These are representative sample records from Science.gov related to your search topic.
For comprehensive and current results, perform a real-time search at Science.gov.
1

High Lift, Low Pitching Moment Airfoils  

NASA Technical Reports Server (NTRS)

Two families of airfoil sections which can be used for helicopter/rotorcraft rotor blades or aircraft propellers of a particular shape are prepared. An airfoil of either family is one which could be produced by the combination of a camber line and a thickness distribution or a thickness distribution which is scaled from these. An airfoil of either family has a unique and improved aerodynamic performance. The airfoils of either family are intended for use as inboard sections of a helicopter rotor blade or an aircraft propeller.

Noonan, Kevin W. (inventor)

1988-01-01

2

An aerodynamic comparison of blown and mechanical high lift airfoils  

NASA Technical Reports Server (NTRS)

Short takeoff and landing (STOL) performance utilizing a circulation control airfoil was successfully demonstrated on the A-6 CCW (circulation control wing). Controlled flight at speeds as slow as 67 knots was demonstrated. Takeoff ground run and liftoff speed reductions in excess of 40 and 20 percent respectively were achieved. Landing ground roll and approach speeds were similarly reduced. The technology demonstrated was intended to be useable on modern high performance aircraft. STOL performance would be achieved through the combination of a 2-D vectored nozzle and a circulation control type of high lift system. The primary objective of this demonstration was to attain A-6 CCW magnitude reductions in takeoff and landing flight speed and ground distance requirements using practical bleed flow rates from a modern turbofan engine for the blown flap system. Also, cruise performance could not be reduced by the wing high lift system. The A-6 was again selected as the optimum demonstration vehicle. The procedure and findings of the study to select the optimum high lift wing design are documented. Some findings of a supercritical airfoil and a comparison of 2-D and 3-D results are also described.

Carr, John E.

1987-01-01

3

Design of high lift airfoils with a Stratford distribution by the Eppler method  

NASA Technical Reports Server (NTRS)

Airfoils having a Stratford pressure distribution, which has zero skin friction in the pressure recovery area, were investigated in an effort to develop high lift airfoils. The Eppler program, an inverse conformal mapping technique where the x and y coordinates of the airfoil are developed from a given velocity distribution, was used.

Thomson, W. G.

1975-01-01

4

Parametric Investigation of a High-Lift Airfoil at High Reynolds Numbers  

NASA Technical Reports Server (NTRS)

A new two-dimensional, three-element, advanced high-lift research airfoil has been tested in the NASA Langley Research Center s Low-Turbulence Pressure Tunnel at a chord Reynolds number up to 1.6 x 107. The components of this high-lift airfoil have been designed using a incompressible computational code (INS2D). The design was to provide high maximum-lift values while maintaining attached flow on the single-segment flap at landing conditions. The performance of the new NASA research airfoil is compared to a similar reference high-lift airfoil. On the new high-lift airfoil the effects of Reynolds number on slat and flap rigging have been studied experimentally, as well as the Mach number effects. The performance trend of the high-lift design is comparable to that predicted by INS2D over much of the angle-of-attack range. However, the code did not accurately predict the airfoil performance or the configuration-based trends near maximum lift where the compressibility effect could play a major role.

Lin, John C.; Dominik, Chet J.

1997-01-01

5

High-Lift, Low-Pitching-Moment Airfoils  

NASA Technical Reports Server (NTRS)

Two families of airfoil shapes improve rotor performance. Improvements enhance performances of helicopters and other rotorcraft but also applicable to aircraft propellers. Airfoil shapes best suited for inboard segment of rotor blade.

Noonan, Kevin W.

1987-01-01

6

Analysis of a High-Lift Multi-Element Airfoil using a Navier-Stokes Code  

NASA Technical Reports Server (NTRS)

A thin-layer Navier-Stokes code, CFL3D, was utilized to compute the flow over a high-lift multi-element airfoil. This study was conducted to improve the prediction of high-lift flowfields using various turbulence models and improved glidding techniques. An overset Chimera grid system is used to model the three element airfoil geometry. The effects of wind tunnel wall modeling, changes to the grid density and distribution, and embedded grids are discussed. Computed pressure and lift coefficients using Spalart-Allmaras, Baldwin-Barth, and Menter's kappa-omega - Shear Stress Transport (SST) turbulence models are compared with experimental data. The ability of CFL3D to predict the effects on lift coefficient due to changes in Reynolds number changes is also discussed.

Whitlock, Mark E.

1995-01-01

7

An interactive boundary-layer approach to multielement airfoils at high lift  

NASA Technical Reports Server (NTRS)

A calculation method based on an interactive boundary-layer approach to multielement airfoils is described and is applied to three types of airfoil configurations with and without flap-wells in order to demonstrate the applicability of the method to general high-lift configurations. This method, well tested for single airfoils as a function of shape, angle of attack, and Reynolds number, is here shown to apply equally well to two-element airfoils and their wakes, to a flap-well region, and to a three-element arrangement which includes the effects of co-flowing regions, a flap well, and the wake of the elements. In addition to providing accurate representation of these flows, the method is general so that its extension to three-dimensional arrangements is likely to provide a practical, accurate and efficient tool to assist the design process.

Cebeci, Tuncer

1992-01-01

8

Separation Control from the Flap of a High-Lift Airfoil Using DBD Plasma Actuators  

NASA Astrophysics Data System (ADS)

Control of separation from the flap of a high-lift airfoil using a single dielectric barrier discharge (DBD) plasma actuator has been investigated experimentally. This project is motivated by the desire to replace existing multi-element flap configurations with a single simple flap to allow more efficient high-lift generation. The results show that a single DBD plasma actuator located at the flap shoulder can increase or reduce the size of the time-averaged separation bubble over the flap depending on the frequency of actuation. In the latter case, the lift on the airfoil is increased due to improved circulation around the model, but it does not result in full reattachment on the deflected flap. These findings are consistent with previous research on high-lift airfoil configurations. The work will be expanded by exploring the effect of multiple actuators as well as their geometry and location on the size and structure of the separated region over the flap. This portion of the work will be done with an emphasis on optimizing the relative phase of each actuator and its effect on the separated flow region.

Little, Jesse; Nishihara, Munetake; Adamovich, Igor; Samimy, Mo

2008-11-01

9

High-Lift Optimization Design Using Neural Networks on a Multi-Element Airfoil  

NASA Technical Reports Server (NTRS)

The high-lift performance of a multi-element airfoil was optimized by using neural-net predictions that were trained using a computational data set. The numerical data was generated using a two-dimensional, incompressible, Navier-Stokes algorithm with the Spalart-Allmaras turbulence model. Because it is difficult to predict maximum lift for high-lift systems, an empirically-based maximum lift criteria was used in this study to determine both the maximum lift and the angle at which it occurs. Multiple input, single output networks were trained using the NASA Ames variation of the Levenberg-Marquardt algorithm for each of the aerodynamic coefficients (lift, drag, and moment). The artificial neural networks were integrated with a gradient-based optimizer. Using independent numerical simulations and experimental data for this high-lift configuration, it was shown that this design process successfully optimized flap deflection, gap, overlap, and angle of attack to maximize lift. Once the neural networks were trained and integrated with the optimizer, minimal additional computer resources were required to perform optimization runs with different initial conditions and parameters. Applying the neural networks within the high-lift rigging optimization process reduced the amount of computational time and resources by 83% compared with traditional gradient-based optimization procedures for multiple optimization runs.

Greenman, Roxana M.; Roth, Karlin R.; Smith, Charles A. (Technical Monitor)

1998-01-01

10

High-lift airfoil trailing edge separation control using a single dielectric barrier discharge plasma actuator  

Microsoft Academic Search

Control of flow separation from the deflected flap of a high-lift airfoil up to Reynolds numbers of 240,000 (15 m\\/s) is explored\\u000a using a single dielectric barrier discharge (DBD) plasma actuator near the flap shoulder. Results show that the plasma discharge\\u000a can increase or reduce the size of the time-averaged separated region over the flap depending on the frequency of actuation.

Jesse Little; Munetake Nishihara; Igor Adamovich; Mo Samimy

2010-01-01

11

Lift-Enhancing Tabs on Multielement Airfoils  

NASA Technical Reports Server (NTRS)

The use of flat-plate tabs (similar to Gurney flaps) to enhance the lift of multielement airfoils is extended here by placing them on the pressure side and near the trailing edge of the main element rather than just on the furthest downstream wing element. The tabs studied range in height from 0.125 to 1.25% of the airfoil reference chord. In practice, such tabs would be retracted when the high-lift system is stowed. The effectiveness of the concept was demonstrated experimentally and computationally on a two-dimensional NACA 63(sub 2)-215 Mod B airfoil with a single-slotted, 30%-chord flap. Both the experiments and computations showed that the tabs significantly increase the lift at a given angle of attack and the maximum lift coefficient of the airfoil. The computational results showed that the increased lift was a result of additional turning of the flow by the tab that reduced or eliminated now separation on the flap. The best configuration tested, a 0.5%-chord tab placed 0.5% chord upstream of the trailing edge of the main element, increased the maximum lift coefficient of the airfoil by 12% and the maximum lift-to-drag ratio by 40%.

Ross, James C.; Storms, Bruce L.; Carrannanto, Paul G.

1995-01-01

12

LES of the Flow over a High-Lift Airfoil Configuration  

NASA Astrophysics Data System (ADS)

A large-eddy simulation of the flow over a high-lift airfoil configuration consisting of a slat and a main wing is performed at a freestream Mach number M=0.16 and an angle of attack of 13°. The Reynolds number, based on the clean chord length and the freestream velocity, is Re=1.4·106. The results show similarities between the turbulent structures of the slat cusp shear layer and a free shear layer and an impinging jet. The periodical occurrence of rollers and streamwise orientated rib vortices contributes essentially to the generated sound.

König, Daniel; Schröder, Wolfgang; Meinke, Matthias

13

Design and test of a natural laminar flow/large Reynolds number airfoil with a high design cruise lift coefficient  

NASA Technical Reports Server (NTRS)

Research activity on an airfoil designed for a large airplane capable of very long endurance times at a low Mach number of 0.22 is examined. Airplane mission objectives and design optimization resulted in requirements for a very high design lift coefficient and a large amount of laminar flow at high Reynolds number to increase the lift/drag ratio and reduce the loiter lift coefficient. Natural laminar flow was selected instead of distributed mechanical suction for the measurement technique. A design lift coefficient of 1.5 was identified as the highest which could be achieved with a large extent of laminar flow. A single element airfoil was designed using an inverse boundary layer solution and inverse airfoil design computer codes to create an airfoil section that would achieve performance goals. The design process and results, including airfoil shape, pressure distributions, and aerodynamic characteristics are presented. A two dimensional wind tunnel model was constructed and tested in a NASA Low Turbulence Pressure Tunnel which enabled testing at full scale design Reynolds number. A comparison is made between theoretical and measured results to establish accuracy and quality of the airfoil design technique.

Kolesar, C. E.

1987-01-01

14

High-Lift System for a Supercritical Airfoil: Simplified by Active Flow Control  

NASA Technical Reports Server (NTRS)

Active flow control wind tunnel experiments were conducted in the NASA Langley Low-Turbulence Pressure Tunnel using a two-dimensional supercritical high-lift airfoil with a 15% chord hinged leading-edge flap and a 25% chord hinged trailing-edge flap. This paper focuses on the application of zero-net-mass-flux periodic excitation near the airfoil trailing edge flap shoulder at a Mach number of 0.1 and chord Reynolds numbers of 1.2 x 10(exp 6) to 9 x 10(exp 6) with leading- and trailing-edge flap deflections of 25 deg. and 30 deg., respectively. The purpose of the investigation was to increase the zero-net-mass-flux options for controlling trailing edge flap separation by using a larger model than used on the low Reynolds number version of this model and to investigate the effect of flow control at higher Reynolds numbers. Static and dynamic surface pressures and wake pressures were acquired to determine the effects of flow control on airfoil performance. Active flow control was applied both upstream of the trailing edge flap and immediately downstream of the trailing edge flap shoulder and the effects of Reynolds number, excitation frequency and amplitude are presented. The excitations around the trailing edge flap are then combined to control trailing edge flap separation. The combination of two closely spaced actuators around the trailing-edge flap knee was shown to increase the lift produced by an individual actuator. The phase sensitivity between two closely spaced actuators seen at low Reynolds number is confirmed at higher Reynolds numbers. The momentum input required to completely control flow separation on the configuration was larger than that available from the actuators used.

Melton, LaTunia Pack; Schaeffler, Norman W.; Lin, John C.

2007-01-01

15

Turbulence modeling for high-lift multi-element airfoil configurations  

NASA Astrophysics Data System (ADS)

This study provides a detailed comparison of two turbulence closures for aerodynamic flows around high-lift airfoils; the first based on turbulent viscosity and the second on the algebraic Reynolds-stress approximation. A detailed analysis of their derivation helps shed light on their inherent limitations in predicting complex flow phenomena such as confluent boundary layers and flow separation found in typical take-off and landing conditions. Amongst the turbulent viscosity models coded and studied are the Spalart-Allmaras, Baldwin-Barth, Wilcox k - o and Menter's Shear Stress Transport model. A parameter study based on different pressure-strain correlations and dissipation models (or near-wall treatment) is included when studying the algebraic Reynolds-stress models for both the explicit (EARSM) and the more traditional or implicit (IARSM) forms. One of each of the following categories: one-equation, two-equation, IARSM and EARSM is selected and compared on several low-speed high-lift configurations. Comparisons to experimental data for both mean flow and turbulence quantities are provided for all cases studied. Results are generally very promising and of sufficient accuracy for engineering interest. Overall, the study indicates that for flows around low-speed high-lift airfoils, the algebraic Reynolds-stress construct does not represent a higher level of description than the eddy viscosity models since it fails to improve on accuracy. The basic underlying assumption of weak-equilibrium in algebraic Reynolds-stress models is outperformed by well calibrated eddy-viscosity models.

Godin, Philippe

16

The effect of heavy rain on an airfoil at high lift  

NASA Technical Reports Server (NTRS)

No serious studies of the relationship of heavy rain to aircraft safety were made until 1981 when it was suggested that the torrential rain which often occurs at the time of severe wind shear might substantially increase the danger to aircraft operating at slow speeds and high lift in the vicinity of airports. While these data were not published until early 1983, appropriate measures were taken by NASA to study the effect of heavy rain on the lift of wings typical of commercial aircraft. One of the aspects of these tests that seemed confirmed by the data was the existence of a velocity effect on the lift data. The data seemed to indicate that when all the normal non-dimensional aerodynamic parameters were used to sort out the data, the effect of velocity was not accounted for, as it usually is, by the effect of dynamic pressure. Indeed, the measured lift coefficients at high lift indicated a dropoff in lift coefficient for the same free-stream water content as velocity was increased. indicated a drop-off in lift coefficient for the same free-stream water content as velocity was increased.

Donaldson, Coleman DUP.; Sullivan, Roger D.

1987-01-01

17

An Experimntal Investigation of the 30P30N Multi-Element High-Lift Airfoil  

NASA Technical Reports Server (NTRS)

High-lift devices often generate an unsteady flow field producing both broadband and tonal noise which radiates from the aircraft. In particular, the leading edge slat is often a dominant contributor to the noise signature. An experimental study of a simplified unswept high-lift configuration, the 30P30N, has been conducted to understand and identify the various flow-induced noise sources around the slat. Closed-wall wind tunnel tests are performed in the Florida State Aeroacoustic Tunnel (FSAT) to characterize the slat cove flow field using a combination of surface and off-body measurements. Mean surface pressures compare well with numerical predictions for the free-air configuration. Consistent with previous measurements and computations for 2D high-lift configurations, the frequency spectra of unsteady surface pressures on the slat surface display several narrowband peaks that decrease in strength as the angle of attack is increased. At positive angles of attack, there are four prominent peaks. The three higher frequency peaks correspond, approximately, to a harmonic sequence related to a feedback resonance involving unstable disturbances in the slat cove shear layer. The Strouhal numbers associated with these three peaks are nearly insensitive to the range of flow speeds (41-58 m/s) and the angles of attack tested (3-8.5 degrees). The first narrow-band peak has an order of magnitude lower frequency than the remaining peaks and displays noticeable sensitivity to the angle of attack. Stereoscopic particle image velocimetry (SPIV) measurements provide supplementary information about the shear layer characteristics and turbulence statistics that may be used for validating numerical simulations.

Pascioni, Kyle A.; Cattafesta, Louis N.; Choudhari, Meelan M.

2014-01-01

18

Airfoil optimization for unsteady flows with application to high-lift noise reduction  

NASA Astrophysics Data System (ADS)

The use of steady-state aerodynamic optimization methods in the computational fluid dynamic (CFD) community is fairly well established. In particular, the use of adjoint methods has proven to be very beneficial because their cost is independent of the number of design variables. The application of numerical optimization to airframe-generated noise, however, has not received as much attention, but with the significant quieting of modern engines, airframe noise now competes with engine noise. Optimal control techniques for unsteady flows are needed in order to be able to reduce airframe-generated noise. In this thesis, a general framework is formulated to calculate the gradient of a cost function in a nonlinear unsteady flow environment via the discrete adjoint method. The unsteady optimization algorithm developed in this work utilizes a Newton-Krylov approach since the gradient-based optimizer uses the quasi-Newton method BFGS, Newton's method is applied to the nonlinear flow problem, GMRES is used to solve the resulting linear problem inexactly, and last but not least the linear adjoint problem is solved using Bi-CGSTAB. The flow is governed by the unsteady two-dimensional compressible Navier-Stokes equations in conjunction with a one-equation turbulence model, which are discretized using structured grids and a finite difference approach. The effectiveness of the unsteady optimization algorithm is demonstrated by applying it to several problems of interest including shocktubes, pulses in converging-diverging nozzles, rotating cylinders, transonic buffeting, and an unsteady trailing-edge flow. In order to address radiated far-field noise, an acoustic wave propagation program based on the Ffowcs Williams and Hawkings (FW-H) formulation is implemented and validated. The general framework is then used to derive the adjoint equations for a novel hybrid URANS/FW-H optimization algorithm in order to be able to optimize the shape of airfoils based on their calculated far-field pressure fluctuations. Validation and application results for this novel hybrid URANS/FW-H optimization algorithm show that it is possible to optimize the shape of an airfoil in an unsteady flow environment to minimize its radiated far-field noise while maintaining good aerodynamic performance.

Rumpfkeil, Markus Peer

19

The effect of sound on the lift of an airfoil  

E-print Network

THE EFFECT OF SOUND ON THE LIFT OF AN AIRFOIL By John Victor Kitowski A Thesis Submitted to the Graduate School of the Agricultural and Mechanical College of Texas in partial fulfillment of the requirements for the degree of MASTER... OF SCIENCE May, 1962 Qepartment of Aeronautical Engineering Major Subject: Aeronautical Engineering THE EFFECT OF SOUND ON THE LIFT OF AN AIRFOIL A Thesis By John Victor Kitowski Approved as to style and content by: Chairman of Committee Head...

Kitowski, John Victor

1962-01-01

20

The Development of Cambered Airfoil Sections Having Favorable Lift Characteristics at Supercritical Mach Numbers  

NASA Technical Reports Server (NTRS)

Several groups of new airfoil sections, designated as the NACA 8-series, are derived analytically to have lift characteristics at supercritical Mach numbers which are favorable in the sense that the abrupt loss of lift, characteristic of the usual airfoil section at Mach numbers above the critical, is avoided. Aerodynamic characteristics determined, from two-dimensional windtunnel tests at Mach numbers up to approximately 0.9 are presented for each of the derived airfoils. Comparisons are made between the characteristics of these airfoils and the corresponding characteristics of representative NPiCA 6-series airfoils. The experimental results confirm the design expectations in demonstrating for the NACA S-series airfoils either no variation, or an Increase from the low-speed design value, In the lift coefficient at a constant angle of attack with increasing Mach number above the critical. It was not found possible to improve the variation with Mach number of the slope of the lift curve for these airfoils above that for the NACA 6-series airfoils. The drag characteristics of the new airfoils are somewhat inferior to those of the NACA 6- series with respect to divergence with Mach number, but the pitching-moment characteristics are more favorable for the thinner new sections In demonstrating somewhat smaller variations of moment coefficient with both angle of attack and Mach number. The effect on the aero&ynamic characteristics at high Mach numbers of removing the cusp from the trailing-edge regions of two 10-percent-chord-thick NACA 6-series airfoils is determined to be negligible.

Graham, Donald J

1948-01-01

21

Experimental and computational investigation of lift-enhancing tabs on a multi-element airfoil  

NASA Technical Reports Server (NTRS)

An experimental and computational investigation of the effect of lift enhancing tabs on a two-element airfoil was conducted. The objective of the study was to develop an understanding of the flow physics associated with lift enhancing tabs on a multi-element airfoil. A NACA 63(sub 2)-215 ModB airfoil with a 30 percent chord Fowler flap was tested in the NASA Ames 7 by 10 foot wind tunnel. Lift enhancing tabs of various heights were tested on both the main element and the flap for a variety of flap riggings. Computations of the flow over the two-element airfoil were performed using the two-dimensional incompressible Navier-Stokes code INS2D-UP. The computer results predict all of the trends in the experimental data quite well. When the flow over the flap upper surface is attached, tabs mounted at the main element trailing edge (cove tabs) produce very little change in lift. At high flap deflections. however, the flow over the flap is separated and cove tabs produce large increases in lift and corresponding reductions in drag by eliminating the separated flow. Cove tabs permit high flap deflection angles to be achieved and reduce the sensitivity of the airfoil lift to the size of the flap gap. Tabs attached to the flap training edge (flap tabs) are effective at increasing lift without significantly increasing drag. A combination of a cove tab and a flap tab increased the airfoil lift coefficient by 11 percent relative to the highest lift tab coefficient achieved by any baseline configuration at an angle of attack of zero percent and the maximum lift coefficient was increased by more than 3 percent. A simple analytic model based on potential flow was developed to provide a more detailed understanding of how lift enhancing tabs work. The tabs were modeled by a point vortex at the training edge. Sensitivity relationships were derived which provide a mathematical basis for explaining the effects of lift enhancing tabs on a multi-element airfoil. Results of the modeling effort indicate that the dominant effects of the tabs on the pressure distribution of each element of the airfoil can be captured with a potential flow model for cases with no flow separation.

Ashby, Dale

1996-01-01

22

Aerodynamic Characteristics of Airfoils at High Speeds  

NASA Technical Reports Server (NTRS)

This report deals with an experimental investigation of the aerodynamical characteristics of airfoils at high speeds. Lift, drag, and center of pressure measurements were made on six airfoils of the type used by the air service in propeller design, at speeds ranging from 550 to 1,000 feet per second. The results show a definite limit to the speed at which airfoils may efficiently be used to produce lift, the lift coefficient decreasing and the drag coefficient increasing as the speed approaches the speed of sound. The change in lift coefficient is large for thick airfoil sections (camber ratio 0.14 to 0.20) and for high angles of attack. The change is not marked for thin sections (camber ratio 0.10) at low angles of attack, for the speed range employed. At high speeds the center of pressure moves back toward the trailing edge of the airfoil as the speed increases. The results indicate that the use of tip speeds approaching the speed of sound for propellers of customary design involves a serious loss in efficiency.

Briggs, L J; Hull, G F; Dryden, H L

1925-01-01

23

Acoustic radiation from lifting airfoils in compressible subsonic flow  

NASA Technical Reports Server (NTRS)

The far field acoustic radiation from a lifting airfoil in a three-dimensional gust is studied. The acoustic pressure is calculated using the Kirchhoff method, instead of using the classical acoustic analogy approach due to Lighthill. The pressure on the Kirchhoff surface is calculated using an existing numerical solution of the unsteady flow field. The far field acoustic pressure is calculated in terms of these values using Kirchhoff's formula. The method is validated against existing semi-analytical results for a flat plate. The method is then used to study the problem of an airfoil in a harmonic three-dimensional gust, for a wide range of Mach numbers. The effect of variation of the airfoil thickness and angle of attack on the acoustic far field is studied. The changes in the mechanism of sound generation and propagation due to the presence of steady loading and nonuniform mean flow are also studied.

Atassi, Hafiz M.; Subramaniam, Shankar; Scott, James R.

1990-01-01

24

Compressible flows with periodic vortical disturbances around lifting airfoils. Ph.D. Thesis - Notre Dame Univ.  

NASA Technical Reports Server (NTRS)

A numerical method is developed for solving periodic, three-dimensional, vortical flows around lifting airfoils in subsonic flow. The first-order method that is presented fully accounts for the distortion effects of the nonuniform mean flow on the convected upstream vortical disturbances. The unsteady velocity is split into a vortical component which is a known function of the upstream flow conditions and the Lagrangian coordinates of the mean flow, and an irrotational field whose potential satisfies a nonconstant-coefficient, inhomogeneous, convective wave equation. Using an elliptic coordinate transformation, the unsteady boundary value problem is solved in the frequency domain on grids which are determined as a function of the Mach number and reduced frequency. The numerical scheme is validated through extensive comparisons with known solutions to unsteady vortical flow problems. In general, it is seen that the agreement between the numerical and analytical results is very good for reduced frequencies ranging from 0 to 4, and for Mach numbers ranging from .1 to .8. Numerical results are also presented for a wide variety of flow configurations for the purpose of determining the effects of airfoil thickness, angle of attack, camber, and Mach number on the unsteady lift and moment of airfoils subjected to periodic vortical gusts. It is seen that each of these parameters can have a significant effect on the unsteady airfoil response to the incident disturbances, and that the effect depends strongly upon the reduced frequency and the dimensionality of the gust. For a one-dimensional (transverse) or two-dimensional (transverse and longitudinal) gust, the results indicate that airfoil thickness increases the unsteady lift and moment at the low reduced frequencies but decreases it at the high reduced frequencies. The results show that an increase in airfoil Mach number leads to a significant increase in the unsteady lift and moment for the low reduced frequencies, but a significant decrease for the high reduced frequencies.

Scott, James R.

1991-01-01

25

Experimental Study of Slat Noise from 30P30N Three-Element High-Lift Airfoil in JAXA Hard-Wall Low-Speed Wind Tunnel  

NASA Technical Reports Server (NTRS)

Aeroacoustic measurements associated with noise radiation from the leading edge slat of the canonical, unswept 30P30N three-element high-lift airfoil configuration have been obtained in a 2 m x 2 m hard-wall wind tunnel at the Japan Aerospace Exploration Agency (JAXA). Performed as part of a collaborative effort on airframe noise between JAXA and the National Aeronautics and Space Administration (NASA), the model geometry and majority of instrumentation details are identical to a NASA model with the exception of a larger span. For an angle of attack up to 10 degrees, the mean surface Cp distributions agree well with free-air computational fluid dynamics predictions corresponding to a corrected angle of attack. After employing suitable acoustic treatment for the brackets and end-wall effects, an approximately 2D noise source map is obtained from microphone array measurements, thus supporting the feasibility of generating a measurement database that can be used for comparison with free-air numerical simulations. Both surface pressure spectra obtained via KuliteTM transducers and the acoustic spectra derived from microphone array measurements display a mixture of a broad band component and narrow-band peaks (NBPs), both of which are most intense at the lower angles of attack and become progressively weaker as the angle of attack is increased. The NBPs exhibit a substantially higher spanwise coherence in comparison to the broadband portion of the spectrum and, hence, confirm the trends observed in previous numerical simulations. Somewhat surprisingly, measurements show that the presence of trip dots between the stagnation point and slat cusp enhances the NBP levels rather than mitigating them as found in a previous experiment.

Murayama, Mitsuhiro; Nakakita, Kazuyuki; Yamamoto, Kazuomi; Ura, Hiroki; Ito, Yasushi; Choudhari, Meelan M.

2014-01-01

26

The development of cambered airfoil sections having favorable lift characteristics at supercritical Mach numbers  

NASA Technical Reports Server (NTRS)

Several groups of new airfoil sections, designated as the NACA 8-series, are derived analytically to have lift characteristics at supercritical Mach numbers which are favorable in the sense that the abrupt loss of lift, characteristic of the usual airfoil section at Mach numbers above the critical, is avoided. Aerodynamic characteristics determined from two-dimensional wind-tunnel tests at Mach numbers up to approximately 0.9 are presented for each of the derived airfoils. Comparisons are made between the characteristics of these airfoils and the corresponding characteristics of representative NACA 6-series airfoils.

Graham, Donald J

1949-01-01

27

Airfoils  

NSDL National Science Digital Library

In this experiment, learners discover how an airfoil creates lift. Learners use simple materials to build an airfoil and test it at different angles to investigate Bernoulli's principle. This activity guide includes questions for drawing conclusions, extensions, and an answer key.

Shannon Ricles

2013-01-30

28

Investigation of a bio-inspired lift-enhancing effector on a 2D airfoil.  

PubMed

A flap mounted on the upper surface of an airfoil, called a 'lift-enhancing effector', has been shown in wind tunnel tests to have a similar function to a bird's covert feathers, which rise off the wing's surface in response to separated flows. The effector, fabricated from a thin Mylar sheet, is allowed to rotate freely about its leading edge. The tests were performed in the NCSU subsonic wind tunnel at a chord Reynolds number of 4 × 10(5). The maximum lift coefficient with the effector was the same as that for the clean airfoil, but was maintained over an angle-of-attack range from 12° to almost 20°, resulting in a very gentle stall behavior. To better understand the aerodynamics and to estimate the deployment angle of the free-moving effector, fixed-angle effectors fabricated out of stiff wood were also tested. A progressive increase in the stall angle of attack with increasing effector angle was observed, with diminishing returns beyond the effector angle of 60°. Drag tests on both the free-moving and fixed effectors showed a marked improvement in drag at high angles of attack. Oil flow visualization on the airfoil with and without the fixed-angle effectors proved that the effector causes the separation point to move aft on the airfoil, as compared to the clean airfoil. This is thought to be the main mechanism by which an effector improves both lift and drag. A comparison of the fixed-effector results with those from the free-effector tests shows that the free effector's deployment angle is between 30° and 45°. When operating at and beyond the clean airfoil's stall angle, the free effector automatically deploys to progressively higher angles with increasing angles of attack. This slows down the rapid upstream movement of the separation point and avoids the severe reduction in the lift coefficient and an increase in the drag coefficient that are seen on the clean airfoil at the onset of stall. Thus, the effector postpones the stall by 4-8° and makes the stall behavior more gentle. The benefits of using the effector could include care-free operations at high angles of attack during perching and maneuvering flight, especially in gusty conditions. PMID:22498691

Johnston, Joe; Gopalarathnam, Ashok

2012-09-01

29

Optimization of an Advanced Design Three-Element Airfoil at High Reynolds Numbers  

NASA Technical Reports Server (NTRS)

New high-lift components have been designed for a three-element advanced high-lift research airfoil using a state-of-the-art computational method. The new components were designed with the aim to provide high maximum-lift values while maintaining attached flow on the single-segment flap at approach conditions. This three-element airfoil has been tested in the NASA Langley Low-Turbulence Pressure Tunnel at chord Reynolds number up to 16 million. The performance of the NASA research airfoil is compared to a reference advanced high-lift research airfoil. Effects of Reynolds number on slat and flap rigging have been studied experimentally. The performance trend of this new high-lift design is comparable to that predicted by the computational method over much of the angle of attack range. Nevertheless, the method did not accurately predict the airfoil performance or the configuration-based trends near maximum lift.

Lin, John C.; Dominik, Chet J.

1995-01-01

30

Prediction of high frequency gust response with airfoil thickness effects  

NASA Astrophysics Data System (ADS)

The unsteady lift forces that act on an airfoil in turbulent flow are an undesirable source of vibration and noise in many industrial applications. Methods to predict these forces have traditionally treated the airfoil as a flat plate. At higher frequencies, where the relevant turbulent length scales are comparable to the airfoil thickness, the flat plate approximation becomes invalid and results in overprediction of the unsteady force spectrum. This work provides an improved methodology for the prediction of the unsteady lift forces that accounts for the thickness of the airfoil. An analytical model was developed to calculate the response of the airfoil to high frequency gusts. The approach is based on a time-domain calculation with a sharp-edged gust and accounts for the distortion of the gust by the mean flow around the airfoil leading edge. The unsteady lift is calculated from a weighted integration of the gust vorticity, which makes the model relatively straightforward to implement and verify. For routine design calculations of turbulence-induced forces, a closed-form gust response thickness correction factor was developed for NACA 65 series airfoils.

Lysak, Peter D.; Capone, Dean E.; Jonson, Michael L.

2013-05-01

31

Pressure Distribution Over Airfoils at High Speeds  

NASA Technical Reports Server (NTRS)

This report deals with the pressure distribution over airfoils at high speeds, and describes an extension of an investigation of the aerodynamic characteristics of certain airfoils which was presented in NACA Technical Report no. 207. The results presented in report no. 207 have been confirmed and extended to higher speeds through a more extensive and systematic series of tests. Observations were also made of the air flow near the surface of the airfoils, and the large changes in lift coefficients were shown to be associated with a sudden breaking away of the flow from the upper surface. The tests were made on models of 1-inch chord and comparison with the earlier measurements on models of 3-inch chord shows that the sudden change in the lift coefficient is due to compressibility and not to a change in the Reynolds number. The Reynolds number still has a large effect, however, on the drag coefficient. The pressure distribution observations furnish the propeller designer with data on the load distribution at high speeds, and also give a better picture of the air-flow changes.

Briggs, L J; Dryden, H L

1927-01-01

32

Experimental and Computational Investigation of Lift-Enhancing Tabs on a Multi-Element Airfoil  

NASA Technical Reports Server (NTRS)

An experimental and computational investigation of the effect of lift-enhancing tabs on a two-element airfoil has been conducted. The objective of the study was to develop an understanding of the flow physics associated with lift-enhancing tabs on a multi-element airfoil. An NACA 63(2)-215 ModB airfoil with a 30% chord fowler flap was tested in the NASA Ames 7- by 10-Foot Wind Tunnel. Lift-enhancing tabs of various heights were tested on both the main element and the flap for a variety of flap riggings. A combination of tabs located at the main element and flap trailing edges increased the airfoil lift coefficient by 11% relative to the highest lift coefficient achieved by any baseline configuration at an angle of attack of 0 deg, and C(sub 1max) was increased by 3%. Computations of the flow over the two-element airfoil were performed using the two-dimensional incompressible Navier-Stokes code INS2D-UP. The computed results predicted all of the trends observed in the experimental data quite well. In addition, a simple analytic model based on potential flow was developed to provide a more detailed understanding of how lift-enhancing tabs work. The tabs were modeled by a point vortex at the air-foil or flap trailing edge. Sensitivity relationships were derived which provide a mathematical basis for explaining the effects of lift-enhancing tabs on a multi-element airfoil. Results of the modeling effort indicate that the dominant effects of the tabs on the pressure distribution of each element of the airfoil can be captured with a potential flow model for cases with no flow separation.

Ashby, Dale L.

1996-01-01

33

Modeling the Aerodynamic Lift Produced by Oscillating Airfoils at Low Reynolds Number  

E-print Network

For present study, setting Strouhal Number (St) as control parameter, numerical simulations for flow past oscillating NACA-0012 airfoil at 1,000 Reynolds Numbers (Re) are performed. Temporal profiles of unsteady forces; lift and thrust, and their spectral analysis clearly indicate the solution to be a period-1 attractor for low Strouhal numbers. This study reveals that aerodynamic forces produced by plunging airfoil are independent of initial kinematic conditions of airfoil that proves the existence of limit cycle. Frequencies present in the oscillating lift force are composed of fundamental (fs), even and odd harmonics (3fs) at higher Strouhal numbers. Using numerical simulations, shedding frequencies (f_s) were observed to be nearly equal to the excitation frequencies in all the cases. Unsteady lift force generated due to the plunging airfoil is modeled by modified van der Pol oscillator. Using method of multiple scales and spectral analysis of steady-state CFD solutions, frequencies and damping terms in th...

Khalid, Muhammad Saif Ullah

2015-01-01

34

Lift enhancement and flow structure of airfoil with joint trailing-edge flap and Gurney flap  

NASA Astrophysics Data System (ADS)

The impact of Gurney flaps (GF), of different heights and perforations, on the aerodynamic and wake characteristics of a NACA 0015 airfoil equipped with a trailing-edge flap (TEF) was investigated experimentally at Re = 2.54 × 105. The addition of the Gurney flap to the TEF produced a further increase in the downward turning of the mean flow (increased aft camber), leading to a significant increase in the lift, drag, and pitching moment compared to that produced by independently deployed TEF or GF. The maximum lift increased with flap height, with the maximum lift-enhancement effectiveness exhibited at the smallest flap height. The near wake behind the joint TEF and GF became wider and had a larger velocity deficit and fluctuations compared to independent GF and TEF deployment. The Gurney flap perforation had only a minor impact on the wake and aerodynamics characteristics compared to TEF with a solid GF. The rapid rise in lift generation of the joint TEF and GF application, compared to conventional TEF deployment, could provide an improved off-design high-lift device during landing and takeoff.

Lee, T.; Su, Y. Y.

2011-06-01

35

Generation of thrust and lift with airfoils in plunging and pitching motion  

NASA Astrophysics Data System (ADS)

We present fully resolved Direct Numerical Simulations of 2D flow over a moving airfoil, using an in-house code that solves the Navier-Stokes equations of the incompressible flow with an Immersed Boundary Method. A combination of sinusoidal plunging and pitching motions is imposed to the airfoil. Starting from a thrust producing case (Reynolds number, Re = 1000, reduced frequency, k = 1.41, plunging amplitude h0/c = 1, pitching amplitude ?0 = 30°, phase shift phi = 90°), we increase the mean pitching angle (in order to produce lift) and vary the phase shift between pitching and plunging (to optimize the direction and magnitude of the net force on the airfoil). These cases are discussed in terms of their lift coefficient, thrust coefficient and propulsive efficiency.

Moriche, M.; Flores, O.; García-Villalba, M.

2015-01-01

36

Estimation of unsteady lift on a pitching airfoil from wake velocity surveys  

NASA Technical Reports Server (NTRS)

The results of a joint experimental and computational study on the flowfield over a periodically pitched NACA0012 airfoil, and the resultant lift variation, are reported in this paper. The lift variation over a cycle of oscillation, and hence the lift hysteresis loop, is estimated from the velocity distribution in the wake measured or computed for successive phases of the cycle. Experimentally, the estimated lift hysteresis loops are compared with available data from the literature as well as with limited force balance measurements. Computationally, the estimated lift variations are compared with the corresponding variation obtained from the surface pressure distribution. Four analytical formulations for the lift estimation from wake surveys are considered and relative successes of the four are discussed.

Zaman, K. B. M. Q.; Panda, J.; Rumsey, C. L.

1993-01-01

37

Experimental Study of Lift-Enhancing Tabs on a Two-Element Airfoil  

NASA Technical Reports Server (NTRS)

The results of a wind-tunnel test are presented for a two-dimensional NASA 63(sub 2)-215 Mod B airfoil with a 30% chord single-slotted flap. The use of lift-enhancing tabs (similar to Gurney flaps) on the lower surface near the trailing edge of both elements was investigated on four nap configurations. A combination of vortex generators on the flap and lift-enhancing tabs was also investigated. Measurements of surface-pressure distributions and wake profiles were used to determine the aerodynamic performance of each configuration. By reducing flow separation on the flap, a lift-enhancing tab at the main-element trailing edge increased the maximum lift by 10.3% for the 42-deg flap case. The tab had a lesser effect at a moderate flap deflection (32 deg) and adversely affected the performance at the smallest flap deflection (22 deg). A tab located near the flap trailing edge produced an additional lift increment for all flap deflections. The application of vortex generators to the flap eliminated lift-curve hysteresis and reduced flow separation on two configurations with large flap deflections (greater than 40 deg). A maximum-lift coefficient of 3.32 (17% above the optimum baseline) was achieved with the combination of lift-enhancing tabs on both elements and vortex generators on the flap.

Storms, Bruce L.; Ross, James C.

1995-01-01

38

Low-speed aerodynamic characteristics of an airfoil optimized for maximum lift coefficient  

NASA Technical Reports Server (NTRS)

An investigation has been conducted in the Langley low-turbulence pressure tunnel to determine the two-dimensional characteristics of an airfoil optimized for maximum lift coefficient. The design maximum lift coefficient was 2.1 at a Reynolds number of 9.7 million. The airfoil with a smooth surface and with surface roughness was tested at angles of attack from 6 deg to 26 deg, Reynolds numbers (based on airfoil chord) from 2.0 million to 12.9 million, and Mach numbers from 0.10 to 0.35. The experimental results are compared with values predicted by theory. The experimental pressure distributions observed at angles of attack up to at least 12 deg were similar to the theoretical values except for a slight increase in the experimental upper-surface pressure coefficients forward of 26 percent chord and a more severe gradient just behind the minimum-pressure-coefficient location. The maximum lift coefficients were measured with the model surface smooth and, depending on test conditions, varied from 1.5 to 1.6 whereas the design value was 2.1.

Bingham, G. J.; Chen, A. W.

1972-01-01

39

Active Control of Flow Separation on a High-Lift System with Slotted Flap at High Reynolds Number  

NASA Technical Reports Server (NTRS)

The NASA Energy Efficient Transport (EET) airfoil was tested at NASA Langley's Low- Turbulence Pressure Tunnel (LTPT) to assess the effectiveness of distributed Active Flow Control (AFC) concepts on a high-lift system at flight scale Reynolds numbers for a medium-sized transport. The test results indicate presence of strong Reynolds number effects on the high-lift system with the AFC operational, implying the importance of flight-scale testing for implementation of such systems during design of future flight vehicles with AFC. This paper describes the wind tunnel test results obtained at the LTPT for the EET high-lift system for various AFC concepts examined on this airfoil.

Khodadoust, Abdollah; Washburn, Anthony

2007-01-01

40

Summary of Airfoil Data  

NASA Technical Reports Server (NTRS)

The historical development of NACA airfoils is briefly reviewed. New data are presented that permit the rapid calculation of the approximate pressure distributions for the older NACA four-digit and five-digit airfoils by the same methods used for the NACA 6-series airfoils. The general methods used to derive the basic thickness forms for NACA 6 and 7-series airfoils together with their corresponding pressure distributions are presented. Detail data necessary for the application of the airfoils to wing design are presented in supplementary figures placed at the end of the paper. The report includes an analysis of the lift, drag, pitching-moment, and critical-speed characteristics of the airfoils, together with a discussion of the effects of surface conditions. Available data on high-lift devices are presented. Problems associated with lateral-control devices, leading-edge air intakes, and interference are briefly discussed, together with aerodynamic problems of application. (author)

Abbott, Ira H; Von Doenhoff, Albert E; Stivers, Louis, Jr

1945-01-01

41

Development of high-lift laminar wing using steady active flow control  

NASA Astrophysics Data System (ADS)

Fuel costs represent a large fraction of aircraft operating costs. Increased aircraft fuel efficiency is thus desirable. Laminar airfoils have the advantage of reduced cruise drag and increased fuel efficiency. Unfortunately, they cannot perform adequately during high-lift situations (i.e. takeoff and landing) due to low stall angles and low maximum lift caused by flow separation. Active flow control has shown the ability to prevent or mitigate separation effects, and increase maximum lift. This fact makes AFC technology a fitting solution for improving high-lift systems and reducing the need for slats and flap elements. This study focused on experimentally investigating the effects of steady active flow control from three slots, located at 1%, 10%, and 80% chord, respectively, over a laminar airfoil with 45 degree deflected flap. A 30-inch-span airfoil model was designed, fabricated, and then tested in the Bill James 2.5'x3' Wind Tunnel at Iowa State University. Pressure data were collected along the mid-span of the airfoil, and lift and drag were calculated. Five test cases with varying injection locations and varying C? were chosen: baseline, blown flap, leading edge blowing, equal blowing, and unequal blowing. Of these cases, unequal blowing achieved the greatest lift enhancement over the baseline. All cases were able to increase lift; however, gains were less than anticipated.

Clayton, Patrick J.

42

High fidelity numerical simulation of airfoil thickness and kinematics effects on flapping airfoil propulsion  

NASA Astrophysics Data System (ADS)

High-fidelity numerical simulations with the spectral difference (SD) method are carried out to investigate the unsteady flow over a series of oscillating NACA 4-digit airfoils. Airfoil thickness and kinematics effects on the flapping airfoil propulsion are highlighted. It is confirmed that the aerodynamic performance of airfoils with different thickness can be very different under the same kinematics. Distinct evolutionary patterns of vortical structures are analyzed to unveil the underlying flow physics behind the diverse flow phenomena associated with different airfoil thickness and kinematics and reveal the synthetic effects of airfoil thickness and kinematics on the propulsive performance. Thickness effects at various reduced frequencies and Strouhal numbers for the same chord length based Reynolds number (=1200) are then discussed in detail. It is found that at relatively small Strouhal number (=0.3), for all types of airfoils with the combined pitching and plunging motion (pitch angle 20°, the pitch axis located at one third of chord length from the leading edge, pitch leading plunge by 75°), low reduced frequency (=1) is conducive for both the thrust production and propulsive efficiency. Moreover, relatively thin airfoils (e.g. NACA0006) can generate larger thrust and maintain higher propulsive efficiency than thick airfoils (e.g. NACA0030). However, with the same kinematics but at relatively large Strouhal number (=0.45), it is found that airfoils with different thickness exhibit diverse trend on thrust production and propulsive efficiency, especially at large reduced frequency (=3.5). Results on effects of airfoil thickness based Reynolds numbers indicate that relative thin airfoils show superior propulsion performance in the tested Reynolds number range. The evolution of leading edge vortices and the interaction between the leading and trailing edge vortices play key roles in flapping airfoil propulsive performance.

Yu, Meilin; Wang, Z. J.; Hu, Hui

2013-10-01

43

Models of Lift and Drag Coefficients of Stalled and Unstalled Airfoils in Wind Turbines and Wind Tunnels  

NASA Technical Reports Server (NTRS)

Equations are developed with which to calculate lift and drag coefficients along the spans of torsionally-stiff rotating airfoils of the type used in wind turbine rotors and wind tunnel fans, at angles of attack in both the unstalled and stalled aerodynamic regimes. Explicit adjustments are made for the effects of aspect ratio (length to chord width) and airfoil thickness ratio. Calculated lift and drag parameters are compared to measured parameters for 55 airfoil data sets including 585 test points. Mean deviation was found to be -0.4 percent and standard deviation was 4.8 percent. When the proposed equations were applied to the calculation of power from a stall-controlled wind turbine tested in a NASA wind tunnel, mean deviation from 54 data points was -1.3 percent and standard deviation was 4.0 percent. Pressure-rise calculations for a large wind tunnel fan deviated by 2.7 percent (mean) and 4.4 percent (standard). The assumption that a single set of lift and drag coefficient equations can represent the stalled aerodynamic behavior of a wide variety of airfoils was found to be satisfactory.

Spera, David A.

2008-01-01

44

A Systematic Investigation of Pressure Distributions at High Speeds over Five Representative NACA Low-Drag and Conventional Airfoil Sections  

NASA Technical Reports Server (NTRS)

Pressure distributions determined from high-speed wind-tunnel tests are presented for five NACA airfoil sections representative of both low-drag and conventional types. Section characteristics of lift, drag, and quarter-chord pitching moment are presented along with the measured pressure distributions for the NACA 65sub2-215 (a=0.5), 66sub2-215 (a=0.6), 0015, 23015, and 4415 airfoils for Mach numbers up to approximately 0.85. A critical study is made of the airfoil pressure distributions in an attempt to formulate a set of general criteria for defining the character of high speed flows over typical airfoil shapes. Comparisons are made of the relative characteristics of the low-drag and conventional airfoils investigated insofar as they would influence the high-speed performance and the high-speed stability and control characteristics of airplanes employing these wing sections.

Graham, Donald J; Nitzberg, Gerald E; Olson, Robert N

1945-01-01

45

Summary of section data on trailing-edge high-lift devices  

NASA Technical Reports Server (NTRS)

A summary has been made of available data on the characteristics of airfoil sections with trailing-edge high-lift devices. Data for plain, split, and slotted flaps are collected and analyzed. The effects of each of the variables involved in the design of the various types of flap are examined and, in cases where sufficient data are given, optimum configurations are deduced. Wherever possible, the effects of airfoil section, Reynolds number, and leading-edge roughness are shown. For single and double slotted flaps, where a large amount of unrelated data are available, maximum lift coefficients of many configurations are presented in tables.

Cahill, Jones F

1949-01-01

46

Summary of Airfoil Data  

NASA Technical Reports Server (NTRS)

Recent airfoil data for both flight and wind-tunnel tests have been collected and correlated insofar as possible. The flight data consist largely of drag measurements made by the wake-survey method. Most of the data on airfoil section characteristics were obtained in the Langley two-dimensional low-turbulence pressure tunnel. Detail data necessary for the application of NACA 6-serles airfoils to wing design are presented in supplementary figures, together with recent data for the NACA 24-, 44-, and 230-series airfoils. The general methods used to derive the basic thickness forms for NACA 6- and 7-series airfoils and their corresponding pressure distributions are presented. Data and methods are given for rapidly obtaining the approximate pressure distributions for NACA four-digit, five-digit, 6-, and 7-series airfoils. The report includes an analysis of the lift, drag, pitching-moment, and critical-speed characteristics of the airfoils, together with a discussion of the effects of surface conditions. Available data on high-lift devices are presented. Problems associated with lateral-control devices, leading-edge air intakes, and interference are briefly discussed. The data indicate that the effects of surface condition on the lift and drag characteristics are at least as large as the effects of the airfoil shape and must be considered in airfoil selection and the prediction of wing characteristics. Airfoils permitting extensive laminar flow, such as the NACA 6-series airfoils, have much lower drag coefficients at high speed and cruising lift coefficients than earlier types-of airfoils if, and only if, the wing surfaces are sufficiently smooth and fair. The NACA 6-series airfoils also have favorable critical-speed characteristics and do not appear to present unusual problems associated with the application of high-lift and lateral-control devices. Much of the data given in the NACA Advance Confidential Report entitled "Preliminary Low-Drag-Airfoil and Flap Data from Tests at Large Reynolds Number and Low Turbulence," by Eastman N. Jacobs, Ira R. Abbott, and Milton Davidson, March 1942 has been corrected and included in the present paper, which supersedes the previously published paper.

Stivers, Louis S.; Abbott, Ira H.; von Doenhoff, Albert E.

1945-01-01

47

Reversible airfoils for stopped rotors in high speed flight  

NASA Astrophysics Data System (ADS)

This study starts with the design of a reversible airfoil rib for stopped-rotor applications, where the sharp trailing-edge morphs into the rounded leading-edge, and vice-versa. A NACA0012 airfoil is approximated in a piecewise linear manner and straight, rigid outer profile links used to define the airfoil contour. The end points of the profile links connect to control links, each set on a central actuation rod via an offset. Chordwise motion of the actuation rod moves the control and the profile links and reverses the airfoil. The paper describes the design methodology and evolution of the final design, based on which two reversible airfoil ribs were fabricated and used to assemble a finite span reversible rotor/wing demonstrator. The profile links were connected by Aluminum strips running in the spanwise direction which provided stiffness as well as support for a pre-tensioned elastomeric skin. An inter-rib connector with a curved-front nose piece supports the leading-edge. The model functioned well and was able to reverse smoothly back-and-forth, on application and reversal of a voltage to the motor. Navier–Stokes CFD simulations (using the TURNS code) show that the drag coefficient of the reversible airfoil (which had a 13% maximum thickness due to the thickness of the profile links) was comparable to that of the NACA0013 airfoil. The drag of a 16% thick elliptical airfoil was, on average, about twice as large, while that of a NACA0012 in reverse flow was 4–5 times as large, even prior to stall. The maximum lift coefficient of the reversible airfoil was lower than the elliptical airfoil, but higher than the NACA0012 in reverse flow operation.

