kinetic energy errors predicted by our KEDF models are decreased greatly compared to previously reported generalized gradient approximation (GGA) KEDFs. Second, we perform self-consistent calculations with various single-point KEDFs and investigate their numerical convergence behavior. We find striking numerical instabilities for previous GGA KEDFs; most of the GGA KEDFs fail to converge and show unphysical densities during the optimization. In contrast, our KEDFs demonstrate stable convergence, and their self-consistent results of various bulk properties agree reasonably well with KSDFT. A further detailed KED analysis reveals an interesting bifurcation phenomenon in defective metals and alloys, which may shed light on directions for future KEDF development.

  7. High temperature steam gasification of solid wastes: Characteristics and kinetics

    NASA Astrophysics Data System (ADS)

    Gomaa, Islam Ahmed

    Greater use of renewable energy sources is of pinnacle importance especially with the limited reserves of fossil fuels. It is expected that future energy use will have increased utilization of different energy sources, including biomass, municipal solid wastes, industrial wastes, agricultural wastes and other low grade fuels. Gasification is a good practical solution to solve the growing problem of landfills, with simultaneous energy extraction and nonleachable minimum residue. Gasification also provides good solution to the problem of plastics and rubber in to useful fuel. The characteristics and kinetics of syngas evolution from the gasification of different samples is examined here. The characteristics of syngas based on its quality, distribution of chemical species, carbon conversion efficiency, thermal efficiency and hydrogen concentration has been examined. Modeling the kinetics of syngas evolution from the process is also examined. Models are compared with the experimental results. Experimental results on the gasification and pyrolysis of several solid wastes, such as, biomass, plastics and mixture of char based and plastic fuels have been provided. Differences and similarities in the behavior of char based fuel and a plastic sample has been discussed. Global reaction mechanisms of char based fuel as well polystyrene gasification are presented based on the characteristic of syngas evolution. The mixture of polyethylene and woodchips gasification provided superior results in terms of syngas yield, hydrogen yield, total hydrocarbons yield, energy yield and apparent thermal efficiency from polyethylene-woodchips blends as compared to expected weighed average yields from gasification of the individual components. A possible interaction mechanism has been established to explain the synergetic effect of co-gasification of woodchips and polyethylene. Kinetics of char gasification is presented with special consideration of sample temperature, catalytic effect of ash

  8. Biomineralization mechanisms: a kinetics and interfacial energy approach

    NASA Astrophysics Data System (ADS)

    Nancollas, George H.; Wu, Wenju

    2000-04-01

    The calcium phosphates and oxalates are among the most frequently encountered biomineral phases and numerous kinetics studies have been made of their crystallization and dissolution in supersaturated and undersaturated solutions, respectively. These have focused mainly on parameters such as solution composition, ionic strength, pH, temperature, and solid surface characteristics. There is considerable interest in extending such studies to solutions more closely simulating the biological milieu. The constant composition method is especially useful for investigating the mechanisms of these reactions, and in the present work, the interfacial tensions between water and each of these surfaces have been calculated from measured contact angles using surface tension component theory. Values for the calcium phosphate phases such as dicalcium phosphate dihydrate (DCPD), octacalcium phosphate (OCP), hydroxyapatite (HAP), and fluorapatite (FAP) may be compared with data calculated from dissolution kinetics experiments invoking different reaction mechanisms. Agreement between the directly measured interfacial energies and those calculated from the kinetics experiments provides valuable corroborative information about individual growth and dissolution mechanisms. For the calcium phosphates, the much smaller interfacial tensions of OCP and DCPD in contact with water as compared with those of HAP and FAP support the suggestion that the former phases are precursors in HAP and FAP biomineralization. The ability of a surface to nucleate mineral phases is closely related to the magnitude of the interfacial energies. Constant composition studies have also shown that HAP is an effective nucleator of calcium oxalate monohydrate, both of which are frequently observed in renal stones.

  9. High-temperature steam oxidation kinetics of the E110G cladding alloy

    NASA Astrophysics Data System (ADS)

    Király, Márton; Kulacsy, Katalin; Hózer, Zoltán; Perez-Feró, Erzsébet; Novotny, Tamás

    2016-07-01

    In the course of recent years, several experiments were performed at MTA EK (Centre for Energy Research, Hungarian Academy of Sciences) on the isothermal high-temperature oxidation of the improved Russian cladding alloy E110G in steam/argon atmosphere. Using these data and designing additional supporting experiments, the oxidation kinetics of the E110G alloy was investigated in a wide temperature range, between 600 °C and 1200 °C. For short durations (below 500 s) or high temperatures (above 1065 °C) the oxidation kinetics was found to follow a square-root-of-time dependence, while for longer durations and in the intermediate temperature range (800-1000 °C) it was found to approach a cube-root-of-time dependence rather than a square-root one. Based on the results a new best-estimate and a conservative oxidation kinetics model were created.

  10. High energy neutron radiography

    SciTech Connect

    Gavron, A.; Morley, K.; Morris, C.; Seestrom, S.; Ullmann, J.; Yates, G.; Zumbro, J.

    1996-06-01

    High-energy spallation neutron sources are now being considered in the US and elsewhere as a replacement for neutron beams produced by reactors. High-energy and high intensity neutron beams, produced by unmoderated spallation sources, open potential new vistas of neutron radiography. The authors discuss the basic advantages and disadvantages of high-energy neutron radiography, and consider some experimental results obtained at the Weapons Neutron Research (WNR) facility at Los Alamos.

  11. Discrete Kinetic Models from Funneled Energy Landscape Simulations

    PubMed Central

    Burger, Anat; Craig, Patricio O.; Komives, Elizabeth A.; Wolynes, Peter G.

    2012-01-01

    A general method for facilitating the interpretation of computer simulations of protein folding with minimally frustrated energy landscapes is detailed and applied to a designed ankyrin repeat protein (4ANK). In the method, groups of residues are assigned to foldons and these foldons are used to map the conformational space of the protein onto a set of discrete macrobasins. The free energies of the individual macrobasins are then calculated, informing practical kinetic analysis. Two simple assumptions about the universality of the rate for downhill transitions between macrobasins and the natural local connectivity between macrobasins lead to a scheme for predicting overall folding and unfolding rates, generating chevron plots under varying thermodynamic conditions, and inferring dominant kinetic folding pathways. To illustrate the approach, free energies of macrobasins were calculated from biased simulations of a non-additive structure-based model using two structurally motivated foldon definitions at the full and half ankyrin repeat resolutions. The calculated chevrons have features consistent with those measured in stopped flow chemical denaturation experiments. The dominant inferred folding pathway has an “inside-out”, nucleation-propagation like character. PMID:23251375

  12. Casimir rack and pinion as a miniaturized kinetic energy harvester.

    PubMed

    Miri, MirFaez; Etesami, Zahra

    2016-08-01

    We study a nanoscale machine composed of a rack and a pinion with no contact, but intermeshed via the lateral Casimir force. We adopt a simple model for the random velocity of the rack subject to external random forces, namely, a dichotomous noise with zero mean value. We show that the pinion, even when it experiences random thermal torque, can do work against a load. The device thus converts the kinetic energy of the random motions of the rack into useful work. PMID:27627286

  13. Molecular partitioning based on the kinetic energy density

    NASA Astrophysics Data System (ADS)

    Noorizadeh, Siamak

    2016-05-01

    Molecular partitioning based on the kinetic energy density is performed to a number of chemical species, which show non-nuclear attractors (NNA) in their gradient maps of the electron density. It is found that NNAs are removed using this molecular partitioning and although the virial theorem is not valid for all of the basins obtained in the being used AIM, all of the atoms obtained using the new approach obey this theorem. A comparison is also made between some atomic topological parameters which are obtained from the new partitioning approach and those calculated based on the electron density partitioning.

  14. Determining the band gap and mean kinetic energy of atoms from reflection electron energy loss spectra

    SciTech Connect

    Vos, M.; Marmitt, G. G.; Finkelstein, Y.; Moreh, R.

    2015-09-14

    Reflection electron energy loss spectra from some insulating materials (CaCO{sub 3}, Li{sub 2}CO{sub 3}, and SiO{sub 2}) taken at relatively high incoming electron energies (5–40 keV) are analyzed. Here, one is bulk sensitive and a well-defined onset of inelastic excitations is observed from which one can infer the value of the band gap. An estimate of the band gap was obtained by fitting the spectra with a procedure that includes the recoil shift and recoil broadening affecting these measurements. The width of the elastic peak is directly connected to the mean kinetic energy of the atom in the material (Doppler broadening). The experimentally obtained mean kinetic energies of the O, C, Li, Ca, and Si atoms are compared with the calculated ones, and good agreement is found, especially if the effect of multiple scattering is taken into account. It is demonstrated experimentally that the onset of the inelastic excitation is also affected by Doppler broadening. Aided by this understanding, we can obtain a good fit of the elastic peak and the onset of inelastic excitations. For SiO{sub 2}, good agreement is obtained with the well-established value of the band gap (8.9 eV) only if it is assumed that the intensity near the edge scales as (E − E{sub gap}){sup 1.5}. For CaCO{sub 3}, the band gap obtained here (7 eV) is about 1 eV larger than the previous experimental value, whereas the value for Li{sub 2}CO{sub 3} (7.5 eV) is the first experimental estimate.

  15. Kinetic energy management in road traffic injury prevention: a call for action

    PubMed Central

    Khorasani-Zavareh, Davoud; Bigdeli, Maryam; Saadat, Soheil; Mohammadi, Reza

    2015-01-01

    Abstract: By virtue of their variability, mass and speed have important roles in transferring energies during a crash incidence (kinetic energy). The sum of kinetic energy is important in determining an injury severity and that is equal to one half of the vehicle mass multiplied by the square of the vehicle speed. To meet the Vision Zero policy (a traffic safety policy) prevention activities should be focused on vehicle speed management. Understanding the role of kinetic energy will help to develop measures to reduce the generation, distribution, and effects of this energy during a road traffic crash. Road traffic injury preventive activities necessitate Kinetic energy management to improve road user safety. PMID:24284810

  16. Spectral Energy Transfer and Dissipation of Magnetic Energy from Fluid to Kinetic Scales

    SciTech Connect

    Bowers, K.; Li, H.

    2007-01-19

    We investigate the magnetic energy transfer from the fluid to kinetic scales and dissipation processes using three-dimensional fully kinetic particle-in-cell plasma simulations. The nonlinear evolution of a sheet pinch is studied where we show that it exhibits both fluid scale global relaxation and kinetic scale collisionless reconnection at multiple resonant surfaces. The interactions among collisionless tearing modes destroy the original flux surfaces and produce stochastic fields, along with generating sheets and filaments of intensified currents. In addition, the magnetic energy is transferred from the original shear length scale both to the large scales due to the global relaxation and to the smaller, kinetic scales for dissipation. The dissipation is dominated by the thermal or pressure effect in the generalized Ohm's law, and electrons are preferentially accelerated.

  17. Spectral energy transfer and dissipation of magnetic energy from fluid to kinetic scales.

    PubMed

    Bowers, K; Li, H

    2007-01-19

    We investigate the magnetic energy transfer from the fluid to kinetic scales and dissipation processes using three-dimensional fully kinetic particle-in-cell plasma simulations. The nonlinear evolution of a sheet pinch is studied where we show that it exhibits both fluid scale global relaxation and kinetic scale collisionless reconnection at multiple resonant surfaces. The interactions among collisionless tearing modes destroy the original flux surfaces and produce stochastic fields, along with generating sheets and filaments of intensified currents. In addition, the magnetic energy is transferred from the original shear length scale both to the large scales due to the global relaxation and to the smaller, kinetic scales for dissipation. The dissipation is dominated by the thermal or pressure effect in the generalized Ohm's law, and electrons are preferentially accelerated. PMID:17358690

  18. Fragmentation of multiply charged hydrocarbon molecules C{sub n}H{sup q+} (n{<=} 4, q{<=} 9) produced in high-velocity collisions: Branching ratios and kinetic energy release of the H{sup +} fragment

    SciTech Connect

    Beroff, K.; Pino, T.; Carpentier, Y.; Van-Oanh, N. T.; Chabot, M.; Tuna, T.; Martinet, G.; Le Padellec, A.; Lavergne, L.

    2011-09-15

    Fragmentation branching ratios for channels involving H{sup +} emission and associated kinetic energy release of the H{sup +} fragment [KER(H{sup +})] have been measured for multicharged C{sub n}H{sup q+} molecules produced in high velocity (3.6 a.u.) collisions between C{sub n}H{sup +} projectiles and helium atoms. For CH{sup q+} (q{<=} 4) molecules, measured KER(H{sup +}) were found well below predictions of the simple point charge Coulomb model (PCCM) for all q values. Multireference configuration interaction (MRCI) calculations for ground as well as electronic excited states were performed which allowed a perfect interpretation of the CH{sup q+} experimental results for low charges (q = 2-3) as well as for the highest charge (q = 4). In this last case we could show, on the basis of ionization cross sections calculations and experimental measurements performed on the same systems at slightly higher velocity (4.5 a.u.), the prominent role played by inner-shell ionization followed by Auger relaxation and could extract the lifetime of this Auger relaxation giving rise to the best agreement between the experiment and the calculations. For dissociation of C{sub 2}H{sup q+} and C{sub 3}H{sup q+} with the highest charges (q{>=} 5), inner-shell ionization contributed in a prominent way to the ion production. In these two cases it was shown that measured KER(H{sup +}) were in good agreement with PCCM predictions when those were corrected for Auger relaxation with the same Auger lifetime value as in CH{sup 3+}.

  19. Kinetic energy for the nuclear Yang-Mills collective model

    NASA Astrophysics Data System (ADS)

    Rosensteel, George; Sparks, Nick

    2015-10-01

    The Bohr-Mottelson-Frankfurt model of nuclear rotations and quadrupole vibrations is a foundational model in nuclear structure physics. The model, also called the geometrical collective model or simply GCM, has two hidden mathematical structures, one Lie group theoretic and the other differential geometric. Although the group structure has been understood for some time, the geometric structure is a new unexplored feature that shares the same mathematical origin as Yang-Mills, viz., a vector bundle with a non-abelian structure group and a connection. Using the de Rham Laplacian ▵ = * d * d from differential geometry for the kinetic energy extends significantly the physical scope of the GCM model. This Laplacian contains a ``magnetic'' term due to the coupling between base manifold rotational and fiber vorticity degrees of freedom. When the connection specializes to irrotational flow, the Laplacian reduces to the Bohr-Mottelson kinetic energy operator. More generally, the connection yields a moment of inertia that is intermediate between the extremes of irrotational flow and rigid body motion.

  20. The kinetic energy interceptor: Shooting a bullet with a bullet

    SciTech Connect

    1995-04-01

    Although the Cold War has ended, the threat of proliferation with chemical, biological, and nuclear warheads continues. Two factors further increase the threat from these weapons of mass destruction: knowledge of missile technology has spread extensively, and, in recent years, many countries - some of them unfriendly to the US and its allies - have obtained short- and intermediate-range missiles. The threat posed by such missiles was amply demonstrated during the Gulf War. Thus, the need to protect US and allied forces from these weapons has never been greater. When nuclear-tipped defensive missiles, such as Sprint and Spartan, were phased out years ago, the US turned for its defense to kinetic-energy {open_quotes}kill{close_quotes} interceptors - missiles that destroy an enemy missile by striking it with lethal force and accuracy at some point in its trajectory. The Patriot missile is probably the best-known kinetic-energy (KE) interceptor in the US defensive arsenal. To counter the spreading threat of proliferation, LLNL and other laboratories have been participating in a joint program funded by the Ballistic Missile Defense Organization (BMDO), within the Department of Defense, to develop defensive missile systems. Participants are designing, testing, and certifying KE interceptors to defend against current and future missile threats. These research efforts are described.

  1. Kinetic and potential parts of nuclear symmetry energy: the role of Fock terms

    NASA Astrophysics Data System (ADS)

    Zhao, Qian; Sun, Bao Yuan; Long, Wen Hui

    2015-09-01

    The density dependence of nuclear symmetry energy is studied within the covariant density functional (CDF) theory in terms of the kinetic energy, isospin-singlet, and isospin-triplet potential energy parts of the energy density functional. When the Fock diagram is introduced, it is found that both isospin-singlet and isospin-triplet components of the potential energy play an important role in determining the symmetry energy. At high densities, a strong density-dependent behavior is revealed in the isospin-triplet potential part of the symmetry energy. In addition, the inclusion of the Fock terms in the CDF theory reduces the kinetic part of the symmetry energy and may lead to negative values at the supranuclear density region, which is regarded partly as the effect of the nuclear tensor-force components. The results demonstrate the importance of the Fock diagram in the CDF theory on the isospin properties of the in-medium nuclear force at high densities, especially from the isoscalar-meson coupling channels.

  2. Electron scattering as a tool to study zero-point kinetic energies of atoms in molecules

    NASA Astrophysics Data System (ADS)

    Moreh, R.; Finkelstein, Y.; Vos, M.

    2015-07-01

    High resolution electron compton scattering (ECS) is being used to study the atomic momentum distributions and hence the zero-point kinetic energies (ZPKE) of the scattering atoms. Such studies have shown that the scattering is from a single atom of the scattering sample. For an electron beam with a well defined incident energy, the scattered electron energy at any angle from each atomic species is Doppler broadened. The broadening reflects the atomic momentum distribution contributed by both the internal and external motions of the molecular system. By measuring the Doppler broadening of the scattered electron lines it was possible to determine the kinetic energy of the scattering atom including that of its zero-point motion. Thus, the atomic kinetic energies in gases such as H2, D2, HD, CH4 and in H2O, D2O and NH3 were measured and compared with those calculated semi-empirically using the measured optical infra red (IR) and Raman frequencies of the internal vibrations of the molecules. In general, good agreement between the measured and calculated values was found. Electron scattering was also used to study the ratio of e-scattering intensities from the H- and O-atoms in water (H2O), where some anomalies were reported to exist.

  3. The transfer between electron bulk kinetic energy and thermal energy in collisionless magnetic reconnection

    SciTech Connect

    Lu, San; Lu, Quanming; Huang, Can; Wang, Shui

    2013-06-15

    By performing two-dimensional particle-in-cell simulations, we investigate the transfer between electron bulk kinetic and electron thermal energy in collisionless magnetic reconnection. In the vicinity of the X line, the electron bulk kinetic energy density is much larger than the electron thermal energy density. The evolution of the electron bulk kinetic energy is mainly determined by the work done by the electric field force and electron pressure gradient force. The work done by the electron gradient pressure force in the vicinity of the X line is changed to the electron enthalpy flux. In the magnetic island, the electron enthalpy flux is transferred to the electron thermal energy due to the compressibility of the plasma in the magnetic island. The compression of the plasma in the magnetic island is the consequence of the electromagnetic force acting on the plasma as the magnetic field lines release their tension after being reconnected. Therefore, we can observe that in the magnetic island the electron thermal energy density is much larger than the electron bulk kinetic energy density.

  4. Kinetic Energy of Tornadoes in the United States

    PubMed Central

    Fricker, Tyler; Elsner, James B.

