Science.gov

Sample records for high ordered nanoporous

  1. Engineering of highly ordered TiO2 nanopore arrays by anodization

    NASA Astrophysics Data System (ADS)

    Wang, Huijie; Huang, Zhennan; Zhang, Li; Ding, Jie; Ma, Zhaoxia; Liu, Yong; Kou, Shengzhong; Yang, Hangsheng

    2016-07-01

    Finite element analysis was used to simulate the current density distributions in the TiO2 barrier layer formed at the initial stage of Ti anodization. The morphology modification of the barrier layer was found to induce current density distribution change. By starting the anodization with proper TiO2 barrier layer morphology, the current density distribution can be adjusted to favor the formation of either nanotube arrays or nanopore arrays of anodic TiO2. We also found that the addition of sodium acetate into the electrolyte suppressed both the field-assisted chemical dissolution of TiO2 and the TiF62- hydrolysis induced TiO2 deposition during anodization, and thus further favored the nanopore formation. Accordingly, highly ordered anodic TiO2 nanopore arrays, similar to anodic aluminum oxide nanopore arrays, were successfully prepared.

  2. Highly Efficient Elimination of Carbon Monoxide with Binary Copper-Manganese Oxide Contained Ordered Nanoporous Silicas

    NASA Astrophysics Data System (ADS)

    Lee, Jiho; Kim, Hwayoun; Lee, Hyesun; Jang, Seojun; Chang, Jeong Ho

    2016-01-01

    Ordered nanoporous silicas containing various binary copper-manganese oxides were prepared as catalytic systems for effective carbon monoxide elimination. The carbon monoxide elimination efficiency was demonstrated as a function of the [Mn]/[Cu] ratio and reaction time. The prepared catalysts were characterized by Brunauer-Emmett-Teller (BET) method, small- and wide-angle X-ray diffraction (XRD), and high-resolution transmission electron microscopy (HR-TEM) for structural analysis. Moreover, quantitative analysis of the binary metal oxides within the nanoporous silica was achieved by inductively coupled plasma (ICP). The binary metal oxide-loaded nanoporous silica showed high room temperature catalytic efficiency with over 98 % elimination of carbon monoxide at higher concentration ratio of [Mn]/[Cu].

  3. Highly Efficient Elimination of Carbon Monoxide with Binary Copper-Manganese Oxide Contained Ordered Nanoporous Silicas.

    PubMed

    Lee, Jiho; Kim, Hwayoun; Lee, Hyesun; Jang, Seojun; Chang, Jeong Ho

    2016-12-01

    Ordered nanoporous silicas containing various binary copper-manganese oxides were prepared as catalytic systems for effective carbon monoxide elimination. The carbon monoxide elimination efficiency was demonstrated as a function of the [Mn]/[Cu] ratio and reaction time. The prepared catalysts were characterized by Brunauer-Emmett-Teller (BET) method, small- and wide-angle X-ray diffraction (XRD), and high-resolution transmission electron microscopy (HR-TEM) for structural analysis. Moreover, quantitative analysis of the binary metal oxides within the nanoporous silica was achieved by inductively coupled plasma (ICP). The binary metal oxide-loaded nanoporous silica showed high room temperature catalytic efficiency with over 98 % elimination of carbon monoxide at higher concentration ratio of [Mn]/[Cu]. PMID:26744146

  4. Bacteria repelling on highly-ordered alumina-nanopore structures

    PubMed Central

    Kim, Sunghan; Cirillo, Jeffrey D.; Polycarpou, Andreas A.; Liang, Hong

    2015-01-01

    Bacteria introduce diseases and infections to humans by their adherence to biomaterials, such as implants and surgical tools. Cell desorption is an effective step to reduce such damage. Here, we report mechanisms of bacteria desorption. An alumina nanopore structure (ANS) with pore size of 35 nm, 55 nm, 70 nm, and 80 nm was used as substrate to grow Escherichia coli (E. coli) cells. A bacteria repelling experimental method was developed to quantitatively evaluate the area percentage of adherent bacterial cells that represent the nature of cell adhesion as well as desorption. Results showed that there were two crucial parameters: contact angle and contact area that affect the adhesion/desorption. The cells were found to be more easily repelled when the contact angle increased. The area percentage of adherent bacterial cells decreased with the decrease in the contact area of a cell on ANS. This means that cell accessibility on ANS depends on the contact area. This research reveals the effectiveness of the nanopored structures in repelling cells. PMID:25944966

  5. Bacteria repelling on highly-ordered alumina-nanopore structures

    NASA Astrophysics Data System (ADS)

    Kim, Sunghan; Zhou, Yan; Cirillo, Jeffrey D.; Polycarpou, Andreas A.; Liang, Hong

    2015-04-01

    Bacteria introduce diseases and infections to humans by their adherence to biomaterials, such as implants and surgical tools. Cell desorption is an effective step to reduce such damage. Here, we report mechanisms of bacteria desorption. An alumina nanopore structure (ANS) with pore size of 35 nm, 55 nm, 70 nm, and 80 nm was used as substrate to grow Escherichia coli (E. coli) cells. A bacteria repelling experimental method was developed to quantitatively evaluate the area percentage of adherent bacterial cells that represent the nature of cell adhesion as well as desorption. Results showed that there were two crucial parameters: contact angle and contact area that affect the adhesion/desorption. The cells were found to be more easily repelled when the contact angle increased. The area percentage of adherent bacterial cells decreased with the decrease in the contact area of a cell on ANS. This means that cell accessibility on ANS depends on the contact area. This research reveals the effectiveness of the nanopored structures in repelling cells.

  6. Designing 3D highly ordered nanoporous CuO electrodes for high-performance asymmetric supercapacitors.

    PubMed

    Moosavifard, Seyyed E; El-Kady, Maher F; Rahmanifar, Mohammad S; Kaner, Richard B; Mousavi, Mir F

    2015-03-01

    The increasing demand for energy has triggered tremendous research efforts for the development of lightweight and durable energy storage devices. Herein, we report a simple, yet effective, strategy for high-performance supercapacitors by building three-dimensional pseudocapacitive CuO frameworks with highly ordered and interconnected bimodal nanopores, nanosized walls (∼4 nm) and large specific surface area of 149 m(2) g(-1). This interesting electrode structure plays a key role in providing facilitated ion transport, short ion and electron diffusion pathways and more active sites for electrochemical reactions. This electrode demonstrates excellent electrochemical performance with a specific capacitance of 431 F g(-1) (1.51 F cm(-2)) at 3.5 mA cm(-2) and retains over 70% of this capacitance when operated at an ultrafast rate of 70 mA cm(-2). When this highly ordered CuO electrode is assembled in an asymmetric cell with an activated carbon electrode, the as-fabricated device demonstrates remarkable performance with an energy density of 19.7 W h kg(-1), power density of 7 kW kg(-1), and excellent cycle life. This work presents a new platform for high-performance asymmetric supercapacitors for the next generation of portable electronics and electric vehicles. PMID:25671715

  7. A Simple Route to Highly Oriented and Ordered Nanoporous Block Copolymer Templates

    SciTech Connect

    Park,S.; Wang, J.; Kim, B.; Xu, J.; Russell, T.

    2008-01-01

    Controlling the orientation and lateral ordering of the block copolymer microdomains is essential to their use as templates and scaffolds for the fabrication of nanostructured materials. In addition, a process must be robust, simple to implement, and rapid, and should not introduce disruptive processing steps that would impede their use. Here, we describe thin films of poly(styrene-b-4-vinylpyridine) (PS-b-P4VP) diblock copolymers, spin-coated from mixed solvents that show highly oriented, cylindrical microdomains with a high degree of order on a wide range of substrates, including silicon oxide, polystyrene, germanium, polyimide, and poly(butylene terephthalate). In addition, the preferential solvation of the P4VP block with an alcohol caused a surface reconstruction that resulted in the formation of a nanoporous film upon drying. The evaporation of gold onto the reconstructed films produced thermally stable and reactive ion etching resistant films.

  8. Highly ordered nanoporous films from supramolecular diblock copolymers with hydrogen-bonding junctions.

    PubMed

    Montarnal, Damien; Delbosc, Nicolas; Chamignon, Cécile; Virolleaud, Marie-Alice; Luo, Yingdong; Hawker, Craig J; Drockenmuller, Eric; Bernard, Julien

    2015-09-14

    We designed efficient precursors that combine complementary associative groups with exceptional binding affinities and thiocarbonylthio moieties enabling precise RAFT polymerization. Well defined PS and PMMA supramolecular polymers with molecular weights up to 30 kg mol(-1) are synthesized and shown to form highly stable supramolecular diblock copolymers (BCPs) when mixed, in non-polar solvents or in the bulk. Hierarchical self-assembly of such supramolecular BCPs by thermal annealing affords morphologies with excellent lateral order, comparable to features expected from covalent diblock copolymer analogues. Simple washing of the resulting materials with protic solvents disrupts the supramolecular association and selectively dissolves one polymer, affording a straightforward process for preparing well-ordered nanoporous materials without resorting to crosslinking or invasive chemical degradations. PMID:26234749

  9. Impedance spectroscopy of highly ordered nano-porous electrodes based on Au-AAO (anodic aluminum oxide) structure.

    PubMed

    Ahn, Jaehwan; Cho, Sungbo; Min, Junhong

    2013-11-01

    Electrochemical measurements using the microelectrodes are increasingly utilized for the label-free detection of the small amount of biological materials such as DNA, protein, and cells. However, the interfacial electrode impedance increases and may hinder the detection of weak signals as the size of electrode decreases. To enhance the measurement sensitivity while reducing the electrode size, in this study, microelectrodes employing a nanoporous structure were fabricated and characterized by using electrical impedance spectroscopy. We made the highly ordered honeycomb nanoporous structure of Anodic Aluminum Oxide (AAO) by electrochemical anodizing and formed Au layer on the surface of AAO (Au/AAO) by electroless Au plating method. The electrical characteristics of the fabricated Au/AAO electrodes were evaluated by using de Levie's model derived for the pore electrodes. As a result, the interfacial electrode impedance of the fabricated Au/AAO electrodes was 2-3 order lower than the value of the planar electrodes at frequencies below 1 kHz. It implies this nanoporous electrode could be directly applied to label free detection of biomaterials. PMID:24245278

  10. Influence of Anodic Conditions on Self-ordered Growth of Highly Aligned Titanium Oxide Nanopores

    PubMed Central

    2007-01-01

    Self-aligned nanoporous TiO2templates synthesized via dc current electrochemical anodization have been carefully analyzed. The influence of environmental temperature during the anodization, ranging from 2 °C to ambient, on the structure and morphology of the nanoporous oxide formation has been investigated, as well as that of the HF electrolyte chemical composition, its concentration and their mixtures with other acids employed for the anodization. Arrays of self-assembled titania nanopores with inner pores diameter ranging between 50 and 100 nm, wall thickness around 20–60 nm and 300 nm in length, are grown in amorphous phase, vertical to the Ti substrate, parallel aligned to each other and uniformly disordering distributed over all the sample surface. Additional remarks about the photoluminiscence properties of the titania nanoporous templates and the magnetic behavior of the Ni filled nanoporous semiconductor Ti oxide template are also included.

  11. Ordered arrays of nanoporous silicon nanopillars and silicon nanopillars with nanoporous shells

    PubMed Central

    2013-01-01

    The fabrication of ordered arrays of nanoporous Si nanopillars with and without nanoporous base and ordered arrays of Si nanopillars with nanoporous shells are presented. The fabrication route is using a combination of substrate conformal imprint lithography and metal-assisted chemical etching. The metal-assisted chemical etching is performed in solutions with different [HF]/[H2O2 + HF] ratios. Both pore formation and polishing (marked by the vertical etching of the nanopillars) are observed in highly doped and lightly doped Si during metal-assisted chemical etching. Pore formation is more active in the highly doped Si, while the transition from polishing to pore formation is more obvious in the lightly doped Si. The etching rate is clearly higher in the highly doped Si. Oxidation occurs on the sidewalls of the pillars by etching in solutions with small [HF]/[H2O2 + HF] ratios, leading to thinning, bending, and bonding of pillars. PMID:23336430

  12. Highly ordered nanoporous carbon films with tunable pore diameters and their excellent sensing properties.

    PubMed

    Jia, Lichao; Lawrence, Geoffrey; Balasubramanian, V V; Choi, Goeun; Choy, Jin-Ho; Abdullah, Aboubakr M; Elzatahry, Ahmed; Ariga, Katsuhiko; Vinu, Ajayan

    2015-01-01

    Ordered porous carbon films with tunable pore diameters, immobilized with glucose oxidase (GOD) have been fabricated and employed for the construction of a biosensor for glucose molecules. The as-prepared porous films have large specific surface areas and highly ordered porous structure with uniform pore sizes, which are critical for the immobilization of large amounts of GOD and support the promotion of heterogeneous electron transfer. The developed biosensors give enough room for the encapsulation of a high amount of GOD molecules and show excellent biosensing performance with a linear response to glucose concentration ranging from 0.5 to 9 mM and a detection limit of 1.5 μM. It is also demonstrated that the sensitivity of the biosensor can be easily tuned by modulating the pore size of carbon film as it dictates the amount of immobilization of GOD in the porous channels. The fabricated carbon-film-based biosensor has a good stability and a high reproducibility, which opens the gateway for the commercialization of this excellent technology. PMID:25394330

  13. Ordered arrays of patterned nanoporous silicon

    NASA Astrophysics Data System (ADS)

    Wang, D.; Schönherr, S.; Ji, R.; Herz, A.; Ronning, C.; Schaaf, P.

    2013-07-01

    The fabrication of ordered arrays of patterned nanoporous Si with two-level nanostructures using a combination of metal-assisted chemical etching and nanoimprint lithography is presented. One nanostructure is the periodic arrays of holes and pillars with a period of several hundred nanometers and another nanostructure is the nanoporosity with a pore size of about 10 nm. The etching rate of (1 0 0) oriented Si is clearly higher than that of (1 1 0) and (1 1 1) oriented Si under the same conditions. More effective pore formation occurs in (1 1 1) oriented Si than in (1 0 0) and (1 1 0) oriented Si. Cathodoluminescence was measured and the patterned array of nanoporous Si shows visible luminescence with an overlap of two red emission bands at room temperature.

  14. High Density Methane Storage in Nanoporous Carbon

    NASA Astrophysics Data System (ADS)

    Rash, Tyler; Dohnke, Elmar; Soo, Yuchoong; Maland, Brett; Doynov, Plamen; Lin, Yuyi; Pfeifer, Peter; Mriglobal Collaboration; All-Craft Team

    2014-03-01

    Development of low-pressure, high-capacity adsorbent based storage technology for natural gas (NG) as fuel for advanced transportation (flat-panel tank for NG vehicles) is necessary in order to address the temperature, pressure, weight, and volume constraints present in conventional storage methods (CNG & LNG.) Subcritical nitrogen adsorption experiments show that our nanoporous carbon hosts extended narrow channels which generate a high surface area and strong Van der Waals forces capable of increasing the density of NG into a high-density fluid. This improvement in storage density over compressed natural gas without an adsorbent occurs at ambient temperature and pressures ranging from 0-260 bar (3600 psi.) The temperature, pressure, and storage capacity of a 40 L flat-panel adsorbed NG tank filled with 20 kg of nanoporous carbon will be featured.

  15. Plasmonic devices and sensors built from ordered nanoporous materials.

    SciTech Connect

    Jacobs, Benjamin W.; Kobayashi, Yoji; Houk, Ronald J. T.; Allendorf, Mark D.; Long, Jeffrey R.; Robertson, Ian M.; House, Stephen D.; Graham, Dennis D.; Talin, Albert Alec; Chang, Noel N.; El Gabaly Marquez, Farid

    2009-09-01

    The objective of this project is to lay the foundation for using ordered nanoporous materials known as metal-organic frameworks (MOFs) to create devices and sensors whose properties are determined by the dimensions of the MOF lattice. Our hypothesis is that because of the very short (tens of angstroms) distances between pores within the unit cell of these materials, enhanced electro-optical properties will be obtained when the nanopores are infiltrated to create nanoclusters of metals and other materials. Synthetic methods used to produce metal nanoparticles in disordered templates or in solution typically lead to a distribution of particle sizes. In addition, creation of the smallest clusters, with sizes of a few to tens of atoms, remains very challenging. Nanoporous metal-organic frameworks (MOFs) are a promising solution to these problems, since their long-range crystalline order creates completely uniform pore sizes with potential for both steric and chemical stabilization. We report results of synthetic efforts. First, we describe a systematic investigation of silver nanocluster formation within MOFs using three representative MOF templates. The as-synthesized clusters are spectroscopically consistent with dimensions {le} 1 nm, with a significant fraction existing as Ag{sub 3} clusters, as shown by electron paramagnetic resonance. Importantly, we show conclusively that very rapid TEM-induced MOF degradation leads to agglomeration and stable, easily imaged particles, explaining prior reports of particles larger than MOF pores. These results solve an important riddle concerning MOF-based templates and suggest that heterostructures composed of highly uniform arrays of nanoparticles within MOFs are feasible. Second, a preliminary study of methods to incorporate fulleride (K{sub 3}C{sub 60}) guest molecules within MOF pores that will impart electrical conductivity is described.

  16. Highly cross-linked nanoporous polymers

    DOEpatents

    Steckle, Jr., Warren P.; Apen, Paul G.; Mitchell, Michael A.

    1997-01-01

    Condensation polymerization followed by a supercritical extraction step can be used to obtain highly cross-linked nanoporous polymers with high surface area, controlled pore sizes and rigid structural integrity. The invention polymers are useful for applications requiring separation membranes.

  17. Highly cross-linked nanoporous polymers

    DOEpatents

    Steckle, Jr., Warren P.; Apen, Paul G.; Mitchell, Michael A.

    1998-01-01

    Condensation polymerization followed by a supercritical extraction step can be used to obtain highly cross-linked nanoporous polymers with high surface area, controlled pore sizes and rigid structural integrity. The invention polymers are useful for applications requiring separation membranes.

  18. Role of sp3 Defect in Ordered Nanoporous Carbon

    NASA Astrophysics Data System (ADS)

    Xu, Enshi; Lueking, Angela; Crespi, Vincent; Lammert, Paul; Maleski, Kathleen

    Schwarzite is considered an ideal model for nanoporous carbon and is energetically more stable than fullerene. However, carbon don't form well-ordered Schwarzite-type nanoporous material possibly due to kinetic arrests under pyrolytic conditions. We computationally discovered a new thermodynamically stable local defect in carbon sp2 networks: an sp3 carbon defect, which inspires new solutions to the problem. The defect is most stable in nanoporous carbon (i.e., networks with negative curvatures, known as Schwarzites) and its topological merit, carrying negative curvature, results in the design of new model structures of nanoporous materials (periodic, negatively-curved networks), and provides a handle of the negative curvature carrier in nanoporous carbon, and we propose a kinetics-dominated synthetic route to novel nanoporous carbon with long range order by controlling the sp3 defect through sp3 carbon atom injection or Si atom substitution, with the aid of first principle molecular dynamics simulation. Calculations also suggest the defect can be observed by Raman.

  19. High-resolution dielectric study reveals pore-size-dependent orientational order of a discotic liquid crystal confined in tubular nanopores.

    PubMed

    Całus, Sylwia; Kityk, Andriy V; Borowik, Lech; Lefort, Ronan; Morineau, Denis; Krause, Christina; Schönhals, Andreas; Busch, Mark; Huber, Patrick

    2015-07-01

    We report a high-resolution dielectric study on a pyrene-based discotic liquid crystal (DLC) in the bulk state and confined in parallel tubular nanopores of monolithic silica and alumina membranes. The positive dielectric anisotropy of the DLC molecule at low frequencies (in the quasistatic case) allows us to explore the thermotropic collective orientational order. A face-on arrangement of the molecular discs on the pore walls and a corresponding radial arrangement of the molecules is found. In contrast to the bulk, the isotropic-to-columnar transition of the confined DLC is continuous, shifts with decreasing pore diameter to lower temperatures, and exhibits a pronounced hysteresis between cooling and heating. These findings corroborate conclusions from previous neutron and x-ray-scattering experiments as well as optical birefringence measurements. Our study also indicates that the relative simple dielectric technique presented here is a quite efficient method in order to study the thermotropic orientational order of DLC-based nanocomposites. PMID:26274191

  20. Highly cross-linked nanoporous polymers

    DOEpatents

    Steckle, W.P. Jr.; Apen, P.G.; Mitchell, M.A.

    1998-01-20

    Condensation polymerization followed by a supercritical extraction step can be used to obtain highly cross-linked nanoporous polymers with high surface area, controlled pore sizes and rigid structural integrity. The invention polymers are useful for applications requiring separation membranes. 1 fig.

  1. High-throughput optical sensing of nucleic acids in a nanopore array

    PubMed Central

    Huang, Shuo; Romero-Ruiz, Mercedes; Castell, Oliver K.; Bayley, Hagan; Wallace, Mark I.

    2016-01-01

    Protein nanopores such as α-hemolysin and MspA can potentially be used to sequence long strands of DNA quickly and at low cost. In order to provide high-speed sequencing, large arrays of nanopores are required that allow the nanopores to individually addressed, but current nanopore sequencing methods rely on ionic current measurements and such methods are likely to prove difficult to scale up. Here, we show that, by optically encoding the ionic flux through protein nanopores, the discrimination of nucleic acid sequences and the detection of sequence-specific nucleic acid binding events can be parallelized. We make optical recordings at a density of ~104 nanopores per mm2 in a single droplet interface bilayer. Nanopore blockades can discriminate between DNAs with sub-pA equivalent resolution, and specific miRNA sequences can be identified by differences in unzipping kinetics. By creating an array of 2500 bilayers with a micro-patterned hydrogel chip, we are also able to load different samples into specific bilayers, suitable for high-throughput nanopore recording. PMID:26322943

  2. Effect of ordered intermediate porosity on ion transport in hierarchically nanoporous electrodes.

    PubMed

    Chae, Weon-Sik; Gough, Dara Van; Ham, Sung-Kyoung; Robinson, David B; Braun, Paul V

    2012-08-01

    The high surface area of nanoporous electrodes makes them promising for use in electrochemical double-layer supercapacitors, desalination and pollution remediation, and drug delivery applications. When designed well and operating near their peak power, their charging rates are limited by ion transport through their long, narrow pores. This can be alleviated by creating pores of intermediate diameter that penetrate the electrode. We have fabricated electrodes featuring these by creating colloidal crystal-templated opals of nanoporous gold formed by dealloying. The resulting electrodes contain a bimodal pore-size distribution, with large pores on the order of several 100 nm and small pores on the order of 10 nm. Electrochemical impedance spectrometry shows that porous gold opals sacrifice some capacitance, but possess a lower internal resistance, when compared to a porous gold electrode with only the smaller-diameter pores. The architectural flexibility of this approach provides a greater ability to design a balance between power density and energy density. PMID:22799397

  3. Ordered arrays of polymeric nanopores by using inverse nanostructured PTFE surfaces.

    PubMed

    Martín, Jaime; Martín-González, Marisol; del Campo, Adolfo; Reinosa, Julián J; Fernández, José Francisco

    2012-09-28

    We present a simple, efficient, and high-throughput methodology for the fabrication of ordered nanoporous polymeric surfaces with areas in the range of cm(2). The procedure is based on a two-stage replication of a master nanostructured pattern. The process starts with the preparation of an ordered array of poly(tetrafluoroethylene) (PTFE) free-standing nanopillars by wetting self-ordered porous anodic aluminum oxide templates with molten PTFE. The nanopillars are 120 nm in diameter and approximately 350 nm long, while the array extends over cm(2). The PTFE nanostructuring process induces surface hydrocarbonation of the nanopillars, as revealed by confocal Raman microscopy/spectroscopy, which enhances the wettability of the originally hydrophobic material and facilitates its subsequent use as an inverse pattern. Thus, the PTFE nanostructure is then used as a negative master for the fabrication of macroscopic hexagonal arrays of nanopores composed of biocompatible poly(vinylalcohol). In this particular case, the nanopores are 130-140 nm in diameter and the interpore distance is around 430 nm. Features of such characteristic dimensions are known to be easily recognized by living cells. Moreover, the inverse mold is not destroyed in the pore array demolding process and can be reused for further pore array fabrication. Therefore, the developed method allows the high-throughput production of cm(2)-scale biocompatible nanoporous surfaces that could be interesting as two-dimensional scaffolds for tissue repair or wound healing. Moreover, our approach can be extrapolated to the fabrication of almost any polymer and biopolymer ordered pore array. PMID:22948375

  4. Structural evolution of self-ordered alumina tapered nanopores with 100 nm interpore distance

    NASA Astrophysics Data System (ADS)

    Li, Juan; Li, Congshan; Gao, Xuefeng

    2011-10-01

    We in-detail investigated the profile evolution processes of highly ordered alumina under the cyclic treatment of mild anodizing of aluminum foils in oxalic acid followed by etching in phosphoric acid. With the cyclic times increasing, the profiles of nanopores were gradually evolved into the parabola-like, trumpet-like and conical shape. Although the inserted etching itself nearly had no impact on the growth rate of the nanopores due to the rapid recovering of thinned barrier layer at the initial stage of next anodizing, overmuch etching could bring apparent side effects such as wall-breaking, thinning and taper-removing from the top down. The anodizing and etching kinetics and their synergetic effects in modulating different aspect ratios and open sizes of conical pores were studied systematically. These findings are helpful to tailor high-quality anodic alumina taper-pores with tunable profiles.

  5. Fabrication of ordered nanoporous anodic alumina prepatterned by mold-assisted chemical etching

    PubMed Central

    2011-01-01

    In this article, a simple and cost-effective method to create patterned nanoindentations on Al surface via mold-assisted chemical etching process is demonstrated. This report shows the reaction-diffusion method which formed nanoscale shallow etch pits by the absorption/liberation behaviors of chemical etchant in poly(dimethylsiloxane) stamp. During subsequent anodization, it was possible to obtain the ordered nanopore arrays with 277 nm pitch that were guided by the prepatterned etch pits. The prepatterned etch pits obtained can guide the growth of AAO nanopores during anodization and facilitate the preparation of ordered nanopore arrays. PMID:21711706

  6. Modeling the specular spectral reflectance of partially ordered alumina nanopores on an aluminum substrate.

    PubMed

    Kuang, Dengfeng; Charrière, Renée; Matsapey, Natalia; Flury, Manuel; Faucheu, Jenny; Chavel, Pierre

    2015-02-23

    Anodizing of aluminum generates a porous alumina layer comprising cylindrical nanopores (300 nm diameter) extending essentially perpendicular to the substrate. The pore distribution over the surface exhibits a short-distance order close to hexagonal arrangement. On the contrary, long-distance order cannot be defined: the arrangement is not periodic. Visual observation of such nanoporous layers shows a reddish specular reflectance consistent with reflectance spectrum measurements. This work is a parametric study aiming at demonstrating that color effects are caused by the presence of disorder illustrated by the deviations from periodicity in terms of nanopore location and nanopore radius. Using the method of Rigorous Coupled Wave Analysis (RCWA), the reflectance spectrum has been simulated. Although our calculations were done using a simple one-dimensional (1D) model, a fair fit with experimental results is found. PMID:25836487

  7. Metallic muscles at work: high rate actuation in nanoporous gold/polyaniline composites.

    PubMed

    Detsi, Eric; Onck, Patrick; De Hosson, Jeff Th M

    2013-05-28

    Metallic muscles made of nanoporous metals suffer from serious drawbacks caused by the usage of an aqueous electrolyte for actuation. An aqueous electrolyte prohibits metallic muscles from operating in dry environments and hampers a high actuation rate due to the low ionic conductivity of electrolytes. In addition, redox reactions involved in electrochemical actuation severely coarsen the ligaments of nanoporous metals, leading to a substantial loss in performance of the actuator. Here we present an electrolyte-free approach to put metallic muscles to work via a metal/polymer interface. A nanocoating of polyaniline doped with sulfuric acid was grown onto the ligaments of nanoporous gold. Dopant sulfate anions coadsorbed into the polymer coating matrix were exploited to tune the nanoporous metal surface stress and subsequently generate macroscopic dimensional changes in the metal. Strain rates achieved in the single-component nanoporous metal/polymer composite actuator are 3 orders of magnitude higher than that of the standard three-component nanoporous metal/electrolyte hybrid actuator. PMID:23582044

  8. Biomimetic solution against dewetting in a highly hydrophobic nanopore.

    PubMed

    Picaud, Fabien; Paris, Guillaume; Gharbi, Tijani; Balme, Sébastien; Lepoitevin, Mathilde; Tangaraj, Vidhyadevi; Bechelany, Mikhael; Janot, Jean Marc; Balanzat, Emmanuel; Henn, François

    2016-06-14

    A water molecule is the foundation of life and is the primary compound in every living system. While many of its properties are understood in a bulk solvent, its behavior in a small hydrophobic nanopore still raises fundamental questions. For instance, a wetting/dewetting transition in a hydrophobic solid-state or a polymer nanopore occurs stochastically and can only be prevented by external physical stimuli. Controlling these transitions would be a primary requirement to improve many applications. Some biological channels, such as gramicidin A (gA) proteins, show a high rate of water and ion diffusion in their central subnanochannel while their external surface is highly hydrophobic. The diameter of this channel is significantly smaller than the inner size of the lowest artificial nanopore in which water drying occurs (i.e. 1.4 nm). In this paper, we propose an innovative idea to generate nanopore wetting as a result of which the application of an external field is no longer required. In a nanopore, the drying or wetting of the inner walls occurs randomly (in experiments and in simulations). However, we have shown how the confinement of gA, in a dried hydrophobic nanopore, rapidly generates a stable wetting of the latter. We believe that this simple idea, based on biomimetism, could represent a real breakthrough that could help to improve and develop new nanoscale applications. PMID:27157717

  9. Flow of methane in shale nanopores at low and high pressure by molecular dynamics simulations.

    PubMed

    Jin, Zhehui; Firoozabadi, Abbas

    2015-09-14

    Flow in shale nanopores may be vastly different from that in the conventional permeable media. In large pores and fractures, flow is governed by viscosity and pressure-driven. Convection describes the process. Pores in some shale media are in nanometer range. At this scale, continuum flow mechanism may not apply. Knudsen diffusion and hydrodynamic expressions such as the Hagen-Poiseuille equation and their modifications have been used to compute flow in nanopores. Both approaches may have drawbacks and can significantly underestimate molecular flux in nanopores. In this work, we use the dual control volume-grand canonical molecular dynamics simulations to investigate methane flow in carbon nanopores at low and high pressure conditions. Our simulations reveal that methane flow in a slit pore width of 1-4 nm can be more than one order of magnitude greater than that from Knudsen diffusion at low pressure and the Hagen-Poiseuille equation at high pressure. Knudsen diffusion and Hagen-Poiseuille equations do not account for surface adsorption and mobility of the adsorbed molecules, and inhomogeneous fluid density distributions. Mobility of molecules in the adsorbed layers significantly increases molecular flux. Molecular velocity profiles in nanopores deviate significantly from the Navier-Stokes hydrodynamic predictions. Our molecular simulation results are in agreement with the enhanced flow measurements in carbon nanotubes. PMID:26374043

  10. Direct imprinting of ordered and dense TiO 2 nanopore arrays by using a soft template for photovoltaic applications

    NASA Astrophysics Data System (ADS)

    Zhong, Peng; Que, Wenxiu; Hu, X.

    2011-09-01

    Highly ordered and dense TiO2 nanopore arrays are directly nanoimprinted on a transparent conductive glass substrate by using a polymethylmethacrylate/polydimethylsiloxane (PMMA/PDMS) composite soft template, which is replicated from an anodic aluminum oxide (AAO) replica mold. Results indicate that heat infiltration under vacuum conditions can ensure complete filling of PMMA into the AAO pores, and that free-standing PMMA nanorods with an aspect ratio more than 5 can be obtained by adjusting the AAO pore depth based on a freeze-drying technique. TiO2 nanopore arrays with different diameters from 30 to 300 nm and inter-pore distances between 70 and 450 nm can be easily fabricated by using the corresponding templates with different sizes. Preliminary solar cells are also assembled with a heterojunction of conjugated polymer/TiO2 nanopore arrays. Results indicate that the construction of poly-(3-hexylthiophene) (P3HT)/TiO2 nanopore arrays can be more helpful in quenching the PL emission of P3HT than that of P3HT/flat TiO2 film, and a maximum efficiency of about 0.32% can be obtained for a photovoltaic device with a TiO2/[6,6]-phenyl-C61-butyric acid methyl ester (PCBM)/P3HT structure.

  11. Self-Ordered Nanoporous Alumina Templates Formed by Anodization of Aluminum in Oxalic Acid

    NASA Astrophysics Data System (ADS)

    Vida-Simiti, Ioan; Nemes, Dorel; Jumate, Nicolaie; Thalmaier, Gyorgy; Sechel, Niculina

    2012-10-01

    Anodic aluminum oxide (AAO) membranes with highly ordered nanopores serve as ideal templates for the formation of various nanostructured materials. The procedure of the template preparation is based on a two-step self-organized anodization of aluminum. In the current study, AAO templates were fabricated in 0.3 M oxalic acid under the anodizing potential range of 30-60 V at an electrolyte temperature of ~5°C. The AAO templates were analyzed using scanning electron microscopy, x-ray diffraction, Fourier-transform infrared spectroscopy, and differential thermal analysis. The as obtained layers are amorphous; the mean pore size is between 40 nm and 75 nm and increases with the increase of the anodization potential. Well-defined pores across the whole aluminum template, a pore density of ~1010 pores/cm2, and a tendency to form a porous structure with hexagonal symmetry were observed.

  12. The Core-Shell Approach to Formation of Ordered Nanoporous Materials

    SciTech Connect

    Chang, Jeong H.; Wang, Li Q.; Shin, Yongsoon; Jeong, Byeongmoon; Birnbaum, Jerome C.; Exarhos, Gregory J.

    2002-03-04

    This work describes a novel core-shell approach for the preparation of ordered nanoporous ceramic materials that involve a self-assembly process at the molecular level using MPEG-b-PDLLA bloack copolymers. This approach provides for rapid self-assembly and structural reorganization at room temperature. Selected MPEG-b-PDLLA block copolymers were synthesized with systematic variation of the chain lengths of the resident hydrophilic and hydrophobic blocks. This allows the micelle size to be systematically varied. Results from this work are used to understand the formation mechanism of nanoporous structures in which the pore size and wall thickness are closely dependent on the size of hydrophobic cores and hydrophilic shells of the block copolymer templates. The core-shell mechanism for nanoporous structure evolution is based on the size and contrasting micellar packing arrangements that are controlled by the copolymer.

  13. High-density nanopore array for selective biomolecule transport.

    SciTech Connect

    Patel, Kamlesh D.

    2011-11-01

    Development of sophisticated tools capable of manipulating molecules at their own length scale enables new methods for chemical synthesis and detection. Although nanoscale devices have been developed to perform individual tasks, little work has been done on developing a truly scalable platform: a system that combines multiple components for sequential processing, as well as simultaneously processing and identifying the millions of potential species that may be present in a biological sample. The development of a scalable micro-nanofluidic device is limited in part by the ability to combine different materials (polymers, metals, semiconductors) onto a single chip, and the challenges with locally controlling the chemical, electrical, and mechanical properties within a micro or nanochannel. We have developed a unique construct known as a molecular gate: a multilayered polymer based device that combines microscale fluid channels with nanofluidic interconnects. Molecular gates have been demonstrated to selectively transport molecules between channels based on size or charge. In order to fully utilize these structures, we need to develop methods to actively control transport and identify species inside a nanopore. While previous work has been limited to creating electrical connections off-channel or metallizing the entire nanopore wall, we now have the ability to create multiple, separate conductive connections at the interior surface of a nanopore. These interior electrodes will be used for direct sensing of biological molecules, probing the electrical potential and charge distribution at the surface, and to actively turn on and off electrically driven transport of molecules through nanopores.

  14. Fabrication and ultraviolet photoresponse characteristics of ordered SnOx (x ≈ 0.87, 1.45, 2) nanopore films

    PubMed Central

    2011-01-01

    Based on the porous anodic aluminum oxide templates, ordered SnOx nanopore films (approximately 150 nm thickness) with different x (x ≈ 0.87, 1.45, 2) have been successfully fabricated by direct current magnetron sputtering and oxidizing annealing. Due to the high specific surface area, this ordered nanopore films exhibit a great improvement in recovery time compared to thin films for ultraviolet (UV) detection. Especially, the ordered SnOx nanopore films with lower x reveal higher UV light sensitivity and shorter current recovery time, which was explained by the higher concentration of the oxygen vacancies in this SnOx films. This work presents a potential candidate material for UV light detector. PACS: 81.15.Cd, 81.40.Ef, 81.70.Jb, 85.60.Gz. PMID:22142559

  15. The use of PEEK nanorod arrays for the fabrication of nanoporous surfaces under high temperature: SiNx example.

    PubMed

    Martín, Jaime; Martín-González, Marisol

    2012-09-21

    Large area silicon nitride (SiN(x)) nanoporous surfaces are fabricated using poly(ether-ether-ketone) (PEEK) nanorod arrays as a template. The procedure involves manipulation of nanoporous anodic aluminum oxide (AAO) templates in order to form an ordered array of PEEK nanopillars with high temperature resistant characteristics. In this context, self-ordered AAO templates are infiltrated with PEEK melts via the "precursor film" method. Once the melts have been crystallized in the porous structure of AAO, the basis alumina layer is removed, yielding an ordered array of PEEK nanopillars. The resulting structure is a high temperature and chemical resistant polymeric nanomold, which can be utilized in the synthesis of nanoporous materials under aggressive conditions. Such conditions are high temperatures (up to 320 °C), vacuum, or extreme pH. For example, SiN(x) nanopore arrays have been grown by plasma enhanced chemical vapor deposition at 300 °C, which can be of interest as mold for nanoimprint lithography, due to its hardness and low surface energy. The SiN(x) nanopore array portrays the same characteristics as the original AAO template: 120 nm diameter pores and an interpore distance of 430 nm. Furthermore, the aspect ratio of the SiN(x) nanopores can be tuned by selecting an AAO template with appropriate conditions. The use of PEEK as a nanotemplate extends the applicability of polymeric nanopatterns into a temperature regime up to now not accessible and opens up the simple fabrication of novel nanoporous inorganic surfaces. PMID:22854871

  16. Nanoporous ultra-high specific surface inorganic fibres

    NASA Astrophysics Data System (ADS)

    Kanehata, Masaki; Ding, Bin; Shiratori, Seimei

    2007-08-01

    Nanoporous inorganic (silica) nanofibres with ultra-high specific surface have been fabricated by electrospinning the blend solutions of poly(vinyl alcohol) (PVA) and colloidal silica nanoparticles, followed by selective removal of the PVA component. The configurations of the composite and inorganic nanofibres were investigated by changing the average silica particle diameters and the concentrations of colloidal silica particles in polymer solutions. After the removal of PVA by calcination, the fibre shape of pure silica particle assembly was maintained. The nanoporous silica fibres were assembled as a porous membrane with a high surface roughness. From the results of Brunauer-Emmett-Teller (BET) measurements, the BET surface area of inorganic silica nanofibrous membranes was increased with the decrease of the particle diameters. The membrane composed of silica particles with diameters of 15 nm showed the largest BET surface area of 270.3 m2 g-1 and total pore volume of 0.66 cm3 g-1. The physical absorption of methylene blue dye molecules by nanoporous silica membranes was examined using UV-vis spectrometry. Additionally, the porous silica membranes modified with fluoroalkylsilane showed super-hydrophobicity due to their porous structures.