Niemiec, Robert; Jacobellis, George; Gandhi, Farhan

2014-10-01

48

Development of Advanced High Lift Leading Edge Technology for Laminar Flow Wings  

NASA Technical Reports Server (NTRS)

This paper describes the Advanced High Lift Leading Edge (AHLLE) task performed by Northrop Grumman Systems Corporation, Aerospace Systems (NGAS) for the NASA Subsonic Fixed Wing project in an effort to develop enabling high-lift technology for laminar flow wings. Based on a known laminar cruise airfoil that incorporated an NGAS-developed integrated slot design, this effort involved using Computational Fluid Dynamics (CFD) analysis and quality function deployment (QFD) analysis on several leading edge concepts, and subsequently down-selected to two blown leading-edge concepts for testing. A 7-foot-span AHLLE airfoil model was designed and fabricated at NGAS and then tested at the NGAS 7 x 10 Low Speed Wind Tunnel in Hawthorne, CA. The model configurations tested included: baseline, deflected trailing edge, blown deflected trailing edge, blown leading edge, morphed leading edge, and blown/morphed leading edge. A successful demonstration of high lift leading edge technology was achieved, and the target goals for improved lift were exceeded by 30% with a maximum section lift coefficient (Cl) of 5.2. Maximum incremental section lift coefficients ( Cl) of 3.5 and 3.1 were achieved for a blown drooped (morphed) leading edge concept and a non-drooped leading edge blowing concept, respectively. The most effective AHLLE design yielded an estimated 94% lift improvement over the conventional high lift Krueger flap configurations while providing laminar flow capability on the cruise configuration.

Bright, Michelle M.; Korntheuer, Andrea; Komadina, Steve; Lin, John C.

2013-01-01

49

Flow Control Research at NASA Langley in Support of High-Lift Augmentation  

NASA Technical Reports Server (NTRS)

The paper describes the efforts at NASA Langley to apply active and passive flow control techniques for improved high-lift systems, and advanced vehicle concepts utilizing powered high-lift techniques. The development of simplified high-lift systems utilizing active flow control is shown to provide significant weight and drag reduction benefits based on system studies. Active flow control that focuses on separation, and the development of advanced circulation control wings (CCW) utilizing unsteady excitation techniques will be discussed. The advanced CCW airfoils can provide multifunctional controls throughout the flight envelope. Computational and experimental data are shown to illustrate the benefits and issues with implementation of the technology.

Sellers, William L., III; Jones, Gregory S.; Moore, Mark D.

2002-01-01

50

Design of the LRP airfoil series using 2D CFD  

NASA Astrophysics Data System (ADS)

This paper describes the design and wind tunnel testing of a high-Reynolds number, high lift airfoil series designed for wind turbines. The airfoils were designed using direct gradient- based numerical multi-point optimization based on a Bezier parameterization of the shape, coupled to the 2D Navier-Stokes flow solver EllipSys2D. The resulting airfoils, the LRP2-30 and LRP2-36, achieve both higher operational lift coefficients and higher lift to drag ratios compared to the equivalent FFA-W3 airfoils.

Zahle, Frederik; Bak, Christian; Sørensen, Niels N.; Vronsky, Tomas; Gaudern, Nicholas

2014-06-01

51

Non-Equilibrium Turbulence Modeling for High Lift Aerodynamics  

NASA Technical Reports Server (NTRS)

This phase is discussed in ('Non linear kappa - epsilon - upsilon(sup 2) modeling with application to high lift', Application of the kappa - epsilon -upsilon(sup 2) model to multi-component airfoils'). Further results are presented in 'Non-linear upsilon(sup 2) - f modeling with application to high-lift' The ADI solution method in the initial implementation was very slow to converge on multi-zone chimera meshes. I modified the INS implementation to use GMRES. This provided improved convergence and less need for user intervention in the solution process. There were some difficulties with implementation into the NASA compressible codes, due to their use of approximate factorization. The Helmholtz equation for f is not an evolution equation, so it is not of the form assumed by the approximate factorization method. Although The Kalitzin implementation involved a new solution algorithm ('An implementation of the upsilon(sup 2) - f model with application to transonic flows'). The algorithm involves introducing a relaxation term in the f-equation so that it can be factored. The factorization can be into a plane and a line, with GMRES used in the plane. The NASA code already evaluated coefficients in planes, so no additional memory is required except that associated the the GMRES algorithm. So the scope of this project has expanded via these interactions. . The high-lift work has dovetailed into turbine applications.

Durbin, P. A.

1998-01-01

52

Key Topics for High-Lift Research: A Joint Wind Tunnel/Flight Test Approach  

NASA Technical Reports Server (NTRS)

Future high-lift systems must achieve improved aerodynamic performance with simpler designs that involve fewer elements and reduced maintenance costs. To expeditiously achieve this, reliable CFD design tools are required. The development of useful CFD-based design tools for high lift systems requires increased attention to unresolved flow physics issues. The complex flow field over any multi-element airfoil may be broken down into certain generic component flows which are termed high-lift building block flows. In this report a broad spectrum of key flow field physics issues relevant to the design of improved high lift systems are considered. It is demonstrated that in-flight experiments utilizing the NASA Dryden Flight Test Fixture (which is essentially an instrumented ventral fin) carried on an F-15B support aircraft can provide a novel and cost effective method by which both Reynolds and Mach number effects associated with specific high lift building block flows can be investigated. These in-flight high lift building block flow experiments are most effective when performed in conjunction with coordinated ground based wind tunnel experiments in low speed facilities. For illustrative purposes three specific examples of in-flight high lift building block flow experiments capable of yielding a high payoff are described. The report concludes with a description of a joint wind tunnel/flight test approach to high lift aerodynamics research.

Fisher, David; Thomas, Flint O.; Nelson, Robert C.

1996-01-01

53

Critical Mach Numbers of Thin Airfoil Sections with Plain Flaps  

NASA Technical Reports Server (NTRS)

Critical Mach number as function of lift coefficient is determined for certain moderately thick NACA low-drag airfoils. Results, given graphically, included calculations on same airfoil sections with plain flaps for small flap deflections. Curves indicate optimum critical conditions for airfoils with flaps in such form that they can be compared with corresponding results for zero flap deflections. Plain flaps increase life-coefficient range for which critical Mach number is in region of high values characteristic of low-drag airfoils.

Pardee, Otway O'm.; Heaslet, Max A.

1946-01-01

54

Airfoils for wind turbine  

DOEpatents

Airfoils are disclosed for the blade of a wind turbine wherein each airfoil is characterized by a thickness in a range from 16%-24% and a maximum lift coefficient designed to be largely insensitive to roughness effects. The airfoils include a family of airfoils for a blade 15 to 25 meters in length, a family of airfoils for a blade 1 to 5 meters in length, and a family of airfoils for a blade 5 to 10 meters in length. 10 figs.

Tangler, J.L.; Somers, D.M.

1996-10-08

55

Airfoils for wind turbine  

DOEpatents

Airfoils for the blade of a wind turbine wherein each airfoil is characterized by a thickness in a range from 16%-24% and a maximum lift coefficient designed to be largely insensitive to roughness effects. The airfoils include a family of airfoils for a blade 15 to 25 meters in length, a family of airfoils for a blade 1 to 5 meters in length, and a family of airfoils for a blade 5 to 10 meters in length.

Tangler, James L. (Boulder, CO); Somers, Dan M. (State College, PA)

1996-01-01

56

Three-Dimensional Effects on Multi-Element High Lift Computations  

NASA Technical Reports Server (NTRS)

In an effort to discover the causes for disagreement between previous 2-D computations and nominally 2-D experiment for flow over the 3-clement McDonnell Douglas 30P-30N airfoil configuration at high lift, a combined experimental/CFD investigation is described. The experiment explores several different side-wall boundary layer control venting patterns, document's venting mass flow rates, and looks at corner surface flow patterns. The experimental angle of attack at maximum lift is found to be sensitive to the side wall venting pattern: a particular pattern increases the angle of attack at maximum lift by at least 2 deg. A significant amount of spanwise pressure variation is present at angles of attack near maximum lift. A CFD study using 3-D structured-grid computations, which includes the modeling of side-wall venting, is employed to investigate 3-D effects of the flow. Side-wall suction strength is found to affect the angle at which maximum lift is predicted. Maximum lift in the CFD is shown to be limited by the growth of all off-body corner flow vortex and consequent increase in spanwise pressure variation and decrease in circulation. The 3-D computations with and without wall venting predict similar trends to experiment at low angles of attack, but either stall too earl or else overpredict lift levels near maximum lift by as much as 5%. Unstructured-grid computations demonstrate that mounting brackets lower die the levels near maximum lift conditions.

Rumsey, Christopher L.; Lee-Rausch, Elizabeth M.; Watson, Ralph D.

2002-01-01

57

Effect of High-Fidelity Ice Accretion Simulations on the Performance of a Full-Scale Airfoil Model  

NASA Technical Reports Server (NTRS)

The simulation of ice accretion on a wing or other surface is often required for aerodynamic evaluation, particularly at small scale or low-Reynolds number. While there are commonly accepted practices for ice simulation, there are no established and validated guidelines. The purpose of this article is to report the results of an experimental study establishing a high-fidelity, full-scale, iced-airfoil aerodynamic performance database. This research was conducted as a part of a larger program with the goal of developing subscale aerodynamic simulation methods for iced airfoils. Airfoil performance testing was carried out at the ONERA F1 pressurized wind tunnel using a 72-in. (1828.8-mm) chord NACA 23012 airfoil over a Reynolds number range of 4.5x10(exp 6) to 16.0 10(exp 6) and a Mach number range of 0.10 to 0.28. The high-fidelity, ice-casting simulations had a significant impact on the aerodynamic performance. A spanwise-ridge ice shape resulted in a maximum lift coefficient of 0.56 compared to the clean value of 1.85 at Re = 15.9x10(exp 6) and M = 0.20. Two roughness and streamwise shapes yielded maximum lift values in the range of 1.09 to 1.28, which was a relatively small variation compared to the differences in the ice geometry. The stalling characteristics of the two roughness and one streamwise ice simulation maintained the abrupt leading-edge stall type of the clean NACA 23012 airfoil, despite the significant decrease in maximum lift. Changes in Reynolds and Mach number over the large range tested had little effect on the iced-airfoil performance.

Broeren, Andy P.; Bragg, Michael B.; Addy, Harold E., Jr.; Lee, Sam; Moens, Frederic; Guffond, Didier

2010-01-01

58

High-order simulations of low Reynolds number membrane airfoils under prescribed motion  

NASA Astrophysics Data System (ADS)

The aerodynamics and aeroelastic response of a membrane wing under prescribed motion are investigated using a high-order, two-dimensional Navier-Stokes solver coupled to a geometrically nonlinear membrane model. The impact of increasing Reynolds number on the vortex dynamics and unsteady aerodynamic loads is examined for moderate-amplitude plunge and combined pitch-plunge motions at low frequency. Simulation results are compared with classical thin airfoil theory and highlight the differences between rigid and flexible membrane airfoils undergoing small and moderate amplitude motions. The present study demonstrates the ability of lifting membrane surface flexibility to enhance thrust production and propulsive efficiency, which may inform the design of flapping wing membrane fliers.

Jaworski, Justin W.; Gordnier, Raymond E.

2012-05-01

59

The Determination of the Geometries of Multiple-Element Airfoils Optimized for Maximum Lift Coefficient. Ph.D. Thesis - Illinois Univ., Urbana  

NASA Technical Reports Server (NTRS)

Optimum airfoils in the sense of maximum lift coefficient are obtained by a newly developed method. The maximum lift coefficient is achieved by requiring that the turbulent skin friction be zero in the pressure rise region on the upper surface. Under this constraint, the pressure distribution is optimized. The optimum pressure distribution consists of a uniform stagnation pressure on the lower surface, a uniform minimum pressure on the upper surface immediately downstream of the front stagnation point followed by a Stratford zero skin friction pressure rise. When multiple-element airfoils are under consideration, this optimum pressure distribution appears on every element. The parameters used to specify the pressure distribution on each element are the Reynolds number and the normalized trailing edge velocity. The newly developed method of design computes the velocity distribution on a given airfoil and modifies the airfoil contour in a systematic manner until the desired velocity distribution is achieved. There are no limitations on how many elements the airfoil to be designed can have.

Chen, A. W.

1971-01-01

60

Airfoil design for variable RPM horizontal axis wind turbines  

NASA Astrophysics Data System (ADS)

The design criteria for new airfoils for a variable speed horizontal axis wind turbine are described. The two series of airfoils developed are characterized by high design lift coefficients in order to achieve small blade chords, high lift drag ratios for the airfoil sections designed for the outer part of the blade, performance insensitivity to surface roughness, and a gentle stall at an angle of attack in order to reduce excessive loads. Each series consists of airfoils with varying thickness to chord ratios for different radial stations. Interpolation between the two series is possible.

Bjoerck, Anders

1990-01-01

61

Note on vortices on their relation to the lift of airfoils  

NASA Technical Reports Server (NTRS)

This note, prepared for the NACA, contains a discussion of the meaning of vortices, so often mentioned in connection with the creation of lift by wings. The action of wings can be more easily understood without the use of vortices.

Munk, Max M

1924-01-01

62

Two-Dimensional High-Lift Aerodynamic Optimization Using Neural Networks  

NASA Technical Reports Server (NTRS)

The high-lift performance of a multi-element airfoil was optimized by using neural-net predictions that were trained using a computational data set. The numerical data was generated using a two-dimensional, incompressible, Navier-Stokes algorithm with the Spalart-Allmaras turbulence model. Because it is difficult to predict maximum lift for high-lift systems, an empirically-based maximum lift criteria was used in this study to determine both the maximum lift and the angle at which it occurs. The 'pressure difference rule,' which states that the maximum lift condition corresponds to a certain pressure difference between the peak suction pressure and the pressure at the trailing edge of the element, was applied and verified with experimental observations for this configuration. Multiple input, single output networks were trained using the NASA Ames variation of the Levenberg-Marquardt algorithm for each of the aerodynamic coefficients (lift, drag and moment). The artificial neural networks were integrated with a gradient-based optimizer. Using independent numerical simulations and experimental data for this high-lift configuration, it was shown that this design process successfully optimized flap deflection, gap, overlap, and angle of attack to maximize lift. Once the neural nets were trained and integrated with the optimizer, minimal additional computer resources were required to perform optimization runs with different initial conditions and parameters. Applying the neural networks within the high-lift rigging optimization process reduced the amount of computational time and resources by 44% compared with traditional gradient-based optimization procedures for multiple optimization runs.

Greenman, Roxana M.

1998-01-01

63

Analysis of non-symmetrical flapping airfoils  

NASA Astrophysics Data System (ADS)

Simulations have been done to assess the lift, thrust and propulsive efficiency of different types of non-symmetrical airfoils under different flapping configurations. The variables involved are reduced frequency, Strouhal number, pitch amplitude and phase angle. In order to analyze the variables more efficiently, the design of experiments using the response surface methodology is applied. Results show that both the variables and shape of the airfoil have a profound effect on the lift, thrust, and efficiency. By using non-symmetrical airfoils, average lift coefficient as high as 2.23 can be obtained. The average thrust coefficient and efficiency also reach high values of 2.53 and 0.61, respectively. The lift production is highly dependent on the airfoil’s shape while thrust production is influenced more heavily by the variables. Efficiency falls somewhere in between. Two-factor interactions are found to exist among the variables. This shows that it is not sufficient to analyze each variable individually. Vorticity diagrams are analyzed to explain the results obtained. Overall, the S1020 airfoil is able to provide relatively good efficiency and at the same time generate high thrust and lift force. These results aid in the design of a better ornithopter’s wing.

Tay, W. B.; Lim, K. B.

2009-08-01

64

Modification of the Douglas Neumann program to improve the efficiency of predicting component interference and high lift characteristics  

NASA Technical Reports Server (NTRS)

The Douglas Neumann method for low-speed potential flow on arbitrary three-dimensional lifting bodies was modified by substituting the combined source and doublet surface paneling based on Green's identity for the original source panels. Numerical studies show improved accuracy and stability for thin lifting surfaces, permitting reduced panel number for high-lift devices and supercritical airfoil sections. The accuracy of flow in concave corners is improved. A method of airfoil section design for a given pressure distribution, based on Green's identity, was demonstrated. The program uses panels on the body surface with constant source strength and parabolic distribution of doublet strength, and a doublet sheet on the wake. The program is written for the CDC CYBER 175 computer. Results of calculations are presented for isolated bodies, wings, wing-body combinations, and internal flow.

Bristow, D. R.; Grose, G. G.

1978-01-01

65

A Theoretical Investigation of Vortex-Sheet Deformation Behind a Highly Loaded Wing and Its Effect on Lift  

NASA Technical Reports Server (NTRS)

The induced drag polar is developed for wt-ngs capable of attaining extremely high loadings while possessing an elliptical distribution of circulation. This development is accomplished through a theoretical investigation of the vortex-wake deformation process and the deduction of the airfoil forces from the impulse and kinetic energy contents of the ultimate wake form. The investigation shows that the induced velocities of the wake limit the maximum lift coefficient to a value of 1.94 times the wing aspect ratio, for aspect ratios equal to or less than 6.5, and that the section properties of the airfoil limit the lift coefficient to 12.6 for aspect ratios greater than 6.5. Relations are developed for the rate of deformation of the vortex wake. It is also shown that linear wing theory is app1icable up to lift coefficients equal to 1.1 times the aspect ratio.

Cone, Clarence D., Jr.

1961-01-01

66

Lift and Drag on a NACA0015 Airfoil With Duty Cycle Active Flow Control  

NASA Astrophysics Data System (ADS)

Active flow control experiments were carried out over a NACA 0015 airfoil with a trailing edge flap. Two arrays of synthetic jet actuators were mounted in the airfoil with one on near the leading edge (0.1c) and the other on the main wing body near the wing/flap interface (0.65c). Characterization of the SJA's showed they produced their highest exit velocities at a frequency of 1100 Hz, which was near the natural frequency of the piezo membranes. When actuated at frequencies corresponding to the flow natural frequencies (10-100Hz) the jets produced no jet velocity. In order to control the flow using a frequency near the flow's natural shedding frequency the synthetic jets were actuated using a forcing frequency near the piezo natural frequency with a duty cycle frequency of 10-1000Hz. Force balance results showed that for a 0 flap deflection the active flow control delayed stall and lowered drag regardless of the duty cycle frequency. At flap deflections of 20 and 40 differences were observed between the continuously forced and duty cycles cases. For these cases continuous forcing increased the stall angle and reduced drag. Duty cycle forcing also delayed stall however it significantly increased drag near the stall AOA even compared to the no forcing case.

Kabiri, Pooya; Bohl, Douglas; Ahmadi, Goodarz

2011-11-01

67

Experiments on the flow field physics of confluent boundary layers for high-lift systems  

NASA Technical Reports Server (NTRS)

The use of sub-scale wind tunnel test data to predict the behavior of commercial transport high lift systems at in-flight Reynolds number is limited by the so-called 'inverse Reynolds number effect'. This involves an actual deterioration in the performance of a high lift device with increasing Reynolds number. A lack of understanding of the relevant flow field physics associated with numerous complicated viscous flow interactions that characterize flow over high-lift devices prohibits computational fluid dynamics from addressing Reynolds number effects. Clearly there is a need for research that has as its objective the clarification of the fundamental flow field physics associated with viscous effects in high lift systems. In this investigation, a detailed experimental investigation is being performed to study the interaction between the slat wake and the boundary layer on the primary airfoil which is known as a confluent boundary layer. This little-studied aspect of the multi-element airfoil problem deserves special attention due to its importance in the lift augmentation process. The goal of this research is is to provide an improved understanding of the flow physics associated with high lift generation. This process report will discuss the status of the research being conducted at the Hessert Center for Aerospace Research at the University of Notre Dame. The research is sponsored by NASA Ames Research Center under NASA grant NAG2-905. The report will include a discussion of the models that have been built or that are under construction, a description of the planned experiments, a description of a flow visualization apparatus that has been developed for generating colored smoke for confluent boundary layer studies and some preliminary measurements made using our new 3-component fiber optic LDV system.

Nelson, Robert C.; Thomas, F. O.; Chu, H. C.

1994-01-01

68

High-fidelity modeling of airfoil interaction with upstream turbulence  

NASA Astrophysics Data System (ADS)

To supplement past research on low speed unsteady airfoil responses to upstream disturbances, this work proposes and investigates a method to generate a turbulent momentum source to be convected downstream and interact with an SD7003 airfoil in a high-fidelity numerical simulation. A perturbation velocity field is generated from a summation of Fourier harmonics and applied to the forcing function in the momentum terms of the Navier Stokes Equations. The result is a three-dimensional, divergence-free, convected turbulent gust with applied statistical parameters. A parametric study has been done in 2D and 3D comparing the resultant flow fields and airfoil interactions for various numerical and physical parameters.

Brodnick, Jacob

69

High-fidelity simulations of moving and flexible airfoils at low Reynolds numbers  

NASA Astrophysics Data System (ADS)

The present paper highlights results derived from the application of a high-fidelity simulation technique to the analysis of low-Reynolds-number transitional flows over moving and flexible canonical configurations motivated by small natural and man-made flyers. This effort addresses three separate fluid dynamic phenomena relevant to small fliers, including: laminar separation and transition over a stationary airfoil, transition effects on the dynamic stall vortex generated by a plunging airfoil, and the effect of flexibility on the flow structure above a membrane airfoil. The specific cases were also selected to permit comparison with available experimental measurements. First, the process of transition on a stationary SD7003 airfoil section over a range of Reynolds numbers and angles of attack is considered. Prior to stall, the flow exhibits a separated shear layer which rolls up into spanwise vortices. These vortices subsequently undergo spanwise instabilities, and ultimately breakdown into fine-scale turbulent structures as the boundary layer reattaches to the airfoil surface. In a time-averaged sense, the flow displays a closed laminar separation bubble which moves upstream and contracts in size with increasing angle of attack for a fixed Reynolds number. For a fixed angle of attack, as the Reynolds number decreases, the laminar separation bubble grows in vertical extent producing a significant increase in drag. For the lowest Reynolds number considered ( Re c = 104), transition does not occur over the airfoil at moderate angles of attack prior to stall. Next, the impact of a prescribed high-frequency small-amplitude plunging motion on the transitional flow over the SD7003 airfoil is investigated. The motion-induced high angle of attack results in unsteady separation in the leading edge and in the formation of dynamic-stall-like vortices which convect downstream close to the airfoil. At the lowest value of Reynolds number ( Re c = 104), transition effects are observed to be minor and the dynamic stall vortex system remains fairly coherent. For Re c = 4 × 104, the dynamic-stall vortex system is laminar at is inception, however shortly afterwards, it experiences an abrupt breakdown associated with the onset of spanwise instability effects. The computed phased-averaged structures for both values of Reynolds number are found to be in good agreement with the experimental data. Finally, the effect of structural compliance on the unsteady flow past a membrane airfoil is investigated. The membrane deformation results in mean camber and large fluctuations which improve aerodynamic performance. Larger values of lift and a delay in stall are achieved relative to a rigid airfoil configuration. For Re c = 4.85 × 104, it is shown that correct prediction of the transitional process is critical to capturing the proper membrane structural response.

Visbal, Miguel R.; Gordnier, Raymond E.; Galbraith, Marshall C.

2009-05-01

70

High-fidelity simulations of moving and flexible airfoils at low Reynolds numbers  

NASA Astrophysics Data System (ADS)

The present paper highlights results derived from the application of a high-fidelity simulation technique to the analysis of low-Reynolds-number transitional flows over moving and flexible canonical configurations motivated by small natural and man-made flyers. This effort addresses three separate fluid dynamic phenomena relevant to small fliers, including: laminar separation and transition over a stationary airfoil, transition effects on the dynamic stall vortex generated by a plunging airfoil, and the effect of flexibility on the flow structure above a membrane airfoil. The specific cases were also selected to permit comparison with available experimental measurements. First, the process of transition on a stationary SD7003 airfoil section over a range of Reynolds numbers and angles of attack is considered. Prior to stall, the flow exhibits a separated shear layer which rolls up into spanwise vortices. These vortices subsequently undergo spanwise instabilities, and ultimately breakdown into fine-scale turbulent structures as the boundary layer reattaches to the airfoil surface. In a timeaveraged sense, the flow displays a closed laminar separation bubble which moves upstream and contracts in size with increasing angle of attack for a fixed Reynolds number. For a fixed angle of attack, as the Reynolds number decreases, the laminar separation bubble grows in vertical extent producing a significant increase in drag. For the lowest Reynolds number considered (Re_c = 10^4), transition does not occur over the airfoil at moderate angles of attack prior to stall. Next, the impact of a prescribed high-frequency small-amplitude plunging motion on the transitional flow over the SD7003 airfoil is investigated. The motioninduced high angle of attack results in unsteady separation in the leading edge and in the formation of dynamic-stalllike vortices which convect downstream close to the airfoil. At the lowest value of Reynolds number (Re_c = 10^4), transition effects are observed to be minor and the dynamic stall vortex system remains fairly coherent. For Re_c = 4 × 10^4, the dynamic-stall vortex system is laminar at is inception, however shortly afterwards, it experiences an abrupt breakdown associated with the onset of spanwise instability effects. The computed phased-averaged structures for both values of Reynolds number are found to be in good agreement with the experimental data. Finally, the effect of structural compliance on the unsteady flow past a membrane airfoil is investigated. The membrane deformation results in mean camber and large fluctuations which improve aerodynamic performance. Larger values of lift and a delay in stall are achieved relative to a rigid airfoil configuration. For Re_c = 4.85 × 10^4, it is shown that correct prediction of the transitional process is critical to capturing the proper membrane structural response.

Visbal, Miguel R.; Gordnier, Raymond E.; Galbraith, Marshall C.

71

High fidelity numerical simulation of airfoil thickness and kinematics effects on flapping airfoil propulsion  

E-print Network

propulsion Meilin Yu a,n , Z.J. Wang a , Hui Hu b a Department of Aerospace Engineering, The University-digit airfoils. Airfoil thickness and kinematics effects on the flapping airfoil propulsion on the propulsive performance. Thickness effects at various reduced frequencies and Strouhal numbers for the same

Hu, Hui

72

Quiet airfoils for small and large wind turbines  

DOEpatents

Thick airfoil families with desirable aerodynamic performance with minimal airfoil induced noise. The airfoil families are suitable for a variety of wind turbine designs and are particularly well-suited for use with horizontal axis wind turbines (HAWTs) with constant or variable speed using pitch and/or stall control. In exemplary embodiments, a first family of three thick airfoils is provided for use with small wind turbines and second family of three thick airfoils is provided for use with very large machines, e.g., an airfoil defined for each of three blade radial stations or blade portions defined along the length of a blade. Each of the families is designed to provide a high maximum lift coefficient or high lift, to exhibit docile stalls, to be relatively insensitive to roughness, and to achieve a low profile drag.

Tangler, James L. (Boulder, CO); Somers, Dan L. (Port Matilda, PA)

2012-06-12

73

The design of an airfoil for a high-altitude, long-endurance remotely piloted vehicle  

NASA Technical Reports Server (NTRS)

Airfoil design efforts are studied. The importance of integrating airfoil and aircraft designs was demonstrated. Realistic airfoil data was provided to aid future high altitude, long endurance aircraft preliminary design. Test cases were developed for further validation of the Eppler program. Boundary layer, not pressure distribution or shape, was designed. Substantial improvement was achieved in vehicle performance through mission specific airfoil designed utilizing the multipoint capability of the Eppler program.

Maughmer, Mark D.; Somers, Dan M.

1987-01-01

74

Simulation of flow over double-element airfoil and wind tunnel test for use in vertical axis wind turbine  

NASA Astrophysics Data System (ADS)

Nowadays, small vertical axis wind turbines are receiving more attention due to their suitability in micro-electricity generation. There are few vertical axis wind turbine designs with good power curve. However, the efficiency of power extraction has not been improved. Therefore, an attempt has been made to utilize high lift technology for vertical axis wind turbines in order to improve power efficiency. High lift is obtained by double-element airfoil mainly used in aeroplane wing design. In this current work a low Reynolds number airfoil is selected to design a double-element airfoil blade for use in vertical axis wind turbine to improve the power efficiency. Double-element airfoil blade design consists of a main airfoil and a slat airfoil. Orientation of slat airfoil is a parameter of investigation in this paper and air flow simulation over double-element airfoil. With primary wind tunnel test an orientation parameter for the slat airfoil is initially obtained. Further a computational fluid dynamics (CFD) has been used to obtain the aerodynamic characteristics of double-element airfoil. The CFD simulations were carried out using ANSYS CFX software. It is observed that there is an increase in the lift coefficient by 26% for single-element airfoil at analysed conditions. The CFD simulation results were validated with wind tunnel tests. It is also observe that by selecting proper airfoil configuration and blade sizes an increase in lift coefficient can further be achieved.

Chougule, Prasad; Nielsen, Søren R. K.

2014-06-01

75

Analysis of Non-symmetrical Flapping Airfoils  

NASA Astrophysics Data System (ADS)

Simulations have been done to assess the performance of different types of non-symmetrical airfoils on lift, thrust and propulsive efficiency under different flapping configurations at a Reynolds number of 10,000. The variables studied include the Stroudal number, reduced frequency, pitch angle and phase angle difference. In order to analyze the variables more efficiently, the Design of Experiments using the response surface methodology is applied. The simulation results show that besides the flapping configuration, airfoil shape also has a profound effect on the efficiency, thrust and lift production. The 4 factors have different levels of significance on the responses, indicating the shape of the airfoil plays a part as well. Thrust production depends more heavily on these parameters, rather than the shape of the airfoil. On the other hand, lift production is primarily dominated by its airfoil shape. Efficiency falls somewhere in between. Two-factor interactions among the variables also exist in efficiency and thrust production. Vorticity plots are analyzed to explain some of the results. Overall, the s1020 airfoil is able to provide relatively good efficiency and at the same time generate high thrust and lift force. These results can be used to help in the design of a better ornithopter's wing.

Beng Tay, Wee; Lim, Kah Bin

2007-11-01

76

Trimming high lift for STOL fighters  

NASA Technical Reports Server (NTRS)

The results of investigations of three different approaches to obtaining longitudinal trim for advanced fighter configurations with STOL performance are presented. The first, a differential thrust vectoring/reverser nozzle on an F-15 model, was very effective with an increment in pitching moment generated by the 90 deg/50 deg nozzle at military power equal to that which would be produced by a change in horizontal tail deflection of 20 deg. This trim pitching moment was accompanied by a modest loss in lift. The second method involved a nose jet on a supersonic cruise fighter configuration which, when combined with some canard deflection and longitudinal instability, provided trim capability for the configuration with military power setting and main nozzles deflected 43 degrees. Finally, a blown-high-lift canard on an advanced fighter configuration indicated that trim could be obtained across the complete angle-of-attack range tested with thrust set at military power and the main nozzles deflected 40 degrees. There was no loss in configuration lift and a slight increase in longitudinal stability.

Paulson, J. W., Jr.; Quinto, P. F.; Banks, D. W.; Gatlin, G. M.

1983-01-01

77

Shockless airfoils with thicknesses of 20.6 and 20.7 percent chord analytically designed for a Mach number of 0.68 and a lift coefficient of 0.40  

NASA Technical Reports Server (NTRS)

A 20.8 percent-thick airfoil shape was designed to have shockless inviscid flow at a Mach number of 0.68 and a lift coefficient of 0.40. In order to determine the actual airfoils which would yield this same shockless flow when viscous effects are included, boundary layer displacement thicknesses were subtracted from the inviscid shape for Reynolds numbers of 100 and 35 million. This process yielded airfoils with thicknesses of 20.7 and 20.6 percent, respectively. Subtraction of boundary layer displacement thicknesses for Reynolds numbers below 35 million yielded nonphysical airfoils, that is airfoils with negative thicknesses near tHe trailing edge. The pitching moment about the quarter-chord point at the design condition was -0.082 for the inviscid shape and, consequently, for both airfoils. Off-design calculations for the two airfoils were made using a computer program which provides for the interaction of the inviscid flow and boundary layer solutions. The pressure distributions of the airfoils were shockless for conditions from the design point to lower Mach numbers and lift coefficients. No boundary layer separation was predicted except in the last 3 percent chord on the upper surface.

Allison, D. O.

1976-01-01

78

Flatback airfoil wind tunnel experiment.  

SciTech Connect

A computational fluid dynamics study of thick wind turbine section shapes in the test section of the UC Davis wind tunnel at a chord Reynolds number of one million is presented. The goals of this study are to validate standard wind tunnel wall corrections for high solid blockage conditions and to reaffirm the favorable effect of a blunt trailing edge or flatback on the performance characteristics of a representative thick airfoil shape prior to building the wind tunnel models and conducting the experiment. The numerical simulations prove the standard wind tunnel corrections to be largely valid for the proposed test of 40% maximum thickness to chord ratio airfoils at a solid blockage ratio of 10%. Comparison of the computed lift characteristics of a sharp trailing edge baseline airfoil and derived flatback airfoils reaffirms the earlier observed trend of reduced sensitivity to surface contamination with increasing trailing edge thickness.

Mayda, Edward A. (University of California, Davis, CA); van Dam, C.P. (University of California, Davis, CA); Chao, David D. (University of California, Davis, CA); Berg, Dale E.

2008-04-01

79

Viscous-flow analysis of a subsonic transport aircraft high-lift system and correlation with flight data  

NASA Technical Reports Server (NTRS)

High-lift system aerodynamics has been gaining attention in recent years. In an effort to improve aircraft performance, comprehensive studies of multi-element airfoil systems are being undertaken in wind-tunnel and flight experiments. Recent developments in Computational Fluid Dynamics (CFD) offer a relatively inexpensive alternative for studying complex viscous flows by numerically solving the Navier-Stokes (N-S) equations. Current limitations in computer resources restrict practical high-lift N-S computations to two dimensions, but CFD predictions can yield tremendous insight into flow structure, interactions between airfoil elements, and effects of changes in airfoil geometry or free-stream conditions. These codes are very accurate when compared to strictly 2D data provided by wind-tunnel testing, as will be shown here. Yet, additional challenges must be faced in the analysis of a production aircraft wing section, such as that of the NASA Langley Transport Systems Research Vehicle (TSRV). A primary issue is the sweep theory used to correlate 2D predictions with 3D flight results, accounting for sweep, taper, and finite wing effects. Other computational issues addressed here include the effects of surface roughness of the geometry, cove shape modeling, grid topology, and transition specification. The sensitivity of the flow to changing free-stream conditions is investigated. In addition, the effects of Gurney flaps on the aerodynamic characteristics of the airfoil system are predicted.

Potter, R. C.; Vandam, C. P.

1995-01-01

80

A unified viscous theory of lift and drag of 2-D thin airfoils and 3-D thin wings  

NASA Technical Reports Server (NTRS)

A unified viscous theory of 2-D thin airfoils and 3-D thin wings is developed with numerical examples. The viscous theory of the load distribution is unique and tends to the classical inviscid result with Kutta condition in the high Reynolds number limit. A new theory of 2-D section induced drag is introduced with specific applications to three cases of interest: (1) constant angle of attack; (2) parabolic camber; and (3) a flapped airfoil. The first case is also extended to a profiled leading edge foil. The well-known drag due to absence of leading edge suction is derived from the viscous theory. It is independent of Reynolds number for zero thickness and varies inversely with the square root of the Reynolds number based on the leading edge radius for profiled sections. The role of turbulence in the section induced drag problem is discussed. A theory of minimum section induced drag is derived and applied. For low Reynolds number the minimum drag load tends to the constant angle of attack solution and for high Reynolds number to an approximation of the parabolic camber solution. The parabolic camber section induced drag is about 4 percent greater than the ideal minimum at high Reynolds number. Two new concepts, the viscous induced drag angle and the viscous induced separation potential are introduced. The separation potential is calculated for three 2-D cases and for a 3-D rectangular wing. The potential is calculated with input from a standard doublet lattice wing code without recourse to any boundary layer calculations. Separation is indicated in regions where it is observed experimentally. The classical induced drag is recovered in the 3-D high Reynolds number limit with an additional contribution that is Reynold number dependent. The 3-D viscous theory of minimum induced drag yields an equation for the optimal spanwise and chordwise load distribution. The design of optimal wing tip planforms and camber distributions is possible with the viscous 3-D wing theory.

Yates, John E.

1991-01-01

81

Wind tunnel results for a high-speed, natural laminar-flow airfoil designed for general aviation aircraft  

NASA Technical Reports Server (NTRS)

Two dimensional wind tunnel tests were conducted on a high speed natural laminar flow airfoil in both the Langley 6 x 28 inch Transonic Tunnel and the Langley Low Turbulence Pressure Tunnel. The test conditions consisted of Mach numbers ranging from 0.10 to 0.77 and Reynolds numbers ranging from 3 x 1 million to 11 x 1 million. The airfoil was designed for a lift coefficient of 0.20 at a Mach number of 0.70 and Reynolds number of 11 x 1 million. At these conditions, laminar flow would extend back to 50 percent chord of the upper surface and 70 percent chord of the lower surface. Low speed results were also obtained with a 0.20 chord trailing edge split flap deflected 60 deg.

Sewall, William G.; Mcghee, Robert J.; Viken, Jeffery K.; Waggoner, Edgar G.; Walker, Betty S.; Millard, Betty F.

1985-01-01

82

Separation control over an airfoil at high angles of attack by sound emanating from the surface  

NASA Technical Reports Server (NTRS)

Active control by sound emanating from a narrow gap in the vicinity of the leading edge of a symmetrical airfoil is used to study the influence of sound on the pressure distribution and the wake at high angles of attack. The results from experiments conducted at a Reynolds number based on the chord of 35,000 show that, with injection of sound at twice the shedding frequency of the shear layer, the region of separation becomes drastically reduced. The shear layer is found to be very sensitive to sound excitation in the vicinity of the separation point. The excitation sufficiently alters the global circulation to cause an increase in lift and reduction in drag. Furthermore, experimental results describing stall and post-stall conditions compare well with the limited data available and indicate that stall is delayed by sound injection into the separated region.

Huang, L. S.; Maestrello, L.; Bryant, T. D.

1987-01-01

83

Design and Experimental Results for a Natural-Laminar-Flow Airfoil for General Aviation Applications  

NASA Technical Reports Server (NTRS)

A natural-laminar-flow airfoil for general aviation applications, the NLF(1)-0416, was designed and analyzed theoretically and verified experimentally in the Langley Low-Turbulence Pressure Tunnel. The basic objective of combining the high maximum lift of the NASA low-speed airfoils with the low cruise drag of the NACA 6-series airfoils was achieved. The safety requirement that the maximum lift coefficient not be significantly affected with transition fixed near the leading edge was also met. Comparisons of the theoretical and experimental results show excellent agreement. Comparisons with other airfoils, both laminar flow and turbulent flow, confirm the achievement of the basic objective.

Somers, D. M.

1981-01-01

84

Lift augmentation for highly swept wing aircraft  

NASA Technical Reports Server (NTRS)

A pair of spaced slots, disposed on each side of an aircraft centerline and spaced well inboard of the wing leading edges, are provided in the wing upper surfaces and directed tangentially spanwise toward thin sharp leading wing edges of a highly swept, delta wing aircraft. The slots are individually connected through separate plenum chambers to separate compressed air tanks and serve, collectively, as a system for providing aircraft lift augmentation. A compressed air supply is tapped from the aircraft turbojet power plant. Suitable valves, under the control of the aircraft pilot, serve to selective provide jet blowing from the individual slots to provide spanwise sheets of jet air closely adjacent to the upper surfaces and across the aircraft wing span to thereby create artificial vortices whose suction generate additional lift on the aircraft. When desired, or found necessary, unequal or one-side wing blowing is employed to generate rolling moments for augmented lateral control. Trailing flaps are provided that may be deflected differentially, individually, or in unison, as needed for assistance in take-off or landing of the aircraft.

Rao, Dhanvada M. (Inventor)

1993-01-01

85

An experimental low Reynolds number comparison of a Wortmann FX67-K170 airfoil, a NACA 0012 airfoil and a NACA 64-210 airfoil in simulated heavy rain  

NASA Technical Reports Server (NTRS)

Wind tunnel experiments were conducted on Wortmann FX67-K170, NACA 0012, and NACA 64-210 airfoils at rain rates of 1000 mm/hr and Reynolds numbers of 310,000 to compare the aerodynamic performance degradation of the airfoils and to attempt to identify the various mechanisms which affect performance in heavy rain conditions. Lift and drag were measured in dry and wet conditions, a variety of flow visualization techniques were employed, and a computational code which predicted airfoil boundary layer behavior was used. At low angles of attack, the lift degradation in wet conditions varied significantly between the airfoils. The Wortmann section had the greatest overall lift degradation and the NACA 64-210 airfoil had the smallest. At high angles of attack, the NACA 64-210 and 0012 airfoils had improved aerodynamic performance in rain conditions due to an apparent reduction of the boundry layer separation. Performance degradation in heavy rain for all three airfoils at low angles of attack could be emulated by forced boundary layer transition near the leading edge. The secondary effect occurs at time scales consistent with top surface water runback times. The runback layer is thought to effectively alter the airfoil geometry. The severity of the performance degradation for the airfoils varied. The relative differences appeared to be related to the susceptibility of each airfoil to premature boundary layer transition.

Craig, Anthony P.; Hansman, R. John

1987-01-01

86

Close to real life. [solving for transonic flow about lifting airfoils using supercomputers  

NASA Technical Reports Server (NTRS)

NASA's Numerical Aerodynamic Simulation (NAS) facility for CFD modeling of highly complex aerodynamic flows employs as its basic hardware two Cray-2s, an ETA-10 Model Q, an Amdahl 5880 mainframe computer that furnishes both support processing and access to 300 Gbytes of disk storage, several minicomputers and superminicomputers, and a Thinking Machines 16,000-device 'connection machine' processor. NAS, which was the first supercomputer facility to standardize operating-system and communication software on all processors, has done important Space Shuttle aerodynamics simulations and will be critical to the configurational refinement of the National Aerospace Plane and its intergrated powerplant, which will involve complex, high temperature reactive gasdynamic computations.

Peterson, Victor L.; Bailey, F. Ron

1988-01-01

87

Trailing edge modifications for flatback airfoils.  

SciTech Connect

The adoption of blunt trailing edge airfoils (also called flatback airfoils) for the inboard region of large wind turbine blades has been proposed. Blunt trailing edge airfoils would not only provide a number of structural benefits, such as increased structural volume and ease of fabrication and handling, but they have also been found to improve the lift characteristics of thick airfoils. Therefore, the incorporation of blunt trailing edge airfoils would allow blade designers to more freely address the structural demands without having to sacrifice aerodynamic performance. These airfoils do have the disadvantage of generating high levels of drag as a result of the low-pressure steady or periodic flow in the near-wake of the blunt trailing edge. Although for rotors, the drag penalty appears secondary to the lift enhancement produced by the blunt trailing edge, high drag levels are of concern in terms of the negative effect on the torque and power generated by the rotor. Hence, devices are sought that mitigate the drag of these airfoils. This report summarizes the literature on bluff body vortex shedding and bluff body drag reduction devices and proposes four devices for further study in the wind tunnel.

Kahn, Daniel L. (University of California, Davis, CA); van Dam, C.P. (University of California, Davis, CA); Berg, Dale E.

2008-03-01

88

Increasing Lift by Releasing Compressed Air on Suction Side of Airfoil  

NASA Technical Reports Server (NTRS)

The investigation was limited chiefly to the region of high angles of attack since it is only in this region that any considerable change in the character of the flow can be expected from such artificial aids. The slot, through which compressed air was blown, was formed by two pieces of sheet steel connected by screws at intervals of about 5 cm. It was intended to regulate the width of the slot by means of these screws. Much more compressed air was required than was originally supposed, hence all the delivery pipes were much too small. This experiment, therefore, is to be regarded as only a preliminary one.

Seewald, F

1927-01-01

89

AFC-Enabled Simplified High-Lift System Integration Study  

NASA Technical Reports Server (NTRS)

The primary objective of this trade study report is to explore the potential of using Active Flow Control (AFC) for achieving lighter and mechanically simpler high-lift systems for transonic commercial transport aircraft. This assessment was conducted in four steps. First, based on the Common Research Model (CRM) outer mold line (OML) definition, two high-lift concepts were developed. One concept, representative of current production-type commercial transonic transports, features leading edge slats and slotted trailing edge flaps with Fowler motion. The other CRM-based design relies on drooped leading edges and simply hinged trailing edge flaps for high-lift generation. The relative high-lift performance of these two high-lift CRM variants is established using Computational Fluid Dynamics (CFD) solutions to the Reynolds-Averaged Navier-Stokes (RANS) equations for steady flow. These CFD assessments identify the high-lift performance that needs to be recovered through AFC to have the CRM variant with the lighter and mechanically simpler high-lift system match the performance of the conventional high-lift system. Conceptual design integration studies for the AFC-enhanced high-lift systems were conducted with a NASA Environmentally Responsible Aircraft (ERA) reference configuration, the so-called ERA-0003 concept. These design trades identify AFC performance targets that need to be met to produce economically feasible ERA-0003-like concepts with lighter and mechanically simpler high-lift designs that match the performance of conventional high-lift systems. Finally, technical challenges are identified associated with the application of AFC-enabled highlift systems to modern transonic commercial transports for future technology maturation efforts.

Hartwich, Peter M.; Dickey, Eric D.; Sclafani, Anthony J.; Camacho, Peter; Gonzales, Antonio B.; Lawson, Edward L.; Mairs, Ron Y.; Shmilovich, Arvin

2014-01-01

90

Aerodynamic characteristics of a propeller powered high lift semispan wing  

NASA Technical Reports Server (NTRS)

An experimental investigation was conducted on the engine/airframe integration aerodynamics for potential high-lift aircraft configurations. The model consisted of a semispan wing with a double-isolated flap system and a Krueger leading edge device. The advanced propeller and the powered nacelle were tested and aerodynamic characteristics of the combined system are presented. It was found that the lift coefficient of the powered wing could be increased by the propeller slipstream when the rotational speed was increased and high-lift devices were deployed. Moving the nacelle/propeller closer to the wing in the vertical direction indicated higher lift augmentation than a shift in the longitudinal direction. A pitch-down nacelle inclination enhanced the lift performance of the system much better than vertical and horizontal variation of the nacelle locations and showed that the powered wing can sustain higher angles of attack near maximum lift performance.

Takallu, M. A.; Gentry, G. L., Jr.

1992-01-01

91

High-Lift Systems on Commercial Subsonic Airliners  

NASA Technical Reports Server (NTRS)

The early breed of slow commercial airliners did not require high-lift systems because their wing loadings were low and their speed ratios between cruise and low speed (takeoff and landing) were about 2:1. However, even in those days the benefit of high-lift devices was recognized. Simple trailing-edge flaps were in use, not so much to reduce landing speeds, but to provide better glide-slope control without sideslipping the airplane and to improve pilot vision over the nose by reducing attitude during low-speed flight. As commercial-airplane cruise speeds increased with the development of more powerful engines, wing loadings increased and a real need for high-lift devices emerged to keep takeoff and landing speeds within reasonable limits. The high-lift devices of that era were generally trailing-edge flaps. When jet engines matured sufficiently in military service and were introduced commercially, airplane speed capability had to be increased to best take advantage of jet engine characteristics. This speed increase was accomplished by introducing the wing sweep and by further increasing wing loading. Whereas increased wing loading called for higher lift coefficients at low speeds, wing sweep actually decreased wing lift at low speeds. Takeoff and landing speeds increased on early jet airplanes, and, as a consequence, runways worldwide had to be lengthened. There are economical limits to the length of runways; there are safety limits to takeoff and landing speeds; and there are speed limits for tires. So, in order to hold takeoff and landing speeds within reasonable limits, more powerful high-lift devices were required. Wing trailing-edge devices evolved from plain flaps to Fowler flaps with single, double, and even triple slots. Wing leading edges evolved from fixed leading edges to a simple Krueger flap, and from fixed, slotted leading edges to two- and three-position slats and variable-camber (VC) Krueger flaps. The complexity of high-lift systems probably peaked on the Boeing 747, which has a VC Krueger flap and triple-slotted, inboard and outboard trailing-edge flaps. Since then, the tendency in high-lift system development has been to achieve high levels of lift with simpler devices in order to reduce fleet acquisition and maintenance costs. The intent of this paper is to: (1) review available high-lift devices, their functions, and design criteria; (2) appraise high-lift systems presently in service on commercial air liners; (3) present personal study results on high-lift systems; (4) develop a weight and cost model for high-lift systems; and (5) discuss the development tendencies of future high-lift systems.

Rudolph, Peter K. C.

1996-01-01

92

Assessment of the aerodynamic characteristics of thick airfoils in high Reynolds and moderate Ma numbers using CFD modeling  

NASA Astrophysics Data System (ADS)

The aerodynamic characteristics of thick airfoils in high Reynolds number is assessed using two different CFD RANS solvers: the compressible MaPFlow and the incompressible CRES-flowNS-2D both equipped with the k-? SST turbulence model. Validation is carried out by comparing simulations against existing high Reynolds experimental data for the NACA 63-018 airfoil in the range of -10° to 20°. The use of two different solvers aims on one hand at increasing the credibility in the results and on the other at quantifying the compressibility effects. Convergence of steady simulations is achieved within a mean range of -10° to 14° which refers to attached or light stall conditions. Over this range the simulations from the two codes are in good agreement. As stall gets deeper, steady convergence ceases and the simulations must switch to unsteady. Lift and drag oscillations are produced which increase in amplitude as the angle of attack increases. Finally in post stall, the average CL is found to decrease up to ~24° or 32° for the FFA or the NACA 63-018 airfoils respectively, and then recover to higher values indicating a change in the unsteady features of the flow.

Prospathopoulos, John M.; Papadakis, Giorgos; Sieros, Giorgos; Voutsinas, Spyros G.; Chaviaropoulos, Takis K.; Diakakis, Kostas

2014-06-01

93

NASA supercritical airfoils: A matrix of family-related airfoils  

NASA Technical Reports Server (NTRS)

The NASA supercritical airfoil development program is summarized in a chronological fashion. Some of the airfoil design guidelines are discussed, and coordinates of a matrix of family related supercritical airfoils ranging from thicknesses of 2 to 18 percent and over a design lift coefficient range from 0 to 1.0 are presented.

Harris, Charles D.

1990-01-01

94

Some new airfoils  

NASA Technical Reports Server (NTRS)

A computer approach to the design and analysis of airfoils and some common problems concerning laminar separation bubbles at different lift coefficients are briefly discussed. Examples of application to ultralight airplanes, canards, and sailplanes with flaps are given.

Eppler, R.

1979-01-01

95

The inception of stall on thin airfoils at moderately high Reynolds number flows  

Microsoft Academic Search

The leading-edge stall on smooth thin airfoils at moderately high Reynolds number flows is investigated by an asymptotic approach and numerical simulations. The asymptotic theory is based on Rusak (1994) and demonstrates that a subsonic flow about a thin airfoil can be described in terms of an outer and an inner region that asymptotically match each other. The flow in

Zvi Rusak; Wallace J. Morris II

2004-01-01

96

Application of Excitation from Multiple Locations on a Simplified High-Lift System  

NASA Technical Reports Server (NTRS)

A series of active flow control experiments were recently conducted on a simplified high-lift system. The purpose of the experiments was to explore the prospects of eliminating all but simply hinged leading and trailing edge flaps, while controlling separation on the supercritical airfoil using multiple periodic excitation slots. Excitation was provided by three. independently controlled, self-contained, piezoelectric actuators. Low frequency excitation was generated through amplitude modulation of the high frequency carrier wave, the actuators' resonant frequencies. It was demonstrated, for the first time, that pulsed modulated signal from two neighboring slots interact favorably to increase lift. Phase sensitivity at the low frequency was measured, even though the excitation was synthesized from the high-frequency carrier wave. The measurements were performed at low Reynolds numbers and included mean and unsteady surface pressures, surface hot-films, wake pressures and particle image velocimetry. A modest (6%) increase in maximum lift (compared to the optimal baseline) was obtained due t o the activation of two of the three actuators.