    2015-01-01

    Tornadoes can cause catastrophic destruction. Here total kinetic energy (TKE) as a metric of destruction is computed from the fraction of the tornado path experiencing various damage levels and a characteristic wind speed for each level. The fraction of the path is obtained from a model developed for the Nuclear Regulatory Commission that combines theory with empirical data. TKE is validated as a useful metric by comparing it to other indexes and loss indicators. Half of all tornadoes have TKE exceeding 62.1 GJ and a quarter have TKE exceeding 383.2 GJ. One percent of the tornadoes have TKE exceeding 31.9 TJ. April has more energy than May with fewer tornadoes; March has more energy than June with half as many tornadoes. September has the least energy but November and December have the fewest tornadoes. Alabama ranks number one in terms of tornado energy with 2.48 PJ over the period 2007–2013. TKE can be used to help better understand the changing nature of tornado activity. PMID:26132830

  5. Kinetic Energy of Tornadoes in the United States.

    PubMed

    Fricker, Tyler; Elsner, James B

    2015-01-01

    Tornadoes can cause catastrophic destruction. Here total kinetic energy (TKE) as a metric of destruction is computed from the fraction of the tornado path experiencing various damage levels and a characteristic wind speed for each level. The fraction of the path is obtained from a model developed for the Nuclear Regulatory Commission that combines theory with empirical data. TKE is validated as a useful metric by comparing it to other indexes and loss indicators. Half of all tornadoes have TKE exceeding 62.1 GJ and a quarter have TKE exceeding 383.2 GJ. One percent of the tornadoes have TKE exceeding 31.9 TJ. April has more energy than May with fewer tornadoes; March has more energy than June with half as many tornadoes. September has the least energy but November and December have the fewest tornadoes. Alabama ranks number one in terms of tornado energy with 2.48 PJ over the period 2007-2013. TKE can be used to help better understand the changing nature of tornado activity. PMID:26132830

  6. A comparison of observed and numerically predicted eddy kinetic energy budgets for a developing extratropical cyclone

    NASA Technical Reports Server (NTRS)

    Dare, P. M.; Smith, P. J.

    1983-01-01

    The eddy kinetic energy budget is calculated for a 48-hour forecast of an intense occluding winter cyclone associated with a strong well-developed jet stream. The model output consists of the initialized (1200 GMT January 9, 1975) and the 12, 24, 36, and 48 hour forecast fields from the Drexel/NCAR Limited Area Mesoscale Prediction System (LAMPS) model. The LAMPS forecast compares well with observations for the first 24 hours, but then overdevelops the low-level cyclone while inadequately developing the upper-air wave and jet. Eddy kinetic energy was found to be concentrated in the upper-troposphere with maxima flanking the primary trough. The increases in kinetic energy were found to be due to an excess of the primary source term of kinetic energy content, which is the horizontal flux of eddy kinetic energy over the primary sinks, and the generation and dissipation of eddy kinetic energy.

  7. Functional derivative of the kinetic energy functional for spherically symmetric systems.

    PubMed

    Nagy, Á

    2011-07-28

    Ensemble non-interacting kinetic energy functional is constructed for spherically symmetric systems. The differential virial theorem is derived for the ensemble. A first-order differential equation for the functional derivative of the ensemble non-interacting kinetic energy functional and the ensemble Pauli potential is presented. This equation can be solved and a special case of the solution provides the original non-interacting kinetic energy of the density functional theory. PMID:21806089

  8. Experimental evidence of the decrease of kinetic energy of hadrons in passing through atomic nuclei

    NASA Technical Reports Server (NTRS)

    Strugalski, Z.

    1985-01-01

    Hadrons with kinetic energies higher than the pion production threshold lose their kinetic energies monotonically in traversing atomic nuclei, due to the strong interactions in nuclear matter. This phenomenon is a crude analogy to the energy loss of charged particles in their passage through materials. Experimental evidence is presented.

  9. Conversion of magnetic field energy into kinetic energy in the solar wind

    NASA Technical Reports Server (NTRS)

    Whang, Y. C.

    1972-01-01

    The outflow of the solar magnetic field energy (the radial component of the Poynting vector) per steradian is inversely proportional to the solar wind velocity. It is a decreasing function of the heliocentric distance. When the magnetic field effect is included in the one-fluid model of the solar wind, the transformation of magnetic field energy into kinetic energy during the expansion process increases the solar wind velocity at 1 AU by 17 percent.

  10. Analysis of atmospheric flow over a surface protrusion using the turbulence kinetic energy equation

    NASA Technical Reports Server (NTRS)

    Frost, W.; Harper, W. L.; Fichtl, G. H.

    1975-01-01

    Atmospheric flow fields resulting from a semi-elliptical surface obstruction in an otherwise horizontally homogeneous statistically stationary flow are modelled with the boundary-layer/Boussinesq-approximation of the governing equation of fluid mechanics. The turbulence kinetic energy equation is used to determine the dissipative effects of turbulent shear on the mean flow. Mean-flow results are compared with those given in a previous paper where the same problem was attacked using a Prandtl mixing-length hypothesis. Iso-lines of turbulence kinetic energy and turbulence intensity are plotted in the plane of the flow. They highlight regions of high turbulence intensity in the stagnation zone and sharp gradients in intensity along the transition from adverse to favourable pressure gradient.

  11. Pulsed laser kinetic studies of liquids under high pressure

    SciTech Connect

    Eyring, E.M.

    1991-11-25

    A high pressure apparatus constructed for measuring the rates of reactions in liquids under pressures ranging from 1 atm to 2000 atm has been used to measure the complexation kinetics of molybdenum hexacarbonyl reacting with 2,2-bipyridine, 4,4{prime}-dimethyl-2-2{prime}-bipyridine and 4,4{prime}-diphenyl-2-2{prime} bipyridine in toluene. Pentacarbonyl reaction intermediates are created by a 10 nsec flash of frequency tripled Nd:YAG laser light. Measured activation volumes for chelate ligand ring closure indicate a change in mechanism from associative interchange to dissociative interchange as steric hindrance increases. A similar high pressure kinetics study of molybdenum carbonyl complexation by several substituted phenanthrolines is now well advanced that indicates that with the more rigid phenanthroline ligands steric effects from bulky substituents have less effect on the ring closure mechanism than in the case of the bipyridine ligands. An experimental concentration dependence of the fluorescence quantum yield of cresyl violet has been harmonized with previously published contradictory reports. Fluorescence of cresyl violet in various solvents and in micellar systems has also been systematically explored.

  12. Infrared and Mass Analyzed Ion Kinetic Energy Spectroscopy of Cluster Ions

    NASA Astrophysics Data System (ADS)

    Feinberg, Thomas Neal

    A new method for obtaining mass analyzed kinetic energy spectroscopy for the study of cluster ions was tested. The experiments utilized an MS/MS instrument (Quadrupole/Electric Sector Analyzer) coupled to a cluster beam source. The ion source consisted of a molecular beam excited by high energy electron impact. Experiments were conducted using argon and argon/ethene gas mixtures in the ion source. Kinetic energy spectra of collision induced dissociation products and carbon dioxide laser photodissociation products were analyzed. The results for argon dimers showed a laser polarization effect on the measurement of the kinetic energy of the fragment argon ions in the infrared photodissociation event. When ionization occurred within the supersonic expansion zone, the polarization effects were no longer observed. Ethene gas in the ion source produced a variety of ions; some of these showed photodissociation efficiencies within the region of the monomer nu_7 vibrational mode. The spectroscopy and collision induced dissociation data are consistent with a structure consisting of a central core ion surrounded by one or more ethene molecules.

  13. An integral turbulent kinetic energy analysis of free shear flows

    NASA Technical Reports Server (NTRS)

    Peters, C. E.; Phares, W. J.

    1973-01-01

    Mixing of coaxial streams is analyzed by application of integral techniques. An integrated turbulent kinetic energy (TKE) equation is solved simultaneously with the integral equations for the mean flow. Normalized TKE profile shapes are obtained from incompressible jet and shear layer experiments and are assumed to be applicable to all free turbulent flows. The shear stress at the midpoint of the mixing zone is assumed to be directly proportional to the local TKE, and dissipation is treated with a generalization of the model developed for isotropic turbulence. Although the analysis was developed for ducted flows, constant-pressure flows were approximated with the duct much larger than the jet. The axisymmetric flows under consideration were predicted with reasonable accuracy. Fairly good results were also obtained for the fully developed two-dimensional shear layers, which were computed as thin layers at the boundary of a large circular jet.

  14. Mass independent kinetic energy reducing inlet system for vacuum environment

    DOEpatents

    Reilly, Peter T. A. [Knoxville, TN

    2010-12-14

    A particle inlet system comprises a first chamber having a limiting orifice for an incoming gas stream and a micrometer controlled expansion slit. Lateral components of the momentum of the particles are substantially cancelled due to symmetry of the configuration once the laminar flow converges at the expansion slit. The particles and flow into a second chamber, which is maintained at a lower pressure than the first chamber, and then moves into a third chamber including multipole guides for electromagnetically confining the particle. The vertical momentum of the particles descending through the center of the third chamber is minimized as an upward stream of gases reduces the downward momentum of the particles. The translational kinetic energy of the particles is near-zero irrespective of the mass of the particles at an exit opening of the third chamber, which may be advantageously employed to provide enhanced mass resolution in mass spectrometry.

  15. Mass independent kinetic energy reducing inlet system for vacuum environment

    DOEpatents

    Reilly, Peter T.A.

    2014-05-13

    A particle inlet system comprises a first chamber having a limiting orifice for an incoming gas stream and a micrometer controlled expansion slit. Lateral components of the momentum of the particles are substantially cancelled due to symmetry of the configuration once the laminar flow converges at the expansion slit. The particles and flow into a second chamber, which is maintained at a lower pressure than the first chamber, and then moves into a third chamber including multipole guides for electromagnetically confining the particle. The vertical momentum of the particles descending through the center of the third chamber is minimized as an upward stream of gases reduces the downward momentum of the particles. The translational kinetic energy of the particles is near-zero irrespective of the mass of the particles at an exit opening of the third chamber, which may be advantageously employed to provide enhanced mass resolution in mass spectrometry.

  16. Mass independent kinetic energy reducing inlet system for vacuum environment

    DOEpatents

    Reilly, Peter T.A.

    2013-12-03

    A particle inlet system comprises a first chamber having a limiting orifice for an incoming gas stream and a micrometer controlled expansion slit. Lateral components of the momentum of the particles are substantially cancelled due to symmetry of the configuration once the laminar flow converges at the expansion slit. The particles and flow into a second chamber, which is maintained at a lower pressure than the first chamber, and then moves into a third chamber including multipole guides for electromagnetically confining the particle. The vertical momentum of the particles descending through the center of the third chamber is minimized as an upward stream of gases reduces the downward momentum of the particles. The translational kinetic energy of the particles is near-zero irrespective of the mass of the particles at an exit opening of the third chamber, which may be advantageously employed to provide enhanced mass resolution in mass spectrometry.

  17. Utilization of rotor kinetic energy storage for hybrid vehicles

    DOEpatents

    Hsu, John S.

    2011-05-03

    A power system for a motor vehicle having an internal combustion engine, the power system comprises an electric machine (12) further comprising a first excitation source (47), a permanent magnet rotor (28) and a magnetic coupling rotor (26) spaced from the permanent magnet rotor and at least one second excitation source (43), the magnetic coupling rotor (26) also including a flywheel having an inertial mass to store kinetic energy during an initial acceleration to an operating speed; and wherein the first excitation source is electrically connected to the second excitation source for power cycling such that the flywheel rotor (26) exerts torque on the permanent magnet rotor (28) to assist braking and acceleration of the permanent magnet rotor (28) and consequently, the vehicle. An axial gap machine and a radial gap machine are disclosed and methods of the invention are also disclosed.

  18. Energy deposition by heavy ions: additivity of kinetic and potential energy contributions in hillock formation on CaF2.

    PubMed

    Wang, Y Y; Grygiel, C; Dufour, C; Sun, J R; Wang, Z G; Zhao, Y T; Xiao, G Q; Cheng, R; Zhou, X M; Ren, J R; Liu, S D; Lei, Y; Sun, Y B; Ritter, R; Gruber, E; Cassimi, A; Monnet, I; Bouffard, S; Aumayr, F; Toulemonde, M

    2014-01-01

    Modification of surface and bulk properties of solids by irradiation with ion beams is a widely used technique with many applications in material science. In this study, we show that nano-hillocks on CaF2 crystal surfaces can be formed by individual impact of medium energy (3 and 5 MeV) highly charged ions (Xe(22+) to Xe(30+)) as well as swift (kinetic energies between 12 and 58 MeV) heavy xenon ions. For very slow highly charged ions the appearance of hillocks is known to be linked to a threshold in potential energy (Ep) while for swift heavy ions a minimum electronic energy loss per unit length (Se) is necessary. With our results we bridge the gap between these two extreme cases and demonstrate, that with increasing energy deposition via Se the Ep-threshold for hillock production can be lowered substantially. Surprisingly, both mechanisms of energy deposition in the target surface seem to contribute in an additive way, which can be visualized in a phase diagram. We show that the inelastic thermal spike model, originally developed to describe such material modifications for swift heavy ions, can be extended to the case where both kinetic and potential energies are deposited into the surface. PMID:25034006

  19. High Temperature Chemical Kinetic Combustion Modeling of Lightly Methylated Alkanes

    SciTech Connect

    Sarathy, S M; Westbrook, C K; Pitz, W J; Mehl, M

    2011-03-01

    Conventional petroleum jet and diesel fuels, as well as alternative Fischer-Tropsch (FT) fuels and hydrotreated renewable jet (HRJ) fuels, contain high molecular weight lightly branched alkanes (i.e., methylalkanes) and straight chain alkanes (n-alkanes). Improving the combustion of these fuels in practical applications requires a fundamental understanding of large hydrocarbon combustion chemistry. This research project presents a detailed high temperature chemical kinetic mechanism for n-octane and three lightly branched isomers octane (i.e., 2-methylheptane, 3-methylheptane, and 2,5-dimethylhexane). The model is validated against experimental data from a variety of fundamental combustion devices. This new model is used to show how the location and number of methyl branches affects fuel reactivity including laminar flame speed and species formation.

  20. When and how does a Prominence-like Jet Gain Kinetic Energy?

    NASA Astrophysics Data System (ADS)

    Liu, Jiajia; Wang, Yuming; Liu, Rui; Zhang, Quanhao; Liu, Kai; Shen, Chenglong; Wang, S.

    2014-02-01

    A jet is a considerable amount of plasma being ejected from the chromosphere or lower corona into the higher corona and is a common phenomenon. Usually, a jet is triggered by a brightening or a flare, which provides the first driving force to push plasma upward. In this process, magnetic reconnection is thought to be the mechanism to convert magnetic energy into thermal, nonthermal, and kinetic energies. However, most jets could reach an unusual high altitude and end much later than the end of its associated flare. This fact implies that there is another way to continuously transfer magnetic energy into kinetic energy even after the reconnection. The picture described above is well known in the community, but how and how much magnetic energy is released through a way other than reconnection is still unclear. By studying a prominence-like jet observed by SDO/AIA and STEREO-A/EUVI, we find that the continuous relaxation of the post-reconnection magnetic field structure is an important process for a jet to climb up higher than it could through only reconnection. The kinetic energy of the jet gained through the relaxation is 1.6 times that gained from the reconnection. The resultant energy flux is hundreds of times larger than the flux required for the local coronal heating, suggesting that such jets are a possible source to keep the corona hot. Furthermore, rotational motions appear all the time during the jet. Our analysis suggests that torsional Alfvén waves induced during reconnection could not be the only mechanism to release magnetic energy and drive jets.

  1. When and How Does a Prominence-like Jet Gain Kinetic Energy?

    NASA Astrophysics Data System (ADS)

    Liu, J.; Wang, Y.; Liu, R.; Zhang, Q.; Liu, K.; Shen, C.; Wang, S.

    2014-12-01

    A jet is a considerable amount of plasma being ejected from the chromosphere or lower corona into the higher corona and is a common phenomenon. Usually, a jet is triggered by a brightening or a flare, which provides the first driving force to push plasma upward. In this process, magnetic reconnection is thought to be the mechanism to convert magnetic energy into thermal, nonthermal, and kinetic energies. However, most jets could reach an unusual high altitude and end much later than the end of its associated flare. This fact implies that there is another way to continuously transfer magnetic energy into kinetic energy even after the reconnection. The picture described above is well known in the community, but how and how much magnetic energy is released through a way other than reconnection is still unclear. By studying a prominence-like jet observed by SDO/AIA and STEREO-A/EUVI, we find that the continuous relaxation of the post-reconnection magnetic field structure is an important process for a jet to climb up higher than it could through only reconnection. The kinetic energy of the jet gained through the relaxation is 1.6 times that gained from the reconnection. The resultant energy flux is hundreds of times larger than the flux required for the local coronal heating, suggesting that such jets are a possible source to keep the corona hot. Furthermore, rotational motions appear all the time during the jet. Our analysis suggests that torsional Alfvén waves induced during reconnection could not be the only mechanism to release magnetic energy and drive jets.

  2. When and how does a prominence-like jet gain kinetic energy?

    SciTech Connect

    Liu, Jiajia; Liu, Rui; Zhang, Quanhao; Liu, Kai; Shen, Chenglong; Wang, S.; Wang, Yuming

    2014-02-20

    A jet is a considerable amount of plasma being ejected from the chromosphere or lower corona into the higher corona and is a common phenomenon. Usually, a jet is triggered by a brightening or a flare, which provides the first driving force to push plasma upward. In this process, magnetic reconnection is thought to be the mechanism to convert magnetic energy into thermal, nonthermal, and kinetic energies. However, most jets could reach an unusual high altitude and end much later than the end of its associated flare. This fact implies that there is another way to continuously transfer magnetic energy into kinetic energy even after the reconnection. The picture described above is well known in the community, but how and how much magnetic energy is released through a way other than reconnection is still unclear. By studying a prominence-like jet observed by SDO/AIA and STEREO-A/EUVI, we find that the continuous relaxation of the post-reconnection magnetic field structure is an important process for a jet to climb up higher than it could through only reconnection. The kinetic energy of the jet gained through the relaxation is 1.6 times that gained from the reconnection. The resultant energy flux is hundreds of times larger than the flux required for the local coronal heating, suggesting that such jets are a possible source to keep the corona hot. Furthermore, rotational motions appear all the time during the jet. Our analysis suggests that torsional Alfvén waves induced during reconnection could not be the only mechanism to release magnetic energy and drive jets.

  3. Kinetics of isochronal austenization in modified high Cr ferritic heat-resistant steel

    NASA Astrophysics Data System (ADS)

    Liu, Chenxi; Liu, Yongchang; Zhang, Dantian; Yan, Zesheng

    2011-12-01

    Employment of high Cr ferritic steels as a main structural material is considered as a way to achieve economical competitiveness of main steam pipe and nuclear reactors in power plants. Differential dilatometry and microstructure observation were employed to investigate the isochronal austenitic transformation of the modified high Cr ferritic steel. The kinetics of the isochronal austenitic transformation were described by a phase-transformation model involving site saturation (pre-existing nuclei), diffusion-controlled growth, and incorporating an impingement correction. The experimental results and kinetic analysis indicate that an increase of the heating rate promotes the diffusion-controlled austenitic transformation. The dissolving degree of precipitates during the austenization process affects the activation energy for diffusion and the undissolved precipitates lead to an increase of the onset temperature of the subsequent martensite transformation upon cooling.