  17. Three-dimensional bicontinuous nanoporous Au/polyaniline hybrid films for high-performance electrochemical supercapacitors

    NASA Astrophysics Data System (ADS)

    Lang, Xingyou; Zhang, Ling; Fujita, Takeshi; Ding, Yi; Chen, Mingwei

    2012-01-01

    We report three-dimensional bicontinuous nanoporous Au/polyaniline (PANI) composite films made by one-step electrochemical polymerization of PANI shell onto dealloyed nanoporous gold (NPG) skeletons for the applications in electrochemical supercapacitors. The NPG/PANI based supercapacitors exhibit ultrahigh volumetric capacitance (∼1500 F cm-3) and energy density (∼0.078 Wh cm-3), which are seven and four orders of magnitude higher than these of electrolytic capacitors, with the same power density up to ∼190 W cm-3. The outstanding capacitive performances result from a novel nanoarchitecture in which pseudocapacitive PANI shells are incorporated into pore channels of highly conductive NPG, making them promising candidates as electrode materials in supercapacitor devices combing high-energy storage densities with high-power delivery.

  18. Nanoporous Cathodes for High-Energy Li-S Batteries from Gyroid Block Copolymer Templates.

    PubMed

    Choudhury, Soumyadip; Agrawal, Mukesh; Formanek, Petr; Jehnichen, Dieter; Fischer, Dieter; Krause, Beate; Albrecht, Victoria; Stamm, Manfred; Ionov, Leonid

    2015-06-23

    This study reports on a facile approach to the fabrication of nanoporous carbon cathodes for lithium sulfur batteries using gyroid carbon replicas based on use of polystyrene-poly-4-vinylpyridine (PS-P4VP) block copolymers as sacrificial templates. The free-standing gyroid carbon network with a highly ordered and interconnected porous structure has been fabricated by impregnating the carbon precursor solution into the gyroid block copolymer nanotemplates and subsequently carbonizing them. A wide range of analytical tools have been employed to characterize fabricated porous carbon material. Prepared nanostructures are envisioned to have a great potential in myriad areas such as energy storage/conversion devices owing to their fascinating morphology exhibiting high surface area and uniform porosity with interconnected three-dimensional networks. The resulting carbon nanoporous structures infused with elemental sulfur have been found to work as a promising electrode for lithium sulfur batteries demonstrating a high cycling stability over more than 200 cycles. PMID:26014100

  19. 3D Nanoporous Metal Phosphides toward High-Efficiency Electrochemical Hydrogen Production.

    PubMed

    Tan, Yongwen; Wang, Hao; Liu, Pan; Cheng, Chun; Zhu, Fan; Hirata, Akihiko; Chen, Mingwei

    2016-04-01

    Free-standing nanoporous metal phosphides are fabricated by a novel top-down method, by selectively leaching less-stable metal phases from rapidly solidified two-phase metal-phosphorus alloys. The phosphide phases with relatively high electrochemical stability are left as the skeletons of nanoporous structures. The resultant nanoporous phosphides with tunable pore size and porosity show superior catalytic activities toward electrochemical hydrogen production. PMID:26889914

  20. Investigation of microcantilever array with ordered nanoporous coatings for selective chemical detection

    NASA Astrophysics Data System (ADS)

    Lee, J.-H.; Houk, R. T. J.; Robinson, A.; Greathouse, J. A.; Thornberg, S. M.; Allendorf, M. D.; Hesketh, P. J.

    2010-04-01

    In this paper we demonstrate the potential for novel nanoporous framework materials (NFM) such as metal-organic frameworks (MOFs) to provide selectivity and sensitivity to a broad range of analytes including explosives, nerve agents, and volatile organic compounds (VOCs). NFM are highly ordered, crystalline materials with considerable synthetic flexibility resulting from the presence of both organic and inorganic components within their structure. Detection of chemical weapons of mass destruction (CWMD), explosives, toxic industrial chemicals (TICs), and volatile organic compounds (VOCs) using micro-electro-mechanical-systems (MEMS) devices, such as microcantilevers and surface acoustic wave sensors, requires the use of recognition layers to impart selectivity. Traditional organic polymers are dense, impeding analyte uptake and slowing sensor response. The nanoporosity and ultrahigh surface areas of NFM enhance transport into and out of the NFM layer, improving response times, and their ordered structure enables structural tuning to impart selectivity. Here we describe experiments and modeling aimed at creating NFM layers tailored to the detection of water vapor, explosives, CWMD, and VOCs, and their integration with the surfaces of MEMS devices. Force field models show that a high degree of chemical selectivity is feasible. For example, using a suite of MOFs it should be possible to select for explosives vs. CWMD, VM vs. GA (nerve agents), and anthracene vs. naphthalene (VOCs). We will also demonstrate the integration of various NFM with the surfaces of MEMS devices and describe new synthetic methods developed to improve the quality of VFM coatings. Finally, MOF-coated MEMS devices show how temperature changes can be tuned to improve response times, selectivity, and sensitivity.

  1. Investigation of microcantilever array with ordered nanoporous coatings for selective chemical detection.

    SciTech Connect

    Allendorf, Mark D.; Thornberg, Steven Michael; Lee, J. -H.; Robinson, Alex Lockwood; Hesketh, Peter J.; Greathouse, Jeffery A.; Houk, Ronald J. T.

    2010-03-01

    In this paper we demonstrate the potential for novel nanoporous framework materials (NFM) such as metal-organic frameworks (MOFs) to provide selectivity and sensitivity to a broad range of analytes including explosives, nerve agents, and volatile organic compounds (VOCs). NFM are highly ordered, crystalline materials with considerable synthetic flexibility resulting from the presence of both organic and inorganic components within their structure. Detection of chemical weapons of mass destruction (CWMD), explosives, toxic industrial chemicals (TICs), and volatile organic compounds (VOCs) using micro-electro-mechanical-systems (MEMS) devices, such as microcantilevers and surface acoustic wave sensors, requires the use of recognition layers to impart selectivity. Traditional organic polymers are dense, impeding analyte uptake and slowing sensor response. The nanoporosity and ultrahigh surface areas of NFM enhance transport into and out of the NFM layer, improving response times, and their ordered structure enables structural tuning to impart selectivity. Here we describe experiments and modeling aimed at creating NFM layers tailored to the detection of water vapor, explosives, CWMD, and VOCs, and their integration with the surfaces of MEMS devices. Force field models show that a high degree of chemical selectivity is feasible. For example, using a suite of MOFs it should be possible to select for explosives vs. CWMD, VM vs. GA (nerve agents), and anthracene vs. naphthalene (VOCs). We will also demonstrate the integration of various NFM with the surfaces of MEMS devices and describe new synthetic methods developed to improve the quality of VFM coatings. Finally, MOF-coated MEMS devices show how temperature changes can be tuned to improve response times, selectivity, and sensitivity.

  2. Fabrication of high reflectivity nanoporous distributed Bragg reflectors by controlled electrochemical etching of GaN

    NASA Astrophysics Data System (ADS)

    Lee, Seung-Min; Kang, Jin-Ho; Lee, June Key; Ryu, Sang-Wan

    2016-07-01

    The nanoporous medium is a valuable feature of optical devices because of its variable optical refractive index with porosity. One important application is in a GaN-based vertical cavity surface emitting laser having a distributed Bragg reflector (DBR) composed of alternating nanoporous and bulk GaNs. However, optimization of the fabrication process for high reflectivity DBRs having wellcontrolled high reflection bands has not been studied yet. We used electrochemical etching to study the fabrication process of a nanoporous GaN DBR and analyzed the relationship between the morphology and optical reflectivity. Several electrolytes were examined for the formation of the optimized nanoporous structure. A highly reflective DBRs having reflectivity of ~100% were obtained over a wide wavelength range of 450-750 nm. Porosification of semiconductors into nanoporous layers could provide a high reflectivity DBR due to controlled index-contrast, which would be advantages for the construction of a high-Q optical cavity.

  3. Nondestructive Creation of Ordered Nanopores by Selective Swelling of Block Copolymers: Toward Homoporous Membranes.

    PubMed

    Wang, Yong

    2016-07-19

    Pores regulate the entry and exit of substances based on the differences in physical sizes or chemical affinities. Pore uniformity, ordering, and the homogeneity of the surface chemistry of the pore walls are vital for maximizing the performance of a porous material because any scattering in these parameters weakens the capability of pores to discriminate foreign substances. Most strategies for the creation of homogeneous pores are destructive, and sacrificial components in the precursor materials must be selectively removed to generate porosities. The incorporation and subsequent removal of the sacrificial components frequently make the pore-making process complicated and inefficient and impose greater uncertainty in the control of the pore homogeneity. Block copolymers (BCPs) have been demonstrated to be promising precursors in the fabrication of highly ordered nanoporous structures. Unfortunately, BCP-derived porosities are also predominantly dependent on destructive pore-making processes (e.g., etching or extraction). To address this problem, we have developed a swelling-based nondestructive strategy. In this swelling process, one simply needs to immerse BCP materials in a solvent selective for the minority blocks for hours. After removing the BCPs from the solvent followed by air drying, pores are generated throughout the BCP materials in the positions where the minority blocks initially dwell. This Account discusses our recent discoveries, new insights, and emerging applications of this burgeoning pore-making method with a focus on the development of ordered porosities in bulk BCP materials. The initial morphology and orientation of the minority phases in BCPs determine the pore orientation and geometry in the produced porous materials. For nonaligned BCPs, three-dimensionally interconnected pores with sizes scattering in the 10-50 nm range are produced after swelling. There is a morphology evolution of BCP materials from the initial nonporous structure to

  4. Large enhancement of quantum dot fluorescence by highly scalable nanoporous gold.

    PubMed

    Zhang, Ling; Song, Yunke; Fujita, Takeshi; Zhang, Ye; Chen, Mingwei; Wang, Tza-Huei

    2014-02-26

    Dealloyed nanoporous gold (NPG) dramatically enhances quantum dot (QD) fluorescence by amplifying near-field excitation and increasing the radiative decay rate. Originating from plasmonic coupling, the fluorescence enhancement is highly dependent upon the nanopore size of the NPG. In contrast to other nanoengineered metallic structures, NPG exhibits fluorescence enhancement of QDs over a large substrate surface. PMID:24339211

  5. Nanoporous Gyroid-Structured Epoxy from Block Copolymer Templates for High Protein Adsorbability.

    PubMed

    Wang, Xin-Bo; Lin, Tze-Chung; Hsueh, Han-Yu; Lin, Shih-Chieh; He, Xiao-Dong; Ho, Rong-Ming

    2016-06-28

    Nanoporous epoxy with gyroid texture is fabricated by using a nanoporous polymer with gyroid-forming nanochannels as a template for polymerization of epoxy. The nanoporous polymer template is obtained from the self-assembly of degradable block copolymer, polystyrene-b-poly(l-lactide) (PS-PLLA), followed by hydrolysis of PLLA blocks. Templated polymerization can be conducted under ambient conditions to create well-defined, bicontinuous epoxy networks in a PS matrix. By taking advantage of multistep curing of epoxy, well-ordered robust nanoporous epoxy can be obtained after removal of PS template, giving robust porous materials. The through-hole nanoporous epoxy in the film state can be used as a coated layer to enhance the adsorbability for both lysozyme and bovine serum albumin. PMID:27245380

  6. Molecular Order and Dynamics of Tris(2-ethylhexyl)phosphate Confined in Uni-Directional Nanopores

    SciTech Connect

    Kipnusu, Wycliffe Kiprop; Kossack, Wilhelm; Iacob, Ciprian; Jasiurkowska, Malgorzata; Sangoro, Joshua R; Kremer, Friedrich

    2012-01-01

    Infrared Transition Moment Orientational Analysis (IR-TMOA) and Broadband Dielectric Spectroscopy (BDS) are combined to study molecular order and dynamics of the glass-forming liquid Tris(2-ethylhexy)phosphate (TEHP) confined in uni-directional nanopores with diameters of 4, 8, and 10.4 nm. The former method enables one to determine the molecular order parameter of specific IR transition moments. It is observed that the central P=O moiety of TEHP has a weak orientational effect (molecular order parameter Sz = 0.1 0.04) due the nanoporous confinement, in contrast to the terminal C H groups. BDS traces the dynamic glass transition of the guest molecules in a broad spectral range and at widely varying temperature. An enhancement of the mobility takes place when approaching the glass transition temperature and becomes more pronounced with decreasing pore diameter. This is attributed to a slight reduction of the density of the confined liquid caused by the 2-dimensional geometrical constraint.

  7. High-Bandwidth Protein Analysis Using Solid-State Nanopores

    PubMed Central

    Larkin, Joseph; Henley, Robert Y.; Muthukumar, Murugappan; Rosenstein, Jacob K.; Wanunu, Meni

    2014-01-01

    High-bandwidth measurements of the ion current through hafnium oxide and silicon nitride nanopores allow the analysis of sub-30 kD protein molecules with unprecedented time resolution and detection efficiency. Measured capture rates suggest that at moderate transmembrane bias values, a substantial fraction of protein translocation events are detected. Our dwell-time resolution of 2.5 μs enables translocation time distributions to be fit to a first-passage time distribution derived from a 1D diffusion-drift model. The fits yield drift velocities that scale linearly with voltage, consistent with an electrophoretic process. Further, protein diffusion constants (D) are lower than the bulk diffusion constants (D0) by a factor of ∼50, and are voltage-independent in the regime tested. We reason that deviations of D from D0 are a result of confinement-driven pore/protein interactions, previously observed in porous systems. A straightforward Kramers model for this inhibited diffusion points to 9- to 12-kJ/mol interactions of the proteins with the nanopore. Reduction of μ and D are found to be material-dependent. Comparison of current-blockage levels of each protein yields volumetric information for the two proteins that is in good agreement with dynamic light scattering measurements. Finally, detection of a protein-protein complex is achieved. PMID:24507610

  8. Atomic layer deposition of nanoporous biomaterials.

    SciTech Connect

    Narayan, R. J.; Adiga, S. P.; Pellin, M. J.; Curtiss, L. A.; Stafslien, S.; Chisholm, B.; Monteiro-Riviere, N. A.; Brigmon, R. L.; Elam, J. W.; Univ. of North Carolina; North Carolina State Univ.; Eastman Kodak Co.; North Dakota State Univ.; SRL

    2010-03-01

    Due to its chemical stability, uniform pore size, and high pore density, nanoporous alumina is being investigated for use in biosensing, drug delivery, hemodialysis, and other medical applications. In recent work, we have examined the use of atomic layer deposition for coating the surfaces of nanoporous alumina membranes. Zinc oxide coatings were deposited on nanoporous alumina membranes using atomic layer deposition. The zinc oxide-coated nanoporous alumina membranes demonstrated antimicrobial activity against Escherichia coli and Staphylococcus aureus bacteria. These results suggest that atomic layer deposition is an attractive technique for modifying the surfaces of nanoporous alumina membranes and other nanostructured biomaterials. Nanoporous alumina, also known as anodic aluminum oxide (AAO), is a nanomaterial that exhibits several unusual properties, including high pore densities, straight pores, small pore sizes, and uniform pore sizes. In 1953, Keller et al. showed that anodizing aluminum in acid electrolytes results in a thick layer of nearly cylindrical pores, which are arranged in a close-packed hexagonal cell structure. More recently, Matsuda & Fukuda demonstrated preparation of highly ordered platinum and gold nanohole arrays using a replication process. In this study, a negative structure of nanoporous alumina was initially fabricated and a positive structure of a nanoporous metal was subsequently fabricated. Over the past fifteen years, nanoporous alumina membranes have been used as templates for growth of a variety of nanostructured materials, including nanotubes, nanowires, nanorods, and nanoporous membranes.

  9. Large scale synthesis of nanoporous BN flake with high surface areas

    NASA Astrophysics Data System (ADS)

    Zhu, Hui-Ling; Han, Qiu-Xia; Wu, Jie; Meng, Xiang-Lin; Cui, Hong-Zhi

    2016-01-01

    Nanoporous boron nitride (BN) flake was synthesized in large scale at temperatures between 550 and 600 °C for 10 h via the simple reaction between NaBH4 and CH5N3S. X-ray diffraction and Fourier transform infrared spectra confirm the formation of hexagonal BN. Examination by high-resolution transmission electron microscope reveals that the product is comprised of nanoporous flake, which exhibits a high surface area of 214 m2 g-1 characterized by nitrogen adsorption-desorption isotherms. The nanoporous BN flake has good thermal stability and oxidation resistance up to 800 °C measured by thermogravimetric analysis.

  10. Preparation of nanoporous metal foam from high nitrogen transition metal complexes

    DOEpatents

    Tappan, Bryce C.; Huynh, My Hang V.; Hiskey, Michael A.; Son, Steven F.; Oschwald, David M.; Chavez, David E.; Naud, Darren L.

    2006-11-28

    Nanoporous metal foams are prepared by ignition of high nitrogen transition metal complexes. The ammonium salts of iron(III) tris[bi(tetrazolato)-amine], cobalt(III) tris(bi(tetrazolato)amine), and high nitrogen compounds of copper and silver were prepared as loose powders, pressed into pellets and wafers, and ignited under an inert atmosphere to form nanoporous metal foam monoliths having very high surface area and very low density.

  11. High-throughput optical sensing of nucleic acids in a nanopore array.

    PubMed

    Huang, Shuo; Romero-Ruiz, Mercedes; Castell, Oliver K; Bayley, Hagan; Wallace, Mark I

    2015-11-01

    Protein nanopores such as α-haemolysin and Mycobacterium smegmatis porin A (MspA) can be used to sequence long strands of DNA at low cost. To provide high-speed sequencing, large arrays of nanopores are required, but current nanopore sequencing methods rely on ionic current measurements from individually addressed pores and such methods are likely to prove difficult to scale up. Here we show that, by optically encoding the ionic flux through protein nanopores, the discrimination of nucleic acid sequences and the detection of sequence-specific nucleic acid hybridization events can be parallelized. We make optical recordings at a density of ∼10(4) nanopores per mm(2) in a single droplet interface bilayer. Nanopore blockades can discriminate between DNAs with sub-picoampere equivalent resolution, and specific miRNA sequences can be identified by differences in unzipping kinetics. By creating an array of 2,500 bilayers with a micropatterned hydrogel chip, we are also able to load different samples into specific bilayers suitable for high-throughput nanopore recording. PMID:26322943

  12. High-throughput optical sensing of nucleic acids in a nanopore array

    NASA Astrophysics Data System (ADS)

    Huang, Shuo; Romero-Ruiz, Mercedes; Castell, Oliver K.; Bayley, Hagan; Wallace, Mark I.

    2015-11-01

    Protein nanopores such as α-haemolysin and Mycobacterium smegmatis porin A (MspA) can be used to sequence long strands of DNA at low cost. To provide high-speed sequencing, large arrays of nanopores are required, but current nanopore sequencing methods rely on ionic current measurements from individually addressed pores and such methods are likely to prove difficult to scale up. Here we show that, by optically encoding the ionic flux through protein nanopores, the discrimination of nucleic acid sequences and the detection of sequence-specific nucleic acid hybridization events can be parallelized. We make optical recordings at a density of ∼104 nanopores per mm2 in a single droplet interface bilayer. Nanopore blockades can discriminate between DNAs with sub-picoampere equivalent resolution, and specific miRNA sequences can be identified by differences in unzipping kinetics. By creating an array of 2,500 bilayers with a micropatterned hydrogel chip, we are also able to load different samples into specific bilayers suitable for high-throughput nanopore recording.

  13. Ordered La0.7Sr0.3MnO3 nanohole arrays fabricated on a nanoporous alumina template by pulsed laser ablation

    NASA Astrophysics Data System (ADS)

    Kumaresavanji, M.; Gomes, I. T.; Apolinario, A.; Rolo, A. G.; Almeida, B. G.; Lopes, A. M. L.; Araujo, J. P.

    2016-03-01

    Highly ordered nanohole arrays of {{La}}0.7{{Sr}}0.3{{MnO}}3 manganite have been synthesized using pulsed laser deposition on nanoporous alumina template. Their structure and phase formation were characterized by scanning electron microscopy (SEM), atomic force microscopy (AFM), energy dispersive x-ray spectroscopy (EDX) and x-ray diffraction (XRD). The magnetic measurements were performed with respect to temperature and field and exhibit a ferromagnetic to paramagnetic transition at 284 K. In addition, the temperature dependence of electrical resistance was measured at different magnetic fields and an insulating phase throughout all the temperatures was observed. The low temperature ferromagnetic insulating state is discussed by the presence of a canted ferromagnetic state induced by the nanoholes. The present work shows the feasibility of combining both the nanoporous alumina template and pulsed laser ablation for the fabrication of perovskite manganite nanohole arrays which can also be extended to fabricate other multicomponent oxide nanohole materials.

  14. Ordered nanoporous silica as carriers for improved delivery of water insoluble drugs: a comparative study between three dimensional and two dimensional macroporous silica

    PubMed Central

    Wang, Ying; Zhao, Qinfu; Hu, Yanchen; Sun, Lizhang; Bai, Ling; Jiang, Tongying; Wang, Siling

    2013-01-01

    The goal of the present study was to compare the drug release properties and stability of the nanoporous silica with different pore architectures as a matrix for improved delivery of poorly soluble drugs. For this purpose, three dimensional ordered macroporous (3DOM) silica with 3D continuous and interconnected macropores of different sizes (200 nm and 500 nm) and classic mesoporous silica (ie, Mobil Composition of Matter [MCM]-41 and Santa Barbara Amorphous [SBA]-15) with well-ordered two dimensional (2D) cylindrical mesopores were successfully fabricated and then loaded with the model drug indomethacin (IMC) via the solvent deposition method. Scanning electron microscopy (SEM), N2 adsorption, differential scanning calorimetry (DSC), and X-ray diffraction (XRD) were applied to systematically characterize all IMC-loaded nanoporous silica formulations, evidencing the successful inclusion of IMC into nanopores, the reduced crystallinity, and finally accelerated dissolution of IMC. It was worth mentioning that, in comparison to 2D mesoporous silica, 3DOM silica displayed a more rapid release profile, which may be ascribed to the 3D interconnected pore networks and the highly accessible surface areas. The results obtained from the stability test indicated that the amorphous state of IMC entrapped in the 2D mesoporous silica (SBA-15 and MCM-41) has a better physical stability than in that of 3DOM silica. Moreover, the dissolution rate and stability of IMC loaded in 3DOM silica was closely related to the pore size of macroporous silica. The colorimetric 3-(4,5-Dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) and Cell Counting Kit (CCK)-8 assays in combination with direct morphology observations demonstrated the good biocompatibility of nanoporous silica, especially for 3DOM silica and SBA-15. The present work encourages further study of the drug release properties and stability of drug entrapped in different pore architecture of silica in order to realize

  15. High density group IV semiconductor nanowire arrays fabricated in nanoporous alumina templates

    NASA Astrophysics Data System (ADS)

    Redwing, Joan M.; Dilts, Sarah M.; Lew, Kok-Keong; Cranmer, Alexana E.; Mohney, Suzanne E.

    2005-11-01

    The fabrication of high density arrays of semiconductor nanowires is of interest for nanoscale electronics, chemical and biological sensing and energy conversion applications. We have investigated the synthesis, intentional doping and electrical characterization of Si and Ge nanowires grown by the vapor-liquid-solid (VLS) method in nanoporous alumina membranes. Nanoporous membranes provide a convenient platform for nanowire growth and processing, enabling control of wire diameter via pore size and the integration of contact metals for electrical testing. For VLS growth in nanoporous materials, reduced pressures and temperatures are required in order to promote the diffusion of reactants into the pore without premature decomposition on the membrane surface or pore walls. The effect of growth conditions on the growth rate of Si and Ge nanowires from SiH 4 and GeH 4 sources, respectively, was investigated and compared. In both cases, the measured activation energies for nanowire growth were substantially lower than activation energies typically reported for Si and Ge thin film deposition under similar growth conditions, suggesting that gold plays a catalytic role in the VLS growth process. Intentionally doped SiNW arrays were also prepared using trimethylboron (TMB) and phosphine (PH 3) as p-type and n-type dopant sources, respectively. Nanowire resistivities were calculated from plots of the array resistance as a function of nanowire length. A decrease in resistivity was observed for both n-type and p-type doped SiNW arrays compared to those grown without the addition of a dopant source.

  16. Obtaining structural information of small proteins using solid-state nanopores and high-bandwidth measurements

    NASA Astrophysics Data System (ADS)

    Niedzwiecki, David; Lanci, Christopher; Saven, Jeffery; Drndic, Marija

    2015-03-01

    The use of biological nanopores sensors to characterize proteins has proved a fruitful field of study. Solid-state nanopores hold several advantages over their biological counterparts, including the ability to tune pore diameter and their robustness to external conditions. Despite these advantages, the use of solid-state nanopores for protein analysis has proved difficult due to rapid translocation times of proteins and poor signal-to-noise of small peptides. Recently, improvements in high-bandwidth acquisition and in signal-to-noise have made the study of small peptides using solid-state nanopores feasible. Here we report on the detection and characterization of peptides as small as 33 amino-acids in length using sub-10 nm thin silicon nitride nanopores, giving high signal levels, combined with high-bandwidth electronics. In addition we show differentiation between monomers and dimer forms of the GCN-4 p1 leucine zipper, a coil-coil structure, and compare this with the unstructured 33-mer. The differentiation between these two forms demonstrates the possibility of extracting useful structural information from short peptide structures using modern solid-state nanopore systems.

  17. Optically pumped GaN vertical cavity surface emitting laser with high index-contrast nanoporous distributed Bragg reflector.

    PubMed

    Lee, Seung-Min; Gong, Su-Hyun; Kang, Jin-Ho; Ebaid, Mohamed; Ryu, Sang-Wan; Cho, Yong-Hoon

    2015-05-01

    Laser operation of a GaN vertical cavity surface emitting laser (VCSEL) is demonstrated under optical pumping with a nanoporous distributed Bragg reflector (DBR). High reflectivity, approaching 100%, is obtained due to the high index-contrast of the nanoporous DBR. The VCSEL system exhibits low threshold power density due to the formation of high Q-factor cavity, which shows the potential of nanoporous medium for optical devices. PMID:25969197

  18. Fabrication and Characterization of Solid-state Nanopore Arrays for High Throughput DNA Sequencing

    PubMed Central

    Torre, Ruby dela; Larkin, Joseph; Singer, Alon; Meller, Amit

    2012-01-01

    We report the fabrication and characterization of uniformly-sized nanopore arrays, integrated into an optical detection system for high-throughput DNA sequencing applications. Nanopore arrays were fabricated using Focused Ion Beam milling followed by TiO2 coating using Atomic Layer Deposition (ALD). The TiO2 layer decreases the initial pore diameter down to sub-10nm range, compatible with the requirements for nanopore-based sequencing using optical readout. We find that the TiO2 layers produce a lower photoluminescence background as compared with the more broadly used Al2O3 coatings. The functionality of the nanopore array was demonstrated by the simultaneous optical detection of DNA-quantum dot-conjugates, which were electro-kinetically driven through the nanopores. Our optical scheme employs Total Internal Reflection Fluorescence (TIRF) microscopy to illuminate a wide area of the TiO2-coated membrane. A highly parallel system for observing DNA capture events in a uniformly-sized 6×6 nanopore array was experimentally realized. PMID:22948520

  19. Optimizing Nanopore Surface Properties for High-Efficiency Water Desalination

    NASA Astrophysics Data System (ADS)

    Cohen-Tanugi, David; Grossman, Jeffrey

    2011-03-01

    As water resources worldwide become rapidly scarcer, it is becoming increasingly important to devise new techniques to obtain clean water from seawater. At present, water purification technologies are limited by costly energy requirements relative to the theoretical thermodynamic limit and by insufficient understanding of the physical processes underlying ion filtration and fluid transport at the molecular scale. New advances in computational materials science offer a promising way to deepen our understanding of these physical phenomena. In this presentation, we describe a new approach for high-efficiency water desalination based on surface-engineered porous materials. This approach is especially relevant for promising technologies such as nanofiltration and membrane distillation, which offers promising advantages over traditional desalination technologies using mesoporous membranes that are only permeable to pure water vapor. More accurate molecular modeling of mesoporous and nanoporous materials represents a key step towards efficient large-scale treatment of seawater. Results regarding the effect of pore properties (surface texture, morphology, density, tortuosity) on desired performance characteristics such as ion selectivity, maximal water flux and energy requirements will be presented.

  20. Crosstalk between adjacent nanopores in a solid-state membrane array for multi-analyte high-throughput biomolecule detection

    NASA Astrophysics Data System (ADS)

    Raza, Muhammad Usman; Saleem, Sajid; Ali, Waqas; Iqbal, Samir M.

    2016-08-01

    Single nanopores are used to detect a variety of biological molecules. The modulations in ionic current under applied bias across the nanopore contain important information about translocating species, thus providing single analyte detection. These systems are, however, challenged in practical situations where multiple analytes have to be detected at high throughput. This paper presents the analysis of a multi-nanopore system that can be used for the detection of analytes with high throughput. As a scalable model, two nanopores were simulated in a single solid-state membrane. The interactions of the electric fields at the mouths of the individual nanopores were analyzed. The data elucidated the electrostatic properties of the nanopores from a single membrane and provided a framework to calculate the -3 dB distance, akin to the Debye length, from one nanopore to the other. This distance was the minimum distance between the adjacent nanopores such that their individual electric fields did not significantly interact with one another. The results can help in the optimal experimental design to construct solid-state nanopore arrays for any given nanopore size and applied bias.

  1. Toward high permeability, selectivity and controllability of water desalination with FePc nanopores.

    PubMed

    Deng, Qingming; Pan, Jun; Yin, Xiaohui; Wang, Xiaofeng; Zhao, Lina; Kang, Seung-gu; Jimenez-Cruz, Camilo A; Zhou, Ruhong; Li, Jingyuan

    2016-03-21

    Nanoporous materials exhibit promising potential in water transportation applications, especially in ocean water desalination. It is highly desired to have great permeability, selectivity and controllability in the desalination performance of these nanopores. However, it is still a challenge to achieve all three features in one material or device. Here, we demonstrate efficient and controllable water desalination with a nanoporous 2D Fe phthalocyanine (FePc) membrane using molecular dynamics simulations. We find the FePc membrane not only conducts fast water flow, but it also suppresses ion permeation. The selectivity is attributed to a mechanism distinct from the traditional steric exclusion: cations are excluded due to electrostatic repulsion, whereas anions can be trapped in the nanopore and induce the reorganization of ions in the vicinity of the nanopore, which in turn creates a tendency for the trapped anions to move back into the saline reservoir. More interestingly, we find such mechanism is largely due to the sufficiently strong electrostatic interaction of the charged nanopore region with ions and is not restricted to the FePc nanopore. In addition, the number of protonated nitrogen atoms in FePc pores can be modulated by adjusting the pH value of the solution. The extent of the anion occupancy can thus be regulated, giving rise to control of the water flow. Taken together, great permeability, selectivity and controllability can be achieved with this nanosheet system. Moreover, our study suggests there is an alternative mechanism of water desalination which may be realized by intrinsically nanoporous materials such as FePc membranes. PMID:26923172

  2. Threading DNA through nanopores for biosensing applications

    NASA Astrophysics Data System (ADS)

    Fyta, Maria

    2015-07-01

    This review outlines the recent achievements in the field of nanopore research. Nanopores are typically used in single-molecule experiments and are believed to have a high potential to realize an ultra-fast and very cheap genome sequencer. Here, the various types of nanopore materials, ranging from biological to 2D nanopores are discussed together with their advantages and disadvantages. These nanopores can utilize different protocols to read out the DNA nucleobases. Although, the first nanopore devices have reached the market, many still have issues which do not allow a full realization of a nanopore sequencer able to sequence the human genome in about a day. Ways to control the DNA, its dynamics and speed as the biomolecule translocates the nanopore in order to increase the signal-to-noise ratio in the reading-out process are examined in this review. Finally, the advantages, as well as the drawbacks in distinguishing the DNA nucleotides, i.e., the genetic information, are presented in view of their importance in the field of nanopore sequencing.

  3. Threading DNA through nanopores for biosensing applications.

    PubMed

    Fyta, Maria

    2015-07-15

    This review outlines the recent achievements in the field of nanopore research. Nanopores are typically used in single-molecule experiments and are believed to have a high potential to realize an ultra-fast and very cheap genome sequencer. Here, the various types of nanopore materials, ranging from biological to 2D nanopores are discussed together with their advantages and disadvantages. These nanopores can utilize different protocols to read out the DNA nucleobases. Although, the first nanopore devices have reached the market, many still have issues which do not allow a full realization of a nanopore sequencer able to sequence the human genome in about a day. Ways to control the DNA, its dynamics and speed as the biomolecule translocates the nanopore in order to increase the signal-to-noise ratio in the reading-out process are examined in this review. Finally, the advantages, as well as the drawbacks in distinguishing the DNA nucleotides, i.e., the genetic information, are presented in view of their importance in the field of nanopore sequencing. PMID:26061408

  4. Highly efficient shrinkage of inverted-pyramid silicon nanopores by plasma-enhanced chemical vapor deposition technology.

    PubMed

    Wang, Yifan; Deng, Tao; Chen, Qi; Liang, Feng; Liu, Zewen

    2016-06-24

    Solid-state nanopore-based analysis systems are currently one of the most attractive and promising platforms in sensing fields. This work presents a highly efficient method to shrink inverted-pyramid silicon nanopores using plasma-enhanced chemical vapor deposition (PECVD) technology by the deposition of SiN x onto the surface of the nanopore. The contraction of the inverted-pyramid silicon nanopores when subjected to the PECVD process has been modeled and carefully analyzed, and the modeling data are in good agreement with the experimental results within a specific PECVD shrinkage period (∼0-600 s). Silicon nanopores within a 50-400 nm size range contract to sub-10 nm dimensions. Additionally, the inner structure of the nanopores after the PECVD process has been analyzed by focused ion beam cutting process. The results show an inner structure morphology change from inverted-pyramid to hourglass, which may enhance the spatial resolution of sensing devices. PMID:27181294

  5. Highly efficient shrinkage of inverted-pyramid silicon nanopores by plasma-enhanced chemical vapor deposition technology

    NASA Astrophysics Data System (ADS)

    Wang, Yifan; Deng, Tao; Chen, Qi; Liang, Feng; Liu, Zewen

    2016-06-01

    Solid-state nanopore-based analysis systems are currently one of the most attractive and promising platforms in sensing fields. This work presents a highly efficient method to shrink inverted-pyramid silicon nanopores using plasma-enhanced chemical vapor deposition (PECVD) technology by the deposition of SiN x onto the surface of the nanopore. The contraction of the inverted-pyramid silicon nanopores when subjected to the PECVD process has been modeled and carefully analyzed, and the modeling data are in good agreement with the experimental results within a specific PECVD shrinkage period (∼0–600 s). Silicon nanopores within a 50–400 nm size range contract to sub-10 nm dimensions. Additionally, the inner structure of the nanopores after the PECVD process has been analyzed by focused ion beam cutting process. The results show an inner structure morphology change from inverted-pyramid to hourglass, which may enhance the spatial resolution of sensing devices.