Melton, LaTunia Pack; Yao, Chung-Sheng; Seifert, Avi

2004-01-01

97

Lifting force acting on a gate with high head  

Microsoft Academic Search

The hydrodynamic lifting force acting on a gate with high head is one of the key factors concerning the safety and reliability of gates. The lifting force is closely related to hydrodynamic pressure, and generally, is obtained through the model test. This work presents a method of numerical simulation based on the VOF method for the flow and FEM for

Xiao-qing LIU; Lan-hao ZHAO; Hui-ying CAO; Xiao-peng SUN

2011-01-01

98

EA-6B high-lift wing modifications  

NASA Technical Reports Server (NTRS)

NASA-Langley has accomplished the computational design and experimental verification of EA-6B aircraft wing modifications for improved high lift capability. The modifications are comparatively simple, and attempt to improve low speed high lift performance while maintaining high speed cruise efficiency. Several two- and three-dimensional low speed and transonic computational techniques were employed, together with extensive wind tunnel tests. The modified inboard and outboard edge slat/flap system sections yielded efficiency improvements that were verified by three-dimensional wind tunnel experiments to amount to an 11-percent wing-body lift coefficient enhancement at low speed.

Waggoner, E. G.; Allison, D. O.

1987-01-01

99

Effects of Compressibility on the Maximum Lift Characteristics and Spanwise Load Distribution of a 12-Foot-Span Fighter-Type Wing of NACA 230-Series Airfoil Sections  

NASA Technical Reports Server (NTRS)

Lift characteristics and pressure distribution for a NACA 230 wing were investigated for an angle of attack range of from -10 to +24 degrees and Mach range of from 0.2 to 0.7. Maximum lift coefficient increased up to a Mach number of 0.3, decreased rapidly to a Mach number of 0.55, and then decreased moderately. At high speeds, maximum lift coefficient was reached at from 10 to 12 degrees beyond the stalling angle. In high-speed stalls, resultant load underwent a moderate shift outward.

West, F E

1945-01-01

100

First-stage high pressure turbine bucket airfoil  

DOEpatents

The first-stage buckets have airfoil profiles substantially in accordance with Cartesian coordinate values of X, Y and Z set forth in Table I wherein Z is a perpendicular distance from a plane normal to a radius of the turbine centerline and containing the X and Y values with the Z value commencing at zero in the X, Y plane at the radially innermost aerodynamic section of the airfoil and X and Y are coordinates defining the airfoil profile at each distance Z. The X, Y and Z values may be scaled as a function of the same constant or number to provide a scaled-up or scaled-down airfoil section for the bucket.

Brown, Theresa A.; Ahmadi, Majid; Clemens, Eugene; Perry II, Jacob C.; Holiday, Allyn K.; Delehanty, Richard A.; Jacala, Ariel Caesar

2004-05-25

101

Heat Transfer from airfoils at high Reynolds numbers  

NASA Astrophysics Data System (ADS)

Modeling using CFD was performed to obtain the magnitude of heat transfer from the surface of an airfoil along its entire chord length. The computations were performed on various shapes of airfoils at different angles of attack and Reynolds numbers for the purpose of giving a good representation of the behavior of heat transfer throughout varying flight conditions. The results were validated against existing experimental data. Heat transfer form the heated airfoil was computed at Reynolds numbers ranging from 3.5 X 10^6 to 9.8 X 10^6. Individual runs were performed on two-dimensional cross sections at four evenly spaced locations across the span of the twisted wing. Boundary layer transition point was predicted from correlations from experimental data. All cases showed a regional heat transfer maximum near the stagnation region at the leading edge of the airfoil and a decline further downstream on both upper and lower surfaces of the airfoil. The minimum is followed by a sharp increase in heat transfer at the point where the boundary layer becomes turbulent and a moderate tapering off towards the aft section as the boundary layer thickens. The model was validated with actual flight and tunnel test data for several airfoil shapes and for the same range of flight conditions and was found to be in good agreement at the conditions presented in this study.

Gutmark, Ephraim; Cusimano, David

1999-11-01

102

Natural laminar flow airfoil design considerations for winglets on low-speed airplanes  

NASA Technical Reports Server (NTRS)

Winglet airfoil section characteristics which significantly influence cruise performance and handling qualities of an airplane are discussed. A good winglet design requires an airfoil section with a low cruise drag coefficient, a high maximum lift coefficient, and a gradual and steady movement of the boundary layer transition location with angle of attack. The first design requirement provides a low crossover lift coefficient of airplane drag polars with winglets off and on. The other requirements prevent nonlinear changes in airplane lateral/directional stability and control characteristics. These requirements are considered in the design of a natural laminar flow airfoil section for winglet applications and chord Reynolds number of 1 to 4 million.

Vandam, C. P.

1984-01-01

103

Study on Busemann Biplane Airfoil in Low-Speed Smoke Wind Tunnel  

NASA Astrophysics Data System (ADS)

The Busemann biplane airfoil is considered one of the candidates for reducing sonic boom. In aircraft designs utilizing the biplane concept, high-lift devices must be used for takeoff and landing in low-speed conditions. In this work, flow visualizations were performed around a Busemann biplane airfoil equipped with leading and trailing edge flaps in a smoke wind tunnel. The lift coefficient of the biplane airfoil was estimated by utilizing a method based on measurements of smoke line patterns. The aspect ratio of the baseline Busemann biplane model was 0.75, the thickness ratio of the single element was 5%, and the wave cancellation condition was designed for Mach number 1.7. The length of each of the flap chords was 30% of the baseline. The Reynolds number, which is based on the chord length of the airfoil, is about 2.8×105. The results of the study are summarized as follows. For the baseline Busemann airfoil without flaps, the lift coefficient increases linearly as the angle of attack increases. The slope of the lift coefficient cl is 0.062 (1/deg.), which is in good agreement with reference data. This indicates that measuring smoke line patterns is a valid method for estimating the lift coefficient of biplane airfoils. Based on the visualization of the flow around the biplane model equipped with deflected leading and trailing edge flaps, confirmed that the separation bubble is smaller than in the baseline model due to the effective increase in camber. When the deflection angle of the trailing edge flap is increased, the lift coefficient also increases. The trend of the increasing cl is similar to that of conventional monoplane airfoil models with trailing edge flaps. Therefore, such flaps can be considered effective high-lift devices for Busemann biplane airfoils.

Kashitani, Masashi; Yamaguchi, Yutaka; Kai, Yoshiharu; Hirata, Kenichi; Kusunose, Kazuhiro

104

Impulsive Start of a Symmetric Airfoil at High Angle of Attack  

NASA Technical Reports Server (NTRS)

The fluid dynamic phenomena following the impulsive start of a NACA 0015 airfoil were studied by using a time accurate solution of the incompressible laminar Navier-Stokes equations. Angle of attack was set at 10 deg to simulate steady-state poststall conditions at a Reynolds number of 1.2 x 10(exp 4). The calculation revealed that large initial lift values can be obtained, immediately following the impulsive start, when a trapped vortex develops above the airfoil. Before the buildup of this trapped vortex and immediately after the airfoil was set into motion, the fluid is attached to the airfoil's surface and flows around the trailing edge, demonstrating the delay in the buildup of the classical Kutta condition. The transient of this effect is quite short and is followed by an attached How event that leads to the trapped vortex that has a longer duration. The just described initial phenomenon eventually transits into a fully developed separated flow pattern identifiable by an alternating, periodic vortex shedding.

Katz, Joseph; Yon, Steven; Rogers, Stuart E.

1996-01-01

105

Wind tunnel testing of low-drag airfoils  

NASA Technical Reports Server (NTRS)

Results are presented for the measured performance recently obtained on several airfoil concepts designed to achieve low drag by maintaining extensive regions of laminar flow without compromising high-lift performance. The wind tunnel results extend from subsonic to transonic speeds and include boundary-layer control through shaping and suction. The research was conducted in the NASA Langley 8-Ft Transonic Pressure Tunnel (TPT) and Low Turbulence Pressure Tunnel (LTPT) which have been developed for testing such low-drag airfoils. Emphasis is placed on identifying some of the major factors influencing the anticipated performance of low-drag airfoils.

Harvey, W. Donald; Mcghee, R. J.; Harris, C. D.

1986-01-01

106

An Exploratory Investigation of a Slotted, Natural-Laminar-Flow Airfoil  

NASA Technical Reports Server (NTRS)

A 15-percent-thick, slotted, natural-laminar-flow (SNLF) airfoil, the S103, for general aviation applications has been designed and analyzed theoretically and verified experimentally in the Langley Low-Turbulence Pressure Tunnel. The two primary objectives of high maximum lift and low profile drag have been achieved. The constraints on the pitching moment and the airfoil thickness have been satisfied. The airfoil exhibits a rapid stall, which does not meet the design goal. Comparisons of the theoretical and experimental results show good agreement. Comparison with the baseline, NASA NLF(1)-0215F airfoil confirms the achievement of the objectives.

Somers, Dan M.

2012-01-01

107

High-order numerical simulations of the flow around a heaving airfoil  

Microsoft Academic Search

We simulate the incompressible, viscous flow over a two-dimensional NACA0012 airfoil oscillating in heave at mean incidences 12°?¯20° and Reynolds numbers 800?Re?104. The two-dimensional Navier–Stokes equations are solved using a Spectral\\/hp Element Method for the spatial discretization and a high-order splitting scheme for the evolution in time. A moving-frame of reference technique accounts for the airfoil motion. We consider the

W. Medjroubi; B. Stoevesandt; B. Carmo; J. Peinke

2011-01-01

108

Active Control of the Separation Region on a Two - Airfoil  

Microsoft Academic Search

The effectiveness of combat aircraft depends in part on their ability to maintain high lift under extreme conditions. Examples of such conditions include the high angle of attack, rapid pitch motions necessary for combat maneuvers. A well known phenomenon occurring on airfoils undergoing such high angle of attack motions is the formation of a leading edge vortex. This vortex is

Julie Anne Lovato

1992-01-01

109

Theory of viscous transonic flow over airfoils at high Reynolds number  

NASA Technical Reports Server (NTRS)

This paper considers viscous flows with unseparated turbulent boundary layers over two-dimensional airfoils at transonic speeds. Conventional theoretical methods are based on boundary layer formulations which do not account for the effect of the curved wake and static pressure variations across the boundary layer in the trailing edge region. In this investigation an extended viscous theory is developed that accounts for both effects. The theory is based on a rational analysis of the strong turbulent interaction at airfoil trailing edges. The method of matched asymptotic expansions is employed to develop formal series solutions of the full Reynolds equations in the limit of Reynolds numbers tending to infinity. Procedures are developed for combining the local trailing edge solution with numerical methods for solving the full potential flow and boundary layer equations. Theoretical results indicate that conventional boundary layer methods account for only about 50% of the viscous effect on lift, the remaining contribution arising from wake curvature and normal pressure gradient effects.

Melnik, R. E.; Chow, R.; Mead, H. R.

1977-01-01

110

Subsonic and transonic low-Reynolds-number airfoils with reduced pitching moments  

NASA Technical Reports Server (NTRS)

A subsonic and a transonic airfoil are presented for application in a high-altitude long-endurance aircraft and a very-high-altitude aircraft, respectively. The subsonic airfoil is designed for a lift coefficient c(l) = 1.4 at a chord Reynolds number Re = 700,000 and a very low Mach number. The transonic airfoil is designed for c(l) = 1.0 at Re = 500,000 and a transonic Mach number M = 0.7. Both airfoils are developed to perform as well or better than previously designed airfoils. However, the present airfoils are developed for a constrained pitching moment to reduce aircraft trim drag and to relieve, to some extent, the torsional loads in the typically high-aspect-ratio wings. The beneficial effects of a cruise flap and of boundary-layer transition control on the off-design performance characteristics are illustrated.

Van Dam, C. P.; Hicks, R.; Reuther, J.

1990-01-01

111

Tests of Airfoils Designed to Delay the Compressibility Burble  

NASA Technical Reports Server (NTRS)

Development of airfoil sections suitable for high-speed applications has generally been difficult because little was known of the flow phenomenon that occurs at high speeds. A definite critical speed has been found at which serious detrimental flow changes occur that lead to serious losses in lift and large increases in drag. This flow phenomenon, called the compressibility burble, was originally a propeller problem, but with the development of higher speed aircraft serious consideration must be given to other parts of the airplane. Fundamental investigations of high-speed airflow phenomenon have provided new information. An important conclusion of this work has been the determination of the critical speed, that is, the speed at which the compressibility burble occurs. The critical speed was shown to be the translational velocity at which the sum of the translational velocity and the maximum local induced velocity at the surface of the airfoil or other body equals the local speed of sound. Obviously then higher critical speeds can be attained through the development of airfoils that have minimum induced velocity for any given value of the lift coefficient. Presumably, the highest critical speed will be attained by an airfoil that has uniform chordwise distribution of induced velocity or, in other words, a flat pressure distribution curve. The ideal airfoil for any given high-speed application is, then, that form which at its operating lift coefficient has uniform chordwise distribution of induced velocity. Accordingly, an analytical search for such airfoil forms has been conducted and these forms are now being investigated experimentally in the 23-inch high-speed wind tunnel. The first airfoils investigated showed marked improvement over those forms already available, not only as to critical speed buy also the drag at low speeds is decreased considerably. Because of the immediate marked improvement, it was considered desirable to extend the thickness and lift coefficient ranges for which the original forms had been designed before further extending the investigation.

Stack, John

1939-01-01

112

Active Control of the Separation Region on a Two - Airfoil.  

NASA Astrophysics Data System (ADS)

The effectiveness of combat aircraft depends in part on their ability to maintain high lift under extreme conditions. Examples of such conditions include the high angle of attack, rapid pitch motions necessary for combat maneuvers. A well known phenomenon occurring on airfoils undergoing such high angle of attack motions is the formation of a leading edge vortex. This vortex is preceded by significant increases in lift, but is also accompanied by subsequent rapid loss of lift and the ensuing dynamic stall. Prior to dynamic stall vortex formation, the unsteady separating boundary layer resembles the separating boundary layer over a static airfoil. Before developing control methodologies for unsteady flows, it is necessary to obtain a thorough understanding of the controlled flow over a static airfoil. This experimental analysis presents a comprehensive study of the separating boundary layer over a static airfoil under natural and actively controlled conditions. Near-surface hot-film and surface pressure measurements, as well as flow visualization are used to analyze the large-scale nature of the flow and determine forcing effects. Results from the static study are then extended for an initial evaluation of unsteady airfoil control. The fundamental frequency for a two-dimensional NACA-0015 airfoil is found to be an integral multiple of the frequency associated with wake structures. The static separating boundary layer response to active control confirms that it is a boundary layer transitioning to a free shear layer. Qualitative analyses show that significant reduction in overall static separation can be achieved under forcing conditions. Upper airfoil surface suction values are also significantly increased over the natural values. Applying tangential pulsed air control at static fundamental frequencies to a dynamic airfoil results in delay of the dynamic stall vortex formation and a delay of dynamic stall. These discoveries indicate that the developed control methodology may prove successful in increasing unsteady aircraft maneuverability.

Lovato, Julie Anne

113

Overview of NASA HSR high-lift program  

NASA Technical Reports Server (NTRS)

The viewgraphs and discussion of the NASA High-Speed Research (HSR) Program being conducted to develop the technologies essential for the successful U.S. development of a commercial supersonic air transport in the 2005 timeframe are provided. The HSR program is being conducted in two phases, with the first phase stressing technology to ensure environmental acceptability and the second phase stressing technology to make the vehicle economically viable (in contrast to the current Concorde design). During Phase 1 of the program, a key element of the environmental emphases is minimization of community noise through effective engine nozzle noise suppression technology and through improving the performance of high-lift systems. An overview of the current Phase 1 High-Lift Program, directed at technology for community noise reduction, is presented. The total target for takeoff engine noise reduction to meet expected regulations is believed to be about 20 EPNdB. The high-lift research is stressing the exploration of innovative high-lift concepts and advanced flight operations procedures to achieve a substantial (approximately 6 EPNdB) reduction in community noise to supplement the reductions expected from engine nozzle noise suppression concepts; primary concern is focused on the takeoff and climbout operations where very high engine power settings are used. Significant reductions in aerodynamic drag in this regime will allow substantial reductions in the required engine thrust levels and therefore reductions in the noise generated.

Gilbert, William P.

1992-01-01

114

Root region airfoil for wind turbine  

DOEpatents

A thick airfoil for the root region of the blade of a wind turbine. The airfoil has a thickness in a range from 24%-26% and a Reynolds number in a range from 1,000,000 to 1,800,000. The airfoil has a maximum lift coefficient of 1.4-1.6 that has minimum sensitivity to roughness effects.

Tangler, James L. (Boulder, CO); Somers, Dan M. (State College, PA)

1995-01-01

115

Airfoils for wind turbine  

DOEpatents

Airfoils for the tip and mid-span regions of a wind turbine blade have upper surface and lower surface shapes and contours between a leading edge and a trailing edge that minimize roughness effects of the airfoil and provide maximum lift coefficients that are largely insensitive to roughness effects. The airfoil in one embodiment is shaped and contoured to have a thickness in a range of about fourteen to seventeen percent, a Reynolds number in a range of about 1,500,000 to 2,000,000, and a maximum lift coefficient in a range of about 1.4 to 1.5. In another embodiment, the airfoil is shaped and contoured to have a thickness in a range of about fourteen percent to sixteen percent, a Reynolds number in a range of about 1,500,000 to 3,000,000, and a maximum lift coefficient in a range of about 0.7 to 1.5. Another embodiment of the airfoil is shaped and contoured to have a Reynolds in a range of about 1,500,000 to 4,000,000, and a maximum lift coefficient in a range of about 1.0 to 1.5.

Tangler, James L. (Boulder, CO); Somers, Dan M. (State College, PA)

2000-01-01

116

High-lift generation and power requirements of insect flight  

Microsoft Academic Search

Recently, much progress has been made in revealing aerodynamic force mechanisms and predicting power requirements in insect flight. In this article, we review the research works in the past 10 years. We first summarize the kinematics of the flapping wing. Next we explore the unsteady high-lift mechanisms. Then we discuss the power requirements of hovering and forward flight in some

Mao Sun

2005-01-01

117

The Aerodynamic Characteristics of Airfoils as Affected by Surface Roughness  

NASA Technical Reports Server (NTRS)

The effect on airfoil characteristics of surface roughness of varying degrees and types at different locations on an airfoil was investigated at high values of the Reynolds number in a variable density wind tunnel. Tests were made on a number of National Advisory Committee for Aeronautics (NACA) 0012 airfoil models on which the nature of the surface was varied from a rough to a very smooth finish. The effect on the airfoil characteristics of varying the location of a rough area in the region of the leading edge was also investigated. Airfoils with surfaces simulating lap joints were also tested. Measurable adverse effects were found to be caused by small irregularities in airfoil surfaces which might ordinarily be overlooked. The flow is sensitive to small irregularities of approximately 0.0002c in depth near the leading edge. The tests made on the surfaces simulating lap joints indicated that such surfaces cause small adverse effects. Additional data from earlier tests of another symmetrical airfoil are also included to indicate the variation of the maximum lift coefficient with the Reynolds number for an airfoil with a polished surface and with a very rough one.

HOCKER RAY W

1933-01-01

118

Analytical and computational investigations of airfoils undergoing high-frequency sinusoidal pitch and plunge motions at low Reynolds numbers  

NASA Astrophysics Data System (ADS)

Current interests in Micro Air Vehicle (MAV) technologies call for the development of aerodynamic-design tools that will aid in the design of more efficient platforms that will also have adequate stability and control for flight in gusty environments. Influenced largely by nature MAVs tend to be very small, have low flight speeds, and utilize flapping motions for propulsion. For these reasons the focus is, specifically, on high-frequency motions at low Reynolds numbers. Toward the goal of developing design tools, it is of interest to explore the use of elementary flow solutions for simple motions such as pitch and plunge oscillations to predict aerodynamic performance for more complex motions. In the early part of this research, a validation effort was undertaken. Computations from the current effort were compared with experiments conducted in a parallel, collaborative effort at the Air Force Research Laboratory (AFRL). A set of pure-pitch and pure-plunge sinusoidal oscillations of the SD7003 airfoil were examined. Phase-averaged measurements using particle image velocimetry in a water tunnel were compared with computations using two flow solvers: (i) an incompressible Navier-Stokes Immersed Boundary Method and (ii) an unsteady compressible Reynolds-Averaged Navier-Stokes (RANS) solver. The motions were at a reduced frequency of k = 3.93, and pitch-angle amplitudes were chosen such that a kinematic equivalence in amplitudes of effective angle of attack (from plunge) was obtained. Plunge cases showed good qualitative agreement between computation and experiment, but in the pitch cases, the wake vorticity in the experiment was substantially different from that predicted by both computations. Further, equivalence between the pure-pitch and pure-plunge motions was not attained through matching effective angle of attack. With the failure of pitch/plunge equivalence using equivalent amplitudes of effective angle of attack, the effort shifted to include pitch-rate and wake-effect terms through the use of analytical methods including quasi-steady thin-airfoil theory (QSTAT) and Theodorsen's theory. These theories were used to develop three analytical approaches for determining pitch motions equivalent to plunge motions. A study of variation in plunge height was then examined and followed by a study of the effect of rotation point using the RANS solver. For the range of plunge heights studied, it was observed that kinematic matching between plunge and pitch using QSTAT gave outstanding similarities in flow field, while the matching performed using Theodorsen's theory gave the best equivalence in lift coefficients for all cases. The variation of rotation point revealed that, for the given plunge height, with rotation point in front of the mid-chord location, all three schemes matched flow-field vorticity well, and with rotation point aft of the mid-chord no scheme matched vorticity fields. However, for all rotation points (except for the mid-chord location), CFD prediction of lift coefficients from the Theodorsen matching scheme matched the lift time histories closely to CFD predictions for pure-pitch. Combined pitch and plunge motions were then examined using kinematic parameters obtained from the three schemes. The results showed that QSTAT nearly cancels the vortices emanating from the trailing edge. Theodorsen's matching approach was successful in generating a lift that was close to constant over the entire cycle. Additionally this approach showed the presence of the reverse Karman vortex sheet through the wake. Combined pitch/plunge motions were then analyzed, computationally and experimentally, with a non-zero mean angle of attack. All computational results compared excellently with experiments, capturing vorticity production on the airfoil's surface and through the wake. Lift coefficient through a cycle was shown to tend toward a constant using Theodorsen's parameters, with the constant being dependent on the initial angle of attack. This result points to the possibility of designing an unsteady motion to match a given flig

McGowan, Gregory Z.

119

Reduction of Profile Drag at Supersonic Velocities by the Use of Airfoil Sections Having a Blunt Trailing Edge  

NASA Technical Reports Server (NTRS)

A preliminary theoretical and experimental investigation has been made on the aerodynamic characteristics of blunt-trailing-edge airfoils at supersonic velocities. The theoretical considerations indicate that properly designed airfoils with moderately blunt trailing edges can have less profile drag, greater lift-curve slope, and high maximum lift-drag ratio than conventional sections. These predictions have been substantiated by experimental measurements on airfoils of 10-percent-thickness ratio at Mach numbers of 1.5 and 2.0, and at Reynolds numbers between 0.2 and 1.2 million.

Chapman, Dean R

1955-01-01

120

High School Redesign Gets Presidential Lift  

ERIC Educational Resources Information Center

President Barack Obama applauded high school redesign efforts in his State of the Union address and encouraged districts to look to successful models for inspiration. Last week, he followed up with a request in his fiscal 2014 budget proposal for a new, $300 million competitive-grant program. Recognition is widespread that high schools need to…

Adams, Caralee J.

2013-01-01

121

The effects of sound on the boundary layer of an airfoil at high angles of attack  

E-print Network

THE EFFECTS OF SOUND ON THE BOUNDARY LAYER OF AN AIRFOIL AT HIGH ANGLES OF ATTACK A Thesis By THOMAS IRA HUTCHINSON S, rhr?tted to the Graduate School of the Agrtcultu, al and Mechanical College of Texas in partial f, . lfrllr:, cnt... of the requirements for the degree of MASTER OF SCIENCE January 1963 Mai"" Subject: Acrcspace Engrneering THE EFFECTS OF SOUND ON THE BOUNDARY LAYER OF AN AIRFOIL AT HIGH ANGLES OF ATTACK A Thesis THOMAS IRA HUTCHINSON Approved as to style and content by...

Hutchinson, Thomas Ira

1963-01-01

122

Theoretical Prediction of Pressure Distributions on Nonlifting Airfoils at High Subsonic Speeds  

NASA Technical Reports Server (NTRS)

Theoretical pressure distributions on nonlifting circular-arc airfoils in two-dimensional flows with high subsonic free-stream velocity are found by determining approximate solutions, through an iteration process, of an integral equation for transonic flow proposed by Oswatitsch. The integral equation stems directly from the small-disturbance theory for transonic flow. This method of analysis possesses the advantage of remaining in the physical, rather than the hodograph, variable and can be applied in airfoils having curved surfaces. After discussion of the derivation of the integral equation and qualitative aspects of the solution, results of calculations carried out for circular-arc airfoils in flows with free-stream Mach numbers up to unity are described. These results indicate most of the principal phenomena observed in experimental studies.

Spreiter, John R; Alksne, Alberta

1955-01-01

123

Numerical analysis of the s1020 airfoils in tandem under different flapping configurations  

NASA Astrophysics Data System (ADS)

The objective of this project is to improve the performance of the efficiency, thrust and lift of flapping wings in tandem arrangement. This research investigates the effect of the arrangement of the airfoils in tandem on the performance of the airfoils by varying the phase difference and distance between the airfoils. Three flapping configurations from an earlier phase of a research which gives high efficiency, thrust and lift are used in the tandem simulation. It is found all the different flapping configurations show improvement in the efficiency, thrust or lift when the distance between the two airfoils and the phase angle between the heaving positions of the two airfoils are optimal. The average thrust coefficient of the tandem arrangement managed to attain more than twice that of the single one (4.84 vs. 2.05). On the other hand, the average lift coefficient of the tandem arrangement also increased to 4.59, as compared to the original single airfoil value of 3.04. All these results obtained will aid in the design of a better ornithopter with tandem wing arrangement.

Lim, K. B.; Tay, W. B.

2010-05-01

124

An analytical model for highly seperated flow on airfoils at low speeds  

NASA Technical Reports Server (NTRS)

A computer program was developed to solve the low speed flow around airfoils with highly separated flow. A new flow model included all of the major physical features in the separated region. Flow visualization tests also were made which gave substantiation to the validity of the model. The computation involves the matching of the potential flow, boundary layer and flows in the separated regions. Head's entrainment theory was used for boundary layer calculations and Korst's jet mixing analysis was used in the separated regions. A free stagnation point aft of the airfoil and a standing vortex in the separated region were modelled and computed.

Zunnalt, G. W.; Naik, S. N.

1977-01-01

125

Computed unsteady flows of airfoils at high incidence  

NASA Technical Reports Server (NTRS)

The flow over an airfoil at an angle of attack above the static stall angle would ordinarily be massively separated. Under dynamic conditions, the onset of stall can be delayed to an angle, depending on the type of unsteadiness, much higher than that for static stall. The stall onset mechanisms under dynamic conditions are unclear. Due to extreme difficulties involved, experimental investigations, so far, have provided insufficient information about the flow field for the identification of the onset mechanisms. A course of classical boundary layer analysis augmented with numerical experiments and measured data is chosen here instead, with the hope that the identification of onset mechanisms can be more systematic and quantitative.

Fung, K.-Y.; Currier, Jeffrey; Man, S. O.

1992-01-01

126

Computational design and analysis of flatback airfoil wind tunnel experiment.  

SciTech Connect

A computational fluid dynamics study of thick wind turbine section shapes in the test section of the UC Davis wind tunnel at a chord Reynolds number of one million is presented. The goals of this study are to validate standard wind tunnel wall corrections for high solid blockage conditions and to reaffirm the favorable effect of a blunt trailing edge or flatback on the performance characteristics of a representative thick airfoil shape prior to building the wind tunnel models and conducting the experiment. The numerical simulations prove the standard wind tunnel corrections to be largely valid for the proposed test of 40% maximum thickness to chord ratio airfoils at a solid blockage ratio of 10%. Comparison of the computed lift characteristics of a sharp trailing edge baseline airfoil and derived flatback airfoils reaffirms the earlier observed trend of reduced sensitivity to surface contamination with increasing trailing edge thickness.

Mayda, Edward A. (University of California, Davis, CA); van Dam, C.P. (University of California, Davis, CA); Chao, David D. (University of California, Davis, CA); Berg, Dale E.

2008-03-01

127

High-lift generation and power requirements of insect flight  

NASA Astrophysics Data System (ADS)

Recently, much progress has been made in revealing aerodynamic force mechanisms and predicting power requirements in insect flight. In this article, we review the research works in the past 10 years. We first summarize the kinematics of the flapping wing. Next we explore the unsteady high-lift mechanisms. Then we discuss the power requirements of hovering and forward flight in some insects. Finally, we mention recent studies on dragonfly flight.

Sun, Mao

2005-07-01

128

Airfoil family design for large offshore wind turbine blades  

NASA Astrophysics Data System (ADS)

Wind turbine blades size has scaled-up during last years due to wind turbine platform increase especially for offshore applications. The EOLIA project 2007-2010 (Spanish Goverment funded project) was focused on the design of large offshore wind turbines for deep waters. The project was managed by ACCIONA Energia and the wind turbine technology was designed by ACCIONA Windpower. The project included the design of a wind turbine airfoil family especially conceived for large offshore wind turbine blades, in the order of 5MW machine. Large offshore wind turbines suffer high extreme loads due to their size, in addition the lack of noise restrictions allow higher tip speeds. Consequently, the airfoils presented in this work are designed for high Reynolds numbers with the main goal of reducing blade loads and mantainig power production. The new airfoil family was designed in collaboration with CENER (Spanish National Renewable Energy Centre). The airfoil family was designed using a evolutionary algorithm based optimization tool with different objectives, both aerodynamic and structural, coupled with an airfoil geometry generation tool. Force coefficients of the designed airfoil were obtained using the panel code XFOIL in which the boundary layer/inviscid flow coupling is ineracted via surface transpiration model. The desing methodology includes a novel technique to define the objective functions based on normalizing the functions using weight parameters created from data of airfoils used as reference. Four airfoils have been designed, here three of them will be presented, with relative thickness of 18%, 21%, 25%, which have been verified with the in-house CFD code, Wind Multi Block WMB, and later validated with wind tunnel experiments. Some of the objectives for the designed airfoils concern the aerodynamic behavior (high efficiency and lift, high tangential coefficient, insensitivity to rough conditions, etc.), others concern the geometry (good for structural design, compatibility for the different airfoil family members, etc.) and with the ultimate objective that the airfoils will reduce the blade loads. In this paper the whole airfoil design process and the main characteristics of the airfoil family are described. Some force coefficients for the design Reynolds number are also presented. The new designed airfoils have been studied with computational calculations (panel method code and CFD) and also in a wind tunnel experimental campaign. Some of these results will be also presented in this paper.

Méndez, B.; Munduate, X.; San Miguel, U.

2014-06-01

129

High-lift chemical heat pump technologies for industrial processes  

SciTech Connect

Traditionally industrial heat pumps (IHPs) have found applications on a process specific basis with reject heat from a process being upgraded and returned to the process. The IHP must be carefully integrated into a process since improper placement may result in an uneconomic application. Industry has emphasized a process integration approach to the design and operation of their plants. Heat pump applications have adopted this approach and the area of applicability was extended by utilizing a process integrated approach where reject heat from one process is upgraded and then used as input for another process. The DOE IHP Program has extended the process integration approach of heat pump application with a plant utility emphasis. In this design philosophy, reject heat from a process is upgraded to plant utility conditions and fed into the plant distribution system. This approach has the advantage that reject heat from any pr@s can be used as input and the output can be used at any location within the plant. Thus the approach can be easily integrated into existing industrial applications and all reject heat streams are potential targets of opportunity. The plant utility approach can not be implemented without having heat pumps with high-lift capabilities (on the order of 65{degree}C). Current heat pumps have only about half the lift capability required. Thus the current emphasis for the DOE IHP Program is the development of high lift chemical heat pumps that can deliver heat more economically to higher heat delivery temperatures. This is achieved with innovative cooling (refrigeration) and heating technologies which are based on advanced cycles and advanced working fluids or a combination of both. This paper details the plan to develop economically competitive, environmentally acceptable heat pump technologies that are capable of providing the delivery temperature and lift required to supply industrial plant utility-grade process heating and/or cooling.

Olszewski, M.; Zaltash, A.

1995-03-01

130

Modern Airfoil Ice Accretions  

NASA Technical Reports Server (NTRS)

This report presents results from the first icing tests performed in the Modem Airfoils program. Two airfoils have been subjected to icing tests in the NASA Lewis Icing Research Tunnel (IRT). Both airfoils were two dimensional airfoils; one was representative of a commercial transport airfoil while the other was representative of a business jet airfoil. The icing test conditions were selected from the FAR Appendix C envelopes. Effects on aerodynamic performance are presented including the effects of varying amounts of glaze ice as well as the effects of approximately the same amounts of glaze, mixed, and rime ice. Actual ice shapes obtained in these tests are also presented for these cases. In addition, comparisons are shown between ice shapes from the tests and ice shapes predicted by the computer code, LEWICE for similar conditions. Significant results from the tests are that relatively small amounts of ice can have nearly as much effect on airfoil lift coefficient as much greater amounts of ice and that glaze ice usually has a more detrimental effect than either rime or mixed ice. LEWICE predictions of ice shapes, in general, compared reasonably well with ice shapes obtained in the IRT, although differences in details of the ice shapes were observed.

Addy, Harold E., Jr.; Potapczuk, Mark G.; Sheldon, David W.

1997-01-01

131

Design and validation of a high-lift low-pressure turbine blade  

NASA Astrophysics Data System (ADS)

This dissertation is a design and validation study of the high-lift low-pressure turbine (LPT) blade designated L2F. High-lift LPTs offer the promise of reducing the blade count in modern gas turbine engines. Decreasing the blade count can reduce development and maintenance costs and the weight of the engine, but care must be taken in order to maintain turbine section performance with fewer blades. For an equivalent amount of work extracted, lower blade counts increase blade loading in the LPT section. The high-lift LPT presented herein allows 38% fewer blades with a Zweifel loading coefficient of 1.59 and maintains the same inlet and outlet blade metal angles of conventional geometries in service today while providing an improved low-Reynolds number characteristic. The computational design method utilizes the Turbine Design and Analysis System (TDAAS) developed by John Clark of the Air Force Research Laboratory. TDAAS integrates several government-funded design utilities including airfoil and grid generation capability with a Reynolds-Averaged Navier-Stokes flow solver into a single, menu-driven, Matlab-based system. Transition modeling is achieved with the recently developed model of Praisner and Clark, and this study validates the use of the model for design purposes outside of the Pratt & Whitney (P&W) design system where they were created. Turbulence modeling is achieved with the Baldwin and Lomax zero-equation model. The experimental validation consists of testing the front-loaded L2F along with a previously designed, mid-loaded blade (L1M) in a linear turbine cascade in a low-speed wind tunnel over a range of Reynolds numbers at 3.3% freestream turbulence. Hot-wire anemometry and pressure measurements elucidate these comparisons, while a shear and stress sensitive film (S3F) also helps describe the flow in areas of interest. S3F can provide all 3 components of stress on a surface in a single measurement, and these tests extend the operational envelope of the technique to low speed air environments where small dynamic pressures and curved surfaces preclude the use of more traditional global measurement methods. Results are compared between the L1M and L2F geometries along with previous data taken in the same wind tunnel at identical flow conditions for the P&W Pack B geometry.

McQuilling, Mark Wayne

132

Numerical analysis of active chordwise flexibility on the performance of non-symmetrical flapping airfoils  

NASA Astrophysics Data System (ADS)

This paper investigates the effect of active chordwise flexing on the lift, thrust and propulsive efficiency of three types of airfoils. The factors studied are the flexing center location, standard two-sided flexing as well as a type of single-sided flexing. The airfoils are simulated to flap with four configurations, and the effects of flexing under these configurations are investigated. Results show that flexing is not necessarily beneficial for the performance of the airfoils. However, with the correct parameters, efficiency is as high as 0.76 by placing the flexing centre at the trailing edge. The average thrust coefficient is more than twice as high, from 1.63 to 3.57 with flapping and flexing under the right conditions. Moreover, the single-sided flexing also gives an average lift coefficient as high as 4.61 for the S1020 airfoil. The shape of the airfoil does alter the effect of flexing too. Deviating the flexing phase angle away from 90° does not give a significant improvement to the airfoil’s performance. These results greatly enhance the design of a better performing ornithopter wing.

Tay, W. B.; Lim, K. B.

2010-01-01

133

Numerical simulation of oscillating lifted flames in coflow jets with highly diluted propane  

Microsoft Academic Search

Characteristics of lifted flames in coflow jets with highly diluted propane fuel have been analyzed nu- merically accounting for the buoyancy effect. In a certain range of fuel jet velocity, periodically oscillating lifted flames were predicted within the frequency range of 2.5-4.0 Hz. Stationary lifted flames were predicted when the fuel jet velocity is either relatively small or large. The

J. Kim; S. H. Won; M. K. Shin; S. H. Chung

2002-01-01

134

Comparative wind tunnel test at high Reynolds numbers of NACA 64 621 airfoils with two aileron configurations  

NASA Technical Reports Server (NTRS)

An experimental program to measure the aerodynamic characteristics of the NACA 64-621 airfoil when equipped with plain ailerons of 0.38 chord and 0.30 chord and with 0.38 chord balanced aileron has been conducted in the pressurized O.S.U. 6 x 12 ft High Reynolds Number Wind Tunnel. Surface pressures were measured and integrated to yield lift and pressure drag coefficients for angles of attack from -3 to +42 deg and for selected aileron deflections from 0 to -90 deg at nominal Mach and Reynolds numbers of 0.25 and 5 x 10(exp 6). When resolved into thrust coefficient for wind turbine aerodynamic control applications, the data indicated the anticipated decrease in thrust coefficient with negative aileron deflection at low angles of attack; however, as angle of attack increased, thrust coefficients eventually became positive. All aileron configurations, even at -90 deg deflections showed this trend. Hinge moments for each configuration complete the data set.

Gregorek, G. M.

1995-01-01

135

On the Use of Surface Porosity to Reduce Unsteady Lift  

NASA Technical Reports Server (NTRS)

An innovative application of existing technology is proposed for attenuating the effects of transient phenomena, such as rotor-stator and rotor-strut interactions, linked to noise and fatigue failure in turbomachinery environments. A computational study was designed to assess the potential of passive porosity technology as a mechanism for alleviating interaction effects by reducing the unsteady lift developed on a stator airfoil subject to wake impingement. The study involved a typical high bypass fan Stator airfoil (solid baseline and several porous configurations), immersed in a free field and exposed to the effects of a transversely moving wake. It was found that, for the airfoil under consideration, the magnitude of the unsteady lift could be reduced more than 18% without incurring significant performance losses.

Tinetti, Ana F.; Kelly, Jeffrey J.; Bauer, Steven X. S.; Thomas, Russell H.

2001-01-01

136

Aerodynamic flow control of a high lift system with dual synthetic jet arrays  

NASA Astrophysics Data System (ADS)

Implementing flow control systems will mitigate the vibration and aeroacoustic issues associated with weapons bays; enhance the performance of the latest generation aircraft by reducing their fuel consumption and improving their high angle-of-attack handling qualities; facilitate steep climb out profiles for military transport aircraft. Experimental research is performed on a NACA 0015 airfoil with a simple flap at angle of attack of 16o in both clean and high lift configurations. The results of the active control phase of the project will be discussed. Three different experiments were conducted; they are Amplitude Modulated Dual Location Open Loop Control, Adaptive Control with Amplitude Modulation using Direct Sensor Feedback and Adaptive Control with Amplitude Modulation using Extremum Seeking Control. All the closed loop experiments are dual location. The analysis presented uses the spatial variation of the root mean square pressure fluctuations, power spectral density estimates, Fast Fourier Transforms (FFTs), and time frequency analysis which consists of the application of the Morlet and Mexican Hat wavelets. Additionally, during the course of high speed testing in the wind tunnel, some aeroacoustic phenomena were uncovered; those results will also be presented. A cross section of the results shows that the shape of the RMS pressure distributions is sensitive to forcing frequency. The application of broadband excitation in the case adaptive control causes the flow to select a frequency to lock in to. Additionally, open loop control results in global synchronization via switching between two stable states and closed loop control inhibits the switching phenomena, but rather synchronizes the flow about multiple stable shedding frequencies.

Alstrom, Robert Bruce

137

LES of High-Reynolds-Number Coanda Flow Separating from a Rounded Trailing Edge of a Circulation Control Airfoil  

NASA Technical Reports Server (NTRS)

This slide presentation reviews the Large Eddy Simulation of a high reynolds number Coanda flow that is separated from a round trailing edge of a ciruclation control airfoil. The objectives of the study are: (1) To investigate detailed physics (flow structures and statistics) of the fully turbulent Coanda jet applied to a CC airfoil, by using LES (2) To compare LES and RANS results to figure out how to improve the performance of existing RANS models for this type of flow.

Nichino, Takafumi; Hahn, Seonghyeon; Shariff, Karim

2010-01-01

138

Measurements of surface-pressure and wake-flow fluctuations in the flow field of a whitcomb supercritical airfoil  

NASA Technical Reports Server (NTRS)

Measurements of surface pressure and wake flow fluctuations were made as part of a transonic wind tunnel investigation into the nature of a supercritical airfoil flow field. Emphasis was on a range of high subsonic Mach numbers and moderate lift coefficients corresponding to the development of drag divergence and buffeting. Fluctuation data were analyzed statistically for intensity, frequency content, and spatial coherence. Variations in these parameters were correlated with changes in the mean airfoil flow field.

Roos, F. W.; Riddle, D. W.

1977-01-01

139

Controlled transitory stall on a pitching airfoil using pulsed actuation  

NASA Astrophysics Data System (ADS)

Transitory separation control of a static and pitching 2-D airfoil is investigated in wind tunnel experiments using pulsed actuation on time scales that are an order of magnitude shorter than the characteristic convective time scale T conv. Actuation is provided by momentary [O(0.05 T conv)] pulsed jets that are generated by a spanwise array of combustion-based actuators integrated in the center segment of the airfoil. The flow field in the center plane above the airfoil and in its near wake is computed from high-resolution PIV measurements in multiple overlapping cross-stream frames that are obtained phase-locked to the actuation and allow for tracking of vorticity concentrations. A single actuation pulse leads to a strong transitory increase in the circulation about the airfoil that is manifested by a partial collapse of the separated flow domain and is accompanied by the shedding of a large-scale clockwise vortex, and the attachment and accumulation of the surface vorticity layer behind it. The slow relaxation of the flow following termination of pulsed actuation returns the airfoil to full stall within 10 T conv. It is shown that repetition of actuation pulses within T conv can increase the streamwise extent of the attached flow domain, and the trapped vorticity leads to a substantial increase in the peak transitory circulation before the flow separates again when the actuation is terminated. The coupling of the pulsed actuation to the airfoil's motion enhances the actuation's control authority. Single pulse can significantly increase the lift over most of the oscillation cycle both at post-stall and at angles of attack that are below stall. Several actuation pulses distributed during the pitch oscillation cycle can momentarily extend the accumulation of vorticity and thus increase the transitory and cycle-averaged lift, and improve the airfoil's pitch stability.

Woo, George T. K.; Glezer, Ari

2013-06-01

140

Plasma actuators for separation control on stationary and oscillating airfoils  

NASA Astrophysics Data System (ADS)

Given the importance of separation control associated with retreating blade stall on helicopters, the primary objective of this work was to develop a plasma actuator flow control device for its use in controlling leading-edge separation on stationary and oscillating airfoils. The plasma actuator consists of two copper electrodes separated by a dielectric insulator. When the voltage supplied to the electrodes is sufficiently high, the surrounding air ionizes forms plasma in the regions of high electrical field potential. The ionized air, in the presence of an electric field gradient, results in a body force on the flow. The effect of plasma actuator was experimentally investigated and characterized through a systematic set of experiments. It was then applied to NACA 66 3018 and NACA 0015 airfoils for the purpose of leading-edge separation control. The effectiveness of the actuator was documented through surface pressure measurements on the airfoil, mean wake velocity profiles, and flow visualization records. For the stationary airfoil, the actuator prevented flow separation for angles of attack up to 22°, which was 8° past the static stall angle. This resulted in as much as a 300% improvement in the lift-to-drag ratio. For the oscillating airfoil, the measurements were phase-conditioned to the oscillation motion. Three cases with the plasma actuator were investigated: steady actuation, unsteady plasma actuation, and so-called "smart" actuation in which the actuator is activated during portions of the oscillatory cycle. All of the cases exhibited a higher cycle-integrated lift and an improvement in the lift cycle hysteresis. The steady plasma actuation increased the lift over most of the cycle, except at the peak angle of attack where it was found to suppress the dynamic stall vortex. Because of this, the sharp drop in the lift coefficient past the maximum angle of attack was eliminated. The unsteady plasma actuation produced significant improvements in the lift coefficient during the pitch-down portion of the cycle, especially near the minimum angle of attack. A "smart" actuator approach produced the best improvement in the lift cycle with the highest integrated lift, and elimination of the sharp stall past the maximum angle of attack. It is possible that the "smart" actuation could be optimized further. However, these results are extremely promising for improving helicopter rotor performance.

Post, Martiqua L.

141

An Improved Version of the NASA-Lockheed Multielement Airfoil Analysis Computer Program  

NASA Technical Reports Server (NTRS)

An improved version of the NASA-Lockheed computer program for the analysis of multielement airfoils is described. The predictions of the program are evaluated by comparison with recent experimental high lift data including lift, pitching moment, profile drag, and detailed distributions of surface pressures and boundary layer parameters. The results of the evaluation show that the contract objectives of improving program reliability and accuracy have been met.

Brune, G. W.; Manke, J. W.

1978-01-01

142

Root region airfoil for wind turbine  

DOEpatents

A thick airfoil is described for the root region of the blade of a wind turbine. The airfoil has a thickness in a range from 24%--26% and a Reynolds number in a range from 1,000,000 to 1,800,000. The airfoil has a maximum lift coefficient of 1.4--1.6 that has minimum sensitivity to roughness effects. 3 Figs.

Tangler, J.L.; Somers, D.M.

1995-05-23

143

Design of a Slotted, Natural-Laminar-Flow Airfoil for Business-Jet Applications  

NASA Technical Reports Server (NTRS)

A 14-percent-thick, slotted, natural-laminar-flow airfoil, the S204, for light business-jet applications has been designed and analyzed theoretically. The two primary objectives of high maximum lift, relatively insensitive to roughness, and low profile drag have been achieved. The drag-divergence Mach number is predicted to be greater than 0.70.

Somers, Dan M.

2012-01-01

144

Design of a family of new advanced airfoils for low wind class turbines  

NASA Astrophysics Data System (ADS)

In order to maximize the ratio of energy capture and reduce the cost of energy, the selection of the airfoils to be used along the blade plays a crucial role. Despite the general usage of existing airfoils, more and more, families of airfoils specially tailored for specific applications are developed. The present research is focused on the design of a new family of airfoils to be used for the blade of one megawatt wind turbine working in low wind conditions. A hybrid optimization scheme has been implemented, combining together genetic and gradient based algorithms. Large part of the work is dedicated to present and discuss the requirements that needed to be satisfied in order to have a consistent family of geometries with high efficiency, high lift and good structural characteristics. For each airfoil, these characteristics are presented and compared to the ones of existing airfoils. Finally, the aerodynamic design of a new blade for low wind class turbine is illustrated and compared to a reference shape developed by using existing geometries. Due to higher lift performance, the results show a sensitive saving in chords, wetted area and so in loads in idling position.

Grasso, Francesco

2014-12-01

145

Aerodynamic characteristics of a propeller-powered high-lift semispan wing  

NASA Technical Reports Server (NTRS)

A small-scale semispan high-lift wing-flap system equipped under the wing with a turboprop engine assembly was tested in the LaRC 14- by 22-Foot Subsonic Tunnel. Experimental data were obtained for various propeller rotational speeds, nacelle locations, and nacelle inclinations. To isolate the effects of the high lift system, data were obtained with and without the flaps and leading-edge device. The effects of the propeller slipstream on the overall longitudinal aerodynamic characteristics of the wing-propeller assembly were examined. Test results indicated that the lift coefficient of the wing could be increased by the propeller slipstream when the rotational speed was increased and high-lift devices were deployed. Decreasing the nacelle inclination (increased pitch down) enhanced the lift performance of the system much more than varying the vertical or horizontal location of the nacelle. Furthermore, decreasing the nacelle inclination led to higher lift curve slope values, which indicated that the powered wing could sustain higher angles of attack near maximum lift performance. Any lift augmentation was accompanied by a drag penalty due to the increased wing lift.

Gentry, Garl L., Jr.; Takallu, M. A.; Applin, Zachary T.

1994-01-01

146

Low-speed aerodynamic characteristics of a 14-percent-thick NASA phase 2 supercritical airfoil designed for a lift coefficient of 0.7  

NASA Technical Reports Server (NTRS)

The low speed aerodynamic characteristics of a 14 percent thick supercritical airfoil are documented. The wind tunnel test was conducted in the Low Turbulence Pressure Tunnel. The effects of varying chord Reynolds number from 2,000,000 to 18,000,000 at a Mach number of 0.15 and the effects of varying Mach number from 0.10 to 0.32 at a Reynolds number of 6,000,000 are included.

Harris, C. D.; Mcghee, R. J.; Allison, D. O.

1980-01-01

147

Airfoil structure  

DOEpatents

Past airfoil configurations have been used to improve aerodynamic performance and engine efficiencies. The present airfoil configuration further increases component life and reduces maintenance by reducing internal stress within the airfoil itself. The airfoil includes a chord and a span. Each of the chord and the span has a bow being summed to form a generally ``C`` configuration of the airfoil. The generally ``C`` configuration includes a compound bow in which internal stresses resulting from a thermal temperature gradient are reduced. The structural configuration reduces internal stresses resulting from thermal expansion. 6 figs.

Frey, G.A.; Twardochleb, C.Z.

1998-01-13

148

Airfoil structure  

DOEpatents

Past airfoil configurations have been used to improve aerodynamic performance and engine efficiencies. The present airfoil configuration further increases component life and reduces maintenance by reducing internal stress within the airfoil itself. The airfoil includes a chord and a span. Each of the chord and the span has a bow being summed to form a generally "C" configuration of the airfoil. The generally "C" configuration includes a compound bow in which internal stresses resulting from a thermal temperature gradient are reduced. The structural configuration reduces internal stresses resulting from thermal expansion.

Frey, Gary A. (Poway, CA); Twardochleb, Christopher Z. (Alpine, CA)

1998-01-01

149

Three-dimensional aerodynamic analysis of a subsonic transport high-lift configuration and comparisons with wind-tunnel test results  

NASA Technical Reports Server (NTRS)

The sizing and efficiency of an aircraft is largely determined by the performance of its high-lift system. Subsonic civil transports most often use deployable multi-element airfoils to achieve the maximum-lift requirements for landing, as well as the high lift-to-drag ratios for take-off. However, these systems produce very complex flow fields which are not fully understood by the scientific community. In order to compete in today's market place, aircraft manufacturers will have to design better high-lift systems. Therefore, a more thorough understanding of the flows associated with these systems is desired. Flight and wind-tunnel experiments have been conducted on NASA Langley's B737-100 research aircraft to obtain detailed full-scale flow measurements on a multi-element high-lift system at various flight conditions. As part of this effort, computational aerodynamic tools are being used to provide preliminary flow-field information for instrumentation development, and to provide additional insight during the data analysis and interpretation process. The purpose of this paper is to demonstrate the ability and usefulness of a three-dimensional low-order potential flow solver, PMARC, by comparing computational results with data obtained from 1/8 scale wind-tunnel tests. Overall, correlation of experimental and computational data reveals that the panel method is able to predict reasonably well the pressures of the aircraft's multi-element wing at several spanwise stations. PMARC's versatility and usefulness is also demonstrated by accurately predicting inviscid three-dimensional flow features for several intricate geometrical regions.

Edge, D. Christian; Perkins, John N.