  4. Comment on "Single-point kinetic energy density functionals: A pointwise kinetic energy density analysis and numerical convergence investigation"

    NASA Astrophysics Data System (ADS)

    Trickey, S. B.; Karasiev, Valentin V.; Chakraborty, Debajit

    2015-09-01

    We suggest a more nuanced view of the merit and utility of generalized gradient approximations (GGAs) for the noninteracting kinetic energy (KE) than the critique of Xia and Carter (XC) [Phys. Rev. B 91, 045124 (2015), 10.1103/PhysRevB.91.045124]. Specifically, the multiple valuedness of the Pauli term enhancement factor (denoted G [n ] by XC) with respect to the inhomogeneity variable s can be excluded by enforcement of a bound on the Kohn-Sham KE to achieve universality of the functional along with enforcement of proper large-s behavior. This is physically sensible in that the excluded G values occur for s values that correspond to low densities. The behavior is exacerbated by peculiarities of pseudodensities. The VT84F KE GGA, constructed with these constraints, does not have the numerical instability in our older PBE2 functional analyzed by XC.

  5. Kinetics of diamond-silicon reaction under high pressure-high temperature conditions

    NASA Astrophysics Data System (ADS)

    Pantea, Cristian

    In this dissertation work, the kinetics of the reaction between diamond and silicon at high pressure-high temperature conditions was investigated. This study was motivated by the extremely limited amount of information related to the kinetics of the reaction in diamond-silicon carbide composites formation. It was found that the reaction between diamond and melted silicon and the subsequent silicon carbide formation is a two-stage process. The initial stage is a result of direct reaction of melted silicon with carbon atoms from the diamond surface, the phase boundary reaction. Further growth of SiC is much more complicated and when the outer surfaces of diamond crystals are covered with the silicon carbide layer it involves diffusion of carbon and silicon atoms through the SiC layer. The reaction takes place differently for the two regions of stability of carbon. In the graphite-stable region, the reaction between diamond and melted silicon is associated with the diamond-to-graphite phase transition, while in the diamond-stable region there is no intermediary step for the reaction. The data obtained at HPHT were fitted by the Avrami-Erofeev equation. It was found that the reaction is isotropic, the beta-SiC grown on different faces of the diamond crystals showing the same reaction rate, and that the controlling mechanism for the reaction is the diffusion. In the graphite-stable region the activation energy, 402 kJ/mol is slightly higher than in the diamond-stable region, 260 kJ/mol, as the reaction between diamond and melted silicon is associated with the diamond-to-graphite phase transition, which has higher activation energy. In the diamond-stable region, the calculated activation energy is higher for micron size diamond powders (≈260 kJ/mol), while for nanocrystalline diamond powders a lower value of 170 kJ/mol was obtained. This effect was attributed to nanocrystalline structure and strained bonds within grain boundaries in SiC formed from nanosize diamond

  6. Highly multiplexible thermal kinetic inductance detectors for x-ray imaging spectroscopy

    SciTech Connect

    Ulbricht, Gerhard Mazin, Benjamin A.; Szypryt, Paul; Walter, Alex B.; Bockstiegel, Clint; Bumble, Bruce

    2015-06-22

    For X-ray imaging spectroscopy, high spatial resolution over a large field of view is often as important as high energy resolution, but current X-ray detectors do not provide both in the same device. Thermal Kinetic Inductance Detectors (TKIDs) are being developed as they offer a feasible way to combine the energy resolution of transition edge sensors with pixel counts approaching CCDs and thus promise significant improvements for many X-ray spectroscopy applications. TKIDs are a variation of Microwave Kinetic Inductance Detectors (MKIDs) and share their multiplexibility: working MKID arrays with 2024 pixels have recently been demonstrated and much bigger arrays are under development. In this work, we present a TKID prototype, which is able to achieve an energy resolution of 75 eV at 5.9 keV, even though its general design still has to be optimized. We further describe TKID fabrication, characterization, multiplexing, and working principle and demonstrate the necessity of a data fitting algorithm in order to extract photon energies. With further design optimizations, we expect to be able to improve our TKID energy resolution to less than 10 eV at 5.9 keV.

  7. Highly multiplexible thermal kinetic inductance detectors for x-ray imaging spectroscopy

    NASA Astrophysics Data System (ADS)

    Ulbricht, Gerhard; Mazin, Benjamin A.; Szypryt, Paul; Walter, Alex B.; Bockstiegel, Clint; Bumble, Bruce

    2015-06-01

    For X-ray imaging spectroscopy, high spatial resolution over a large field of view is often as important as high energy resolution, but current X-ray detectors do not provide both in the same device. Thermal Kinetic Inductance Detectors (TKIDs) are being developed as they offer a feasible way to combine the energy resolution of transition edge sensors with pixel counts approaching CCDs and thus promise significant improvements for many X-ray spectroscopy applications. TKIDs are a variation of Microwave Kinetic Inductance Detectors (MKIDs) and share their multiplexibility: working MKID arrays with 2024 pixels have recently been demonstrated and much bigger arrays are under development. In this work, we present a TKID prototype, which is able to achieve an energy resolution of 75 eV at 5.9 keV, even though its general design still has to be optimized. We further describe TKID fabrication, characterization, multiplexing, and working principle and demonstrate the necessity of a data fitting algorithm in order to extract photon energies. With further design optimizations, we expect to be able to improve our TKID energy resolution to less than 10 eV at 5.9 keV.

  8. High-energy detector

    DOEpatents

    Bolotnikov, Aleksey E.; Camarda, Giuseppe; Cui, Yonggang; James, Ralph B.

    2011-11-22

    The preferred embodiments are directed to a high-energy detector that is electrically shielded using an anode, a cathode, and a conducting shield to substantially reduce or eliminate electrically unshielded area. The anode and the cathode are disposed at opposite ends of the detector and the conducting shield substantially surrounds at least a portion of the longitudinal surface of the detector. The conducting shield extends longitudinally to the anode end of the detector and substantially surrounds at least a portion of the detector. Signals read from one or more of the anode, cathode, and conducting shield can be used to determine the number of electrons that are liberated as a result of high-energy particles impinge on the detector. A correction technique can be implemented to correct for liberated electron that become trapped to improve the energy resolution of the high-energy detectors disclosed herein.

  9. Highly anomalous energetics of protein cold denaturation linked to folding-unfolding kinetics.

    PubMed

    Romero-Romero, M Luisa; Inglés-Prieto, Alvaro; Ibarra-Molero, Beatriz; Sanchez-Ruiz, Jose M

    2011-01-01

    Despite several careful experimental analyses, it is not yet clear whether protein cold-denaturation is just a "mirror image" of heat denaturation or whether it shows unique structural and energetic features. Here we report that, for a well-characterized small protein, heat denaturation and cold denaturation show dramatically different experimental energetic patterns. Specifically, while heat denaturation is endothermic, the cold transition (studied in the folding direction) occurs with negligible heat effect, in a manner seemingly akin to a gradual, second-order-like transition. We show that this highly anomalous energetics is actually an apparent effect associated to a large folding/unfolding free energy barrier and that it ultimately reflects kinetic stability, a naturally-selected trait in many protein systems. Kinetics thus emerges as an important factor linked to differential features of cold denaturation. We speculate that kinetic stabilization against cold denaturation may play a role in cold adaptation of psychrophilic organisms. Furthermore, we suggest that folding-unfolding kinetics should be taken into account when analyzing in vitro cold-denaturation experiments, in particular those carried out in the absence of destabilizing conditions. PMID:21829584

  10. Recent Results in Quantum Chemical Kinetics from High Resolution Spectroscopy

    SciTech Connect

    Quack, Martin

    2007-12-26

    We outline the approach of our group to derive intramolecular kinetic primary processes from high resolution spectroscopy. We then review recent results on intramolecular vibrational redistribution (IVR) and on tunneling processes. Examples are the quantum dynamics of the C-H-chromophore in organic molecules, hydrogen bond dynamics in (HF){sub 2} and stereomutation dynamics in H{sub 2}O{sub 2} and related chiral molecules. We finally discuss the time scales for these and further processes which range from 10 fs to more than seconds in terms of successive symmetry breakings, leading to the question of nuclear spin symmetry and parity violation as well as the question of CPT symmetry.

  11. The gas kinetics of very high flight speeds

    NASA Technical Reports Server (NTRS)

    Sanger, Eugen

    1950-01-01

    The aerodynamic forces on bodies of arbitrary shape were investigated under conditions such that the mean free path of the air molecule is greater than the dimensions of the body. Air pressures and friction forces were calculated from gas kinetic theory for surfaces facing both toward and away from the air stream at any angle. Air forces for an atmosphere of definite composition (molecular hydrogen) were calculated as a function of the flight velocity. The results indicate that the friction stresses between the air and the body surface are of the same magnitude as the dynamic pressure and as the air pressures normal to the surface. The application of the general method to the specific cases such as thin airfoils and projectiles leads to high drag coefficients and poor glide ratios even for the theoretically best wing sections.

  12. Notepad-like triboelectric generator for efficiently harvesting low-velocity motion energy by interconversion between kinetic energy and elastic potential energy.

    PubMed

    Liu, Guanlin; Leng, Qiang; Lian, Jiawei; Guo, Hengyu; Yi, Xi; Hu, Chenguo

    2015-01-21

    Great attention has been paid to nanogenerators that harvest energy from ambient environments lately. In order to give considerable output current, most nanogenerators require high-velocity motion that in most cases can hardly be provided in our daily life. Here we report a notepad-like triboelectric generator (NTEG), which uses simple notepad-like structure to generate elastic deformation so as to turn a low-velocity kinetic energy into high-velocity kinetic energy through the conversion of elastic potential energy. Therefore, the NTEG can achieve high current output under low-velocity motion, which completely distinguishes it from tribogenerators previously reported. The factors that may affect the output performance are explored, including the number of slices, active length of slice, press speed, and vertical displacement. In addition, the working mechanism is systematically studied, indicating that the efficiency of the generator can be greatly enhanced by interconversion between kinetic energy and elastic potential energy. The short-circuit current, the open-circuit voltage, and power density are 205 μA and 470 V and 9.86 W/m(2), respectively, which is powerful enough to light up hundreds of light-emitting diodes (LEDs) and charge a commercial capacitor. Besides, NTEGs have been successfully applied to a self-powered door monitor. PMID:25564956

  13. Orientational, kinetic, and magnetic energy of geodynamo, reversals, and asymmetries

    NASA Astrophysics Data System (ADS)

    Starchenko, S. V.

    2015-07-01

    Integral laws describing the evolution of the kinetic, magnetic, and orientational energy in the liquid core of the Earth, which are also valid in the interiors of the other terrestrial planets, are derived, simplified, and analyzed. These laws are coarsely approximated by a system of ordinary differential equations with a given energy of the convection. The characteristic velocities, magnetic fields, periods, and scales as the functions of the power of the convection are estimated for the states beyond and close to the reversal or excursion. With the assumed simplifications, the convection power should be close to a certain value in order to enable a relatively short reversal or excursion; significant deviation of the convection energy from this value will render the system into a long-term steady state. Here, two types of steady state are possible: the codirectional state with the magnetic field oriented along the velocity vector, and contradirectional state with the opposing orientations of the magnetic field and velocity. These states are not symmetric with respect to each other since, other factors being equal, the energy support of the convection and the average intensity of the magnetic field are typically higher in the contradirectional rather than codirectional state. The total duration of codirectional states is somewhat shorter than contradirectional states in the case when the convection power grows with time; in the case of a long-decreasing convection power, the situation is opposite. This asymmetry in the duration of steady states is confirmed by the paleomagnetic data on the timescale of the magnetic reversals. The length of the average interval between the reversals is controlled by the turbulent, thermal, electromagnetic, and visco-compositional diffusion. The predominant type of the diffusion can be in many cases identified from the dependence of the reversal frequency on the intensity of the magnetic field based on the paleomagnetic data. The

  14. A kinetic study of the polymorphic transformation of nimodipine and indomethacin during high shear granulation.

    PubMed

    Guo, Zhen; Ma, Mingxin; Wang, Tianyi; Chang, Di; Jiang, Tongying; Wang, Siling

    2011-06-01

    The objective of the present study was to investigate the mechanism, kinetics, and factors affecting the polymorphic transformation of nimodipine (NMD) and indomethacin (IMC) during high shear granulation. Granules containing active pharmaceutical ingredient, microcrystalline cellulose, and low-substituted hydroxypropylcellulose were prepared with ethanolic hydroxypropylcellulose solution, and the effects of independent process variables including impeller speed and granulating temperature were taken into consideration. Two polymorphs of the model drugs and granules were characterized by X-ray powder diffraction analysis and quantitatively determined by differential scanning calorimetry. A theoretical kinetic method of ten kinetic models was applied to analyze the polymorphic transformation of model drugs. The results obtained revealed that both the transformation of modification I to modification II of NMD and the transformation of the α form to the γ form of IMC followed a two-dimensional nuclei growth mechanism. The activation energy of transformation was calculated to be 7.933 and 56.09 kJ·mol(-1) from Arrhenius plot, respectively. Both the granulating temperature and the impeller speed affected the transformation rate of the drugs and, in particular, the high shear stress significantly accelerated the transformation process. By analyzing the growth mechanisms of granules in high-shear mixer, it was concluded that the polymorphic transformation of NMD and IMC took place in accordance with granule growth in a high-shear mixer. PMID:21553164

  15. Characterizing droplet kinetic energy applied by moving spray-plate center pivot irrigation sprinklers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The kinetic energy of discrete drops impacting a bare soil surface is generally observed to lead to a drastic reduction in water infiltration rate due to soil surface seal formation. Under center pivot sprinkler irrigation, kinetic energy transferred to the soil prior to crop canopy development can...

  16. Droplet kinetic energy of moving spray-plate center-pivot irrigation sprinklers

    Technology Transfer Automated Retrieval System (TEKTRAN)

    The kinetic energy of discrete water drops impacting a bare soil surface generally leads to a drastic reduction in water infiltration rate due to formation of a seal on the soil surface. Under center-pivot sprinkler irrigation, kinetic energy transferred to the soil prior to crop canopy development ...

  17. A Comparison of Kinetic Energy and Momentum in Special Relativity and Classical Mechanics

    ERIC Educational Resources Information Center

    Riggs, Peter J.

    2016-01-01

    Kinetic energy and momentum are indispensable dynamical quantities in both the special theory of relativity and in classical mechanics. Although momentum and kinetic energy are central to understanding dynamics, the differences between their relativistic and classical notions have not always received adequate treatment in undergraduate teaching.…

  18. The Rainfall and Rainfall Kinetic Energy Intensity-Duration of Landslides and Debris flow in Taiwan

    NASA Astrophysics Data System (ADS)

    Chang, Jui-Ming; Chen, Hongey

    2016-04-01

    This research used Joss-Waldvogel Disdrometers (JWD) which set in Shiment catchment, Northern Taiwan and Chishan catchment, Southern Taiwan to record rainfall kinetic energy data, to find the relationship between rainfall kinetic energy and rainfall intensity in these two areas. The distance between the two areas is less than 150 km. These data help the researchers and showed that the equations of relationship were ekN =28.7* (1-0.7027*exp(-0.0395*I)) and ekS=27.4*(1-0.5954*exp(-0.0345*I)). Generally, rainfall kinetic energy in Northern Taiwan is higher than in Southern Taiwan during rainfall period. Also, the occurring time and rainfall records of 143 landslide events from 2006 to 2012 were analyzed. The rainfall-intensity (I-D) relationship could be used to build rainfall threshold which were IN=15.13 D‑0.28 and IS=47.58 D‑0.35. In brief, the rainfall feature in landslide of Northern Taiwan had low rainfall intensity, long rainfall duration and low average accumulative rainfall. By combining rainfall kinetic energy and rainfall threshold, rainfall kinetic energy threshold could be established, which were ¯E N=13.83 D‑0.04 and ¯E S =15.59 D‑0.02. The results showed that not only for rainfall but also for rainfall kinetic energy threshold, the values of thresholds in North were lower than those in South. Due to impaction energy of rainfall to ground surface, rainfall kinetic energy would not forever increase. Therefore, rainfall kinetic energy threshold is also a useful tool for landslide warning. Key words: Rainfall kinetic energy, Rainfall threshold, Rainfall kinetic energy threshold, Landslide

  19. High energy beam lines

    NASA Astrophysics Data System (ADS)

    Marchetto, M.; Laxdal, R. E.

    2014-01-01

    The ISAC post accelerator comprises an RFQ, DTL and SC-linac. The high energy beam lines connect the linear accelerators as well as deliver the accelerated beams to two different experimental areas. The medium energy beam transport (MEBT) line connects the RFQ to the DTL. The high energy beam transport (HEBT) line connects the DTL to the ISAC-I experimental stations (DRAGON, TUDA-I, GPS). The DTL to superconducting beam (DSB) transport line connects the ISAC-I and ISAC-II linacs. The superconducting energy beam transport (SEBT) line connects the SC linac to the ISAC-II experimental station (TUDA-II, HERACLES, TIGRESS, EMMA and GPS). All these lines have the function of transporting and matching the beams to the downstream sections by manipulating the transverse and longitudinal phase space. They also contain diagnostic devices to measure the beam properties.

  20. Real time kinetics of restriction endonuclease cleavage monitored by fluorescence resonance energy transfer.

    PubMed Central

    Ghosh, S S; Eis, P S; Blumeyer, K; Fearon, K; Millar, D P

    1994-01-01

    The kinetics of PaeR7 endonuclease-catalysed cleavage reactions of fluorophor-labeled oligonucleotide substrates have been examined using fluorescence resonance energy transfer (FRET). A series of duplex substrates were synthesized with an internal CTCGAG PaeR7 recognition site and donor (fluorescein) and acceptor (rhodamine) dyes conjugated to the opposing 5' termini. The time-dependent increase in donor fluorescence resulting from restriction cleavage of these substrates was continuously monitored and the initial rate data was fitted to the Michaelis-Menten equation. The steady state kinetic parameters for these substrates were in agreement with the rate constants obtained from a gel electrophoresis-based fixed time point assay using radiolabeled substrates. The FRET method provides a rapid continuous assay as well as high sensitivity and reproducibility. These features should make the technique useful for the study of DNA-cleaving enzymes. Images PMID:8065930

  1. High Energy Astrophysics Program

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This report reviews activities performed by members of the USRA (Universities Space Research Association) contract team during the six months during the reporting period (10/95 - 3/96) and projected activities during the coming six months. Activities take place at the Goddard Space Flight Center, within the Laboratory for High Energy Astrophysics. Developments concern instrumentation, observation, data analysis, and theoretical work in Astrophysics. Missions supported include: Advanced Satellite for Cosmology and Astrophysics (ASCA), X-ray Timing Experiment (XTE), X-ray Spectrometer (XRS), Astro-E, High Energy Astrophysics Science, Archive Research Center (HEASARC), and others.

  2. High Energy Astrophysics Program

    NASA Technical Reports Server (NTRS)

    1996-01-01

    This report reviews activities performed-by members of the USRA contract team during the six months of the reporting period and projected activities during the coming six months. Activities take place at the Goddard Space Flight Center, visiting the Laboratory for High Energy Astrophysics. Developments concern instrumentation, observation, data analysis, and theoretical work in Astrophysics. Missions supported include: Advanced Satellite for Cosmology and Astrophysics (ASCA); X-ray Timing Experiment (XTE); X-ray Spectrometer (XRS); Astro-E; High Energy Astrophysics Science Archive Research Center (HEASARC), and others.

  3. Relationship between the kinetic energy budget and intensity of convection. [in atmosphere

    NASA Technical Reports Server (NTRS)

    Fuelberg, H. E.; Scoggins, J. R.