  6. Photoresistance switching of plasmonic nanopores.

    PubMed

    Li, Yi; Nicoli, Francesca; Chen, Chang; Lagae, Liesbet; Groeseneken, Guido; Stakenborg, Tim; Zandbergen, Henny W; Dekker, Cees; Van Dorpe, Pol; Jonsson, Magnus P

    2015-01-14

    Fast and reversible modulation of ion flow through nanosized apertures is important for many nanofluidic applications, including sensing and separation systems. Here, we present the first demonstration of a reversible plasmon-controlled nanofluidic valve. We show that plasmonic nanopores (solid-state nanopores integrated with metal nanocavities) can be used as a fluidic switch upon optical excitation. We systematically investigate the effects of laser illumination of single plasmonic nanopores and experimentally demonstrate photoresistance switching where fluidic transport and ion flow are switched on or off. This is manifested as a large (∼ 1-2 orders of magnitude) increase in the ionic nanopore resistance and an accompanying current rectification upon illumination at high laser powers (tens of milliwatts). At lower laser powers, the resistance decreases monotonically with increasing power, followed by an abrupt transition to high resistances at a certain threshold power. A similar rapid transition, although at a lower threshold power, is observed when the power is instead swept from high to low power. This hysteretic behavior is found to be dependent on the rate of the power sweep. The photoresistance switching effect is attributed to plasmon-induced formation and growth of nanobubbles that reversibly block the ionic current through the nanopore from one side of the membrane. This explanation is corroborated by finite-element simulations of a nanobubble in the nanopore that show the switching and the rectification. PMID:25514824

  7. Photoresistance Switching of Plasmonic Nanopores

    PubMed Central

    2015-01-01

    Fast and reversible modulation of ion flow through nanosized apertures is important for many nanofluidic applications, including sensing and separation systems. Here, we present the first demonstration of a reversible plasmon-controlled nanofluidic valve. We show that plasmonic nanopores (solid-state nanopores integrated with metal nanocavities) can be used as a fluidic switch upon optical excitation. We systematically investigate the effects of laser illumination of single plasmonic nanopores and experimentally demonstrate photoresistance switching where fluidic transport and ion flow are switched on or off. This is manifested as a large (∼1–2 orders of magnitude) increase in the ionic nanopore resistance and an accompanying current rectification upon illumination at high laser powers (tens of milliwatts). At lower laser powers, the resistance decreases monotonically with increasing power, followed by an abrupt transition to high resistances at a certain threshold power. A similar rapid transition, although at a lower threshold power, is observed when the power is instead swept from high to low power. This hysteretic behavior is found to be dependent on the rate of the power sweep. The photoresistance switching effect is attributed to plasmon-induced formation and growth of nanobubbles that reversibly block the ionic current through the nanopore from one side of the membrane. This explanation is corroborated by finite-element simulations of a nanobubble in the nanopore that show the switching and the rectification. PMID:25514824

  8. Analysis of nanopore arrangement of porous alumina layers formed by anodizing in oxalic acid at relatively high temperatures

    NASA Astrophysics Data System (ADS)

    Zaraska, Leszek; Stępniowski, Wojciech J.; Jaskuła, Marian; Sulka, Grzegorz D.

    2014-06-01

    Anodic aluminum oxide (AAO) layers were formed by a simple two-step anodization in 0.3 M oxalic acid at relatively high temperatures (20-30 °C) and various anodizing potentials (30-65 V). The effect of anodizing conditions on structural features of as-obtained oxides was carefully investigated. A linear and exponential relationships between cell diameter, pore density and anodizing potential were confirmed, respectively. On the other hand, no effect of temperature and duration of anodization on pore spacing and pore density was found. Detailed quantitative and qualitative analyses of hexagonal arrangement of nanopore arrays were performed for all studied samples. The nanopore arrangement was evaluated using various methods based on the fast Fourier transform (FFT) images, Delaunay triangulations (defect maps), pair distribution functions (PDF), and angular distribution functions (ADF). It was found that for short anodizations performed at relatively high temperatures, the optimal anodizing potential that results in formation of nanostructures with the highest degree of pore order is 45 V. No direct effect of temperature and time of anodization on the nanopore arrangement was observed.

  9. Nanoporous gold as a highly active substrate for surface-enhanced Raman scattering spectroscopy

    SciTech Connect

    Kucheyev, S O; Hayes, J R; Biener, J; Hamza, A V

    2006-03-28

    Colloidal solutions of metal nanoparticles are currently among most studied substrates for sensors based on surface-enhanced Raman scattering (SERS). However, such substrates often suffer from not being cost-effective, reusable, or stable. Here, we develop nanoporous Au as a highly active, tunable, a.ordable, stable, bio-compatible, and reusable SERS substrate. Nanoporous Au is prepared by a facile process of free corrosion of AgAu alloys followed by annealing. Results show that nanofoams with average pore sizes of {approx} 250 nm exhibit the largest SERS signal for 632.8 nm excitation. This is attributed to the electromagnetic SERS enhancement mechanism with additional field localization within pores.

  10. 3D nanoporous optofluidic device for high sensitivity SERS detection

    NASA Astrophysics Data System (ADS)

    H. Yazdi, Soroush; White, Ian M.

    2012-03-01

    We report the demonstration of an optofluidic surface enhanced Raman spectroscopy (SERS) device that leverages nanoporous microfluidics to dramatically increase the SERS performance. A number of optofluidic approaches have been used to improve the detection limit of SERS in microfluidic channels, including active concentration of nanoparticles and/or analyte and passive concentration of nanoparticles. Previous reports have used a single nanofabricated fluidic channel to trap metal nanoparticles and adsorbed analytes. In this work, we utilize a significantly simpler fabrication approach by packing silica beads in a microfluidic channel to create a 3D nanofluidic concentration matrix. The device is fabricated using polydimethylsiloxane (PDMS) on glass using typical soft lithography methods. Due to the larger area of the nanoporous fluidic channel, this approach should be less prone to clogging than single nanofluidic inlets, and the loading time is decreased compared to previous reports. Using this microfluidic device, we achieved a detection limit of 4 femtomoles of Rhodamine 6G in 2 minutes. Compared to an open microfluidic channel, the 3D nanoporous concentration matrix increased the SERS signal by a factor of 250 due to the trapping of silver nanoclusters. Fiber optic cables are integrated into the PDMS to deliver excitation light directly to the detection volume and to collect Raman-scattered photons. As a result, the use of a laser diode and alignment-free integrated fiber optics implies the potential for the device to be used in portable and automated applications, such as the on-site detection of pesticides, water contaminants, and explosives.

  11. Ultrasonic deposition of high-selectivity nanoporous carbon membranes

    PubMed

    Shiflett; Foley

    1999-09-17

    Ultrasonic deposition creates a thin film of polymer on a tubular, macroporous, stainless steel support. Using polyfurfuryl alcohol as the nanoporous carbon precursor and a pyrolysis temperature of 723 kelvin, a membrane was prepared with the following permeances, measured in moles per square meter per Pascal per second: nitrogen, 1.8 x 10(-12); oxygen, 5.6 x 10(-11); helium, 3.3 x 10(-10); and hydrogen, 6.1 x 10(-10). The ideal separation factors as compared to that for nitrogen are 30:1, 178:1, and 331:1 for oxygen, helium, and hydrogen, respectively. PMID:10489366

  12. High Performance Graphene Nano-ribbon Thermoelectric Devices by Incorporation and Dimensional Tuning of Nanopores

    PubMed Central

    Sharafat Hossain, Md; Al-Dirini, Feras; Hossain, Faruque M.; Skafidas, Efstratios

    2015-01-01

    Thermoelectric properties of Graphene nano-ribbons (GNRs) with nanopores (NPs) are explored for a range of pore dimensions in order to achieve a high performance two-dimensional nano-scale thermoelectric device. We reduce thermal conductivity of GNRs by introducing pores in them in order to enhance their thermoelectric performance. The electrical properties (Seebeck coefficient and conductivity) of the device usually degrade with pore inclusion; however, we tune the pore to its optimal dimension in order to minimize this degradation, enhancing the overall thermoelectric performance (high ZT value) of our device. We observe that the side channel width plays an important role to achieve optimal performance while the effect of pore length is less pronounced. This result is consistent with the fact that electronic conduction in GNRs is dominated along its edges. Ballistic transport regime is assumed and a semi-empirical method using Huckel basis set is used to obtain the electrical properties, while the phononic system is characterized by Tersoff empirical potential model. The proposed device structure has potential applications as a nanoscale local cooler and as a thermoelectric power generator. PMID:26083450

  13. High Performance Graphene Nano-ribbon Thermoelectric Devices by Incorporation and Dimensional Tuning of Nanopores.

    PubMed

    Hossain, Md Sharafat; Al-Dirini, Feras; Hossain, Faruque M; Skafidas, Efstratios

    2015-01-01

    Thermoelectric properties of Graphene nano-ribbons (GNRs) with nanopores (NPs) are explored for a range of pore dimensions in order to achieve a high performance two-dimensional nano-scale thermoelectric device. We reduce thermal conductivity of GNRs by introducing pores in them in order to enhance their thermoelectric performance. The electrical properties (Seebeck coefficient and conductivity) of the device usually degrade with pore inclusion; however, we tune the pore to its optimal dimension in order to minimize this degradation, enhancing the overall thermoelectric performance (high ZT value) of our device. We observe that the side channel width plays an important role to achieve optimal performance while the effect of pore length is less pronounced. This result is consistent with the fact that electronic conduction in GNRs is dominated along its edges. Ballistic transport regime is assumed and a semi-empirical method using Huckel basis set is used to obtain the electrical properties, while the phononic system is characterized by Tersoff empirical potential model. The proposed device structure has potential applications as a nanoscale local cooler and as a thermoelectric power generator. PMID:26083450

  14. High Performance Graphene Nano-ribbon Thermoelectric Devices by Incorporation and Dimensional Tuning of Nanopores

    NASA Astrophysics Data System (ADS)

    Sharafat Hossain, Md; Al-Dirini, Feras; Hossain, Faruque M.; Skafidas, Efstratios

    2015-06-01

    Thermoelectric properties of Graphene nano-ribbons (GNRs) with nanopores (NPs) are explored for a range of pore dimensions in order to achieve a high performance two-dimensional nano-scale thermoelectric device. We reduce thermal conductivity of GNRs by introducing pores in them in order to enhance their thermoelectric performance. The electrical properties (Seebeck coefficient and conductivity) of the device usually degrade with pore inclusion; however, we tune the pore to its optimal dimension in order to minimize this degradation, enhancing the overall thermoelectric performance (high ZT value) of our device. We observe that the side channel width plays an important role to achieve optimal performance while the effect of pore length is less pronounced. This result is consistent with the fact that electronic conduction in GNRs is dominated along its edges. Ballistic transport regime is assumed and a semi-empirical method using Huckel basis set is used to obtain the electrical properties, while the phononic system is characterized by Tersoff empirical potential model. The proposed device structure has potential applications as a nanoscale local cooler and as a thermoelectric power generator.

  15. Optical reflectance studies of highly specular anisotropic nanoporous (111) InP membrane

    NASA Astrophysics Data System (ADS)

    Steele, J. A.; Lewis, R. A.; Sirbu, L.; Enachi, M.; Tiginyanu, I. M.; Skuratov, V. A.

    2015-04-01

    High-precision optical angular reflectance measurements are reported for a specular anisotropic nanoporous (111) InP membrane prepared by doping-assisted wet-electrochemical etching. The membrane surface morphology was investigated using scanning electron microscope imaging and revealed a quasi-uniform and self-organized nanoporous network consisting of semiconductor ‘islands’ in the sub-wavelength regime. The optical response of the nanoporous InP surface was studied at 405 nm (740 THz; UV), 633 nm (474 THz; VIS) and 1064 nm (282 THz; NIR), and exhibited a retention of basic macro-dielectric properties. Refractive index determinations demonstrate an optical anisotropy for the membrane which is strongly dependent on the wavelength of incident light, and exhibits an interesting inversion (positive anisotropy to negative) between 405 and 633 nm. The inversion of optical anisotropy is attributed to a strongly reduced ‘metallic’ behaviour in the membrane when subject to above-bandgap illumination. For the simplest case of sub-bandgap incident irradiation, the optical properties of the nanoporous InP sample are analysed in terms of an effective refractive index neff and compared to effective media approximations.

  16. Graphene Nanopore Support System for Simultaneous High-Resolution AFM Imaging and Conductance Measurements

    PubMed Central

    2015-01-01

    Accurately defining the nanoporous structure and sensing the ionic flow across nanoscale pores in thin films and membranes has a wide range of applications, including characterization of biological ion channels and receptors, DNA sequencing, molecule separation by nanoparticle films, sensing by block co-polymers films, and catalysis through metal–organic frameworks. Ionic conductance through nanopores is often regulated by their 3D structures, a relationship that can be accurately determined only by their simultaneous measurements. However, defining their structure–function relationships directly by any existing techniques is still not possible. Atomic force microscopy (AFM) can image the structures of these pores at high resolution in an aqueous environment, and electrophysiological techniques can measure ion flow through individual nanoscale pores. Combining these techniques is limited by the lack of nanoscale interfaces. We have designed a graphene-based single-nanopore support (∼5 nm thick with ∼20 nm pore diameter) and have integrated AFM imaging and ionic conductance recording using our newly designed double-chamber recording system to study an overlaid thin film. The functionality of this integrated system is demonstrated by electrical recording (<10 pS conductance) of suspended lipid bilayers spanning a nanopore and simultaneous AFM imaging of the bilayer. PMID:24581087

  17. Long-term controlled release of 125I-tagged BMP-2 by mesoporous bioactive glass with ordered nanopores

    PubMed Central

    ZHANG, QUAN; ZHANG, YE; CHEN, WENJUN; ZHANG, BINGWEN; WANG, SHILONG

    2013-01-01

    The aim of this study was to investigate the ability of mesoporous bioactive glass with ordered nanopores (80S MBG) to adsorb and provide the delayed release of 125I-tagged bone morphogenetic protein-2 (BMP-2). A 50 mg piece of 80S MBG was produced, which comprised SiO2, CaO and P2O5 in a component molar ratio of 80:15:5. Each MBG piece adsorbed 30 μg 125I-BMP-2. Persistent radioactivity in the MBG was periodically measured in simulated body fluid. The total amount of BMP-2 released and the mean amount released per day were calculated. A delayed release curve of BMP-2 was constructed. SPSS 15.0 software was used to perform a statistical analysis. The amount of BMP-2 released in the first two days was one-quarter of the total load. A line equation, y = 490.55×1/2 + 7268.82, was obtained from the square root of protein release doses value at 3–94 days. The total amount of BMP-2 released over 94 days was 11.894 μg, which was ~39.6% of the total load. The half-life of the release time was 248 days. From the second week, the rate of BMP release had stabilized to a mean of 37.42±18.67 ng/day and the difference of the mean amount released per day had no statistical significance (P>0.05). High adsorption and delayed release effects of BMP-2 were observed in 80S MBG. The delayed release conforms to the Higuchi equation, which indicates possible applications in promoting bone healing. PMID:24250724

  18. Monolithic nanoporous gold disks with large surface area and high-density plasmonic hot-spots

    NASA Astrophysics Data System (ADS)

    Zhao, Fusheng; Zeng, Jianbo; Arnob, Md Masud Parvez; Santos, Greggy M.; Shih, Wei-Chuan

    2015-03-01

    Plasmonic metal nanostructures have shown great potential in sensing, photovoltaics, imaging and biomedicine, principally due to enhancement of the local electric field by light-excited surface plasmons, the collective oscillation of conduction band electrons. Thin films of nanoporous gold have received a great deal of interest due to the unique 3- dimensional bicontinuous nanostructures with high specific surface area. However, in the form of semi-infinite thin films, nanoporous gold exhibits weak plasmonic extinction and little tunability in the plasmon resonance, because the pore size is much smaller than the wavelength of light. Here we show that by making nanoporous gold in the form of disks of sub-wavelength diameter and sub-100 nm thickness, these limitations can be overcome. Nanoporous gold disks (NPGDs) not only possess large specific surface area but also high-density, internal plasmonic "hot-spots" with impressive electric field enhancement, which greatly promotes plasmon-matter interaction as evidenced by spectral shifts in the surface plasmon resonance. In addition, the plasmonic resonance of NPGD can be easily tuned from 900 to 1850 nm by changing the disk diameter from 300 to 700 nm. The coupling between external and internal nanoarchitecture provides a potential design dimension for plasmonic engineering. The synergy of large specific surface area, high-density hot spots, and tunable plasmonics would profoundly impact applications where plasmonic nanoparticles and non-plasmonic mesoporous nanoparticles are currently employed, e.g., in in-vitro and in-vivo biosensing, molecular imaging, photothermal contrast agents, and molecular cargos.

  19. Facile method for modulating the profiles and periods of self-ordered three-dimensional alumina taper-nanopores.

    PubMed

    Li, Juan; Li, Congshan; Chen, Cheng; Hao, Qingli; Wang, Zhijia; Zhu, Jie; Gao, Xuefeng

    2012-10-24

    We report a facile nanofabrication method, one-step hard anodizing and etching peeling (OS-HA-EP) of aluminum foils followed by multistep mild anodizing and etching pore-widening (MS-MA-EW), for the controllable tailoring of hexagonally packed three-dimensional alumina taper-nanopores. Their profiles can be precisely tailored by the synergistic control of anodizing time, etching time and cyclic times at the MS-MA-EW stage, exemplified by linear cones, whorl-embedded cones, funnels, pencils, parabolas, and trumpets. Meantime, their periods can also be modulated in the range of 70-370 nm by choosing matched anodizing electrolytes (e.g., H(2)C(2)O(4), H(2)SO(4), H(2)C(2)O(4)-H(2)SO(4), and H(2)C(2)O(4)-C(2)H(5)OH mixture) and anodizing voltages at the OS-HA-EP stage. We also demonstrated that the long-range ordering of nanopits and the peak voltage of stable self-ordered HA, which are unachievable in a single H(2)C(2)O(4) electrolyte system, can be effectively tuned by simply adding tiny quantity of H(2)SO(4) and C(2)H(5)OH to keep an appropriate HA current density, respectively. This method of using the combination of simple pure chemical nanofabrication technologies is very facile and efficient in realizing the controllable tailoring of large-area alumina membranes containing self-ordered taper-nanopores. Our work opens a door for exploring the novel physical and chemical properties of different materials of nanotaper arrays. PMID:23020550

  20. High-performance flexible nanoporous Si-carbon nanotube paper anodes for micro-battery applications

    NASA Astrophysics Data System (ADS)

    Biserni, Erika; Scarpellini, Alice; Li Bassi, Andrea; Bruno, Paola; Zhou, Yun; Xie, Ming

    2016-06-01

    Nanoporous Si has been grown by pulsed laser deposition on a free-standing carbon nanotube (CNT) paper sheet for micro-battery anodes. The Si deposition shows conformal coverage on the CNT paper, and the Si-CNT paper anodes demonstrate high areal capacity of ∼1000 μAh cm‑2 at a current density of 54 μA cm‑2, while 69% of its initial capacity is preserved when the current density is increased by a factor 10. Excellent stability without capacity decay up to 1000 cycles at a current density of 1080 μA cm‑2 is also demonstrated. After bending along the diameter of the circular paper disc many times, the Si-CNT paper anodes preserve the same morphology and show promising electrochemical performance, indicating that nanoporous Si-CNT paper anodes can find application for flexible micro-batteries.

  1. The fabrication of highly ordered block copolymer micellar arrays: control of the separation distances of silicon oxide dots.

    PubMed

    Yoo, Hana; Park, Soojin

    2010-06-18

    We demonstrate the fabrication of highly ordered silicon oxide dotted arrays prepared from polydimethylsiloxane (PDMS) filled nanoporous block copolymer (BCP) films and the preparation of nanoporous, flexible Teflon or polyimide films. Polystyrene-block-poly(2-vinylpyridine) (PS-b-P2VP) films were annealed in toluene vapor to enhance the lateral order of micellar arrays and were subsequently immersed in alcohol to produce nano-sized pores, which can be used as templates for filling a thin layer of PDMS. When a thin layer of PDMS was spin-coated onto nanoporous BCP films and thermally annealed at a certain temperature, the PDMS was drawn into the pores by capillary action. PDMS filled BCP templates were exposed to oxygen plasma environments in order to fabricate silicon oxide dotted arrays. By addition of PS homopolymer to PS-b-P2VP copolymer, the separation distances of micellar arrays were tuned. As-prepared silicon oxide dotted arrays were used as a hard master for fabricating nanoporous Teflon or polyimide films by spin-coating polymer precursor solutions onto silicon patterns and peeling off. This simple process enables us to fabricate highly ordered nanoporous BCP templates, silicon oxide dots, and flexible nanoporous polymer patterns with feature size of sub-20 nm over 5 cm x 5 cm. PMID:20498523

  2. Nanoporous framework materials interfaced with mechanical sensors for highly-sensitive chemical sensing.

    SciTech Connect

    Lee, Jin-Hwan; Skinner, Jack L.; Houk, Ronald J. T.; Fischer, Roland A.; Robinson, Alex Lockwood; Allendorf, Mark D.; Yusenko, Kirill; Meilikhov, Mikhail; Hesketh, Peter J.; Venkatasubramanian, Anandram; Thornberg, Steven Michael

    2010-04-01

    We will describe how novel nanoporous framework materials (NFM) such as metal-organic frameworks (MOFs) can be interfaced with common mechanical sensors, such as surface acoustic wave (SAW), microcantilever array, and quartz crystal microbalance (QCM) devices, and subsequently be used to provide selectivity and sensitivity to a broad range of analytes including explosives, nerve agents, and volatile organic compounds (VOCs). NFM are highly ordered, crystalline materials with considerable synthetic flexibility resulting from the presence of both organic and inorganic components within their structure. Chemical detection using micro-electro-mechanical-systems (MEMS) devices (i.e. SAWs, microcantilevers) requires the use of recognition layers to impart selectivity. Unlike traditional organic polymers, which are dense, the nanoporosity and ultrahigh surface areas of NFM allow for greater analyte uptake and enhance transport into and out of the sensing layer. This enhancement over traditional coatings leads to improved response times and greater sensitivity, while their ordered structure allows chemical tuning to impart selectivity. We describe here experiments and modeling aimed at creating NFM layers tailored to the detection of water vapor, explosives, CWMD, and volatile organic compound (VOCs), and their integration with the surfaces of MEMS devices. Molecular simulation shows that a high degree of chemical selectivity is feasible. For example, a suite of MOFs can select for strongly interacting organics (explosives, CWMD) vs. lighter volatile organics at trace concentrations. At higher gas pressures, the CWMD are deselected in favor of the volatile organics. We will also demonstrate the integration of various NFM on the surface of microcantiliver arrays, QCM crystals, and SAW devices, and describe new synthetic methods developed to improve the quality of NFM coatings. Finally, MOF-coated MEMS devices show how temperature changes can be tuned to improve response

  3. Fabrication of ultra-high aspect ratio silicon nanopores by electrochemical etching

    SciTech Connect

    Schmidt, Torsten; Zhang, Miao; Linnros, Jan; Yu, Shun

    2014-09-22

    We report on the formation of ultra-high aspect ratio nanopores in silicon bulk material using photo-assisted electrochemical etching. Here, n-type silicon is used as anode in contact with hydrofluoric acid. Based on the local dissolution of surface atoms in pre-defined etching pits, pore growth and pore diameter are, respectively, driven and controlled by the supply of minority charge carriers generated by backside illumination. Thus, arrays with sub-100 nm wide pores were fabricated. Similar to macropore etching, it was found that the pore diameter is proportional to the etching current, i.e., smaller etching currents result in smaller pore diameters. To find the limits under which nanopores with controllable diameter still can be obtained, etching was performed at very low current densities (several μA cm{sup −2}). By local etching, straight nanopores with aspect ratios above 1000 (∼19 μm deep and ∼15 nm pore tip diameter) were achieved. However, inherent to the formation of such narrow pores is a radius of curvature of a few nanometers at the pore tip, which favors electrical breakdown resulting in rough pore wall morphologies. Lowering the applied bias is adequate to reduce spiking pores but in most cases also causes etch stop. Our findings on bulk silicon provide a realistic chance towards sub-10 nm pore arrays on silicon membranes, which are of great interest for molecular filtering and possibly DNA sequencing.

  4. A Low-Noise Solid-State Nanopore Platform Based on a Highly Insulating Substrate

    PubMed Central

    Lee, Min-Hyun; Kumar, Ashvani; Park, Kyeong-Beom; Cho, Seong-Yong; Kim, Hyun-Mi; Lim, Min-Cheol; Kim, Young-Rok; Kim, Ki-Bum

    2014-01-01

    A solid-state nanopore platform with a low noise level and sufficient sensitivity to discriminate single-strand DNA (ssDNA) homopolymers of poly-A40 and poly-T40 using ionic current blockade sensing is proposed and demonstrated. The key features of this platform are (a) highly insulating dielectric substrates that are used to mitigate the effect of parasitic capacitance elements, which decrease the ionic current RMS noise level to sub-10 pA and (b) ultra-thin silicon nitride membranes with a physical thickness of 5 nm (an effective thickness of 2.4 nm estimated from the ionic current) are used to maximize the signal-to-noise ratio and the spatial depth resolution. The utilization of an ultra-thin membrane and a nanopore diameter as small as 1.5 nm allow the successful discrimination of 40 nucleotide ssDNA poly-A40 and poly-T40. Overall, we demonstrate that this platform overcomes several critical limitations of solid-state nanopores and opens the door to a wide range of applications in single-molecule-based detection and analysis. PMID:25502421

  5. Pt-Al2O3 dual layer atomic layer deposition coating in high aspect ratio nanopores

    NASA Astrophysics Data System (ADS)

    Pardon, Gaspard; Gatty, Hithesh K.; Stemme, Göran; van der Wijngaart, Wouter; Roxhed, Niclas

    2013-01-01

    Functional nanoporous materials are promising for a number of applications ranging from selective biofiltration to fuel cell electrodes. This work reports the functionalization of nanoporous membranes using atomic layer deposition (ALD). ALD is used to conformally deposit platinum (Pt) and aluminum oxide (Al2O3) on Pt in nanopores to form a metal-insulator stack inside the nanopore. Deposition of these materials inside nanopores allows the addition of extra functionalities to nanoporous materials such as anodic aluminum oxide (AAO) membranes. Conformal deposition of Pt on such materials enables increased performances for electrochemical sensing applications or fuel cell electrodes. An additional conformal Al2O3 layer on such a Pt film forms a metal-insulator-electrolyte system, enabling field effect control of the nanofluidic properties of the membrane. This opens novel possibilities in electrically controlled biofiltration. In this work, the deposition of these two materials on AAO membranes is investigated theoretically and experimentally. Successful process parameters are proposed for a reliable and cost-effective conformal deposition on high aspect ratio three-dimensional nanostructures. A device consisting of a silicon chip supporting an AAO membrane of 6 mm diameter and 1.3 μm thickness with 80 nm diameter pores is fabricated. The pore diameter is reduced to 40 nm by a conformal deposition of 11 nm Pt and 9 nm Al2O3 using ALD.

  6. High-speed event detector for embedded nanopore bio-systems.

    PubMed

    Huang, Yiyun; Magierowski, Sebastian; Ghafar-Zadeh, Ebrahim; Wang, Chengjie

    2015-08-01

    Biological measurements of microscopic phenomena often deal with discrete-event signals. The ability to automatically carry out such measurements at high-speed in a miniature embedded system is desirable but compromised by high-frequency noise along with practical constraints on filter quality and sampler resolution. This paper presents a real-time event-detection method in the context of nanopore sensing that helps to mitigate these drawbacks and allows accurate signal processing in an embedded system. Simulations show at least a 10× improvement over existing on-line detection methods. PMID:26736722

  7. Ion Beam Nanosculpting and Materials Science with Single Nanopores

    SciTech Connect

    Golovchenko, J A; Branton, D

    2009-10-03

    Work is reported in these areas: Nanopore studies; Ion sculpting of metals; High energy ion sculpting; Metrology of nanopores with single wall carbon nanotube probes; Capturing molecules in a nanopore; Strand separation in a nanopore; and DNA molecules and configurations in solid-state nanopores.

  8. Ionic transport through sub-10 nm diameter hydrophobic high-aspect ratio nanopores: experiment, theory and simulation

    PubMed Central

    Balme, Sébastien; Picaud, Fabien; Manghi, Manoel; Palmeri, John; Bechelany, Mikhael; Cabello-Aguilar, Simon; Abou-Chaaya, Adib; Miele, Philippe; Balanzat, Emmanuel; Janot, Jean Marc

    2015-01-01

    Fundamental understanding of ionic transport at the nanoscale is essential for developing biosensors based on nanopore technology and new generation high-performance nanofiltration membranes for separation and purification applications. We study here ionic transport through single putatively neutral hydrophobic nanopores with high aspect ratio (of length L = 6 μm with diameters ranging from 1 to 10 nm) and with a well controlled cylindrical geometry. We develop a detailed hybrid mesoscopic theoretical approach for the electrolyte conductivity inside nanopores, which considers explicitly ion advection by electro-osmotic flow and possible flow slip at the pore surface. By fitting the experimental conductance data we show that for nanopore diameters greater than 4 nm a constant weak surface charge density of about 10−2 C m−2 needs to be incorporated in the model to account for conductance plateaus of a few pico-siemens at low salt concentrations. For tighter nanopores, our analysis leads to a higher surface charge density, which can be attributed to a modification of ion solvation structure close to the pore surface, as observed in the molecular dynamics simulations we performed. PMID:26036687

  9. Nanoporous plasmonic metamaterials

    SciTech Connect

    Biener, J; Nyce, G W; Hodge, A M; Biener, M M; Hamza, A V; Maier, S A

    2007-05-24

    We review different routes for the generation of nanoporous metallic foams and films exhibiting well-defined pore size and short-range order. Dealloying and templating allows the generation of both two- and three-dimensional structures which promise a well defined plasmonic response determined by material constituents and porosity. Viewed in the context of metamaterials, the ease of fabrication of samples covering macroscopic dimensions is highly promising, and suggests more in-depth investigations of the plasmonic and photonic properties of this material system for photonic applications.

  10. High Capacity Nanoporous Silicon Carrier for Systemic Delivery of Gene Silencing Therapeutics

    PubMed Central

    Kim, Han-Cheon; Guo, Xiaojing; Qin, Guoting; Yang, Yong; Wolfram, Joy; Mu, Chaofeng; Xia, Xiaojun; Gu, Jianhua; Liu, Xuewu; Mao, Zong-Wan; Ferrari, Mauro; Shen, Haifa

    2013-01-01

    Gene silencing agents such as small interfering RNA (siRNA) and microRNA offer the promise to modulate expression of almost every gene for the treatment of human diseases including cancer. However, lack of vehicles for effective systemic delivery to the disease organs has greatly limited their in vivo applications. In this study, we developed a high capacity polycation-functionalized nanoporous silicon (PCPS) platform comprised of nanoporous silicon microparticles functionalized with arginine-polyethyleneimine inside the nanopores for effective delivery of gene silencing agents. Incubation of MDA-MB-231 human breast cancer cells with PCPS loaded with STAT3 siRNA (PCPS/STAT3) or GRP78 siRNA (PCPS/GRP78) resulted in 91% and 83% reduction of STAT3 and GRP78 gene expression in vitro. Treatment of cells with a microRNA-18a mimic in PCPS (PCPS/miR-18) knocked down 90% expression of the microRNA-18a target gene ATM. Systemic delivery of PCPS/STAT3 siRNA in murine model of MDA-MB-231 breast cancer enriched particles in tumor tissues and reduced STAT3 expression in cancer cells, causing significant reduction of cancer stem cells in the residual tumor tissue. At the therapeutic dosage, PCPS/STAT3 siRNA did not trigger acute immune response in FVB mice, including changes in serum cytokines, chemokines and colony-stimulating factors. In addition, weekly dosing of PCPS/STAT3 siRNA for four weeks did not cause signs of sub-acute toxicity based on changes in body weight, hematology, blood chemistry, and major organ histology. Collectively, the results suggest that we have developed a safe vehicle for effective delivery of gene silencing agents. PMID:24131405

  11. Photoelectrocatalytic degradation of tetracycline by highly effective TiO2 nanopore arrays electrode.

    PubMed

    Liu, Yanbiao; Gan, Xiaojie; Zhou, Baoxue; Xiong, Bitao; Li, Jinhua; Dong, Chaoping; Bai, Jing; Cai, Weimin

    2009-11-15

    The widely utilization of pharmaceutical and personal care products (PPCPs) in the pharmaceutical therapies and agricultural husbandry has led to the worldwide pollution in the environment. In this study, the photoelectrocatalytic (PEC) behaviors of typical PPCPs, tetracycline (TC), were performed via a highly effective TiO(2) nanopore arrays (TNPs) electrode, comparing with electrochemical (EC) and photocatalytic (PC) process. A significant photoelectrochemical synergetic effect in TC degradation was observed on the TNPs electrode and the rate constant for the PEC process of TNPs electrode was approximately 6.7 times as high as its PC process. The TC removal rate achieved approximately 80% within 3h PEC reaction by TNPs electrode, which is approximately 25% higher than that obtained for a conventional coated TiO(2) nanofilm electrode fabricated by sol-gel method. The possible mechanism involved in the PEC degradation of TC by TNPs electrode was discussed. Furthermore, the TNPs electrode also shows enhanced photocurrent response compared with that for the coated TiO(2) nanofilm electrode. Such kind of TiO(2) nanopores will have many potential applications in various areas as an outstanding photoelectrochemical material. PMID:19577843

  12. Electric double-layer capacitors based on highly graphitized nanoporous carbons derived from ZIF-67.

    PubMed

    Torad, Nagy L; Salunkhe, Rahul R; Li, Yunqi; Hamoudi, Hicham; Imura, Masataka; Sakka, Yoshio; Hu, Chi-Chang; Yamauchi, Yusuke

    2014-06-23

    Nanoporous carbons (NPCs) have large specific surface areas, good electrical and thermal conductivity, and both chemical and mechanical stability, which facilitate their use in energy storage device applications. In the present study, highly graphitized NPCs are synthesized by one-step direct carbonization of cobalt-containing zeolitic imidazolate framework-67 (ZIF-67). After chemical etching, the deposited Co content can be completely removed to prepare pure NPCs with high specific surface area, large pore volume, and intrinsic electrical conductivity (high content of sp(2) -bonded carbons). A detailed electrochemical study is performed using cyclic voltammetry and galvanostatic charge-discharge measurements. Our NPC is very promising for efficient electrodes for high-performance supercapacitor applications. A maximum specific capacitance of 238 F g(-1) is observed at a scan rate of 20 mV s(-1) . This value is very high compared to previous works on carbon-based electric double layer capacitors. PMID:24788922

  13. Nanoporous, Metal Carbide, Surface Diffusion Membranes for High Temperature Hydrogen Separations

    SciTech Connect

    Way, J.; Wolden, Colin

    2013-09-30

    Colorado School of Mines (CSM) developed high temperature, hydrogen permeable membranes that contain no platinum group metals with the goal of separating hydrogen from gas mixtures representative of gasification of carbon feedstocks such as coal or biomass in order to meet DOE NETL 2015 hydrogen membrane performance targets. We employed a dual synthesis strategy centered on transition metal carbides. In the first approach, novel, high temperature, surface diffusion membranes based on nanoporous Mo{sub 2}C were fabricated on ceramic supports. These were produced in a two step process that consisted of molybdenum oxide deposition followed by thermal carburization. Our best Mo{sub 2}C surface diffusion membrane achieved a pure hydrogen flux of 367 SCFH/ft{sup 2} at a feed pressure of only 20 psig. The highest H{sub 2}/N{sub 2} selectivity obtained with this approach was 4.9. A transport model using “dusty gas” theory was derived to describe the hydrogen transport in the Mo{sub 2}C coated, surface diffusion membranes. The second class of membranes developed were dense metal foils of BCC metals such as vanadium coated with thin (< 60 nm) Mo{sub 2}C catalyst layers. We have fabricated a Mo{sub 2}C/V composite membrane that in pure gas testing delivered a H{sub 2} flux of 238 SCFH/ft{sup 2} at 600 °C and 100 psig, with no detectable He permeance. This exceeds the 2010 DOE Target flux. This flux is 2.8 times that of pure Pd at the same membrane thickness and test conditions and over 79% of the 2015 flux target. In mixed gas testing we achieved a permeate purity of ≥99.99%, satisfying the permeate purity milestone, but the hydrogen permeance was low, ~0.2 SCFH/ft{sup 2}.psi. However, during testing of a Mo{sub 2}C coated Pd alloy membrane with DOE 1 feed gas mixture a hydrogen permeance of >2 SCFH/ft{sup 2}.psi was obtained which was stable during the entire test, meeting the permeance associated with the 2010 DOE target flux. Lastly, the Mo{sub 2}C/V composite

  14. Nanoporous gold supported cobalt oxide microelectrodes as high-performance electrochemical biosensors.

    PubMed

    Lang, Xing-You; Fu, Hong-Ying; Hou, Chao; Han, Gao-Feng; Yang, Ping; Liu, Yong-Bing; Jiang, Qing

    2013-01-01

    Tremendous demands for electrochemical biosensors with high sensitivity and reliability, fast response and excellent selectivity have stimulated intensive research on developing versatile materials with ultrahigh electrocatalytic activity. Here we report flexible and self-supported microelectrodes with a seamless solid/nanoporous gold/cobalt oxide hybrid structure for electrochemical nonenzymatic glucose biosensors. As a result of synergistic electrocatalytic activity of the gold skeleton and cobalt oxide nanoparticles towards glucose oxidation, amperometric glucose biosensors based on the hybrid microelectrodes exhibit multi-linear detection ranges with ultrahigh sensitivities at a low potential of 0.26 V (versus Ag/AgCl). The sensitivity up to 12.5 mA mM⁻¹ cm⁻² with a short response time of less than 1 s gives rise to ultralow detection limit of 5 nM. The outstanding performance originates from a novel nanoarchitecture in which the cobalt oxide nanoparticles are incorporated into pore channels of the seamless solid/nanoporous Au microwires, providing excellent electronic/ionic conductivity and mass transport for the enhanced electrocatalysis. PMID:23851924

  15. Retroreflection of light from nanoporous InP: correlation with high absorption

    NASA Astrophysics Data System (ADS)

    Prislopski, S. Ya.; Tiginyanu, I. M.; Ghimpu, L.; Monaico, E.; Sirbu, L.; Gaponenko, S. V.