1995-01-01

150

Dynamic Stall Characteristics of Drooped Leading Edge Airfoils  

NASA Technical Reports Server (NTRS)

Helicopters in high-speed forward flight usually experience large regions of dynamic stall over the retreating side of the rotor disk. The rapid variations in the lift and pitching moments associated with the stall process can result in vibratory loads, and can cause fatigue and failure of pitch links. In some instances, the large time lag between the aerodynamic forces and the blade motion can trigger stall flutter. A number of techniques for the alleviation of dynamic stall have been proposed and studied by researchers. Passive and active control techniques have both been explored. Passive techniques include the use of high solidity rotors that reduce the lift coefficients of individual blades, leading edge slots and leading edge slats. Active control techniques include steady and unsteady blowing, and dynamically deformable leading edge (DDLE) airfoils. Considerable amount of experimental and numerical data has been collected on the effectiveness of these concepts. One concept that has not received as much attention is the drooped-leading edge airfoil idea. It has been observed in wind tunnel studies and flight tests that drooped leading edge airfoils can have a milder dynamic stall, with a significantly milder load hysteresis. Drooped leading edge airfoils may not, however, be suitable at other conditions, e.g. in hover, or in transonic flow. Work needs to be done on the analysis and design of drooped leading edge airfoils for efficient operation in a variety of flight regimes (hover, dynamic stall, and transonic flow). One concept that is worthy of investigation is the dynamically drooping airfoil, where the leading edge shape is changed roughly once-per-rev to mitigate the dynamic stall.

Sankar, Lakshmi N.; Sahin, Mehmet; Gopal, Naveen

2000-01-01

151

Dynamic Stall Measurements and Computations for a VR-12 Airfoil with a Variable Droop Leading Edge  

NASA Technical Reports Server (NTRS)

High density-altitude operations of helicopters with advanced performance and maneuver capabilities have lead to fundamental research on active high-lift system concepts for rotor blades. The requirement for this type of system was to improve the sectional lift-to-drag ratio by alleviating dynamic stall on the retreating blade while simultaneously reducing the transonic drag rise of the advancing blade. Both measured and computational results showed that a Variable Droop Leading Edge (VDLE) airfoil is a viable concept for application to a rotor high-lift system. Results are presented for a series of 2D compressible dynamic stall wind tunnel tests with supporting CFD results for selected test cases. These measurements and computations show a dramatic decrease in the drag and pitching moment associated with severe dynamic stall when the VDLE concept is applied to the Boeing VR-12 airfoil. Test results also show an elimination of the negative pitch damping observed in the baseline moment hysteresis curves.

Martin, P. B.; McAlister, K. W.; Chandrasekhara, M. S.; Geissler, W.

2003-01-01

152

A study on high subsonic airfoil flows in relatively high Reynolds number by using OpenFOAM  

NASA Astrophysics Data System (ADS)

In the present study, numerical calculations of the flow-field around the airfoil model are performed by using the OpenFOAM in high subsonic flows. The airfoil model is NACA 64A010. The maximum thickness is 10 % of the chord length. The SonicFOAM and the RhoCentralFOAM are selected as the solver in high subsonic flows. The grid point is 158,000 and the Mach numbers are 0.277 and 0.569 respectively. The CFD data are compared with the experimental data performed by the cryogenic wind tunnel in the past. The results are as follows. The numerical results of the pressure coefficient distribution on the model surface calculated by the SonicFOAM solver showed good agreement with the experimental data measured by the cryogenic wind tunnel. And the data calculated by the SonicFOAM have the capability for the quantitative comparison of the experimental data at low angle of attack.

Nakao, Shinichiro; Kashitani, Masashi; Miyaguni, Takeshi; Yamaguchi, Yutaka

2014-04-01

153

Airfoil Dynamic Stall and Rotorcraft Maneuverability  

NASA Technical Reports Server (NTRS)

The loading of an airfoil during dynamic stall is examined in terms of the augmented lift and the associated penalties in pitching moment and drag. It is shown that once stall occurs and a leading-edge vortex is shed from the airfoil there is a unique relationship between the augmented lift, the negative pitching moment, and the increase in drag. This relationship, referred to here as the dynamic stall function, shows limited sensitivity to effects such as the airfoil section profile and Mach number, and appears to be independent of such parameters as Reynolds number, reduced frequency, and blade sweep. For single-element airfoils there is little that can be done to improve rotorcraft maneuverability except to provide good static C(l(max)) characteristics and the chord or blade number that is required to provide the necessary rotor thrust. However, multi-element airfoils or airfoils with variable geometry features can provide augmented lift in some cases that exceeds that available from a single-element airfoil. The dynamic stall function is shown to be a useful tool for the evaluation of both measured and calculated dynamic stall characteristics of single element, multi-element, and variable geometry airfoils.

Bousman, William G.

2000-01-01

154

Aerodynamic behaviour of NREL S826 airfoil at Re=100,000  

NASA Astrophysics Data System (ADS)

This paper presents wind tunnel measurements of the NREL S826 airfoil at Reynolds number Re = 100,000 for angles of attack in a range of -10° to 25° the corresponding Large Eddy Simulation (LES) for selected angles of attack. The measurements have been performed at the low speed wind tunnel located at Fluid Mechanics laboratory of the Technical University of Denmark (DTU). Lift coefficient is obtained from the forge gauge measurements while the drag is measured according to the integration of the wake profiles downstream of the airfoil. The pressure distribution is measured by a set of pressure taps on the airfoil surface. The lift and drag polars are obtained from the LES computations using DTU's inhouse CFD solver, EllipSys3D, and good agreement is found between the measurement and the simulations. At high angles of attack, the numerical computations tend to over-predict the lift coefficients, however, there is a better agreement between the drag measurements and computations. It is concluded that LES computations are able to capture the lift and drag polars as well as the pressure distribution around the airfoil with an acceptable accuracy.

Sarlak, H.; Mikkelsen, R.; Sarmast, S.; Sørensen, J. N.

2014-06-01

155

Overview of Fundamental High-Lift Research for Transport Aircraft at NASA  

NASA Technical Reports Server (NTRS)

NASA has had a long history in fundamental and applied high lift research. Current programs provide a focus on the validation of technologies and tools that will enable extremely short take off and landing coupled with efficient cruise performance, simple flaps with flow control for improved effectiveness, circulation control wing concepts, some exploration into new aircraft concepts, and partnership with Air Force Research Lab in mobility. Transport high-lift development testing will shift more toward mid and high Rn facilities at least until the question: "How much Rn is required" is answered. This viewgraph presentation provides an overview of High-Lift research at NASA.

Leavitt, L. D.; Washburn, A. E.; Wahls, R. A.

2007-01-01

156

Characterisation of Wings with NACA 0012 Airfoils  

Microsoft Academic Search

In this paper, we present a comparison of the experimental results of the behaviour of wings with elliptical, rectangular or trapezoidal plan forms with NACA 0012 airfoils. The prediction for the lift and the induced drag by the Prandtl lifting line theory is also compared with the experimental results. It appears that, at different Reynolds numbers, the aerodynamic characteristic differences

A. Merabet; B. Necib

157

Validation of the CQU-DTU-LN1 series of airfoils  

NASA Astrophysics Data System (ADS)

The CQU-DTU-LN1 series of airfoils were designed with an objective of high lift and low noise emission. In the design process, the aerodynamic performance is obtained using XFOIL while noise emission is obtained with the BPM model. In this paper we present some validations of the designed CQU-DTU-LN118 airfoil by using wind tunnel measurements in the acoustic wind tunnel located at Virginia Tech and numerical computations with the inhouse Q3uic and EllipSys 2D/3D codes. To show the superiority of the new airfoils, comparisons with a NACA64618 airfoil are made. For the aerodynamic features, the designed Cl and Cl/Cd agrees well with the experiment and are in general higher than those of the NACA airfoil. For the acoustic features, the noise emission of the LN118 airfoil is compared with the acoustic measurements and that of the NACA airfoil. Comparisons show that the BPM model can predict correctly the noise changes.

Shen, W. Z.; Zhu, W. J.; Fischer, A.; Garcia, N. R.; Cheng, J. T.; Chen, J.; Madsen, J.

2014-12-01

158

Recent progress in the analysis of iced airfoils and wings  

NASA Technical Reports Server (NTRS)

Recent work on the analysis of iced airfoils and wings is described. Ice shapes for multielement airfoils and wings are computed using an extension of the LEWICE code that was developed for single airfoils. The aerodynamic properties of the iced wing are determined with an interactive scheme in which the solutions of the inviscid flow equations are obtained from a panel method and the solutions of the viscous flow equations are obtained from an inverse three-dimensional finite-difference boundary-layer method. A new interaction law is used to couple the inviscid and viscous flow solutions. The newly developed LEWICE multielement code is amplified to a high-lift configuration to calculate the ice shapes on the slat and on the main airfoil and on a four-element airfoil. The application of the LEWICE wing code to the calculation of ice shapes on a MS-317 swept wing shows good agreement with measurements. The interactive boundary-layer method is applied to a tapered iced wing in order to study the effect of icing on the aerodynamic properties of the wing at several angles of attack.

Cebeci, Tuncer; Chen, Hsun H.; Kaups, Kalle; Schimke, Sue

1992-01-01

159

Influence of airfoil thickness on sound generated by high-frequency gust interactions  

NASA Technical Reports Server (NTRS)

The sound radiated by interaction of a short wavelength gust with a symmetric thin airfoil is analyzed. The theory is based on a linearization of the Euler equations about the subsonic mean flow past the airfoil. The sound generation mechanism is found to be concentrated in a local region surrounding the parabolic nose of the airfoil; the size of this local region scales on the gust wavelength. At low Mach numbers, moderate values of airfoil thickness decrease the sound power, while at higher Mach numbers the sound power tends to increase with airfoil thickness. Airfoil thickness produces dramatic changes in the far field directivity. Both the sound power and the directivity are strong functions of the gust orientation.

Tsai, C. T.; Kerschen, E. J.

1992-01-01

160

A comparison of calculated and experimental lift and pressure distributions for several helicopter rotor sections  

NASA Technical Reports Server (NTRS)

The use of computational techniques in predicting lift coefficients and pressure distributions of two dimenstional airfoil sections was studied. The computer code FL06/IBL was used to solve the compressible, two dimensional flow about four different airfoil sections. The lift coefficients of the airfoils were calculated at various angles of attack at subsonic Mach numbers and compared with experimental data.

Conlon, J.

1980-01-01

161

Assessment of computational issues associated with analysis of high-lift systems  

NASA Technical Reports Server (NTRS)

Thin-layer Navier-Stokes calculations for wing-fuselage configurations from subsonic to hypersonic flow regimes are now possible. However, efficient, accurate solutions for using these codes for two- and three-dimensional high-lift systems have yet to be realized. A brief overview of salient experimental and computational research is presented. An assessment of the state-of-the-art relative to high-lift system analysis and identification of issues related to grid generation and flow physics which are crucial for computational success in this area are also provided. Research in support of the high-lift elements of NASA's High Speed Research and Advanced Subsonic Transport Programs which addresses some of the computational issues is presented. Finally, fruitful areas of concentrated research are identified to accelerate overall progress for high lift system analysis and design.

Balasubramanian, R.; Jones, Kenneth M.; Waggoner, Edgar G.

1992-01-01

162

1997 NASA High-Speed Research Program Aerodynamic Performance Workshop. Volume 2; High Lift  

NASA Technical Reports Server (NTRS)

The High-Speed Research Program and NASA Langley Research Center sponsored the NASA High-Speed Research Program Aerodynamic Performance Workshop on February 25-28, 1997. The workshop was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in areas of Configuration Aerodynamics (transonic and supersonic cruise drag, prediction and minimization), High-Lift, Flight Controls, Supersonic Laminar Flow Control, and Sonic Boom Prediction. The workshop objectives were to (1) report the progress and status of HSCT aerodynamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientist and engineers working HSCT aerodynamics. In particular, single- and multi-point optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT Motion Simulator results were presented along with executives summaries for all the Aerodynamic Performance technology areas.

Baize, Daniel G. (Editor)

1999-01-01

163

High-precision position control of a heavy-lift manipulator in a dynamic environment  

E-print Network

This thesis considers the control of a heavy-lift serial manipulator operating on the deck of a large ocean vessel. This application presents a unique challenge for high- precision control because the system must contend ...

Garretson, Justin R. (Justin Richard)

2005-01-01

164

Design and Testing of Advanced Composite Load Introduction Structure for Aircraft High Lift Devices  

Microsoft Academic Search

This paper focuses on innovative composite load introduction structures for high lift devices and their design philosophy.\\u000a In a joint project between different EADS Business Units, a new composite flap support system is developed for which design\\u000a principles are investigated. The load introduction of these composite high lift elements is of most interest. The design of\\u000a single pin load introduction

Tamas Havar; Eckart Stuible

165

The Steady Aerodynamics of Airfoils with Uniform Porosity  

NASA Astrophysics Data System (ADS)

The steady aerodynamic loads on a flat plate with uniform porosity in a uniform background flow are determined in closed form by an extension of classical thin airfoil theory. The porous boundary condition on the airfoil surface assumes a linear Darcy law relationship, which furnishes a Fredholm integral equation for the bound vorticity distribution over the airfoil. The solution to this singular integral equation yields a single dimesionless group that determines when porosity effects are important. The pressure distribution, integrated lift, and pitching moment for the uniformily-porous airfoil are shown to be the product of the corresponding impermeable airfoil results and a simple function of the new dimensionless group.

Tian, Zhiquan

166

A direct-inverse method for transonic and separated flows about airfoils  

NASA Technical Reports Server (NTRS)

A direct-inverse technique and computer program called TAMSEP that can be sued for the analysis of the flow about airfoils at subsonic and low transonic freestream velocities is presented. The method is based upon a direct-inverse nonconservative full potential inviscid method, a Thwaites laminar boundary layer technique, and the Barnwell turbulent momentum integral scheme; and it is formulated using Cartesian coordinates. Since the method utilizes inverse boundary conditions in regions of separated flow, it is suitable for predicing the flowfield about airfoils having trailing edge separated flow under high lift conditions. Comparisons with experimental data indicate that the method should be a useful tool for applied aerodynamic analyses.

Carlson, K. D.

1985-01-01

167

A direct-inverse method for transonic and separated flows about airfoils  

NASA Technical Reports Server (NTRS)

A direct-inverse technique and computer program called TAMSEP that can be used for the analysis of the flow about airfoils at subsonic and low transonic freestream velocities is presented. The method is based upon a direct-inverse nonconservative full potential inviscid method, a Thwaites laminar boundary layer technique, and the Barnwell turbulent momentum integral scheme; and it is formulated using Cartesian coordinates. Since the method utilizes inverse boundary conditions in regions of separated flow, it is suitable for predicting the flow field about airfoils having trailing edge separated flow under high lift conditions. Comparisons with experimental data indicate that the method should be a useful tool for applied aerodynamic analyses.

Carlson, Leland A.

1990-01-01

168

Efficient simulation of incompressible viscous flow over multi-element airfoils  

NASA Technical Reports Server (NTRS)

The incompressible, viscous, turbulent flow over single and multi-element airfoils is numerically simulated in an efficient manner by solving the incompressible Navier-Stokes equations. The solution algorithm employs the method of pseudo compressibility and utilizes an upwind differencing scheme for the convective fluxes, and an implicit line-relaxation scheme. The motivation for this work includes interest in studying high-lift take-off and landing configurations of various aircraft. In particular, accurate computation of lift and drag at various angles of attack up to stall is desired. Two different turbulence models are tested in computing the flow over an NACA 4412 airfoil; an accurate prediction of stall is obtained. The approach used for multi-element airfoils involves the use of multiple zones of structured grids fitted to each element. Two different approaches are compared; a patched system of grids, and an overlaid Chimera system of grids. Computational results are presented for two-element, three-element, and four-element airfoil configurations. Excellent agreement with experimental surface pressure coefficients is seen. The code converges in less than 200 iterations, requiring on the order of one minute of CPU time on a CRAY YMP per element in the airfoil configuration.

Rogers, Stuart E.; Wiltberger, N. Lyn; Kwak, Dochan

1993-01-01

169

Flow structure and performance of a flexible plunging airfoil  

NASA Astrophysics Data System (ADS)

An investigation was performed with the intent of characterizing the effect of flexibility on a plunging airfoil, over a parameter space applicable to birds and flapping MAVs. The kinematics of the motion was determined using of a high speed camera, and the deformations and strains involved in the motion were examined. The vortex dynamics associated with the plunging motion were mapped out using particle image velocimetry (PIV), and categorized according to the behavior of the leading edge vortex (LEV). The development and shedding process of the LEVs was also studied, along with their flow trajectories. Results of the flexible airfoils were compared to similar cases performed with a rigid airfoil, so as to determine the effects caused by flexibility. Aerodynamic loads of the airfoils were also measured using a force sensor, and the recorded thrust, lift and power coefficients were analyzed for dependencies, as was the overall propulsive efficiency. Thrust and power coefficients were found to scale with the Strouhal number defined by the trialing edge amplitude, causing the data of the flexible airfoils to collapse down to a single curve. The lift coefficient was likewise found to scale with trailing edge Strouhal number; however, its data tended to collapse down to a linear relationship. On the other hand, the wake classification and the propulsive efficiency were more successfully scaled by the reduced frequency of the motion. The circulation of the LEV was determined in each case and the resulting data was scaled using a parameter developed for this specific study, which provided significant collapse of the data throughout the entire parameter space tested.

Akkala, James Marcus

170

Static and dynamic pressure measurements on a NACA 0012 airfoil in the Ames High Reynolds Number Facility  

NASA Technical Reports Server (NTRS)

The supercritical flows at high subsonic speeds over a NACA 0012 airfoil were studied to acquire aerodynamic data suitable for evaluating numerical-flow codes. The measurements consisted primarily of static and dynamic pressures on the airfoil and test-channel walls. Shadowgraphs were also taken of the flow field near the airfoil. The tests were performed at free-stream Mach numbers from approximately 0.7 to 0.8, at angles of attack sufficient to include the onset of buffet, and at Reynolds numbers from 1 million to 14 million. A test action was designed specifically to obtain two-dimensional airfoil data with a minimum of wall interference effects. Boundary-layer suction panels were used to minimize sidewall interference effects. Flexible upper and lower walls allow test-channel area-ruling to nullify Mach number changes induced by the mass removal, to correct for longitudinal boundary-layer growth, and to provide contouring compatible with the streamlines of the model in free air.

Mcdevitt, J. B.; Okuno, A. F.

1985-01-01

171

Development of a large-scale, outdoor, ground-based test capability for evaluating the effect of rain on airfoil lift  

NASA Technical Reports Server (NTRS)

A large-scale, outdoor, ground-based test capability for acquiring aerodynamic data in a simulated rain environment was developed at the Langley Aircraft Landing Dynamics Facility (ALDF) to assess the effect of heavy rain on airfoil performance. The ALDF test carriage was modified to transport a 10-ft-chord NACA 64210 wing section along a 3000-ft track at full-scale aircraft approach speeds. An overhead rain simulation system was constructed along a 525-ft section of the track with the capability of producing simulated rain fields of 2, 10, 30, and 40 in/hr. The facility modifications, the aerodynamic testing and rain simulation capability, the design and calibration of the rain simulation system, and the operational procedures developed to minimize the effect of wind on the simulated rain field and aerodynamic data are described in detail. The data acquisition and reduction processes are also presented along with sample force data illustrating the environmental effects on data accuracy and repeatability for the 'rain-off' test condition.

Bezos, Gaudy M.; Campbell, Bryan A.

1993-01-01

172

Dynamic airfoil stall investigations  

NASA Technical Reports Server (NTRS)

Experimental and computational investigations of the dynamic stall phenomenon continue to attract the attention of various research groups in the major aeronautical research laboratories. There are two reasons for this continued research interest. First, the occurrence of dynamic stall on the retreating blade of helicopters imposes a severe performance limitation and thus suggests to search for ways to delay the onset of dynamic stall. Second, the lift enhancement prior to dynamic stall presents an opportunity to achieve enhanced maneuverability of fighter aircraft. A description of the major parameters affecting dynamic stall and lift and an evaluation of research efforts prior to 1988 has been given by Carr. In this paper the authors' recent progress in the development of experimental and computational methods to analyze the dynamic stall phenomena occurring on NACA 0112 airfoils is reviewed. First, the major experimental and computational approaches and results are summarized. This is followed by an assessment of our results and an outlook toward the future.

Platzer, M. F.; Chandrasekhara, M. S.; Ekaterinaris, J. A.; Carr, L. W.

1992-01-01

173

Numerical simulation of a powered-lift landing, tracking flow features using overset grids, and simulation of high lift devices on a fighter-lift-and-control wing  

NASA Technical Reports Server (NTRS)

Attached as appendices to this report are documents describing work performed on the simulation of a landing powered-lift delta wing, the tracking of flow features using overset grids, and the simulation of flaps on the Wright Patterson Lab's fighter-lift-and-control (FLAC) wing. Numerical simulation of a powered-lift landing includes the computation of flow about a delta wing at four fixed heights as well as a simulated landing, in which the delta wing descends toward the ground. Comparison of computed and experimental lift coefficients indicates that the simulations capture the qualitative trends in lift-loss encountered by thrust-vectoring aircraft operating in ground effect. Power spectra of temporal variations of pressure indicate computed vortex shedding frequencies close to the jet exit are in the experimentally observed frequency range; the power spectra of pressure also provide insights into the mechanisms of lift oscillations. Also, a method for using overset grids to track dynamic flow features is described and the method is validated by tracking a moving shock and vortices shed behind a circular cylinder. Finally, Chimera gridding strategies were used to develop pressure coefficient contours for the FLAC wing for a Mach no. of 0.18 and Reynolds no. of 2.5 million.

Chawla, Kalpana

1993-01-01

174

Determination of forced convective heat transfer coefficients for subsonic flows over heated asymmetric NANA 4412 airfoil  

NASA Astrophysics Data System (ADS)

Forced convection over traditional surfaces such as flat plate, cylinder and sphere have been well researched and documented. Data on forced convection over airfoil surfaces, however, remain very scanty in literature. High altitude vehicles that employ airfoils as lifting surfaces often suffer leading edge ice accretions which have tremendous negative consequences on the lifting capabilities and stability of the vehicle. One of the ways of mitigating the effect of ice accretion involves judicious leading edge convective cooling technique which in turn depends on the accuracy of convective heat transfer coefficient used in the analysis. In this study empirical investigation of convective heat transfer measurements on asymmetric airfoil is presented at different angle of attacks ranging from 0° to 20° under subsonic flow regime. The top and bottom surface temperatures are measured at given points using Senflex hot film sensors (Tao System Inc.) and used to determine heat transfer characteristics of the airfoils. The model surfaces are subjected to constant heat fluxes using KP Kapton flexible heating pads. The monitored temperature data are then utilized to determine the heat convection coefficients modelled empirically as the Nusselt Number on the surface of the airfoil. The experimental work is conducted in an open circuit-Eiffel type wind tunnel, powered by a 37 kW electrical motor that is able to generate subsonic air velocities up to around 41 m/s in the 24 square-inch test section. The heat transfer experiments have been carried out under constant heat flux supply to the asymmetric airfoil. The convective heat transfer coefficients are determined from measured surface temperature and free stream temperature and investigated in the form of Nusselt number. The variation of Nusselt number is shown with Reynolds number at various angles of attacks. It is concluded that Nusselt number increases with increasing Reynolds number and increase in angle of attack from 0° to 20° on the upper and lower surface of the airfoil.

Dag, Yusuf

175

A study of inviscid flow about airfoils at high supersonic speeds  

NASA Technical Reports Server (NTRS)

Steady flow about curved airfoils is investigated analytically, first assuming air behaves as an ideal gas, and then assuming it behaves as a thermally perfect, calorically imperfect gas. Conclusions are drawn from the study.

Eggers, A J; Syvertson, Clarence A; Kraus, Samuel

1953-01-01

176

The trailing edge of a pitching airfoil at high reduced frequencies  

NASA Technical Reports Server (NTRS)

Trailing edge flows are visualized for a pitching airfoil. The validity of the quasi-steady and an extension to an unsteady Kutta condition are examined. A new dynamic similarity parameter is proposed.

Poling, D. R.; Telionis, D. P.

1985-01-01

177

Overview and Summary of the Second AIAA High Lift Prediction Workshop  

NASA Technical Reports Server (NTRS)

The second AIAA CFD High-Lift Prediction Workshop was held in San Diego, California, in June 2013. The goals of the workshop continued in the tradition of the first high-lift workshop: to assess the numerical prediction capability of current-generation computational fluid dynamics (CFD) technology for swept, medium/high-aspect-ratio wings in landing/takeoff (high-lift) configurations. This workshop analyzed the flow over the DLR-F11 model in landing configuration at two different Reynolds numbers. Twenty-six participants submitted a total of 48 data sets of CFD results. A variety of grid systems (both structured and unstructured) were used. Trends due to grid density and Reynolds number were analyzed, and effects of support brackets were also included. This paper analyzes the combined results from all workshop participants. Comparisons with experimental data are made. A statistical summary of the CFD results is also included.

Rumsey, Christopher L.; Slotnick, Jeffrey P.

2014-01-01

178

An experimental investigation of the flow physics of high-lift systems  

NASA Technical Reports Server (NTRS)

This progress report, a series of viewgraphs, outlines experiments on the flow physics of confluent boundary layers for high lift systems. The design objective is to design high lift systems with improved C(sub Lmax) for landing approach and improved take-off L/D and simultaneously reduce acquisition and maintenance costs. In effect, achieve improved performance with simpler designs. The research objectives include: establish the role of confluent boundary layer flow physics in high-lift production; contrast confluent boundary layer structure for optimum and non-optimum C(sub L) cases; formation of a high quality, detailed archival data base for CFD/modeling; and examination of the role of relaminarization and streamline curvature.

Thomas, Flint O.; Nelson, R. C.

1995-01-01

179

Control of unsteady separated flow associated with the dynamic pitching of airfoils  

NASA Technical Reports Server (NTRS)

Although studies have been done to understand the dependence of parameters for the occurrence of deep stall, studies to control the flow for sustaining lift for a longer time has been little. To sustain the lift for a longer time, an understanding of the development of the flow over the airfoil is essential. Studies at high speed are required to study how the flow behavior is dictated by the effects of compressibility. When the airfoil is pitched up in ramp motion or during the upstroke of an oscillatory cycle, the flow development on the upper surface of the airfoil and the formation of the vortex dictates the increase in lift behavior. Vortex shedding past the training edge decreases the lift. It is not clear what is the mechanism associated with the unsteady separation and vortex formation in present unsteady environment. To develop any flow control device, to suppress the vortex formation or delay separation, it is important that this mechanism be properly understood. The research activities directed toward understanding these questions are presented and the results are summarized.

Ahmed, Sajeer

1991-01-01

180

Design procedure for low-drag subsonic airfoils  

NASA Technical Reports Server (NTRS)

Airfoil has least amount of drag under given restrictions of boundary layer transition position, lift coefficient, thickness ratio, and Reynolds number based on airfoil chord. It is suitable for use as wing and propeller aircraft sections operating at subsonic speeds and for hydrofoil sections and blades for fans, compressors, turbines, and windmills.

Peterson, J. B.; Chen, A. B.

1975-01-01

181

Experimental and simulated control of lift using trailing edge devices  

NASA Astrophysics Data System (ADS)

Two active aerodynamic load control (AALC) devices coupled with a control algorithm are shown to decrease the change in lift force experienced by an airfoil during a change in freestream velocity. Microtabs are small (1% chord) surfaces deployed perpendicular to an airfoil, while microjets are pneumatic jets with flow perpendicular to the surface of the airfoil near the trailing edge. Both devices are capable of producing a rapid change in an airfoil's lift coefficient. A control algorithm for microtabs has been tested in a wind tunnel using a modified S819 airfoil, and a microjet control algorithm has been simulated for a NACA 0012 airfoil using OVERFLOW. In both cases, the AALC devices have shown the ability to mitigate the changes in lift during a gust.

Cooperman, A.; Blaylock, M.; van Dam, C. P.

2014-12-01

182

Unstructured Grid Generation for Complex 3D High-Lift Configurations  

NASA Technical Reports Server (NTRS)

The application of an unstructured grid methodology on a three-dimensional high-lift configuration is presented. The focus of this paper is on the grid generation aspect of an integrated effort for the development of an unstructured-grid computational fluid dynamics (CFD) capability at the NASA Langley Research Center. The meshing approach is based on tetrahedral grids generated by the advancing-front and the advancing-layers procedures. The capability of the method for solving high-lift problems is demonstrated on an aircraft model referred to as the energy efficient transport configuration. The grid generation issues, including the pros and cons of the present approach, are discussed in relation to the high-lift problems. Limited viscous flow results are presented to demonstrate the viability of the generated grids. A corresponding Navier-Stokes solution capability, along with further computations on the present grid, is presented in a companion SAE paper.

Pirzadeh, Shahyar Z.

1999-01-01

183

Large-Scale Parallel Unstructured Mesh Computations for 3D High-Lift Analysis  

NASA Technical Reports Server (NTRS)

A complete "geometry to drag-polar" analysis capability for three-dimensional high-lift configurations is described. The approach is based on the use of unstructured meshes in order to enable rapid turnaround for complicated geometries which arise in high-lift configurations. Special attention is devoted to creating a capability for enabling analyses on highly resolved grids. Unstructured meshes of several million vertices are initially generated on a work-station, and subsequently refined on a supercomputer. The flow is solved on these refined meshes on large parallel computers using an unstructured agglomeration multigrid algorithm. Good prediction of lift and drag throughout the range of incidences is demonstrated on a transport take-off configuration using up to 24.7 million grid points. The feasibility of using this approach in a production environment on existing parallel machines is demonstrated, as well as the scalability of the solver on machines using up to 1450 processors.

Mavriplis, D. J.; Pirzadeh, S.

1999-01-01

184

Large-scale Parallel Unstructured Mesh Computations for 3D High-lift Analysis  

NASA Technical Reports Server (NTRS)

A complete "geometry to drag-polar" analysis capability for the three-dimensional high-lift configurations is described. The approach is based on the use of unstructured meshes in order to enable rapid turnaround for complicated geometries that arise in high-lift configurations. Special attention is devoted to creating a capability for enabling analyses on highly resolved grids. Unstructured meshes of several million vertices are initially generated on a work-station, and subsequently refined on a supercomputer. The flow is solved on these refined meshes on large parallel computers using an unstructured agglomeration multigrid algorithm. Good prediction of lift and drag throughout the range of incidences is demonstrated on a transport take-off configuration using up to 24.7 million grid points. The feasibility of using this approach in a production environment on existing parallel machines is demonstrated, as well as the scalability of the solver on machines using up to 1450 processors.

Mavriplis, Dimitri J.; Pirzadeh, S.

1999-01-01

185

Large-Scale Parallel Unstructured Mesh Computations for 3D High-Lift Analysis  

NASA Technical Reports Server (NTRS)

A complete "geometry to drag-polar" analysis capability for three-dimensional high-lift configurations is described. The approach is based on the use of unstructured meshes in order to enable rapid turnaround for complicated geometries which arise in high-lift con gurations. Special attention is devoted to creating a capability for enabling analyses on highly resolved grids. Unstructured meshes of several million vertices are initially generated on a work-station, and subsequently refined on a supercomputer. The flow is solved on these refined meshes on large parallel computers using an unstructured agglomeration multigrid algorithm. Good prediction of lift and drag throughout the range of incidences is demonstrated on a transport take-off configuration using up to 24.7 million grid points. The feasibility of using this approach in a production environment on existing parallel machines is demonstrated, as well as the scalability of the solver on machines using up to 1450 processors.

Mavriplis, D. J.; Pirzadeh, S.

1999-01-01

186

Light aircraft lift, drag, and moment prediction: A review and analysis  

NASA Technical Reports Server (NTRS)

The historical development of analytical methods for predicting the lift, drag, and pitching moment of complete light aircraft configurations in cruising flight is reviewed. Theoretical methods, based in part on techniques described in the literature and in part on original work, are developed. These methods form the basis for understanding the computer programs given to: (1) compute the lift, drag, and moment of conventional airfoils, (2) extend these two-dimensional characteristics to three dimensions for moderate-to-high aspect ratio unswept wings, (3) plot complete configurations, (4) convert the fuselage geometric data to the correct input format, (5) compute the fuselage lift and drag, (6) compute the lift and moment of symmetrical airfoils to M = 1.0 by a simplified semi-empirical procedure, and (7) compute, in closed form, the pressure distribution over a prolate spheroid at alpha = 0. Comparisons of the predictions with experiment indicate excellent lift and drag agreement for conventional airfoils and wings. Limited comparisons of body-alone drag characteristics yield reasonable agreement. Also included are discussions for interference effects and techniques for summing the results above to obtain predictions for complete configurations.

Smetana, F. O.; Summey, D. C.; Smith, N. S.; Carden, R. K.

1975-01-01

187

1999 NASA High-Speed Research Program Aerodynamic Performance Workshop. Volume 2; High Lift  

NASA Technical Reports Server (NTRS)

The High-Speed Research Program sponsored the NASA High-Speed Research Program Aerodynamic Performance Review on February 8-12, 1999 in Anaheim, California. The review was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in areas of: Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization) and High-Lift. The review objectives were to: (1) report the progress and status of HSCT aerodynamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientist and engineers working HSCT aerodynamics. The HSR AP Technical Review was held simultaneously with the annual review of the following airframe technology areas: Materials and Structures, Environmental Impact, Flight Deck, and Technology Integration Thus, a fourth objective of the Review was to promote synergy between the Aerodynamic Performance technology area and the other technology areas within the airframe element of the HSR Program. This Volume 2/Part 1 publication presents the High-Lift Configuration Development session.

Hahne, David E. (Editor)

1999-01-01

188

Subsonic high-lift flight research on the NASA Transport System Research Vehicle (TSRV)  

NASA Technical Reports Server (NTRS)

Flight tests are being conducted as part of a multiphased subsonic transport high-lift research project for correlation with ground based wind tunnel and computational results. The NASA Langley TSRV 737-100 airplane is utilized to obtain flow characteristics at full-scale Reynolds numbers to contribute to the knowledge of several dominant high-lift flow issues such as boundary layer transition, confluent boundary layer development, and 3D flow separation. Recent test results obtained for a full-chord wing section including the slat, main-wing, and flap elements are presented.

Yip, Long P.; Vijgen, Paul M. H. W.; Hardin, Jay D.; Van Dam, C. P.

1992-01-01

189

1998 NASA High-Speed Research Program Aerodynamic Performance Workshop. Volume 2; High Lift  

NASA Technical Reports Server (NTRS)

NASA's High-Speed Research Program sponsored the 1998 Aerodynamic Performance Technical Review on February 9-13, in Los Angeles, California. The review was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in areas of Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization), High-Lift, and Flight Controls. The review objectives were to (1) report the progress and status of HSCT aerodynamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among the scientists and engineers working HSCT aerodynamics. In particular, single- and multi-point optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT simulation results were presented along with executive summaries for all the Aerodynamic Performance technology areas. The HSR Aerodynamic Performance Technical Review was held simultaneously with the annual review of the following airframe technology areas: Materials and Structures, Environmental Impact, Flight Deck, and Technology Integration. Thus, a fourth objective of the Review was to promote synergy between the Aerodynamic Performance technology area and the other technology areas of the HSR Program.

McMillin, S. Naomi (Editor)

1999-01-01

190

1999 NASA High-Speed Research Program Aerodynamic Performance Workshop. Volume 2; High Lift  

NASA Technical Reports Server (NTRS)

NASA's High-Speed Research Program sponsored the 1999 Aerodynamic Performance Technical Review on February 8-12, 1999 in Anaheim, California. The review was designed to bring together NASA and industry High-Speed Civil Transport (HSCT) Aerodynamic Performance technology development participants in the areas of Configuration Aerodynamics (transonic and supersonic cruise drag prediction and minimization), High Lift, and Flight Controls. The review objectives were to (1) report the progress and status of HSCT aerodynamic performance technology development; (2) disseminate this technology within the appropriate technical communities; and (3) promote synergy among die scientists and engineers working on HSCT aerodynamics. In particular, single and midpoint optimized HSCT configurations, HSCT high-lift system performance predictions, and HSCT simulation results were presented, along with executive summaries for all the Aerodynamic Performance technology areas. The HSR Aerodynamic Performance Technical Review was held simultaneously with the annual review of the following airframe technology areas: Materials and Structures, Environmental Impact, Flight Deck, and Technology Integration. Thus, a fourth objective of the Review was to promote synergy between the Aerodynamic Performance technology area and the other technology areas of the HSR Program. This Volume 2/Part 2 publication covers the tools and methods development session.

Hahne, David E. (Editor)

1999-01-01

191

The effect of a leading-edge slat on the dynamic stall of an oscillating airfoil  

NASA Technical Reports Server (NTRS)

The dynamic stall characteristics of a slatted airfoil were investigated experimentally on a 2-ft-chord airfoil oscillating in pitch at M = 0.2 for a range of reduced frequency and mean angle of oscillation. The slat produced a flow that remained attached to the airfoil for angles well above those normally attained by the retreating blade of a helicopter during high speed flight. The dynamic stall vortex usually associated with these flight conditions was completely eliminated for all angles under 30 deg. Instantaneous surface pressure, lift, and pitching moment data are presented as a function of incidence throughout the oscillation cycle; a detailed analysis of instantaneous boundary-layer flow behavior for the various test conditions is included.

Carr, L. W.; Mcalister, K. W.

1983-01-01

192

Demonstration of a Low-Lift Heat Pump for High-Power Spacecraft Thermal Control  

NASA Astrophysics Data System (ADS)

This paper describes the development and demonstration of a prototype low-lift heat pump for high-power spacecraft thermal control The low-lift heat pump was designed to provide 25 kW of cooling at 303 K and transport this waste heat to a radiator for heat rejection. To accomplish this, a demonstration heat pump with an evaporation temperature of 298 K and a condensing temperature of 301 K was designed and built. HFC-227ea was the working fluid. This effort resulted in optimization of the centrifugal compressor impeller, diffuser, and shroud designs through extensive experimental testing. The detailed design of a magnetic bearing centrifugal compressor was completed. A prototype heat pump thermal control system was designed and fabricated which contained prototypical cold plate and condenser designs. This prototype system was extensively tested and demonstrated to measure performance parameters such as power consumption, cooling capacity, system size and mass, and other key parameters. Finally, the experimental performance was input into the theoretical trade study allowing for a comparison of the actual performance of the low-lift heat pump to a single-phase pumped loop. Inputting the experimental low-lift heat pump performance into the trade study showed that the low-lift heat pump still has lower system mass than the single-phase pumped loop for all space temperatures considered. The experimental results very closely match the theoretical results used in the trade study.

Grzyll, Lawrence R.

2006-01-01

193

Improvement of Laminar Lifted Flame Stability Excited by High-Frequency Acoustic Oscillation  

NASA Astrophysics Data System (ADS)

A high-frequency (20kHz) standing wave was applied to the unburned mixture upstream of a methane-air lifted jet flame using a bolt-clamped Langevin transducer (BLT) to improve stability. The flow field near the flame was visualized using acetone planar-laser-induced fluorescence (PLIF). The standing wave decreased the lifted flame height and increased the blow-off limit. The upstream flow field of the center jet then bent. This phenomenon appeared when there was a density difference between the center jet and the surrounding secondary flow. When the density of the center jet was less than that of the co-flow, the center jet was redirected to the pressure anti-node side. Conversely, when the density of the center jet was greater than that of the co-flow, the center jet was redirected to the pressure node side. This redirection tended to stabilize the laminar lifted flame.

Hirota, Mitsutomo; Hashimoto, Kota; Oso, Hiroki; Masuya, Goro

194

Performance of Advanced Heavy-Lift, High-Speed Rotorcraft Configurations  

NASA Technical Reports Server (NTRS)

The aerodynamic performance of rotorcraft designed for heavy-lift and high-speed cruise is examined. Configurations considered include the tiltrotor, the compound helicopter, and the lift-offset rotor. Design conditions are hover and 250-350 knot cruise, at 5k/ISA+20oC (civil) or 4k/95oF (military); with cruise conditions at 4000 or 30,000 ft. The performance was calculated using the comprehensive analysis CAMRAD II, emphasizing rotor optimization and performance, including wing-rotor interference. Aircraft performance was calculated using estimates of the aircraft drag and auxiliary propulsion efficiency. The performance metric is total power, in terms of equivalent aircraft lift-to-drag ratio L/D = WV/P for cruise, and figure of merit for hover.

Johnson, Wayne; Yeo, Hyeonsoo; Acree, C. W., Jr.

2007-01-01

195

Development of high-lift wing modifications for an advanced capability EA-6B aircraft  

NASA Technical Reports Server (NTRS)

NASA-Langley has been in a development program aimed at improvements of the EA-6B electronic countermeasures aircraft's maneuvering capabilities; one objective of this effort is the investigation of relatively simple wing design modifications which could yield improved low speed high lift performance with minimum degradation of higher-speed performance. Various two- and three-dimensional low speed and transonic CFD techniques have accordingly been used during the design effort, which involved leading-edge slat and trailing-edge flap contour evaluations by both computation and wind tunnel experiment. Significant low-speed maximum-lift enhancements were obtained without cruise-speed deterioration.

Waggoner, Edgar G.

1990-01-01

196

Aerodynamics of High-Lift Configuration Civil Aircraft Model in JAXA  

NASA Astrophysics Data System (ADS)

This paper presents basic aerodynamics and stall characteristics of the high-lift configuration aircraft model JSM (JAXA Standard Model). During research process of developing high-lift system design method, wind tunnel testing at JAXA 6.5m by 5.5m low-speed wind tunnel and Navier-Stokes computation on unstructured hybrid mesh were performed for a realistic configuration aircraft model equipped with high-lift devices, fuselage, nacelle-pylon, slat tracks and Flap Track Fairings (FTF), which was assumed 100 passenger class modern commercial transport aircraft. The testing and the computation aimed to understand flow physics and then to obtain some guidelines for designing a high performance high-lift system. As a result of the testing, Reynolds number effects within linear region and stall region were observed. Analysis of static pressure distribution and flow visualization gave the knowledge to understand the aerodynamic performance. CFD could capture the whole characteristics of basic aerodynamics and clarify flow mechanism which governs stall characteristics even for complicated geometry and its flow field. This collaborative work between wind tunnel testing and CFD is advantageous for improving or has improved the aerodynamic performance.

Yokokawa, Yuzuru; Murayama, Mitsuhiro; Ito, Takeshi; Yamamoto, Kazuomi

197

Large-eddy simulation of flow around an airfoil on a structured mesh  

NASA Technical Reports Server (NTRS)

The diversity of flow characteristics encountered in a flow over an airfoil near maximum lift taxes the presently available statistical turbulence models. This work describes our first attempt to apply the technique of large-eddy simulation to a flow of aeronautical interest. The challenge for this simulation comes from the high Reynolds number of the flow as well as the variety of flow regimes encountered, including a thin laminar boundary layer at the nose, transition, boundary layer growth under adverse pressure gradient, incipient separation near the trailing edge, and merging of two shear layers at the trailing edge. The flow configuration chosen is a NACA 4412 airfoil near maximum lift. The corresponding angle of attack was determined independently by Wadcock (1987) and Hastings & Williams (1984, 1987) to be close to 12 deg. The simulation matches the chord Reynolds number U(sub infinity)c/v = 1.64 x 10(exp 6) of Wadcock's experiment.

Kaltenbach, Hans-Jakob; Choi, Haecheon

1995-01-01

198

Effect of acoustic excitation on the flow over a low-Re airfoil  

NASA Technical Reports Server (NTRS)

Wind-tunnel measurements of lift, drag, and wake velocity spectra were carried out under (tonal) acoustic excitation for a smooth airfoil in the chord-Reynolds-number Re(c) range of 40,000-140,000. The data were supported by smoke-wire flow-visualization pictures. Small-amplitude excitation in a wide, low-frequency range is found to eliminate laminar separation that otherwise degrades the airfoil performance at low Re(c) near the design angle of attack. Excitation at high frequencies eliminates a prestall, periodic shedding of large-scale vortices. Significant improvement in lift is also achieved during poststall, but with large-amplitude excitation. Wind-tunnel resonances strongly influence the results, especially in cases requiring large amplitudes.

Zaman, K. B. M. Q.; Bar-Sever, A.; Mangalam, S. M.

1987-01-01

199

Transition Documentation on a Three-Element High-Lift Configuration at High Reynolds Numbers: Analysis  

NASA Technical Reports Server (NTRS)

A 2-D high-lift system experiment was conducted in August of 1996 in the Low Turbulence Pressure Tunnel at NASA Langley Research Center, Hampton, VA. The purpose of the experiment was to obtain transition measurements on a three element high-lift system for CFD code validation studies. A transition database has been created using the data from this experiment. The present report contains the analysis of the surface hot film data in terms of the transition locations on the three elements. It also includes relevant information regarding the pressure loads and distributions and the wakes behind the model to aid in the interpretation of the transition data. For some of the configurations the current pressure data has been compared with previous wind tunnel entries of the same model. The methodology used to determine the regions of transitional flow is outlined and each configuration tested has been analyzed. A discussion of interference effects, repeatability, and three-dimensional effects on the data is included.

Bertelrud, Arild; Anders, J. B. (Technical Monitor)

2002-01-01

200

Mechanical Design of High Lift Systems for High Aspect Ratio Swept Wings  

NASA Technical Reports Server (NTRS)

The NASA Ames Research Center is working to develop a methodology for the optimization and design of the high lift system for future subsonic airliners with the involvement of two partners. Aerodynamic analysis methods for two dimensional and three dimensional wing performance with flaps and slats deployed are being developed through a grant with the aeronautical department of the University of California Davis, and a flap and slat mechanism design procedure is being developed through a contract with PKCR, Inc., of Seattle, WA. This report documents the work that has been completed in the contract with PKCR on mechanism design. Flap mechanism designs have been completed for seven (7) different mechanisms with a total of twelve (12) different layouts all for a common single slotted flap configuration. The seven mechanisms are as follows: Simple Hinge, Upside Down/Upright Four Bar Linkage (two layouts), Upside Down Four Bar Linkages (three versions), Airbus A330/340 Link/Track Mechanism, Airbus A320 Link/Track Mechanism (two layouts), Boeing Link/Track Mechanism (two layouts), and Boeing 767 Hinged Beam Four Bar Linkage. In addition, a single layout has been made to investigate the growth potential from a single slotted flap to a vane/main double slotted flap using the Boeing Link/Track Mechanism. All layouts show Fowler motion and gap progression of the flap from stowed to a fully deployed position, and evaluations based on spanwise continuity, fairing size and number, complexity, reliability and maintainability and weight as well as Fowler motion and gap progression are presented. For slat design, the options have been limited to mechanisms for a shallow leading edge slat. Three (3) different layouts are presented for maximum slat angles of 20 deg, 15 deg and 1O deg all mechanized with a rack and pinion drive similar to that on the Boeing 757 airplane. Based on the work of Ljungstroem in Sweden, this type of slat design appears to shift the lift curve so that higher lift is achieved with the deployed slat with no increase in angle of attack. The layouts demonstrate that these slat systems can be designed with no need for slave links, and an experimental test program is outlined to experimentally validate the lift characteristics of the shallow slat.

Rudolph, Peter K. C.

1998-01-01

201

Design and experimental results for the S805 airfoil  

SciTech Connect

An airfoil for horizontal-axis wind-turbine applications, the S805, has been designed and analyzed theoretically and verified experimentally in the low-turbulence wind tunnel of the Delft University of Technology Low Speed Laboratory, The Netherlands. The two primary objectives of restrained maximum lift, insensitive to roughness, and low profile drag have been achieved. The airfoil also exhibits a docile stall. Comparisons of the theoretical and experimental results show good agreement. Comparisons with other airfoils illustrate the restrained maximum lift coefficient as well as the lower profile-drag coefficients, thus confirming the achievement of the primary objectives.

Somers, D.M. [Airfoils, Inc., State College, PA (United States)

1997-01-01

202

Wind tunnel wall interference in V/STOL and high lift testing: A selected, annotated bibliography  

NASA Technical Reports Server (NTRS)

This bibliography, with abstracts, consists of 260 citations of interest to persons involved in correcting aerodynamic data, from high lift or V/STOL type configurations, for the interference arising from the wind tunnel test section walls. It provides references which may be useful in correcting high lift data from wind tunnel to free air conditions. References are included which deal with the simulation of ground effect, since it could be viewed as having interference from three tunnel walls. The references could be used to design tests from the standpoint of model size and ground effect simulation, or to determine the available testing envelope with consideration of the problem of flow breakdown. The arrangement of the citations is chronological by date of publication in the case of reports or books, and by date of presentation in the case of papers. Included are some documents of historical interest in the development of high lift testing techniques and wall interference correction methods. Subject, corporate source, and author indices, by citation numbers, have been provided to assist the users. The appendix includes citations of some books and documents which may not deal directly with high lift or V/STOL wall interference, but include additional information which may be helpful.

Tuttle, M. H.; Mineck, R. E.; Cole, K. L.

1986-01-01

203

The aerodynamic design of multi-element high-lift systems for transport airplanes  

Microsoft Academic Search

High-lift systems have a major influence on the sizing, economics, and safety of most transport airplane configurations. The combination of complexity in flow physics, geometry, and system support and actuation has historically led to a lengthy and experiment intensive development process. However, during the recent past engineering design has changed significantly as a result of rapid developments in computational hardware

C. P. van Dam

2002-01-01

204

Two-axis hydraulic joint for high speed, heavy lift robotic operations  

SciTech Connect

A hydraulically driven universal joint was developed for a heavy lift, high speed nuclear waste remediation application. Each axis is driven by a simple hydraulic cylinder controlled by a jet pipe servovalve. Servovalve behavior is controlled by a force feedback control system, which damps the hydraulic resonance. A prototype single joint robot was built and tested. A two joint robot is under construction.

Vaughn, M.R.; Robinett, R.D.; Phelan, J.R.; VanZuiden, D.M.

1994-04-01

205

CFD Methods and Tools for Multi-Element Airfoil Analysis  

NASA Technical Reports Server (NTRS)

This lecture will discuss the computational tools currently available for high-lift multi-element airfoil analysis. It will present an overview of a number of different numerical approaches, their current capabilities, short-comings, and computational costs. The lecture will be limited to viscous methods, including inviscid/boundary layer coupling methods, and incompressible and compressible Reynolds-averaged Navier-Stokes methods. Both structured and unstructured grid generation approaches will be presented. Two different structured grid procedures are outlined, one which uses multi-block patched grids, the other uses overset chimera grids. Turbulence and transition modeling will be discussed.

Rogers, Stuart E.; George, Michael W. (Technical Monitor)

1995-01-01

206

On the general theory of thin airfoils for nonuniform motion  

NASA Technical Reports Server (NTRS)

General thin-airfoil theory for a compressible fluid is formulated as boundary problem for the velocity potential, without recourse to the theory of vortex motion. On the basis of this formulation the integral equation of lifting-surface theory for an incompressible fluid is derived with the chordwise component of the fluid velocity at the airfoil as the function to be determined. It is shown how by integration by parts this integral equation can be transformed into the Biot-Savart theorem. A clarification is gained regarding the use of principal value definitions for the integral which occur. The integral equation of lifting-surface theory is used a s the starting point for the establishment of a theory for the nonstationary airfoil which is a generalization of lifting-line theory for the stationary airfoil and which might be called "lifting-strip" theory. Explicit expressions are given for section lift and section moment in terms of the circulation function, which for any given wing deflection is to be determined from an integral equation which is of the type of the equation of lifting-line theory. The results obtained are for airfoils of uniform chord. They can be extended to tapered airfoils. One of the main uses of the results should be that they furnish a practical means for the analysis of the aerodynamic span effect in the problem of wing flutter. The range of applicability of "lifting-strip" theory is the same as that of lifting-line theory so that its results may be applied to airfoils with aspect ratios as low as three.