    1977-01-01

    Synoptic data collected over the eastern United States during the fourth Atmospheric Variability Experiment, April 24 and 25, 1975, is used to study the relationship between the kinetic energy budget and the intensity of convective activity. It is found that areas of intense convective activity are also major centers of kinetic energy activity. Energy processes increase in magnitude with an increase in convection intensity. Large generation of kinetic energy is associated with intense convection, but large quantities of energy are transported out of the area of convection. The kinetic energy budget associated with grid points having no convection differs greatly from the budgets of the three categories of convection. Weak energy processes are not associated with convection.

  4. From the Kinetic Energy Recovery System to the Thermo-Hydraulic Hybrid Motor Vehicle

    NASA Astrophysics Data System (ADS)

    Cristescu, Corneliu; Drumea, Petrin; Guta, Dragos; Dumitrescu, Catalin

    2011-12-01

    The paper presents some theoretical and experimental results obtained by the Hydraulics and Pneumatics Research Institute INOE 2000-IHP with its partners, regarding the creating of one hydraulic system able to recovering the kinetic energy of the motor vehicles, in the braking phases, and use this recovered energy in the starting and accelerating phases. Also, in the article is presented a testing stand, which was especially designed for testing the hydraulic system for recovery the kinetic energy. Through mounting of the kinetic energy recovering hydraulic system, on one motor vehicle, this vehicle became a thermo-hydraulic hybrid vehicle. Therefore, the dynamic behavior was analyzed for the whole hybrid motor vehicle, which includes the energy recovery system. The theoretical and experimental results demonstrate the possible performances of the hybrid vehicle and that the kinetic energy recovery hydraulic systems are good means to increase energy efficiency of the road motor vehicles and to decrease of the fuel consumption.

  5. Geographical distribution and anisotropy of the inverse kinetic energy cascade, and its role in the eddy equilibrium processes

    NASA Astrophysics Data System (ADS)

    Wang, Shihong; Liu, Zhiliang; Pang, Chongguang

    2015-07-01

    The geographic character of the inverse cascade is analyzed based on the spectral kinetic energy flux calculated in the global ocean, using sea surface height (SSH) data from satellites, reanalysis data, and model outputs. It is shown that the strongest inverse cascade occurs mostly in high-energy eastward-flowing currents, such as the Antarctic Circumpolar Current (ACC), the Kuroshio Extension, and the Gulf Stream, which matches the global distribution pattern of the eddy kinetic energy (EKE). Hence, the eddy scales predicted by the local linear baroclinic instability Lbci and from the altimeter observation Leddy are mapped out and compared with the energy injection scale Linj and the arrest-start scale Larrest-start of the inverse cascade, respectively. Generally, Lbci agrees well with Linj in the midlatitude and high-latitude oceans, especially in the Northern Hemisphere. Leddy falls within the arrest ranges of the inverse cascade and is quite close to Larrest-start. Finally, the depth dependence and the anisotropy of the inverse kinetic energy cascade are also diagnosed in the global ocean. We have found that the strength of the inverse cascades decreases with increasing depth, but the global pattern of the strength is nearly invariable. Meanwhile, the variations in depth hardly affect the Linj and Larrest-start. After considering the anisotropy in the spectral flux calculation, a possible inertial range for the zonal spectral kinetic energy flux is expected, where the cascade magnitude will keep a nearly constant negative value associated with the oceanic zonal jets.

  6. Hindcasts of Integrated Kinetic Energy in North Atlantic Tropical Cyclones

    NASA Astrophysics Data System (ADS)

    Kozar, Michael; Misra, Vasubandhu

    2015-04-01

    Integrated kinetic energy (IKE) is a recently developed metric that evaluates the destructive potential of a tropical cyclone by assessing the size and strength of its wind field. Despite the potential usefulness of the IKE metric, there are few, if any, operational tools that are specifically designed to forecast IKE in real-time. Therefore, a system of artificial neural networks is created to produce deterministic and probabilistic projections of IKE in North Atlantic tropical cyclones out to 72 hours from a series of relevant environmental and storm specific normalized input parameters. In an effort to assess its real-time skill, this IKE forecasting system is run in a mock-operational mode for the 1990 to 2011 North Atlantic hurricane seasons. Hindcasts of IKE are produced in this manner by running the neural networks with hindcasted input parameters from NOAA's second generation Global Ensemble Forecasting System reforecast dataset. Ultimately, the results of the hindcast exercises indicate that the neural network system is capable of skillfully forecasting IKE in an operational setting at a level significantly higher than climatology and persistence. Ultimately, forecasts of IKE from these neural networks could potentially be an asset for operational meteorologists that would complement existing forecast tools in an effort to better assess the damage potential of landfalling tropical cyclones, particularly with regards to storm surge damage.

  7. NonBoussinesq effects on vorticity and kinetic energy production

    NASA Astrophysics Data System (ADS)

    Ravichandran, S.; Dixit, Harish; Govindarajan, Rama

    2015-11-01

    The Boussinesq approximation, commonly employed in weakly compressible or incompressible flows, neglects changes in inertia due to changes in the density. However, the nonBoussinesq terms can lead to a kind of centrifugal instability for small but sharp density variations, and therefore cannot be neglected under such circumstances (see, e.g., DIXIT & GOVINDARAJAN, JFM , 2010, 415). Here, we study the evolution of a light-cored Gaussian vortex and find that the nonBoussinesq terms can lead to significant changes in how vortices evolve. The problem is governed by three nondimensional numbers--Reynolds number (i.e. viscosity), Atwood number, and a ratio of gravitational and centrifugal Froude numbers. We find that the production of kinetic energy and vorticity in a light-cored Gaussian vortex are affected significantly by the nonBoussinesq terms, and varies non-monotonically with the parameters of the problem. In general, these nonBoussinesq effects depend both on the strength of gravity and on the Reynolds number associated with the initial vortex.

  8. Zero Kinetic Energy Photoelectron Spectroscopy of Benzo[h]quinoline.

    PubMed

    Harthcock, Colin; Zhang, Jie; Kong, Wei

    2015-12-17

    We report zero kinetic energy (ZEKE) photoelectron spectroscopy of benzo[h]quinoline (BhQ) via resonantly enhanced multiphoton ionization (REMPI) through the first electronically excited state S1. From the simulated REMPI spectra with and without Herzberg-Teller coupling, we conclude that vibronic coupling plays a minor but observable role in the electronic excitation to the S1 state. We further compare the S1 state of BhQ with the first two electronically excited states of phenanthrene, noticing a similarity of the S1 state of BhQ with the second electronically excited state S2 of phenanthrene. In the ZEKE spectra of BhQ, the vibrational frequencies of the cationic state D0 are consistently higher than those of the intermediate neutral state, indicating enhanced bonding upon ionization. The sparse ZEKE spectra, compared with the spectrum of phenanthrene containing rich vibronic activities, further imply that the nitrogen atom has attenuated the structural change between S1 and D0 states. We speculate that the nitrogen atom can withdraw an electron in the S1 state and donate an electron in the D0 state, thereby minimizing the structural change during ionization. The origin of the first electronically excited state is determined to be 29,410 ± 5 cm(-1), and the adiabatic ionization potential is determined to be 65,064 ± 7 cm(-1). PMID:26039927

  9. Vertical kinetic energy and turbulent dissipation in the ocean

    NASA Astrophysics Data System (ADS)

    Thurnherr, A. M.; Kunze, E.; Toole, J. M.; St. Laurent, L.; Richards, K. J.; Ruiz-Angulo, A.

    2015-09-01

    Oceanic internal waves are closely linked to turbulence. Here a relationship between vertical wave number (kz) spectra of fine-scale vertical kinetic energy (VKE) and turbulent dissipation ɛ is presented using more than 250 joint profiles from five diverse dynamic regimes, spanning latitudes between the equator and 60°. In the majority of the spectra VKE varies as kz-2. Scaling VKE with √ɛ collapses the off-equatorial spectra to within √2 but underestimates the equatorial spectrum. The simple empirical relationship between VKE and ɛ fits the data better than a common shear-and-strain fine-scale parameterization, which significantly underestimates ɛ in the two data sets that are least consistent with the Garrett-Munk (GM) model. The new relationship between fine-scale VKE and dissipation rate can be interpreted as an alternative, single-parameter scaling for turbulent dissipation in terms of fine-scale internal wave vertical velocity that requires no reference to the GM model spectrum.

  10. Energy Conservation Tests of a Coupled Kinetic-kinetic Plasma-neutral Transport Code

    SciTech Connect

    Stotler, D. P.; Chang, C. S.; Ku, S. H.; Lang, J.; Park, G.

    2012-08-29

    A Monte Carlo neutral transport routine, based on DEGAS2, has been coupled to the guiding center ion-electron-neutral neoclassical PIC code XGC0 to provide a realistic treatment of neutral atoms and molecules in the tokamak edge plasma. The DEGAS2 routine allows detailed atomic physics and plasma-material interaction processes to be incorporated into these simulations. The spatial pro le of the neutral particle source used in the DEGAS2 routine is determined from the uxes of XGC0 ions to the material surfaces. The kinetic-kinetic plasma-neutral transport capability is demonstrated with example pedestal fueling simulations.

  11. Energy expenditure, urea kinetics, and body weight gain within a segregating resource family population.

    PubMed

    Lahann, P; Voigt, J; Kühn, C; Pfuhl, R; Metges, C C; Junghans, P; Schönhusen, U; Hammon, H M

    2010-11-01

    Beef and dairy cattle represent divergent metabolic types that disseminate nutrients into either meat or milk and differ in nutrient accretion. To investigate nutrient flow and turnover in an animal model combining beef and dairy cattle, a crossbred experiment has been started. An F(2) resource population was generated from Charolais (beef breed) sires and German Holstein (dairy breed) cows as P(0) founders by consistent use of embryo transfer to establish the F(1) and F(2) generations, which accordingly comprised half- and full-sib offspring. In 64 bulls of 5F(2) families, dry matter intake and growth performance were measured monthly, and carcass composition was determined after slaughtering at 18 mo of age. Energy expenditure and urea kinetics were investigated via stable isotope tracer techniques using an intravenous single bolus dose of sodium [(13)C]bicarbonate [2.5 μmol/kg of body weight (BW), 99 atom% (13)C] at 8 and 18 mo of age and of [(15)N]urea (0.28 mg/kg of BW, 99 atom% (15)N) at 8 mo of age, respectively. Insulin responses were measured via glucose tolerances tests at the age of 8 mo. The results revealed significant differences between families for growth performance, energy expenditure, and urea kinetics. In summary, low energy expenditure was associated with high average body mass gain and high insulin response. A greater urea loss was associated with reduced muscle protein in carcass. In addition, corresponding half-sib and full-sib sisters from bulls with highest growth rate indicated highest milk production. In conclusion, we have demonstrated that differences in energy expenditure and urea kinetics result in differences in average daily gain and carcass traits and vice versa in F(2) crossbred bulls with common beef and dairy genetic backgrounds. PMID:20965327

  12. Surface analysis of zeolites: An XPS, variable kinetic energy XPS, and low energy ion scattering study

    NASA Astrophysics Data System (ADS)

    Bare, Simon R.; Knop-Gericke, Axel; Teschner, Detre; Hävacker, Michael; Blume, Raoul; Rocha, Tulio; Schlögl, Robert; Chan, Ally S. Y.; Blackwell, N.; Charochak, M. E.; ter Veen, Rik; Brongersma, Hidde H.

    2016-06-01

    The surface Si/Al ratio in a series of zeolite Y samples has been obtained using laboratory XPS, synchrotron (variable kinetic energy) XPS, and low energy ion scattering (LEIS) spectroscopy. The non-destructive depth profile obtained using variable kinetic energy XPS is compared to that from the destructive argon ion bombardment depth profile from the lab XPS instrument. All of the data indicate that the near surface region of both the ammonium form and steamed Y zeolites is strongly enriched in aluminum. It is shown that when the inelastic mean free path of the photoelectrons is taken into account the laboratory XPS of aluminosilicates zeolites does not provide a true measurement of the surface stoichiometry, while variable kinetic energy XPS results in a more surface sensitive measurement. A comprehensive Si/Al concentration profile as a function of depth is developed by combining the data from the three surface characterization techniques. The LEIS spectroscopy reveals that the topmost atomic layer is further enriched in Al compared to subsequent layers.

  13. High thermal stability and sluggish crystallization kinetics of high-entropy bulk metallic glasses

    NASA Astrophysics Data System (ADS)

    Yang, M.; Liu, X. J.; Ruan, H. H.; Wu, Y.; Wang, H.; Lu, Z. P.

    2016-06-01

    Metallic glasses are metastable and their thermal stability is critical for practical applications, particularly at elevated temperatures. The conventional bulk metallic glasses (BMGs), though exhibiting high glass-forming ability (GFA), crystallize quickly when being heated to a temperature higher than their glass transition temperature. This problem may potentially be alleviated due to the recent developments of high-entropy (or multi-principle-element) bulk metallic glasses (HE-BMGs). In this work, we demonstrate that typical HE-BMGs, i.e., ZrTiHfCuNiBe and ZrTiCuNiBe, have higher kinetic stability, as compared with the benchmark glass Vitreoy1 (Zr41.2Ti13.8Cu12.5Ni10Be22.5) with a similar chemical composition. The measured activation energy for glass transition and crystallization of the HE-BMGs is nearly twice that of Vitreloy 1. Moreover, the sluggish crystallization region ΔTpl-pf, defined as the temperature span between the last exothermic crystallization peak temperature Tpl and the first crystallization exothermic peak temperature Tpf, of all the HE-BMGs is much wider than that of Vitreloy 1. In addition, high-resolution transmission electron microscopy characterization of the crystallized products at different temperatures and the continuous heating transformation diagram which is proposed to estimate the lifetime at any temperature below the melting point further confirm high thermal stability of the HE-BMGs. Surprisingly, all the HE-BMGs show a small fragility value, which contradicts with their low GFA, suggesting that the underlying diffusion mechanism in the liquid and the solid of HE-BMGs is different.

  14. Energy flow in high speed perforation and cutting

    SciTech Connect

    van Thiel, M.

    1980-10-07

    It is demonstrated that effects of long rod penetrators on targets can be modeled by introducing a high pressure (energy) column on the penetration path in place of the projectile. This energy can be obtained from the kinetic energy of the penetrator; the equations of state of the materials used and a Bernoulli penetration condition. The model is supported by detailed hydro calculations.

  15. High energy particle astronomy.

    NASA Technical Reports Server (NTRS)

    Buffington, A.; Muller, R. A.; Smith, L. H.; Smoot, G. F.

    1972-01-01

    Discussion of techniques currently used in high energy particle astronomy for measuring charged and neutral cosmic rays and their isotope and momentum distribution. Derived from methods developed for accelerator experiments in particle physics, these techniques help perform important particle astronomy experiments pertaining to nuclear cosmic ray and gamma ray research, electron and position probes, and antimatter searches.

  16. High Energy Astronomy Observatory

    NASA Technical Reports Server (NTRS)

    1980-01-01

    An overview of the High Energy Astronomy Observatory 2 contributions to X-ray astronomy is presented along with a brief description of the satellite and onboard telescope. Observations relating to galaxies and galactic clusters, black holes, supernova remnants, quasars, and cosmology are discussed.

  17. Softening Kinetics in High Al and High Al-Nb-Microalloyed Steels

    NASA Astrophysics Data System (ADS)

    Pereda, B.; Aretxabaleta, Z.; López, B.

    2015-03-01

    Double-hit torsion tests were performed in order to study the effect of high Al levels (up to 2 wt.%) and Nb microalloying (up to 0.07 wt.%) on the static softening kinetics of 0.2%C-2%Mn steels. The addition of 1%Al leads to a delay in the softening kinetics due to solute-drag effect, equivalent to that exerted by 0.027%Nb. For the 2%Al steels, at temperatures below 1000 °C, γ → α phase transformation occurs after deformation, resulting in a larger retardation of the softening kinetics. At temperatures higher than 1000 °C, Nb in solid solution also contributes to the retardation of the static softening kinetics, and at lower temperatures NbC strain-induced precipitation leads to incomplete softening for the 1%Al steel, and to a complex interaction between softening, phase transformation, and NbC strain-induced precipitation for the 2%Al-Nb steels. The effect of Al on the static softening kinetics was quantified and introduced in a model developed in previous works for the prediction of the austenite microstructural evolution. In order to validate the results of the model, multipass torsion tests were carried out at conditions representative of hot strip and plate rolling mills. Model predictions show reasonable agreement with the results obtained at different deformation conditions.

  18. Equilibrium, kinetic and thermodynamic study of cesium adsorption onto nanocrystalline mordenite from high-salt solution.

    PubMed

    Lee, Keun-Young; Park, Minsung; Kim, Jimin; Oh, Maengkyo; Lee, Eil-Hee; Kim, Kwang-Wook; Chung, Dong-Yong; Moon, Jei-Kwon

    2016-05-01

    In this study, the equilibrium, kinetics and thermodynamics of cesium adsorption by nanocrystalline mordenite were investigated under cesium contamination with high-salt solution, simulating the case of an operation and decommissioning of nuclear facilities or an accident during the processes. The adsorption rate constants were determined using a pseudo second-order kinetic model. The kinetic results strongly demonstrated that the cesium adsorption rate of nano mordenite is extremely fast, even in a high-salt solution, and much faster than that of micro mordenite. In the equilibrium study, the Langmuir isotherm model fit the cesium adsorption data of nano mordenite better than the Freundlich model, which suggests that cesium adsorption onto nano mordenite is a monolayer homogeneous adsorption process. The obtained thermodynamic parameters indicated that the adsorption involved a very stable chemical reaction. In particular, the combination of rapid particle dispersion and rapid cesium adsorption of the nano mordenite in the solution resulted in a rapid and effective process for cesium removal without stirring, which may offer great advantages for low energy consumption and simple operation. PMID:26683820

  19. Combustor kinetic energy efficiency analysis of the hypersonic research engine data

    NASA Astrophysics Data System (ADS)

    Hoose, K. V.

    1993-11-01

    A one-dimensional method for measuring combustor performance is needed to facilitate design and development scramjet engines. A one-dimensional kinetic energy efficiency method is used for measuring inlet and nozzle performance. The objective of this investigation was to assess the use of kinetic energy efficiency as an indicator for scramjet combustor performance. A combustor kinetic energy efficiency analysis was performed on the Hypersonic Research Engine (HRE) data. The HRE data was chosen for this analysis due to its thorough documentation and availability. The combustor, inlet, and nozzle kinetic energy efficiency values were utilized to determine an overall engine kinetic energy efficiency. Finally, a kinetic energy effectiveness method was developed to eliminate thermochemical losses from the combustion of fuel and air. All calculated values exhibit consistency over the flight speed range. Effects from fuel injection, altitude, angle of attack, subsonic-supersonic combustion transition, and inlet spike position are shown and discussed. The results of analyzing the HRE data indicate that the kinetic energy efficiency method is effective as a measure of scramjet combustor performance.

  20. Measurement Of Kinetic Energy Distribution Of Positive Ions From Electron Induced Dissociation Of Pyrimidine Molecule

    NASA Astrophysics Data System (ADS)

    Milosavljevic, A. R.; Maljkovic, J. B.; Sevic, D.; Cadez, I.; Marinkovic, B. P.