    2014-09-01

    Pronounced retroreflection behavior is reported for a fishnet nanoporous strongly absorbing semiconductor material. Retroreflection appears along with diffusive specular reflection for all angles of incidence for light wavelength corresponding to interband optical transitions, where absorption coefficient is of the order of 105 cm-1 (green and red light). Retroreflection is apparent by the naked eye with daylight illumination and exhibits no selectivity with respect to wavelength and polarization of incident light featuring minor depolarization of retroreflected light. Retroreflection vanishes for wavelength corresponding to optical transparency range where photon energy is lower than the InP bandgap (1.064 μm). The phenomenon can be classified neither as coherent backscattering nor as Anderson localization of light. The primary model includes light scattering from strongly absorptive and refractive super-wavelength clusters existing within the porous fishnet structure. We found that retroreflection vanishes for wavelength where absorption becomes negligible.

  16. DNA translocation through graphene nanopores.

    PubMed

    Merchant, Christopher A; Healy, Ken; Wanunu, Meni; Ray, Vishva; Peterman, Neil; Bartel, John; Fischbein, Michael D; Venta, Kimberly; Luo, Zhengtang; Johnson, A T Charlie; Drndić, Marija

    2010-08-11

    We report on DNA translocations through nanopores created in graphene membranes. Devices consist of 1-5 nm thick graphene membranes with electron-beam sculpted nanopores from 5 to 10 nm in diameter. Due to the thin nature of the graphene membranes, we observe larger blocked currents than for traditional solid-state nanopores. However, ionic current noise levels are several orders of magnitude larger than those for silicon nitride nanopores. These fluctuations are reduced with the atomic-layer deposition of 5 nm of titanium dioxide over the device. Unlike traditional solid-state nanopore materials that are insulating, graphene is an excellent electrical conductor. Use of graphene as a membrane material opens the door to a new class of nanopore devices in which electronic sensing and control are performed directly at the pore. PMID:20698604

  17. DNA-based detection of mercury(ii) ions through characteristic current signals in nanopores with high sensitivity and selectivity

    NASA Astrophysics Data System (ADS)

    Zeng, Tao; Li, Ting; Li, Yuru; Liu, Lei; Wang, Xingyong; Liu, Quansheng; Zhao, Yuliang; Wu, Hai-Chen

    2014-07-01

    We report single-molecule detection of Hg2+ by threading an Hg2+-mediated DNA duplex through α-hemolysin nanopores, which generates characteristic three-level current patterns and enables the unambiguous detection of Hg2+. This strategy precludes any background interference and features high sensitivity and selectivity. Moreover, the platform could be readily integrated with aptamers and molecular beacons, offering extended possibilities for the construction of a new DNA-based nanopore sensing system.We report single-molecule detection of Hg2+ by threading an Hg2+-mediated DNA duplex through α-hemolysin nanopores, which generates characteristic three-level current patterns and enables the unambiguous detection of Hg2+. This strategy precludes any background interference and features high sensitivity and selectivity. Moreover, the platform could be readily integrated with aptamers and molecular beacons, offering extended possibilities for the construction of a new DNA-based nanopore sensing system. Electronic supplementary information (ESI) available. See DOI: 10.1039/c4nr02062f

  18. Nanoporous Structure and Medium-Range Order in Synthetic Amorphous Calcium Carbonate

    SciTech Connect

    Goodwin, Andrew L.; Michel, F. Marc; Phillips, Brian L.; Keen, David A.; Dove, Martin T.; Reeder, Richard J.

    2010-12-03

    We adopt a reverse Monte Carlo refinement approach, using experimental X-ray total scattering data, to develop a structure model for synthetic, hydrated amorphous calcium carbonate (ACC). The ACC is revealed to consist of a porous calcium-rich framework that supports interconnected channels containing water and carbonate molecules. The existence of a previously unrecognized nanometer-scale channel network suggests mechanisms of how additives can be accommodated within the structure and provide temporary stabilization, as well as influence the crystallization process. Moreover, while lacking long-range order, the calcium-rich framework in the ACC contains similar Ca packing density to that present in calcite, aragonite, and vaterite, yielding clues of how the amorphous material converts into the different crystalline forms. Our results provide a new starting point for advancing our understanding of biomineralization as well as the development of biomimetic approaches to next-generation materials synthesis.

  19. 3D SERS Imaging Using Chemically Synthesized Highly Symmetric Nanoporous Silver Microparticles.

    PubMed

    Vantasin, Sanpon; Ji, Wei; Tanaka, Yoshito; Kitahama, Yasutaka; Wang, Mengfan; Wongravee, Kanet; Gatemala, Harnchana; Ekgasit, Sanong; Ozaki, Yukihiro

    2016-07-11

    3D surface-enhanced Raman scattering (SERS) imaging with highly symmetric 3D silver microparticles as a SERS substrate was developed. Although the synthesis method is purely chemical and does not involve lithography, the synthesized nanoporous silver microparticles possess a regular hexapod shape and octahedral symmetry. By using p-aminothiophenol (PATP) as a probe molecule, the 3D enhancement patterns of the particles were shown to be very regular and predictable, resembling the particle shape and exhibiting symmetry. An application to the detection of 3D inhomogeneity in a polymer blend, which relies on the predictable enhancement pattern of the substrate, is presented. 3D SERS imaging using the substrate also provides an improvement in spatial resolution along the Z axis, which is a challenge for Raman measurement in polymers, especially layered polymeric systems. PMID:27240138

  20. Generalized high order compact methods.

    SciTech Connect

    Spotz, William F.; Kominiarczuk, Jakub

    2010-09-01

    The fundamental ideas of the high order compact method are combined with the generalized finite difference method. The result is a finite difference method that works on unstructured, nonuniform grids, and is more accurate than one would classically expect from the number of grid points employed.

  1. Highly-Ordered Thin Films from Photocleavable Block Copolymers

    NASA Astrophysics Data System (ADS)

    Gu, Weiyin; Zhao, Hui; Coughlin, E.; Theato, Patrick; Russell, Thomas; University of Massachusetts at Amherst Team; University of Hamburg Team

    2013-03-01

    A robust route for the preparation of nanoscopic dot/line patterns with long range lateral order from poly(styrene-block-ethylene oxide) (PS-b-PEO) with an o-nitrobenzyl ester junction (PS-h ν-PEO) is demonstrated. Solvent annealing condition is optimized to achieve the highly ordered cylindrical block copolymer (BCP) microdomains oriented normal or parallel to the silicon substrates. Following a very mild UV exposure and successive washing with methanol, PS-hv-PEO thin films were transformed into highly ordered porous or trench templates. Afterwards the pores or trenches were either filled with PDMS by spin-coating or exposed to direct metal deposition of Au. After a plasma etching or lift-off process to remove the polymer templates, highly ordered arrays of silica or Au nanopatterns were obtained. This represents the first template application example from highly ordered nanoporous thin films derived from block copolymers featuring a photocleavable junction. DOE (DE-FG02-96ER45612), NSF-MRSEC, DFG (TH 1104/4-1), CHE 0924435, R31-10013.

  2. Preparation of 3D nanoporous copper-supported cuprous oxide for high-performance lithium ion battery anodes.

    PubMed

    Liu, Dequan; Yang, Zhibo; Wang, Peng; Li, Fei; Wang, Desheng; He, Deyan

    2013-03-01

    Three-dimensional (3D) nanoporous architectures can provide efficient and rapid pathways for Li-ion and electron transport as well as short solid-state diffusion lengths in lithium ion batteries (LIBs). In this work, 3D nanoporous copper-supported cuprous oxide was successfully fabricated by low-cost selective etching of an electron-beam melted Cu(50)Al(50) alloy and subsequent in situ thermal oxidation. The architecture was used as an anode in lithium ion batteries. In the first cycle, the sample delivered an extremely high lithium storage capacity of about 2.35 mA h cm(-2). A high reversible capacity of 1.45 mA h cm(-2) was achieved after 120 cycles. This work develops a promising approach to building reliable 3D nanostructured electrodes for high-performance lithium ion batteries. PMID:23354412

  3. Atomically thin molybdenum disulfide nanopores with high sensitivity for DNA translocation.

    PubMed

    Liu, Ke; Feng, Jiandong; Kis, Andras; Radenovic, Aleksandra

    2014-03-25

    Atomically thin nanopore membranes are considered to be a promising approach to achieve single base resolution with the ultimate aim of rapid and cheap DNA sequencing. Molybdenum disulfide (MoS2) is newly emerging as a material complementary to graphene due to its semiconductive nature and other interesting physical properties that can enable a wide range of potential sensing and nanoelectronics applications. Here, we demonstrate that monolayer or few-layer thick exfoliated MoS2 with subnanometer thickness can be transferred and suspended on a predesigned location on the 20 nm thick SiNx membranes. Nanopores in MoS2 are further sculpted with variable sizes using a transmission electron microscope (TEM) to drill through suspended portions of the MoS2 membrane. Various types of double-stranded (ds) DNA with different lengths and conformations are translocated through such a novel architecture, showing improved sensitivity (signal-to-noise ratio>10) compared to the conventional silicon nitride (SiNx) nanopores with tens of nanometers thickness. Unlike graphene nanopores, no special surface treatment is needed to avoid hydrophobic interaction between DNA and the surface. Our results imply that MoS2 membranes with nanopore can complement graphene nanopore membranes and offer potentially better performance in transverse detection. PMID:24547924

  4. Thermoresponsive Ultrathin Membranes with Precisely Tuned Nanopores for High-Flux Separation.

    PubMed

    Zhu, Yuzhang; Gao, Shoujian; Hu, Liang; Jin, Jian

    2016-06-01

    With the growing demand for small- and large-scale bioprocesses, advanced membranes with high energy efficiency are highly required. However, conventional polymer-based membranes often have to sacrifice selectivity for permeability. In this work, we report the fabrication of a thermoresponsive composite ultrathin membrane with precisely controlled nanopores for high-throughput separation. The composite membrane is made by grafting a PEG analogue thermoresponsive copolymer onto an ultrathin single-wall carbon nanotubes (SWCNTs) membrane via π-π interaction with no use of the common "grafting from" synthesis approach. The composite membrane exhibits ultrahigh water permeation flux as high as 6430 L m(-2) h(-1) at 40 °C, and more importantly, the pore size of the membrane could be finely adjusted by utilizing the thermoresponsive property of the grafted copolymer. With the temperature changing below and above the lower critical solution temperature (LCST) of the copolymer, the effective pore size of the membrane can be tuned precisely between approximately 12 and 14 nm, which could be applied to effectively separate materials with very small size differences through size sieving. PMID:27177239

  5. Fabrication of a high-density nano-porous structure on polyimide by using ultraviolet laser irradiation

    NASA Astrophysics Data System (ADS)

    Ma, Yong-Won; Jeong, Myung Yung; Lee, Sang-Mae; Shin, Bo Sung

    2016-03-01

    A new approach for fabricating a high-density nano-porous structure on polyimide (PI) by using a 355-nm UV laser is presented here. When PI was irradiated by using a laser, debris that had electrical conductivity was generated. Accordingly, that debris caused electrical defects in the field of electronics. Thus, many researchers have tried to focus on a clean processing without debris. However, this study focused on forming a high density of debris so as to fabricate a nano-porous structure consisting of nanofibers on the PI film. A PI film with closed pores and open pores was successfully formed by using a chemical blowing agent (azodicarbonamide, CBA) in an oven. Samples were precured at 130 °C and cured at 205 °C in sequence so that the closed pores might not coalesce in the film. When the laser irradiated the PI film with closed pores, nanofibers were generated because polyimide was not completely decomposed by photochemical ablation. Our results indicated that a film with micro-closed pores, in conjunction with a 355-nm pulsed laser, can facilitate the fabrication of a high-density nano-porous structure.

  6. Synthesis and characterization of nanoporous silica film via non-surfactant template sol-gel technique

    NASA Astrophysics Data System (ADS)

    Al-Harbi, T.; Al-Hazmi, F.; Mahmoud, Waleed E.

    2012-10-01

    Nanoporous silicon dioxide has received growing interests owing to their peculiar application potentials in conservation and storage energy. Therefore, the development of novel and simple techniques is required for raising these nanoporous materials to industrial level. In this research, we report novel strategy for the synthesis of nanoporous SiO2 via non-surfactant template sol-gel technique for the first time. The morphology and structure of the as prepared and annealed nanoporous silica films were studied using X-ray diffraction, scanning electron microscope, Fourier transform infrared spectroscopy and nitrogen absorption/desorption technique. The results showed that highly order nanoporous silica film has been obtained at annealing temperature 600 °C with average diameter 5.1 nm and average pore volume 3.6 cm3 g-1.

  7. Size control of nanopores formed on SiO{sub 2} glass by swift-heavy-ion irradiation and its application to highly sensitive biomolecular detection

    SciTech Connect

    Nomura, Ken-ichi; Fujimaki, Makoto; Awazu, Koichi; Komatsubara, Tetsuro

    2011-09-15

    Swift-heavy-ion irradiation creates latent tracks in SiO{sub 2} glass and nanopores with a high aspect ratio can be formed along these ion paths by selective etching of the latent tracks using hydrogen fluoride (HF) vapor. Here we report that the size of nanopores can easily be controlled by simply changing the temperature of the HF solution generating the vapor and/or that of the SiO{sub 2} glass exposed to the vapor. Furthermore, this method of size control was used to produce SiO{sub 2} glass sheets with nanopores of different sizes and number densities for use as the waveguide layer in the sensing plates for a waveguide-mode sensor. In comparison with nonperforated plates, the increased surface area due to the formation of nanopores was found to create up to a tenfold increase in sensitivity.

  8. Room temperature NO2 sensor based on highly ordered porphyrin nanotubes.

    PubMed

    Song, Feifei; Ma, Pan; Chen, Changlong; Jia, Jingna; Wang, Yucheng; Zhu, Peihua

    2016-07-15

    Highly ordered nanotubes of 5, 10, 15, 20-tetrakis(4-aminophenyl)porphyrin zinc (ZnTAP) are fabricated by using nanoporous anodized aluminum oxide (AAO) membrane as the template. Electronic absorption spectra, fluorescence spectra, transmission electron microscope (TEM), scanning electronic microscopy (SEM), low-angle X-ray diffraction (XRD) techniques are adopted to characterize these nanotubes. The highly ordered nanotubes of ZnTAP show good conductivity and present an efficient gas sensor platform for the ultrasensitive detection of NO2 under room temperature. The proposed sensor shows high sensitivity, reproducibility and fast response/recovery behavior, and provides a promising avenue for improving the sensing performance. PMID:27100904

  9. Highly sensitive nano-porous lattice biosensor based on localized surface plasmon resonance and interference.

    PubMed

    Yeom, Se-Hyuk; Kim, Ok-Geun; Kang, Byoung-Ho; Kim, Kyu-Jin; Yuan, Heng; Kwon, Dae-Hyuk; Kim, Hak-Rin; Kang, Shin-Won

    2011-11-01

    We propose a design for a highly sensitive biosensor based on nanostructured anodized aluminum oxide (AAO) substrates. A gold-deposited AAO substrate exhibits both optical interference and localized surface plasmon resonance (LSPR). In our sensor, application of these disparate optical properties overcomes problems of limited sensitivity, selectivity, and dynamic range seen in similar biosensors. We fabricated uniform periodic nanopore lattice AAO templates by two-step anodizing and assessed their suitability for application in biosensors by characterizing the change in optical response on addition of biomolecules to the AAO template. To determine the suitability of such structures for biosensing applications, we immobilized a layer of C-reactive protein (CRP) antibody on a gold coating atop an AAO template. We then applied a CRP antigen (Ag) atop the immobilized antibody (Ab) layer. The shift in reflectance is interpreted as being caused by the change in refractive index with membrane thickness. Our results confirm that our proposed AAO-based biosensor is highly selective toward detection of CRP antigen, and can measure a change in CRP antigen concentration of 1 fg/ml. This method can provide a simple, fast, and sensitive analysis for protein detection in real-time. PMID:22109166

  10. Molecularly imprinted polymer decorated nanoporous gold for highly selective and sensitive electrochemical sensors

    NASA Astrophysics Data System (ADS)

    Li, Yingchun; Liu, Yuan; Liu, Jie; Liu, Jiang; Tang, Hui; Cao, Cong; Zhao, Dongsheng; Ding, Yi

    2015-01-01

    Electrochemical nanosensors based on nanoporous gold leaf (NPGL) and molecularly imprinted polymer (MIP) are developed for pharmaceutical analysis by using metronidazole (MNZ) as a model analyte. NPGL, serving as the loading platform for MIP immobilization, possesses large accessible surface area with superb electric conductivity, while electrochemically synthesized MIP thin layer affords selectivity for specific recognition of MNZ molecules. For MNZ determination, the hybrid electrode shows two dynamic linear range of 5 × 10-11 to 1 × 10-9 mol L-1 and 1 × 10-9 to 1.4 × 10-6 mol L-1 with a remarkably low detection limit of 1.8 × 10-11 mol L-1 (S/N = 3). In addition, the sensor exhibits high binding affinity and selectivity towards MNZ with excellent reproducibility and stability. Finally, the reliability of MIP-NPGL for MNZ detection is proved in real fish tissue samples, demonstrating the potential for the proposed electrochemical sensors in monitoring drug and biological samples.

  11. Guest-dependent high-pressure phenomena in a nanoporous metal-organic framework material.

    SciTech Connect

    Chapman, K.; Halder, G. J.; Chupas, P. J.

    2008-08-13

    The nanoporous metal?organic framework material Cu{sub 3}(1,3,5-benzenetricarboxylate){sub 2}(H{sub 2}O){sub 3} {center_dot} (guest) exhibits anomalous compression under applied pressure that is associated with the hyper-filling of the pore network. This behavior involves a dramatic transition between a 'hard' regime (bulk modulus, K{sub hard} {approx} 118 GPa), where the pressure-transmitting fluid penetrates the framework cavities, and a 'soft' regime (K{sub soft} {approx} 30 GPa), where the guest-framework system compresses concertedly. Not only is the duality in compressibility triggered by the availability of potential guests but the size/penetrability of the guest molecules determines the pressure at which the hard-soft transition occurs. Specifically, the observed compression behavior depends on the size of the pressure-transmitting fluid molecules, the sample particle size (i.e., the extent of the pore network), and the rate at which the pressure is increased. The unprecedented pressure-induced phenomena documented here, illustrates the exotic high-pressure behaviors possible in this versatile class of advanced functional materials with broad implications for their structure-function relationships and accordingly their practical application.

  12. Guest-dependent high pressure phenomena in a nanoporous metal-organic framework material.

    PubMed

    Chapman, Karena W; Halder, Gregory J; Chupas, Peter J

    2008-08-13

    The nanoporous metal-organic framework material Cu3(1,3,5-benzenetricarboxylate)2(H2O)3.{guest} exhibits anomalous compression under applied pressure that is associated with the hyper-filling of the pore network. This behavior involves a dramatic transition between a "hard" regime (bulk modulus, Khard approximately 118 GPa), where the pressure-transmitting fluid penetrates the framework cavities, and a "soft" regime (Ksoft approximately 30 GPa), where the guest-framework system compresses concertedly. Not only is the duality in compressibility triggered by the availability of potential guests but the size/penetrability of the guest molecules determines the pressure at which the hard-soft transition occurs. Specifically, the observed compression behavior depends on the size of the pressure-transmitting fluid molecules, the sample particle size (i.e., the extent of the pore network), and the rate at which the pressure is increased. The unprecedented pressure-induced phenomena documented here, illustrates the exotic high-pressure behaviors possible in this versatile class of advanced functional materials with broad implications for their structure-function relationships and accordingly their practical application. PMID:18636710

  13. Carbon Nanofiber/3D Nanoporous Silicon Hybrids as High Capacity Lithium Storage Materials.

    PubMed

    Park, Hyeong-Il; Sohn, Myungbeom; Kim, Dae Sik; Park, Cheolho; Choi, Jeong-Hee; Kim, Hansu

    2016-04-21

    Carbon nanofiber (CNF)/3D nanoporous (3DNP) Si hybrid materials were prepared by chemical etching of melt-spun Si/Al-Cu-Fe alloy nanocomposites, followed by carbonization using a pitch. CNFs were successfully grown on the surface of 3DNP Si particles using residual Fe impurities after acidic etching, which acted as a catalyst for the growth of CNFs. The resulting CNF/3DNP Si hybrid materials showed an enhanced cycle performance up to 100 cycles compared to that of the pristine Si/Al-Cu-Fe alloy nanocomposite as well as that of bare 3DNP Si particles. These results indicate that CNFs and the carbon coating layer have a beneficial effect on the capacity retention characteristics of 3DNP Si particles by providing continuous electron-conduction pathways in the electrode during cycling. The approach presented here provides another way to improve the electrochemical performances of porous Si-based high capacity anode materials for lithium-ion batteries. PMID:26970098

  14. Molecularly imprinted polymer decorated nanoporous gold for highly selective and sensitive electrochemical sensors.

    PubMed

    Li, Yingchun; Liu, Yuan; Liu, Jie; Liu, Jiang; Tang, Hui; Cao, Cong; Zhao, Dongsheng; Ding, Yi

    2015-01-01

    Electrochemical nanosensors based on nanoporous gold leaf (NPGL) and molecularly imprinted polymer (MIP) are developed for pharmaceutical analysis by using metronidazole (MNZ) as a model analyte. NPGL, serving as the loading platform for MIP immobilization, possesses large accessible surface area with superb electric conductivity, while electrochemically synthesized MIP thin layer affords selectivity for specific recognition of MNZ molecules. For MNZ determination, the hybrid electrode shows two dynamic linear range of 5 × 10(-11) to 1 × 10(-9) mol L(-1) and 1 × 10(-9) to 1.4 × 10(-6) mol L(-1) with a remarkably low detection limit of 1.8 × 10(-11) mol L(-1) (S/N = 3). In addition, the sensor exhibits high binding affinity and selectivity towards MNZ with excellent reproducibility and stability. Finally, the reliability of MIP-NPGL for MNZ detection is proved in real fish tissue samples, demonstrating the potential for the proposed electrochemical sensors in monitoring drug and biological samples. PMID:25572290

  15. Molecularly imprinted polymer decorated nanoporous gold for highly selective and sensitive electrochemical sensors

    PubMed Central

    Li, Yingchun; Liu, Yuan; Liu, Jie; Liu, Jiang; Tang, Hui; Cao, Cong; Zhao, Dongsheng; Ding, Yi

    2015-01-01

    Electrochemical nanosensors based on nanoporous gold leaf (NPGL) and molecularly imprinted polymer (MIP) are developed for pharmaceutical analysis by using metronidazole (MNZ) as a model analyte. NPGL, serving as the loading platform for MIP immobilization, possesses large accessible surface area with superb electric conductivity, while electrochemically synthesized MIP thin layer affords selectivity for specific recognition of MNZ molecules. For MNZ determination, the hybrid electrode shows two dynamic linear range of 5 × 10−11 to 1 × 10−9 mol L−1 and 1 × 10−9 to 1.4 × 10−6 mol L−1 with a remarkably low detection limit of 1.8 × 10−11 mol L−1 (S/N = 3). In addition, the sensor exhibits high binding affinity and selectivity towards MNZ with excellent reproducibility and stability. Finally, the reliability of MIP-NPGL for MNZ detection is proved in real fish tissue samples, demonstrating the potential for the proposed electrochemical sensors in monitoring drug and biological samples. PMID:25572290

  16. Ion selection of charge-modified large nanopores in a graphene sheet.

    PubMed

    Zhao, Shijun; Xue, Jianming; Kang, Wei

    2013-09-21

    Water desalination becomes an increasingly important approach for clean water supply to meet the rapidly growing demand of population boost, industrialization, and urbanization. The main challenge in current desalination technologies lies in the reduction of energy consumption and economic costs. Here, we propose to use charged nanopores drilled in a graphene sheet as ion exchange membranes to promote the efficiency and capacity of desalination systems. Using molecular dynamics simulations, we investigate the selective ion transport behavior of electric-field-driven KCl electrolyte solution through charge modified graphene nanopores. Our results reveal that the presence of negative charges at the edge of graphene nanopore can remarkably impede the passage of Cl(-) while enhance the transport of K(+), which is an indication of ion selectivity for electrolytes. We further demonstrate that this selectivity is dependent on the pore size and total charge number assigned at the nanopore edge. By adjusting the nanopore diameter and electric charge on the graphene nanopore, a nearly complete rejection of Cl(-) can be realized. The electrical resistance of nanoporous graphene, which is a key parameter to evaluate the performance of ion exchange membranes, is found two orders of magnitude lower than commercially used membranes. Our results thus suggest that graphene nanopores are promising candidates to be used in electrodialysis technology for water desalinations with a high permselectivity. PMID:24070300

  17. Ion selection of charge-modified large nanopores in a graphene sheet

    NASA Astrophysics Data System (ADS)

    Zhao, Shijun; Xue, Jianming; Kang, Wei

    2013-09-01

    Water desalination becomes an increasingly important approach for clean water supply to meet the rapidly growing demand of population boost, industrialization, and urbanization. The main challenge in current desalination technologies lies in the reduction of energy consumption and economic costs. Here, we propose to use charged nanopores drilled in a graphene sheet as ion exchange membranes to promote the efficiency and capacity of desalination systems. Using molecular dynamics simulations, we investigate the selective ion transport behavior of electric-field-driven KCl electrolyte solution through charge modified graphene nanopores. Our results reveal that the presence of negative charges at the edge of graphene nanopore can remarkably impede the passage of Cl- while enhance the transport of K+, which is an indication of ion selectivity for electrolytes. We further demonstrate that this selectivity is dependent on the pore size and total charge number assigned at the nanopore edge. By adjusting the nanopore diameter and electric charge on the graphene nanopore, a nearly complete rejection of Cl- can be realized. The electrical resistance of nanoporous graphene, which is a key parameter to evaluate the performance of ion exchange membranes, is found two orders of magnitude lower than commercially used membranes. Our results thus suggest that graphene nanopores are promising candidates to be used in electrodialysis technology for water desalinations with a high permselectivity.

  18. Formation of highly adherent nano-porous alumina on Ti-based substrates: a novel bone implant coating.

    PubMed

    Briggs, E P; Walpole, A R; Wilshaw, P R; Karlsson, M; Pålsgård, E

    2004-09-01

    Thin, nano-porous, highly adherent layers of anodised aluminium formed on the surface of titanium alloys are being developed as coatings for metallic surgical implants. The layers are formed by anodisation of a 1-5 microm thick layer of aluminium which has been deposited on substrate material by electron beam evaporation. The surface ceramic layer so produced is alumina with 6-8 wt % phosphate ions and contains approximately 5 x 10(8) cm(-2) pores with a approximately 160 nm average diameter, running perpendicular to the surface. Mechanical testing showed the coatings' shear and tensile strength to be at least 20 and 10 MPa, respectively. Initial cell/material studies show promising cellular response to the nano-porous alumina. A normal osteoblastic growth pattern with cell number increasing from day 1 to 21 was shown, with slightly higher proliferative activity on the nano-porous alumina compared to the Thermanox control. Scanning electron microscopy (SEM) examination of the cells on the porous alumina membrane showed normal osteoblast morphology. Flattened cells with filopodia attaching to the pores and good coverage were also observed. In addition, the pore structure produced in these ceramic coatings is expected to be suitable for loading with bioactive material to enhance further their biological properties. PMID:15448410

  19. Graphene Oxide Derived Carbons (GODC); High-Surface Area NanoPorous Materials for Hydrogen Storage and Carbon Capture

    NASA Astrophysics Data System (ADS)

    Yildirim, Taner

    2012-02-01

    Even though there has been extensive research on gas adsorption properties of various carbon materials based on activated carbon and nanotubes, there has been little work done on the gas adsorption properties of graphite oxide (GO). In this study [1], we show that one-and-a-half-century-old graphite oxide can be easily turned into a potentially useful gas storage material. In order to create high-surface nanoporous materials from GO, we used two different approaches. In the first approach, we have successfully synthesized graphene-oxide framework materials (GOFs) by interlinking GO layers by diboronic acids. The resulting GOF materials have well defined pore size and BET surface area up to 500 m2/g with twice larger heat of adsorption of H2 and CO2 than those found in other physisorption materials such as MOF5. In the second approach, we synthesized a range of high surface area GO derived carbons (GODC) and studied their applications toward H2, CO2 and CH4 gas storage. The GODCs, with wide range of pore structure, have been prepared by chemical activation with potassium hydroxide (KOH). We obtain largely increased surface areas up to nearly 1900 m^2/g for GODC samples from 10 m^2/g for initial GO. A detailed experimental study of high pressure excess sorption isotherms on GODCs reveal an increase in both CO2 and CH4 storage capacities compared to other high surface area activated carbons. Finally, we compared the gas sorption properties of our GO-based matarials with other systems such as MOFs, ZIFs, and COFs. [4pt] [1] See http://www.ncnr.nist.gov/staff/taner for references and more information.

  20. Molecule-hugging graphene nanopores

    PubMed Central

    Garaj, Slaven; Liu, Song; Golovchenko, Jene A.; Branton, Daniel

    2013-01-01

    It has recently been recognized that solid-state nanopores in single-atomic-layer graphene membranes can be used to electronically detect and characterize single long charged polymer molecules. We have now fabricated nanopores in single-layer graphene that are closely matched to the diameter of a double-stranded DNA molecule. Ionic current signals during electrophoretically driven translocation of DNA through these nanopores were experimentally explored and theoretically modeled. Our experiments show that these nanopores have unusually high sensitivity (0.65 nA/Å) to extremely small changes in the translocating molecule’s outer diameter. Such atomically short graphene nanopores can also resolve nanoscale-spaced molecular structures along the length of a polymer, but do so with greatest sensitivity only when the pore and molecule diameters are closely matched. Modeling confirms that our most closely matched pores have an inherent resolution of ≤0.6 nm along the length of the molecule. PMID:23836648

  1. Molecule-hugging graphene nanopores.

    PubMed

    Garaj, Slaven; Liu, Song; Golovchenko, Jene A; Branton, Daniel

    2013-07-23

    It has recently been recognized that solid-state nanopores in single-atomic-layer graphene membranes can be used to electronically detect and characterize single long charged polymer molecules. We have now fabricated nanopores in single-layer graphene that are closely matched to the diameter of a double-stranded DNA molecule. Ionic current signals during electrophoretically driven translocation of DNA through these nanopores were experimentally explored and theoretically modeled. Our experiments show that these nanopores have unusually high sensitivity (0.65 nA/Å) to extremely small changes in the translocating molecule's outer diameter. Such atomically short graphene nanopores can also resolve nanoscale-spaced molecular structures along the length of a polymer, but do so with greatest sensitivity only when the pore and molecule diameters are closely matched. Modeling confirms that our most closely matched pores have an inherent resolution of ≤ 0.6 nm along the length of the molecule. PMID:23836648

  2. TiO2 nanopores with high sensitivity to ultraviolet light

    NASA Astrophysics Data System (ADS)

    Rodríguez, D. F.; Perillo, P. M.

    2015-04-01

    We investigated the UV photoconductivity and transient response of TiO2 nanopores on silicon substrate. Ti thin films were first deposited by radio-frequency (RF) magnetron sputtering and then anodized in glycerol electrolytes containing ammonium fluoride (NH4F). For the UV irradiation, the rise and decay curves of photocurrent are well fitted to a bi-exponential function. In both cases, the photocurrent was dominated by an initial fast response about 2 s. The ohmic I-V characteristic of the TiO2 nanopores under illumination could be ascribed to the decrease of the Schottky barrier height, to the accumulation of conduction electrons, resulted from the neutralization between photogenerated holes and negatively charged oxygen ions. These nanopores arrays could be useful in serving as photodetectors, chemical and biological sensors, and switching devices for nanoscale optoelectronics.

  3. Membrane Transport Processes Analyzed by a Highly Parallel Nanopore Chip System at Single Protein Resolution.

    PubMed

    Urban, Michael; Vor der Brüggen, Marc; Tampé, Robert

    2016-01-01

    Membrane protein transport on the single protein level still evades detailed analysis, if the substrate translocated is non-electrogenic. Considerable efforts have been made in this field, but techniques enabling automated high-throughput transport analysis in combination with solvent-free lipid bilayer techniques required for the analysis of membrane transporters are rare. This class of transporters however is crucial in cell homeostasis and therefore a key target in drug development and methodologies to gain new insights desperately needed. The here presented manuscript describes the establishment and handling of a novel biochip for the analysis of membrane protein mediated transport processes at single transporter resolution. The biochip is composed of microcavities enclosed by nanopores that is highly parallel in its design and can be produced in industrial grade and quantity. Protein-harboring liposomes can directly be applied to the chip surface forming self-assembled pore-spanning lipid bilayers using SSM-techniques (solid supported lipid membranes). Pore-spanning parts of the membrane are freestanding, providing the interface for substrate translocation into or out of the cavity space, which can be followed by multi-spectral fluorescent readout in real-time. The establishment of standard operating procedures (SOPs) allows the straightforward establishment of protein-harboring lipid bilayers on the chip surface of virtually every membrane protein that can be reconstituted functionally. The sole prerequisite is the establishment of a fluorescent read-out system for non-electrogenic transport substrates. High-content screening applications are accomplishable by the use of automated inverted fluorescent microscopes recording multiple chips in parallel. Large data sets can be analyzed using the freely available custom-designed analysis software. Three-color multi spectral fluorescent read-out furthermore allows for unbiased data discrimination into different

  4. Recent trends in nanopores for biotechnology

    PubMed Central

    Stoloff, Daniel H; Wanunu, Meni

    2016-01-01

    Nanopore technology employs a nanoscale hole in an insulating membrane to stochastically sense with high throughput individual biomolecules in solution. The generality of the nanopore detection principle and the ease of single-molecule detection suggest many potential applications of nanopores in biotechnology. Recent progress has been made with nanopore fabrication and sophistication, as well as with applications in DNA/protein mapping, biomolecular structure analysis, protein detection, and DNA sequencing. In addition, concepts for DNA sequencing devices have been suggested, and computational efforts have been made. The state of the nanopore field is maturing and given the right type of nanopore and operating conditions, nearly every application could revolutionize medicine in terms of speed, cost, and quality. In this review, we summarize progress in nanopores for biotechnological applications over the past 2–3 years. PMID:23266100

  5. Self-assembling synthesis of free-standing nanoporous graphene-transition-metal oxide flexible electrodes for high-performance lithium-ion batteries and supercapacitors.

    PubMed

    Huang, Xiaodan; Sun, Bing; Chen, Shuangqiang; Wang, Guoxiu

    2014-01-01

    The synthesis of nanoporous graphene by a convenient carbon nanofiber assisted self-assembly approach is reported. Porous structures with large pore volumes, high surface areas, and well-controlled pore sizes were achieved by employing spherical silica as hard templates with different diameters. Through a general wet-immersion method, transition-metal oxide (Fe3O4, Co3O4, NiO) nanocrystals can be easily loaded into nanoporous graphene papers to form three-dimensional flexible nanoarchitectures. When directly applied as electrodes in lithium-ion batteries and supercapacitors, the materials exhibited superior electrochemical performances, including an ultra-high specific capacity, an extended long cycle life, and a high rate capability. In particular, nanoporous Fe3O4-graphene composites can deliver a reversible specific capacity of 1427.5 mAh g(-1) at a high current density of 1000 mA g(-1) as anode materials in lithium-ion batteries. Furthermore, nanoporous Co3O4-graphene composites achieved a high supercapacitance of 424.2 F g(-1) . This work demonstrated that the as-developed freestanding nanoporous graphene papers could have significant potential for energy storage and conversion applications. PMID:24129981

  6. Fabrication of cobalt-nickel binary nanowires in a highly ordered alumina template via AC electrodeposition

    PubMed Central

    2013-01-01

    Cobalt-nickel (Co-Ni) binary alloy nanowires of different compositions were co-deposited in the nanopores of highly ordered anodic aluminum oxide (AAO) templates from a single sulfate bath using alternating current (AC) electrodeposition. AC electrodeposition was accomplished without modifying or removing the barrier layer. Field emission scanning electron microscope was used to study the morphology of templates and alloy nanowires. Energy-dispersive X-ray analysis confirmed the deposition of Co-Ni alloy nanowires in the AAO templates. Average diameter of the alloy nanowires was approximately 40 nm which is equal to the diameter of nanopore. X-ray diffraction analysis showed that the alloy nanowires consisted of both hexagonal close-packed and face-centered cubic phases. Magnetic measurements showed that the easy x-axis of magnetization is parallel to the nanowires with coercivity of approximately 706 Oe. AC electrodeposition is very simple, fast, and is useful for the homogenous deposition of various secondary nanostuctured materials into the nanopores of AAO. PMID:23941234

  7. A high-performance supercapacitor cell based on ZIF-8-derived nanoporous carbon using an organic electrolyte.

    PubMed

    Salunkhe, Rahul R; Young, Christine; Tang, Jing; Takei, Toshiaki; Ide, Yusuke; Kobayashi, Naoya; Yamauchi, Yusuke

    2016-04-01

    Low-cost supercapacitors have the ability to rapidly store a large amount of charge, which makes them the best alternative to batteries in portable electronics. Here, we demonstrate the fabrication of all-carbon supercapacitors using an organic electrolyte. By using ZIF-derived nanoporous carbon electrodes, we have realized a high-performance supercapacitor cell using 2 M NEt4BF4/PC as the electrolyte. Our device shows good energy storage capacity that is comparable to the other previously reported supercapacitors. PMID:26928244

  8. High-throughput Z T predictions of nanoporous bulk materials as next-generation thermoelectric materials: A material genome approach

    NASA Astrophysics Data System (ADS)

    Hao, Qing; Xu, Dongchao; Lu, Na; Zhao, Hongbo

    2016-05-01

    The advancement of computational tools for material property predictions enables a broad search of novel materials for various energy-related applications. However, challenges still exist in accurately predicting the mean free paths of electrons and phonons in a high-throughput frame for thermoelectric property predictions, which largely hinders the computation-driven material search for novel materials. In this work, this need is eliminated under the limit of reduced nanostructure size within a bulk material, in which these mean free paths are restricted by the nanostructure size. A criterion for Z T evaluation is proposed for general nanoporous bulk materials and is demonstrated with representative oxides.