Reissner, Eric

1944-01-01

207

Large-eddy simulation of flow over a multi-element airfoil  

NASA Astrophysics Data System (ADS)

An accurate prediction of turbulent flow over a multiple element high-lift airfoil configuration remains a challenge to computational fluid dynamics. Maximum lift, drag, and pitching moment are difficult to accurately predict especially in the presence of flow separation on one or more of the airfoil elements. In this study, we investigate turbulent flow over a MD30P30N high-lift configuration using large-eddy simulation. The MD30P30N configuration consists of three elements: a slat, a main airfoil, and a flap. Four different attack angles, 16^o, 19^o, 21^o, and 24^o, are considered while deflection angles of the slat and flap are fixed to 30^o. The Reynolds number is 9x10^6 based on the mounted-wing chord-length and freestream velocity. Simulation results obtained on a 54 million-element mesh agree well with experimental data in terms of pressure distribution, velocity profiles, and transition location. A grid sensitivity study is performed to identify the resolution effects on the prediction of flow transition, wakes, and turbulent boundary layers. Accurate prediction of laminar-to-turbulence transition on the slat surface and downstream evolution of the slat wake is found to be crucial for the global accuracy of the simulation.

You, Donghyun

2009-11-01

208

An analytical evaluation of airfoil sections for helicopter rotor applications  

NASA Technical Reports Server (NTRS)

An analytical technique was used to evaluate airfoils for helicopter rotor application. This technique permits assessment of the influences of airfoil geometric variations on drag divergence Mach number at lift coefficients from near zero to near maximum lift. Analytical results presented in this paper indicate the compromises in drag divergence Mach number which result from changes in (1) thickness ratio, (2) location of maximum thickness, (3) leading-edge radius, (4) camber addition, and (5) location of maximum camber of NACA four- and five-digit-series airfoils and some 6-series airfoils of potential interest for helicopters. Examples of airfoil sections which combine several of the geometric changes favorable to both advancing and retreating section performance have been presented.

Bingham, G. J.

1975-01-01

209

Motion Kinematics vs. Angle of Attack Effects in High-Frequency Airfoil Pitch/Plunge  

E-print Network

that reduced frequency, Reynolds number and angle of attack limits are the governing parameters for aerodynamic that aerodynamic loads time history and vortex shedding for a broad class of unsteady airfoil problems depend (hummingbirds, dragonflies, and so forth) and to the flight vehicles inspired by such prototypes. For the latter

210

Numerical Calculations of 3-D High-Lift Flows and Comparison with Experiment  

NASA Technical Reports Server (NTRS)

Solutions were obtained with the Navier-Stokes CFD code TLNS3D to predict the flow about the NASA Trapezoidal Wing, a high-lift wing composed of three elements: the main-wing element, a deployed leading-edge slat, and a deployed trailing-edge flap. Turbulence was modeled by the Spalart-Allmaras one-equation turbulence model. One case with massive separation was repeated using Menter's two-equation SST (Menter's Shear Stress Transport) k-omega turbulence model in an attempt to improve the agreement with experiment. The investigation was conducted at a free stream Mach number of 0.2, and at angles of attack ranging from 10.004 degrees to 34.858 degrees. The Reynolds number based on the mean aerodynamic chord of the wing was 4.3 x 10 (sup 6). Compared to experiment, the numerical procedure predicted the surface pressures very well at angles of attack in the linear range of the lift. However, computed maximum lift was 5% low. Drag was mainly under predicted. The procedure correctly predicted several well-known trends and features of high-lift flows, such as off-body separation. The two turbulence models yielded significantly different solutions for the repeated case.

Compton, William B, III

2015-01-01

211

Active Control of Flow Separation Over an Airfoil  

NASA Technical Reports Server (NTRS)

Designing an aircraft without conventional control surfaces is of interest to aerospace community. In this direction, smart actuator devices such as synthetic jets have been proposed to provide aircraft maneuverability instead of control surfaces. In this article, a numerical study is performed to investigate the effects of unsteady suction and blowing on airfoils. The unsteady suction and blowing is introduced at the leading edge of the airfoil in the form of tangential jet. Numerical solutions are obtained using Reynolds-Averaged viscous compressible Navier-Stokes equations. Unsteady suction and blowing is investigated as a means of separation control to obtain lift on airfoils. The effect of blowing coefficients on lift and drag is investigated. The numerical simulations are compared with experiments from the Tel-Aviv University (TAU). These results indicate that unsteady suction and blowing can be used as a means of separation control to generate lift on airfoils.

Ravindran, S. S.

1999-01-01

212

Experimental characterization of an airfoil-based actuator using high-temperature shape memory alloys  

NASA Astrophysics Data System (ADS)

This paper reports experimental results of an airfoil-based flap actuator that is actuated using high temperature Nickel-Titanium (NiTi) polycrystal and Copper-Aluminium-Nickel (CuAlNi) single crystal wires with a nominal diameter of 1.5 mm. The stress-free transformation temperatures of the commercially available NiTi wires are Mf = 53°C, Ms = 70°C , As = 95°C , Af = 110°C whereas those for the CuAlNi wires are Mf = 80°C ,Ms = 100.5°C, As = 104.5°C , Af = 117°C. Due to a significantly low electrical resistivity of the CuAlNi, the commonly used joule heating approach for thermal actuation is shelved for a heating coil approach. Uniaxial stress measurements, trailing edge flap deflections and temperature measurements are recorded during a typical heating and cooling cycle using a load cell in line with the SMA wire, a LVDT at the trailing edge tip and a thermocouple on the wire (outside the heating coil). It is seen that actuation by the CuAlNi (with a prestrain = 5.5%) leads to about a 50% higher tip deflection and about a 67% lower cooling time after actuation as compared to the corresponding values for NiTi (with a prestrain = 5.6%). The larger tip deflection is attributed to a higher strain recovery for the CuAlNi as compared to the NiTi during phase transformation whereas the lower actuation time is attributed, in part, to the narrow hysteresis in the stress-free transformation temperatures of the CuAlNi (~ 37°C) as compared to the NiTi (~ 57°C).

Bhattacharyya, Abhijit; Ables, William L.; Kannarpady, Ganesh K.; Qidwai, Muhammad A.

2004-07-01

213

Aerodynamic Effects Caused by Icing of an Unswept NACA 65A004 Airfoil  

NASA Technical Reports Server (NTRS)

The effects of ice formations on the section lift, drag, and pitching-moment coefficients of an unswept NACA 65A004 airfoil section of 6-foot chord were studied.. The magnitude of the aerodynamic penalties was primarily a function of the shape and size of the ice formation near the leading edge of the airfoil. The exact size and shape of the ice formations were determined photographically and found to be complex functions of the operating and icing conditions. In general, icing of the airfoil at angles of attack less than 40 caused large increases in section drag coefficients (as much as 350 percent in 8 minutes of heavy glaze icing), reductions in section lift coefficients (up to 13 percent), and changes in the pitching-moment coefficient from diving toward climbing moments. At angles of attack greater than 40 the aerodynamic characteristics depended mainly on the ice type. The section drag coefficients generally were reduced by the addition of rime ice (by as much as 45 percent in 8 minutes of icing). In glaze icing, however, the drag increased at these angles of attack. The section lift coefficients were variably affected by rime-ice formations; however, in glaze icing, lift increases at high angles of attack amounted to as much as 9 percent for an icing time of 8 minutes. Pitching-moment-coefficient changes in icing conditions were somewhat erratic and depended on the icing condition. Rotation of the iced airfoil to angles of attack other than that at which icing occurred caused sufficiently large changes in the pitching-moment coefficient that, in flight, rapid corrections in trim might be required in order to avoid a hazardous situation.

Gray, Vernon H.; vonGlahn, Uwe H.

1958-01-01

214

Ice Accretions on Modern Airfoils Investigated  

NASA Technical Reports Server (NTRS)

The Icing Branch at the NASA Glenn Research Center at Lewis Field initiated and conducted the Modern Airfoils Ice Accretions project to identify ice shapes and determine their effects on the aerodynamic performance of aircraft, particularly on lift and drag. Previous aircraft ice shape and performance documentation focused on a few, older airfoils. This permitted more basic studies of the ice accretion process to be undertaken. However, having established both a working data base of ice shapes and the capability to predict these shapes for basic airfoils, questions arose about how ice might accrete differently on airfoils more representative of those being designed and flown on various aircraft today. Similarly, information about how these ice shapes would affect aerodynamic performance was needed.

Addy, Harold E., Jr.

2000-01-01

215

Airfoil self-noise and prediction  

NASA Technical Reports Server (NTRS)

A prediction method is developed for the self-generated noise of an airfoil blade encountering smooth flow. The prediction methods for the individual self-noise mechanisms are semiempirical and are based on previous theoretical studies and data obtained from tests of two- and three-dimensional airfoil blade sections. The self-noise mechanisms are due to specific boundary-layer phenomena, that is, the boundary-layer turbulence passing the trailing edge, separated-boundary-layer and stalled flow over an airfoil, vortex shedding due to laminar boundary layer instabilities, vortex shedding from blunt trailing edges, and the turbulent vortex flow existing near the tip of lifting blades. The predictions are compared successfully with published data from three self-noise studies of different airfoil shapes. An application of the prediction method is reported for a large scale-model helicopter rotor, and the predictions compared well with experimental broadband noise measurements. A computer code of the method is given.

Brooks, Thomas F.; Pope, D. Stuart; Marcolini, Michael A.

1989-01-01

216

14 CFR 25.345 - High lift devices.  

Code of Federal Regulations, 2010 CFR

...CATEGORY AIRPLANES Structure Flight Maneuver and Gust Conditions § 25.345 High...assumed to be subjected to symmetrical maneuvers and gusts. The resulting limit loads...assumed to be subjected to symmetrical maneuvers and gusts within the range determined...

2010-01-01

217

CFD Simulations for the Effect of Unsteady Wakes on the Boundary Layer of a Highly Loaded Low-Pressure Turbine Airfoil (L1A)  

NASA Technical Reports Server (NTRS)

This report is the third part of a three-part final report of research performed under an NRA cooperative Agreement contract. The first part was published as NASA/CR-2012-217415. The second part was published as NASA/CR-2012-217416. The study of the very high lift low-pressure turbine airfoil L1A in the presence of unsteady wakes was performed computationally and compared against experimental results. The experiments were conducted in a low speed wind tunnel under high (4.9%) and then low (0.6%) freestream turbulence intensity for Reynolds number equal to 25,000 and 50,000. The experimental and computational data have shown that in cases without wakes, the boundary layer separated without reattachment. The CFD was done with LES and URANS utilizing the finite-volume code ANSYS Fluent (ANSYS, Inc.) under the same freestream turbulence and Reynolds number conditions as the experiment but only at a rod to blade spacing of 1. With wakes, separation was largely suppressed, particularly if the wake passing frequency was sufficiently high. This was validated in the 3D CFD efforts by comparing the experimental results for the pressure coefficients and velocity profiles, which were reasonable for all cases examined. The 2D CFD efforts failed to capture the three dimensionality effects of the wake and thus were less consistent with the experimental data. The effect of the freestream turbulence intensity levels also showed a little more consistency with the experimental data at higher intensities when compared with the low intensity cases. Additional cases with higher wake passing frequencies which were not run experimentally were simulated. The results showed that an initial 25% increase from the experimental wake passing greatly reduced the size of the separation bubble, nearly completely suppressing it.

Vinci, Samuel, J.

2012-01-01

218

Grid-Adapted FUN3D Computations for the Second High Lift Prediction Workshop  

NASA Technical Reports Server (NTRS)

Contributions of the unstructured Reynolds-averaged Navier-Stokes code FUN3D to the 2nd AIAA CFD High Lift Prediction Workshop are described, and detailed comparisons are made with experimental data. Using workshop-supplied grids, results for the clean wing configuration are compared with results from the structured code CFL3D Using the same turbulence model, both codes compare reasonably well in terms of total forces and moments, and the maximum lift is similarly over-predicted for both codes compared to experiment. By including more representative geometry features such as slat and flap brackets and slat pressure tube bundles, FUN3D captures the general effects of the Reynolds number variation, but under-predicts maximum lift on workshop-supplied grids in comparison with the experimental data, due to excessive separation. However, when output-based, off-body grid adaptation in FUN3D is employed, results improve considerably. In particular, when the geometry includes both brackets and the pressure tube bundles, grid adaptation results in a more accurate prediction of lift near stall in comparison with the wind-tunnel data. Furthermore, a rotation-corrected turbulence model shows improved pressure predictions on the outboard span when using adapted grids.

Lee-Rausch, E. M.; Rumsey, C. L.; Park, M. A.

2014-01-01

219

Status of CFD for LaRC's HSR high-lift program  

NASA Technical Reports Server (NTRS)

The viewgraphs for a status report for using computational fluid dynamics (CFD) for NASA Langley's Research Center High Speed Research High-Lift Program are provided. The objectives of CFD applications, the approach to developing appropriate CFD codes, and the dominant flow mechanisms are outlined. Possible CFD codes are compared; graphs comparing force coefficients, surface pressure distribution, and force are included. The plans for using CFD applications are listed.

Waggoner, Edgar G.; South, Jerry C., Jr.

1992-01-01

220

Summary of the First AIAA CFD High Lift Prediction Workshop (invited)  

NASA Technical Reports Server (NTRS)

The 1st AIAA CFD High Lift Prediction Workshop was held in Chicago in June 2010. The goals of the workshop included an assessment of the numerical prediction capability of current-generation CFD technology/ codes for swept, medium/high-aspect ratio wings in landing/take-off (high lift) configurations. 21 participants from 8 countries and 18 organizations, submitted a total of 39 datasets of CFD results. A variety of grid systems (both structured and unstructured) were used. Trends due to flap angle were analyzed, and effects of grid family, grid density, solver, and turbulence model were addressed. Some participants also assessed the effects of support brackets used to attach the flap and slat to the main wing. This invited paper describes the combined results from all workshop participants. Comparisons with experimental data are made. A statistical summary of the CFD results is also included.

Rumsey, C. L.; Long, M.; Stuever, R. A.; Wayman, T. R.

2011-01-01

221

Investigation of low-speed turbulent separated flow around airfoils  

NASA Technical Reports Server (NTRS)

Described is a low-speed wind tunnel experiment to measure the flowfield around a two-dimensional airfoil operating close to maximum lift. Boundary layer separation occurs on the upper surface at x/c=0.85. A three-component laser velocimeter, coupled with a computer-controlled data acquisition system, was used to obtain three orthogonal mean velocity components and three components of the Reynolds stress tensor in both the boundary layer and wake of the airfoil. Pressure distributions on the airfoil, skin friction distribution on the upper surface of the airfoil, and integral properties of the airfoil boudary layer are also documented. In addition to these near-field flow properties, static pressure distributions, both upstream and downstream from the airfoil and on the walls of the wind tunnel, are also presented.

Wadcock, Alan J.

1987-01-01

222

An experimental investigation of the flow physics of high-lift systems  

NASA Technical Reports Server (NTRS)

This progress report is a series of overviews outlining experiments on the flow physics of confluent boundary layers for high-lift systems. The research objectives include establishing the role of confluent boundary layer flow physics in high-lift production; contrasting confluent boundary layer structures for optimum and non-optimum C(sub L) cases; forming a high quality, detailed archival data base for CFD/modelling; and examining the role of relaminarization and streamline curvature. Goals of this research include completing LDV study of an optimum C(sub L) case; performing detailed LDV confluent boundary layer surveys for multiple non-optimum C(sub L) cases; obtaining skin friction distributions for both optimum and non-optimum C(sub L) cases for scaling purposes; data analysis and inner and outer variable scaling; setting-up and performing relaminarization experiments; and a final report establishing the role of leading edge confluent boundary layer flow physics on high-lift performance.

Thomas, Flint O.; Nelson, R. C.

1995-01-01

223

A High-Lift Building Block Flow: Turbulent Boundary Layer Relaminarization A Final Report  

NASA Technical Reports Server (NTRS)

Experimental evidence exists which suggests turbulent boundary layer relaminarization may play an important role in the inverse Reynolds number effect in high-lift systems. An experimental investigation of turbulent boundary layer relaminarization has been undertaken at the University of Notre Dame's Hessert Center for Aerospace Research in cooperation with NASA Dryden Flight Research Center. A wind tunnel facility has been constructed at the Hessert Center and relaminarization achieved. Preliminary evidence suggests the current predictive tools available are inadequate at determining the onset of relaminarization. In addition, an in-flight relaminarization experiment for the NASA Dryden FTF-II has been designed to explore relaminarization at Mach and Reynolds numbers more typical of commercial high-lift systems.

Bourassa, Corey; Thomas, Flint O.; Nelson, Robert C.

2000-01-01

224

Simplified dragonfly airfoil aerodynamics at Reynolds numbers below 8000  

NASA Astrophysics Data System (ADS)

Effective aerodynamics at Reynolds numbers lower than 10 000 is of great technological interest and a fundamental scientific challenge. The current study covers a Reynolds number range of 2000-8000. At these Reynolds numbers, natural insect flight could provide inspiration for technology development. Insect wings are commonly characterized by corrugated airfoils. In particular, the airfoil of the dragonfly, which is able to glide, can be used for two-dimensional aerodynamic study of fixed rigid wings. In this study, a simplified dragonfly airfoil is numerically analyzed in a steady free-stream flow. The aerodynamic performance (such as mean and fluctuating lift and drag), are first compared to a "traditional" low Reynolds number airfoil: the Eppler-E61. The numerical results demonstrate superior performances of the corrugated airfoil. A series of low-speed wind and water tunnel experiments were performed on the corrugated airfoil, to validate the numerical results. The findings indicate quantitative agreement with the mean wake velocity profiles and shedding frequencies while validating the two dimensionality of the flow. A flow physics numerical study was performed in order to understand the underlying mechanism of corrugated airfoils at these Reynolds numbers. Airfoil shapes based on the flow field characteristics of the corrugated airfoil were built and analyzed. Their performances were compared to those of the corrugated airfoil, stressing the advantages of the latter. It was found that the flow which separates from the corrugations and forms spanwise vortices intermittently reattaches to the aft-upper arc region of the airfoil. This mechanism is responsible for the relatively low intensity of the vortices in the airfoil wake, reducing the drag and increasing the flight performances of this kind of corrugated airfoil as compared to traditional low Reynolds number airfoils such as the Eppler E-61.

Levy, David-Elie; Seifert, Avraham

2009-07-01

225

Computerized three-dimensional aerodynamic design of a lifting rotor blade  

NASA Technical Reports Server (NTRS)

A three-dimensional, inviscid, full-potential lifting rotor code was used to demonstrate that pressure distributions on both advancing and retreating blades could be significantly improved by perturbing local airfoil sections. The perturbations were described by simple geometric shape functions. To illustrate the procedure, an example calculation was made at a forward flight speed of 85 m/sec (165 knots) and an advance ratio of 0.385. It was found that a minimum of three shape functions was required to improve the pressures without producing undesirable secondary effects in high-speed forward flight on a hypothetical modern rotor blade initially having an NLR-1 supercritical airfoil. Reductions in the shock strength on the advancing blade could be achieved, while simultaneously lessening leading-edge pressure gradients on the retreating blade. The major blade section modifications required were blunting of the upper surface leading edge and some reshaping of the blade's upper surface resulting in moderately thicker airfoils.

Tauber, M. E.; Hicks, R. M.

1980-01-01

226

FUN3D and CFL3D Computations for the First High Lift Prediction Workshop  

NASA Technical Reports Server (NTRS)

Two Reynolds-averaged Navier-Stokes codes were used to compute flow over the NASA Trapezoidal Wing at high lift conditions for the 1st AIAA CFD High Lift Prediction Workshop, held in Chicago in June 2010. The unstructured-grid code FUN3D and the structured-grid code CFL3D were applied to several different grid systems. The effects of code, grid system, turbulence model, viscous term treatment, and brackets were studied. The SST model on this configuration predicted lower lift than the Spalart-Allmaras model at high angles of attack; the Spalart-Allmaras model agreed better with experiment. Neglecting viscous cross-derivative terms caused poorer prediction in the wing tip vortex region. Output-based grid adaptation was applied to the unstructured-grid solutions. The adapted grids better resolved wake structures and reduced flap flow separation, which was also observed in uniform grid refinement studies. Limitations of the adaptation method as well as areas for future improvement were identified.

Park, Michael A.; Lee-Rausch, Elizabeth M.; Rumsey, Christopher L.

2011-01-01

227

Numerical studies of the application of active flow control to subsonic and transonic airfoil flows using a synthetic jet actuator  

NASA Astrophysics Data System (ADS)

Active control of flow over airfoils is currently an area of heightened interest in the aerospace community because of its potential in reducing drag, eliminating separation at high angles of attack, and modulating the aerodynamic forces and moments. We study these possibilities by performing several numerical simulations. Numerical simulations are performed by employing an Unsteady Reynolds-Averaged Navier-Stokes (URANS) equations solver in conjunction with a two-equation Shear-Stress-Transport (SST) turbulence model. In particular, the computations are performed for the following three classes of flows: (1) Subsonic flow past a 24% thick Clark-Y airfoil with a triangular bump on the upper surface with and without a synthetic jet actuator. The goal is to perform numerical simulations of this experimentally observed fluidic modification of airfoil pressure distributions leading to reduced pressure drag. The computations are compared with experiments performed at Georgia Tech. (2) Transonic flow past a NACA64A010 airfoil with a synthetic jet actuator. The goal is to control the shock/boundary layer interaction on the airfoil using a synthetic jet actuator to reduce drag as well to achieve desired modulation of aerodynamic forces and moments. (3) Subsonic flow past a commercial supercritical airfoil leveraging the presence of a Gurney flap with a synthetic jet actuator. The goal is again to improve the aerodynamic performance (increase or maintain lift and reduce drag) by using a synthetic jet actuator integrated in a bump on the pressure surface of the airfoil near the trailing edge. The computations are compared with the experiments performed at Georgia Tech. The computations as well as the experiments show the feasibility of active flow control in reducing the drag of airfoils and in achieving the desired modulation of aerodynamic forces and moments.

Vadillo, Jose L.

2005-07-01

228

General airfoil theory  

NASA Technical Reports Server (NTRS)

On the assumption of infinitely small disturbances the author develops a generalized integral equation of airfoil theory which is applicable to any motion and compressible fluid. Successive specializations yield various simpler integral equations, such as Possio's, Birnbaum's, and Prandtl's integral equations, as well as new ones for the wing of infinite span with periodic downwash distribution and for the oscillating wing with high aspect ratio. Lastly, several solutions and methods for solving these integral equations are give.

Kussner, H G

1941-01-01

229

New airfoil sections for straight bladed turbine  

NASA Astrophysics Data System (ADS)

A theoretical investigation of aerodynamic performance for vertical axis Darrieus wind turbine with new airfoils sections is carried out. The blade section aerodynamics characteristics are determined from turbomachines cascade model. The model is also adapted to the vertical Darrieus turbine for the performance prediction of the machine. In order to choose appropriate value of zero-lift-drag coefficient in calculation, an analytical expression is introduced as function of chord-radius ratio and Reynolds numbers. New airfoils sections are proposed and analyzed for straight-bladed turbine.

Boumaza, B.

1987-07-01

230

The use of a panel code on high lift configurations of a swept forward wing  

NASA Technical Reports Server (NTRS)

A study was done on high lift configurations of a generic swept forward wing using a panel code prediction method. A survey was done of existing codes available at Ames, frow which the program VSAERO was chosen. The results of VSAERO were compared with data obtained from the Ames 7- by 10-foot wind tunnel. The results of the comparison in lift were good (within 3.5%). The comparison of the pressure coefficients was also good. The pitching moment coefficients obtained by VSAERO were not in good agreement with experiment. VSAERO's ability to predict drag is questionable and cannot be counted on for accurate trends. Further studies were done on the effects of a leading edge glove, canards, leading edge sweeps and various wing twists on spanwise loading and trim lift with encouraging results. An unsuccessful attempt was made to model spanwise blowing and boundary layer control on the trailing edge flap. The potential results of VSAERO were compared with experimental data of flap deflections with boundary layer control to check the first order effects.

Scheib, J. S.; Sandlin, D. R.

1985-01-01

231

Flight-measured lift and drag characteristics of a large, flexible, high supersonic cruise airplane  

NASA Technical Reports Server (NTRS)

Flight measurements of lift, drag, and angle of attack were obtained for the XB-70 airplane, a large, flexible, high supersonic cruise airplane. This airplane had a length of over 57 meters, a takeoff gross mass of over 226,800 kilograms, and a design cruise speed of Mach 3 at an altitude of 21,340 meters. The performance measurements were made at Mach numbers from 0.72 to 3.07 and altitudes from approximately 7620 meters to 21,340 meters. The measurements were made to provide data for evaluating the techniques presently being used to design and predict the performance of aircraft in this category. Such performance characteristics as drag polars, lift-curve slopes, and maximum lift-to-drag ratios were derived from the flight data. The base drag of the airplane, changes in airplane drag with changes in engine power setting at transonic speeds, and the magnitude of the drag components of the propulsion system are also discussed.

Arnaiz, H. H.

1977-01-01

232

Wind tunnel force and pressure tests of a 21% thick general aviation airfoil with 20% aileron, 25% slotted flap and 10% slot-lip spoiler  

NASA Technical Reports Server (NTRS)

Force and surface pressure distributions were measured for the 21% LS(1)-0421 modified airfoil fitted with 20% aileron, 25% slotted flap and 10% slot lip spoiler. All tests were conducted at a Reynolds number of 2.2 x 10 to the 6th power and a Mach number of 0.13. The lift, drag, pitching moments, control surface normal force and hinge moments, and surface pressure distributions are included in the results. Incremental performance of flap and aileron are discussed and compared to the GA(W)-2 airfoil. Spoiler control which shows a slight reversal tendency at high alpha, is examined.

Wentz, W. H., Jr.; Fiscko, K. A.

1979-01-01

233

Tornado lift  

Microsoft Academic Search

It is shown that one of the causes for tornado is Tornado Lift. At increasing vortex diameter its kinetic energy decreases to keep the moment of momentum constant. A kinetic energy gradient of such vortex is Tornado Lift. Evaluation shows that contribution of Tornado Lift in air lifting in a tornado is comparable to buoyancy according to the order of

Alexander Ivanchin

2010-01-01

234

Aerodynamic Analysis of Trailing Edge Enlarged Wind Turbine Airfoils  

NASA Astrophysics Data System (ADS)

The aerodynamic performance of blunt trailing edge airfoils generated from the DU- 91-W2-250, DU-97-W-300 and DU-96-W-350 airfoils by enlarging the thickness of trailing edge symmetrically from the location of maximum thickness to chord to the trailing edge were analyzed by using CFD and RFOIL methods at a chord Reynolds number of 3 × 106. The goal of this study is to analyze the aerodynamic performance of blunt trailing edge airfoils with different thicknesses of trailing edge and maximum thicknesses to chord. The steady results calculated by the fully turbulent k-? SST, transitional k-? SST model and RFOIL all show that with the increase of thickness of trailing edge, the linear region of lift is extended and the maximum lift also increases, the increase rate and amount of lift become limited gradually at low angles of attack, while the drag increases dramatically. For thicker airfoils with larger maximum thickness to chord length, the increment of lift is larger than that of relatively thinner airfoils when the thickness of blunt trailing edge is increased from 5% to 10% chord length. But too large lift can cause abrupt stall which is profitless for power output. The transient characteristics of blunt trailing edge airfoils are caused by blunt body vortices at low angles of attack, and by the combined effect of separation and blunt body vortices at large angles of attack. With the increase of thickness of blunt trailing edge, the vibration amplitudes of lift and drag curves increase. The transient calculations over-predict the lift at large angles of attack and drag at all angles of attack than the steady calculations which is likely to be caused by the artificial restriction of the flow in two dimensions.

Xu, Haoran; Shen, Wenzhong; Zhu, Weijun; Yang, Hua; Liu, Chao

2014-06-01

235

Wind tunnel tests of high-lift systems for advanced transports using high-aspect-ratio supercritical wings  

NASA Technical Reports Server (NTRS)

The wind tunnel testing of an advanced technology high lift system for a wide body and a narrow body transport incorporating high aspect ratio supercritical wings is described. This testing has added to the very limited low speed high Reynolds number data base for this class or aircraft. The experimental results include the effects on low speed aerodynamic characteristics of various leading and trailing edge devices, nacelles and pylons, ailerons, and spoilers, and the effects of Mach and Reynolds numbers.

Allen, J. B.; Oliver, W. R.; Spacht, L. A.

1982-01-01

236

Investigation of SSME alternate high pressure fuel turbopump lift-off seal fluid and structural dynamic interaction  

NASA Technical Reports Server (NTRS)

The Space Shuttle main engine (SSME) alternate turbopump development program (ATD) high pressure fuel turbopump (HPFTP) design utilizes an innovative lift-off seal (LOS) design that is located in close proximity to the turbine end bearing. Cooling flow exiting the bearing passes through the lift-off seal during steady state operation. The potential for fluid excitation of lift-off seal structural resonances is investigated. No fluid excitation of LOS resonances is predicted. However, if predicted LOS natural frequencies are significantly lowered by the presence of the coolant, pressure oscillations caused by synchronous whirl of the HPFTP rotor may excite a resonance.

Elrod, David A.

1989-01-01

237

Shape Changing Airfoil  

NASA Technical Reports Server (NTRS)

Scoping of shape changing airfoil concepts including both aerodynamic analysis and materials-related technology assessment effort was performed. Three general categories of potential components were considered-fan blades, booster and compressor blades, and stator airfoils. Based on perceived contributions to improving engine efficiency, the fan blade was chosen as the primary application for a more detailed assessment. A high-level aerodynamic assessment using a GE90-90B Block 4 engine cycle and fan blade geometry indicates that blade camber changes of approximately +/-4deg would be sufficient to result in fan efficiency improvements nearing 1 percent. Constraints related to flight safety and failed mode operation suggest that use of the baseline blade shape with actuation to the optimum cruise condition during a portion of the cycle would be likely required. Application of these conditions to the QAT fan blade and engine cycle was estimated to result in an overall fan efficiency gain of 0.4 percent.

Ott, Eric A.

2005-01-01

238

Wind tunnel test results of heavy rain effects on airfoil performance  

NASA Technical Reports Server (NTRS)

The effects of simulated heavy rain on the aerodynamic characteristics of a NACA 64-210 airfoil section equipped with high-lift devices were investigated in the NASA Langley 14- by 22-Foot Subsonic Tunnel. The experiment was part of an on-going NASA program to determine the effect of heavy rain on airplane performance, and was directed at providing insight into scaling laws for subscale model testing of rain effects. The model used in the investigation had a chord of 2.5 feet, a span of 8.0 feet, and was mounted on the tunnel centerline between two large endplates. A water spray distribution system was located 10 chord lengths upstream of the model. The sensitivity of test results to partial-span coverage of the model in the simulated rain environment as compared to full-span coverage was also investigated. The lift and drag data obtained for the high-lift configuration show excellent repeatability of results compared to the previous data. Results obtained for various spray concentrations and tunnel speeds showed significant losses in maximum lift capability, a decrease in the angle of attack for maximum lift, and an increase in drag as the stimulated rain rate was increased. The test results also indicated that the data were not strongly affected by surface tension effects for the high-lift configuration.

Bezos, G. M.; Dunham, R. E., Jr.; Gentry, G. L., Jr.; Melson, W. Edward, Jr.

1987-01-01

239

Theory and Low-Order Modeling of Unsteady Airfoil Flows  

NASA Astrophysics Data System (ADS)

Unsteady flow phenomena are prevalent in a wide range of problems in nature and engineering. These include, but are not limited to, aerodynamics of insect flight, dynamic stall in rotorcraft and wind turbines, leading-edge vortices in delta wings, micro-air vehicle (MAV) design, gust handling and flow control. The most significant characteristics of unsteady flows are rapid changes in the circulation of the airfoil, apparent-mass effects, flow separation and the leading-edge vortex (LEV) phenomenon. Although experimental techniques and computational fluid dynamics (CFD) methods have enabled the detailed study of unsteady flows and their underlying features, a reliable and inexpensive loworder method for fast prediction and for use in control and design is still required. In this research, a low-order methodology based on physical principles rather than empirical fitting is proposed. The objective of such an approach is to enable insights into unsteady phenomena while developing approaches to model them. The basis of the low-order model developed here is unsteady thin-airfoil theory. A time-stepping approach is used to solve for the vorticity on an airfoil camberline, allowing for large amplitudes and nonplanar wakes. On comparing lift coefficients from this method against data from CFD and experiments for some unsteady test cases, it is seen that the method predicts well so long as LEV formation does not occur and flow over the airfoil is attached. The formation of leading-edge vortices (LEVs) in unsteady flows is initiated by flow separation and the formation of a shear layer at the airfoil's leading edge. This phenomenon has been observed to have both detrimental (dynamic stall in helicopters) and beneficial (high-lift flight in insects) effects. To predict the formation of LEVs in unsteady flows, a Leading Edge Suction Parameter (LESP) is proposed. This parameter is calculated from inviscid theory and is a measure of the suction at the airfoil's leading edge. It is hypothesized, and verified with experimental and computational data, that LEV formation always occurs at the same critical value of LESP irrespective of motion kinematics. Further, the applicability of the LESP criterion in influencing the occurrence of LEV formation is demonstrated. To model the growth and convection of leading-edge vortices, the unsteady thin-airfoil theory is augmented with discrete-vortex shedding from the leading edge. The LESP criterion is used to predict and modulate the shedding of leading-edge vorticity. Comparisons with experiments and CFD for test-cases with different airfoils, Reynolds numbers and motion kinematics, show that the method performs remarkably well in predicting force coefficients and flowfields for unsteady flows. The use of a single empirical parameter - the critical LESP value, allows the determination of onset, growth and termination of leading-edge vortex shedding. In the final part of the research, the discrete-vortex model is extended to flows where the freestream velocity is varying or small in comparison with motion velocity. With this extension, the method is made applicable to a larger set of 2D flows such as perching and hovering maneuvers, gusts, and sinusoidally varying freestream. Abstractions of perching and hovering are designed as test cases and used to validate the low-order model's performance in highly-unsteady, vortex-dominated flows. Alongside development of the low-order methodology, several features of unsteady flows are studied and analyzed with the aid of CFD and experiments. While remaining computationally inexpensive and retaining the essential flow-physics, the method is seen to be successful in prediction of both force coefficients and flow histories.

Ramesh, Kiran

240

Robust, optimal subsonic airfoil shapes  

NASA Technical Reports Server (NTRS)

Method system, and product from application of the method, for design of a subsonic airfoil shape, beginning with an arbitrary initial airfoil shape and incorporating one or more constraints on the airfoil geometric parameters and flow characteristics. The resulting design is robust against variations in airfoil dimensions and local airfoil shape introduced in the airfoil manufacturing process. A perturbation procedure provides a class of airfoil shapes, beginning with an initial airfoil shape.

Rai, Man Mohan (Inventor)

2008-01-01

241

Active Control of Separation from the Slat Shoulder of a Supercritical Airfoil  

NASA Technical Reports Server (NTRS)

Active flow control in the form of zero-mass-flux excitation was applied at the slat shoulder of a simplified high-lift airfoil to delay flow separation. The NASA Energy Efficient Transport (EET) supercritical airfoil was equipped with a 15% chord simply hinged leading edge slat and a 25% chord simply hinged trailing edge flap. The cruise configuration data was successfully reproduced, repeating previous experiments. The effects of flap and slat deflection angles on the performance of the airfoil integral parameters were quantified. Detailed flow features were measured as well, in an attempt to identify optimal actuator placement. The measurements included: steady and unsteady model and tunnel wall pressures, wake surveys, arrays of surface hot-films, flow visualization and Particle Image Velocimetry (PIV). High frequency periodic excitation was applied to delay the occurrence of slat stall and improve the maximum lift by 10 to 15%. Low frequency amplitude modulation was used to reduce the oscillatory momentum coefficient by roughly 50% with similar aerodynamic performance.

Pack, LaTunia G.; Schaeffler, Norman W.; Yao, Chung-Sheng; Seifert, Avi

2002-01-01

242

Characterization of the Effect of Wing Surface Instrumentation on UAV Airfoil Performance  

NASA Technical Reports Server (NTRS)

Recently proposed flight research at NASA Dryden Flight Research Center (DFRC) has prompted study into the aerodynamic effects of modifications made to the surfaces of laminar airfoils. The research is focused on the high-aspect ratio, laminar-flow type wings commonly found on UAVs and other aircraft with a high endurance requirement. A broad range of instrumentation possibilities, such as structural, pressure, and temperature sensing devices may require the alteration of the airfoil outer mold line as part of the installation process. This study attempts to characterize the effect of installing this additiona1 instrumentation on key airfoil performance factors, such as transition location, lift and drag curves, and stall point. In particular, the general case of an airfoil that is channeled in the spanwise direction is considered, and the impact on key performance characteristics is assessed. Particular attention is focused on exploring the limits of channel depth and low-Reynolds number on performance and stall characteristics. To quantify the effect of increased skin friction due to premature transition caused by protruding or recessed instrumentation, two simplified, conservative scenarios are used to consider two potential sources of diaturbance: A) that leading edge alterations would cause linearly expanding areas (triangles) of turbulent flow on both surfaces of the wing upstream of the natural transition point, and B) that a channel or bump on the upper surface would trip turbulent flow across the whole upper surface upstream of the natural transition point. A potentially more important consideration than the skin friction drag increment is the change in overall airfoil performance due to the installation of instrumentation along most of the wingspan. To quantify this effect, 2D CFD simulations of the flow over a representative mid-span airfoil section were conducted in order to assess the change in lift and drag curves for the airfoil in the presence of disturbed flow due to the installed instrumentation. A discussion as to the impact on high-altitude and low-speed operation of this and similar aircraft is provided.

Ratnayake, Nalin A.

2009-01-01

243

Experimental study of delta wing leading-edge devices for drag reduction at high lift  

NASA Technical Reports Server (NTRS)

The drag reduction devices selected for evaluation were the fence, slot, pylon-type vortex generator, and sharp leading-edge extension. These devices were tested on a 60 degree flatplate delta (with blunt leading edges) in the Langley Research Center 7- by 10-foot high-speed tunnel at low speed and to angles of attack of 28 degrees. Balance and static pressure measurements were taken. The results indicate that all the devices had significant drag reduction capability and improved longitudinal stability while a slight loss of lift and increased cruise drag occurred.

Johnson, T. D., Jr.; Rao, D. M.

1982-01-01

244

Options for Robust Airfoil Optimization under Uncertainty  

NASA Technical Reports Server (NTRS)

A robust optimization method is developed to overcome point-optimization at the sampled design points. This method combines the best features from several preliminary methods proposed by the authors and their colleagues. The robust airfoil shape optimization is a direct method for drag reduction over a given range of operating conditions and has three advantages: (1) it prevents severe degradation in the off-design performance by using a smart descent direction in each optimization iteration, (2) it uses a large number of spline control points as design variables yet the resulting airfoil shape does not need to be smoothed, and (3) it allows the user to make a tradeoff between the level of optimization and the amount of computing time consumed. For illustration purposes, the robust optimization method is used to solve a lift-constrained drag minimization problem for a two-dimensional (2-D) airfoil in Euler flow with 20 geometric design variables.

Padula, Sharon L.; Li, Wu

2002-01-01

245

Development of a Fowler flap system for a high performance general aviation airfoil  

NASA Technical Reports Server (NTRS)

A two-dimensional wind-tunnel evaluation of two Fowler flap configurations on the new GA(W)-1 airfoil was conducted. One configuration used a computer-designed 29-percent chord Fowler flap. The second configuration was modified to have increased Fowler action with a 30-percent chord flap. Force, pressure, and flow-visualization data were obtained at Reynolds numbers of 2.2 million to 2.9 million. Optimum slot geometry and performance were found to be close to computer predictions. A C sub L max of 3.8 was achieved. Optimum flap deflection, slot gap, and flap overlap are presented as functions of C sub L. Tests were made with the lower surface cusp filled in to show the performance penalties that result. Some data on the effects of adding vortex generators and hinged-plate spoilers were obtained.

Wentz, W. H., Jr.; Seetharam, H. C.

1974-01-01

246

Navier-Stokes Simulation of Several High-Lift Reference H Configurations  

NASA Technical Reports Server (NTRS)

The subsonic flow field was numerically simulated around several High Speed Research Reference H configurations at various pitch and yaw angles. A sequence of structured-viscous grids were generated; the first grid modeled the wing-body high-lift geometry, and the second grid incorporated the nacelles and the horizontal tail. The third grid modeled the full-span geometry for sideslip calculations, and was obtained by mirroring a coarser version of the second grid. The CFL3D code, a Reynolds averaged, thin-layer Navier-Stokes flow solver for structural grids, was used for the flow solver and modeled the free-air Reference H high-lift configuration at wind tunnel conditions of Mach number 0.24 and Reynolds number of 1.4 x 10(exp 5) per in. Pitch sweeps were performed at angles of attack from 6 deg to 15 deg. Sideslip angle sweeps at 0 deg <= Beta <= +18 deg were performed at an angle of attack of 8 deg. The lateral and longitudinal performance characteristics were well predicted and very good force and moment comparisons were obtained. A very complex multiple vortical system develops at the higher angles of attack, and detailed postprocessing of the solutions provided a comprehensive three-dimensional understanding of the flow which helps to correlate and interpret the wind tunnel data.

Lessard, Wendy B.

1999-01-01

247

An experimental study of dynamic stall on advanced airfoil section. Volume 2: Pressure and force data  

NASA Technical Reports Server (NTRS)

Experimentally derived force and moment data are presented for eight airfoil sections that were tested at fixed and varying incidence in a subsonic two dimensional stream. Airfoil incidence was varied through sinusoidal oscillations in pitch over a wide range of amplitude and frequency. The surface pressure distribution, as well as the lift, drag, and pitching moment derived therefrom, are displayed in a uniform fashion to delineate the static and dynamic characteristics of each airfoil both in and out of stall.

Mcalister, K. W.; Pucci, S. L.; Mccroskey, W. J.; Carr, L. W.

1982-01-01

248

Unstructured Grid Viscous Flow Simulation Over High-Speed Research Technology Concept Airplane at High-Lift Conditions  

NASA Technical Reports Server (NTRS)

Numerical viscous solutions based on an unstructured grid methodology are presented for a candidate high-speed civil transport configuration, designated as the Technology Concept Airplane (TCA), within the High-Speed Research (HSR) program. The numerical results are obtained on a representative TCA high-lift configuration that consisted of the fuselage and the wing, with deflected full-span leading-edge and trailing-edge flaps. Typical on-and off-surface flow structures, computed at high-lift conditions appropriate for the takeoff and landing, indicated features that are generally plausible. Reasonable surface pressure correlations between the numerical results and the experimental data are obtained at free-stream Mach number M(sub infinity) = 0.25 and Reynolds number based on bar-c R(sub c) = 8 x 10(exp 6) for moderate angles of attack of 9.7 deg. and 13.5 deg. However, above and below this angle-of-attack range, the correlation between computed and measured pressure distributions starts to deteriorate over the examined angle-of-attack range. The predicted longitudinal aerodynamic characteristics are shown to correlate very well with existing experimental data across the examined angle-of-attack range. An excellent agreement is also obtained between the predicted lift-to-drag ratio and the experimental data over the examined range of flow conditions.

Ghaffari, Farhad

1999-01-01

249

Results of design studies and wind tunnel tests of an advanced high lift system for an Energy Efficient Transport  

NASA Technical Reports Server (NTRS)

The development of an advanced technology high lift system for an energy efficient transport incorporating a high aspect ratio supercritical wing is described. This development is based on the results of trade studies to select the high lift system, analysis techniques utilized to design the high lift system, and results of a wind tunnel test program. The program included the first experimental low speed, high Reynolds number wind tunnel test for this class of aircraft. The experimental results include the effects on low speed aerodynamic characteristics of various leading and trailing edge devices, nacelles and pylons, aileron, spoilers, and Mach and Reynolds numbers. Results are discussed and compared with the experimental data and the various aerodynamic characteristics are estimated.

Oliver, W. R.

1980-01-01

250

Effect of camber on the trimmed lift capability of a close-coupled canard-wing configuration. [test in the Langley high speed 7- by 10-foot tunnel  

NASA Technical Reports Server (NTRS)

A close-coupled canard-wing configuration was tested in the Langely high-speed 7 by 10 foot tunnel at a Mach number of 0.30 to determine the effect of changing wing camber on the trimmed lift capability. Trimmed lift coefficients of near 2.0 were attained; however, the data indicated that the highest buffet-free trimmed lift coefficient attainable was approximately 1.30. The buffet used in this investigation were qualitative in nature and gave no indication of buffet intensity. Thus, the trimmed lift coefficient of near 2.0 might be attainable if the buffet intensity was not too high. The data showed that there was approximately a 10 percent variation in drag coefficient, for different model configurations, at a given trimmed lift coefficient. Large increases in wing lift had only small effects on canard lift.

Gloss, B. B.

1978-01-01

251

High Reynolds number tests of a Boeing BAC I airfoil in the Langley 0.3-meter transonic cryogenic tunnel  

NASA Technical Reports Server (NTRS)

A wind tunnel investigation of an advanced-technology airfoil was conducted in the Langley 0.3-Meter Transonic Cryogenic Tunnel (TCT). This investigation represents the first in a series of NASA/U.X. industry two dimensional airfoil studies to be completed in the Advanced Technology Airfoil Test program. Test temperature was varied from ambient to about 100 K at pressures ranging from about 1.2 to 6.0 atm. Mach number was varied from about 0.40 to 0.80. These variables provided a Reynolds number (based on airfoil chord) range from about .0000044 to .00005. This investigation was specifically designed to: (1) test a Boeing advanced airfoil from low to flight-equivalent Reynolds numbers; (2) provide the industry participant (Boeing) with experience in cryogenic wind-tunnel model design and testing techniques; and (3) demonstrate the suitability of the 0.3-m TCT as an airfoil test facility. All the objectives of the cooperative test were met. Data are included which demonstrate the effects of fixed transition, Mach number, and Reynolds number on the aerodynamic characteristics of the airfoil. Also included are remarks on the model design, the model structural integrity, and the overall test experience.

Johnson, W. G., Jr.; Hill, A. S.; Ray, E. J.; Rozendaal, R. A.; Butler, T. W.

1982-01-01

252

An Approach to the Constrained Design of Natural Laminar Flow Airfoils  

NASA Technical Reports Server (NTRS)

A design method has been developed by which an airfoil with a substantial amount of natural laminar flow can be designed, while maintaining other aerodynamic and geometric constraints. After obtaining the initial airfoil's pressure distribution at the design lift coefficient using an Euler solver coupled with an integral turbulent boundary layer method, the calculations from a laminar boundary layer solver are used by a stability analysis code to obtain estimates of the transition location (using N-Factors) for the starting airfoil. A new design method then calculates a target pressure distribution that will increase the laminar flow toward the desired amount. An airfoil design method is then iteratively used to design an airfoil that possesses that target pressure distribution. The new airfoil's boundary layer stability characteristics are determined, and this iterative process continues until an airfoil is designed that meets the laminar flow requirement and as many of the other constraints as possible.

Green, Bradford E.

1997-01-01

253

An approach to the constrained design of natural laminar flow airfoils  

NASA Technical Reports Server (NTRS)

A design method has been developed by which an airfoil with a substantial amount of natural laminar flow can be designed, while maintaining other aerodynamic and geometric constraints. After obtaining the initial airfoil's pressure distribution at the design lift coefficient using an Euler solver coupled with an integml turbulent boundary layer method, the calculations from a laminar boundary layer solver are used by a stability analysis code to obtain estimates of the transition location (using N-Factors) for the starting airfoil. A new design method then calculates a target pressure distribution that will increase the larninar flow toward the desired amounl An airfoil design method is then iteratively used to design an airfoil that possesses that target pressure distribution. The new airfoil's boundary layer stability characteristics are determined, and this iterative process continues until an airfoil is designed that meets the laminar flow requirement and as many of the other constraints as possible.

Green, Bradford Earl

1995-01-01

254

Numerical and Experimental Investigation of Plasma Actuator Control of Modified Flat-back Airfoil  

NASA Astrophysics Data System (ADS)

Flat-back airfoil designs have been proposed for use on the inboard portion of large wind turbine blades because of their good structural characteristics. These structural characteristics are achieved by adding material to the aft portion of the airfoil while maintaining the camber of the origional airfoil shape. The result is a flat vertical trailing edge which increases the drag and noise produced by these airfoils. In order to improve the aerodynamic efficiency of these airfoils, the use of single dielectric barrier discharge (SDBD) plasma actuators was investigated experimentally and numerically. To accomplish this, a rounded trailing edge was added to traditional flat-back airfoil and plasma actuators were used symmetrically to control the flow separation casued by the blunt trailing edge. The actuators were used asymmetrically in order to vector the wake and increase the lift produced by the airfoil similar to adding camber.

Mertz, Benjamin; Corke, Thomas

2010-11-01

255

A Near-Term, High-Confidence Heavy Lift Launch Vehicle  

NASA Technical Reports Server (NTRS)

The use of well understood, legacy elements of the Space Shuttle system could yield a near-term, high-confidence Heavy Lift Launch Vehicle that offers significant performance, reliability, schedule, risk, cost, and work force transition benefits. A side-mount Shuttle-Derived Vehicle (SDV) concept has been defined that has major improvements over previous Shuttle-C concepts. This SDV is shown to carry crew plus large logistics payloads to the ISS, support an operationally efficient and cost effective program of lunar exploration, and offer the potential to support commercial launch operations. This paper provides the latest data and estimates on the configurations, performance, concept of operations, reliability and safety, development schedule, risks, costs, and work force transition opportunities for this optimized side-mount SDV concept. The results presented in this paper have been based on established models and fully validated analysis tools used by the Space Shuttle Program, and are consistent with similar analysis tools commonly used throughout the aerospace industry. While these results serve as a factual basis for comparisons with other launch system architectures, no such comparisons are presented in this paper. The authors welcome comparisons between this optimized SDV and other Heavy Lift Launch Vehicle concepts.

Rothschild, William J.; Talay, Theodore A.

2009-01-01

256

Mach number validation of a new zonal CFD method (ZAP2D) for airfoil simulations  

NASA Technical Reports Server (NTRS)

A closed-loop overlapped velocity coupling procedure has been utilized to combine a two-dimensional potential-flow panel code and a Navier-Stokes code. The fully coupled two-zone code (ZAP2D) has been used to compute the flow past a NACA 0012 airfoil at Mach numbers ranging from 0.3 to 0.84 near the two-dimensional airfoil C(lmax) point for a Reynolds number of 3 million. For these cases, the grid domain size can be reduced to 3 chord lengths with less than 3-percent loss in accuracy for freestream Mach numbers through 0.8. Earlier validation work with ZAP2D has demonstrated a reduction in the required Navier-Stokes computation time by a factor of 4 for subsonic Mach numbers. For this more challenging condition of high lift and Mach number, the saving in CPU time is reduced to a factor of 2.

Strash, Daniel J.; Summa, Michael; Yoo, Sungyul

1991-01-01

257

Pneumatic Flap Performance for a 2D Circulation Control Airfoil, Steady and Pulsed  

NASA Technical Reports Server (NTRS)

Circulation Control technologies have been around for 65 years, and have been successfully demonstrated in laboratories and flight vehicles alike, yet there are few production aircraft flying today that implement these advances. Circulation Control techniques may have been overlooked due to perceived unfavorable trade offs of mass flow, pitching moment, cruise drag, noise, etc. Improvements in certain aspects of Circulation Control technology are the focus of this paper. This report will describe airfoil and blown high lift concepts that also address cruise drag reduction and reductions in mass flow through the use of pulsed pneumatic blowing on a Coanda surface. Pulsed concepts demonstrate significant reductions in mass flow requirements cor Circulation Control, as well as cruise drag concepts that equal or exceed conventional airfoil systems.

Jones, Gregory S.

2005-01-01

258

An experimental study of a bio-inspired corrugated airfoil for micro air vehicle applications  

NASA Astrophysics Data System (ADS)

An experimental study was conducted to investigate the aerodynamic characteristics of a bio-inspired corrugated airfoil compared with a smooth-surfaced airfoil and a flat plate at the chord Reynolds number of Re C = 58,000-125,000 to explore the potential applications of such bio-inspired corrugated airfoils for micro air vehicle designs. In addition to measuring the aerodynamic lift and drag forces acting on the tested airfoils, a digital particle image velocimetry system was used to conduct detailed flowfield measurements to quantify the transient behavior of vortex and turbulent flow structures around the airfoils. The measurement result revealed clearly that the corrugated airfoil has better performance over the smooth-surfaced airfoil and the flat plate in providing higher lift and preventing large-scale flow separation and airfoil stall at low Reynolds numbers (Re C < 100,000). While aerodynamic performance of the smooth-surfaced airfoil and the flat plate would vary considerably with the changing of the chord Reynolds numbers, the aerodynamic performance of the corrugated airfoil was found to be almost insensitive to the Reynolds numbers. The detailed flow field measurements were correlated with the aerodynamic force measurement data to elucidate underlying physics to improve our understanding about how and why the corrugation feature found in dragonfly wings holds aerodynamic advantages for low Reynolds number flight applications.