    2010-07-01

    We report preliminary results on measurements of kinetic energy distribution of positive ions formed upon electron induced dissociative ionization of gaseous pyrimidine molecule (C4H4N2). The kinetic energy spectra were recorded without precedent mass/charge analysis, for different incident electron energies (50-250 eV) and different detection angles (40-90) with respect to the incident beam direction. An influence of the residual gas background to the recorded distributions has been investigated.

  1. Theoretical High Energy Physics

    SciTech Connect

    Christ, Norman H.; Weinberg, Erick J.

    2014-07-14

    we provide reports from each of the six faculty supported by the Department of Energy High Energy Physics Theory grant at Columbia University. Each is followed by a bibliography of the references cited. A complete list of all of the publications in the 12/1/2010-04/30/2014 period resulting from research supported by this grant is provided in the following section. The final section lists the Ph.D. dissertations based on research supported by the grant that were submitted during this period.

  2. Structural and Thermodynamic Factors of Suppressed Interdiffusion Kinetics in Multi-component High-entropy Materials

    PubMed Central

    Chang, Shou-Yi; Li, Chen-En; Huang, Yi-Chung; Hsu, Hsun-Feng; Yeh, Jien-Wei; Lin, Su-Jien

    2014-01-01

    We report multi-component high-entropy materials as extraordinarily robust diffusion barriers and clarify the highly suppressed interdiffusion kinetics in the multi-component materials from structural and thermodynamic perspectives. The failures of six alloy barriers with different numbers of elements, from unitary Ti to senary TiTaCrZrAlRu, against the interdiffusion of Cu and Si were characterized, and experimental results indicated that, with more elements incorporated, the failure temperature of the barriers increased from 550 to 900°C. The activation energy of Cu diffusion through the alloy barriers was determined to increase from 110 to 163 kJ/mole. Mechanistic analyses suggest that, structurally, severe lattice distortion strains and a high packing density caused by different atom sizes, and, thermodynamically, a strengthened cohesion provide a total increase of 55 kJ/mole in the activation energy of substitutional Cu diffusion, and are believed to be the dominant factors of suppressed interdiffusion kinetics through the multi-component barrier materials. PMID:24561911

  3. Prediction of free turbulent mixing using a turbulent kinetic energy method

    NASA Technical Reports Server (NTRS)

    Harsha, P. T.

    1973-01-01

    Free turbulent mixing of two-dimensional and axisymmetric one- and two-stream flows is analyzed by a relatively simple turbulent kinetic energy method. This method incorporates a linear relationship between the turbulent shear and the turbulent kinetic energy and an algebraic relationship for the length scale appearing in the turbulent kinetic energy equation. Good results are obtained for a wide variety of flows. The technique is shown to be especially applicable to flows with heat and mass transfer, for which nonunity Prandtl and Schmidt numbers may be assumed.

  4. Bidirectional Energy Cascades and the Origin of Kinetic Alfvenic and Whistler Turbulence in the Solar Wind

    NASA Technical Reports Server (NTRS)

    Che, H.; Goldstein, M. L.; Vinas, A. F.

    2014-01-01

    The observed steep kinetic scale turbulence spectrum in the solar wind raises the question of how that turbulence originates. Observations of keV energetic electrons during solar quiet time suggest them as a possible source of free energy to drive kinetic turbulence. Using particle-in-cell simulations, we explore how the free energy released by an electron two-stream instability drives Weibel-like electromagnetic waves that excite wave-wave interactions. Consequently, both kinetic Alfvénic and whistler turbulence are excited that evolve through inverse and forward magnetic energy cascades.

  5. Kinetic energy budgets near the turbulent/nonturbulent interface in jets

    NASA Astrophysics Data System (ADS)

    Taveira, Rodrigo R.; da Silva, Carlos B.

    2013-01-01

    The dynamics of the kinetic energy near the turbulent/nonturbulent (T/NT) interface separating the turbulent from the irrotational flow regions is analysed using three direct numerical simulations of turbulent planar jets, with Reynolds numbers based on the Taylor micro-scale across the jet shear layer in the range Reλ ≈ 120-160. Important levels of kinetic energy are already present in the irrotational region near the T/NT interface. The mean pressure and kinetic energy are well described by the Bernoulli equation in this region and agree with recent results obtained from rapid distortion theory in the turbulent region [M. A. C. Teixeira and C. B. da Silva, "Turbulence dynamics near a turbulent/non-turbulent interface," J. Fluid Mech. 695, 257-287 (2012)], 10.1017/jfm.2012.17 while the normal Reynolds stresses agree with the theoretical predictions from Phillips ["The irrotational motion outside a free turbulent boundary," Proc. Cambridge Philos. Soc. 51, 220 (1955)], 10.1017/S0305004100030073. The use of conditional statistics in relation to the distance from the T/NT interface allow a detailed study of the build up of kinetic energy across the T/NT interface, pointing to a very different picture than using classical statistics. Conditional kinetic energy budgets show that apart from the viscous dissipation of kinetic energy, the maximum of all the mechanisms governing the kinetic energy are concentrated in a very narrow region distancing about one to two Taylor micro-scales from the T/NT interface. The (total and fluctuating) kinetic energy starts increasing in the irrotational region by pressure-velocity interactions - a mechanism that can act at distance, and continue to grow by advection (for the total kinetic energy) and turbulent diffusion (for the turbulent kinetic energy) inside the turbulent region. These mechanisms tend to occur preferentially around the core of the large-scale vortices existing near T/NT interface. The production of turbulent

  6. On the Equipartition of Kinetic Energy in an Ideal Gas Mixture

    ERIC Educational Resources Information Center

    Peliti, L.

    2007-01-01

    A refinement of an argument due to Maxwell for the equipartition of translational kinetic energy in a mixture of ideal gases with different masses is proposed. The argument is elementary, yet it may work as an illustration of the role of symmetry and independence postulates in kinetic theory. (Contains 1 figure.)

  7. Variational energy principle for compressible, baroclinic flow. 1: First and second variations of total kinetic action

    NASA Technical Reports Server (NTRS)

    Schmid, L. A.

    1977-01-01

    The case of a cold gas in the absence of external force fields is considered. Since the only energy involved is kinetic energy, the total kinetic action (i.e., the space-time integral of the kinetic energy density) should serve as the total free-energy functional in this case, and as such should be a local minimum for all possible fluctuations about stable flow. This conjecture is tested by calculating explicit, manifestly covariant expressions for the first and second variations of the total kinetic action in the context of Lagrangian kinematics. The general question of the correlation between physical stability and the convexity of any action integral that can be interpreted as the total free-energy functional of the flow is discussed and illustrated for the cases of rectillinear and rotating shearing flows.

  8. High energy from space

    NASA Technical Reports Server (NTRS)

    Margon, Bruce; Canizares, Claude; Catura, Richard C.; Clark, George W.; Fichtel, Carl E.; Friedman, Herbert; Giacconi, Riccardo; Grindlay, Jonathan E.; Helfand, David J.; Holt, Stephen S.

    1991-01-01

    The following subject areas are covered: (1) important scientific problems for high energy astrophysics (stellar activity, the interstellar medium in galaxies, supernovae and endpoints of stellar evolution, nucleosynthesis, relativistic plasmas and matter under extreme conditions, nature of gamma-bursts, identification of black holes, active nuclei, accretion physics, large-scale structures, intracluster medium, nature of dark matter, and the X- and gamma-ray background); (2) the existing experimental programs (Advanced X-Ray Astrophysics Facility (AXAF), Gamma Ray Observatory (GRO), X-Ray Timing Explorer (XTE), High Energy Transient Experiment (HETE), U.S. participation in foreign missions, and attached Shuttle and Space Station Freedom payloads); (3) major missions for the 1990's; (4) a new program of moderate missions; (5) new opportunities for small missions; (6) technology development issues; and (7) policy issues.

  9. High energy transients

    NASA Technical Reports Server (NTRS)

    Woosley, S. E.

    1984-01-01

    A meeting was convened on the campus of the University of California at Santa Cruz during the two-week interval July 11 through July 22, 1983. Roughly 100 participants were chosen so as to give broad representation to all aspects of high energy transients. Ten morning review sessions were held in which invited speakers discussed the current status of observations and theory of the above subjects. Afternoon workshops were also held, usually more than one per day, to informally review various technical aspects of transients, confront shortcomings in theoretical models, and to propose productive courses for future research. Special attention was also given to the instrumentation used to study high energy transient and the characteristics and goals of a dedicated space mission to study transients in the next decade were determined. A listing of articles written by various members of the workshop is included.

  10. Isoflavone Profiles and Kinetic Changes during Ultra-High Temperature Processing of Soymilk.

    PubMed

    Zhang, Yan; Chang, Sam K C

    2016-03-01

    Isoflavone profile is greatly affected by heating process. However, kinetic analyses of isoflavone conversion and degradation using a continuous industry processing method have never been characterized. In this study, Proto soybean was soaked and blanched at 80 °C for 2 min and then processed into soymilk, which underwent UHT (ultra-high temperature) at 135 to 150 °C for 10 to 50 s with a pilot plant-scale Microthermics processor. The isoflavone profile was determined at different time/temperature combinations. The results showed that all isoflavone forms exhibited distinct changing patterns over time. In the soymilk under UHT conditions, the degradation (disappearance) of malonyldaizin and malonylgenistin exhibited first-order kinetics with activation energies of 59 and 84 kj/mole, respectively. At all UHT temperatures, malonylgenistin showed higher rate constants than malonyldaidzin. However, malonylglycitin changed irregularly under these UHT temperatures. The increase of genistin, daidzin, glycitein and acetlydaidzin during heating demonstrated zero-order kinetics and the rate constants increased with temperature except for the conditions of 145 to 150 °C for 50 s. Overall, genistein series exhibited higher stability than daidzein series. Under all UHT conditions, total isoflavone decreased from 12% to 24%. PMID:26814612

  11. High Energy Density Microwaves

    SciTech Connect

    Phillips, R.M.

    1999-04-01

    These proceedings represent papers presented at the RF98 Workshop entitled `High Energy Density Microwaves` held in California in October, 1998. The topics discussed were predominantly accelerator{minus}related. The Workshop dealt, for the most part, with the generation and control of electron beams, the amplification of RF signals, the design of mode converters, and the effect of very high RF field gradients. This Workshop was designed to address the concerns of the microwave tube industry worldwide, the plasma physicists who deal with very high beam currents and gigawatts of RF power, and researchers in accelerator centers around the world. Papers were presented on multibeam klystrons, gyrotron development, plasmas in microwave tubes, RF breakdown, and alternatives to conventional linear coliders at 1 TeV and above. The Workshop was partially sponsored by the US Department of Energy. There were 46 papers presented at the conference,out of which 19 have been abstracted for the Energy,Science and Technology database.(AIP)

  12. Kinetic energies of cluster fragments in ternary fission of 252 Cf

    NASA Astrophysics Data System (ADS)

    Vijayaraghavan, K. R.; von Oertzen, W.; Balasubramaniam, M.

    2012-03-01

    The kinetic energy distribution and potential energies of fragments from the collinear cluster tripartition (CCT), the "true" ternary fission of 252Cf, have been calculated. It is assumed that the breakup of the nucleus into three fragments happens sequentially in two steps from a hyper-deformed shape. In the first step a first neck rupture occurs of the parent radioactive nucleus, forming two fragments (one of them is usually 132Sn) and, in the second step, one of the two fragments breaks into two other fragments, resulting finally in three fragments (the experiment is based on a binary coincidence where a missing mass is determined). We show the result for the principal combination of the three spherical fragments (semi-magic isotopes of Sn, Ca, Ni) observed recently experimentally. These isotopes are clusters with high Q -values, which produce the highest yields in the ternary fission bump. It is shown that the kinetic energies of the middle fragments have very low values, making their experimental detection quite difficult. This fact explains why the direct detection of true ternary fission with three fragments heavier than A > 40 has escaped experimental observation.

  13. Development and Application of a High Throughput Protein Unfolding Kinetic Assay

    PubMed Central

    Wang, Qiang; Waterhouse, Nicklas; Feyijinmi, Olusegun; Dominguez, Matthew J.; Martinez, Lisa M.; Sharp, Zoey; Service, Rachel; Bothe, Jameson R.; Stollar, Elliott J.

    2016-01-01

    The kinetics of folding and unfolding underlie protein stability and quantification of these rates provides important insights into the folding process. Here, we present a simple high throughput protein unfolding kinetic assay using a plate reader that is applicable to the studies of the majority of 2-state folding proteins. We validate the assay by measuring kinetic unfolding data for the SH3 (Src Homology 3) domain from Actin Binding Protein 1 (AbpSH3) and its stabilized mutants. The results of our approach are in excellent agreement with published values. We further combine our kinetic assay with a plate reader equilibrium assay, to obtain indirect estimates of folding rates and use these approaches to characterize an AbpSH3-peptide hybrid. Our high throughput protein unfolding kinetic assays allow accurate screening of libraries of mutants by providing both kinetic and equilibrium measurements and provide a means for in-depth ϕ-value analyses. PMID:26745729

  14. Energy dynamics and current sheet structure in fluid and kinetic simulations of decaying magnetohydrodynamic turbulence

    SciTech Connect

    Makwana, K. D. Cattaneo, F.; Zhdankin, V.; Li, H.; Daughton, W.

    2015-04-15

    Simulations of decaying magnetohydrodynamic (MHD) turbulence are performed with a fluid and a kinetic code. The initial condition is an ensemble of long-wavelength, counter-propagating, shear-Alfvén waves, which interact and rapidly generate strong MHD turbulence. The total energy is conserved and the rate of turbulent energy decay is very similar in both codes, although the fluid code has numerical dissipation, whereas the kinetic code has kinetic dissipation. The inertial range power spectrum index is similar in both the codes. The fluid code shows a perpendicular wavenumber spectral slope of k{sub ⊥}{sup −1.3}. The kinetic code shows a spectral slope of k{sub ⊥}{sup −1.5} for smaller simulation domain, and k{sub ⊥}{sup −1.3} for larger domain. We estimate that collisionless damping mechanisms in the kinetic code can account for the dissipation of the observed nonlinear energy cascade. Current sheets are geometrically characterized. Their lengths and widths are in good agreement between the two codes. The length scales linearly with the driving scale of the turbulence. In the fluid code, their thickness is determined by the grid resolution as there is no explicit diffusivity. In the kinetic code, their thickness is very close to the skin-depth, irrespective of the grid resolution. This work shows that kinetic codes can reproduce the MHD inertial range dynamics at large scales, while at the same time capturing important kinetic physics at small scales.

  15. Numerical and experimental assessment of turbulent kinetic energy in an aortic coarctation.

    PubMed

    Lantz, Jonas; Ebbers, Tino; Engvall, Jan; Karlsson, Matts

    2013-07-26

    The turbulent blood flow through an aortic coarctation in a 63-year old female patient was studied experimentally using magnetic resonance imaging (MRI), and numerically using computational fluid dynamics (CFD), before and after catheter intervention. Turbulent kinetic energy (TKE) was computed in the numerical model using large eddy simulation and compared with direct in vivo MRI measurements. Despite the two totally different methods to obtain TKE values, both quantitative and qualitative results agreed very well. The results showed that even though both blood flow rate and Reynolds number increased after intervention, total turbulent kinetic energy levels decreased in the coarctation. Therefore, the use of the Reynolds number alone as a measure of turbulence in cardiovascular flows should be used with caution. Furthermore, the change in flow field and kinetic energy were assessed, and it was found that before intervention a jet formed in the throat of the coarctation, which impacted the arterial wall just downstream the constriction. After intervention the jet was significantly weaker and broke up almost immediately, presumably resulting in less stress on the wall. As there was a good agreement between measurements and numerical results (the increase and decrease of integrated TKE matched measurements almost perfectly while peak values differed by approximately 1mJ), the CFD results confirmed the MRI measurements while at the same time providing high-resolution details about the flow. Thus, this preliminary study indicates that MR-based TKE measurements might be useful as a diagnostic tool when evaluating intervention outcome, while the detailed numerical results might be useful for further understanding of the flow for treatment planning. PMID:23746596

  16. Dissolution kinetics of high-resolution novolac resists

    NASA Astrophysics Data System (ADS)

    Itoh, Katsuyuki; Yamanaka, Koji; Nozue, Hiroshi; Kasama, Kunihiko

    1991-06-01

    Dissolution kinetics, as well as the formation mechanism of a surface insoluble layer produced by dipping into TMAH (tetramethylammonium hydroxide) developer, have been investigated. In the previous paper, we mentioned that dissolution rate characteristics of high resolution novolac resist are clearly divided into three regions. To investigate this dissolution mechanism, we evaluated the temperature dependence of R (Dissolution rate) by changing the exposure dose, PAC (photoactive compound equals dissolution inhibitor) and the TMAH concentration. From Arrhenius Plots of these resist systems, it is considered that R is determined by two competitive reactions in the presence of TMAH; i.e., (a) the complex formation between PAC and novolac resin which produces dissolution inhibition effect, (b) TMAH induced deprotonation of phenolic hydroxy groups in novolac resin which accelerates the dissolution of the resist. Furthermore, we also describe the formation mechanism of a surface insoluble layer produced by dipping into a TMAH developer followed by water rinse, on the basis of the dissolution time of this layer (ts). The resist surface was also analyzed by using FT-IR (Fourier transform infrared spectroscopic measurement) and XPS (X-ray photoelectron spectroscopy). As a result, it was found that (a) water rinse is essential for the surface insoluble layer formation, (b) the ts value is not directly correlated with PAC accumulation in the resist surface and (c) the ts value becomes longer when the amount of penetrated TMAH into the resist increases. These results suggest that the surface insoluble layer is produced via water rinse of PAC-novolac complex described above.

  17. New Ro-Vibrational Kinetic Energy Operators using Polyspherical Coordinates for Polyatomic Molecules

    NASA Technical Reports Server (NTRS)

    Schwenke, David W.; Kwak, Dochan (Technical Monitor)

    2002-01-01

    We illustrate how one can easily derive kinetic energy operators for polyatomic molecules using polyspherical coordinates with very general choices for z-axis embeddings arid angles used to specify relative orientations of internal vectors. Computer algebra is not required.

  18. Efficient first-principles calculation of the quantum kinetic energy and momentum distribution of nuclei.

    PubMed

    Ceriotti, Michele; Manolopoulos, David E

    2012-09-01

    Light nuclei at room temperature and below exhibit a kinetic energy which significantly deviates from the predictions of classical statistical mechanics. This quantum kinetic energy is responsible for a wide variety of isotope effects of interest in fields ranging from chemistry to climatology. It also furnishes the second moment of the nuclear momentum distribution, which contains subtle information about the chemical environment and has recently become accessible to deep inelastic neutron scattering experiments. Here, we show how, by combining imaginary time path integral dynamics with a carefully designed generalized Langevin equation, it is possible to dramatically reduce the expense of computing the quantum kinetic energy. We also introduce a transient anisotropic Gaussian approximation to the nuclear momentum distribution which can be calculated with negligible additional effort. As an example, we evaluate the structural properties, the quantum kinetic energy, and the nuclear momentum distribution for a first-principles simulation of liquid water. PMID:23005275

  19. Comment on `` Eigenvalue spectrum of the independent-fermion kinetic-energy kernel''

    NASA Astrophysics Data System (ADS)

    Garza, Jorge; Vela, Alberto

    1998-10-01

    Recently Joubert [Phys. Rev. A 54, 2479 (1996)] showed that the independent-fermion kinetic-energy kernel has a zero mode. In this Comment we remark that Joubert's main expression, which leads one to conclude that the contribution arising from the independent-fermion kinetic-energy functional to the local hardness is null, was previously deduced by Garza and Robles [Int. J. Quantum Chem. 49, 159 (1994)].