  9. Hierarchical structural nanopore arrays fabricated by pre-patterning aluminum using nanosphere lithography.

    PubMed

    Wang, Xinnan; Xu, Shuping; Cong, Ming; Li, Haibo; Gu, Yuejiao; Xu, Weiqing

    2012-04-10

    A highly ordered and hierarchical structural nanopore array is fabricated via anodizing a pre-patterned aluminum foil under an optimized voltage. A pre-patterned hexagonal nanoindentation array on an aluminum substrate is prepared via the nanosphere lithography method. This pattern leads to an elaborate nanochannel structure with seven nanopores in each nanoindentation after anodization treatment. The structure achieved in our study is new, interesting, and likely to be applied in photonic devices. PMID:22315204

  10. Fabrication and Characterization of High-Crystalline Nanoporous ZnO Thin Films by Modified Thermal Evaporation System

    NASA Astrophysics Data System (ADS)

    Islam, M. S.; Hossain, M. F.; Razzak, S. M. A.; Haque, M. M.; Saha, D. K.

    2016-05-01

    The aim of this work is to fabricate high-crystalline nanoporous zinc oxide (ZnO) thin films by a modified thermal evaporation system. First, zinc thin films have been deposited on bare glass substrate by the modified thermal evaporation system with pressure of 0.05mbar, source-substrate distance of 3cm and source temperature 700∘C. Then, high-crystalline ZnO thin film is obtained by annealing at 500∘C for 2h in atmosphere. The prepared ZnO films are characterized with various deposition times of 10min and 20min. The structural property was investigated by X-ray diffractometer (XRD). The optical bandgap and absorbance/transmittance of these films are examined by ultraviolet/visible spectrophotometer. The surface morphological property has been observed by scanning electron microscope (SEM). ZnO films have showed uniform nanoporous surface with high-crystalline hexagonal wurtzite structure. The ZnO films prepared with 20min has excitation absorption-edge at 369nm, which is blueshifted with respect to the bulk absorption-edge appearing at 380nm. The gap energy of ZnO film is decreased from 3.14eV to 3.09eV with increase of the deposition time, which can enhance the excitation of ZnO films by the near visible light, and is suitable for the application of photocatalyst of waste water cleaning and polluted air purification.

  11. Nanoporous Polytetrafluoroethylene/Silica Composite Separator as a High-Performance All-Vanadium Redox Flow Battery Membrane

    SciTech Connect

    Wei, Xiaoliang; Nie, Zimin; Luo, Qingtao; Li, Bin; Chen, Baowei; Simmons, Kevin L.; Sprenkle, Vincent L.; Wang, Wei

    2013-09-02

    Driven by the motivation of searching for low-cost membrane alternatives, a novel nanoporous polytetrafluoroethylene/silica composite separator has been prepared and evaluated for its use in all-vanadium mixed-acid redox flow battery. This separator consisting of silica particles enmeshed in a polytetrafluoroethylene fibril matrix has no ion exchange capacity and is featured with unique nanoporous structures, which function as the ion transport channels in redox flow battery operation, with an average pore size of 38nm and a porosity of 48%. This separator has produced excellent electrochemical performance in the all-vanadium mixed-acid system with energy efficiency delivery comparable to Nafion membrane and superior rate capability and temperature tolerance. The separator also demonstrates an exceptional capacity retention capability over extended cycling, offering additional operational latitude towards conveniently mitigating the capacity decay that is inevitable for Nafion. Because of the inexpensive raw materials and simple preparation protocol, the separator is particularly low-cost, estimated to be at least an order of magnitude more inexpensive than Nafion. Plus the proven chemical stability due to the same backbone material as Nafion, this separator possesses a good combination of critical membrane requirements and shows great potential to promote market penetration of the all-vanadium redox flow battery by enabling significant reduction of capital and cycle costs.

  12. Surface Electronic Properties and Site-Specific Laser Desorption Processes of Highly Structured Nanoporous MgO Thin Films

    SciTech Connect

    Henyk, Matthias; Beck, Kenneth M.; Engelhard, Mark H.; Joly, Alan G.; Hess, Wayne P.; Dickinson, J T.

    2005-11-20

    The surface electronic properties of metal oxides critically depends on low-coordinated sites, such as kinks, corners and steps [1]. In order to characterize experimentally those surface states as well as their role for laser desorption processes, we prepare defect enriched surfaces by growing thin MgO films using reactive ballistic deposition [2] on crystalline dielectric substrates. With samples held at room temperature, the resulting MgO films are highly textured and consist of porous columns with column lengths ranging from tens of nanometers up to six micrometers. Measurements by x-ray photoelectron spectroscopy (XPS) are carried out in-situ for MgO films, vacuum-cleaved MgO crystals, and water vapor exposed samples. In the case of thin films, we observe O 1s spectra with a significant shoulder feature at 2.3 eV higher binding energy (HBE) than the corresponding peak at 530.0 eV representing regular lattice oxygen. We evaluate this feature in terms of non-stoichiometric oxygen and formation of an oxygen-rich layer at the topmost surface of the MgO columns. In contrast, no HBE-features are detectable from clean single crystal MgO surfaces, while the hydroxyl O 1s band peaks at 531.6 eV. Under excitation with 266-nm-laser-pulses, known to be resonant with low-coordinated surface anions [3], we observe preferential depletion of defective oxygen-states (HBE signal) and temporary restoration of ideal surface stoichiometry. Furthermore, auxiliary signals are observed on several micrometer thick films, acting like satellites to major photoelectron-peaks (O 1s, Mg 2s, and Mg 2p) but shifted by approximately 4 eV towards lower kinetic energy. These features are depleted by UV-light exposure, pointing to the occurrence of surface-charge imbalance, accompanied by photon stimulated charge-transfer reactions. These results are in line with desorption experiments of neutrals, stimulated by laser excitation at 266 nm. According to the low-coordination nature of nanoporous Mg

  13. Kinetics of nanopore fabrication during controlled breakdown of dielectric membranes in solution

    NASA Astrophysics Data System (ADS)

    Briggs, Kyle; Charron, Martin; Kwok, Harold; Le, Timothea; Chahal, Sanmeet; Bustamante, José; Waugh, Matthew; Tabard-Cossa, Vincent

    2015-02-01

    Nanopore fabrication by controlled breakdown (CBD) overcomes many of the challenges of traditional nanofabrication techniques, by reliably forming solid-state nanopores sub-2 nm in size in a low-cost and scalable way for nucleic acid analysis applications. Herein, the breakdown kinetics of thin dielectric membranes immersed in a liquid environment are investigated in order to gain deeper insights into the mechanism of solid-state nanopore formation by high electric fields. For various fabrication conditions, we demonstrate that nanopore fabrication time is Weibull-distributed, in support of the hypothesis that the fabrication mechanism is a stochastic process governed by the probability of forming a connected path across the membrane (i.e. a weakest-link problem). Additionally, we explore the roles that various ions and solvents play in breakdown kinetics, revealing that asymmetric pH conditions across the membrane can significantly affect nanopore fabrication time for a given voltage polarity. These results, characterizing the stochasticity of the nanopore fabrication process and highlighting the parameters affecting it, should assist researchers interested in exploiting the potential of CBD for nanofluidic channel fabrication, while also offering guidance towards the conceivable manufacturing of solid-state nanopore-based technologies for DNA sequencing applications.

  14. Integrated Solid/Nanoporous Copper/Oxide Hybrid Bulk Electrodes for High-performance Lithium-Ion Batteries

    PubMed Central

    Hou, Chao; Lang, Xing-You; Han, Gao-Feng; Li, Ying-Qi; Zhao, Lei; Wen, Zi; Zhu, Yong-Fu; Zhao, Ming; Li, Jian-Chen; Lian, Jian-She; Jiang, Qing

    2013-01-01

    Nanoarchitectured electroactive materials can boost rates of Li insertion/extraction, showing genuine potential to increase power output of Li-ion batteries. However, electrodes assembled with low-dimensional nanostructured transition metal oxides by conventional approach suffer from dramatic reductions in energy capacities owing to sluggish ion and electron transport kinetics. Here we report that flexible bulk electrodes, made of three-dimensional bicontinuous nanoporous Cu/MnO2 hybrid and seamlessly integrated with Cu solid current collector, substantially optimizes Li storage behavior of the constituent MnO2. As a result of the unique integration of solid/nanoporous hybrid architecture that simultaneously enhances the electron transport of MnO2, facilitates fast ion diffusion and accommodates large volume changes on Li insertion/extraction of MnO2, the supported MnO2 exhibits a stable capacity of as high as ~1100 mA h g−1 for 1000 cycles, and ultrahigh charge/discharge rates. It makes the environmentally friendly and low-cost electrode as a promising anode for high-performance Li-ion battery applications. PMID:24096928

  15. Synthesis of Nanoporous Metals, Oxides, Carbides, and Sulfides: Beyond Nanocasting.

    PubMed

    Luc, Wesley; Jiao, Feng

    2016-07-19

    Nanoporous metal-based solids are of particular interest because they combine a large quantity of surface metal sites, interconnected porous networks, and nanosized crystalline walls, thus exhibiting unique physical and chemical properties compared to other nanostructures and bulk counterparts. Among all of the synthetic approaches, nanocasting has proven to be a highly effective method for the syntheses of metal oxides with three-dimensionally ordered porous structures and crystalline walls. A typical procedure involves a thermal annealing process of a porous silica template filled with an inorganic precursor (often a metal nitrate salt), which converts the precursor into a desired phase within the silica pores. The final step is the selective removal of the silica template in either a strong base or a hydrofluoric acid solution. In the past decade, nanocasting has become a popular synthetic approach and has enabled the syntheses of a variety of nanoporous metal oxides. However, there is still a lack of synthetic methods to fabricate nanoporous materials beyond simple metal oxides. Therefore, the development of new synthetic strategies beyond nanocasting has become an important direction. This Account describes new progress in the preparation of novel nanoporous metal-based solids for heterogeneous catalysis. The discussion begins with a method called dealloying, an effective method to synthesize nanoporous metals. The starting material is a metallic alloy containing two or more elements followed by a selective chemical or electrochemical leaching process that removes one of the preferential elements, resulting in a highly porous structure. Nanoporous metals, such as Cu, Ag, and CuTi, exhibit remarkable electrocatalytic properties in carbon dioxide reduction, oxygen reduction, and hydrogen evolution reactions. In addition, the syntheses of metal oxides with hierarchical porous structures are also discussed. On the basis of the choice of hard template, nanoporous

  16. High-Order/Low-Order methods for ocean modeling

    SciTech Connect

    Newman, Christopher; Womeldorff, Geoff; Chacón, Luis; Knoll, Dana A.

    2015-06-01

    We examine a High Order/Low Order (HOLO) approach for a z-level ocean model and show that the traditional semi-implicit and split-explicit methods, as well as a recent preconditioning strategy, can easily be cast in the framework of HOLO methods. The HOLO formulation admits an implicit-explicit method that is algorithmically scalable and second-order accurate, allowing timesteps much larger than the barotropic time scale. We demonstrate how HOLO approaches, in particular the implicit-explicit method, can provide a solid route for ocean simulation to heterogeneous computing and exascale environments.

  17. Current oscillations in nanopores

    NASA Astrophysics Data System (ADS)

    Hyland, Brittany

    We develop a simple phenomenological model to describe current oscillations in single, conically shaped nanopores. The model utilizes aspects of reaction rate theory, electrochemical oscillators, and nonlinear dynamical systems. Time series of experimental data were analyzed and compared to time series simulated using the model equations. There is good qualitative agreement between experiment and simulation, though the model needs to be improved in order to obtain better quantitative agreement.

  18. Nanoporous materials for biomedical devices.

    SciTech Connect

    Adiga, S. P.; Curtiss, L. A.; Elam, J. W.; Pellin, M. J.; Shih, C.-C.; Shin, C.-M.; Lin, S.-J.; Su, Y.-Y.; Gittard, S. D.; Zhang, J.; Narayan, R. J.; National Yang-Ming Univ.; Taipei Medical Univ.; Univ. of North Carolina at Chapel Hill

    2008-01-01

    Nanoporous materials are currently being developed for use in implantable drug delivery systems, bioartificial organs, and other novel medical devices. Advances in nanofabrication have made it possible to precisely control the pore size, pore distribution, porosity, and chemical properties of pores in nanoporous materials. As a result, these materials are attractive for regulating and sensing transport at the molecular level. In this work, the use of nanoporous membranes for biomedical applications is reviewed. The basic concepts underlying membrane transport are presented in the context of design considerations for efficient size sorting. Desirable properties of nanoporous membranes used in implantable devices, including biocompatibility and antibiofouling behavior, are also discussed. In addition, the use of surface modification techniques to improve the function of nanoporous membranes is reviewed. An intriguing possibility involves functionalizing nanoporous materials with smart polymers in order to modulate biomolecular transport in response to pH, temperature, ionic concentration, or other stimuli. These efforts open up avenues to develop smart medical devices that respond to specific physiological conditions.

  19. Noncovalent functionalization of solid-state nanopores via self-assembly of amphipols

    NASA Astrophysics Data System (ADS)

    Pérez-Mitta, Gonzalo; Burr, Loïc; Tuninetti, Jimena S.; Trautmann, Christina; Toimil-Molares, María Eugenia; Azzaroni, Omar

    2016-01-01

    In recent years there has been increasing interest in the development of new methods for conferring functional features to nanopore-based fluidic devices. In this work, we describe for the first time the noncovalent integration of amphoteric-amphipathic polymers, also known as ``amphipols'', into single conical nanopores in order to obtain signal-responsive chemical nanodevices. Highly-tapered conical nanopores were fabricated by single-sided chemical etching of polycarbonate foils. After etching, the surface of the conical nanopores was chemically modified, by first metallizing the surface via gold sputtering and then by amphiphilic self-assembly of the amphipol. The net charge of adsorbed amphipols was regulated via pH changes under the environmental conditions. The pH-dependent chemical equilibrium of the weak acidic and basic monomers facilitates the regulation of the ionic transport through the nanopore by adjusting the pH of the electrolyte solution. Our results demonstrate that functional amphipathic polymers are powerful building blocks for the surface modification of nanopores and might ultimately pave the way to a new means of integrating functional and/or responsive units within nanofluidic structures.In recent years there has been increasing interest in the development of new methods for conferring functional features to nanopore-based fluidic devices. In this work, we describe for the first time the noncovalent integration of amphoteric-amphipathic polymers, also known as ``amphipols'', into single conical nanopores in order to obtain signal-responsive chemical nanodevices. Highly-tapered conical nanopores were fabricated by single-sided chemical etching of polycarbonate foils. After etching, the surface of the conical nanopores was chemically modified, by first metallizing the surface via gold sputtering and then by amphiphilic self-assembly of the amphipol. The net charge of adsorbed amphipols was regulated via pH changes under the environmental

  20. Surface chemistry driven actuation in nanoporous gold

    SciTech Connect

    Biener, J; Wittstock, A; Zepeda-Ruiz, L; Biener, M M; Zielasek, V; Kramer, D; Viswanath, R N; Weissmuller, J; Baumer, M; Hamza, A V

    2008-04-14

    Although actuation in biological systems is exclusively powered by chemical energy, this concept has not been realized in man-made actuator technologies, as these rely on generating heat or electricity first. Here, we demonstrate that surface-chemistry driven actuation can be realized in high surface area materials such as nanoporous gold. For example, we achieve reversible strain amplitudes in the order of a few tenths of a percent by alternating exposure of nanoporous Au to ozone and carbon monoxide. The effect can be explained by adsorbate-induced changes of the surface stress, and can be used to convert chemical energy directly into a mechanical response thus opening the door to surface-chemistry driven actuator and sensor technologies.

  1. In Situ Observation of Directed Nanoparticle Aggregation During the Synthesis of Ordered Nanoporous Metal in Soft Templates

    SciTech Connect

    Parent, Lucas R.; Robinson, David B.; Cappillino, Patrick J.; Hartnett, Ryan J.; Abellan Baeza, Patricia; Evans, James E.; Browning, Nigel D.; Arslan, Ilke

    2014-02-11

    The prevalent approach to developing new nanomaterials is a trial and error process of iteratively altering synthesis procedures and then characterizing the resulting nanostructures. This is fundamentally limited in that the growth processes that occur during synthesis can only be inferred from the final synthetic structure. Directly observing real-time nanomaterial growth provides unprecedented insight into the relationship between synthesis conditions and product evolution, and facilitates a mechanistic approach to nanomaterial development. Here we use in situ liquid stage scanning transmission electron microscopy to observe the growth of mesoporous palladium in a solvated block copolymer (BCP) template under various synthesis conditions, and ultimately determine a refined synthesis procedure that yields ordered pores. We find that at low organic solvent (tetrahydrofuran, THF) content, the BCP assembles into a rigid, cylindrical micelle array with a high degree of short-range order, but poor long-range order. Upon slowing the THF evaporation rate using a solvent-vapor anneal step, the long-range order is greatly improved. The electron beam induces nucleation of small particles in the aqueous phase around the micelles. The small particles then flocculate and grow into denser structures that surround the micelles, forming an ordered mesoporous structure. The microscope observations revealed that template disorder can be addressed prior to reaction, and is not invariably induced by the growth process itself, allowing us to more quickly optimize the synthetic method. This work was conducted in the William R. Wiley Environmental Molecular Sciences Laboratory (EMSL), a national scientific user facility sponsored by DOE’s Office of Biological and Environmental Research and located at Pacific Northwest National Laboratory. The Pacific Northwest National Laboratory is operated by Battelle for the U.S. Department of Energy under contract DE-AC05-76RL01830. This research

  2. Nanopore reactive adsorbents for the high-efficiency removal of waste species

    DOEpatents

    Yang, Arthur Jing-Min; Zhang, Yuehua

    2005-01-04

    A nanoporous reactive adsorbent incorporates a relatively small number of relatively larger reactant, e.g., metal, enzyme, etc., particles (10) forming a discontinuous or continuous phase interspersed among and surrounded by a continuous phase of smaller adsorbent particles (12) and connected interstitial pores (14) therebetween. The reactive adsorbent can effectively remove inorganic or organic impurities in a liquid by causing the liquid to flow through the adsorbent. For example, silver ions may be adsorbed by the adsorbent particles (12) and reduced to metallic silver by reducing metal, such as ions, as the reactant particles (10). The column can be regenerated by backwashing with the liquid effluent containing, for example, acetic acid.

  3. Using High-Order Methods on Lower-Order Geometries

    NASA Technical Reports Server (NTRS)

    Casper, Jay

    1997-01-01

    The desire to obtain acoustic information from the numerical solution of a nonlinear system of equations is a demanding proposition for a computational algorithm. High-order accuracy is required for the propagation of high-frequency, low-amplitude waves. The accuracy of an algorithm can be compromised by low-order errors that naturally occur in the solution of a particular problem. Such errors arise from two sources: the presence of discontinuities in the flow field or because the geometry on which the problem is defined is not everywhere smooth to the order of the scheme. The performance of high-order accurate essentially non-oscillatory (ENO) schemes on piecewise smooth solutions is well documented. Herein, the performance of these methods on smooth solutions defined on piecewise smooth geometries is investigated. The propagation of sound in a quasi-one-dimensional nozzle is considered as a test case. Some of the issues involved in the extension to two spatial dimensions are discussed.

  4. Noise Properties of Rectifying Nanopores

    SciTech Connect

    Powell, M R; Sa, N; Davenport, M; Healy, K; Vlassiouk, I; Letant, S E; Baker, L A; Siwy, Z S

    2011-02-18

    Ion currents through three types of rectifying nanoporous structures are studied and compared for the first time: conically shaped polymer nanopores, glass nanopipettes, and silicon nitride nanopores. Time signals of ion currents are analyzed by power spectrum. We focus on the low-frequency range where the power spectrum magnitude scales with frequency, f, as 1/f. Glass nanopipettes and polymer nanopores exhibit non-equilibrium 1/f noise, thus the normalized power spectrum depends on the voltage polarity and magnitude. In contrast, 1/f noise in rectifying silicon nitride nanopores is of equilibrium character. Various mechanisms underlying the voltage-dependent 1/f noise are explored and discussed, including intrinsic pore wall dynamics, and formation of vortices and non-linear flow patterns in the pore. Experimental data are supported by modeling of ion currents based on the coupled Poisson-Nernst-Planck and Navier Stokes equations. We conclude that the voltage-dependent 1/f noise observed in polymer and glass asymmetric nanopores might result from high and asymmetric electric fields inducing secondary effects in the pore such as enhanced water dissociation.

  5. Noise Properties of Rectifying Nanopore

    SciTech Connect

    Vlassiouk, Ivan V

    2011-01-01

    Ion currents through three types of rectifying nanoporous structures are studied and compared: conically shaped polymer nanopores, glass nanopipettes, and silicon nitride nanopores. Time signals of ion currents are analyzed by the power spectrum. We focus on the low-frequency range where the power spectrum magnitude scales with frequency, f, as 1/f. Glass nanopipettes and polymer nanopores exhibit nonequilibrium 1/f noise; thus, the normalized power spectrum depends on the voltage polarity and magnitude. In contrast, 1/f noise in rectifying silicon nitride nanopores is of equilibrium character. Various mechanisms underlying the voltage-dependent 1/f noise are explored and discussed, including intrinsic pore wall dynamics and formation of vortices and nonlinear flow patterns in the pore. Experimental data are supported by modeling of ion currents based on the coupled Poisson-Nernst-Planck and Navier-Stokes equations. We conclude that the voltage-dependent 1/f noise observed in polymer and glass asymmetric nanopores might result from high and asymmetric electric fields, inducing secondary effects in the pore, such as enhanced water dissociation.

  6. Water desalination with a single-layer MoS2 nanopore.

    PubMed

    Heiranian, Mohammad; Farimani, Amir Barati; Aluru, Narayana R

    2015-01-01

    Efficient desalination of water continues to be a problem facing the society. Advances in nanotechnology have led to the development of a variety of nanoporous membranes for water purification. Here we show, by performing molecular dynamics simulations, that a nanopore in a single-layer molybdenum disulfide can effectively reject ions and allow transport of water at a high rate. More than 88% of ions are rejected by membranes having pore areas ranging from 20 to 60 Å(2). Water flux is found to be two to five orders of magnitude greater than that of other known nanoporous membranes. Pore chemistry is shown to play a significant role in modulating the water flux. Pores with only molybdenum atoms on their edges lead to higher fluxes, which are ∼ 70% greater than that of graphene nanopores. These observations are explained by permeation coefficients, energy barriers, water density and velocity distributions in the pores. PMID:26465062

  7. Water desalination with a single-layer MoS2 nanopore

    PubMed Central

    Heiranian, Mohammad; Farimani, Amir Barati; Aluru, Narayana R.

    2015-01-01

    Efficient desalination of water continues to be a problem facing the society. Advances in nanotechnology have led to the development of a variety of nanoporous membranes for water purification. Here we show, by performing molecular dynamics simulations, that a nanopore in a single-layer molybdenum disulfide can effectively reject ions and allow transport of water at a high rate. More than 88% of ions are rejected by membranes having pore areas ranging from 20 to 60 Å2. Water flux is found to be two to five orders of magnitude greater than that of other known nanoporous membranes. Pore chemistry is shown to play a significant role in modulating the water flux. Pores with only molybdenum atoms on their edges lead to higher fluxes, which are ∼70% greater than that of graphene nanopores. These observations are explained by permeation coefficients, energy barriers, water density and velocity distributions in the pores. PMID:26465062

  8. Micro-nanopores fabricated by high-energy electron beam irradiation: suitable structure for controlling pesticide loss.

    PubMed

    Xiang, Yubin; Wang, Ning; Song, Jimei; Cai, Dongqing; Wu, Zhengyan

    2013-06-01

    Pesticide sprayed onto crop leaves tends to be washed off by rainwater and discharge into the environment through leaching and runoff, resulting in severe pollution to both soil and water. Here, to control pesticide loss, we developed a loss-control pesticide (LCP) by adding modified natural nanoclay (diatomite) through high-energy electron beam (HEEB) to traditional pesticide. After HEEB treatment, the originally clogged pores in diatomite opened, resulting in plenty of micro-nanopores in diatomite, which are beneficial for the pesticide molecules to access and be adsorbed. This pesticide-diatomite complex tended to be retained by the rough surface of crop leaves, displaying a high adhesion performance onto the leaves, so that the pesticide loss reduced, sufficient pesticide for crops was supplied, and the pollution risk of the pesticide could be substantially lowered. PMID:23672373

  9. The Potential and Challenges of Nanopore Sequencing

    SciTech Connect

    Branton, Daniel; Deamer, D. W.; Marziali, A.; Bayley, H.; Benner, S. A.; Butler, Thomas; Di Ventra, Massimiliano; Garaj, S.; Hibbs, Andrew; Huang, Xiaohua; Jovanovich, Stevan B.; Krstic, Predrag S; Lindsay, Stuart; Ling, Xinsheng Sean; Mastrangelo, Carlos H.; Meller, Amit; Oliver, John S.; Pershin, Yuriy V.; Ramsey, Dr. John Michael; Riehn, Robert; Soni, Gautam; Tabard-Cossa, Vincent; Wanuunu, Meni; Wiggin, Matthew; Schloss, Jeffrey A

    2008-10-01

    A nanopore-based device provides single-molecule detection and analytical capabilities that are achieved by electrophoretically driving molecules in solution through a nan-scale pore. The nanopore provides a highly confined space within which single nucleic acid polymers can be analyzed at high throughput by one of a variety of means, and the perfect processivity that can be enforced in a narrow pore ensures that the native order of the nucleobases in a polynucleotide is reflected in the sequence of signals that is detected. Kilobase length polymers (single-stranded genomic DNA or RNA) or small molecules (e.g., nucleosides) can be identified and characterized without amplification or labeling, a unique analytical capability that makes inexpensive, rapid DNA sequencing a possibility. Further research and development to overcome current challenges to nanopore identification of each successive nucleotide in a DNA strand offers the prospect of 'third generation' instruments that will sequence a diploid mammalian genome for ~$1,000 in ~24 h.

  10. Nanoporous anodic aluminum oxide with a long-range order and tunable cell sizes by phosphoric acid anodization on pre-patterned substrates

    PubMed Central

    Surawathanawises, Krissada; Cheng, Xuanhong

    2014-01-01

    Nanoporous anodic aluminum oxide (AAO) has been explored for various applications due to its regular cell arrangement and relatively easy fabrication processes. However, conventional two-step anodization based on self-organization only allows the fabrication of a few discrete cell sizes and formation of small domains of hexagonally packed pores. Recent efforts to pre-pattern aluminum followed with anodization significantly improve the regularity and available pore geometries in AAO, while systematic study of the anodization condition, especially the impact of acid composition on pore formation guided by nanoindentation is still lacking. In this work, we pre-patterned aluminium thin films using ordered monolayers of silica beads and formed porous AAO in a single-step anodization in phosphoric acid. Controllable cell sizes ranging from 280 nm to 760 nm were obtained, matching the diameters of the silica nanobead molds used. This range of cell size is significantly greater than what has been reported for AAO formed in phosphoric acid in the literature. In addition, the relationships between the acid concentration, cell size, pore size, anodization voltage and film growth rate were studied quantitatively. The results are consistent with the theory of oxide formation through an electrochemical reaction. Not only does this study provide useful operational conditions of nanoindentation induced anodization in phosphoric acid, it also generates significant information for fundamental understanding of AAO formation. PMID:24535886

  11. Nanoporous membranes for medical and biological applications

    PubMed Central

    Adiga, Shashishekar P; Jin, Chunmin; Curtiss, Larry A; Monteiro-Riviere, Nancy A.; Narayan, Roger J

    2013-01-01

    Synthetic nanoporous materials have numerous potential biological and medical applications that involve sorting, sensing, isolating and releasing biological molecules. Nanoporous systems engineered to mimic natural filtration systems are actively being developed for use in smart implantable drug delivery systems, bioartificial organs, and other novel nano-enabled medical devices. Recent advances in nanoscience have made it possible to precisely control the morphology as well as physical and chemical properties of the pores in nanoporous materials that make them increasingly attractive for regulating and sensing transport at the molecular level. In this work, an overview of nanoporous membranes for biomedical applications is given. Various in vivo and in vitro membrane applications, including biosensing, biosorting, immunoisolation and drug delivery, are presented. Different types of nanoporous materials and their fabrication techniques are discussed with an emphasis on membranes with ordered pores. Desirable properties of membranes used in implantable devices, including biocompatibility and antibiofouling behavior, are discussed. The use of surface modification techniques to improve the function of nanoporous membranes is reviewed. Despite the extensive research carried out in fabrication, characterization, and modeling of nanoporous materials, there are still several challenges that must be overcome in order to create synthetic nanoporous systems that behave similarly to their biological counterparts. PMID:20049818

  12. Fabrication and characterization of a nanoporous NiO film with high specific energy and power via an electrochemical dealloying approach

    SciTech Connect

    Liang, Kun; Tang, Xianzhong; Wei, Bingqing; Hu, Wencheng

    2013-10-15

    Graphical abstract: The maximum values were 170 Wh kg{sup −1} and 27.5 kW kg{sup −1} for specific energy and power at the potential window of 1.1 V, respectively. As so far as we know, the values of specific energy and power were both the highest than that reported in literatures. - Highlights: • We developed a convenient approach to fabricate the three-dimensional nanoporous NiO film. • The nanoporous films contain irregular 3D interconnected nanosheets structure with open channels. • The film as supercapacitor electrode showed excellent specific capacitance values. • It is noticed that the nanoporous film exhibited high specific energy and high specific power. • The electrochemical electrode presented excellent cycling performance and low retention. - Abstract: A three-dimensional (3D) nanoporous NiO film was fabricated via a two-step process using an electrochemical route. This process included electrodeposition of the Ni/Zn alloy film and electrochemical dealloying using a direct-current power source. The scanning electron microscopy images suggest that the film has an irregular 3D interconnected nanosheet structure with open channels. The adsorption–desorption isotherms indicate that the as-prepared NiO film had a high specific surface area of 198 m g{sup −1} and a narrow pore size distribution, with two peaks at 2.7 and 5.1 nm. The specific capacitance of the sample reached 1670 F g{sup −1} at a discharge current density of 1 A g{sup −1}. In addition, the as-prepared nanoporous film exhibited high performance during a long-term cycling test. The maximum values for the specific energy and specific power at the 1.1 V potential window were 170 and 27.5 kW kg{sup −1}, respectively.

  13. Creation of nanopores on graphene planes with MgO template for preparing high-performance supercapacitor electrodes

    NASA Astrophysics Data System (ADS)

    Wang, Huanjing; Sun, Xiuxia; Liu, Zonghuai; Lei, Zhibin

    2014-05-01

    Creation of nanopores on graphene planar sheets is of great significance in promoting the kinetic diffusion of electrolyte and enhancing the utilization efficiency of graphene planar sheets. Herein, we developed a facile chemical vapor deposition strategy to prepare highly porous graphene with flake-like MgO as template and ferrocene as the carbon precursor. The graphene layers show a highly porous structure with small mesopores of 4-8 nm, large mesopores of 10-20 nm and additional macropores of 100-200 nm. These nanopores on graphene sheets provide numerous channels for fast ion transport perpendicular to the 2D basal plane, while the good powder conductivity ensures an effective electron propagation within the 2D graphene plane. As a result, a specific capacitance of 303 F g-1, an areal capacitance up to 17.3 μF cm-2 and a nearly tenfold shorter time constant were achieved when compared with those of nonporous and stacked graphene electrodes. The method demonstrated herein would open up an opportunity to prepare porous graphene for a wide applications in energy storage, biosensors, nanoelectronics and catalysis.Creation of nanopores on graphene planar sheets is of great significance in promoting the kinetic diffusion of electrolyte and enhancing the utilization efficiency of graphene planar sheets. Herein, we developed a facile chemical vapor deposition strategy to prepare highly porous graphene with flake-like MgO as template and ferrocene as the carbon precursor. The graphene layers show a highly porous structure with small mesopores of 4-8 nm, large mesopores of 10-20 nm and additional macropores of 100-200 nm. These nanopores on graphene sheets provide numerous channels for fast ion transport perpendicular to the 2D basal plane, while the good powder conductivity ensures an effective electron propagation within the 2D graphene plane. As a result, a specific capacitance of 303 F g-1, an areal capacitance up to 17.3 μF cm-2 and a nearly tenfold shorter time

  14. Highly Transparent and Flexible Triboelectric Nanogenerators with Subwavelength-Architectured Polydimethylsiloxane by a Nanoporous Anodic Aluminum Oxide Template.

    PubMed

    Dudem, Bhaskar; Ko, Yeong Hwan; Leem, Jung Woo; Lee, Soo Hyun; Yu, Jae Su

    2015-09-23

    Highly transparent and flexible triboelectric nanogenerators (TENGs) were fabricated using the subwavelength-architectured (SWA) polydimethylsiloxane (PDMS) with a nanoporous anodic aluminum oxide (AAO) template as a replica mold. The SWA PDMS could be utilized as a multifunctional film for a triboelectric layer, an antireflection coating, and a self-cleaning surface. The nanopore arrays of AAO were formed by a simple, fast, and cost-effective electrochemical oxidation process of aluminum, which is relatively impressive for fabrication of the TENG device. For electrical contacts, the SWA PDMS was laminated on the indium tin oxide (ITO)-coated polyethylene terephthalate (PET) as a bottom electrode, and the bare ITO-coated PET (i.e., ITO/PET) was used for the top electrode. Compared to the ITO/PET, the SWA PDMS on the ITO/PET improved the transmittance from 80.5 to 83% in the visible wavelength region and also had high transmittances of >85% at wavelengths of 430-455 nm. The SWA PDMS also exhibited the hydrophobic surface with a water contact angle (θCA) of ∼115°, which can be useful for self-cleaning applications. The average transmittance (Tavg) of the entire TENG device was observed to be ∼70% over a broad wavelength range. At an external pushing frequency of 0.5 Hz, for the TENG device with the ITO top electrode, open-circuit voltage (VOC) and short-circuit current (ISC) values of ∼3.8 V and ∼0.8 μA were obtained instantaneously, respectively, which were higher than those (i.e., VOC ≈ 2.2 V, and ISC ≈ 0.4 μA) of the TENG device with a gold top electrode. The effect of external pushing force and frequency on the output device performance of the TENGs was investigated, including the device robustness. A theoretical optical analysis of SWA PDMS was also performed. PMID:26301328

  15. Method to fabricate functionalized conical nanopores

    DOEpatents

    Small, Leo J.; Spoerke, Erik David; Wheeler, David R.

    2016-07-12

    A pressure-based chemical etch method is used to shape polymer nanopores into cones. By varying the pressure, the pore tip diameter can be controlled, while the pore base diameter is largely unaffected. The method provides an easy, low-cost approach for conically etching high density nanopores.

  16. Nanoporous Materials from ABAC Tetrablock Terpolymers

    NASA Astrophysics Data System (ADS)

    Jackson, Elizabeth Ashley

    This dissertation describes efforts towards the preparation of tough nanoporous membranes from ABAC tetrablock terpolymers. This architecture was strategically chosen to combine an etchable C block, PLA, with a mechanically tough ABA triblock into one ABAC terpolymer. Multiple series of poly(styrene- b-isoprene-b-styrene-b-lactide) (PS-PI-PS-PLA) tetrablock terpolymers were synthesized. Morphological behavior was characterized for terpolymers containing both a 50:50 and 30:70 PS:PI ratio with between 0 and ~20% PLA by volume. Observed bulk morphologies include hexagonally packed cylinders (HEX), core(PLA)-shell(PS) cylinders (CSC), and a PLA sphere in cylinder morphology. Mechanical properties of PS-PEEP-PS-PLA tetrablocks were also investigated. All materials exhibited mechanical properties characteristic of tough thermoplastic elastomers. Composite membranes were prepared from a thin film of PS-PI-PS-PLA terpolymer and a macroporous polyethersulfone support. Described within are the efforts related to the fabrication and filtration performance of these nanoporous PS-PI-PS composite membranes. As part of this process, solvent casting and annealing conditions were varied to investigate effects on tetrablock thin film morphology. Optimum conditions were determined to achieve PS-PI-PS-PLA films with perpendicular PLA cylinder orientation. These conditions included use of a mixed solvent system and the addition of a small amount of homopolymer PLA. Highly ordered films with vertically oriented nanopores were obtained.

  17. Fabrication and structural characterization of highly ordered titania nanotube arrays

    NASA Astrophysics Data System (ADS)

    Shi, Hongtao; Ordonez, Rosita

    Titanium (Ti) dioxide nanotubes have drawn much attention in the past decade due to the fact that titania is an extremely versatile material with a variety of technological applications. Anodizing Ti in different electrolytes has proved to be quite successful so far in creating the nanotubes, however, their degree of order is still not nearly as good as nanoporous anodic alumina. In this work, we first deposit a thin layer of aluminum (Al) onto electropolished Ti substrates, using thermal evaporation. Such an Al layer is then anodized in 0.3 M oxalic acid, forming an ordered nanoporous alumina mask on top of Ti. Afterwards, the anodization of Ti is accomplished at 20 V in solutions containing 1 M NaH2PO4 and 0.5% HF or H2SO4, which results in the creation of ordered titania nanotube arrays. The inner pore diameter of the nanotubes can be tuned from ~50 nm to ~75 nm, depending on the anodization voltage applied to Al or Ti. X-ray diffractometry shows the as-grown titania nanotubes are amorphous. Samples annealed at different temperatures in ambient atmosphere will be also reported.