Murphy, Jeffery T.; Hu, Hui

2010-08-01

259

Three-Dimensional High-Lift Analysis Using a Parallel Unstructured Multigrid Solver  

NASA Technical Reports Server (NTRS)

A directional implicit unstructured agglomeration multigrid solver is ported to shared and distributed memory massively parallel machines using the explicit domain-decomposition and message-passing approach. Because the algorithm operates on local implicit lines in the unstructured mesh, special care is required in partitioning the problem for parallel computing. A weighted partitioning strategy is described which avoids breaking the implicit lines across processor boundaries, while incurring minimal additional communication overhead. Good scalability is demonstrated on a 128 processor SGI Origin 2000 machine and on a 512 processor CRAY T3E machine for reasonably fine grids. The feasibility of performing large-scale unstructured grid calculations with the parallel multigrid algorithm is demonstrated by computing the flow over a partial-span flap wing high-lift geometry on a highly resolved grid of 13.5 million points in approximately 4 hours of wall clock time on the CRAY T3E.

Mavriplis, Dimitri J.

1998-01-01

260

A numerical study of the controlled flow tunnel for a high lift model  

NASA Technical Reports Server (NTRS)

A controlled flow tunnel employs active control of flow through the walls of the wind tunnel so that the model is in approximately free air conditions during the test. This improves the wind tunnel test environment, enhancing the validity of the experimentally obtained test data. This concept is applied to a three dimensional jet flapped wing with full span jet flap. It is shown that a special treatment is required for the high energy wake associated with this and other V/STOL models. An iterative numerical scheme is developed to describe the working of an actual controlled flow tunnel and comparisons are shown with other available results. It is shown that control need be exerted over only part of the tunnel walls to closely approximate free air flow conditions. It is concluded that such a tunnel is able to produce a nearly interference free test environment even with a high lift model in the tunnel.

Parikh, P. C.

1984-01-01

261

Wind-Tunnel Investigation of an NACA 23021 Airfoil with a 0.32-Airfoil-Chord Double Slotted Flap  

NASA Technical Reports Server (NTRS)

An investigation was made in the LMAL 7- by 10-foot wind tunnel of a NACA 23021 airfoil with a double slotted flap having a chord 32 percent of the airfoil chord (0.32c) to determine the aerodynamic section characteristics with the flaps deflected at various positions. The effects of moving the fore flap and rear flap as a unit and of deflecting or removing the lower lip of the slot were also determined. Three positions were selected for the fore flap and at each position the maximum lift of the airfoil was obtained with the rear flap at the maximum deflection used at that fore-flap position. The section lift of the airfoil increased as the fore flap was extended and maximum lift was obtained with the fore flap deflected 30 deg in the most extended position. This arrangement provided a maximum section lift coefficient of 3.31, which was higher than the value obtained with either a 0.2566c or a 0.40c single-slotted-flap arrangement and 0.25 less than the value obtained with a 0.4c double-slotted-flap arrangement on the same airfoil. The values of the profile-drag coefficient obtained with the 0.32c double slotted flap were larger than those for the 0.2566c or 0.40c single slotted flaps for section lift coefficients between 1.0 and approximately 2.7. At all values of the section lift coefficient above 1.0, the 0.40c double slotted flap had a lower profile drag than the 0.32c double slotted flap. At various values of the maximum section lift coefficient produced by various flap defections, the 0.32c double slotted flap gave negative section pitching-moment coefficients that were higher than those of other slotted flaps on the same airfoil. The 0.32c double slotted flap gave approximately the same maximum section lift coefficient as, but higher profile-drag coefficients over the entire lift range than, a similar arrangement of a 0.30c double slotted flap on an NACA 23012 airfoil.

Fischel, Jack; Riebe, John M

1944-01-01

262

Two-dimensional computational analysis of a transport high-lift system and a comparison with flight-test results  

NASA Technical Reports Server (NTRS)

Two currently available coupled inviscid/viscous multielement computational codes, including a relatively simple panel method and an Euler method, are used to analyze a high-lift system. The results are compared with two-dimensional wind-tunnel test results and then with the three-dimensional flight-test results obtained from the NASA Langley Transport Systems Research Vehicle five-element high-lift wing section. Comparisons were also made between the panel method, the Euler method, and flight data for two high-lift configurations, one representing a take-off configuration and the other an approach configuration. For the take-off configuration, both codes agreed reasonably well with experimental data, but both codes were found to overpredict the flap upper-surface pressures for the approach configuration.

Hardin, Jay D.; Potter, R. C.; Van Dam, C. P.; Yip, Long P.

1993-01-01

263

Turbulent intensity and Reynolds number effects on an airfoil at low Reynolds numbers  

NASA Astrophysics Data System (ADS)

This work investigates the aerodynamics of a NACA 0012 airfoil at the chord-based Reynolds numbers (Rec) from 5.3 × 103 to 2.0 × 104. The lift and drag coefficients, CL and CD, of the airfoil, along with the flow structure, were measured as the turbulent intensity Tu of oncoming flow varies from 0.6% to 6.0%. The analysis of the present data and those in the literature unveils a total of eight distinct flow structures around the suction side of the airfoil. Four Rec regimes, i.e., the ultra-low (<1.0 × 104), low (1.0 × 104-3.0 × 105), moderate (3.0 × 105-5.0 × 106), and high Rec (>5.0 × 106), are proposed based on their characteristics of the CL-Rec relationship and the flow structure. It has been observed that Tu has a more pronounced effect at lower Rec than at higher Rec on the shear layer separation, reattachment, transition, and formation of the separation bubble. As a result, CL, CD, CL/CD and their dependence on the airfoil angle of attack all vary with Tu. So does the critical Reynolds number Rec,cr that divides the ultra-low and low Rec regimes. It is further noted that the effect of increasing Tu bears similarity in many aspects to that of increasing Rec, albeit with differences. The concept of the effective Reynolds number Rec,eff advocated for the moderate and high Rec regimes is re-evaluated for the low and ultra-low Rec regimes. The Rec,eff treats the non-zero Tu effect as an addition of Rec and is determined based on the presently defined Rec,cr. It has been found that all the maximum lift data from both present measurements and previous reports collapse into a single curve in the low and ultra-low Rec regimes if scaled with Rec,eff.

Wang, S.; Zhou, Y.; Alam, Md. Mahbub; Yang, H.

2014-11-01

264

Two-dimensional cascade test of a highly loaded, low-solidity, tandem airfoil turbine rotor blade  

NASA Technical Reports Server (NTRS)

A tip region section of a low-solidity tandem airfoil blade for a turbine rotor was tested in a two-dimensional cascade tunnel at solidities of 0.736 and 0.912. Blade surface static pressures and blade exit total and static pressure and flow angle were surveyed. Blade surface velocities, wake shapes, and kinetic energy losses were analyzed and compared with values for 1.852 solidity tandem airfoil blading.

Kline, J. F.; Stabe, R. G.

1973-01-01

265

Identification of airfoil characteristics for optimum wind turbine performance / b  

E-print Network

and optimum segment power output, various values of drag were included in the analysis. During the optimization process the maximum segment power value is determined for a given value of the lift coefficient and the effect of drag is assessed after... required to acheive maximum segment power output. It is therefore necessary to determine this lift deficiency effect on turbine performance. This will allow for better airfoil design or selection, since the effect on turbine performance for various...

Miller, Leonard Scott

1983-01-01

266

Advanced airfoil design empirically based transonic aircraft drag buildup technique  

NASA Technical Reports Server (NTRS)

To systematically investigate the potential of advanced airfoils in advance preliminary design studies, empirical relationships were derived, based on available wind tunnel test data, through which total drag is determined recognizing all major aircraft geometric variables. This technique recognizes a single design lift coefficient and Mach number for each aircraft. Using this technique drag polars are derived for all Mach numbers up to MDesign + 0.05 and lift coefficients -0.40 to +0.20 from CLDesign.

Morrison, W. D., Jr.

1976-01-01

267

Lift-off PMN-PT Thick Film for High Frequency Ultrasonic Biomicroscopy  

PubMed Central

Piezoelectric 0.65Pb(Mg1/3Nb2/3)O3-0.35PbTiO3 (PMN-35PT) thick film with a thickness of approximately 12 µm has been deposited on the platinum buffered Si substrate via a sol-gel composite method. The separation of the film from the substrate was achieved using a wet chemical method. The lifted-off PMN-35PT thick film exhibited good dielectric and ferroelectric properties. At 1 kHz, the dielectric constant and the dielectric loss were 3,326 and 0.037, respectively, while the remnant polarization was 30.0 µC/cm2. A high frequency single element acoustic transducer fabricated with this film showed a bandwidth at ?6 dB of 63.6% at 110 MHz. PMID:21170158

Zhu, Benpeng; Han, Jiangxue; Shi, Jing; Shung, K. Krik; Wei, Q.; Huang, YuHong; Kosec, M.; Zhou, Qifa

2010-01-01

268

Low Reynolds number airfoil aerodynamic loads determination via line integral of velocity obtained with particle image velocimetry  

NASA Astrophysics Data System (ADS)

The small magnitude lift forces generated by both a NACA 0012 airfoil and a thin flat plate at Re = 29,000 and 54,000 were determined through the line integral of velocity, obtained with particle image velocimetry, via the application of the Kutta-Joukowsky theorem. Surface pressure measurements of the NACA0012 airfoil were also obtained to validate the lift coefficient C l. The bound circulation was found to be insensitive to the size and aspect ratio of the rectangular integration loop for pre-stall angles. The present C l data were also found to agree very well with the surface pressure-determined lift coefficient for pre-stall conditions. A large variation in C l with the loop size and aspect ratio for post-stall conditions was, however, observed. Nevertheless, the present flat-plate C l data were also found to collectively agree with the published force-balance measurements at small angles of attack, despite the large disparity exhibited among the various published data at high angles. Finally, the ensemble-averaged wake velocity profiles were also used to compute the drag coefficient and, subsequently, the lift-to-drag ratio.

Lee, T.; Su, Y. Y.

2012-11-01

269

Simulation of self-induced unsteady motion in the near wake of a Joukowski airfoil  

NASA Technical Reports Server (NTRS)

The unsteady Navier-Stokes analysis is shown to be capable of analyzing the massively separated, persistently unsteady flow in the post-stall regime of a Joukowski airfoil for an angle of attack as high as 53 degrees. The analysis has provided the detailed flow structure, showing the complex vortex interaction for this configuration. The aerodynamic coefficients for lift, drag, and moment were calculated. So far only the spatial structure of the vortex interaction was computed. It is now important to potentially use the large-scale vortex interactions, an additional energy source, to improve the aerodynamic performance.

Ghia, K. N.; Osswald, G. A.; Ghia, U.

1986-01-01

270

Numerical evaluations of the effect of leading-edge protuberances on the static and dynamic stall characteristics of an airfoil  

NASA Astrophysics Data System (ADS)

Wavy leading edge modifications of airfoils through imitating humpback whale flippers has been considered as a viable passive way to control flow separation. In this paper, flows around a baseline 634-021 airfoil and one with leading-edge sinusoidal protuberances were simulated using S-A turbulence model. When studying the static stall characteristics, it is found that the modified airfoil does not stall in the traditional manner, with increasing poststall lift coefficients. At high angles of attack, the flows past the wavy leading edge stayed attached for a distance, while the baseline foil is in a totally separated flow condition. On this basis, the simulations of pitch characteristic were carried out for both foils. At high angles of attack mild variations in lift and drag coefficients of the modified foil can be found, leading to a smaller area of hysteresis loop. The special structure of wavy leading edge can help maintain high consistency of the flow field in dynamic pitching station within a particular range of angles of attack.

Cai, C.; Zuo, Z. G.; Liu, S. H.; Wu, Y. L.; Wang, F. B.

2013-12-01

271

Experimental studies of the Eppler 61 airfoil at low Reynolds numbers  

NASA Technical Reports Server (NTRS)

The results of an experimental study to document the effects of separation and transition on the performance of an airfoil designed for low Reynolds number operation are presented. Lift, drag and flow visualization data were obtained for the Eppler 61 airfoil section for chord Reynolds numbers from about 30,000 to over 200,000. Smoke flow visualization was employed to document the boundary layer behavior and was correlated with the Eppler airfoil design and analysis computer program. Laminar separation, transition and turbulent reattachment had significant effects on the performance of this airfoil.

Burns, T. F.; Mueller, T. J.

1982-01-01

272

Full-scale semispan tests of a business-jet wing with a natural laminar flow airfoil  

NASA Technical Reports Server (NTRS)

A full-scale semispan model was investigated to evaluate and document the low-speed, high-lift characteristics of a business-jet class wing that utilized the HSNLF(1)-0213 airfoil section and a single-slotted flap system. Also, boundary-layer transition effects were examined, a segmented leading-edge droop for improved stall/spin resistance was studied, and two roll-controlled devices were evaluated. The wind-tunnel investigation showed that deployment of single-slotted, trailing-edge flap was effective in providing substantial increments in lift required for takeoff and landing performance. Fixed-transition studies to investigate premature tripping of the boundary layer indicated no adverse effects in lift and pitching-moment characteristics for either the cruise or landing configuration. The full-scale results also suggested the need to further optimize the leading-edge droop design that was developed in the subscale tests.

Hahne, David E.; Jordan, Frank L., Jr.

1991-01-01

273

Theoretical and Experimental Data for a Number of NACA 6A-Series Airfoil Sections  

NASA Technical Reports Server (NTRS)

The NACA 6A-series airfoil sections were designed to eliminate the trailing-edge cusp which is characteristic of the NACA 6-series sections. Theoretical data are presented for NACA 6A-series basic thickness forms having the position of minimum pressure at 30-, 40-, and 50-percent chord and with thickness ratios varying from 6 percent to 15 percent. Also presented are data for a mean line designed to maintain straight sides on the cambered sections. The experimental results of a two dimensional wind tunnel investigation of the aerodynamic characteristics of five NACA 64A-series airfoil sections and two NACA 63A-series airfoil sections are presented. An analysis of these results, which were obtained at Reynolds numbers of 3 x 10(exp 6), 6 x 10(exp 6), and 9 x 10(exp 6), indicates that the section minimum drag and maximum lift characteristics of comparable NACA 6-series and 6A-series airfoil sections are essentially the same. The quarter-chord pitching-moment coefficients and angles of zero lift of NACA 6A-series airfoil sections are slightly more negative than those of corresponding NACA 6-series airfoil sections. The position of the aerodynamic center and the lift-curve slope of smooth NACA 6-series sections. The addition of standard leading-edge roughness causes the lift-curve slope of the newer sections to decrease with increasing airfoil thickness ratio.

Loftin, Laurence K., Jr.

1946-01-01

274

Investigation of the Kline-Fogleman airfoil section for rotor blade applications  

NASA Technical Reports Server (NTRS)

Wind tunnel tests of a wedgeshaped airfoil with sharp leading edge and a spanwise step were conducted. The airfoil was tested with variations of the following parameters: (1) Reynolds number, (2) step location, (3) step shape, (4) apex angle, and (5) with the step on either the upper or lower surface. The results are compared with a flat plate and with wedge airfoils without a step having the same aspect ratio. Water table tests were conducted for flow visualization and it was determined that the flow separates from the upper surface at low angles of attack. The wind tunnel tests show that the lift/drag ratio of the airfoil is lower than for a flat plate and the pressure data show that the airfoil derives its lift in the same manner as a flat plate.

Lumsdaine, E.; Johnson, W. S.; Fletcher, L. M.; Peach, J. E.

1974-01-01

275

Reynolds Number Effects on a Supersonic Transport at Subsonic High-Lift Conditions (Invited)  

NASA Technical Reports Server (NTRS)

A High Speed Civil Transport configuration was tested in the National Transonic Facility at the NASA Langley Research Center as part of NASA's High Speed Research Program. The primary purposes of the tests were to assess Reynolds number scale effects and high Reynolds number aerodynamic characteristics of a realistic, second generation supersonic transport while providing data for the assessment of computational methods. The tests included longitudinal and lateral/directional studies at transonic and low-speed, high-lift conditions across a range of Reynolds numbers from that available in conventional wind tunnels to near flight conditions. Results are presented which focus on Reynolds number and static aeroelastic sensitivities of longitudinal characteristics at Mach 0.30 for a configuration without an empennage. A fundamental change in flow-state occurred between Reynolds numbers of 30 to 40 million, which is characterized by significantly earlier inboard leading-edge separation at the high Reynolds numbers. Force and moment levels change but Reynolds number trends are consistent between the two states.

Owens, L.R.; Wahls, R. A.

2001-01-01

276

Piloted Simulation Study of the Effects of High-Lift Aerodynamics on the Takeoff Noise of a Representative High-Speed Civil Transport  

NASA Technical Reports Server (NTRS)

As part of an effort between NASA and private industry to reduce airport-community noise for high-speed civil transport (HSCT) concepts, a piloted simulation study was initiated for the purpose of predicting the noise reduction benefits that could result from improved low-speed high-lift aerodynamic performance for a typical HSCT configuration during takeoff and initial climb. Flight profile and engine information from the piloted simulation were coupled with the NASA Langley Aircraft Noise Prediction Program (ANOPP) to estimate jet engine noise and to propagate the resulting source noise to ground observer stations. A baseline aircraft configuration, which also incorporated different levels of projected improvements in low-speed high-lift aerodynamic performance, was simulated to investigate effects of increased lift and lift-to-drag ratio on takeoff noise levels. Simulated takeoff flights were performed with the pilots following a specified procedure in which either a single thrust cutback was performed at selected altitudes ranging from 400 to 2000 ft, or a multiple-cutback procedure was performed where thrust was reduced by a two-step process. Results show that improved low-speed high-lift aerodynamic performance provides at least a 4 to 6 dB reduction in effective perceived noise level at the FAA downrange flyover measurement station for either cutback procedure. However, improved low-speed high-lift aerodynamic performance reduced maximum sideline noise levels only when using the multiple-cutback procedures.

Glaab, Louis J.; Riley, Donald R.; Brandon, Jay M.; Person, Lee H., Jr.; Glaab, Patricia C.

1999-01-01

277

Ris-R-1065(EN) Airfoil Characteristics for Wind Turbines  

E-print Network

Risø-R-1065(EN) Airfoil Characteristics for Wind Turbines Christian Bak, Peter Fuglsang, Niels N. The characteristics are derived from data on Horizontal Axis Wind Turbines (HAWT). The investigation and deri- vation. The derived air- foil characteristics show that the maximum lift coefficient at the tip is low

278

Prediction of unsteady airfoil flows at large angles of incidence  

NASA Technical Reports Server (NTRS)

The effect of the unsteady motion of an airfoil on its stall behavior is of considerable interest to many practical applications including the blades of helicopter rotors and of axial compressors and turbines. Experiments with oscillating airfoils, for example, have shown that the flow can remain attached for angles of attack greater than those which would cause stall to occur in a stationary system. This result appears to stem from the formation of a vortex close to the surface of the airfoil which continues to provide lift. It is also evident that the onset of dynamic stall depends strongly on the airfoil section, and as a result, great care is required in the development of a calculation method which will accurately predict this behavior.

Cebeci, Tuncer; Jang, H. M.; Chen, H. H.

1992-01-01

279

Grid Sensitivity and Aerodynamic Optimization of Generic Airfoils  

NASA Technical Reports Server (NTRS)

An algorithm is developed to obtain the grid sensitivity with respect to design parameters for aerodynamic optimization. The procedure is advocating a novel (geometrical) parameterization using spline functions such as NURBS (Non-Uniform Rational B- Splines) for defining the airfoil geometry. An interactive algebraic grid generation technique is employed to generate C-type grids around airfoils. The grid sensitivity of the domain with respect to geometric design parameters has been obtained by direct differentiation of the grid equations. A hybrid approach is proposed for more geometrically complex configurations such as a wing or fuselage. The aerodynamic sensitivity coefficients are obtained by direct differentiation of the compressible two-dimensional thin-layer Navier-Stokes equations. An optimization package has been introduced into the algorithm in order to optimize the airfoil surface. Results demonstrate a substantially improved design due to maximized lift/drag ratio of the airfoil.

Sadrehaghighi, Ideen; Smith, Robert E.; Tiwari, Surendra N.

1995-01-01

280

Dynamics and Energy Extraction of a Surging and Plunging Airfoil at Low Reynolds Number  

E-print Network

at a constant velocity ¯L mean lift ^Lk magnitude of Fourier coefficient of lift at frequency k P power per unit mass and trailing-edge Kutta condition that leads to an unsteady distribution of vorticity in the wake-averaged forces and power supplied by the oscillating airfoil are also evaluated to find frequency ranges

Dabiri, John O.

281

High-Lift Flight Tunnel - Phase II Report. Phase 2 Report  

NASA Technical Reports Server (NTRS)

The High-Lift Flight Tunnel (HiLiFT) concept is a revolutionary approach to aerodynamic ground testing. This concept utilizes magnetic levitation and linear motors to propel an aerodynamic model through a tube containing a quiescent test medium. This medium (nitrogen) is cryogenic and pressurized to achieve full flight Reynolds numbers higher than any existing ground test facility world-wide for the range of 0.05 to 0.50 Mach. The results of the Phase II study provide excellent assurance that the HiLiFT concept will provide a valuable low-speed, high Reynolds number ground test facility. The design studies concluded that the HiLiFT facility is feasible to build and operate and the analytical studies revealed no insurmountable difficulties to realizing a practical high Reynolds number ground test facility. It was determined that a national HiLiFT facility, including development, would cost approximately $400M and could be operational by 2013 if fully funded. Study participants included National Aeronautics and Space Administration Langley Research Center as the Program Manager and MSE Technology Applications, Inc., (MSE) of Butte, Montana as the prime contractor and study integrator. MSE#s subcontractors included the University of Texas at Arlington for aerodynamic analyses and the Argonne National Laboratory for magnetic levitation and linear motor technology support.

Lofftus, David; Lund, Thomas; Rote, Donald; Bushnell, Dennis M. (Technical Monitor)

2000-01-01

282

High Reynolds Number Test of the Boeing TR77 Airfoil in the Langley 0.3-Meter Transonic Cryogenic Tunnel  

NASA Technical Reports Server (NTRS)

A Boeing TR77 airfoil associated with the Advanced Technology Airfoil Test (ATAT) program was tested in the Langley 0.3 m Transonic Cryogenic Tunnel. Limited analysis of the data indicated that increasing Reynolds number for a fixed Mach number resulted in increased normal-force, nose-down pitching moment, and decreased drag coefficient. Increasing Mach number while keeping the Reynolds number constant yielded the expected increase in normal-force slopes, nose-down pitching moment coefficients, and decrease in angle of attack associated with maximum normal-force coefficient. Turbulent boundary layer flow was achieved over the airfoil at low Reynolds numbers for the test Mach number range using aluminum discs.

Chu, Julio; Flechner, Stuart G.; Hill, Acquilla S.; Rozendaal, Roger A.

1990-01-01

283

Force control of heavy lift manipulators for high precision insertion tasks  

E-print Network

The inherent strength of robotic manipulators can be used to assist humans in performing heavy lifting tasks. These robots reduce manpower, reduce fatigue, and increase productivity. This thesis deals with the development ...

DiCicco, Matthew A. (Matthew Adam)

2005-01-01

284

Application of a Navier-Stokes Solver to the Analysis of Multielement Airfoils and Wings Using Multizonal Grid Techniques  

NASA Technical Reports Server (NTRS)

A computational study was performed to determine the predictive capability of a Reynolds averaged Navier-Stokes code (CFL3D) for two-dimensional and three-dimensional multielement high-lift systems. Three configurations were analyzed: a three-element airfoil, a wing with a full span flap and a wing with a partial span flap. In order to accurately model these complex geometries, two different multizonal structured grid techniques were employed. For the airfoil and full span wing configurations, a chimera or overset grid technique was used. The results of the airfoil analysis illustrated that although the absolute values of lift were somewhat in error, the code was able to predict reasonably well the variation with Reynolds number and flap position. The full span flap analysis demonstrated good agreement with experimental surface pressure data over the wing and flap. Multiblock patched grids were used to model the partial span flap wing. A modification to an existing patched- grid algorithm was required to analyze the configuration as modeled. Comparisons with experimental data were very good, indicating the applicability of the patched-grid technique to analyses of these complex geometries.

Jones, Kenneth M.; Biedron, Robert T.; Whitlock, Mark

1995-01-01

285

An investigation of the aerodynamic characteristics of a new general aviation airfoil in flight  

NASA Technical Reports Server (NTRS)

A low speed airfoil, the GA(W)-2, - a 13% thickness to chord ratio airfoil was evaluated. The wing of a Beech Sundowner was modified at by adding balsa ribs and covered with aluminum skin, to alter the existing airfoil shape to that of the GA(W)-2 airfoil. The aircraft was flown in a flight test program that gathered wing surface pressures and wake data from which the lift drag, and pitching moment of the airfoil could be determined. After the base line performance of the airfoil was measured, the drag due to surface irregularities such as steps, rivets and surface waviness was determined. The potential reduction of drag through the use of surface coatings such as KAPTON was also investigated.

Gregorek, G. M.; Hoffmann, M. J.; Weislogel, G. S.

1982-01-01

286

Use of NASA LS (1) general aviation airfoil for a small wind turbine - An experience in Denmark  

Microsoft Academic Search

The suitability of some airfoil designs for use in a high-speed wind turbine is considered with attention given to the use of a NASA airfoil for a small facility. The choice of an airfoil section is shown to be dictated by aerodynamic considerations and the construction\\/material techniques used to develop the blade. The NASA LS (1) general aviation airfoil is

Kunal Ghosh

1992-01-01

287

Prediction of Airfoil Characteristics With Higher Order Turbulence Models  

NASA Technical Reports Server (NTRS)

This study focuses on the prediction of airfoil characteristics, including lift and drag over a range of Reynolds numbers. Two different turbulence models, which represent two different types of models, are tested. The first is a standard isotropic eddy-viscosity two-equation model, and the second is an explicit algebraic stress model (EASM). The turbulent flow field over a general-aviation airfoil (GA(W)-2) at three Reynolds numbers is studied. At each Reynolds number, predicted lift and drag values at different angles of attack are compared with experimental results, and predicted variations of stall locations with Reynolds number are compared with experimental data. Finally, the size of the separation zone predicted by each model is analyzed, and correlated with the behavior of the lift coefficient near stall. In summary, the EASM model is able to predict the lift and drag coefficients over a wider range of angles of attack than the two-equation model for the three Reynolds numbers studied. However, both models are unable to predict the correct lift and drag behavior near the stall angle, and for the lowest Reynolds number case, the two-equation model did not predict separation on the airfoil near stall.

Gatski, Thomas B.

1996-01-01

288

Pressure distributions on a rectangular aspect-ratio-6, slotted supercritical airfoil wing with externally blown flaps  

NASA Technical Reports Server (NTRS)

An investigation was made in the 5.18 m (17 ft) test section of the Langley 300 MPH 7 by 10 foot tunnel on a rectangular, aspect ratio 6 wing which had a slotted supercritical airfoil section and externally blown flaps. The 13 percent thick wing was fitted with two high lift flap systems: single slotted and double slotted. The designations single slotted and double slotted do not include the slot which exists near the trailing edge of the basic slotted supercritical airfoil. Tests were made over an angle of attack range of -6 deg to 20 deg and a thrust-coefficient range up to 1.94 for a free-stream dynamic pressure of 526.7 Pa (11.0 lb/sq ft). The results of the investigation are presented as curves and tabulations of the chordwise pressure distributions at the midsemispan station for the wing and each flap element.

Johnson, W. G., Jr.

1976-01-01

289

Aerodynamic sound of flow past an airfoil  

NASA Technical Reports Server (NTRS)

The long term objective of this project is to develop a computational method for predicting the noise of turbulence-airfoil interactions, particularly at the trailing edge. We seek to obtain the energy-containing features of the turbulent boundary layers and the near-wake using Navier-Stokes Simulation (LES or DNS), and then to calculate the far-field acoustic characteristics by means of acoustic analogy theories, using the simulation data as acoustic source functions. Two distinct types of noise can be emitted from airfoil trailing edges. The first, a tonal or narrowband sound caused by vortex shedding, is normally associated with blunt trailing edges, high angles of attack, or laminar flow airfoils. The second source is of broadband nature arising from the aeroacoustic scattering of turbulent eddies by the trailing edge. Due to its importance to airframe noise, rotor and propeller noise, etc., trailing edge noise has been the subject of extensive theoretical (e.g. Crighton & Leppington 1971; Howe 1978) as well as experimental investigations (e.g. Brooks & Hodgson 1981; Blake & Gershfeld 1988). A number of challenges exist concerning acoustic analogy based noise computations. These include the elimination of spurious sound caused by vortices crossing permeable computational boundaries in the wake, the treatment of noncompact source regions, and the accurate description of wave reflection by the solid surface and scattering near the edge. In addition, accurate turbulence statistics in the flow field are required for the evaluation of acoustic source functions. Major efforts to date have been focused on the first two challenges. To this end, a paradigm problem of laminar vortex shedding, generated by a two dimensional, uniform stream past a NACA0012 airfoil, is used to address the relevant numerical issues. Under the low Mach number approximation, the near-field flow quantities are obtained by solving the incompressible Navier-Stokes equations numerically at chord Reynolds number of 104. The far-field noise is computed using Curle's extension to the Lighthill analogy (Curle 1955). An effective method for separating the physical noise source from spurious boundary contributions is developed. This allows an accurate evaluation of the Reynolds stress volume quadrupoles, in addition to the more readily computable surface dipoles due to the unsteady lift and drag. The effect of noncompact source distribution on the far-field sound is assessed using an efficient integration scheme for the Curle integral, with full account of retarded-time variations. The numerical results confirm in quantitative terms that the far-field sound is dominated by the surface pressure dipoles at low Mach number. The techniques developed are applicable to a wide range of flows, including jets and mixing layers, where the Reynolds stress quadrupoles play a prominent or even dominant role in the overall sound generation.

Wang, Meng

1995-01-01

290

Wind tunnel evaluation of a truncated NACA 64-621 airfoil for wind turbine applications  

NASA Technical Reports Server (NTRS)

An experimental program to measure the aerodynamic performance of a NACA 64-621 airfoil with a truncated trailing edge for wind turbine applications has been conducted in the Ohio State University Aeronautical and Astronautical Research Laboratory 6 in. by 21 in. pressurized wind tunnel. The blunted or trailing edge truncated (TET) airfoil has an advantage over similar trailing edge airfoils because it is able to streamline a larger spar structure, while also providing aerodynamic properties that are quite good. Surface pressures were measured and integrated to determine the lift, pressure drag, and moment coefficients over angles of attack ranging from -14 to +90 deg at Mach 0.2 and Reynolds numbers of 1,000,000 and 600,000. Results are compared to the NACA 0025, 0030, and 0035 thick airfoils with sharp trailing edges. Comparison shows that the 30 percent thick NACA 64-621-TET airfoil has higher maximum lift, higher lift curve slope, lower drag at higher lift coefficients, and higher chordwise force coefficient than similar thick airfoils with sharp trailing edges.

Law, S. P.; Gregorek, G. M.

1987-01-01

291

Lift Experiment  

NSDL National Science Digital Library

In this experiment, learners investigate how the size of a wing affects lift. Learners count the number of pennies an egg crate plane wing can hold until the plane will no longer fly. Learners calculate the amount of weight/mass added to plane and conduct two more trials to find the average weight/mass lifted. This lesson guide includes a data table, conclusion questions, and extension ideas.

Shannon Ricles

2013-01-30

292

Modeling and Grid Generation of Iced Airfoils  

NASA Technical Reports Server (NTRS)

SmaggIce Version 2.0 is a software toolkit for geometric modeling and grid generation for two-dimensional, singleand multi-element, clean and iced airfoils. A previous version of SmaggIce was described in Preparing and Analyzing Iced Airfoils, NASA Tech Briefs, Vol. 28, No. 8 (August 2004), page 32. To recapitulate: Ice shapes make it difficult to generate quality grids around airfoils, yet these grids are essential for predicting ice-induced complex flow. This software efficiently creates high-quality structured grids with tools that are uniquely tailored for various ice shapes. SmaggIce Version 2.0 significantly enhances the previous version primarily by adding the capability to generate grids for multi-element airfoils. This version of the software is an important step in streamlining the aeronautical analysis of ice airfoils using computational fluid dynamics (CFD) tools. The user may prepare the ice shape, define the flow domain, decompose it into blocks, generate grids, modify/divide/merge blocks, and control grid density and smoothness. All these steps may be performed efficiently even for the difficult glaze and rime ice shapes. Providing the means to generate highly controlled grids near rough ice, the software includes the creation of a wrap-around block (called the "viscous sublayer block"), which is a thin, C-type block around the wake line and iced airfoil. For multi-element airfoils, the software makes use of grids that wrap around and fill in the areas between the viscous sub-layer blocks for all elements that make up the airfoil. A scripting feature records the history of interactive steps, which can be edited and replayed later to produce other grids. Using this version of SmaggIce, ice shape handling and grid generation can become a practical engineering process, rather than a laborious research effort.

Vickerman, Mary B.; Baez, Marivell; Braun, Donald C.; Hackenberg, Anthony W.; Pennline, James A.; Schilling, Herbert W.

2007-01-01

293

Wind tunnel investigation of rotor lift and propulsive force at high speed: Data analysis  

NASA Technical Reports Server (NTRS)

The basic test data obtained during the lift-propulsive force limit wind tunnel test conducted on a scale model CH-47b rotor are analyzed. Included are the rotor control positions, blade loads and six components of rotor force and moment, corrected for hub tares. Performance and blade loads are presented as the rotor lift limit is approached at fixed levels of rotor propulsive force coefficients and rotor tip speeds. Performance and blade load trends are documented for fixed levels of rotor lift coefficient as propulsive force is increased to the maximum obtainable by the model rotor. Test data is also included that defines the effect of stall proximity on rotor control power. The basic test data plots are presented in volumes 2 and 3.

Mchugh, F.; Clark, R.; Soloman, M.

1977-01-01

294

Airfoil System for Cruising Flight  

NASA Technical Reports Server (NTRS)

An airfoil system includes an airfoil body and at least one flexible strip. The airfoil body has a top surface and a bottom surface, a chord length, a span, and a maximum thickness. Each flexible strip is attached along at least one edge thereof to either the top or bottom surface of the airfoil body. The flexible strip has a spanwise length that is a function of the airfoil body's span, a chordwise width that is a function of the airfoil body's chord length, and a thickness that is a function of the airfoil body's maximum thickness.

Shams, Qamar A. (Inventor); Liu, Tianshu (Inventor)

2014-01-01

295

An analytic study of nonsteady two-phase laminar boundary layer around an airfoil  

NASA Technical Reports Server (NTRS)

Recently, NASA, FAA, and other organizations have focused their attention upon the possible effects of rain on airfoil performance. Rhode carried out early experiments and concluded that the rain impacting the aircraft increased the drag. Bergrum made numerical calculation for the rain effects on airfoils. Luers and Haines did an analytic investigation and found that heavy rain induces severe aerodynamic penalties including both a momentum penalty due to the impact of the rain and a drag and lift penalty due to rain roughening of the airfoil and fuselage. More recently, Hansman and Barsotti performed experiments and declared that performance degradation of an airfoil in heavy rain is due to the effective roughening of the surface by the water layer. Hansman and Craig did further experimental research at low Reynolds number. E. Dunham made a critical review for the potential influence of rain on airfoil performance. Dunham et al. carried out experiments for the transport type airfoil and concluded that there is a reduction of maximum lift capability with increase in drag. There is a scarcity of published literature in analytic research of two-phase boundary layer around an airfoil. Analytic research is being improved. The following assumptions are made: the fluid flow is non-steady, viscous, and incompressible; the airfoil is represented by a two-dimensional flat plate; and there is only a laminar boundary layer throughout the flow region. The boundary layer approximation is solved and discussed.

Hsu, Yu-Kao

1989-01-01

296

FLIGHT TEST INVESTIGATION OF HIGH-LIFT DEVICES AND LANDING GEAR MODIFICATIONS TO ACHIEVE AIRFRAME NOISE REDUCTION  

Microsoft Academic Search

A major theme within the European Community funded Project SILENCE(R), was to flight-test high-lift devices modifications and landing gear noise reduction fairings as part of the airframe noise reduction investigation. This task was initiated in 2001, with a design based on both computational and experimental work, aiming to modifications that fit the actual Airbus A340-300 test aircraft. Landing-gear fairings were

J.-F. Piet; L. C. Chow; F. Laporte; H. Remy

297

Suppression of dynamic stall with a leading-edge slat on a VR-7 airfoil  

NASA Technical Reports Server (NTRS)

The VR-7 airfoil was experimentally studied with and without a leading-edge slat at fixed angles of attack from 0 deg to 30 deg at Re = 200,000 and for unsteady pitching motions described by alpha equals alpha(sub m) + 10 deg(sin(wt)). The models were two dimensional, and the test was performed in a water tunnel at Ames Research Center. The unsteady conditions ranged over Re equals 100,000 to 250,000, k equals 0.001 to 0.2, and alpha(sub m) = 10 deg to 20 deg. Unsteady lift, drag, and pitching-moment measurements were obtained along with fluorescent-dye flow visualizations. The addition of the slat was found to delay the static-drag and static-moment stall by about 5 degrees and to eliminate completely the development of a dynamic-stall vortex during unsteady motions that reached angles as high as 25 degrees. In all of the unsteady cases studied, the slat caused a significant reduction in the force and moment hysteresis amplitudes. The reduced frequency was found to have the greatest effect on the results, whereas the Reynolds number had little effect on the behavior of either the basic or the slatted airfoil. The slat caused a slight drag penalty at low angles of attack, but generally increased the lift/drag ratio when averaged over the full cycle of oscillation.

Mcalister, K. W.; Tung, C.

1993-01-01

298

Wind Tunnel Aerodynamic Characteristics of a Transport-type Airfoil in a Simulated Heavy Rain Environment  

NASA Technical Reports Server (NTRS)

The effects of simulated heavy rain on the aerodynamic characteristics of an NACA 64-210 airfoil section equipped with leading-and trailing-edge high-lift devices were investigated in the Langley 14- by 22-Foot Subsonic Tunnel. The model had a chord of 2.5 ft, a span of 8 ft, and was mounted on the tunnel centerline between two large endplates. Aerodynamic measurements in and out of the simulated rain environment were obtained for dynamic pressures of 30 and 50 psf and an angle-of-attack range of 0 to 20 degrees for the cruise configuration. The rain intensity was varied to produce liquid water contents ranging from 16 to 46 gm/cu m. The results obtained for various rain intensity levels and tunnel speeds showed significant losses in maximum lift capability and increases in drag for a given lift as the liquid water content was increased. The results obtained on the landing configuration also indicate a progressive decrease in the angle of attack at which maximum lift occurred and an increase in the slope of the pitching-moment curve as the liquid water content was increased. The sensitivity of test results to the effects of the water surface tension was also investigated. A chemical was introduced into the rain environment that reduced the surface tension of water by a factor of 2. The reduction in the surface tension of water did not significantly alter the level of performance losses for the landing configuration.

Bezos, Gaudy M.; Dunham, R. Earl, Jr.; Gentry, Garl L., Jr.; Melson, W. Edward, Jr.

1992-01-01

299

High Reynolds number transonic tests on a NACA 0012 airfoil in the Langley 0.3-meter transonic cryogenic tunnel  

NASA Technical Reports Server (NTRS)

Tests were conducted in the two-dimensional test section of the Langley 0.3-m Transonic Cryogenic Tunnel on a NACA 0012 airfoil to obtain aerodynamic data as a part of the Advanced Technology Airfoil Test (ATAT) program. The test program covered a Mach number range of 0.30 to 0.82 and a Reynolds number range of 3.0 to 45.0 x 10 to the 6th. The stagnation pressure was varied between 1.2 and 6.0 atmospheres and the stagnation temperature was varied between 300 K and 90 K to obtain these test conditions. Plots of the spanwise variation of drag coefficient as a function of normal force coefficient and the variation of the basic aerodynamic characteristics with angle of attack are shown. The data are presented uncorrected for wall interference effects and without analysis.

Ladson, Charles L.; Hill, S. Acquilla

1987-01-01

300

Multiple piece turbine airfoil  

DOEpatents

A turbine airfoil, such as a rotor blade or a stator vane, for a gas turbine engine, the airfoil formed as a shell and spar construction with a plurality of dog bone struts each mounted within openings formed within the shell and spar to allow for relative motion between the spar and shell in the airfoil chordwise direction while also forming a seal between adjacent cooling channels. The struts provide the seal as well as prevent bulging of the shell from the spar due to the cooling air pressure.

Kimmel, Keith D (Jupiter, FL); Wilson, Jr., Jack W. (Palm Beach Gardens, FL)

2010-11-02

301

High-frequency microwave anti-\\/de-icing system for carbon-reinforced airfoil structures  

Microsoft Academic Search

An aircraft may be subjected to icing for a variety of meteorological reasons during the flight. Ice formation on the plane and in particular on the aerodynamically carrying structures adversely affects the flight behaviour. Conventional de-icing methods for aluminum wings are characterised by a high energy consumption during the flight and slow ice melting due to thermal diffusion of the

Lambert Feher; Manfred Thumm

2001-01-01

302

Computing Aerodynamic Performance of a 2D Iced Airfoil: Blocking Topology and Grid Generation  

NASA Technical Reports Server (NTRS)

The ice accrued on airfoils can have enormously complicated shapes with multiple protruded horns and feathers. In this paper, several blocking topologies are proposed and evaluated on their ability to produce high-quality structured multi-block grid systems. A transition layer grid is introduced to ensure that jaggedness on the ice-surface geometry do not to propagate into the domain. This is important for grid-generation methods based on hyperbolic PDEs (Partial Differential Equations) and algebraic transfinite interpolation. A 'thick' wrap-around grid is introduced to ensure that grid lines clustered next to solid walls do not propagate as streaks of tightly packed grid lines into the interior of the domain along block boundaries. For ice shapes that are not too complicated, a method is presented for generating high-quality single-block grids. To demonstrate the usefulness of the methods developed, grids and CFD solutions were generated for two iced airfoils: the NLF0414 airfoil with and without the 623-ice shape and the B575/767 airfoil with and without the 145m-ice shape. To validate the computations, the computed lift coefficients as a function of angle of attack were compared with available experimental data. The ice shapes and the blocking topologies were prepared by NASA Glenn's SmaggIce software. The grid systems were generated by using a four-boundary method based on Hermite interpolation with controls on clustering, orthogonality next to walls, and C continuity across block boundaries. The flow was modeled by the ensemble-averaged compressible Navier-Stokes equations, closed by the shear-stress transport turbulence model in which the integration is to the wall. All solutions were generated by using the NPARC WIND code.

Chi, X.; Zhu, B.; Shih, T. I.-P.; Slater, J. W.; Addy, H. E.; Choo, Yung K.; Lee, Chi-Ming (Technical Monitor)

2002-01-01

303

Experimental results for the Eppler 387 airfoil at low Reynolds numbers in the Langley low-turbulence pressure tunnel  

NASA Technical Reports Server (NTRS)

Experimental results were obtained for an Eppler 387 airfoil in the Langley Low Turbulence Pressure Tunnel. The tests were conducted over a Mach number range from 0.03 to 0.13 and a chord Reynolds number range for 60,000 to 460,000. Lift and pitching moment data were obtained from airfoil surface pressure measurements and drag data for wake surveys. Oil flow visualization was used to determine laminar separation and turbulent reattachment locations. Comparisons of these results with data on the Eppler 387 airfoil from two other facilities as well as the Eppler airfoil code are included.

Mcghee, Robert J.; Walker, Betty S.; Millard, Betty F.

1988-01-01

304

Predicted Aerodynamic Characteristics of a NACA 0015 Airfoil Having a 25% Integral-Type Trailing Edge Flap  

NASA Technical Reports Server (NTRS)

Using the two-dimensional ARC2D Navier-Stokes flow solver analyses were conducted to predict the sectional aerodynamic characteristics of the flapped NACA-0015 airfoil section. To facilitate the analyses and the generation of the computational grids, the airfoil with the deflected trailing edge flap was treated as a single element airfoil with no allowance for a gap between the flap's leading edge and the base of the forward portion of the airfoil. Generation of the O-type computational grids was accomplished using the HYGRID hyperbolic grid generation program. Results were obtained for a wide range of Mach numbers, angles of attack and flap deflections. The predicted sectional lift, drag and pitching moment values for the airfoil were then cast in tabular format (C81) to be used in lifting-line helicopter rotor aerodynamic performance calculations. Similar were also generated for the flap. Mathematical expressions providing the variation of the sectional lift and pitching moment coefficients for the airfoil and for the flap as a function of flap chord length and flap deflection angle were derived within the context of thin airfoil theory. The airfoil's sectional drag coefficient were derived using the ARC2D drag predictions for equivalent two dimensional flow conditions.

Hassan, Ahmed

1999-01-01

305

Closed loop steam cooled airfoil  

DOEpatents

An airfoil, a method of manufacturing an airfoil, and a system for cooling an airfoil is provided. The cooling system can be used with an airfoil located in the first stages of a combustion turbine within a combined cycle power generation plant and involves flowing closed loop steam through a pin array set within an airfoil. The airfoil can comprise a cavity having a cooling chamber bounded by an interior wall and an exterior wall so that steam can enter the cavity, pass through the pin array, and then return to the cavity to thereby cool the airfoil. The method of manufacturing an airfoil can include a type of lost wax investment casting process in which a pin array is cast into an airfoil to form a cooling chamber.

Widrig, Scott M.; Rudolph, Ronald J.; Wagner, Gregg P.

2006-04-18

306

Separation control on a NACA 0015 airfoil using a 2D micro ZNMF jet  

Microsoft Academic Search

Purpose – The aims of this study were to investigate the effect of using a wall-normal, 2D micro zero-net-mass-flux (ZNMF) jet located at the leading edge of a NACA 0015 airfoil to actively control flow separation and enhance lift. Design\\/methodology\\/approach – Experiments were conducted over a two-dimensional airfoil in a water tunnel at a Reynolds number of 3.08 × 104

A. Tuck; J. Soria

2008-01-01

307

On the design of airfoils in which the transition of the boundary layer is delayed  

NASA Technical Reports Server (NTRS)

A method is presented for designing suitable thickness distributions and mean camber lines for airfoils permitting extensive chordwise laminar flow. Wind tunnel and flight tests confirming the existence of laminar flow; possible maintenance of laminar flow by area suction; and the effects of wind tunnel turbulence and surface roughness on the promotion of premature boundary layer transition are discussed. In addition, estimates of profile drag and scale effect on maximum lift of the derived airfoils are made.

Tani, Itiro

1952-01-01

308

Lift off: A very fine front metallization geometry technique for high efficiency solar cells  

NASA Astrophysics Data System (ADS)

A lift off technique for TiPdAg metallization is described. A photoresist pattern is used before evaporation of the metal. After the metal is evaporated, the photoresist is removed, lifting off the metal on top of it. Where the photoresist was already removed before metallization with developing, the metal remains on the wafer. There must be a discontinuity in the metal due to the photoresist pattern, so that the dissolvent can reach the resist itself or the steps in the photoresist pattern may only be covered with a very thin layer of metal when the technique is used in an ultrasonic medium. Fingers of 10 microns width and 3 microns thickness are obtained, resulting in an optimized trade-off between metal coverage and series resistance. Silicon solar cells with AM1 efficiencies 17% are obtained.

Nijs, J.; Dhoore, F.; Mertens, R.; Vanoverstraeten, R.

1982-06-01

309

Active Control of Flow around NACA 0015 Airfoil by Using DBD Plasma Actuator  

NASA Astrophysics Data System (ADS)

In this study, effect of plasma actuator on a flat plate and manipulation of flow separation on NACA0015 airfoil with plasma actuator at low Reynolds numbers were experimentally investigated. In the first section of the study, plasma actuator which consists of positive and grounded electrode couple and dielectric layer, located on a flat plate was actuated at different frequencies and peak to peak voltages in range of 3-5 kHz and 6-12 kV respectively. Theinduced air flow velocity on the surface of flat plate was measured by pitot tube at different locations behind the actuator. The influence of dielectricthickness and unsteady actuation with duty cycle was also examined. In the second section, the effect of plasma actuator on NACA0015 airfoil was studied atReynolds number 15000 and 30000. Four plasma actuators were placed at x/C = 0.1, 0.3, 0.5 and 0.9, and different electrode combinations were activated by sinusoidal signal. Flow visualizations were done when the attack angles were 0°, 5°, 10°, 15° and 20°. The results indicate that up to the 15° attack angle, the separated flow was reattached by plasma actuator at 12kV peak to peak voltage and 4 kHz frequency. However, 12 kVpp voltage was insufficient to reattach the flow at 20° angle of attack. The separated flow could be reattached by increasing the voltage up to 13 kV. Lift coefficient was also increased by the manipulated flow over the airfoil. Results showed that even high attack angles, the actuators can control the flow separation and prevent the airfoil from stall at low Reynolds numbers.

Akansu, Y. E.; Karakaya, F.; ?anl?soy, A.

2013-04-01

310

Aerodynamic Characterization of a Thin, High-Performance Airfoil for Use in Ground Fluids Testing  

NASA Technical Reports Server (NTRS)

The FAA has worked with Transport Canada and others to develop allowance times for aircraft operating in ice-pellet precipitation. Wind-tunnel testing has been carried out to better understand the flowoff characteristics and resulting aerodynamic effects of anti-icing fluids contaminated with ice pellets using a thin, high-performance wing section at the National Research Council of Canada Propulsion and Icing Wind Tunnel. The objective of this paper is to characterize the aerodynamic behavior of this wing section in order to better understand the adverse aerodynamic effects of anti-icing fluids and ice-pellet contamination. Aerodynamic performance data, boundary-layer surveys and flow visualization were conducted at a Reynolds number of approximately 6.0 x 10(exp 6) and a Mach number of 0.12. The clean, baseline model exhibited leading-edge stall characteristics including a leading-edge laminar separation bubble and minimal or no separation on the trailing edge of the main element or flap. These results were consistent with expected 2-D aerodynamics and showed no anomalies that could adversely affect the evaluation of anti-icing fluids and ice-pellet contamination on the wing. Tests conducted with roughness and leading-edge flow disturbances helped to explain the aerodynamic impact of the anti-icing fluids and contamination. The stalling characteristics of the wing section with fluid and contamination appear to be driven at least partially by the effects of a secondary wave of fluid that forms near the leading edge as the wing is rotated in the simulated takeoff profile. These results have provided a much more complete understanding of the adverse aerodynamic effects of anti-icing fluids and ice-pellet contamination on this wing section. This is important since these results are used, in part, to develop the ice-pellet allowance times that are applicable to many different airplanes.

Broeren, Andy P.; Lee, Sam; Clark, Catherine

2013-01-01

311

Aerodynamic Characterization of a Thin, High-Performance Airfoil for Use in Ground Fluids Testing  

NASA Technical Reports Server (NTRS)

The FAA has worked with Transport Canada and others to develop allowance times for aircraft operating in ice-pellet precipitation. Wind-tunnel testing has been carried out to better understand the flowoff characteristics and resulting aerodynamic effects of anti-icing fluids contaminated with ice pellets using a thin, high-performance wing section at the National Research Council of Canada Propulsion and Icing Wind Tunnel. The objective of this paper is to characterize the aerodynamic behavior of this wing section in order to better understand the adverse aerodynamic effects of anti-icing fluids and ice-pellet contamination. Aerodynamic performance data, boundary-layer surveys and flow visualization were conducted at a Reynolds number of approximately 6.0×10(exp 6) and a Mach number of 0.12. The clean, baseline model exhibited leading-edge stall characteristics including a leading-edge laminar separation bubble and minimal or no separation on the trailing edge of the main element or flap. These results were consistent with expected 2-D aerodynamics and showed no anomalies that could adversely affect the evaluation of anti-icing fluids and ice-pellet contamination on the wing. Tests conducted with roughness and leading-edge flow disturbances helped to explain the aerodynamic impact of the anti-icing fluids and contamination. The stalling characteristics of the wing section with fluid and contamination appear to be driven at least partially by the effects of a secondary wave of fluid that forms near the leading edge as the wing is rotated in the simulated takeoff profile. These results have provided a much more complete understanding of the adverse aerodynamic effects of anti-icing fluids and ice-pellet contamination on this wing section. This is important since these results are used, in part, to develop the ice-pellet allowance times that are applicable to many different airplanes.