  20. Modelling rainfall kinetic energy: a novel approach to erosion prediction and management

    NASA Astrophysics Data System (ADS)

    Nissan, H.; Toumi, R.

    2013-12-01

    Soil erosion is already a major global problem. Climate change and the rising world population will exert growing pressure on our land to deliver food and stability. This study presents a new and innovative application of a cloud resolving model, for use in soil erosion prediction studies. Rainfall kinetic energy flux is an important variable in erosion prediction, but is generally parameterized from intensity due to measurement difficulties. Instead, we show that a cloud resolving model can be used to dynamically simulate the kinetic energy of rain from basic physics, using four commonly used microphysics schemes. Rainfall kinetic energy flux is modelled during an idealized supercell storm with the Weather Research and Forecasting model. Results are within the range of observations and also capture the observed variability in kinetic energy flux for a given rainfall intensity, where current methods fail. Large raindrops are shown to contribute disproportionately to total kinetic energy flux compared with their number, suggesting that several existing relations between terminal velocity and size of raindrops are poorly suited for kinetic energy modelling. Treatment of raindrop size is tested and compared between the schemes, and factors influencing the erosive potential of rainfall will also be discussed. This work demonstrates the potential for conducting erosion prediction studies using a regional climate model. The method presented here may be easily extended for use in a full regional climate model with a microphysics parameterization scheme. This paves the way for full climate, and climate change, simulations of rainfall erosivity on regional to global scales and may contribute towards the ultimate integration of an erosion prediction scheme into climate models to allow coupled interactions with the atmosphere. Reference: Geophys. Res. Lett., 40, doi:10.1002/grl.50622 Schematic showing raindrop number density, rain mass flux and kinetic energy flux as

  1. A Comparison of Kinetic Energy and Momentum in Special Relativity and Classical Mechanics

    NASA Astrophysics Data System (ADS)

    Riggs, Peter J.

    2016-02-01

    Kinetic energy and momentum are indispensable dynamical quantities in both the special theory of relativity and in classical mechanics. Although momentum and kinetic energy are central to understanding dynamics, the differences between their relativistic and classical notions have not always received adequate treatment in undergraduate teaching. It is shown that the contrast between these relativistic and classical quantities can be presented in a straightforward manner and with a minimal level of (undergraduate) mathematics.

  2. Approach to kinetic energy density functionals: Nonlocal terms with the structure of the von Weizsaecker functional

    SciTech Connect

    Garcia-Aldea, David; Alvarellos, J. E.

    2008-02-15

    We propose a kinetic energy density functional scheme with nonlocal terms based on the von Weizsaecker functional, instead of the more traditional approach where the nonlocal terms have the structure of the Thomas-Fermi functional. The proposed functionals recover the exact kinetic energy and reproduce the linear response function of homogeneous electron systems. In order to assess their quality, we have tested the total kinetic energies as well as the kinetic energy density for atoms. The results show that these nonlocal functionals give as good results as the most sophisticated functionals in the literature. The proposed scheme for constructing the functionals means a step ahead in the field of fully nonlocal kinetic energy functionals, because they are capable of giving better local behavior than the semilocal functionals, yielding at the same time accurate results for total kinetic energies. Moreover, the functionals enjoy the possibility of being evaluated as a single integral in momentum space if an adequate reference density is defined, and then quasilinear scaling for the computational cost can be achieved.

  3. Very high energy colliders

    NASA Astrophysics Data System (ADS)

    Richter, B.

    1985-05-01

    The required emittance in very high energy machines are small. It will be a real challenge to produce these small emittances and to maintain them during acceleration. The small emittances probably make acceleration by laser techniques easier, if such techniques will be practical at all. The beam spot sizes are very small indeed. It will be a challenge to design beam transport systems with the necessary freedom from aberration required for these small spot sizes. It would of course help if the beta functions at the collision points could be reduced. Beam power will be large - to paraphrase the old saying, power is money - and efficient acceleration systems will be required.

  4. High energy electron cooling

    SciTech Connect

    Parkhomchuk, V.

    1997-09-01

    High energy electron cooling requires a very cold electron beam. The questions of using electron cooling with and without a magnetic field are presented for discussion at this workshop. The electron cooling method was suggested by G. Budker in the middle sixties. The original idea of the electron cooling was published in 1966. The design activities for the NAP-M project was started in November 1971 and the first run using a proton beam occurred in September 1973. The first experiment with both electron and proton beams was started in May 1974. In this experiment good result was achieved very close to theoretical prediction for a usual two component plasma heat exchange.

  5. High-energy transients.

    PubMed

    Gehrels, Neil; Cannizzo, John K

    2013-06-13

    We present an overview of high-energy transients in astrophysics, highlighting important advances over the past 50 years. We begin with early discoveries of γ-ray transients, and then delve into physical details associated with a variety of phenomena. We discuss some of the unexpected transients found by Fermi and Swift, many of which are not easily classifiable or in some way challenge conventional wisdom. These objects are important insofar as they underscore the necessity of future, more detailed studies. PMID:23630376

  6. Large-scale self-tuning solid-state kinetic energy harvester

    NASA Astrophysics Data System (ADS)

    Pletner, Baruch; Swan, Lukas; Wettels, Nicholas; Joseph, Alain

    2012-04-01

    In recent years there has been a strong emphasis on kinetic (vibration) energy harvesting using smart structure technology. This emphasis has been driven in large part by industry demand for powering sensors and wireless telemetry of sensor data in places into which running power and data cables is difficult or impossible. Common examples are helicopter drive shafts and other rotating equipment. In many instances, available space in these locations is highly limited, resulting in a trend for miniaturization of kinetic energy harvesters. While in some cases size limitations are dominant, in other cases large and even very large harvesters are possible and even desirable since they may produce significantly more power. Examples of large-scale energy harvesting include geomatics, which is the discipline of gathering, storing, processing, and delivering spatially referenced information on vast scales. Geomatics relies on suites of various sensors and imaging devices such as meteorological sensors, seismographs, high-resolution cameras, and LiDAR's. These devices may be stationed for prolonged periods of time in remote and poorly accessible areas and are required to operate continuously over prolonged periods of time. In other cases, sensing and imaging equipment may be mounted on land, sea, or airborne platforms and expected to operate for many hours on its own power. Providing power to this equipment constitutes a technological challenge. Other cases may include commercial buildings, unmanned powered gliders and more. Large scale kinetic energy harvesting thus constitutes a paradigm shift in the approach to kinetic energy harvesting as a whole and as often happens it poses its own unique technological challenges. Primarily these challenges fall into two categories: the cost-effective manufacturing of large and very large scale transducing elements based on smart structure technology and the continuous optimization (tuning) of these transducers for various operating

  7. Prospects at high energies

    SciTech Connect

    Quigg, C.

    1988-11-01

    I discuss some possibilities for neutrino experiments in the fixed-target environment of the SPS, Tevatron, and UNK, with their primary proton beams of 0.4, 0.9, and 3.0 TeV. The emphasis is on unfinished business: issues that have been recognized for some time, but not yet resolved. Then I turn to prospects for proton-proton colliders to explore the 1-TeV scale. I review the motivation for new physics in the neighborhood of 1 TeV and mention some discovery possibilities for high-energy, high-luminosity hadron colliders and the implications they would have for neutrino physics. I raise the possibility of the direct study of neutrino interactions in hadron colliders. I close with a report on the status of the SSC project. 38 refs., 17 figs.

  8. Size Resolved High Temperature Oxidation Kinetics of Nano-Sized Titanium and Zirconium Particles.

    PubMed

    Zong, Yichen; Jacob, Rohit J; Li, Shuiqing; Zachariah, Michael R

    2015-06-18

    While ultrafine metal particles offer the possibility of very high energy density fuels, there is considerable uncertainty in the mechanism by which metal nanoparticles burn, and few studies that have examined the size dependence to their kinetics at the nanoscale. In this work we quantify the size dependence to the burning rate of titanium and zirconium nanoparticles. Nanoparticles in the range of 20-150 nm were produced via pulsed laser ablation, and then in-flight size-selected using differential electrical mobility. The size-selected oxide free metal particles were directly injected into the post flame region of a laminar flame to create a high temperature (1700-2500 K) oxidizing environment. The reaction was monitored using high-speed videography by tracking the emission from individual nanoparticles. We find that sintering occurs prior to significant reaction, and that once sintering is accounted for, the rate of combustion follows a near nearly (diameter)(1) power-law dependence. Additionally, Arrhenius parameters for the combustion of these nanoparticles were evaluated by measuring the burn times at different ambient temperatures. The optical emission from combustion was also used to model the oxidation process, which we find can be reasonably described with a kinetically controlled shrinking core model. PMID:25914926

  9. Effect of initial microstructure on austenite formation kinetics in high-strength experimental microalloyed steels

    NASA Astrophysics Data System (ADS)

    López-Martínez, Edgar; Vázquez-Gómez, Octavio; Vergara-Hernández, Héctor Javier; Campillo, Bernardo

    2015-12-01

    Austenite formation kinetics in two high-strength experimental microalloyed steels with different initial microstructures comprising bainite-martensite and ferrite-martensite/austenite microconstituents was studied during continuous heating by dilatometric analysis. Austenite formation occurred in two steps: (1) carbide dissolution and precipitation and (2) transformation of residual ferrite to austenite. Dilatometric analysis was used to determine the critical temperatures of austenite formation and continuous heating transformation diagrams for heating rates ranging from 0.03°C•s-1 to 0.67°C•s-1. The austenite volume fraction was fitted using the Johnson-Mehl-Avrami-Kolmogorov equation to determine the kinetic parameters k and n as functions of the heating rate. Both n and k parameters increased with increasing heating rate, which suggests an increase in the nucleation and growth rates of austenite. The activation energy of austenite formation was determined by the Kissinger method. Two activation energies were associated with each of the two austenite formation steps. In the first step, the austenite growth rate was controlled by carbon diffusion from carbide dissolution and precipitation; in the second step, it was controlled by the dissolution of residual ferrite to austenite.

  10. Energy conserving continuum algorithms for kinetic & gyrokinetic simulations of plasmas

    NASA Astrophysics Data System (ADS)

    Hakim, A.; Hammett, G. W.; Shi, E.; Stoltzfus-Dueck, T.

    2015-11-01

    We present high-order, energy conserving, continuum algorithms for the solution of gyrokinetic equations for use in edge turbulence simulations. The distribution function is evolved with a discontinuous Galerkin scheme, while the fields are evolved with a continuous finite-element method. These algorithms work for a general, possibly non-canonical, Poisson bracket operator and conserve energy exactly. Benchmark simulations with ETG turbulence in 3X/2V are shown, as well as initial applications of the algorithms to turbulence in a simplified SOL geometry. Sheath boundary conditions with recycling and secondary electron emission are implemented, and a Lenard-Bernstein collision operator is included. Extension of these algorithms to full Vlasov-Maxwell equations are presented. It is shown that with a particular choice of numerical fluxes the total (particle+field) energy is conserved. Algorithms are implemented in a flexible and open-source framework, Gkeyll, which also includes fluid models, allowing potential hybrid simulations of various plasma problems. Supported by the Max-Planck/Princeton Center for Plasma Physics, and DOE Contract DE-AC02-09CH11466.

  11. Leading gradient correction to the kinetic energy for two-dimensional fermion gases

    NASA Astrophysics Data System (ADS)

    Trappe, Martin-Isbjörn; Len, Yink Loong; Ng, Hui Khoon; Müller, Cord Axel; Englert, Berthold-Georg

    2016-04-01

    Density-functional theory (DFT) is notorious for the absence of gradient corrections to the two-dimensional (2D) Thomas-Fermi kinetic-energy functional; it is widely accepted that the 2D analog of the 3D von Weizsäcker correction vanishes, together with all higher-order corrections. Contrary to this long-held belief, we show that the leading correction to the kinetic energy does not vanish, is unambiguous, and contributes perturbatively to the total energy. This insight emerges naturally in a simple extension of standard DFT, which has the effective potential energy as a functional variable on equal footing with the single-particle density.

  12. High energy physics

    SciTech Connect

    Kernan, A.; Shen, B.C.; Ma, E.

    1997-07-01

    This proposal is for the continuation of the High Energy Physics program at the University of California at Riverside. In hadron collider physics the authors will complete their transition from experiment UA1 at CERN to the DZERO experiment at Fermilab. On experiment UA1 their effort will concentrate on data analysis at Riverside. At Fermilab they will coordinate the high voltage system for all detector elements. They will also carry out hardware/software development for the D0 muon detector. The TPC/Two-Gamma experiment has completed its present phase of data-taking after accumulating 160 pb{sup {minus}}1 of luminosity. The UC Riverside group will continue data and physics analysis and make minor hardware improvement for the high luminosity run. The UC Riverside group is participating in design and implementation of the data acquisition system for the OPAL experiment at LEP. Mechanical and electronics construction of the OPAL hadron calorimeter strip readout system is proceeding on schedule. Data analysis and Monte Carlo detector simulation efforts are proceeding in preparation for the first physics run when IEP operation comenses in fall 1989.

  13. Static and kinetic friction of granite at high normal stress

    USGS Publications Warehouse

    Byerlee, J.D.

    1970-01-01

    Frictional sliding on ground surfaces of granite, angle of sliding planes 30?? and 45??, was investigated as a function of confining pressure. Over the normal stress range of 2-12 kb, the static frictional shear stress ??s follows the relationship ??s = 0??5 + 0?? ??n and the kinetic frictional shear stress ??k was calculated to be ??k = 0??25 + 0??47 ??n. ?? 1970.

  14. Kinetics of deuterium exchange on resorcinol in D{sub 2}O at high pressure and high temperature

    SciTech Connect

    Bai, S.; Palmer, B.J.; Yonker, C.R.

    2000-01-13

    The kinetics of deuteration of resorcinol in pure D{sub 2}O were studied for the first time using a flow-through capillary tubular reactor with on-line, proton, and deuterium NMR detection at high temperatures and high pressure. The global rate constants for hydrogen/deuterium (H/D) exchange were determined from temperatures of 200--450 C (723 K) at a pressure of {approximately}400 bar (the critical temperature and pressure of water are 374.2 C and 218.3 bar, respectively). The H/D exchange rate in resorcinol (1,3-dihydroxybenzene) under these extreme conditions was determined using proton NMR as a function of the resorcinol residence time in a capillary tubular reactor, which also served as a high-pressure NMR cell. The {sup 1}H and {sup 2}H NMR results indicate that H/D exchange in resorcinol for the ring protons was observed at temperatures as low as 200 C. The kinetics of H/D exchange in resorcinol and the activation energy was extracted from the experimental {sup 1}H NMR data.

  15. High Energy Astrophysics Mission

    NASA Technical Reports Server (NTRS)

    White, Nicholas E.; Ormes, Jonathan F. (Technical Monitor)

    2000-01-01

    The nature of gravity and its relationship to the other three forces and to quantum theory is one of the major challenges facing us as we begin the new century. In order to make progress we must challenge the current theories by observing the effects of gravity under the most extreme conditions possible. Black holes represent one extreme, where the laws of physics as we understand them break down. The Universe as whole is another extreme, where its evolution and fate is dominated by the gravitational influence of dark matter and the nature of the Cosmological constant. The early universe represents a third extreme, where it is thought that gravity may somehow be unified with the other forces. NASA's "Cosmic Journeys" program is part of a NASA/NSF/DoE tri-agency initiative designed to observe the extremes of gravity throughout the universe. This program will probe the nature of black holes, ultimately obtaining a direct image of the event horizon. It will investigate the large scale structure of the Universe to constrain the location and nature of dark matter and the nature of the cosmological constant. Finally it will search for and study the highest energy processes, that approach those found in the early universe. I will outline the High Energy Astrophysics part of this program.

  16. Evaluation of the energy efficiency of CO2 conversion in microwave discharges using a reaction kinetics model

    NASA Astrophysics Data System (ADS)

    Kozák, Tomáš; Bogaerts, Annemie

    2015-02-01

    We use a zero-dimensional reaction kinetics model to simulate CO2 conversion in microwave discharges where the excitation of the vibrational levels plays a significant role in the dissociation kinetics. The model includes a description of the CO2 vibrational kinetics, taking into account state-specific VT and VV relaxation reactions and the effect of vibrational excitation on other chemical reactions. The model is used to simulate a general tubular microwave reactor, where a stream of CO2 flows through a plasma column generated by microwave radiation. We study the effects of the internal plasma parameters, namely the reduced electric field, electron density and the total specific energy input, on the CO2 conversion and its energy efficiency. We report the highest energy efficiency (up to 30%) for a specific energy input in the range 0.4-1.0 eV/molecule and a reduced electric field in the range 50-100 Td and for high values of the electron density (an ionization degree greater than 10-5). The energy efficiency is mainly limited by the VT relaxation which contributes dominantly to the vibrational energy losses and also contributes significantly to the heating of the reacting gas. The model analysis provides useful insight into the potential and limitations of CO2 conversion in microwave discharges.

  17. Isospin quartic term in the kinetic energy of neutron-rich nucleonic matter

    NASA Astrophysics Data System (ADS)

    Cai, Bao-Jun; Li, Bao-An

    2015-07-01

    The energy of a free gas of neutrons and protons is well known to be approximately isospin parabolic with a negligibly small quartic term of only 0.45 MeV at the saturation density of nuclear matter ρ0=0.16 fm-3 . Using an isospin-dependent single-nucleon momentum distribution including a high (low) momentum tail (depletion) with its shape parameters constrained by recent high-energy electron scattering and medium-energy nuclear photodisintegration experiments as well as the state-of-the-art calculations of the deuteron wave function and the equation of state of pure neutron matter near the unitary limit within several modern microscopic many-body theories, we show for the first time that the kinetic energy of interacting nucleons in neutron-rich nucleonic matter has a significant quartic term of 7.18 ±2.52 MeV. Such a large quartic term has broad ramifications in determining the equation of state of neutron-rich nucleonic matter using observables of nuclear reactions and neutron stars.

  18. The dehydration kinetics of gypsum at high pressure and high temperature

    NASA Astrophysics Data System (ADS)

    Liu, Chuanjiang; Zheng, Haifei; Wang, Duojun

    2015-07-01

    An in situ dehydration kinetics study of gypsum under water-saturated condition was performed in the temperature and pressure ranges of 383-423 K and 343-1085 MPa by using a hydrothermal diamond anvil cell and Raman spectroscopy. Kinetic analysis shows that the dehydration rate k increases with pressure, suggesting a negative pressure dependence on dehydration rate. The elevation of temperature can contribute to the dehydration. The n values increase with pressure, indicating that the nucleation process becomes slower relative to the growth process. According to the n values of ∼1.0, the dehydration of gypsum is dominated by an instantaneous nucleation and diffusion-controlled growth mechanism. The obtained average activation volume ▵V is equal to 5.69 cm3/mol and the calculated activation energy Ea and the pre-exponential factor A are 66.9 kJ/mol and 4.66 × 105 s-1. The activation energy may be dependent upon grain size, shape, temperature and pressure, and surrounding water.

  19. Decay of C60 by delayed ionization and C2 emission: Experiment and statistical modeling of kinetic energy release

    NASA Astrophysics Data System (ADS)

    Lebeault, M.-A.; Baguenard, B.; Concina, B.; Calvo, F.; Climen, B.; Lépine, F.; Bordas, C.