  18. Impedance spectroscopy analysis of human odorant binding proteins immobilized on nanopore arrays for biochemical detection.

    PubMed

    Lu, Yanli; Zhang, Diming; Zhang, Qian; Huang, Yixuan; Luo, Senbiao; Yao, Yao; Li, Shuang; Liu, Qingjun

    2016-05-15

    Human odorant-binding proteins (hOBPs) not only can bind and transport odorants in the surrounding environment for sensing smells, but also play important roles in transmitting lots of biomolecules in different organs. Utilizing the properties of hOBPs, an electrochemical biosensor with nanopore array was developed to detect specific biomolecular ligands, such as aldehydes and fatty acids. The highly ordered nanopores of anodic aluminum oxide with diameter of 20-40 nm were fabricated with two-step oxidation. Through 2-carboxyethyl phosphonic acid, hOBPs were self-assembled on nanopores as the sensing membrane. With nanopore arrays, the impedance spectra showed quite different electron transfer processes in the frequency spectra, which could be characterized by the electron transfer resistance and electrical resistance of the porous membrane. Under stimulation of biomolecular ligands, series resistance of nanopores and hOBPs increased and showed a concentration-dependence feature, while the electron transfer resistance hardly changed. The nanopore based biosensor could sensitively detect biological ligands of benzaldehyde, docosahexaenoic acid, and lauric acid, which were closely related to or were potential biomarkers for cancers and other serious diseases. Equipped with hOBPs, the sensor exhibited promising potentials both in odorant and biomolecule detection for olfactory biosensing and in disease diagnosis and evaluation for biochemical detection. PMID:26710343

  19. Noncovalent functionalization of solid-state nanopores via self-assembly of amphipols.

    PubMed

    Pérez-Mitta, Gonzalo; Burr, Loïc; Tuninetti, Jimena S; Trautmann, Christina; Toimil-Molares, María Eugenia; Azzaroni, Omar

    2016-01-21

    In recent years there has been increasing interest in the development of new methods for conferring functional features to nanopore-based fluidic devices. In this work, we describe for the first time the noncovalent integration of amphoteric-amphipathic polymers, also known as "amphipols", into single conical nanopores in order to obtain signal-responsive chemical nanodevices. Highly-tapered conical nanopores were fabricated by single-sided chemical etching of polycarbonate foils. After etching, the surface of the conical nanopores was chemically modified, by first metallizing the surface via gold sputtering and then by amphiphilic self-assembly of the amphipol. The net charge of adsorbed amphipols was regulated via pH changes under the environmental conditions. The pH-dependent chemical equilibrium of the weak acidic and basic monomers facilitates the regulation of the ionic transport through the nanopore by adjusting the pH of the electrolyte solution. Our results demonstrate that functional amphipathic polymers are powerful building blocks for the surface modification of nanopores and might ultimately pave the way to a new means of integrating functional and/or responsive units within nanofluidic structures. PMID:26676314

  20. Nanoporous carbon nanotubes synthesized through confined hydrogen-bonding self-assembly.

    PubMed

    Rodriguez, Adrian T; Chen, Min; Chen, Zhu; Brinker, C Jeffrey; Fan, Hongyou

    2006-07-26

    We report a simple and direct synthetic method for the preparation of nanoporous carbon nanotubes with larger pores (>10 nm) on the tube wall. The method combines the use of anodic aluminum oxide (AAO) as a template for the tube diameter and block copolymer/carbohydrates self-assembly within thin films confined inside AAO pore channels to form nanopores. It involves coating the AAO inner pore channel surface with block copolymer (polystyrene-co-poly(vinylpyridine)) and carbohydrates in dimethylformamide (DMF) solution. Drying of DMF induced microphase separation of PS-PVP and formation of ordered PS and PVP/carbohydrate domains. Within the coating, the carbohydrates stay specifically only in the pyridine domains surrounding PS domains due to the hydrogen bonding between carbohydrates and pyridine blocks. After carbonization at high temperature (>460 degrees C) in argon, PS was removed, forming the nanopores and carbohydrates, and PVP was carbonized, forming the framework of nanoporous carbon tubes within AAO channels. Removal of AAO led to the formation of individual monodisperse nanoporous carbon nanotubes with a tube wall of approximately 16 nm. The ease with which these nanoporous carbon nanotubes can be fabricated, and the ability to tune tube nanostructures and surface chemistry through the choice of block copolymers used and carbonization temperature, should facilitate investigations of their scope for practical applications. PMID:16848431

  1. High-order beam optics: An overview

    SciTech Connect

    Heighway, E.A.

    1988-01-01

    Beam-transport codes have been around for as long as thirty years and high-order codes, second-order at least, for close to twenty years. Before this period of design-code development, there was considerable high-order treatment, but it was almost entirely analytical. History has a way of repeating itself, and the current excitement in the field of high-order optics is based on the application of Lie algebra and the so-called differential algebra to beam-transport codes, both of which are highly analytical in foundation. Some of the main design tools available today will be described, giving a little of their history, and will conclude by trying to convey some of the excitement in the field through a brief description of Lie and differential algebra. 30 refs., 7 figs.

  2. USE OF ATOMIC LAYER DEPOSITION OF FUNCTIONALIZATION OF NANOPOROUS BIOMATERIALS

    SciTech Connect

    Brigmon, R.; Narayan, R.; Adiga, S.; Pellin, M.; Curtiss, L.; Stafslien, S.; Chisholm, B.; Monteiro-Riviere, N.; Elam, J.

    2010-02-08

    Due to its chemical stability, uniform pore size, and high pore density, nanoporous alumina is being investigated for use in biosensing, drug delivery, hemodialysis, and other medical applications. In recent work, we have examined the use of atomic layer deposition for coating the surfaces of nanoporous alumina membranes. Zinc oxide coatings were deposited on nanoporous alumina membranes using atomic layer deposition. The zinc oxide-coated nanoporous alumina membranes demonstrated antimicrobial activity against Escherichia coli and Staphylococcus aureus bacteria. These results suggest that atomic layer deposition is an attractive technique for modifying the surfaces of nanoporous alumina membranes and other nanostructured biomaterials.

  3. Protein sensing with engineered protein nanopores*

    PubMed Central

    Mohammad, Mohammad M.; Movileanu, Liviu

    2013-01-01

    The use of nanopores is a powerful new frontier in single-molecule sciences. Nanopores have been used effectively in exploring various biophysical features of small polypeptides and proteins, such as their folding state and structure, ligand interactions, and enzymatic activity. In particular, the α-hemolysin protein pore (αHL) has been used extensively for the detection, characterization and analysis of polypeptides, because this protein nanopore is highly robust, versatile and tractable under various experimental conditions. Inspired by the mechanisms of protein translocation across the outer membrane translocases of mitochondria, we have shown the ability to use nanopore-probe techniques in controlling a single protein using engineered αHL pores. Here, we provide a detailed protocol for the preparation of αHL protein nanopores. Moreover, we demonstrate that placing attractive electrostatic traps is instrumental in tackling single-molecule stochastic sensing of folded proteins. PMID:22528256

  4. Integration of solid-state nanopores in a 0.5 μm CMOS foundry process

    NASA Astrophysics Data System (ADS)

    Uddin, A.; Yemenicioglu, S.; Chen, C.-H.; Corigliano, E.; Milaninia, K.; Theogarajan, L.

    2013-04-01

    High-bandwidth and low-noise nanopore sensor and detection electronics are crucial in achieving single-DNA-base resolution. A potential way to accomplish this goal is to integrate solid-state nanopores within a CMOS platform, in close proximity to the biasing electrodes and custom-designed amplifier electronics. Here we report the integration of solid-state nanopore devices in a commercial complementary metal-oxide-semiconductor (CMOS) potentiostat chip implemented in On-Semiconductor’s 0.5 μm technology. Nanopore membranes incorporating electrodes are fabricated by post-CMOS micromachining utilizing the n+ polysilicon/SiO2/n+ polysilicon capacitor structure available in the aforementioned process. Nanopores are created in the CMOS process by drilling in a transmission electron microscope and shrinking by atomic layer deposition. We also describe a batch fabrication method to process a large of number of electrode-embedded nanopores with sub-10 nm diameter across CMOS-compatible wafers by electron beam lithography and atomic layer deposition. The CMOS-compatibility of our fabrication process is verified by testing the electrical functionality of on-chip circuitry. We observe high current leakage with the CMOS nanopore devices due to the ionic diffusion through the SiO2 membrane. To prevent this leakage, we coat the membrane with Al2O3, which acts as an efficient diffusion barrier against alkali ions. The resulting nanopore devices also exhibit higher robustness and lower 1/f noise as compared to SiO2 and SiNx. Furthermore, we propose a theoretical model for our low-capacitance CMOS nanopore devices, showing good agreement with the experimental value. In addition, experiments and theoretical models of translocation studies are presented using 48.5 kbp λ-DNA in order to prove the functionality of on-chip pores coated with Al2O3.

  5. Integration of solid-state nanopores in a 0.5 μm CMOS foundry process.

    PubMed

    Uddin, A; Yemenicioglu, S; Chen, C-H; Corigliano, E; Milaninia, K; Theogarajan, L

    2013-04-19

    High-bandwidth and low-noise nanopore sensor and detection electronics are crucial in achieving single-DNA-base resolution. A potential way to accomplish this goal is to integrate solid-state nanopores within a CMOS platform, in close proximity to the biasing electrodes and custom-designed amplifier electronics. Here we report the integration of solid-state nanopore devices in a commercial complementary metal-oxide-semiconductor (CMOS) potentiostat chip implemented in On-Semiconductor's 0.5 μm technology. Nanopore membranes incorporating electrodes are fabricated by post-CMOS micromachining utilizing the n+ polysilicon/SiO2/n+ polysilicon capacitor structure available in the aforementioned process. Nanopores are created in the CMOS process by drilling in a transmission electron microscope and shrinking by atomic layer deposition. We also describe a batch fabrication method to process a large of number of electrode-embedded nanopores with sub-10 nm diameter across CMOS-compatible wafers by electron beam lithography and atomic layer deposition. The CMOS-compatibility of our fabrication process is verified by testing the electrical functionality of on-chip circuitry. We observe high current leakage with the CMOS nanopore devices due to the ionic diffusion through the SiO2 membrane. To prevent this leakage, we coat the membrane with Al2O3, which acts as an efficient diffusion barrier against alkali ions. The resulting nanopore devices also exhibit higher robustness and lower 1/f noise as compared to SiO2 and SiNx. Furthermore, we propose a theoretical model for our low-capacitance CMOS nanopore devices, showing good agreement with the experimental value. In addition, experiments and theoretical models of translocation studies are presented using 48.5 kbp λ-DNA in order to prove the functionality of on-chip pores coated with Al2O3. PMID:23519330

  6. Integration of solid-state nanopores in a 0.5 μm cmos foundry process

    PubMed Central

    Uddin, A; Yemenicioglu, S; Chen, C-H; Corigliano, E; Milaninia, K; Theogarajan, L

    2013-01-01

    High-bandwidth and low-noise nanopore sensor and detection electronics are crucial in achieving single-DNA base resolution. A potential way to accomplish this goal is to integrate solid-state nanopores within a CMOS platform, in close proximity to the biasing electrodes and custom-designed amplifier electronics. Here we report the integration of solid-state nanopore devices in a commercial complementary metal-oxide semiconductor (CMOS) potentiostat chip implemented in On-Semiconductor’s 0.5 μm technology. Nanopore membranes incorporating electrodes are fabricated by post-CMOS micromachining utilizing the N+ polysilicon/SiO2/N+ polysilicon capacitor structure available in the aforementioned process. Nanopores are created in the CMOS process by drilling in a transmission electron microscope and shrinking by atomic layer deposition. We also describe a batch fabrication method to process a large of number of electrode-embedded nanopores with sub-10 nm diameter across CMOS-compatible wafers by electron beam lithography and atomic layer deposition. The CMOS-compatibility of our fabrication process is verified by testing the electrical functionality of on-chip circuitry. We observe high current leakage with the CMOS nanopore devices due to the ionic diffusion through the SiO2 membrane. To prevent this leakage, we coat the membrane with Al2O3 which acts as an efficient diffusion barrier against alkali ions. The resulting nanopore devices also exhibit higher robustness and lower 1/f noise as compared to SiO2 and SiNx. Furthermore, we propose a theoretical model for our low-capacitance CMOS nanopore devices, showing good agreement with the experimental value. In addition, experiments and theoretical models of translocation studies are presented using 48.5 kbp λ-DNA in order to prove the functionality of on-chip pores coated with Al2O3. PMID:23519330

  7. STEM-EELS analysis reveals stable high-density He in nanopores of amorphous silicon coatings deposited by magnetron sputtering.

    PubMed

    Schierholz, Roland; Lacroix, Bertrand; Godinho, Vanda; Caballero-Hernández, Jaime; Duchamp, Martial; Fernández, Asunción

    2015-02-20

    A broad interest has been showed recently on the study of nanostructuring of thin films and surfaces obtained by low-energy He plasma treatments and He incorporation via magnetron sputtering. In this paper spatially resolved electron energy-loss spectroscopy in a scanning transmission electron microscope is used to locate and characterize the He state in nanoporous amorphous silicon coatings deposited by magnetron sputtering. A dedicated MATLAB program was developed to quantify the helium density inside individual pores based on the energy position shift or peak intensity of the He K-edge. A good agreement was observed between the high density (∼35-60 at nm(-3)) and pressure (0.3-1.0 GPa) values obtained in nanoscale analysis and the values derived from macroscopic measurements (the composition obtained by proton backscattering spectroscopy coupled to the macroscopic porosity estimated from ellipsometry). This work provides new insights into these novel porous coatings, providing evidence of high-density He located inside the pores and validating the methodology applied here to characterize the formation of pores filled with the helium process gas during deposition. A similar stabilization of condensed He bubbles has been previously demonstrated by high-energy He ion implantation in metals and is newly demonstrated here using a widely employed methodology, magnetron sputtering, for achieving coatings with a high density of homogeneously distributed pores and He storage capacities as high as 21 at%. PMID:25627862

  8. Highly sensitive detection of hydrogen peroxide based on nanoporous Fe₂O₃/CoO composites.

    PubMed

    Wang, Jinping; Gao, Hua; Sun, Fenglei; Hao, Qin; Xu, Caixia

    2013-04-15

    Nanoporous (NP) Fe₂O₃/CoO composites were straightforwardly fabricated by a simple dealloying strategy. Electron microscopy characterization demonstrates that selectively etching FeCoAl ternary alloy in a low concentration of NaOH solution generates a nanoparticle structure with a typical diameter around 80 nm. Interestingly, these nanoparticles consist of open three-dimensional bicontinuous nanosponge structure with uniform pore and ligament distribution around 10 nm. The resulted sample is confirmed to be a mixture of Fe₂O₃ and CoO species based on X-ray photoelectron spectroscopy and X-Ray diffraction analysis. Without any activation pretreatment, NP-Fe₂O₃/CoO composites exhibit excellent electro-oxidation activity toward H₂O₂, such as an excellent sensing performance in a wide linear sensing region from 0.05 to 4.85 mM H₂O₂, fast amperometric response (<2s), and a lower detection limit to 0.1 μM. Along with these attractive features, the as-made composites also behave as a good anti-interference towards glucose, uric acid, dopamine, and ascorbic acid during H₂O₂ detection. Furthermore, the H₂O₂ biosensor based on NP-Fe₂O₃/CoO composites also exhibits excellent long-term stability and reproducibility. PMID:23261688

  9. High-Order Energies for Stereo Segmentation.

    PubMed

    Peng, Jianteng; Shen, Jianbing; Li, Xuelong

    2016-07-01

    In this paper, we propose a novel segmentation approach for stereo images using the high-order energy optimization, which utilizes the disparity maps and statistical information of stereo images to enrich the high-order potential functions. To the best of our knowledge, our approach is the first one to formulate the problem of stereo segmentation as a high-order energy optimization problem, which simultaneously segments the foreground objects in left and right images using the proposed high-order potential function. A new method for designing the penalty function in our high-order term is proposed by the corresponding pixels and their neighboring pixels between left and right images. The relationships of stereo correspondence by disparity maps are further employed to enhance the connections between the left and right stereo images. Experimental results demonstrate that the proposed approach can effectively improve the performance of two kinds of stereo segmentation, including the automatic saliency-aware stereocut and the interactive stereo segmentation with user scribbles. PMID:26208377

  10. Notable improvement of capacitive performance of highly nanoporous carbon materials simply by a redox additive electrolyte of p-nitroaniline

    NASA Astrophysics Data System (ADS)

    Zhu, Yan Qi; Zhang, Lei; Chen, Xiang Ying; Xiao, Zheng Hui; Zhang, Zhong Jie

    2015-12-01

    Highly nanoporous carbon materials have been produced by a synchronous carbonization/graphitization process, using magnesium citrate serves as the carbon source and nickel nitrate as graphitization catalyst. The carbonization temperature plays a crucial role in determining the porosity and graphitization. The lower temperature favors for the formation of larger porosity, whilst higher temperature for better crystallinity. Resultantly, a high BET surface area of 2587.13 m2 g-1 and large total pore volume of 4.64 cm3 g-1 appear, the case of C-800 sample, thereby resulting in a large specific capacitance of 305.3 F g-1 at 1 A g-1 from the contribution of electric double layer capacitances. More importantly, we demonstrate a novel redox active additive of p-nitroaniline (PNA) into the 6 mol L-1 KOH electrolyte to largely improve the capacitance by the quick self-discharge redox reaction of H+/e-. The C-800-2 sample with the PNA concentration of 2 mmol delivers largely improved capacitance of 502.1 F g-1 at 1 A g-1, which is almost 1.65 fold increase. Apparently, the present PNA is commercially available, and highly effective for elevating the specific capacitance and might be implemented for the wide supercapacitor application.

  11. A FIB induced boiling mechanism for rapid nanopore formation

    PubMed Central

    Das, K; Freund, J B; Johnson, H T

    2015-01-01

    Focused ion beam (FIB) technology is widely used to fabricate nanopores in solid-state membranes. These nanopores have desirable thermomechanical properties for applications such as high-throughput DNA sequencing. Using large scale molecular dynamics simulations of the FIB nanopore formation process, we show that there is a threshold ion delivery rate above which the mechanism underlying nanopore formation changes. At low rates nanopore formation is slow, with the rate proportional to the ion flux and therefore limited by the sputter rate of the target material. However, at higher fluxes nanopores form via a thermally dominated process, consistent with an explosive boiling mechanism. In this case, mass is rapidly rearranged via bubble growth and coalescence, much more quickly than would occur during sputtering. This mechanism has the potential to greatly speed up nanopore formation. PMID:24356374

  12. A FIB induced boiling mechanism for rapid nanopore formation.

    PubMed

    Das, K; Freund, J B; Johnson, H T

    2014-01-24

    Focused ion beam (FIB) technology is widely used to fabricate nanopores in solid-state membranes. These nanopores have desirable thermomechanical properties for applications such as high-throughput DNA sequencing. Using large scale molecular dynamics simulations of the FIB nanopore formation process, we show that there is a threshold ion delivery rate above which the mechanism underlying nanopore formation changes. At low rates nanopore formation is slow, with the rate proportional to the ion flux and therefore limited by the sputter rate of the target material. However, at higher fluxes nanopores form via a thermally dominated process, consistent with an explosive boiling mechanism. In this case, mass is rapidly rearranged via bubble growth and coalescence, much more quickly than would occur during sputtering. This mechanism has the potential to greatly speed up nanopore formation. PMID:24356374

  13. HODIF:High-Order Discretizations, Interpolations and

    SciTech Connect

    Kennedy, Christopher A.; Carpenter, Mark H.; Ray, Jaideen

    2006-06-20

    This software, a library, contains FORTRAN77 subroutines to calculate first and second derivatives up to 8th order, interpolations (1D and 2D) up to 10th order and filters up to 14th order. Only even orders are addressed and finite-difference stencils are implemented on a vertex-centered mesh. The primary aim of this library is to be used in block-structured adaptive mesh simulations where high order is desired. The interpolants in this library are essentially designed to do prolongations and restrictions between levels of rfinement - however, they assume that the refinement ratio is 2. The filters are provided to remove high wavenumber content from solutions in case Runge phenomenon occurs - a common occurrence in case of marginal resolution of the solution. Details of the derivation and use are to be found in "Using high-order methods on adaptively refined block-structured meshes - discretizations, interpolations and filters", by J. Ray, C.A. Kennedy, S. Lefantzi and H.N. Najm, Sandia Technical Report, SAND2005-7981. The software comes with a User's Guide and examples how to use it.

  14. HODIF:High-Order Discretizations, Interpolations and

    Energy Science and Technology Software Center (ESTSC)

    2006-06-20

    This software, a library, contains FORTRAN77 subroutines to calculate first and second derivatives up to 8th order, interpolations (1D and 2D) up to 10th order and filters up to 14th order. Only even orders are addressed and finite-difference stencils are implemented on a vertex-centered mesh. The primary aim of this library is to be used in block-structured adaptive mesh simulations where high order is desired. The interpolants in this library are essentially designed to domore » prolongations and restrictions between levels of rfinement - however, they assume that the refinement ratio is 2. The filters are provided to remove high wavenumber content from solutions in case Runge phenomenon occurs - a common occurrence in case of marginal resolution of the solution. Details of the derivation and use are to be found in "Using high-order methods on adaptively refined block-structured meshes - discretizations, interpolations and filters", by J. Ray, C.A. Kennedy, S. Lefantzi and H.N. Najm, Sandia Technical Report, SAND2005-7981. The software comes with a User's Guide and examples how to use it.« less

  15. Preparation of Nano-Porous Activated Carbon Aerogel Using a Single-Step Activation Method for Use as High-Power EDLC Electrode in Organic Electrolyte.

    PubMed

    Kwon, Soon Hyung; Kim, Bum-Soo; Kim, Sang-Gil; Lee, Byung-Jun; Kim, Myung-Soo; Jung, Ji Chul

    2016-05-01

    Carbon aerogel was chemically activated with KOH using two different activation methods (conventional activation method and single-step activation method) to yield the nano-porous activated carbon aerogel. Both nano-porous activated carbon aerogels exhibited a better capacitive behavior than carbon aerogel in organic electrolyte. However, a drastic decrease in the specific capacitance with increasing current density was observed in the ACA_C (activated carbon aerogel prepared by a conventional activation method), which is a general tendency of carbon electrode for EDLC in organic electrolyte. Interestingly, the specific capacitance of ACA_S electrode (activated carbon aerogel prepared by a single-step activation method) decreased slowly with increasing current density and its CV curve maintained a rectangular shape well even at a high scan rate of 500 mV/s. The enhanced electrochemical performance of ACA_S at a high current density was attributed to its low ionic resistance caused by the well-developed pore structure with appropriate pore size for easy moving of organic electrolyte ion. Therefore, it can be concluded that single-step activation method could be one of the efficient methods for preparation of nano-porous activated carbon aerogel electrode for high-power EDLC in organic electrolyte. PMID:27483797

  16. Ultra-high-density 3D DNA arrays within nanoporous biocompatible membranes for single-molecule-level detection and purification of circulating nucleic acids.

    PubMed

    Aramesh, M; Shimoni, O; Fox, K; Karle, T J; Lohrmann, A; Ostrikov, K; Prawer, S; Cervenka, J

    2015-04-14

    Extracellular nucleic acids freely circulating in blood and other physiologic fluids are important biomarkers for non-invasive diagnostics and early detection of cancer and other diseases, yet difficult to detect because they exist in very low concentrations and large volumes. Here we demonstrate a new broad-range sensor platform for ultrasensitive and selective detection of circulating DNA down to the single-molecule level. The biosensor is based on a chemically functionalized nanoporous diamond-like carbon (DLC) coated alumina membrane. The few nanometer-thick, yet perfect and continuous DLC-coating confers the chemical stability and biocompatibility of the sensor, allowing its direct application in biological conditions. The selective detection is based on complementary hybridization of a fluorescently-tagged circulating cancer oncomarker (a 21-mer nucleic acid) with covalently immobilized DNA on the surface of the membrane. The captured DNAs are detected in the nanoporous structure of the sensor using confocal scanning laser microscopy. The flow-through membrane sensor demonstrates broad-range sensitivity, spanning from 10(15) molecules per cm(2) down to single molecules, which is several orders of magnitude improvement compared to the flat DNA microarrays. Our study suggests that these flow-through type nanoporous sensors represent a new powerful platform for large volume sampling and ultrasensitive detection of different chemical biomarkers. PMID:25744416

  17. High pressure induced phase transition and superdiffusion in anomalous fluid confined in flexible nanopores

    SciTech Connect

    Bordin, José Rafael; Krott, Leandro B. Barbosa, Marcia C.

    2014-10-14

    The behavior of a confined spherical symmetric anomalous fluid under high external pressure was studied with Molecular Dynamics simulations. The fluid is modeled by a core-softened potential with two characteristic length scales, which in bulk reproduces the dynamical, thermodynamical, and structural anomalous behavior observed for water and other anomalous fluids. Our findings show that this system has a superdiffusion regime for sufficient high pressure and low temperature. As well, our results indicate that this superdiffusive regime is strongly related with the fluid structural properties and the superdiffusion to diffusion transition is a first order phase transition. We show how the simulation time and statistics are important to obtain the correct dynamical behavior of the confined fluid. Our results are discussed on the basis of the two length scales.

  18. Facile chemical synthesis of nanoporous layered δ-MnO2 thin film for high-performance flexible electrochemical capacitors

    NASA Astrophysics Data System (ADS)

    Hu, Yu; Wang, Jun; Jiang, Xionghua; Zheng, Yanfeng; Chen, Zhenxing

    2013-04-01

    Layered δ-MnO2 thin films with a three-dimensional nanostructure are successfully fabricated on stainless steel foil substrates for flexible electrochemical capacitors by a facile and effective chemical bath deposition technology from ethanol and potassium permanganate solution at 15 °C. The as-prepared thin films display nanoporous morphology and a water contact angle of 20°. Energy-dispersive X-ray spectroscopy, X-ray diffraction, and Fourier transform infrared spectroscopy analyses reveal that the thin films are composed of δ-MnO2. Electrochemical data demonstrate that the δ-MnO2 thin film electrodes can deliver a high special capacitance of 447 F/g at 2 mV/s, and provide a good capacitance retention ratio of 87% after 1000 continuous cycles at 10 mV/s in 0.5 M Na2SO4. Compressive and tensile bending tests show that the as-prepared electrodes can steadily work over a wide range of applied curvatures between -2.5 cm-1 (tension) and 2.5 cm-1 (compression). Only a small decrease in special capacitance (0.9% at a curvature of 2.5 cm-1 under compressive strain, or 1.2% at a curvature of -2.5 cm-1 under tensile strain) is observed even after bending for 200 cycles, indicating the excellent mechanical flexibility and electrochemical stability of the δ-MnO2 thin film electrodes.

  19. Highly active nanoporous Pt-based alloy as anode and cathode catalyst for direct methanol fuel cells

    NASA Astrophysics Data System (ADS)

    Chen, Xiaoting; Jiang, Yingying; Sun, Junzhe; Jin, Chuanhong; Zhang, Zhonghua

    2014-12-01

    In this paper, we explore nanoporous PtPdAlCu (np-PtPdAlCu) quaternary alloy through ball-milling with the subsequent two-step dealloying strategy. The microstructure and catalytic performance of the np-PtPdAlCu catalyst have been characterized by X-ray diffraction (XRD), field-emission scanning electron microscopy (SEM), transmission electron microscopy (TEM), and electrochemical measurements. The np-PtPdAlCu catalyst exhibits an open bi-continuous interpenetrating ligament/channel structure with a length scale of 2.3 ± 0.5 nm. The np-PtPdAlCu catalyst shows 2 and 3.5 times enhancement in the mass activity and area specific activity towards methanol oxidation at anode respectively, compared to the Johnson Matthey (JM) Pt/C (40 wt.%) catalyst. Moreover, the CO stripping peak of np-PtPdAlCu is 0.49 V (vs. SCE), indicating a 180 mV negative shift in comparison with the Pt/C catalyst (0.67 V vs. SCE). In addition, the np-PtPdAlCu catalyst also shows an enhanced oxygen reduction reaction (ORR) activity at cathode compared to Pt/C. The present study provides a facile and effective route to design high-performance catalysts for direct methanol fuel cells (DMFCs).

  20. Preparation and characterization of a novel highly hydrophilic and antifouling polysulfone/nanoporous TiO2 nanocomposite membrane.

    PubMed

    Bidsorkhi, H Cheraghi; Riazi, H; Emadzadeh, D; Ghanbari, M; Matsuura, T; Lau, W J; Ismail, A F

    2016-10-14

    In this research, novel ultrafiltration nanocomposite membranes were prepared by incorporating self-synthesized nanoporous titanium dioxide (NTiO2) nanoparticles into polysulfone. The surface of the nanoparticle was treated with a silane-based modifier to improve its distribution in the host polymer. Atomic-force microscopy, scanning electron microscopy, Fourier transform infrared spectroscopy, Brunauer-Emmett-Teller, transmission electron microscopy, energy-dispersive x-ray spectroscopy, porosity and contact angle tests were conducted to characterize the properties of the particles as well as the fabricated nanocomposite membranes. The effects of the nanoparticle incorporation were evaluated by conducting ultrafiltration experiments. It was reported that the membrane pure water flux was increased with increasing NTiO2 loading owing to the high porosity of the nanoparticles embedded and/or formation of enlarged pores upon addition of them. The antifouling capacity of the membranes was also tested by ultrafiltration of bovine serum albumin fouling solution. It was found that both water flux and antifouling capacity tended to reach desired level if the NTiO2 added was at optimized loading. PMID:27607307

  1. Three-dimensional nanoporous gold-cobalt oxide electrode for high-performance electroreduction of hydrogen peroxide in alkaline medium

    NASA Astrophysics Data System (ADS)

    Li, Zhihao; He, Yanghua; Ke, Xi; Gan, Lin; Zhao, Jie; Cui, Guofeng; Wu, Gang

    2015-10-01

    Using a simple hydrothermal method combined with a post-annealing treatment, cobalt oxide (Co3O4) nanosheet arrays are grown on three-dimensional (3D) nanoporous gold (NPG) film supported on Ni foam substrates, in which NPG is fabricated by chemically dealloying electrodeposited Au-Sn alloy films. The morphology and structure of the Co3O4@NPG/Ni foam hybrids are characterized by scanning electron microscopy (SEM) and X-ray diffraction (XRD). The electrochemical activity of the Co3O4@NPG/Ni foam electrode toward hydrogen peroxide electroreduction in alkaline medium is studied by cyclic voltammetry (CV), linear sweep voltammetry (LSV), and chronoamperometry (CA). The results demonstrate that the Co3O4@NPG/Ni foam electrode possesses exceptionally high catalytic activity and excellent stability for the peroxide electroreduction, resulting mainly from the unique electrode architecture. The combined 3D hierarchical porous structures of NPG/Ni foam with the open and porous structures of Co3O4 nanosheet arrays facilitate the mass transport and charge transfer. Therefore, the metal oxides supported on 3D hierarchical porous NPG/Ni foam framework may hold great promise to be effective electrodes for electrocatalytic reduction of peroxide and other electrochemical reactions.

  2. Ordering Transformations in High-Entropy Alloys

    NASA Astrophysics Data System (ADS)

    Singh, Prashant; Johnson, Duane D.

    The high-temperature disordered phase of multi-component alloys, including high-entropy alloys (HEA), generally must experience segregation or else passes through partially-ordered phases to reach the low-temperature, fully-ordered phase. Our first-principles KKR-CPA-based atomic short-range ordering (SRO) calculations (analyzed as concentration-waves) reveal the competing partially and fully ordered phases in HEA, and these phases can be then directly assessed from KKR-CPA results in larger unit cells [Phys. Rev. B 91, 224204 (2015)]. For AlxCrFeNiTi0.25, Liu et al. [J Alloys Compd 619, 610 (2015)] experimentally find FCC+BCC coexistence that changes to BCC with increasing Al (x from 0-to-1), which then exhibits a partially-ordered B2 at low temperatures. CALPHAD (Calculation of Phase Diagrams) predicts a region with L21+B2 coexistence. From KKR-CPA calculations, we find crossover versus Al from FCC+BCC coexistence to BCC, as observed, and regions for partially-order B2+L21 coexistence, as suggest by CALPHAD. Our combined first-principles KKR-CPA method provides a powerful approach in predicting SRO and completing long-range order in HEA and other complex alloys. Supported by the U.S. DOE, Office of Science, Basic Energy Sciences, Materials Science and Engineering Division. Work was performed at Ames Laboratory, which is operated by Iowa State University for the U.S. DOE under Contract #DE-AC02-07CH11358.

  3. Room-temperature synthesis of nanoporous 1D microrods of graphitic carbon nitride (g-C3N4) with highly enhanced photocatalytic activity and stability.

    PubMed

    Pawar, Rajendra C; Kang, Suhee; Park, Jung Hyun; Kim, Jong-Ho; Ahn, Sunghoon; Lee, Caroline S

    2016-01-01

    A one-dimensional (1D) nanostructure having a porous network is an exceptional photocatalytic material to generate hydrogen (H2) and decontaminate wastewater using solar energy. In this report, we synthesized nanoporous 1D microrods of graphitic carbon nitride (g-C3N4) via a facile and template-free chemical approach at room temperature. The use of concentrated acids induced etching and lift-off because of strong oxidation and protonation. Compared with the bulk g-C3N4, the porous 1D microrod structure showed five times higher photocatalytic degradation performance toward methylene blue dye (MB) under visible light irradiation. The photocatalytic H2 evolution of the 1D nanostructure (34 μmol g(-1)) was almost 26 times higher than that of the bulk g-C3N4 structure (1.26 μmol g(-1)). Additionally, the photocurrent stability of this nanoporous 1D morphology over 24 h indicated remarkable photocorrosion resistance. The improved photocatalytic activities were attributed to prolonged carrier lifetime because of its quantum confinement effect, effective separation and transport of charge carriers, and increased number of active sites from interconnected nanopores throughout the microrods. The present 1D nanostructure would be highly suited for photocatalytic water purification as well as water splitting devices. Finally, this facile and room temperature strategy to fabricate the nanostructures is very cost-effective. PMID:27498979

  4. Room-temperature synthesis of nanoporous 1D microrods of graphitic carbon nitride (g-C3N4) with highly enhanced photocatalytic activity and stability

    PubMed Central

    Pawar, Rajendra C.; Kang, Suhee; Park, Jung Hyun; Kim, Jong-ho; Ahn, Sunghoon; Lee, Caroline S.

    2016-01-01

    A one-dimensional (1D) nanostructure having a porous network is an exceptional photocatalytic material to generate hydrogen (H2) and decontaminate wastewater using solar energy. In this report, we synthesized nanoporous 1D microrods of graphitic carbon nitride (g-C3N4) via a facile and template-free chemical approach at room temperature. The use of concentrated acids induced etching and lift-off because of strong oxidation and protonation. Compared with the bulk g-C3N4, the porous 1D microrod structure showed five times higher photocatalytic degradation performance toward methylene blue dye (MB) under visible light irradiation. The photocatalytic H2 evolution of the 1D nanostructure (34 μmol g−1) was almost 26 times higher than that of the bulk g-C3N4 structure (1.26 μmol g−1). Additionally, the photocurrent stability of this nanoporous 1D morphology over 24 h indicated remarkable photocorrosion resistance. The improved photocatalytic activities were attributed to prolonged carrier lifetime because of its quantum confinement effect, effective separation and transport of charge carriers, and increased number of active sites from interconnected nanopores throughout the microrods. The present 1D nanostructure would be highly suited for photocatalytic water purification as well as water splitting devices. Finally, this facile and room temperature strategy to fabricate the nanostructures is very cost-effective. PMID:27498979

  5. Room-temperature synthesis of nanoporous 1D microrods of graphitic carbon nitride (g-C3N4) with highly enhanced photocatalytic activity and stability

    NASA Astrophysics Data System (ADS)

    Pawar, Rajendra C.; Kang, Suhee; Park, Jung Hyun; Kim, Jong-Ho; Ahn, Sunghoon; Lee, Caroline S.

    2016-08-01

    A one-dimensional (1D) nanostructure having a porous network is an exceptional photocatalytic material to generate hydrogen (H2) and decontaminate wastewater using solar energy. In this report, we synthesized nanoporous 1D microrods of graphitic carbon nitride (g-C3N4) via a facile and template-free chemical approach at room temperature. The use of concentrated acids induced etching and lift-off because of strong oxidation and protonation. Compared with the bulk g-C3N4, the porous 1D microrod structure showed five times higher photocatalytic degradation performance toward methylene blue dye (MB) under visible light irradiation. The photocatalytic H2 evolution of the 1D nanostructure (34 μmol g‑1) was almost 26 times higher than that of the bulk g-C3N4 structure (1.26 μmol g‑1). Additionally, the photocurrent stability of this nanoporous 1D morphology over 24 h indicated remarkable photocorrosion resistance. The improved photocatalytic activities were attributed to prolonged carrier lifetime because of its quantum confinement effect, effective separation and transport of charge carriers, and increased number of active sites from interconnected nanopores throughout the microrods. The present 1D nanostructure would be highly suited for photocatalytic water purification as well as water splitting devices. Finally, this facile and room temperature strategy to fabricate the nanostructures is very cost-effective.