Broeren, Andy P.; Lee, Sam; Clark, Catherine

2013-01-01

312

Sinus Lift  

MedlinePLUS

... last 15 years as more people get dental implants to replace missing teeth. Preparation The bone used in a sinus lift may come from your own body (autogenous bone), from a cadaver (allogeneic bone) or from cow bone (xenograft). If your own bone will be ...

313

Unsteady aerodynamic behavior of an airfoil with and without a slat  

NASA Technical Reports Server (NTRS)

Unsteady flow behavior and load characteristics of a 2D VR-7 airfoil with and without a leading-edge slat were studied in the water tunnel of the Aeroflightdynamics Directorate, NASA Ames Research Center. Both airfoils were oscillated sinusoidally between 5 and 25 deg at Re = 200,000 to obtain the unsteady lift, drag, and pitching moment data. A fluorescent dye was released from an orifice located at the leading edge of the airfoil for the purpose of visualizing the boundary layer and wake flow. The flowfield and load predictions of an incompressible Navier-Stokes code based on a velocity-vorticity formulation were compared with the test data. The test and predictions both confirm that the slatted VR-7 airfoil delays both static and dynamic stall as compared to the VR-7 airfoil alone.

Tung, Chee; Mcalister, Kenneth W.; Wang, Clin M.

1993-01-01

314

Powered-Lift Aerodynamics and Acoustics. [conferences  

NASA Technical Reports Server (NTRS)

Powered lift technology is reviewed. Topics covered include: (1) high lift aerodynamics; (2) high speed and cruise aerodynamics; (3) acoustics; (4) propulsion aerodynamics and acoustics; (5) aerodynamic and acoustic loads; and (6) full-scale and flight research.

1976-01-01

315

VORTEX STRUCTURE IN UNSTEADY SEPARATION AROUND A PITCHING AIRFOIL  

Microsoft Academic Search

The flow field around a moving airfoil is a typical of unsteady flows and is complicated due to many parameters as well as the dynamic behavior of vortices. Many studies on unsteady separation around a moving airfoil have been carried out experimentally and in numerical simulations. Most of them have been performed1 at the high Reynolds number region over Re

Masaki Fuchiwaki; Kazuhiro Tanaka

316

Automated CFD for Generation of Airfoil Performance Tables  

NASA Technical Reports Server (NTRS)

A method of automated computational fluid dynamics (CFD) has been invented for the generation of performance tables for an object subject to fluid flow. The method is applicable to the generation of tables that summarize the effects of two-dimensional flows about airfoils and that are in a format known in the art as C81. (A C81 airfoil performance table is a text file that lists coefficients of lift, drag, and pitching moment of an airfoil as functions of angle of attack for a range of Mach numbers.) The method makes it possible to efficiently generate and tabulate data from simulations of flows for parameter values spanning all operational ranges of actual or potential interest. In so doing, the method also enables filling of gaps and resolution of inconsistencies in C81 tables generated previously from incomplete experimental data or from theoretical calculations that involved questionable assumptions.

Strawn, Roger; Mayda, E. Q.; vamDam, C. P.

2009-01-01

317

An experimental study of a bio-inspired corrugated airfoil for micro air vehicle applications  

Microsoft Academic Search

An experimental study was conducted to investigate the aerodynamic characteristics of a bio-inspired corrugated airfoil compared\\u000a with a smooth-surfaced airfoil and a flat plate at the chord Reynolds number of Re\\u000a C\\u000a  = 58,000–125,000 to explore the potential applications of such bio-inspired corrugated airfoils for micro air vehicle designs.\\u000a In addition to measuring the aerodynamic lift and drag forces acting on

Jeffery T. Murphy; Hui Hu

2010-01-01

318

Trends of Reynolds number effects on two-dimensional airfoil characteristics for helicopter rotor analyses  

NASA Technical Reports Server (NTRS)

The primary effects of Reynolds number on two dimensional airfoil characteristics are discussed. Results from an extensive literature search reveal the manner in which the minimum drag and maximum lift are affected by the Reynolds number. C sub d sub min and C sub l sub max are plotted versus Reynolds number for airfoils of various thickness and camber. From the trends observed in the airfoil data, universal scaling laws and easily implemented methods are developed to account for Reynolds number effects in helicopter rotor analyses.

Yamauchi, G. K.; Johnson, W.

1983-01-01

319

Study of laminar separation bubble on low Reynolds number operating airfoils: RANS modelling by means of an high-accuracy solver and experimental verification  

NASA Astrophysics Data System (ADS)

This work is devoted to the Computational Fluid-Dynamics (CFD) simulation of laminar separation bubble (LSB) on low Reynolds number operating airfoils. This phenomenon is of large interest in several fields, such as wind energy, and it is characterised by slow recirculating flow at an almost constant pressure. Presently Reynolds Averaged Navier-Stokes (RANS) methods, due to their limited computational requests, are the more efficient and feasible CFD simulation tool for complex engineering applications involving LSBs. However adopting RANS methods for LSB prediction is very challenging since widely used models assume a fully turbulent regime. For this reason several transitional models for RANS equations based on further Partial Differential Equations (PDE) have been recently introduced in literature. Nevertheless in some cases they show questionable results. In this work RANS equations and the standard Spalart-Allmaras (SA) turbulence model are used to deal with LSB problems obtaining promising results. This innovative result is related to: (i) a particular behaviour of the SA equation; (ii) a particular implementation of SA equation; (iii) the use of a high-order discontinuous Galerkin (DG) solver. The effectiveness of the proposed approach is tested on different airfoils at several angles of attack and Reynolds numbers. Numerical results were verified with both experimental measurements performed at the open circuit subsonic wind tunnel of Università Politecnica delle Marche (UNIVPM) and literature data.

Crivellini, A.; D'Alessandro, V.; Di Benedetto, D.; Montelpare, S.; Ricci, R.

2014-04-01

320

An Experimental Evaluation of Advanced Rotorcraft Airfoils in the NASA Ames Eleven-foot Transonic Wind Tunnel  

NASA Technical Reports Server (NTRS)

Five full scale rotorcraft airfoils were tested in the NASA Ames Eleven-Foot Transonic Wind Tunnel for full scale Reynolds numbers at Mach numbers from 0.3 to 1.07. The models, which spanned the tunnel from floor to ceiling, included two modern baseline airfoils, the SC1095 and SC1094 R8, which have been previously tested in other facilities. Three advanced transonic airfoils, designated the SSC-A09, SSC-A07, and SSC-B08, were tested to confirm predicted performance and provide confirmation of advanced airfoil design methods. The test showed that the eleven-foot tunnel is suited to two-dimensional airfoil testing. Maximum lift coefficients, drag coefficients, pitching moments, and pressure coefficient distributions are presented. The airfoil analysis codes agreed well with the data, with the Grumman GRUMFOIL code giving the best overall performance correlation.

Flemming, Robert J.

1984-01-01

321

Serrated-Planform Lifting-Surfaces  

NASA Technical Reports Server (NTRS)

A novel set of serrated-planform lifting surfaces produce unexpectedly high lift coefficients at moderate to high angles-of-attack. Each serration, or tooth, is designed to shed a vortex. The interaction of the vortices greatly enhances the lifting capability over an extremely large operating range. Variations of the invention use serrated-planform lifting surfaces in planes different than that of a primary lifting surface. In an alternate embodiment, the individual teeth are controllably retractable and deployable to provide for active control of the vortex system and hence lift coefficient. Differential lift on multiple serrated-planform lifting surfaces provides a means for vehicle control. The important aerodynamic advantages of the serrated-planform lifting surfaces are not limited to aircraft applications but can be used to establish desirable performance characteristics for missiles, land vehicles, and/or watercraft.

McGrath, Brian E. (Inventor); Wood, Richard M. (Inventor)

1999-01-01

322

The Monoplane as a Lifting Vortex Surface  

NASA Technical Reports Server (NTRS)

In Prandtl's airfoil theory the monoplane was replaced by a single lifting vortex line and yielded fairly practical results. However, the theory remained restricted to the straight wing. Yawed wings and those curved in flight direction could not be computed with this first approximation; for these the chordwise lift distribution must be taken into consideration. For the two-dimensional problem the transition from the lifting line to the lifting surface has been explained by Birnbaum. In the present report the transition to the three-dimensional problem is undertaken. The first fundamental problem involves the prediction of flow, profile, and drag for prescribed circulation distribution on the straight rectangular wing, the yawed wing for lateral boundaries parallel to the direction of flight, the swept-back wing, and the rectangular wing in slipping, with the necessary series developments for carrying through the calculations, the practical range of convergence of which does not comprise the wing tips or the break point of the swept-back wing. The second problem concerns the calculation of the circulation distribution with given profile for a slipping rectangular monoplane with flat profile and aspect ratio 6, and a rectangular wing with cambered profile and variable aspect ratio-the latter serving as check of the so-called conversion formulas of the airfoil theory.

Blenk, Hermann

1947-01-01

323

Airfoil Vibration Dampers program  

NASA Technical Reports Server (NTRS)

The Airfoil Vibration Damper program has consisted of an analysis phase and a testing phase. During the analysis phase, a state-of-the-art computer code was developed, which can be used to guide designers in the placement and sizing of friction dampers. The use of this computer code was demonstrated by performing representative analyses on turbine blades from the High Pressure Oxidizer Turbopump (HPOTP) and High Pressure Fuel Turbopump (HPFTP) of the Space Shuttle Main Engine (SSME). The testing phase of the program consisted of performing friction damping tests on two different cantilever beams. Data from these tests provided an empirical check on the accuracy of the computer code developed in the analysis phase. Results of the analysis and testing showed that the computer code can accurately predict the performance of friction dampers. In addition, a valuable set of friction damping data was generated, which can be used to aid in the design of friction dampers, as well as provide benchmark test cases for future code developers.

Cook, Robert M.

1991-01-01

324

Aerodynamic Characteristics of SC1095 and SC1094 R8 Airfoils  

NASA Technical Reports Server (NTRS)

Two airfoils are used on the main rotor blade of the UH-60A helicopter, the SC1095 and the SC1094 R8. Measurements of the section lift, drag, and pitching moment have been obtained in ten wind tunnel tests for the SC1095 airfoil, and in five of these tests, measurements have also been obtained for the SC1094 R8. The ten wind tunnel tests are characterized and described in the present study. A number of fundamental parameters measured in these tests are compared and an assessment is made of the adequacy of the test data for use in look-up tables required by lifting-line calculation methods.

Bousman, William G.

2003-01-01

325

2-D Circulation Control Airfoil Benchmark Experiments Intended for CFD Code Validation  

NASA Technical Reports Server (NTRS)

A current NASA Research Announcement (NRA) project being conducted by Georgia Tech Research Institute (GTRI) personnel and NASA collaborators includes the development of Circulation Control (CC) blown airfoils to improve subsonic aircraft high-lift and cruise performance. The emphasis of this program is the development of CC active flow control concepts for both high-lift augmentation, drag control, and cruise efficiency. A collaboration in this project includes work by NASA research engineers, whereas CFD validation and flow physics experimental research are part of NASA s systematic approach to developing design and optimization tools for CC applications to fixed-wing aircraft. The design space for CESTOL type aircraft is focusing on geometries that depend on advanced flow control technologies that include Circulation Control aerodynamics. The ability to consistently predict advanced aircraft performance requires improvements in design tools to include these advanced concepts. Validation of these tools will be based on experimental methods applied to complex flows that go beyond conventional aircraft modeling techniques. This paper focuses on recent/ongoing benchmark high-lift experiments and CFD efforts intended to provide 2-D CFD validation data sets related to NASA s Cruise Efficient Short Take Off and Landing (CESTOL) study. Both the experimental data and related CFD predictions are discussed.

Englar, Robert J.; Jones, Gregory S.; Allan, Brian G.; Lin, Johb C.

2009-01-01

326

Comparison of pressure distributions on model and full-scale NACA 64-621 airfoils with ailerons for wind turbine application  

NASA Technical Reports Server (NTRS)

The aerodynamic similarity between a small (4-inch chord) wind tunnel model and a full-scale wind turbine blade (24-foot tip section with a 36-inch chord) was evaluated by comparing selected pressure distributions around the geometrically similar cross sections. The airfoils were NACA 64-621 sections, including trailing-edge ailerons with a width equal to 38 percent of the airfoil chord. The model airfoil was tested in the OSU 6- by 12-inch High Reynolds Number Wind Tunnel; the full-scale blade section was tested in the NASA Langley Research Center 30- by 60-foot Subsonic Wind Tunnel. The model airfoil contained 61 pressure taps connected by embedded tubes to pressure transducers. A belt containing 29 pressure taps was fixed to the full-scale section at midspan to obtain surface pressure data. Lift coefficients were obtained by integrating pressures, and corrections were made for the 3-D effects of blade twist and downwash in the blade tip section. The results of the two different experimental methods correlated well for angles of attack from minus 4 to 36 degrees and aileron reflections from 0 to 90 degrees.

Gregorek, G. M.; Kuniega, R. J.; Nyland, T. W.

1988-01-01

327

Experimental Optimization Methods for Multi-Element Airfoils  

NASA Technical Reports Server (NTRS)

A modern three element airfoil model with a remotely activated flap was used to investigate optimum flap testing position using an automated optimization algorithm in wind tunnel tests. Detailed results for lift coefficient versus flap vertical and horizontal position are presented for two angles of attack: 8 and 14 degrees. An on-line first order optimizer is demonstrated which automatically seeks the optimum lift as a function of flap position. Future work with off-line optimization techniques is introduced and aerodynamic hysteresis effects due to flap movement with flow on are discussed.

Landman, Drew; Britcher, Colin P.

1996-01-01

328

Heavy Lifting  

NSDL National Science Digital Library

In this activity, learners work in NASA teams to build balloon-powered rockets using identical parts and compete to launch the greatest number of paper clips to "space" (the ceiling). The rockets learners build model the Ares V heavy lift launchers that carry heavy payloads into orbit. This lesson plan includes background information, tips, discussion questions and answers, and a "Mission Report" sheet for learners.

Deborah A. Shearer

2012-06-26

329

Lift maximization in the flow around a contour over a screen  

NASA Astrophysics Data System (ADS)

The problem of lift maximization for a smooth contour of given length placed in a flow near a screen is analyzed. The distance between the contour and the screen is assumed to be given. Optimal contours are constructed, and the lift coefficient is derived as a function of the contour-screen separation. The results can be useful as accurate upper bounds for the lift coefficient of actual ekranoplan airfoils.

Abzalilov, D. F.

2007-02-01

330

Design and Predictions for a High-Altitude (Low-Reynolds-Number) Aerodynamic Flight Experiment  

NASA Technical Reports Server (NTRS)

A sailplane being developed at NASA Dryden Flight Research Center will support a high-altitude flight experiment. The experiment will measure the performance parameters of an airfoil at high altitudes (70,000 to 100,000 ft), low Reynolds numbers (200,000 to 700,000), and high subsonic Mach numbers (0.5 and 0.65). The airfoil section lift and drag are determined from pitot and static pressure measurements. The locations of the separation bubble, Tollmien-Schlichting boundary layer instability frequencies, and vortex shedding are measured from a hot-film strip. The details of the planned flight experiment are presented. Several predictions of the airfoil performance are also presented. Mark Drela from the Massachusetts Institute of Technology designed the APEX-16 airfoil, using the MSES code. Two-dimensional Navier-Stokes analyses were performed by Mahidhar Tatineni and Xiaolin Zhong from the University of California, Los Angeles, and by the authors at NASA Dryden.

Greer, Donald; Hamory, Phil; Krake, Keith; Drela, Mark

1999-01-01

331

A High Altitude-Low Reynolds Number Aerodynamic Flight Experiment  

NASA Technical Reports Server (NTRS)

A sailplane is currently being developed at NASA's Dryden Flight Research Center to support a high altitude flight experiment. The purpose of the experiment is to measure the performance characteristics of an airfoil at altitudes between 100,000 and 70,000 feet at Mach numbers between 0.65 and 0.5. The airfoil lift and drag are measured from pilot and static pressures. The location of the separation bubble and vortex shedding are measured from a hot film strip. The details of the flight experiment are presented. A comparison of several estimates of the airfoil performance is also presented. The airfoil, APEX-16, was designed by Drela (MIT) with his MSES code. A two dimensional Navier-Stokes analysis has been performed by Tatineni and Zhong (UCLA) and another at the Dryden Flight Research Center. The role these analysis served to define the experiment is discussed.

Greer, Don; Krake, Keith; Hamory, Phil; Drela, Mark; Lee, Seunghee (Technical Monitor)

1999-01-01

332

Airfoil Pressure Distribution Investigation in the Variable Density Wind Tunnel  

NASA Technical Reports Server (NTRS)

Report presents the results of wind tunnel tests of pressure distribution measurements over one section each of six airfoils. Pressure distribution diagrams, as well as the integrated characteristics of the airfoils, are given for both a high and a low dynamic scale or, Reynolds number VL/V, for comparison with flight and other wind-tunnel tests, respectively. It is concluded that the scale effect is very important only at angles of attack near the burble. The distribution of pressure over an airfoil having a Joukowski section is compared with the theoretically derived distribution. A further study of the distribution of pressure over all of the airfoils resulted in the development of an approximate method of predicting the pressure distribution along the chord of any normal airfoil for all attitudes within the working range if the distribution at one attitude is known.

Jacobs, Eastman N; Stack, John; Pinkerton, Robert M

1931-01-01

333

Active Control of Separation From the Flap of a Supercritical Airfoil  

NASA Technical Reports Server (NTRS)

Active flow control in the form of periodic zero-mass-flux excitation was applied at several regions on the leading edge and trailing edge flaps of a simplified high-lift system t o delay flow separation. The NASA Energy Efficient Transport (EET) supercritical airfoil was equipped with a 15% chord simply hinged leading edge flap and a 25% chord simply hinged trailing edge flap. Detailed flow features were measured in an attempt to identify optimal actuator placement. The measurements included steady and unsteady model and tunnel wall pressures, wake surveys, arrays of surface hot-films, flow visualization, and particle image velocimetry (PIV). The current paper describes the application of active separation control at several locations on the deflected trailing edge flap. High frequency (F(+) approx.= 10) and low frequency amplitude modulation (F(+)AM approx.= 1) of the high frequency excitation were used for control. Preliminary efforts to combine leading and trailing edge flap excitations are also reported.

Melton, La Tunia Pack; Yao, Chung-Sheng; Seifert, Avi

2003-01-01

334

Experimental study of pitching and plunging airfoils at low Reynolds numbers  

NASA Astrophysics Data System (ADS)

Measurements of the unsteady flow structure and force time history of pitching and plunging SD7003 and flat plate airfoils at low Reynolds numbers are presented. The airfoils were pitched and plunged in the effective angle of attack range of 2.4°-13.6° (shallow-stall kinematics) and -6° to 22° (deep-stall kinematics). The shallow-stall kinematics results for the SD7003 airfoil show attached flow and laminar-to-turbulent transition at low effective angle of attack during the down stroke motion, while the flat plate model exhibits leading edge separation. Strong Re-number effects were found for the SD7003 airfoil which produced approximately 25 % increase in the peak lift coefficient at Re = 10,000 compared to higher Re flows. The flat plate airfoil showed reduced Re effects due to leading edge separation at the sharper leading edge, and the measured peak lift coefficient was higher than that predicted by unsteady potential flow theory. The deep-stall kinematics resulted in leading edge separation that led to formation of a large leading edge vortex (LEV) and a small trailing edge vortex (TEV) for both airfoils. The measured peak lift coefficient was significantly higher (~50 %) than that for the shallow-stall kinematics. The effect of airfoil shape on lift force was greater than the Re effect. Turbulence statistics were measured as a function of phase using ensemble averages. The results show anisotropic turbulence for the LEV and isotropic turbulence for the TEV. Comparison of unsteady potential flow theory with the experimental data showed better agreement by using the quasi-steady approximation, or setting C( k) = 1 in Theodorsen theory, for leading edge-separated flows.

Baik, Yeon Sik; Bernal, Luis P.

2012-12-01

335

Multiple piece turbine airfoil  

DOEpatents

A turbine airfoil, such as a rotor blade or a stator vane, for a gas turbine engine, the airfoil formed as a shell and spar construction with a plurality of hook shaped struts each mounted within channels extending in a spanwise direction of the spar and the shell to allow for relative motion between the spar and shell in the airfoil chordwise direction while also fanning a seal between adjacent cooling channels. The struts provide the seal as well as prevent bulging of the shell from the spar due to the cooling air pressure. The hook struts have a hooked shaped end and a rounded shaped end in order to insert the struts into the spar.

Kimmel, Keith D (Jupiter, FL)

2010-11-09

336

Rime ice accretion and its effect on airfoil performance. Ph.D. Thesis. Final Report  

NASA Technical Reports Server (NTRS)

A methodology was developed to predict the growth of rime ice, and the resulting aerodynamic penalty on unprotected, subcritical, airfoil surfaces. The system of equations governing the trajectory of a water droplet in the airfoil flowfield is developed and a numerical solution is obtained to predict the mass flux of super cooled water droplets freezing on impact. A rime ice shape is predicted. The effect of time on the ice growth is modeled by a time-stepping procedure where the flowfield and droplet mass flux are updated periodically through the ice accretion process. Two similarity parameters, the trajectory similarity parameter and accumulation parameter, are found to govern the accretion of rime ice. In addition, an analytical solution is presented for Langmuir's classical modified inertia parameter. The aerodynamic evaluation of the effect of the ice accretion on airfoil performance is determined using an existing airfoil analysis code with empirical corrections. The change in maximum lift coefficient is found from an analysis of the new iced airfoil shape. The drag correction needed due to the severe surface roughness is formulated from existing iced airfoil and rough airfoil data. A small scale wind tunnel test was conducted to determine the change in airfoil performance due to a simulated rime ice shape.

Bragg, M. B.

1982-01-01

337

High Reynolds number tests of the CAST 10-2/DOA 2 airfoil in the Langley 0.3-meter transonic cryogenic tunnel, phase 1  

NASA Technical Reports Server (NTRS)

A wind tunnel investigation of an advanced technology airfoil, the CAST 10-2/DOA 2, was conducted in the Langley 0.3 meter Transonic Cryogenic Tunnel (0.3 m TCT). This was the first of a series of tests conducted in a cooperative National Aeronautics and Space Administration (NASA) and the Deutsche Forschungs- und Versuchsanstalt fur Luft- und Raumfahrt e. V. (DFVLR) airfoil research program. Test temperature was varied from 280 K to 100 K to pressures from slightly above 1 to 5.8 atmospheres. Mach number was varied from 0.60 to 0.80, and the Reynolds number (based on airfoil chord) was varied from 4 x 10 to the 8th power to 45 x 10 to the 6th power. This report presents the experimental aerodynamic data obtained for the airfoil and includes descriptions of the airfoil model, the 0.3 m TCT, the test instrumentation, and the testing procedures.

Dress, D. A.; Mcguire, P. D.; Stanewsky, E.; Ray, E. J.

1983-01-01

338

High Reynolds number tests of the cast 10-2/DOA 2 airfoil in the Langley 0.3-meter transonic cryogenic tunnel, phase 2  

NASA Technical Reports Server (NTRS)

Wind tunnel tests of an advanced technology airfoil, the CAST 10-2/DOA 2, were conducted in the Langley 0.3-Meter Transonic Cryogenic Tunnel (0.3-m TCT). This was the third of a series of tests conducted in a cooperative airfoil research program between the National Aeronautics and Space Administration and the Deutsche Forschungsund Versuchsanstalt fur Luft- und Raumfahrt e. V. For these tests, temperature was varied from 270 K to 110 K at pressures from 1.5 to 5.75 atmospheres. Mach number was varied from 0.60 to 0.80, and the Reynolds number (based on airfoil chord) was varied from 2 to 20 million. The aerodynamic data for the 7.62 cm chord airfoil model used in these tests is presented without analysis. Descriptions of the 0.3-m TCT, the airfoil model, the test instrumentation, and the testing procedures are included.

Dress, D. A.; Stanewsky, E.; Mcguire, P. D.; Ray, E. J.

1984-01-01

339

Flight Investigation at High Speeds of the Drag of Three Airfoils and a Circular Cylinder Representing Full-Scale Propeller Shanks  

NASA Technical Reports Server (NTRS)

Tests have been made at high speeds to determine the drag of models, simulating propeller shanks, in the form of a circular cylinder and three airfoils, the NACA 16-025, the NACA 16-040, and the NACA 16-040 with the rear 25 percent chord cut off. All the models had a maximum thickness of 4 1/2 inches to conform with average propeller-shank dimensions and a span of 20 1/4 inches. For the tests the models were supported perpendicular to the lower surface of the wing of an XP-51 airplane. A wake-survey rake mounted below the wing directly behind the models was used to determine profile drag of Mach numbers of 0.3 to 0.8 over a small range of angle of attack. The drag of the cylinder was also determined from pressure-distribution and force measurements.

Barlow, William H

1946-01-01

340

Erosion/corrosion of turbine airfoil materials in the high-velocity effluent of a pressurized fluidized coal combustor  

NASA Technical Reports Server (NTRS)

Four candidate turbine airfoil superalloys were exposed to the effluent of a pressurized fluidized bed with a solids loading of 2 to 4 g/scm for up to 100 hours at two gas velocities, 150 and 270 m/sec, and two temperatures, 730 deg and 795 C. Under these conditions, both erosion and corrosion occurred. The damaged specimens were examined by cross-section measurements, scanning electron and light microscopy, and X-ray analysis to evaluate the effects of temperature, velocity, particle loading, and alloy material. Results indicate that for a given solids loading the extent of erosion is primarily dependent on gas velocity. Corrosion occurred only at the higher temperature. There was little difference in the erosion/corrosion damage to the four alloys tested under these severe conditions.

Zellars, G. R.; Rowe, A. P.; Lowell, C. E.

1978-01-01

341

Airfoil longitudinal gust response in separated vs. attached flows  

NASA Astrophysics Data System (ADS)

Airfoil aerodynamic loads are expected to have quasi-steady, linear dependence on the history of input disturbances, provided that small-amplitude bounds are observed. We explore this assertion for the problem of periodic sinusoidal streamwise gusts, by comparing experiments on nominally 2D airfoils in temporally sinusoidal modulation of freestream speed in a wind tunnel vs. sinusoidal displacement of the airfoil in constant freestream in a water tunnel. In the wind tunnel, there is a streamwise unsteady pressure gradient causing a buoyancy force, while in the water tunnel one must subtract the inertial load of the test article. Both experiments have an added-mass contribution to aerodynamic force. Within measurement resolution, lift and drag, fluctuating and mean, were in good agreement between the two facilities. For incidence angle below static stall, small-disturbance theory was found to be in good agreement with measured lift history, regardless of oscillation frequency. The circulatory component of fluctuating drag was found to be independent of oscillation frequency. For larger incidence angles, there is marked departure between the measured lift history and that predicted from Greenberg's formula. Flow visualization shows coupling between bluff-body shedding and motion-induced shedding, identifiable with lift cancellation or augmentation, depending on the reduced frequency. Isolating the buoyancy effect in the wind tunnel and dynamic tares in the water tunnel, and theoretical calculation of apparent-mass in both cases, we arrive at good agreement in measured circulatory contribution between the two experiments whether the flow is attached or separated substantiating the linear superposition of the various constituents to total lift and drag, and supporting the idea that aerodynamic gust response can legitimately be studied in a steady freestream by oscillating the test article.

Granlund, K.; Monnier, B.; Ol, M.; Williams, D.

2014-02-01

342

Multi-Element Airfoil System  

NASA Technical Reports Server (NTRS)

A multi-element airfoil system includes an airfoil element having a leading edge region and a skin element coupled to the airfoil element. A slat deployment system is coupled to the slat and the skin element, and is capable of deploying and retracting the slat and the skin element. The skin element substantially fills the lateral gap formed between the slat and the airfoil element when the slat is deployed. The system further includes an uncoupling device and a sensor to remove the skin element from the gap based on a critical angle-of-attack of the airfoil element. The system can alternatively comprise a trailing edge flap, where a skin element substantially fills the lateral gap between the flap and the trailing edge region of the airfoil element. In each case, the skin element fills a gap between the airfoil element and the deployed flap or slat to reduce airframe noise.

Turner, Travis L. (Inventor); Khorrami, Mehdi R. (Inventor); Lockard, David P. (Inventor); McKenney, Martin J. (Inventor); Atherley, Raymond D. (Inventor); Kidd, Reggie T. (Inventor)

2014-01-01

343

Transition Documentation on a Three-Element High-Lift Configuration at High Reynolds Numbers--Database. [conducted in the Langley Low Turbulence Pressure Tunnel  

NASA Technical Reports Server (NTRS)

A 2-D (two dimensional) high-lift system experiment was conducted in August of 1996 in the Low Turbulence Pressure Tunnel at NASA Langley Research Center, Hampton, VA. The purpose of the experiment was to obtain transition measurements on a three element high-lift system for CFD (computational fluid dynamics) code validation studies. A transition database has been created using the data from this experiment. The present report details how the hot-film data and the related pressure data are organized in the database. Data processing codes to access the data in an efficient and reliable manner are described and limited examples are given on how to access the database and store acquired information.

Bertelrud, Arild; Johnson, Sherylene; Anders, J. B. (Technical Monitor)

2002-01-01

344

Unsteady modes in the flowfield about an airfoil with a leading-edge horn-ice shape  

NASA Astrophysics Data System (ADS)

An analysis of unsteady modes present in the flowfield of an airfoil with a leading-edge horn-ice shape was performed in the current study. An NACA 0012 airfoil was tested in a subsonic wind tunnel at Re = 1.8 x 106. In addition to the clean configuration, the airfoil model was also tested with a set of boundary-layer trips, a two-dimensional extrusion of a horn-ice shape casting, and an array of simulated icing configurations created using simple geometries. Time-averaged and unsteady static pressure measurements were acquired about the airfoil surface, along with unsteady wake velocity and surface hot-film array measurements. Additionally, surface and off-body flow visualization techniques were used to visualize the airfoil flowfield. A technique was also developed to determine the unsteady shear-layer reattachment location of the ice-induced laminar separation bubble downstream of the horn-ice shape using the surface hot-film array measurements. The maximum amount of unsteadiness in the iced-airfoil flowfield was observed to increase with increasing angle of attack. For a fixed angle of attack prior to stall, a change in the feature height of the simulated ice shape led to a change in the distribution of flowfield unsteadiness, but did not change the maximum levels of unsteadiness present in the flowfield. The iced-airfoil flowfield unsteadiness was primarily associated with three different frequencies. The first was represented by an increase in spectral energy across a broad-band frequency range, and was observed just upstream of shear-layer reattachment as well as downstream of shear-layer reattachment. This increase in spectral energy was caused by the regular mode of unsteadiness due to vortical motion in the separated shear layer and vortex shedding from the separation bubble. The average Strouhal number of this regular mode corresponded to StL = 0.60, and the average vortex convection velocity was observed to be 0.45Uinfinity. These values were highly consistent with those reported elsewhere in the literature. The other two frequencies were much lower and were observed as narrow-band peaks in the spectral content of the acquired measurements that were primarily present in the region covered by the ice-induced separation bubble. The first was attributed to the shear-layer flapping phenomenon and was particularly dominant in the upstream portion of the separation bubble. The Strouhal number associated with this shear-layer flapping mode corresponded to St h = 0.0185, which was consistent with those reported in studies of separation bubbles about canonical geometries. The second frequency was lower than that of shear-layer flapping and was associated with a low-frequency mode of unsteadiness that can occur prior to static stall for airfoils of thin-airfoil stall type. This low-frequency mode was characterized by a low-frequency oscillation of the airfoil circulation, and it was clearly identified in the spectral content of the iced-airfoil lift coefficient. The resulting values of Strouhal number exhibited a dependence on the airfoil angle of attack and corresponded to a range that was consistent with the Strouhal number values reported in prior studies of the low-frequency mode in the literature. Using the method for determining the unsteady shear-layer reattachment location, the average time-dependent relationship between the reattachment location and the lift coefficient was calculated. It was discovered that at the low-frequency mode, the lift coefficient leads the shear-layer reattachment location by a phase of pi/2. This phase relationship occurred due to a feedback between the airfoil circulation and the separation bubble length. This improved understanding of the low-frequency mode in the iced-airfoil flowfield was utilized in a practical example to improve the predictive qualities of a hinge-moment-based stall prediction system. This improvement in the predictive qualities was performed by identifying the intermittent signature of the low-frequency mode in the wavelet transform of the hinge moment coeffic

Ansell, Phillip J.

345

The significance of wing end configuration in airfoil design for civil aviation aircraft  

NASA Technical Reports Server (NTRS)

Lift-dependent induced drag in commercial aviation aircraft is discussed, with emphasis on the necessary compromises between wing and configuration modifications which better lift performance and the weight gains accompanying such modifications. Triangular, rectangular and elliptical configurations for wing ends are considered; attention is also given to airfoil designs incorporating winglets. Water tunnel tests of several configurations are reported. In addition, applications of wing and modifications to advanced technology commercial aviation aircraft and the Airbus A-300 are mentioned.

Zimmer, H.

1979-01-01

346

Propeller thrust analysis using Prandtl's lifting line theory, a comparison between the experimental thrust and the thrust predicted by Prandtl's lifting line theory  

NASA Astrophysics Data System (ADS)

The lifting line theory was first developed by Prandtl and was used primarily on analysis of airplane wings. Though the theory is about one hundred years old, it is still used in the initial calculations to find the lift of a wing. The question that guided this thesis was, "How close does Prandtl's lifting line theory predict the thrust of a propeller?" In order to answer this question, an experiment was designed that measured the thrust of a propeller for different speeds. The measured thrust was compared to what the theory predicted. In order to do this experiment and analysis, a propeller needed to be used. A walnut wood ultralight propeller was chosen that had a 1.30 meter (51 inches) length from tip to tip. In this thesis, Prandtl's lifting line theory was modified to account for the different incoming velocity depending on the radial position of the airfoil. A modified equation was used to reflect these differences. A working code was developed based on this modified equation. A testing rig was built that allowed the propeller to be rotated at high speeds while measuring the thrust. During testing, the rotational speed of the propeller ranged from 13-43 rotations per second. The thrust from the propeller was measured at different speeds and ranged from 16-33 Newton's. The test data were then compared to the theoretical results obtained from the lifting line code. A plot in Chapter 5 (the results section) shows the theoretical vs. actual thrust for different rotational speeds. The theory over predicted the actual thrust of the propeller. Depending on the rotational speed, the error was: at low speeds 36%, at low to moderate speeds 84%, and at high speeds the error increased to 195%. Different reasons for these errors are discussed.

Kesler, Steven R.

347

Experimental and numerical research of lift force produced by Coand? effect  

NASA Astrophysics Data System (ADS)

The paper presents research results of aerodynamics of Coand? airfoil, that is a key element of drones with jet propulsion. The Coand? propulsion allows drones to monitor quickly the large areas in emergencies: forest fires, earthquakes, meteor attacks and so on. The aim of this work consists in establishment of geometric and aerodynamic parameters at which, the lift force produced by Coand? airfoil is maximal.

Constantinescu, S. G.; Niculescu, M. L.

2013-10-01

348

Slope seeking for autonomous lift improvement by plasma surface discharge  

NASA Astrophysics Data System (ADS)

The present paper describes an experimental investigation of closed-loop separation control using plasma actuators. The post-stall-separated flow over a NACA 0015 airfoil is controlled using a single dielectric barrier discharge actuator located at the leading edge. Open-loop measurements are first performed to highlight the effects of the voltage amplitude on the control authority for freestream velocities of 10-30 m/s (chord Re = 1.3 × 105 to 4 × 105). The results indicate that partial or full reattachment can be achieved and motivate the choice of the slope seeking approach as the control algorithm. A single-input/single-output algorithm is used to autonomously seek the optimal voltage required to achieve the control objective (full flow reattachment associated with maximum lift). The paper briefly introduces the concept of slope seeking, and a detailed parameterization of the controller is considered. Static (fixed speed) closed-loop experiments are then discussed, which demonstrate the capability of the algorithm. In each case, the flow can be reattached in an autonomous fashion. The last part of the paper demonstrates the robustness of the gradient-based, model-free scheme for dynamic freestream conditions. This paper highlights the capability of slope seeking to autonomously achieve high lift when used to drive the voltage of a plasma actuator. It also describes the advantages and drawbacks of such a closed-loop approach.

Benard, Nicolas; Moreau, Eric; Griffin, John; Cattafesta, Louis N., III

2010-05-01

349

Wind-Tunnel Investigation of an NACA 23012 Airfoil with Various Arrangements of Slotted Flaps  

NASA Technical Reports Server (NTRS)

An investigation was made in the 7 by 10-foot wind tunnel and in the variable-density wind tunnel of the NACA 23012 airfoil with various slotted-flap arrangements. The purpose of the investigation in the 7 by 10-foot wind tunnel was to determine the airfoil section aerodynamic characteristics as affected by flap shape, slot shape, and flap location. The flap position for maximum lift; polars for arrangements favorable for take-off and climb; and complete lift, drag, and pitching-moment characteristics for selected optimum arrangements were determined. The best arrangements were tested in the variable-density tunnel at an effective Reynolds number of 8,000,000. In addition, data from both wind tunnels are included for plain, split, external-airfoil, and Fowler flaps for purposes of comparison.

Wenzinger, Carl J; Harris , Thomas A

1939-01-01

350

On the calculation of flow past an infinite screen of thin airfoils  

NASA Technical Reports Server (NTRS)

This report deals with the flow past an infinite screen of thin airfoil (two-dimensional problem). The vortex distribution across the profile is established with appropriate expansion in series and the velocity distribution lift, moment, and profile shape deduced. Inversely, the distribution is deduced from the vorticity. The method is the extension of the Birnbaum-Glauert method for the isolated wing.

Pistolesi, E

1941-01-01

351

Numerical Simulations of Natural and Actuated Flow over a 3D, Low-Aspect-Ratio Airfoil  

E-print Network

Numerical Simulations of Natural and Actuated Flow over a 3D, Low-Aspect-Ratio Airfoil Guillaume A simulations of the unsteady flow over a low-aspect-ratio, low Reynolds num- ber semi-circular planform wing mean and unsteady lift and drag, the numerical simulations show good agreement with the experiments

Dabiri, John O.

352

Non-linear k-epsilon-v(sup 2)(bar) modeling with application to high-lift  

NASA Technical Reports Server (NTRS)

The k-epsilon-v(sup 2)(bar) model has been investigated to quantify its predictive performance on two high-lift configurations: 2D flow over a single-element aerofoil, involving closed-type separation; 3D flow over a prolate spheroid, involving open-type separation. A 'code-friendly' modification has been proposed which enhances the numerical stability, in particular, for explicit and uncoupled flow solvers. As a result of introducing Reynolds-number dependence into a coefficient of the s-equation, the skin-friction distribution for the by-pass transitional flow over a flat plate is better predicted. In order to improve deficiencies arising from the Boussinesq approximation, a nonlinear stress-strain constitutive relation was adopted, in which the only one free constant is calibrated on the basis of DNS data, and the Reynolds-stress anisotropy near the wall is fairly well represented.

Lien, F. S.; Durbin, P. A.

1996-01-01

353

Loads and propulsive efficiency of a flexible airfoil performing sinusoidal deformations  

NASA Astrophysics Data System (ADS)

This paper presents the application of state-space airloads theory to a flexible airfoil performing sinusoidal deformations at high Reynolds numbers. Given the two-dimensional motion of a flexible airfoil, we derived the closed forms for the propulsive force, lift force, generalized forces of pitching and bending as functions of reduced frequency k, dimensionless wavelength z, and dimensionless amplitude A/(2b). We also calculate the power required to perform this sinusoidal deformation and the propulsive efficiency. Our results show a positive, time-averaged propulsive force for all k>k0=?/z, which is when the wave speed is greater than the moving speed. At k=k0, which is when the moving speed reaches the wave speed, the motion reaches a steady-state with all forces being zero. When kairfoil to vibrate. For the propulsive case, the propulsive efficiency decreases from 1.0 to 0.5 as k goes to ?, or k0 goes to 0. If there were no wake, the propulsive force would be zero at wavelengths of z=0.569 and z=1.3 for all k, and local optimum at z=0.82. Though these extrema of propulsive force with wavelength are smoothed out by the wake effect, one can still see around z=1.3 (k=2.4) the slope transitions of all three powers in Fig. 9. When k<2.4, the cost for high propulsion become more expensive as more power input is used by wake, thus less efficiency.

Ulrich, Xialing; Peters, David

2014-02-01

354

Unstructured-grid large-eddy simulation of flow over an airfoil  

NASA Technical Reports Server (NTRS)

Historically, large-eddy simulations (LES) have been restricted to simple geometries where spectral or finite difference methods have dominated due to their efficient use of structured grids. Structured grids, however, not only difficulty representing complex domains and adapting to complicated flow features, but also are rather inefficient for simulating flows at high Reynolds numbers. The lack of efficiency stems from the need to resolve the viscous sublayer, which requires very fine resolution in all three directions near the wall. Structured grids make use of a stretching to reduce the normal grid spacing but must carry the fine resolution in the streamwise and spanwise directions throughout the domain. The unnecessarily fine grid for much of the domain leads to disturbingly high grid estimates. Chapman (1979), and later Moin & Jimenez (1993), pointed out that, in order to advance the technology to airfoils at flight Reynolds numbers, structured grids must be abandoned in lieu of what are known as nested or unstructured grids. The finite element method can efficiently solve the Navier-Stokes equations on unstructured grids. Although the CPU cost per time step per element is somewhat higher than structured grid methods, this effect is more than offset by the reduction in the number of elements. The use of unstructured grids, coupled with the advances in dynamic subgrid-scale modeling such as those made by Germano et al. (1991) and Ghosal et al. (1994), make LES of an airfoil tractable. We have chosen the NACA 4412 airfoil at maximum lift as the first simulation since this flow has not been successfully simulated with the Reynolds-averaged Navier-Stokes equations.

Jansen, Kenneth

1994-01-01

355

Active Flow Control on Low-Aspect Ratio, Low-Reynolds Number Airfoils  

NASA Astrophysics Data System (ADS)

Insect flight observations show high-lift mechanisms that rely on leading-edge vortex stabilization. These processes are intimately coupled to the flapping motion of the insect wing. In fixed wing applications, suitable for micro-air vehicles, active flow control may be capable of providing similar influence over vortex formation and stabilization. Steady and pulsed mass injection strategies are used to explore the open-loop response of both the evolution of the flow structures and the forces experienced by the wing. Flow structures will be quantitatively visualized using Defocused Digital Particle Image Velocimetry (DDPIV) and forces measured via a six-axis balance. Insect flight typically occurs at Reynolds numbers of 10^2 to 10^4, and aspect ratios near three. For this investigation, Reynolds numbers are approximately 10^3. The airfoil models are NACA 0012 profiles with aspect ratio two.

Munson, Matthew; Kim, Daegyoum; Dickson, William; Gharib, Morteza

2008-11-01

356

MATE program: Erosion resistant compressor airfoil coating, volume 2  

NASA Technical Reports Server (NTRS)

The performance of candidate erosion resistant airfoil coatings installed in ground tested experimental JT8D and JT9D engines and subjected to cyclic endurance at idle, takeoff and intermediate power conditions has been evaluated. Engine tests were terminated prior to the scheduled 1000 cycles of endurance test due to high cycle fatigue fracture of the Gator-Gard plasma sprayed 88WC-12Co coating on titanium alloy airfoils. Coated steel (AMS5616) and nickel base alloy (Incoloy 901) performed well in both engine tests. Post test airfoil analyses consisted of binocular, scanning electron microscope and metallographic examinations.

Freling, Melvin

1987-01-01

357

A Method for the Constrained Design of Natural Laminar Flow Airfoils  

NASA Technical Reports Server (NTRS)

A fully automated iterative design method has been developed by which an airfoil with a substantial amount of natural laminar flow can be designed, while maintaining other aerodynamic and geometric constraints. Drag reductions have been realized using the design method over a range of Mach numbers, Reynolds numbers and airfoil thicknesses. The thrusts of the method are its ability to calculate a target N-Factor distribution that forces the flow to undergo transition at the desired location; the target-pressure-N-Factor relationship that is used to reduce the N-Factors in order to prolong transition; and its ability to design airfoils to meet lift, pitching moment, thickness and leading-edge radius constraints while also being able to meet the natural laminar flow constraint. The method uses several existing CFD codes and can design a new airfoil in only a few days using a Silicon Graphics IRIS workstation.

Green, Bradford E.; Whitesides, John L.; Campbell, Richard L.; Mineck, Raymond E.

1996-01-01

358

Vertical axis wind turbine airfoil  

DOEpatents

A vertical axis wind turbine airfoil is described. The wind turbine airfoil can include a leading edge, a trailing edge, an upper curved surface, a lower curved surface, and a centerline running between the upper surface and the lower surface and from the leading edge to the trailing edge. The airfoil can be configured so that the distance between the centerline and the upper surface is the same as the distance between the centerline and the lower surface at all points along the length of the airfoil. A plurality of such airfoils can be included in a vertical axis wind turbine. These airfoils can be vertically disposed and can rotate about a vertical axis.

Krivcov, Vladimir; Krivospitski, Vladimir; Maksimov, Vasili; Halstead, Richard; Grahov, Jurij Vasiljevich

2012-12-18

359

Unsteady Newton-Busemann flow theory. I - Airfoils  

NASA Technical Reports Server (NTRS)

Newtonian flow theory for unsteady flow at very high Mach numbers is completed by the addition of a centrifugal force correction to the impact pressures. The correction term is the unsteady counterpart of Busemann's centrifugal force correction to impact pressures in steady flow. For airfoils of arbitary shape, exact formulas for the unsteady pressure and stiffness and damping-in-pitch derivatives are obtained in closed form, which require only numerical quadratures of terms involving the airfoil shape. They are applicable to airfoils of arbitrary thickness having sharp or blunt leading edges. For wedges and thin airfoils these formulas are greatly simplified, and it is proved that the pitching motions of thin airfoils of convex shape and of wedges of arbitrary thickness are always dynamically stable according to Newton-Busemann theory. Leading-edge bluntness is shown to have a favorable effect on the dynamic stability; on the other hand, airfoils of concave shape tend toward dynamic instability over a range of axis positions if the surface curvature exceeds a certain limit. As a byproduct, it is also shown that a pressure formula recently given by Barron and Mandl for unsteady Newtonian flow over a pitching power-law shaped airfoil is erroneous and that their conclusion regarding the effect of pivot position on the dynamic stability is misleading.

Hui, W. H.; Tobak, M.

1981-01-01

360

Reynolds number, thickness and camber effects on flapping airfoil propulsion  

NASA Astrophysics Data System (ADS)

The effect of varying airfoil thickness and camber on plunging and combined pitching and plunging airfoil propulsion at Reynolds number Re=200, 2000, 20 000 and 2×106 was studied by numerical simulations for fully laminar and fully turbulent flow regimes. The thickness study was performed on 2-D NACA symmetric airfoils with 6-50% thick sections undergoing pure plunging motion at reduced frequency k=2 and amplitudes h=0.25 and 0.5, and for combined pitching and plunging motion at k=2, h=0.5, phase ?=90°, pitch angle ?o=15° and 30° and the pitch axis was located at 1/3 of chord from leading edge. At Re=200 for motions where positive thrust is generated, thin airfoils outperform thick airfoils. At higher Re significant gains could be achieved both in thrust generation and propulsive efficiency by using a thicker airfoil section for plunging and combined motion with low pitch amplitude. The camber study was performed on 2-D NACA airfoils with varying camber locations undergoing pure plunging motion at k=2, h=0.5 and Re=20 000. Little variation in thrust performance was found with camber. The underlying physics behind the alteration in propulsive performance between low and high Reynolds numbers has been explored by comparing viscous Navier-Stokes and inviscid panel method results. The role of leading edge vortices was found to be key to the observed performance variation.

Ashraf, M. A.; Young, J.; Lai, J. C. S.

2011-02-01

361

An Airfoil Spanning an Open Jet  

NASA Technical Reports Server (NTRS)

Proceeding from the fundamental problem on the mutual relation of a wing and free boundaries the distribution of the circulation is determined for an airfoil spanning an open jet of rectangular section at different aspect ratios, and then for an open jet of circular section. The solution is obtained by means of a Fourier series and computations have been performed for different values of the variables. The second part describes the experiments performed for the purpose of proving the theory. The results confirm the theory. In conclusion it defines the induced drag of a wing extending across an open jet and compares it with the drag of a monoplane having a span equal to the jet width at equal total lift.

Stuper, J

1933-01-01

362

A two element laminar flow airfoil optimized for cruise. M.S. Thesis  

NASA Technical Reports Server (NTRS)

Numerical and experimental results are presented for a new two-element, fixed-geometry natural laminar flow airfoil optimized for cruise Reynolds numbers on the order of three million. The airfoil design consists of a primary element and an independent secondary element with a primary to secondary chord ratio of three to one. The airfoil was designed to improve the cruise lift-to-drag ratio while maintaining an appropriate landing capability when compared to conventional airfoils. The airfoil was numerically developed utilizing the NASA Langley Multi-Component Airfoil Analysis computer code running on a personal computer. Numerical results show a nearly 11.75 percent decrease in overall wing drag with no increase in stall speed at sailplane cruise conditions when compared to a wing based on an efficient single element airfoil. Section surface pressure, wake survey, transition location, and flow visualization results were obtained in the Texas A&M University Low Speed Wind Tunnel. Comparisons between the numerical and experimental data, the effects of the relative position and angle of the two elements, and Reynolds number variations from 8 x 10(exp 5) to 3 x 10(exp 6) for the optimum geometry case are presented.

Steen, Gregory Glen

1994-01-01

363

The acoustics and unsteady wall pressure of a circulation control airfoil  

NASA Astrophysics Data System (ADS)

A Circulation Control (CC) airfoil uses a wall jet exiting onto a rounded trailing edge to generate lift via the Coanda effect. The aerodynamics of the CC airfoil have been studied extensively. The acoustics of the airfoil are, however, much less understood. The primary goal of the present work was to study the radiated sound and unsteady surface pressures of a CC airfoil. The focus of this work can be divided up into three main categories: characterizing the unsteady surface pressures, characterizing the radiated sound, and understanding the acoustics from surface pressures. The present work is the first to present the unsteady surface pressures from the trailing edge cylinder of a circulation control airfoil. The auto-spectral density of the unsteady surface pressures at various locations around the trailing edge are presented over a wide range of the jets momentum coefficient. Coherence of pressure and length scales were computed and presented. Single microphone measurements were made at a range of angles for a fixed observer distance in the far field. Spectra are presented for select angles to show the directivity of the airfoil's radiated sound. Predictions of the acoustics were made from unsteady surface pressures via Howe's curvature noise model and a modified Curle's analogy. A summary of the current understanding of the acoustics from a CC airfoil is given along with suggestions for future work.

Silver, Jonathan C.

364

Wind-tunnel investigation of NACA 23012, 23021, and 23030 airfoils with various sizes of split flap  

NASA Technical Reports Server (NTRS)

Report presents the results of an investigation made in the NACA 7 by 10-foot wind tunnel of large-chord NACA and 23021, and 23030 airfoils with split flaps 10, 20, 30, and 40 percent of the wing chord to determine the section aerodynamic characteristics of the airfoils as affected by airfoil thickness, flap chord, and flap deflection. The complete section aerodynamic characteristics of all the combinations tested are given in the form of graphs of lift, drag, and pitching-moment coefficients, and certain applications to aerodynamic design are discussed.