    2012-08-01

    C60 molecules highly excited in the nanosecond regime decay following ionization and dissociation by emitting a series of carbon dimers, as well as other small fragments if excitation is strong enough. The fragmentation mass spectrum and kinetic energy release of all charged fragments obtained in these experiments are interpreted within the framework of the Weisskopf theory, using a realistic Monte Carlo procedure in which the rates of all relevant decay channels are modeled using Arrhenius expressions. Comparison between the measurements and the simulated spectra allows the distribution of deposited energy to be accurately estimated. The dependence of the fragment kinetic energies on the laser fluence, found in the simulation but not observed in the experimental results, indicates that the small fragments are not necessarily emitted from small fullerenes resulting from C60 by sequential decay. Rather, direct multifragmentation of C60 is invoked to interpret the observed patterns. The possible role of post-ionization of neutral emitted fragments is discussed.

  20. Effect of kinetic energy on the doping efficiency of cesium cations into superfluid helium droplets

    NASA Astrophysics Data System (ADS)

    Chen, Lei; Zhang, Jie; Freund, William M.; Kong, Wei

    2015-07-01

    We present an experimental investigation of the effect of kinetic energy on the ion doping efficiency of superfluid helium droplets using cesium cations from a thermionic emission source. The kinetic energy of Cs+ is controlled by the bias voltage of a collection grid collinearly arranged with the droplet beam. Efficient doping from ions with kinetic energies from 20 eV up to 480 V has been observed in different sized helium droplets. The relative ion doping efficiency is determined by both the kinetic energy of the ions and the average size of the droplet beam. At a fixed source temperature, the number of doped droplets increases with increasing grid voltage, while the relative ion doping efficiency decreases. This result implies that not all ions are captured upon encountering with a sufficiently large droplet, a deviation from the near unity doping efficiency for closed shell neutral molecules. We propose that this drop in ion doping efficiency with kinetic energy is related to the limited deceleration rate inside a helium droplet. When the source temperature changes from 14 K to 17 K, the relative ion doping efficiency decreases rapidly, perhaps due to the lack of viable sized droplets. The size distribution of the Cs+-doped droplet beam can be measured by deflection and by energy filtering. The observed doped droplet size is about 5 × 106 helium atoms when the source temperature is between 14 K and 17 K.

  1. Effect of kinetic energy on the doping efficiency of cesium cations into superfluid helium droplets

    SciTech Connect

    Chen, Lei; Zhang, Jie; Freund, William M.; Kong, Wei

    2015-07-28

    We present an experimental investigation of the effect of kinetic energy on the ion doping efficiency of superfluid helium droplets using cesium cations from a thermionic emission source. The kinetic energy of Cs{sup +} is controlled by the bias voltage of a collection grid collinearly arranged with the droplet beam. Efficient doping from ions with kinetic energies from 20 eV up to 480 V has been observed in different sized helium droplets. The relative ion doping efficiency is determined by both the kinetic energy of the ions and the average size of the droplet beam. At a fixed source temperature, the number of doped droplets increases with increasing grid voltage, while the relative ion doping efficiency decreases. This result implies that not all ions are captured upon encountering with a sufficiently large droplet, a deviation from the near unity doping efficiency for closed shell neutral molecules. We propose that this drop in ion doping efficiency with kinetic energy is related to the limited deceleration rate inside a helium droplet. When the source temperature changes from 14 K to 17 K, the relative ion doping efficiency decreases rapidly, perhaps due to the lack of viable sized droplets. The size distribution of the Cs{sup +}-doped droplet beam can be measured by deflection and by energy filtering. The observed doped droplet size is about 5 × 10{sup 6} helium atoms when the source temperature is between 14 K and 17 K.

  2. Moderate to high throughput in vitro binding kinetics for drug discovery.

    PubMed

    Zhang, Rumin; Barbieri, Christopher M; Garcia-Calvo, Margarita; Myers, Robert W; McLaren, David; Kavana, Michael

    2016-01-01

    This review provides a concise summary for state of the art, moderate to high throughput in vitro technologies being employed to study drug-target binding kinetics. These technologies cover a wide kinetic timescale spanning up to nine orders of magnitude from milliseconds to days. Automated stopped flow measures transient and (pre)steady state kinetics from milliseconds to seconds. For seconds to hours timescale kinetics we discuss surface plasmon resonance-based biosensor, global progress curve analysis for high throughput kinetic profiling of enzyme inhibitors and activators, and filtration plate-based radioligand or fluorescent binding assays for receptor binding kinetics. Jump dilution after pre-incubation is the preferred method for very slow kinetics lasting for days. The basic principles, best practices and simulated data for these technologies are described. Finally, the application of a universal label-free technology, liquid chromatography coupled tandem mass spectrometry (LC/MS/MS), is briefly reviewed. Select literature references are highlighted for in-depth understanding. A new reality is dawning wherein binding kinetics is an integral and routine part of mechanism of action elucidation and translational, quantitative pharmacology for drug discovery. PMID:27100706

  3. Stereodynamical Origin of Anti-Arrhenius Kinetics: Negative Activation Energy and Roaming for a Four-Atom Reaction.

    PubMed

    Coutinho, Nayara D; Silva, Valter H C; de Oliveira, Heibbe C B; Camargo, Ademir J; Mundim, Kleber C; Aquilanti, Vincenzo

    2015-05-01

    The OH + HBr → H2O + Br reaction, prototypical of halogen-atom liberating processes relevant to mechanisms for atmospheric ozone destruction, attracted frequent attention of experimental chemical kinetics: the nature of the unusual reactivity drop from low to high temperatures eluded a variety of theoretical efforts, ranking this one among the most studied four-atom reactions. Here, inspired by oriented molecular-beams experiments, we develop a first-principles stereodynamical approach. Thermalized sets of trajectories, evolving on a multidimensional potential energy surface quantum mechanically generated on-the-fly, provide a map of most visited regions at each temperature. Visualizations of rearrangements of bonds along trajectories and of the role of specific angles of reactants' mutual approach elucidate the mechanistic change from the low kinetic energy regime (where incident reactants reorient to find the propitious alignment leading to reaction) to high temperature (where speed hinders adjustment of directionality and roaming delays reactivity). PMID:26263312

  4. Chemically Locked Bicelles with High Thermal and Kinetic Stability.

    PubMed

    Matsui, Ryoichi; Ohtani, Masataka; Yamada, Kuniyo; Hikima, Takaaki; Takata, Masaki; Nakamura, Takashi; Koshino, Hiroyuki; Ishida, Yasuhiro; Aida, Takuzo

    2015-11-01

    In situ polymerization of a bicellar mixture composed of a phospholipid and polymerizable surfactants afforded unprecedented stable bicelles. The polymerized composite showed an aligned phase over a wide thermal range (25 to >90 °C) with excellent (2)H quadrupole splitting of the solvent signal, thus implying versatility as an alignment medium for NMR studies. Crosslinking of the surfactants also brought favorable effects on the kinetic stability and alignment morphology of the bicelles. This system could thus offer a new class of scaffolds for biomembrane models. PMID:26373898

  5. FSU High Energy Physics

    SciTech Connect

    Prosper, Harrison B.; Adams, Todd; Askew, Andrew; Berg, Bernd; Blessing, Susan K.; Okui, Takemichi; Owens, Joseph F.; Reina, Laura; Wahl, Horst D.

    2014-12-01

    The High Energy Physics group at Florida State University (FSU), which was established in 1958, is engaged in the study of the fundamental constituents of matter and the laws by which they interact. The group comprises theoretical and experimental physicists, who sometimes collaborate on projects of mutual interest. The report highlights the main recent achievements of the group. Significant, recent, achievements of the group’s theoretical physicists include progress in making precise predictions in the theory of the Higgs boson and its associated processes, and in the theoretical understanding of mathematical quantities called parton distribution functions that are related to the structure of composite particles such as the proton. These functions are needed to compare data from particle collisions, such as the proton-proton collisions at the CERN Large Hadron Collider (LHC), with theoretical predictions. The report also describes the progress in providing analogous functions for heavy nuclei, which find application in neutrino physics. The report highlights progress in understanding quantum field theory on a lattice of points in space and time (an area of study called lattice field theory), the progress in constructing several theories of potential new physics that can be tested at the LHC, and interesting new ideas in the theory of the inflationary expansion of the very early universe. The focus of the experimental physicists is the Compact Muon Solenoid (CMS) experiment at CERN. The report, however, also includes results from the D0 experiment at Fermilab to which the group made numerous contributions over a period of many years. The experimental group is particularly interested in looking for new physics at the LHC that may provide the necessary insight to extend the standard model (SM) of particle physics. Indeed, the search for new physics is the primary task of contemporary particle physics, one motivated by the need to explain certain facts, such as the

  6. Empirical estimates of kinetic energy from some recent U.S. tornadoes

    NASA Astrophysics Data System (ADS)

    Fricker, T.; Elsner, J. B.; Camp, P.; Jagger, T. H.

    2014-06-01

    Data from some recent tornado damage assessments are used to compute the percentage of damage path area by enhanced Fujita (EF) rating and to estimate kinetic energy. Only a small fraction of the damage area gets the highest damage rating, and this fraction is lower than a model used by the U.S. Nuclear Regulatory Commission. However, estimates of kinetic energy derived from a characteristic wind speed for each EF rating and the fraction of area with that rating match kinetic energy estimates using the model percentages. On average, the higher the EF rating, the larger the kinetic energy, but there is large variability in the relationship. The average total kinetic energy over the EF1 tornadoes examined in the study is 0.61 TJ, which compares with an average of 2.37 TJ, 40.1 TJ, 36.5 TJ, and 50.4 TJ for the EF2, EF3, EF4, and EF5 tornadoes, respectively. The most energetic tornado examined had a maximum damage rating of EF3.

  7. Decaying turbulence in the presence of a shearless uniform kinetic energy gradient

    NASA Astrophysics Data System (ADS)

    Thormann, Adrien; Meneveau, Charles

    2013-11-01

    The study of decaying isotropic turbulent flow is an important point of reference for turbulence theories and numerical simulations. For the past several decades, most experimental results have focussed on possible power-law decays and found exponents between -1 and -1.4, approximately. Another class of experiments have been shear less mixing layers in which there are two regions with different kinetic energy levels that slowly diffuse into each other downstream. In this study we consider flow without shear-production of turbulence with a cross-stream uniform spatial gradient of kinetic energy k(z) = C z. Such gradient is generated with the use of an active grid and screens mounted upstream of the wind-tunnel's test section iteratively designed to produce a linear gradient of kinetic energy without mean shear. In such a flow, deviations from constant lateral flux of kinetic energy are due only to spatial variations in turbulent diffusivity of k (turbophoresis). Data are acquired using X-wire thermal anemometry at different spanwise and downstream locations. Tests of homogeneity, as well as spectral characteristics of the flow, decay and diffusion rates of the kinetic energy will be presented. This research is supported by NSF-CBET-1033942.

  8. Relativistic Momentum and Kinetic Energy, and E = mc[superscript 2

    ERIC Educational Resources Information Center

    Hu, Ben Yu-Kuang

    2009-01-01

    Based on relativistic velocity addition and the conservation of momentum and energy, I present simple derivations of the expressions for the relativistic momentum and kinetic energy of a particle, and for the formula E = mc[superscript 2]. (Contains 5 footnotes and 2 figures.)

  9. Kinetic Study and Mathematical Model of Hemimorphite Dissolution in Low Sulfuric Acid Solution at High Temperature

    NASA Astrophysics Data System (ADS)

    Xu, Hongsheng; Wei, Chang; Li, Cunxiong; Deng, Zhigan; Li, Minting; Li, Xingbin

    2014-10-01

    The dissolution kinetics of hemimorphite with low sulfuric acid solution was investigated at high temperature. The dissolution rate of zinc was obtained as a function of dissolution time under the experimental conditions where the effects of sulfuric acid concentration, temperature, and particle size were studied. The results showed that zinc extraction increased with an increase in temperature and sulfuric acid concentration and with a decrease in particle size. A mathematical model able to describe the process kinetics was developed from the shrinking core model, considering the change of the sulfuric acid concentration during dissolution. It was found that the dissolution process followed a shrinking core model with "ash" layer diffusion as the main rate-controlling step. This finding was supported with a linear relationship between the apparent rate constant and the reciprocal of squared particle radius. The reaction order with respect to sulfuric acid concentration was determined to be 0.7993. The apparent activation energy for the dissolution process was determined to be 44.9 kJ/mol in the temperature range of 373 K to 413 K (100 °C to 140 °C). Based on the shrinking core model, the following equation was established:

  10. [Growth kinetics and phenol degradation of highly efficient phenol-degrading Ochrobactrum sp. CH10].

    PubMed

    Chen, Xiao-Hua; Wei, Gang; Liu, Si-Yuan; Sun, Jiang-Man; Wang, Fang-Fang; Li, Hao-Yuan; Liu, Yu-Jun

    2012-11-01

    The strain Ochrobactrum sp. CH10 was a highly efficient phenol degrading bacterial strain isolated from soil in a constructed wetland in Yuan Dynasty Capital City Wall Relics in Beijing. Growth and biodegradation were investigated in details with phenol as the sole carbon and energy source. The best growth and most efficient phenol biodegradation occurred when the strain was cultured in medium containing 400 mg x L(-1) phenol at initial pH of 7.0 and 30 degrees C, with 5% inoculation volume. The phenol degradation rate was around 100% , 92.3 and 82.2% with an initial concentration of 400, 900 and 1 000 mg x L(-1) phenol in 24, 44 and 48 h, respectively. Phenol degradation kinetic studies indicated that the strain followed Haldane's model, and the parameters were: upsilon(max) (maximum specific rate) = 0.126 h(-1), K(s) (half-saturation constant) = 23.53 mg x L(-1) and K(I) (inhibition constant) = 806.1 mg x L(-1). The phenol-limited growth kinetics of CH10 by Andrews's model also followed a similar trend to that of phenol degradation. Among all the strains belonging to Ochrobactrum genus, this strain is the most efficient at present. The strain has a good application potential for the phenolic wastewater treatment. PMID:23323431

  11. Measurement of velocity and kinetic energy of turbulence in swirling flows and their numerical prediction

    NASA Astrophysics Data System (ADS)

    Sampath, S.; Ganesan, V.

    1986-04-01

    A method is offered for measuring turbulence levels in three directions in gas turbine combustion systems and high intensity industrial furnaces, using a hot wire anemometer. A detailed analysis of the turbulence in the flow is necessary to achieve optimum combustion conditions, and until now there has been no established method available for measuring turbulence in swirling and recirculating flows. The merit of the new method is the use of a single-wire probe rather than the X-probe. The method has been used to measure turbulence levels in swirling recirculating flows generated by vane swirlers. From the measured turbulence levels, the kinetic energy of turbulence has been calculated and the results are compared with a well-established numerical prediction method. Mean velocity measurements have also been made using a 3-hole Pitot probe. The agreement between the measured and predicted values is quite satisfactory.

  12. High energy physics

    SciTech Connect

    Kernan, A.; Shen, B.C.; Ma, E.

    1997-07-01

    This proposal is for the continuation of the High Energy Physics Program at the University of California, Riverside. In 1990, we will concentrate on analysis of LEP data from the OPAL detector. We expect to record 10{sup 5} Z`s by the end of 1989 and 10{sup 6} in 1990. This data will be used to measure the number of quark-lepton families in the universe. In the second half of 1990 we will also be occupied with the installation of the D-Zero detector in the Tevatron Collider and the preparation of software for the 1991 run. A new initiative made possible by generous university support is a laboratory for detector development at UCR. The focus will be on silicon strip tracking detectors both for the D-Zero upgrade and for SSC physics. The theory program will pursue further various mass-generating radiative mechanisms for understanding small quark and lepton masses as well as some novel phenomenological aspects of supersymmetry.

  13. High energy plasma accelerators

    SciTech Connect

    Tajima, T.

    1985-05-01

    Colinear intense laser beams ..omega../sub 0/, kappa/sub 0/ and ..omega../sub 1/, kappa/sub 1/ shone on a plasma with frequency separation equal to the electron plasma frequency ..omega../sub pe/ are capable of creating a coherent large longitudinal electric field E/sub L/ = mc ..omega../sub pe//e of the order of 1GeV/cm for a plasma density of 10/sup 18/ cm/sup -3/ through the laser beat excitation of plasma oscillations. Accompanying favorable and deleterious physical effects using this process for a high energy beat-wave accelerator are discussed: the longitudinal dephasing, pump depletion, the transverse laser diffraction, plasma turbulence effects, self-steepening, self-focusing, etc. The basic equation, the driven nonlinear Schroedinger equation, is derived to describe this system. Advanced accelerator concepts to overcome some of these problems are proposed, including the plasma fiber accelerator of various variations. An advanced laser architecture suitable for the beat-wave accelerator is suggested. Accelerator physics issues such as the luminosity are discussed. Applications of the present process to the current drive in a plasma and to the excitation of collective oscillations within nuclei are also discussed.

  14. Energy dynamics and current sheet structure in fluid and kinetic simulations of decaying magnetohydrodynamic turbulence

    DOE PAGESBeta

    Makwana, K. D.; Zhdankin, V.; Li, H.; Daughton, W.; Cattaneo, F.

    2015-04-10

    We performed simulations of decaying magnetohydrodynamic (MHD) turbulence with a fluid and a kinetic code. The initial condition is an ensemble of long-wavelength, counter-propagating, shear-Alfvén waves, which interact and rapidly generate strong MHD turbulence. The total energy is conserved and the rate of turbulent energy decay is very similar in both codes, although the fluid code has numerical dissipation, whereas the kinetic code has kinetic dissipation. The inertial range power spectrum index is similar in both the codes. The fluid code shows a perpendicular wavenumber spectral slope of k-1.3⊥k⊥-1.3. The kinetic code shows a spectral slope of k-1.5⊥k⊥-1.5 for smallermore » simulation domain, and k-1.3⊥k⊥-1.3 for larger domain. We then estimate that collisionless damping mechanisms in the kinetic code can account for the dissipation of the observed nonlinear energy cascade. Current sheets are geometrically characterized. Their lengths and widths are in good agreement between the two codes. The length scales linearly with the driving scale of the turbulence. In the fluid code, their thickness is determined by the grid resolution as there is no explicit diffusivity. In the kinetic code, their thickness is very close to the skin-depth, irrespective of the grid resolution. Finally, this work shows that kinetic codes can reproduce the MHD inertial range dynamics at large scales, while at the same time capturing important kinetic physics at small scales.« less

  15. Energy dynamics and current sheet structure in fluid and kinetic simulations of decaying magnetohydrodynamic turbulence

    SciTech Connect

    Makwana, K. D.; Zhdankin, V.; Li, H.; Daughton, W.; Cattaneo, F.

    2015-04-10

    We performed simulations of decaying magnetohydrodynamic (MHD) turbulence with a fluid and a kinetic code. The initial condition is an ensemble of long-wavelength, counter-propagating, shear-Alfvén waves, which interact and rapidly generate strong MHD turbulence. The total energy is conserved and the rate of turbulent energy decay is very similar in both codes, although the fluid code has numerical dissipation, whereas the kinetic code has kinetic dissipation. The inertial range power spectrum index is similar in both the codes. The fluid code shows a perpendicular wavenumber spectral slope of k-1.3⊥k⊥-1.3. The kinetic code shows a spectral slope of k-1.5⊥k⊥-1.5 for smaller simulation domain, and k-1.3⊥k⊥-1.3 for larger domain. We then estimate that collisionless damping mechanisms in the kinetic code can account for the dissipation of the observed nonlinear energy cascade. Current sheets are geometrically characterized. Their lengths and widths are in good agreement between the two codes. The length scales linearly with the driving scale of the turbulence. In the fluid code, their thickness is determined by the grid resolution as there is no explicit diffusivity. In the kinetic code, their thickness is very close to the skin-depth, irrespective of the grid resolution. Finally, this work shows that kinetic codes can reproduce the MHD inertial range dynamics at large scales, while at the same time capturing important kinetic physics at small scales.