  6. High-order pulse front tilt caused by high-order angular dispersion.

    PubMed

    Nabekawa, Yasuo; Midorikawa, Katsumi

    2003-12-15

    We have found general expressions relating the high-order pulse front tilt and the high-order angular dispersion in an ultrashort pulse, for the first time to our knowledge. The general formulae based on Fermat's principle are applicable for any ultrashort pulse with angular dispersion in the limit of geometrical optics. By virtue of these formulae, we can calculate the high-order pulse front tilt in the sub-20-fs UV pulse generated in a novel scheme of sum-frequency mixing in a nonlinear crystal accompanied by angular dispersion. It is also demonstrated how the high-order angular dispersion can be eliminated in the calculation. PMID:19471467

  7. A Highly-Durable CO-Tolerant Poly(vinylphosphonic acid)-Coated Electrocatalyst Supported on a Nanoporous Carbon.

    PubMed

    Yang, Zehui; Moriguchi, Isamu; Nakashima, Naotoshi

    2016-04-13

    For direct methanol fuel cells (DMFCs) to be commercialized, the durability of the anodic electrocatalyst needs to be highly considered, especially under high temperature and methanol concentration conditions. Low durability caused by carbon corrosion as well as carbon monoxide (CO) poisoning of the platinum nanoparticles (Pt-NP) leads to a decrease in active Pt-NPs and increases inactive Pt-NPs covered by CO species. In this study, we deposited Pt-NPs on poly[2,2'-(2,6-pyridine)-5,5'-bibenzimidazole] (PyPBI)-wrapped nanoporous carbon (NanoPC) and coated the as-synthesized electrocatalyst with poly(vinylphosphonic acid) (PVPA). The durability of the as-synthesized NanoPC/PyPBI/Pt/PVPA was tested in 0.1 M HClO4 electrolyte at 60 °C by cycling the potential from 1.0 to 1.5 V relative to RHE, and the results indicated that NanoPC/PyPBI/Pt/PVPA showed ∼5 times better durability relative to that of the commercial CB/Pt. The methanol oxidation reaction (MOR) of the electrocatalyst was tested before and after the potential cycling in the presence of 4 or 8 M methanol at 60 °C and found that the CO tolerance of the electrocatalyst was ∼3 times higher than that of the commercial CB/Pt. Such a higher CO tolerance is due to the coating of the PVPA, which was proven by an EDX mapping measurement. The NanoPC/PyPBI/Pt/PVPA showed a high durability and CO tolerance under high temperature and high methanol concentration conditions, indicating that the electrocatalyst could be used in real fuel applications. PMID:26807598

  8. Ultra-high-density 3D DNA arrays within nanoporous biocompatible membranes for single-molecule-level detection and purification of circulating nucleic acids

    NASA Astrophysics Data System (ADS)

    Aramesh, M.; Shimoni, O.; Fox, K.; Karle, T. J.; Lohrmann, A.; Ostrikov, K.; Prawer, S.; Cervenka, J.

    2015-03-01

    Extracellular nucleic acids freely circulating in blood and other physiologic fluids are important biomarkers for non-invasive diagnostics and early detection of cancer and other diseases, yet difficult to detect because they exist in very low concentrations and large volumes. Here we demonstrate a new broad-range sensor platform for ultrasensitive and selective detection of circulating DNA down to the single-molecule level. The biosensor is based on a chemically functionalized nanoporous diamond-like carbon (DLC) coated alumina membrane. The few nanometer-thick, yet perfect and continuous DLC-coating confers the chemical stability and biocompatibility of the sensor, allowing its direct application in biological conditions. The selective detection is based on complementary hybridization of a fluorescently-tagged circulating cancer oncomarker (a 21-mer nucleic acid) with covalently immobilized DNA on the surface of the membrane. The captured DNAs are detected in the nanoporous structure of the sensor using confocal scanning laser microscopy. The flow-through membrane sensor demonstrates broad-range sensitivity, spanning from 1015 molecules per cm2 down to single molecules, which is several orders of magnitude improvement compared to the flat DNA microarrays. Our study suggests that these flow-through type nanoporous sensors represent a new powerful platform for large volume sampling and ultrasensitive detection of different chemical biomarkers.Extracellular nucleic acids freely circulating in blood and other physiologic fluids are important biomarkers for non-invasive diagnostics and early detection of cancer and other diseases, yet difficult to detect because they exist in very low concentrations and large volumes. Here we demonstrate a new broad-range sensor platform for ultrasensitive and selective detection of circulating DNA down to the single-molecule level. The biosensor is based on a chemically functionalized nanoporous diamond-like carbon (DLC) coated

  9. High order generalized permutational fractional Fourier transforms

    NASA Astrophysics Data System (ADS)

    Ran, Qi-Wen; Yuan, Lin; Tan, Li-Ying; Ma, Jing; Wang, Qi

    2004-02-01

    We generalize the definition of the fractional Fourier transform (FRFT) by extending the new definition proposed by Shih. The generalized FRFT, called the high order generalized permutational fractional Fourier transform (HGPFRFT), is a generalized permutational transform. It is shown to have arbitrary natural number M periodic eigenvalues not only with respect to the order of Hermite-Gaussian functions but also to the order of the transform. This HGPFRFT will be reduced to the original FRFT proposed by Namias and Liu's generalized FRFT and Shih's FRFT at the three limits with M = +infty, M = 4k (k is a natural number) and M = 4, respectively. Therefore the HGPFRFT introduces a comprehensive approach to Shih's FRFT and the original definition. Some important properties of HGPFRFT are discussed. Lastly the results of computer simulations and symbolic representations of the transform are provided.

  10. High-Order Energy Stable WENO Schemes

    NASA Technical Reports Server (NTRS)

    Yamaleev, Nail K.; Carpenter, Mark H.

    2008-01-01

    A new third-order Energy Stable Weighted Essentially NonOscillatory (ESWENO) finite difference scheme for scalar and vector linear hyperbolic equations with piecewise continuous initial conditions is developed. The new scheme is proven to be stable in the energy norm for both continuous and discontinuous solutions. In contrast to the existing high-resolution shock-capturing schemes, no assumption that the reconstruction should be total variation bounded (TVB) is explicitly required to prove stability of the new scheme. A rigorous truncation error analysis is presented showing that the accuracy of the 3rd-order ESWENO scheme is drastically improved if the tuning parameters of the weight functions satisfy certain criteria. Numerical results show that the new ESWENO scheme is stable and significantly outperforms the conventional third-order WENO finite difference scheme of Jiang and Shu in terms of accuracy, while providing essentially nonoscillatory solutions near strong discontinuities.

  11. On nanopore DNA sequencing by signal and noise analysis of ionic current

    NASA Astrophysics Data System (ADS)

    Wen, Chenyu; Zeng, Shuangshuang; Zhang, Zhen; Hjort, Klas; Scheicher, Ralph; Zhang, Shi-Li

    2016-05-01

    DNA sequencing, i.e., the process of determining the succession of nucleotides on a DNA strand, has become a standard aid in biomedical research and is expected to revolutionize medicine. With the capability of handling single DNA molecules, nanopore technology holds high promises to become speedier in sequencing at lower cost than what are achievable with the commercially available optics- or semiconductor-based massively parallelized technologies. Despite tremendous progress made with biological and solid-state nanopores, high error rates and large uncertainties persist with the sequencing results. Here, we employ a nano-disk model to quantitatively analyze the sequencing process by examining the variations of ionic current when a DNA strand translocates a nanopore. Our focus is placed on signal-boosting and noise-suppressing strategies in order to attain the single-nucleotide resolution. Apart from decreasing pore diameter and thickness, it is crucial to also reduce the translocation speed and facilitate a stepwise translocation. Our best-case scenario analysis points to severe challenges with employing plain nanopore technology, i.e., without recourse to any signal amplification strategy, in achieving sequencing with the desired single-nucleotide resolution. A conceptual approach based on strand synthesis in the nanopore of the translocating DNA from single-stranded to double-stranded is shown to yield a 10-fold signal amplification. Although it involves no advanced physics and is very simple in mathematics, this simple model captures the essence of nanopore sequencing and is useful in guiding the design and operation of nanopore sequencing.

  12. On nanopore DNA sequencing by signal and noise analysis of ionic current.

    PubMed

    Wen, Chenyu; Zeng, Shuangshuang; Zhang, Zhen; Hjort, Klas; Scheicher, Ralph; Zhang, Shi-Li

    2016-05-27

    DNA sequencing, i.e., the process of determining the succession of nucleotides on a DNA strand, has become a standard aid in biomedical research and is expected to revolutionize medicine. With the capability of handling single DNA molecules, nanopore technology holds high promises to become speedier in sequencing at lower cost than what are achievable with the commercially available optics- or semiconductor-based massively parallelized technologies. Despite tremendous progress made with biological and solid-state nanopores, high error rates and large uncertainties persist with the sequencing results. Here, we employ a nano-disk model to quantitatively analyze the sequencing process by examining the variations of ionic current when a DNA strand translocates a nanopore. Our focus is placed on signal-boosting and noise-suppressing strategies in order to attain the single-nucleotide resolution. Apart from decreasing pore diameter and thickness, it is crucial to also reduce the translocation speed and facilitate a stepwise translocation. Our best-case scenario analysis points to severe challenges with employing plain nanopore technology, i.e., without recourse to any signal amplification strategy, in achieving sequencing with the desired single-nucleotide resolution. A conceptual approach based on strand synthesis in the nanopore of the translocating DNA from single-stranded to double-stranded is shown to yield a 10-fold signal amplification. Although it involves no advanced physics and is very simple in mathematics, this simple model captures the essence of nanopore sequencing and is useful in guiding the design and operation of nanopore sequencing. PMID:27095148

  13. High order WENO scheme for computational cosmology

    NASA Astrophysics Data System (ADS)

    Roy, Ishani

    2010-11-01

    This doctoral dissertation is concerned with the formulation and application of a high order accurate numerical algorithm suitable in solving complex multi dimensional equations and the application of this algorithm to a problem in Astrophysics. The algorithm is designed with the aim of resolving solutions of partial differential equations with sharp fronts propagating with time. This high order accurate class of numerical technique is called a Weighted Essentially Non Oscillatory (WENO) method and is well suited for shock capturing in solving conservation laws. The numerical approximation method, in the algorithm, is coupled with high order time marching as well as integration techniques designed to reduce computational cost. This numerical algorithm is used in several applications in computational cosmology to help understand questions about certain physical phenomena which occurred during the formation and evolution of first generation stars. The thesis is divided broadly in terms of the algorithm and its application to the different galactic processes. The first chapter deals with the astrophysical problem and offers an introduction to the numerical algorithm. In chapter 2 we outline the mathematical model and the various functions and parameters associated with the model. We also give a brief description of the relevant physical phenomena and the conservation laws associated with them. In chapter 3, we give a detailed description of the higher order algorithm and its formulation. We also highlight the special techniques incorporated in the algorithm in order to make it more suitable for handling cases which are computationally intensive. In the later chapters, 4-7, we explore in detail the physical processes and the different applications of our numerical scheme. We calculate different results such as the time scale of a temperature coupling mechanism, radiation and intensity changes etc. Different tests are also performed to illustrate the stability and

  14. Reduction in thermal conductivity of Bi thin films with high-density ordered nanoscopic pores

    PubMed Central

    2013-01-01

    We prepared two-dimensional Bi thin films with high-density ordered nanoscopic pores by e-beam evaporation of Bi metal. For this structure, we used polystyrene beads ranging from 200 to 750 nm in diameter as an etch mask. The typical hole and neck sizes of the Bi thin films with approximately 50 nm in thickness on SiO2/Si substrates were in the range of 135 to 490 nm and 65 to 260 nm, respectively. By measuring the thermal characteristics through a 3ω technique, we found that the thermal conductivities of nanoporous Bi thin films are greatly suppressed compared with those of corresponding bulk materials. With a decrease in pore size to approximately 135 nm, the thermal conductivity decreased significantly to approximately 0.46 W/m·K at 300 K. PMID:24001222

  15. High-order counting statistics and interactions

    NASA Astrophysics Data System (ADS)

    Flindt, Christian

    2012-02-01

    Full counting statistics concerns the stochastic transport of electrons in mesoscopic structures [1]. Recently it has been shown that the charge transport statistics for noninteracting electrons in a two-terminal system is always generalized binomial: it can be decomposed into independent single-particle events, and the zeros of the generating function are real and negative [2]. In this talk I show how the zeros of the generating function move into the complex plane due to interactions and demonstrate how the positions of the zeros can be detected using high-order factorial cumulants [3]. As an illustrative example I discuss electron transport through a Coulomb blockade quantum dot for which the interactions on the quantum dot are clearly visible in the high-order factorial cumulants. These findings are important for understanding the influence of interactions on counting statistics, and the characterization in terms of zeros of the generating function provides a simple interpretation of recent experiments, where high-order statistics have been measured [4]. [4pt] [1] Yu. V. Nazarov, ed., Quantum Noise in Mesoscopic Physics, NATO Science Series, Vol. 97 (Kluwer, Dordrecht, 2003) [2] A. G. Abanov and D. A. Ivanov, Phys. Rev. Lett. 100, 086602 (2008), Phys. Rev. B 79, 205315 (2009) [3] D. Kambly, C. Flindt, and M. B"uttiker, Phys. Rev. B 83, 075432 (2011) -- Editors' Suggestion [4] C. Flindt, C. Fricke, F. Hohls, T. Novotn'y, K. Netocn'y, T. Brandes, and R. J. Haug, Proc. Natl. Acad. Sci. USA 106, 10116 (2009)

  16. Catalytic nanoporous membranes

    DOEpatents

    Pellin, Michael J.; Hryn, John N.; Elam, Jeffrey W.

    2009-12-01

    A nanoporous catalytic membrane which displays several unique features including pores which can go through the entire thickness of the membrane. The membrane has a higher catalytic and product selectivity than conventional catalysts. Anodic aluminum oxide (AAO) membranes serve as the catalyst substrate. This substrate is then subjected to Atomic Layer Deposition (ALD), which allows the controlled narrowing of the pores from 40 nm to 10 nm in the substrate by deposition of a preparatory material. Subsequent deposition of a catalytic layer on the inner surfaces of the pores reduces pore sizes to less than 10 nm and allows for a higher degree of reaction selectivity. The small pore sizes allow control over which molecules enter the pores, and the flow-through feature can allow for partial oxidation of reactant species as opposed to complete oxidation. A nanoporous separation membrane, produced by ALD is also provided for use in gaseous and liquid separations. The membrane has a high flow rate of material with 100% selectivity.

  17. Catalytic nanoporous membranes

    DOEpatents

    Pellin, Michael J; Hryn, John N; Elam, Jeffrey W

    2013-08-27

    A nanoporous catalytic membrane which displays several unique features Including pores which can go through the entire thickness of the membrane. The membrane has a higher catalytic and product selectivity than conventional catalysts. Anodic aluminum oxide (AAO) membranes serve as the catalyst substrate. This substrate is then subjected to Atomic Layer Deposition (ALD), which allows the controlled narrowing of the pores from 40 nm to 10 nm in the substrate by deposition of a preparatory material. Subsequent deposition of a catalytic layer on the inner surfaces of the pores reduces pore sizes to less than 10 nm and allows for a higher degree of reaction selectivity. The small pore sizes allow control over which molecules enter the pores, and the flow-through feature can allow for partial oxidation of reactant species as opposed to complete oxidation. A nanoporous separation membrane, produced by ALD is also provided for use in gaseous and liquid separations. The membrane has a high flow rate of material with 100% selectivity. Also provided is a method for producing a catalytic membrane having flow-through pores and discreet catalytic clusters adhering to the inside surfaces of the pores.

  18. Scaling Equation for yield strength of nanoporous open-cell foams

    SciTech Connect

    Hodge, A M; Biener, J; Hayes, J R; Bythrow, P M; A.Volkert, C; Hamza, A V

    2006-05-25

    A comprehensive study on the relationship between yield strength, relative density and ligament sizes is presented for nanoporous Au foams. Depth-sensing nanoindentation tests were performed on nanoporous foams ranging from 20 to 42% relative density with ligament sizes ranging from 10 to 900 nm. The Gibson and Ashby yield strength equation for open-cell macro-cellular foams is modified in order to incorporate ligament size effects. This study demonstrates that at the nanoscale, foam strength is governed by ligament size, in addition to relative density. Furthermore, we present the ligament length scale as a new parameter to tailor foam properties and achieve high strength at low densities.

  19. On High-Order Radiation Boundary Conditions

    NASA Technical Reports Server (NTRS)

    Hagstrom, Thomas

    1995-01-01

    In this paper we develop the theory of high-order radiation boundary conditions for wave propagation problems. In particular, we study the convergence of sequences of time-local approximate conditions to the exact boundary condition, and subsequently estimate the error in the solutions obtained using these approximations. We show that for finite times the Pade approximants proposed by Engquist and Majda lead to exponential convergence if the solution is smooth, but that good long-time error estimates cannot hold for spatially local conditions. Applications in fluid dynamics are also discussed.

  20. High Order Semi-Lagrangian Advection Scheme

    NASA Astrophysics Data System (ADS)

    Malaga, Carlos; Mandujano, Francisco; Becerra, Julian

    2014-11-01

    In most fluid phenomena, advection plays an important roll. A numerical scheme capable of making quantitative predictions and simulations must compute correctly the advection terms appearing in the equations governing fluid flow. Here we present a high order forward semi-Lagrangian numerical scheme specifically tailored to compute material derivatives. The scheme relies on the geometrical interpretation of material derivatives to compute the time evolution of fields on grids that deform with the material fluid domain, an interpolating procedure of arbitrary order that preserves the moments of the interpolated distributions, and a nonlinear mapping strategy to perform interpolations between undeformed and deformed grids. Additionally, a discontinuity criterion was implemented to deal with discontinuous fields and shocks. Tests of pure advection, shock formation and nonlinear phenomena are presented to show performance and convergence of the scheme. The high computational cost is considerably reduced when implemented on massively parallel architectures found in graphic cards. The authors acknowledge funding from Fondo Sectorial CONACYT-SENER Grant Number 42536 (DGAJ-SPI-34-170412-217).

  1. Electrochemistry of Graphene Edge Embedded Nanopores

    NASA Astrophysics Data System (ADS)

    Banerjee, Shouvik; Shim, Jiwook; Rivera, Jose; Jin, Xiaozhong; Estrada, David; Solovyeva, Vita; You, Xiuque; Pak, James; Pop, Eric; Aluru, Narayana; Bashir, Rashid

    2013-03-01

    We demonstrate a stacked graphene- Al2O3 dielectric nanopore architecture to investigate electrochemical activity at graphene edges. It has proven to be difficult to isolate electrochemical activity at the graphene edges from those at the basal planes. We use 24 nm of Al2O3 to isolate the graphene basal planes from an ionic fluid environment. Nanopores ranging from 5 to 20 nm are formed by an electron beam sculpting process to expose graphene edges. Electrochemical measurements at isolated graphene edges show current densities as high as 1.2 x 104 A/cm2, 300x greater than those reported for carbon nanotubes. Additionally, we modulate nanopore conductance by tuning the graphene edge electrochemical current as a function of the applied bias on the embedded graphene electrode. Our results indicate that electrochemical devices based on graphene nanopores have promising applications as sensitive chemical and biological sensors, energy storage devices, and DNA sequencing.

  2. Temporal resolution of nanopore sensor recordings.

    PubMed

    Rosenstein, Jacob K; Shepard, Kenneth L

    2013-01-01

    Here we discuss the limits to temporal resolution in nanopore sensor recordings, which arise from considerations of both small-signal frequency response and accumulated noise power. Nanopore sensors have strong similarities to patch-clamp ion channel recordings, except that the magnitudes of many physical parameters are substantially different. We will present examples from our recent work developing high-speed nanopore sensing platforms, in which we physically integrated nanopores with custom low-noise complementary metal-oxide-semiconductor (CMOS) circuitry. Close physical proximity of the sensor and amplifier electronics can reduce parasitic capacitances, improving both the signal-to-noise ratio and the effective temporal resolution of the recordings. PMID:24110636

  3. DNA nanopore translocation in glutamate solutions

    NASA Astrophysics Data System (ADS)

    Plesa, C.; van Loo, N.; Dekker, C.

    2015-08-01

    Nanopore experiments have traditionally been carried out with chloride-based solutions. Here we introduce silver/silver-glutamate-based electrochemistry as an alternative, and study the viscosity, conductivity, and nanopore translocation characteristics of potassium-, sodium-, and lithium-glutamate solutions. We show that it has a linear response at typical voltages and can be used to detect DNA translocations through a nanopore. The glutamate anion also acts as a redox-capable thickening agent, with high-viscosity solutions capable of slowing down the DNA translocation process by up to 11 times, with a corresponding 7 time reduction in signal. These results demonstrate that glutamate can replace chloride as the primary anion in nanopore resistive pulse sensing.

  4. Advanced Nanoporous Materials for Micro-Gravimetric Sensing to Trace-Level Bio/Chemical Molecules

    PubMed Central

    Xu, Pengcheng; Li, Xinxin; Yu, Haitao; Xu, Tiegang

    2014-01-01

    Functionalized nanoporous materials have been developed recently as bio/chemical sensing materials. Due to the huge specific surface of the nano-materials for molecular adsorption, high hopes have been placed on gravimetric detection with micro/nano resonant cantilevers for ultra-sensitive sensing of low-concentration bio/chemical substances. In order to enhance selectivity of the gravimetric resonant sensors to the target molecules, it is crucial to modify specific groups onto the pore-surface of the nano-materials. By loading the nanoporous sensing material onto the desired region of the mass-type transducers like resonant cantilevers, the micro-gravimetric bio/chemical sensors can be formed. Recently, such micro-gravimetric bio/chemical sensors have been successfully applied for rapid or on-the-spot detection of various bio/chemical molecules at the trace-concentration level. The applicable nanoporous sensing materials include mesoporous silica, zeolite, nanoporous graphene oxide (GO) and so on. This review article focuses on the recent achievements in design, preparation, functionalization and characterization of advanced nanoporous sensing materials for micro-gravimetric bio/chemical sensing. PMID:25313499

  5. Electron beam-assisted healing of nanopores in magnesium alloys

    PubMed Central

    Zheng, He; Liu, Yu; Cao, Fan; Wu, Shujing; Jia, Shuangfeng; Cao, Ajing; Zhao, Dongshan; Wang, Jianbo

    2013-01-01

    Nanopore-based sensing has emerged as a promising candidate for affordable and powerful DNA sequencing technologies. Herein, we demonstrate that nanopores can be successfully fabricated in Mg alloys via focused electron beam (e-beam) technology. Employing in situ high-resolution transmission electron microscopy techniques, we obtained unambiguous evidence that layer-by-layer growth of atomic planes at the nanopore periphery occurs when the e-beam is spread out, leading to the shrinkage and eventual disappearance of nanopores. The proposed healing process was attributed to the e-beam-induced anisotropic diffusion of Mg atoms in the vicinity of nanopore edges. A plausible diffusion mechanism that describes the observed phenomena is discussed. Our results constitute the first experimental investigation of nanopores in Mg alloys. Direct evidence of the healing process has advanced our fundamental understanding of surface science, which is of great practical importance for many technological applications, including thin film deposition and surface nanopatterning. PMID:23719630

  6. Electron beam-assisted healing of nanopores in magnesium alloys

    NASA Astrophysics Data System (ADS)

    Zheng, He; Liu, Yu; Cao, Fan; Wu, Shujing; Jia, Shuangfeng; Cao, Ajing; Zhao, Dongshan; Wang, Jianbo

    2013-05-01

    Nanopore-based sensing has emerged as a promising candidate for affordable and powerful DNA sequencing technologies. Herein, we demonstrate that nanopores can be successfully fabricated in Mg alloys via focused electron beam (e-beam) technology. Employing in situ high-resolution transmission electron microscopy techniques, we obtained unambiguous evidence that layer-by-layer growth of atomic planes at the nanopore periphery occurs when the e-beam is spread out, leading to the shrinkage and eventual disappearance of nanopores. The proposed healing process was attributed to the e-beam-induced anisotropic diffusion of Mg atoms in the vicinity of nanopore edges. A plausible diffusion mechanism that describes the observed phenomena is discussed. Our results constitute the first experimental investigation of nanopores in Mg alloys. Direct evidence of the healing process has advanced our fundamental understanding of surface science, which is of great practical importance for many technological applications, including thin film deposition and surface nanopatterning.

  7. Use of ZIF-8-derived nanoporous carbon as the adsorbent for the solid phase extraction of carbamate pesticides prior to high-performance liquid chromatographic analysis.

    PubMed

    Hao, Lin; Liu, Xingli; Wang, Juntao; Wang, Chun; Wu, Qiuhua; Wang, Zhi

    2015-09-01

    In this work, a chemically and thermally robust and highly porous zeolite-type metal-organic framework, zeolitic imidazolate framework-8 (ZIF-8), was used as both a precursor and a template and furfuryl alcohol as a second precursor to synthesize a nanoporous carbon. The prepared ZIF-8-derived nanoporous carbon was used as the solid-phase extraction adsorbent for the extraction of carbamate pesticides from cabbage and water samples. The adsorbed analytes were eluted with acetonitrile for the determination by high performance liquid chromatography-ultraviolet detection. The high surface area, high porosity, good stability and fast adsorption/desorption kinetics of the material enabled it to have a high adsorption capacity and good adsorption performance. Under optimum conditions, good linearity for the analytes in the range of 0.5-100 ng g(-1) and 0.05-20 ng mL(-1) existed for cabbage and water samples with the correlation coefficients of 0.9968-0.9980 and 0.9990-0.9995, respectively. The limits of detection (S/N=3) for the analytes were in the range of 0.25-0.1 ng g(-1) and 0.01-0.02 ng mL(-1) for the cabbage and water samples, respectively. The relative standard deviations (RSDs) for intra-day and the inter-day determinations of the analytes were below 7.0% and 12.5%, respectively. PMID:26003698

  8. Membrane platforms for biological nanopore sensing and sequencing.

    PubMed

    Schmidt, Jacob

    2016-06-01

    In the past two decades, biological nanopores have been developed and explored for use in sensing applications as a result of their exquisite sensitivity and easily engineered, reproducible, and economically manufactured structures. Nanopore sensing has been shown to differentiate between highly similar analytes, measure polymer size, detect the presence of specific genes, and rapidly sequence nucleic acids translocating through the pore. Devices featuring protein nanopores have been limited in part by the membrane support containing the nanopore, the shortcomings of which have been addressed in recent work developing new materials, approaches, and apparatus resulting in membrane platforms featuring automatability and increased robustness, lifetime, and measurement throughput. PMID:26773300

  9. An electron paramagnetic resonance spectroscopy investigation of the retention mechanisms of Mn and Cu in the nanopore channels of three zeolite minerals

    SciTech Connect

    Ferreira, Daniel R.; Schulthess, Cristian P.; Amonette, James E.; Walter, Eric D.

    2012-12-01

    The adsorption mechanisms of divalent cations in zeolite nanopore channels can vary as a function of their pore dimensions. The nanopore inner-sphere enhancement (NISE) theory predicts that ions may dehydrate inside small nanopore channels in order to adsorb more closely to the mineral surface if the nanopore channel is sufficiently small. The results of an electron paramagnetic resonance (EPR) spectroscopy study of Mn and Cu adsorption on the zeolite minerals zeolite Y (large nanopores), ZSM-5 (intermediate nanopores), and mordenite (small nanopores) are presented. The Cu and Mn cations both adsorbed via an outer-sphere mechanism on zeolite Y based on the similarity between the adsorbed spectra and the aqueous spectra. Conversely, Mn and Cu adsorbed via an inner-sphere mechanism on mordenite based on spectrum asymmetry and peak broadening of the adsorbed spectra. However, Mn adsorbed via an outer-sphere mechanism on ZSM-5, whereas Cu adsorbed on ZSM-5 shows a high degree of surface interaction that indicates that it is adsorbed closer to the mineral surface. Evidence of dehydration and immobility was more readily evident in the spectrum of mordenite than ZSM-5, indicating that Cu was not as close to the surface on ZSM-5 as it was when adsorbed on mordenite. Divalent Mn cations are strongly hydrated and are held strongly only in zeolites with small nanopore channels. Divalent Cu cations are also strongly hydrated, but can dehydrate more easily, presumably due to the Jahn-Teller effect, and are held strongly in zeolites with medium sized nanopore channels or smaller.

  10. Adiabatic burst evaporation from bicontinuous nanoporous membranes

    PubMed Central

    Ichilmann, Sachar; Rücker, Kerstin; Haase, Markus; Enke, Dirk

    2015-01-01

    Evaporation of volatile liquids from nanoporous media with bicontinuous morphology and pore diameters of a few 10 nm is an ubiquitous process. For example, such drying processes occur during syntheses of nanoporous materials by sol–gel chemistry or by spinodal decomposition in the presence of solvents as well as during solution impregnation of nanoporous hosts with functional guests. It is commonly assumed that drying is endothermic and driven by non-equilibrium partial pressures of the evaporating species in the gas phase. We show that nearly half of the liquid evaporates in an adiabatic mode involving burst-like liquid-to-gas conversions. During single adiabatic burst evaporation events liquid volumes of up to 107 μm3 are converted to gas. The adiabatic liquid-to-gas conversions occur if air invasion fronts get unstable because of the built-up of high capillary pressures. Adiabatic evaporation bursts propagate avalanche-like through the nanopore systems until the air invasion fronts have reached new stable configurations. Adiabatic cavitation bursts thus compete with Haines jumps involving air invasion front relaxation by local liquid flow without enhanced mass transport out of the nanoporous medium and prevail if the mean pore diameter is in the range of a few 10 nm. The results reported here may help optimize membrane preparation via solvent-based approaches, solution-loading of nanopore systems with guest materials as well as routine use of nanoporous membranes with bicontinuous morphology and may contribute to better understanding of adsorption/desorption processes in nanoporous media. PMID:25926406

  11. Translocation of a Polymer Chain Through a Nanopore Starting From a Confining Nanotube: The Limit of high Peclet Numbers

    NASA Astrophysics Data System (ADS)

    Slater, Gary W.; Sean, David; de Haan, Hendrick

    2015-03-01

    We use Langevin Dynamics simulations to study a scenario where a confining nanotube is used as a way to limit the range of conformations available to a polymer chain prior to driven translocation. We find that the tube not only reduces the variance in translocation times (a useful result for practical applications), but also that the elongated polymer conformations yield longer translocation times (also a useful result) that can be dominated by the post-propagation process when the diameter of the nanotube is smaller than a universal critical value. We adapt the tension propagation theory for this geometry and find agreement with the simulations using a single friction parameter to model the roles of both the nanopore and the crowding. To gain insight into the physical mechanisms behind this effective friction, we systematically remove i) crowding on the trans-side and/or ii) monomer collisions with the membrane containing the nanopore. We find that higher Peclet numbers increase the impact of crowding on the trans side but diminish the impact of the friction between the nanopore and the polymer.

  12. DNA translocation through single-layer boron nitride nanopores.

    PubMed

    Gu, Zonglin; Zhang, Yuanzhao; Luan, Binquan; Zhou, Ruhong

    2016-01-21

    Ultra-thin nanopores have become promising biological sensors because of their outstanding signal-to-noise ratio and spatial resolution. Here, we show that boron nitride (BN), which is a new two-dimensional (2D) material similar to graphene, could be utilized for making a nanopore with an atomic thickness. Using an all-atom molecular dynamics simulation, we investigated the dynamics of DNA translocation through the BN nanopore. The results of our simulations demonstrated that it is possible to detect different double-stranded DNA (dsDNA) sequences from the recording of ionic currents through the pore during the DNA translocation. Surprisingly, opposite to results for a graphene nanopore, we found the calculated blockage current for poly(A-T)40 in a BN nanopore to be less than that for poly(G-C)40. Also in contrast with the case of graphene nanopores, dsDNA models moved smoothly and in an unimpeded manner through the BN nanopores in the simulations, suggesting a potential advantage for using BN nanopores to design stall-free sequencing devices. BN nanopores, which display several properties (such as being hydrophilic and non-metallic) that are superior to those of graphene, are thus expected to find applications in the next generation of high-speed and low-cost biological sensors. PMID:26537824

  13. IMPROVED CATALYSTS FOR HEAVY OIL UPGRADING BASED ON ZEOLITE Y NANOPARTICLES ENCAPSULATED IN STABLE NANOPOROUS HOST

    SciTech Connect

    Conrad Ingram; Mark Mitchell

    2005-03-31

    The objectives of this project are to synthesis nanocrystals of highly acidic zeolite Y, encapsulate them within the channels of mesoporous (nanoporous) silicates or nanoporous organosilicates and evaluate the ''zeolite Y/Nanoporous host'' composites as catalysts for the upgrading of heavy petroleum feedstocks. Our results to date are summarized as follows. The synthesis of high surface ordered nanoporous silica of expanded pore diameter of 25 nm (larger than the standard size of 8.4 nm) using trimethylbenzene as a pore size expander was accomplished. The synthesis of zeolite Y nanoparticles with median pore size of approximately 50 nm (smaller than the 80 nm typically obtained with TMAOH) using combined TMABr/TMAOH as organic additives was also accomplished. The successful synthesis of zeoliteY/Nanoporous host composite materials by sequential combination of zeolite precursors and nanoporous material precursor mixtures was implied based on results from various characterization techniques such as X-Ray diffraction, infrared spectra, thermal analysis, porosimetry data. The resulting materials showed pore sizes up to 11 nm, and infrared band at 570 cm{sup -1} suggesting the presence of both phases. New results indicated that good quality highly ordered nanoporous silica host can be synthesized in the presence of zeolite Y seed precursor depending on the amount of precursor added. Preliminary research on the catalytic performance of the materials is underway. Probe acid catalyzed reactions, such as the cracking of cumene is currently being conducted. Work in the immediate future will be focused on the following three areas: (1) Further characterization of all-silica and aluminosilicate mesoporous materials with expanded pore sizes up to 30 nm will continue; (2) Research efforts to reduce the average particle size of zeolite nanoparticles down to 35-30 nm will continue; (3) Further synthesis of ZeoliteY/Nanoporous host composite catalysts of improved structural and

  14. Highly optimized CO2 capture by inexpensive nanoporous covalent organic polymers and their amine composites.

    PubMed

    Patel, Hasmukh A; Yavuz, Cafer T

    2015-01-01

    Carbon dioxide (CO2) storage and utilization requires effective capture strategies that limit energy penalties. Polyethylenimine (PEI)-impregnated covalent organic polymers (COPs) with a high CO2 adsorption capacity are successfully prepared in this study. A low cost COP with a high specific surface area is suitable for PEI loading to achieve high CO2 adsorption, and the optimal PEI loading is 36 wt%. Though the adsorbed amount of CO2 on amine impregnated COPs slightly decreased with increasing adsorption temperature, CO2/N2 selectivity is significantly improved at higher temperatures. The adsorption of CO2 on the sorbent is very fast, and a sorption equilibrium (10% wt) was achieved within 5 min at 313 K under the flow of simulated flue gas streams. The CO2 capture efficiency of this sorbent is not affected under repetitive adsorption-desorption cycles. The highest CO2 capture capacity of 75 mg g(-1) at 0.15 bar is achieved under dry CO2 capture however it is enhanced to 100 mg g(-1) in the mixed gas flow containing humid 15% CO2. Sorbents were found to be thermally stable up to at least 200 °C. TGA and FTIR studies confirmed the loading of PEIs on COPs. This sorbent with high and fast CO2 sorption exhibits a very promising application in direct CO2 capture from flue gas. PMID:26388535

  15. Fabrication of nanofluidic diodes with polymer nanopores modified by atomic layer deposition

    PubMed Central

    Sheng, Qian; Wang, Lin; Wang, Ceming; Wang, Xinwei; Xue, Jianming

    2014-01-01

    Surface charge distribution is a crucial factor for the ionic transport properties inside nanopores. Modifying the surface charge inside a single conical nanopore can greatly affect the rectification behavior of the ionic current through the nanopore and afford nanofluidic diodes. In this work, we describe a new method to fabricate nanofluidic diodes by atomic layer deposition (ALD) on conical track-etched nanopores. Thorough investigation of the ionic transport behavior through ALD-modified polyethylene terephthalate (PET) nanopores is carried out. Our results demonstrate that ALD is a simple and effective method to modify the inner surface of the polymer nanopores for fabricating nanofluidic devices. In addition, we also investigate the stability of the ALD-modified nanopores, and the results suggest that the long-time stability could be compromised by high voltage applied along the nanopore. PMID:25332737

  16. High electrokinetic energy conversion efficiency in charged nanoporous nitrocellulose/sulfonated polystyrene membranes.

    PubMed

    Haldrup, Sofie; Catalano, Jacopo; Hansen, Michael Ryan; Wagner, Manfred; Jensen, Grethe Vestergaard; Pedersen, Jan Skov; Bentien, Anders

    2015-02-11

    The synthesis, characterization, and electrokinetic energy conversion performance have been investigated experimentally in a charged polymeric membrane based on a blend of nitrocellulose and sulfonated polystyrene. The membrane is characterized by a moderate ion exchange capacity and a relatively porous structure with average pore diameter of 11 nm. With electrokinetic energy conversion, pressure can be converted directly into electric energy and vice versa. From the electrokinetic transport properties, a remarkably large intrinsic maximum efficiency of 46% is found. It is anticipated that the results are an experimental verification of theoretical models that predict high electrokinetic energy conversion efficiency in pores with high permselectivity and hydrodynamic slip flow. Furthermore, the result is a promising step for obtaining efficient low-cost electrokinetic generators and pumps for small or microscale applications. PMID:25555128

  17. Local Release of Highly Loaded Antibodies from Functionalized Nanoporous Support for Cancer Immunotherapy

    SciTech Connect

    Lei, Chenghong; Liu, P.; Chen, Baowei; Mao, Yumeng; Engelmann, Heather E.; Shin, Yongsoon; Jaffar, Jade; Hellstrom, Ingegerd; Liu, Jun; Hellstrom, Karl E.

    2010-05-26

    We report that antibodies can be loaded in functionalized mesoporous silica (FMS) with super-high density to provide long-lasting local release at a given site. Preliminary data indicate that FMS-antibody injected directly into a mouse melanoma induces a greater inhibition of tumor growth than seen in various controls, including the antibody injected intraperitoneally. Our findings introduce a novel approach for local delivery of therapeutically active proteins to tumors and potentially, other diseases.