Wenzinger, Carl J; Harris, Thomas A

1939-01-01

365

Pressure distribution from high Reynolds number tests of a NASA SC(3)-0712(B) airfoil in the Langley 0.3-meter transonic cryogenic tunnel  

NASA Technical Reports Server (NTRS)

A wind tunnel investigation of a NASA 12-percent-thick, advanced-technology supercritical airfoil was conducted in the Langley 0.3-Meter Transonic Cryogenic Tunnel (TCT). This investigation represents another in the series of NASA/U.S. industry two-dimensional airfoil studies to be completed in the Advanced Technology Airfoil Tests program. Test temperature was varied from 220 K to 96 K at pressures ranging from 1.2 to 4.3 atm. Mach number was varied from 0.50 to 0.80. This investigation was designed to: (1) test a NASA advanced-technology airfoil from low to flight equivalent Reynolds numbers, (2) provide experience in cryogenic wind-tunnel model design and testing techniques, and (3) demonstrate the suitability of the 0.3-m TCT as an airfoil test facility. All the test objectives were met. The pressure data are presented without analysis in tabulated format and as plots of pressure coefficient versus position on the airfoil. This report was prepared for use in conjunction with the aerodynamic coefficient data published in NASA-TM-86371. Data are included which demonstrate the effects of fixed transition. Also included are remarks on the model design and fabrication.

Johnson, W. G., Jr.; Hill, A. S.; Eichmann, O.

1985-01-01

366

High Reynolds number tests of a NASA SC(3)-0712(B) airfoil in the Langley 0.3-meter transonic cryogenic tunnel  

NASA Technical Reports Server (NTRS)

A wind tunnel investigation of a NASA 12-percent-thick, advanced-technology supercritical airfoil was conducted in the Langley 0.3-Meter Transonic Cryogenic Tunnel (TCT). This investigation represents another in the series of NASA/U.S. industry two-dimensional airfoil studies to be completed in the Advanced Technology Airfoil Tests program. Test temperature was varied from 220 K to 96 K at pressures ranging from 1.2 to 4.3 atm. Mach number was varied from 0.60 to 0.80. These variables provided a Reynolds number range from 4,400,000 to 40,000,000 based on a 15.24-cm (6.0-in.) airfoil chord. This investigation was designed to test a NASA advanced-technology airfoil from low to flight-equivalent Reynolds numbers, provide experience in cryogenic wind tunnel model design and testing techniques, and demonstrate the suitability of the 0.3-m TCT as an airfoil test facility. The aerodynamic results are presented as integrated force and moment coefficients and pressure distributions. Data are included which demonstrate the effects of fixed transition, Mach number, and Reynolds number on the aerodynamic characteristics. Also included are remarks on the model design, the model structural integrity, and the overall test experience.

Johnson, W. G., Jr.; Hill, A. S.; Eichmann, O.

1985-01-01

367

Transonic airfoil design for helicopter rotor applications  

NASA Technical Reports Server (NTRS)

Despite the fact that the flow over a rotor blade is strongly influenced by locally three-dimensional and unsteady effects, practical experience has always demonstrated that substantial improvements in the aerodynamic performance can be gained by improving the steady two-dimensional charateristics of the airfoil(s) employed. The two phenomena known to have great impact on the overall rotor performance are: (1) retreating blade stall with the associated large pressure drag, and (2) compressibility effects on the advancing blade leading to shock formation and the associated wave drag and boundary-layer separation losses. It was concluded that: optimization routines are a powerful tool for finding solutions to multiple design point problems; the optimization process must be guided by the judicious choice of geometric and aerodynamic constraints; optimization routines should be appropriately coupled to viscous, not inviscid, transonic flow solvers; hybrid design procedures in conjunction with optimization routines represent the most efficient approach for rotor airfroil design; unsteady effects resulting in the delay of lift and moment stall should be modeled using simple empirical relations; and inflight optimization of aerodynamic loads (e.g., use of variable rate blowing, flaps, etc.) can satisfy any number of requirements at design and off-design conditions.

Hassan, Ahmed A.; Jackson, B.

1989-01-01

368

Turbine airfoil with controlled area cooling arrangement  

DOEpatents

A gas turbine airfoil (10) includes a serpentine cooling path (32) with a plurality of channels (34,42,44) fluidly interconnected by a plurality of turns (38,40) for cooling the airfoil wall material. A splitter component (50) is positioned within at least one of the channels to bifurcate the channel into a pressure-side channel (46) passing in between the outer wall (28) and the inner wall (30) of the pressure side (24) and a suction-side channel (48) passing in between the outer wall (28) and the inner wall (30) of the suction side (26) longitudinally downstream of an intermediate height (52). The cross-sectional area of the pressure-side channel (46) and suction-side channel (48) are thereby controlled in spite of an increasing cross-sectional area of the airfoil along its longitudinal length, ensuring a sufficiently high mach number to provide a desired degree of cooling throughout the entire length of the airfoil.

Liang, George

2010-04-27

369

Aerodynamic Simulation of Ice Accretion on Airfoils  

NASA Technical Reports Server (NTRS)

This report describes recent improvements in aerodynamic scaling and simulation of ice accretion on airfoils. Ice accretions were classified into four types on the basis of aerodynamic effects: roughness, horn, streamwise, and spanwise ridge. The NASA Icing Research Tunnel (IRT) was used to generate ice accretions within these four types using both subscale and full-scale models. Large-scale, pressurized windtunnel testing was performed using a 72-in.- (1.83-m-) chord, NACA 23012 airfoil model with high-fidelity, three-dimensional castings of the IRT ice accretions. Performance data were recorded over Reynolds numbers from 4.5 x 10(exp 6) to 15.9 x 10(exp 6) and Mach numbers from 0.10 to 0.28. Lower fidelity ice-accretion simulation methods were developed and tested on an 18-in.- (0.46-m-) chord NACA 23012 airfoil model in a small-scale wind tunnel at a lower Reynolds number. The aerodynamic accuracy of the lower fidelity, subscale ice simulations was validated against the full-scale results for a factor of 4 reduction in model scale and a factor of 8 reduction in Reynolds number. This research has defined the level of geometric fidelity required for artificial ice shapes to yield aerodynamic performance results to within a known level of uncertainty and has culminated in a proposed methodology for subscale iced-airfoil aerodynamic simulation.

Broeren, Andy P.; Addy, Harold E., Jr.; Bragg, Michael B.; Busch, Greg T.; Montreuil, Emmanuel

2011-01-01

370

Computational Study of a NACA4415 airfoil using synthetic jet control  

NASA Astrophysics Data System (ADS)

Synthetic jet actuators for flow control applications have been an active topic of experimental research since the 90's. Numerical simulations have become an important complement of that experimental work, providing detailed information of the dynamics of the controlled flow. This study is part of the AVOCET (Adaptive VOrticity Control Enabled flighT) project and is intended to provide computational support for the design and evaluation of closed-loop flow control with synthetic jet actuators for small scale Unmanned Aerial Vehicles (UAVs). The main objective is to analyze active flow control of a NACA4415 airfoil with tangential synthetic jets via computational modeling. A hybrid Reynolds-Averaged Navier-Stokes/Large Eddy Simulation (RANS/LES) turbulent model (called Delayed Detached-Eddy Simulation-DDES) was implemented in CDP, a kinetic energy conserving Computational Fluid Dynamics (CFD) code. CDP is a parallel unstructured grid incompressible flow solver, developed at the Center for Integrated Turbulence Simulations (CITS) at Stanford University. Two models of synthetic jet actuators have been developed and validated. The first is a detailed model in which the flow in and out of the actuator cavity is modeled. A second less costly model (RSSJ) was also developed in which the Reynolds stress produced by the actuator is modeled, based on information from the detailed model. Several static validation test cases at different angle of attack with modified NACA4415 and Dragon Eye airfoils were performed. Numerical results show the effects of the actuators on the vortical structure of the flow, as well as on the aerodynamic properties. The main effect of the actuation on the time averaged vorticity field is a bending of the separation shear layer from the actuator toward the airfoil surface, resulting in changes in the aerodynamic properties. Full actuation of the suction side actuator reduces the pitching moment and increases the lift force, while the pressure side actuator increases the pitching moment and reduces the lift force. These observations are in agreement with experimental results. The effectiveness of the actuator is measured by the change in the aerodynamic properties of the airfoil in particular the lift (Delta Cl) and moment (DeltaCm) coefficients. Computational results for the actuator effectiveness show very good agreement with the experimental values (over the range of --2° to 10°). While the actuation modifies the global pressure distribution, the most pronounced effects are near the trailing edge in which a spike in the pressure coefficient (Cp) is observed. The local reduction of Cp, for both the suction side and pressure side actuators, at xc = 0.96 (the position of the actuators) is about 0.9 with respect to the unactuated case. This local reduction of the pressure is associated with the trapped vorticity and flow acceleration close to the trailing edge. The RSSJ model is designed to capture the synthetic jet time averaged behavior so that the high actuation frequencies are eliminated. This allows the time step to be increased by a factor of 5. This ad hoc model is also tested in dynamic simulations, in which its capacity to capture the detail model average performance was demonstrated. Finally, the RSSJ model was extended to a different airfoil profile (Dragon Eye) with good results.

Lopez Mejia, Omar Dario

371

Tail Rotor Airfoils Stabilize Helicopters, Reduce Noise  

NASA Technical Reports Server (NTRS)

Founded by former Ames Research Center engineer Jim Van Horn, Van Horn Aviation of Tempe, Arizona, built upon a Langley Research Center airfoil design to create a high performance aftermarket tail rotor for the popular Bell 206 helicopter. The highly durable rotor has a lifetime twice that of the original equipment manufacturer blade, reduces noise by 40 percent, and displays enhanced performance at high altitudes. These improvements benefit helicopter performance for law enforcement, military training, wildfire and pipeline patrols, and emergency medical services.

2010-01-01

372

Total facelift: forehead lift, midface lift, and neck lift.  

PubMed

Patients with thick skin mainly exhibit the aging processes of sagging, whereas patients with thin skin develop wrinkles or volume loss. Asian skin is usually thicker than that of Westerners; and thus, the sagging of skin due to aging, rather than wrinkling, is the chief problem to be addressed in Asians. Asian skin is also relatively large in area and thick, implying that the weight of tissue to be lifted is considerably heavier. These factors account for the difficulties in performing a facelift in Asians. Facelifts can be divided into forehead lift, midface lift, and lower face lift. These can be performed individually or with 2-3 procedures combined. PMID:25798381

Park, Dong Man

2015-03-01

373

Total Facelift: Forehead Lift, Midface Lift, and Neck Lift  

PubMed Central

Patients with thick skin mainly exhibit the aging processes of sagging, whereas patients with thin skin develop wrinkles or volume loss. Asian skin is usually thicker than that of Westerners; and thus, the sagging of skin due to aging, rather than wrinkling, is the chief problem to be addressed in Asians. Asian skin is also relatively large in area and thick, implying that the weight of tissue to be lifted is considerably heavier. These factors account for the difficulties in performing a facelift in Asians. Facelifts can be divided into forehead lift, midface lift, and lower face lift. These can be performed individually or with 2-3 procedures combined.

2015-01-01

374

Simulation and Modelling of a Laminar Separation Bubble on Airfoils  

Microsoft Academic Search

\\u000a A high-resolved Large Eddy Simulation (LES) of the flow around an airfoil near stall has been achieved. We have observed that\\u000a the laminar boundary layer undergoes a quick transition to turbulence in a Laminar Separation Bubble (LSB) close to the leading\\u000a edge of the airfoil profile. The flow structures in this transitional flow region have been analysed and the transition

F. Richez; I. Mary; V. Gleize; C. Basdevant

2009-01-01

375

CFD aerodynamic analysis of non-conventional airfoil sections for very large rotor blades  

NASA Astrophysics Data System (ADS)

The aerodynamic performance of flat-back and elliptically shaped airfoils is analyzed on the basis of CFD simulations. Incompressible and low-Mach preconditioned compressible unsteady simulations have been carried out using the k-w SST and the Spalart Allmaras turbulence models. Time averaged lift and drag coefficients are compared to wind tunnel data for the FB 3500-1750 flat back airfoil while amplitudes and frequencies are also recorded. Prior to separation averaged lift is well predicted while drag is overestimated keeping however the trend in the tests. The CFD models considered, predict separation with a 5° delay which is reflected on the load results. Similar results are provided for a modified NACA0035 with a rounded (elliptically shaped) trailing edge. Finally as regards the dynamic characteristics in the load signals, there is fair agreement in terms of Str number but significant differences in terms of lift and drag amplitudes.

Papadakis, G.; Voutsinas, S.; Sieros, G.; Chaviaropoulos, T.

2014-12-01

376

Airfoil Ice-Accretion Aerodynamics Simulation  

NASA Technical Reports Server (NTRS)

NASA Glenn Research Center, ONERA, and the University of Illinois are conducting a major research program whose goal is to improve our understanding of the aerodynamic scaling of ice accretions on airfoils. The program when it is completed will result in validated scaled simulation methods that produce the essential aerodynamic features of the full-scale iced-airfoil. This research will provide some of the first, high-fidelity, full-scale, iced-airfoil aerodynamic data. An initial study classified ice accretions based on their aerodynamics into four types: roughness, streamwise ice, horn ice, and spanwise-ridge ice. Subscale testing using a NACA 23012 airfoil was performed in the NASA IRT and University of Illinois wind tunnel to better understand the aerodynamics of these ice types and to test various levels of ice simulation fidelity. These studies are briefly reviewed here and have been presented in more detail in other papers. Based on these results, full-scale testing at the ONERA F1 tunnel using cast ice shapes obtained from molds taken in the IRT will provide full-scale iced airfoil data from full-scale ice accretions. Using these data as a baseline, the final step is to validate the simulation methods in scale in the Illinois wind tunnel. Computational ice accretion methods including LEWICE and ONICE have been used to guide the experiments and are briefly described and results shown. When full-scale and simulation aerodynamic results are available, these data will be used to further develop computational tools. Thus the purpose of the paper is to present an overview of the program and key results to date.

Bragg, Michael B.; Broeren, Andy P.; Addy, Harold E.; Potapczuk, Mark G.; Guffond, Didier; Montreuil, E.

2007-01-01

377

A finite-step method for estimating the spanwise lift distribution of wings in symmetric, yawed, and rotary flight at low speeds  

NASA Technical Reports Server (NTRS)

The finite-step method was programmed for computing the span loading and stability derivatives of trapezoidal shaped wings in symmetric, yawed, and rotary flight. Calculations were made for a series of different wing planforms and the results compared with several available methods for estimating these derivatives in the linear angle of attack range. The agreement shown was generally good except in a few cases. An attempt was made to estimate the nonlinear variation of lift with angle of attack in the high alpha range by introducing the measured airfoil section data into the finite-step method. The numerical procedure was found to be stable only at low angles of attack.

Krenkel, A. R.

1978-01-01

378

Comparison of measured and calculated aircraft lift generated pressures  

NASA Technical Reports Server (NTRS)

Lift generated pressures produced by large, heavy aircraft at low altitudes were investigated due to concern over their possible effects on ground objects. Aircraft lift generated pressures were calculated using elementary airfoil theory, and these values were compared with ground level measurements made during an overflight program. The predicted and the measured values were in relatively good agreement. Due to lack of experimental investigations of this phenomenon, opportunity was taken during an overflight program to use a specially instrumented test range to measure the ground pressures produced for a range of aircraft weights and distances.

Findley, D. S.

1975-01-01

379

Turbine airfoil to shround attachment  

DOEpatents

A turbine airfoil (31) with an end portion (42) that tapers (44) toward the end (43) of the airfoil. A ridge (46) extends around the end portion. It has proximal (66) and distal (67) sides. A shroud platform (50) is bi-cast onto the end portion around the ridge without bonding. Cooling shrinks the platform into compression (62) on the end portion (42) of the airfoil. Gaps between the airfoil and platform are formed using a fugitive material (56) in the bi-casting stage. These gaps are designed in combination with the taper angle (44) to accommodate differential thermal expansion while maintaining a gas seal along the contact surfaces. The taper angle (44) may vary from lesser on the pressure side (36) to greater on the suction side (38) of the airfoil. A collar portion (52) of the platform provides sufficient contact area for connection stability.

Campbell, Christian X; Morrison, Jay A; James, Allister W; Snider, Raymond G; Eshak, Daniel M; Marra, John J; Wessell, Brian J

2014-05-06

380

Experimental investigation of the flowfield of an oscillating airfoil  

NASA Technical Reports Server (NTRS)

The flowfield of an airfoil oscillated periodically over a wide range of reduced frequencies, 0 less than or = k less than or = 1.6 is studied experimentally at chord Reynolds numbers of R sub c = 22,000 and 44,000. The NACA0012 airfoil is pitched sinusoidally about one quarter chord between angles of attack (alpha) of 5 and 25 degrees. Detailed flow visualization and phase averaged vorticity measurements are carried out for k = 0.2 to document the evolution and the shedding of the dynamic stall vortex (DSV). In addition to the DSV, an intense vortex of opposite sign originates from the trailing edge just when the DSV is shed. After being shed into the wake, the two together take the shape of a large 'mushroom' while being convected away from the airfoil. The unsteady circulation around the airfoil and, therefore, the time varying component of the lift is estimated in a novel way from the shed vorticity flux and is found to be in good agreement with the lift variation reported by others. The delay in the shedding of the DSV with increasing k, as observed by previous researchers, is documented for the full range of k. The DSV, for example, is shed nearly at the maximum alpha of 25 degrees at k = 0.2, but is shed at the minimum alpha of 5 degrees at k = 0.8. At low k, the flowfield appears quasi-steady and the bluff body shedding corresponding to the maximum alpha (25 degrees) dominates the unsteady fluctuations in the wake.

Panda, J.; Zaman, K. B. M. Q.

1992-01-01

381

Experimental investigation of the flowfield of an oscillating airfoil  

NASA Technical Reports Server (NTRS)

The flow field of an airfoil oscillated periodically over a wide range of reduced frequencies, 0 less than k less than 1.6, is studied experimentally at chord Reynolds numbers of R sub c = 22,000 and 44,000. The NACA0012 airfoil is pitched sinusoidally about one quarter chord between alpha of 5 deg and 25 deg. Detailed flow visualization and phase averaged vorticity measurements are carried out for k = 0.2 to document the evolution and the shedding of the dynamic stall vortex (DSV). In addition to the DSV, an intense vortex of opposite sign originates from the trailing edge just when the DSV is shed. After being shed into the wake, the two together take the shape of a large 'mushroom' while being convected away from the airfoil. The unsteady circulation around the airfoil and, therefore, the time varying component of the lift is estimated in a novel way from the shed vorticity flux and is found to be in good agreement with the lift variation reported by others. The delay in the shedding of the DSV with increasing k, as observed by previous researchers, is documented for the full range of k. The DSV, for example, is shed nearly at the maximum alpha of 25 deg at k = 0.2, but is shed at the minimum alpha of 5 deg at k = 0.8. At low k, the flowfield appears quasi-steady and the bluff body shedding corresponding to the maximum alpha (25 deg) dominates the unsteady fluctuations in the wake.

Panda, J.; Zaman, K. B. M. Q.

1992-01-01

382

Decentralized Vibration Control and Coupled Aeroservoelastic Simulation of Helicopter Rotor Blades with Adaptive Airfoils  

Microsoft Academic Search

\\u000a In helicopters, a high vibration level of the airframe occurs due to higher harmonic aerodynamic loads acting on the rotor\\u000a blades. However, when the airfoil shape is adaptive, the aerodynamic loads can be affected to reduce vibration and moreover,\\u000a the airfoil shape can be adjusted to the periodically changing flow conditions to increase aerodynamic efficiency. Adaptation\\u000a of the airfoil shape

Boris A. Grohmann; Peter Konstanzer; Bernd Kröplin

383

Civil applications of high-speed rotorcraft and powered-lift aircraft configurations  

NASA Technical Reports Server (NTRS)

Advanced subsonic vertical and short takeoff and landing (V/STOL) aircraft configurations offer new transportation options for civil applications. Described is a range of vehicles from low-disk to high-disk loading aircraft, including high-speed rotorcraft, V/STOL aircraft, and short takeoff and landing (STOL) aircraft. The status and advantages of the various configurations are described. Some of these show promise for relieving congestion in high population-density regions and providing transportation opportunities for low population-density regions.

Albers, James A.; Zuk, John

1987-01-01

384

Uncertainty Analysis for a Jet Flap Airfoil  

NASA Technical Reports Server (NTRS)

An analysis of variance (ANOVA) study was performed to quantify the potential uncertainties of lift and pitching moment coefficient calculations from a computational fluid dynamics code, relative to an experiment, for a jet flap airfoil configuration. Uncertainties due to a number of factors including grid density, angle of attack and jet flap blowing coefficient were examined. The ANOVA software produced a numerical model of the input coefficient data, as functions of the selected factors, to a user-specified order (linear, 2-factor interference, quadratic, or cubic). Residuals between the model and actual data were also produced at each of the input conditions, and uncertainty confidence intervals (in the form of Least Significant Differences or LSD) for experimental, computational, and combined experimental / computational data sets were computed. The LSD bars indicate the smallest resolvable differences in the functional values (lift or pitching moment coefficient) attributable solely to changes in independent variable, given just the input data points from selected data sets. The software also provided a collection of diagnostics which evaluate the suitability of the input data set for use within the ANOVA process, and which examine the behavior of the resultant data, possibly suggesting transformations which should be applied to the data to reduce the LSD. The results illustrate some of the key features of, and results from, the uncertainty analysis studies, including the use of both numerical (continuous) and categorical (discrete) factors, the effects of the number and range of the input data points, and the effects of the number of factors considered simultaneously.

Green, Lawrence L.; Cruz, Josue

2006-01-01

385

Use of NASA LS (1) general aviation airfoil for a small wind turbine - An experience in Denmark  

NASA Astrophysics Data System (ADS)

The suitability of some airfoil designs for use in a high-speed wind turbine is considered with attention given to the use of a NASA airfoil for a small facility. The choice of an airfoil section is shown to be dictated by aerodynamic considerations and the construction/material techniques used to develop the blade. The NASA LS (1) general aviation airfoil is shown to be adequate for use in the small wind turbines especially when the airfoil is constructed from wood with blunt trailing edges in the design.

Ghosh, Kunal

1992-05-01

386

Virtual Shaping of a Two-dimensional NACA 0015 Airfoil Using Synthetic Jet Actuator  

NASA Technical Reports Server (NTRS)

The Aircraft Morphing Program at NASA Langley envisions an aircraft without conventional control surfaces. Instead of moving control surfaces, the vehicle control systems may be implemented with a combination of propulsive forces, micro surface effectors, and fluidic devices dynamically operated by an intelligent flight control system to provide aircraft maneuverability over each mission segment. As a part of this program, a two-dimensional NACA 0015 airfoil model was designed to test mild maneuvering capability of synthetic jets in a subsonic wind tunnel. The objective of the experiments is to assess the applicability of using unsteady suction and blowing to alter the aerodynamic shape of an airfoil with a purpose to enhance lift and/or to reduce drag. Synthetic jet actuation at different chordwise locations, different forcing frequencies and amplitudes, under different freestream velocities are investigated. The effect of virtual shape change is indicated by a localized increase of surface pressure in the neighborhood of synthetic jet actuation. That causes a negative lift to the airfoil with an upper surface actuation. When actuation is applied near the airfoil leading edge, it appears that the stagnation line is shifted inducing an effect similar to that caused by a small angle of attack to produce an overall lift change.

Chen, Fang-Jenq; Beeler, George B.

2002-01-01

387

Advanced wind turbine with lift cancelling aileron for shutdown  

DOEpatents

An advanced aileron configuration for wind turbine rotors featuring an independent, lift generating aileron connected to the rotor blade. The aileron has an airfoil profile which is inverted relative to the airfoil profile of the main section of the rotor blade. The inverted airfoil profile of the aileron allows the aileron to be used for strong positive control of the rotation of the rotor while deflected to angles within a control range of angles. The aileron functions as a separate, lift generating body when deflected to angles within a shutdown range of angles, generating lift with a component acting in the direction opposite the direction of rotation of the rotor. Thus, the aileron can be used to shut down rotation of the rotor. The profile of the aileron further allows the center of rotation to be located within the envelope of the aileron, at or near the centers of pressure and mass of the aileron. The location of the center of rotation optimizes aerodynamically and gyroscopically induced hinge moments and provides a fail safe configuration.

Coleman, Clint (Warren, VT); Juengst, Theresa M. (Warren, VT); Zuteck, Michael D. (Kemah, TX)

1996-06-18

388

Low-speed wind-tunnel results for symmetrical NASA LS(1)-0013 airfoil  

NASA Technical Reports Server (NTRS)

A wind-tunnel test has been conducted in the Langley Low-Turbulence Pressure Tunnel to evaluate the performance of a symmetrical NASA LS(1)-0013 airfoil which is a 13-percent-thick, low-speed airfoil. The airfoil contour was obtained from the thickness distribution of a 13-percent-thick, high-performance airfoil developed for general aviation airplanes. The tests were conducted at Mach numbers from 0.10 tp 0.37 over a Reynolds number range from about 0.6 to 12.0 X 10 to the 6th power. The angle of attack varied from about -8 to 20 degrees. The results indicate that the aerodynamic characteristics of the present airfoil are similar to, but slightly better than, those of the NACA 0012 airfoil.

Ferris, James C.; Mcghee, Robert J.; Barnwell, Richard W.

1987-01-01

389

Method for forming a liquid cooled airfoil for a gas turbine  

DOEpatents

A method for forming a liquid cooled airfoil for a gas turbine is disclosed. A plurality of holes are formed at spaced locations in an oversized airfoil blank. A pre-formed composite liquid coolant tube is bonded into each of the holes. The composite tube includes an inner member formed of an anti-corrosive material and an outer member formed of a material exhibiting a high degree of thermal conductivity. After the coolant tubes have been bonded to the airfoil blank, the airfoil blank is machined to a desired shape, such that a portion of the outer member of each of the composite tubes is contiguous with the outer surface of the machined airfoil blank. Finally, an external skin is bonded to the exposed outer surface of both the machined airfoil blank and the composite tubes.

Grondahl, Clayton M. (Clifton Park, NY); Willmott, Leo C. (Ballston Spa, NY); Muth, Myron C. (Amsterdam, NY)

1981-01-01

390

Aerodynamic Characteristics of NACA 23012 and 23021 Airfoils with 20-Percent-chord External-Airfoil Flaps of NACA 23012 Section  

NASA Technical Reports Server (NTRS)

Report presents the results of an investigation of the general aerodynamic characteristics of the NACA 23012 and 23021 airfoils, each equipped with a 0.20c external flap of NACA 23012 section. The tests were made in the NACA 7 by 10-foot and variable-density wind tunnels and covered a range of Reynolds numbers that included values corresponding to those for landing conditions of a wide range of airplanes. Besides a determination of the variation of lift and drag characteristics with position of the flap relative to the main airfoil, complete aerodynamic characteristics of the airfoil-flap combination with a flap hinge axis selected to give small hinge moments were measured in the two tunnels. Some measurements of air loads on the flap itself in the presence of the wing were made in the 7 by 10-foot wind tunnel.

Platt, Robert C; Abbott, Ira H

1937-01-01

391

Influence of Lift Offset on Rotorcraft Performance  

NASA Technical Reports Server (NTRS)

The influence of lift offset on the performance of several rotorcraft configurations is explored. A lift-offset rotor, or advancing blade concept, is a hingeless rotor that can attain good efficiency at high speed by operating with more lift on the advancing side than on the retreating side of the rotor disk. The calculated performance capability of modern-technology coaxial rotors utilizing a lift offset is examined, including rotor performance optimized for hover and high-speed cruise. The ideal induced power loss of coaxial rotors in hover and twin rotors in forward flight is presented. The aerodynamic modeling requirements for performance calculations are evaluated, including wake and drag models for the high-speed flight condition. The influence of configuration on the performance of rotorcraft with lift-offset rotors is explored, considering tandem and side-by-side rotorcraft as well as wing-rotor lift share.

Johnson, Wayne

2009-01-01

392

Optimization of Wind Turbine Airfoils/Blades and Wind Farm Layouts  

NASA Astrophysics Data System (ADS)

Shape optimization is widely used in the design of wind turbine blades. In this dissertation, a numerical optimization method called Genetic Algorithm (GA) is applied to address the shape optimization of wind turbine airfoils and blades. In recent years, the airfoil sections with blunt trailing edge (called flatback airfoils) have been proposed for the inboard regions of large wind-turbine blades because they provide several structural and aerodynamic performance advantages. The FX, DU and NACA 64 series airfoils are thick airfoils widely used for wind turbine blade application. They have several advantages in meeting the intrinsic requirements for wind turbines in terms of design point, off-design capabilities and structural properties. This research employ both single- and multi-objective genetic algorithms (SOGA and MOGA) for shape optimization of Flatback, FX, DU and NACA 64 series airfoils to achieve maximum lift and/or maximum lift to drag ratio. The commercially available software FLUENT is employed for calculation of the flow field using the Reynolds-Averaged Navier-Stokes (RANS) equations in conjunction with a two-equation Shear Stress Transport (SST) turbulence model and a three equation k-kl-o turbulence model. The optimization methodology is validated by an optimization study of subsonic and transonic airfoils (NACA0012 and RAE 2822 airfoils). In this dissertation, we employ DU 91-W2-250, FX 66-S196-V1, NACA 64421, and Flat-back series of airfoils (FB-3500-0050, FB-3500-0875, and FB-3500-1750) and compare their performance with S809 airfoil used in NREL Phase II and III wind turbines; the lift and drag coefficient data for these airfoils sections are available. The output power of the turbine is calculated using these airfoil section blades for a given B and lambda and is compared with the original NREL Phase II and Phase III turbines using S809 airfoil section. It is shown that by a suitable choice of airfoil section of HAWT blade, the power generated by the turbine can be significantly increased. Parametric studies are also conducted by varying the turbine diameter. In addition, a simplified dynamic inflow model is integrated into the BEM theory. It is shown that the improved BEM theory has superior performance in capturing the instantaneous behavior of wind turbines due to the existence of wind turbine wake or temporal variations in wind velocity. The dissertation also considers the Wind Farm layout optimization problem using a genetic algorithm. Both the Horizontal --Axis Wind Turbines (HAWT) and Vertical-Axis Wind Turbines (VAWT) are considered. The goal of the optimization problem is to optimally position the turbines within the wind farm such that the wake effects are minimized and the power production is maximized. The reasonably accurate modeling of the turbine wake is critical in determination of the optimal layout of the turbines and the power generated. For HAWT, two wake models are considered; both are found to give similar answers. For VAWT, a very simple wake model is employed. Finally, some preliminary investigation of shape optimization of 3D wind turbine blades at low Reynolds numbers is conducted. The optimization employs a 3D straight untapered wind turbine blade with cross section of NACA 0012 airfoils as the geometry of baseline blade. The optimization objective is to achieve maximum Cl/Cd as well as maximum Cl. The multi-objective genetic algorithm is employed together with the commercially available software FLUENT for calculation of the flow field using the Reynolds-Averaged Navier-Stokes (RANS) equations in conjunction with a one-equation Sparlart-Allmaras turbulence model. The results show excellent performance of the optimized wind turbine blade and indicate the feasibility of optimization on real wind turbine blades with more complex shapes in the future. (Abstract shortened by UMI.)

Chen, Xiaomin

393

Lift truck safety review  

SciTech Connect

This report presents safety information about powered industrial trucks. The basic lift truck, the counterbalanced sit down rider truck, is the primary focus of the report. Lift truck engineering is briefly described, then a hazard analysis is performed on the lift truck. Case histories and accident statistics are also given. Rules and regulations about lift trucks, such as the US Occupational Safety an Health Administration laws and the Underwriter`s Laboratories standards, are discussed. Safety issues with lift trucks are reviewed, and lift truck safety and reliability are discussed. Some quantitative reliability values are given.

Cadwallader, L.C.

1997-03-01

394

Symmetric airfoil geometry effects on leading edge noise.  

PubMed

Computational aeroacoustic methods are applied to the modeling of noise due to interactions between gusts and the leading edge of real symmetric airfoils. Single frequency harmonic gusts are interacted with various airfoil geometries at zero angle of attack. The effects of airfoil thickness and leading edge radius on noise are investigated systematically and independently for the first time, at higher frequencies than previously used in computational methods. Increases in both leading edge radius and thickness are found to reduce the predicted noise. This noise reduction effect becomes greater with increasing frequency and Mach number. The dominant noise reduction mechanism for airfoils with real geometry is found to be related to the leading edge stagnation region. It is shown that accurate leading edge noise predictions can be made when assuming an inviscid meanflow, but that it is not valid to assume a uniform meanflow. Analytic flat plate predictions are found to over-predict the noise due to a NACA 0002 airfoil by up to 3 dB at high frequencies. The accuracy of analytic flat plate solutions can be expected to decrease with increasing airfoil thickness, leading edge radius, gust frequency, and Mach number. PMID:24116405

Gill, James; Zhang, X; Joseph, P

2013-10-01

395

Semi-empirical model for prediction of unsteady forces on an airfoil with application to flutter  

NASA Technical Reports Server (NTRS)

A semi-empirical model is described for predicting unsteady aerodynamic forces on arbitrary airfoils under mildly stalled and unstalled conditions. Aerodynamic forces are modeled using second order ordinary differential equations for lift and moment with airfoil motion as the input. This model is simultaneously integrated with structural dynamics equations to determine flutter characteristics for a two degrees-of-freedom system. Results for a number of cases are presented to demonstrate the suitability of this model to predict flutter. Comparison is made to the flutter characteristics determined by a Navier-Stokes solver and also the classical incompressible potential flow theory.

Mahajan, Aparajit J.; Kaza, Krishna Rao V.

1992-01-01

396

Results of LFC experiment on slotted swept supercritical airfoil in Langley's 8-foot transonic pressure tunnel  

NASA Technical Reports Server (NTRS)

A large chord swept supercritical laminar-flow control (LFC) airfoil was designed, constructed, and tested in the Langley 8-foot Transonic Pressure Tunnel (TPT). The LFC airfoil experiment was established to provide basic information concerning the design and compatibility of high performance supercritical airfoils with suction boundary-layer control achieved through fine slots or porous surface concepts. Shockless pressure distribution was achieved. Full chord laminar flow was achieved on upper and lower surfaces. Full chord laminar flow was maintained at subcritical speeds and over large supercritical zones. Feasibility of combined suction laminarization and supercritical airfoil technology was demonstrated.

Brooks, Cuyler W., Jr.; Harris, Charles D.

1987-01-01

397

A Surrogate Approach to the Experimental Optimization of Multielement Airfoils  

NASA Technical Reports Server (NTRS)

The incorporation of experimental test data into the optimization process is accomplished through the use of Bayesian-validated surrogates. In the surrogate approach, a surrogate for the experiment (e.g., a response surface) serves in the optimization process. The validation step of the framework provides a qualitative assessment of the surrogate quality, and bounds the surrogate-for-experiment error on designs "near" surrogate-predicted optimal designs. The utility of the framework is demonstrated through its application to the experimental selection of the trailing edge ap position to achieve a design lift coefficient for a three-element airfoil.

Otto, John C.; Landman, Drew; Patera, Anthony T.

1996-01-01

398

Robust Airfoil Optimization to Achieve Consistent Drag Reduction Over a Mach Range  

NASA Technical Reports Server (NTRS)

We prove mathematically that in order to avoid point-optimization at the sampled design points for multipoint airfoil optimization, the number of design points must be greater than the number of free-design variables. To overcome point-optimization at the sampled design points, a robust airfoil optimization method (called the profile optimization method) is developed and analyzed. This optimization method aims at a consistent drag reduction over a given Mach range and has three advantages: (a) it prevents severe degradation in the off-design performance by using a smart descent direction in each optimization iteration, (b) there is no random airfoil shape distortion for any iterate it generates, and (c) it allows a designer to make a trade-off between a truly optimized airfoil and the amount of computing time consumed. For illustration purposes, we use the profile optimization method to solve a lift-constrained drag minimization problem for 2-D airfoil in Euler flow with 20 free-design variables. A comparison with other airfoil optimization methods is also included.

Li, Wu; Huyse, Luc; Padula, Sharon; Bushnell, Dennis M. (Technical Monitor)

2001-01-01

399

Aerodynamic data banks for Clark-Y, NACA 4-digit and NACA 16-series airfoil families  

NASA Technical Reports Server (NTRS)

With the renewed interest in propellers as means of obtaining thrust and fuel efficiency in addition to the increased utilization of the computer, a significant amount of progress was made in the development of theoretical models to predict the performance of propeller systems. Inherent in the majority of the theoretical performance models to date is the need for airfoil data banks which provide lift, drag, and moment coefficient values as a function of Mach number, angle-of-attack, maximum thickness to chord ratio, and Reynolds number. Realizing the need for such data, a study was initiated to provide airfoil data banks for three commonly used airfoil families in propeller design and analysis. The families chosen consisted of the Clark-Y, NACA 16 series, and NACA 4 digit series airfoils. The various component of each computer code, the source of the data used to create the airfoil data bank, the limitations of each data bank, program listing, and a sample case with its associated input-output are described. Each airfoil data bank computer code was written to be used on the Amdahl Computer system, which is IBM compatible and uses Fortran.

Korkan, K. D.; Camba, J., III; Morris, P. M.

1986-01-01

400

Numerical Simulation of a High-Lift Configuration with Embedded Fluidic Actuators  

NASA Technical Reports Server (NTRS)

Numerical simulations have been performed for a vertical tail configuration with deflected rudder. The suction surface of the main element of this configuration is embedded with an array of 32 fluidic actuators that produce oscillating sweeping jets. Such oscillating jets have been found to be very effective for flow control applications in the past. In the current paper, a high-fidelity computational fluid dynamics (CFD) code known as the PowerFLOW(Registered TradeMark) code is used to simulate the entire flow field associated with this configuration, including the flow inside the actuators. The computed results for the surface pressure and integrated forces compare favorably with measured data. In addition, numerical solutions predict the correct trends in forces with active flow control compared to the no control case. Effect of varying yaw and rudder deflection angles are also presented. In addition, computations have been performed at a higher Reynolds number to assess the performance of fluidic actuators at flight conditions.

Vatsa, Veer N.; Casalino, Damiano; Lin, John C.; Appelbaum, Jason

2014-01-01

401

Airfoil nozzle and shroud assembly  

DOEpatents

An airfoil and nozzle assembly including an outer shroud having a plurality of vane members attached to an inner surface and having a cantilevered end. The assembly further includes a inner shroud being formed by a plurality of segments. Each of the segments having a first end and a second end and having a recess positioned in each of the ends. The cantilevered end of the vane member being positioned in the recess. The airfoil and nozzle assembly being made from a material having a lower rate of thermal expansion than that of the components to which the airfoil and nozzle assembly is attached.

Shaffer, James E. (Maitland, FL); Norton, Paul F. (San Diego, CA)

1997-01-01

402

Airfoil nozzle and shroud assembly  

DOEpatents

An airfoil and nozzle assembly are disclosed including an outer shroud having a plurality of vane members attached to an inner surface and having a cantilevered end. The assembly further includes a inner shroud being formed by a plurality of segments. Each of the segments having a first end and a second end and having a recess positioned in each of the ends. The cantilevered end of the vane member being positioned in the recess. The airfoil and nozzle assembly being made from a material having a lower rate of thermal expansion than that of the components to which the airfoil and nozzle assembly is attached. 5 figs.

Shaffer, J.E.; Norton, P.F.

1997-06-03

403

Panel methods for airfoils in turbulent flow  

NASA Astrophysics Data System (ADS)

This paper describes how panel methods can be used to calculate the unsteady loading and radiated noise from airfoils in incompressible turbulent flow, while completely accounting for the mean flow distortion of the turbulence in the vicinity of the blade. Formulations based on the velocity and on the stagnation enthalpy are discussed. In three-dimensional flows, care must be taken with the velocity-based formulation to avoid singular behavior associated with vortex stretching by the mean flow. The velocity-based method is implemented in two dimensions to illustrate application of these methods, and is validated against Amiet's theory. Calculations showing the effect of blade thickness and angle of attack on the unsteady loading spectra are given. It is concluded that airfoil angle of attack has only a small effect on the unsteady loading, but that blade thickness reduces the spectral levels at high frequencies.

Glegg, Stewart A. L.; Devenport, William J.

2010-08-01

404

Design of a high-lift experiment in water including active flow control  

NASA Astrophysics Data System (ADS)

This paper describes the structural design of an active flow-control experiment. The aim of the experiment is to investigate the increase in efficiency of an internally blown Coanda flap using unsteady blowing. The system uses tailor-made microelectromechanical (MEMS) pressure sensors to determine the state of the oncoming flow and an actuated lip to regulate the mass flow and velocity of a stream near a wall over the internally blown flap. Sensors and actuators are integrated into a highly loaded system that is extremely compact. The sensors are connected to a bus system that feeds the data into a real-time control system. The piezoelectric actuators using the d 33 effect at a comparable low voltage of 120 V are integrated into a lip that controls the blowout slot height. The system is designed for closed-loop control that efficiently avoids flow separation on the Coanda flap. The setup is designed for water-tunnel experiments in order to reduce the free-stream velocity and the system’s control frequency by a factor of 10 compared with that in air. This paper outlines the function and verification of the system’s main components and their development.

Beutel, T.; Sattler, S.; El Sayed, Y.; Schwerter, M.; Zander, M.; Büttgenbach, S.; Leester-Schädel, M.; Radespiel, R.; Sinapius, M.; Wierach, P.

2014-07-01

405

Pressure distributions from high Reynolds number tests of a Boeing BAC 1 airfoil in the Langley 0.3-meter transonic cryogenic tunnel  

NASA Technical Reports Server (NTRS)

A wind-tunnel investigation designed to test a Boeing advanced-technology airfoil from low to flight-equivalent Reynolds numbers has been completed in the Langley 0.3-Meter Transonic Cryogenic Tunnel. This investigation represents the first in a series of NASA/U.S. industry two-dimensional airfoil studies to be completed in the Advanced Technology Airfoil Test program. Test temperature was varied from ambient to about 100 K at pressures ranging from about 1.2 to 6.0 atm. Mach number was varied from about 0.40 to 0.80. These variables provided a Reynolds number (based on airfoil chord) range from 4.4 X 10 to the 6th power to 50.0 X 10 to the 6th power. All the test objectives were met. The pressure data are presented without analysis in plotted and tabulated formats for use in conjunction with the aerodynamic coefficient data published as NASA TM-81922. At the time of the test, these pressure data were considered proprietary and have only recently been made available by Boeing for general release. Data are included which demonstrate the effects of fixed transition. Also included are remarks on the model design, the model structural integrity, and the overall test experience.

Johnson, W. G., Jr.; Hill, A. S.

1985-01-01

406

Effect of High-lift Devices on the Low-speed Static Lateral and Yawing Stability Characteristics of an Untapered 45 Degrees Sweptback Wing  

NASA Technical Reports Server (NTRS)

Results of a low-speed wind-tunnel investigation to determine the effect of high-lift devices on the static lateral stability derivatives and the yawing derivatives of an untapered 45 degrees sweptback wing are presented. The tests were made in the curved-flow test section of the Langley stability tunnel at a Reynolds number of 1.1 X 10 to the sixth power.

Lichtenstein, Jacob H

1952-01-01

407

Nozzle airfoil having movable nozzle ribs  

DOEpatents

A nozzle vane or airfoil structure is provided in which the nozzle ribs are connected to the side walls of the vane or airfoil in such a way that the ribs provide the requisite mechanical support between the concave side and convex side of the airfoil but are not locked in the radial direction of the assembly, longitudinally of the airfoil. The ribs may be bi-cast onto a preformed airfoil side wall structure or fastened to the airfoil by an interlocking slide connection and/or welding. By attaching the nozzle ribs to the nozzle airfoil metal in such a way that allows play longitudinally of the airfoil, the temperature difference induced radial thermal stresses at the nozzle airfoil/rib joint area are reduced while maintaining proper mechanical support of the nozzle side walls.

Yu, Yufeng Phillip (Greenville, SC); Itzel, Gary Michael (Greenville, SC)

2002-01-01

408

Influence of ZNMF jet flow control on the spatio-temporal flow structure over a NACA-0015 airfoil  

NASA Astrophysics Data System (ADS)

The spatio-temporal flow structure associated with zero-net-mass-flux (ZNMF) jet forcing at the leading edge of a NACA-0015 airfoil ( Re = 3 × 104) is investigated using high-repetition rate particle image velocimetry. Measurements are performed at an angle of attack of 18°, where in the absence of forcing, flow separation occurs at the leading edge. Forcing is applied at a frequency of f + = 1.3 and a momentum coefficient c ? = 0.0014 for which previous force measurements indicated a 45 % increase in lift over the unforced case. The structure and dynamics associated with both the forced and unforced case are considered. The dominant frequencies associated with separation in the unforced case are identified with the first harmonic of the bluff body shedding f wake closely corresponding to the forcing frequency of f + = 1.3. A triple-decomposition of the velocity field is performed to identify the spatio-temporal perturbations produced by the ZNMF jet forcing. This forcing results in a reattachment of the flow, which is caused by the generation of large-scale vortices that entrain high-momentum fluid from the freestream. Forcing at 2 f wake produces a series of vortices that advect parallel to the airfoil surface at a speed lower than the freestream velocity. Potential mechanisms by which these vortices affect flow reattachment are discussed.

Buchmann, N. A.; Atkinson, C.; Soria, J.

2013-03-01

409

Application of multivariable search techniques to the optimization of airfoils in a low speed nonlinear inviscid flow field  

NASA Technical Reports Server (NTRS)

Multivariable search techniques are applied to a particular class of airfoil optimization problems. These are the maximization of lift and the minimization of disturbance pressure magnitude in an inviscid nonlinear flow field. A variety of multivariable search techniques contained in an existing nonlinear optimization code, AESOP, are applied to this design problem. These techniques include elementary single parameter perturbation methods, organized search such as steepest-descent, quadratic, and Davidon methods, randomized procedures, and a generalized search acceleration technique. Airfoil design variables are seven in number and define perturbations to the profile of an existing NACA airfoil. The relative efficiency of the techniques are compared. It is shown that elementary one parameter at a time and random techniques compare favorably with organized searches in the class of problems considered. It is also shown that significant reductions in disturbance pressure magnitude can be made while retaining reasonable lift coefficient values at low free stream Mach numbers.

Hague, D. S.; Merz, A. W.

1975-01-01

410

Second Stage Turbine Bucket Airfoil.  

DOEpatents

The second-stage buckets have airfoil profiles substantially in accordance with Cartesian coordinate values of X, Y and Z set forth in inches in Table I wherein Z is a perpendicular distance from a plane normal to a radius of the turbine centerline and containing the X and Y values with the Z value commencing at zero in the X, Y plane at the radially innermost aerodynamic section of the airfoil and X and Y are coordinate values defining the airfoil profile at each distance Z. The X, Y and Z values may be scaled as a function of the same constant or number to provide a scaled-up or scaled-down airfoil section for the bucket.

Xu, Liming (Simpsonville, SC); Ahmadi, Majid (Simpsonville, SC); Humanchuk, David John (Simpsonville, SC); Moretto, Nicholas (Clifton Park, NY); Delehanty, Richard Edward (Maineville, OH)

2003-05-06

411

Boundary Layer Control on Airfoils.  

ERIC Educational Resources Information Center

A phenomena, boundary layer control (BLC), produced when visualizing the fluidlike flow of air is described. The use of BLC in modifying aerodynamic characteristics of airfoils, race cars, and boats is discussed. (KR)

Gerhab, George; Eastlake, Charles

1991-01-01

412

A flight investigation of blade section aerodynamics for a helicopter main rotor having NLR-1T airfoil sections  

NASA Technical Reports Server (NTRS)

A flight investigation was conducted using a teetering-rotor AH-1G helicopter to obtain data on the aerodynamic behavior of main-rotor blades with the NLR-1T blade section. The data system recorded blade-section aerodynamic pressures at 90 percent rotor radius as well as vehicle flight state, performance, and loads. The test envelope included hover, forward flight, and collective-fixed maneuvers. Data were obtained on apparent blade-vortex interactions, negative lift on the advancing blade in high-speed flight and wake interactions in hover. In many cases, good agreement was achieved between chordwise pressure distributions predicted by airfoil theory and flight data with no apparent indications of blade-vortex interactions.

Morris, C. E. K., Jr.; Stevens, D. D.; Tomaine, R. L.

1980-01-01

413

An experimental study of the aerodynamics of a NACA 0012 airfoil with a simulated glaze ice accretion  

NASA Technical Reports Server (NTRS)

An experimental study was conducted in the Ohio State University subsonic wind tunnel to measure the detailed aerodynamic characteristics of an airfoil with a simulated glaze ice accretion. A NACA 0012 model with interchangeable leading edges and pressure taps every one percent chord was used. Surface pressure and wake data were taken on the airfoil clean, with forced transition and with a simulated glaze ice shape. Lift and drag penalties due to the ice shape were found and the surface pressure clearly showed that large separation bubbles were present. Both total pressure and split-film probes were used to measure velocity profiles, both for the clean model and for the model with a simulated ice accretion. A large region of flow separation was seen in the velocity profiles and was correlated to the pressure measurements. Clean airfoil data were found to compare well to existing airfoil analysis methods.

Bragg, M. B.

1986-01-01

414

Turbulent Navier-Stokes Flow Analysis of an Advanced Semispan Diamond-Wing Model in Tunnel and Free Air at High-Lift Conditions  

NASA Technical Reports Server (NTRS)

Turbulent Navier-Stokes computational results are presented for an advanced diamond wing semispan model at low-speed, high-lift conditions. The numerical results are obtained in support of a wind-tunnel test that was conducted in the National Transonic Facility at the NASA Langley Research Center. The model incorporated a generic fuselage and was mounted on the tunnel sidewall using a constant-width non-metric standoff. The computations were performed at to a nominal approach and landing flow conditions.The computed high-lift flow characteristics for the model in both the tunnel and in free-air environment are presented. The computed wing pressure distributions agreed well with the measured data and they both indicated a small effect due to the tunnel wall interference effects. However, the wall interference effects were found to be relatively more pronounced in the measured and the computed lift, drag and pitching moment. Although the magnitudes of the computed forces and moment were slightly off compared to the measured data, the increments due the wall interference effects were predicted reasonably well. The numerical results are also presented on the combined effects of the tunnel sidewall boundary layer and the standoff geometry on the fuselage forebody pressure distributions and the resulting impact on the configuration longitudinal aerodynamic characteristics.

Ghaffari, Farhad; Biedron, Robert T.; Luckring, James M.

2002-01-01

415

Design and Predictions for High-Altitude (Low Reynolds Number) Aerodynamic Flight Experiment  

NASA Technical Reports Server (NTRS)

A sailplane being developed at NASA Dryden Flight Research Center will support a high-altitude flight experiment. The experiment will measure the performance parameters or an airfoil at high altitudes (70,000 - 100,000 ft), low Reynolds numbers (2 x 10(exp 5) - 7 x 10(exp 5)), and high subsonic Mach numbers (0.5 and 0.65). The airfoil section lift and drag are determined from pilot and static pressure measurements. The locations of the separation bubble, Tollmien-Schlichting boundary-layer instability frequencies, and vortex shedding are measured from a hot-film strip. The details of the planned flight experiment are presented as well as several predictions of the airfoil performance.

Greer, Donald; Harmory, Phil; Krake, Keith; Drela, Mark

2000-01-01

416

Transient dynamics of the flow around a NACA 0015 airfoil using fluidic vortex generators  

Microsoft Academic Search

The unsteady activation or deactivation of fluidic vortex generators on a NACA 0015 airfoil is studied to understand the transient dynamics of flow separation control. The Reynolds number is high enough and the boundary layer is tripped, so the boundary layer is fully turbulent prior to separation. Conditional PIV of the airfoil wake is obtained phase-locked to the actuator trigger

W. L. Siauw; J.-P. Bonnet; J. Tensi; L. Cordier; B. R. Noack; L. Cattafesta

2010-01-01