  16. Hafnium- and titanium-coated tungsten powders for kinetic energy penetrators, Phase I, SBIR. Final report

    SciTech Connect

    Williams, B.E.; Stiglich, J.J.

    1992-05-01

    Depleted uranium (DU) is the state-of-the-art material for kinetic energy penetrators used to defeat steel and composite armors. DU alloys, however, are costly to fabricate, handle, and store because of their extremely complex metallurgy and the obvious health considerations associated with the use of uranium. Tungsten composite materials are also used in kinetic energy penetrators, offering easier and safer fabrication, handling, and storage but to date lacking the performance of DU. The mechanisms by which a penetrator defeats an armor are difficult to determine, either experimentally or from first principles. Recent experiments have identified the presence of an adiabatic shear mechanism that appears to be important in the penetration of rolled homogeneous armor (RHA) by DU penetrators. In this program, Ultramet proposed to apply hafnium and titanium coatings to tungsten powder (Wp) particles by chemical vapor deposition (CVD) using an established fluidized-bed powder coating technique. Both hafnium and titanium are known to exhibit the adiabatic shear phenomenon. High strain rate experiments (approx.10 to the 4th power/sec) were performed on Ti(6A1-4V) and hafnium materials in order to establish the presence or absence of this mode of deformation in small cylindrical specimens. In addition, specimens of 2 wt% CVD Hf/Wp and 2 wt% CVD Hf + 8 wt% powder-mixed Hf/Wp were tested at high strain rate conditions (approx. 10 to the 4th power/sec). Tungsten powders, Composites, Chemical Vapor Deposition(CVD), Microstructure, Hafnium, Titanium, Dynamic tests, Strain rate testing, Powder metallurgy.

  17. Roles of divergent and rotational winds in the kinetic energy balance during intense convective activity

    NASA Technical Reports Server (NTRS)

    Fuelberg, H. E.; Browning, P. A.

    1983-01-01

    Contributions of divergent and rotational wind components to the synoptic-scale kinetic energy balance are described using rawinsonde data at 3 and 6 h intervals from NASA's fourth Atmospheric Variability experiment. Two intense thunderstorm complexes occurred during the period. Energy budgets are described for the entire computational region and for limited volumes that enclosed storm-induced, upper level wind maxima located poleward of convection. Although small in magnitude, the divergent wind component played an important role in the cross-contour generation and horizontal flux divergence of kinetic energy. The importance of V(D) appears directly related to the presence and intensity of convection. Although K(D) usually comprised less than 10 percent of the total kinetic energy content, generation of kinetic energy by V(D) was a major factor in the creation of upper-level wind maxima to the north of the storm complexes. Omission of the divergent wind apparently would lead to serious misrepresentations of the energy balance. A random error analysis is presented to assess confidence limits in the various energy parameters.

  18. Energetics, kinetics and dynamics of decaying metastable ions studied with a high-resolution three-sector field mass spectrometer

    NASA Astrophysics Data System (ADS)

    Matt-Leubner, S.; Feil, S.; Gluch, K.; Fedor, J.; Stamatovic, A.; Echt, O.; Scheier, P.; Becker, K.; Märk, T. D.

    2005-05-01

    Mass spectrometric analysis of metastable decay reactions is devoted to the measurements of the kinetic energy release distribution (KERD) for the decay of singly charged rare gas dimer ions Xe_{2}^{ + } and Kr_{2}^{ + } , the doubly charged acetylene parent ion C_{2}H_{2^{ 2+ }} and the singly and doubly charged SF6 fragment ions, like for example SF_{3}^{ + } , SF_{3}^{ 2 + } and SF_{4}^{ 2 + } . The KERDs are obtained either from high-resolution mass analysed ion kinetic energy spectra or the measurement of ion beam profiles using a specially improved mass spectrometric system. Due to the high energy resolution measurements and theoretical studies based on ab initio calculations of potential energy curves it is possible to assign the reaction products of the rare gas dimer decays to electronic transitions in the excited parent ion. The C_{2}H_{2^{ 2 + }} and also the SF_{4}^{ 2 + } ions are investigated because of obscurities in the production of their fragment ions. The unusual shape of the SF_{3}^{ + } ionization cross section indicates that at sufficiently high electron energies the fragmentation channel of doubly charged SF_{4}^{ 2 + } contributes significantly to the ion yield. Additional measurements of the corresponding appearance energies confirm the existence of this second production channel.

  19. High Energy Density Capacitors

    SciTech Connect

    2010-07-01

    BEEST Project: Recapping is developing a capacitor that could rival the energy storage potential and price of today’s best EV batteries. When power is needed, the capacitor rapidly releases its stored energy, similar to lightning being discharged from a cloud. Capacitors are an ideal substitute for batteries if their energy storage capacity can be improved. Recapping is addressing storage capacity by experimenting with the material that separates the positive and negative electrodes of its capacitors. These separators could significantly improve the energy density of electrochemical devices.

  20. Pulsed laser kinetic studies of liquids under high pressure

    SciTech Connect

    Eyring, E.M.

    1992-09-22

    A laser flash photolysis kinetic study of 2,2{prime}-bipyridine bidentate chelating ligands with one claw in the first coordination sphere of a molybdenum carbonyl complex has been completed at pressures up to 150 MPa. The reaction mechanism for thermal ring closure is found from activation volumes to change from associative interchange to dissociative interchange as substituents on the 2,2{prime}-bipyridine ligands become bulkier. In a similar study of more rigid, substituted phenanthroline bidentate ligands it was found that substituent bulkiness had little effect on the thermal ring closure mechanism. Stability constants for lithium ion complexes with crown ethers in a room temperature molten salt, fluorescence quantum yields for cresyl violet and several other dyes in solution, and the oxidation of alcohols by OsO{sub 4} have also been investigated.

  1. Mean kinetic energy budget of wakes within an array of model wind turbines and porous discs

    NASA Astrophysics Data System (ADS)

    Cal, Raúl Bayoán; Camp, Elizabeth

    2015-11-01

    Wind turbines are often modeled as porous actuator discs within computational studies. In this wind tunnel study, stereo particle image velocimetry (SPIV) is used to characterize the wakes within a 4 ×3 model wind turbine array and an analogous array of porous disks. The SPIV measurements are performed upstream between - 2 . 9 <= x / D <= - 0 . 3 and downstream between 0 . 7 <= x / D <= 5 . 6 of the center turbine in the fourth row. To provide context, the similarities and differences in the flow fields as well as the mean and turbulent stresses are found. The primary analysis revolves around the mean kinetic energy budget in the wakes for both cases, model turbines and discs, obtained by the computation of mean kinetic energy, production of turbulence and flux of kinetic energy as these are equivalent to a measure of extracted power.

  2. Turbulent Flame Speeds and NOx Kinetics of HHC Fuels with Contaminants and High Dilution Levels

    SciTech Connect

    Peterson, Eric; Krejci, Michael; Mathieu, Olivier; Vissotski, Andrew; Ravi, Sankat; Plichta, Drew; Sikes, Travis; Levacque, Anthony; Camou, Alejandro; Aul, Christopher

    2014-01-24

    This final report documents the technical results of the 3-year project entitled, “Turbulent Flame Speeds and NOx Kinetics of HHC Fuels with Contaminants and High Dilution Levels,” funded under the NETL of DOE. The research was conducted under six main tasks: 1) program management and planning; 2) turbulent flame speed measurements of syngas mixtures; 3) laminar flame speed measurements with diluents; 4) NOx mechanism validation experiments; 5) fundamental NOx kinetics; and 6) the effect of impurities on NOx kinetics. Experiments were performed using primary constant-volume vessels for laminar and turbulent flame speeds and shock tubes for ignition delay times and species concentrations. In addition to the existing shock- tube and flame speed facilities, a new capability in measuring turbulent flame speeds was developed under this grant. Other highlights include an improved NOx kinetics mechanism; a database on syngas blends for real fuel mixtures with and without impurities; an improved hydrogen sulfide mechanism; an improved ammonia kintics mechanism; laminar flame speed data at high pressures with water addition; and the development of an inexpensive absorption spectroscopy diagnostic for shock-tube measurements of OH time histories. The Project Results for this work can be divided into 13 major sections, which form the basis of this report. These 13 topics are divided into the five areas: 1) laminar flame speeds; 2) Nitrogen Oxide and Ammonia chemical kinetics; 3) syngas impurities chemical kinetics; 4) turbulent flame speeds; and 5) OH absorption measurements for chemical kinetics.

  3. Drop size distributions and kinetic energy rates in variable intensity rainfall

    NASA Astrophysics Data System (ADS)

    Assouline, Shmuel

    2016-04-01

    Temporal variability in rainfall intensity reflects on the drop size distribution (DSD), and affects the rainfall kinetic energy during the event. Smith et al. (2009) reported on 1-min interval rainfall intensity and corresponding DSD variability during a storm on the 22/7/06 at Princeton, NJ. They reported also on DSDs characteristics of heavy convective rainfall events during the whole summer. Applying the DSD model of Assouline and Mualem (1997), it is shown that: (a) a similar relationship between the mean drop size and the rainfall intensity characterized the local rainfall at both the seasonal and the single storm scale; (b) using the mean drop size as a scaling factor of the DSD removes the rainfall intensity dependence at the intrastorm scale, providing a powerful tool to deal with temporal variability of rainfall rates during rainfall events. For a storm characterized by a given temporal variability of intensities, three different ways of evaluating kinetic energy per unit mass or time were applied. By comparison to estimates accounting for rainfall temporal variability and related full DSDs, representing the storm by mean intensity and drop diameter tends to overestimate kinetic energy for low intensities and underestimate it for the higher ones. The relative error for the kinetic energy per unit of mass is ±45% and shifts from negative to positive sign for I>25 mm/h. For the kinetic energy per unit of time, the relative error ranges from -100% to +210% and changes sign for I>45 mm/h. When temporal variation of intensity is accounted for but drops are characterized by their mean values instead of the full DSD, kinetic energy is underestimated by 20% on average. Consequently, accounting for temporal variability in rainfall intensity during a storm has a notable impact on the erosive power of the rainfall.

  4. Analysis of atmospheric flow over a surface protrusion using the turbulence kinetic energy equation with reference to aeronautical operating systems

    NASA Technical Reports Server (NTRS)

    Frost, W.; Harper, W. L.

    1975-01-01

    Flow over surface obstructions can produce significantly large wind shears such that adverse flying conditions can occur for aeronautical systems (helicopters, STOL vehicles, etc.). Atmospheric flow fields resulting from a semi-elliptical surface obstruction in an otherwise horizontally homogeneous statistically stationary flow are modelled with the boundary-layer/Boussinesq-approximation of the governing equation of fluid mechanics. The turbulence kinetic energy equation is used to determine the dissipative effects of turbulent shear on the mean flow. Iso-lines of turbulence kinetic energy and turbulence intensity are plotted in the plane of the flow and highlight regions of high turbulence intensity in the stagnation zone and sharp gradients in intensity along the transition from adverse to favourable pressure gradient. Discussion of the effects of the disturbed wind field in CTOL and STOL aircraft flight path and obstruction clearance standards is given. The results indicate that closer inspection of these presently recommended standards as influenced by wind over irregular terrains is required.

  5. Estimation of capacity of suspended load considering effects of preservation of turbulent kinetic energy

    NASA Astrophysics Data System (ADS)

    Naruse, H.; Sugawara, D.; Goto, K.

    2014-12-01

    Quantitative estimation of capacity of suspended sediment load is critical for reconstruction of flows such as tsunamis or turbidity currents. Capacity of suspended load is a layer-averaged concentration at which suspended sediments are saturated in flows, and it works as a threshold between erosion and deposition from suspended sediments. Capacity of suspended load varies depending on sediment grain-size, flow velocity and flow height, and therefore it is useful for reconstructing paleohydraulic conditions of suspension-rich flows.Generally, suspension capacity has been calculated from a simple equilibrium conditions of rates of sediment entrainment and suspension fallout. Various empirical functions of sediment entrainment are available, and suspension fallout rates can be estimated from theoretical distribution. However, Goto et al. (2014) recently revealed that sediment concentration of actual run-up flows of large-scale tsunamis is far below the estimated value based on the field observations of 2011 Tohoku-Oki Tsunami. Thus, it is necessary to reconsider existing models of suspension capacity. Here we propose a new method to estimate capacity of suspended load considering preservation of kinetic energy of turbulence. Density stratification caused by suspended sediments expends energy of turbulence in flows, but most of previous methods did not consider this effect. We employed a model to calculate preservation of turbulent kinetic energy proposed by Parker et al. (1986). As a result, it was revealed that capacity of high-velocity flows (e.g. 10 m/s) is quite low (e.g. 2 %) although previous models predict very high-concentration (e.g. ~20 %). Our estimation is quite conformable to the result of the observation of 2011 Tohoku-Oki Tsunami. Also, our model predict that friction of flows remarkably decrease due to expended turbulence energy. Decrease of Reynolds stress causes apparently low friction coefficient of flows.Our new method is especially important for

  6. Contributions of divergent and nondivergent winds to the kinetic energy balance of a severe storm environment

    NASA Technical Reports Server (NTRS)

    Browning, P. A.; Fuelberg, H. E.

    1983-01-01

    Divergent and rotational components of the synoptic scale kinetic energy balance are presented using rawinsonde data at 3 and 6 h intervals from the Atmospheric Variability Experiment (AVE 4). Two intense thunderstorm complexes occurred during the period. Energy budgets are described for the entire computational region and for limited volumes that enclose and move with the convection. Although small in magnitude, the divergent wind component played an important role in the cross contour generation and horizontal flux divergence of kinetic energy. The importance of V sub D appears directly to the presence and intensity of convection within the area. Although K sub D usually comprised less than 10 percent of the total kinetic energy content within the storm environment, as much as 87 percent of the total horizontal flux divergence and 68 percent of the total cross contour generation was due to the divergent component in the upper atmosphere. Generation of kinetic energy by the divergent component appears to be a major factor in the creation of an upper level wind maximum on the poleward side of one of the complexes. A random error analysis is presented to assess confidence limits in the various energy parameters.

  7. Connecting the Kinetics and Energy Landscape of tRNA Translocation on the Ribosome

    PubMed Central

    Whitford, Paul C.; Blanchard, Scott C.; Cate, Jamie H. D.; Sanbonmatsu, Karissa Y.

    2013-01-01

    Functional rearrangements in biomolecular assemblies result from diffusion across an underlying energy landscape. While bulk kinetic measurements rely on discrete state-like approximations to the energy landscape, single-molecule methods can project the free energy onto specific coordinates. With measures of the diffusion, one may establish a quantitative bridge between state-like kinetic measurements and the continuous energy landscape. We used an all-atom molecular dynamics simulation of the 70S ribosome (2.1 million atoms; 1.3 microseconds) to provide this bridge for specific conformational events associated with the process of tRNA translocation. Starting from a pre-translocation configuration, we identified sets of residues that collectively undergo rotary rearrangements implicated in ribosome function. Estimates of the diffusion coefficients along these collective coordinates for translocation were then used to interconvert between experimental rates and measures of the energy landscape. This analysis, in conjunction with previously reported experimental rates of translocation, provides an upper-bound estimate of the free-energy barriers associated with translocation. While this analysis was performed for a particular kinetic scheme of translocation, the quantitative framework is general and may be applied to energetic and kinetic descriptions that include any number of intermediates and transition states. PMID:23555233

  8. Connecting the kinetics and energy landscape of tRNA translocation on the ribosome.

    PubMed

    Whitford, Paul C; Blanchard, Scott C; Cate, Jamie H D; Sanbonmatsu, Karissa Y

    2013-01-01

    Functional rearrangements in biomolecular assemblies result from diffusion across an underlying energy landscape. While bulk kinetic measurements rely on discrete state-like approximations to the energy landscape, single-molecule methods can project the free energy onto specific coordinates. With measures of the diffusion, one may establish a quantitative bridge between state-like kinetic measurements and the continuous energy landscape. We used an all-atom molecular dynamics simulation of the 70S ribosome (2.1 million atoms; 1.3 microseconds) to provide this bridge for specific conformational events associated with the process of tRNA translocation. Starting from a pre-translocation configuration, we identified sets of residues that collectively undergo rotary rearrangements implicated in ribosome function. Estimates of the diffusion coefficients along these collective coordinates for translocation were then used to interconvert between experimental rates and measures of the energy landscape. This analysis, in conjunction with previously reported experimental rates of translocation, provides an upper-bound estimate of the free-energy barriers associated with translocation. While this analysis was performed for a particular kinetic scheme of translocation, the quantitative framework is general and may be applied to energetic and kinetic descriptions that include any number of intermediates and transition states. PMID:23555233

  9. Pressure-strain energy redistribution in compressible turbulence: return-to-isotropy versus kinetic-potential energy equipartition

    NASA Astrophysics Data System (ADS)

    Lee, Kurnchul; Venugopal, Vishnu; Girimaji, Sharath S.

    2016-08-01

    Return-to-isotropy and kinetic-potential energy equipartition are two fundamental pressure-moderated energy redistributive processes in anisotropic compressible turbulence. Pressure-strain correlation tensor redistributes energy among various Reynolds stress components and pressure-dilatation is responsible for energy reallocation between dilatational kinetic and potential energies. The competition and interplay between these pressure-based processes are investigated in this study. Direct numerical simulations (DNS) of low turbulent Mach number dilatational turbulence are performed employing the hybrid thermal Lattice Boltzman method (HTLBM). It is found that a tendency towards equipartition precedes proclivity for isotropization. An evolution towards equipartition has a collateral but critical effect on return-to-isotropy. The preferential transfer of energy from strong (rather than weak) Reynolds stress components to potential energy accelerates the isotropization of dilatational fluctuations. Understanding of these pressure-based redistributive processes is critical for developing insight into the character of compressible turbulence.

  10. An efficient method for energy levels calculation using full symmetry and exact kinetic energy operator: Tetrahedral molecules

    SciTech Connect

    Nikitin, A. V.; Rey, M.; Tyuterev, Vl. G.

    2015-03-07

    A simultaneous use of the full molecular symmetry and of an exact kinetic energy operator (KEO) is of key importance for accurate predictions of vibrational levels at a high energy range from a potential energy surface (PES). An efficient method that permits a fast convergence of variational calculations would allow iterative optimization of the PES parameters using experimental data. In this work, we propose such a method applied to tetrahedral AB{sub 4} molecules for which a use of high symmetry is crucial for vibrational calculations. A symmetry-adapted contracted angular basis set for six redundant angles is introduced. Simple formulas using this basis set for explicit calculation of the angular matrix elements of KEO and PES are reported. The symmetric form (six redundant angles) of vibrational KEO without the sin(q){sup −2} type singularity is derived. The efficient recursive algorithm based on the tensorial formalism is used for the calculation of vibrational matrix elements. A good basis set convergence for the calculations of vibrational levels of the CH{sub 4} molecule is demonstrated.