  18. A highly sensitive and stable electrochemical sensor for simultaneous detection towards ascorbic acid, dopamine, and uric acid based on the hierarchical nanoporous PtTi alloy.

    PubMed

    Zhao, Dianyun; Yu, Guolong; Tian, Kunlong; Xu, Caixia

    2016-08-15

    In current work highly sensitive and stable electrochemical sensor for simultaneous detection of ascorbic acid (AA), dopamine (DA), and uric acid (UA) is constructed based on the hierarchical nanoporous (HNP) PtTi alloy. The HNP-PtTi alloy is simply fabricated by two-step dealloying process, characterized by the bimodal ligament/pore size distributions and interconnected hollow channels. The HNP structure with the advantages of large surface area, excellent structure stability, and rich pore channels is used for facilitating the electron conductivity and the mass transfer. Combined with the dual effects of the bimodal nanoporous architecture and the excellent electrocatalytic activity of PtTi alloy, the constructed sensor exhibits high electrochemical sensing activity with wide linear responses from 0.2 to 1mM, 0.004 to 0.5mM, and 0.1 to 1mM for simultaneous detection of AA, DA, and UA, respectively. In addition, HNP-PtTi alloy also shows long-term sensing stability towards the AA, DA, and UA detection and behaves as a good anti-interference towards NaCl, KCl, FeCl3, CuCl2, AlCl3, glucose, and H2O2. The HNP-PtTi alloy manifests intriguing application potential as the candidate for the application of the electrochemical sensor for simultaneous detection of AA, DA, and UA. PMID:27058442

  19. Methane Storage in Nanoporous Media as Observed via High-Field NMR Relaxometry

    NASA Astrophysics Data System (ADS)

    Papaioannou, A.; Kausik, R.

    2015-08-01

    The storage properties of methane gas in Vycor porous glass (5.7 nm) are characterized in a wide pressure range from 0.7 to 89.7 MPa using nuclear magnetic resonance. We demonstrate the capability of high-field nuclear-magnetic-resonance relaxometry for the determination of the methane-gas storage capacity and the measurement of the hydrogen index, to a high degree of accuracy. This helps determine the excess gas in the pore space which can be identified to exhibit Langmuir properties in the low pressure regime of 0.7 to 39.6 MPa. The Langmuir model enables us to determine the equilibrium density of the monolayer of adsorbed gas to be 8.5% lower than that of liquid methane. We also identify the signatures of multilayer adsorption at the high pressure regime from 39.6 to 89.7 MPa and use the Brunauer-Emmet-Teller theory to determine the number of adsorbed layers of methane gas. We show how these measurements help us differentiate the gas stored in the Vycor pore space into free and adsorbed fractions for the entire pressure range paving way for similar applications such as studying natural-gas storage in gas shale rock or hydrogen storage in carbon nanotubes.

  20. IMPROVED CATALYSTS FOR HEAVY OIL UPGRADING BASED ON ZEOLITE Y NANOPARTICLES ENCAPSULATED STABLE NANOPOROUS HOST

    SciTech Connect

    Conrad Ingram; Mark Mitchell

    2005-03-21

    The objectives of this project are to synthesis nanocrystals of highly acidic zeolite Y, encapsulate them within the channels of mesoporous (nanoporous) silicates or nanoporous organosilicates and evaluate the ''zeolite Y/Nanoporous host'' composites as catalysts for the upgrading of heavy petroleum feedstocks. Our results to date are summarized as follows. The synthesis of high surface ordered nanoporous silica of expanded pore diameter of 25 nm (larger than the standard size of 8.4 nm) using trimethylbenzene as a pore size expander was accomplished. The synthesis of zeolite Y nanoparticles with median pore size of approximately 50 nm (smaller than the 80 nm typically obtained with TMAOH) using combined TMABr/TMAOH as organic additives was also accomplished. The successful synthesis of zeoliteY/Nanoporous host composite materials by sequential combination of zeolite precursors and nanoporous material precursor mixtures was implied based on results from various characterization techniques such as X-Ray diffraction, infrared spectra, thermal analysis, porosimetry data. The resulting materials showed pore sizes up to 11 nm, and infrared band at 570 cm{sup -1} suggesting the presence of both phases. Work in the immediate future will be focused on the following three areas: (1) Further characterization of all-silica and aluminosilicate mesoporous materials with expanded pore sizes up to 30 nm will continue; (2) Research efforts to reduce the average particle size of zeolite nanoparticles down to 35-30 nm will continue; (3) Further synthesis of polymer-SBA15 nanocomposites will be conducted by changing the amount and chemistry of the zeolitic precursors added; and (4) Investigation on the catalytic properties of the materials using probe catalytic reactions (such as cumene cracking), followed by catalytic testing for heavy oil conversion.

  1. Nanoporous carbon-based electrodes for high strain ionomeric bending actuators

    NASA Astrophysics Data System (ADS)

    Palmre, Viljar; Brandell, Daniel; Mäeorg, Uno; Torop, Janno; Volobujeva, Olga; Punning, Andres; Johanson, Urmas; Kruusmaa, Maarja; Aabloo, Alvo

    2009-09-01

    Ionic polymer metal composites (IPMCs) are electroactive material devices that bend at low applied voltage (1-4 V). Inversely, a voltage is generated when the materials are deformed, which makes them useful both as sensors and actuators. In this paper, we propose two new highly porous carbon materials as electrodes for IPMC actuators, generating a high specific area, and compare their electromechanical performance with recently reported RuO2 electrodes and conventional IPMCs. Using a direct assembly process (DAP), we synthesize ionic liquid (Emi-Tf) actuators with either carbide-derived carbon (CDC) or coconut-shell-based activated carbon-based electrodes. The carbon electrodes were applied onto ionic liquid-swollen Nafion membranes using a direct assembly process. The study demonstrates that actuators based on carbon electrodes derived from TiC have the greatest peak-to-peak strain output, reaching up to 20.4 mɛ (equivalent to>2%) at a 2 V actuation signal, exceeding that of the RuO2 electrodes by more than 100%. The electrodes synthesized from TiC-derived carbon also exhibit significantly higher maximum strain rate. The differences between the materials are discussed in terms of molecular interactions and mechanisms upon actuation in the different electrodes.

  2. Oscillation of Capacitance inside Nanopores

    SciTech Connect

    Jiang, De-en; Jin, Zhehui; Wu, Jianzhong

    2011-10-26

    Porous carbons of high surface area are promising as cost-effective electrode materials for supercapacitors. Although great attention has been given to the anomalous increase of the capacitance as the pore size approaches the ionic dimensions, there remains a lack of full comprehension of the size dependence of the capacitance in nanopores. Here we predict from a classical density functional theory that the capacitance of an ionic-liquid electrolyte inside a nanopore oscillates with a decaying envelope as the pore size increases. The oscillatory behavior can be attributed to the interference of the overlapping electric double layers (EDLs); namely, the maxima in capacitance appear when superposition of the two EDLs is most constructive. The theoretical prediction agrees well with the experiment when the pore size is less than twice the ionic diameter. Confirmation of the entire oscillatory spectrum invites future experiments with a precise control of the pore size from micro- to mesoscales.

  3. High phase order transmission demonstration. Final report

    SciTech Connect

    Krizauskas, E.; Landers, T.L.; Richeda, R.J.; Oppel, L.J.; Stewart, J.R.

    1997-12-01

    High-phase-order (HPO), or six-phase, transmission is an extension of line compaction that further increases the power transfer capability of a limited transmission line right-of-way. On July 1, 1992, the first commercially operated six-phase transmission line was energized as a tie line integrated into the New York State Electric and Gas (NYSEG) existing three-phase power system. Previous Empire State Electric Energy Research Corporation (ESEERCO) Project EP 88-23 reports detail the analytical framework and conceptual studies (Phase 1) and the detailed engineering and design/construction (Phase 2) that preceded the 1992 energization. After the six-phase line was constructed, a testing program verified the theoretical predictions of electrical effects due to six-phase construction. This Final Project Report details the results of the Phase 3 testing program and examines steady-state power frequency parameters, partial switching, corona effects, and field effects. In addition, this report details the results of two unplanned unstaged faults, and low-level staged faults. After one year of operation, results led to the identification of aspects that warranted additional study and evaluation. This report summarizes these additional investigations and evaluations of midspan spacers, off-the-shelf microprocessor-based relays for six-phase line protection, live line maintenance, possible standard six-phase station designs, and an economic evaluation of break-even distances for which six-phase is more economical than conventional double-circuit three-phase applications for line upgrades and new construction.

  4. High order harmonic generation in rare gases

    SciTech Connect

    Budil, K.S.

    1994-05-01

    The process of high order harmonic generation in atomic gases has shown great promise as a method of generating extremely short wavelength radiation, extending far into the extreme ultraviolet (XUV). The process is conceptually simple. A very intense laser pulse (I {approximately}10{sup 13}-10{sup 14} W/cm{sup 2}) is focused into a dense ({approximately}10{sup l7} particles/cm{sup 3}) atomic medium, causing the atoms to become polarized. These atomic dipoles are then coherently driven by the laser field and begin to radiate at odd harmonics of the laser field. This dissertation is a study of both the physical mechanism of harmonic generation as well as its development as a source of coherent XUV radiation. Recently, a semiclassical theory has been proposed which provides a simple, intuitive description of harmonic generation. In this picture the process is treated in two steps. The atom ionizes via tunneling after which its classical motion in the laser field is studied. Electron trajectories which return to the vicinity of the nucleus may recombine and emit a harmonic photon, while those which do not return will ionize. An experiment was performed to test the validity of this model wherein the trajectory of the electron as it orbits the nucleus or ion core is perturbed by driving the process with elliptically, rather than linearly, polarized laser radiation. The semiclassical theory predicts a rapid turn-off of harmonic production as the ellipticity of the driving field is increased. This decrease in harmonic production is observed experimentally and a simple quantum mechanical theory is used to model the data. The second major focus of this work was on development of the harmonic {open_quotes}source{close_quotes}. A series of experiments were performed examining the spatial profiles of the harmonics. The quality of the spatial profile is crucial if the harmonics are to be used as the source for experiments, particularly if they must be refocused.

  5. Surface-enhanced Raman spectroscopy on laser-engineered ruthenium dye-functionalized nanoporous gold

    NASA Astrophysics Data System (ADS)

    Schade, Lina; Franzka, Steffen; Biener, Monika; Biener, Jürgen; Hartmann, Nils

    2016-06-01

    Photothermal processing of nanoporous gold with a microfocused continuous-wave laser at λ = 532 nm provides a facile means in order engineer the pore and ligament size of nanoporous gold. In this report we take advantage of this approach in order to investigate the size-dependence of enhancement effects in surface-enhanced Raman spectroscopy (SERS). Surface structures with laterally varying pore sizes from 25 nm to ≥200 nm are characterized using scanning electron microscopy and then functionalized with N719, a commercial ruthenium complex, which is widely used in dye-sensitized solar cells. Raman spectroscopy reveals the characteristic spectral features of N719. Peak intensities strongly depend on the pore size. Highest intensities are observed on the native support, i.e. on nanoporous gold with pore sizes around 25 nm. These results demonstrate the particular perspectives of laser-fabricated nanoporous gold structures in fundamental SERS studies. In particular, it is emphasized that laser-engineered porous gold substrates represent a very well defined platform in order to study size-dependent effects with high reproducibility and precision and resolve conflicting results in previous studies.

  6. Nanoporous polymer electrolyte

    SciTech Connect

    Elliott, Brian; Nguyen, Vinh

    2012-04-24

    A nanoporous polymer electrolyte and methods for making the polymer electrolyte are disclosed. The polymer electrolyte comprises a crosslinked self-assembly of a polymerizable salt surfactant, wherein the crosslinked self-assembly includes nanopores and wherein the crosslinked self-assembly has a conductivity of at least 1.0.times.10.sup.-6 S/cm at 25.degree. C. The method of making a polymer electrolyte comprises providing a polymerizable salt surfactant. The method further comprises crosslinking the polymerizable salt surfactant to form a nanoporous polymer electrolyte.

  7. IMPROVED CATALYSTS FOR HEAVY OIL UPGRADING BASED ON ZEOLITE Y NANOPARTICLES ENCAPSULATED IN STABLE NANOPOROUS HOSTS

    SciTech Connect

    Conrad Ingram; Mark Mitchell

    2004-06-30

    The focus of this project is to improve the catalytic performance of zeolite Y for heavy petroleum hydrocracking by synthesizing nanoparticles of the zeolite ({approx}20-30 nm) inside nanoporous silicate or aluminosilicate hosts of similar pore diameters. The encapsulated zeolite nanoparticles are expected to possess pores of reduced diffusional path lengths, hence hydrocarbon substrates will diffuse in, are converted and the products quickly diffused out. This is expected to prevent over-reaction, hence minimizing pore blockage and active sites deactivation. In this phase of the project, research activities were focused on refining procedures to: (a) improve the synthesis of ordered, high surface area nanoporous silica, such as SBA-15, with expanded pore size using trimethylbenzene as additive to the parent SBA-15 synthesis mixture; and (b) reduce the particle size of zeolite Y such that they can be effectively incorporated into the nanoporous silicas. The synthesis of high surface ordered nanoporous silica containing enlarged pores of diameter of 25 nm (larger than the standard size of 8.4 nm) using trimethylbenzene as a pore size expander was accomplished. The synthesis of zeolite Y nanoparticles with median pore size of approximately 50 nm (smaller than the 80 nm typically obtained with TMAOH) using combined TMABr/TMAOH as organic additives was also accomplished.

  8. High order accurate solutions of viscous problems

    NASA Technical Reports Server (NTRS)

    Hayder, M. E.; Turkel, Eli

    1993-01-01

    We consider a fourth order extension to MacCormack's scheme. The original extension was fourth order only for the inviscid terms but was second order for the viscous terms. We show how to modify the viscous terms so that the scheme is uniformly fourth order in the spatial derivatives. Applications are given to some boundary layer flows. In addition, for applications to shear flows the effect of the outflow boundary conditions are very important. We compare the accuracy of several of these different boundary conditions for both boundary layer and shear flows. Stretching at the outflow usually increases the oscillations in the numerical solution but the addition of a filtered sponge layer (with or without stretching) reduces such oscillations. The oscillations are generated by insufficient resolution of the shear layer. When the shear layer is sufficiently resolved then oscillations are not generated and there is less of a need for a nonreflecting boundary condition.

  9. High-Order Energy Stable WENO Schemes

    NASA Technical Reports Server (NTRS)

    Yamaleev, Nail K.; Carpenter, Mark H.

    2009-01-01

    A third-order Energy Stable Weighted Essentially Non-Oscillatory (ESWENO) finite difference scheme developed by Yamaleev and Carpenter was proven to be stable in the energy norm for both continuous and discontinuous solutions of systems of linear hyperbolic equations. Herein, a systematic approach is presented that enables 'energy stable' modifications for existing WENO schemes of any order. The technique is demonstrated by developing a one-parameter family of fifth-order upwind-biased ESWENO schemes; ESWENO schemes up to eighth order are presented in the appendix. New weight functions are also developed that provide (1) formal consistency, (2) much faster convergence for smooth solutions with an arbitrary number of vanishing derivatives, and (3) improved resolution near strong discontinuities.

  10. Evaporation-induced self-assembled silica colloidal particle-assisted nanoporous structural evolution of poly(ethylene terephthalate) nonwoven composite separators for high-safety/high-rate lithium-ion batteries

    NASA Astrophysics Data System (ADS)

    Lee, Jung-Ran; Won, Ji-Hye; Kim, Jong Hun; Kim, Ki Jae; Lee, Sang-Young

    2012-10-01

    A facile approach to the fabrication of nanoporous structure-tuned nonwoven composite separators is demonstrated for application in high-safety/high-rate lithium-ion batteries. This strategy is based on the construction of silica (SiO2) colloidal particle-assisted nanoporous structure in a poly(ethylene terephthalate) (PET) nonwoven substrate. The nanoparticle arrangement arising from evaporation-induced self-assembly of SiO2 colloidal particles allows the evolution of the unusual nanoporous structure, i.e. well-connected interstitial voids formed between close-packed SiO2 particles adhered by styrene-butadiene rubber (SBR) binders. Meanwhile, the PET nonwoven serves as a mechanical support that contributes to suppressing thermal shrinkage of the nonwoven composite separator. The aforementioned structural novelty of the nonwoven composite separator plays a key role in providing the separator with advantageous characteristics (specifically, good electrolyte wettability, high ionic conductivity, and benign compatibility with electrodes), which leads to the better cell performance than a commercialized polyethylene (PE) separator.

  11. The role of nanopore shape in surface-induced crystallization

    NASA Astrophysics Data System (ADS)

    Diao, Ying; Harada, Takuya; Myerson, Allan S.; Alan Hatton, T.; Trout, Bernhardt L.

    2011-11-01

    Crystallization of a molecular liquid from solution often initiates at solid-liquid interfaces, and nucleation rates are generally believed to be enhanced by surface roughness. Here we show that, on a rough surface, the shape of surface nanopores can also alter nucleation kinetics. Using lithographic methods, we patterned polymer films with nanopores of various shapes and found that spherical nanopores 15-120 nm in diameter hindered nucleation of aspirin crystals, whereas angular nanopores of the same size promoted it. We also show that favourable surface-solute interactions are required for angular nanopores to promote nucleation, and propose that pore shape affects nucleation kinetics through the alteration of the orientational order of the crystallizing molecule near the angles of the pores. Our findings have clear technological implications, for instance in the control of pharmaceutical polymorphism and in the design of ‘seed’ particles for the regulation of crystallization of fine chemicals.

  12. Thin Nanoporous Metal-Insulator-Metal Membranes.

    PubMed

    Aramesh, Morteza; Djalalian-Assl, Amir; Yajadda, Mir Massoud Aghili; Prawer, Steven; Ostrikov, Kostya Ken

    2016-02-01

    Insulating nanoporous materials are promising platforms for soft-ionizing membranes; however, improvement in fabrication processes and the quality and high breakdown resistance of the thin insulator layers are needed for high integration and performance. Here, scalable fabrication of highly porous, thin, silicon dioxide membranes with controlled thickness is demonstrated using plasma-enhanced chemical-vapor-deposition. The fabricated membranes exhibit good insulating properties with a breakdown voltage of 1 × 10(7) V/cm. Our calculations suggest that the average electric field inside a nanopore of the membranes can be as high as 1 × 10(6) V/cm; sufficient for ionization of wide range of molecules. These metal-insulator-metal nanoporous arrays are promising for applications such soft ionizing membranes for mass spectroscopy. PMID:26846250

  13. High-order tail in Schwarzschild spacetime

    NASA Astrophysics Data System (ADS)

    Casals, Marc; Ottewill, Adrian

    2015-12-01

    We present an analysis of the behavior at late times of linear field perturbations of a Schwarzschild black hole spacetime. In particular, we give explicit analytic expressions for the field perturbations (for a specific ℓ-multipole) of general spin up to the first four orders at late times. These expressions are valid at arbitrary radius and include, apart from the well-known power-law tail decay at leading order (˜t-2 ℓ-3), a new logarithmic behavior at third leading order (˜t-2 ℓ-5ln t ). We obtain these late-time results by developing an analytical formalism initially formulated by Mano, Suzuki and Takasugi (MST) [Prog. Theor. Phys. 95, 1079 (1996); 96, 549 (1996)] formalism and by expanding the various MST Fourier-mode quantities for small frequency. While we give explicit expansions up to the first four leading orders (for small frequency for the Fourier modes, for late time for the field perturbation), we give a prescription for obtaining expressions to arbitrary order within a "perturbative regime."

  14. A high performance totally ordered multicast protocol

    NASA Technical Reports Server (NTRS)

    Montgomery, Todd; Whetten, Brian; Kaplan, Simon

    1995-01-01

    This paper presents the Reliable Multicast Protocol (RMP). RMP provides a totally ordered, reliable, atomic multicast service on top of an unreliable multicast datagram service such as IP Multicasting. RMP is fully and symmetrically distributed so that no site bears un undue portion of the communication load. RMP provides a wide range of guarantees, from unreliable delivery to totally ordered delivery, to K-resilient, majority resilient, and totally resilient atomic delivery. These QoS guarantees are selectable on a per packet basis. RMP provides many communication options, including virtual synchrony, a publisher/subscriber model of message delivery, an implicit naming service, mutually exclusive handlers for messages, and mutually exclusive locks. It has commonly been held that a large performance penalty must be paid in order to implement total ordering -- RMP discounts this. On SparcStation 10's on a 1250 KB/sec Ethernet, RMP provides totally ordered packet delivery to one destination at 842 KB/sec throughput and with 3.1 ms packet latency. The performance stays roughly constant independent of the number of destinations. For two or more destinations on a LAN, RMP provides higher throughput than any protocol that does not use multicast or broadcast.

  15. Switchable imbibition in nanoporous gold

    NASA Astrophysics Data System (ADS)

    Huber, Patrick; Markmann, Juergen; Duan, Huiling; Weissmueller, Joerg; Xue, Yahui

    2015-11-01

    Spontaneous imbibition enables the elegant propelling of nano-flows because of the dominance of capillarity at small length scales. The imbibition kinetics are, however, solely determined by the static host geometry, the capillarity, and the fluidity of the imbibed liquid. This makes active control particularly challenging. Here we show for aqueous electrolyte imbibition in nanoporous gold that the fluid flow can be reversibly switched on and off through electric potential control of the solid-liquid interfacial tension, that is, we can accelerate the imbibition front, stop it, and have it proceed at will. Simultaneous measurements of the mass flux and the electrical current allow us to document simple scaling laws for the imbibition kinetics, and to explore the charge transport in the metallic nanopores. Our findings demonstrate that the high electric conductivity along with the pathways for fluid/ionic transport render nanoporous gold a versatile, accurately controllable electrocapillary pump and flow sensor for minute amounts of liquids with exceptionally low operating voltages.

  16. Switchable imbibition in nanoporous gold

    PubMed Central

    Xue, Yahui; Markmann, Jürgen; Duan, Huiling; Weissmüller, Jörg; Huber, Patrick

    2014-01-01

    Spontaneous imbibition enables the elegant propelling of nano-flows because of the dominance of capillarity at small length scales. The imbibition kinetics are, however, solely determined by the static host geometry, the capillarity, and the fluidity of the imbibed liquid. This makes active control particularly challenging. Here we show for aqueous electrolyte imbibition in nanoporous gold that the fluid flow can be reversibly switched on and off through electric potential control of the solid–liquid interfacial tension, that is, we can accelerate the imbibition front, stop it, and have it proceed at will. Simultaneous measurements of the mass flux and the electrical current allow us to document simple scaling laws for the imbibition kinetics, and to explore the charge transport in the metallic nanopores. Our findings demonstrate that the high electric conductivity along with the pathways for fluid/ionic transport render nanoporous gold a versatile, accurately controllable electrocapillary pump and flow sensor for minute amounts of liquids with exceptionally low operating voltages. PMID:24980062

  17. Deformation Behavior of Nanoporous Metals

    SciTech Connect

    Biener, J; Hodge, A M; Hamza, A V

    2007-11-28

    Nanoporous open-cell foams are a rapidly growing class of high-porosity materials (porosity {ge} 70%). The research in this field is driven by the desire to create functional materials with unique physical, chemical and mechanical properties where the material properties emerge from both morphology and the material itself. An example is the development of nanoporous metallic materials for photonic and plasmonic applications which has recently attracted much interest. The general strategy is to take advantage of various size effects to introduce novel properties. These size effects arise from confinement of the material by pores and ligaments, and can range from electromagnetic resonances to length scale effects in plasticity. In this chapter we will focus on the mechanical properties of low density nanoporous metals and how these properties are affected by length scale effects and bonding characteristics. A thorough understanding of the mechanical behavior will open the door to further improve and fine-tune the mechanical properties of these sometimes very delicate materials, and thus will be crucial for integrating nanoporous metals into products. Cellular solids with pore sizes above 1 micron have been the subject of intense research for many years, and various scaling relations describing the mechanical properties have been developed.[4] In general, it has been found that the most important parameter in controlling their mechanical properties is the relative density, that is, the density of the foam divided by that of solid from which the foam is made. Other factors include the mechanical properties of the solid material and the foam morphology such as ligament shape and connectivity. The characteristic internal length scale of the structure as determined by pores and ligaments, on the other hand, usually has only little effect on the mechanical properties. This changes at the submicron length scale where the surface-to-volume ratio becomes large and the effect

  18. Regulating Current Rectification and Nanoparticle Transport Through a Salt Gradient in Bipolar Nanopores.

    PubMed

    Lin, Chih-Yuan; Yeh, Li-Hsien; Hsu, Jyh-Ping; Tseng, Shiojenn

    2015-09-16

    Tuning of ion and nanoparticle transport is validated through applying a salt gradient in two types of nanopores: the inner wall of a nanopore has bipolar charges and its outer wall neutral (type I), and both the inner and outer walls of a nanopore have bipolar charges (type II). The ion current rectification (ICR) behavior of these nanopores can be regulated by an applied salt gradient: if it is small, the degree of ICR in type II nanopore is more significant than that in type I nanopore; a reversed trend is observed at a sufficiently large salt gradient. If the applied salt gradient and electric field have the same direction, type I nanopore exhibits two significant features that are not observed in type II nanopore: (i) a cation-rich concentration polarization field and an enhanced funneling electric field are present near the cathode side of the nanopore, and (ii) the magnitude of the axial electric field inside the nanopore is reduced. These features imply that applying a salt gradient to type I nanopore is capable of simultaneously enhancing the nanoparticle capture into the nanopore and reducing its translocation velocity inside, so that high sensing performance and resolution can be achieved. PMID:26148458

  19. Periodicity of high-order neural functions

    NASA Technical Reports Server (NTRS)

    Kellaway, P.; Borda, R. P.; Frost, J. D.; Carrie, J. R. G.; Coats, A. C.

    1973-01-01

    The results of recent studies on higher order, integrative processes in the central nervous system are reported. Attempts were made to determine whether these processes exhibit any ongoing rhythmicity which might manifest itself in alterations of attention and alertness. Experiments were also designed to determine if a periodicity approximating that of the REM could be detected in various parameters of brain electrical activity.

  20. Monolithic aerogels with nanoporous crystalline phases

    NASA Astrophysics Data System (ADS)

    Daniel, Christophe; Guerra, Gaetano

    2015-05-01

    High porosity monolithic aerogels with nanoporous crystalline phases can be obtained from syndiotactic polystyrene and poly(2,6-dimethyl-1,4-phenylene)oxide thermoreversible gels by removing the solvent with supercritical CO2. The presence of crystalline nanopores in the aerogels based on these polymers allows a high uptake associated with a high selectivity of volatile organic compounds from vapor phase or aqueous solutions even at very low activities. The sorption and the fast kinetics make these materials particularly suitable as sorption medium to remove traces of pollutants from water and moist air.

  1. Water Purification across MoS2 Nano-porous Membranes

    NASA Astrophysics Data System (ADS)

    Heiranian, Mohammad; Barati Farimani, Amir; Aluru, Narayana R.

    2015-11-01

    A 2D material, molybdenum disulfide (MoS2) , is proposed as a nano-porous membrane for water desalination. By performing detailed molecular dynamics simulations, we find that salt ions are rejected efficiently across a single-layer MoS2 while water permeates at high rates. Depending on the pore area, which ranges from 20 to 60 Å2, the nanopore allows less than 12% of ions to pass through even at theoretically high pressures of 350 MPa. Water permeation across the MoS2 membrane is found to be as high as 12 L/cm2/day/MPa which is at least two orders of magnitude higher than that of other existing nano-porous membranes. Pore chemistry is shown to be one of the important factors leading to large water fluxes. MoS2 pore edges terminated with only molybdenum atoms result in higher fluxes which are about 70% higher than that of graphene nanopores. These findings are explained and supported by the permeation coefficients, energy barriers, water density and velocity distributions in the pores.

  2. Optical waveguides having flattened high order modes

    DOEpatents

    Messerly, Michael Joseph; Beach, Raymond John; Heebner, John Edward; Dawson, Jay Walter; Pax, Paul Henry

    2014-08-05

    A deterministic methodology is provided for designing optical fibers that support field-flattened, ring-like higher order modes. The effective and group indices of its modes can be tuned by adjusting the widths of the guide's field-flattened layers or the average index of certain groups of layers. The approach outlined here provides a path to designing fibers that simultaneously have large mode areas and large separations between the propagation constants of its modes.

  3. Structure-dependent water transport across nanopores of carbon nanotubes: toward selective gating upon temperature regulation.

    PubMed

    Zhao, Kuiwen; Wu, Huiying

    2015-04-28

    Determining water structure in nanopores and its influence on water transport behaviour is of great importance for understanding and regulating the transport across nanopores. Here we report an ultrafast-slow flow transition phenomenon for water transport across nanopores of carbon nanotubes owing to the change in water structure in nanopores induced by temperature. By performing extensive molecular dynamics simulations, we show the dependence of water transport behaviours on water structures. Our results indicate that owing to the change in water structure in nanopores, water flux across nanopores with certain pore sizes decreases sharply (nearly 3 orders of magnitude) with the decreasing temperature. This phenomenon is very sensitive to the pore size. The threshold temperatures for the occurrence of the ultrafast-slow flow transition for water transport are also determined for various pore sizes. These findings suggest a novel protocol for selective gating of water and proton conduction across nanopores and temperature-controlled drug release. PMID:25805425

  4. Single Nanoparticle Translocation Through Chemically Modified Solid Nanopore

    NASA Astrophysics Data System (ADS)

    Tan, Shengwei; Wang, Lei; Liu, Hang; Wu, Hongwen; Liu, Quanjun

    2016-02-01

    The nanopore sensor as a high-throughput and low-cost technology can detect single nanoparticle in solution. In the present study, the silicon nitride nanopores were fabricated by focused Ga ion beam (FIB), and the surface was functionalized with 3-aminopropyltriethoxysilane to change its surface charge density. The positively charged nanopore surface attracted negatively charged nanoparticles when they were in the vicinity of the nanopore. And, nanoparticle translocation speed was slowed down to obtain a clear and deterministic signal. Compared with previous studied small nanoparticles, the electrophoretic translocation of negatively charged polystyrene (PS) nanoparticles (diameter ~100 nm) was investigated in solution using the Coulter counter principle in which the time-dependent nanopore current was recorded as the nanoparticles were driven across the nanopore. A linear dependence was found between current drop and biased voltage. An exponentially decaying function ( t d ~ e -v/v0 ) was found between the duration time and biased voltage. The interaction between the amine-functionalized nanopore wall and PS microspheres was discussed while translating PS microspheres. We explored also translocations of PS microspheres through amine-functionalized solid-state nanopores by varying the solution pH (5.4, 7.0, and 10.0) with 0.02 M potassium chloride (KCl). Surface functionalization showed to provide a useful step to fine-tune the surface property, which can selectively transport molecules or particles. This approach is likely to be applied to gene sequencing.

  5. Single Nanoparticle Translocation Through Chemically Modified Solid Nanopore.

    PubMed

    Tan, Shengwei; Wang, Lei; Liu, Hang; Wu, Hongwen; Liu, Quanjun

    2016-12-01

    The nanopore sensor as a high-throughput and low-cost technology can detect single nanoparticle in solution. In the present study, the silicon nitride nanopores were fabricated by focused Ga ion beam (FIB), and the surface was functionalized with 3-aminopropyltriethoxysilane to change its surface charge density. The positively charged nanopore surface attracted negatively charged nanoparticles when they were in the vicinity of the nanopore. And, nanoparticle translocation speed was slowed down to obtain a clear and deterministic signal. Compared with previous studied small nanoparticles, the electrophoretic translocation of negatively charged polystyrene (PS) nanoparticles (diameter ~100 nm) was investigated in solution using the Coulter counter principle in which the time-dependent nanopore current was recorded as the nanoparticles were driven across the nanopore. A linear dependence was found between current drop and biased voltage. An exponentially decaying function (t d   ~ e (-v/v0) ) was found between the duration time and biased voltage. The interaction between the amine-functionalized nanopore wall and PS microspheres was discussed while translating PS microspheres. We explored also translocations of PS microspheres through amine-functionalized solid-state nanopores by varying the solution pH (5.4, 7.0, and 10.0) with 0.02 M potassium chloride (KCl). Surface functionalization showed to provide a useful step to fine-tune the surface property, which can selectively transport molecules or particles. This approach is likely to be applied to gene sequencing. PMID:26831688

  6. Universal Scaling Law for the Collapse of Viscous Nanopores.

    PubMed

    Lu, Jiakai; Yu, Jiayun; Corvalan, Carlos M

    2015-08-11

    Below a threshold size, a small pore nucleated in a fluid sheet will contract to minimize the surface energy. Such behavior plays a key role in nature and technology, from nanopores in biological membranes to nanopores in sensors for rapid DNA and RNA sequencing. Here we show that nanopores nucleated in viscous fluid sheets collapse following a universal scaling law for the pore radius. High-fidelity numerical simulations reveal that the scaling is largely independent of the initial conditions, including the size, shape, and thickness of the original nanopore. Results further show that the scaling law yields a constant speed of collapse as observed in recent experiments. Nanopores in fluid sheets of moderate viscosity also attain this constant terminal speed provided that they are sufficiently close to the singularity. PMID:26230279

  7. Entropic cages for trapping DNA near a nanopore

    NASA Astrophysics Data System (ADS)

    Liu, Xu; Skanata, Mirna Mihovilovic; Stein, Derek

    2015-02-01

    Nanopores can probe the structure of biopolymers in solution; however, diffusion makes it difficult to study the same molecule for extended periods. Here we report devices that entropically trap single DNA molecules in a 6.2-femtolitre cage near a solid-state nanopore. We electrophoretically inject DNA molecules into the cage through the nanopore, pause for preset times and then drive the DNA back out through the nanopore. The saturating recapture time and high recapture probability after long pauses, their agreement with a convection-diffusion model and the observation of trapped DNA under fluorescence microscopy all confirm that the cage stably traps DNA. Meanwhile, the cages have 200 nm openings that make them permeable to small molecules, like the restriction endonuclease we use to sequence-specifically cut trapped DNA into fragments whose number and sizes are analysed upon exiting through the nanopore. Entropic cages thus serve as reactors for chemically modifying single DNA molecules.

  8. Nanopore analysis of amyloid fibrils formed by lysozyme aggregation.

    PubMed

    Martyushenko, Nikolay; Bell, Nicholas A W; Lamboll, Robin D; Keyser, Ulrich F

    2015-07-21

    The measurement of single particle size distributions of amyloid fibrils is crucial for determining mechanisms of growth and toxicity. Nanopore sensing is an attractive solution for this problem since it gives information on aggregates' shapes with relatively high throughput for a single particle technology. In this paper we study the translocation of lysozyme fibrils through quartz glass nanopores. We demonstrate that, under appropriate salt and pH conditions, lysozyme fibrils translocate through bare quartz nanopores without causing significant clogging. This enables us to measure statistics on tens of thousands of translocations of lysozyme fibrils with the same nanopore and track their development over a time course of aggregation spanning 24 h. Analysis of our events shows that the statistics are consistent with a simple bulk conductivity model for the passage of rods with a fixed cross sectional area through a conical glass nanopore. PMID:25994201

  9. Nanopore Fabrication by Controlled Dielectric Breakdown

    PubMed Central

    Tabard-Cossa, Vincent

    2014-01-01

    Nanofabrication techniques for achieving dimensional control at the nanometer scale are generally equipment-intensive and time-consuming. The use of energetic beams of electrons or ions has placed the fabrication of nanopores in thin solid-state membranes within reach of some academic laboratories, yet these tools are not accessible to many researchers and are poorly suited for mass-production. Here we describe a fast and simple approach for fabricating a single nanopore down to 2-nm in size with sub-nm precision, directly in solution, by controlling dielectric breakdown at the nanoscale. The method relies on applying a voltage across an insulating membrane to generate a high electric field, while monitoring the induced leakage current. We show that nanopores fabricated by this method produce clear electrical signals from translocating DNA molecules. Considering the tremendous reduction in complexity and cost, we envision this fabrication strategy would not only benefit researchers from the physical and life sciences interested in gaining reliable access to solid-state nanopores, but may provide a path towards manufacturing of nanopore-based biotechnologies. PMID:24658537

  10. InGaN Light-Emitting Diodes with an Embedded Nanoporous GaN Distributed Bragg Reflectors

    NASA Astrophysics Data System (ADS)

    Shiu, Guo-Yi; Chen, Kuei-Ting; Fan, Feng-Hsu; Huang, Kun-Pin; Hsu, Wei-Ju; Dai, Jing-Jie; Lai, Chun-Feng; Lin, Chia-Feng

    2016-07-01

    InGaN light emitting diodes (LED) structure with an embedded 1/4λ-stack nanoporous-GaN/undoped-GaN distributed Bragg reflectors (DBR) structure have been demonstrated. Si-heavily doped GaN epitaxial layers (n+-GaN) in the 12-period n+-GaN/u-GaN stack structure are transformed into low refractive index nanoporous GaN structure through the doping-selective electrochemical wet etching process. The central wavelength of the nanoporous DBR structure was located at 442.3 nm with a 57 nm linewidth and a 97.1% peak reflectivity. The effective cavity length (6.0λ), the effective penetration depth (278 nm) in the nanoporous DBR structure, and InGaN active layer matching to Fabry-Pérot mode order 12 were observed in the far-field photoluminescence radiative spectra. High electroluminescence emission intensity and line-width narrowing effect were measured in the DBR-LED compared with the non-treated LED structure. Non-linear emission intensity and line-width reducing effect, from 11.8 nm to 0.73 nm, were observed by increasing the laser excited power. Resonant cavity effect was observed in the InGaN LED with bottom nanoporous-DBR and top GaN/air interface.